
Introducing Norms into Practical
Reasoning Agents

by

Sofia Panagiotidi

Advisor: Javier Vázquez-Salceda

Departament de Llenguatges i Sistemes Informàtics
Artificial Intelligence PhD Program

July 2014

panagiotidi@lsi.upc.edu
http://www.lsi.upc.edu
http://www.lsi.upc.edu

Abstract

As distributed electronic systems grow to include thousands of components, from
grid to peer-to-peer nodes, from (Semantic) Web services to web-apps to computation
in the cloud, governance of such systems is becoming a real challenge. Modern ap-
proaches ensuring appropriate individual entities’ behaviour in distributed systems,
which comes from multi-agent systems (MAS) research, use norms (or regulations or
policies) and/or communication protocols to express a different layer of desired or
undesired states. From the individual’s perspective, an agent needs to be able to func-
tion in an environment where norms act as behavioural restrictions or guidelines as
to what is appropriate, not only for the individual but also for the community.

In the literature the concept of norms has been defined from several perspectives: as
a rule or standard of behaviour shared by members of a social group, as an author-
itative rule or standard by which something is judged, approved or disapproved, as
standards of right and wrong, beauty and ugliness, and truth and falsehood, or even
as a model of what should exist or be followed, or an average of what currently does
exist in some context. Currently there exist in the literature: 1) some treatments that
formally connect the deontic aspects of norms with their operationalisation; 2) some
treatments that properly distinguish between abstract norms and their (multiple) in-
stantiations at runtime; 3) little work that formalises the operational semantics in a
way that ensures flexibility in their translation to actual implementations while en-
suring unambiguous interpretations of the norms; 4) little work that is suitable for
both institutional-level norm monitoring and individual agent norm-aware reasoning
to ensure that both are aligned; 5) few works that explore how the norms may affect
the decision making process of an agent when the process includes planning mecha-
nisms at runtime for means-ends reasoning. However, currently there is no work that
includes both a formalism and an implementation covering 1-5 altogether.

This thesis presents work towards the above five areas. We give a proposal to bridge
the gap between a single norm formalisation and the actual mechanisms used for
norm-aware planning, in order to create a normative practical reasoning mechanism.
One way to do this is by reducing deontic-based norm definitions to temporal logic
formulas which, in turn, can be translated into planning operational semantics. Based

on these semantics, we create a mechanism to support practical normative reasoning
that can be used by agents to produce and evaluate their plans. We construct a norm-
oriented agent that takes into consideration operationalised norms during the plan
generation phase, using them as guidelines to decide the agent’s future action path. To
make norms influence plan generation, our norm operational semantics is expressed
as an extension of the planning domain, acting as a form of temporal restrictions over
the trajectories (plans) computed by the planner. We consider two approaches to do
so. One implementing the semantics by using planning with constraints through paths
and the other by directly translating the norms into domain knowledge to be included
into the planning domain. We explore a scenario based on traffic laws in order to
demonstrate the usability of our proposal. We also show how our normative frame-
works are successfully integrated into an existing BDI agent implementation, 2APL.
For each approach taken, we present quantitative experimental results and illustrate
the opportunities for further research.

Resumen

La gestión de sistemas electrónicos distribuidos se está convirtiendo en un auténtico
reto a medida que dichos sistemas crecen incluyendo múltiples componentes, desde
nodos grid a peer-to-peer, servicios de la Web semántica, aplicaciones web o com-
putación en la nube. Los enfoques modernos que aseguran un comportamiento ade-
cuado de las entidades individuales en sistemas distribuidos, y que provienen de
la investigación en sistemas multi-agentes (MAS), utilizan normas (o regulaciones o
polı́ticas) y/o protocolos de comunicación para expresar un nivel diferente de estados
deseados o no deseados. Desde la perspectiva del individuo, un agente necesita poder
funcionar en un entorno donde las normas actúen como restricciones o directrices de
comportamiento respecto a lo que es apropiado, no únicamente para el individuo sino
para la comunidad en su conjunto.

En la literatura el concepto de norma se ha definido desde diferentes perspectivas:
como una regla o estándar de comportamiento compartida por los miembros de un
grupo social, como una regla autoritaria o estándar por el cual se juzga, se aprueba
o desaprueba, como estándar de lo correcto o incorrecto, belleza o fealdad, verdad
o falsedad, o incluso, como un modelo que deberı́a existir o ser seguido, o como un
promedio de lo que actualmente existe en un contexto determinado. En la actualidad
se pueden encontrar en la literatura: 1) trabajos que conectan formalmente los as-
pectos deónticos de las normas con su operacionalización; 2) trabajos que distinguen
adecuadamente entre normas abstractas y sus (múltiples) instanciaciones en tiempo
de ejecución; 3) algún ejemplo que formaliza las semánticas operacionales de manera
que se asegura la flexibilidad en su traducción a implementaciones garantizando a su
vez interpretaciones no ambiguas de las normas; 4) algún trabajo que se adecúa tanto
a la monitorización de normas a nivel institucional como al razonamiento basado en
normas a nivel de los agentes individuales y que asegura que ambos están alineados;
5) algún trabajo que explora como las normas pueden afectar al proceso de toma de
decisiones de un agente cuando el proceso incluye mecanismos de planificación en
tiempo real para un razonamiento medios-fines. Sin embargo, actualmente no existe
ningún enfoque que incluya formalismos e implementaciones abordando los 5 puntos
al mismo tiempo.

La presente tesis propone contribuciones en las cinco áreas mencionadas. Se presenta
una propuesta para establecer un enlace entre la formalización de una norma y los
mecanismos utilizados en la planificación basada en normas con el objetivo de crear
un mecanismo de razonamiento práctico normativo. Una forma de conseguirlo es me-
diante la reducción de las definiciones de normas basadas en deóntica a fórmulas de
lógica temporal que, a su vez, pueden ser traducidas a semánticas operacionales de
planificación. Basándose en estas semánticas, se ha creado un mecanismo para dar so-
porte al razonamiento normativo práctico que puede ser utilizado por los agentes para
producir y evaluar sus planes. Se ha construido un agente orientado a normas que
tiene en consideración las normas operacionalizadas durante la fase de generación
de planes, utilizándolas como directrices para decidir el futuro curso de acción del
agente. Para conseguir que las normas influyan en la generación de planes, nuestras
semánticas operacionales de normas se expresan como una extensión del dominio
de la planificación, actuando como una forma de restricciones temporales sobre las
trayectorias (planes) computadas por el planificador. Se han considerado dos enfo-
ques para realizarlo. Uno, implementando las semánticas utilizando planificación
con restricciones a través de caminos y otro, traduciendo directamente las normas en
conocimiento del dominio que se incluirá en el dominio de planificación. Se explora
un escenario basado en normas de circulación de tráfico para demostrar la usabilidad
de nuestra propuesta. Se mostrará también como nuestro marco normativo se inte-
gra satisfactoriamente en una implementación existente de agentes BDI, 2APL. Para
cada enfoque considerado, se presentan resultados experimentales cuantitativos y se
ilustran las oportunidades para futuros trabajos de investigación.

Resum

A mesura que els sistemes electrònics distribuı̈ts creixen per incloure milers de com-
ponents, des de nodes grid a peer-to-peer fins a serveis de la Web semàntica, aplica-
cions web o computació al núvol, la gestió d’aquests sistemes s’està convertint en un
autèntic repte. Els enfocs moderns que asseguren el comportament apropiat de les
entitats individuals en sistemes distribuı̈ts, que prové de la recerca en sistemes multi-
agents, utilitzen normes (o regulacions o polı́tiques) i/o protocols de comunicació per
expressar una capa diferent d’estats desitjats o no desitjats. Des de la perspectiva de
l’individu, un agent necessita poder funcionar en un entorn on les normes actuı̈n com
a restriccions de comportament o guies respecte al que és apropiat, no només per al
individu sinó per a la comunitat.

En la literatura el concepte de normes s’ha tractat des de diferents perspectives: com
una regla o estàndard de comportament compartida pels membres d’un grup social,
com una regla o estàndard autoritari pel qual alguna cosa és jutjada, aprovada o de-
saprovada, com estàndard del correcte i del incorrecte, bellesa i lletjor, veritat i false-
dat, o inclús com un model del que hauria d’existir o ser seguit, o com una mitjana
del que actualment existeix en un context donat. Actualment trobem en la literatura:
1) alguns tractaments que connecten formalment els aspectes deòntics de les normes
amb la seva operacionalització; 2) alguns tractaments que distingeixen adequadament
entre normes abstractes i les seves (múltiples) instanciacions en temps real; 3) alguns
exemples que formalitzen les semàntiques operacionals de manera que asseguren flex-
ibilitat en la seva traducció a implementacions garantint interpretacions no ambigües
de les normes; 4) alguns treballs adequats per a la monitorització de normes a nivell
institucional i per al raonament basat en normes en agents individuals assegurant que
ambdós estan alineats; 5) alguns treballs que exploren com les normes poden afectar
el procés de presa de decisions d’un agent quan el procés inclou mecanismes de plan-
ificació en temps real per a raonament mitjans-finalitats. D’altra banda, actualment no
existeix cap enfoc que inclogui formalismes i implementacions cobrint els punts 1-5 a
la vegada.

Aquesta tesi presenta contribucions en les cinc àrees esmentades. Presentem una
proposta per establir un enllaç entre la formalització d’una norma i els mecanismes

emprats en la planificació basada en normes per tal de crear un mecanisme de raon-
ament pràctic normatiu. Una manera d’aconseguir-ho és reduint les definicions de
normes deòntiques a fórmules de lògica temporal les quals poden ser traduı̈des a
semàntiques de planificació operacional. Basant-nos en aquestes semàntiques, hem
creat un mecanisme per donar suport al raonament normatiu pràctic que pot ser em-
prat per agents per produir i avaluar els seus plans. Hem construı̈t un agent orientat a
normes que pren en consideració durant la fase de generació de plans les normes op-
eracionalitzades, utilitzant-les com a guia per decidir el futur curs d’acció de l’agent.
Per tal de fer que les normes influenciı̈n la generació de plans, les nostres semàntiques
operacionals de normes s’expressen com una extensió del domini de la planificació,
actuant com una mena de restriccions temporals sobre les trajectòries (plans) com-
putades pel planificador. Considerem dos enfocs per dur-ho a terme. Un imple-
mentant les semàntiques emprant planificació amb restriccions per mitjà de camins i
l’altre traduint directament les normes en coneixement del domini a ser inclòs en el
domini de planificació. Explorem un escenari basat en les normes de circulació de
tràfic per demostrar la usabilitat de la nostra proposta. Mostrarem també com el nos-
tre marc normatiu s’integra satisfactòriament en una implementació existent d’ agent
BDI, 2APL. Per cada enfoc considerat, presentem resultats experimentals quantitatius
i il·lustrem les oportunitats per treballs de recerca futurs.

Περίληψη

Καθώς τα ηλεκτρονικά συστήματα στις μέρες μας φτάνουν να περιλαμβάνουν χιλιάδες στοι-

χεία, από grid μέχρι peer-to-peer δίκτυα, από (σημασιολογικές) υπηρεσίες έως web-apps
στο Cloud, η διακυβέρνηση τέτοιων συστημάτων γίνεται ολοένα και πιο δύσκολη. Σύγ-
χρονες μέθοδοι που προέρχονται από έρευνα πάνω σε πολυπρακτορικά συστήματα χρησιμο-

ποιούν κανονισμούς (νόρμες) και/ή πρωτόκολλα επικοινωνίας για να εκφράσουν ένα επίπεδο

επιθυμητών ή ανεπιθύμητων καταστάσεων. Από την οπτική του ατόμου, ένας πράκτορας

είναι απαραίτητο να μπορεί να λειτουργεί σε ένα περιβάλλον όπου οι κανονισμοί δρουν ως

συμπεριφορικοί περιορισμοί ή υποδείξεις ως προς το τι είναι θεμιτό, όχι μόνο για το άτομο,

αλλά επιπλέον και για την κοινότητα.

Στη βιβλιογραφία η έννοια του κανονισμού έχει οριστεί από διαφορετικές οπτικές: ως κοινό

πρότυπο συμπεριφοράς για τα μέλη μίας κοινωνικής ομάδας, ως εξουσιαστικός κανόνας ή ως

πρότυπο μέσω του οποίου κάτι κρίνεται, εγκρίνεται ή αποδοκιμάζεται, ως πρότυπο σωστού

και λάθους, ομορφιάς και ασχήμιας, αλήθειας ή ψεύδους, ή ακόμη και ως πρότυπο του τι θα

μπορούσε να υπάρχει ή να ακολουθείται, ή ως μέσος όρος του τι υπάρχει επί του παρόντος

μέσα σε ένα πλαίσιο. ΄Εως σήμερα στη βιβλιογραφία υπάρχουν: 1) κάποιες εργασίες οι

οποίες επισήμως συνδέουν τη δεοντολογική διάσταση των κανονισμών με την λειτουργία

τους στην πράξη· 2) κάποιες έρευνες οι οποίες επισήμως διαφοροποιούν τους αφηρημένους

κανονισμούς από τις (πολλαπλές) ενσαρκώσεις τους σε πραγματικό χρόνο· 3) λίγη έρευνα

η οποία επισημοποιεί τη λειτουργική τους σημασιολογία με τέτοιο τρόπο ώστε να εξασφα-

λίζεται η προσαρμοστικότητα κατά τη μετάφρασή τους σε πραγματικές υλοποιήσεις, ενώ

ταυτόχρονα να εξασφαλίζεται και η μη διφορούμενη ερμηνεία των κανονισμών· 4) λίγες ερ-

γασίες οι οποίες είναι κατάλληλες ταυτόχρονα για επιτήρηση και εφαρμογή των κανονισμών

σε θεσμικό επίπεδο καθώς και για λήψη αποφάσεων σε ατομικό επίπεδο κάθε πράκτορα,

εξασφαλίζοντας οτι τα δύο είναι εναρμονισμένα· 5) λίγες εργασίες οι οποίες ερευνούν πώς οι

κανονισμοί μπορούν να επηρεάσουν τη διαδικασία λήψης αποφάσεων ενός πράκτορα όταν η

διαδικασία περιλαμβάνει μηχανισμούς παραγωγής πλάνων (planning) σε πραγματικό χρόνο
προς επίτευξη ορισμένων στόχων. Παρ΄ όλα αυτά, δεν υπάρχει καμία έρευνα που να περι-

λαμβάνει ένα φορμαλισμό και μία υλοποίηση που να καλύπτει και τα 5 μαζί.

Αυτή η εργασία παρουσιάζει έργο προς τις πέντε παραπάνω κατευθύνσεις. Παραθέτουμε

μια πρόταση για να γεφυρώσουμε το χάσμα μεταξύ ενός συγκεκριμένου φορμαλισμού των

κανονισμών και των μηχανισμών που χρησιμοποιούνται στο planning βάσει κανονισμών,
ώστε να κατασκευάσουμε έναν πρακτικό μηχανισμό αποφάσεων με κανονισμούς. ΄Ενας

τρόπος να γίνει αυτό είναι μετατρέποντας τους δεοντολογικούς ορισμούς κανονισμών σε

λογικές χρονικές φόρμουλες οι οποίες, με τη σειρά τους, μπορούν να μεταφραστούν σε πρα-

κτικό φορμαλισμό planning. Βασιζόμενοι σε αυτό το φορμαλισμό, χτίζουμε ένα εργαλείο
που υποστηρίζει έναν πρακτικό μηχανισμό αποφάσεων με κανονισμούς το οποίο μπορεί να

χρησιμοποιηθεί από πράκτορες για να κατασκευάσουν και αξιολογήσουν τα πλάνα τους. Κα-

τασκευάζουμε έναν πράκτορα κατευθυνόμενο από κανονισμούς, ο οποίος λαμβάνει υπόψην

του πρακτικούς κανονισμούς κατά τη διάρκεια του υπολογισμού των πλάνων του, χρησιμο-

ποιώντας τους ταυτόχρονα ως κατευθύνσεις για να αποφασίσει τις επόμενες κινήσεις του.

Για να επηρεάσουν οι κανονισμοί τα πλάνα που παράγονται, ο φορμαλισμός μας εκφράζεται

ως επέκταση του πεδίου planning, δρώντας ως κάποια μορφή λογικών περιορισμών πάνω
στα πλάνα (μονοπάτια) που υπολογίζονται από τον planner. Εξετάζουμε δύο προσεγγίσεις
γι΄ αυτό. Μία, υλοποιώντας το φορμαλισμό χρησιμοποιώντας planning με περιορισμούς
πάνω στα μονοπάτια και άλλη μία, απευθείας μεταφράζοντας τους κανονισμούς σε όρους

του πεδίου γνώσης (planning domain) ώστε να ενσωματωθούν στο πεδίο planning. Κα-
τασκευάζουμε και μελετούμε ένα σενάριο βασισμένο στον κώδικα οδικής κυκλοφορίας για να

επιδείξουμε τη χρησιμότητα της πρότασής μας. Επιπλέον, επιδεικνύουμε πως η κατασκευή

μας μπορεί να ενσωματωθεί σε μια ήδη υπάρχουσα υλοποίηση BDI πρακτόρων, ονομαζόμενη
2APL. Για κάθε προσέγγιση, παρουσιάζουμε ποσοτικά πειράματικά αποτελέσματα και ανα-
λύουμε τις ευκαιρίες για περαιτέρω έρευνα.

Acknowledgements

While I’m proud to call this PhD thesis my own, I have the greatest pleasure in ac-

knowledging the intellectual and emotional support of friends, colleagues and family.

The process has sometimes seemed never-ending, and my first and greatest debt of

gratitude must go to my advisor, Javier Vázquez, who patiently guided me through

the challenges and difficulties that I faced. With his focused way of thinking he kept

my ideas on track, and his enthusiasm and detailed revisions were a big part of mak-

ing it through.

Sergio Álvarez also deserves my warmest appreciation. From the beginning till the

very end, with his brilliance and generosity, he managed to solve countless seemingly

unsolvable technical issues within astonishingly short time-periods. I counted on you

Sergio, and you never stopped impressing me.

Ulises Cortés acted as a driving force throughout the thesis. He pushed me at times

when I really needed to advance, and with his decisiveness he gave me strength to

move forward, and I thank him for this.

I want to give special credit to Frank Dignum who kindly hosted me as a visiting

student for 3 months at the University of Utrecht. His guidance was very helpful

making my stay especially fruitful.

My colleagues in Barcelona (Bea, Roberto, Guiem, Sonia, Cristian, Joao, Arturo, Anna,

Jonathan, Luis, Darı́o, Ignasi and so many more) were sources of laughter and support

and made our office the most joyful place to work. I will always cherish the ambience

and great memories from our fiestas inside and outside our workplace. I especially

thank Roberto for his hospitality and the occasional meals together.

I greatly owe my family; my mother, Μάτα, my brother, Περικλή and γιαγιά Σοφία, for

the love and support they embraced me with, even during periods of struggle. What

I am, I owe to you.

Finally, I’d like to thank Álvaro. He can’t possibly understand how much of a help he

has been. Over recent months, often from a great distance, he has cheered me up and

allowed me to build dreams through this very lonely path.

xiii

“I will obey every law, or submit to the penalty.”

Chief Joseph

Contents

Abstract . v

Resumen . vii

Resum . ix

Acknowledgements . xiii

List of Figures . xxi
List of Tables . xxiii
1 Introduction . 1

1.1 Problem Statement . 2
1.2 Aim of the Thesis . 3
1.3 Thesis Objectives . 4
1.4 Out of Scope Issues . 5
1.5 Claims . 6
1.6 Structure of the Thesis . 7

2 Related Work . 11
2.1 Agent Orientation . 11

2.1.1 Practical Reasoning in Agents . 12
2.1.1.1 The BDI model . 13
2.1.1.2 Practical Frameworks Implementing BDI agents 15

2.1.2 Agent Planning . 18
2.1.2.1 Action Language Formalisms 19
2.1.2.2 Practical Frameworks Implementing Action Languages . . 21
2.1.2.3 Planning in BDI Agents . 23

2.2 Social Structures and Agent Societies . 24
2.2.1 Organisational Models . 26

2.2.1.1 The Concept of Role . 27
2.2.1.2 Organisational Frameworks 28

2.2.2 Institutions . 30
2.2.2.1 Human vs. Electronic Institutions 31
2.2.2.2 Norms . 33

2.2.2.2.1 Regulative vs. Constitutive Norms 34
2.2.2.2.2 Institutional and Normative Power 35
2.2.2.2.3 Languages to Express Regulative Norms 36
2.2.2.2.4 Operational Semantics for Regulated Systems . . . 38

xvii

Contents xviii

2.2.2.3 Institutional View: Normative Multi-Agent Systems 39
2.2.2.3.1 Basic Concepts in the Modelling of Normative Multi-

Agent Systems . 40
2.2.2.3.2 Institutional Models for Normative Multi-Agent

Systems . 41
2.2.2.3.3 Hybrid Organisational-Institutional Models for Nor-

mative Multi-Agent Systems 43
2.2.2.3.4 Verification in Normative Multi-Agent Systems . . 46
2.2.2.3.5 Monitoring Normative Status 47
2.2.2.3.6 Relevant Approaches Outside the Agent Commu-

nity . 49
2.2.2.4 Agent-view: Norm-based Agents 51

2.2.2.4.1 Agent Frameworks Focusing on Constitutive (Counts-
as) Norms . 53

2.2.2.4.2 BDI-based Normative Autonomous Agents 54
2.2.2.4.3 Rule-Based Normative Agents 57
2.2.2.4.4 Rational Agents Normative Reasoning with Un-

certainty . 58
2.2.2.4.5 Normative Autonomous Agents Using Planning . 59
2.2.2.4.6 Plan Labelling Frameworks 60
2.2.2.4.7 Action Language and Abductive-Based Approaches 61

2.3 Summary . 62
3 Conceptual Framework and Architecture . 63

3.1 Requirements Analysis . 64
3.1.1 Functional Requirements . 64

3.1.1.1 Agent Model . 64
3.1.1.2 Domain Model . 66
3.1.1.3 Norm Model . 66

3.1.2 Non-Functional Requirements . 68
3.1.3 Technical Decisions . 70

3.2 Conceptual Framework . 72
3.2.1 Context . 75

3.2.1.1 Ontology and Concept . 76
3.2.1.2 Terms . 77
3.2.1.3 Formulas, Relation Atoms and State of Affairs (StateFormula) 78

3.2.2 Roles . 84
3.2.3 Agents . 84
3.2.4 Initial State . 85
3.2.5 Actions . 85
3.2.6 Norms . 86
3.2.7 Plans . 90

3.3 Architecture . 92
3.3.1 Components . 92
3.3.2 BDI Agent Structure . 94

3.4 Norm Design . 98
3.4.1 Norm Lifecycle and Norm Instances 98
3.4.2 Dynamics of Norms . 102
3.4.3 Primary, Secondary Norms and Interaction Between Them 102

Contents xix

3.5 Discussion . 103
4 Normative Practical Reasoning Using Temporal Control Rules 105

4.1 First-Order Linear Temporal Logic . 107
4.2 Extensions of fo-LTL for norms . 108
4.3 Formalisation . 110

4.3.1 Norms . 110
4.3.2 Norm Instances . 112
4.3.3 Norm Lifecycle . 113
4.3.4 From Norm to Norm Instances . 117

4.4 Reduction to Deontic Logics . 118
4.4.1 Reduction to Achievement Obligations 119
4.4.2 Reduction to Maintenance Obligations 120
4.4.3 Reduction to Dyadic Maintenance Obligations 121

4.5 Example . 121
4.5.1 Pizza Delivery Domain . 121
4.5.2 Norms . 125

4.6 Planning with Norms . 127
4.6.1 Plans and Actions . 128
4.6.2 Types, Numeric Expressions, Conditions and Effects 128
4.6.3 Calculation of Plan Cost . 129
4.6.4 The Normative Planning Problem 129
4.6.5 Implementation via a Modified TLPLAN Algorithm 131
4.6.6 Experimental Results . 133

4.7 Discussion . 137
4.7.1 Contributions and Extensions . 137
4.7.2 Revisiting Requirements . 139

5 Practical Normative Reasoning with Repair Norms and Integration into a BDI
Agent . 141
5.1 Formalisation . 142

5.1.1 Norms . 142
5.1.2 Norm Instances . 147
5.1.3 Norm Lifecycle . 147
5.1.4 From Norm to Norm Instances . 148

5.2 Planning with Norms . 149
5.2.1 Plans, Actions, and Plan Cost . 150
5.2.2 The Normative Planning Problem 151
5.2.3 Implementation Rules for Norm Lifecycle 153
5.2.4 Implementation Rules for Normative Planning Problem 157
5.2.5 Computational Overhead . 158
5.2.6 Results . 159

5.2.6.1 Tools . 159
5.2.6.2 Execution Results . 160

5.3 Connecting the Normative Reasoner with the 2APL BDI Core 161
5.3.1 2APL . 162

5.3.1.1 2APL Elements . 162
5.3.1.2 2APL Deliberation Cycle . 164

5.3.2 2APL with Embedded Norm-Aware Planner 165
5.3.2.1 Modified 2APL Lifecycle . 165

Contents xx

5.3.2.2 General Architecture . 167
5.3.3 Adapting Inputs Between 2APL and the Normative Planner 167

5.3.3.1 Adapting Inputs from 2APL into Normative Planner 168
5.3.3.2 Adapting the Normative Planner Output into 2APL 170

5.3.4 Running the Normative Agent in 2APL 171
5.4 Discussion . 174

5.4.1 Contributions and Extensions . 174
5.4.2 Revisiting Requirements . 176

6 Conclusions . 179
6.1 Contributions . 180
6.2 Revisiting Claims . 182
6.3 Extensions . 183

6.3.1 General Extensions . 183
6.3.2 Probabilistic Practical Normative Reasoning 184

Publications of the Author . 187
Bibliography . 189

A Basis Framework Semantics . 209
A.1 Norms for Modelling Regulative Clauses 209
A.2 Formal Preliminaries . 211
A.3 Structural Definitions . 212

A.3.1 Agent Names and Roles . 212
A.3.2 Norms . 212
A.3.3 Instantiating Abstract Norms . 214

A.4 Dynamic Semantics . 215
A.5 Issues and Related Work . 219

B Example Implementation Details . 221
B.1 Pizza Delivery Example Models . 221
B.2 Pizza Delivery Example TLPLAN Code . 223
B.3 Pizza Delivery Example PDDL Code . 230
B.4 Pizza Delivery Example 2APL Code . 240

C Proofs . 247
C.1 Achievement Obligations . 247

C.1.1 Substitution for Achievement Obligations 248
C.1.2 Proof of K . 248
C.1.3 Proof of Necessitation . 248

C.2 Maintenance Obligations . 249
C.2.1 Substitution for Maintenance Obligations 249
C.2.2 Proof of K . 250
C.2.3 Proof of D . 250
C.2.4 Proof of Necessitation . 250

C.3 Dyadic Deontic Logic . 251
C.3.1 Substitution for Dyadic Deontic Logic 252
C.3.2 Proof of K1 . 252
C.3.3 Proof of K2 . 253
C.3.4 Proof of K3 . 254
C.3.5 Proof of K4 . 255

Index of Terms . 257

List of Figures

2.1 The PRS agent model (source: [Georgeff and Lansky, 1987]) 14
2.2 From human laws to their electronic representation 30

3.1 Overall Metamodel . 74
3.2 Normative Metamodel . 76
3.3 Context . 76
3.4 Ontology . 77
3.5 Concept . 77
3.6 Term . 77
3.7 Variable . 78
3.8 Constant . 78
3.9 Function . 78
3.10 StateFormula . 79
3.11 Atom . 80
3.12 Atom . 81
3.13 Negation . 81
3.14 Conjunction . 82
3.15 Disjunction . 82
3.16 Implication . 82
3.17 Universal Quantification . 83
3.18 Existential Quantification . 83
3.19 Roles . 84
3.20 Role Set . 84
3.21 Agents . 85
3.22 Agent Set . 85
3.23 Actions . 86
3.24 Action Set . 86
3.25 Norms . 87
3.26 Norms Set . 87
3.27 Plan . 90
3.28 Action Grounding List . 91
3.29 Action Grounding . 91
3.30 Input Map . 91
3.31 Framework architecture . 93
3.32 Caption for LOF . 99
3.33 Norm instance lifecycle with reparation and timeout handling 100

4.1 Self-loop alternating automaton-based norm instance lifecycle. 114

xxi

List of Figures xxii

4.2 Norm Instance Timeline . 118
4.3 Example Domain . 122
4.4 Normative Planner using TLPLAN . 132
4.5 Metric formula in TLPLAN . 134
4.6 Route Solution 1 . 135
4.7 Route Solution 2 . 135
4.8 Route Solution 3 . 135
4.9 Route Solution 4 . 135

5.1 Layered norms (repairing each other) . 144
5.2 PDDL pizza delivery domain example . 151
5.3 Screenshot of the 2APL environment . 163
5.4 The 2APL deliberation cycle . 165
5.5 The modified 2APL deliberation cycle . 166
5.6 2APL Planner Architecture . 168
5.7 Abstract action represented by a PC-rule 171
5.8 2APL environment GUI. Delivery Map 172
5.9 2APL initial configuration for the pizza delivery example 173

A.1 Domain Environment and Normative Environment lifecycle 219

B.1 Normative model representation . 221
B.2 Variables, constants, functions representation 222
B.3 Ontology representation . 222
B.4 Some of the state formulas used in the preconditions and effects of the

actions and in the conditions of the norms 223
B.5 The action DeliverPizza representation 223
B.6 norm3 representation . 223
B.7 Pizza delivery example domain TLPLAN 228
B.8 Pizza delivery example problem TLPLAN 229
B.9 Pizza delivery example domain in PDDL 238
B.10 Pizza delivery example problem in PDDL 240
B.11 Pizza delivery example topology in separate 2APL file, topology.2apl . 241
B.12 Pizza delivery agent in 2APL, main agent.2apl 245

List of Tables

4.1 Actions description, expressed in the textual form of the metamodel in
Section 3.2 . 124

4.2 Repair actions description, expressed in the textual form of the meta-
model of Section 3.2 . 125

4.3 Example norms, expressed in the textual form of the metamodel of Sec-
tion 3.2 . 126

4.4 Execution Results . 136
4.5 Requirements Analysis . 140

5.1 Example norms . 146
5.2 PDDL domain implementation rules . 156
5.3 Execution Results . 160
5.4 Belief Updates Transformation . 169
5.5 Beliefs Transformation . 170
5.6 Goals Transformation . 171
5.7 Execution Results in the 2APL agent environment 174
5.8 Requirements Analysis . 177

xxiii

In memory of my father.

xxv

Chapter 1

Introduction

With the growth of the Internet and the World Wide Web over the last twenty years,
computational systems have become more and more complex resulting in highly com-
plicated interconnected networks (e.g. grid nodes, peer-to-peer nodes, Web services,
web-apps, mobile apps, sensor networks). One problem that system designers and
managers are facing is how to design and implement such complex systems and tackle
their increased complexity, while ensuring that the system behaves as expected.

One approach for governance of open distributed systems, which comes from multi-
agent systems research, is to add social order mechanisms to the system, where the
individual computational entities’ behaviour is guided or even restricted in order to
ensure certain behaviour. According to Paes et al. [de Barros Paes et al., 2006]:

“Governance for open systems can be defined as the set of approaches that aim to establish and
enforce some structure, set of norms or conventions that articulate or restrain interactions in
order to make agents more effective in attaining their goals or more predictable.”

Inspired by social theory and cognitive science, a fair amount of research in the area
of Artificial Intelligence, and specifically in the domain of Intelligent Agents, designs
computational models to represent social structures. Further to this, a substantial
amount of work has been done on the development of sets of theories to model rea-
soning, plans and even emotions to construct more adaptable and evolvable software
systems.

While this thesis concentrates on the practical aspects of building regulated systems,
it uses elements from existing social models and theories. We introduce some of them
in the following sections1.

1A thorough analysis of existing models, theories and frameworks can be found in Chapter 2

1

2 1.1 Problem Statement

1.1 Problem Statement

Organisational models increasingly play an important role in the development of
larger and more complex distributed systems and service-oriented systems. As sys-
tems grow to include hundreds or thousands of components, it is essential to move
from an agent-focused view of coordination and management to an organisation-
focused one. The overall problem of analysing the different dimensions of agent or-
ganisations, and the co-evolution of agents and social structures in the organisation,
requires a flexible approach with a solid theoretical foundation [Dignum, 2009].

In agent organisational models, goals and interactions are not specified in terms of the
mental states of individual agents, but in terms of organisational concepts such as roles
(or functions, or positions), groups (or communities), norms (or regulations or poli-
cies) and communication protocols (including ontologies). Often organisational ap-
proaches take a top-down perspective, i.e. organisational characteristics (goals, norms,
etc.) fully determine the agent’s plans, goals and rules [Padgham and Winikoff, 2004].
In these cases, agents are seen as actors that enact the role(s) described by the organi-
sation design.

A common problem that occurs in the design and implementation of complex systems
(both MAS or service-based systems) is the fact that specifications of the organisation
of the system generally abstract from actual practice. That is, while organisational
models describe desired and undesirable situations, in practice agents need to decide
on a concrete plan of action. This creates a distinct gap between the representation of
an (abstract) organisational norm and the (concrete) plans of an agent.

Traditionally, the very notion of agent autonomy refers to the ability of individual
agents to determine their own actions, plans and beliefs and, according to [Wooldridge
and Jennings, 1995], to the capability of an agent to act independently, exhibiting
control over its own internal state. Nevertheless, it is not always clear how norms affect
an agent’s autonomy and most systems fail to capture complex normative reasoning
able to, for example, resolve conflicts between various norms at runtime.

Traditionally, possible deviations from desired behaviour are coped with by operat-
ing through a single utility function or by applying hard constraints to the agents.
Nevertheless, the former results as rather inflexible while the latter might lead to ex-
ponentially large numbers of decision paths and, most of the times, such a hard coded
modelling leads to rigid and complex agent specifications. For example, while it is
possible for a firefighter agent to allow a restriction “whenever there is a fire, call rein-
forcements before entering the building”, it may not always be the desired thing to do and
under some specific circumstances (if, for example, the nearest fire station is far away,
implying that the reinforcements might take too long to arrive) one might desire to
deviate from such a restricting measure.

Chapter 1. Introduction 3

Further to this, it is not always possible to apply constraints in a dynamic non-
deterministic environment where factors that can modify/influence the environment
may exist. Generally speaking, agents living in environments of this kind require
a certain level of sophistication and autonomy to defend their affairs and this can
hardly be done via constraint mechanisms. Embedding normative restrictions hard-
coded into an agent is not a choice, as the normative restrictions of a virtual society
are not always known beforehand to the agent’s developers.

1.2 Aim of the Thesis

While human societies offer a great deal of inspiration for the development of norm-
based artificial societies and implementation architectures, few existing frameworks
provide a functional implementation of normative concepts and therefore flexibility in
terms of norm adoption and reasoning about courses of action.

Within complex social setups, the main advantage of normative specifications over
other governing mechanisms is that norms provide an explicit description of social
expectations without giving precise information on how the agents are supposed to
bring these about and, allowing at the same time the agents enough flexibility and
some level of autonomy to react to different states of the system.

From the agent’s perspective, it must be its own capabilities and aims that determine
the specific way and the reasons for which an agent will enact its role(s), and the
behaviour of individual agents is driven and guided by their own goals and abilities
[Dastani et al., 2003]. That is, agents bring their own ways into the society as well,
but need to be able to check whether their actions are in accordance to organisational
specifications.

In this thesis we tackle and provide a practical solution to the following question:

“How to model an autonomous, goal-driven agent that is able to take the environment’s nor-
mative influence into account in its decision making?”

Our thesis aims to answer the question posed by providing a generic mechanism to
support practical normative reasoning2 in environments where norms are enforced,
not regimented [Jones and Sergot, 1993]. In this work we focus on the regulative
aspect of norms, seen as a way to model the governance of distributed, agent-oriented
systems. Thus, norms may refer to explicit behavioural commitments, restrictions or
other types of impositions that the agent is expected to comply with.

We envision normative agents that dynamically interpret, apply and reason over
norms and decide whether to comply with the enforced norms or alternatively deviate

2From now on, we will use the term practical normative reasoning to refer to a norm-influenced
version of practical reasoning (a process for deciding what to do [Bratman, 1987]).

4 1.3 Thesis Objectives

from predetermined behaviour. This way, agents become norm-autonomous while op-
erating in dynamically changing and possibly shared by other agents environments,
normally represented by non-static, complex domains.

In contrast to traditional methods where agents use pre-factored plans, we consider
the dynamic, real time3 creation and evaluation of plans for achieving specific goals
as the main means-ends reasoning mechanism. In addition, when being norm-aware,
this mechanism must be able to generate the most profitable trajectory towards the
agent’s goal(s) while at the same time respecting the environment’s normative influ-
ence. When new information occurs, the reasoning mechanism should be able to drop
current processes and regenerate plans, taking the new information into account.

Functioning in multi-agent societies, the agents should dynamically become aware of
new norms. Consequently, these newly adopted normative standards must influence
the agents’ practical reasoning. The agents must also be able to invent strategies that
handle conflicting situations that might occur while operating in a complex normative
context.

Finally, preferences play a crucial role in guiding our choices among possible outcomes
and actions throughout a decision making process. They normally represent the most
satisfactory or most plausible states when expressed in a given context and often taken
into consideration in order to select optimal choices and avoid risk-prone situations.
Given the importance of preferences in modelling real-world scenarios, the agents
must be endowed with the ability to take users’ preferences and other weighing factors
into consideration, performing in this way a fully qualitative decision making.

1.3 Thesis Objectives

This thesis presents a framework for practical reasoning within normative systems. A
formalisation of a normative model is provided and an approach towards reasoning
within the model involving a standard action-based planner is explored. The main
objectives of this thesis, which will advance the current state of the art, are:

• Provide formal semantics of an organisational normative model within which an
agent operates.

• Specify a conceptual metamodel abstracting the representation of the reasoning
mechanism elements such as norms, actions, current state of affairs, goals and
action costs.

• Using notions of the planning research area, establish a formal connection be-
tween the reasoning elements (norms, actions, current state of affairs, goals and
action costs) and the normative model and investigate ways in which a course

3As we will see in Subsection 3.1.2 we will use the term real time to refer to soft real time performance,
that is, non strict computational periods of time within an acceptable range. We consider the definition
of those acceptable ranges to be domain-dependent.

Chapter 1. Introduction 5

of action satisfying the desires of the agent can be produced, while taking the
norms into consideration. This process, from now on referred to as normative
planning, includes the specification of plans which not only comply with the
agent’s goals but do so through a minimal cost procedure.

• Based on the previous, implement a norm-aware planner.

• Implement a prototype normative agent:
– Design a general architecture of a BDI reasoning agent which incorporates

a normative reasoning mechanism into its practical reasoning to allow a
norm-aware autonomous decision making process.

– Create a mapping between the conceptual metamodel that describes the
reasoning mechanism to the inputs of the prototype. This mapping will
result in the automatic production of the inputs for the reasoner implemen-
tation at runtime, easing integration.

– Wrap up the planner and incorporate it within a BDI agent cycle.

• Validate the prototype architecture through a life-like use case.

1.4 Out of Scope Issues

While the following are related topics that could be of interest, they are not examined
within the scope of this thesis:

• Constitutive aspect of norms. Although norms can be categorised in two main
types, regulative (regulating pre-existing forms of behaviour) and constitutive
(specifications that state what counts as what) [Searle, 1969], in this thesis we fo-
cus on the regulative aspect of norms. Both types are discussed in Section 2.2.2.2.1
and some frameworks dealing with them can be found in Section 2.2.2.4.1.

• Complex legal notions such as empowerment and delegation are extensively men-
tioned in the scientific literature [Jones et al., 2013; Dignum, 2004]. In particular,
empowerment, seen as the normative authority that one might have to act in
a specific way or bring about a specific situation, is explicitly separated from
the permission to do something that one might have. As we will see in Sec-
tion 2.2.2.2.2, where a research background in empowerment is explained, the
notion is generally modelled through constitutive norms. However, in our thesis
we do not deal with the notion of power, as the main focus is the regulative
aspect of norms.

• Verification of norms. We assume that agents operate within an environment
where norms are correctly expressed and consistent. Although when agents
are operating in normative societies it is necessary to provide mechanisms that
perform multi-level verification (detecting and/or correcting possible conflicts)
of norms through some kind of logical reasoning, we do not intend to examine

6 1.5 Claims

this aspect in our thesis. Relevant work focusing on the verification of norms
can be found in Section 2.2.2.3.4.

• Monitoring of norms. An agent will need to check the normative status of all
norms applying, with a mechanism close to (institutional) norm monitoring ap-
proaches. However we are not interested in the techniques needed to observe the
behaviour of large agent societies. Relevant work concentrating on this domain
is described in Section 2.2.2.3.5.

• Multi-agent planning. While ideally it is desirable for agents to be able to operate
in a society comprising of multiple agents, this thesis reviews the existence of a
single agent and therefore concentrates on the single-agent planning area while
intentionally leaving out any multi-agent planning methodologies and resource
negotiation for future work.

• Norm creation and adoption. Agents joining a normative environment for the
purpose of executing specific collaborative tasks usually have to adopt or choose
to ignore norms representing certain rules and regulations. Adoption of norms
can cause problems − an agent maybe already hold norms that would be in
conflict or inconsistent with new norms it adopts. In this case, the answer to the
question “is the set of norms declared in the context consistent with the set of norms the
agent currently holds?” is not simple in a real-world situation. In this thesis we
take for granted that norms pre-exist and are imposed by the organisation. While
it might not always be the case in real-world scenarios, we simplify and isolate
our research by assuming that norms have already been created and that the
agent adopts by default the full set of them as we do not intend to explore these
two issues. Research work relevant to this topic can be found in [Vasconcelos
et al., 2007; Kollingbaum and Norman, 2003]. Norm adoption is also briefly
discussed in Section 2.2.2.3.1.

1.5 Claims

Based on our thesis objectives, we take a step forward assuming some reasonable
claims made when dealing with practical reasoning with norms.

C.1: Throughout the agent’s deliberation process, means-ends reasoning can be per-
formed by invoking a planner instead of using pre-compiled plans. This allows
the agent to have a more flexible and pro-active behaviour towards achieving its
goals and the capability of on-demand replanning.

C.2: The planning process can be influenced with norms. While this is not be di-
rectly offered by current planner implementations, we can represent normative
influence by enriching the planning domain and problem with the appropriate
normative restrictions (represented as additional actions, goals and other fea-
tures allowed by different planners).

Chapter 1. Introduction 7

C.3: Standard Deontic Logic is not sufficient to capture practical, complex aspects
of norms’ functionality. It does not provide operational semantics (i.e. norm
instances) that can be directly translated by computational systems.

C.4: Temporal logic may be used to capture the norms’ lifecycle. Aldewereld et
al. have already introduced mechanisms to enforce normative behaviour through
temporal expressions [Aldewereld et al., 2006]. We take it one step further and
assume that temporal logic expressions can be used to capture complex oper-
ational norm lifecycles, supporting norm instances and allowing norms to be
possibly violated. These expressions might be directly introduced into planners
that take into account such temporal rules or indirectly represented in planners
that do not support such temporal rules, in order to produce norm-consistent
plans.

C.5: An existing agent framework can be extended with norms. Instead of building
an agent framework from scratch, we can choose an existing one and extend its
language to incorporate norms so that the agent is aware of their existence. Our
normative reasoning mechanism can be integrated within the agent framework,
(possibly partially) replacing its existing reasoning engine.

C.6: Actions with costs can be used for modelling domain and user preferences. By
assigning (possibly conditional) cost functions to the actions available to the
agent we can model the weight each action has on various pre-determined agent
factors when performed. Having a planner sensitive to the costs information,
the objective will be to calculate near-optimal plans with respect to some pre-
determined function that represents the quality of the plan for the agent.

C.7: A norm might be defined on an abstract level, allowing a flexible representation
like a template for the construction of concrete instances. Throughout time,
many instances of a particular norm might occur. In this thesis we adopt the
view that norm compliance depends on the compliance of its instances occurring
through time. We provide formal notions for norm compliance in Chapters 4
and 5, according to the two different norm formalisations and put them to use
when designing and implementing the normative reasoner in both approaches.

The validity of all these claims will be explored through Chapters 3, 4 and 5, and will
be summarised in Chapter 6.

1.6 Structure of the Thesis

The remainder of the thesis is structured in the five following chapters:

Chapter 2: This chapter is dedicated to a state of the art analysis, covering work on
normative environments, and a background on reasoning frameworks. Works using a
more practical approach used in distributed systems and concerning a particular type
of normative environments (e.g. contractual environments) are also discussed. The

8 1.6 Structure of the Thesis

background on action and planning languages, which are closely related to our thesis,
is also detailed.

Chapter 3: In this chapter we make an extensive requirements analysis of our frame-
work that will support normative reasoning. The decisions that derive from the analy-
sis are thoroughly discussed. We then provide the baseline that supports our proposal
given in Chapters 4 and 5. The conceptual framework, based on the requirements
presented, and the formalisation of the normative elements involved through meta-
models is then displayed. The metamodels are the foundation of the elements and
their usefulness lies in the fact that they provide both a conceptual abstraction and
some technology/platform independence. We additionally depict the metamodels of
the elements that support the framework in a graphical way. After, our system ar-
chitecture, which interconnects the conceptual framework elements, is presented and
explained. Finally, we discuss some basic issues occurring when dealing with norm
formalisation and representation.

Chapter 4: This chapter bridges a semantic gap between the vast theoretical research
and few practical implementations done on normative systems4. We do this by defin-
ing a lifecycle of norms and by reducing deontic statements to temporal logic expres-
sions. At the same time, we explore several deontic properties of subreductions, show-
ing the correlation with Standard Deontic Logic. We further show how the semantics
defined in temporal logic can be translated to planning control rules, for practical
normative reasoning. We show the feasibility of the translation of these semantics
to actual implementation languages (TLPLAN) and present experimental results over a
real-life use case.

Chapter 5: We introduce a proposal extending the one in Chapter 4 in order to over-
come the barriers encountered in the initial approach. Based on the formal model
introduced in Chapter 4, the semantics of norms are extended to include multiple lay-
ers of repair norms. We define the new norm lifecycle with rules and we implement
a normative reasoner by applying those rules within a planning system, integrate it
into an existing BDI agent framework, 2APL, and provide experimental results which
show the usefulness and efficiency of the approach.

Chapter 6: We provide a summary of the work in the thesis and its contributions,
discuss the limitations of our approach and then outline some of the directions for
future work and extensions.

Appendix A: In this appendix we present our previous work on formalising normative
environments, which inspired the operational semantics describing the norm lifecy-
cle and semantics for its interpretation. These include norm activation, discharge,
fulfilment and violation.

4The formalisation presented in this chapter is a collaborative work done together with Sergio
Álvarez-Napagao which has been presented in [Panagiotidi et al., 2013]. It has been based on our
efforts to bring together two main areas, institutional-level norm monitoring of normative systems and
individual agent norm-aware reasoning, on a semantic as well as on a practical level.

Chapter 1. Introduction 9

Appendix B: We provide here the details of the use case implementation within our
normative framework. The code for the normative planning as well as the code for
the 2APL agent for the same example are presented.

Appendix C: In this appendix we make the proofs of the deontic logic reductions and
the properties shown in Chapter 4 available.

Chapter 2

Related Work

In Chapter 1 we motivated our interest in norm-governed agent systems and in par-
ticular in the need for autonomy. To make such systems more autonomous, a form of
intelligent normative reasoning is needed. This means that an agent should be able to
make personal informed decisions while at the same time taking into account norma-
tive influence of the environment, that being done by weighing personal and domain
factors against the norm compliance or non-compliance consequences.

In order to better comprehend the work we are presenting in this thesis, it is necessary
to provide some details on the state of the art. In this section we detail work that has
been done in the fields of agent reasoning, normative systems and contracting systems
(seen as a particular type of normative systems). Research relevant to reasoning and
planning (such as action languages to express operational semantics of actions) is also
provided.

2.1 Agent Orientation

As the computing industry transfers its focus from individual, single-machine systems
towards distributed, dynamic and powerful systems, more challenges are brought into
the picture. According to van Steen [van Steen et al., 2012], as connectivity increases
in such large-scale systems, distribution transparency is needed in order to disguise
the processes, data exchange and control in them. With all the unpredictability that is
brought by the spontaneous user joining in modern distributed systems, automated
processes should be able to automatically handle human inputs. Heterogeneity also
needs to be addressed and collaborative systems that effectively capture and analyse
users’ behaviour and intercommunications need to be devised. At the same time
such systems should be self-configuring and able to secure their correctness, manage
their stability by handling faulty or defective components and maximising their own
performance [van Steen et al., 2012].

In such large-scale distributed systems, agent-based systems [Wooldridge and Jen-
nings, 1995; Weiss, 1999] might provide answers. Presently, agents are being used in a

11

12 2.1 Agent Orientation

large number of science and technology applications from small ones such as online
shopping agents to bigger ones such as traffic and transportation systems.

Software agents acquire some knowledge about the world in which they operate, so
that they can deal with most of the minor issues they come across in operation by
themselves, without any intervention of the user (except in concrete justified occa-
sions). One of the most cited definitions of an agent is the following:

“An agent is an encapsulated computer system that is situated in some environment and
that is capable of flexible, autonomous action in that environment in order to meet its design
objectives.” [Wooldridge and Jennings, 1995]

Autonomy refers to the agent’s ability to exist and manifest proactive behaviour and
possibly socially interact and collaborate with other agents within a specified envi-
ronment, while at the same time perceiving and also capable of interacting with the
environment itself. Autonomous acting implies that the agent possesses cognitive and
decision making abilities while the objectives play an important role in indicating the
way the agent will use these abilities in order to achieve them.

Many processes in the world can be conceptualised using the agent metaphor. Nev-
ertheless, the metaphor alone is not enough as at times the number of agents may be
too numerous to deal with them individually. The agent is socialised in a “field”, an
evolving set of roles and relationships in a social domain, where various resources are
at stake. It is then more convenient to deal with agents collectively as agent societies.
The result of such a conceptualisation is a multi-agent (or social) description.

2.1.1 Practical Reasoning in Agents

In general, practical reasoning is directed towards action - a decision process for decid-
ing what to do [Bratman, 1987; Wooldridge, 2001]. It involves two essential activities:

a) deliberation - deciding WHAT goals to achieve and

b) means-ends reasoning - deciding HOW to achieve these goals.

Deliberation is concerned with determining what one wants to achieve (considering
preferences, choosing goals, etc.) and generates or modifies our intentions (which
serve as the interface between deliberation and means-ends reasoning) [Bratman,
1987]. Means-ends reasoning on the other hand is used to determine how the goals
(objectives) are to be achieved. That includes thinking about suitable actions, resources
and how to “organise” activity and generating plans which are turned into action se-
quences.

Both Wallace [Wallace, 2009] and Bratman [Bratman, 1987] offer similar interpretations
for practical reasoning. Specifically, Bratman states:

Chapter 2. Related Work 13

“Practical reasoning is a matter of weighing conflicting considerations for and against compet-
ing options, where the relevant considerations are provided by what the agent desires/values/-
cares about and what the agent believes.” [Bratman, 1987]

Several characteristics of practical reasoning can be summarised in the following
points:

• Objectives can create obstacles for agents, who need to come up with ways for
reaching them.

• Objectives provide a “filter” for adopting other objectives, which must not con-
flict.

• Agents follow the achievement of their objectives, and are disposed to make
more efforts if their attempts are unsuccessful.

• Agents believe their objectives are possible.

• Agents do not believe they will not bring about their objectives.

• Under some conditions, agents believe they will accomplish their objectives.

• Agents do not need to intend all the presumed side effects of their objectives.

2.1.1.1 The BDI model

As a consequence of the above, an approach for the development of reasoning agents
is to describe them as an “intentional system” [Dennett, 1989] in terms of mental at-
titudes such as “beliefs”, “desires” and “intentions” (BDI). In recent years the BDI
architecture [Bratman, 1987] has become a de facto standard for agent models and
is generic enough to enable the modelling of both natural and artificial agents. The
BDI model is inspired by efforts to understand mental attitudes and simulate prac-
tical reasoning in humans (e.g. [Bratman et al., 1991; Cohen and Levesque, 1990].
The BDI reasoning cycle consists of two important processes: deliberation (determin-
ing what goals to achieve) and means-ends analysis (determining the way to achieve
these goals). The reasoning process analyses and decides which beliefs and desires
to pursue, discarding the ones that are unsuitable at the current time and the cho-
sen options then become the agent’s intentions. Typically, the agent will sort the set
of ‘suitable’ intentions based on some evaluation function and choose the one with
the highest score. Intentions are a crucial element in the reasoning process as they
can be achieved through actions, so they determine the agent’s behaviour. Agents
must believe that they can satisfy their intentions. Important aspects of intentions are
[Bratman, 1987; Wooldridge et al., 2000]:

• They conduct the means-ends reasoning process: after an intention is deter-
mined, trying to achieve it involves deciding in which way this is possible.

• They constrict the agent’s future deliberation: options that are not consistent
with its intentions will not be considered. Thus, the agent is assumed to avoid
states in which it would have two contradictory intentions.

14 2.1 Agent Orientation

• Persistency: agents will normally stick to their intentions until they are achieved
unless they are discovered to be unreachable. When an intention is considered
impossible to achieve as well as how to balance low-commitment (the tendency
to give up intentions too easy) and over-commitment (the tendency to excessively
stick to intentions) in agents are still open issues that will typically depend on
the domain and the problem the MAS is tackling.

• Influence beliefs: plans are supported and formed by the knowledge that the
intentions will be pursued and achieved.

In short, agents have a set of beliefs that can be seen as their internal state. Beliefs
reflect the agent’s awareness of the environment, forming this way its unique, internal
environment perception. Through an internal filtering mechanism over beliefs and
intentions that considers the actual agent and environment state, the agent determines
its options (desires). Intentions are decided through a deliberation over its beliefs,
desires and intentions and they form a central component of the agent. They represent
the states the agent is determined to bring about and towards the achievement of
which the agent will invent and follow a plan of action.

Figure 2.1: The PRS agent model (source: [Georgeff and Lansky, 1987])

There exists a rich background in formalising BDI models [Rao and Georgeff, 1995].
BDI agent models have also been extensively used in order to build solutions to prob-
lems in several different applied areas such as spacecraft management, telecommuni-
cations and air traffic control. One of the earlier implementations is the PRS system
[Georgeff and Lansky, 1987]. PRS (Figure 2.1) is an implementation of a BDI architec-
ture which maintains data structures for beliefs, desires and intentions. It adopts a re-
active planning approach and maintains a library of pre-constructed plan procedures
or “Knowledge Areas”. These pre-constructed plan procedures represent conditional
sequences of actions that can be executed to reach specific goals or to directly respond
to specific situations. PRS follows a partial planning methodology where the agent

Chapter 2. Related Work 15

creates a partial “hierarchical plan” by specifying a method to reach a goal as a plan
procedure and following this procedure. The plan procedure can be of raised com-
plexity and one of its aims is to form sub-goals. The agent must then choose suitable
means for reaching those sub-goals. In that way, PRS expands plans incrementally and
can therefore react to non-static situations and modified goals by altering its course of
action.

2.1.1.2 Practical Frameworks Implementing BDI agents

Modern implementations of the BDI agent architecture include GOAL [Hindriks,
2009], Jason [Bordini and Hübner, 2006], JACK [Winikoff, 2005], Jadex [Braubach et al.,
2005], 2APL [Dastani, 2008] and 2OPL [Dastani et al., 2009a]. All the frameworks share
several features, common in the BDI agent architecture and they all (with the excep-
tion of Jadex which uses a hybrid approach) provide an agent-oriented language in
which the agent’s reasoning elements are defined. Further to this, they implement a
basic execution (reasoning) cycle, through which they apply rules and update their
knowledge bases. Below we present the details and particularities of each one of the
frameworks.

Goal-Oriented Agent Language (GOAL) [Hindriks, 2009] is a high-level language to
design BDI agents. It provides programming constructs to represent beliefs and goals
in a declarative manner (the term declarative goals is used to indicate goals that specify
a state or set of states of the environment that the agent wants to achieve, rather than
actions or procedures on how to achieve such states). GOAL supports various types
of actions such as user defined actions, built-in actions, and communication actions.
It also includes action selection rules to support the action selection mechanism by
providing action selection strategies. A particularity of GOAL is the absence of plans.
In addition to the work described, Hindriks et al. research on how goals that can
be expressed in temporal logic, called temporally extended goals and how these can be
managed within an agent’s reasoning process [Hindriks et al., 2009]. They use GOAL
as basis for the semantics and the elements they use. They distinguish between two
types of goals, achievement goals and maintenance goals and focus on the “bounded”
goals, meaning goals that have a finite time horizon to be achieved, in contrast to
“unbounded” that can have infinite horizon to be achieved. In their semantics they
allow the expression of goals and beliefs in terms of LTL formulas and they define
the mental state of the agent in terms of beliefs and goals of the agent. An agent is
able to update through a progression process (i.e. a computational process) its belief
and goal base after the execution of some action. In possession of a set of actions
and a set of action rules specifying under what conditions to perform an action, they
perform reasoning over which actions to select and execute based on the action rules.
Additionally, they develop a method to select those actions that will result in minimum
violations of goals (that is, goals not accomplished until the maximum lookahead
horizon).

16 2.1 Agent Orientation

Jason on the other hand [Bordini and Hübner, 2006] interprets and implements the op-
erational semantics of an extension of AgentSpeak (previously AgentSpeak(L)) [Rao,
1996], a logic-based programming language inspired by the PRS model (see Sec-
tion 2.1.1.1) for building rational agents, developed by Rao. Jason is a platform for
the development of multi-agent systems, with many additional features. The per-
formatives that are currently available for agent communication in Jason are largely
inspired by the Knowledge Query and Manipulation Language (KQML)1 [Finin et al.,
1995]. Additionally, the conduct of the agent within the environment is specified in
AgentSpeak(L), a restricted first-order logic language supporting events and actions.
The language includes a set of plans which compose its plan library. The current belief
state of the agent (seen as the current state of the agent, that is, the state of itself, the
environment and other agents) is a set of beliefs and initially it comprises a set of base
beliefs. The states that the agent, influenced by internal or external situations, wishes
to bring about can be seen as its desires. The AgentSpeak interpreter also manages a
set of triggering events (changes in the agent’s beliefs or goals) and a set of intentions
which are the adopted plans to react to such stimuli. Plans consist of a head (contain-
ing a triggering event - the addition or deletion of beliefs or goals - which initiates
the execution of the plan) and a body (containing a sequence of goals that should be
achieved or tested and actions that should be executed). Whenever a triggering event
occurs, AgentSpeak reacts to it by executing the plan that contain it in its head con-
dition. As the creators claim, “[...] this shift in perspective of taking a simple specification
language as the execution model of an agent and then ascribing the mental attitudes of beliefs,
desires, and intentions, from an external viewpoint is likely to have a better chance of unifying
theory and practice” [Rao, 1996].

Jadex [Braubach et al., 2005] is a BDI-inspired reasoning engine that allows for pro-
gramming intelligent software agents in XML and Java. The reasoning engine can be
used on top of different middleware infrastructures such as JADE [Bellifemine et al.,
1999]. Jadex supports a practical reasoning cycle including goal deliberation as well
as means-ends reasoning. The first is responsible for deciding which of the existing
goals are currently pursued and the latter has the task to find means for realising a
specific goal by applying suitable plans. Unlike other BDI agent systems (e.g. Jason)
where beliefs are represented in some kind of first-order predicate logic or using rela-
tional models, in Jadex a hybrid language approach is used, where declarative agent
information is separated from procedural plan knowledge. In the XML based agent
definition file (ADF) the beliefs, goals and plans (static specifications) of an agent type
are defined, whereas Java classes are used for encoding the plan bodies (dynamic be-
haviour). An object-oriented representation of beliefs is used, where random objects

1KQML is a language designed to support interaction among agents. It contains information con-
cerning various levels of communication, such as the parties involved, the actual content exchanged and
the language in which the content is expressed. The performatives, being the core of KQML, define the
permissible interactions which agents may use. Performatives contain arguments which specify the pro-
tocol used to exchange messages and the speech act that the sender attaches to the content of the message
and optionally the sender and receiver. Performatives can be a query, command, assertion or any other
other speech acts agreed upon.

Chapter 2. Related Work 17

can be represented as named facts (beliefs) or named sets of facts (belief sets). Further
to this, goals are represented as explicit objects contained in a goalbase, which is ac-
cessible to the reasoning component as well as to plans if they need to know or want
to change the current goals of the agent. Four different goal types that refine the ba-
sic goal lifecycle in different ways are distinguished (perform, achieve, maintain and
query goals). The framework does not expect all adopted goals to be consistent with
each other, as long as only consistent subsets of these are aimed at, at any point in
time. The plan head specification is similar to other BDI systems and mainly specifies
the circumstances under which a plan may be selected, e.g. by defining preconditions
for the execution of the plan and events or goals managed by it. A special feature of
Jadex is that it can support both sequential and parallel execution of plans and it can
also allow for a plan execution to wait for (pause and resume after) the execution of
an action or the reception of some message.

JACK Intelligent Agents [Winikoff, 2005] is an agent framework developed on ideas of
other reactive planning systems and can be, in this respect, considered quite similar to
Jason, 2APL and Jadex. JACK is an extension of Java, based on logic, with a number
of syntactic constructs allowing to create, select and execute plans and belief bases in
a graphical manner. In JACK, like in Jason, goals are represented a as special type of
event (goal-event). The way the agents are implemented in both frameworks is that
the agent is not aware of the pursuing goals, but instead executes a plan as a response
to the occurrence of an event. JACK, like Jadex, lacks formal semantics of beliefs and
goals, however, being a commercial platform it provides many supporting tools and
is being used extensively in industrial applications.

2APL [Dastani, 2008] (preceded by 3APL) is a Prolog-based agent programming lan-
guage based on the BDI model. Briefly it is composed of beliefs, goals, belief updates
(actions), plans, events and three different types of procedural rules. The environ-
ments in 2APL are implemented as Java objects. Beliefs and goals are expressed in a
declarative way as Prolog facts and form, respectively, belief and goal bases. Any Prolog
construction can be used in the belief base. Belief updates update the belief base of an
agent when executed. Such an action is specified in terms of preconditions and post-
conditions (effects). An agent can execute a belief update action if the precondition of
the action is derivable from its belief base and its execution modifies the belief base
so that the effect of the action is derivable from the belief base after. Procedural rules
are complex Prolog statements that might instantiate plans for the agent to execute.
These serve as practical reasoning rules that can be used to implement the creation of
plans during an agent’s execution. In particular, they consist of: planning goal rules,
procedure call rules, and plan repair rules. The first type generates plans for reaching
goals, the second type handles (internal and external) events and received messages,
and the third type handles and repairs plans that might fail. A plan is a program to
be executed. It might consist of belief updates as well as external actions, i.e. actions
that affect the environment. According to the creators, the use of declarative goals (in

18 2.1 Agent Orientation

contrast, for example, to implicit goals originating from the execution of plans trig-
gered by events as in, for example, Jason) in the language adds flexibility in handling
failures. If following a plan does not end up reaching its corresponding declarative
goal, then the goal remains in the goal base and can be used to trigger a different
plan. An distinguishing feature of 2APL, like Jadex, is that it provides a programming
module to implement non-interleaving execution of plans.

2OPL (Organisation Oriented Programming Language) [Dastani et al., 2009a] sees a
multi-agent system as a system where “agents’ behaviours are regulated by an organi-
sational artefact”. In 2OPL a logical representation structure to keep the organisational
specification apart from an environment is used. The language allows the programmer
to model the organisation under four sections namely Facts, Effects, Counts-As Rules
and Sanction Rules. In addition, actions have constraints and can cause violations and
be sanctioned. Violations can be handled in two ways. Regimentation2 [Jones and
Sergot, 1993] is making the violation of norms impossible for agents. It means block-
ing the action that causes a regimented violation completely. Enforcement [Jones and
Sergot, 1993] is allowing the violation of norms first and then sanctioning the actors
of the violation. An interpreter for the 2OPL language is explained in [Adal, 2010].

2.1.2 Agent Planning

Agent planning is a broad field of AI with a strong background of research focus-
ing on formalising models and algorithms as well as many practical applications. In
principle, the agent community acknowledges that in ideal agent implementations the
agents should be able to dynamically generate plans at execution time. However, ex-
isting planning implementations were unable to provide plans at real-time, and thus
the agent community and the planning community have remained separate and, in
general, little effort has been made to use planning when implementing an agent’s
decision making process. For some researchers, planning is a sort of automatic pro-
gramming. The planner takes a symbolic description of the world, the target (goal)
state and a set of agent capabilities (actions) and attempts to find a sequence of actions
that achieve the target.

Formally, the classical planning problem has been defined by Weld [Weld, 1999] as
follows. Given:

• the known part of the initial state of the world (in a formal language, usually
propositional logic),

• a goal (that is, a set of goal states), and

• the available (atomic) actions that can be performed, modelled as state transition
functions,

2Further discussion on norm regimentation is given in Section 2.2.2.2.

Chapter 2. Related Work 19

the task is to compute a plan, i.e. a sequence of actions that transforms each of the
states fitting the initial configuration of the world into one of the goal states.

In recent years metric planning has gained attention in the planning research commu-
nity. Metric planning can be seen as the numerical extension of the planning problem,
where actions modify the value of numeric (or possibly of other type) state variables.
This is seen as necessary since most domain problems consist of various real-world
elements that need to be represented by quantified variables, called fluents. The task
in the case of the metric planning is to determine a plan that achieves the goal criteria
and at the same time optimises an objective function (consisting of the aforementioned
variables).

In this section we discuss the different action formalisms invented for agent planning
and several implemented planning frameworks.

2.1.2.1 Action Language Formalisms

Action languages are formal ways of representing the human notion about actions and
their effects. A basic element common in most action languages is the transition system.
Action languages model actions and world situations in such a way that these can
directly or indirectly be mapped to a transition system, where actions form transitions
between states.

Situation calculus [McCarthy and Hayes, 1969; Levesque et al., 1998] is the oldest
and most widely used logical formalism for describing dynamic domains. It was
introduced in 1963 by McCarthy and subsequently refined. Situation calculus is a
second-order framework for representing dynamically changing worlds in classical
first-order language. Variables might be of different types including objects. Situ-
ation calculus represents the world and its change as sequence of situations, where
each situation is a term that represents a state and is obtained by executing an action
(action × situation→ situation). Action functions are a main element of the formal-
ism and a special binary predicate Poss : action× situation is used to indicate under
which situation s an action a is executable. Additionally, effect axioms describe changes
in situations that result from the execution of actions. Situation calculus allows for the
representation of the initial situation s0 and a special function symbol DO(a, s) which
describes the situation obtained after performing action a at situation s. Finally, two
types of fluents, relational fluents, of type (action

⋃
object)n × situation and situational

fluents of type (action
⋃

object)n × situation→ action
⋃

object are considered as prop-
erties of the world model change. The main problem that occurs when modelling in
situation calculus is the so-called framing problem (or frame problem). That is, since there
is no way to indicate the properties that remain unchanged within a domain after the
execution of an action (the non-effects of actions), there occurs a need to represent
a large number of frame axioms, leading to a great complexity of the domain. The

20 2.1 Agent Orientation

successor state axioms, one for each fluent, tackle the problem, by making sure that ef-
fect axioms fully specify all the ways in which the value of a particular fluent can be
changed as a result of performing an action.

Event calculus [Kowalski and Sergot, 1986], introduced by Kowalski and Sergot, is
another approach for encoding actions into first-order predicate logic. This calculus
was designed to allow reasoning over time intervals and includes the non-monotonic
inference negation as failure. The main difference between event calculus and situation
calculus is conceptual: event calculus is based on points in time rather than on global
situations and fluents hold at points in time rather than at situations, as it happens
in situation calculus. The events, their effects and durations are expressed in Horn
logic [Horn, 1951]. A special predicate HoldsAt(f , t) is used to indicate that a fluent
f holds at a given time point t. The predicate Initially(f) indicates that a fluent f
holds at time 0 and t1 < t2 that time point t1 is before t2. The effects of actions are
given using the predicates Initiates(a, f , t) and Terminates(a, f , t) where t indicates a
specific point in time. Predicate Happens(a, t) indicates that an action a takes place at
time t. Finally, predicate Clipped(t1, f , t2) indicates that fluent f has been made false
between time points t1 and t2. The frame problem can be solved in a similar fashion
to the one used in situation calculus, by adding axioms stating that a fluent is true
at some time point if it has been made true before and has not been falsified in the
meantime as well as stating the opposite case in which a fluent is false at a given
time. According to [Eshghi, 1988], planning in the event calculus can be considered
as an abductive task, where a logic programming technique is applied to generate
plans using representations of Initiates, Terminates and Happens predicates. While there
are some earlier implementations of such abductive event calculus planners [Jung
et al., 1996; Shanahan, 2000], these are rather inefficient, due to the nature of Prolog
employed to act as the abductive theorem prover.

The fluent calculus [Thielscher, 1999, 2005] is yet another formalism for expressing
dynamical domains in first-order logic. It is a variant of the situation calculus; the
main difference is that situations are considered representations of states. The world
can be in the same state in different situations, but the state in every situation is
unique. The main contribution of the fluent calculus is its solution of the inferential
frame problem by the means of state update axioms. In [Thielscher, 2005] a fluent
calculus executor (FLUX) is presented.

For domains of incomplete and/or inconsistent information one can find action spec-
ification languages such as A [Gelfond and Lifschitz, 1993, 1998] and K [Eiter et al.,
2003], which allow modelling dynamic domains with incomplete and inconsistent in-
formation. Both languages are close in spirit to answer set semantics (Answer Set
Programming or ASP [Dimopoulos et al., 1997; Marek and Truszczynski, 1999]). A al-
lows the effects of an action to be conditional. It roughly contains: a) effect propositions
of the type: a causes f if p1 . . . , pn,¬q1, . . . ,¬qr, b) value propositions of the type: f
after a1, . . . , an and 3) propositions stating the initial situation of the system of the
type: initially f . Due to its ASP orientation, language A is directly translatable,

Chapter 2. Related Work 21

can be read by and produce plans via an ASP solver. Language K has similar syntax
and semantics to A. A system that uses K is the DLVK declarative, logic programming
based planning system. DLVK allows for parallel execution of actions and both strong
(¬) and weak (not) negation. The main strength of the language K is that it can deal
with cost functions in the action descriptions and that it can reason about incomplete
states. On the other hand, it lacks the ability to express conditional effects, durative
actions and flexible numeric handling.

Several other frameworks are also concerned with the design of action descriptions.
In [Baral et al., 1997; Baral, 2003] Baral et al. detail an action description language to
express causal laws over the effects of actions and the values of fluents in possible
states of the world. Additional work of some of the authors mentioned previously
focuses on different aspects of reasoning over dynamic domains [Baral and Gelfond,
1999] and over properties of actions [Gelfond and Lifschitz, 1993].

The language C+ [Giunchiglia et al., 2004] is a formalisation for defining and reason-
ing about the effects of actions and the persistence (inertia) of facts over time. An
action description in C+ is a set of C+ laws (containing static laws of type “‘caused
F if G” and dynamic laws of type “caused F if G after H”) which define a
labelled transition system with explicit semantics. The main problem of the original
language C+ is that it is purely propositional, not allowing variables. An implementa-
tion of a variation of C+ in Prolog supporting a range of querying and planning tasks
is available, notably in the form of the “Causal” Calculator CCalc [McCain, 1997].

An important disadvantage of all the aforementioned languages is that their semantics
does not deal with conditional effects and numeric functions and costs (with the ex-
ception of K) in the domain. Additionally, as already explained, while there are some
practical implementations of these frameworks, they are limited by the execution times
of Prolog or ASP solvers and there do not exist sufficiently efficient implementations
that can compete with current classical planners and hierarchical planners. We discuss
the latter two in the following section.

2.1.2.2 Practical Frameworks Implementing Action Languages

Two basic planning areas that have been widely explored in the last decades are clas-
sical (deterministic) planning and planning with hierarchical task networks. In this section
we discuss several frameworks implementing action languages in both areas. As we
will see later in this section, the newest approaches intend to support control rules over
the calculated paths on top of everything else.

In classical planning, actions that correspond to deterministic state transitions are used
to define fully observable and deterministic domains and the objective is to achieve
a set of goals. When referring to classical planning, the Planning Domain Definition
Language (PDDL) [Ghallab et al., 1998; Fox and Long, 2009], an extension of STRIPS

22 2.1 Agent Orientation

[Fikes and Nilsson, 1972], is the most commonly used language for formulating de-
terministic classical planning domains and problems. It started off as a pure proposi-
tional framework but got extended in various directions (durative actions, metric plan-
ning, probabilistic planning, etc.) and consequent versions that accommodate complex
domains have risen within the last ten years, allowing for sharing domain models as
well as representing domains in a commonly accepted and comprehensible manner.
While STRIPS (and as a consequence PDDL too) can be considered more restricted in
expressional power compared to situation calculus (described in Section 2.1.2.1), its
main advantage is that it leads to more efficient planning algorithms due to the effi-
cient representation of states as well as the avoidance of the frame problem occurring
due to the frame axioms. PDDL describes the agent’s actions as schemas, where a fam-
ily of actions is represented by the common preconditions (that should hold in order
for it to be executed) and effects that it brings about within the domain. As a conse-
quence, PDDL might be considered more compact than the A language [Gelfond and
Lifschitz, 1998] mentioned in Section 2.1.2.1.

Hierarchical task network (HTN) planning [Ghallab et al., 2004] is similar to classical
AI planning but differing in that the objective is to perform a set of abstract tasks.
In this, a set of atoms defines the state of the world and an action is the equivalent
of a state transition. In addition to a set of operators similar to those of classical
planning, however, the planning domain contains methods. These indicate how a task
is broken down into smaller tasks called subtasks. Unlike in classical planning where
problem specification defines a goal expression to be achieved, in HTN it indicates a
non-primitive goal task to be achieved. The best established formalism for describing
HTN domains is the one used in the SHOP2 planner [Nau et al., 2003]. The SHOP2
language is based on LISP syntax and its formalism comprises the elements below:

• Task - A task dictates an activity to execute. Tasks can be primitive (to be exe-
cuted by a planning operator) or compound (comprising of other tasks).

• Operator - Operators, similar to PDDL actions, define how primitive tasks can
be executed.

• Method - Methods indicate how to break down a compound task into sets of
subtasks3. Methods have three parts: the task to which the method corresponds,
the precondition (conditions that should be satisfied for the method to be appli-
cable, formed by conjunctions, implications, quantifiers, etc. as well as external
function calls) and the subtasks that should be achieved in order to pursue the
task. Methods do not have effects.

• Axioms - Axioms, containing head and tail state facts that can be implicitly
derived at each state.

• External function calls - External functions can be used, for example, to perform
numeric evaluations.

3Planners like SHOP2 can manage partially ordered sets of tasks, having in this way plans interleaving
subtasks from different tasks.

Chapter 2. Related Work 23

While planning research seem to be advancing in several directions (i.e. conditional
planning, probabilistic planning, temporal planning, scheduling), in the last decade
there has been a tendency to impose control rules in the planning process. Control
rules [Bacchus and Kabanza, 2000] are formulas expressed in Linear Temporal Logic
(LTL) which, applied to the (forward chaining) search, reduce the search space by
pruning paths that do not comply with them. PDDL 3.0 [Gerevini and Long, 2006]
follows the current tendency towards control rules over execution paths. PDDL 3.0, an
extension of PDDL, imposes strong and soft constraints expressed in Linear Temporal
Logic formulas on plan trajectories as well as strong and soft problem goals on a plan.

2.1.2.3 Planning in BDI Agents

Plans are a central element of a BDI agent implementation, as they indicate to the agent
to proceed with the execution of specific actions in order to achieve the desired world
state. In some architectures plans pre-exist in libraries and are instantiated through
self-contained procedures (Jason [Bordini and Hübner, 2006], Jadex [Braubach et al.,
2005], JACK [Winikoff, 2005], 2APL [Dastani, 2008], 2OPL [Dastani et al., 2009a]), in
some (GOAL [Hindriks, 2009]) the agent follows action selection strategies, while in
others a planner constructs a plan to be followed at execution time, allowing in this
way more flexibility. In this section we discuss some recent approaches created to
incorporate different types of planning mechanisms in BDI systems.

In [Meneguzzi and Luck, 2008] Meneguzzi and Luck try to tackle the problem that
sometimes occurs in BDI systems, where a plan leads to failure, leading to the as-
sumption that a goal is unachievable (which might be misleading since a different
plan in the plan library might be able to reach it). The authors extend AgentSpeak(L)
by adding a planning component that reasons about declarative goals, calling the new
framework AgentSpeak(PL). The planning component is invoked (through a regular
AgentSpeak action) when there are no appropriate plans in the plan library and forms
high-level plans consisting of plans that already exist in the plan library. The way it
does this is by evaluating the impact of existing procedural plans on the agent’s beliefs
(through their additions and deletions), transforming them into STRIPS operators and
feeding them to a classical planner together with the agent’s belief base and its goal
state. If the planner produces a plan, this is transformed into an AgentSpeak plan
and added to the plan library so that it gets executed. Additionally, in [Meneguzzi
and Luck, 2009a] the same authors present a plan reuse strategy for AgentSpeak(PL)
by providing an algorithm that generates context information (a set of conditions) for
each plan, under which the plan will be able to be executed successfully. In this way
plans might be reused under specific situations improving the performance of the
agent. While an interesting approach, the main disadvantage of this is that it is based
on the assumption that the plans in the agent plan base abide by some restrictions,
that is, they should be expressed in terms of belief additions and deletions, in order

24 2.2 Social Structures and Agent Societies

to be able to be transformed to STRIPS actions, making this a complicated task for the
agent designers.

An innovative methodology to combine the BDI architecture with HTN planning is
found in [Sardina et al., 2006]. The authors underline the similarities between the two,
showing a mapping of the elements of the BDI and HTN systems (for example an
action in BDI can be seen as a primitive task in HTN, or, a plan rule in BDI as a method
in HTN). The proceed to present their framework, namely CANPPLAN, which is based
on and extending the CAN (Conceptual Agent Notation) BDI agent language [Winikoff
et al., 2002] and AgentSpeak [Rao, 1996]. The agent’s configuration is specified by
tuples and the system’s transitions can be of two main types, namely bdi and plan
labelled transitions and they are done through concrete derivation rules. A special
construct called Plan provides the functionality of a built-in HTN planner. The authors
conclude by showing how planning can be performed both for procedural as well as
for declarative goals and discuss implementation issues.

The same authors, in a different line of work [De Silva et al., 2009], use HTN plan-
ning to compute “ideal” abstract (or, alternatively, hybrid) plans within BDI agents.
They do so by transforming (and mapping) the BDI event-goals to abstract operators
and then executing an HTN planner over these operators. Though the resulting plan
might be valid, it is not necessarily the “best”, since it might contain unnecessary ac-
tions that only complicate the execution without contributing to the achievement of
the goals. Therefore, the authors come up with the notion of minimal non-redundant
maximally-abstract plans to characterise the “ideal” hybrid plans and proceed to design
an algorithm that computes such a plan, given a “non-ideal” hybrid plan computed
by the planner, a hybrid planning problem and a decomposition tree.

All the above approaches present interesting features. The main idea behind them
(whether using classical or HTN planning) is to take some of the common elements
used in the respective BDI agent architecture (plan constructs or plan rules, belief base,
etc.) and map them to a planning domain and problem. Then, feed this to a planner
and use the result as a valid plan for the agent to follow. Such a methodology serves
as an inspiration to our work, where in a similar fashion, the agent’s deliberation
methodology consists of translating the agent knowledge to a planning problem to be
solved.

2.2 Social Structures and Agent Societies

The idea of building agent systems which capture some notion of what we as humans
would call a society has been studied extensively, and has formed the basis for a large
part of current research into the engineering of multi-agent systems. The notion of
agent societies stems partly out of the desire to build systems which embody many
of the perceived benefits of human societies and partly out of the wish to integrate

Chapter 2. Related Work 25

agent systems with the rapidly growing establishment of electronically-based human
societies associated with the growth of the Internet and the social networks.

The role of a society is to permit its members to operate in a common environment and
go after their respective objectives while coexisting and/or collaborating with others.
Thus, social structures [Moses and Tennenholtz, 1995; Shoham and Tennenholtz, 1995]
define a social level where the multi-agent system can be considered as a collection of
entities that enhance the coordination of agent activities through structured patterns of
behaviour [Vázquez-Salceda, 2004]. A social structure might contain roles, interaction
patterns and/or communication protocols, a communication language and norms.
Regulations and norms indicate the desirable behaviour of members. They are put in
force by institutions that frequently have a legal standing and thus provide legitimacy
and safety to members, decreasing at the same time the combinatorial explosion in
agent interactions, as they put forward or even impose guidelines on the activities of
the agents [Dignum, 2004].

When it comes to actually building agent societies, the environment and the con-
straints it places on an agent’s execution might vary. Designers of agent systems must
typically make assumptions about, or place constraints on the underlying environ-
ment in which their agents operate. In [Davidsson, 2000, 2001] Davidsson studies the
types of constraints in the context of artificial societies and produces a broad taxonomy
for existing approaches to the development of agent societies based on characteristics
such as openness, trust, stability and flexibility. The reality of how open a given society
will be depends largely on the choices of its designers and implementers. Davidson
distinguishes four types of societies, according to the aforementioned characteristics:

1. Open societies: loosely structured societies with few or no restrictions over the
action and interaction between the members (the author compares them to an-
archic societies). They are normally characterised by openness and flexibility but
also lack of trust.

2. Closed societies: societies restricting the access to external individuals, in which
normally members have cooperatively pursue a goal. They are normally charac-
terised by trustfulness but also lack of flexibility.

3. Semi-open artificial societies: societies that are controlled by an institution that acts
as a gate-keeper, making assessment of entities that ask to join before it allows
them to. Davidsson claims that they have greater potential for stability and
trustfulness.

4. Semi-closed agent societies: societies to which access is limited for external indi-
viduals, but the members of which are able to create new members inside it.
According to Davidsson they are less flexible than semi-open societies, neverthe-
less they show greater capacity for stability and trustfulness.

In [Jones et al., 2013] the authors distinguish and analyse three specific social concepts
in socio-technical systems: trust, role and normative power. They suggest a synthetic

26 2.2 Social Structures and Agent Societies

method towards engineering intelligent socio-technical systems. This consists roughly
of three phases: theory construction (representation of a set S of observed social phe-
nomena), formal characterisation (conceptual analysis expressed in a formal language
or ‘calculus’, that is, a symbolic representation language of some kind) and princi-
pled operationalisation (tools employed in moving from a computational framework to
a system platform implementation).

In principle, there are two main areas which approach social systems, organisations
and institutions. While closely connected, the two have varying definitions amongst
scientific literature.

North [North, 1990] makes a distinction between institutions and organisations. While
institutions are abstract entities that define sets of constraints, organisations are in-
stances of such abstract entities. The parties are members of an organisation (not
members of an institution) that should follow the institutional framework defined in-
side the organisation.

A more specific distinction is given by Hogson in [Hodgson, 2006]. According to him,
organisations are special institutions that involve:

1. Criteria to establish their boundaries and to distinguish their members from non
members

2. Principles of sovereignty concerning who is in charge

3. Chains of command delineating responsibilities within the organisation

We analyse and discuss the different aspects of organisations and institutions in the
following sections.

2.2.1 Organisational Models

As work interactions between people and enterprises are moving towards ‘virtual’
enterprises in which the different parties have autonomous activity, efficient commu-
nication and coordination between units and the design of equitable structures and
processes are becoming essential in the well-being and the development of an organi-
sation [Ancona et al., 2003]. In order to achieve sustainable adaptability and advantage
to the environment, organisational models specifying the structure of societies have
appeared, and during the last years they have played an important role in the design
of information systems.

There are several definitions of what an organisation exactly means. Indeed, the word
“organisation” is a complex word that has several meanings. In [Gasser, 1992], Gasser
proposed the definition of organisation to which we subscribe:

“An organisation provides a framework for activity and interaction through the definition of
roles, behavioural expectations and authority relationships (e.g. control).”

Chapter 2. Related Work 27

According to Ferber et al., several main features of organisations can be derived from
the various definitions in the literature [Ferber et al., 2004]:

1. An organisation constitutes of agents (individual members) that exhibit some
behaviour.

2. The overall organisation may be split into partitions that may overlap (also called
partition groups).

3. Agent behaviours are functionally associated with the general organisation ac-
tivity (notion of role).

4. Agents are engaged in dynamic relationships (also called patterns of activities
[Gasser, 1992]) which may be “typed” using a classification of roles, tasks or
protocols, describing in this way a form of supra-individuality.

5. Types of behaviours are connected via relationships between roles, tasks and
protocols.

2.2.1.1 The Concept of Role

Role theory [Hindin, 2007] has been generally concerned with the way individuals
of particular social positions manifest patterns of behaviour as well as the way other
individuals are expected to behave within context-specific situations. In a social envi-
ronment, individuals take role positions and their performance is determined by social
norms, demands and rules, while social values will determine which norms and rules
will be directed to what role positions.

Given the significance of the social aspect in organisational modelling, an important
element when considering agent design is the concept of role. A role is a description
of an abstract behaviour of agents. A role might describe the constraints (obligations,
requirements, skills) that an agent will have to satisfy to obtain a role, the benefits
(abilities, authorisation, profits) that an agent will receive in playing that role, and
the responsibilities associated with it. It can also be the placeholder describing the
templates of interactions in which an agent enacting that role will have to perform4.

Much of the work in the relevant literature place roles in the core of the organisa-
tional description. While describing the Gaia framework in [Wooldridge et al., 2000],
Wooldridge , Jennings and Kinny associate responsibilities, permissions, activities, and
protocols to roles and propose a practical definition of computational organisations
based solely on various interacting roles:

“We view an organisation as a collection of roles, that stand in certain relationships to one
another, and that take part in systematic institutionalised patterns of interactions with other
roles.”

4In our thesis, we do not distinguish between role and role assignment as in [Odell et al., 2003]

28 2.2 Social Structures and Agent Societies

In [Dignum, 2004] Dignum explains how a society’s objectives can be broken down
into role objectives. Then, the whole society can be considered as a super-role, the ob-
jectives of which are represented by organisational roles. The way these objectives are
achieved depends on the requirements and characteristics of the specific domain. By
specifying collaboration patterns, role models define high-level relationships between
society members without fixing a priori the complete interaction process.

Dignum also explains how roles can be organised into groups, as a way of referring to
a set of roles. She shows how useful this in an interaction scene5 where a participant can
be enacting one of several roles. She underlines the importance of dividing roles into
groups as this allows to specify norms that must hold for all enactors in the group.
This way, roles and groups of roles permit to ‘split’ the society objectives into role
objectives, delegating in this way norms to enactors of roles in the group.

Finally, it is possible to define role dependencies between roles for the realisation of some
objectives. This permits to indicate high-level dependencies between society members
without necessarily specifying details of the type of coordination needed to distribute
and achieve the objectives between them.

2.2.1.2 Organisational Frameworks

There are several organisational frameworks in the literature, but in this section we
will review the most relevant to our work, as they include some sort of norms: MOISE
[Hannoun et al., 2000] and OperA [Dignum, 2004].

MOISE (Model of Organization for multI-agent SystEms) [Hannoun et al., 2000] presents
an organisational model for multi-agent systems, focusing on the aspect of roles
(which constrain the action possibilities for each agent and define the activities that
an agent can perform), organisational links (which regulate the interactions that the
agents can have between them) and groups (which define who can cooperate with
whom). Further to this, in [Hübner et al., 2002] the authors present the Moise+ frame-
work, an extension of MOISE. The main contribution of this extension is the distinc-
tion of the three aspects of an organisation used separately in MOISE: the structural
aspect (including roles structure and inheritance, group clustering of roles and differ-
ent types of links such as compatibility, authority, acquaintance and communication
between agent roles), the functional aspect (including global plans, tasks etc.) and the
deontic aspect (including norms, laws etc) of the model. While MOISE focuses on the
organisational structure providing no particular normative layer, Moise+ gives more
emphasis on the complex relationships between actors as well as their rights and du-
ties6.

5An interaction scene, or scene, normally refers to a set of dialogical activities between agents in the
same way theatre scenes are played. Agents (actors) engage in dialogs with respect to their assigned role
(character).

6An extension of Moise+ with a more powerful notion of norms, called MoiseInst, is described in
Section 2.2.2.3.3.

Chapter 2. Related Work 29

OperA, described by Dignum in [Dignum, 2004], is a framework for specifying organi-
sations founded on the concept of social contracts. The OperA framework is composed
of three components, Organisational Model (OM), Social Model (SM) and Interaction
Model (IM):

• The OM describes the abstract specification of the organisation. It consists of a
social structure (roles and the dependencies between the agents) and an interac-
tion structure (describing possible interactions between agents). Additionally, a
normative structure describes role norms (normative expressions that apply to
roles) as well as scene and transition norms (expected conduct within a scene
and restrictions over the transition from a scene to another, respectively).

• The SM describes the role enactment by the agents. This is done via social
contracts, in a way that whenever an agent enacts a specific role, then the agent
is adopting the terms of the contract associated with it. These terms represent
the agent’s responsibilities within the framework.

• The IM specifies the interactions between the agents. This is done via pre-
specified scenes (not defining how objectives can be achieved as this is left to
the designer’s choice) and landmarks (partially ordered descriptions of desirable
intermediate states) to be brought about within the scenes.

One of the strengths of OperA (being a model applicable to both human and soft-
ware agents) is also the main limitation, as the framework provides no support to
(semi-)automatically generate OperA-aware software agents (two frameworks based
on OperA, namely OMNI and ALIVE, partly provide such functionality and will be
discussed in Section 2.2.2.3.3).

For a long time the notion of organisations and the notion of institutions were two
distinct, separate views on modelling MAS governance. Nevertheless, in [Ferber et al.,
2004] Ferber et al. proclaim that an organisation is made of two aspects: a structural
aspect (also called static aspect) and a dynamic aspect. The structural aspect of an organ-
isation consists of two parts: a partitioning structure and a role structure. A partitioning
structure shows how agents form groups and how groups are related. A role struc-
ture is defined, for every group, by a set of roles and the relations between them. This
structure defines also the set of restrictions that agents should comply with to play
a particular role and the benefits associated with that role. The dynamic aspect of
an organisation is associated with the institutionalised templates of interactions that
are specified within roles (norms). According to Ferber et al. it additionally defines
the modalities to create, kill, enter groups and play roles, the way these are applied and
the way organisation subdivision and role structuring are associated with an agent’s
behaviour.

The last points form part of the institutional aspect of the organisation. While organ-
isations provide the main concepts for an abstraction of social structures, they lack
coordination frameworks that imitate the coordination structures within an organisa-
tion. That is where institutions come into force. Institutions enforce the organisational

30 2.2 Social Structures and Agent Societies

aims of the agent society and dictate a performative structure (i.e. a description of
how scenes are interconnected through different types of transitions and how agents,
via different roles, participate in these scenes) and a dialogical framework between
members of the society [Noriega and Sierra, 2002; Sierra et al., 2001]. The benefit of
institutions lies in their ability to provide legitimacy and security by providing social
conventions and setting up a normative framework for their members. We explain
more about institutions in Section 2.2.2.

2.2.2 Institutions

As explained in the beginning of Section 2.2, in order to control the real-world envi-
ronment, humans have created moral and/or legal structures that deal with specific
aspects of daily lives, giving some sense of order. Human law therefore provides rules
and guidelines which are enforced through social institutions to regulate behaviour.

The problem that occurs when automated systems are put into function under real-
world conditions is that human regulations are usually expressed in a quite abstract
fashion and often allow various interpretations7 [Grossi and Dignum, 2005]. The fun-
damental incentive for this is that they are created to cover a large number of cases
with the same legal content and to maintain regulations solid and valid over time.
In law, it might even be up to the judges to interpret the laws with respect to some
specific context and decide whether they were violated or not. Although it might be
facilitating for humans, the abstraction and possibility of more than one interpretation
poses serious problems when trying to practically apply such regulations in compu-
tational systems, where meaning should be accurate and unambiguous.

Figure 2.2: From human laws to their electronic representation

7In Section 2.2.2.2.3 a review of different norm formalisations is provided.

Chapter 2. Related Work 31

On the other hand, with the agent paradigm having emerged in the last decades,
several social interaction systems, where agents represent individual’s interests, have
seen the light. Since agents might not have similar interests, objectives and conflicts
between them might occur and therefore, the necessity for regulations to be present
and enforced in such systems is strong. In order for this to happen, it is essential to
have a shared understanding of normative concepts between interacting agents and
the environment in which they operate. Additionally, the abstraction of the high-level
law descriptions should be made concrete through an operational level that provides
machine-readable specifications to be unambiguously interpreted and applied.

For norms to be represented in computational systems, high-level specifications are
translated down to a computational level, possibly including formal ontological de-
scriptions and given formal deontic semantics. Such translations can be strongly con-
text dependent. Taking it a step further, reductions from the deontic layer to op-
erational descriptions act as a bridge towards direct implementations, treatable by
computational systems [Vázquez-Salceda, 2004; Aldewereld, 2007]. Seen from the in-
stitutional perspective, translating norms from abstract deontic facts to machine read-
able rules allows for norm enforcement mechanisms to be developed and applied.
On an individual level, creating operational rules from abstract deontic specifications,
enables them to be taken into consideration in its decision making process, regulat-
ing its behaviour in the environment in which it operates. Figure 2.2 visualises how
abstract norms are broken down to various levels of normative descriptions and op-
erational rules when it comes to being represented, analysed and reasoned about in
automated systems. An important aspect of Figure 2.2 is that to avoid semantic mis-
match between individual agent interpretation of the norms’ specifications and their
institutional interpretation, the operational description used should be concrete and
provide a uniform understanding of the normative concepts.

2.2.2.1 Human vs. Electronic Institutions

Institutions are identified by the set of social constraints that govern the behaviour and
relationships between members of a society. This concept of human institution can be
used and applied to agent-based interactions, in Electronic Institutions. An Electronic
Institution is a multi-agent system where agents’ behaviour is governed by a set of
published norms, rules or regulations which bring about a set of expected behaviours
for agents interacting in a social context.

Nobel laureate Douglass North [North, 1990] studied the effect of sets of constraints,
that he refers to as institutions, on the behaviour of human organisations, focusing on
their performance. North claims that institutional constraints facilitate human interac-
tion, forming choices and allowing effects to be foreseen. The creation of institutional
constraints allows for a growth of the complexity of the organisations while keeping
reduced interaction costs, by ensuring trust between parties and giving shape to their

32 2.2 Social Structures and Agent Societies

choices. Equally important, it allows the participants of the institution to act, and
expect others to act, according to a list of rights, duties, and protocols of interaction.

Therefore, the creation of institutions provides trust among parties even when they
do not have much information about each other8. In environments with incomplete
information, cooperative interactions can perform ineffectively unless there are insti-
tutions which provide sufficient information for all the individuals to create trust and
to control unexpected deviations on interaction.

Institutions can be classified according to how they are created and maintained, or
on the formality of their rules. In the former case, institutions can be created from
scratch and remain static or be continuously evolving. In the latter, institutions can be
informal, that is, defined by informal constraints such as social conventions and codes
of behaviour, or formal, defined by formal rules. Formal rules can be political and judicial
rules, economic laws, or contracts.

In formal institutions the purpose of formal rules is to promote certain kinds of ex-
change while raising the cost of undesired kinds of exchange. Elinor Ostrom [Ostrom,
1986] classifies formal rules into 6 types:

• Position rules: to define a set of positions (roles) and the number of participants
allowed for each position.

• Boundary rules: to state how participating entities are picked to hold or leave a
position,

• Scope rules: to determine the outcomes and the external values (costs, induce-
ments) related to them.

• Authority rules: to define the set of actions associated with a position at a certain
node.

• Aggregation rules: to specify decision functions for each node to map actions into
intermediate or final outcomes.

• Information rules: to establish channels of communication between participating
entities and state the language in which the communication will occur (the pro-
tocol).

As norms are in essence what characterises institutions, they do not only serve as
norms to be complied with, but also serve as indications to predict other norms that
could be applicable.

As explained earlier in this section, in environments with incomplete information, in-
stitutions hold a substantial role in order to establish trust between members. This
statement holds both for closed multi-agent systems, where trust is implicit, and open
multi-agent systems, where trust is something that has to be built. For the latter type
of systems, Electronic Institutions (e-institutions), seen as computational realisations of

8No institutions are necessary in an environment where parties have complete information about
others, as trust and reputation systems are enough to bring some order in their interactions.

Chapter 2. Related Work 33

traditional institutions, can be considered as a comprehensible modelling approach
[Esteva, 2003; Sierra et al., 2004]. Electronic Institutions can be seen as a regulated vir-
tual environments in which the respective interactions between participating entities
occur.

More formally, according to Vázquez-Salceda [Vázquez-Salceda, 2004] “[...] an Elec-
tronic Institution is the model of a human institution through the specification of its norms
in some suitable formalism(s). The essence of an institution, through its norms and protocols
can be captured in a precise machine processable form and this key idea forms the core of the
nascent topic of institutional modelling.”

Vázquez-Salceda [Vázquez-Salceda, 2004] states that institutions, seen as norm providers
and enforcers, are intended to solve the following issues in the context of multi-agent
systems, making in this way agents more successful in the accomplishing of their
objectives, since they:

• Lessen uncertainty about other agents’ conduct within the institution.

• Decrease misunderstanding with a shared set of norms ruling interactions.

• Allow agents to predict the result of some specific interaction between partici-
pants.

• Make the every agent’s decision-making simpler by reducing the number of
actions that can be performed.

While the above is useful when analysing and modelling social systems, in this thesis
we do not put substantial emphasis on the differentiation between organisations and
institutions. As our objective is to work with the operational and functional aspects of
multi-agent systems, we choose to focus on the institutional perspective and to view
organisations as a purposeful structure within a social context. A list of institutional
frameworks can be found in Section 2.2.2.3.

2.2.2.2 Norms

In settings where multi-agent systems are used to implement a system with a specific
goal one does not want a member’s behaviour to diverge from the overall goal of the
system. In order to bound the autonomy of the agents in such situations and guaran-
tee a certain behaviour of the overall system one has to construct agent organisations
by allowing interactions between the agents in these organisations. The institutional
interpretation of reality and the rules of behaviour for the agents within the organisa-
tion are described using norms and most of the descriptions of institutions are based
on the formal definition of their norms and their effect in the actions performed by the
agent members. In this section we discuss the different approaches when modelling
norms as well as the issues involved in the process.

Regulations have been studied from many different points of view, including Sociol-
ogy and Law. Specifically, within the Artificial Intelligence community there has been

34 2.2 Social Structures and Agent Societies

a continuous effort on researching how to create efficient formalisations of regulations
and norms from a logic perspective. As a consequence, a lot of work on legal and
normative systems formalisation (see Sections 2.2.2.3 and 2.2.2.4) has been produced.
Such work is declarative in nature and gives emphasis on the expressiveness of the
norms, the establishment of formal semantics and the verification of consistency of a
given norm set.

A norm can be defined from several perspectives [Vázquez-Salceda, 2004]. According
to Vázquez-Salceda, it can be seen as a rule or standard of behaviour shared by mem-
bers of a social group; as an authoritative order or standard by which something is
judged and, on that basis, approved or disapproved; as standards of right and wrong,
beauty and ugliness, and truth and falsehood; or even as a model of what should
exist or be followed, or an average of what currently does exist in some context. In
[Vázquez-Salceda, 2004], the same author makes a distinction between the treatment
of norms in different contexts: Social Theory, Legal Theory, and Computer Science.

Scott [Scott, 1995] defines a framework to describe the interactions between institu-
tions and organisations. In this framework, an institution is composed of the regu-
lative aspects, the normative ones, and the cultural-cognitive ones. In Scott’s view,
there is a distinction to be made between norms, which are related to moral aspects
and describe regulative aspects of individual behaviour, and rules, which are related to
coercive aspects and describe prescriptive, evaluative, and obligatory aspects of social life.

Moreover, for Scott, roles are conceptions of appropriate goals and activities for par-
ticular individuals or specified social positions, creating, rather than anticipations or
predictions, prescriptions, in the form of normative expectations, of how the actors ful-
filling a role are supposed to behave. These roles are directly related to those norms
that are not applicable to all members of a society, but to selected types of actors.

2.2.2.2.1 Regulative vs. Constitutive Norms

The main question that rises from the above is how norms might be represented in reg-
ulated computational systems. According to many studies in legal and social theory,
normative systems consist of regulative as well as non-regulative components [Searle,
1969; Jones and Sergot, 1996; Searle, 1997].

Regulative rules specify commitments, restrictions and authorisation over states of af-
fairs (e.g. “a client must pay when a purchase is made”) in social systems and are
mainly taken into consideration in practical reasoning. A common way of modelling
regulative norms is through various types of Deontic Logic, that is, formal systems
devoted to capturing the concepts of obligations, prohibitions and permissions. In Sec-
tion 2.2.2.2.3 we will provide a detailed analysis of the most common deontic formal-
isations.

Chapter 2. Related Work 35

Constitutive rules on the other hand, concern what counts as what in a given institution
(e.g. “visa payment counts as payment”). The paradigmatic syntax of constitutive rules
has been taken to be, since [Searle, 1969, 1997], the form of “counts-as” statements:

[...] “institutions” are systems of constitutive rules. Every institutional fact is underlain by a
(system of) rule(s) of the form “X counts as Y in context C” [Searle, 1969].

In [Searle, 1969, 1997] Searle opines that no institution is given without constitutive
rules and therefore without “counts-as” and that such statements are stated relatively
to a context because what counts as what differs from institution to institution.

A significant contribution towards the study of formal aspects of the least explored
kind of norms, that is the constitutive norms, is [Jones and Sergot, 1996], which is
the first study of the way “counts-as” conditionals can be modelled9. In addition to
this, in [Grossi, 2007] Grossi focuses on a formal analysis of institutions and especially
constitutive norms, specifically the counts-as relation between abstract and concrete
terms. Grossi presents a formal language based on description logic for the expression
of institutions as an imposition of institutional terminology upon brute terminology.
This imposition is realised through the specification of counts-as definitions that relate
normative concepts to concepts in the (institutional) reality, linking in this way abstract
norms to concrete situations. In concrete, institutions state terminologies (i.e. different
and possibly inconsistent sets of contextual concepts) and counts-as statements are
statements talking about these terminologies. Thus, by means of a counts-as operator,
it is given that a certain concrete concept can be considered an instantiation of an
abstract concept used in the norms. Grossi provides no implementation of his formal
analysis, however, he makes a comparison between the use of regimentation and the
use of enforcement of the norms in e-institutions.

Other more practical works on counts-as rules include Álvarez-Napagao’s PhD thesis,
which provides a practical implementation of a reasoner that uses counts-as rules, and
the results can be found at [Álvarez-Napagao et al., 2010; Aldewereld et al., 2010]. In
Section 2.2.2.4.1 some agent frameworks including constitutive norms are described.

2.2.2.2.2 Institutional and Normative Power

There exists a lot of literature on legal concepts such as power, right, duty, commit-
ment, enforcement etc., deriving from Legal Systems. In this section we discuss some
of these concepts and especially institutional power, which captures the notion of how
agents might assume the “power” to bring about affairs within an organisation, and
different attempts to give semantic meaning and formally capture it.

Hohfeld is the first to make a distinction between the legal power (the power to exer-
cise a legal privilege), the physical power (physical ability to perform) and the privilege
(as the opposite of duty) to do something [Hohfeld, 1917]. Later, based on Hohfeld’s

9More on this work will be explained in Section 2.2.2.2.2.

36 2.2 Social Structures and Agent Societies

consideration, Jones et al. in [Jones and Sergot, 1996; Jones et al., 2013] claim that an
agent might have the practical possibility without being empowered. Therefore, the
practical ability to perform acts which lead to a normative state, is neither a neces-
sary or sufficient condition for being empowered. Jones et al. proceed to introduce
the notion of institutionalised (or institutional) power to capture the ‘legal power’ or
‘empowerment’ for particular entities to perform specified types of acts, within spe-
cific contexts. They reason about why institutionalised power cannot be considered
equivalent to permission or practical possibility to perform some action.

Motivated by their desire to 1) formalise the idea that within a specific institution,
certain acts count as means of bringing about kinds of normative states of affairs, and
2) capture the fact that there are usually restrictions within an institution which state
that some states of affairs of a given type count as or are to be classified as states of
affairs of another given type, they proceed to conceptualise institutional power in
[Jones and Sergot, 1996]. With ExA standing for “x sees to it that/brings it about that
A” and with the “counts as” reading for the conditional⇒s, they define statements of
the type Ex A ⇒s ExF. Such a statement then reads as: “relative to institution s, x’s act
of seeing to it that A counts as, or is to be regarded as, an act of establishing the state
of affairs F, performed by x”. Based on this, they then build with inference rules and
axioms a modal language for representing the notion of empowerment.

Oren et al. [Oren et al., 2010] on the other hand, present a model of ‘normative power’.
This may refer to the ability to create, delete, change a norm. They model normative
power as a tuple: 〈Mandators,Context, Pre, Post〉 where Mandators are agents in the
system, Pre and Post contain norms to be removed and inserted into the system by
the application of the power. They then proceed to explain how the application of the
power on the norms within affects the institutional environment within which they
exist and also define powers over powers (delegation of a power to someone else).

2.2.2.2.3 Languages to Express Regulative Norms

In legal theory, norms are always expressed in natural language. That makes them
ambiguous and hard to deal with in computational systems. To solve this gap, Mally
intended to create an exact system of pure ethics to formalise legal and normative rea-
soning [Mally, 1926; Lokhorst, 1999]. That was the first attempt at creating a Deontic
Logic, based on the classical propositional calculus. Von Wright [von Wright, 1951] pre-
sented a formalism based on propositional calculus that was similar to a normal modal
logic. Although traditionally used to analyse normative reasoning in law, Deontic
Logic (alternatively known as the logic of normative concepts) is also applied beyond
the domain of legal knowledge representation and legal expert systems; other appli-
cations include authorisation mechanisms, electronic contracting and more. Deontic Logic
has been invented to explore the properties and dynamics of norms over time and
uses special modal operators to represent logical relations among obligations, permis-
sions and prohibitions. Adapting Von Wright’s proposal, the Standard System of Deontic

Chapter 2. Related Work 37

Logic (SDL) or KD was created as a modal logic with the following axioms [von Wright,
1951]:

O(p→ q)→ (O(p)→O(q)) (KD1 or K-axiom)

O(p)→ P(p) (KD2 or D-axiom)

P(p) ≡ ¬O(¬p) (KD3)

F(p) ≡ ¬P(p) (KD4)

p, p→ q ` q (KD5 or Modus Ponens)

p `O(p) (KD6 or O-necessitation)

where O, P and F are modal operators for obliged, permitted and prohibited.

Thus Deontic Logic allows for expressing norms as obligations, permissions and pro-
hibitions. Standard Deontic Logic is expressive enough to analyse how obligations
follow each other and is useful to find possible paradoxes in the reasoning. Verbs
such as should or ought can be expressed as modalities: “it should happen p”, “it ought
to be p”. The semantics of the O, P and F operators define, for a normative system and
in terms of possible worlds, which situations can be considered as ideal, i.e. situations
where no norm is neglected or unfulfillable. However the KD system lacks opera-
tional semantics, making it not possible to be directly used in computational and/or
reasoning systems to decide over the course of action.

Working on the formalisation of agency, Kanger [Kanger, 1972] introduced an operator
of the form Do(a, p) where a represents the agency and p a propositional expression.
He adopted the notion of “sees to it that (stit)” to express that a sees to it that p happens.
Other operators have also been added to deontic logic by several works. In the Kanger-
Lindahl-Pörn logical theory [Kanger, 1972; Kanger and Stenlund, 1974; Pörn, 1974] the
operator E indicates the expression of direct and successful operations. Ei A means that
an agent i brings it about that A (i.e. agent i is directly involved and makes A happen).
Santos, Jones and Carmo later brought the operators G and H to formalise indirect
actions [Santos et al., 1997]. Gi A says that an agent i ensures that (but is not necessarily
involved into achieving) A. Respectively, Hi A says that an agent i attempts to make it
the case that A.

Von Wright proposed an extension of KD Deontic Logic called Dyadic Deontic Logic
[von Wright, 1951, 1956]. In this, conditional obligations can be expressed as O(p|q)
(meaning that it is obligatory that p if q) and conditional prohibitions as P(p|q) (mean-
ing that it is permitted that p if q). Some other researchers combine deontic logic with
temporal aspects, resulting in Temporal Deontic Logic [Brunel et al., 2006]. In the litera-
ture it is often written as Obgi(a < p) to indicate that “It is obligatory for i to perform
α before p holds” [Demolombe and Louis, 2006]. Brunel et al. also specify that it is
obligatory to satisfy φ before k time units as Ok(φ).

38 2.2 Social Structures and Agent Societies

From a different perspective, and much more recently, Conte and Castelfranchi try
to use deontic restrictions in order to guide the agent’s behaviour. In [Conte and
Castelfranchi, 2001] they introduce a new operator OUGHT to the formalism’s modal
operators BEL, GOAL, HAPPENS and DONE, allowing to express normative con-
cepts.

Unfortunately, none of the aforementioned deontic representing formalisms is entirely
free of representational problems [Hansen et al., 2007]. Many paradoxes such as log-
ical expressions that are valid in the logical system for deontic reasoning, but which
are counter-intuitive from the human thinking perspective still exist. In order to deal
with these troublesome cases of formalisation, one may focus on the pragmatic stand-
point and use logics that are sufficient for specific situations. Even though such a logic
might not always be adequate in general, one does not have to resolve all the deep
problems that philosophy gives rise to for the general abstract cases.

2.2.2.2.4 Operational Semantics for Regulated Systems

While it is true that most of the studies in the literature define semantics to interpret
norms, there are a few dealing with the connection between such semantics and the
operational level closer to the actual practical implementation. Assigning operational
semantics over regulative norms is not straightforward. Deontic statements express
the existence of norms, rather than the consequences of following (or not following)
them [Walter, 1996]. In order to implement agents and institutional frameworks capa-
ble of reasoning about norms, we need to complement deontic logic with semantics
defining fulfilment and violation - among other operational normative concepts10.

Consequently, when dealing with normative systems, where the expected behaviour of
agents is described by means of an explicit specification of norms, some of the relevant
issues that should be taken into consideration are the following (see Figure 2.2):

• There is a need to formally connect the deontic aspects of norms with their
operationalisation, preserving the former.

• Ideally, the operational semantics (and descriptions) should be created in a way
that ensures flexibility in their translation to actual implementations while en-
suring unambiguous interpretations of the norms. For instance, the semantics
used by a society compliance mechanism, and the semantics integrated in the
reasoning cycle of its individual agents, must be aligned to avoid, e.g. the agent
norm reasoning mechanism stating that no norm has been violated while the
compliance mechanism states that the agent has violated some norm instance.

• There should be a way to represent permissive norms and their relation to obli-
gations, and how norms evolve throughout time.

10In Chapter 3 of this thesis we present general operational semantics for norms including these as-
pects, which are then relived in Chapters 4 and 5.

Chapter 2. Related Work 39

• Possible penalties and consequences for norm breaking should be explicitly de-
fined, making sure those who are bound to them are aware of the cost of such
breaches.

• The operational description should be useful for both the agents that operate
in the institutional context and for the institution itself. Ideally, from the agent
perspective this would mean that the norms’ operational descriptions can be
directly parsed by the agents and automatically taken into account in the agent’s
deliberation cycle; from the institutional perspective this would mean that the
same norms’ operational descriptions can be translated into the computational
mechanisms that will enforce norms in the environment.

• From a practical point of view, abstract norms have to be distinguished from
their actual instances. For each abstract norm, many instances may happen
during the norm’s lifetime.

Some works in the literature (see Sections 2.2.2.3 and 2.2.2.4) present solutions that
tackle the above issues separately, but, as we will see in the next sections, it is hard to
find a proposal that manages to fill the gap left by all the practical issues at the same
time.

Of course it is important that we also define how the agents use these norms to govern
their behaviour as this determines the interaction between the individual agents and
the multi-agent system.

However, there is no consensus of what norms are, how they should be modelled, and
how agents should reason about them. Some issues still open in this direction are:

• How agents communicate, understand, and fulfil the other’s expectations.

• How the collective behaviour emerges from the composition of individual be-
haviours.

• How to formalise normative systems in a computational representation.

• How to define mechanisms, similar to the ones existing in human societies, to
ensure trust in open systems and complex environments.

• How the norms can be incorporated in an organisation, in a way that the indi-
viduals behave according to them.

2.2.2.3 Institutional View: Normative Multi-Agent Systems

There exists a rich research background in understanding the way legal (or normative)
systems are put into function within human societies and what their influence on the
activities of social members is. Norm-aware systems can be realised through normative
multi-agent systems that merge both social norms and multi-agent systems.

Normative multi-agent systems offer the ability to integrate social and individual fac-
tors to provide increased levels of fidelity with respect to modelling social phenomena

40 2.2 Social Structures and Agent Societies

such as cooperation, coordination, group decision making, organisation, and so on, in
human and artificial agent systems [Boella et al., 2006].

We distinguish two categories of norm-based frameworks: 1) the ones that focus on
the normative context (the institutional view), and 2) the ones that focus on the agent
perspective and how the norms affect the decision making (the agent view). This
section is an overview of some of the most important frameworks that cover the in-
stitutional aspect of normative multi-agent systems while Section 2.2.2.4 covers the
normative agents from the agent’s perspective.

2.2.2.3.1 Basic Concepts in the Modelling of Normative Multi-Agent Systems

Normative multi-agent systems consist of autonomous agents who must comply with
social norms [Boella et al., 2008b; Dignum, 1999]. The meaning of complying with or
fulfilling a norm might depend on the interpretation of analysers of a system. In soci-
eties with few members it is easy to see a norm as fulfilled if all agents have fulfilled
it; however, in societies with more members, it can be sufficient for a percentage of the
members to comply with a norm to see it as fulfilled.

While systems that are regulated by norms differ from one another, some generic
attributes can be noticed [López y López et al., 2006]. They are composed of sets of
agents that share sets of obligations, social laws or codes to obey. According to Lopez
et al., in such systems is not realistic to expect that all norms are known in advance,
since conflicts between agents may arise and, therefore, new norms might occur, and
also, norm compliance cannot be expected, since agents might prefer to disobey or
unwillingly fail to obey. Therefore, such systems need mechanisms to handle both
the modification of norms as well as possible unexpected behaviour of autonomous
agents. In [López y López et al., 2006] the authors conclude that normative multi-agent
systems have the following characteristics:

• Membership. An agent must recognise itself as part of the society. By recognising
this membership, agents can demonstrate their readiness to adopt and comply
with social norms.

• Social Pressure. Authoritative power is meaningful only if norm violations are
followed by sanctions application. Such a control could be coming from assigned
agents and should be socially recognised.

• Dynamism. Normative systems must be of dynamic nature, allowing new norms
to be put into force or abolished and members to join or leave the system. Such
dynamism may result in unexpected behaviours or impact other members’ be-
haviour.

Given these characteristics, [López y López et al., 2006] argues that multi-agent sys-
tems must include mechanisms to defend norms, to allow their modification, and to
enforce them.

Chapter 2. Related Work 41

Andrighetto and Conte [Andrighetto and Conte, 2012] distinguish several types and
subtypes of social norm adoption decision processes:

1. Apparent adoption, when the agent’s goal is the same as what is being enforced
by the norm.

2. Instrumental adoption, guided by rules that are thought to achieve the agent’s
goals, and which are broken into: diligent adoption (referring to technical norms),
artificial adoption (being established by external goals), cooperative adoption (in
order to pursue common goals), adoption by trust (established by the trust that
one has towards other members and with the intent to be adopted by all the so-
ciety’s members), adoption by commitment (followed when something has been
promised), conditioned adoption (caused by reciprocity between agents).

3. Terminal adoption, happening because it is in the agent’s belief that norms have
to be unquestionably obeyed.

The notion of enforcement is widely used when dealing with norms. Villatoro et al. [Vil-
latoro et al., 2011] distinguish between two enforcing mechanisms, punishment and
sanction. Punishment refers to the enforcement mechanism discouraging behaviours
by modifying the costs and benefits of a particular situation, while sanction refers
to the enforcement mechanism which notifies the violators that their behaviour is
not acceptable and that they have caused infractions. The authors proceed to show
how sanctioning is a more effective enforcing strategy than when the agents are be-
ing guided by the pure motivation to avoid punishment, and that when it comes to
achieving cooperations, these become more stable and less costly.

2.2.2.3.2 Institutional Models for Normative Multi-Agent Systems

An example of a framework based on norm-aware agents is described by López y
López in [López y López, 2003; López y López et al., 2001; López y López and Luck,
2002]. This framework defines normative agents as those agents whose behaviour
is shaped by the obligations they must comply with and prohibitions that limit the
kind of goals that they can pursue. To this extent the author defines a norm frame
which includes addressees (the agents to whom the norm applies), beneficiaries (those
who the addressees are focused on), normative goal (the goal that is to be achieved
or avoided as specified by the norm), contexts (the states of the environment when
the norm is active), exceptions (states when the norm is not active) and rewards and
punishments (responses to the compliance or violation of a norm). This norm frame
(describing what is supposed to be achieved/avoided in which context) is then linked
to actions by means of a relation between a specific action and a norm. Either an
action benefits a norm (making it possible to be compliant with the norm when the
action is executed) or it hinders a norm (executing the norm makes it impossible to
be norm-compliant). It is then stated that, for a normative agent, all actions benefiting
the norms are permitted and all actions that hinder the norms are prohibited. In

42 2.2 Social Structures and Agent Societies

[López y López and Luck, 2002] the authors define different stages through which a
norm goes since it is established until it becomes abolished. This, seen as the norm’s
lifecycle, includes stages such as issue, spread, adoption, modification, abolition, activation,
compliance, reward, violation, sanction, dismissal and non-sanction.

A framework for formally specifying electronic institutions, described as a dialogic
framework by the creators, is AMELI, based on the ISLANDER formalism [Esteva and
Sierra, 2002; Esteva et al., 2002]. This abstraction considers an agent-based institution
as a dialogic system within which, the interactions are composed by different dialogic
activities. The latter, also named illocutions [Noriega, 1997], are made up by agent
group meetings, called scenes, that comply to well-defined protocols. Breaking up
the interactions into scenes permits the framework to be characterised by modularity,
similarly to other popular programming techniques such as Object Oriented Program-
ming. Special normative rules capture actions’ consequences through illocution schemes
(illocution formulas containing possibly unbound variables and thus representing a
set of possible illocutions) and determine when norms (obligations) are activated and
get fulfilled. A feature of ISLANDER/AMELI is that they use regimentation in order
to make sure that the norms are always followed. In other words, no deviation from or
ignoring of norms by the agents is allowed. Another limitation is that the agent is not
aware of the norms and there is an external mediator that filters unwanted behaviour.
AMELI was the first fully implemented institutional framework providing tools able
to parse ISLANDER specifications and execute them at runtime.

The HARMONIA methodology of [Vázquez-Salceda, 2004; Vázquez-Salceda and Dignum,
2003] proposes a different approach, by explicitly specifying the norms of the institu-
tion and keeping track of the refinement steps taken to track all the translations needed
to implement the abstract norms of the institution. The framework distinguishes four
different levels: an abstract level (which contains the abstract norms), a concrete level
(containing concrete instantiations of the abstract norms), a rule level (where concrete
norms are translated into rules that can be computed by the agents), and a procedure
level (where the final mechanisms to follow the rules are implemented). The use of
such a layered approach shows its benefits in situations when changes to the norms
are required (which happens often in real-world institutions). Since connections be-
tween the implemented mechanisms and the abstract norms that they relate to are
made explicit, a change to the (abstract) norms can be propagated through the sys-
tem. HARMONIA also tries to solve (part of) the restrictive regimented nature of the
ISLANDER formalism, by the proposal of Police Agents, agents which are responsible
for the enforcement of the norms. This allows to control the system’s safety (avoid
non-desirable situations due to some agent’s failure), while still providing the agents
(enough) autonomy to perform their tasks in manners that were not thought of at
design, therefore enabling them to handle unforeseen situations and adding a level of
robustness to the system. There exists no implementation supporting this framework,
but parts of HARMONIA have been included in OMNI (see Section 2.2.2.3.3).

Chapter 2. Related Work 43

In [Aldewereld, 2007], Aldewereld further extends the ideas of Vázquez-Salceda in
[Vázquez-Salceda, 2004] by applying parts of the methodology to highly-regulated en-
vironments (environments governed by many of complex norms). The author makes a
distinction between “substantive” (expressing wanted and unwanted situations and al-
lowing the possibility of violations) and “regimented” (expressed as direct constraints
on the agent’s actions and therefore always ensuring compliance) norms and deals
mainly with the first type. [Aldewereld, 2007] identifies four important aspects of in-
stitutional implementations: 1) an ontology to allow communications between agents,
and to express the meaning of the concepts used in the norms; 2) an (explicit) norma-
tive description of the domain, specifying the allowed interactions in the institution,
presented in a format readable by (norm-aware) agents; 3) a set of protocols (con-
ventions) that agents that are incapable of normative reasoning can use to perform
their assigned task; and 4) an active norm enforcement to see to it that the norms
specified for the domain are adhered to and order and safety is guaranteed in the
system. These four elements are combined into a framework that gives the relations
between laws and electronic institutions. Moreover, (formal) methods are specified
for the implementation of norm enforcement and the (automatic) creation of protocols
(based on constraints specified by the norms). However, there is no implementation
of this framework, although some concepts are included in OMNI and ALIVE (see
Section 2.2.2.3.3).

In [Kollingbaum et al., 2008] the authors present a framework called Requirement-
driven Contracting (RdC), for the automatic formation of executable norms from
requirements and correlated relevant information. Requirements include domain as-
sumptions, preferences, and priorities. With the help of templates and formal language
constructs, the designer writes the environment specification (ES) to translate require-
ments into system objectives, domain assumptions into domain restrictions, and spec-
ifies preferences over objectives and priorities over clashing preferences. The last ones
are put into the RdC algorithm to acquire an executable specification of norms that
regulates, as a consequence, the virtual organisation.

2.2.2.3.3 Hybrid Organisational-Institutional Models for Normative Multi-Agent
Systems

There is a recent trend in combining both organisational and institutional aspects in
the same framework, in works such as MoiseInst [Gâteau et al., 2005], OMNI [Dignum
et al., 2004; Vázquez-Salceda et al., 2005] and the language NLP [Hübner et al., 2011].

MoiseInst [Gâteau et al., 2005], seen by the creators as an institution organisation spec-
ification, is founded on the Moise+ [Hübner et al., 2002] organisational model and fo-
cuses on specifying agent rights and describing the duties of each society role through
four types of specifications, Structural (SS), Functional (FS), Contextual (CS) and Nor-
mative (NS). Normative specification (NS) extends the Moise+ deontic specification
and defines rights and duties of roles and groups on a mission (set of goals) and in

44 2.2 Social Structures and Agent Societies

a specific context; Structural specification defines roles that agents enact and relations
between these roles as well as an additional level (group) to which roles might be-
long and in which interactions take place; Functional specification defines all goals
that have to be achieved; Contextual specification describes a set of contexts influ-
encing the dynamics of the organisation as well as the transitions between contexts.
The creators show how MoiseInst may be used in interactive games, both on the agent
operating layer (where avatars operate as autonomous agents) as well as on the mul-
timedia game management and control layer (where an institutional middleware is
dedicated to the arbitration and supervision of the whole organisation). While a pow-
erful and expressive organisational framework, norm specification in MoiseInst lacks
conditional norms (only allows time limitations and special conditions in the norm
definition). We are also not aware of any functional implementation of MoiseInst.

Organizational Model for Normative Institutions (OMNI) [Dignum et al., 2004; Vázquez-
Salceda et al., 2005] brings together some aspects from two existing frameworks:
OperA [Dignum, 2004] and HARMONIA [Vázquez-Salceda, 2004; Vázquez-Salceda and
Dignum, 2003]. OMNI is spread throughout three dimensions that describe different
characterisations of the environment. The Normative Dimension of the organisation
(specifying the mechanisms of social order, in terms of common norms and rules, that
members are expected to adhere to), the Organisational Dimension (which describes the
structure of an organisation, an can therefore be viewed as a means to manage com-
plex dynamics in societies) and the Ontological Dimension (defining environment and
contextual relations and communication aspects in organisations). In OMNI, the envi-
ronment is represented in three levels: 1) the Abstract level which defines a high level
system abstraction similar to the requirements analysis. It contains an ontology of
the model describing all the different organisational terms such as norms, rules, roles,
sanctions, etc.; 2) the Concrete level, supporting the design of the normative institution.
Its normative dimension defines the norms and rules of the system, the organisational
dimension defines the organisational structure and its ontological dimension defines
concrete ontological concepts.; and 3) the Implementation level, where the design of the
normative and organisational dimensions is implemented. In particular, mechanisms
for role enactment, norm enforcement, a procedural domain ontology, protocols and
the communication language used between the agents are proposed. There is no full
implementation supporting OMNI and the closest practical framework is the ALIVE
toolset.

ALIVE [Lam et al., 2009] is a multi-layered framework defined by the EU funded ICT-
ALIVE project11, supporting the design, deployment and maintenance of distributed
systems. ALIVE is an evolution of OMNI which uses a model-driven approach to
specify the conceptual framework with metamodels. It defines three levels of abstrac-
tion: The organisation, the coordination and the service level. The organisational level
supports an explicit representation of the organisational structure of the system. The

11http://ict-alive.sourceforge.net

Chapter 2. Related Work 45

organisational description includes roles, normative relations (e.g. permissions, obli-
gations), and interaction scenes. The specification makes use of the OperA [Dignum,
2004] model extended with HARMONIA norms. The coordination level transforms the
organisational representation into service-oriented workflows, specifying patterns of
interaction between Semantic Web services. Workflows for agent coordination at run-
time achieving organisational goals are stored. Amongst others, this level includes ele-
ments such as an ontology (containing available actions, possible goals to be achieved,
the resources available in the domain, etc.) and a JSHOP2 planner producing plans to
be executed by the agents. Finally, the service level supports the semantic description
of services. Mechanisms for matchmaking (selection of the most appropriate service
for a given task) and Web services dynamic composition are supported. A monitoring
mechanism is used to track various types of runtime activities. Although there exists
an ALIVE toolset fully supporting the framework, there are two main limitations: 1)
The framework is focused on Service-Oriented environments: in ALIVE agents coor-
dinate the orchestration of existing Web services; 2) Agents are not able to generate
plans at runtime, but they can select precomputed plans that have been automatically
built by an offline planner according to the organisation specification.

In [Hübner et al., 2011] the authors, based on primitives like norms and obligations,
introduce a Normative Programming Language (NPL), that is, a language that is ded-
icated to the development of normative programs. They then present an NPL inter-
preter to compute: (1) whether some operation will bring the organisation into an
inconsistent state (where inconsistency is defined by means of the specified regimen-
tations), and (2) the current state of the obligations. They also define the Normative
Organisation Programming Language (NOPL), a particular class of NPL specialised
for MOISE [Hannoun et al., 2000]. Finally, they show how MOISE’s organisation mod-
elling language (with primitives such as roles, groups, and goals) can be reduced to
NPL programs. While the approach provides an approach focused on monitoring
norms within an execution system, no weight is given on how to choose amongst and
evaluate possible operations to be executed in order to achieve goals.

Recent work detailed in [Lam et al., 2010] represents the agent organisation using
Semantic Web languages. In the framework, norms (permissions, obligations, pro-
hibitions and power) over agent actions as well as roles and role classification (a hi-
erarchical structure between roles) are represented using OWL [Antoniou and van
Harmelen, 2003] and SWRL12. Further to this, workflow specifications and the ontolo-
gies are made available to the agents through a centralised service which maintains
the knowledge, and updates it. Workflows are graphs with states and connections
(including AND/OR edges) between them and have input/output variables. They
describe the tasks to be executed and the flow of control within the system. Tasks
might be atomic or might be complex requiring a workflow to be executed. Agents
are created dynamically by an algorithm (which takes into account the organisational
norms). The input to the algorithm is a set of workflows and an ontology, and the

12http://www.w3.org/Submission/SWRL/

46 2.2 Social Structures and Agent Societies

output includes a set of software agents with organisational roles and tasks associated
with them, giving priority first to obligations, then to institutionalised power and per-
missions, and finally to permissions. Each agent then is able to start an independent
process that will support the enactment of the workflow. Exceptions are handled out-
side the agent-view perspective and dealt with appropriately, according to whether
an agent or a task has failed. While more practical, this approach follows service-
oriented model and does not provide such in-depth cover of organisational elements
and focuses on the coordination and workflow enactment process over the tasks to be
executed.

2.2.2.3.4 Verification in Normative Multi-Agent Systems

Stemming from constantly modified contexts, norms are normally of a changing na-
ture. As a consequence, there might occur conflicts and inconsistencies needing to be
automatically detected and resolved. In other cases, possible redundancies or equiva-
lences between constitutive normative systems might have to be identified. Although
norm verification is out of the scope of this thesis, in this section we briefly describe
some interesting works towards verification and/or validation of norms.

In [Vasconcelos et al., 2007] Vasconcelos et al. provide an algorithm for resolving
norm conflict (e.g. when an action is simultaneously prohibited and permitted) and
inconsistencies (e.g. when an action is simultaneously prohibited and obliged) in
norm-regulated virtual organisations (VOs) using a unification-based technique. More
specifically, they resolve the conflicts by annotating norms with sets of values their
variables cannot have, thus curtailing their influence. In [Vasconcelos et al., 2009] they
extend their work by adding constraints to the norms (the norms’ variables) and define
algorithms for resolving conflicts (overlapping values of variables, or else curtailment)
by adding and removing norms.

In [Boella et al., 2008a] the authors take a previous representation of normative systems
and add deadlines to the regulative norms, and research into the role of violations.
They explore the way to determine if a constitutive or regulative norm is unnecessary
in a normative system and if two normative systems are equivalent. They make the
distinction between counts-as equivalence, institutional equivalence, obligation equivalence
and violation equivalence.

MCMAS [Lomuscio et al., 2009] is a BDD-based symbolic model checker for the ver-
ification of epistemic and ATL (Alternating-time Temporal Logic) properties on sys-
tems described by means of variants of interpreted systems. MCMAS takes as input
systems descriptions given in ISPL (Interpreted Systems Programming Language), a
set of CTLK (Computational Tree Logic for Knowledge) specifications to be checked,
and returns whether or not the specifications are satisfied, giving, in most cases, a
counter-model if they are not. In [Lomuscio et al., 2011] the authors use MCMAS to
verify contract-based service compositions. First, they define the e-contract, seen as

Chapter 2. Related Work 47

a composition of services, and all the contractually correct behaviours in WS-BPEL13

(Web Services Business Process Execution Language). Through a compiler, they then
translate the specifications into ISPL programs, supported by MCMAS, to verify the
behaviours.

NormML [da Silva Figueiredo et al., 2011] is a UML-based modelling language for the
specification of norms, where norms are being viewed as security policies. NormML
is based on the SecureUML metamodel [Basin et al., 2005]. SecureUML provides a lan-
guage for modelling Roles, Permissions, Actions (atomic actions such as delete, update,
read, create and execute, and composite actions comprising of atomic ones), Resources,
and Authorisation Constraints as well as relationships between these elements. Among
other additions, the NormML metamodel extends the SecureUML metamodel with
the following basic elements: Norm, NormConstraint (activation constraints), Agent (the
agent to which the norm refers), AgentAction (allowed or prohibited actions) as well as
sanctions and rewards for the fulfilment or violation of norms respectively. The norm
specification allows to define the deontic concept (obligation or prohibition as well as
and what is to be achieved) and the time period in which a norm is active, based on the
execution of the actions, that is, before, during or after the execution of some action(s).
The authors show how the formalisation allows to validate whether the norms are
well-formed according to the formal language specification and to check the conflicts
between these norms at design time.

2.2.2.3.5 Monitoring Normative Status

As we explained in Section 2.2.2.3.1 agents may exist within regulated environments
where norms might be dynamically changing over time and, at the same time, they
may be simultaneously operating in multiple normative contexts. In order to moni-
tor the correct execution of the norms imposed, complex mechanisms which are able
to interpret institutional facts as well as perceiving the normative status of the en-
vironment are needed. Such mechanisms that can interpret and follow the different
phases that norms go through, from their generation, throughout their enforcement
and till they get fulfilled, expired or even withdrawn, have been thoroughly examined
in the literature. Although norm monitoring is out of the scope of this thesis, in this
section we describe some important frameworks that cover the monitoring aspect of
normative systems.

Artikis et al. view view societies as instances of normative systems [Artikis, 2003; Ar-
tikis et al., 2003, 2009] and in [Artikis, 2003; Artikis et al., 2003] they describe normative
social systems in terms of power, empowerment and obligation and create operational
specifications using both event calculus [Kowalski and Sergot, 1986] and the action
language C+ [Giunchiglia et al., 2004], demonstrating how they can be implemented
via existing tools. In his doctoral thesis Artikis [Artikis, 2003] gives examples of how
roles, obligations, permissions and institutionalised power can be formally expressed

13http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

48 2.2 Social Structures and Agent Societies

and uses a Contract Net protocol [Smith, 1980] to demonstrate an how the specifica-
tion can be analysed and queried via an implementation in the CCalc tool [McCain,
1997]. Later, in [Artikis and Sergot, 2010] Artikis and Sergot use event calculus to for-
mulate obligations, permissions and power and track normative states of multi-agent
systems. The normative statements refer to actions rather than states to be brought
about. Violations are also specified but the authors associate no specific consequences
to them.

[Farrell et al., 2005] described a predicate-based event calculus approach for keeping
track of normative state in contracts. Their work focuses on creating an XML-based
representation of event calculus, and uses event calculus primitives to define their con-
tracts. This however results in a very unmanageable and impracticable contract repre-
sentation with a small number of norm related predicates. In addition, [Daskalopulu,
2000] showed how contract monitoring can be performed with Petri nets. However,
this representation is more appropriate for contracts which can be modelled as work-
flows.

In [Cliffe, 2007; Cliffe et al., 2007b,a] the authors extend the formal specification of
single institutions to multi-institutions. They present a top-down approach to vir-
tual multi-institutions in which agents may reason (on-line) about and designers may
analyse (off-line) external normative concepts. They introduce an action language de-
signed for multi-institutions. The action language describes a model of the situation
which can be directly mapped to an answer set program (ASP) allowing for an easy
way to query properties of models. They define institutional state as a set of institu-
tional fluents that may be held to be true at some instant. Furthermore, they separate
such fluents into domain fluents, that depend on the institution being modelled and
normative fluents. They define generation functions of events which have effects on the
system and using the normative fluents they track the status of the norms at each state
and detect violations.

In [Modgil et al., 2009] Modgil et al. propose an architecture for monitoring norm-
governed systems. The system deploys monitors that take inputs from trusted ob-
servers, and processes them together with Augmented Transition Network (ATN) rep-
resentations of individual norms. Hence, monitors determine the states of interest
relevant to the activation, fulfilment, violation and expiration of norms. Additionally,
the monitoring system is corrective in the sense that it allows norm violations to be
detected and be reacted to.

Álvarez-Napagao suggests in [Álvarez-Napagao et al., 2010] the use of production
systems [Davis and King, 1975] to create a normative monitor. Regulative norms
are defined through activation, maintenance, deactivation, deadline conditions. The
authors also include counts-as norms. The norms status can be inactive, activated,
fulfilled or violated. Using a forward-chaining rule engine, they create inference rules
which, by checking past events against active norms, calculate each norm’s status.
Norms might have several instances and the authors design the rules in a way so that

Chapter 2. Related Work 49

multiple instances can be handled. The formalism is then reduced to a production sys-
tem (a system composed of rules, a working memory and a rule-processing engine)
[Davis and King, 1975] so that it operates as a practical monitor which detects viola-
tions and enforces sanctions. The authors also provide an implementation made with
the DROOLS rule engine [The JBoss Drools team, 2013]. Gómez-Sebastia et al. later ex-
tended the same monitoring framework to handle update of normative contexts (norm
additions or deletions) at runtime, without needing to end the monitoring execution
[Gómez-Sebastia et al., 2012]. They provided different updating processes that might
take place both while taking or without taking past events into consideration.

Cranefield et al. [Cranefield and Winikoff, 2011; Cranefield et al., 2012], on the other
hand, do not differentiate between norms and commitments, they instead use a generic
term and study the general notion of expectations for future world states, events and
actions. They use the Exp, Fulf and Viol operators, all of which have similar argument
structure, to express a currently active, fulfilled or violated expectation. A formula
Exp(λ,ρ,n,φ) signifies that φ is an active expectation as a result of a rule of the form
λ V ρ having fired in a (possibly prior) state specified by n. The authors also use for-
mula progression14 to show how an unfulfilled and non-violated expectation is updated
from one state to the next. The approach is claimed by the authors to apply to both
online and offline monitoring of rule-based conditional expectations, and their fulfill-
ments and violations, through a model checker extended with the ability to progress
expectation expressions.

Finally, Hindriks and van Riemsdijk suggest a labelling mechanism to track down
the norms’ status in timed transition systems, that is, transition systems extended with
time [Hindriks and van Riemsdijk, 2013]. In their framework, norms are defined as
tuples containing an activation condition, the normative target to achieve and a time
before which it has to be achieved. They define detached obligations as obligations
brought to life whenever a norm becomes applicable. On top of this, they introduce
two binary relations, a blocking relation B where a norm can block the application of
a norm appearing later and a cancelling relation C where a norm can cancel another
norm that occurred earlier. The labelling process labels the transition system’s states
in two ways: 1) indicating at every state which obligations hold and 2) indicating at
every state the violations that have possibly occurred. The authors then define the
detachment, persistence (the continuation of activeness of a norm through time unless
otherwise specified), termination and violation of norms with respect to the blocking
and cancelling relations and the labels applied to the transition system. There exists
no available implementation of this approach.

2.2.2.3.6 Relevant Approaches Outside the Agent Community

A widespread type of normative environment in current distributed applications is
contract-based environments. For instance, the Service-Oriented Architecture (SOA)

14Introduced in the TLPLAN framework [Bacchus and Kabanza, 2000] by Bacchus and Kabanza.

50 2.2 Social Structures and Agent Societies

community has shown interest in the creation of some form of (contractual) agree-
ments as part of the specification of a distributed business process. Nevertheless this
is either too abstract (focusing on XML representations capable of fully expressing
human contracts, such as OASIS LegalXML eContracts [Leff and Meyer, 2007]) or too
concrete (focusing on the specification of service-level agreements (SLAs) based on a
few set of computer-observable parameters, also called metrics [Ludwig et al., 2003]).
Although this thesis does not follow a service-oriented approach, in this section we
mention some basic frameworks that are based on and widely used in web-based
service-oriented environments.

WS-Agreement [Andrieux et al., 2007] was one of the first XML-based languages for
agreements (including terms and meta information about the agreement) which also
included a definition of a protocol for establishing these agreements. Although WS-
Agreement is widely used, it is not possible to describe multi-party social agreements,
only one-to-one contracts. It also lacks the definition of metrics in order to support
flexible monitoring implementations.

Most of this has been solved in the Web Service Level Agreement (WSLA) [Ludwig
et al., 2003] framework, a more expressive language targeted at defining and monitor-
ing agreements for Web services, covering the definition of the involved parties, the
service guarantees and the service definition. WSLA allows the specification of third
parties and also monitoring service performance by means of metrics. However, it
lacks the description of the application execution context and mechanisms for the ex-
ecution of activities such as negotiating the contract. Both WS-Agreement and WSLA
also lack formal semantics about behaviours and agreements (making it difficult to
reason about them or to verify certain properties).

Rule Based Service Level Agreements (RBSLA) [Paschke, 2005; Paschke et al., 2005]
focuses on sophisticated knowledge representation concepts for service level manage-
ment (SLM) of IT services. RBSLA is an extension of RuleML including contractual
norms (permissions, obligations and prohibitions), violations and exceptions. The
rules are based on the logic components of Derivation, Event Condition, Event Cal-
culus, Courteous Logic and Description Logic. RBSLA’s flexibility is based on its
declarative nature, allowing a more compact and intuitive representation. Monitor-
ing of agreements is based on event-condition-action rules with proper operational
semantics. RBSLA provides an expressive language for representing service-based
agreements, however, it does not provide any mechanism to reason about the defined
norms.

Despite their expressive power, business-oriented approaches like eBusiness eXtensi-
ble Markup Language (ebXML) [Kotok and Webber, 2001], cannot be used directly
by a computational system to monitor and control the terms of the contract between
software services at runtime, as this kind of contractual documents do not define how
activities are to be monitored. In the case of concrete, service-level approaches moni-
toring is limited to the tracking of the aforementioned metrics.

Chapter 2. Related Work 51

Finally, the IST-CONTRACT15 [Panagiotidi et al., 2008] project has developed a com-
plex (syntactical and semantical) specification for the computational notation of con-
tracts, together with configuration tools for setting up contract-based environments.
The specification maps contract clauses to deontic statements, includes contract tem-
plates as well as instantiations of them as well as contract statements (such as whether
a contract being in force), protocols for accomplishing goals related to a contract (for
example notifying over a contract’s fulfilment) and the context within which commu-
nication happens. Additionally, it also provides mechanisms for the verification of the
clauses defined in a contract. Although there exists a toolset implementing the frame-
work, it is only suitable for Web services applications and development is no longer
active.

2.2.2.4 Agent-view: Norm-based Agents

As explained in previous sections, normative agents’ behaviour is to a certain degree
shaped by norms. While generally agents may be designed to comprehend and follow
normative guidelines, autonomous agents go one step further, having the ability to
also decide whether to adopt and whether to comply with norms, according to their
own objectives and incentives. As a consequence, normative autonomous agents can
adopt norms and further decide which norms to comply with (intended norms) and
which norms to reject. This section analyses several frameworks that have been de-
veloped in order to deal with norms while taking the individual’s perspective into
consideration.

Castelfranchi et al. in [Castelfranchi et al., 2000] define a Norm Autonomous Agent
(also called Deliberative Normative Agent) as an agent that is:

• Able to know that a norm exists in the society and that it is not simply a diffuse
habit, or a personal request, command or expectation of one or more agents.

• Able to adopt this norm impinging on its own decisions and behaviour.

• Able to deliberatively follow that norm in the agent’s behaviour.

• Able to deliberatively violate a norm in case of conflicts with other norms or, for
example, with more important personal goals; of course, such an agent can also
accidentally violate a norm (either because it ignores or does not recognise it, or
because its behaviour does not correspond to its intentions).

The way norms are adopted and/or decided to comply with depends on the agent’s
architecture and its ability to perform complex reasoning processes with respect to its
distinct mental attitudes. Therefore, the question that arises is how the agents should
cope with these norms. Billari explains in [Billari, 2000] that norms can be introduced
into the agents’ decision making as either:

15http://ist-contract.sourceforge.net

52 2.2 Social Structures and Agent Societies

1. Restrictions: in this case norms are reduced to constraints forcing compliance of
norms.

2. Goals: in this case norms are incorporated as (prioritised) goals to be included
in the reasoning cycle of the agent.

3. Obligations: norms are explicitly represented as another element of the agents
reasoning cycle.

In options 1 and 2 norms are hard-coded in the agents through action restrictions or a
restricted number of (accepted) goals, so agents will always behave according to these
restrictions In this scenario agents do not have to know that these restrictions follow
from specific norms. Therefore, the overhead in reasoning about the possible conse-
quences of their behaviour is (almost) zero, allowing the creation of relatively simple
and small agents. In option 3 norms are explicitly represented through obligations,
so agents can be designed to reason about the norms. While such agents may have
similar behaviour to conventional agents, they will show a greater capability when
making decisions in particular situations. They are aware of the cases where violating
a regulation proves rewarding. As these agents have to reason about the potential
outcomes of every action, they are more complex.

In [Dignum, 1999] Dignum explains how agents reason about violating a norm. It
should be noted that his proposal states that norms should not be imposed, they
should only serve as a guidance of behaviour for agents, or agents will lose their
autonomy. With this idea in mind, Dignum further presents an agent architecture
where social norms are incorporated in the BDI cycle of the agent. In that architecture,
norms are explicitly expressed in deontic logic by means of the obligation operator O
and are divided in three levels:

• Convention level: norms modelling the social conventions

• Contract level: norms regarding the obligations that arise when an agent Ai

commits to either perform an action α or to achieve a situation p requested by
agent Aj

• Private level: the intentions of the agent are seen as commitments towards itself
to perform a certain action or plan

As explained in Section 2.2.2.2, since norms in real domains are usually defined at
an abstract level allowing different interpretations, it is not strange that the existing
normative frameworks differ in how the norms are expressed. The representation
of the norms essentially differs in the formalism which is adopted for the represen-
tation of the domain knowledge and for performing normative reasoning (for ex-
ample, amongst the different approaches for implementing normative reasoners, the
approaches in [Bandara et al., 2003; Craven and Sergot, 2008; Fornara and Colom-
betti, 2009] are based on state transitions). Generally speaking, most of the work on
normative systems concentrates on the theoretical aspects of the normative concepts
from agent societies, while little of this work focuses on developing a norm-based

Chapter 2. Related Work 53

system where agents are able to take normative positions into account during practi-
cal reasoning. However, practical normative reasoning in real-life systems remains an
important topic in multi-agent systems. One reason for this is that normative knowl-
edge is commonly based on formal theories such as deontic logic, dynamic logic,
and so on, whose reasoning mechanisms are usually computationally very high or,
sometimes computationally intractable. In the next sections we break up and discuss
existing frameworks for formalising and constructing agents that use decision mak-
ing with norms, focusing on the ones that apply practical mechanisms for normative
reasoning.

2.2.2.4.1 Agent Frameworks Focusing on Constitutive (Counts-as) Norms

As mentioned in Section 2.2.2.2.1, norms of constitutive nature, expressed as “counts-
as” statements, have been vastly explored, mainly from the legal standpoint, but the
attention from logic and computing background researchers is very recent and there-
fore there exist few works fully exploring inclusion of constitutive norms in the agents’
reasoning.

Sergot and Craven in [Sergot, 2003; Sergot and Craven, 2006] extend C+ [Giunchiglia
et al., 2004] by adding expressions of the form α “counts as” β (this implying that
every transition of type α counts also in specified circumstances as a transition of type
β), calling the extended language (C+)+. In addition, they extend C+, calling the new
language (C+)++, by adding the “permitted” and “not-permitted” rules, implying in
this way desired, legally permitted or not acceptable states and transitions. In this way
it is possible to verify system properties that hold if all agents/system components
behave in accordance with norms/social laws and to analyse system properties that
hold when agents fail to comply with norms. However the extensions provide no
operational semantics to work with when it comes to realistic representation of norms
and practical reasoning.

In [Aştefănoaei et al., 2009] the authors extend their previous work by defining the
properties’ enforcement and regimentation as LTL formulas. Enforcement formulas
express that a norm’s violation guarantees that the corresponding sanction will be
eventually satisfied, while regimentation formulas express that a norm’s associated
violation will never occur. They then provide a model checking component which
verifies these properties. Although the approach is promising, the authors do not
provide any work on reasoning and decision making over the norms.

In [Dastani et al., 2009a,b] the authors propose a programming language that allows
the implementation of norm-based artefacts by providing programming constructs to
represent norms and mechanisms to enforce them. The language includes counts-as
rules and sanction rules, which might express sanctions in case of possible violations.
A transition rule that captures the effects of performing an external action by an indi-
vidual agent on both external environments and the normative state of the multi-agent
system is defined. The process is as follows. First, the effect of the action is computed.

54 2.2 Social Structures and Agent Societies

Then, the updated environment is used to determine the new normative state of the
system by applying all counts-as rules to the new state of the external environments.
Finally, possible sanctions join the new environment state after the application of the
relevant sanction rules to the new normative state of the system. The execution of a
multi-agent program is considered as interleaved executions of the involved agents’
behaviours started at the initial state. The authors also suggest a sound and com-
plete logic which can be used for verifying properties of the multi-agent systems with
norms implemented in the proposed programming language at some states reachable
by an execution path. Although promising, the approach does not suggest a way of
reasoning over such possible execution paths and does not evaluate their social or
private utility, assuming that the actions to be taken are decided by some external
mechanism.

2.2.2.4.2 BDI-based Normative Autonomous Agents

The BDI model (see Section 2.1.1.1) is by many now considered the standard approach
to agent architectures, as it provides a wide span of behaviours from solely deliberative
to simply reactive, depending on the agent cycle and plans’ implementation. Given
the agent’s autonomous nature, several researchers have made important attempts to
incorporate social influences into BDI agents, expressed not as rigid constraints, but
instead, as norms, aiming for an even larger spectrum of behaviours to be represented
in one sole framework.

Dignum et al. in [Dignum et al., 2000] propose a modification of the BDI architecture
into a socially motivated deliberation process, taking the influence of social obligations
and norms on the deliberation process into account. The approach focuses on the pro-
cess of generating (candidate) intentions from normative influences. The authors use
the notion of both norms and obligations. Norms have a social aspect and make co-
operation and coordination and interaction more efficient. Obligations on the other
hand are associated with specific enforcement strategies which involve punishment of
violators and in this way they restrict autonomy. For norms, the preference ordering
is related to the “social benefit” attached to different worlds and for obligations, the
preference ordering is related to “penalties” imposed for violation. The basic deliber-
ation cycle, which includes a process of events selection and plan generation through
the selected events, is modified by involving the notion of deontic events and potential
deontic events. The former are generated from changes in the norms, obligations, and
beliefs of an agent. To respond to these deontic events, each agent has plans whose
invocation conditions are deontic events. The latter are events that may also exist,
depending upon what plan-options (decided by the option-generator) are decided in the
deliberation step. An additional step is then introduced to the agent’s loop is as fol-
lows: some set of events is chosen and is augmented with potential deontic events that
are generated by repeatedly applying the introspective norms and obligations. This
augmented set of events is the one that will be used to determine the plan-options

Chapter 2. Related Work 55

calculated. The deliberation step then selects between these sets of plans on the basis
of the preferences. There is no implementation available for this work.

Broersen et al. [Broersen et al., 2001] present the BOID (Belief-Obligation-Intention-
Desire) architecture as a model of a norm-governed agent. It contains four components
(B, O, I and D) where B stands for beliefs, O stands for obligations (representing
commitments towards social rationality), I stands for intentions and D for desires.
The behaviour of each component is defined by formulas. More specifically, extensions
are propositional logical formulas defining each component’s behaviour in the form
of defeasible rules. An ordering function on rules is used to resolve conflicts between
components. The authors propose a calculation scheme to build in each cycle the new set
of logical formulas. Then, in order to produce the whole extension of the agent every
time, the process starts with the observations and calculates (through the calculation
scheme) a belief extension and then, when done, applicable rules from O, I and D are
applied successively, each time feeding back the belief component for reconsideration.
The order in which components are chosen for rule selection determines the kind
of character the agent possesses. For example, if obligations are considered before
desires, the agent is regarded as a social agent. One drawback is that the creators
only consider extensions in which the belief component overrules any other modality.
Furthermore, the ordering function is fixed for each agent.

In [Meneguzzi and Luck, 2009b] the authors extend a BDI agent language, enabling
the agents to enact behaviour modification at runtime in response to newly accepted
norms. According to their specification, a norm (obligation or prohibition) can refer to
a state or an action and has a validity period defined by an activation and an expiration
condition. An agent might accept or reject a norm (a process not dealt with inside the
framework). The authors provide methodologies to react to norms’ activation and
norm’s compliance. These consist of forming new plans (inserting them to the plan
library) to comply with obligations and preventing existing plans (deleting them from
the plan library) that violate prohibitions from being carried out. They demonstrate
their framework’s practical usefulness via an implementation in AgentSpeak(L) [Rao,
1996].

Another interesting piece of research on normative BDI agents is [Criado et al., 2010a,b].
They base their work on graded BDI agents. According to the graded BDI architecture
(n-BDI for short) [Casali, 2008], an agent is defined by a set of interconnected contexts
(mental, functional and normative contexts), where each of them has its own logic
(i.e. its own language, axioms and inference rules). In addition, bridge rules, whose
premises and conclusions are in different contexts, are inference rules derived by one
context and modifying the theory of another. In [Criado et al., 2010a,b] the authors
propose an extension of the n-BDI architecture, in order to help agents to take practical
autonomous decisions with respect to the existence of norms. They use rules to de-
cide on norm adoption as desires. They apply deliberative coherence and consistency
theory for determining which norms are more coherent with respect to the agent’s
mental state. The authors suggest a methodology to detect and resolve inconsistencies

56 2.2 Social Structures and Agent Societies

between norms and desires. A basic difference in their approach, however, is that it
mainly focuses on the reasoning over the adoption (or not) of instantiations of norms
rather than suggesting whether and by what means to achieve the norms’ fulfilment.
Moreover, they assume: 1) a quantification of the mental context (beliefs, desires, in-
tentions) associated to the certainty degree of each of these elements; 2) punishing
and rewarding reactions for each norm’s violation or fulfilment; 3) predefined func-
tions that will determine the adoption or not of a norm instantiation; 4) predefined
values for the weights expressing the strength of the mental context elements that
are related to a norm. We find that it can be difficult to estimate or predetermine all
these factors when designing norms. One more limitation is that the approach only
considers obligation norms.

In [Ranathunga et al., 2012] Ranathunga et al. try to see norm monitoring from the
individual agent perspective rather than from the standard organisational perspective
and integrate their previous theoretical work [Cranefield and Winikoff, 2011] on expec-
tation monitoring (explained in Section 2.2.2.3.5) into the Jason [Bordini and Hübner,
2006] platform. They extend the Jason interpreter by adding two internal actions that
represent the initiation and termination mechanism for the monitor to its standard
actions library. They define the extended Jason configuration to be a combinatory
configuration of the Jason agent and the monitor. Whenever the monitor detects fulfil-
ment of violation of a rule it notifies the agent, which in its turn can react accordingly
by executing predefined plans triggered by such events. The authors explain how a
current limitation of the system only permits the handling of only one rule at a time.

In [Alechina et al., 2012] the authors use a norm formalism for obligations and prohi-
bitions that contains pre-specified sanctions in case of violation. Based on the 2APL
agent programming language, they extend its PG-rules reasoning rules (rules that se-
lect pre-defined plans to be executed) to contain event-based rules that initiate norms
(obligations and prohibitions) and name it N-2APL. Whenever these event-based rules
are triggered, obligations are adopted as goals and prohibitions are activated. By
defining a priority ordering function that indicates the agent’s preferences over goals
as well as sanctions for violating obligations and prohibitions, they design an algo-
rithm to calculate the set of plans that will be optimal with respect to this function.
An agent might have a “social” character if its obligations are preferred to its goals,
trying to primarily fulfil these obligations. On the other hand, if an agent gives pri-
ority over its goals, then it might end up breaching a lot of norms and getting highly
sanctioned for this.

Taking Alechina’s work as basis, in [Dybalova et al., 2013] the authors et al. make an
integration of N-2APL with the organisation programming language 2OPL [Dastani
et al., 2009a] in order to create a system where, instead of the norms being an internal
part of the agent, they are imposed exogenously, that is, by a normative organisation.
The communication between the 2APL agents and the 2OPL normative organisation
is done through a tuple space. These tuples are accessed just like an external environ-
ment and they represent the state of the multi-agent system and its normative state

Chapter 2. Related Work 57

in terms of active obligations, prohibitions and applicable sanctions. As we explain
again later in Section 3.3.2, the methodology uses the plan library (pre-stated plan-
ning rules) of the agent and does not explore a dynamic planning mechanism for the
creation of new plans.

2.2.2.4.3 Rule-Based Normative Agents

There exist norm formalisation frameworks that are founded on rule-based languages,
in which norm triggering is determined by event-driven rules. Two approaches of
special interest to us are the ones made by Garcı́a-Camino et al. and by Fornara and
Colombetti.

In [Garcı́a-Camino et al., 2009] the authors introduce a rule-based language to cap-
ture and manage the normative positions of the agents (permissions, prohibitions and
obligations). The language defines a standard production (forward-chaining) system
enhanced with constraint satisfaction techniques and makes it possible to check ful-
filment and/or sanction un-fulfilled normative positions, i.e. obligations, permissions
and prohibitions, that are bounded with constraints. Its rules correspond an existing
state of affairs to a new one, modelling in this way transitions between states of affairs.
At every state an exhaustive application of rules to the modified state is performed
(adding or removing formulas that represent agent-related events), yielding a new
state of affairs. The authors’ rule-based formalism additionally includes constraints
allowing to supplement (and apply) electronic institutions with norms. They depict
their work by representing and enacting well known protocols via institutional rules.
However, due to the forward-chaining calculation, it lacks the ability to plan (i.e. de-
termine the succession of sets of events that need to take place in order to achieve a
given state of affairs from a given initial state) and also makes it impossible to post-
dict (i.e. determine the previously unknown facts in a partial initial state given a final
state and the sequence of sets of events that have occurred).

In the framework described by [Fornara and Colombetti, 2009], the authors express
norms in terms of occurrences of events and actions. Norms can be obligations or
prohibitions and are expressed as commitments to perform or refrain from perform-
ing an action within a specified time window. The authors use Event-Condition-Action
(ECA) rules (of the type “On Event If Condition Do Action”) to generate commitments
with operational semantics from the norm specification. The lifecycle of commitments
is composed of different norm states, namely unset, pending, fulfilled, violated, can-
celled, extinguished and irrecoverable. In this approach, agents are expected to react
to commitment violations through pre-specified sanctions. The suggestion of Fornara
and Colombetti mainly deals with under which conditions (events) and how norm
constructs are created. Norms can be used to observe whether the agents’ behaviour
is compliant with the specifications and able to suitably react to violations and the
authors suggest no reasoning mechanism on the basis of the sanctions/rewards

58 2.2 Social Structures and Agent Societies

In [Vanhee et al., 2011] the authors provide an overview of the issues encountered
in implementing different norm aspects in agents. Using a simulation scenario they
implement rules that lead to the adoption or not of a norm, the generation of norm
compliant plans and the monitoring of norm enforcement. However they provide hard
coded mechanisms for dealing with norms (norms are integrated into the agent’s code)
and as a result several implementation complications occur.

Finally, van Riemsdijk et al. in [van Riemsdijk et al., 2013] explore a formalism where
norms are defined as temporal LTL formulas over actions (if condition then some action
has to take place before some other action). They translate these formulas to Separated
Normal Form (SNF) [Fisher, 1997] formulas which have an operational functionality in
computational systems. They show how these can be handled appropriately at every
computational step to block the execution of actions that are forbidden by a norm or
to trigger the execution of actions that are required by the norms.

2.2.2.4.4 Rational Agents Normative Reasoning with Uncertainty

In Artificial Intelligence literature (mainly in Robotics), there exists a long line of work
towards agent reasoning in environments where the outcomes of the agents’ actions
are not fully known, therefore containing some level of uncertainty. Nonetheless,
norms (or their influence) have not been explored until recently.

Fagundes et al. [Fagundes et al., 2010, 2012a,b] use probabilistic environments. In
specific, they extend the Markov Decision Process (MDP) [Bellman, 1957; Puterman,
1994] to include a set of norms, calling it NMDP. They define contracts to be agree-
ments between two or more agents, containing a set of norms. The authors distinguish
between two kinds of norms, substantive (which provide guidelines as to how agents
should behave) and procedural (specifying reactions on violations of the substantive
norms). Substantive norms can be obligations or prohibitions and their so called
normative content specifies a state that needs to be achieved or avoided respectively.
Sanctions contain a set of modifications to the domain state-transition function and
the agent capability function that are applied in case of a violation. The authors then
create an algorithm that constructs the state space that matches the normative content
of the norms and searches through it, identifying violations (if no state achieving an
obligation or if a state that fulfils the normative content of a prohibition is visited).
For each violation, the algorithm calls a function that represents the respective sanc-
tion and applies the respective updates. They then generalise this methodology for
contracts to estimate risks for contracts comprising of sets of norms. They show that
by repetitively applying this algorithm over a set of norms (a contract) and comparing
the expected utilities associated with the initial state of each MDP, picking the one
that maximises the expected profit, they can decide which will be the most profitable
contract to sign. We find this approach towards norm-aware probabilistic reasoning
inspiring, as it allows the state space to be explored allowing norms to be potentially
violated or not and weighing over which is the best norm set compliance with respect

Chapter 2. Related Work 59

to the probabilistic environment to provide the best overall outcome. However, we
detect two weaknesses: 1) NMDP needs a special implementation of the MDP process
and algorithm to be able to handle the norm specification; 2) Norms specify modifi-
cations to an agent’s capability functions and the state transition model. We find this
somewhat counterintuitive (compared to separate norm and domain representation
layers) and difficult to handle since it adds a lot of extra work to the agent’s designer.
Additionally, considering a multi-agent environment, such adaptations should possi-
bly be specified for each agent separately, complicating the task even more.

In [Oh et al., 2011] the authors present a proactive planning agent framework that pre-
dicts the user’s probable normative violations, permitting the agent to plan and take
remedial actions before a violation actually takes place. The authors employ a prob-
abilistic plan recognition technique to forecast a user’s plan for his future activities.
More specifically, given the agent’s planning domain (state space), the state transition
probability depends only on the current state, and the user’s action selection on the
current state and the specific goal. Consequently, by applying the chain rule, they
calculate the conditional probability of observing the sequence of states and actions
given a goal. The norm reasoner then traverses each node in the plan-tree and eval-
uates the related user state for any norm violations. In case of violation occurrences,
it generates a set of new goals (or tasks) for the agent by finding near states that are
compliant with all norms, preventing in this way those norm violations from hap-
pening. As the user’s environment gets modified, the agent’s forecast is constantly
updated, and therefore the agent’s plan to fulfil its goals is regularly revised during
execution. In this piece of work, the authors’ goal is not to guide the user in finding
optimal planning solutions, but instead, to support the user’s decision making process
by identifying and making amends for the plan’s weaknesses.

2.2.2.4.5 Normative Autonomous Agents Using Planning

In recent years there is a trend towards analysing and exploring the agent’s possible
future execution paths and deciding through different evaluation mechanisms which
path is the best, with respect to pre-determined properties. This is done either through
classical planning domains or HTN domain representations. It has to be noted that
in most cases, plans are precomputed and available in some sort of plan library for
evaluation. Some other frameworks use existing BDI frameworks, where agent plans
are represented through complex execution rules, and modify the agent’s language
interpreter and lifecycle to include and process normative rules (such approaches have
been described in Section 2.2.2.4.2). The rest of this section details frameworks that
directly process and evaluate plans through planning mechanisms.

In [Oren et al., 2011] the authors use a mechanism to choose a plan that will achieve
individual and global goals while attempting to abide by a set of norms. They rep-
resent the environment affecting the agent as a transition system and the plans as
Hierarchical Task Networks (HTN) [Ghallab et al., 2004] with the nodes specifying the

60 2.2 Social Structures and Agent Societies

actions that take place. They make use of a rule language to specify normative rules
that identify the cases in which a norm starts, and ceases, to exist. Additionally, they
adopt a utility based model of norm compliance. More specifically, they make the
assumption that the execution of a plan results in some base utility, and that different
types of norms are associated with different utility measures. They then create an al-
gorithm that selects a path through the plan, and a set of norms (created by the rules
as actions are executed) with which to comply, that is conflict free, and which leads to
maximal utility. Conflicts are resolved by selecting actions where the cost of violating
one set of norms is outweighed by the reward obtained in complying with another.

In [Oren and Meneguzzi, 2013] Oren and Meneguzzi develop a norm derivation mech-
anism which operates by analysing precomputed plans available to the agents. The
framework assumes that agents in the environment share a static plan library that
contains plans consisting of subtasks, generated offline by a Hierarchical Task Net-
work planner. The authors consider two types of (conditional) norms, obligations and
prohibitions. They design an algorithm to ‘guess’ possible norms being followed by
the agents. The algorithm is based on plan recognition and implements an observa-
tion technique where, having knowledge of the plan library, one can analyse a plan
and the sequences of its actions and contrast it against others to deduce goals that the
agent pursues. These goals then indicate obligations and violations followed by the
agents. Since this unrealistically assumes that agents always comply with the norms,
the authors take it one step further and extend the algorithm to learn from possibly
violating agents too. The advanced algorithm keeps counters of possible obligation or
prohibition existences and in case a pre-specified threshold is exceeded then they are
assumed to exist.

2.2.2.4.6 Plan Labelling Frameworks

Some normative frameworks focus on comparing or labelling executional paths with
respect to a (set of) norm(s). In the rest of this section, we analyse two of these.

In his PhD thesis [Kollingbaum, 2005], Kollingbaum presents the NoA system, com-
prising the NoA language for the representation of plans, norms and contracts, and
the NoA architecture, which acts as an interpreter and executor of these specifica-
tions. The plans get instantiated at runtime according to whether they can satisfy a
norm and they are labelled as consistent or inconsistent with respect to the currently ac-
tivated norms. With this labelling process, the deliberation mechanism gets informed
about potential norm violations. While the semantics used for the specification of the
norms and a norm’s activation and deactivation as well as plans specification are well
structured, the approach has the disadvantage that it uses sets of predefined plans
in order to achieve tasks or states. Although the authors claim that there exists an
implementation of their NoA agents, we have been unable to access it.

Craven and Sergot explain in [Craven and Sergot, 2008] how, from the normative
semantics point of view, one can “label” a transition system representing the agent’s

Chapter 2. Related Work 61

actions providing normative semantics over what should and should not occur. They
extend the language C+ with two types of rules and call it (C+)++ (alternatively
nC+) [Sergot and Craven, 2006]. These rules can be state permission laws of type “n:
not-permitted F if G” and action permission laws of type “n: not-permitted α if ψ”.
They then colour the transition system states according to those kinds of laws. Green
states simply represent “acceptable” states whereas red states represent “unwanted”
states. Also one can see that the existence of a red transition (an unacceptable action)
in a plan, means that this plan is violating some norms. Given this formalism they
describe various types of agent behaviour.

2.2.2.4.7 Action Language and Abductive-Based Approaches

Several approaches focus on enriching existing action representation formalisms and
languages with normative elements. Since one of the main challenges in the imple-
mentation of practical normative reasoning concerns the modelling of dynamic do-
mains in which information may be incomplete and/or inconsistent, most of these
attempts concentrate on how reasoning about actions is done and specifically on the
design of languages based on action effect axioms as well as drawing inferences from
the axioms.

In [Panagiotidi et al., 2009], an extension of action language A [Gelfond and Lifschitz,
1998] is presented in order to allow modelling norms in dynamic domains based on
Answer Set Programming (ASP) semantics. In this, norms have activating, deactivat-
ing and maintenance condition and the authors specify properties of a norm’s lifecycle
such as active, inactive and violated. They additionally provide planning rules and
foresee which of the defined properties hold in future paths of a maximum length.

In a different approach, in [Gelfond and Lobo, 2008] the authors come up with an
extension of language A that represents authorisations and obligation policies in dy-
namic environments. They additionally provide techniques for verifying compliance
of performed actions within the specified policies. However, the work lacks mech-
anisms for reasoning as well as prediction for future desirable and undesirable be-
haviour.

The SCIFF framework explained in [Alberti et al., 2008] consists of a specification
language for agent protocols and a proof procedure (based on abductive logic pro-
gramming) to prove properties of protocols. Their positive and negative expectations
(of events in a protocol) can be understood as, respectively, obligations and prohi-
bitions. However, that work deals with proving properties of protocols, rather than
studying how the norms affect the agent’s reasoning.

62 2.3 Summary

2.3 Summary

In this chapter we have analysed related work on (practical) reasoning agent frame-
works, norm-governed agent systems and a specific type of normative systems, that
is contractual systems, widely applied in service-oriented architectures. As seen in
Sections 2.2.2.4.1-2.2.2.4.4 there have been many proposals to implement normative
reasoning through various mechanisms. Additionally to these, there exist some frame-
works implementing normative reasoning, based on model-checking techniques (i.e.
[Lomuscio et al., 2009], explained in Section 2.2.2.3.4), theorem provers, transition
states, meta-interpreters in logic programming (i.e. in [Artosi et al., 1994; Antoniou
et al., 2008]) and/or even action language extensions.

Nevertheless, despite the large amount of theoretical work on normative agents, there
are still very few implementations offering practical reasoning within an environment
where norms act as guidelines for the agents. Therefore this motivates our interest
in formalising and creating a framework where agents are able to reason and make
decisions based on normative guidelines. In Chapter 3 we will describe the kind
of norm language that is needed to specify normative environments in a way that
normative agents can properly reason about norms. We will see that it should cover
several levels of communication and will define its operational semantics. Then in
Chapters 4 and 5 we will extend the norm semantics and then present a practical
architecture that can reason with these norms.

Chapter 3

Conceptual Framework and Architecture

In Chapters 1 and 2 emphasis has been given to normative systems, that is, systems the
expected behaviour of which is based on a set of regulations. This chapter presents our
proposal of a normative framework, its architecture and the formalisation of the nor-
mative elements involved. The detailed framework and architecture will provide the
context in which the practical normative reasoning mechanisms (presented in Chap-
ters 4 and 5) will work and the context where normative agents (presented in Chapter
5) will operate.

It is useful to distinguish between the framework and the architecture. The framework
is a theoretical specification of a system functioning within a normative context. It is
helpful in providing an accurate understanding of the system behaviour and estab-
lishes a common conceptual basis to be shared between agents in different contexts. A
well specified framework allows for interoperability between different applications, as
well as providing a semantics for norm interpretation and verification. Such semantics
allow one to unambiguously describe the state of an application as it executes.

The architecture specifies how a norm based system should be implemented and is
naturally built on top of concepts defined by the framework. As a consequence, the
architecture can be seen as an instantiation of the normative aspects of the framework:
a set of middleware and design patterns to support management of norm-aware soft-
ware agents.

Section 3.1 provides the requirements analysis of the normative reasoner to be de-
signed and implemented and in Section 3.2 the general framework is presented. In
Section 3.3 we provide the architecture of a norm-aware agent. In Section 3.4 we talk
over some issues to be taken into account when modelling norms and how we deal
with them in our framework. Finally, in Section 3.5 we provide a short discussion on
the framework elements presented through the chapter.

63

64 3.1 Requirements Analysis

3.1 Requirements Analysis

Based on the problem statement presented in Chapter 1 we have performed a thorough
software requirements analysis in order to achieve our objectives. Firstly because
it leads to better understanding of the design needs but also because it provides a
detailed description of the behaviour of the system to be developed. This section
presents a complete and focused list of requirements that the practical agent reasoning
framework and its implementation have or should incorporate. Requirements are
marked in the fashion [R*.*] to ease referencing.

3.1.1 Functional Requirements

In this section we present the functional requirements for our framework. These con-
cern the specifications of the software systems and the tools to be used. Functional
requirements also specify how the framework should behave and what functionalities
it will be designed to provide.

3.1.1.1 Agent Model

This section introduces the agent model requirements. These might include the agent
architecture design decisions over the particular agent components.

R1.1 Deliberative, means-end, norm-oriented reasoning mechanism

The adopted normative standards must influence the agents’ practical reasoning
while operating within a complex environment, resulting in a highly sophisti-
cated, norm-driven agent. Therefore, the framework should implement a reason-
ing mechanism that takes into account the norms available to or imposed on the
agent. This reasoner should aid the agent to reach its objectives, by deliberating on
its knowledge over the environment and considering how and when to conform to
the organisational norms, keeping the agent’s interests and preferences in mind.

R1.2 Decision making process guided by user preferences

The agents must be endowed with the ability to take user’s preferences and other
weighting factors into consideration. Therefore, the decision making process must be
flexible enough to handle multiple and diverse factors (e.g. costs, weights, evalua-
tion criteria) related to or reflecting the users’ preferences.

Chapter 3. Conceptual Framework and Architecture 65

R1.3 Goal driven decision making

The system should model and produce an autonomous, goal-driven agent, that is
able to take the environment’s normative influence into account in its decision
making. Therefore, the framework should support decision making towards one
or more specific goals. The goals formulate a specific state of affairs to be achieved
by the agent.

R1.4 Agent capabilities specification accommodated by framework

We expect our system to create a decision making mechanism for goal-driven
agents living in a normative environment. These agents evaluate the environ-
ment’s influence and adjust their behaviour according to its normative guidelines.
This adjustment might result in the re-consideration and creation of plans that
reach their objectives. Therefore, the framework should include an expressive
and interoperable representation capable of capturing a wide variety of agent be-
haviours. This will include operational knowledge and semantics to the opera-
tions and actions (effects and side effects) available or relevant to agents. For this
reason, a precise and operational action description language describing under
what circumstances actions can be performed by agents and their effects on the
environment is necessary.

R1.5 Adjust in case of relevant environment change

The framework should provide a flexible reasoning mechanism where agents take
the environment’s normative influence into account. We expect that the environ-
ment will be constantly submitted to alterations, as internal and external influ-
ences dynamically modify its status. Therefore, the agent’s reasoning cycle must
be able to adapt in case of (possibly unexpected) event-triggered changes. The
adaptation should include a reconsideration of the agent’s beliefs and objectives,
as well as the activity planned to reach these objectives.

66 3.1 Requirements Analysis

R1.6 Norm conflict toleration

The agent must be able to detect conflicts that might occur while operating in a
complex normative context and should be able to invent strategies that possibly re-
solve them. Therefore, the framework should be able to cope with environments
that include conflicting norms. In case a conflict results in a dead end, the frame-
work should be able to detect this at least at execution time. Otherwise, it should
be able to consider the benefit and loss for each possible outcome (considering, for
example, possible violations or non-satisfiability of norms) and come up with the
most profitable for the agent solution.

3.1.1.2 Domain Model

This section analyses the requirements that our reasoner should comply with with
respect to the representation of the world. Since agents operate within social systems
where complex knowledge models might exist, our system should be able to use and
comprehend such elaborated models.

R2.1 Full domain/environment definition

We desire to build a framework where agents might operate in and interact with a
shared normative environment. Agents should have a sufficient knowledge about
the domain in which they are expected to act and should be able to often update
their information from observations of occurring events. The framework therefore
should include a wide definition of knowledge representation on various levels,
one that allows for flexible and powerful world representation. Since it is not al-
ways possible for an agent to have full awareness of the world, the agent should
be able to have implicit access to that kind of knowledge (possibly stored some-
where). Specifically, we aim for representation for:

a) Ontology: The knowledge representation allows for the use of ontologies
when handling domain knowledge, and allows as well for extra knowledge
about the world model

b) Conceptual model abstracting the representation of agent’s capabilities,
goals, state of affairs

c) Operational semantics for domain knowledge elements

3.1.1.3 Norm Model

In this section we explain what the requirements are for handling the norms. Since
our objective is to design a reasoner that operates within a normative system, norms
are a crucial element in the design of the framework. We detail how norms are to

Chapter 3. Conceptual Framework and Architecture 67

be modelled and the attributes that the system should maintain in order to make
decisions with respect to a normative setting.

R3.1 A well defined normative model allowing the clear and unambiguous in-
terpretation of norms on a operational level

Our framework should provide a mechanism for agents to reason within norma-
tive environments. This implies a clear comprehension and undoubted interpre-
tation of the norms on an implementation level. Therefore, the framework should
include a well defined norm model which reflects the formal patterns of relation-
ships between agents and the behavioural patterns that dictate their behaviour
and activities.

a) Norm definition: The concepts of obligation, permission, prohibition, and
violation should be defined in the norm model of the language, in a logic
that allows for an unambiguous and verifiable declaration of regulations.

b) Operational norm specification: Norms should be translatable into specific
rules, violations and sanctions that can be effectively used by a computa-
tional system at execution time within the framework.

c) Norm lifecycle: The framework defines the lifecycle of norms (norm activa-
tion, norm violation, norm fulfilment etc.).

d) Event-triggered norms: The language should allow for norms that come into
force on being triggered by conditions or events. That points to the norms
having a conditional aspect that must be captured through appropriate se-
mantics.

e) Support for complex norm representation and dependencies: The frame-
work and the norm formalisation should support simultaneous norms, the
effectiveness of which (possibly) depends on the status of other norms.

R3.2 Mechanisms for agent behaviour monitoring of norms

Our objective is to provide a generic mechanism to support normative reasoning.
This will be used by agents to create and evaluate their plans aiming to achieve
their goals. This means that the framework should allow for the monitoring of
all agents’ behaviour by keeping track of their actions, etc. Additionally, it might
provide mechanisms to monitor the norms by keeping track of their fulfilment,
violation, etc. What is more, the agents should be able to invent solutions to
overcome possible conflicts or inconsistencies between the deontic restrictions.

68 3.1 Requirements Analysis

3.1.2 Non-Functional Requirements

In this section we specify non-behavioural criteria that will be essential to establish the
smooth operation of our reasoner. These mainly concern the reusability, extensibility
and performance of the system.

R4.1 Agent-oriented architecture

The system should model and produce an autonomous, goal-driven agent that
is able to take the environment’s normative influence into account in its deci-
sion making. Therefore, the system architecture should follow an agent-oriented
model. Each agent will have the reasoning mechanism incorporated and perform
it in order to operate within an agent society.

R4.2 Open standards support

We aim to provide a generic mechanism to support normative reasoning that can
be used by agents to create and evaluate their plans in real time. Therefore, the
architecture of the framework should be based on a set of open standards that
have a strong support from artificial intelligence and agent communities.

R4.3 System platform-independent model

The reasoning framework should be modelled in such a way that is independent
of the technological platform (operating system, programming language, software
libraries, etc.) used to implement it.

R4.4 Strong focus on semantics at domain, agent context, ontology, normative
level

We envision agents that dynamically reason over norms imposed by the system
while operating in non-static, complex environments where possibly multiple lay-
ers of knowledge exist and are shared between parties. Proper handling of this
knowledge and communication between entities within such a system is essential.
Therefore, the framework should put strong emphasis on semantics at all levels,
that is domain, agent context, ontology and normative levels. All formalisations
should consist of concrete and operational theories that provide semantics for the
elements involved. A model capturing the environment within which the agent
operates and any external changes should exist.

Chapter 3. Conceptual Framework and Architecture 69

R4.5 Tool Support for norm and domain representation

A motivational force for this thesis is that few existing frameworks provide a func-
tional representation of normative concepts and therefore flexibility in terms of norm
adoption and reasoning about courses of action. In our normative reasoner, the
agents must be endowed with the ability to take user’s preferences and other weighing
factors into consideration as well as dynamically become aware of new norms. Therefore,
we require practical, implemented tools that will be able to facilitate the user when
modelling the knowledge necessary for the agent reasoner to operate. Examples
of such tools are:

a) A practical tool to represent norms on an abstract level

b) A practical tool to represent domain knowledge

R4.6 Support for multiple standards and extensibility

We expect our framework to have the ability to perform in dynamic and complex
domains, being modified by possible interaction with third parties or by external
events that are not caused by the agent. It is not always realistic to expect to
know beforehand in what ways the normative reasoner could be integrated in
or connected to other components providing different functionalities (for example
different types of BDI agent implementations). The reasoning framework therefore
be generic enough and extensible, allowing different knowledge representations
and agent frameworks to make use of it. Further to this, the norms language
should facilitate the handling and conversion to other standards at runtime.

R4.7 Soft real time performance

The work in this thesis aims to provide a mechanism to support normative rea-
soning that can be used by agents to create and evaluate their plans in real time.
Therefore, ideally, the reasoning should be taking place in real time, as it would
happen in real life. Nevertheless, this might not be a hard constraint, as few
applications can actually guarantee the absolute compliance to this need. There-
fore, instead of requiring hard real time performance, where the system is absolutely
bound to meet all deadlines, we assume the need for a soft real time performance
[Liu and Layland, 1973]. The latter refers to a more tolerant approach where, the
more the system fails to give results within the time constraints, the more its qual-
ity of service falls. Still, allowing such flexibility in the agent’s functioning means
that such performance failures will not result in a complete breakdown, but might
be handled appropriately by alternative reasoning mechanisms, precomputed or
even random sequences of steps to be followed.

70 3.1 Requirements Analysis

R4.8 Reasoner’s response time priority over optimality

As we wish to design a mechanism that creates and assesses the agents’ plans
related to real-world domain representations and problems reflecting real-world
situations, we would strongly desire this to happen in real time. However (as
explained in R4.7), this cannot be achieved in all cases. We compromise our sys-
tem’s optimality by giving emphasis on the response time. That means that we
allow the reasoning mechanism to opt for plans that might not provide optimal
solutions when it comes to norm compliance and the agent’s overall benefit, but
give a valid result within the desired time limit.

R4.9 Validity

The system must provide a mechanism to support normative reasoning that can
be used by agents to create and evaluate their plans aiming to achieve their goals.
Therefore, the system should produce a valid and executable (with respect to the
agent’s capabilities) series of actions to be followed by the agent.

3.1.3 Technical Decisions

Having discussed the requirements for the practical normative reasoner we proceed
with explaining the approach taken towards designing and implementing such a
framework. Several technical decisions and technology choices based on the require-
ments stated in Section 3.1 have been made in order to work towards creating the
normative reasoner. The following capture and justify our main decisions towards the
creation of the practical normative reasoner:

• We use an organisational normative model to capture basic notions [derived
from R3.1, R4.6]. As explained in Section 2.2.1 organisations provide a frame-
work for the representation of entities, interactions between them and possibly
structural and functional aspects of a system. Since our agents live and op-
erate within societies, an organisational model might provide useful structural
and notional representations such as agent, role, norm etc., within our agent
community. We define our organisational elements by developing a conceptual
framework in Section 3.2.

• We use complex norm semantics based on extended deontic logics to represent
norms [derived from R1.6, R4.4]. The idea behind this is that Standard Deontic
Logic is too abstract to capture the operational essence of a system that contains
norms. For this reason, we elaborate semantics that extend existing deontic log-
ics and add practical meaning to the norms’ potential status (e.g. under exactly
what conditions a violation occurs, or, how exactly a norm’s fulfilment gets ac-
complished), in order to be able to implement them in a reasoning system. These
semantics are developed and explained later in the thesis, in Chapters 4 and 5.

Chapter 3. Conceptual Framework and Architecture 71

• We adopt a Model-Driven Engineering (MDE) approach [derived from R4.2,
R4.3]. Model-Driven Engineering (MDE) is a methodology and technology aim-
ing to alleviate the platform dependency occurring in complex systems. In
model-driven design, models are the primary element used to develop an appli-
cation. MDE captures the elements of a system through metamodels and enables
the separation of the conceptual and the implementation level including low-
level format specifications for the system’s inputs and outputs. In this way high
level platform-independent models are constructed expressing the design of the
system in an abstract way and leaving out programming and formatting details,
while at the same time allowing for transformation engines and generators. Our
choice provides many advantages when dealing with the development of a nor-
mative reasoner: a) it provides a clear, abstract representation of the norms and
other perceptional elements (such as capabilities, environmental information)
available to the agents, b) allows easy importing and exporting other models
and ontological elements into an existing model, c) through high-level norm
abstractions, MDE facilitates dynamic norm interpretation by multiple target
platforms and allows to easily define transformations of the agents’ perceptional
elements among source and target languages to automate the development and
integration of the norms within the reasoning process of an agent and d) it al-
lows analysis and consistency checking of norm properties independent to the
language used to model them.

• We perform practical reasoning with a planner [derived from R1.1, R1.3, R1.4,
R2.1, R4.7, R4.8, R4.9]. Despite the high complexity proven for the general case
of planning problems, recent advances in planning research have led to the cre-
ation of planning algorithms that perform significantly better than previous ap-
proaches to solving various problem classes [Weld, 1999; Likhachev et al., 2005].
Most current planning algorithms make use of different techniques, either com-
bined or separately: 1) expansion and forward-searching1 in a planning graph
[Blum and Furst, 1997] and 2) application of and alternation between heuristic
methods. Such improvement in the efficiency of modern planners makes it pos-
sible for them to be included to an agent’s deliberation cycle within soft real time
[requirement R4.7]. The benefits of adopting such an approach are that existing
software allows for domain definitions in a simple action language and that most
of the extensions nowadays support features such as path costs, preferences and
constraints and even investigating temporal properties over paths. We search
for and select a planner that matches the criteria and accommodates appropriate
semantics for the purpose of normative reasoning2.

– Select a planner able to manage action descriptions. An agent has specific
capabilities that might be performed under certain circumstances. Such a
specification must be dealt with by the planner. In a planning domain, the

1Further to this, some planners compile the planning problem into a logical formula to be tested for
satisfiability (SAT) [Kautz and Selman, 1992].

2In this thesis we use two planners. A planner that uses search control rules, TLPLAN in Chapter 4
and a PDDL 2.1 planner, Metric-FF in Chapter 5.

72 3.2 Conceptual Framework

most common way of representing the power to perform tasks is through
action specifications.

– Use a linear planner. Linear planning tries to solve a problem by using
stacks instead of sets of goals. That means that the planner works solely
on one goal before moving to the next one. While non-linear planning pro-
vides sound, complete and optimal results with respect to the plan length,
the complex algorithms required and the huge search space makes it very
difficult to have an efficient implementation. For this reason, we choose to
work with linear planners, since, although they provide suboptimal results,
there exist several fast and fully functional implementations.

• We adopt a BDI agent architecture [Bratman, 1987]. The reason for this is that
the BDI architecture provides a well-known and widely accepted operational
and reasoning framework (including various practical implementations) based
on mental attitudes (beliefs, desires and intentions). In our case, the mental
attitudes reflect and can be easily mapped to our problem elements (e.g. agent
capabilities, goals). Additionally, BDI provides a reasoning lifecycle which can
integrate a planning mechanism as part of the reasoning process (the means-
ends reasoning step). [derived from R1.1, R1.3, R1.4, R1.5, R4.1, R4.2].

• We use the 2APL agent framework [Dastani, 2008]. The reason for this is that it
provides in a clear and simple syntactical representation for the main elements
of the BDI architecture (beliefs, goals and plans) and makes it easy to transform
beliefs and goals to planning domains. [derived from R1.4, R1.5, R2.1, R3.2, R4.5,
R4.6].

3.2 Conceptual Framework

As explained in Section 3.1.3, in order to effectively introduce the independence of the
norm representation and the final norm reasoner within our agents, we have chosen
an MDE approach. We have created a conceptual framework which defines all the el-
ements needed in our architecture. In this section we will deal with these analytically.

The conceptual framework and the platform-independent norm representation is spec-
ified through abstract metamodels for the initial state, the actions, the plans and the
norms. At execution time metamodel instantiations (called models) can be created,
visualised by means of tools and used by our reasoning architecture. As we will
see in Section 3.3, we also support various automated transformations between our
platform-independent representation to the norm-aware reasoner inputs and outputs.

In our framework all agents can enter and operate in organisational contexts, which
include:

Chapter 3. Conceptual Framework and Architecture 73

1. an explicit representation of the system’s organisational structure (including a
model of the agents, their relationships, their goals, responsibilities and organi-
sational norms);

2. operational descriptions of the actions in the domain;

3. a domain ontology, describing the concepts in the domain.

For the agent to be organisation-aware, it should understand and reason about the
structure, work processes, and norms of the organisation.

In order to create the framework metamodel, we used the Eclipse Modelling Frame-
work (EMF)3. The EMF employs XML Metadata Interchange (XMI)4 as its default form
of a model definition and can be used to generate models in UML5 and other stan-
dards, enabling therefore interoperability with other tools and applications. In this
section, with the exception of the general metamodel of Figure 3.1, which is a UML-
like depiction through the EMF graphic tools6, the metamodels that are presented
have been produced by the EMF and have been transformed to XML schemas, and
therefore, the notation used follows the XML Schema Definition (XSD)7.

The complete metamodel of Figure 3.1 defines the full conceptual structure used to de-
scribe a norm-based system including the norms themselves and the agents to which
they will apply in our framework. Each of the boxed frames represent a framework
concept (which will be described in the remainder of this section and its subsections).
Arrows indicate direct interactions between components.

3http://www.eclipse.org/modeling/emf/
4http://www.omg.org/spec/XMI/
5http://www.omg.org/spec/UML/
6We would like to make a note here, that the EMF does not provide a full equivalence to UML

concepts and it has a more compact notion for Association, Aggregation and Composition relationships,
using a general EReference type, depicted by the arrow with the diamond. However, it fully serves the
modelling purposes of our framework and the transformations to other formats and structures intended
to be used later in the thesis.

7http://www.w3.org/XML/Schema

74
3.2

C
onceptualFram

ew
ork

Figure 3.1: Overall Metamodel

Chapter 3. Conceptual Framework and Architecture 75

Our metamodel contains two basic packages, namely framework (containing the ba-
sic elements such as roleSet, agentSet, initialState, actionSet, normSet, plan and
context) and FrameworkClasses (containing the rest of the elements that the basic
ones are broken down into).

The notation used for the diagrams is as follows (borrowed from the basic XSD no-
tation). Each element is broken down into sub elements. The “Type” field indicates
the basic type of element and which package it belongs to. The branching symbol

shows how an element is broken down into sub elements. The symbol repre-

sents a sequence of elements (xsd:sequence), the symbol represents a sim-

ple type element (xsd:simpleType), the symbol represents a complex

type element (xsd:complexType) and the symbol represents the attributes
(xsd:attribute) corresponding to an element.

In order to be able to mention the elements defined in our framework later in the
thesis, a textual form for some of them is needed. This is provided together with the
analytical description of the elements.

The root of the model is the main element framework:NormativeModel (Figure 3.2)
of the package framework, which contains:

• A set of roles (roleSet) of type framework:RoleSet

• A set of agents (agentSet) of type framework:AgentSet

• The current state of affairs (initialState) of type FrameworkClasses:StateFormula

• A set of (domain) actions (actionSet) of type framework:ActionSet

• A set of norms (normSet) of type framework:NormSet

• An (organisational) context (context) of type framework:Context, containing in-
formation on the domain to be modelled

We will describe each of them in the following sections.

3.2.1 Context

The framework:Context type (see Figure 3.3) contains the environment’s extra knowl-
edge needed for the agents’ reasoning. It contains one or multiple ontologies of
type FrameworkClasses:Ontology, a set of zero or more terms of type Framework-
Classes:Term, a set of zero or more formulas of type FrameworkClasses:StateFormula
and a set of zero or more relations of type FrameworkClasses:RelationAtom. These
terms (variables, etc.) combined with the ontology concepts can used to make formu-
las (atoms, conjunctions, etc.) describing the state of the agent.

76 3.2 Conceptual Framework

Figure 3.2: Normative Metamodel

Figure 3.3: Context

3.2.1.1 Ontology and Concept

The FrameworkClasses:Ontology (or simply ontology) type (Figure 3.4) predefines all
the concepts that are used by the framework. The purpose of this is for generic, non-
application-dependent information to exist within the framework and be adopted by
the agents. An ontology consists of a unique ontologyID and zero or more concepts
of type FrameworkClasses:Concept.

Concepts are the main components of every ontology. In our framework, the type
FrameworkClasses:Concept is defined in a simple way (Figure 3.5), having two at-
tributes, concept and URI. The first is a unique naming of every concept in order
to make it identifiable, while the second (optional) is a Uniform Resource Identifier
where a complex concept definition could exist and be available on the net. The textual
form of a concept is simply its name. For example, a concept might be: driving.

Chapter 3. Conceptual Framework and Architecture 77

Figure 3.4: Ontology

Figure 3.5: Concept

3.2.1.2 Terms

Terms (Figure 3.6) are simple elements used as arguments when defining a Frame-
workClasses:Atom (atoms are the elements that are used to form the state of the
world, as will be explained in Section 3.2.1.3) or when defining a FrameworkClasses:
Function. The type FrameworkClasses:Term is defined as an abstract type and can
be implemented as a FrameworkClasses:Variable (Figure 3.7), FrameworkClasses:
Constant (Figure 3.8) or FrameworkClasses:Function (Figure 3.9).

Figure 3.6: Term

The type FrameworkClasses:Variable (or simply variable) is defined simply by a
unique name. It might be used as an argument in an FrameworkClasses:Function
or a FrameworkClasses:Atom. The textual representation of a variable is its name8.
For example, a variable can be: street1.

The type FrameworkClasses:Constant (or simply constant) too is defined simply by a
unique name. It might be used in cases a constant (for example a number) is needed
as an argument in a FrameworkClasses:Function or a FrameworkClasses:Atom. The
textual representation of a constant is simply its name. For example, a constant can
be: maria.

8As we will see in Section 4.5, a “’?” might precede a variable in order to make it more distinguishable.

78 3.2 Conceptual Framework

Figure 3.7: Variable

Figure 3.8: Constant

Figure 3.9: Function

The type FrameworkClasses:Function (or simply function) has a unique name and
zero or more arguments of type FrameworkClasses:Term. The textual representation
of a function is the name followed by the arguments in a parenthesis, separated by
commas. For example, a function can be: speedLimit(street1).

3.2.1.3 Formulas, Relation Atoms and State of Affairs (StateFormula)

During the enactment/execution of the multi-agent system, there must be an account
of the current state of affairs. In principle, the state of affairs consists of the combi-
nation of the fluents/atoms/predicates holding and the effects of all actions executed

Chapter 3. Conceptual Framework and Architecture 79

during a shared plan/workflow9.

A State of Affairs is bootstrapped with some state formulas which hold at some point
in time. Since states of affairs should be able to model parts of the world state instead
of the full world state and agents usually do not receive the full state at the system
they operate in, states of affairs can be consequently seen as Partial State Descriptions
(PSDs). PSDs, as the name suggests, describe partial aspects of the world which hold
true at a certain point in time; in other words, it is a representation of (parts of) the full
state of affairs in terms of the properties of the state (e.g. goods are sold, thermostat
is on, room is cold, etc.) that hold at a certain point in time. A PSD is represented
as a logical formula. PSDs will be used to describe the norm conditions and to give
meaning to plan enactments. Agents use PSDs as a set of beliefs, that is, what is
(believed to be) true at a point in time. Actions (described in Section 3.2.5) change the
state of affairs. States of affairs relate to each other via actions: an action performed
on a PSD gives rise to another PSD.

Partial State Descriptions are defined as follows:

• A (propositional) Atom is a Partial State Description

• A Relation Atom10 is a Partial State Description

• If ϕ and ψ are Partial State Descriptions, then so are ¬ϕ, ϕ∧ ψ, ϕ∨ ψ and ϕ→ ψ

• If φ is a Partial State Description and x1, x2, . . . , xn are variables, then ∀x1, x2, . . . , xn :
φ and ∃x1, x2, . . . , xn : φ are Partial State Descriptions

Figure 3.10: StateFormula

Reflecting the above definition, in our framework states of affairs are defined through
a FrameworkClasses:StateFormula (or simply StateFormula, see Figure 3.10) as an

9Clearly, a global state of affairs shared by the agents in the (organisational) environment is required
for the appropriate enactment of the generic framework, as the effects of an action executed by an
agent may be required as a precondition of an action by another agent. As our framework is platform-
independent and technology-independent, it does not impose a mechanism for the agents to share the
global state of affairs. From now on we will suppose the existence of a simple distributed protocol
whereby each agent keeps its own version of the current state of affairs and propagates relevant changes
in its beliefs on the environmental state to other agents. When an agent carries out one action, it updates
its version of the state of affairs and sends a broadcast to all/some other agents with the updates they
should carry out. This will ensure the agents’ versions of the current state of affairs are all eventually
consistent. It is important to note that our framework is independent from the actual state-of-affairs
sharing mechanism used, and therefore agent designers can change this simple protocol into a more
advanced mechanism without affecting our framework.

10We will explain this later in this section.

80 3.2 Conceptual Framework

abstract element which might have several subtypes: atom, relation atom, negation of
atoms and conjunction, disjunction, implication, forall and exists connecting atoms
or StateFormulas.

The FrameworkClasses:Atom (or simply atom, see Figure 3.11) type is defined by
a unique ID, a concept of type FrameworkClasses:Concept and a number (possibly
zero) of arguments of type FrameworkClasses:Term. The textual form to express an
atom is by its concept, followed by the arguments in parenthesis. An example of an
atom can be: driving(maria, vehicle).

Figure 3.11: Atom

The FrameworkClasses:RelationAtom (see Figure 3.12) type is defined by a unique
ID, an operator of type FrameworkClasses:operator, a function of type Framework-
Classes:Function and a value of type FrameworkClasses:Term. A relation atom repre-
sents special relationships that tie a function to a value. There are 6 types of operators:
assign (or alternatively :=), increase (or alternatively or +=), decrease (or alternatively
or -=), equals (or alternatively =), greater or equal (geq, or alternatively or ¿=), less
or equal (leq, or alternatively or ¡=). The textual form to express a relation atom
depends on its type. For assignment, we write assign followed by the function and
then the value. For the rest, we write the function first, then the name of the operator
and then the value. An example of such an atom can be: assign money(jack)

40, another can be money(jack)+=100 and another can be money(jack) geq

money(maria) .

The FrameworkClasses:Negation (or simply negation, see Figure 3.13) type is defined
by a unique ID and a formula of type FrameworkClasses:StateFormula. The textual
form to express a negation is by the use of the symbol ¬ followed by the textual
form of the formula itself. An example of a negation might be: ¬driving(maria,
vehicle).

The FrameworkClasses:Conjunction (or simply conjunction, see Figure 3.14) type
is defined by a unique ID and one or more formulas of type FrameworkClasses:

Chapter 3. Conceptual Framework and Architecture 81

Figure 3.12: Atom

Figure 3.13: Negation

StateFormula. The textual form to express a conjunction is by the use of the symbol
and (or sometimes ∧) connecting the textual form of each of the formulas. An ex-
ample of a conjunction might be: ¬driving(maria, vehicle) and fasterThan

(vehicleSpeed(vehicle),80).

The FrameworkClasses:Disjunction (or simply disjunction, see Figure 3.15) type is
defined by a unique ID and one or more formulas of type FrameworkClasses:State
Formula. The textual form to express a disjunction is by the use of the symbol
or (or sometimes ∨) connecting the textual form of each of the formulas. An ex-
ample of a disjunction might be: ¬driving(maria, vehicle) or fasterThan(

vehicleSpeed(vehicle),80).

The FrameworkClasses:Implication (or simply implication, see Figure 3.16) type is

82 3.2 Conceptual Framework

Figure 3.14: Conjunction

Figure 3.15: Disjunction

defined by a unique ID and two formulas of type FrameworkClasses:StateFormula,
namely antecedentStateFormula and consequentStateFormula. The textual form to
express an implication is by the use of the symbol → connecting the textual form of
the antecedentStateFormula with the consequentStateFormula. An example of an
implication might be: ¬driving(maria, vehicle)→¬ at home(maria).

Figure 3.16: Implication

Chapter 3. Conceptual Framework and Architecture 83

The FrameworkClasses:ForAll (or simply forall, see Figure 3.17) type represents the
universal quantifier. It is defined by a unique ID, one or more variables of type
FrameworkClasses:Variable and a formula of type FrameworkClasses:StateFormula.
The textual form to express this quantifier is by the use of the symbol ∀ followed by
the variables, a “:” and then the textual form of the formula. An example of a forall
might be: ∀p: driving(p, vehicle).

Figure 3.17: Universal Quantification

The FrameworkClasses:Exists (or simply exists, see Figure 3.18) type represents the
existential quantifier. It is defined by a unique ID, one or more variables of type
FrameworkClasses:Variable and a formula of type FrameworkClasses:StateFormula.
The textual form to express this quantifier is by the use of the symbol ∃ followed by
the variables, a “:” and then the textual form of the formula. An example of an exists
might be: ∃p1,p2: ¬driving(p1, vehicle) and ¬ at home(p2).

Figure 3.18: Existential Quantification

84 3.2 Conceptual Framework

3.2.2 Roles

The FrameworkClasses:Role (or simply role, see Figure 3.19) element is used to assign
roles to the agents. A role is a constant. Each role consists of a unique Name that
identifies it. As we will see in Section 3.2.3, agents are associated with one or more
roles. We say that for each one of the roles associated with an agent, the agent enacts
that role. Roles are what bind agents to norms. As we will see in Section 3.2.6 each
norm addresses specific roles, and only the agents enacting those roles are bound to
that norm.

Figure 3.19: Roles

The framework:RoleSet (see Figure 3.20) element consists of a set roles of Frame-
workClasses:Role type elements.

Figure 3.20: Role Set

3.2.3 Agents

A FrameworkClasses:Agent (or simply agent, see Figure 3.21) is an entity of the
organisation representing an individual. It is ascribed the properties of being au-
tonomous, proactive, flexible (decision-making) and social. We envision the frame-
work supporting many different agent types, and assume only that agents are able to
send and receive messages11. Since agents may have norms that apply to them, we
must be able to uniquely identify agents. We therefore assume that an agent has some
unique agentID that is a constant and a set of assigned roles of type Framework-
Classes:Role that it enacts. We can assume that the relation between an agent and a
role can be described as enacts(α,r) whenever the set of roles of agent α contains role
r12.

11In the case of service-oriented applications our framework considers each service as an agent with,
at least, the following capabilities: reactiveness, social ability and (limited or none) proactivity.

12Such a relation in most frameworks can be translated to a predicate enacts. We will use this later in
Chapters 4 and 5 to indicate the established relationship between an agent and a role.

Chapter 3. Conceptual Framework and Architecture 85

Figure 3.21: Agents

The AgentSet (see Figure 3.22) element consists of a set agents of FrameworkClasses:
Agent type elements.

Figure 3.22: Agent Set

3.2.4 Initial State

The initialState depicted in Figure 3.2 is used to start the agent’s normative reasoning
procedure and consists of the fluents/atoms/predicates holding at the beginning of an
execution. This will be represented, like all other states, by a FrameworkClasses:State
Formula (see Section 3.2.1.3).

3.2.5 Actions

A FrameworkClasses:Action (or simply action, see Figure 3.23) corresponds to some
capability of an agent. Each action has a unique actionName in order to be identi-
fied. A set of parameters of type FrameworkClasses:Variable is also associated to
each action. Additionally, each action can be associated with a number of roles of
type FrameworkClasses:Role, specifying what the agents that enact those, are able to
perform. Agents that do not enact one role of the roles associated with the action do
not have access to it.

Actions are defined through logic formulas expressing preconditions and effects which
hold before and after the action is executed13. Actions are an essential element in our
framework as they lead to the formation of execution paths to achieve the goals of an
agent. The basis of action representation is PSDs, and subsequently state formulas,

13We borrow this standard representation of actions used by the Classical Planning community.

86 3.2 Conceptual Framework

Figure 3.23: Actions

which are used to represent both the precondition and the effects of the action. There-
fore, the precondition of an action specifies the state of affairs (of type Framework-
Classes:StateFormula) in which the action can be performed. In a similar way, the ef-
fect of an action specifies the state of affairs (of type FrameworkClasses:StateFormula)
to which the execution of the action leads.

The textual representation of an action will be its actionName followed by the pa-
rameters, and then the textual representation of the precondition and the effect. An
example of an action might be:

ParkCar

parameters: p v

precondition: insideCar(p,v) and nextToEmptySpace(v)

effect: carParked(v)

The ActionSet (see Figure 3.24) element consists of a set of actions, of type Frame-
workClasses:Action elements.

Figure 3.24: Action Set

3.2.6 Norms

FrameworkClasses:Norm (or simply norm, see Figure 3.25) expresses deontic restric-
tions coming from an organisational specification and provide guidelines over the
agents’ behaviour. These deontic statements such as obligations and prohibitions as

Chapter 3. Conceptual Framework and Architecture 87

well as properties related to the norm’s lifecycle are formalised and implemented
through a deontic framework14.

Figure 3.25: Norms

The framework:NormSet (see Figure 3.26) element consists of a set norms of Frame-
workClasses:Norm type elements.

Figure 3.26: Norms Set

We now provide details on how norms are specified. Norms are defined through
a set of logic formulas expressing what is obliged or prohibited for certain roles/a-
gents in the organisation. Instead of using a deontic representation based on modal
logic, our representation focuses on explicitly representing the operational aspects of
norms (their activation, discharge, fulfilment or violation) in first-order logic in order
to ease its use at runtime. As in actions, the basis of our norm representation is the
FrameworkClasses:StateFormula.

In addition to the previous, a violation penalty proposition is introduced as a Frame-
workClasses:StateFormula to indicate the satisfaction of the penalty of the norm in
the case of a violation of a norm.

As a consequence, a norm is then composed of the following elements:

14In Section 4.4 we show how our norm representation connects to Standard Deontic Logic and Dyadic
Logic.

88 3.2 Conceptual Framework

• normID (or nnn): a unique id to identify the norm

• roles: a set of roles of type FrameworkClasses:Role to which the norm applies

• modality: the type of norm (O for obligation, F for prohibition, P for permission)

• activatingCondition 15 (or, for short, f A
nf
A
nf A
n): a condition of type Framework-

Classes:StateFormula

• maintenanceCondition 15 (or, for short, f M
nf
M
nf M
n): a condition of type Framework-

Classes:StateFormula

• dischargeCondition 15 (or, for short, f D
nf
D
nf D
n): a condition of type Framework-

Classes:StateFormula

• repairCondition 15 (or, for short, f R
nf
R
nf R
n): a condition of type FrameworkClasses:

StateFormula

• An optional field timeoutntimeoutntimeoutn, representing the time limit within which action needs
to be taken to have a norm repaired in the case of a violation

Let us look at these elements in more detail taking into account a simple norm ex-
ample: “In case of evacuation order, the Police are obliged to evacuate the site” (for-
malised as eorder → Opevac). The modality of the deontic statement expresses the
deontic ‘flavour’ of the norm (and thereby establishes whether an agent should at-
tempt to fulfil the norm or, on the contrary, avoid the prohibition). The modality in
the example is an obligation (O), but could also have been a prohibition (F) or permis-
sion (P). The roles set ties the norm to the agent role (or roles) that should adhere to
the norm. In the case of the example the roles set contains police to denote that the
norm applies to agents enacting that role.

The textual form for the representation of the norms is the normID, followed by
the modality, the list of roles and then the textual form of the activatingCondition,
maintenanceCondition, dischargeCondition and repairCondition. An example of
the above elements of a norm where a driver in the city is supposed to stay out of the
bus lanes (expressed informally as the language has not been yet fully defined) would
be:

normID: StayOutOfBusLane

modality: O

roles: driver

activatingCondition: inTheCity(p) and driving(p, v)

maintenanceCondition: ¬onBusLane(v)
dischargeCondition: ¬inTheCity(p) or ¬driving(p, v)

repairCondition: finePaid(p,fine)

Obligations

15This element is explained later in this section, on page 89.

Chapter 3. Conceptual Framework and Architecture 89

Obligations are probably the most commonly used type of norm. An agent having
an obligation should ensure that the obligation’s maintenance condition holds. If this
does not occur, the obligation is violated.

Prohibitions

Amongst different views, prohibitions may be seen as obligations on preventing a
certain state of affairs from coming about. We follow the Standard Deontic Logic view
(Fx = O¬x) [von Wright, 1951, 1971], and treat prohibitions as a form of obligation.
Within our framework, a prohibition is represented as an obligation in which the
maintenance condition is negated. For example, a prohibition of the form “the agent
is prohibited from entering a building on fire” may be transformed into an obligation
“the agent is obliged not to enter a building on fire”.

Permissions

Researchers have dealt with permissions in a number of ways [Kollingbaum, 2005].
Standard Deontic Logic suggests the interpretation of permissions as exceptions to
obligations (permission seen as a dual of obligation). That is, if an obligation requires
A to occur, and a permission allows B to occur instead, then if B occurs, no violation
of the obligation occurs. Another way of viewing permissions is by assuming that
anything that is not explicitly permitted within the system is prohibited (permission
seen as absence of prohibition) [von Wright, 1951; Hilpinen, 1971]. This case could
be represented, informally, as “An agent is obliged to undertake no actions that af-
fect the world”. Permissions then form exceptions to this obligation, allowing this
interpretation of permissions to be reduced to the first approach.

In our framework, we discard permissions and use only obligations and prohibitions.
We explicitly assume that everything is permitted unless otherwise specified. This
choice is based on the wide known legal principle “Nulla poena sine lege (No penalty
without a law)” stating that one cannot be punished for doing something that is not
imposed by law. Written by Paul Johann Anselm Ritter von Feuerbach as part of the
Bavarian Criminal Code in 1813, this principle has been accepted and upheld by the
penal codes of constitutional states, including virtually all modern democracies.

Additionally, we feel that permissions are not essential in our model, but only comple-
mentary elements that can be expressed by the obligations and prohibitions. Possible
complications when dealing with their semantics as well as their limited use in the law
intuitively bring us to the conclusion that a ‘free world’, allowing all actions to take
place under the appropriate conditions, is a sufficient set for our normative agents.

Activating, maintenance, discharge and repair conditions

The activatingCondition (activating condition), maintenanceCondition (maintenance
condition), dischargeCondition (discharge condition) and repairCondition (repair
condition) are specified as FrameworkClasses:StateFormulas, denoting the conditions
that express when the norm gets activated, violated, discharged and repaired. They

90 3.2 Conceptual Framework

add operational information to the norm, to simplify its verification and enforcement.
They work as follows: the activating condition specifies when a norm becomes active
(eorder in the example), specifying the state of affairs in which the norm is triggered
(and must henceforth be checked for completion/violation). The discharge condition
specifies when the norm has been discharged16 (in the example given, the discharge of
the norm would be specified as evac). The maintenance condition is needed for check-
ing violations of the norm; it expresses the state of affairs that should hold all the time
between the activation and the discharge of the norm (in the example the maintenance
condition is evac). Finally, the repair condition is used to indicate a desired repair state
to be reached in case of a violation of the norm. In case of a violation, a timeout can
be used to indicate the time limit within which the norm should reach the repair state.

The lifecycle and dynamics of norms will be further detailed in Section 3.4 and be
given full operational semantics later in Chapters 4 and 5. In essence, when a norm
has been activated, has not yet been discharged and the maintenance condition is not
fulfilled, a violation of the norm happens. Such a violation, typically represented
as a special proposition (e.g. violated(StayOutO f BusLane)) or by a flag being raised,
represents that the system is in a state where the norm was not adhered to, and some
actions have to be undertaken (e.g. to punish the agent breaking the norm, or to repair
the system). Whenever a norm is violated, the norm continues being active but in
addition, the agent has to fulfil the state described by the repair condition.

3.2.7 Plans

A framework:Plan (or simply plan) consists of lists of actions (indicating in this way
an execution path), performed sequentially by some agent. In order to specify a plan,
each action belonging to it must have its parameters appropriately grounded. For-
mally (see Figure 3.27), a plan consists of a unique id, used for identification purposes,
and an element hasAtomicProcessGroundingList of type FrameworkClassess:Action
GroundingList.

Figure 3.27: Plan

16In some cases, norms can become “obsolete” even though they are not fulfilled. At this point, the
discharge of a norm can be considered synonymous to the fulfilment of the norm. In Chapter 4 the
fulfilment of a norm will be further discussed and the relationship to the norm’s particular instances will
be shown.

Chapter 3. Conceptual Framework and Architecture 91

The type FrameworkClassess:ActionGroundingList (see Figure 3.28) is a list of ac-
tion groundings. It is defined by the first element, of type FrameworkClasses:Action
Grounding and the rest, containing the rest of the list of action groundings.

Figure 3.28: Action Grounding List

An action grounding, represented by the type FrameworkClasses:ActionGrounding
(see Figure 3.29) represents an action grounding and grounds each of the parameters
of an action. It consists of an action element of type FrameworkClasses:Action (the
action to be grounded) and zero or more inputs of type FrameworkClasses:Input
Map. The action grounding should contain one input element for each parameter of
the specific action.

Figure 3.29: Action Grounding

The FrameworkClasses:InputMap element (see Figure 3.30) represents an input map
and matches exactly one variable of type FrameworkClasses:Variable with exactly
one constant of type FrameworkClasses:Constant.

Figure 3.30: Input Map

The textual representation of the FrameworkClasses:InputMap is the variable fol-
lowed by the substitution symbol ← and then the constant. For example an input
map can be: p←maria.

The textual representation for the FrameworkClasses:ActionGrounding is the name
of the action followed by the textual form of each input in parenthesis. An example

92 3.3 Architecture

of an action grounding would be: driveCar(p←maria,v←bmw). A shorter version
for a textual representation of the action grounding is the one where the variables are
omitted. Then, the same example would become: driveCar(maria,v).

The FrameworkClasses:ActionGroundingList is textually represented as the list of
the textual representations of each action grounding. An example of such an action
grounding list could be: driveCar(maria,v), parkCar(maria,v).

Finally, the framework:Plan textual representation will be its id, followed by ‘:’ and
then the textual representation of its hasAtomicProcessGroundingList element. In
this way, an example of a plan would be: plan1:driveCar(maria,v), parkCar
(maria,v).

3.3 Architecture

Our framework architecture can be seen in Figure 3.31. All agents operate within an
organisational context. The Organisation provides a social context for agents, spec-
ifying the organisational conventions that affect interaction (ontology terms, action
descriptions and norms) and including mechanisms to allow the structural adaptation
of systems over time. The World State models the description of the world, as seen
from the organisational perspective.

3.3.1 Components

The architecture consists of several interconnected components as seen in Figure 3.31.
It includes two metamodels, the norms metamodel and the actions metamodel which
respectively abstract the norms and actions. Ontology terms need no special meta-
model as we use OWL [Antoniou and van Harmelen, 2003] as a basis. Metamodel
instantiations of norms and actions (of a domain) defined as metamodel elements of
Section 3.2 are called models and can be visualised by using tools.

Actual source code, which will serve as input to the reasoner, is created automatically
by applying predefined transformations from the source model with respect to the
metamodels. The code (for norms and actions) is produced in the necessary format
in order to be processed by the reasoner. Our framework elements (such as Action,
Function, Atom, Variable, Constant, StateFormula, Plan) of Section 3.2 can be directly
translatable from and to the syntax of most planning mechanisms17.

A BDI agent stands as the basis of the architecture18. It is organisation-aware, that
is, it is aware of the relevant system objectives, roles and norms. For the agent to be
organisation-aware, it is necessary for it to be able understand and reason about the

17In the case of our thesis TLPLAN and PDDL, as we will see in Chapters 4 and 5 respectively
18It will be described in Section 3.3.2.

Chapter 3. Conceptual Framework and Architecture 93

Figure 3.31: Framework architecture

The arrows in the diagram indicate inputs/outputs. The ellipses with the “Trans”
label indicate model transformation functions. These functions receive a metamodel
and a model (i.e. a metamodel instantiation) and produce domain descriptions ap-
propriately adapted to the reasoner’s domain representation language as well as to
the agent’s world description (it might be the case that the reasoner and the agent

might have different representation languages for the world).

structure, work processes, and norms of the agent organisation in which it operates.
As a result, the BDI agent processes and interprets (through organisational metamod-
els - in our case of actions and norms) the organisational descriptions (models from a
repository) to produce its world state representation.

Before describing the normative reasoning component, it is important to note that
there are in fact three types of normative reasoning involved in the BDI cycle.

1. Ontological and conceptual interpretation of the constitutive norms described in
Section 2.2.2.2

2. Deliberative reasoning is done in order to select WHICH desires and intentions
are to be interpreted as goals of the agent (see Section 3.3.2)

3. Means-ends reasoning, or what we otherwise call “norm-driven plan synthesis”,
is done in order to decide HOW to get things done within a normative environ-
ment, that is HOW to achieve the chosen goals

There have been several attempts to do all three types of reasoning with the same
reasoner [Meneguzzi and Luck, 2009b; Meneguzzi et al., 2012; Cliffe et al., 2007b],

94 3.3 Architecture

still, there are no optimal reasoners for this. Other approaches suggest the use of
optimised reasoners for each one. As mentioned earlier, our thesis focuses on the
relation between means-ends reasoning (that is the norm-driven planning procedure,
which we refer to simply as a normative reasoner, where the course of action in order
to achieve some goal is determined) and the deliberative reasoning.

That said, the reasoning component lies within the agent and needs to be able to per-
form normative reasoning while ensuring compliance with the organisational specifi-
cation. More specifically, the reasoner receives a set of instantiated norms and a set
of instantiated domain actions which conform to the norms and actions metamodels
and, taking into consideration the agent objectives (goals) and the current state of af-
fairs, produces a plan. The plan is valid and is considered to be the most beneficial,
according to a given set of criteria.

3.3.2 BDI Agent Structure

In Section 2.1.1 the BDI (Belief-Desire-Intention) agent model was described. In this
section we explain how we adopt and extend it in order to incorporate the normative
reasoning process. According to Bratman [Bratman, 1987], the structure of a BDI agent
comprises of:

• A set of (B)eliefs

• A set of (D)esires (or goals)

• A set of (I)ntentions - a subset of the goals

• A set of perceptions (or events)

• A plan library as a (static) component or a planning mechanism which produces
plans.

• Perceptions are represented as new belief and new goal events (when agent
observes something, is told something or is asked to do something)

On each cycle (see Algorithm 3.1) the set of perceptions is added to the set of internal
events (plan generated sub-goal notifications) to give the events for that cycle. Then
the process that takes place can be summarised as follows:

• The perceptions are what the agent reacts to taking into account its current be-
liefs, desires and intentions.

• The agent selects one pending perception.

• It responds by updating its beliefs, desires and intentions - it reconsiders existing
goals and intentions.

• It reconsiders the plan to be followed.

• It then selects the next step in the plan being followed and, keeps executing the
plan’s actions, while revisiting the beliefs. An agent will maintain this process
committing to its intention(s) until either a plan is completely executed, or the

Chapter 3. Conceptual Framework and Architecture 95

Algorithm 3.1 BDI cycle [Wooldridge, 2001]

1: B = B0
2: I = I0
3: while true do
4: get next percept ρ
5: B = br f a(B,ρ)
6: D = optionsb(B, I)
7: I = f ilterc(B, D, I)
8: πd= plane(B, I)
9: while not (empty(π) or succeed(I, B) or impossible(I, B)) do

10: α = hdf(π)
11: executeg(α)
12: π = tailh(π)
13: get next percept ρ
14: B = br f (B,ρ)
15: if reconsideri(I, B) then
16: D = options(B, I)
17: I = f ilter(B, D, I)
18: end if
19: if not soundj(π, I, B) then
20: π = plan(B, I)
21: end if
22: end while
23: end while

abrf (B,ρ) indicates a belief revision function. It revises its beliefs and updates them.
boptions(B, I) is a function that generates a set of possible desires for the agent through its beliefs and

intentions.
cfilter(B, D, I) is a function that chooses between competing alternative intentions.
dπ indicates a plan. It is be a sequence of actions (a1, . . . , an).
ethe plan(B, I) function requires the agent to engage in a plan generation process. The plan generated

(or selected in the case of using predefined plan libraries) satisfies the intention(s).
fthe hd(π) function returns the first action of a plan.
gexecute(α) is a function that executes an action in a plan.
htail(π) function returns the plan minus the head of the plan.
iwhile an agent needs to stop and reconsider its intentions, reconsideration might prove costly. There-

fore, the meta-level control component reconsider(I, B) is used to indicate whether or not to revisit the
intentions of the agent.

jsound(π, I, B) function means that π is a correct plan for the agent’s intentions given its beliefs.

96 3.3 Architecture

agent believes it has achieved its current intention(s) or that its current inten-
tion(s) are no longer possible. If after revisiting its reconsidering its intention(s)
a plan is not sound anymore, then the planning process comes up with a new
plan to be followed.

• The agent then repeats the process to select another perception (if any).

Some theorists have suggested that obligation norms can be seen as a form of belief,
and act within the process of generating (candidate) desires [Tufis and Ganascia, 2012]
or can emphasise the importance of a desire in advance or define some priorities
or precedence between desires (lines 6 and 16 in Algorithm 3.1). In a similar way,
prohibitions might be considered to be another form of beliefs and should influence
the process of filtering the desires in order to generate intentions (lines 7 and 17 in
Algorithm 3.1).

In practice, the strategic selection of desires versus obligations and prohibitions is not
as easy to do as it sounds in theory. While humans intuitively deliberate by projecting
and assessing the options into the future and taking into account the obligations/pro-
hibitions and their effects throughout the execution of the planning process, there is no
such fixed way in which obligations and prohibitions can interfere with the selection
of desires and intentions in a computing environment.

In [Meneguzzi et al., 2010], Meneguzzi et al. describe mechanisms that enable spe-
cific plan instantiations in order to restrict behaviour, support compliance and avoid
violating plans. [Meneguzzi and Luck, 2009b] proposes a complex mechanism which,
at runtime, reacts to newly accepted norms and constructs plans accordingly taking
into consideration the intentions modified by the norms. Moreover, [Meneguzzi et al.,
2012] evaluates plans with a preprocessing mechanism and annotates them depending
on their degree of compliance to norms. Additionally, [Dignum et al., 2000] modifies
the BDI cycle to incorporate again a preprocessing step for sophisticated plan selec-
tion, accommodating norms and obligations. Plans are explicitly expressed by the
process of generating (candidate) intentions. Other researchers [Alechina et al., 2012;
Dybalova et al., 2013] build on existing agent frameworks and allow the agent’s delib-
eration cycle to be affected by the norms by adopting obligations as goals. However,
while they calculate the normative state of the agent with respect to the norms dur-
ing the cycle, they do not consider a planning methodology. Instead, they define
preferences between obligations, prohibitions and goals, and they calculate algorith-
mically the optimal set of pre-fabricated plans (i.e. that are preference-maximal) to be
executed.

The above works present good examples of the views of many theorists concerning
the influence norms should have in the agent’s deliberation cycle. They suggest that
norms should influence the creation of intentions and/or modify the construction of
the plans, based primarily on existing plan templates. An observation that can be
made is that a lot of this research is also based on the preprocessing of possible plans
in order to “speculate” to which extent the plan outcome will be compatible with

Chapter 3. Conceptual Framework and Architecture 97

existing norms (or norms that might occur) and to decide whether an agent should
or should not adopt it, even making comparisons between multiple possible plans in
order to decide the course of action.

We, on the other hand, suggest that norms should be directly part of the planning pro-
cess. That is, we think that norms should not interfere with the agent’s objectives. On
the other hand, they should act as restrictive constraints during the planning process,
allowing to break some of those constraints in cases of conflict or whenever the agent
sees fit for personal benefit. We believe this is better because, from a computational
perspective, the preprocessing of partially exploring possible outcomes to select/pri-
oritise intentions would consist of a similar mechanism to the one used during the
means-ends reasoning, and thus, it makes little sense to do this exploration twice. The
main effect of our approach is that the intention selection occurs during the planning
process, in a way that: 1) candidate intentions which are infeasible are automatically
discarded (until an opportunity makes them feasible again), 2) candidate intentions
supported by obligations are more likely to be selected, and 3) candidate intentions
hindered by prohibitions are less likely to be selected. Also, this approach provides a
clear semantic distinction between the agent’s objectives and the normative influence
over these objectives during intention selection.

Algorithm 3.2 Modified norm-aware BDI cycle

1: B = B0
2: I = I0
3: while true do
4: get next percept ρ
5: B = br f (B,ρ)
6: D =options(B, D)
7: I = f ilter(B, D, I)
8: π =plan(B,D,Ns,Pref)
9: while not (empty(π) or forall d in D: [succeeded(d,B) or impossible(d,B)]) do

10: α = hd(π)
11: execute(α)
12: π = tail(π)
13: get next percept ρ
14: B = br f (B,ρ)
15: if reconsider(D,B) then
16: D =options(B, D)
17: I = f ilter(B, D, I)
18: end if
19: if not sound(π,D,B) then
20: π =plan(B,D,Ns,Pref)
21: end if
22: end while
23: end while

The normative reasoning BDI agent used in our architecture includes the traditional
components of a BDI agent, Beliefs and Desires, but leaves out the Intentions. Desires

98 3.4 Norm Design

are considered to be the objectives (goals) of the agent and the filtering process of
the intentions is therefore eliminated (lines 2, 7 and 17 in Algorithm 3.2), leaving
the means-ends reasoner free to consider all desires as goals to be achieved at some
stage. The reasoner is integrated into the agent’s BDI cycle as follows. Initially the
reasoner produces a plan to be followed in order to achieve the objectives (line 8
in Algorithm 3.2). In our modified cycle, the planning process takes indirectly into
account the existing norms and the agent’s preferences, that are modelled as costs
within the planning domain. While there is no external disturbance or information
that changes the environment (perceptions) the agent executes actions of the plan.
The norms’ status is derived here from the current set of beliefs (lines 5 and 14 in
Algorithm 3.2).

As explained, in the original BDI cycle of Algorithm 3.1 an agent gets to reconsider
its intentions when either a plan is completely executed, or the agent believes it has
achieved its current intention(s) or that its current intention(s) are no longer possible.
Since in our suggested modification intentions no longer exist, the agent’s commit-
ment now is towards each of its desire(s) (line 9 of Algorithm 3.2), which are now
directly considered as the agent’s objectives to be accomplished.

The belief revision process in the agent is additionally affected by the execution of
actions and the combination of their effects. Whenever there is a modification of the
environment, the reasoner reproduces a plan according to the new state of affairs
and passes it to the agent. Thus, the reasoner is applied in the BDI cycle whenever
new planning is required. The main extension of the BDI process in our case lies
in the fact that the planning process takes into consideration not only the beliefs but
the norms that affect the agent as well. That is, norm influence is directly explored
during the planning process (lines 8 and 20 in Algorithm 3.2). How this is done will
be thoroughly explained in the rest of the thesis.

3.4 Norm Design

Norms lie at the heart of a normative environment, and their correct design is thus
critical to the success of a norm-based application. We are interested in reasoning
about the status of norms and normative environments, which we are unable to do
with the machinery defined to this point. We therefore now provide a semantics for
norms and normative environments, which allows us to determine the status of these
entities at any point in time. Before doing so, we discuss some of the issues that occur
and suggest a number of patterns that commonly arise when trying to model norms.

3.4.1 Norm Lifecycle and Norm Instances

In our framework, a norm might be in different states of validity within a normative
system (see Figure 3.32): a norm is in force when it can be fully activated, monitored,

Chapter 3. Conceptual Framework and Architecture 99

and enforced; in transition when it is being removed and cannot be activated anymore,
but the effects of past activations have to be tracked until their end; and deleted when
the history of the norm is to be kept but it can have no further effect on the normative
system. Nevertheless, such a lifecycle is related to the concepts of promulgation,
abrogation and derogation, and therefore out of the scope of this thesis.

Figure 3.32: Norm lifecycle19

An issue that is very relevant to this thesis is the formal description of the compliance
of a norm. In order to further investigate into this, it is necessary to make a distinction
between a norm and its norm instantiations. This issue, i.e. a clear separation between
an (abstract) norm and a particular (contextual) instantiation of the norm, is somehow
missing in general in the literature. This problem was already discussed by Abrahams
and Bacon in [Abrahams and Bacon, 2002]: “since propositions about norms are derived
from the norms themselves, invalid or misleading inferences will result if we deal merely with
the propositions rather than with the identified norms20 that make those propositions true or
false”. This issue is not banal, as it has implications on the operational level: in order
to properly check norm compliance, norm instantiations and their lifecycle have to be
tracked in an individual manner, case by case.

Therefore, to check a norm’s compliance, it is necessary to have a link between the
compliance of such instantiations and the norm. In most of the traditional formal
foundations of deontic logics (such as in SDL), the compliance of a norm can be seen as
binary: either the norm is fulfilled or is violated. The fact that, as we propose, a norm
can be the origin – sort of a template – of potentially infinite instantiations, depending
on the parameters that may activate it or the agents enacting its target role, can make
the concept of norm compliance more complex.

Depending on the normative framework, there can be strict cases in which norm com-
pliance has to be a binary value [Aldewereld et al., 2006], as well as there can be
more relaxed scenarios in which norm compliance will completely depend on parallel
concepts such as justice or fairness [Penner, 1988]. It is not the purpose of our formal-
isation to engage in such digressions, and thus we will make the simplest assumption:
that norm compliance is binary and depends on all of its instantiations.

The concept of norm instance lifecycle has been treated by different authors, e.g.
[Abrahams and Bacon, 2002; Fornara and Colombetti, 2009; Cardoso and Oliveira,

19This diagram, as well as ones that will appear later in the thesis, follows the standard notation of the
state diagrams, where the arrow pointing from anywhere indicates an initial state and a double circle
indicates a final state.

20From now on, we will denote such identified norms as norm instances.

100 3.4 Norm Design

2010], but with no real consensus. Taking those interesting elements that would allow
the management of norms with the concepts of activation, maintenance, fulfilment
and reparation, a suitable norm lifecycle would be similar to the one based on the
automaton depicted in Figure 3.33. A norm instance gets activated due to a certain
activating condition and starts in an (A)ctive state, but if at some point a certain main-
tenance condition is not fulfilled, the norm instance gets into a (V)iolation state. If the
norm instance is (A)ctive and a certain discharge condition is achieved, the norm gets
(D)ischarged21. Usually reparations are not treated explicitly, but in our proposal we
add the concept for completeness. If a norm instance is (V)iolated, fulfilling a repa-
ration condition can bring it back to the (A)ctive state, but if the discharge condition
occurs while violated, only by fulfilling the same reparation condition (VD state) can
the norm instance be (D)ischarged. It might be the case that a (V)iolated norm instance
never gets repaired, so for safety we use a timeout condition22 to make sure the norm
instance is not alive forever and thus mark those permanent violations as (F)ailures.

Figure 3.33: Norm instance lifecycle with reparation and timeout handling

Once there is a norm lifecycle the question to answer is how to deal with it from
an operational perspective. Abrahams and Bacon [Abrahams and Bacon, 2002] solve
this problem by considering instances as occurrences of the predicates contained in the
deontic operator:

being obliged function 1

domain: X = any occurrence of borrowing from library

range: being obliged function 1(X) where

obliged first occurrence, on or after date of X,

and within 14 days of X,

of borrower in X returning borrowed in X

(to lender in X)

21Note here that we assume the discharge condition to eventually happen.
22The timeout condition is evaluated as starting at the point of time of violation.

Chapter 3. Conceptual Framework and Architecture 101

However, there are cases in which this can be insufficient, i.e. when the obligation
defines a complex deadline or its instantiation depends on conditions based on con-
textual information. More recently, some works have been advancing towards tackling
this issue. For example, by treating instantiated deontic statements as first-class objects
of a rule-based language [Governatori, 2005; Cardoso and Oliveira, 2009], e.g.:

Ntop =i f actX:sa(order(A1, Res, Qt, A2), T)23∧
supply-in f oX:sa(A2, Res,Upr)
→
oblX:sa(A2,delivery(A2, Res, Qt, A1), T + 2)∧
oblX:sa(A1, payment(A1, Qt ∗Upr, A2), T + 2)

In this example, taken from [Cardoso and Oliveira, 2009], we can see how the obli-
gation (the deontic statement) is directly used in the right hand side of a production
rule. This norm is read as: for any supply agreement, when an order that corresponds to the
supply information of the receiver is made, he is obliged to deliver the requested goods and the
sender is obliged to make the associated payment.

However, as these deontic statements are already implicitly identifying the norm in-
stance through the variables inside the predicates and time T, there is no explicit track-
ing of which elements of the domain are involved in fulfilling or violating it. Other
approaches declare the norm only at an abstract level while keeping track of its instan-
tiations and its lifecycle at an operational level [Criado et al., 2010b; Álvarez-Napagao
et al., 2010], e.g.:

rule ‘‘norm instance fulfilment’’

when

Deactivation(n : norm, f : formula)

ni : Instantiated(norm == n, theta : substitution)

SubsetEQ(theta2 : subset, superset == theta)

Holds(formula == f, substitution == theta2)

then

retract(ni);

insert(new Fulfilled(n, theta));

end

Finally, some authors mention but do not handle the notion of norm instances in their
frameworks [Meneguzzi and Luck, 2009b; Meneguzzi et al., 2010].

Returning to our framework design, as mentioned earlier in this section, we adopt
the view that norm compliance is binary and depends on all of its norm instances.

23i f actC(f , t) says that institutional fact f has occurred at time t. Context identifier C can be seen as as
a pair id:type, where id is a context identifier and type is a predefined context type.

102 3.4 Norm Design

That suggests that in order for a norm to be considered fulfilled, all the instances that
occur throughout an execution must be fulfilled, each one individually. We consider
our approach towards the norm instance definition to be an extension to the work in
[Álvarez-Napagao et al., 2010]. Instantiations occur whenever there is an incidence
of a substitution, sufficient to make the activating condition of the norm true (and
therefore giving rise to a new instantiation). We explain more and provide a formal
definition of norm instances, their lifecycle, norm instance fulfilment as well as norm
fulfilment in Sections 4.3.3 and 4.3.4.

3.4.2 Dynamics of Norms

A temporal environment records the time at which some state change occurred within
the environment, and the changes that took place. We assume that if a state change is
not recorded between two time points, no change took place.

Philosophically, we adopt the stance that a norm does not have to be intentional. As
long as a state of affairs referred to in an obligation/prohibition/permission occurs,
regardless of whether the agent intended it to, the agent has met/violated/made use
of the norm. This approach is based on the human model of evaluating evidence in
the eyes of the law.

When performing verification, we may assume a fully observable domain, and make
use of a single theory. For the purposes of monitoring, the agreed theory is the one that
is shared among the monitoring components. By contrast, when performing practical
reasoning, individual agents may make use of their own theories.

3.4.3 Primary, Secondary Norms and Interaction Between Them

We have already defined an optional extension to the framework where we distinguish
between primary norms (which are the ones that maintain the essence of a rule) and
secondary (or repair) ones, which are the ones that get triggered by the violation of a
primary norm. The second type of norm is modelled by including the “violation”
status of the primary norm in the activating condition of the secondary norm. We
use this extension in Chapter 5. Due to the free nature of this representation, it is
possible to have a full structure of norms starting with a primary one and each of the
rest serving as repair norms for the previous one.

Our normative model focuses on the status of single norms. We assume that no
other (to the one explained above) semantic interaction exists between norms and that
each one represents a semantically separate deontic statement within the environment.
Therefore, while our framework can assign a status (such as violated) to a norm, it
does not perform reasoning about the interactions between norms. Instead, it might
include the conceptual tools for other components to use when reasoning about norm

Chapter 3. Conceptual Framework and Architecture 103

interactions. Thus, while we facilitate more sophisticated reasoning about norms, such
reasoning is not addressed in the core framework.

3.5 Discussion

The work presented in this chapter has been developed within (and highly shaped
by) the IST-CONTRACT and ICT-ALIVE [Lam et al., 2009] projects24. The first of-
fers a multi-layered contracting framework, its architectural components and tools.
The normative environment formalisation of Appendix A, that stood as inspiration to
the thesis semantics described in Chapters 4 and 5, has been used in the project to
model the contracts established between agents as sets of clauses (representing deon-
tic statements) and the message interaction between them. It also formed a common
baseline for the project partners to develop local and global monitoring tools as well as
verification components. Additionally, as part of the project, contract-supporting com-
ponents like contract editors, a contract store and contract managers were developed.
ICT-ALIVE’s objective, on the other hand, was to merge previous work in coordination
and organisational structures with the most up-to-date technology in service-oriented
computing, allowing system designers to create service-oriented systems based on the
organisational structures and the way these communicate between them. The idea for
decision making through planning mechanisms presented in Chapters 4 and 5 started
during the ICT-ALIVE project but has evolved beyond the project scope and lifetime.

In this chapter we have made a detailed requirements analysis, deriving directly from
the problem definition for this thesis in Section 1.1, over the reasoning mechanism
required when dealing with norm-driven agents. Based on these requirements, we
created a computational framework, comprising of the basic elements used when de-
signing such a mechanism.

We picked the MDE approach, which separates the development of software systems
into different, independent phases, where the top one remains an abstract represen-
tation of a platform-neutral model of the system. In this way we manage to raise
a level of abstraction between our framework elements and the two implementation
approaches presented in Chapters 4 and 5 respectively. The conceptual elements in
our framework (agent, plan, agent capabilities, etc.) are elements that are popularly
used in many theoretical and practical frameworks (e.g. in Jason [Bordini and Hübner,
2006], Jadex [Braubach et al., 2005], JACK [Winikoff, 2005] and 2APL [Dastani, 2008]),
making it easy as we will see in Chapter 5 to create and apply automatic translations
and transformations from our models to various platform-dependent models.

Our architecture places the normative reasoning component inside a BDI agent op-
erating in a wider environment. A complete integration within such a multi-agent

24See Section 2.2.2.3.6 for a description of IST-CONTRACT and Section 2.2.2.3.3 for a description of
ICT-ALIVE

104 3.5 Discussion

environment will be provided in Chapter 5. To our knowledge, only recently has the
community started getting interested in BDI-oriented agent reasoning with norms (see
Section 2.2.2.4.2 for relevant work) and relatively little work on how the agent’s cycle
can be modified to include normative influences throughout the means-ends reason-
ing has been done.

In addition to the above, we have in this chapter introduced the basic design issues
when introducing norms in normative environments (seen as a special type of insti-
tution) and provided a first glimpse of the norms’ representation on an operational
level. While a rich background on norm representation exists on a conceptual level,
fewer researchers attempt to define and resolve issues such as multiple instantiations
of the same norm, the flexibility that a norm might provide for a possible breach and
the handling of the consequences of such an event on a practical level. In Chapters 4
and 5 we address these issues with success, providing a pragmatic aspect of how
norms affect and interfere with the decisions to be made by a goal-driven agent.

Since our general interest is that an agent is able to exist and make decisions in nor-
mative environments, guided by a sophisticated reasoning mechanism which allows
for runtime decisions to be made, the elements of our framework should be assigned
operational semantics taking into account the effect the norms have on the agent’s
status and the environment. In order to do so, we need to evolve the formalisation
described here to additional levels, where actions, norms, states, goals and plans ac-
quire operational semantics. These extensions of the formalisation and its semantics
are covered in the next two chapters, through two different approaches.

Chapter 4

Normative Practical Reasoning Using
Temporal Control Rules

As explained in Section 1.1 one of the main constraints in the use of deontic-like
formalisations is the lack of operational information [Vázquez-Salceda and Dignum,
2003] that might make it easy to represent them in computational terms and apply in
computational systems. Without such semantics, an agent cannot clearly determine
what the influence of norms might be on its decision making process.

As detailed in Chapter 2, in the literature there is a lot of work on normative systems’
formalisations (mainly focused on deontic-like formalisms [von Wright, 1951]) which
are declarative in nature, focused on the expressivity of the norms [Dignum et al.,
2005], the construction of formal semantics [Boella and van der Torre, 2004; Aldew-
ereld et al., 2006; Garcı́a-Camino et al., 2006] and the verification of consistency of a
given set [Lomuscio et al., 2009; Governatori and Rotolo, 2010]. However, often such
formalisations cannot really be used at execution time. Also, there is some work on
how agents might take norms into account when reasoning [López y López et al., 2004;
Kollingbaum, 2005; Meneguzzi and Luck, 2009b], but few practical implementations
exist that cover the full BDI cycle, as many approaches do not include the means-ends
reasoning step.

As a consequence, there are several critical points that are not fully covered, to our
knowledge, in any work in the literature. In scenarios where individual agent rea-
soning takes place, the following are such relevant issues that should be taken into
consideration:

• Practical implementations define their own operational semantics in order to
bring the abstraction of the concept of norm to the agents’ reasoning. In most
cases, this is done by defining semantics close to the implementation languages
loosely based on, and therefore similar but not reducible to, deontic logics. In
such cases, there is always the risk of 1) being misaligned with the philosophical
foundations of normative systems, and 2) not being able to compare, from a
scientific point of view, different proposals that are supposed to tackle the same

105

106

domain of problems. In summary, there is a need to formally connect the deontic
aspects of norms with their operationalisation, preserving the former.

• From a practical point of view, norms have to be distinguished from their actual
instantiations. For each norm, many instantiations may happen during the norm’s life-
time1.

• Normative systems can be tailored for different purposes. Although there is a
strong focus in this document on how to deal with norms in agents’ individ-
ual reasoning from a planning perspective, other systems may deal with other
aspects, such as normative monitoring, norm compliance predictive systems,
model checking of institutional properties, and so on. Each of these system
objectives may imply completely different implementation languages and/or al-
gorithmic complexity. In many cases, one would also want to combine several
of these techniques in order to build a tailored system for a particular domain
solution. For this respect, the operational semantics should ideally be formalised in a
way that ensures enough flexibility in their translation to actual implementations while
ensuring unambiguous interpretations of the norms. For instance, the semantics used
by a society compliance mechanism, and the semantics integrated in the reason-
ing cycle of its individual agents, must be aligned to avoid, e.g. the agent norm
reasoning mechanism stating that no norm has been violated while the compli-
ance mechanism states that the agent has violated some norm instance.

Inspired by our previous work on norm lifecycle semantics2, we take it a step further
and suggest that decision making in a normative environment can be implemented
via a planning mechanism. The mechanism, integrated into an agent’s deliberation
cycle, produces and at the same time evaluates the plans3. In possession of a set of
norms which can be seen as indications over desired behaviour of the agent and an
objective, and taking into account the current state of affairs, the agent computes the
most beneficial way to achieve its objective, that is, what sequence of actions should
be followed in order to reach it, gaining at the same time optimal cost/benefit though
fulfilling or ignoring obligations and prohibitions.

An important contribution of our work is the introduction, semantic representation
and handling of norm instances. As mentioned in Section 3.4.1, the problem of sep-
arating a norm from its instantiations has been tackled from a theoretical perspective
and few works actually include and create full sets of norm instances, independent
at execution time. In this chapter we bring norm instances down to a practical level
(Section 4.3) and demonstrate how to include them in the decision process of the agent
(Section 4.6).

1Please refer to Section 3.4.1 for the motivation of this desirable property.
2The formalisation in [Oren et al., 2009] was a first attempt made to modelling the operational seman-

tics of regulative norm instances. Although the formalisation is incomplete and has been superseded by
later attempts, it is described in Appendix A, as it has inspired our current formalisation.

3The integration to the deliberation cycle will be shown in Section 5.3.

Chapter 4: Normative Reasoning Using Temporal Control Rules 107

To perform norm-aware planning, we present a proposal to achieve a deontic-based
norm definition with a direct reduction to temporal logic which, in turn, can be trans-
lated into planning operational semantics. Choosing the way to represent and for-
malise the norms depends on the aspects of the norms that are of great significance
for the design of a regulated system. While the formalism should capture the deontic
notions expressed in the norms, this is not sufficient as information on the tempo-
ral ordering of the normative states of the norms is missing when trying to establish
the necessary temporal timeline that indicates how a norm evolves and gets fulfilled
(or not) throughout time. The formalism picked should additionally be expressive
enough to allow a temporal aspect, while at the same time including an indirect no-
tion of actions, necessary when dealing with agents that engage in activities and evolve
throughout time, and the states these bring about. For these reasons, the use of tem-
poral logic seems most appropriate considering its expressiveness when dealing with
the concept of time and conditional satisfaction of state of affairs. We have in par-
ticular chosen Linear Temporal Logic (LTL) as a bridge from the norm specification
to its implementation by reducing deontic-based norm definitions to temporal logic
formulas which, in turn, can be translated into planning semantics. The reason for
picking LTL is that it has operational semantics that can be directly implemented in
computational systems while, at the same, time many algorithms have been developed
and integrated into verifying and model checking systems. LTL also appears to be the
preferred language when expressing controlled search within domain-specific knowl-
edge and in this way we take advantage of existing, stable frameworks in the planning
community that use LTL formulas as strong and soft constraints on plan trajectories
(e.g. TLPLAN [Bacchus and Kabanza, 2000] and PDDL 3.0 [Gerevini and Long, 2006]).

In short, there are many approaches that tackle different parts of the formalisation of
norm operationalisation. One of the purposes of this chapter is, thus, to complement
these approaches by filling the gaps that exist between the deontic statements and
planning operationalisation by means of 1) additional predicates representing norm
activation, discharge and violation, and 2) an intermediate representation based on
temporal logic (see Section 4.3).

4.1 First-Order Linear Temporal Logic

Let us first define the formal foundations for our formalisation. The first-order Linear
Temporal Logic (fo-LTL) language starts with a standard first-order language, L, con-
taining some collection of constant, function, and predicate symbols, along with a
collection of variables (we use the framework elements of the logic defined in Sec-
tion 3.2.1 to form formulas in L). We also include in the language the propositional
constants > and ⊥ (true and false respectively), which are treated as atomic formulas.

• if f1 ∈ L then f1 is a fo-LTL formula;

• If f1 and f2 are fo-LTL formulas, then so are f1U f2, X f1, F f1 and G f1

108 4.2 Extensions of fo-LTL for norms

We define a substitution (grounding) θ = {x1← t1, x2← t2, ..., xi← ti} as the substitu-
tion of the terms t1, t2, ..., ti for variables x1, x2, ..., xi in a formula f ∈ L.

A full path π =< s0, s1, s2, . . . > is a sequence of states of the world. Every state of the
world (or state) is a model for the base first-order logic L. What is more, every state
si shares the same domain of discourse D.

Definition 4.1. Validity of an fo-LTL formula over a path π is defined as:

(a) If f1 is an atomic formula then
〈
π, i,V

〉
|= f1 iff (si,V) |= f1. That is, atomic for-

mulas are interpreted in the state si under the variable assignment V according
to the standard interpretation rules for first-order logic.

(b)
〈
π, i,V

〉
|= ∀x. f1 iff

〈
π, i,V(x/d)

〉
|= f1 for all d ∈ D where V(x/d) is a variable

assignment function identical to V except that it maps x to d.

(c)
〈
π, i,V

〉
|= f1U f2 iff there exists k ≥ i such that

〈
π,k,V

〉
|= f2 and for all j with

i ≤ j < k we have
〈
π, j,V

〉
|= f1.

(d)
〈
π, i,V

〉
|= X f1 iff

〈
π, i + 1,V

〉
|= f1

(e)
〈
π, i,V

〉
|= F f1 iff there exists j ≥ i such that

〈
π, j,V

〉
|= f1

(f)
〈
π, i,V

〉
|= G f1 iff for all j ≥ i we have

〈
π, j,V

〉
|= f1

Additionally, we define the following:

(g)
〈
π, i,V

〉
|= ∃x. f1 iff

〈
π, i,V(x/d)

〉
|= f1 for some d ∈ D.

(h)
〈
π, i,V

〉
|= f1 ∨ f2 iff

〈
π, i,V

〉
|= f1 ∨

〈
π, i,V

〉
|= f2

(i)
〈
π, i,V

〉
|= f1 ∧ f2 iff

〈
π, i,V

〉
|= f1 ∧

〈
π, i,V

〉
|= f2

More details about first-order Linear Temporal Logic can be found in [Bacchus and
Kabanza, 2000].

4.2 Extensions of fo-LTL for norms

fo-LTL is a logic that is tailored for generic handling of paths of action. In order to
properly work in the domain of norms, there are two issues that need tackling: time, in
order to handle temporal intervals that define deadlines, discharge conditions or sanc-
tion timeouts; and agency, in order to bind obligations, permissions and prohibitions
with the agents responsible to bring them about.

We handle time in a trivial manner, defining discrete time steps corresponding to the
sequential states of a path4. That allows us to create a simple notion of time starting
at 0, which would correspond to the initial state of the world, and for every state of a

4Alternatively, other time functions or approaches can be considered, according to the designer’s
domain implementation and preferences.

Chapter 4: Normative Reasoning Using Temporal Control Rules 109

path, time augments by one. While this is a uncomplicated way of considering such a
complex subject, it allows for time to be easily introduced and implemented in almost
all practical frameworks5.

Further to the notion of time, we need to be able to describe relative times in our
model, since we will want to state that norms get repaired within a time limit from
the occurrence of a violation. Therefore, an absolute model of linear time, counting
from the beginning of an execution is not sufficient. We borrow the notion of quanti-
tative relationships for linear temporal logic from other logicians [Bellini et al., 2000;
Koymans, 1990] but do not use the full semantics of logics such as Metric Temporal
Logic (MTL) [Koymans, 1990], since we do not consider a time model in our frame-
work. Therefore, we introduce the symbol ≤ in combination with the operator F,
written as F≤tφ to indicate that “eventually, within t time steps, φ will be true”. Such
an inclusion does not modify any of the LTL properties, since F≤tφ can be seen as an
operator weaker and more constrained than the operator F. Consequently, we extend
fo-LTL to contain a relative eventually operator:

(j)
〈
π, i,V

〉
|= F≤t f1 iff there exists j with i ≤ j ≤ i + t such that

〈
π, j,V

〉
|= f1

Another issue to take into consideration is that the axiomatic definition of the seman-
tics of fo-LTL – and, for that, matter, of other temporal logics such as LTL, CTL or CTL*
– does not explicitly include a reference to the concept of agent. Therefore, with the
semantics as they are, there can be no binding between the responsibility of achieving
or maintaining a certain state and the actual accomplishment of such responsibility. In
the context of any work on normative systems, being able to reason about this binding
is a necessity. There is a strong research background [Belnap and Perloff, 1988; Horty,
2001; Bentzen, 2010] on this topic.

In order to deal with that, we extend fo-LTL and add a notation that will provide
semantics for agency, based on the stit (see to it that) operator, firstly introduced by
Belnap and Perloff in [Belnap and Perloff, 1988], with Eα[ρ]6 indicating that “agent α

sees to it that ρ happens”, i.e. the truth of ρ is guaranteed by an action performed by
α. We axiomatise our operator by stating that in our setting, performing a stit action
is a one time-step procedure and therefore our operator obeys

〈
π, i,V

〉
|= Eα[ρ] ⇒〈

π, i,V
〉
|= ρ.

In order to have formal semantics for such an operator, a logical binding between 1)
the agent who sees to it that ρ happens and 2) the agent who can choose among available
actions at any moment in a setting and actually produces the set of actions needed to
realise such a fulfilment, is essential. As we will again see later in Section 4.3.3, it is
not in the scope of this thesis to provide specification and operationalisation of such

5In this thesis, we do not investigate the translation of continuous, real time, deadlines and complex
time intervals towards our simplistic model of time. While it is an interesting topic, representation of
time in reasoning models has been covered in different works [Fisher, 2008].

6First representations of the stit logic use the notation [α stit : ρ] or [α stit]ρ but we find Eα[ρ], defined
in [Dignum et al., 2005], more elegant and practical for our purposes.

110 4.3 Formalisation

a formal connection and keep the simple assumption that an agent automatically is
responsible for the situation to be brought about.

4.3 Formalisation

In this section, we present a proposal for a deontic logic for support for norm instan-
tiation via obligations parametrised by four states (conditions)7.

Before proceeding with the formalisation of our concepts, we introduce the normative
model. In order to be able to talk about normative reasoning performed by agents,
we need to place this inside a normative context. As described in Section 3.2, our
conceptual framework is an abstraction of elements needed to perform normative
reasoning. Therefore, by the term normative model we refer to an instance of our
framework:NormativeModel, as defined in Section 3.2. In the rest of the document we
assume the existence of such a normative model, denoting it as NM where necessary.

Definition 4.2. A Normative Model is defined as:

NM = 〈Roles, Agents, s0, Actions, Norms,Context〉

where Roles is a set of roles, Agents is a set of agents, s0 is the current system state,
Actions is a set of actions, Norms is a set of norms and Context is the framework
context, with all these elements as defined by the conceptual framework explained in
Section 3.2.

Furthermore, for the purpose of this formalisation, we assume the use of a first-order
language L as in Section 4.1. We also adopt the notion of state from the same section.

4.3.1 Norms

In this chapter we formally define a norm, adding elements for tracking of reparation
of violations.

Definition 4.3. We define a norm n as a tuple n = 〈r, f A
n , f M

n , f D
n , f R

n , timeoutn〉, where:

• rrr is the agent role the norm applies to (i.e. only agents enacting the role r will be
obliged to comply with instances of this norm).

• f A
nf
A
nf A
n is the activating condition of the norm

• f M
nf
M
nf M
n is the maintenance condition of the norm

• f D
nf
D
nf D
n is the discharge condition of the norm

7These conditions have been already in our framework (see Sections 3.2.6, 3.4) as well as in our
previous work on norm semantics inspiring our current formalisation, found in Appendix A.

Chapter 4: Normative Reasoning Using Temporal Control Rules 111

• f R
nf
R
nf R
n is the repair condition of the norm

• timeoutntimeoutntimeoutn is an optional number (considered ∞ in case it is absent) that represents
the upper-bound time limit for the reparation of a violation, taken into account
only after a violation and not before, and

• f A
n , f M

n , f D
n , f R

n ∈ L

If, for example, we wanted to model the following norm applying to all agents enact-
ing the citizen role Cz: “While Cz is driving, he is obliged to not during a red traffic light,
otherwise he will have to pay a fine with cost 100 before 50 units of time pass.”, the result
would be:

n = 〈Cz, {driving(Cz)},{¬crossed-red(Cz, L)},{¬driving(Cz)},{ f ine-paid8(100)},50〉

In order to convert this normative tuple into a deontic statement, Standard Deontic
Logic is insufficient. First of all, SDL – in its form O(A) – does not cover the possibility
of having conditional statements that determine when a norm starts being in force, an
issue that is tackled by Dyadic Deontic Logic [Prakken and Sergot, 1997] – O(A|B):
given B, A should happen. On the other hand, as seen in Section 3.4.1, our norm
lifecycle allows for the definition of checkpoints that indicate a normative discharge
or a timeout condition. In order to deal with them, we take inspiration from the
semantics of deadlines in [Dignum et al., 2005].

The deontic interpretation of the tuple in Definition 4.3 is done by means of the deontic
formula.

Definition 4.4. Given a normative model NM = 〈Roles, Agents, s0, Actions, Norms,
Context〉, the deontic interpretation of a norm n = 〈r, f A

n , f M
n , f D

n , f R
n , timeoutn〉 belong-

ing to Norms, with agent α in Agents, role r in Roles, such that enacts(α,r) is:

`NM O f R
n ≤timeoutn

(Eα[f M
n] � f D

n | f A
n)

The syntax of the operator proposed is similar to the obligation operator from the
semantics of the logics aforementioned: Dyadic Deontic Logic and semantics of dead-
lines. However, there are some notable differences. While the≤ used for f R

n ≤ timeoutn

corresponds to the deadline semantics [Dignum et al., 2005] (if timeoutn occurs, there
is a permanent violation), the � used in Eα[f M

n] � f D
n should rather be read as “ f M

n
should hold at all times at least until f D

n ”. Also, the conditional notation | used in
Dyadic Deontic Logic, which does not always have clear semantics in terms of tem-
porality, in the case of the operator proposed O(A|B) should be read as “from the

8Beside the fact that each time there is an infraction the fine has to be paid, we use a predicate
f ine paid that keeps no track of the different violations. We do this in order to keep the domain design
simple and avoid an excessive number of parameters. Alternatively, one could design the same predicate
to include extra parameters such as the traffic light L in order to indicate each individual infraction.

112 4.3 Formalisation

moment B happens, A should happen” rather than simply “given B, A should hap-
pen”9.

Therefore, the expression shown in Definition 4.4 is informally read as: “if at some
point f A

n holds, agent α is obliged to see to it that f M
n is maintained until, at least, f D

n holds;
otherwise, α is obliged to see to it that f R

n holds before timeoutn”. Note that in this informal
reading we are not dealing with norm instances yet. How we address this issue will be
explained in Section 4.3.2 and full semantics for the way operator O gets satisfied with
respect to the occurring norm instances will be given later, in Section 4.3.4. Following
the example,

For every agent Ag such that enacts(Ag,Cz):

`NM O f ine-paid(100)≤50(EAg[¬crossed-red(Ag, L)] � ¬driving(Ag) | driving(Ag))

informally read as: “if at some point Ag is driving, Ag is obliged to see to it that no red light
is crossed until, at least, Ag is not driving anymore; otherwise, Ag has to pay a fine of 100
before 50 units of time pass”. The semantics of this operator are presented in the rest of
this section.

It is important to remind here that, within our framework, we can model both obli-
gations and prohibitions, as prohibitions are modelled as a form of obligation (see
Section 3.2.6). 10

4.3.2 Norm Instances

Inspired from the discussion in Section 3.4.1, we have to address the following issues
when dealing with norm modelling into account:

1. Deontic statements do not express truth values related to a norm, but rather the
existence of a norm [Walter, 1996].

2. In order to check the compliance of a norm, its particular instances must be
tracked [Abrahams and Bacon, 2002],

A norm is defined in an abstract manner, affecting all possible participants enacting a
given role. In order to work with instances, we need to define a norm instantiation.
We consider a substitution θ as defined in Section 4.1. Whenever a norm is active,
we will say that there is a norm instance nθ

α for a particular norm n, an agent α and a
substitution θ.

9In some works in the literature, this is interpreted as “given B and as long as B happens, A should
happen” (e.g. [Prakken and Sergot, 1997]), while in other works it is interpreted in a way closer to our
reading (e.g. [von Wright, 1971]).

10In Section 4.3.2 we will actually see an example of prohibition modelled in our framework.

Chapter 4: Normative Reasoning Using Temporal Control Rules 113

Definition 4.5. Given a normative model NM = 〈Roles, Agents, IS, Actions, Norms,Context〉
and a norm n = 〈r, f A

n , f M
n , f D

n , f R
n , timeoutn〉 in NM, with α in Agents, r in Roles,

such that enacts(α,r) and a substitution θ, we define a norm instance nθ
α to be nθ

α =

〈α,r,θ f A
n ,θ f M

n ,θ f D
n , timeoutn〉, where:

• θ f A
n is fully grounded,

• θ f M
n , θ f D

n may be fully or partially grounded and

• timeoutn is a number representing the time limit

The reason that θ f M
n , θ f D

n may be partially grounded is that the substitution that
instantiates the norm – that is, θ such that θ f A

n holds – is considered in our model to
be the sufficient and necessary set of substitutions needed to fully ground f A

n .11

4.3.3 Norm Lifecycle

Although LTL as a formalism is suitable enough in terms of complexity for reductions
to monitoring and planning scenarios, and therefore for practical reasoning from an
institutional or individual perspective, there are intrinsic constraints that limit the
expressiveness of the framework.

More concretely, the norm instance lifecycle proposed in Figure 3.33 cannot be ex-
pressed in LTL. As proved in [Tauriainen, 2006], in order to reduce an automaton to
an LTL expression – and vice versa –, it necessarily has to be a self-loop alternating
automaton: free of loops that involve more than one state, i.e. only cycles that start and
finish in the same state and involve no second state are allowed.

This is an important constraint that prevents our model from having a loop between
the (A)ctive and the (V)iolation states. In other words, if we want to use LTL, the
lifecycle cannot have cycles that allow it to go backwards. Therefore, for the purpose
of our formalisation, we propose to adopt the more straightforward lifecycle shown in
Figure 4.1.

The main difference with respect to the automaton in Figure 3.33 is the handling of
violations. As there is no way back to an (A)ctive state anymore, from a (V)iolation
state there are only two options: either to repair the norm instance and subsequently
(D)ischarge it, or mark it as a (F)ailed if it has not been dealt with for a given amount
of time. This raises the issue of the norm instance not being able to indicate a sec-
ond violation while it is already violated, meaning that another violation cannot be
observed while it is already in a violation state. From an operational perspective,
this issue can be worked around by allowing the norm-aware system to create more
instances of the same norm if an instance is violated before a discharge.

11It can be the case that the set of variables used in f M
n and/or f D

n is larger than the cardinality of θ
though. Let us suppose, for example, that a norm is designed to be instantiated at all times while it is in
force. In that case, regardless of any contextual condition, f A

n will be set to >.

114 4.3 Formalisation

Figure 4.1: Self-loop alternating automaton-based norm instance lifecycle.

The arrow pointing from anywhere indicates an initial state and double circles repre-
sent final states. The non-dashed part of the figure indicates the states that we wish
to model by formalising the norm lifecycle of an instance, while the dashed part indi-
cates states that should not be reached during the norm lifecycle. In other words, the

dashed part of the figure indicates the unwanted failed state of the norm instance.

For a norm to have a deontic effect, it is required that the activating condition actually
happens at some future point. Additionally, either of the following three conditions
should happen:

• The activating condition never occurs so the norm never gets activated.

• Always, between the activating and discharge condition, the maintenance holds
(reached “discharged” state).

• The maintenance condition holds up to a point where it becomes false and then
a violation is permanently raised. In addition, the repair condition occurs later
(reached “discharged” state) before timeout is reached.

In this way we tie the maintenance of a condition to the violation of a norm and
therefore, the deontic effect of a norm can be described by the causal effect between
the maintenance condition and a violation in Definition 4.6.

Following what was discussed at the beginning of this section, deontic statements are
substantive in the sense that they do not express anything further than the mere ex-
istence of a particular norm or, in our case, of a norm instance. Therefore, we have
to distinguish between two statements that will co-exist in our semantics: 1) that a
certain norm instance exists, and 2) that a certain norm instance has been correctly
fulfilled/has failed. While the former refers to this substantive aspect, the latter pro-
vides a logical grounding in our model.

In order to give meaning to the substantive aspect, we define a specific operator O
with similar syntax to the norm operator O, which indicates the existence of a norm

Chapter 4: Normative Reasoning Using Temporal Control Rules 115

instance, an active instance produced from a norm in force. Additionally, we make
use of the Gödelisation operator d.e [Gödel, 1931] for naming norm instances in our
language. That is, pnθ

αq names the instance nθ
α and allows us to use it in formulas.

Let L be a standard first-order language for the formation of formulas, θ a variable
substitution (as described in Section 4.1), π =< s0, s1, s2, . . . > a sequence of states and
f ailed(pnθ

αq) a predicate belonging to L representing the failure of a norm instance nθ
α,

subsequently reaching the state (F).

We can now establish the semantic relationship between the lifecycle of a norm in-
stance and the fulfilment/violation of a norm as in Definition 4.6:

Definition 4.6. Causal semantics for the operator O

〈π, i,θ〉 |=Oθ f R
n ≤timeoutn

(Eα[θ f M
n] � θ f D

n | θ f A
n)

iff
〈π, i,θ〉 |=

G
(
¬ f A

n
)
∨[

¬ f A
n U
(

f A
n ∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′θ′ f D
n
])]
∨[

¬ f A
n U
(

f A
n ∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′ f R
n]
)])]

Definition 4.6 reflects the non-dashed part of Figure 4.1. This is because (F) is an
“unwanted” state and should be avoided when a norm is in force. The first line of
the temporal formula says that the activating condition actually never happens and
the execution does not incur in a violation throughout the execution path. This case
does not cause any change in the state of the system. The second line says that there
exists some substitution for the activating condition in the future (A), and that always
until a substitution raises an instance of the discharge condition, the maintenance
condition holds for all substitutions. No violation occurs throughout the execution
path. This case terminates the norm in a state of discharge (D). The rest of the lines
in the formula imply that there exists some substitution for the activating condition
in the future (A), and that at some later point a substitution makes the maintenance
condition not hold, thus making a violation (which remains thereafter) occur, leading
to a violation (V) state. In addition, another substitution makes the repair condition
happen at some future after the violation has occurred but before timeout occurs. The
norm terminates in a state of discharge (D).

While the failed state (F) (represented by the dashed part of Figure 4.1), in which the
timeout has occurred without the norm having realised the repair condition after a vi-
olation, is of no use when forming the logical grounding of the model, it might still be
useful when establishing the substantive aspect of the norm semantics. Therefore we
desire to give meaning to the failure of a norm with respect to its non-fulfilment. With
the previously defined operators O and O we can give a meaning to the fulfilment
and the failure of a norm instance in our model in Axiom 4.7:

116 4.3 Formalisation

Axiom 4.7. Relationship between a norm instance and its non-fulfilment seen as failure.

Given a normative model NM = 〈Roles, Agents, s0, Actions, Norms,Context〉 and a norm
n = 〈r, f A

n , f M
n , f D

n , f R
n , timeoutn〉, with α in Agents, r in Roles, such that enacts(α,r):

`NM O f R
n ≤timeoutn

(Eα[f M
n] � f D

n | f A
n)

and
〈π, i,θ〉 |= ¬Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

⇒
〈π, i,θ〉 |= f ailed(pnθ

αq)

Axiom 4.7 explicitly exposes the responsibility of an agent α to bring about the fulfil-
ment of a certain norm instance by attaching such agent to the parametrisation of the
subsequent failed predicate in case there is no discharge. In other words, if a norm in-
stance fails, it is possible to know who is to blame. However, grounding such concept
of responsibility to the logical level is not straightforward. There are many ways to
formally transport this to a lower level, such as organisational structure [Grossi, 2007],
institutional power [Jones and Sergot, 1996; Governatori et al., 2002], responsibility
delegation [van der Torre, 2003] or directed obligations [Dignum, 1999; Carmo and
Pacheco, 2000].

It is not in the scope of our work to make a choice in this respect; on the contrary:
at the operational level, we will assume that the ultimate responsibility lies with the
agent that is assigned to the instantiation of the norm according to its role. As an
immediate consequence of this choice, our semantics will not suffer from additional
complexity. Moreover, changing our semantics to accommodate a more fine-grained
definition of responsibility – again, out of the scope of our work – would have less
impact than having to replace any of the aforementioned options.

Therefore, at the logical level, there is no connection between: 1) who sees to it that
the norm instance is fulfilled, and 2) who produces the set of actions needed to realise
such fulfilment. This means that the only formal binding between an agent α and its
corresponding failures – i.e. the instantiations of the f ailed predicate – is the agent
part of the tuple defining the norm instance.

Another important thing to note at this stage is that violation is not explicit in the
temporal formulas. Instead, we implicitly express it in the third condition of the for-
mula in Definition 4.6 by allowing the maintenance condition to become false at some
point in time, after the norm instance has been activated. However, for monitoring
mechanisms it is necessary to include the notion of violation in operational terms, in
order to be able to detect such states throughout time. Also, in a norm status moni-
toring system, we cannot guarantee that a norm will be always fulfilled (following the
non-dashed states in the lifecycle), therefore we need to make sure that the failed state
is modelled too within the operational semantics.

Chapter 4: Normative Reasoning Using Temporal Control Rules 117

We do this by seeing the lifecycle defined in Figure 4.1 as an transition automaton.
Transition properties that define how the norm changes its status while events (world
changes that modify the predicates’ truthness) are occurring can be easily extracted.
We are interested in directly representing these transitions in operational terms as it is
useful when dealing with monitoring of norms’ status. The four states active (A), viol
(V), discharged (D), failed (F) are described in Definition 4.8:

Definition 4.8. Norm lifecycle predicates

(i) 〈π,0,θ〉 |= active(pnθ
αq) if 〈π,0,θ〉 |= f A

n ∧ 6 ∃θ′ : θ′ f D
n

and
〈π, i,θ〉 |= Xactive(pnθ

αq) if 〈π, i,θ〉 |= (X f A
n ∨ active(pnθ

αq)) ∧ X 6 ∃θ′ : θ′ f D
n

(ii) 〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

and
〈π, i,θ〉 |= Xviol(pnθ

αq) if 〈π, i,θ〉 |= viol(pnθ
αq) ∧ X 6 ∃θ′ : θ′ f R

n

(iii) 〈π, i,θ〉 |= Xdischarged(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq) ∧ X∃θ′ : θ′ f D
n

and
〈π, i,θ〉 |= Xdischarged(pnθ

αq) if 〈π, i,θ〉 |= viol(pnθ
αq) ∧ X∃θ′ : θ′ f R

n

(iv) 〈π, i,θ〉 |= X f ailed(pnθ
αq) if 〈π, i,θ〉 |= viol(pnθ

αq)∧ 6 ∃θ′ : F≤timeoutn θ′ f R
n)

(i) says that the norm remains in active status until there is no instance of discharge
condition occurring. (ii) says that the norm moves from the active to the viol state
and remains there if there is no instance of the maintenance condition. (iii) says that
the norm moves from the active to the discharged state if there is an instance of the
discharge condition occurring and that the norm moves from the viol to the discharged
state if there is an instance of the repair condition occurring. (iv) says that the norm
moves from the viol to the failed state if timeout occurs. We make a note here, that both
discharged and failed are non-persistent, meaning that if they become true, this lasts for
one state in the execution path. An example showing the lifecycle timeline and the
lifecycle predicates of a norm that gets violated at some point are depicted in Figure
4.2.

4.3.4 From Norm to Norm Instances

As discussed in Section 3.4.1, having formally defined instances, the compliance of
a norm will be stated based on the fulfilment of each of its instantiations. We say
that a norm has been complied with up to a certain time if and only if, each one of

118 4.4 Reduction to Deontic Logics

Figure 4.2: Norm Instance Timeline

At some point the activating condition f A
n becomes true for some substitution θ,

making the norm instance nθ
α active. After this, for some substitution θ′, maintenance

condition f M
n holds until some point where it becomes false. A violation is then

raised for the norm instance. When a substitution for f R
n makes the repair condition

true, the norm becomes discharged, and active ceases to hold, completing its lifecycle.
Note that while maintenance condition becomes true again at some point after the
violation has occurred but the norm still remains violated. This is because after a
norm violation occurs, the norm instance is considered to be violated independently
of the maintenance condition and the only way for it to cease to be violated is when

it gets repaired (and therefore discharged).

the instantiations triggered before this time have not been violated, where violated
means that there has been ¬ f M

n before f D
n ever happening. This definition can be

easily augmented to take into account more complex definitions of norm compliance,
e.g. [Wang, 2010; Milosevic et al., 2002; Bou et al., 2007].

Now we have the apparatus needed to connect the fulfilment of a norm and the ful-
filment of its instances, and give semantic meaning to the operator O proposed in
Definition 4.4. This is done in Definition 4.9.

Definition 4.9. Fulfilment of a norm based on the fulfilment of its possible instances

〈π, i〉 |=O f R
n ≤timeoutn

(Eα[f M
n] � f D

n | f A
n)

iff
∀θ : 〈π, i,θ〉 |=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

Informally: the norm is fulfilled if, and only if, for each possible instantiation of f A
n through

time, the obligations of the norm instances activated by f A
n are fulfilled.

4.4 Reduction to Deontic Logics

As we have discussed, our formalisation is founded on a practical norm lifecycle and
grounded onto a particular temporal logic that will allow us to implement it on al-
ready existing lightweight technologies. However, it is also important to show that
there is a connection between this formalisation and some subsets of deontic logics.

Chapter 4: Normative Reasoning Using Temporal Control Rules 119

The motivation behind this is to allow propositions expressed in these subsets into
our formalisation by defining transparent and simple reductions. This section ex-
plores some examples of such reductions, and we discuss the formal properties of the
resulting semantics.

First of all, we analyse the reduction to achievement obligations and maintenance obliga-
tions. Both are used in an indistinguishable manner in Standard Deontic Logics (SDL),
the main axioms of which are:

• K: O(A→B)→ (O(A)→ O(B))

• D: O(A)→¬O(¬A)12

• Necessitation: |= α⇒|= O(α)

In Dyadic Logic, a dyadic operator O(A|B) is used to indicate conditional obligation.
Axioms, as defined in [von Wright, 1971] are:

• K1: O(A∨¬A|B)

• K2: ¬(O(A|B)∧O(¬A|B))

• K3: O(A∧A’|B) == O(A|B)∧O(A’|B)

• K4: O(A|B∨B’) == O(A|B)∧O(A|B’)

• K5: P(A|B) == ¬O(¬A,B)

4.4.1 Reduction to Achievement Obligations

In achievement obligations a state has to be accomplished by an agent at some point
in the future: O(A). There is no activation, maintenance nor reparation. Therefore, A
can be seen purely as a discharge:

• f A
n ≡ >

• f M
n ≡ >

• f D
n ≡ A

• f R
n ≡ ⊥

In this context, our fulfilment formula is reduced, with respect to Definition 4.6, to:

Definition 4.10.

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ>] � θ f D

n | θ>)
iff〈

π, i,θ
〉
|= ∃j ≥ i,θ′′ :

〈
π, j,θθ′′

〉
|= f D

n

12As explained in Section 2.2.2.2.3 Von Wright defined axiom D as D: O(A)→ P(A) [von Wright, 1951].
However, other logicians prefer to write this as O(A) → ¬O(¬A) given that permission P is defined as
P(A)=¬O(¬A) [Hilpinen, 1971].

120 4.4 Reduction to Deontic Logics

The detailed extraction of the substitution can be found in Appendix C.1.1. Defini-
tion 4.10 fulfils axioms K and Necessitation, but not D. While this result might seem
counter-intuitive, there are some interesting implications that will be discussed in Sec-
tion 4.7.

4.4.2 Reduction to Maintenance Obligations

In maintenance obligations a state has to be maintained by an agent at all times: O(A).
There is no activation, discharge nor reparation. Therefore, A can be seen purely as a
maintenance condition:

• f A
n ≡ >

• f M
n ≡ A

• f D
n ≡ G(f M

n) 13

• f R
n ≡ ⊥

In this context, our fulfilment formula is reduced, with respect to Definition 4.6, to:

Definition 4.11.

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff〈
π, i,θ

〉
|= ∀θ′ : G(θ′ f M

n)

The detailed extraction of the substitution can be found in Appendix C.2.1. Defini-
tion 4.11 fulfils axioms K, D and Necessitation, so there is a valid reduction from our
formalisation to maintenance obligations in the context of SDL.

A direct consequence of having a valid reduction in which the axiom D is fulfilled is
that we can therefore safely assume that, if we define an operator F that represents a
prohibition as in [Hilpinen, 1971], where prohibition is defined as F(A)=O(¬A):

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff〈
π, i,θ

〉
|= ¬Fθ f R

n ≤timeoutn
(Eα[¬θ f M

n] � θ f D
n | θ f A

n)

13Because of the nature of SDL, there is no inherent mechanism that allows to define an end of the norm,
and therefore, we need a way in our reduction to indicate that the norm is active forever. Therefore, we
use G(f M

n) as the discharge condition. It can be read as: until the end of time, this norm instance is always
being maintained. An obvious consequence of this is that the norm will be never fulfilled – but, again, this
would never happen either in a maintenance norm expressed in SDL. However, failed instances will be
properly detected anyway.

Chapter 4: Normative Reasoning Using Temporal Control Rules 121

4.4.3 Reduction to Dyadic Maintenance Obligations

In dyadic maintenance obligations, a state A, which the agent has to maintain at all
times since the moment another state B occurs (written as O(A| B)) is declared. There
is no discharge nor reparation. Thus, A can be seen purely as a maintenance condition
and B as an activating condition:

• f A
n ≡B

• f M
n ≡A

• f D
n ≡ G(f M

n) 13

• f R
n ≡ ⊥

In this context, our fulfilment formula is reduced, with respect to Definition 4.6, to:

Definition 4.12.

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬ f A

n ∨ (∃j ≥ i :
〈
π, j,θ

〉
|= f A

n ∧ ∀j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= f M

n

]
∧∀i ≤ k < j,

〈
π,k : θ

〉
|= ¬ f A

n

The detailed extraction of the substitution can be found in Appendix C.3.1. Defini-
tion 4.12 fulfils axioms K1, K2, K3 and K4 [Hilpinen, 1971], so there is a valid reduction
from our formalisation to maintenance obligations in the context of Dyadic Deontic
Logic.

Similarly as in Section 4.4.2, the valid axioms of this reduction allow us to define an
operator F that represents the prohibition operator in our framework.

4.5 Example

In this section we describe an example which will be used to illustrate different aspects
of our approach to normative reasoning and the utility of our framework not only
throughout the rest of the chapter but also in Chapter 5.

4.5.1 Pizza Delivery Domain

The example models a pizza delivery use case. Whenever the pizza store receives a
delivery order, it assigns the delivery to a specific driver-agent. From the moment the
order is received, the pizza has to be delivered within a specific margin of time (which

122 4.5 Example

is normally half an hour). The driver picks up the pizza whenever it is ready and
delivers it. Since some time is spent in preparing the pizza, the agent normally has an
even stricter deadline for its delivery, depending on how much time has been spent
on the preparation. For that reason, we do not set a fixed time for the pizzas to be
delivered, instead we will use varying delivery time deadlines and we will see how,
combined with the norms, they influence the decision making of the agent.

The example is set on a particular existing area of Barcelona, the Eixample neighbour-
hood (Figure 4.3). The grid on which the agent moves comprises of streets and junc-
tions between them. As in most traffic simulation models, we set junctions to be the
primary element in the domain and model streets as connections between junctions.
Throughout this section all elements are described in the textual form of the elements
of Section 3.2. Predicate and action arguments are denoted with a ‘?’ in front of them
as it gives a clearer visual appearance. We will omit the definition of the low level
elements (ontological and contextual elements defined by the conceptual framework
in Section 3.2) as they are easily deducible from the context and the explanations. The
details of the example can be found in Figures B.1-B.5 in Appendix B.1.

Figure 4.3: Example Domain

The agent is always at some junction (an intersection of two streets) within the map
(vehicle at(?main,?street) predicate, with main indicating the street on which
the agent lastly was moving). The agent moves from one junction to another provided
that there is a street connecting them (connection predicate). For simplicity we
assume that the delivery is only done at junctions (and not in between junctions).
Still, in a more advanced model it is fairly easy to include delivery points at any
building on a street, provided we have a more detailed version of the neighbourhood
domain. Each street might have a directional (possibly bidirectional) way for the cars
to move. Each street has an associated speed limit .

Chapter 4: Normative Reasoning Using Temporal Control Rules 123

One special function that we distinguish in our example is p time (we refer to it as
p time because it is often a term reserved by several programming environments),
representing time. We consider that not all time steps have equal time duration, there-
fore time does not increase by one for each action taken (some transition from one
state to another). Instead, we give a duration flavour to each action, meaning that
time increases at the end of each action execution correspondingly. In reality, the
implementation of time in every case will be similar, since as we will see, time is rep-
resented by a simple function that changes its value at every action definition. We
consider p time to be more flexible since, e.g. in case of the existence of multiple ac-
tors, it might be a separate function for each of them. At the initial state, p time is 0
and with every action taken time increases accordingly. Moving from a junction to the
next requires time proportional to the speed of the vehicle. When an individual drives
with high speed (around 60 km/h), this time is 1 min, when he drives with medium

speed (around 40 km/h), this time is 1.5 min and when the speed is low (around 20
km/h), this time is 2mins. Delivering a pizza takes 3 minutes.

As in the real world, we also assume that the goal for an agent is to have the pizzas
delivered at their destination. Therefore, a solution to the problem will be a plan
which ends at a state where the agent has delivered all the pizzas that were to be
delivered. In our example the agent must make two deliveries. One at the junction
(corcega, casanova) and the other one at (rosello, urgell).

Having explained the main elements featuring in the example (when dealing from the
simplistic point of view where no norms are mentioned or applied yet), the model for
the actions MoveBetweenJunctions and DeliverPizza can be seen in Table 4.1.
The preconditions and effects contain logical expressions consisting of predicates,
functions with logical connectors such as and/or, logical equivalences etc., between
them.

Action MoveBetweenJunctions(?v, ?main, ?sideStreet1, ?sideStreet2,
?speed) represents the transfer of vehicle v from a junction to another. Before
the execution the vehicle is at some junction (of sideStreet1 and main) and af-
ter the execution the vehicle is found at another junction (of sideStreet2 and
main), the two connected by a main street. It is assumed that in the predicate
MovedBetweenJunctions models exactly this agent’s last transition. The action
might be performed with aforementioned different types of speed which can be low,
medium and high. The speed in which a vehicle is currently moving is represented
by the function vehicleSpeed. Note that the action physically allows moving either
way between junctions, even if there only is a single directional connection between
them.

Action DeliverPizza(?p,?street1,?street2) models the act of a person p de-
livering a pizza at a specific location, which is a junction between two streets, street
and street2. It can be performed under the condition that the agent has a pizza

124 4.5 Example

to deliver at this location (predicate hasPizzaFor) and results in the pizza being
delivered (predicate pizza delivered) at the location.

Action GetOffBike(?p,?v) models the simple act of a person p getting of the mo-
torbike v, and thus ceasing to be driving the vehicle.

M
ov

eB
et

w
ee

nJ
un

ct
io

ns

parameters: ?v ?main ?sideStreet1 ?sideStreet2 ?speed
precondition:

(vehicle_at(v,main,sideStreet1) or
vehicle_at(v,sideStreet1,main)) and
(connection(main,sideStreet1,sideStreet2) or
connection(main,sideStreet2,sideStreet1))

effect:
¬ vehicle_at(v,main,sideStreet1) and
¬vehicle_at(v,sideStreet1,main) and
vehicle_at(v,main,sideStreet2) and
(movedBetweenJunctions(v,main,someStreet,sideStreet1) ->
¬movedBetweenJunctions(v,main,someStreet,sideStreet1)) and

(movedBetweenJunctions,v,sideStreet1,someStreet,main) ->
¬movedBetweenJunctions(v,sideStreet1,someStreet,main)) and

movedBetweenJunctions(v,main,sideStreet1,sideStreet2) and
((speed=low) -> (p_time+=3) and (vehicleSpeed(v)=20)) and
((speed=medium) -> (p_time+=2) and (vehicleSpeed(v)=40)) and
((speed=high) -> (p_time+=1) and (vehicleSpeed(v)=60))

D
el

iv
er

Pi
zz

a

parameters: ?p ?street1 ?street2
precondition:
driving(p,v) and
(vehicle_at(v,street1,street2) or
vehicle_at(v,street2,street1)) and

hasPizzaFor(p,street1,street2)
effect:
pizza_delivered(p,street1,street2) and
pizza_delivered(p,street2,street1) and
¬hasPizzaFor(p,street1,street2) and
¬hasPizzaFor(p,street2,street1) and
p_time+=3

G
et

O
ff

Bi
ke

parameters: ?p ?v
precondition: driving(p,v)
effect: ¬driving(p,v) and p_time+=0.5

Table 4.1: Actions description, expressed in the textual form of the metamodel in
Section 3.2

Chapter 4: Normative Reasoning Using Temporal Control Rules 125

4.5.2 Norms

In order to add the norms in our example, we introduce two extra functions, on top
of p time. Firstly, the system maintains a penalty system for each individual driver
penalty points, or simply points) based on his or her ability (or inability) to
deliver pizzas on time. Each agent starts with an initial amount of 0 points. Fur-
thermore, an agent disposes of an amount of fine credits (it could be translated to
money). This factor is important since throughout the delivery simulation, as we will
see, fines might be imposed as a result of traffic violations. We assume an initial
amount of 0 units.

We assume that the weight for the three parameters p time, penalty points and
fine in our example varies, and throughout the experiments in this and the fol-
lowing chapter we will try various combinations and see how they result in dif-
ferent behavioural outcomes. The domain actions that model the reduction of the
factors penalty points and fine are PayFine1 and PayFine3 respectively, and
AugmentPoints for the penalty points, and the description for them can be
found in Table 4.2.

Pa
yF

in
e1 parameters: p

precondition: driving(p,v)
effect: fine_paid1(p) and fine(p)+=30

A
ug

m
en

tP
oi

nt
s

parameters: p
precondition:
effect: points_augmented(p) and penalty_points(p)+=10

Pa
yF

in
e3 parameters: p

precondition: driving(p,v)
effect: fine_paid3(p) and fine(p)+=30

Table 4.2: Repair actions description, expressed in the textual form of the metamodel
of Section 3.2

We now introduce in our example three norms (listed in Table 4.3). We assume the
existence of a role citizen and a person called sergio, who enacts this role. All three
norms address the agents that enact the role citizen. The first norm (norm1) concerns
wrong-way driving. Normally, this is an serious offence under the traffic law. But,
given that an agent might nonetheless be able to drive the wrong direction in a street,
the action is still physically possible. Given that, we introduce a norm stating that
whenever an agent causes such an infraction, this will result in the agent having to
have a fine paid. Another norm (norm2) indicates that whenever a pizza has been
ordered, the agent is obliged to deliver it within the specified time limit set by the
pizzeria. On the contrary case, the agent will have penalty points augmented. The

126 4.5 Example

norm1:Prohibited to go in opposite direction to traffic
rolesrolesroles citizen

modalitymodalitymodality Oa

f A
nf
A
nf A
n driving(p, v)

f M
nf
M
nf M
n

¬movedBetweenJunctions(v, main, street1, street2) or

connection(main, street1, street2)

f D
nf
D
nf D
n ¬driving(p,v)

f R
nf
R
nf R
n fine paid1(p) and ¬driving(p,v)

norm2: Obliged to deliver on time
rolesrolesroles citizen

modalitymodalitymodality O

f A
nf
A
nf A
n hasPizzaFor(p, street1, street2)

f M
nf
M
nf M
n p time < goalpizzatime(street1, street2)

f D
nf
D
nf D
n pizza delivered(p, street1, street2)

f R
nf
R
nf R
n points augmented(p) and pizza delivered(p, street1, street2)

norm3: Obliged to drive at less than the maximum speed permitted for each street
rolesrolesroles citizen

modalitymodalitymodality O

f A
nf
A
nf A
n driving(p, v)

f M
nf
M
nf M
n

¬(vehicle at(v, street1, street2) and

(speedLimit(street1) < vehicleSpeed(v)))

f D
nf
D
nf D
n ¬driving(p,v)

f R
nf
R
nf R
n fine paid3(p) and ¬driving(p,v)

Table 4.3: Example norms, expressed in the textual form of the metamodel of Sec-
tion 3.2

aThis norm is essentially a prohibition modelled as an obligation. As explained in Section 3.2.6,
prohibitions can be modelled as obligations, by negating the maintenance condition.

third norm (norm3) has to do with the speed of a vehicle. An agent cannot drive
faster than the speed limit of the street he is in. On the contrary case, he will receive a
fine to be paid. An example of how one of the norms, norm3 is represented in terms
of our conceptual framework can be found in Figure B.6 of Appendix B.1.

We assume that there are observers. These observe the environment for possible in-
fractions. Following the real-world conditions in our case, observers could be easily
introduced when monitoring the time which an agent takes to deliver a pizza, by the
use of a GPS device tracking his movement. Additionally, as happens in big cities,
CCTV cameras or police agents might exist at various spots within the city detecting
traffic infringements.

Chapter 4: Normative Reasoning Using Temporal Control Rules 127

4.6 Planning with Norms

Although Definition 4.8 is sufficiently expressive while implementing a monitoring
framework, it cannot be applied in a planning system. This is because most planners
allow modelling the transitions between states (actions) in a way such that there is
exclusive dependency on the values of the previous state’s properties. In this way,
for example the active() status of a norm cannot be easily expressed, since not only
does it need to be aware of the activeness at the previous state, but it also needs to be
aware of whether at the current state the discharge condition occurs. The use of extra
predicates such as previous() and current() that provide such functionality, allowing
to check whether formulas hold in current and previous states, is permitted in some
planning frameworks such as TLPLAN [Bacchus and Kabanza, 2000] but it proves to be
costly when extensively used14.

An alternative, on which we base our implementation, is to use Definition 4.6 and
therefore languages that support the use of LTL formulas to restrict the plans pro-
duced. Such an attempt is PDDL 3.0 [Gerevini and Long, 2006]. PDDL 3.0 specifica-
tion extends PDDL [Fox and Long, 2009] with strong and soft constraints (expressed
in LTL formulas) which are imposed on plan trajectories, as well as strong and soft
problem goals, which are imposed on a plan. Nevertheless, it appears to be insuffi-
cient when trying to capture the semantics that we use for the norm lifecycle mainly
due to two reasons:

1. it lacks the operator “until”, which would permit us to express the norm lifecycle
(e.g. a norm is violated when activated at some point, the maintenance condition
does not hold at some state after this, and, the discharge condition does not hold
at any state in between) and

2. a norm can be activated and discharged (and possibly violated) several times
during the execution of a plan, something not possible to be expressed in PDDL
3.0.

TLPLAN [Bacchus and Kabanza, 2000] on the other hand, applies LTL formulas (called
control rules) to a forward chaining search, reducing in this way the search path by
pruning paths that do not comply with the rules. TLPLAN is based on (STRIPS-like)
semantics that can be easily reduced to PDDL. Furthermore, TLPLAN supports opera-
tors such as F≤ (called ‘T-Eventually’ in TLPLAN), which we used when we defined the
norm lifecycle. We chose TLPLAN as it contains a complete, robust and rather fast im-
plementation, also allowing extra features such as existential and universal quantifiers.
We explain below how the norms are introduced into the planning mechanism.

14We performed some tests on several planner implementations where we checked if a formula held
in the current or previous states, and the results in terms of execution time were far worse than the ones
that we present in Section 4.6.6.

128 4.6 Planning with Norms

4.6.1 Plans and Actions

In classical planning it is assumed that the agent executing the plan is the only source
of change in the environment. As summarised in Section 3.2.5 actions specify what the
agents are able to perform and map worlds to new worlds (states). We use an extended
version of the standard STRIPS [Fikes and Nilsson, 1972] representation of the worlds,
as used in PDDL [Ghallab et al., 1998; Fox and Long, 2009] and ADL [Pednault, 1994],
which is considered to be the continuation of STRIPS, offering advanced semantics
for the representation of actions. In this representation each state is represented as a
complete list of the ground atomic formulas that hold. The closed world assumption
is employed, so that every ground atomic formula not in a states’s database is falsified.

Having language L, action α is defined as15 α =< Cprec,Ce f f ect > and Cprec, Ce f f ect

are sets of fluents or negated fluents from L. For two states si−1 and si we have a
transition from si−1 to si through α and write it as si = α(si−1) when si = si−1 ∪ {h|h ∈
Ce f f ect}\{l|¬l ∈ Ce f f ect}.

A plan, which we take to be a finite sequence of actions16, generates a finite sequence
of worlds (a path or trajectory). That is, a plan π = [α1,α2, . . . ,αm] generates a trajectory
τ =< s0, s1, . . . , sm > such that s0 is the initial world and si = α(si−1).

4.6.2 Types, Numeric Expressions, Conditions and Effects

ADL [Pednault, 1994] (and as a consequence most planners that implement similar
semantics) offers the possibility to express a type structure for the objects of a domain,
with a basic type Object being the default. In this way, actions can constrain their
arguments to specific types. An example of a definition of a type person and some
person john of that type (the type denoted by the ‘-’ symbol after the object) can be:

(:objects

john - person)

Numeric expressions [Fox and Long, 2009] (which allow for plan metrics) are formed
by using arithmetic operators to combine primitive numeric expressions. Primitive
numeric expressions are terms formed by applying domain functions to domain ob-
jects. Functions are defined by their name and argument types and they can only be
of type Objectn→ R, where n is the (finite) function arity. An example of a function
representing the amount of money a person possesses can be:

(money ?p - person)

15The action definition comes in accordance with the conceptual framework definitions given in Sec-
tion 3.2.5.

16The plan definition comes in accordance with the conceptual framework definitions given in Sec-
tion 3.2.7.

Chapter 4: Normative Reasoning Using Temporal Control Rules 129

ADL is expressed through a prefix syntax for all predicates. The arguments to pred-
icates or values of action parameters cannot include numeric expressions. Numeric
expressions can only appear in comparisons between pairs within a precondition.
Primitive numeric expressions might get updated within effects. This is done by as-
signment operations such as increase and decrease. Values must all be built from prim-
itive numeric expressions defined within a domain and manipulated by the actions of
the domain. They can represent quantities of resources, accumulating utility, indices
or counters. An example of an effect condition increasing the money the individual
‘john’ possesses by 100 could be:

(increase (money john) 100)

It has to be noted that according to each representation’s language specification (for
example PDDL 2.1 [Fox and Long, 2009] or TLPLAN [Bacchus and Kabanza, 2000]),
the syntax of types, functions, numeric expressions, conditions and effects can slightly
vary.

4.6.3 Calculation of Plan Cost

In ADL-derived planning domains (such as TLPLAN [Bacchus and Kabanza, 2000] or
PDDL 2.1 [Fox and Long, 2009] domains), actions can have an associated cost function
which might be combined with conditional effects. This allows for paths (plans) to
have a total cost. We include action costs in our framework in order to be able to
evaluate not only the norm conformance but also to calculate the most beneficial paths
while taking into account compliance with or violation and reparation of norms. As
mentioned in the previous sections, when defining what the norm repair (penalty)
state is, we require that any plan solution that violates a norm also takes the necessary
steps to achieve its repair state. Again, by giving the appropriate cost function to the
actions, the planner is able to determine the choice between a path that complies with
a norm and a path that violates it and afterwards compensates by reaching the repair
state. In this way, such complex reasoning over conformance to the soft constraints
imposed by norms becomes part of the planning problem rather than an external
issue.

4.6.4 The Normative Planning Problem

We are now able to define the exact nature of what normative planning is. In Defini-
tion 4.9 we gave the notion of a norm’s fulfilment with respect to the fulfilment of its
instances. We will use and apply this definition in order to formalise the problem of
means-ends reasoning with the influence of norms.

In our framework, normative planning is formalised as a planning problem in a do-
main where there are norms which acquire committing (obligation) force through

130 4.6 Planning with Norms

planning paths. Additionally, when the agent fails to comply with one, then he needs
to see to it that it gets repaired. Having that in mind, the problem then is to find such
a plan that the final state achieves the goal(s)17 and that there are no pending norms18

(they have all completed their norm lifecycle). We wish to compute only plans where
norms have fully completed their lifecycle since, from the moment obligations get
into force, they cannot indefinitely exist without being accomplished, as this would
remove the deontic weight that each norm holds19. In this way we force all norms that
are activated through the different trajectories to be either fulfilled or repaired to make
the agent conscious about the effects of each norm violation. In short, the planning
problem is defined as finding a plan such that:

• the final state achieves the goal,

• there are no pending norms.

Formally, given a normative model NM = 〈Roles, Agents, s0, Actions, Norms,Context〉,
a goal g (which can be a set of goals) we are looking for a plan π = [α1,α2, . . . ,αm]

generating the trajectory τ =< s0, s1, . . . , sm > where all goals are accomplished and
additionally the norms have followed the lifecycle:

• 〈π,m,∅〉 |= g

• For all norms n = 〈r, f A
n , f M

n , f D
n , f R

n , timeoutn〉 in Norms and all agents α in Agents
and roles in Roles such that enacts(α,r), we have that:

〈π,0〉 |= O f R
n ≤timeoutn

(Eα[f M
n] � f D

n | f A
n)

While there might be multiple plans that satisfy the above conditions, we are addition-
ally interested in the “preciousness” of them. By default the agent sets as criteria for
the preciousness of a plan the minimisation of the addition of all the numerical factors.
A more complex formula comprising of weights of importance for every factor might
be defined within the agent and passed on to the normative planner20.

The costs of a plan can be calculated in different ways. One can take the costs of
repair actions completely into account, but also halve them when, e.g. the chance that
someone discovers a violation is 0.5 and thus half the times repair actions do not have
to be executed. This of course depends on the agents own morals as the detection

17We could investigate a more general case where some of the goals are just objectives to be completed
not at the end of the plan, but at any intermediate state. Current planners such as TLPLAN can offer
this possibility through formulas of the type Fg, indicating that a goal should be satisfied at some point
during the execution path

18By the term “pending” we refer to non-fulfilled norms, with fulfilment being represented by the
operator O.

19It could indeed be the case that the goal state is reached before an obligation is accomplished. In that
case, the plan should make sure to reach the goal at some state and then “close” the pending obligations
by taking the necessary steps. That would require the computed path to have the goal state achieved at
some step and the norms having completed their lifecycle and becoming non-active by the final state.
This alternative representation of the planning problem can be created by including the reaching of the
goal, Fg, as part of the temporal formulas instead of forcing it to be the end state.

20In the rest of the document we will use the term normative planner to refer to a planner (whether this
is TLPLAN, used in this chapter or, Metric-FF, used in Chapter 5) running such a problem.

Chapter 4: Normative Reasoning Using Temporal Control Rules 131

chance might be of less interest to some agents. In addition, one can see the exercise
of creating a plan and choosing the one with lowest cost as just one way of choosing
the next action. It is important to note here that this does not mean that the plan will
always be executed completely. What happens in this case is to choose a next action
BECAUSE it is the first one of a possible plan with the lowest cost to achieve a goal.
But in principle the plan could be recomputed after each action, before a next action
is chosen. Of course the overhead for replanning would have to be taken into account
in the process but this is out of the scope of the thesis.

A formula “fun” that represents the agent’s total interests, incorporating the different
weights for each possible factor can be used to reflect the preciousness of a plan. Such
a formula can be expressed through our normative framework described in Section 3.2
as a function element of our metamodel. We reserve the special name fun to indicate
the specialness of this function so that the agent can process, translate and insert it to
the planning problem. In general fun will need to be defined by the designer together
with the rest of the metamodel, and carefully make sure that it reflects appropriately
and in a balanced way the factors that the agent wants to be taken into account. Con-
sequently, fun can be seen as the reflection of what the agent considers to be the best
optimisation setting for its various factors (and can be considered as its “character”,
since different weights will indicate different characteristics that he might have, for
example substantial weight put on a time factor could indicate an agent that desires to
be punctual).

4.6.5 Implementation via a Modified TLPLAN Algorithm

In order to create a normative planner, we represent the norms through Definition 4.6
as control rules within the planning domain. This implies that, for every norm, we
need to create such a control rule. The conjunction of all those rules will be the final
control rule. Figure 4.4 contains the part of the control rule for norm1. Figure 4.4 also
depicts our implementation of the normative planner. The problem file remains intact,
while for the set of norms, the control rule is created and added to the domain file.

With the use of the control formula, during the execution, the planner will only allow
paths where a norm never gets instantiated, or where a norm gets instantiated and
never violated or where a norm gets violated but repaired before the specified timeout
is reached. Therefore, the planner will never allow for a plan that includes a norm
instantiation to be violated and never get repaired to be produced. That is, it discards
the ones that do not conform to the norm lifecycle. The system allows for multiple
instantiations to be checked throughout the execution paths.

The TLPLAN algorithm [Bacchus and Kabanza, 2000] works by forward searching
through the state space, progressing the control formula through the sequence of states
generated during planning search. However, the progression algorithm executed by
TLPLAN is not complete. This is because while it might detect some falsification of the

132 4.6 Planning with Norms

Figure 4.4: Normative Planner using TLPLAN

control formula at some state (thus excluding branches from the search state), it can-
not reason about all possible sequences that “could” be generated (this would require
a theorem prover). Instead, it can only check if the control formula is falsified by the
sequence of states generated so far. Thus, progression often has the ability to give us
an early answer to our question, but it cannot always give us a definite answer. Given
just the current world it does not have sufficient information to determine whether or
not these eventualities will be achieved in the future. In other words, eventualities are
essentially useless for search control as performed by TLPLAN.

We performed some changes to the TLPLAN code, as we needed the planner to take a
closed world assumption in the temporal model and behave as if the temporal path
is finite, that is, that the time of the world ends at the point the plan ends. From a
practical point of view, the main change was done in the search algorithms. Whenever
a plan was found as being compliant with the planning goal, a final check was done
in which the temporal control formula was progressed to the end of time, that is, as
if the current plan ending time was the infinite. A parallel implementation for the
progression formula was therefore made which is only executed at each point where

Chapter 4: Normative Reasoning Using Temporal Control Rules 133

the planner has found a goal-fulfilling plan, with the following behaviour. At a state
reaching the goal(s):

• If a formula is Eventually(ψ), or T-Eventually(t,ψ), or Until(φ,ψ), it progresses
to ⊥. If one or both arrive at the end of the plan, that means that ψ has never
been true.

• If a formula is Always(ψ), it progresses to >. If an Always(ψ) arrives at the end
of the plan, that means that α has always been true.

• The rest of the formulas progress as usual.

Because we force the temporal formulas to > or ⊥, the progression of the whole tem-
poral control formula will have a forced evaluation to either > or ⊥. Our modification
therefore allows only for goal states where the progression formula has reached a true
state. Those states represent states where the goals have been achieved and at the
same time the norms’ lifecycle complied with our model.

TLPLAN additionally takes a formula (that is, the function fun mentioned in Sec-
tion 4.6.4, defined in a way to reflect the agent’s view over what the plans’ preciousness
consists of) as an input and uses it to determine the best plan that optimises the for-
mula. We can in this way assign values to the actions that bring about the different
norm conditions. Consequently the planner will be able to decide and pick between
alternative plans that conform to the norm lifecycle (e.g. one that never violates and
another that violates and repairs an instance of a norm) while additionally bringing
the most profitable outcome for the agent.

4.6.6 Experimental Results

In this section we present our experimental results, based on the pizza delivery exam-
ple21. As explained in Section 4.5 the three factors that count for an agent are p time,
penalty points and fine. While an agent needs to spend the minimum time de-
livering the pizzas, at the same time it needs to maximise its points and the money it
possesses. We assume that agent sergio starts with:

p time = 0
penalty points(sergio) = 0
fine(sergio) = 10

We use the symbols γp time, γpenalty points, γ f ine to symbolise the different weights that
we will be using for different experimental settings. Those three play a decisive role
in the path chosen by the normative planner as they represent the “character” of the
agent.

A naive approach would be to try to minimise the formula:

21The complete code for the example can be found in Appendix B.2, in Figures B.7 and B.8

134 4.6 Planning with Norms

fun = γp time∗p time + γpenalty points∗ penalty points(sergio) +γ f ine∗fine(sergio)

Still, given that p time, penalty points and fine have different range of values,
normalisation should take place. We use standard data normalisation with p time
being in the range of [0..30] (the upper bound for time is an assumption), fine being
in the range of [0..60] (30 for violation of each of norm1 and norm3), penalty points
being in the range of [0..10] (10 will be when a violation of norm2 occurs), and with
the normalised target scale for all three factors being [0..1]. As we wish each factor to
be taken into account even when having its minimum value (0), we add a constant (1)
to each of their normalised values. Therefore the formula that we will feed into the
planner to try minimising will be:

fun=γp time ∗ [1+ p time
30]+γpenalty points ∗ (1+ penalty points(sergio)

10 +γ f ine ∗ (1+ fine(sergio)
50)

The code for the formula is depicted in Figure 4.5.

1 (def-defined-function (fun)
(:= fun (+ (+ (* 1 (+ 1 (/ (p_time) 30)))

3 (* 1 (+ 1 (/ (penalty_points sergio) 10))))
(* 1 (+ 1 (/ (fine sergio) 60))))))

Figure 4.5: Metric formula in TLPLAN

With the two deliveries to be made, four possible scenarios occur, seen respectively
in Figures 4.6, 4.7, 4.8 and 4.9. In the scenarios, the compliance with or violation of
norm1 is visible (the second and third norm’s compliance scenarios are not simple to
depict in a graphical way since they involve time and the vehicle speed):

• The first scenario (route 1) shows how the agent will first deliver the pizza at
the (casanova, corcega) junction and then at (urgell, rosello), while
making a slightly longer route in order to avoid doing wrong-way driving and
thus violating norm1.

• The second scenario (route 2) shows how the agent will first deliver the pizza
at (urgell, rosello) and then at (casanova, corcega). This implies
that the route is far longer. It is the obvious choice when a fast delivery at
(urgell, rosello) is pending while there is plenty of time for the delivery
at (casanova, corcega).

• The third scenario (route 3) shows how the agent will first deliver the pizza at
(urgell, rosello) and then at (casanova,corcega), but for the second
one the agent chooses to go wrong way in order to arrive faster. It is a choice
when a fast delivery at (urgell, rosello) is pending while there is not too
much time for the delivery at (casanova, corcega).

• The fourth scenario (route 4) shows how the agent will first deliver the pizza at
(casanova, corcega) and then at (urgell, rosello), entering a street the
wrong way in order to arrive faster for the second delivery.

Chapter 4: Normative Reasoning Using Temporal Control Rules 135

Figure 4.6: Route Solution 1 Figure 4.7: Route Solution 2

Figure 4.8: Route Solution 3 Figure 4.9: Route Solution 4

We have executed several experiments with our modified version of TLPLAN [Bacchus
and Kabanza, 2000]. Executions were run on a Macbook Pro, running OSX 10.8.2,
processor of 2.9GHz Intel Core i7, and 8GB RAM memory. The execution results can
be seen in Table 4.4:

• When there is just enough time for both deliveries to be made (experiment 1),
the agent will choose to make the route 1 in Figure 4.6, without having to violate
any norm.

• When there is just enough time for the delivery at (urgell,rosello) to be
made and enough time for the delivery at (casanova, corcega) (experiment
2), the agent will take the long route 2, delivering first at (urgell, rosello)
and after at (casanova, corcega), as in Figure 4.7. But if time is slightly more
pressing for the delivery at (casanova,corcega) (experiment 3), the agent will
choose to take the shorter route 3, entering the wrong way in the street corcega.

• When time is pressing for both deliveries and it is obvious that the agent cannot
make it without either violation of norm1 and norm3, given the condition that he

136 4.6 Planning with Norms

id flp time flpenalty points flfine tdel1
a tdel2

b route v1
c v2

d v3
e cost

1 1 1 1 35 29 1 - - - 3.616
2 1 1 1 21 9 2 - - - 3.766
3 1 1 1 17 9 3 x - - 4.05
4 1 1 3 8 14.5 1 - x - 6.616
5 1 1 1 8 10 4 x - x 4.416
6 8 1 2 10 7 1 - x x 16.866
7 13 1 2 10 7 4 x x x 24.416

Table 4.4: Execution Results

amaximum delivery time for pizza delivery at (casanova,corcega)
bmaximum delivery time for pizza delivery at (urgell,rosello)
cviolation of norm1 (no wrong-way driving)
dviolation of norm2 (deliver pizzas on time)
eviolation of norm3 (comply with speed limits)

really desires to avoid fines (experiment 4) he might simply choose to not deliver
on time, resulting in him deliberately violating norm2. In a similar pressuring
situation (experiment 5) but where he values equally all factors, then he might
choose to take the route 4 in Figure 4.9.

• When time is pressing for both deliveries (experiments 6 and 7), making it ob-
vious that the agent will not arrive on time for both, the amount of importance
that the agent gives to time against the fine is crucial. If the agent really values
his time, then he chooses not only to speed up, violating norm3 (experiment 6),
by taking route 1 (Figure 4.6), but also to short cut, by taking route 4 (Figure 4.9)
and driving the wrong way (experiment 7).

The main drawback of the approach is that it is highly time consuming. TLPLAN gives
the option to choose the maximum number of states searched before it fails to find
a solution. The executions were performed without the use of heuristics22 and most
of them required the search limit to be set to over 100.000 states and in some cases
even 1.000.000 states in order to return valid results. This resulted in execution times
up to 5 minutes (and in some cases did not get to terminate), forcing us to create
several files with subsets of the control rule, run them individually and then manually
compare the results to get the most profitable plan. This serious disadvantage is dealt
with in Chapter 5, where we modify the norm semantics and provide an advanced
implementation which overcomes the barrier of time.

22Although the design of proper heuristics could potentially improve the efficiency of the search al-
gorithm, we were not interested in the introduction of such heuristics, as these are domain-specific and
therefore we would need either a human designer to carefully set up these heuristic functions for ev-
ery domain, or ensure all norm-aware agents are capable of creating (by some automatic method) these
domain heuristics from a norm specification.

Chapter 4: Normative Reasoning Using Temporal Control Rules 137

4.7 Discussion

This chapter has presented work on the formal specification and development of a
framework that enables modelling a deontic formalisation through temporal logic,
in order to apply it in an agent’s means-ends reasoning. The framework tackles at
the same time three important problems related to the practical materialisation of
norm-aware systems: a clear connection between the deontic level and the operational
semantics, the formalisation of explicit norm instances, and the unambiguity of se-
mantic interpretation across implementation domains. We have done so by building,
based on and using the elements of the metamodel of the conceptual framework pre-
sented in Chapter 3, a connection between deontic statements and temporal logics,
and between temporal logics and planning rules. Our work shows that from the latter
representations the translation to the implementation level is also clear.

4.7.1 Contributions and Extensions

A contribution of this chapter has been the modification of the TLPLAN progression
algorithm. While this does not completely solve the problem of fully identifying the
achievement of eventualities in a formula, it manages to get round it with the reason-
able (for our purposes) assumption that paths are finite and that it is of no interest
what happens after the final state of a plan. Unfortunately we are not aware of any
other planner implementations that successfully apply LTL control rules over paths.

Until recently, the trend when creating reasoning methodologies over norms (and
even more, in works that are based on the BDI model) had been to use precomputed
plans or planning rules that act as templates, which, activated by some condition,
produce plans for execution [Meneguzzi and Luck, 2008, 2009b; Oren and Meneguzzi,
2013]. We view this approach as slightly disadvantaged since it does not allow enough
flexibility as precomputed plans can be rigid and, in some cases, even unfeasible.
Besides, in the last years, it is becoming more obvious that, independently of the
norm-aware aspect of the agent’s reasoning, practical agent frameworks need more
advanced methods for handling their course of actions such as planning mechanisms
and many of the (same) researchers have started looking into this direction [Oren
et al., 2011; Oh et al., 2011]. For these reasons we find the use of a runtime planner
taking into consideration the agent’s current state of affairs, capabilities and objectives
not only justifiable but also necessary and consider this choice of ours to use planning
adapted to our normative problem’s needs innovative.

A great deal of the research work that has similar aims to ours focuses on assign-
ing labels to transition systems (either to states or to transitions) [Kollingbaum, 2005;
Craven and Sergot, 2008; Hindriks and van Riemsdijk, 2013]. Although many of these
approaches offer an interesting way of defining and even deciding what execution
paths to avoid or exclude, in most cases it is not until an agent has already reached

138 4.7 Discussion

the stage of picking the next action that such a restriction will be apparent. For this
reason, they have somewhat weak potential to foresee distant future norm deviations
and therefore lack the ability to provide an in advance complete solution towards
reaching the agent’s goals. On the other hand, we design our semantics and imple-
mentation in a way that violations far ahead can be expected, resulting in an informed
choice of course of action since the beginning, taking the responsibility to repair where
necessary.

Recent work of Alechina et al. [Alechina et al., 2013] is closely related to ours as far
as the notions of norm compliance or violation and repair are concerned, but also
in the use of temporal formulas over execution paths to capture norm compliance.
As they also did in [Alechina et al., 2012], they apply a conditional norm formalisation
consisting of conditions similar to our activating, discharge and repair condition, while
the deontic statement is a state to be achieved (or avoided respectively in case of
prohibition) at some point before the discharge and, on the contrary case, a violation
sanction to be carried off. The authors proceed to create a model checking system
that implements normative update of norms. Having a transition system, norms are
verified with respect to a path expressed in CTL and a given multiset representing
the allowed number of sanction occurrences. Being an interesting advance towards
normative validation, the approach nevertheless compared to ours, has several main
disadvantages: 1) It does not perform any kind of reasoning, which would allow the
agent to pick or even better construct profitable execution paths. Instead, it mainly
focuses on the verification aspect of norm compliance. 2) While an interesting and
flexible representation of norms is used, only a brief mention of instances is made,
and no real weight is given on how these might be applied on a practical level, and
how norm verification can be made over several of them.

The proposal presented in this chapter might be extended in several respects. As
opposed to the definitions in Section 4.3, a different representation of norm condi-
tions could be dealing with events (actions) performed. That would mean that instead
of having predicates (i.e. facts) defining the current state of affairs, the activating,
discharge, maintenance and repair conditions would include actions performed (for
example a discharge condition being DeliverPizza(corcega,paris)). Neverthe-
less, in order to do so, we need to establish a proper grounding with a semantics of
events, such as event calculus.

In our thesis, we follow the traditional way of handling time, in order to reduce the
complexity of our framework, assuming that time corresponds to time steps in a plan.
However, it is not always realistic to do so. An alternative but more complicated
way of modelling time would be to implement a clock, keeping track of time in the
environment. Individually, each agent will have its own representation of time or a
timer, which could be different to the one of the environment. JACK agent platform
[Winikoff, 2005] is an example of a framework that contains three different types of
clocks. In the case of clock, our framework semantics (in particular the formulas and
state descriptions) need to be adjusted to include and handle the real time element. In

Chapter 4: Normative Reasoning Using Temporal Control Rules 139

[Aştefănoaei et al., 2010] the authors make an attempt to model and give semantics to
time when dealing with multi-agent systems and they present some interesting ideas
that could be added to our framework.

Furthermore, we do recognise that the constraints on the expressiveness of the norm
lifecycle automaton from Figure 4.1 are quite limiting. Different formalisms could
allow us to work with a version of the lifecycle closer to the one depicted in Figure
3.33, probably in a logic framework different to the chosen LTL one. In order to tackle
the restrictions that occur from the expressiveness of LTL, as well as the performance
issues that occur when planning with it, in the next chapter we propose an alternative
approach, based on an extended version of the norm formalism.

4.7.2 Revisiting Requirements

Table 4.5 summarises the requirements covered by the framework presented in this
chapter. As we can see, the normative reasoner, can only perform a one-time delib-
eration, and since we have not had it yet integrated into an agent framework, the
environment change (R1.5) cannot be taken into account. For the same reason, tool
support (R4.5) is not yet provided. Also, the relatively slow execution time results
indicate that R4.7 and R4.8 cannot be guaranteed.

Req. Description Status Justification

R1.1 Deliberative, means-end, norm-
oriented reasoning mechanism

3 We apply a planning mechanism that receives norms in the
form of path control rules.

R1.2 Decision making process
guided by user preferences

3 The planning mechanism supports action costs and tries to
maximise the overall value of the plan, according to the cri-
teria set by the agent.

R1.3 Goal driven decision making 3 The planner performs its planning algorithm trying to
achieve some goals. These goals are the agent’s goals.

R1.4 Agent capabilities specification
accommodated by framework

3 The agent capabilities can be seen as the possible actions
to be performed. The action language used supports action
descriptions.

R1.5 Adjust in case of relevant envi-
ronment change

7 This feature is not covered, as in this approach we just de-
scribed a one-time normative planning execution. However,
if accommodated within an agent framework, it is possi-
ble to have a mechanism that adjusts to the environment
change.

R1.6 Norm conflict toleration 3 The formalisation used takes into account norm conflicts.
The normative planning problem definition comes up with
a solution possibly containing norm violations, but that is
most profitable for the agent according to the criteria set.

R2.1 Full domain/environment defi-
nition

37 The domain representation is based on ADL, a language that
permits the representation of actions and domain change.
However, in this chapter we have made no distinction be-
tween the agent’s representation of the domain and the envi-
ronment, as the framework is not integrated within an agent
environment yet.

R3.1 A well defined normative
model allowing the clear and
unambiguous interpretation of
norms on a operational level

3 The formalism presented in this chapter provides a solid
normative model and the definitions of norm compliance
and of the normative problem provide a functional interpre-
tation of norms.

140 4.7 Discussion

R3.2 Mechanisms for agent be-
haviour monitoring of norms

37 This mechanism has not been implemented but the formal-
ism is created in a way that monitoring can happen. More
on a monitoring mechanism based on the same semantics
can be found at [Álvarez-Napagao et al., 2010; Aldewereld
et al., 2010].

R4.1 Agent-oriented architecture 3 Our formalism addresses and can be integrated within an
agent-oriented architecture, where agent capabilities and
preferences are seen as and translated to domain actions.
The resulting plan will serve as a plan to be executed by the
agent.

R4.2 Open standards support 3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which is openly accessible.
Furthermore, the actions’s representation in TLPLAN is
ADL-based, a widely used standard in the planning com-
munity.

R4.3 System platform-independent
model

3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which enables various trans-
formations and thus interoperability with other frameworks.

R4.4 Strong focus on semantics at do-
main, agent context, ontology,
normative level

3 The formalisation (Normative Model, norm fulfilment,
norm instances) provides a clear and functional understand-
ing of all these elements.

R4.5 Tool Support for norm and do-
main representation

37 A tool for norms representation is provided, since the meta-
model is defined in Eclipse Modelling Framework (EMF).
However, no tool is provided for the domain representa-
tion and the designer needs to express the TLPLAN domain
knowledge by hand.

R4.6 Support for multiple standards
and extensibility

3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which enables various trans-
formations and thus interoperability with other frameworks.

R4.7 Soft real time performance 7 As we have seen in Section 4.6.6, the results can get costly.
For this reason, we do not see this requirement as satisfied.

R4.8 Reasoner’s response time prior-
ity over optimality

7 Our experiments with TLPLAN were performed without the
use of heuristics. TLPLAN provides the option to use a max-
imum number of worlds (states) explored before it termi-
nates the execution. However, this does not fulfil the time
priority over optimality, given that in most cases setting a
low limit of worlds returns no result.

R4.9 Validity 3 In our case, validity translates to the the planner providing a
correct solution to the planning problem specified [Ghallab
et al., 2004]. Given that the TLPLAN algorithm ensures the
correctness of the plan returned, this requirement is fulfilled.

Table 4.5: Requirements Analysis

The requirements not complied with and especially the execution time limitations,
can serve as a motivation to the next chapter’s proposal, where a faster mechanism
is developed and integrated within an agent environment, providing the appropriate
tools for the agent domain representation.

Chapter 5

Practical Normative Reasoning with Repair
Norms and Integration into a BDI Agent

In Chapter 4 a proposal for expressing the norm’s lifecycle by means of temporal rules
that can impose restrictions on a planning domain was presented. The experimental
results, promising as they might be, have shown that it is not always feasible to have
reasonable execution time.

Additionally, while the norm representation (Section 4.3.1) and its lifecycle (Section 4.3.3)
set a good semantic grounding, they are bounded by some issues:

• A specific instance can only be created once, since the lifecycle permits the acti-
vating condition and discharge condition to occur once each.

• The fulfilment of a norm is considered to have occurred whenever the instances
do not get activated or their discharge condition (or repair in case of violation)
occurs. However, on a practical level, setting as an objective to have instances
fulfilled in this way might be counter-intuitive, as in real life, norms that pos-
sibly never reach a discharge point (a point where one is not bound anymore
to them) exist. Therefore, we would like to be able to somehow include norms
in a practical framework and allow them to influence the decision making pro-
cedure, without leading to dead-ends (we recall that in Section 4.3 an activated
norm instance will need to get discharged at some point within the execution
path that leads to the goal).

• A repair condition does not always seem sufficient to be able to handle the
violation of a norm. There exist real-life scenarios where some norm is violated
and a new norm comes into force from the violation of the previous one, and, if
the latter is violated, an even newer norm comes into force, etc. Such situations
lead to multiple layers of norms and violation handling norms, which, using the
representation of Section 4.3 are impossible to model.

In this chapter we aim to tackle the above issues. More precisely:

• We modify and include into our model more complex norm representations
(which extend the Chapter 4 representations) that contain primary norms as

141

142 5.1 Formalisation

repair norms (that might also contain their own repair norms), an idea briefly
explained back in Section 3.4.3. The new formalisation also allows for multiple
norm violations to occur throughout the lifecycle of a norm instance, giving the
model more flexibility.

• We redefine the normative planning problem according to the new formalism.
This time we use a different planner, Metric-FF and translate the problem to a
PDDL domain and problem, to be solved by the planner. The new approach
results in faster execution times.

• We then integrate our new normative planner within an existing BDI agent
framework, 2APL. In order to do so, we need to provide a correspondence from
and to the normative elements (norms, actions, plans) and the 2APL language
elements and show how this is done. Additionally, the lifecycle of the agent de-
liberation mechanism is modified to include the normative reasoning performed.
Such a modification must take into account cases where not all goals can be
reached and possible modifications in the goals or plans already being executed.
We also show how this is done.

The rest of the chapter is structured as follows. A formalisation of the planning and
normative model is provided in Section 5.1. Section 5.2 describes how the model is
implemented by translating it into PDDL and presents the experimental results for this
new implementation based on the pizza delivery use case scenario. Section 5.3 gives
a detailed description of how the normative reasoner is integrated in the 2APL multi-
agent environment and Section 5.4 discusses the overall results and contributions of
the chapter.

5.1 Formalisation

As explained in Chapters 1 and 3, our motivating force is how to deal with decision
making and planning within normative environments. How can we represent domain
knowledge and the normative influence so that the agent simulates a “natural” plan-
ning process? Similarly to Section 4.3 we describe our new norm semantics that will
lead to the resolution of the issues occurring from the previous approach. Like we did
in Section 4.3, we assume again the existence of a normative model NM, defined as in
Definition 4.2.

5.1.1 Norms

The operational semantics follow our work on norm lifecycle semantics presented in
Section 4.3. To ease operationalisation, our norm representation is a tuple containing
a deontic statement and the conditions for norm activating, discharge and violation.
Again, the deontic operator of the deontic statement expresses the deontic “flavour”
of the norm, the activating, maintenance and discharge conditions are specified as

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 143

(partial) state descriptors, denoting the conditions that express when the norm gets
activated, violated and discharged. They add operational information to the norm, to
simplify the verification and enforcement of the norm.

In essence, when a norm has been activated, has not yet been discharged and the
maintenance condition is not true, a violation of the norm happens. Whenever a norm
is violated, the norm continues to be active but in addition a norm violation triggers
the activation of a repair norm (see Figure 5.1). In the figure, after its instantiation, an
instance of norm n1 follows its lifecycle (top part of the diagram). In case a violation
occurs (its maintenance condition f M

n1
becomes false) the instance passes to a violation

state (V) and at the same time an instance of a second norm n2 gets activated (middle
part of the diagram). The latter now follows its lifecycle independently of the status
of the instance of n1. If a violation of the second instance occurs, then this, in its turn
passes to a violation state and at the same time an instance of a third norm n3 occurs
(bottom part of the diagram). A layered dependency of norms, as in Figure 5.1, where
one might be considered to repair another (since it gets activated whenever a violation
of the previous one occurs) might in theory include infinite norms.

An important restriction explained in Section 4.3.3 is that LTL representation does
not allow loops to exist within a transition model. However, in this chapter we lift
this constraint as our intention is to be able to create a more flexible lifecycle model
which more realistically fits our needs and overcomes the issues explained in the
beginning of the chapter. Due to this, it is possible to make a relaxation on the way
a violation occurs and persists throughout time. In Section 4.3 a violation occurs and
remains throughout the rest of the norm instance’s lifecycle, meaning that whenever a
violation occurs, it cannot be lifted again. However, this does not have to be the case.
In a more relaxed approach a violation might occur whenever maintenance condition
ceases to hold and remain until the maintenance condition starts to hold again. This
might give rise to a violation of the same instance multiple times within its lifecycle.
This is shown in Figure 5.1, where arrows from (V)iolation to (A)ctive were added.

As explained earlier, a repair norm comes to life by the violation, and therefore the
rise of the viol property, in a norm’s lifecycle. Nevertheless, once a norm is violated,
we want its repair norm to get activated only when the viol first occurs. The problem
though is that viol is a property that is durative, in the sense that it keeps holding
while the norm is violated while, on the other hand, in the activating condition of
the repair norm we need to express the exact moment of the violation, in order to
prevent the repair norm from being constantly activated whenever a norm is violated.
For this reason, we use an additional predicate prev viol to indicate that a norm was
previously (in the previous time step) violated. Then, for a repair norm nrep of a norm
n, the activating condition could be viol(n)∧¬prev viol(n). If additionally there exists a
repair norm nreprep of the repair norm, its activating condition would respectively be
viol(nrep)∧¬prev viol(nrep). Our main first order language L from which the activating,
discharge and maintenance conditions are constructed is now enriched to include the
predicates viol and prev viol and we call it L′.

144 5.1 Formalisation

Figure 5.1: Layered norms (repairing each other)

We emphasise that, as discussed in [Álvarez-Napagao et al., 2010], this kind of tuple
representation including norm activation, discharge and maintenance are as expres-
sive as conditional deontic statements with deadlines (such as the one presented in
[Dignum et al., 2005]).

It is also important to note that what changes from the formalisation in Section 4.3 is
that the notion of repair is now separated from the norm. Another important feature

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 145

of this separation is that once a norm is discharged, it can pass to be instantiated and
thus activated anew. This is also an effect of allowing loops within the norm lifecycle,
in contrast to the approach of Section 4.3. The added arrow from the (D)ischarge state
to the (A)ctive state in Figure 5.1 indicates this change in the formalisation. Below we
define the set of norms N:

Definition 5.1. Given a first order language L and its enriched language L′ with
predicates viol and prev viol, we define a norm n to be n = 〈r, f A

n , f M
n , f D

n 〉1, where r is
the role it applies to and f A

n is in L′ and f M
n , f D

n are in L.

• The activating condition f A
n specifies when a norm becomes active, i.e. the state

of affairs in which the norm is triggered (and must henceforth be checked for
completion/violation).

• The discharge condition f D
n specifies when the norm has been discharged, i.e. no

longer has normative force.

• The maintenance condition f M
n is needed for checking violations of the norm; it

expresses the state of affairs that should hold all the time between the activation
and the discharge of the norm.

Following the above representation, the norms of the pizza delivery example would
now become three main norms and three repair norms as in Table 5.1. norm1 would
be that one is obliged to follow the direction of the traffic (cannot go the wrong way),
norm2 would be that the delivery of each pizza should be made within the time
limit and norm3 would be that one must drive with less than the maximum speed
permitted for each street. The repair norm for each one, norm1-rep, norm2-rep and
norm3-rep respectively, would represent the repair condition to be achieved in case of
violation.

The way Definition 5.1 is given permits us to construct a hierarchical set of norms,
where a norm might be a primary norm (meaning that its activeness does not depend
on any other norm) or a repair norm (meaning that it will get activated whenever
a violation of another norm occurs). Such a layered set of norms might include as
many norms as desired by the designer. As a rational consequence, the final layer of
norms should have the maintenance condition set as true, since sequential violations
(violation of a norm, and of its repair norm and of the repair norm of the repair
norm etc.) should lead to some final repair norm that must always be complied with.
Otherwise, the contrary case would result in a system where the final repair norm in
a chain of repair norms would have the possibility to be violated, but where no other
repair norm would exist to handle it, and therefore, the consequences of its violation
would be nonexistent. Note that in Table 5.1 the repair norms norm1-rep, norm2-
rep and norm3-rep of the pizza delivery example, the maintenance condition is true
meaning that they cannot be violated.

1In this definition, timeoutntimeoutntimeoutn is not present anymore. See Section 5.1.4 for an extended discussion on
this.

146 5.1 Formalisation

norm1:Prohibited to go in opposite direction to traffic
rolesrolesroles citizen

f A
nf
A
nf A
n driving(p, v)

f M
nf
M
nf M
n

¬movedBetweenJunctions(v, main, street1, street2) or

connection(main, street1, street2)

f D
nf
D
nf D
n ¬driving(p, v)

norm1-rep
rolesrolesroles citizen

f A
nf
A
nf A
n viol(norm1) ∧¬prev viol(norm1)

f M
nf
M
nf M
n true

f D
nf
D
nf D
n fine paid1(p)

norm2: Deliver on time
rolesrolesroles citizen

f A
nf
A
nf A
n hasPizzaFor(p, street1, street2)

f M
nf
M
nf M
n p time < goalpizzatime(street1, street2)

f D
nf
D
nf D
n pizza delivered(p, street1, street2)

norm2-rep
rolesrolesroles citizen

f A
nf
A
nf A
n viol(norm2)∧¬prev viol(norm2)

f M
nf
M
nf M
n true

f D
nf
D
nf D
n points augmented(p)

norm3: Must drive with less than the maximum speed permitted for each street
rolesrolesroles citizen

f A
nf
A
nf A
n driving(p, v)

f M
nf
M
nf M
n

¬(vehicle at(v, street1, street2) and

(speedLimit(street1) < vehicleSpeed(v)))

f D
nf
D
nf D
n ¬driving(p, v)

norm3-rep
rolesrolesroles citizen

f A
nf
A
nf A
n viol(norm3)∧¬prev viol(norm3)

f M
nf
M
nf M
n true

f D
nf
D
nf D
n fine paid3(p)

Table 5.1: Example norms

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 147

Below we analyse the deontic interpretation of the newly defined norm. As before, the
deontic interpretation of the tuple in Definition 5.1 is done by means of the deontic
symbol O.

Definition 5.2. Given a normative model NM = 〈Roles, Agents, s0, Actions, Norms,Context〉,
the deontic interpretation of a norm n = 〈r, f A

n , f M
n , f D

n 〉 belonging to Norms, with agent
α in Agents, role r in Roles, such that enacts(α,r) is:

`NM O(Eα[f M
n] � f D

n | f A
n)

The syntax of the operator O proposed is similar to the obligation operator from
Section 4.3.1. This can be informally read as: “if at some point f A

n holds, agent α is obliged
to see to it that f M

n is maintained”. Note that in this informal reading we are not dealing
with norm instances yet. How we address this issue, along with the semantics of this
obligation operator, will be explained in Section 5.1.4.

5.1.2 Norm Instances

We define anew the norm instances, in order to give meaning to the normative plan-
ning problem. We use the term θ to denote a substitution. nθ

α is the norm n with the
substitution θ applied to it.

Definition 5.3. Given a normative model NM = 〈Roles, Agents, IS, Actions, Norms,Context〉
and a norm n = 〈r, f A

n , f M
n , f D

n , f R
n , timeoutn〉 in NM, with α in Agents, r in Roles,

such that enacts(α,r) and a substitution θ, we define a norm instance nθ
α as nθ

α =

〈α,r,θ f A
n ,θ f M

n ,θ f D
n 〉, where:

• θ f A
n is fully grounded, and

• θ f M
n , θ f D

n may be fully or partially grounded.

5.1.3 Norm Lifecycle

We now introduce the properties that will help us with the implementation. As said
in the previous sections, the prev viol indicates that there has been a violation in the
previous state. We take the properties of Definition 4.8 and adjust them accordingly.
Again, we make use of the Gödelisation operator d.e [Gödel, 1931] for naming norm
instances in our language, with pnθ

αq naming the instance nθ
α.

Definition 5.4. Norm lifecycle predicates

(i) 〈π,0,θ〉 |= active(pnθ
αq) if 〈π,0,θ〉 |= f A

n ∧ 6 ∃θ′ : θ′ f D
n

and
〈π, i,θ〉 |= Xactive(pnθ

αq) if 〈π, i,θ〉 |= (X f A
n ∨ active(pnθ

αq)) ∧ X 6 ∃θ′ : θ′ f D
n

148 5.1 Formalisation

(ii) 〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

(iii) 〈π, i,θ〉 |= Xdischarged(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq) ∧ X∃θ′ : θ′ f D
n

and
〈π, i,θ〉 |= Xdischarged(pnθ

αq) if 〈π, i,θ〉 |= viol(pnθ
αq) ∧ X∃θ′ : θ′ f D

n

(iv) 〈π,0,θ〉 |= ¬prev viol(pnθ
αq)

and
〈π, i,θ〉 |= prev viol(pnθ

αq) if 〈π, i− 1,θ〉 |= viol(pnθ
αq) for i > 0

Here are some remarks on the new properties: (i) remains the same. (ii) is simplified
to indicate that a norm instance is violated whenever it is active and the maintenance
condition is false. By removing the second part of Definition 4.8(ii) we relax the notion
of violation as explained in Section 5.1.1, allowing a violation to take place more than
once in the lifetime of a norm. That means, that a norm instance violation might occur,
and the instance will keep being considered violated as long as it is active and the
maintenance condition does not hold. Whenever maintenance condition holds again,
the norm is not considered as violated anymore2. (iii) is also modified to express that
the instance is discharged whenever it was active and its discharge condition becomes
true, or, whenever it was at a viol state and its discharge condition becomes true. (iv)
from Definition 4.8(iv) though ceases to exist, since in this case a norm cannot reach a
state of failure. Instead, we replace it with the semantic notion of prev viol. As we will
see in Section 5.2 some of the above rules will serve as basis for the implementation
rules for norms within the planning domain.

5.1.4 From Norm to Norm Instances

As in the previous chapter, having formally defined instances we now have the appa-
ratus needed to connect the fulfilment of a norm and the fulfilment of its instances,
and give semantic meaning to the operator O proposed in Definition 5.2. This is done
in the following definition.

Definition 5.5. Fulfilment of a norm based on the fulfilment of its instances.
2We could instead adjust the semantics of violations by modifying Definition 4.8(ii) accordingly:

〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

and
〈π, i,θ〉 |= Xviol(pnθ

αq) if 〈π, i,θ〉 |= viol(pnθ
αq) ∧ X 6 ∃θ′ : θ′ f D

n

In this way, the continuity of the violation would be kept from the moment a violation occurred and
until the deactivation condition occurs, allowing only one violation to happen throughout the instance’s
activeness. This would need the appropriate adjustment of the semantics implementation that will follow
in Sections 5.2.3 and 5.2.4.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 149

A norm is fulfilled with respect to a path π =< s0, s1, . . . , sm > if:

〈π, i〉 |=O(Eα[f M
n] � f D

n | f A
n) iff ∀θ : 〈π,m,θ〉 |= ¬active(pnθ

αq)

Informally: the norm is fulfilled with respect to an execution path if, and only if, for each
possible instantiation of f A

n through time, the obligations of the norm instances are not active
at the end of the path.

At this point, we need to explain how the approach of this chapter can be equally
expressive to the approach followed in Chapter 4, as far as the time limit for the repair
of a norm in case of a violation is concerned. While in the new formalisation we do
not explicitly use timeoutn to indicate such a limit, this can be implicitly introduced
inside the repair norm (and, in a more generic case, in any norm’s condition) in order
to indicate time constraints.

One way of doing this (keeping up the notion of the operator F≤t of Section 4.2) is
by creating special predicates with such semantics that they provide a relative no-
tion of time. That is, predicates that indicate the passing of time starting from a
specific time point of the execution. Such a predicate can be called within and be
implemented so that whenever it is inserted into a norm’s condition, it is true during
timeoutn timesteps and then becomes false. By applying this, one can use time restric-
tions within the maintenance condition of a norm. In the case the designer wishes to
set a time limit for the norm’s compliance, it is then sufficient to add the restriction
within(timeoutn) in its maintenance condition, where timeoutn represents a specific
time before which the norm (or repair norm) should be accomplished. When using
within in maintenance conditions, instead of reaching rigid failures (such as the ones
occurring from Definition 4.6 and Axiom 4.7), we achieve a more flexible time failure
handling, where time limits might produce violations handled by other repair norms.

5.2 Planning with Norms

In this section we propose a methodology to implement the semantics described earlier
in this chapter and show how it is done by using the pizza delivery example.

In contrast to Chapter 4, where we opted for the representation of the temporal for-
mulas inside a planner, the basic idea here is to directly implement the rules of Def-
inition 5.4. The main reason for this is that it is not possible to construct a temporal
representation for the lifecycle of the norms, since a norm instance might get activated
and discharged more than once during the execution, and thus, the cycle occurring
by the transition from D(ischarged) to (A)ctive state, as can be observed in Figure 5.1,
would prohibit an LTL representation.

In Definition 5.4 the norm lifecycle predicates’ calculation depends on the current
state of affairs as much as the previous one. This makes it impossible to be directly

150 5.2 Planning with Norms

passed to a standard planner, since PDDL and similar planning languages only allow
effects of actions to depend on predicates of the previous state. In this section, we sug-
gest a solution that uses a standard planning mechanism based on PDDL and derived
predicates, a PDDL 2.1 feature that allows the expression of axioms that are based on
predicates of the current state. Current planners based on PDDL have evolved through
several International Planning Competitions (ICAPS) to produce very fast results and
provide better features for the design of a planning domain. We will explain more in
the following sections.

5.2.1 Plans, Actions, and Plan Cost

In Section 4.6.1 we defined the main elements of classical planning languages. PDDL
uses the same notions, with actions having preconditions and effects and a plan be-
ing a sequence of actions that generates a path (trajectory). Later versions of PDDL
support ADL, derived predicates and typed elements. The complete specification of
PDDL 2.1 can be found at [Fox and Long, 2009] and of PDDL 2.2 at [Edelkamp and
Hoffmann, 2004].

While PDDL by default includes basic predicates, another kind of predicates, namely
derived predicates might be defined. These are predicates that are not affected by any
of the actions in the domain. Instead, their value in the current state is derived by
the value of some basic predicates or other derived predicates through an axiom (rule)
under the closed world assumption. Then, an instance of a derived predicate (the
arguments of which are instantiated with constants) will become true at the current
state if it can be derived by the corresponding axiom. Contrary to the basic predicates
that may appear in all forms in the definition of actions and goals, derived predicates
can only be used non-negated in preconditions, effects, other derived predicates and
goals.

Derived predicates are not essential in the definition of a planning domain since they
can be incorporated into the action definitions (as complex formulas in the effects)
or by adding extra actions that calculate the values of these predicates. Nevertheless,
“flattening” a domain in this way will result in a polynomial increase in the size of
the domain definition leading to complex, unreadable domains [Thiébaux et al., 2005].
Therefore, derived predicates generally facilitate the elegant and efficient representa-
tion of a planning domain. We will use their expressivity to implement our norm
lifecycle in Sections 5.2.3 and 5.2.4.

An example of an axiom defining the value of a derived predicate close-relatives
might be:

1 (:derived (close-relatives ?x ?y)
(or (siblings ?x ?y) (parent ?x ?y) (parent ?y ?x))

3)

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 151

Finally, as done previously, by associating actions with a cost function, a plan will
have a total cost. The planner will therefore be able to identify the most ‘profitable’
paths in which norms that might get violated will have their repair norms activated
and then dealt with (and these, in their turn, in case they get violated, will have their
repair norms activated and then dealt with, etc.). In this way, whether a norm will
get violated (and as a consequence have new, repair norms coming to life) becomes
part of the planning problem and it is up to the planner to decide which is the most
profitable path to follow, according to the cost of the plan.

A domain corresponding to our pizza delivery example containing the action and
basic predicate definitions could look like the one in Figure 5.2. This domain is in-
complete. Some of the missing parts will be discussed in the next section and the full
domain description can be found in Appendix B.3.

1 (define (domain pizza_delivery)
(:predicates

3 (driving ?p ?v)
(vehicle_at ?v ?street ?street)

5 ...
)

7
(:functions

9 (p_time)
(fine ?p -person)

11 ...
)

13
(:derived ...)

15 ...

17 (:action DeliverPizza
:parameters (?p -person ?street1 -street ?street2 -street)

19 :precondition
(and

21 (exists (?v)
(and (driving ?p ?v)

23 (or (vehicle_at ?v ?street1 ?street2) (vehicle_at ?v ?street2 ?street1))))
(hasPizzaFor ?p ?street1 ?street2)

25 ...)
:effect

27 (and (pizza_delivered ?p ?street1 ?street2)
(increase (p_time) 3)

29 ...)
)

31
...

33)

Figure 5.2: PDDL pizza delivery domain example

5.2.2 The Normative Planning Problem

We now define the normative problem that occurs under the formalisation presented
in this chapter. In Definition 5.5 we gave the notion of a norm’s fulfilment with respect

152 5.2 Planning with Norms

to the fulfilment of its instances. We will use and apply this definition in order to
formalise the problem of means-ends reasoning with the influence of norms anew.

Under the current norm semantics, normative planning is formalised as a planning
problem in a domain where there are additional norms which acquire normative force
through planning paths. Additionally, when an agent fails to comply with them, the
norms that handle this takes normative effect (this is done recursively). Having that
in mind, the problem then is to find such a plan that the final state achieves the goal,
that there are no pending norms3 and that for all possible violations of norms that
might have occurred, the repair norm has been dealt with. We force in this way that
all norms which are activated through the different trajectories are either discharged
or repaired to make the agent conscious about the effects of each norm violation. In
short, the planning problem is defined as finding a plan where:

• The final state achieves the goal(s)4.

• There are no pending norms (either primary or derived from violations of other
norms).

Formally, given a normative model NM = 〈Roles, Agents, s0, Actions, Norms,Context〉
and a goal g (which can be a set of goals) we are looking for a plan π = [α1,α2, . . . ,αm]

generating the trajectory τ =< s0, s1, . . . , sm > where all goals are accomplished and
additionally there are no pending norms:

• 〈π,m,∅〉 |= g

• For all norms n = 〈r, f A
n , f M

n , f D
n 〉 in Norms and all agents α in Agents and roles r

in Roles such that enacts(α,r), we have that:

〈π,0〉 |= O(Eα[f M
n] � f D

n | f A
n)

As explained in the introductory part of this chapter, it might be counter-intuitive in
real-life scenarios to expect for norm instances to be fulfilled according to the operator
O, especially whenever these have been violated, raising (a series of) new repair norms
to be complied with. For example, a reasonable expectation for a norm that says “One
has to return the book to the library. In the case he does not, he will need to pay an amount
equal to the value of the book.” can be that once the norm gets violated, it “loses” its
deontic value, since a new norm which needs to be complied with has been raised.
Therefore, while officially the initial norm remains active, an individual needs to only
comply with the repair one in order to be considered conformable.

For this reason, we can alternatively use a more relaxed definition of the problem,
where we are only interested in “closing” the repair norms that occur from violations,
rather than “closing” all the norms. This might make sense in systems where once a

3As in Section 4.6.4, by the term “pending” we refer to non-fulfilled norms, with fulfilment being
represented by the operator O.

4In Section 5.3.2.1 the case when all goals are not reachable, or, reaching them produces excessive
violations will be presented.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 153

norm is violated it looses its normative effect, leaving only the consequent norms to
take effect. Then the problem would be:

• The final state achieves the goal(s).

• There are no pending norms derived from violations of other norms.

meaning formally that:

• 〈π,m,∅〉 |= g

• For all norms n = 〈r, f A
n , f M

n , f D
n 〉 in Norms, all agents α in Agents, roles r in Roles

such that enacts(α,r), and all substitutions θ we have that:
〈π,m,θ〉 |= ¬active(pnθ

αq) ∨ viol(pnθ
αq)

with nθ
α denoting an instance of norm n

The above occurs as a consequence of the fact that repair norms get activated by the
violation of other norms (that contain the predicate viol(n) in their activating condi-
tion)5. Therefore, whenever at the end of the execution a norm is at a violation state
this means that a new instance of a repair norm will have been triggered to handle it.
As a consequence, the new instance will also need to conform with the above, meaning
that it will also have to end up not active or violated at the end of the execution. If it
ends up violated, another instance would have been triggered because of the violation
that would also need to comply with the above formula etc.

5.2.3 Implementation Rules for Norm Lifecycle

In order to implement the normative reasoner, we need to be able to represent each
norm’s lifecycle inside the planning domain, in such a way that at every state each of
the properties of Definition 5.4 are calculated, for each norm (and the instances that
come to life). As already explained, PDDL planning domains consist of definitions
of actions that represent the agent’s capabilities and modify the domain predicates by
adding and deleting facts.

The idea here therefore is to express the properties of Definition 5.4 as predicates
within the planning domain. By looking at the rules of the definition, it can be seen
that some predicates are expressed in terms of the properties of the current state
as well as the previous state. This means that they cannot be directly translated to
PDDL predicates, since PDDL only permits each standard domain predicate to have
its value calculated over the values of the predicates in the previous state. Therefore,
some modifications are necessary. We will modify the rules by creating two types of
rules that can be expressed in the planning domain either as derived predicates, or as

5We remind the reader at this stage that the final layer of norms would have the maintenance condition
set as true, since sequential violations should lead to some final repair norm that must always be
complied with.

154 5.2 Planning with Norms

traditional domain predicates. The former will depend on the current state, while the
latter will depend only on the previous state.

We choose rules (i),(ii) and (iv) of Definition 5.4 as a sufficient set to implement.
This is because active appears in the definition of the normative planning problem (as
described in Section 5.2.2) and viol and prev viol are the predicates that might appear
in the activating condition of a repair norm.

In addition to rules (i),(ii) and (iv) of Definition 5.4, we define the predicates inactive,
complied with and prev active to facilitate our implementation6. Then, we will have:

By splitting Definition 5.4(i) we get:

(α1)(α1)(α1) 〈π, i,θ〉 |= active(pnθ
αq) if 〈π, i,θ〉 |= (f A

n ∨ prev active(pnθ
αq))∧ 6 ∃θ′ : θ′ f D

n

and

(α2)(α2)(α2) 〈π,0,θ〉 |= ¬prev active(pnθ
αq)

〈π, i,θ〉 |= prev active(pnθ
αq) if 〈π, i− 1,θ〉 |= active(pnθ

αq) for i > 0

We define inactive as:

(b)(b)(b) 〈π, i,θ〉 |= inactive(pnθ
αq) if 〈π, i,θ〉 |= ¬active(pnθ

αq)

We keep Definition 5.4(ii) as is:

(c)(c)(c) 〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

We define complied with as:

(d)(d)(d) 〈π, i,θ〉 |= complied with(pnθ
αq) if 〈π, i,θ〉 |= ¬viol(pnθ

αq)

From Definition 5.4(iv) we get:

(e)(e)(e) 〈π,0,θ〉 |= ¬prev viol(pnθ
αq)

〈π, i,θ〉 |= prev viol(pnθ
αq) if 〈π, i− 1,θ〉 |= viol(pnθ

αq) for i > 0

It can be seen that (α1)(α1)(α1), (b)(b)(b), (c)(c)(c) and (d)(d)(d) will be implemented as derived predicates,
whereas (α2)(α2)(α2) and (e)(e)(e) as standard predicates. As already explained, derived predicates
cannot appear negated in another derived predicate condition or in an action precon-
dition or the goal. Therefore, with the appropriate substitutions, rules (α1)(α1)(α1), (b)(b)(b), (c)(c)(c),

6The main reason for defining these predicates is the fact that, as mentioned earlier, derived predicates
are not allowed to appear negated in action conditions and other predicates. Since in our rules some do
appear negated, we need to define the negated version of them as a separate derived predicate.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 155

(d)(d)(d) will become:

(α′1)(α′1)(α′1) 〈π, i,θ〉 |= active(pnθ
αq) if 〈π, i,θ〉 |= (f A

n ∨ prev active(pnθ
αq))∧ 6 ∃θ′ : θ′ f D

n
(b′)(b′)(b′) 〈π, i,θ〉 |= inactive(pnθ

αq) if 〈π, i,θ〉 |= ¬((f A
n ∨ prev active(pnθ

αq))∧ 6 ∃θ′ : θ′ f D
n)

(c′)(c′)(c′) 〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

(d′)(d′)(d′) 〈π, i,θ〉 |= complied with(pnθ
αq) if 〈π, i,θ〉 |= inactive(pnθ

αq) ∨ ∃θ′ : θ′ f M
n

Now (α′1)(α′1)(α′1), (b
′)(b′)(b′), (c′)(c′)(c′) and (d′)(d′)(d′) can be directly implemented as derived predicates in

PDDL. Since (α2)(α2)(α2) and (e)(e)(e) depend on the previous state, they are implemented as
standard domain predicates added to the effects of every action. The first part of (α2)(α2)(α2)

and (e)(e)(e) is redundant in PDDL, as by default all predicates are false in the initial state,
unless stated otherwise. The second part of each of the two rules is then expressed as
follows:

(α′2)(α′2)(α′2) 〈π, i− 1,θ〉 |= active(pnθ
αq)⇒ 〈π, i,θ〉 |= prev active(pnθ

αq) for i > 0
〈π, i− 1,θ〉 |= inactive(pnθ

αq)⇒ 〈π, i,θ〉 |= ¬prev active(pnθ
αq) for i > 0

(e′)(e′)(e′) 〈π, i− 1,θ〉 |= viol(pnθ
αq)⇒ 〈π, i,θ〉 |= prev viol(pnθ

αq) for i > 0
〈π, i− 1,θ〉 |= complied with(pnθ

αq)⇒ 〈π, i,θ〉 |= ¬prev viol(pnθ
αq) for i > 0

Therefore, we have now ready the full set of rules (α′1,2)(α′1,2)(α′1,2)-(e
′)(e′)(e′) to be implemented in

PDDL. This is seen in Table 5.2. The way these are implemented within the plan-
ning domain is as follows: For each norm (both primary and repair), a separate,
norm-specific predicate (made distinct by the addition of the norm name at the end)
active, inactive, complied with, prev active, viol, prev viol is defined. For (repair) norms
where the maintenance condition is true, predicates viol, complied with and prev viol
are omitted, since their values can be pre-calculated through the rules as false, true
and false respectively.

For each norm, rules (α′1)(α′1)(α′1), (b
′)(b′)(b′), (c′)(c′)(c′), (d′)(d′)(d′) are expressed through a derived predicate in

the planning domain, expressing the conditions f A
n , f M

n and f D
n in PDDL terms7. An

example of the representation of the viol predicate of rule (c′)(c′)(c′) for norm1 of the pizza
delivery example as the derived predicate viol norm1 can be the following:

1 (:derived (viol_norm1 ?p -person ?v -vehicle)
(and (active_norm1 ?p ?v)

3 (not (not (exists (?main -street ?street1 -street ?street2 -street)
(and (movedBetweenJunctions ?v ?main ?street1 ?street2)

5 (not (connection ?main ?street1 ?street2))))))))

7Such a translation should be straightforward in PDDL 2.1 where all the necessary elements such as
ADL, functions, existential and universal quantifiers are supported.

156 5.2 Planning with Norms

As derived predicates:
(α′1)(α′1)(α′1) 〈π, i,θ〉 |= active(pnθ

αq) if 〈π, i,θ〉 |= (f A
n ∨ prev active(pnθ

αq))∧ 6 ∃θ′ : θ′ f D
n

(b′)(b′)(b′) 〈π, i,θ〉 |= inactive(pnθ
αq) if 〈π, i,θ〉 |= ¬((f A

n ∨ prev active(pnθ
αq))∧ 6 ∃θ′ :

θ′ f D
n)

(c′)(c′)(c′) 〈π, i,θ〉 |= viol(pnθ
αq) if 〈π, i,θ〉 |= active(pnθ

αq)∧ 6 ∃θ′ : θ′ f M
n

(d′)(d′)(d′) 〈π, i,θ〉 |= complied with(pnθ
αq) if 〈π, i,θ〉 |= inactive(pnθ

αq) ∨ ∃θ′ : θ′ f M
n

As domain predicates:
(α′2)(α′2)(α′2) 〈π, i− 1,θ〉 |= active(pnθ

αq)⇒ 〈π, i,θ〉 |= prev active(pnθ
αq) for i > 0

〈π, i− 1,θ〉 |= inactive(pnθ
αq)⇒ 〈π, i,θ〉 |= ¬prev active(pnθ

αq) for i > 0
(e′)(e′)(e′) 〈π, i− 1,θ〉 |= viol(pnθ

αq)⇒ 〈π, i,θ〉 |= prev viol(pnθ
αq) for i > 0

〈π, i− 1,θ〉 |= complied with(pnθ
αq)⇒ 〈π, i,θ〉 |= ¬prev viol(pnθ

αq) for i > 0

Table 5.2: PDDL domain implementation rules

Additionally, for each norm, rules (α′2)(α′2)(α′2), (e
′)(e′)(e′) are implemented by a domain predicate,

the value of which will be passed from one state to another through the respective
rule. Since a domain might include several actions that pass the system from one state
to another, each action should contain the norm’s rules in its effects (followed by the
obvious and connector). An example of the representation of the prev active predi-
cate of rule (α′2)(α′2)(α′2) for norm1 of the pizza delivery example as the domain predicate
prev active norm1 inside any action’s effects can be the following:

(forall (?p -person ?v -vehicle)
2 (when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

4 (when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))

At this point we would like to focus on an issue that occurs when applying the
rules with a repair norm. As stated, a repair norm nr = 〈r, f A

nr, f M
nr , f D

nr〉 would con-
tain viol(nθ

α)∧¬prev viol(nθ
α) in its activating condition f A

nr, to indicate that an instance
might get activated whenever there is a violation of a norm n and the norm n was
not being violated before. The problem with this activating condition is that the viol
predicate that it contains, which is defined as a derived predicate, cannot appear in
rule (b′)(b′)(b′) as part of the activating condition, since the activating condition f A

nr is part of
a negated formula. The solution to this is to substitute the activating condition in rule
(b′)(b′)(b′) as follows:

〈π, i,θ〉 |= inactive(pnrθ
αq)if

(from (b′)(b′)(b′))

〈π,i,θ〉 |= ¬((f A
nr ∨ prev active(pnrθ

αq))∧ 6 ∃θ′ : θ′ f D
nr)if

(substituting f A
nr)

〈π,i,θ〉 |= ¬((viol(nθ
α)∧¬prev viol(pnθ

αq)∨prev active(pnrθ
αq))∧ 6 ∃θ′ : θ′ f D

nr)if

〈π,i,θ〉 |= (¬(viol(pnθ
αq)∧¬prev viol(pnθ

αq)∨prev active(pnrθ
αq)) ∨ ∃θ′ : θ′ f D

nr)if

〈π,i,θ〉 |= ((¬viol(pnθ
αq)∨prev viol(pnθ

αq)∧¬prev active(pnrθ
αq)) ∨ ∃θ′ : θ′ f D

nr)if

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 157

(from (c′)(c′)(c′))

〈π,i,θ〉 |= (((¬(active(pnθ
αq)∧ 6 ∃θ′ : θ′ f M

n) ∨ prev viol(pnθ
αq)) ∧ ¬prev active(pnrθ

αq)) ∨ ∃θ′ : θ′ f D
nr)if

〈π,i,θ〉 |= ((((¬active(pnθ
αq) ∨ ∃θ′ : θ′ f M

n) ∨ prev viol(pnθ
αq)) ∧ ¬prev active(pnrθ

αq)) ∨ ∃θ′ : θ′ f D
nr)if

(from (α′1)(α′1)(α′1))

〈π,i,θ〉 |= ((((¬((f A
n ∨ prev active(pnθ

αq))∧ 6 ∃θ′ : θ′ f D
n)∨∃θ′ : θ′ f M

n)∨ prev viol(pnθ
αq)) ∧¬prev active(pnrθ

αq)) ∨ ∃θ′ : θ′ f D
nr)

“Flattening” a formula so as not to contain any negative predicates of the type active,
inactive, viol or complied with is always possible, by applying all substitutions. Such a
substitution is necessary to happen before any of the rules (α′1,2)(α′1,2)(α′1,2)-(e

′)(e′)(e′) is implemented
inside the PDDL domain. An example of the representation of the inactive predi-
cate of rule (c′)(c′)(c′) for norm2-rep of the pizza delivery example as the derived predicate
inactive norm2-rep can be the following:

(:derived (inactive_norm2-rep ?p -person ?street1 -street ?street2 -street)
2 (or (and (or (or (not (and

(or (hasPizzaFor ?p ?street1 ?street2)
4 (prev_active_norm2 ?p ?street1 ?street2))

(not (pizza_delivered ?p ?street1 ?street2))))
6 (not (and (hasPizzaFor ?p ?street1 ?street2)

(> (p_time) (goalpizzatime ?street1 ?street2)))))
8 (prev_viol_norm2 ?p ?street1 ?street2))

(not (prev_active_norm2-rep ?p ?street1 ?street2)))
10 (points_augmented ?p)))

The full code for the implementation of the scenario can be found in Appendix B.3.

5.2.4 Implementation Rules for Normative Planning Problem

As explained in Section 5.2.2, the objective is to find a plan π = [α1,α2, . . . ,αm] gen-
erating the trajectory τ =< s0, s1, . . . , sm > such that it reaches the goal(s) and leaves
no norms active. Therefore, given a norm set N, at the final state m, for all norms
n = 〈r, f A

n , f M
n , f D

n 〉 ∈ N, all agents α such that enacts(α,r) and all substitutions θ:

〈π,m,θ〉 |= ¬active(pnθ
αq)

The above is equivalent to stating that given a norm set N, at the final state m:

For all norms n = 〈r, f A
n , f M

n , f D
n 〉 ∈ N, all agents α such that enacts(α,r) and for

all substitutions θ:

〈π,m,θ〉 |= inactive(pnθ
αq)

158 5.2 Planning with Norms

Therefore, for every norm, we should add to the PDDL problem file such a statement.
Taking for example norm1, norm2, norm3 and their repair norms norm1-rep, norm2-
rep, norm3-rep of the pizza delivery domain, we would add the following code inside
the goal of the problem file:

(and
2 (forall (?p -person ?v -vehicle) (inactive_norm1 ?p ?v))

(forall (?p -person ?v -vehicle) (inactive_norm1-rep ?p ?v))
4 (forall (?street1 -street ?street2 -street) (inactive_norm2 ?street1 ?street2))

(forall (?street1 -street ?street2 -street) (inactive_norm2-rep ?street1 ?street2))
6 (forall (?p -person ?v -vehicle) (inactive_norm3 ?p ?v))

(forall (?p -person ?v -vehicle) (inactive_norm3-rep ?p ?v))
8)

5.2.5 Computational Overhead

Generally, planners’ performance depends on the implementation of the planning
algorithm. Most current planner implementations apply forward search algorithms
and variations of the enforced hill climbing algorithm (e.g. Metric-FF [Hoffmann and
Nebel, 2001] and SGPlan [Hsu and Wah, 2008]). However, as we will see in Sec-
tion 5.2.6.2 where our experimental results are presented, we use the option of apply-
ing the algorithm A* that is provided with Metric-FF to ensure optimal results. A*’s
complexity in general depends on the heuristic, with the worst case being exponential.
Metric-FF applies A* search and as heuristic it uses the cost of the relaxed plan as an
estimation for the remaining cost.

Given that we “force” the planner to calculate a great number of instances for the
three derived predicates active, inactive, viol, complied with and the domain predicates
prev active, prev viol there is definitely an increase of the domain size and therefore of
the plan graph. Additionally, the calculations over those states depend highly on the
number of instances of each norm, since the checks performed on every step are done
for all possible instances.

Having the two in mind, it is not possible to make concrete calculations on the overall
overhead in the execution time. Nevertheless, since the normative influence comes
mainly from the activeness of the norm instances and the fulfilment of the repair
norms after every violation (which normally has as a consequence some action be-
ing executed in order to satisfy the repair norm’s discharge condition), the plan cost
should work as a pretty good heuristic. In other words, norms act as guidelines in
the planner’s execution, since they “lead” the execution towards less costly solutions,
where norms are chosen to be violated or complied with in the “cheapest” possible
way.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 159

5.2.6 Results

In this section we briefly introduce the tools we have employed in order to create nor-
mative planners (the Metric-FF planner), detail our experimental results and compare
them to the ones of the previous chapter.

5.2.6.1 Tools

Metric-FF8 is a domain independent planning system extending the Fast Forward plan-
ner [Hoffmann and Nebel, 2001]. Fast-Forward (abbreviated FF) is a forward chaining
heuristic state space planner. In fact, the basic principle of FF is that of HSP, first
introduced by Bonet et al. in [Bonet et al., 1997]. The FF creators use a novel local
search method, called enforced hill-climbing. Enforced hill-climbing is a hill-climbing
procedure that, in each intermediate state, uses breadth first search to find a strictly
better, possibly indirect, successor. If local search fails, then it skips everything done
so far and switches to a complete best-first algorithm that simply expands all search
nodes by increasing order of goal distance evaluation.

Metric-FF handles a combination of PDDL 2.1 and ADL, and is implemented in C.
An important feature of the latest version, Metric-FF 2.1, is that it handles derived
predicates. Its algorithm can handle effects and constraints on linear functions over
numerical state variables and favours minimisation of a given cost function. Like most
other planners, it works by relaxing of the original planning problem, that is, by ig-
noring all the delete effects in the effects of the actions. The occurring task is called
relaxed task, while a plan for a relaxed task is called relaxed plan. If configured to favour
speed and efficiency over quality, Metric-FF uses relaxed plan length as the goal dis-
tance estimation - the number of steps in the relaxed plan - in enforced hill-climbing,
combined with helpful actions pruning in the search, a method that only considers ap-
plicable actions that add at least one goal at the lowest layer of the relaxed solution
(and switch to a complete weighted A* search in case it fails to find a solution). Other-
wise, if configured to favour minimisation of a given cost function, Metric-FF performs
a standard weighted A* search where the cost of the relaxed plan is seen as an estima-
tion for the remaining cost. The weight parameters of the search can be given in the
command line (weight of the plan quality, that is, its length and cost versus the total
solving time). The cost function may contain linear expressions over numerical state
variables, under the condition that it can be translated to action costs. The cost of the
relaxed plan, in that case, will be the total of all costs of the actions belonging to that
plan.

8http://fai.cs.uni-saarland.de/hoffmann/metric-ff.html

160 5.2 Planning with Norms

5.2.6.2 Execution Results

In this section we present our experimental results, based on the pizza delivery ex-
ample adjusted to the new norm semantics. We use the same experimental scenarios
(with id 1-7) and the same computer and operating system as in Section 4.6.6. The
complete code for the example can be found in Appendix B.3.

Not surprisingly, the outcome in every case is the same plan with the same cost. This
makes absolute sense since both approaches under the same conditions and weight for
the three factors p time, penalty points and fine should conclude with the same
decision. This approach though, clearly outperforms the one described in Chapter 4,
as all executions are accomplished within a second or less.

When executing Metric-FF we used the option to apply a weighted A* search, since hill
climbing algorithms are not optimal. The execution results can be seen in Table 5.3.
Apart from the execution time, the number of states visited by Metric-FF can be seen.

id evaluated states execution time (in secs)
1 133 1.28
2 635 4.96
3 664 4.83
4 246 1.96
5 40 0.99
6 136 1.32
7 124 1.29

Table 5.3: Execution Results

Below we provide some interesting observations about the results:

• We are confident that we could have implemented the approach of this chapter
in TLPLAN. We would have done so by substituting derived predicates with pred-
icates of type def-defined-predicate. Nevertheless, we did not try it as we
felt that 1) a generic and widely used planning language such as PDDL and a
planner processing it would be more appropriate for our needs and 2) TLPLAN is
slightly outdated (with its latest version being of 2008) compared to Metric-FF
(with its latest version, Metric-FF 2.1, being of 2012).

• As explained in Section 4.6.6, the main drawback of the approach of Chapter 4
is the inefficiency, when it comes to complex control rules, such as our LTL
formulas for the lifecycle of the norms. Furthermore, the execution time seems
to worsen disproportionally to the number of instances occurring throughout the
calculation of a plan. However this can hardly be attributed to TLPLAN, since it
has been shown to perform equally well to its contemporary planners [Bacchus
and Kabanza, 2000]. We strongly believe that the overhead occurs mainly as a
consequence of the control rule checking at every search state. This has been a

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 161

strong motivation towards getting rid of the LTL norm lifecycle representation
and moving in the direction of the layered repair norms.

• The approach of this chapter in combination with the use of Metric-FF has given
much better results. We attribute this to the fast algorithm of the planner. The
use of derived predicates generally adds an additional cost to the execution time,
but this is still manageable in our experiments. However, it has to be noted that
the use of exists and forall formulas (deriving from the 6 ∃ and ∃ in rules
(a)-(d) of Table 5.2) in the PDDL derived predicates can significantly slow down
the planning time, especially whenever there are many variables in the mainte-
nance and discharge conditions of a norm that have not been already substituted
(variables that they have not in common with the activating condition).

• Metric-FF provides the option to favour execution time over ‘’preciousness” of
the plan as well as to time limit the search. This can be especially useful in order
for the agent to have the option to always get a plan and not wait too long to
have the best result. In real time environments, where speed is an important
factor, this is an essential quality.

5.3 Connecting the Normative Reasoner with the 2APL BDI
Core

With an implementation of a normative planner in hand, the next step is to integrate
it within an existing agent framework. In this section we introduce the norm-aware
planning component described in the previous sections, which can create plans influ-
enced by the norms, in the agent’s deliberation cycle (more concretely in its practical
reasoning step) . We have chosen 2APL [Dastani, 2008], a modular BDI-based agent
programming language, as the basis for our norm-aware agents.

There are a few compelling reasons for this choice against other frameworks described
in Section 2.1.1.2. Jadex [Braubach et al., 2005] does not have a logic-based syntax that
would enable transformation from/to statements in a classical planning language. Ja-
son [Bordini and Hübner, 2006] has the disadvantage that it operates in old versions
of Java (1.5) and does not provide an easy way to modify the deliberation cycle avail-
able. Furthermore, to our best knowledge, 2OPL [Dastani et al., 2009a] does not have
a stable implementation yet.

On the other hand, 2APL provides, in a clear and simple logic-based syntactical repre-
sentation, the main elements of the BDI architecture: beliefs, goals and plans. Further-
more, the framework supports a representation of actions (represented as the agent’s
belief updates as we will see in section 5.3.1) with preconditions and effects, facil-
itating the mapping of the planning domain actions from/to 2APL. This makes it
easy to make transformations from 2APL to planning domains. The language in ad-
dition supports abstract actions, which are useful for interpreting and handling the

162 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

normative planner’s output. 2APL also includes the concept of events for notifying
environmental changes which are useful to indicate points in time when the norma-
tive reasoner should be re-executed. Equally important is the fact that 2APL has an
adjustable deliberation process. That means that it can easily enable the modification
of the agent’s cycle and add the functionality of our normative planner. Finally, the
software has a recent implementation available and is under constant improvement by
the developers.

5.3.1 2APL

2APL [Dastani, 2008] is an agent-oriented platform, based on the BDI model, that
allows the implementation of both reactive and proactive agents within multi-agent
systems. Being of a modular nature, it provides the option to plug-in cognitive com-
ponents in its modules and also the tools to define the agents of a multi-agent system
and the environment(s) in which the agents act. In 2APL, the programmer can specify
the basic elements of an agent, that is, the beliefs, goals, plans, actions and events
received by external entities. The actions can be of several different types, such as
belief updates, external actions, or communication actions. Additionally, the platform
provides extra rules for each agent (providing specifications for plans), which enable
it to decide which actions to perform and how to act in case of failure. A screenshot
of the main 2APL user interface can be seen in Figure 5.3.

5.3.1.1 2APL Elements

2APL comprises of the following elements:

• Beliefs: Beliefs are Prolog facts and form a belief base. Any Prolog construction
can be used in the belief base. An example of a belief is ‘at(home).’.

• BeliefUpdates: Belief updates update the belief base of an agent when executed.
BeliefUpdates contains the specification of the belief update actions (see Belief
Update Actions).

• Goals: Goals are Prolog facts and form a goal base. An example of a goal could
be ‘at(work).’.

• Plans: A plan is a program to be executed. In general plans consist of actions.
Amongst others, some types of actions are:

– Belief Update Actions: Actions that update the beliefs of the agent when
defined through the BeliefUpdates. These actions are specified in terms of
preconditions and postconditions (effects). An agent can execute a belief
update action if the precondition of the action is derivable from its belief
base, and its execution modifies the belief base so that that the effect of

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 163

Figure 5.3: Screenshot of the 2APL environment

the action is derivable from the belief base after9. An example of such
an action would be ‘{at(P,X)} MoveFromTo(P,X,Y) {at(P,Y), not

at(P,X)}’.
– Communication Actions: Actions passing messages between agents.

– External Actions: Actions that affect the environment and are denoted with
the symbol ‘@’ to indicate that they modify the environment. An example of
an external action could be ‘@myworld(go(helen,home,work))’, where
myworld is the name of the environment.

– Abstract Actions: Actions that are defined through a Procedural (PG) Rule.
An abstract action encapsulates a plan. The execution of an abstract action
causes this action to be replaced with the plan from the body of the rule in
which it is defined. Therefore, when trying to execute an abstract action in
a plan, this will instantiate a ‘sub-plan’ and substitute itself with that. An
example of an abstract action might be ‘my abst act(P,X,Y)’.

9While Belief Update Actions modify the belief base of the agent, this does not necessarily mean an
environment modification. The agent’s belief base might partially reflect the agent’s perception of the
environment, however, it is kept separately for each agent and solely represents its internal knowledge.
An environment modification on the other hand might only occur, as we will see, through the execution
of an External Action. Therefore, whenever an agent performs a Belief Update Action which reflects
some environment change, this should be accompanied by a relevant External Action.

164 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

• PG-rules (Planning Goal Rules): These rules generate a plan to be executed
when some conditions are met. They consist of three entries, a head, a condi-
tion and a body. Each PG rule contains in its body a specification of a plan,
which will be adopted, if specific goals and beliefs (found in the head and
condition of the rule respectively) are derivable. An example of such a rule
could be ‘at(P,work)<-alarm | {WakeUp(P) ; MoveFromTo(P, ,work) ;
@myworld(go(P, ,world))}’.
• PC-rules (Procedural Rules): These rules are activated and create plans when

1) the agent receives a message sent by another agent, 2) an event, generated
by the external environment, occurs, or 3) there is an abstract action to be ex-
ecuted. They too consist of three entries, a head, a condition and a body. The
head might contain a message, an event, or an abstract action, the condition
the beliefs under which the plan will be adopted and the body of the plan to
be adopted. In the case of an abstract action, the PC rule therefore identifies
the plan (its body) that will take the place of the abstract action within a larger
plan. An example of such a rule defining the abstract action my abst act can
be ‘my abst act(P,X,Y)<-true| {MoveFromTo(P,X,Y); @go(P,X,Y)}’.
• PR-rules (Plan Repair Rules): These rules are provided for the case that the

execution of an agent’s plan fails.

5.3.1.2 2APL Deliberation Cycle

The mental state of the 2APL agent is formed by the beliefs, goals, plans and reasoning
rules. The deliberation cycle specifies what the agent’s behaviour will be, for example
the execution of an action or the application of a reasoning rule, by executing a delib-
eration process. It can be therefore seen as the interpreter of the agent program, as it
indicates specific steps to be applied in some particular order. The 2APL deliberation
cycle can be seen in Figure 5.4. The following steps are executed in it:

• Rules are checked and any new plans produced are added to the plan list to be
executed (PG-rules).

• The first action of each plan is executed. After these actions, goals are queried
in the belief base. Reached (derivable) goals in the base are considered achieved
and are removed from the goal base and any plan triggered by these is removed
from the plan base.

• Failed plans are handled (PR-rules).

• Messages are processed (PC-rules).

• External events are processed (PC-rules).

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 165

Figure 5.4: The 2APL deliberation cycle

5.3.2 2APL with Embedded Norm-Aware Planner

One particular problem which is not properly tackled is norm integration with the
reasoning phase in the BDI cycle (that is, to decide how to reach a goal while tak-
ing into account the norms). In our approach norms are not seen as restrictions,
but as guidelines in the practical reasoning. Unlike most frameworks, our approach
takes into consideration the norms during the planning phase, this is what we call
“norm-oriented planning”. Therefore, we introduce in the agent’s deliberation cycle a
norm-aware planning component that can create plans influenced by the norms. We
implement the practical reasoning step in the BDI cycle via the normative planning
problem and the Metric-FF planner presented in Section 5.2.

5.3.2.1 Modified 2APL Lifecycle

The modification of the 2APL lifecycle (seen in Figure 5.5) is made in such a way that
the PG-rules, which are primarily responsible for generating plans, are excluded. This
is because we are interested in an automatic, on-demand generation of plans, taking
into consideration the norms and not having rules forcing the means-ends reasoning
in 2APL’s original form. The new process is as follows.

1. If there are goals to be achieved in the goal base, 2APL prepares the inputs for
the planner making certain transformations to produce an appropriate planning
domain. Section 5.3.3.1 shows how this is done.

166 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

Figure 5.5: The modified 2APL deliberation cycle

2. The normative planner generates a plan, given the beliefs, belief updates and
goals of the agent. If a plan is found and this plan is considered to be acceptable
in terms of numbers of violations or other criteria that the agent might have,
the agent puts it in its plan base to be executed. In an alternative case where the
plan is seen unsuitable, one or more goals might be dropped, in order to lead the
reasoning mechanism to find more effective plans for less goals than the original
set.

3. An action of the plan, transformed appropriately from the planner’s output to
2APL terms is executed (PC-rule). Section 5.3.3.2 shows how the planner actions
are transformed to and seen as PC-rules.

4. Failed plans are handled (PR-rules). As explained, these rules are triggered
whenever a plan fails. In our case, with the plan being a sequence of abstract
actions, a repair rule for each of these can be defined, making sure that some
other process (for example a substitution for the specific action) takes place, or
even, that one or more goals are dropped.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 167

5. Messages and external events are processed as in the original deliberation cycle
(PC-rules).

6. Goals that have been reached are removed from the goal base.

7. If there are no more goals left, the agent sleeps until some new event occurs or
some message arrives.

8. If there are still goals to be reached, then, whether there are changes in the belief
and goal base or whether the plan base is left with no plan is checked. In the
case that changes in the belief or goal base have indeed occurred, the agent drops
any plan that was being executed and goes back to step 1 of the cycle, to execute
the planner.

9. In the case where no changes have occurred in the belief and goal base or the
plan has finished its execution, and therefore no plans are left in the plan base,
then the cycle goes to step 3 of the cycle to continue executing the plan.

The evaluation of the plan found in step 2 is optional and up to each agent to do. A
criterion could be some threshold on the number of the violations that might happen
during the execution of the plan, or a high plan cost, which would be prohibiting and
non-profitable for the agent. In the case where an agent decides that the plan is not
suitable, according to that criteria, then some goals might be (temporarily) dropped in
order for the reasoner to produce plans for a subset of the original goals. This requires
an advanced reasoning process, in order to decide which subset of goals might be
dropped, since dropping one goal randomly might result in the rest of the agent’s
goals not being meaningful anymore. We consider such a process domain-dependent
and therefore out of the scope of the thesis.

5.3.2.2 General Architecture

Figure 5.6 depicts the general architecture of the system. Norms can be obligations or
prohibitions and are accompanied by repair norms (similarly defined norms) in case
they are breached. Norms are expressed according to Definition 5.3 and fed to the
planner as explained in Section 5.2, influencing the planning mechanism within the
system. In combination with utility functions over the actions, the system computes
the most profitable trajectory concluding with a state of the world where no norms
awaiting settlement exist.

The next sections explain the details of the integration of the normative planner with
the 2APL framework.

5.3.3 Adapting Inputs Between 2APL and the Normative Planner

In this section we explain how the normative planner interacts with the 2APL platform
and how the inputs and outputs of the planner are transformed from/to the 2APL

168 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

Figure 5.6: 2APL Planner Architecture

agent language.

5.3.3.1 Adapting Inputs from 2APL into Normative Planner

The belief updates (see section 5.3.1) of the 2APL agent (where the first part is the
precondition, the second is the name and the third is the effect) can be considered
the capabilities (actions) of the agent. Each of these will be transformed into a PDDL
domain action. In our pizza delivery example, the belief updates of the agent will be
MoveBetweenJunctions, DeliverPizza, AugmentPoints, PayFine1 and Pay

Fine3.

The beliefs of the agent are transformed to the PDDL problem instance. The beliefs
include the initial values of the factors p time, penalty points and fine. The
translation from 2APL to PDDL is pretty straightforward as most atoms in the Prolog
facts in 2APL are structures simple enough to produce the predicates for the initial
state in the PDDL planning problem. A special 2APL belief fun in the belief base

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 169

2A
PL

BeliefUpdates:

{
driving(P,V) and
(vehicle_at(V,Street1,Street2) or
(vehicle_at(V,Street2,Street1))) and
hasPizzaFor(P,Street1,Street2) and
p_time(T)
}
DeliverPizza(P,Street1,Street2)
{
pizza_delivered(P,Street1,Street2),
pizza_delivered(P,Street2,Street1),
not hasPizzaFor(P,Street1,Street2),
not hasPizzaFor(P,Street2,Street1),
p_time(T+3), not p_time(T)
}

PD
D

L
D

om
ai

n

(:action DeliverPizza
:parameters (?p ?street1 ?street2)
:precondition
(and
(exists (?v) (and
(driving ?p ?v)
(or (vehicle_at ?v ?street1 ?street2)

(vehicle_at ?v ?street2 ?street1))))
(hasPizzaFor ?p ?street1 ?street2)
(checked-norm)
(checked-norm-rep))

:effect
(and

(pizza_delivered ?p ?street1 ?street2)
(pizza_delivered ?p ?street2 ?street1)
(not (hasPizzaFor ?p ?street1 ?street2))
(not (hasPizzaFor ?p ?street2 ?street1))
(increase (p_time) 3)
(not (checked-norm))
(not (checked-norm-rep)))

)

Table 5.4: Belief Updates Transformation

(as described in Section 4.6.4) represents the function that the agent considers as the
best optimisation setting for its decisive factors. This is translated into the planning
problem’s metric to be minimised and expressed in the PDDL metric statement.

Finally, the goals of the agent are directly transformed to the goals in the PDDL prob-
lem instance. The normative objectives (explained in Section 5.2.2) are automatically
added to the goals, that is, that there is no active obligation coming from violated
norms at the end of the execution of the plan.

An example of belief updates, beliefs (including fun) and goals in 2APL and how they

170 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

are translated to the PDDL domain and problem can be seen in Tables 5.4, 5.5 and
5.610.

2A
PL

Beliefs:

driving(sergio, bmw).
vehicle_at(bmw, muntaner, provenca).
vehicleSpeed(bmw, 10).
hasPizzaFor(sergio, corcega, casanova).
goalpizzatime(corcega, casanova, 28).
hasPizzaFor(sergio, rosello, urgell).
goalpizzatime(rosello, urgell, 19).
p_time(0).
fine(sergio,0).
penalty_points(sergio,0).
movedBetweenJunctions(bmw, muntaner, rosello, provenca).
fun(1*((p_time/30)+1)+

1*((penalty_points(sergio)/10)+1)+
1*((fine(sergio)/60)+1)).

PD
D

L
Pr

ob
le

m

(:init
(driving sergio bmw)
(vehicle_at bmw muntaner provenca)
(= (vehicleSpeed bmw) 10)
(hasPizzaFor sergio corcega casanova)
(= (GOALPIZZATIME corcega casanova) 28)
(hasPizzaFor sergio rosello urgell)
(= (GOALPIZZATIME rosello urgell) 19)
(= (p_time) 0)
(= (fine sergio) 0)
(= (penalty_points sergio) 0)
(movedBetweenJunctions bmw muntaner rosello provenca)
)

(:metric
minimize (+ (+ (* 1 (+ 1 (/ (p_time) 30)))

(* 1 (+ 1 (/ (penalty_points sergio) 10))))
(* 1 (+ 1 (/ (fine sergio) 60)))))

Table 5.5: Beliefs Transformation

5.3.3.2 Adapting the Normative Planner Output into 2APL

As mentioned in Section 5.3.3, the belief updates of the agent are considered to be the
actions that the agent is capable of performing at different times. Consequently, the
normative planner will return a plan, consisting of some of those actions (in probably
a slightly modified format, as for example Metric-FF returns small letter action names
in contrast to the original 2APL belief updates, which follow the 2APL language case
sensitivity).

10The whole code can be found in Section B.4 of Appendix B, in Figure B.11 and Figure B.12

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 171

2A
PL

Goals:

pizza_delivered(sergio, corcega, casanova) and
pizza_delivered(sergio, rosello, urgell)

PD
D

L
Pr

ob
le

m

(and
(pizza_delivered sergio corcega casanova)
(pizza_delivered sergio rosello urgell)
)

Table 5.6: Goals Transformation

We implemented the 2APL agent in such a way that whenever a plan is produced by
the normative planner, the previous plan is dropped and all the actions in the newly
produced plan are inserted into the 2APL agent’s plan base, each wrapped within
an abstract action “execute plan()”. We do this to ensure that during the actual
execution of the action, multiple things can happen. In principle, those will be the
execution of the belief update action and possibly external actions that update the
environment accordingly. For this reason, for each belief update, an abstract action
encapsulating the belief update and the possible external actions corresponding to it,
needs to exist in the PC-rules.

An example of the specification of an abstract action for the DeliverPizza(P,

Street1, Street2) belief update can be seen in Figure 5.7. Line 5 indicates the
execution of the belief update and line 6 indicates the environment action that corre-
sponds to the same belief update.

PC-rules:
2
execute_plan(deliverpizza(P, Street1, Street2))<-true|

4 {
DeliverPizza(P,Street1,Street2);

6 @pizzaworld(deliverPizza(P,Street1,Street2))
}

Figure 5.7: Abstract action represented by a PC-rule

As a consequence, whenever the outcome of the normative planner includes deliver
pizza(sergio, corcega, casanova), this will be inserted into the plan base as
execute plan(deliverpizza(sergio, corcega, casanova)).

5.3.4 Running the Normative Agent in 2APL

In this section we give a brief description of how 2APL with the normative planner in-
tegrated is executed. We developed and executed 2APL through the Eclipse Integrated

172 5.3 Connecting the Normative Reasoner with the 2APL BDI Core

Development Environment for Java11. As mentioned, 2APL supports the design of the
environment which the agents share and with which the agents will interact. We have
developed a simple environment with a GUI depicting a map (Figure 5.8) that shows
at which location the agent is found, the route it is following while moving on the
grid and the delivery of every pizza. At the same time, 2APL outputs the actions per-
formed by the agent, including the ones that pay fines or augment its penalty points.

Figure 5.8: 2APL environment GUI. Delivery Map

As explained in Section 5.3.3.2 the agent’s belief updates are seen as its capabilities
(possible actions to be performed) and are represented by an abstract action in a pro-
cedural rule (PC-rule). This abstract action performs the belief update as well an
environment action corresponding to it. Therefore, each action needs to have a direct
implementation in the environment, in order for its actual effects to take place in the
environment.

We have implemented the pizza world environment to the include actions “@enter”,
“@moveBetweenJunctions”, “@deliverPizza”, “@getOffBike”, “@payFine1”,
“@augmentpoints”, “@payFine3” which correspond to the agent’s belief updates.
“@enter”, “@moveBetweenJunctions” and “@deliverPizza” interact with the
graphical map by placing, moving the agent and showing the delivery of a pizza
respectively. The rest have a dummy implementation within the environment as in
our example they do not affect the environment’s state of affairs (and therefore could
be prevented from being executed within the abstract action; still we include them as
it would allow possible extensions of the example).

An extra component called “PlanStep” responsible for transforming all the elements
necessary to the planning domain, executing Metric-FF and transforming the result-
ing plan (if any) back to 2APL abstract actions was created. This component was
introduced into the agent cycle with the modification of the 2APL cycle as shown
in Section 5.3.2. We have designed our conceptual metamodel of Section 3.2 using

11https://www.eclipse.org

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 173

the Eclipse Modelling Framework (EMF)12 technology which facilitates model-driven
development of Java applications. The norms are defined independently by the agent
designer as an instance of our framework metamodel in Eclipse. They are processed by
PlanStep and together with the 2APL belief updates, beliefs and goals create the plan-
ning domain and problem to be passed to the planner. Finally, Metric-FF is integrated
into the agent platform by adding the Metric-FF executable to the 2APL framework13.

Figure 5.9: 2APL initial configuration for the pizza delivery example

We executed the experiments of the pizza delivery example with the 8 different con-
figurations in the integrated version of 2APL together with the planner. The time
was counted from the moment Start Deliberation button is hit until the agent has
reached the point where no more goals exist in its goal base (that is, both pizzas have
been delivered). The results can be seen in Table 5.7. As expected, the execution time
rises (roughly by a fixed amount of time of 2.0-2.5 seconds) mainly because of two
factors. Firstly, the graphical environment burdens the execution with the obvious
overhead and secondly, 2APL is implemented in Java, meaning that the deliberation
phase is executed through a Java process, which adds to the total time. However,
these factors are expected and cannot be avoided whenever dealing with complete

12http://www.eclipse.org/modeling/emf/
13In our case we simply made it part of the Eclipse project but alternatively, it could be part of the

2APL executable jar.

174 5.4 Discussion

and functional frameworks that might offer the possibility for graphical displays and
additional features.

id planner execution time 2APL execution time
(in secs) (includes planning, in secs)

1 1.28 3.02
2 4.96 6.73
3 4.83 6.84
4 1.96 4.85
5 0.99 3.4
6 1.32 3.03
7 1.29 3.05

Table 5.7: Execution Results in the 2APL agent environment

5.4 Discussion

5.4.1 Contributions and Extensions

The strength of our normative framework lies in the realistic and fully functional rep-
resentation of the normative reasoning problem. It uses semantics which have been
implemented by several (PDDL) planners while it only adds a relatively small over-
head to the planning process caused by the introduction of the derived predicates
calculating the norms’ status. Existing planners allow for several features to be in-
tegrated into the planning process (durative actions, etc.) and the framework could
be expanded to include time propositions within the definition of the norm. It can
be further extended towards utility functions over the states of the world instead of
the actions. This alternative allows the representation of preferences of a state over
another, which can be even closer to the human reasoning process.

Emphasis is given to the agent’s welfare attributes and how these are influenced by
the execution of a plan with respect to a set of norms. Given the fact that two agents
might vary in the importance that they give to individual factors, different outcomes
concerning the achievement of a goal are expected. Referring to the pizza delivery
scenario for example, in the case of an upright agent who really avoids getting fined,
he might prefer to stay obedient to the regulations at the expense of his time, while in
the case of a less committed agent, he might risk his financial status in order to deliver
faster.

Further to this, multiple norms may be in conflict and an agent must make informed
choices. For example, if an agent has an obligation to bring about a goal g, but bringing
about goal g means that it will have to violate one of two other existing norms, then

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 175

the agent faces a conflict that will need a decision to be made, over which norm to
be violated (or even not to follow the initial obligation in the first place). In such a
case, the agent, being aware of the consequences that the violation of each one could
have given the circumstances, might be able to make an informed decision based on
situational criteria rather than always producing the same outcome.

In this chapter, an integration of our normative reasoner within a multi-agent en-
vironment was presented. A strength of the design of our reasoner is that it can be
integrated into and interact with other environments in a similar fashion. The require-
ment for this to happen is for the environment to support agents that possess and can
process individual capabilities and that function in a goal-driven manner. Assuming
that the agent’s capabilities can be translated into planning domain actions, normative
reasoning can take place and return a plan for the agent to handle. The integration
into an agent’s cycle is not always trivial, but in most cases it will be a one-step process
occurring during the cycle of the agent whenever its beliefs get modified or whenever
an agent has no plans left to execute or whenever the plan being executed fails.

A main drawback of our approach is that whereas our framework works well in envi-
ronments where the consequences of an agent’s conformance to normative restrictions
are known or can be estimated, it is not always the case that this is feasible. In many
cases the effect of a violation cannot be known in advance, or might even be nonex-
istent (not always does driving too fast imply a fine). Our approach assumes that
there is an instant global enforcing mechanism and cannot for the moment handle
probabilistic effects of norm deviation. A future extension of this framework could
include such probabilistic outcomes, where for example a norm’s violation does not
always lead to the instantiation of a repair norm, but instead, a repair/penalty norm
gets raised according to some probabilistic function, as would happen in a real-world
situation, where in order for a sanction to be assigned and applied, a monitor needs
to have observed it.

We have made the mappings between BDI and planning systems in a similar way
as Sardina has in [Sardina et al., 2006], which focuses on the integration of the HTN
planning process into the BDI architecture, without reasoning about norm-based re-
straints. An essential difference however, when evaluating the planner’s contribution
to the agent’s means-ends reasoning in Sardina’s research, is that the plan library is
seen as the method library (consisting of prescriptions of how HTN tasks are decom-
posed into subtasks) in the HTN planner. We, on the other hand, completely discard
the agent pre-fabricated plans or plan templates (the corresponding 2APL PG-rules)
and deploy a planning mechanism that computes plans based purely on the agent’s
capabilities seen as primitive domain actions.

There exist several works that consider norms with some repair, punishment or sanc-
tion taking over or becoming effective whenever a violation occurs [López y López
and Luck, 2002; Dastani et al., 2009a; Villatoro et al., 2011; Alechina et al., 2012].

176 5.4 Discussion

Other frameworks on the other hand keep track of the number of violations occur-
ring throughout an execution path [Oren et al., 2011]. Both approaches are used to
directly or indirectly determine the validity or preciousness of plans. The problem
with the use such “heuristics” is that they do not always reflect real situations where
the consequences of a norm violation are neither direct, neither weigh the same, nor
do they directly correspond to a quantitative measure of a simple, for example, mea-
surable sanction. We manage to successfully address this problem by: 1) Defining
repair norms that come to life as a result of a violation, and 2) Building a layer of such
repairs, since one might not be always certain that an agent will desire and decide to
comply with the repair steps designed to be taken in case of a violation and might
need a chance to breach this process too.

As a final remark, we have found the idea of Hindriks and van Riemsdijk about using
timed transition systems [Hindriks and van Riemsdijk, 2013] interesting, since such
systems would allow the incorporation of more elaborate time formulas and deadlines.
However, in the planning community the closest to this would be PDDL 2.1 [Fox and
Long, 2009] which allows temporal planning by assigning duration to actions. We
believe that our framework could be extended to include complex forms of time and
norms containing formulas referring to complex time constraints.

5.4.2 Revisiting Requirements

Table 5.8 summarises the requirements covered by the framework presented in this
chapter.

Req. Description Status Justification

R1.1 Deliberative, means-end, norm-
oriented reasoning mechanism

3 We apply a planning mechanism that receives norms in the
form of path control rules.

R1.2 Decision making process
guided by user preferences

3 The planning mechanism supports action costs and tries to
maximise the overall value of the plan, according to the cri-
teria set by the agent.

R1.3 Goal driven decision making 3 The planner performs its planning algorithm trying to
achieve some goals. These goals are the agent’s goals.

R1.4 Agent capabilities specification
accommodated by framework

3 The agent capabilities can be seen as the possible actions
to be performed. The action language used supports action
descriptions.

R1.5 Adjust in case of relevant envi-
ronment change

3 The modification of the 2APL deliberation cycle takes into
consideration the case where there is a change in the envi-
ronment (perceived as modification of the belief base of the
agent). Such a case leads to the calculation of a new plan,
with respect to the new information.

R1.6 Norm conflict toleration 3 The formalisation used takes into account norm conflicts.
The normative planning problem definition comes up with
a solution possibly containing norm violations, but that is
most profitable for the agent according to the criteria set.

Chapter 5: Reasoning with Repair Norms - Integration into a BDI Agent 177

R2.1 Full domain/environment defi-
nition

3 The domain representation occurs from the beliefs and be-
lief updates of the 2APL agent being translated into PDDL, a
language that permits a full representation of domain infor-
mation and actions. Additionally, the external environment
is represented in the 2APL as a separate entity. In this, the
user can define what the impact of the agent’s behaviour to
the environment is.

R3.1 A well defined normative
model allowing the clear and
unambiguous interpretation of
norms on a operational level

3 The formalism presented in this chapter provides a solid
normative model and the definitions of norm compliance
and of the normative problem provide a functional interpre-
tation of norms.

R3.2 Mechanisms for agent be-
haviour monitoring of norms

37 Again, in this chapter, a mechanism for norm monitoring
has not been implemented but the formalism is created in a
way that monitoring is possible to be implemented.

R4.1 Agent-oriented architecture 3 Our formalism addresses and is integrated within an agent-
oriented architecture, where agent capabilities and prefer-
ences are seen as and translated to domain actions. The
resulting plan serves as a plan to be executed by the agent.

R4.2 Open standards support 3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which is openly accessible.
Furthermore, the actions representation in Metric-FF is in
PDDL, a widely used standard in the planning community.

R4.3 System platform-independent
model

3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which enables various trans-
formations and thus interoperability with other frameworks.

R4.4 Strong focus on semantics at do-
main, agent context, ontology,
normative level

3 The formalisation (Normative Model, norm fulfilment,
norm instances) provides a clear and functional understand-
ing of all these elements.

R4.5 Tool Support for norm and do-
main representation

3 A tool for norms representation is provided, since the meta-
model is defined in Eclipse Modelling Framework (EMF).
The agent’s capabilities are expressed in the 2APL frame-
work as belief updates and are translated into the domain
actions. The agent’s preference criteria are also written in
the 2APL language as part of the agent description.

R4.6 Support for multiple standards
and extensibility

3 We provide a generic mechanism to support normative rea-
soning. We represent our normative model on the Eclipse
Modelling Framework (EMF) which enables various trans-
formations and thus interoperability with other frameworks.

R4.7 Soft real time performance 3 The experimental results of this chapter’s approach have
shown a significant improvement (a few seconds in the
worst case) to the previous chapter’s results, while the in-
tegration with the 2APL framework adds a stable non-
significant overhead. Therefore, we can assume that the soft
real time performance criterion is fulfilled.

R4.8 Reasoner’s response time prior-
ity over optimality

3 Metric-FF provides the option to assign a specific weight for
the configuration option passed to the planner. This weight
acts as a value factor over the plan length and cost against
the execution cost in time. Such an option can be used to
compute solutions that are faster but not optimal.

R4.9 Validity 3 In our case, validity translates to the the planner providing a
correct solution to the planning problem specified [Ghallab
et al., 2004]. Given that the Metric-FF algorithm ensures the
correctness of the plan returned, this requirement is fulfilled.

Table 5.8: Requirements Analysis

Chapter 6

Conclusions

In Section 1.1 the main question to tackle in this thesis was presented:

“How to model an autonomous, goal-driven agent that is able to take the environment’s nor-
mative influence into account in its decision making?”

In order to provide answers and practical solutions to it we have pursued three general
objectives that are essential when dealing with practical materialisation of norm-aware
systems: 1) straightforward connection between the deontic level and the operational
semantics, 2) the formalisation of explicit norm instances, and 3) the establishment of
clear semantic interpretation across implementation domains.

We have done so through various steps. We first created a conceptual normative
framework which includes a generic, platform and language-independent represen-
tation of norms and its formalisation (both structural and dynamics). Special focus
has been given to modelling both the lifecycle for norms and their (multiple) instanti-
ations. We have also defined an architecture for norm-aware agents aligned with our
framework, which is supported by abstract metamodels that ease its implementation
for different platforms and data formats.

We then built a connection between deontic statements and temporal logics, and be-
tween temporal logics and temporal constraints that can be translated to control rules
within a (planning) domain. Using these rules we implemented a normative plan-
ner. This has made it possible to generate plans that comply with the restrictions
imposed by the norms. Further to this, we have explored how, by using costs (pos-
sibly derived from multiple factors) for different state transitions, the compliance (or
the consequences in the case of non-compliance) of a plan to a set of norms relates
to the measurement of its quality. We have achieved in this way a mechanism that
constructs plans that not only comply with the restrictions imposed by the norms but
also do so in an optimal way.

Due to computational limitations of this first approach, we extended the norm seman-
tics to include multiple layers of reparation norms and restructured the decision mak-
ing problem. Using a life-like scenario, we have provided execution results indicating

179

180 6.1 Contributions

the usefulness and efficiency of our approach. We finally integrated the normative
planner into the 2APL multi-agent framework and showed how this process is done.

6.1 Contributions

Mechanical or “formal” reasoning has been explored by philosophers and theorists
since the ancient times. By the 90’s Artificial Intelligence had developed advanced
and complex mechanisms to deal with rapidly evolving and even non-deterministic
environments, based on notions the roots of which, can be found in legal and social
sciences as well as economics.

This thesis sets as its objective one of the most interesting areas of research in Artificial
Intelligence, that is reasoning and decision making while taking norms into account. It
applies knowledge representation, reasoning and planning, all of which form central
domains of AI. More concretely, representation of objects, relations, actions, events,
time, causes, effects and states is attempted and put into practice.

Our work stems from the fact that while regulation of agent’s behaviour has become
a necessity in current multi-agent environments, little work on practical reasoning
mechanisms within normative environments providing both a formalisation and an
implementation, exists. In this thesis we have aimed at filling this gap. Our contribu-
tions have been several within the computational area of AI:

• By combining areas such as norm-aware agent systems, planning and decision
making, we have brought to light a new perspective on normative reasoning
within agent systems. In this, agents are no longer limited by a list of predefined
plans, but instead, use a planner to calculate paths towards their goals, while at
the same time allowing the occurring norm instances to influence the calculation
of these paths.

• We have achieved the design of normative agents that dynamically interpret, ap-
ply and reason over norms (whether to deviate from predetermined behaviour),
becoming in this way norm-autonomous.

• We put into practice a realistic approach which captures the essence of decision
making under the influence of norms. While human deliberation process is not
fully known, researchers believe that the human deliberation process, based on a
goal expectation, is a product of a set of alternative options and a set of selection
criteria, qualitatively evaluated [Wang and Ruhe, 2007]. Given that humans often
deploy a complex planning mechanism to explore such alternative options, we
consider our approach to be rather intuitive and close to the human decision
making process.

• We have shown the usefulness of our framework within a scenario that applies
in real life.

Chapter 6: Conclusions 181

A strength of our normative reasoner lies in the fact that it can be applied to many
different BDI (and other types of) systems. The main necessity for this is that agents’
capabilities can be represented by a planning language such as PDDL. Having de-
signed the reasoner’s elements through an MDE approach, one can map an agent’s
elements to our model and integrate the reasoning mechanism into a bigger, multi-
agent system in a fairly easy manner.

It is also important to note that, despite the fact that this thesis mainly focuses on the
agent perspective of normative reasoning, the norm semantics of our thesis in Chap-
ters 4 and 5 (Sections 4.3 and 5.1, respectively) have been defined in a way that can be
useful for both the individual norm-agent operating in the environment and for the
norm enforcement mechanisms. This is vital to ensure that in the same environment
both the agents and the enforcement mechanism share the same semantics for norm
activation, discharge and violation.

We consider the reduction of our norm formalisation to known deontic logics in Sec-
tion 4.4 to be a significant contribution to the state of the art. Our in-depth analy-
sis and mapping to formalisms that are already well established within the scientific
world proves that our normative system fits well the popularly accepted by the re-
search community concepts of what norms are and how they might be interpreted. We are
unaware of other similar computational representations and analyses towards existing
deontic logics.

Another interesting contribution of our work is that both norm representations in
Chapters 4 and 5 are inspired by and reflect the human deliberation mechanism, as far
as behavioural restrictions are concerned. We believe that having a task to execute or a
goal to reach, humans tend to consider normative influences with respect to personal
and social interests by taking into account several non-conscious welfare attributes or
preferences. In our case, these are represented in absolute numbers in the planning
problem, but some alternative could be that a preference function between possible
situations is defined instead.

Our norm formalism takes into account a very significant issue when dealing with
normative environments: norm conflict handling. This is done through the way that
our normative definition problem is given, in Sections 4.6.3 and 5.2.2 respectively, for
each formalisation. The definition allows, according to the agent’s own criteria, to
decide for two or more conflicting norms, which one(s) would be more profitable to
have violated (and let the repair handle). Unlike other frameworks which deal with it
through an offline verification mechanism, we incorporate this into the problem and
let the planning mechanism resolve it.

Finally, while we did not create a complicated mechanism that deals with failures, we
showed how the reasoner can be incorporated into a typical BDI reasoning cycle. Our
modification of 2APL deliberation cycle happens on two levels: 1) agent belief up-
dates are seen as potential capabilities (actions) under the appropriate circumstances
and their actual execution can take place following a simple or complex procedure

182 6.2 Revisiting Claims

containing the effects over the agent as well as the environment and 2) there is no
longer the need of plan production rules; instead, this is substituted by the normative
planning mechanism. The suggested cycle can cope with possible occurring events
and focuses on reaching the agent’s goals. In the case where not all goals can be
achieved, then, some are dropped and the process continues. We believe that our in-
tegration methodology is generic enough. In the same way our normative reasoner is
introduced into the 2APL deliberation process, it can also be integrated into other BDI
implemented systems, provided that easy modification of the cycle is permitted.

6.2 Revisiting Claims

In Section 1.5 we provided a set of claims for this thesis. In this section, we analyse
them and validate them one by one.

C.1. Throughout the agent’s deliberation process, means-ends reasoning can be performed
by invoking a planner instead of using pre-compiled plans. We use this assumption
based on the observation that the pre-compiled plans can instead be substituted
by plans that are produced at runtime. In Chapter 5 we demonstrated how
a planner is used and integrated within an existing agent system, 2APL, that
performs a deliberation process.

C.2. The planning process can be influenced with norms. This is the central topic of our
thesis. We achieved this objective by defining and implementing the norma-
tive reasoning problem through the reduction of norm semantics to a planning
domain and using a planner to receive norm-aware plans, in both Chapters 4
and 5.

C.3. Standard Deontic Logic is not sufficient to capture practical, complex aspects of norms’
functionality. In Section 2 we provided a background on agent-based and norma-
tive systems, while in Section 2.2.2.2.3 we explained the specification of the most
commonly used language by theorists, Standard Deontic Logic. We explained
the difficulties and the ambiguities that might occur when trying to formally
capture norm semantics with the use of this logic on a practical level.

C.4. Temporal logic might be used to capture the norms’ lifecycle. In Chapter 4 we gave a
formal definition and made a mapping of the norm’s lifecycle to LTL temporal
formulas, which in their turn, reflect suitable norm-aware execution paths.

C.5. Extend existing agent framework with norms. In Chapter 5 the 2APL agent platform
was extended to support our normative framework and planning mechanism
and an implementation explaining how the 2APL connection from/to the nor-
mative planner is done.

C.6. Actions with costs can be used for modelling domain and user preferences. In both
approaches of Chapters 4 and 5 the agent’s capabilities were mapped to actions

Chapter 6: Conclusions 183

with preconditions and effects over the environment. These, along with func-
tions that assign specific weights to each action performed based on various
factors, form the domain.

C.7. A norm might be defined on an abstract level, allowing a flexible representation like a
template for the construction of concrete instances. In both formalisations of Chap-
ters 4 and 5 the norm definition is abstract and made in such a way that its
activating condition can give rise to various instances throughout time via the
possible substitutions of its variables.

6.3 Extensions

While we cannot claim that our approach covers all aspects of normative multi-agent
environments, we consider it a first step that could have further extensions towards
more advanced implementation. The work presented could be extended in various
directions. This section is dedicated to some directions in which our work could be
taken to in order to be better incorporated to the agent’s scientific field.

6.3.1 General Extensions

In Section 3.2 we presented an architecture which includes several interactions with
an ontology. Such an ontology not only describes the elements used within the frame-
work but also provides domain and range axioms, class expressions, qualified cardi-
nality restrictions, nested class expressions and more features. As a future step such
an ontology could be interconnected to the metamodels and the framework in order
to express more complex relationships between the framework elements and enabling
reasoning, this time on a semantic level.

In an environment where several agents coexist the need for practical reasoning where
parallel activities are involved provides a clear time efficiency. Therefore, an interest-
ing feature to be explored is the treatment of concurrency, where actions are allowed to
be executed in parallel. This will then lead to plans that contain concurrent interacting
processes.

In modern technology, where actions are mostly represented by services, often it hap-
pens that there is no single service capable of performing a task, but there are combi-
nations of existing services that could do so. For this reason a representation of action
synthesis (creation of a composite action) is needed. Therefore, an extension of our
framework could take this into account and reason over a domain which consists of
simple and complex actions.

In the framework presented we make the assumption that the goal(s) of an agent are
pre-specified. Still this is not always realistic in a constantly changing environment.

184 6.3 Extensions

This work could be taken one step further, exploring the goal features at a meta-
reasoning process where the dedication, urgency and confidence of an agent over a goal
can change over time [Vecht, 2009].

In our work, we have left out constitutive norms. Nevertheless, it could be extended
to include constitutive norms and/or institutional power, as defined by Jones et al. in
[Jones and Sergot, 1996; Jones et al., 2013]. This would possibly require an additional
level of reasoning before the planner being executed in order to establish relationships
and empowerment of different entities as well another level for the “counts-as” state-
ments to be translated to rules supported by our planning mechanism, such as derived
rules in the planning domain.

Another interesting line of research is to extend our work towards multiple agent
decision making. While one agent considers its personal settings in order to create a
plan that satisfies its needs, the issue becomes more complex when dealing with more
agents and social metrics. Such an extension might become subject to many questions:

• Are all agents able to perform the same actions?

• Do norms equally apply to all agents, or does every agent need to conform to
a separate set of norms? In the first case, are norms instantiated separately for
every agent? Do violations count for each agent separately or do they occur and
attribute to an agent group?

• Is the planning performed by a centralised mechanism, by one of the agents and
then distributed or by each one of the agents?

• By what protocols do agents communicate their preferences over the plans? How
are these preferences weighed against other agents’ preferences?

• By what criteria can the overall cost of the agents’ plans be evaluated when
dealing with many agents? Are social criteria implicated in this evaluation or do
we only measure the agent’s welfare?

• What is the expected overhead for multiple agent planning and how affordable
is it when dealing with real time communities?

6.3.2 Probabilistic Practical Normative Reasoning

In order for our approach to be even closer to real life situations, we have started in-
vestigating the extension of our norm semantics to include a probabilistic observation
of violations of norms. We consider this a more realistic situation, since it is not al-
ways the case that a norm violation is noted and registered, therefore, many times the
consequences of violations and the need to apply sanctions are nonexistent. A draft
for the implementation of such a framework could be the following.

In the specification of a norm, we introduce a probability that the system “observes”
an infraction that might occur for every norm (that could for example added to the
activating condition of a repair norm, as a predicate Bernoulli(p) that would at every

Chapter 6: Conclusions 185

point in time be true with a possibility p). Additionally, a slightly more advanced
model of the world descriptions, where actions have stochastic consequences might
be adopted to make the domains more realistic. Dynamic Bayesian Networks, which
are extended Bayesian networks (BDNs) [Ben-Gal, 2007] (graphical models that encode
probabilistic relationships among variables of interest) can be used for this purpose.

In order to implement the probabilistic normative planner, we choose the newly in-
troduced language RDDL [Sanner, 2010]. RDDL (Relational Dynamic influence Dia-
gram Language) was introduced at the International Probabilistic Planning Competi-
tion (IPPC)1 and its semantics is based on Dynamic Bayesian Networks and support
basic probability distributions and stochastic predicates. An objective function spec-
ifies how the immediate rewards should be optimised over time for optimal control.
We would assume that agents operate in fully observed environment. For such cases,
RDDL is just a factored Markov Decision Process (MDP)2, so in principle, RDDL aims
to support the representation and simulation of a wide spectrum of relational MDPs.
The core problem in probabilistic planning is, given an MDP, to find a policy for the
decision maker (planner), i.e. a function that specifies the action that the decision
maker will choose when in a state. Note that once a Markov decision process is com-
bined with a policy in this way, this fixes the action for each state and the resulting
combination behaves like a Markov chain.

In order to simulate the MDP, a software tool acting as the environment throughout
the MDP is needed. At the IPPC’2011, the rddlsim3 software was presented. rddlsim
implements a parser and client (probabilistic planner)/server simulation architecture for
RDDL. Nevertheless, since rddlsim does not represent a multi-agent environment, we
can modify and extend 2APL to play the same role as the server part of rddlsim, that
is, to act as the environment, keeping at the same time the rest of the framework intact.

The process roughly is integrated into the agent’s deliberation cycle as follows4:

1. The initial state of a problem is described in RDDL and loaded both by the server
(2APL) and the client (probabilistic planner represented by the rddlsim client).

2. The agent’s goals are incorporated into the RDDL problem, with the state where
they are reached having very high weight

1http://users.cecs.anu.edu.au/ ssanner/IPPC 2011/
2MDP is a discrete time stochastic control process. At each time step, the process is in some state s,

and the decision maker may choose any action α that is available in state s′. The process responds at the
next time step by randomly moving into a new state , and giving the decision maker a corresponding
reward Ra(s, s′). The objective is to find policies that maximise the expected sum of rewards accumulated
over a (potentially infinite) horizon. That is, to find a policy π that gives the optimal action π(s) ∈ A
for each state. The Markov property means that the transition probabilities Pa(s, s′) only depend on the
current state s and the action a (so no information about past states is used).

3http://code.google.com/p/rddlsim/
4We only show the parts that concern the planning/next action picking process, assuming the rest

such as update of beliefs, update of the goal base etc. remain the same.

186 6.3 Extensions

3. The client at every cycle chooses an action it wants to execute. It does so by sim-
ulating lots of states internally until some timeout is reached. Then, it submits
the action believes to be best to the server.

4. The server gets the action, and applies it to the current state. As we are in a
probabilistic setting, the outcome of applying the action to the real world state
is a non-deterministic successor state (the next real world state). That state is
returned to the planner, and the whole procedure goes back to step 2.

5. If the finite horizon is reached or the goals are achieved or modified the run
terminates.

Such an extension of 2APL, would result in a multi-agent probabilistic environment
where the agents’ actions as well as the norms do not have deterministic consequences,
but instead, the agent’s deliberation is done by taking into account the probability of
getting “caught” for every possible infraction.

Publications of the Author

[PVSAN+08] Sofia Panagiotidi, Javier Vázquez-Salceda, Sergio Álvarez-Napagao, San-
dra Ortega-Martorell, Steven Willmott, Roberto Confalonieri and Patrick Storms, In-
telligent Contracting Agents Language, In Proceedings of the Symposium on Behaviour
Regulation in Multi-Agent Systems (BRMAS’08), Aberdeen, UK (2008).

[CANP+08] Roberto Confalonieri, Sergio Álvarez-Napagao, Sofia Panagiotidi, Javier
Vázquez-Salceda and Steven Willmott, A Middleware Architecture for Building Contract-
Aware Agent-Based Services, In Proceedings of the International Workshop on Service-
Oriented Computing: Agents, Semantics and Engineering (SOCASE@AAMAS’08), Es-
toril, Portugal, ISBN 978-3-540-79967-2 (2008).

[OPVMLM+08] Nir Oren, Sofia Panagiotidi, Javier Vázquez-Salceda, Sanjay Modgil,
Michael Luck and Simon Miles, Towards a Formalisation of Electronic Contracting En-
vironments, In Proceedings of Coordination, Organizations, Institutions and Norms
(COIN@AAAI’08), Chicago, Illinois (2008).

[VCGSKPA+09] Javier Vázquez-Salceda, Roberto Confalonieri, Ignasi Gómez-Sebastià,
Patrick Storms, Nick Kuijpers, Sofia Panagiotidi and Sergio Álvarez, Modelling Contrac-
tually-Bounded Interactions in the Car Insurance Domain, In Proceedings of the First In-
ternational ICST Conference on Digital Business (DIGIBIZ’09), London, (2009), ISBN:
978-963-9799-56-1.

[PNV+09] Sofia Panagiotidi, Juan Carlos Nieves and Javier Vázquez-Salceda, A Frame-
work to Model Norm Dynamics in Answer Set Programming, In Proceedings of the Work-
shop on Formal Approaches to Multi-Agent Systems (FAMAS’09), Torino, Italy (2009).

[AGPTOV+11] Sergio Álvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi,
Arturo Tejeda, Luis Oliva and Javier Vázquez-Salceda, Socially-Aware Emergent Narra-
tive, In Proceedings of the Workshop on the uses of Agents for Educational Games
and Simulations (AEGS@AAMAS’11), Taipei, Taiwan (2011).

[PV+11] Sofia Panagiotidi and Javier Vázquez-Salceda, Towards Practical Normative
Agents: a Framework and an Implementation for Norm-Aware Planning, In Proceedings
of the 13th International Workshop on Coordination, Organizations, Institutions and
Norms in Agent Systems (COIN@WI-IAT’11), Lyon, France (2011).

187

188 Publications of the Author

[PVV+12] Sofia Panagiotidi, Javier Vázquez-Salceda and Wamberto Vasconcelos, Con-
textual Norm-based Plan Evaluation via Answer Set Programming, In Proceedings of Trust,
Incentives and Norms in open Multi-Agent Systems Workshop at the 10th Interna-
tional Conference on Practical Applications of Agents and Multi-Agent Systems (TIN-
MAS@PAAMS’12), Salamanca, Spain (2012).

[PVD+12] Sofia Panagiotidi, Javier Vázquez-Salceda and Frank Dignum, Reasoning
over Norm Compliance via Planning, 13th International Workshop on Coordination, Or-
ganizations, Institutions and Norms in Agent Systems (COIN@AAMAS’12), Valencia,
Spain (2012).

[PAV+13] Sofia Panagiotidi, Sergio Álvarez-Napagao and Javier Vázquez-Salceda, To-
wards the Norm-Aware Agent: Bridging the Gap Between Deontic Specifications and Practical
Mechanisms for Norm Monitoring and Norm-Aware Planning, 15th International Work-
shop on Coordination, Organizations, Institutions and Norms in Agent Systems (COIN
@AAMAS’13), St. Paul, Minnesota (2013).

Bibliography

Abrahams, A. S. and Bacon, J. M. (2002). The life and times of identified, situated, and
conflicting norms. In Proceedings of the 6th International Workshop on Deontic Logic in
Computer Science (DEON’02), pages 3–20.

Adal, A. (2010). An interpreter for organization oriented programming language
(2OPL). Master’s thesis, Utrecht University.

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., and Torroni, P. (2008).
Verifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic (TOCL), 9(4):29.

Aldewereld, H. (2007). Autonomy vs. Conformity: An Institutional Perspective on Norms
and Protocols. PhD thesis, Utrecht University.

Aldewereld, H., Álvarez-Napagao, S., Dignum, F., and Vázquez-Salceda, J. (2010).
Making Norms Concrete. In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’10).

Aldewereld, H. and Dignum, V. (2011). OperettA: Organization-oriented develop-
ment environment. Languages, Methodologies, and Development Tools for Multi-Agent
Systems, Lecture Notes in Computer Science, 6822:1–18.

Aldewereld, H., Grossi, D., Vázquez-Salceda, J., and Dignum, F. (2006). Designing
Normative Behaviour Via Landmarks . Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems, Lecture Notes in Computer Science, 3913:157–169.

Alechina, N., Dastani, M., and Logan, B. (2012). Programming norm-aware agents. In
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’12), pages 1057–1064. International Foundation for Autonomous
Agents and Multiagent Systems.

Alechina, N., Dastani, M., and Logan, B. (2013). Reasoning about normative update. In
Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13),
pages 20–26.

Álvarez-Napagao, S., Aldewereld, H., Vázquez-Salceda, J., and Dignum, F. (2010).
Normative monitoring: semantics and implementation. In Proceedings of the 6th

189

190 Bibliography

International Conference on Coordination, Organizations, Institutions, and Norms in Agent
Systems (COIN@AAMAS’10). Springer-Verlag.

Ancona, D., Bailyn, L., and Brynjolfsson, E. (2003). What Do We Really Want? A
Manifesto for the Organizations of the 21st Century. MIT Discussion Paper, pages
1–8.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne,
J., Rofrano, J., Tuecke, S., and Xu, M. (2007). Web Services Agreement Specification
(WS-Agreement) Version 2005/09. Technical report.

Andrighetto, G. and Conte, R. (2012). Cognitive dynamics of norm compliance. From
norm adoption to flexible automated conformity. Artificial Intelligence and Law,
20(4):359–381.

Antoniou, G., Dimaresis, N., and Governatori, G. (2008). A system for modal and
deontic defeasible reasoning. In Proceedings of the 2008 ACM Symposium on Applied
computing (SAC’08), pages 2261–2265, New York, New York, USA. ACM Press.

Antoniou, G. and van Harmelen, F. (2003). Web Ontology Language: OWL. Handbook
on Ontologies in Information Systems, pages 67–92.

Artikis, A. (2003). Executable specification of open norm-governed computational systems.
PhD thesis, Imperial College London.

Artikis, A. and Sergot, M. (2010). Executable specification of open multi-agent systems.
Logic Journal of IGPL, 18(1):31–65.

Artikis, A., Sergot, M., and Pitt, J. (2003). Specifying electronic societies with the
Causal Calculator. Agent-Oriented Software Engineering III, Lecture Notes in Computer
Science, 2585:1–15.

Artikis, A., Sergot, M., and Pitt, J. (2009). Specifying norm-governed computational
societies. ACM Transactions on Computational Logic (TOCL), 10(1):1–42.

Artosi, A., Cattabriga, P., and Governatori, G. (1994). KED: A Deontic Theorem Prover.
Proceedings of Legal Application of Logic Programming (ICLP’94), pages 60–76.

Aştefănoaei, L., Dastani, M., Meyer, J.-J., and de Boer, F. S. (2009). On the Semantics
and Verification of Normative Multi-Agent Systems. International Journal of Universal
Computer Science, 15(13):2629–2652.

Aştefănoaei, L., de Boer, F. S., and Dastani, M. (2010). The Refinement of Chore-
ographed Multi-Agent Systems. In Proceedings of the 7th International Conference on
Declarative Agent Languages and Technologies (DALT’09), pages 20–34. Springer.

Bacchus, F. and Kabanza, F. (2000). Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 116(1-2):123–191.

Bibliography 191

Bandara, A. K., Lupu, E. C., and Russo, A. (2003). Using Event Calculus to Formalise
Policy Specification and Analysis. In Proceedings of the 4th IEEE International Work-
shop on Policies for Distributed Systems and Networks (POLICY’03), pages 26–39. IEEE
Computer Society.

Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press.

Baral, C. and Gelfond, M. (1999). Reasoning agents in dynamic domains. In Logic-based
artificial intelligence, Kluwer Academic Publishers Norwell, MA, USA, pages 257–279.

Baral, C., Gelfond, M., and Provetti, A. (1997). Representing actions: Laws, observa-
tions and hypotheses. The Journal of Logic Programming, Elsevier Science Inc, NY, USA,
31(1-3):201–243.

Basin, D., Doser, J., and Lodderstedt, T. (2005). Model driven security. Engineering
Theories of Software Intensive Systems, NATO Science Series, 195:353–398.

Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE–A FIPA-compliant agent
framework. 99(97-108).

Bellini, P., Mattolini, R., and Nesi, P. (2000). Temporal logics for real-time system
specification. ACM Computing Surveys (CSUR), 32(1):12–42.

Bellman, R. (1957). A Markovian decision process. Journal of Mathematics and Mechanics,
6:679–684.

Belnap, N. and Perloff, M. (1988). Seeing to it that: a canonical form for agentives.
Theoria, 54(3):175–199.

Ben-Gal, I. (2007). Bayesian networks. In Encyclopedia of Statistics in Quality & Reliabil-
ity. Wiley & Sons.

Bentzen, M. M. (2010). Stit, Iit, and Deontic Logic for Action Types. PhD thesis, Section
for Philosophy and Science Studies, Roskilde University.

Billari, F. C. (2000). Social norms and life course events: A topic for simulation?
Workshop in Norms and Institutions in Multi-Agent Systems, ACM-AAAI, pages 13–14.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial intelligence, Elsevier Science BV, (90):281–300.

Boella, G., Broersen, J., and van der Torre, L. W. N. (2008a). Reasoning about Con-
stitutive Norms, Counts-As Conditionals, Institutions, Deadlines and Violations. In
Proceedings of the 11th Pacific Rim International Conference on Multi-Agents (PRIMA’08),
pages 86–97, Hanoi, Vietnam.

Boella, G. and van der Torre, L. W. N. (2004). Regulative and constitutive norms in
normative multiagent systems. In Proceedings of the 9th International Conference on the
Principles of Knowledge Representation and Reasoning (KR’04), pages 255–265.

192 Bibliography

Boella, G., van der Torre, L. W. N., and Verhagen, H. (2006). Introduction to normative
multiagent systems. Computational & Mathematical Organization Theory, 12(2):71–79.

Boella, G., van der Torre, L. W. N., and Verhagen, H. (2008b). Introduction to the
special issue on normative multiagent systems. Autonomous Agents and Multi-Agent
Systems, 17(1):1–10.

Bonet, B., Loerincs, G., and Geffner, H. (1997). A robust and fast action selection
mechanism for planning. In Proceedings of the 14th National Conference on Artifi-
cial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence
(AAAI’97/IAAI’97), pages 714–719.

Bordini, R. and Hübner, J. F. (2006). BDI agent programming in AgentSpeak using
Jason. Computational Logic in Multi-Agent Systems, pages 143–164.

Bou, E., López-Sánchez, M., and Rodrı́guez-Aguilar, J.-A. (2007). Adaptation of au-
tonomic electronic institutions through norms and institutional agents. Engineering
Societies in the Agents World VII, Lecture Notes in Computer Science, 4457:300–319.

Bratman, M. E. (1987). Intention, plans, and practical reason. Harvard University Press.

Bratman, M. E., Israel, D., and Pollack, M. (1991). Plans And Resource-Bounded
Practical Reasoning. In Robert Cummins and John L Pollock (eds), Philosophy and AI:
Essays at the Interface, The MIT Press, Cambridge, Massachussets, pages 1–22.

Braubach, L., Pokahr, A., and Lamersdorf, W. (2005). Jadex: A BDI-agent system
combining middleware and reasoning. Software Agent-Based Applications, Platforms
and Development Kits, Birkhäuser-Verlag, pages 143–168.

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., and van der Torre, L. W. N. (2001).
The BOID architecture: conflicts between beliefs, obligations, intentions and desires.
In Proceedings of the 5th International Conference on Autonomous Agents (AGENTS’01),
pages 9–16.

Brunel, J., Bodeveix, J.-P., and Filali, M. (2006). A state/event temporal deontic
logic. Deontic Logic and Artificial Normative Systems, Lecture Notes in Computer Sci-
ence, 4048:85–100.

Cardoso, H. L. and Oliveira, E. (2009). A context-based institutional normative en-
vironment. Coordination, Organizations, Institutions and Norms in Agent Systems IV,
Lecture Notes in Computer Science, 5428:140–155.

Cardoso, H. L. and Oliveira, E. (2010). Directed deadline obligations in agent-based
business contracts. Coordination, Organizations, Institutions and Norms in Agent Sys-
tems V, Lecture Notes in Computer Science, 6069:225–240.

Carmo, J. and Pacheco, O. (2000). Deontic and action logics for collective agency and
roles. In Proceedings of the 5th International Workshop on Deontic Logic in Computer
Science (DEON’00), pages 93–124.

Bibliography 193

Casali, A. (2008). On intentional and social agents with graded attitudes. PhD thesis,
Universitat de Girona, Spain.

Castelfranchi, C., Dignum, F., Jonker, C. M., and Treur, J. (2000). Deliberative Nor-
mative Agents: Principles and Architecture. Intelligent Agents VI. Agent Theories,
Architectures, and Languages Lecture Notes in Computer Science, 1757:364–378.

Cliffe, O. (2007). Specifying and analysing institutions in multi-agent systems using answer
set programming. PhD thesis, Department of Computer Science, University of Bath.

Cliffe, O., de Vos, M., and Padget, J. (2007a). Answer set programming for representing
and reasoning about virtual institutions. Computational Logic in Multi-Agent Systems,
Lecture Notes in Computer Science, Springer-Verlag, 4371:60–79.

Cliffe, O., de Vos, M., and Padget, J. (2007b). Specifying and reasoning about multiple
institutions. Coordination, Organizations, Institutions, and Norms in Agent Systems II,
Lecture Notes in Computer Science, 4386:67–85.

Cohen, P. R. and Levesque, H. (1990). Intention is choice with commitment. Artificial
Intelligence, Elsevier Science Publishers BV (North-Holland), (42):213–261.

Conte, R. and Castelfranchi, C. (2001). Are Incentives Good Enough To Achieve (Info)
Social Order? Social Order in Multiagent Systems, Springer.

Cranefield, S. and Winikoff, M. (2011). Verifying social expectations by model checking
truncated paths. Journal of Logic Computation, 21(6):1217–1256.

Cranefield, S., Winikoff, M., and Vasconcelos, W. (2012). Modelling and monitoring
interdependent expectations. Coordination, Organizations, Institutions, and Norms in
Agent System VII, Lecture Notes in Computer Science, 7254:149–166.

Craven, R. and Sergot, M. (2008). Agent strands in the action language nC+. Journal of
Applied Logic, 6(2):172–191.

Criado, N., Argente, E., and Botti, V. (2010a). A BDI architecture for normative deci-
sion making. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’10), pages 1383–1384. International Foundation for
Autonomous Agents and Multiagent Systems.

Criado, N., Argente, E., Noriega, P., and Botti, V. (2010b). Towards a Normative
BDI Architecture for Norm Compliance. In Proceedings of the 11th International
Workshop on Coordination, Organization, Institutions and Norms in Multi-Agent Systems
(COIN@MALLOW’10), pages 65–81, Lyon, France.

da Silva Figueiredo, K., da Silva, V. T., and de Oliveira Braga, C. (2011). Modeling
norms in multi-agent systems with NormML. Coordination, Organizations, Institu-
tions, and Norms in Agent Systems VI, Lecture Notes in Computer Science, 6541:39–57.

194 Bibliography

Daskalopulu, A. (2000). Modelling Legal Contracts as Processes. In Proceedings of the
11th International Workshop on Database and Expert Systems Applications (DEXA’00),
pages 1074–1079.

Dastani, M. (2008). 2APL: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214–248.

Dastani, M., Dignum, V., and Dignum, F. (2003). Role-assignment in open agent soci-
eties. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’03), pages 489–496.

Dastani, M., Grossi, D., Meyer, J.-J., and Tinnemeier, N. (2009a). Normative multi-
agent programs and their logics. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany.

Dastani, M., Tinnemeier, N., and Meyer, J.-J. (2009b). A Programming Language for
Normative Multi-Agent Systems. In Information Science Reference, Hershey, PA, USA.

Davidsson, P. (2000). Emergent Societies of Information Agents. Coordination, Organi-
zations, Institutions and Norms in Agent Systems V, Lecture Notes in Computer Science,
1860:143–153.

Davidsson, P. (2001). Categories of Artificial Societies. Engineering Societies in the Agents
World II, Lecture Notes in Computer Science, 2203:1–9.

Davis, R. and King, J. (1975). An overview of production systems. Machine Intelligence
8: Machine Representations of Knowledge, Wiley, pages 300–331.

de Barros Paes, R., de Cerqueira Gatti, M. A. A., de Carvalho, G. R., Rodrigues, L. F.,
and de Lucena, C. J. (2006). A Middleware for Governance in Open Multi-Agent
Systems. Technical Report 33/06, Pontifical Catholic University of Rio de Janeiro.

De Silva, L., Sardina, S., and Padgham, L. (2009). First principles planning in BDI
systems. In Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’09), pages 1105–1112. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Demolombe, R. and Louis, V. (2006). Speech acts with institutional effects in agent
societies. Deontic Logic and Artificial Normative Systems, Lecture Notes in Computer
Science, 4048:101–114.

Dennett, D. C. (1989). The intentional stance. MIT Press.

Dignum, F. (1999). Autonomous agents with norms. Artificial Intelligence and Law,
Kluwer Academic Publishers, Netherlands, (7):69–79.

Dignum, F., Broersen, J., Dignum, V., and Meyer, J.-J. (2005). Meeting the Deadline:
Why, When and How. Formal Approaches to Agent-Based Systems, Lecture Notes in
Computer Science, 3228:30–40.

Bibliography 195

Dignum, F., Morley, D., Sonenberg, E. A., and Cavedon, L. (2000). Towards socially so-
phisticated BDI agents. In Proceedings of the 4th International Conference on MultiAgent
Systems (ICMAS’00), pages 111–118.

Dignum, V. (2004). A Model for Organizational Interaction: Based on Agents, Founded in
Logic. PhD thesis, Universiteit Utrecht.

Dignum, V. (2009). The Role of Organization in Agent Systems. In V Dignum, editor,
Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models Information Science Reference, IGI Global.

Dignum, V., Meyer, J.-J., Dignum, F., and Weigand, H. (2002). Formal specification
of interaction in agent societies. In 2nd Goddard Workshop on Formal Approaches to
Agent-Based Systems (FAABS), Springer, pages 37–52.

Dignum, V., Vázquez-Salceda, J., and Dignum, F. (2004). A model of almost every-
thing: Norms, structure and ontologies in agent organizations. In Proceedings of the
3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’04), pages 1498–1499. IEEE Computer Society.

Dimopoulos, Y., Nebel, B., and Koehler, J. (1997). Encoding planning problems in non-
monotonic logic programs. Recent Advances in AI Planning, Lecture Notes in Computer
Science, 1348:169–181.

Dybalova, D., Testerink, B., Dastani, M., Logan, B., Dignum, F., and Chopra, A. (2013).
A Framework for Programming Norm-Aware Multi-Agent Systems. In Proceedings
of the 15th International Workshop on Coordination, Organizations, Institutions, and Norm
in Multi-Agent Systems (COIN@AAMAS’13), Minneapolis, USA.

Edelkamp, S. and Hoffmann, J. (2004). PDDL2. 2: The Language for the Classical Part
of the 4th International Planning Competition. Technical report.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A. (2003). A logic programming
approach to knowledge-state planning, II: the DLVk system. Artificial intelligence,
Elsevier Science BV, 144(1-2):157–211.

Eshghi, K. (1988). Abductive Planning with Event Calculus. In Proceedings of the Fifth
International Conference on Logic Programming, pages 562–579.

Esteva, M. (2003). Electronic Institutions: from specification to development. PhD thesis,
Institut d’Investigació en Intel.ligència Artificial (IIIA), Universitat Autonòma de
Barcelona.

Esteva, M., Padget, J., and Sierra, C. (2002). Formalizing a language for institutions
and norms. Intelligent Agents VIII, Lecture Notes in Computer Science, 2333:348–366.

Esteva, M. and Sierra, C. (2002). Islander 1.0 language definition. Technical Report
IIIA-TR-02-02, 2002.

196 Bibliography

Fagundes, M. S., Billhardt, H., and Ossowski, S. (2010). Reasoning about Norm Com-
pliance with Rational Agents. In Proceedings of the 19th European Conference on Artifi-
cial Intelligence (ECAI’10), pages 1027–1028.

Fagundes, M. S., Ossowski, S., Luck, M., and Miles, S. (2012a). Representing and
Evaluating Electronic Contracts with Normative Markov Decision Processes. AI
Communications, 25:1–17.

Fagundes, M. S., Ossowski, S., Luck, M., and Miles, S. (2012b). Using normative
markov decision processes for evaluating electronic contracts. AI Communications,
25(1):1–17.

Farrell, A. D. H., Sergot, M., Sallé, M., and Bartolini, C. (2005). Using the event calcu-
lus for tracking the normative state of contracts. International Journal of Cooperative
Information Systems, World Scientific Publishing Company.

Ferber, J., Gutknecht, O., and Michel, F. (2004). From agents to organizations: an
organizational view of multi-agent systems. Agent-Oriented Software Engineering IV,
Lecture Notes in Computer Science, 2935:214–230.

Fikes, R. E. and Nilsson, N. J. (1972). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3):189–208.

Finin, T., Labrou, Y., and Mayfield, J. (1995). KQML as an agent communication
language. MIT Press.

Fisher, M. (1997). A Normal Form for Temporal Logics and its Applications in
Theorem-Proving and Execution. Journal of Logic and Computation, 7:429–456.

Fisher, M. (2008). Temporal Representation and Reasoning. Handbook of Knowledge
Representation, Elsevier B.V.

Fornara, N. and Colombetti, M. (2009). Specifying and Enforcing Norms in Artificial
Institutions. Declarative Agent Languages and Technologies VI, Lecture Notes in Computer
Science, 5397:1–17.

Fox, M. and Long, D. (2009). PDDL 2.1 : An Extension to PDDL for Expressing
Temporal Planning Domains. Technical report.

Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.-A., Sierra, C., and Vasconcelos, W. (2006). A
rule-based approach to norm-oriented programming of electronic institutions. ACM
SIGecom Exchanges, 5(5):33–40.

Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.-A., Sierra, C., and Vasconcelos, W. (2009).
Constraint rule-based programming of norms for electronic institutions. Autonomous
Agents and Multi-Agent Systems, 18(1).

Gasser, L. (1992). An Overview of DAI. Distributed Artificial Intelligence: Theory and
Praxis, Kluwer Academic Publishers, pages 9–30.

Bibliography 197

Gâteau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005). MoiseInst: An Or-
ganizational Model for Specifying Rights and Duties of Autonomous Agents. In
Proceedings of the 3rd European Workshop on Multi-Agent Systems (EUMAS’05), pages
484–485. Citeseer.

Gelfond, M. and Lifschitz, V. (1993). Representing Action and Change by Logic Pro-
grams. Journal of logic programming.

Gelfond, M. and Lifschitz, V. (1998). Action Languages. Electronic Transactions on AI,
(3).

Gelfond, M. and Lobo, J. (2008). Authorization and obligation policies in dynamic
systems. Logic Programming, Lecture Notes in Computer Science, 5366:22–36.

Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning. In Proceed-
ings of the 6th National Conference in AI (AAAI’87), pages 677–682.

Gerevini, A. and Long, D. (2006). Plan constraints and preferences in PDDL3: The
Language of the Fifth International Planning Competition. Technical report.

Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram, A., Veloso, M., Weld, D. S.,
and Wilkins, D. (1998). PDDL—the planning domain definition language Version
1.2. AIPS98 planning committee, 78(4):1–27.

Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated Planning: Theory & Practice.
Morgan Kaufmann, 1 edition.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. (2004). Nonmonotonic
Causal Theories. Artificial Intelligence, 153(1-2):49–104.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–198.

Gómez-Sebastia, I., Álvarez-Napagao, S., Vázquez-Salceda, J., and Felipe, L. O. (2012).
Towards Runtime Support for Norm Change from a Monitoring Perspective. In
Proceedings of the 1st International Conference on Agreement Technologies (AT’12), pages
71–85.

Governatori, G. (2005). Representing business contracts in RuleML. International Jour-
nal of Cooperative Information Systems, 14:181–216.

Governatori, G., Gelati, J., Rotolo, A., and Sartor, G. (2002). Actions, institutions, pow-
ers: preliminary notes. In Proceedings of the 1st International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications (RASTA’02), pages 131–147.

Governatori, G. and Rotolo, A. (2010). Norm compliance in business process modeling.
In Semantic Web Rules, Lecture Notes in Computer Science, pages 194–209. Springer-
Verlag.

198 Bibliography

Grossi, D. (2007). Designing invisible handcuffs: Formal investigations in institutions and
organizations for multi-agent systems. PhD thesis, Utrecht University.

Grossi, D. and Dignum, F. (2005). From abstract to concrete norms in agent institu-
tions. Formal Approaches to Agent-Based Systems, pages 12–29.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000). MOISE: An organi-
zational model for multi-agent systems. Springer, pages 156–165.

Hansen, J., Pigozzi, G., and van der Torre, L. W. N. (2007). Ten philosophical problems
in deontic logic. In Boella, G., van der Torre, L. W. N., and Verhagen, H., editors,
Normative Multi-agent Systems, Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany.

Hilpinen, R., editor (1971). Deontic Logic: Introductory and Systematic Readings. Synthese
Library. Springer.

Hindin, M. J. (2007). Role Theory. Blackwell Encyclopedia of Sociology, Oxford, UK,
Malden, USA and Carlton, Australia.

Hindriks, K. V. (2009). Programming Rational Agents in GOAL. Multi-Agent Program-
ming: Languages, Tools and Applications, pages 119–157.

Hindriks, K. V., van der Hoek, W., and van Riemsdijk, M. B. (2009). Agent program-
ming with temporally extended goals. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS’09), pages 137–144.
International Foundation for Autonomous Agents and Multiagent Systems.

Hindriks, K. V. and van Riemsdijk, M. B. (2013). A Real-Time Semantics for Norms
with Deadlines. In Proceedings of the International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS’13), pages 1–8.

Hodgson, G. M. (2006). What Are Institutions? Journal of Economic Issues 2006, vol.
40(1):2–4.

Hoffmann, J. and Nebel, B. (2001). The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research.

Hohfeld, W. N. (1917). Fundemental Legal Conceptions as Applied in Judicial Rea-
soning. Yale Law Journal, pages 711–770.

Horn, A. (1951). On sentences which are true of direct unions of algebras. The Journal
of Symbolic Logic, 16(1):14–21.

Horty, J. F. (2001). Agency and Deontic Logic . Oxford University Press.

Hsu, C.-W. and Wah, B. W. (2008). The sgplan planning system in ipc-6. Sixth Interna-
tional Planning Competition, Sydney, Australia (September 2008).

Bibliography 199

Hübner, J. F., Boissier, O., and Bordini, R. (2011). A normative programming language
for multi-agent organisations. Annals of Mathematics and Artificial Intelligence, 62(1-
2):27–53.

Hübner, J. F., Sichman, J. S., and Boissier, O. (2002). MOISE+: towards a structural,
functional, and deontic model for MAS organization. In Proceedings of the 1st Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02),
pages 501–502.

Jones, A. J. I., Artikis, A., and Pitt, J. (2013). The design of intelligent socio-technical
systems. Artificial Intelligence Review, 39(1):5–20.

Jones, A. J. I. and Sergot, M. (1993). On the characterisation of law and computer sys-
tems: the normative systems perspective. Deontic logic in computer science: normative
system specification, pages 275–307.

Jones, A. J. I. and Sergot, M. (1996). A formal characterisation of institutionalised
power. Logic Journal of IGPL, 4(3):427.

Jung, C. G., Fischer, K., and Burt, A. (1996). Multi-agent planning using an abductive:
event calculus. Technical Report DFKI, DFKI Research Reports, 96-04:114.

Kanger, S. (1972). Law and logic. Theoria, 38(3):105–132.

Kanger, S. and Stenlund, S. (1974). Logical theory and semantic analysis: essays dedicated
to Stig Kanger on his fiftieth birthday. Springer.

Kautz, H. and Selman, B. (1992). Planning as satisfiability. In Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI’92), pages 359–363.

Kollingbaum, M. (2005). Norm-governed practical reasoning agents. PhD thesis, Univer-
sity of Aberdeen.

Kollingbaum, M., Jureta, I. J., Vasconcelos, W., and Sycara, K. (2008). Automated
Requirements-Driven Definition of Norms for the Regulation of Behavior in Multi-
Agent Systems. In Proceedings of the Artificial Intelligence and the Simulation of Be-
haviour Convention in Multi-Agent Systems (AISB’08).

Kollingbaum, M. and Norman, T. J. (2003). Norm adoption in the NoA agent architec-
ture. In Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’03), pages 1038–1039.

Kotok, A. and Webber, D. (2001). ebXML: The New Global Standard. New Riders
Publishing, page 339.

Kowalski, R. A. and Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4(1):67–95.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299.

200 Bibliography

Lam, J., Guerin, F., Vasconcelos, W., and Norman, T. J. (2010). Building multi-agent
systems for workflow enactment and exception handling. In Coordination, Organi-
zations, Institutions and Norms in Agent Systems V, Lecture Notes in Computer Science,
pages 53–69. Springer-Verlag.

Lam, J., Vasconcelos, W., Guerin, F., Corsar, D., Chorley, A., Norman, T. J., Vázquez-
Salceda, J., Panagiotidi, S., Confalonieri, R., and Gómez-Sebastia, I. (2009). ALIVE:
A framework for flexible and adaptive service coordination. In Proceedings of the
10th International Workshop on Engineering Societies in the Agents World X (ESAW’09),
pages 236–239. Springer.

Leff, L. and Meyer, P. (2007). OASIS LegalXML eContracts Version 1.0 Committee
Specification 1.0, 27 April 2007.

Levesque, H., Pirri, F., and Reiter, R. (1998). Foundations for the situation calculus.
Linköping Electronic Articles in Computer and Information Science, 3.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime
Dynamic A*: An Anytime, Replanning Algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS’05), American Association for
Artificial Intelligence.

Liu, C. L. and Layland, J. W. (1973). Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61.

Lokhorst, G.-J. C. (1999). Ernst Mally’s Deontik (1926). Notre Dame Journal of Formal
Logic, 40(2):273–282.

Lomuscio, A., Qu, H., and Raimondi, F. (2009). MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. Computer Aided Verification, Lecture Notes in
Computer Science, 5643:682–688.

Lomuscio, A., Qu, H., and Solanki, M. (2011). Towards Verifying Contract Regu-
lated Service Composition. Journal of Autonomous Agents and Multi-Agent Systems,
24(3):345–373.

López y López, F. (2003). Social Power and Norms: Impact on agent behaviour. PhD thesis,
University of Southampton.

López y López, F. and Luck, M. (2002). Towards a Model of the Dynamics of Norma-
tive Multi-Agent Systems. In Proceedings of the International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications (RASTA ’02), pages 175–194.

López y López, F., Luck, M., and d’Inverno, M. (2001). A Framework for Norm-Based
Inter-Agent Dependence. In Proceedings of the 3rd Mexican International Conference on
Computer Science, SMCC-INEGI, pages 31–40.

López y López, F., Luck, M., and d’Inverno, M. (2004). Normative agent reasoning
in dynamic societies. In Proceedings of the 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’04), pages 732–739.

Bibliography 201

López y López, F., Luck, M., and d’Inverno, M. (2006). A normative framework for
agent-based systems. Computational & Mathematical Organizational Theory, Springer
Science + Business Media, LLC, (12):227–250.

Ludwig, H., Keller, A., Dan, A., King, R. P., and Franck, R. (2003). Web Service Level
Agreement (WSLA) Language Specification. Technical report.

Mally, E. (1926). Grundgesetze des Sollens: Elemente der Logik des Willens. Graz:
Leuschner und Lubensky, Universitäts-Buchhandlung.

Marek, V. W. and Truszczynski, M. (1999). Stable models and an alternative logic pro-
gramming paradigm. The Logic Programming Paradigm, Artificial Intelligence, pages
375–398.

McCain, N. C. (1997). Causality in Commonsense Reasoning about Actions. The
University of Texas at Austin.

McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4:463–502.

Meneguzzi, F. and Luck, M. (2008). Composing high-level plans for declarative agent
programming. Declarative Agent Languages and Technologies V Lecture Notes in Com-
puter Science, 4897:69–85.

Meneguzzi, F. and Luck, M. (2009a). Leveraging new plans in AgentSpeak (PL). Declar-
ative Agent Languages and Technologies VI, Lecture Notes in Computer Science, 5397:111–
127.

Meneguzzi, F. and Luck, M. (2009b). Norm-based behaviour modification in BDI
agents. In Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’09). International Foundation for Autonomous Agents
and Multiagent Systems.

Meneguzzi, F., Vasconcelos, W., and Oren, N. (2010). Using constraints for Norm-
aware BDI Agents. In Proceedings of the 4th Annual Conference of the International
Technology Alliance, London, UK.

Meneguzzi, F., Vasconcelos, W., Oren, N., and Luck, M. (2012). Nu-BDI: Norm-aware
BDI Agents. In Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’09).

Milosevic, Z. and Dromey, G. R. (2002). On Expressing and Monitoring Behaviour in
Contracts. In Proceedings of the 6th International Enterprise Distributed Object Comput-
ing Conference (EDOC’02), pages 3–14.

Milosevic, Z., Jøsang, A., Dimitrakos, T., and Patton, M. A. (2002). Discretionary
Enforcement of Electronic Contracts. In Proceedings of the 6th International Enterprise
Distributed Object Computing Conference (EDOC’02), pages 39–50. IEEE Computer
Society.

202 Bibliography

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., and Luck, M. (2009). A frame-
work for monitoring agent-based normative systems. International Foundation for
Autonomous Agents and Multiagent Systems, 1:153–160.

Moses, Y. and Tennenholtz, M. (1995). Artificial Social Systems. Computers and Artificial
Intelligence, 14(6):533–562.

Nau, D. S., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F. (2003).
SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research, pages
379–404.

Noriega, P. (1997). Agent Mediated Auctions: The Fishmarket Metaphor. PhD thesis,
Universitat Autonoma de Barcelona.

Noriega, P. and Sierra, C. (2002). Electronic Institutions: Future Trends and Challenges.
Springer-Verlag.

North, D. C. (1990). Institutions, institutional change, and economic performance. Cam-
bridge University Press.

Odell, J. J., van Dyke Parunak, H., and Fleischer, M. (2003). The Role of Roles in
Designing Effective Agent Organizations. Software Engineering for Large-Scale Multi-
Agent Systems, Lecture Notes in Computer Science, 2603:27–38.

Oh, J., Meneguzzi, F., and Sycara, K. (2011). Prognostic agent assistance for norm-
compliant coalition planning. In Proceedings of the 2011 Conference on Autonomous
Agents and Multi-Agent Systems, Taipei, Taiwan.

Okouya, D. and Dignum, V. (2008). OperettA: a prototype tool for the design, analysis
and development of multi-agent organizations. In Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’08), pages
1677–1678. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

Oren, N., Luck, M., and Miles, S. (2010). A model of normative power. In Proceed-
ings of the 9th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’10), pages 815–822. International Foundation for Autonomous Agents and
Multiagent Systems.

Oren, N. and Meneguzzi, F. (2013). Norm Identification through Plan Recognition. In
Proceedings of the 15th International Workshop on Coordination, Organisations, Institu-
tions and Norms (COIN@AAMAS’13), Saint Paul, MN, USA.

Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., and Miles, S.
(2009). Towards a Formalisation of Electronic Contracting Environments. Coor-
dination, Organizations, Institutions and Norms in Agent Systems IV, Lecture Notes in
Computer Science, 5428:156–171.

Bibliography 203

Oren, N., Vasconcelos, W., Meneguzzi, F., and Luck, M. (2011). Acting on norm con-
strained plans. Computational Logic in Multi-Agent Systems, Lecture Notes in Computer
Science, 6814:347–363.

Ostrom, E. (1986). An agenda for the study of institutions. Public Choice, 48(1):3–25.

Padgham, L. and Winikoff, M. (2004). Developing intelligent agent systems: a practical
guide. John Wiley and Sons.

Panagiotidi, S., Álvarez-Napagao, S., and Vázquez-Salceda, J. (2013). Towards the
Norm-Aware Agent: Bridging the gap between deontic specifications and practical
mechanisms for Norm Monitoring and Norm-Aware Planning. In Proceedings o
the 15th International Workshop on Coordination, Organizations, Institutions and Norms
(COIN@AAMAS’13), Minneapolis, USA.

Panagiotidi, S., Nieves, J. C., and Vázquez-Salceda, J. (2009). A framework to model
norm dynamics in Answer Set Programming. In Proceedings of the Workshop on Formal
Approaches to Multi-Agent Systems (FAMAS’09), pages 193–201.

Panagiotidi, S., Vázquez-Salceda, J., Ortega-Martorell, S., Jakob, M., Solanki, M.,
Álvarez-Napagao, S., Oren, N., Confalonieri, R., Biba, J., and Willmott, S. (2008).
Contracting Language Syntax and Semantics Specifications. Technical report.

Paschke, A. (2005). RBSLA: A declarative Rule-based Service Level Agreement Lan-
guage based on RuleML. In Proceedings of the International Conference on Computa-
tional Intelligence for Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA’05), pages 308–314.

Paschke, A., Dietrich, J., and Kuhla, K. (2005). A Logic Based SLA Management
Framework. Semantic Web and Policy Workshop (SWPW), 4th Semantic Web Conference
(ISWC 2005), Galway, Ireland.

Pednault, E. P. D. (1994). ADL and the State-Transition Model of Action. Journal of
Logic and Computation, 4(5):467–512.

Penner, J. (1988). The Rules of Law: Wittgenstein, Davidson, and Weinrib’s Formalism.
University of Toronto Faculty of Law Review, 46.

Pörn, I. (1974). Some basic concepts of action. In Stig Kanger, Sören Stenlund (eds):
Logical theory and semantic analysis: essays dedicated to Stig Kanger on his fiftieth birthday,
Volume 63 of Synthese Dordrecht / Library, Springer.

Prakken, H. and Sergot, M. (1996). Contrary-to-duty obligations. Studia Logica,
57(1):91–115.

Prakken, H. and Sergot, M. (1997). Dyadic deontic logic and contrary-to-duty obliga-
tions. Defeasible Deontic Logic, Synthese Library, 263:223–262.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.

204 Bibliography

Ranathunga, S., Cranefield, S., and Purvis, M. (2012). Integrating expectation moni-
toring into BDI agents. Programming Multi-Agent Systems, Lecture Notes in Computer
Science, 7217:74–91.

Rao, A. S. (1996). AgentSpeak (L): BDI agents speak out in a logical computable
language. In Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’96), pages 42–55, Eindhoven, The Netherlands.
Springer.

Rao, A. S. and Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. In Pro-
ceedings of the 1st International Conference on Multi-Agent Systems (ICMAS’95), pages
312–319.

Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language
description. Technical report.

Santos, F., Jones, A. J. I., and Carmo, J. M. C. L. M. (1997). Action concepts for describ-
ing organised interaction. In Proceedings of the 30th Hawaii International Conference on
System Sciences, pages 373–382. IEEE Comput. Soc. Press.

Sardina, S., De Silva, L., and Padgham, L. (2006). Hierarchical planning in BDI agent
programming languages: A formal approach. In Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’06), pages 1001–
1008. ACM.

Scott, W. R. (1995). Institutions and organizations. Sage Publications.

Searle, J. R. (1969). Speech acts: An essay in the philosophy of language. Cambridge
University Press.

Searle, J. R. (1997). The construction of social reality. page 256.

Sergot, M. (2003). (C+)++: An action language for modelling norms and institutions.
Technical Report, Imperial College.

Sergot, M. and Craven, R. (2006). The Deontic Component of Action Language
nC+. Deontic Logic and Artificial Normative Systems, Lecture Notes in Computer Sci-
ence, 4048:222–237.

Shanahan, M. (2000). An abductive event calculus planner. The Journal of Logic Pro-
gramming, 44(1):207–240.

Shoham, Y. and Tennenholtz, M. (1995). On social laws for artificial agent societies:
off-line design. Artificial Intelligence, 73(1-2):231–252.

Sierra, C., Garcia, P., and Arcos, J. L. (2001). On the formal specification of Electronic
Institutions. Agent Mediated Electronic Commerce, Lecture Notes in Computer Science,
1991:126–147.

Bibliography 205

Sierra, C., Rodrı́guez-Aguilar, J.-A., Noriega, P., Esteva, M., and Arcos, J. L. (2004).
Engineering multi-agent systems as electronic institutions. European Journal for the
Informatics Professional, 4(4):33–39.

Smith, R. G. (1980). The contract net protocol: High-level communication and control
in a distributed problem solver. Computers, IEEE Transactions, 29(12):1104–1113.

Tauriainen, H. (2006). Automata and linear temporal logic: translations with transition-based
acceptance. PhD thesis, Helsinki University of Technology.

The JBoss Drools team (2013). Drools Introduction and General User Guide, 5.4.0.cr1
edition.

Thiébaux, S., Hoffmann, J., and Nebel, B. (2005). In defense of PDDL axioms. Artificial
Intelligence, 168(1):38–69.

Thielscher, M. (1999). From situation calculus to fluent calculus: State update axioms
as a solution to the inferential frame problem. Artificial Intelligence, 111(1–2):277–299.

Thielscher, M. (2005). FLUX: A logic programming method for reasoning agents.
Theory and Practice of Logic Programming, 5(4-5).

Tufis, M. and Ganascia, J.-G. (2012). Normative rational agents-A BDI approach. In
Proceedings of the 1st workshop on Rights and Duties of Autonomous Agents, European
Conference on Artificial Intelligence (RDA2@ECAI’12), page 38.

van der Torre, L. W. N. (2003). Contextual deontic logic: Normative agents, violations
and independence. Annals of Mathematics and Artificial Intelligence, 37(1-2):33–63.

van Riemsdijk, M. B., Dennis, L. A., Fisher, M., and Hindriks, K. V. (2013). Agent
reasoning for norm compliance: a semantic approach. In Proceedings of the 12th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS’13),
pages 499–506. International Foundation for Autonomous Agents and Multiagent
Systems.

van Steen, M., Pierre, G., and Voulgaris, S. (2012). Challenges in very large distributed
systems. Journal of Internet Services and Applications, 3(1):59–66.

Vanhee, L., Aldewereld, H., and Dignum, F. (2011). Implementing Norms? In Pro-
ceedings of the 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology (WI-IAT’11), pages 13–16, Lyon, France.

Vasconcelos, W., Kollingbaum, M., and Norman, T. J. (2007). Resolving conflict and
inconsistency in norm-regulated virtual organizations. In Proceedings of the 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’07).

Vasconcelos, W., Kollingbaum, M., and Norman, T. J. (2009). Normative conflict resolu-
tion in multi-agent systems. Autonomous Agents and Multi-Agent Systems, 19(2):124–
152.

206 Bibliography

Vázquez-Salceda, J. (2004). The role of Norms and Electronic Institutions in Multi-
Agent Systems. Whitestein Series in Software Agent Technology, Birkhäuser Verlag AG,
Switzerland, ISBN 3-7643-7057-2.

Vázquez-Salceda, J. and Dignum, F. (2003). Modelling electronic organizations. Multi-
Agent Systems and Applications III, Lecture Notes in Computer Science, 2691:584–593.

Vázquez-Salceda, J., Dignum, V., and Dignum, F. (2005). Organizing multiagent sys-
tems. Autonomous Agents and Multi-Agent Systems, 11(3):307–360.

Vecht, B. v. d. (2009). Adjustable Autonomy: Controling Influences on Decision Mak-
ing. Utrecht University, SIKS Dissertation Series.

Villatoro, D., Andrighetto, G., Sabater-Mir, J., and Conte, R. (2011). Dynamic Sanc-
tioning for Robust and Cost-Efficient Norm Compliance. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI’11), pages 414–419.

von Wright, G. H. (1951). Deontic Logic. Mind, 60(237):1–15.

von Wright, G. H. (1956). A note on deontic logic and derived obligation. Mind,
65:507–509.

von Wright, G. H. (1971). A New System of Deontic Logic. Deontic Logic: Introductory
and Systematic Readings, Springer Netherlands, 33:105–120.

Wallace, R. J. (2009). Practical Reason. The Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/practical-reason/.

Walter, R. (1996). Jorgensen’s Dilemma and How to Face It. Ratio Juris, 9(2):168–171.

Wang, P.-H. (2010). Are Rules Exclusionary Reasons in Legal Reasoning? Archiv für
rechts-und sozialphilosophie, ARSP. Beiheft, (119):37–48.

Wang, Y. and Ruhe, G. (2007). The cognitive process of decision making. International
Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 1(2):73–85.

Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelligence.
The MIT Press.

Weld, D. S. (1999). Recent advances in AI planning. AI magazine, 20(2):93–123.

Winikoff, M. (2005). JACKTM intelligent agents: An industrial strength platform.
Multi-Agent Programming, Multiagent Systems, Artificial Societies, and Simulated Or-
ganizations, 15:175–193.

Winikoff, M., Padgham, L., Harland, J., and Thangarajah, J. (2002). Declarative and
procedural goals in intelligent agent systems. In Proceedings of the 8th International
Conference on Principles of Knowledge Representation and Reasoning (KR’02), pages 470–
481. Morgan Kaufman.

Wooldridge, M. J. (2001). An introduction to multiagent systems. John Wiley & Sons.

Bibliography 207

Wooldridge, M. J. and Jennings, N. R. (1995). Intelligent Agents: Theory and Practice.
Knowledge engineering review, 10:115–152.

Wooldridge, M. J., Jennings, N. R., and Kinny, D. (2000). The Gaia Methodology for
Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent Systems,
Kluwer Academic Publishers, The Netherlands, (3):285–312.

Appendix A

Basis Framework Semantics

This Appendix presents an extract of our work on formalising normative elements
and norm modelling [Oren et al., 2009] previous to this thesis. Although the norm
semantics presented in Chapter 4 and 5 are based on different logical foundations,
some concepts such as the basic steps on the norm cycle are inspired by this previous
work.

At their core, normative environments impose a set of (possibly conditional) require-
ments on an agent’s behaviour. These requirements may range from actions that the
agent may, or should, undertake, to states of affairs within the environment that an
agent may, should, or should not, allow to occur. To formalise a norm-aware language,
one must also formalise its normative components. As will be discussed in Section
A.5, researchers have provided many such formalisations, often in the context of de-
ontic logic. Our interest in norms is more focused; as part of a norm-aware language,
we are interested in tracking their changing state (for example, when they are “active”,
as well as the more traditional “violated”). Furthermore, our application domain re-
quires slightly different philosophical assumptions when compared to those made in
the deontic tradition, as we assume that norms can be violated, but may then, in some
cases, be “un-violated”.

A.1 Norms for Modelling Regulative Clauses

A normative environment is made up of various descriptive elements, for example,
stating which ontologies may be used to explain the terms found within it. Most
importantly, it specifies a set of clauses, each of which represents a norm.

Norms can be interpreted as socially derived prescriptions specifying that some set of
agents (the norm’s targets) may, or must, perform some action, or see that some state
of affairs occurs. Norms can be understood as regulating the behaviour of agents.
This is their role when encoded in normative environments.

209

210 A.1 Norms for Modelling Regulative Clauses

Norms are social constructs, and we believe that it is meaningless to consider norms
independently of their social aspect. This is because a norm is imposed on the target
by some other entity (the imposer) which must be granted, via the society, some power
to impose the norm. Without this power, the norm’s target is free to ignore the norm’s
prescriptions. With the presence of power, a penalty may be imposed on an agent
violating a norm. These penalties take on the form of additional norms, giving certain
agents within a society the option to impose penalties.

When designing our normative model, we attempted to meet the following require-
ments, imposed upon us by the domain in which we operate:

• There should be a strong focus on semantics at all levels. The knowledge might
be represented by ontologies and supported by semantic languages. The actions
can be described by expressive languages and provide the option to be inter-
preted and used by different frameworks. The norms might be modelled using
extended deontic logic.

• The framework should allow for the contextualisation of norms as well as the
domain within which the agent operates

• The model should allow for the monitoring of norms. That is, it should allow for
the determination of whether a violation took place and, if possible, who was
responsible for causing the violation.

• Verification of norms should also be supported, i.e. determining whether con-
flicts between norms could occur, or whether a norm could never, sometimes, or
always be complied with.

• Norms should be able to cope with contrary to duty obligations as well as condi-
tions based on the status of other norms. For example, consider the pair of norms
“One is obliged to park legally”, and “If one parks illegally, one is obliged to pay
a fine”. The second norm carries normative weight only if the first norm is vio-
lated. These types of norms commonly appear within normative environments,
and it is thus critical that our model is able to represent them.

• Norms must be able to cope with contrary to duty obligations, as well as condi-
tions based on the status of other norms.

• The model should be extensible, allowing different knowledge representations
and reasoning mechanisms to make use of it.

No requirement was placed on detecting and resolving normative conflict. Many
such techniques exist, each having a different view of what constitutes normative
conflict (e.g. [Vasconcelos et al., 2007]). It is intended that these techniques could
make use of our framework for their underlying representation of norms. Similarly,
our model should not prescribe what must occur when a violation is detected. Instead,
we assume that the environment would contain clauses dealing with such situations.

Since it is possible that norms have a normative force only under specific situations,
an activation condition is associated with them. In this way, norms remain abstract until

Appendix A: Basis Framework Semantics 211

their activation condition becomes true, which is when they get instantiated. Once it
gets instantiated, a norm stays active, regardless of its activation condition, until a
particular expiration condition becomes true. When this happens, the norm is assumed
to no longer have normative force. Finally, in addition to these two conditions, the
norm’s normative goal is used to indicate when the norm gets violated. As stated in
Section 3.2.6, obligations and prohibitions are the two norm types on which our frame-
work focuses. Like others, we assume that additional norm types may be constructed
from these basic types (e.g. a prohibition could be seen as an obligation with a negated
normative goal).

Norms may be activated, met and discharged based on a number of factors including
the status of other norms and the state of the environment (and the actions performed
by other agents therein).

A.2 Formal Preliminaries

In the next sections, we formalise our notions of norms. We do so in a number of
steps: first, we define their structure; after this is done, we show how the status of a
norm may change over time. Before examining norms, we must define a number of
related concepts.

We assume the use of a predicate based first-order language L containing logical
symbols: connectives {¬,∧,∨,→}, quantifiers {∀,∃}, an infinite set of variables, and
the non-logical predicate, constant and function symbols. The standard definitions for
free and bound variables, as well as ground formulas are assumed. Finally, the set of
well formed formulas of L are denoted as wff (L). A single well-formed formula from
this set is denoted wff.

We make use of the standard notions of substitution of variables in a wff , where
V = {x1 ← t1, x2 ← t2, ..., xi ← ti} is a substitution of the terms t1, . . . , tn for variables
x1, . . . , xn in a wff . If no variables exist in a wff resulting from a substitution, it is said
to be fully grounded, and is partially grounded otherwise.

Our model allows us to infer predicates based on the status of the environment,
clauses, and norms. We assume that other predicates may exist whose truth value
may be inferred from other sources such as ontologies, or an action model. Each of
these sources thus generates a theory, denoted by Γ. For example, we label the theory
generated by the environment as ΓEnv. We label the union of all theories as Ω.

Formally, a normative environment contains a set of clauses representing norms imposed
on agents. A normative environment that has been agreed to by those agents has
normative force, and the agents affected by the environment’s norms are the parties.
Since a normative environment may be instantiated more than once with different
agents playing similar roles, agents are identified using an indirection mechanism: a

212 A.3 Structural Definitions

normative environment imposes norms on a set of roles, and agents are associated
with these roles before the environment is created.

A.3 Structural Definitions

We may now define the structure of norms and normative environment. Since these
concepts act upon agents, we begin by defining these entities, as well as roles, which
are names referenced to identify the agent upon which a norm acts.

A.3.1 Agent Names and Roles

Agents in our framework are left unspecified; we only assume that they are associated
with a unique agent name1.

A role may have one or more parent roles. This means that whenever an agent is
assigned to a role, it is also assigned to that role’s parent roles, and so assumes the
clauses applying to those parents. If a role r1 is a parent of role r2, then r2 may be
referred to as a child role of r1.

Definition A.1. (Roles) A role is a constant. We assume that the set of all roles is called
Roles. Then a role hierarchy definition RoleHierarchyDe f inition is a binary relation of
the form (Parent,Child) where Parent,Child ∈ Roles.

If we would like to specify that the role of a repairer exists in the environment,
and also include the fact that any car repairer also acts as a repairer (i.e. repairer is
a parent role of car repairer), then (repairer, carRepairer) would be contained within
RoleHierarchyDe f inition.

A.3.2 Norms

An environment contains a set of clauses, represented by norms. Norms may bind an
agent to a certain course of action in all situations, or may only affect an agent when
certain activation conditions apply. Similarly, once an agent achieves a certain state of
affairs, a norm may no longer apply. Finally, norms affect only a specific set of target
agents. A norm thus consists of the following.

• A type identifier, stating whether the norm is an obligation or a prohibition.

• An activation condition stating when the norm must be instantiated.

1We have chosen to consider all agents as black boxes and not impose restrictions on the agents’
internal architecture. This is to make our framework as technology independent as possible and also to
make our framework suitable to model Multi-agent setups mixing software agents and human agents.

Appendix A: Basis Framework Semantics 213

• A normative goal or state (condition) used to identify when the norm is violated
(in the case of both obligations and prohibitions).

• An expiration condition used to determine when the norm no longer affects the
agent.

• A target, identifying either the agents or the agent roles which the norm affects.

Norms may be activated, met, and discharged based on various factors including
the environment, and the status of other norms. We assume the existence of Ω, a
theory (or possibly a set of theories) allowing one to interpret the status of norms2.
To represent the status of a norm, we define a normative environment theory ΓNEnv

below, and assume that it is part of Ω.

A norm that may apply to a number of situations is, in a sense, abstract. When a
situation to which it applies does arise, the norm is instantiated and exerts a norma-
tive force on the agents that are beholden to it. We may thus informally define an
abstract norm as a norm that, when the conditions are right, comes into effect (i.e. is
instantiated) and only then has normative force over one or more agents. As the name
suggests, an instantiated norm is an instantiated abstract norm, which has normative
power over a set of agents, until it is discharged.

A group of abstract norms (which, in our case, are the clauses of the environment) is
gathered into an abstract norm store. Norms may be represented as a tuple of wffs.

Definition A.2. (Abstract Norms and Abstract Norm Store) An Abstract Norm Store,
denoted ANS , consists of a set of abstract norms, each of which is a tuple of the form

〈NormType, NormActivation, NormCondition, NormExpiration, NormTarget〉

where:

• NormType ∈ {obligation, prohibition}
• NormTarget ∈ Roles

• for N ∈ {NormActivation, NormCondition, NormExpiration, NormTarget}, N is
a wff (denoted by φN)

We may further divide NormCondition into a state-based maintenance condition (la-
beled SMaintenanceCondition) and an action-based maintenance condition (labeled AMain-
tenanceCondition). A truth value for NormCondition may be computed as the truth value
of (AMaintenanceCondition ∧ SMaintenanceCondition).

NormActivation is some wff φNA which, when entailed by the theory, must be entailed
as the fully grounded φ′NA in order that the abstract norm can be instantiated and
thus come into force. The substitution of variables V such that φ′NA = S(φNA) is then

2For example, Ω may include references to the environment, an ontology, an action model, and
normative environment.

214 A.3 Structural Definitions

applied to the other components of the abstract norm, thus specifying the instantiated
norm.

A.3.3 Instantiating Abstract Norms

We now define how abstract norms are instantiated with respect to the domain envi-
ronment theory and normative environment theory.

An instantiated norm has the same overall form as an abstract norm but its activation
condition is grounded, its remaining parameters are partially grounded using the
same grounding as the activation condition and its NormTarget no longer refers to
roles but to agents.

Definition A.3. (Instantiation of Abstract Norms)

The abstract norm

〈NormType, NormActivation, NormCondition, NormExpiration, NormTarget〉

instantiated by the Environment ΓEnv and Normative Environment Theory ΓNEnv, obtains
an instantiated norm:

〈NormType, NormActivation′, NormCondition′, NormExpiration′, NormTarget′〉

where:

• Ω ` NormActivation′, where NormActivation′ is fully grounded such that NormActivation′

= S(NormActivation)

• NormCondition′ = S(NormCondition)

• NormExpiration′ = S(NormExpiration).

• NormTarget′ = {X | Ω ∪ {NormActivation′} ∪ {S(NormTarget)} ` X},
where NormTarget′ ⊆ AgentNames

Notice that NormTarget′ is the set of individuals X to whom the instantiated norm ap-
plies. These individuals are identified with reference to (entailed by) the domain en-
vironment theory, normative environment3, and the NormActivation and NormTarget
wffs that are grounded with respect to the former environments. In the context of a
clause, the norm’s targets are identified by using the RoleHierarchyDe f inition relation.
Note also that NormCondition′ an NormExpiration′ may only be partially grounded.

3The normative environment may be used when a target should be identified based on the status of
another norm. For example, in the case of a contrary to duty obligation, a penalty must be paid by the
agent(s) violating some other norm.

Appendix A: Basis Framework Semantics 215

Given a set of abstract norms ANS, together with a Ω, we define the set of norms that
may be instantiated from Ω as inst(ANS).

A.4 Dynamic Semantics

So far, we have described the structure of the environment and norms. To meet the
goals of monitoring and verification, the changing status of norms must be tracked.
Usually, we will be interested on how the norms affect the parties, i.e. how, given
the evolution of the environment, various norms are instantiated, violated and dis-
charged. Additionally, agents, and other norms, may need to determine the current,
or historic state of norms, allowing them, for example, to identify all the obligations
and prohibitions they are committed to fulfil at any point in time. To do so, we define
the normative environment, a structure which may be used to identify the status of
norms as they go through their lifecycle, and show how it may be used to perform
evaluations regarding the status of a norm.

To do this, we now describe the normative environment theory ΓNEnv. This structure
defines predicates that may be used to identify the status of norms as they progress
through their lifecycle. A normative environment theory is built around a norma-
tive environment, which is itself a (possibly infinite) sequence of normative states
NS1, NS2, . . ., each of which identifies the norms whose status has changed at the
point in time associated with the normative state. Each normative state NSi in the
sequence is defined with respect to the overarching theory Ω (which includes ΓNEnv),
and a given set of abstract norms ANS. Thus, a normative state represents an in-
stance during which one or more events related to some norms’ status occurred. Each
normative state keeps track of four basic events, namely:

1. when an abstract norm is instantiated;

2. when an instantiated norm expires;

3. when a norm’s normative condition holds;

4. when a norm’s normative condition does not hold.

In order to formally define a normative state we first define the evaluation of an
instantiated norm’s NormCondition and ExpirationCondition:

Definition A.4. (The holds() Predicate) Let in be an instantiated norm

〈NormType, NormActivation, NormCondition, NormExpiration, NormTarget〉

Then, for N ∈ {NormCondition, NormExpiration}:

216 A.4 Dynamic Semantics

• holds(in, N) evaluates to true if Ω ` N′, where N′ is entailed with all variables in
N grounded

• holds(in, N) evaluates to false otherwise

Our formal definition of a normative state then identifies those instantiated norms
whose normative condition evaluates to true, those whose normative condition evalu-
ates to false, and those whose expiration condition evaluates to true:

Definition A.5. (Normative State) Let INS be a set of instantiated norms. A norma-
tive state NS, defined with respect to a set INS of instantiated norms, and domain
environment theory ΓEnv and normative environment theory ΓNEnv, is a tuple of the
form: 〈NSTrue, NSFalse, NSExpires〉 where:

• NSTrue = {in ∈ INS| holds(in, NormCondition) is true}
• NSFalse = {in ∈ INS| holds(in, NormCondition) is false}
• NSExpires = {in ∈ INS| holds(in, NormExpiration) is true}

Since NSTrue ∪ NSFalse ⊇ NSExpires, it is sufficient to identify the instantiated norms
in a normative state, denoted inst norms(NS), by the union of those norms whose nor-
mative condition evaluates to true, and those, whose normative condition evaluates to
false. That is to say:

inst norms(NS) = NSTrue ∪ NSFalse

Definition A.6. (Normative Environment) A normative environment NE is a possi-
bly infinite ordered sequence NS1, NS2, . . . where for i = 1 . . ., we say that NSi is the
normative state previous to NSi+1.

Given a normative state, the subsequent normative state is defined by removal of the
expired instantiated norms, addition of new instantiated norms, and checking the
norm state of all instantiated norms. We therefore define a minimal set of conditions
that a normative environment should satisfy:

Definition A.7. (Normative State Semantics) Let ANS be an abstract norm store, NE
the normative environment NS1, NS2, . . ., and for i = 1 . . ., Ωi a set of wffs denoting the
domain environment associated with NSi. For i = 1 . . ., let us define the set of potential
norms for NSi as those that:

1. are instantiated in the previous state NSi−1 (inst norms(NSi−1))

2. those in the abstract norm store that are instantiated w.r.t. Ωi (i.e. inst(ANS) as
defined in Definition A.3).

and not those that have expired in the previous state, i.e. NSExpiresi−1.

That is to say, the set of potential norms PNormsi is defined as follows:

Appendix A: Basis Framework Semantics 217

PNormsi = inst norms(NSi−1) ∪ inst(ANS) \ NSExpiresi−1

Then NSi = 〈NSTruei, NSFalsei, NSExpiresi〉 is defined (as in Definition A.5) with re-
spect to the set PNormsi, and theory Ωi.

We define NS0 = 〈NSTrue0, NSFalse0, NSExpires0〉 where NSTrue0 = {}, NSFalse0 =
{} and NSExpires0 = {}

We suggest the following basic set of predicates entailed by ΓNEnv, and in this way
characterise how ΓNEnv may be partially specified by the normative environment.4 In
the following definitions we assume a normative environment {NS1, NS2, . . .} where
NSi = 〈NSTruei, NSFalsei, NSExpiresi〉, and i > 0. We make use of the Gödelisation
operator p.q for naming normative states in the object level language. That is, pNSiq
names normative state NSi and allows us to use it within wffs.

Definition A.8. (The instantiated() predicate) ΓNEnv ` instantiated(pNSiq,in) iff in ∈
inst norms(NSi) and (in /∈ inst norms(NSi−1) ∨ in /∈ NSExpiresi−1). We define by de-
fault ΓNEnv 6` instantiated(pNS0q,in).

Intuitively, instantiated(NSi, in) holds if the norm in becomes instantiated in NSi. That
is, instantiated(pNSiq, in) evaluates to true if norm in was instantiated in NSi, and ei-
ther was not instantiated in NSi−1 or expired in NSi−1 (and thus becomes instantiated
again in NSi).

Definition A.9. (The expires() predicate) ΓNEnv ` expires(pNSiq,in) iff in∈NSExpiresi.
We also define ΓNEnv 6` expires(pNS0q,in).

The expires() predicate holds if an instantiated norm in expired within the current
normative state.

Definition A.10. (The active() predicate) ΓNEnv ` active(pNSiq,in) if and only if
instantiated(pNSiq,in), or else (in ∈ inst norms(NSi−1) ∧ in /∈ NSExpiresi−1). We also
define ΓNEnv 6` active(pNS0q,in).

active(pNSiq, in) holds if a norm in is instantiated within normative state NSi. This
could be because it was instantiated within that state, or because it was instantiated
earlier and has not yet expired.

Definition A.11. (The becomesTrue() predicate) ΓNEnv ` becomesTrue(pNSiq,in) iff in∈
NSTruei and, either in ∈ NSFalsei−1, or instantiated(pNSiq,in).

Intuitively, a norm in becomes true in NSi if its normative condition evaluates to true,
and either it was false in state NSi−1, or if not, then in is instantiated in NSi.

4In general, by stating requirement that some first-order theory Γ entail φ1, . . . ,φn, we are effectively
providing a partial specification of Γ. In semantic terms, any model for Γ is also model for φ1, . . . ,φn

218 A.4 Dynamic Semantics

Definition A.12. (The becomesFalse() predicate)
ΓNEnv ` becomesFalse(pNSiq,in) iff in ∈ NSFalsei and, either in ∈ NSTruei−1 or
instantiated(pNSiq,in).

Here, becomesFalse(. . .) is similar to becomesTrue(. . .), dealing with falsehood rather
than truth. The next two predicates check whether a norm is active and true, respec-
tively false, in some normative state.

Definition A.13. (The isTrue() predicate)
ΓNEnv ` isTrue(pNSiq,in) if and only if becomesTrue(pNSiq,in), or else, active(pNSiq,in)
and in ∈ NSTruei−1.

Definition A.14. (The isFalse() predicate)
ΓNEnv ` isFalse(pNSiq,in) if and only if becomesFalse(pNSiq,in), or else, active(pNSiq,in)
and in ∈ NSFalsei−1

Definition A.15. (Properties of ΓNEnv) ΓNEnv ` ¬x iff ΓNEnv 6` x. This implies that:

• ΓNEnv 0⊥.

• ¬ is given a negation as failure semantics.

Apart from these low level predicates, we may define additional useful predicates.
Some of these determine the status of a norm, while others allow access its operation.

Definition A.16. (Norm access predicates) Given a norm N with norm type Type, acti-
vation condition NormActivation, expiration condition NormExpiration, a norm target
set NormTarget, a normative condition with a state component SMaintenanceCondition
and an action component AMaintenanceCondition, the following predicates (which
may operate on both abstract and instantiated norms) may be defined:

type(N, X) = true iff X = Type, and false otherwise.

normActivation(N,X) = true iff NormActivation unifies with X, and false otherwise.

normSCondition(N,X) = true iff SMaintenanceCondition unifies with X, and false other-
wise.

normACondition(N,X) = true iff AMaintenanceCondition unifies with X, and false other-
wise.

normExpiration(N,X) = true iff NormExpiration unifies with X, and false otherwise.

normTarget(N,A) = true iff there is a unification between some element of NormTarget
and A.

We may define the following predicates based on the normative environment. These
predicates form a basis for our normative environment theory ΓNEnv:

Appendix A: Basis Framework Semantics 219

Figure A.1: Domain Environment and Normative Environment lifecycle

Definition A.17. (the violated() predicate)
violated(pNSiq, in) = isFalse(pNSiq, in)

The fulfilled predicate checks whether a norm has been fulfilled at a specific point in
time

Definition A.18. (the fulfilled() predicate)
f ul f illed(pNSiq, in) = expires(pNSiq, in) ∧ ¬violated(pNSiq, in)

un f ul f illed(pNSiq, in) = expires(pNSiq, in) ∧ violated(pNSiq, in)

We may also be interested in determining whether a norm is a violation handler, that
is, if it detects and handles the violation of some other clause. We make the simpli-
fying assumption that a violation handler contains only the violated() predicate in its
activation condition.

Definition A.19. (the violationHandler() predicate)
violationHandler(N) = normActivation(N,pviolated(X,Y)q) for any X,Y.

Finally, we may want to determine which norm (N1) is the violation handler for an-
other norm (N2):

Definition A.20. (the handlesViolation() predicate)
handlesViolation(N1, N2) = normActivation(N1,pviolated(X, N2)q) for any X

An example of how a normative theory evolves can be seen in Figure A.1.

A.5 Issues and Related Work

The normative framework we have described fulfils all of the requirements described
in Section A.1. Not only are we able to detect whether a violation took place (via the

220 A.5 Issues and Related Work

violation(. . .) predicate), but we may also detect the occurrence of additional critical
states at which some normative event related state change took place. These criti-
cal states correspond to the various predicates described above. Additional, domain
dependent critical states may be defined using the information found within the nor-
mative environment. Verification of a normative system may be performed by forward
simulation over the domain and normative environments.

We assume that any norm-aware agent capable of being affected by norms, is asso-
ciated with its own normative environment (and resulting normative environment
theory). In fully observable environments, each agent’s theory would be identical, but
in other domains, these theories may diverge.

Our model does not describe what should occur if an obligation is violated. In Chap-
ters 4 and 5 we assume that agents make use of an extension of this normative model
to undertake their own practical reasoning. An agent may determine which norms
affect it at any stage, and base its decisions on these.

One interesting aspect of our model (as illustrated by norm nm1 in the example) is
that norms may be violated for a certain period of time, after which they may return
to an un-violated state. This is particularly useful as penalties may be assessed over
the duration of a violation, with the norm still having normative force over an agent.
This differs from the way most deontic theories deal with norms (for example [van der
Torre, 2003]).

While a large variety of normative languages exist, many only specify an informal
[Milosevic and Dromey, 2002], or programming language based [Kollingbaum, 2005]
semantics. Formal languages, such as LCR [Dignum et al., 2002] have limited express-
ibility. Our approach of defining a rich language, and then constructing its semantics,
is intended to overcome these weaknesses.

The work presented here has been inspired by a number of other researchers. For
example, [Dignum, 2004] described the use of Landmarks as abstract states which
“are defined as a set of propositions that are true in a state represented by the land-
mark”. These landmarks may thus be seen as similar to critical states. The framework
described by [Fornara and Colombetti, 2009] shares some similarities with our ap-
proach. Their focus on sanctions (which, in our model, are implemented more via
additional norms) means that they only allow for very specific, predefined normative
states, and that violations in their framework may only occur once.

Appendix B

Example Implementation Details

In this appendix the contextual layer for the example of Section 4.5 and the code for
the implementations of Chapters 4 and 5 can be found.

B.1 Pizza Delivery Example Models

The metamodel of our conceptual framework of Section 3.2 as well as the models for
the pizza delivery domain have been created using the Eclipse1 developing framework.
This section depicts screenshots taken from Eclipse’s visual environment.

Figure B.1 depicts the top level element Normative Model.

Figure B.1: Normative model representation

The various constants, variables and functions described in our example and used in
the state formulas can be seen in Figure B.2.

1https://www.eclipse.org

221

222 B.1 Pizza Delivery Example Models

Figure B.2: Variables, constants, functions representation

The ontology, containing the concepts used is depicted in Figure B.3.

Figure B.3: Ontology representation

The ontology concepts, combined with the different terms (variables, constants, func-
tions) are used to define more complex formulas, such as atoms, negations, implica-
tions, etc. These state formulas (defining the conditions of the actions and the norms),
can be seen in Figure B.4 (we only show part of these, since our model is bigger than
what can fit here, so, we provide the reader a sample in order to get a pretty good
idea of how they are formed).

Appendix B: Example Implementation Details 223

Figure B.4: Some of the state formulas used in the preconditions and effects of the
actions and in the conditions of the norms

An example of the DeliverPizza action can be seen in Figure B.5.

Figure B.5: The action DeliverPizza representation

An example of norm3 of the pizza delivery example can be seen in Figure B.6.

Figure B.6: norm3 representation

B.2 Pizza Delivery Example TLPLAN Code

1 (clear-world-symbols)

3 (set-search-strategy best-first)
;;

5 ;;; 1. The world symbols.
;;

7 (declare-described-symbols

9 (predicate connection 3)
(predicate goalpizzaat 3)

11
(predicate person 1)

224 B.2 Pizza Delivery Example TLPLAN Code

13 (predicate street 1)
(predicate vehicle 1)

15 (predicate speed_type 1)
(predicate timeout 0)

17
(predicate driving 2)

19 (predicate vehicle_at 3)
(predicate movedBetweenJunctions 4)

21 (predicate pizza_delivered 3)
(predicate hasPizzaFor 3)

23 (predicate fine_paid1 1)
(predicate points_augmented 1)

25 (predicate fine_paid3 1)

27 (predicate true_predicate 0)
(predicate false_predicate 0)

29
(function p_time 0)

31 (function fine 1)
(function penalty_points 1)

33 (function goalpizzatime 2)
(function vehicleSpeed 1)

35 (function speedLimit 1)
(function speedValue 1)

37)

39 (declare-defined-symbols
(function fun 0)

41 (predicate goalAchieved 0)

43 (predicate act-cond-norm1 2)
(predicate maint-cond-norm1 1)

45 (predicate disch-cond-norm1 2)
(predicate repair-cond-norm1 2)

47
(predicate act-cond-norm2 3)

49 (predicate maint-cond-norm2 3)
(predicate disch-cond-norm2 3)

51 (predicate repair-cond-norm2 1)

53 (predicate act-cond-norm3 2)
(predicate maint-cond-norm3 1)

55 (predicate disch-cond-norm3 2)
(predicate repair-cond-norm3 2)

57)

59
;;

61 ;;;Operators
;;;

63
(def-adl-operator(MoveBetweenJunctions ?v ?main ?sideStreet1 ?sideStreet2 ?speed)

65 (pre
(?v) (vehicle ?v)

67 (?main) (street ?main)
(?sideStreet1) (street ?sideStreet1)

69 (?sideStreet2) (street ?sideStreet2)
(?speed) (speed_type ?speed)

71 (and (or (vehicle_at ?v ?main ?sideStreet1) (vehicle_at ?v ?sideStreet1 ?main))
(or (connection ?main ?sideStreet1 ?sideStreet2)

73 (connection ?main ?sideStreet2 ?sideStreet1))
)

Appendix B: Example Implementation Details 225

75)
(implies(vehicle_at ?v ?main ?sideStreet1)(del (vehicle_at ?v ?main ?sideStreet1)))

77 (implies(vehicle_at ?v ?sideStreet1 ?main)(del (vehicle_at ?v ?sideStreet1 ?main)))
(add (vehicle_at ?v ?main ?sideStreet2))

79 (forall (?someStreet) (street ?someStreet)
(implies (movedBetweenJunctions ?v ?main ?someStreet ?sideStreet1)

81 (del (movedBetweenJunctions ?v ?main ?someStreet ?sideStreet1))))
(forall (?someStreet) (street ?someStreet)

83 (implies (movedBetweenJunctions ?v ?sideStreet1 ?someStreet ?main)
(del (movedBetweenJunctions ?v ?sideStreet1 ?someStreet ?main))))

85 (add (movedBetweenJunctions ?v ?main ?sideStreet1 ?sideStreet2))
(add (+= (p_time) (speedValue ?speed)))

87 ;;(implies (= ?speed low) (add (= (vehicleSpeed ?v) 20)))
(implies (= ?speed medium) (add (= (vehicleSpeed ?v) 40)))

89 (implies (= ?speed high) (add (= (vehicleSpeed ?v) 60)))
(cost (+ (speedValue ?speed)))

91)

93 (def-adl-operator (DeliverPizza ?p ?sideStreet1 ?sideStreet2)
(pre

95 (?p) (person ?p)
(?sideStreet1) (street ?sideStreet1)

97 (?sideStreet2) (street ?sideStreet2)
(and (exists (?v) (driving ?p ?v)

99 (or (vehicle_at ?v ?sideStreet1 ?sideStreet2)
(vehicle_at ?v ?sideStreet2 ?sideStreet1)))

101 (hasPizzaFor ?p ?sideStreet1 ?sideStreet2)
)

103)
(add (pizza_delivered ?p ?sideStreet1 ?sideStreet2))

105 (add (pizza_delivered ?p ?sideStreet2 ?sideStreet1))
(implies (hasPizzaFor ?p ?sideStreet1 ?sideStreet2)

107 (del (hasPizzaFor ?p ?sideStreet1 ?sideStreet2)))
(implies (hasPizzaFor ?p ?sideStreet2 ?sideStreet1)

109 (del (hasPizzaFor ?p ?sideStreet2 ?sideStreet1)))
(add (+= (p_time) 3))

111 (cost 3)

113)

115 (def-adl-operator (PayFine1 ?p)
(pre

117 (?p) (person ?p)
(and (exists (?v) (vehicle ?v) (driving ?p ?v)) (not (fine_paid1 ?p)))

119)
(add (fine_paid1 ?p))

121 (add (+= (fine ?p) 30))
(cost 30)

123)

125 (def-adl-operator (AugmentPoints ?p)
(pre

127 (?p) (person ?p)
(not (points_augmented ?p))

129)
(add (points_augmented ?p))

131 (add (+= (penalty_points ?p) 10))
(cost 10)

133)

135 (def-adl-operator (PayFine3 ?p)
(pre

226 B.2 Pizza Delivery Example TLPLAN Code

137 (?p) (person ?p)
(and (exists (?v) (vehicle ?v) (driving ?p ?v)) (not (fine_paid3 ?p)))

139)
(add (fine_paid3 ?p))

141 (add (+= (fine ?p) 30))
(cost 30)

143)

145 (def-adl-operator (GetOffBike ?p ?v)
(pre

147 (?p) (person ?p)
(?v) (vehicle ?v)

149 (driving ?p ?v)
)

151 (del (driving ?p ?v))
(add (+= (p_time) 0.5))

153 (cost 0.5)
)

155
;;

157 ;;;NORM 1
;;;

159 (def-defined-predicate (act-cond-norm1 ?p ?v)
(driving ?p ?v)

161)
(def-defined-predicate (disch-cond-norm1 ?p ?v)

163 (not (driving ?p ?v))
)

165 (def-defined-predicate (maint-cond-norm1 ?v)
(not (exists (?main) (street ?main) (?Street1) (street ?Street1)

167 (exists (?Street2) (street ?Street2)
(and

169 (movedBetweenJunctions ?v ?main ?Street1 ?Street2)
(not (connection ?main ?Street1 ?Street2))

171)
)))

173)
(def-defined-predicate (repair-cond-norm1 ?p ?v)

175 (and (fine_paid1 ?p) (not (driving ?p ?v)))
)

177 ;;
;;;NORM 2

179 ;;;
(def-defined-predicate (act-cond-norm2 ?p ?Street1 ?Street2)

181 (and (or (hasPizzaFor ?p ?street1 ?street2)))
)

183 (def-defined-predicate (maint-cond-norm2 ?p ?Street1 ?Street2)
(> (goalpizzatime ?Street1 ?Street2) (p_time))

185)
(def-defined-predicate (disch-cond-norm2 ?p ?Street1 ?Street2)

187 (or (pizza_delivered ?p ?Street1 ?Street2))
)

189 (def-defined-predicate (repair-cond-norm2 ?p)
(points_augmented ?p)

191)
;;

193 ;;;NORM 3
;;;

195 (def-defined-predicate (act-cond-norm3 ?p ?v)
(driving ?p ?v)

197)
(def-defined-predicate (maint-cond-norm3 ?v)

Appendix B: Example Implementation Details 227

199 (not (exists (?Street1) (street ?Street1)
(exists (?Street2) (street ?Street2)

201 (and (vehicle_at ?v ?Street1 ?Street2)
(< (speedLimit ?Street1) (vehicleSpeed ?v))

203)
)))

205)
(def-defined-predicate (disch-cond-norm3 ?p ?v)

207 (not (driving ?p ?v))
)

209
(def-defined-predicate (repair-cond-norm3 ?p ?v)

211 (and (fine_paid3 ?p) (not (driving ?p ?v)))
)

213 ;;
;;;LTL CONTROL

215 ;;;
(set-tl-control

217
(forall (?p) (person ?p) (forall (?v) (vehicle ?v)

219 (forall (?street1) (street ?street1)
(forall (?street2) (street ?street2)

221 (and

223 (or
(always

225 (not (act-cond-norm1 ?p ?v)))
(until

227 (not (act-cond-norm1 ?p ?v))
(and

229 (act-cond-norm1 ?p ?v)
(until (maint-cond-norm1 ?v) (disch-cond-norm1 ?p ?v))))

231 (until
(not (act-cond-norm1 ?p ?v))

233 (and
(act-cond-norm1 ?p ?v)

235 (until (maint-cond-norm1 ?v)
(and

237 (not (maint-cond-norm1 ?v))
(until (not (timeout)) (repair-cond-norm1 ?p ?v))))))

239)

241 (or
(always

243 (not (act-cond-norm2 ?p ?street1 ?street2)))
(until

245 (not (act-cond-norm2 ?p ?street1 ?street2))
(and

247 (act-cond-norm2 ?p ?street1 ?street2)
(until (maint-cond-norm2 ?p ?street1 ?street2)

249 (disch-cond-norm2 ?p ?street1 ?street2))))
(until

251 (not (act-cond-norm2 ?p ?street1 ?street2))
(and

253 (act-cond-norm2 ?p ?street1 ?street2)
(until (maint-cond-norm2 ?p ?street1 ?street2)

255 (and
(not (maint-cond-norm2 ?p ?street1 ?street2))

257 (until (not (timeout)) (repair-cond-norm2 ?p))))))
)

259
(or

228 B.2 Pizza Delivery Example TLPLAN Code

261 (always
(not (act-cond-norm3 ?p ?v)))

263 (until
(not (act-cond-norm3 ?p ?v))

265 (and
(act-cond-norm3 ?p ?v)

267 (until (maint-cond-norm3 ?v) (disch-cond-norm3 ?p ?v))))
(until

269 (not (act-cond-norm3 ?p ?v))
(and

271 (act-cond-norm3 ?p ?v)
(until (maint-cond-norm3 ?v)

273 (and
(not (maint-cond-norm3 ?v))

275 (until (not (timeout)) (repair-cond-norm3 ?p ?v))))))
)

277
)))))

279)
;;

281 ;;;GOALS
;;;

283
(def-defined-predicate (goalAchieved)

285 (forall (?p ?Street1 ?Street2) (goalpizzaat ?p ?Street1 ?Street2)
(pizza_delivered ?p ?Street1 ?Street2))

287)

289 (set-goal-addendum (goalAchieved))

Figure B.7: Pizza delivery example domain TLPLAN

1 (define (problem escapeprobl1000) (:domain SofiaD)
(:objects

3 sergio - person
bmw - vehicle

5 paris
corcega rosello provenca casanova villaroel muntaner urgell - street

7 medium high - speed_type)
(:init

9
(connection muntaner paris corcega)

11 (connection muntaner corcega rosello)
(connection muntaner rosello provenca)

13
(connection casanova corcega paris)

15 (connection casanova rosello corcega)
(connection casanova provenca rosello)

17
(connection villaroel paris corcega)

19 (connection villaroel corcega rosello)
(connection villaroel rosello provenca)

21
(connection urgell corcega paris)

23 (connection urgell rosello corcega)
(connection urgell provenca rosello)

25
(connection paris urgell villaroel)

27 (connection paris villaroel casanova)

Appendix B: Example Implementation Details 229

(connection paris casanova muntaner)
29

(connection corcega muntaner casanova)
31 (connection corcega casanova villaroel)

(connection corcega villaroel urgell)
33

(connection rosello urgell villaroel)
35 (connection rosello casanova muntaner)

37 (connection provenca muntaner casanova)
(connection provenca casanova villaroel)

39 (connection provenca villaroel urgell)

41 (= (speedLimit paris) 50)
(= (speedLimit corcega) 50)

43 (= (speedLimit rosello) 50)
(= (speedLimit provenca) 50)

45 (= (speedLimit casanova) 50)
(= (speedLimit villaroel) 50)

47 (= (speedLimit muntaner) 50)
(= (speedLimit urgell) 50)

49
(= (speedValue high) 1)

51 (= (speedValue medium) 1.5)
;;(= (speedValue low) 2)

53
(hasPizzaFor sergio casanova corcega)

55 (goalpizzaat sergio casanova corcega)
(= (goalpizzatime casanova corcega) 21)

57
(hasPizzaFor sergio urgell rosello)

59 (goalpizzaat sergio urgell rosello)
(= (goalpizzatime urgell rosello) 9)

61
(vehicle_at bmw muntaner provenca)

63 (movedBetweenJunctions bmw muntaner rosello provenca)
(driving sergio bmw)

65 (= (vehicleSpeed bmw) 10)

67 (= (p_time) 0)
(= (fine sergio) 0)

69 (= (penalty_points sergio) 0)

71 (true_predicate)
)

73
(:goal (and))

75
(:metric minimize (fun))

77
)

Figure B.8: Pizza delivery example problem TLPLAN

230 B.3 Pizza Delivery Example PDDL Code

B.3 Pizza Delivery Example PDDL Code

;; ../../../Metric-FF-v2.1/ff -o domain.pddl -f problem.pddl -w 3
2
(define (domain pizza_delivery)

4
(:predicates

6 (speed_type ?speed)

8 (driving ?p ?v)
(vehicle_at ?v ?street ?street)

10 (movedBetweenJunctions ?v -vehicle ?street ?street ?street)
(connection ?main ?street1 ?street2)

12 (pizza_delivered ?p ?street1 ?street2)
(hasPizzaFor ?p ?street1 ?street2)

14 (fine_paid1 ?p)
(points_augmented ?p)

16 (fine_paid3 ?p)

18 (active_norm1 ?p -person ?v -vehicle)
(inactive_norm1 ?p -person ?v -vehicle)

20 (complied-with_norm1 ?p -person ?v -vehicle)
(prev_active_norm1 ?p -person ?v -vehicle)

22 (viol_norm1 ?p -person ?v -vehicle)
(prev_viol_norm1 ?p -person ?v -vehicle)

24
(active_norm1-rep ?p -person ?v -vehicle)

26 (inactive_norm1-rep ?p -person ?v -vehicle)
(prev_active_norm1-rep ?p -person ?v -vehicle)

28
(active_norm2 ?p -person ?street1 ?street2)

30 (inactive_norm2 ?p -person ?street1 ?street2)
(complied-with_norm2 ?p -person ?street1 ?street2)

32 (prev_active_norm2 ?p -person ?street1 ?street2)
(viol_norm2 ?p -person ?street1 ?street2)

34 (prev_viol_norm2 ?p -person ?street1 ?street2)

36 (active_norm2-rep ?p ?street1 ?street2)
(inactive_norm2-rep ?p ?street1 ?street2)

38 (prev_active_norm2-rep ?p ?street1 ?street2)

40 (active_norm3 ?p -person ?v -vehicle)
(inactive_norm3 ?p -person ?v -vehicle)

42 (complied-with_norm3 ?p -person ?v -vehicle)
(prev_active_norm3 ?p -person ?v -vehicle)

44 (viol_norm3 ?p -person ?v -vehicle)
(prev_viol_norm3 ?p -person ?v -vehicle)

46
(active_norm3-rep ?p -person ?v -vehicle)

48 (inactive_norm3-rep ?p -person ?v -vehicle)
(prev_active_norm3-rep ?p -person ?v -vehicle)

50
(true)

52)

54 (:functions (p_time)
(fine ?p -person)

56 (penalty_points ?p -person)
(goalpizzatime ?street1 -street ?street2 -street)

58 (vehicleSpeed ?v -vehicle)
(speedLimit ?street -street)

Appendix B: Example Implementation Details 231

60 (factor1))

62 ;;;;;;;;;;;;;;;;; NORM 1;;;;;;;;;;;;;;;;;;;;;;;

64 (:derived (active_norm1 ?p -person ?v -vehicle)
(driving ?p ?v))

66
(:derived (inactive_norm1 ?p -person ?v -vehicle)

68 (not (driving ?p ?v)))

70 (:derived (viol_norm1 ?p -person ?v -vehicle)
(and (active_norm1 ?p ?v)

72 (exists (?main -street ?street1 -street ?street2 -street)
(and (movedBetweenJunctions ?v ?main ?street1 ?street2)

74 (not (connection ?main ?street1 ?street2))))))

76 (:derived (complied-with_norm1 ?p -person ?v -vehicle)
(or

78 (inactive_norm1 ?p ?v)
(not (exists (?main -street ?street1 -street ?street2 -street)

80 (and (movedBetweenJunctions ?v ?main ?street1 ?street2)
(not (connection ?main ?street1 ?street2)))))))

82
(:derived (active_norm1-rep ?p -person ?v -vehicle)

84 (and (or (and (viol_norm1 ?p ?v)
(not (prev_viol_norm1 ?p ?v)))

86 (prev_active_norm1-rep ?p ?v))
(not (fine_paid1 ?p))))

88
(:derived (inactive_norm1-rep ?p -person ?v -vehicle)

90 (or (and (or (or (not (driving ?p ?v))
(not (exists (?main -street ?street1 -street ?street2 -street)

92 (and (movedBetweenJunctions ?v ?main ?street1 ?street2)
(not (connection ?main ?street1 ?street2))))))

94 (prev_viol_norm1 ?p ?v))
(not (prev_active_norm1-rep ?p ?v)))

96 (fine_paid1 ?p)))

98 ;;;;;;;;;;;;;;;;; NORM 2;;;;;;;;;;;;;;;;;;;;;;;

100 (:derived (active_norm2 ?p -person ?street1 -street ?street2 -street)
(and

102 (or (hasPizzaFor ?p ?street1 ?street2) (prev_active_norm2 ?p ?street1 ?street2))
(not (pizza_delivered ?p ?street1 ?street2))))

104
(:derived (inactive_norm2 ?p -person ?street1 -street ?street2 -street)

106 (or
(not (or (hasPizzaFor ?p ?street1 ?street2)

108 (prev_active_norm2 ?p ?street1 ?street2)))
(pizza_delivered ?p ?street1 ?street2)))

110
(:derived (viol_norm2 ?p -person ?street1 -street ?street2 -street)

112 (and (active_norm2 ?p ?street1 ?street2)
(and (hasPizzaFor ?p ?street1 ?street2)

114 (> (p_time) (goalpizzatime ?street1 ?street2)))))

116 (:derived (complied-with_norm2 ?p -person ?street1 -street ?street2 -street)
(or

118 (inactive_norm2 ?p ?street1 ?street2)
(not (and (hasPizzaFor ?p ?street1 ?street2)

120 (> (p_time) (goalpizzatime ?street1 ?street2))))))

232 B.3 Pizza Delivery Example PDDL Code

122 (:derived (active_norm2-rep ?p -person ?street1 -street ?street2 -street)
(and

124 (or (and (viol_norm2 ?p ?street1 ?street2)
(not (prev_viol_norm2 ?p ?street1 ?street2)))

126 (prev_active_norm2-rep ?p ?street1 ?street2))
(not (points_augmented ?p))))

128
(:derived (inactive_norm2-rep ?p -person ?street1 -street ?street2 -street)

130 (or (and (or (or (not (and
(or (hasPizzaFor ?p ?street1 ?street2)

132 (prev_active_norm2 ?p ?street1 ?street2))
(not (pizza_delivered ?p ?street1 ?street2))))

134 (not (and (hasPizzaFor ?p ?street1 ?street2)
(> (p_time) (goalpizzatime ?street1 ?street2)))))

136 (prev_viol_norm2 ?p ?street1 ?street2))
(not (prev_active_norm2-rep ?p ?street1 ?street2)))

138 (points_augmented ?p)))

140 ;;;;;;;;;;;;;;;;; NORM 3;;;;;;;;;;;;;;;;;;;;;;;

142 (:derived (active_norm3 ?p -person ?v -vehicle)
(driving ?p ?v))

144
(:derived (inactive_norm3 ?p -person ?v -vehicle)

146 (not (driving ?p ?v)))

148 (:derived (viol_norm3 ?p -person ?v -vehicle)
(and (active_norm3 ?p ?v)

150 (exists (?street1 -street ?street2 -street)
(and (vehicle_at ?v ?street1 ?street2)

152 (< (speedLimit ?street1) (vehicleSpeed ?v))))))

154 (:derived (complied-with_norm3 ?p -person ?v -vehicle)
(or

156 (inactive_norm1 ?p ?v)
(exists (?street1 ?street2 -street)

158 (and (vehicle_at ?v ?street1 ?street2)
(> (speedLimit ?street1) (vehicleSpeed ?v))))))

160
(:derived (active_norm3-rep ?p -person ?v -vehicle)

162 (and (or (and (viol_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v)))
(prev_active_norm3-rep ?p ?v))

164 (not (fine_paid3 ?p))))

166 (:derived (inactive_norm3-rep ?p -person ?v -vehicle)
(or (and (or (or (not (driving ?p ?v))

168 (exists (?street1 ?street2 -street)
(and (vehicle_at ?v ?street1 ?street2)

170 (> (speedLimit ?street1) (vehicleSpeed ?v)))))
(prev_viol_norm3 ?p ?v))

172 (not (prev_active_norm3-rep ?p ?v)))
(fine_paid3 ?p)))

174
;;;;;;;;;;;;;;;;;;;;;;; ACTIONS ;;;;;;;;;;;;;;;;;;;;;;;

176
(:action MoveBetweenJunctions

178 :parameters (?v -vehicle ?main -street
?sideStreet1 -street ?sideStreet2 -street ?speed -speed_type)

180 :precondition
(and

182 (speed_type ?speed)
(or (vehicle_at ?v ?main ?sideStreet1) (vehicle_at ?v ?sideStreet1 ?main))

Appendix B: Example Implementation Details 233

184 (or (connection ?main ?sideStreet1 ?sideStreet2)
(connection ?main ?sideStreet2 ?sideStreet1))

186)
:effect

188 (and
(not (vehicle_at ?v ?main ?sideStreet1))

190 (not (vehicle_at ?v ?sideStreet1 ?main))
(vehicle_at ?v ?main ?sideStreet2)

192 (forall (?someStreet -street)
(when (movedBetweenJunctions ?v ?main ?someStreet ?sideStreet1)

194 (not (movedBetweenJunctions ?v ?main ?someStreet ?sideStreet1))))
(forall (?someStreet -street)

196 (when (movedBetweenJunctions ?v ?sideStreet1 ?someStreet ?main)
(not (movedBetweenJunctions ?v ?sideStreet1 ?someStreet ?main))))

198 (movedBetweenJunctions ?v ?main ?sideStreet1 ?sideStreet2)

200 ;;(when (= ?speed low) (and (increase (p_time) 2) (assign (vehicleSpeed ?v) 20)))
(when (= ?speed medium) (and (increase (p_time) 1.5) (assign (vehicleSpeed ?v) 40)))

202 (when (= ?speed high) (and (increase (p_time) 1) (assign (vehicleSpeed ?v) 60)))

204 (forall (?p -person ?v -vehicle)
(when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))

206 (forall (?p -person ?v -vehicle)
(when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))

208 (forall (?p -person ?v -vehicle)
(when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))

210 (forall (?p -person ?v -vehicle)
(when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))

212 (forall (?p -person ?v -vehicle)
(when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))

214 (forall (?p -person ?v -vehicle)
(when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

216
(forall (?p -person ?street1 -street ?street2 -street)

218 (when (active_norm2 ?p ?street1 ?street2)
(prev_active_norm2 ?p ?street1 ?street2)))

220 (forall (?p -person ?street1 -street ?street2 -street)
(when (inactive_norm2 ?p ?street1 ?street2)

222 (not (prev_active_norm2 ?p ?street1 ?street2))))
(forall (?p -person ?street1 -street ?street2 -street)

224 (when (viol_norm2 ?p ?street1 ?street2)
(prev_viol_norm2 ?p ?street1 ?street2)))

226 (forall (?p -person ?street1 -street ?street2 -street)
(when (complied-with_norm2 ?p ?street1 ?street2)

228 (not (prev_viol_norm2 ?p ?street1 ?street2))))
(forall (?p -person ?street1 -street ?street2 -street)

230 (when (active_norm2-rep ?p ?street1 ?street2)
(prev_active_norm2-rep ?p ?street1 ?street2)))

232 (forall (?p -person ?street1 -street ?street2 -street)
(when (inactive_norm2-rep ?p ?street1 ?street2)

234 (not (prev_active_norm2-rep ?p ?street1 ?street2))))

236 (forall (?p -person ?v -vehicle)
(when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))

238 (forall (?p -person ?v -vehicle)
(when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))

240 (forall (?p -person ?v -vehicle)
(when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))

242 (forall (?p -person ?v -vehicle)
(when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))

244 (forall (?p -person ?v -vehicle)
(when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))

234 B.3 Pizza Delivery Example PDDL Code

246 (forall (?p -person ?v -vehicle)
(when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))

248
)

250)

252 (:action DeliverPizza
:parameters (?p -person ?street1 -street ?street2 -street)

254 :precondition
(and

256 (exists (?v) (and
(driving ?p ?v)

258 (or (vehicle_at ?v ?street1 ?street2) (vehicle_at ?v ?street2 ?street1))))
(hasPizzaFor ?p ?street1 ?street2)

260)
:effect

262 (and
(pizza_delivered ?p ?street1 ?street2)

264 (pizza_delivered ?p ?street2 ?street1)
(not (hasPizzaFor ?p ?street1 ?street2))

266 (not (hasPizzaFor ?p ?street2 ?street1))
(increase (p_time) 3)

268
(forall (?p -person ?v -vehicle)

270 (when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

272 (when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

274 (when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

276 (when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

278 (when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

280 (when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

282 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2 ?p ?street1 ?street2)

284 (prev_active_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

286 (when (inactive_norm2 ?p ?street1 ?street2)
(not (prev_active_norm2 ?p ?street1 ?street2))))

288 (forall (?p -person ?street1 -street ?street2 -street)
(when (viol_norm2 ?p ?street1 ?street2)

290 (prev_viol_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

292 (when (complied-with_norm2 ?p ?street1 ?street2)
(not (prev_viol_norm2 ?p ?street1 ?street2))))

294 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2-rep ?p ?street1 ?street2)

296 (prev_active_norm2-rep ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

298 (when (inactive_norm2-rep ?p ?street1 ?street2)
(not (prev_active_norm2-rep ?p ?street1 ?street2))))

300
(forall (?p -person ?v -vehicle)

302 (when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

304 (when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

306 (when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

Appendix B: Example Implementation Details 235

308 (when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

310 (when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

312 (when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))
)

314)

316 (:action PayFine1
:parameters (?p -person)

318 :precondition
(and

320 (exists (?v -vehicle) (driving ?p ?v))
)

322 :effect
(and

324 (fine_paid1 ?p)
(increase (fine ?p) 30)

326
(forall (?p -person ?v -vehicle)

328 (when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

330 (when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

332 (when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

334 (when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

336 (when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

338 (when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

340 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2 ?p ?street1 ?street2)

342 (prev_active_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

344 (when (inactive_norm2 ?p ?street1 ?street2)
(not (prev_active_norm2 ?p ?street1 ?street2))))

346 (forall (?p -person ?street1 -street ?street2 -street)
(when (viol_norm2 ?p ?street1 ?street2)

348 (prev_viol_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

350 (when (complied-with_norm2 ?p ?street1 ?street2)
(not (prev_viol_norm2 ?p ?street1 ?street2))))

352 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2-rep ?p ?street1 ?street2)

354 (prev_active_norm2-rep ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

356 (when (inactive_norm2-rep ?p ?street1 ?street2)
(not (prev_active_norm2-rep ?p ?street1 ?street2))))

358
(forall (?p -person ?v -vehicle)

360 (when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

362 (when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

364 (when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

366 (when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

368 (when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

236 B.3 Pizza Delivery Example PDDL Code

370 (when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))
)

372)

374 (:action AugmentPoints
:parameters (?p -person)

376 :effect
(and

378 (points_augmented ?p)
(increase (penalty_points ?p) 10)

380
(forall (?p -person ?v -vehicle)

382 (when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

384 (when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

386 (when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

388 (when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

390 (when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

392 (when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

394 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2 ?p ?street1 ?street2)

396 (prev_active_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

398 (when (inactive_norm2 ?p ?street1 ?street2)
(not (prev_active_norm2 ?p ?street1 ?street2))))

400 (forall (?p -person ?street1 -street ?street2 -street)
(when (viol_norm2 ?p ?street1 ?street2)

402 (prev_viol_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

404 (when (complied-with_norm2 ?p ?street1 ?street2)
(not (prev_viol_norm2 ?p ?street1 ?street2))))

406 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2-rep ?p ?street1 ?street2)

408 (prev_active_norm2-rep ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

410 (when (inactive_norm2-rep ?p ?street1 ?street2)
(not (prev_active_norm2-rep ?p ?street1 ?street2))))

412
(forall (?p -person ?v -vehicle)

414 (when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

416 (when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

418 (when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

420 (when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

422 (when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

424 (when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))

426)
)

428
(:action PayFine3

430 :parameters (?p -person)
:precondition

Appendix B: Example Implementation Details 237

432 (and (exists (?v -vehicle) (driving ?p ?v)))
:effect

434 (and
(fine_paid3 ?p)

436 (increase (fine ?p) 30)

438 (forall (?p -person ?v -vehicle)
(when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))

440 (forall (?p -person ?v -vehicle)
(when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))

442 (forall (?p -person ?v -vehicle)
(when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))

444 (forall (?p -person ?v -vehicle)
(when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))

446 (forall (?p -person ?v -vehicle)
(when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))

448 (forall (?p -person ?v -vehicle)
(when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

450
(forall (?p -person ?street1 -street ?street2 -street)

452 (when (active_norm2 ?p ?street1 ?street2)
(prev_active_norm2 ?p ?street1 ?street2)))

454 (forall (?p -person ?street1 -street ?street2 -street)
(when (inactive_norm2 ?p ?street1 ?street2)

456 (not (prev_active_norm2 ?p ?street1 ?street2))))
(forall (?p -person ?street1 -street ?street2 -street)

458 (when (viol_norm2 ?p ?street1 ?street2)
(prev_viol_norm2 ?p ?street1 ?street2)))

460 (forall (?p -person ?street1 -street ?street2 -street)
(when (complied-with_norm2 ?p ?street1 ?street2)

462 (not (prev_viol_norm2 ?p ?street1 ?street2))))
(forall (?p -person ?street1 -street ?street2 -street)

464 (when (active_norm2-rep ?p ?street1 ?street2)
(prev_active_norm2-rep ?p ?street1 ?street2)))

466 (forall (?p -person ?street1 -street ?street2 -street)
(when (inactive_norm2-rep ?p ?street1 ?street2)

468 (not (prev_active_norm2-rep ?p ?street1 ?street2))))

470 (forall (?p -person ?v -vehicle)
(when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))

472 (forall (?p -person ?v -vehicle)
(when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))

474 (forall (?p -person ?v -vehicle)
(when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))

476 (forall (?p -person ?v -vehicle)
(when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))

478 (forall (?p -person ?v -vehicle)
(when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))

480 (forall (?p -person ?v -vehicle)
(when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))

482)
)

484
(:action GetOffBike

486 :parameters (?p -person ?v -vehicle)
:precondition

488 (and (driving ?p ?v))
:effect

490 (and
(not (driving ?p ?v))

492 (increase (p_time) 0.5)
(increase (factor1) 1)

238 B.3 Pizza Delivery Example PDDL Code

494
(forall (?p -person ?v -vehicle)

496 (when (active_norm1 ?p ?v) (prev_active_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

498 (when (inactive_norm1 ?p ?v) (not (prev_active_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

500 (when (viol_norm1 ?p ?v) (prev_viol_norm1 ?p ?v)))
(forall (?p -person ?v -vehicle)

502 (when (complied-with_norm1 ?p ?v) (not (prev_viol_norm1 ?p ?v))))
(forall (?p -person ?v -vehicle)

504 (when (active_norm1-rep ?p ?v) (prev_active_norm1-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

506 (when (inactive_norm1-rep ?p ?v) (not (prev_active_norm1-rep ?p ?v))))

508 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2 ?p ?street1 ?street2)

510 (prev_active_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

512 (when (inactive_norm2 ?p ?street1 ?street2)
(not (prev_active_norm2 ?p ?street1 ?street2))))

514 (forall (?p -person ?street1 -street ?street2 -street)
(when (viol_norm2 ?p ?street1 ?street2)

516 (prev_viol_norm2 ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

518 (when (complied-with_norm2 ?p ?street1 ?street2)
(not (prev_viol_norm2 ?p ?street1 ?street2))))

520 (forall (?p -person ?street1 -street ?street2 -street)
(when (active_norm2-rep ?p ?street1 ?street2)

522 (prev_active_norm2-rep ?p ?street1 ?street2)))
(forall (?p -person ?street1 -street ?street2 -street)

524 (when (inactive_norm2-rep ?p ?street1 ?street2)
(not (prev_active_norm2-rep ?p ?street1 ?street2))))

526
(forall (?p -person ?v -vehicle)

528 (when (active_norm3 ?p ?v) (prev_active_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

530 (when (inactive_norm3 ?p ?v) (not (prev_active_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

532 (when (viol_norm3 ?p ?v) (prev_viol_norm3 ?p ?v)))
(forall (?p -person ?v -vehicle)

534 (when (complied-with_norm3 ?p ?v) (not (prev_viol_norm3 ?p ?v))))
(forall (?p -person ?v -vehicle)

536 (when (active_norm3-rep ?p ?v) (prev_active_norm3-rep ?p ?v)))
(forall (?p -person ?v -vehicle)

538 (when (inactive_norm3-rep ?p ?v) (not (prev_active_norm3-rep ?p ?v))))
)

540)
)

Figure B.9: Pizza delivery example domain in PDDL

Appendix B: Example Implementation Details 239

1 (define (problem myproblem)
(:domain pizza_delivery)

3 (:objects
paris corcega rosello provenca

5 urgell villaroel casanova muntaner - street
bmw - vehicle

7 sergio - person
medium high - speed_type

9)

11 (:init

13 ;; (speed_type low)
(speed_type medium)

15 (speed_type high)

17 (connection muntaner paris corcega)
(connection muntaner corcega rosello)

19 (connection muntaner rosello provenca)

21 (connection casanova corcega paris)
(connection casanova rosello corcega)

23 (connection casanova provenca rosello)

25 (connection villaroel paris corcega)
(connection villaroel corcega rosello)

27 (connection villaroel rosello provenca)

29 (connection urgell corcega paris)
(connection urgell rosello corcega)

31 (connection urgell provenca rosello)

33 (connection paris urgell villaroel)
(connection paris villaroel casanova)

35 (connection paris casanova muntaner)

37 (connection corcega muntaner casanova)
(connection corcega casanova villaroel)

39 (connection corcega villaroel urgell)

41 (connection rosello urgell villaroel)
(connection rosello casanova muntaner)

43
(connection provenca muntaner casanova)

45 (connection provenca casanova villaroel)
(connection provenca villaroel urgell)

47
(= (speedLimit paris) 50)

49 (= (speedLimit corcega) 50)
(= (speedLimit rosello) 50)

51 (= (speedLimit provenca) 50)
(= (speedLimit urgell) 50)

53 (= (speedLimit villaroel) 50)
(= (speedLimit casanova) 50)

55 (= (speedLimit muntaner) 50)

57 (driving sergio bmw)
(vehicle_at bmw muntaner provenca)

59 (= (vehicleSpeed bmw) 10)

61 (hasPizzaFor sergio corcega casanova)
(= (goalpizzatime corcega casanova) 28)

240 B.4 Pizza Delivery Example 2APL Code

63
(hasPizzaFor sergio rosello urgell)

65 (= (goalpizzatime rosello urgell) 19)

67 (= (p_time) 0)
(= (fine sergio) 0)

69 (= (penalty_points sergio) 0)

71 (movedBetweenJunctions bmw muntaner rosello provenca)

73 (= (factor1) 0)

75 (true)
)

77
(:goal

79 (and
(pizza_delivered sergio corcega casanova)

81 (pizza_delivered sergio rosello urgell)

83 (inactive_norm1 sergio bmw)
(inactive_norm1-rep sergio bmw)

85
(inactive_norm2-rep sergio corcega casanova)

87 (inactive_norm2-rep sergio rosello urgell)

89 (inactive_norm3-rep sergio bmw)
)

91)

93 (:metric
minimize (+ (+ (* 1 (+ (factor1) (/ (p_time) 30)))

95 (* 1 (+ (factor1) (/ (penalty_points sergio) 10))))
(* 1 (+ (factor1) (/ (fine sergio) 60)))))

97
)

Figure B.10: Pizza delivery example problem in PDDL

B.4 Pizza Delivery Example 2APL Code

Beliefs:
2

person(sergio).
4 vehicle(bmw).

6 street(paris).
street(corcega).

8 street(rosello).
street(provenca).

10 street(urgell).
street(villaroel).

12 street(casanova).
street(muntaner).

14
connection(muntaner, paris, corcega).

16 connection(muntaner, corcega, rosello).

Appendix B: Example Implementation Details 241

connection(muntaner, rosello, provenca).
18

connection(casanova, corcega, paris).
20 connection(casanova, rosello, corcega).

connection(casanova, provenca, rosello).
22

connection(villaroel, paris, corcega).
24 connection(villaroel, corcega, rosello).

connection(villaroel, rosello, provenca).
26

connection(urgell, corcega, paris).
28 connection(urgell, rosello, corcega).

connection(urgell, provenca, rosello).
30

connection(paris, urgell, villaroel).
32 connection(paris, villaroel, casanova).

connection(paris, casanova, muntaner).
34

connection(corcega, muntaner, casanova).
36 connection(corcega, casanova, villaroel).

connection(corcega, villaroel, urgell).
38

connection(rosello, urgell, villaroel).
40 connection(rosello, villaroel, urgell).

connection(rosello, casanova, muntaner).
42

connection(provenca, muntaner, casanova).
44 connection(provenca, casanova, villaroel).

connection(provenca, villaroel, urgell).

Figure B.11: Pizza delivery example topology in separate 2APL file, topology.2apl

Include:
2 topology.2apl

4 BeliefUpdates:

6 {
(vehicle_at(V, Main, Street1) or vehicle_at(V, Street1, Main)) and

8 (connection(Main, Street1, Street2) or connection(Main, Street2, Street1)) and
p_time(T)

10 }
MoveBetweenJunctionsLow(V, Main, Street1, Street2, Speed)

12 {
not vehicle_at(V, Main, Street1),

14 not vehicle_at(V, Street1, Main),
vehicle_at(V, Main, Street2),

16 not movedBetweenJunctions(V, Main, paris, Street1),
not movedBetweenJunctions(V, Main, corcega, Street1),

18 not movedBetweenJunctions(V, Main, rosello, Street1),
not movedBetweenJunctions(V, Main, provenca, Street1),

20 not movedBetweenJunctions(V, Main, urgell, Street1),
not movedBetweenJunctions(V, Main, villaroel, Street1),

22 not movedBetweenJunctions(V, Main, casanova, Street1),
not movedBetweenJunctions(V, Main, muntaner, Street1),

24 not movedBetweenJunctions(V, Street1, paris, Main),
not movedBetweenJunctions(V, Street1, corcega, Main),

26 not movedBetweenJunctions(V, Street1, rosello, Main),
not movedBetweenJunctions(V, Street1, provenca, Main),

242 B.4 Pizza Delivery Example 2APL Code

28 not movedBetweenJunctions(V, Street1, urgell, Main),
not movedBetweenJunctions(V, Street1, villaroel, Main),

30 not movedBetweenJunctions(V, Street1, casanova, Main),
not movedBetweenJunctions(V, Street1, muntaner, Main),

32 movedBetweenJunctions(V, Main, Street1, Street2),
p_time(T+2), not p_time(T)

34 }

36 {
(vehicle_at(V, Main, Street1) or vehicle_at(V, Street1, Main)) and

38 (connection(Main, Street1, Street2) or connection(Main, Street2, Street1)) and
p_time(T)

40 }
MoveBetweenJunctionsMedium(V, Main, Street1, Street2, Speed)

42 {
not vehicle_at(V, Main, Street1),

44 not vehicle_at(V, Street1, Main),
vehicle_at(V, Main, Street2),

46 not movedBetweenJunctions(V, Main, paris, Street1),
not movedBetweenJunctions(V, Main, corcega, Street1),

48 not movedBetweenJunctions(V, Main, rosello, Street1),
not movedBetweenJunctions(V, Main, provenca, Street1),

50 not movedBetweenJunctions(V, Main, urgell, Street1),
not movedBetweenJunctions(V, Main, villaroel, Street1),

52 not movedBetweenJunctions(V, Main, casanova, Street1),
not movedBetweenJunctions(V, Main, muntaner, Street1),

54 not movedBetweenJunctions(V, Street1, paris, Main),
not movedBetweenJunctions(V, Street1, corcega, Main),

56 not movedBetweenJunctions(V, Street1, rosello, Main),
not movedBetweenJunctions(V, Street1, provenca, Main),

58 not movedBetweenJunctions(V, Street1, urgell, Main),
not movedBetweenJunctions(V, Street1, villaroel, Main),

60 not movedBetweenJunctions(V, Street1, casanova, Main),
not movedBetweenJunctions(V, Street1, muntaner, Main),

62 movedBetweenJunctions(V, Main, Street1, Street2),
p_time(T+1.5), not p_time(T)

64 }

66 {
(vehicle_at(V, Main, Street1) or vehicle_at(V, Street1, Main)) and

68 (connection(Main, Street1, Street2) or connection(Main, Street2, Street1)) and
p_time(T)

70 }
MoveBetweenJunctionsHigh(V, Main, Street1, Street2, Speed)

72 {
not vehicle_at(V, Main, Street1),

74 not vehicle_at(V, Street1, Main),
vehicle_at(V, Main, Street2),

76 not movedBetweenJunctions(V, Main, paris, Street1),
not movedBetweenJunctions(V, Main, corcega, Street1),

78 not movedBetweenJunctions(V, Main, rosello, Street1),
not movedBetweenJunctions(V, Main, provenca, Street1),

80 not movedBetweenJunctions(V, Main, urgell, Street1),
not movedBetweenJunctions(V, Main, villaroel, Street1),

82 not movedBetweenJunctions(V, Main, casanova, Street1),
not movedBetweenJunctions(V, Main, muntaner, Street1),

84 not movedBetweenJunctions(V, Street1, paris, Main),
not movedBetweenJunctions(V, Street1, corcega, Main),

86 not movedBetweenJunctions(V, Street1, rosello, Main),
not movedBetweenJunctions(V, Street1, provenca, Main),

88 not movedBetweenJunctions(V, Street1, urgell, Main),
not movedBetweenJunctions(V, Street1, villaroel, Main),

Appendix B: Example Implementation Details 243

90 not movedBetweenJunctions(V, Street1, casanova, Main),
not movedBetweenJunctions(V, Street1, muntaner, Main),

92 movedBetweenJunctions(V, Main, Street1, Street2),
p_time(T+1), not p_time(T)

94 }

96 {
driving(P, V) and

98 (vehicle_at(V, Street1, Street2) or (vehicle_at(V, Street2, Street1))) and
hasPizzaFor(P,Street1,Street2) and

100 p_time(T)
}

102 DeliverPizza(P,Street1,Street2)
{

104 pizza_delivered(P,Street1,Street2),
pizza_delivered(P,Street2,Street1),

106 not hasPizzaFor(P,Street1,Street2),
not hasPizzaFor(P,Street2,Street1),

108 p_time(T+3), not p_time(T)
}

110
{

112 driving(P,V) and
p_time(T)

114 }
GetOffBike(P,V)

116 {
not driving(P,V),

118 p_time(T+0.5), not p_time(T)
}

120
{

122 fine(P, M) and
not fine_paid1(P)

124 }
PayFine1(P)

126 {
fine_paid1(P),

128 fine(P, M+30),
not fine(P, M)

130 }

132 {
fine(P, M) and

134 not fine_paid3(P)
}

136 PayFine3(P)
{

138 fine_paid3(P),
fine(P, M+30),

140 not fine(P, M)
}

142
{

144 penalty_points(P, Pts) and
not points_augmented(P)

146 }
AugmentPoints(P)

148 {
points_augmented(P),

150 penalty_points(P, Pts+10),
not penalty_points(P, Pts)

244 B.4 Pizza Delivery Example 2APL Code

152 }

154 Beliefs:

156 driving(sergio, bmw).
vehicle_at(bmw, muntaner, provenca).

158 vehicleSpeed(bmw, 10).
hasPizzaFor(sergio, corcega, casanova).

160 goalpizzatime(corcega, casanova, 28).
hasPizzaFor(sergio, rosello, urgell).

162 goalpizzatime(rosello, urgell, 19).
p_time(0).

164 fine(sergio,0).
penalty_points(sergio,0).

166 movedBetweenJunctions(bmw, muntaner, rosello, provenca).

168 Plans:
@pizzaworld(enter(sergio, muntaner, provenca))

170
Goals:

172 pizza_delivered(sergio, corcega, casanova) and
pizza_delivered(sergio, rosello, urgell)

174
PC-rules:

176
execute_plan(movebetweenjunctions(V, Main, Street1, Street2, Speed))<-true|

178 {
if B(Speed=low) then

180 {
MoveBetweenJunctionsLow(V, Main, Street1, Street2, Speed);

182 @pizzaworld(moveBetweenJunctions(V, Main, Street1, Street2, low))
}

184 else if B(Speed=medium) then
{

186 MoveBetweenJunctionsMedium(V, Main, Street1, Street2, Speed);
@pizzaworld(moveBetweenJunctions(V, Main, Street1, Street2, medium))

188 }
else

190 {
MoveBetweenJunctionsHigh(V, Main, Street1, Street2, Speed);

192 @pizzaworld(moveBetweenJunctions(V, Main, Street1, Street2, high))
}

194 }

196 execute_plan(deliverpizza(P, Street1, Street2))<-true|
{

198 DeliverPizza(P,Street1,Street2);
@pizzaworld(deliverPizza(P,Street1,Street2))

200 }

202 execute_plan(getoffbike(P, V))<-true|
{

204 GetOffBike(P, V);
@pizzaworld(getOffBike(P, V))

206 }

208 execute_plan(payfine1(P))<-true|
{

210 PayFine1(P);
@pizzaworld(payFine1(P))

212 }

Appendix B: Example Implementation Details 245

214 execute_plan(payfine3(P))<-true|
{

216 PayFine3(P);
@pizzaworld(payFine3(P))

218 }

220 execute_plan(augmentpoints(P))<-true|
{

222 AugmentPoints(P);
@pizzaworld(augmentpoints(P))

224 }

Figure B.12: Pizza delivery agent in 2APL, main agent.2apl

Appendix C

Proofs

This appendix provides the proofs for the deontic logic reductions of our normative
framework described in Section 4.4. The purpose of these proofs is to demonstrate
that our norm representation (a set of first-order logic formulas) can represent both
deontic statements in Standard Deontic Logic and in Dyadic Logic.

C.1 Achievement Obligations

In our framework, achievement obligations (typically, O(A) where A is a state to be
eventually achieved once in the future) are characterised by leaving the discharge
condition as the unique free parameter (see Section 4.4.1):

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ>] � θ f D

n | θ>) iff
〈
π, i,θ

〉
|= ∃j ≥ i,θ′′ :

〈
π, j,θθ′′

〉
|= f D

n

Proof of this equality is given in Section C.1.1. In the case of achievement obligations,
axioms K (subsection C.1.2) and Necessitation (subsection C.1.3) can be proven.

A relevant issue of achievement obligations in our framework is that axiom D is not
fulfilled. The reason is that the negation of the reduction is simply ¬ f D

n , that is,
that the state to be achieved is the complementary state of the original achievement
obligation. The main implication of this is that, in our framework, when dealing with
achievement obligations as commonly treated in SDL, we cannot ensure that O(A)

and O(¬A) are incompatible. While from a theoretical perspective this might seem
a problem, from a practical point of view trying to ensure this property above others
might be an even bigger problem: if the only thing we care about is to achieve two
goal states and we do not care about maintenance, then it is not really a drawback if
both obligations can be achieved at different points of time.

For simplification purposes in the subsequent proofs, we will assume that:

O(f D
n) ≡ Oθ f R

n ≤timeoutn
(Eα[θ>] � θ f D

n | θ>)

247

248 C.1 Achievement Obligations

C.1.1 Substitution for Achievement Obligations

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff
〈
π, i,θ

〉
|=G

(
¬ f A

n
)
∨[

¬ f A
n U
(

f A
n ∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′ f D
n
])]
∨[

¬ f A
n U
(

f A
n ∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′ f R
n]
)])]

iff
〈
π, i,θ

〉
|=G

(
¬>
)
∨[

¬>U
(
>∧

[
∀θ′ : θ′>U∃θ′′ : θ′′ f D

n
])]
∨[

¬>U
(
>∧

[
∃θ′ : θ′>U

(
¬θ′>∧ [∃θ′′ : F≤timeoutn θ′′θ′⊥]

iff
〈
π, i,θ

〉
|=G

(
⊥
)
∨[

F(∃θ′′ : θ′′ f D
n)
]
∨[

∃θ′ : θ′>U
(
⊥∧ [⊥]

)]
iff
〈
π, i,θ

〉
|=
[
F(∃θ′′ : θ′′ f D

n)
]

iffDe f 4.1.(g) ∃j ≥ i,θ′′ :
〈
π, i,θ′θ

〉
|= f D

n

The intuition behind this result is that in an achievement obligation, the only thing
that matters is that the goal state is eventually achieved. In a norm of this kind the
activating condition plays no role, as the obligation stands from the moment it is
announced. There is also no maintenance to be done, as achieving the goal state does
not depend on the previous states to the actual achievement.

C.1.2 Proof of K

Axiom K states that O(A→ B)→ (O(A)→O(B)).

〈
π, i,θ

〉
|=O(A→ B)

iff ∃j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= (A→ B)

iff ∃j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= (¬A ∨ B)

iff ∃j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= ¬A ∨ B

iff ∃j ≥ i,θ′ : (
〈
π, j,θ′θ

〉
|= ¬A ∨

〈
π, j,θ′θ′′

〉
|= B)

iff ∃j ≥ i,θ′ : (
〈
π, j,θ′θ

〉
|= ¬A) ∨

〈
π, j,θ′θ′′

〉
|= B)

iff ∃j ≥ i,θ′ : (
〈
π, j,θ′θ

〉
6|= A ∨

〈
π, j,θ′θ′′

〉
|= B)

iff (∃j ≥ i,θ′ :
〈
π, j,θ′θ′

〉
6|= A) ∨ (∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= B)

iff (∃j ≥ i,θ′ :
〈
π, j,θ′θ

〉
6|= A) ∨ (∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= B)

iff
〈
π, i,θ

〉
|= ¬O(A) ∨O(B)

iff
〈
π, i,θ

〉
|=O(A)→O(B)

Thus, in our framework, O(A→ B) ≡ O(A)→O(B), so K is fulfilled.

C.1.3 Proof of Necessitation

Necessitation states that |= α→
〈
π, i,θ

〉
|= O(α): if something is a tautology, then it is

obliged for it to happen.

Appendix C: Proofs 249

|= α

⇒ ∀π′, i′,θ′ :
〈
π′, i′,θ′

〉
|= α

⇒π′=π ∀i′,θ′ :
〈
π, i′,θ′

〉
|= α

⇒ ∀i′,∃θ′ :
〈
π, i′,θ′

〉
|= α

⇒ ∃j ≥ i,θ′ :
〈
π, j,θ′

〉
|= α

iff
〈
π, i,θ

〉
|=O(α)

C.2 Maintenance Obligations

Maintenance obligations are seen in the literature in a very similar form to achieve-
ment obligations: O(A), but in this case A is a state to be permanently maintained.
In order to represent this in our framework, the maintenance condition has to be the
unique free parameter (see Section 4.4.2):

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n) iff
〈
π, i,θ

〉
|= ∀θ′ : G(θ′ f M

n)

Proof of this equality is given in Section C.2.1. Interestingly, axioms K (subsec-
tion C.2.2), D (subsection C.2.3) and Necessitation (subsection C.2.4) can be proven.
Therefore, maintenance obligations in our framework are equivalent to maintenance
obligations in SDL.

For simplification purposes in the subsequent proofs, we will assume that:

O(f M
n) ≡ Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

C.2.1 Substitution for Maintenance Obligations

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff
〈
π, i,θ

〉
|=G

(
¬ f A

n
)
∨[

¬ f A
n U
(

f A
n ∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′ f D
n
])]
∨[

¬ f A
n U
(

f A
n ∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′ f R
n]
)])]

iff
〈
π, i,θ

〉
|=G

(
¬>
)
∨[

¬>U
(
>∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′∞
])]
∨[

¬>U
(
>∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′⊥]
)])]

iff
〈
π, i,θ

〉
|=G

(
⊥
)
∨[[

∀θ′ : θ′ f M
n U∃θ′′ : θ′′∞

]]
∨[[

∃θ′ : θ′ f M
n U

(
¬θ′ f M

n ∧ ⊥
)]]

iff
〈
π, i,θ

〉
|=
[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′∞
]

iff
〈
π, i,θ

〉
|=
[
∀θ′ : G(θ′ f M

n)
]

iff ∀j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= f M

n

The intuition behind this result is that in a maintenance obligation, the only thing that
matters is that the state is maintained until the end of time. In a norm of this kind

250 C.2 Maintenance Obligations

the activating condition plays no role, as the obligation stands from the moment it is
announced. There is also no discharge to be considered.

C.2.2 Proof of K

Axiom K states that O(A→ B)→ (O(A)→O(B)).

〈
π, i,θ

〉
|= [O(A→ B) ∧O(A)]

iff
〈
π, i,θ

〉
|=
[
∀θ′ : G(θ′(A→ B))

]
∧
[
∀θ′ : G(θ′A)

]
iff
〈
π, i,θ

〉
|=
[
∀θ′ : G(θ′(A→ B)) ∧G(θ′A)

]
iff
〈
π, i,θ

〉
|=
[
∀θ′ : G(θ′(A→ B ∧ A)

]
iff
〈
π, i,θ

〉
|=
[
∀θ′ : G(θ′(B)

]
iff
〈
π, i,θ

〉
|=O(B)

The result is identical to the case of achievement obligations: O(A→ B) ≡ O(A)→
O(B), so K is fulfilled.

C.2.3 Proof of D

Axiom D states that O(A)→¬O(¬A).

〈
π, i,θ

〉
|=O(A)

iff
〈
π, i,θ

〉
|= ∀θ′ : G(θ′A)

⇒
〈
π, i,θ

〉
|= ∃θ′ : G(θ′A)

⇒G(A)→¬G(¬A)

〈
π, i,θ

〉
|= ∃θ′ : ¬G(¬θ′A)

iff
〈
π, i,θ

〉
|= ¬∀θ′ : G(¬θ′A)

iff
〈
π, i,θ

〉
|= ¬∀θ′ : G(θ′¬A)

iff
〈
π, i,θ

〉
|= ¬

[
∀θ′ : G(θ′¬A)

]
iff
〈
π, i,θ

〉
|= ¬O(¬A)

In achievement obligations, D cannot be proven, but this is not the case with mainte-
nance obligations. This result is reasonable: because maintenance obligations require
that states are fulfilled at all points of time, two obligations with complementary main-
tenance states are incompatible.

C.2.4 Proof of Necessitation

Necessitation states that |= α→
〈
π, i,θ

〉
|= O(α): if something is a tautology, then it is

obliged for it to happen.

|= α

⇒ ∀π′, i′,θ′ :
〈
π′, i′,θ′

〉
|= α

⇒π′=π ∀i′,θ′ :
〈
π, i′,θ′

〉
|= α

Appendix C: Proofs 251

⇒ ∀i′,θ′ :
〈
π, i′,θ′

〉
|= α

⇒ ∀j ≥ i,θ′ :
〈
π, j,θ′

〉
|= α

iff
〈
π, i,θ

〉
|=O(α)

C.3 Dyadic Deontic Logic

Dyadic Deontic Logic (DDL) [Prakken and Sergot, 1997] is an extension of SDL that
allows to model conditional obligations, in which the common form is O(A| B), read
as: “given that B, it is obliged that A”, or otherwise, “in the context defined by the
event B, it is obliged that A”. It is not clear in the literature whether B triggers the
context or is required at all times to maintain the context [Prakken and Sergot, 1996],
but it is of little importance in our case to define the reduction.

In the first case:

• f A
n ≡ B

• f M
n ≡ A

• f D
n ≡ G(f M

n)

• f R
n ≡ ⊥

And the reduction is (shown in C.3.1):

[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A

]
∧∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

In the second case:

• f A
n ≡ B

• f M
n ≡ (A ∧ B)

• f D
n ≡ ¬B

• f R
n ≡ ⊥

The reduction formula is not explored in this Section but is trivially achieved in an
identical fashion:

[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B∨

(∃j ≥ i :
〈
π, j,θ

〉
|= B ∧ ∃k : [∀k > j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= (A ∧ B) ∧ ∃θ′ :

〈
π,k,θ′θ

〉
|= ¬B]

]
∧∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

In this thesis we focus on the first case, but it is trivially provable that the axioms are
equally valid on both systems. There exist several of such axiom systems that apply
to DDL, but in this thesis we choose the K1-K4 of [Hilpinen, 1971] and we prove K1,
K3 and K4 in subsections C.3.2, C.3.4 and C.3.5.

252 C.3 Dyadic Deontic Logic

Axiom K2, which is ¬(O(A|B)∧O(¬A|B)), cannot be reduced to> in our framework,
but to F(B), as seen in subsection C.3.3. This result, far from discouraging, is actually
intuitive. If the condition never happens, can it be stated that it is not valid that
¬O(A|B) and O(A|B) coexist? If we take as an example the extreme case: B ≡ ⊥, is
it really a contradiction? For us, it is not: complementary maintenance conditions are
only inconsistent if it is a fact that the activating condition is eventually going to hold.
For further discussion, please refer to Section 4.7.

C.3.1 Substitution for Dyadic Deontic Logic

〈
π, i,θ

〉
|=Oθ f R

n ≤timeoutn
(Eα[θ f M

n] � θ f D
n | θ f A

n)

iff
〈
π, i,θ

〉
|=G

(
¬ f A

n
)
∨[

¬ f A
n U
(

f A
n ∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′ f D
n
])]
∨[

¬ f A
n U
(

f A
n ∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′ f R
n]
)])]

iff
〈
π, i,θ

〉
|=G

(
¬ f A

n
)
∨[

¬ f A
n U
(

f A
n ∧

[
∀θ′ : θ′ f M

n U∃θ′′ : θ′′G(∀θ′ : θ′ f M
n)
])]
∨[

¬ f A
n U
(

f A
n ∧

[
∃θ′ : θ′ f M

n U
(
¬θ′ f M

n ∧ [∃θ′′ : F≤timeoutn θ′′θ′⊥]
)])]

iff
〈
π, i,θ

〉
|=G

(
¬ f A

n
)
∨
[
¬ f A

n U
(

f A
n ∧G(∀θ′ : θ′ f M

n)
)]

iff
〈
π, i,θ

〉
|=
(
¬ f A

n UG(¬ f A
n)
)
∨
[
¬ f A

n U
(

f A
n ∧G(∀θ′ : θ′ f M

n)
)]

iff
〈
π, i,θ

〉
|=¬ f A

n U
[
G(¬ f A

n) ∨
(

f A
n ∧G(∀θ′ : θ′ f M

n)
)]

iff ∃j ≥ i :
〈
π, j,θ

〉
|=
[
G(¬ f A

n) ∨
(

f A
n ∧G(∀θ′ : θ′ f M

n)
)]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬ f A

n

iff
[
∃j ≥ i :

〈
π, j,θ

〉
|= G(¬ f A

n) ∨ ∃j ≥ i :
〈
π, j,θ

〉
|=
(

f A
n ∧G(∀θ′ : θ′ f M

n)
)]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬ f A

n

iff
[
∀j ≥ i : ∃j ≥ i :

〈
π, j,θ

〉
|= ¬ f A

n ∨

(∃j ≥ i :
〈
π, j,θ

〉
|= f A

n ∧ ∃j ≥ i :
〈
π, j,θ

〉
|= G(∀θ′ : θ′ f M

n)
]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬ f A

n

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬ f A

n ∨ (∃j ≥ i :
〈
π, j,θ

〉
|= f A

n ∧ ∀j ≥ i :
〈
π, j,θ

〉
|= (∀θ′ : θ′ f M

n)
]

∧∀i ≤ k < j,
〈
π,k,θ

〉
|= ¬ f A

n

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬ f A

n ∨ (∃j ≥ i :
〈
π, j,θ

〉
|= f A

n ∧ ∀j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= f M

n)
]

∧∀i ≤ k < j,
〈
π,k,θ

〉
|= ¬ f A

n

The resulting formula can be informally read as: “either the norm is never activated
or else it is activated at some point for the first time and the maintenance condition is
always fulfilled from that moment on”.

C.3.2 Proof of K1

Axiom K1 states that O(A ∨ ¬A|B), that is, that whichever the activating condition
is, an obligation which contains both a maintenance condition and its complementary
formula is a tautology.

〈
π, i,θ

〉
|=O(A ∨ ¬A|B)

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= (A ∨ ¬A))

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= >)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

Appendix C: Proofs 253

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧>)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

At this point we are left with two cases: the obligation gets activated or not. In both
cases, the formula is a tautology:

If G(¬B):[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧>)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff
[
>∨ (⊥∧>)

]
∧>

iff >

If F(B):[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧>)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (⊥∧>)

]
∧>

iff >

C.3.3 Proof of K2

Axiom K2 states that ¬(O(A|B)∧O(¬A|B)), that is, that it cannot be the case that we
have two obligations with the same activating condition and complementary mainte-
nance obligations. This can be seen as the D axiom of SDL with B ≡ >.

〈
π, i,θ

〉
|= ¬(O(A|B) ∧O(¬A|B))

iff ¬
[([
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)
∧([
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)]

iff ¬
([
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)
∨

¬
([
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)

iff

(
¬
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∨ ¬∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)
∨(
¬
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∨ ¬∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

)

iff

([
¬∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ ¬(∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)
∨([
¬∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ ¬(∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)

iff

([
∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ (¬∃j ≥ i :

〈
π, j,θ

〉
|= B ∨ ¬∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)
∨([
∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ (¬∃j ≥ i :

〈
π, j,θ

〉
|= B ∨ ¬∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)

254 C.3 Dyadic Deontic Logic

iff

([
∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ (∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)
∨([
∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ (∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∨ ∃i ≤ k < j,

〈
π,k,θ

〉
|= B

)

iff ∃i≤ k < j,
〈
π,k,θ

〉
|= B∨

[([
∃j ≥ i :

〈
π, j,θ

〉
|= B∧ (∀j≥ i :

〈
π, j,θ

〉
|= ¬B∨ ∃j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

])
∨
([
∃j ≥

i :
〈
π, j,θ

〉
|= B ∧ (∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

])]

iff ∃i ≤ k < j,
〈
π,k,θ

〉
|= B ∨ ∃j ≥ i :

〈
π, j,θ

〉
|= B ∧

[[
(∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= ¬A)

]
∨
[
(∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∃j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]]
iff ∃i ≤ k < j,

〈
π,k,θ

〉
|= B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i :

〈
π, j,θ

〉
|= ¬B)

iff F(B) ∨⊥
iff F(B)

As seen earlier, it can be discussed whether this is a valid result.

C.3.4 Proof of K3

Axiom K3 states that O(A ∧ A′|B) ≡ (O(A|B) ∧O(A′|B)): DDL is closed under con-
junction of the maintenance condition.

〈
π, i,θ

〉
|=O(A ∧ A′|B)

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= (A ∧ A′))

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A′)

]
∧ ∀i ≤ k <

j,
〈
π,k,θ

〉
|= ¬B

iff

[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨

[
(∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A) ∧ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A′)

]]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff

[[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A′)

]]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

iff

[[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ (∃j≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

]
∧
[[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A′)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

]
iff
〈
π, i,θ

〉
|=O(A|B) ∧

〈
π, i,θ

〉
|=O(A′|B)

This is a straightforward proof that is trivially achieved by the properties of FO-LTL
(see Section 4.1).

Appendix C: Proofs 255

C.3.5 Proof of K4

Axiom K4 states that O(A|B∨ B′)≡ (O(A|B)∧O(A|B′)), that is, DDL is closed under
disjunction of the activating condition.

〈
π, i,θ

〉
|=O(A ∧ A′|B)

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= ¬(B ∨ B′) ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= (B ∨ B′) ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|=

¬(B ∨ B′)

iff
[
∀j ≥ i :

〈
π, j,θ

〉
|= (¬B ∧ ¬B′)) ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= (B ∨ B′) ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

]
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|=

(¬B ∧ ¬B′)

iff
[
(∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ ∀j ≥ i :

〈
π, j,θ

〉
|= ¬B′) ∨ [(∃j ≥ i :

〈
π, j,θ

〉
|= B ∨ ∃j ≥ i :

〈
π, j,θ

〉
|= B′] ∧ ∀j ≥ i,θ′ :〈

π, j,θ′θ
〉
|= A)

]
∧ (∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B ∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B′)

iff
[
(∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∧ ∀j ≥ i :

〈
π, j,θ

〉
|= ¬B′) ∨ [(∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A) ∨ (∃j ≥ i :〈

π, j,θ
〉
|= B′ ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)]

]
∧ (∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B ∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B′)

iff
[(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A) ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B′ ∧ ∀j ≥ i,θ′ :〈

π, j,θ′θ
〉
|= A)

)
∧
(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B′ ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A) ∨ (∃j ≥ i :

〈
π, j,θ

〉
|=

B′ ∧ ∀j ≥ i,θ′ :
〈
π, j,θ′θ

〉
|= A)

)]
∧ (∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B ∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B′)

iff
[(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A ∨ (∃j ≥ i :

〈
π, j,θ

〉
|= B′ ∧ ∀j ≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A)

)
∧
(
∀j ≥ i :〈

π, j,θ
〉
|= ¬B′ ∨ (∃j≥ i :

〈
π, j,θ

〉
|= B ∧ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A) ∨ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A

)]
∧ (∀i ≤ k < j,

〈
π,k,θ

〉
|=

¬B ∧ ∀i ≤ k < j,
〈
π,k,θ

〉
|= ¬B′)

iff
[(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A

)
∧
(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B′ ∨ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A

)]
∧ (∀i ≤

k < j,
〈
π,k,θ

〉
|= ¬B ∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B′)

iff
[(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B ∨ ∀j≥ i,θ′ :

〈
π, j,θ′θ

〉
|= A

)
∧ (∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B

]
∧
[(
∀j ≥ i :

〈
π, j,θ

〉
|= ¬B′ ∨ ∀j≥

i,θ′ :
〈
π, j,θ′θ

〉
|= A

)
∧ ∀i ≤ k < j,

〈
π,k,θ

〉
|= ¬B′)

]
iff
〈
π, i,θ

〉
|=O(A| B) ∧

〈
π, i,θ

〉
|=O(A| B′)

Similarly to what happens with the previous axiom, this is also a trivial result based
on the properties of FO-LTL.

Index of Terms

TLPLAN, 125, 130
2APL, 159–161

Action, 18, 125
Action Language, 19
ADL, 125, 126
Agency, 107
Autonomous Agent, 2, 12

BDI, 13, 92

Classical Planning, 18, 21
Constitutive Norm, 34
Counts-As Rule, 34

Derived predicate, 148
Dyadic Deontic Logic, 36, 109, 245

Electronic Institution, 30, 32
Enacts, 26, 82

Goal, 18

Hierarchical Task Network, 21

Institution, 25, 29

Linear Temporal Logic, 105

Metamodel, 69
Metric-FF, 157
Model-Driven Engineering (MDE), 69

Norm, 32, 84, 85, 108, 140
Norm Instance, 97, 110, 145
Norm Lifecycle, 97
Normative Model, 108
Normative Planner/Planning, 5, 127, 128
Normative Planning Problem, 127, 149

Organisation, 25–27

PDDL, 21, 125
Plan, 18, 22, 126
Planning, 18
Practical Reasoning, 12
Progression of Formula, 48, 130

Regulative Norm, 33
Repair Norm, 100
Role, 26, 82

Self-Loop Alternating Automaton, 111
Standard Deontic Logic, 36, 116
STRIPS, 21

Temporal Deontic Logic, 36

257

	Abstract
	Resumen
	Resum
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Aim of the Thesis
	1.3 Thesis Objectives
	1.4 Out of Scope Issues
	1.5 Claims
	1.6 Structure of the Thesis

	2 Related Work
	2.1 Agent Orientation
	2.1.1 Practical Reasoning in Agents
	2.1.1.1 The BDI model
	2.1.1.2 Practical Frameworks Implementing BDI agents

	2.1.2 Agent Planning
	2.1.2.1 Action Language Formalisms
	2.1.2.2 Practical Frameworks Implementing Action Languages
	2.1.2.3 Planning in BDI Agents

	2.2 Social Structures and Agent Societies
	2.2.1 Organisational Models
	2.2.1.1 The Concept of Role
	2.2.1.2 Organisational Frameworks

	2.2.2 Institutions
	2.2.2.1 Human vs. Electronic Institutions
	2.2.2.2 Norms
	2.2.2.2.1 Regulative vs. Constitutive Norms
	2.2.2.2.2 Institutional and Normative Power
	2.2.2.2.3 Languages to Express Regulative Norms
	2.2.2.2.4 Operational Semantics for Regulated Systems

	2.2.2.3 Institutional View: Normative Multi-Agent Systems
	2.2.2.3.1 Basic Concepts in the Modelling of Normative Multi-Agent Systems
	2.2.2.3.2 Institutional Models for Normative Multi-Agent Systems
	2.2.2.3.3 Hybrid Organisational-Institutional Models for Normative Multi-Agent Systems
	2.2.2.3.4 Verification in Normative Multi-Agent Systems
	2.2.2.3.5 Monitoring Normative Status
	2.2.2.3.6 Relevant Approaches Outside the Agent Community

	2.2.2.4 Agent-view: Norm-based Agents
	2.2.2.4.1 Agent Frameworks Focusing on Constitutive (Counts-as) Norms
	2.2.2.4.2 BDI-based Normative Autonomous Agents
	2.2.2.4.3 Rule-Based Normative Agents
	2.2.2.4.4 Rational Agents Normative Reasoning with Uncertainty
	2.2.2.4.5 Normative Autonomous Agents Using Planning
	2.2.2.4.6 Plan Labelling Frameworks
	2.2.2.4.7 Action Language and Abductive-Based Approaches

	2.3 Summary

	3 Conceptual Framework and Architecture
	3.1 Requirements Analysis
	3.1.1 Functional Requirements
	3.1.1.1 Agent Model
	3.1.1.2 Domain Model
	3.1.1.3 Norm Model

	3.1.2 Non-Functional Requirements
	3.1.3 Technical Decisions

	3.2 Conceptual Framework
	3.2.1 Context
	3.2.1.1 Ontology and Concept
	3.2.1.2 Terms
	3.2.1.3 Formulas, Relation Atoms and State of Affairs (StateFormula)

	3.2.2 Roles
	3.2.3 Agents
	3.2.4 Initial State
	3.2.5 Actions
	3.2.6 Norms
	3.2.7 Plans

	3.3 Architecture
	3.3.1 Components
	3.3.2 BDI Agent Structure

	3.4 Norm Design
	3.4.1 Norm Lifecycle and Norm Instances
	3.4.2 Dynamics of Norms
	3.4.3 Primary, Secondary Norms and Interaction Between Them

	3.5 Discussion

	4 Normative Practical Reasoning Using Temporal Control Rules
	4.1 First-Order Linear Temporal Logic
	4.2 Extensions of fo-LTL for norms
	4.3 Formalisation
	4.3.1 Norms
	4.3.2 Norm Instances
	4.3.3 Norm Lifecycle
	4.3.4 From Norm to Norm Instances

	4.4 Reduction to Deontic Logics
	4.4.1 Reduction to Achievement Obligations
	4.4.2 Reduction to Maintenance Obligations
	4.4.3 Reduction to Dyadic Maintenance Obligations

	4.5 Example
	4.5.1 Pizza Delivery Domain
	4.5.2 Norms

	4.6 Planning with Norms
	4.6.1 Plans and Actions
	4.6.2 Types, Numeric Expressions, Conditions and Effects
	4.6.3 Calculation of Plan Cost
	4.6.4 The Normative Planning Problem
	4.6.5 Implementation via a Modified TLPLAN Algorithm
	4.6.6 Experimental Results

	4.7 Discussion
	4.7.1 Contributions and Extensions
	4.7.2 Revisiting Requirements

	5 Practical Normative Reasoning with Repair Norms and Integration into a BDI Agent
	5.1 Formalisation
	5.1.1 Norms
	5.1.2 Norm Instances
	5.1.3 Norm Lifecycle
	5.1.4 From Norm to Norm Instances

	5.2 Planning with Norms
	5.2.1 Plans, Actions, and Plan Cost
	5.2.2 The Normative Planning Problem
	5.2.3 Implementation Rules for Norm Lifecycle
	5.2.4 Implementation Rules for Normative Planning Problem
	5.2.5 Computational Overhead
	5.2.6 Results
	5.2.6.1 Tools
	5.2.6.2 Execution Results

	5.3 Connecting the Normative Reasoner with the 2APL BDI Core
	5.3.1 2APL
	5.3.1.1 2APL Elements
	5.3.1.2 2APL Deliberation Cycle

	5.3.2 2APL with Embedded Norm-Aware Planner
	5.3.2.1 Modified 2APL Lifecycle
	5.3.2.2 General Architecture

	5.3.3 Adapting Inputs Between 2APL and the Normative Planner
	5.3.3.1 Adapting Inputs from 2APL into Normative Planner
	5.3.3.2 Adapting the Normative Planner Output into 2APL

	5.3.4 Running the Normative Agent in 2APL

	5.4 Discussion
	5.4.1 Contributions and Extensions
	5.4.2 Revisiting Requirements

	6 Conclusions
	6.1 Contributions
	6.2 Revisiting Claims
	6.3 Extensions
	6.3.1 General Extensions
	6.3.2 Probabilistic Practical Normative Reasoning

	Publications of the Author
	Bibliography
	A Basis Framework Semantics
	A.1 Norms for Modelling Regulative Clauses
	A.2 Formal Preliminaries
	A.3 Structural Definitions
	A.3.1 Agent Names and Roles
	A.3.2 Norms
	A.3.3 Instantiating Abstract Norms

	A.4 Dynamic Semantics
	A.5 Issues and Related Work

	B Example Implementation Details
	B.1 Pizza Delivery Example Models
	B.2 Pizza Delivery Example TLPLAN Code
	B.3 Pizza Delivery Example PDDL Code
	B.4 Pizza Delivery Example 2APL Code

	C Proofs
	C.1 Achievement Obligations
	C.1.1 Substitution for Achievement Obligations
	C.1.2 Proof of K
	C.1.3 Proof of Necessitation

	C.2 Maintenance Obligations
	C.2.1 Substitution for Maintenance Obligations
	C.2.2 Proof of K
	C.2.3 Proof of D
	C.2.4 Proof of Necessitation

	C.3 Dyadic Deontic Logic
	C.3.1 Substitution for Dyadic Deontic Logic
	C.3.2 Proof of K1
	C.3.3 Proof of K2
	C.3.4 Proof of K3
	C.3.5 Proof of K4

	Index of Terms

