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Summary

We present here a brief overview of the contents of this thesis.
The main topic of the thesis is the study of Elliptic Partial Differential Equations.

The thesis is divided into three Parts: (I) integro-differential equations; (II) stable
solutions to reaction-diffusion problems; and (III) weighted isoperimetric and Sobolev
inequalities.

Integro-differential equations arise naturally in the study of stochastic processes
with jumps, and more precisely of Lévy processes. This type of processes, well studied
in Probability, are of particular interest in Finance, Physics, or Ecology. Moreover,
integro-differential equations appear naturally also in other contexts such as Image
processing, Fluid Mechanics, and Geometry.

The most canonical example of elliptic integro-differential operator is the fractional
Laplacian

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(x+ y)

|y|n+2s
dy, s ∈ (0, 1). (1)

It is the infinitesimal generator of the radially symmetric and stable Lévy process of
order 2s.

In the first Part of this thesis we find and prove the Pohozaev identity for the
fractional Laplacian. We also obtain boundary regularity results for the fractional
Laplacian and for more general integro-differential operators, as explained next.

In the classical case of the Laplace operator, the Pohozaev identity applies to any
solution of −∆u = f(x, u) in Ω, u = 0 on ∂Ω. Its first immediate consequence
is the nonexistence of solutions for critical and supercritical nonlinearities f . Still,
Pohozaev-type identities have been used in many different contexts, and lead to mono-
tonicity properties, concentration-compactness results, radial symmetry of solutions,
uniqueness results, or partial regularity of stable solutions. Furthermore, they are also
commonly used in nonlinear wave and heat equations, control theory, geometry, and
harmonic maps.

Before our work, a Pohozaev identity for the fractional Laplacian was not known.
It was not even known which form should it have, if any. In this thesis we find and
establish such identity. Quite surprisingly, it involves a local boundary term, even
though the operator is nonlocal.

For the Laplacian −∆, the Pohozaev identity follows easily from the divergence
theorem or integration by parts formula in bounded domains. However, in the nonlocal
framework these tools are not available. Our proof follows a different approach and
requires fine regularity properties of solutions.

Namely, to prove the identity we need, among other things, the precise boundary
regularity of solutions to the Dirichlet problem for the fractional Laplacian (1) in a
bounded domain Ω. Solutions u to this problem were known to be comparable to ds,

1



2 SUMMARY

where d(x) = dist(x, ∂Ω), in the sense that −Cds ≤ u ≤ Cds in Ω for some constant C.
However, to establish our Pohozaev identity we need a more precise boundary regu-
larity result. Namely, we prove that the quotient u/ds is Hölder continuous in Ω, i.e.,
that u/ds ∈ Cγ(Ω) for some small γ > 0. In our Pohozaev identity, the quantity u

ds

∣∣
∂Ω

plays the role that the normal derivative ∂u
∂ν

plays in second order PDEs.

Also in Part I, we establish boundary regularity results for fully nonlinear integro-
differential equations. These equations arise in Stochastic Control Theory with jump
processes and in zero-sum Stochastic Games. The interior regularity of their solutions
has been recently studied by Caffarelli and Silvestre, among others. We show that
solutions u to Iu = g in Ω, u = 0 in Rn \Ω, being I a fully nonlinear integro-differential
operator of order 2s, satisfy u/ds ∈ Cs−ε(Ω) for all ε > 0. These boundary regularity
results improve the best known ones even for linear equations.

Let us describe now our works on reaction-diffusion equations and weighted isoperi-
metric inequalities, which correspond to Parts II and III of the thesis.

Reaction-diffusion equations play a central role in PDE theory and its applications
to other sciences. Our work on this field concerns the regularity of local minimizers to
some elliptic equations, a classical problem in the Calculus of Variations. In fact, we
treat a larger class than local minimizers: stable solutions.

More precisely, we study the regularity of stable solutions to reaction-diffusion
equations of the form −∆u = f(u) in Ω ⊂ Rn, u = 0 on ∂Ω. It is a long standing open
problem to prove that stable solutions to this equation are bounded, and thus regular,
when n ≤ 9. In dimensions n ≥ 10 there are examples of singular stable solutions
to the problem. Important examples of stable solutions are given by the extremal
solutions of problems of the type −∆u = λf(u), where λ > 0.

The regularity of stable solutions is well understood for some particular nonlinear-
ities f , essentially the exponential and power nonlinearities. In both cases a similar
result holds: if n ≤ 9 then all stable solutions are bounded for every domain Ω, while
for n ≥ 10 there are examples of unbounded stable solutions even in the unit ball.

For general nonlinearities f and general domains Ω, it is known that when n ≤ 4
any stable solution is bounded. The problem is still open in dimensions 5 ≤ n ≤ 9. A
partial result in this direction is that all stable solutions are bounded in dimensions
n ≤ 9 when the domain Ω is a ball.

Here we study the regularity of stable solutions domains of double revolution (that
is, symmetric with respect to the first m variables and with respect to the last n−m).
Our main result is the boundedness of all stable solutions in dimensions n ≤ 7 for all
convex domains of double revolution. Except for the radial case, our result is the first
partial answer valid for all nonlinearities f in dimensions 5 ≤ n ≤ 9.

While studying this problem, we were led to some weighted Sobolev inequalities
with monomial weights w(x) = xA1

1 · · · xAnn that were not treated in the literature.
Below we explain our work on this subject, which is Part III of the thesis.

In Part II we also study the regularity of stable and extremal solutions to reaction
problems with nonlocal diffusion, i.e., to problems of the form (−∆)su = λf(u) in Ω,
u = 0 in Rn \ Ω, where (−∆)s is the fractional Laplacian. For the exponential non-
linearity f(u) = eu, we obtain a sharp regularity result in domains which are convex
in the xi-direction and symmetric with respect to {xi = 0} for every i = 1, ..., n. This
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result is new even in the unit ball. For more general nonlinearities f and in general
domains Ω, we obtain L∞ and Hs estimates which are sharp for s close to 1 but not
for small values of s ∈ (0, 1).

In Part III we study the weighted Sobolev inequalities with monomial weights
w(x) = xA1

1 · · ·xAnn that arose in our work on stable solutions. These weights are not
in the Muckenhoupt class and the inequalities had not been proved in the literature.
We establish them for all weights with exponents Ai ≥ 0, obtaining also the best
constants and extremal functions.

The proof of such Sobolev inequalities is based on a new weighted isoperimetric
inequality with monomial weights. We establish it by adapting a proof of the classical
Euclidean isoperimetric inequality due to Cabré. Our proof uses a linear Neumann
problem for the operator x−Adiv(xA∇ · ) combined with the Alexandroff contact set
method (or ABP method).

This type of isoperimetric inequalities with weights have attracted much attention
recently. There are many results on existence, regularity, or boundedness of mini-
mizers. However, the solution to the isoperimetric problem in Rn with a weight w is
known only for very few weights, even in the case n = 2. Our result provides a class
of weights (the monomial ones) for which we give the shape of the minimizers. It is
quite surprising that, even if these weights are not radially symmetric, Euclidean balls
(centered at the origin) solve the isoperimetric problem.

Also in Part III, we study more general weights. We obtain a family of new sharp
isoperimetric inequalities with homogeneous weights in convex cones Σ ⊂ Rn (in the
monomial case, Σ would correspond to {x1 > 0, · · · , xn > 0}). We prove that Eu-
clidean balls centered at the origin solve the isoperimetric problem in any open convex
cone Σ of Rn (with vertex at the origin) for a certain class of nonradial homogeneous
weights. More precisely, our result applies to all nonnegative continuous weights w
which are positively homogeneous of degree α ≥ 0 and such that w1/α is concave in
the cone Σ.

Moreover, we also treat anisotropic perimeters, establishing similar inequalities for
the same homogeneous weights as before. It is worth saying that, as a particular case
of our results, we provide with totally new proofs of two classical results: the Wulff
inequality for anisotropic perimeters, and the isoperimetric inequality in convex cones
of Lions and Pacella.

The thesis is divided into three Parts. Each Part is divided into Chapters. Each
Chapter corresponds to a paper or a preprint, as follows.

Part I:

• X. Ros-Oton, J. Serra. The Dirichlet problem for the fractional Laplacian: reg-
ularity up to the boundary, J. Math. Pures Appl. 101 (2014), 275-302.

• X. Ros-Oton, J. Serra. The Pohozaev identity for the fractional Laplacian, Arch.
Rat. Mech. Anal., to appear.

• X. Ros-Oton, J. Serra. Nonexistence results for nonlocal equations with criti-
cal and supercritical nonlinearities, Comm. Partial Differential Equations, to
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appear.

• X. Ros-Oton, J. Serra. Boundary regularity for fully nonlinear integro-differential
equations, Submitted. Available at arXiv (April 2014).

Part II:

• X. Cabré, X. Ros-Oton. Regularity of stable solutions up to dimension 7 in
domains of double revolution, Comm. Partial Differential Equations 38 (2013),
135-154.

• X. Ros-Oton, J. Serra. The extremal solution for the fractional Laplacian, Calc.
Var. Partial Differential Equations, to appear.

• X. Ros-Oton. Regularity for the fractional Gelfand problem up to dimension 7,
J. Math. Anal. Appl., to appear.

Part III:

• X. Cabré, X. Ros-Oton. Sobolev and isoperimetric inequalities with monomial
weights, J. Differential Equations 255 (2013), 4312-4336.

• X. Cabré, X. Ros-Oton, J. Serra. Sharp isoperimetric inequalities via the ABP
method, Submitted. Available at arXiv (April 2013).
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Introduction to Part I

Partial Differential Equations are relations between the values of an unknown function
and its derivatives of different orders. In order to check whether a PDE holds at a
particular point, one needs to know only the values of the function in an arbitrarily
small neighborhood, so that all derivatives can be computed. A nonlocal equation is a
relation for which the opposite happens. In order to check whether a nonlocal equation
holds at a point, information about the values of the function far from that point is
needed. Most of the times, this is because the equation involves integral operators. A
simple example of such operator is

Lu(x) = PV

∫

Rn

(
u(x)− u(x+ y)

)
K(y)dy (2)

for some nonnegative symmetric kernel K(y) = K(−y) satisfying
∫

Rn
min

(
1, |y|2

)
K(y)dy < +∞.

In (2), PV denotes that the integral has to be understood in the principal value sense.
When the singularity at the origin of the kernel K is not integrable, these operators
are also called integro-differential operators. This is because, due to the singularity of
K, the operator (2) differentiates (in some sense) the function u.

The most canonical example of an elliptic integro-differential operator is the frac-
tional Laplacian

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(x+ y)

|y|n+2s
dy, s ∈ (0, 1). (3)

The Fourier symbol of this operator is |ξ|2s and, thus, one has that (−∆)t ◦ (−∆)s =
(−∆)s+t —this is why it is called fractional Laplacian.

Lévy processes

Integro-differential equations arise naturally in the study of stochastic processes with
jumps, and more precisely in Lévy processes. A Lévy process is a stochastic process
with independent and stationary increments. Informally speaking, it represents the
random motion of a particle whose successive displacements are independent and sta-
tistically identical over different time intervals of the same length. These processes
generalize the concept of Brownian motion, and may contain jump discontinuities.

By the Lévy-Khintchine Formula, the infinitesimal generator of any symmetric
Lévy process is given by a linear integro-differential operator of the form

Lu(x) = −
∑

i,j

aij∂iju+ PV

∫

Rn

(
u(x)− u(x+ y)

)
dµ(y), (4)

7



8 Introduction to Part I

where A = (aij) is a nonnegative-definite matrix and µ is a measure satisfying

∫

Rn
min

(
1, |y|2

)
dµ(y) <∞.

For example, let Ω ⊂ Rn be a bounded domain, and let us consider a Lévy process
Xt, t ≥ 0, starting at x ∈ Ω. Let u(x) be the expected first passage time, i.e., the
expected time E[τ ], where τ = inf{t > 0 : Xt /∈ Ω} is the first time at which the
particle exits the domain. Then, u solves the following integro-differential equation

{
Lu = 1 in Ω
u = 0 in Rn\Ω,

where L is the infinitesimal generator of Xt —and thus, it is an operator of the form (4).
Recall that, when Xt is a Brownian motion, then L is the Laplace operator −∆. In

the context of integro-differential equations, Lévy processes plays the same role that
Brownian motion play in the theory of second order equations.

Most of the integro-differential equations appearing in this thesis have a probabilis-
tic interpretation, the simplest example being the one given before.

Notice that an important difference and difficulty when studying integro-differential
equations is that the “boundary data” is not given on the boundary, as in the classical
case, but in the complement Rn \Ω. This exhibits the fact that paths of the associated
processes fail to be continuous.

A special class of Lévy processes are the so-called stable processes, well studied in
probability. These processes satisfy a scaling property, and their infinitesimal genera-
tors are given by

Lu(x) = PV

∫

Rn

(
u(x)− u(x+ y)

)a (y/|y|)
|y|n+2s

dy. (5)

Here, a is any nonnegative function (or, more generally, any finite measure) defined on
Sn−1, usually called the spectral measure. In our works we will focus in the operators
that satisfy the following uniform ellipticity condition

λ ≤ a(θ) ≤ Λ on Sn−1,

where 0 < λ ≤ Λ are constants. Note that, up to a multiplicative constant, the
fractional Laplacian (−∆)s is the only radially symmetric stable process of order 2s.

Why studying integro-differential equations?

To a great extent, the study of integro-differential equations is motivated by real world
applications. Indeed, there are many situations in which a nonlocal equation gives a
significantly better model than a PDE, as explained next.

In Mathematical Finance it is particularly important to study models involving
jump processes, since the prices of assets are frequently modeled following a Lévy
process. Note that jump processes are very natural in this situation, since asset prices
can have sudden changes. These models have become increasingly popular for modeling
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market fluctuations since the work of Merton [210] in 1976, both for risk management
and option pricing purposes. For example, the obstacle problem for the fractional
Laplacian can be used to model the pricing of American options [195, 235]; see also
the nice introduction of [63] and also [271, 73]. Good references for financial modeling
with jump processes are the books [100] and [269]; see also [231].

Just as an example, let us mention that in [229] Nolan examined the joint distri-
bution of the German mark and the Japanese yen exchange rates, and observed that
the distribution fits well in a Lévy stable model. Moreover, he estimated the value of
the parameter 2s ≈ 1.51 and also the spectral measure a.

Integro-differential equations appear also in Ecology. Indeed, optimal search theory
predicts that predators should adopt search strategies based on long jumps where prey
is sparse and distributed unpredictably, Brownian motion being more efficient only for
locating abundant prey; see [172, 244, 296]. Thus, reaction-diffusion problems with
nonlocal diffusion such as

ut + Lu = f(u) in Rn (6)

arise naturally when studying such population dynamics. Equation (6) appear also in
physical models of plasmas and flames; see [205], [211], and references therein.

It is worth saying that in these problems the nonlocal diffusion (instead of a clas-
sical one) changes completely the behavior of the solutions. For example, consider
problem (6) with L = (−∆)s, f(u) = u − u2, and with compactly supported initial
data. Then, in both cases s = 1 and s ∈ (0, 1), there is an invasion of the unstable
state u = 0 by the stable one, u = 1. However, in the classical case (s = 1) the inva-
sion front position is linear in time, while in case s ∈ (0, 1) the front position will be
exponential in time. This was heuristically predicted in [205] and [111], and rigorously
proved in [48].

In Fluid Mechanics, many equations are nonlocal in nature. A clear example is
the surface quasi-geostrophic equation, which is used in oceanography to model the
temperature on the surface [99]. The regularity theory for this equation relies on very
delicate regularity results for nonlocal equations in divergence form; see [76, 61, 77].
Another important example is the Benjamin-Ono equation

(−∆)1/2u = −u+ u2,

which describes one-dimensional internal waves in deep water [5, 140]. Also, the half-
Laplacian (−∆)1/2 plays a very important role in the understanding of the gravity
water waves equations in dimensions 2 and 3; see [152].

In Elasticity, there are also many models that involve nonlocal equations. An im-
portant example is the Peierls-Nabarro equation, arising in crystal dislocation models
[289, 203, 116]. Also, other nonlocal models are used to take into account that in
many materials the stress at a point depends on the strains in a region near that
point [188, 123]. Long range forces have been also observed to propagate along fibers
or laminae in composite materials [173], and nonlocal models are important also in
composite analysis; see [119] and [216].

Other Physical models arising in macroscopic evolution of particle systems or in
phase segregation lead to nonlocal diffusive models such as the fractional porous media
equation; see [155, 262, 78]. Related evolution models with nonlocal effects are used in
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superconductivity [90, 297]. Moreover, other continuum models for interacting particle
systems involve nonlocal interaction potentials; see [81].

In Quantum Physics, the fractional Schrödinger equation arises when the Brownian
quantum paths are replaced by the Lévy ones in the Feynman path integral [192, 193].
Similar nonlocal dispersive equations describe the dynamics and gravitational collapse
of relativistic boson stars; see [121, 198, 170].

Other examples in which integro-differential equations are used are Image Pro-
cessing (where nonlocal denoising algorithms are able to detect patterns and contours
in a better way than the local PDE based models [300, 158, 181, 39]) and Geome-
try (where the conformally invariant operators, which encode information about the
manifold, involve fractional powers of the Laplacian [160, 85]).

Finally, all Partial Differential Equations are a limit case (as s ↑ 1) of integro-
differential equations.

Mathematical background

Let us describe briefly the mathematical literature on integro-differential equations.
As we will see, for many years these equations were studied by people in Probability,
who treated mainly linear integro-differential equations. More recently, these equa-
tions have attracted much interest from people in Analysis and PDEs, with nonlinear
equations being the focus of research.

Probability

The study of integro-differential equations started in the fifties with the works of
Getoor, Blumenthal, and Kac, among others. Due to the relation with stochastic
processes, they studied Dirichlet problems of the form

{
Lu = g(x) in Ω
u = 0 in Rn\Ω, (7)

being L the infinitesimal generator of some stochastic process —in the simplest case,
L would be the fractional Laplacian.

In 1959, the continuity up to the boundary of solutions was established, and also
some spectral properties of such operators [153]. For the fractional Laplacian the
asymptotic distribution of eigenvalues was obtained, as well as some comparison results
between the Green’s function in a domain and the fundamental solution in the entire
space [22].

Later, sharp decay estimates for the heat kernel of the fractional Laplacian in the
whole Rn were proved [23], and an explicit formula for the solution of

{
(−∆)su = 1 in B1

u = 0 in Rn\B1

was found [178, 154]. Moreover, Green’s function and the Poisson kernel for the
fractional Laplacian in the unit ball B1 were also explicitly computed by Getoor [24]
and Riesz [245], respectively.
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Potential theory for the fractional Laplacian in Rn enjoys an explicit formulation
in terms of the Riesz potential, and thus it is similar to that of the Laplacian; see for
example the classical book of Landkov [191]. However, the boundary potential theory
for this operator presents more difficulties mainly due to its nonlocal character.

Fine boundary estimates for the Green’s function and the heat kernel near the
boundary have been established in the last twenty years. Namely, Green’s function es-
timates were obtained by Kulczycki [190] and Chen-Song [92] in 1997 for C1,1 domains,
and in 2002 by Jakubowski for Lipschitz domains [176]. Later, Chen-Kim-Song [93]
gave sharp explicit estimates for the heat kernel on C1,1 domains, recently extended
to Lipschitz and more general domains by Bogdan-Grzywny-Ryznar [26].

Related to this, Bogdan [25] in 1997 established the boundary Harnack principle
for s-harmonic functions —solutions to (−∆)su = 0— in Lipschitz domains; see also
[27] for an extension of this result to general bounded domains.

Dirichlet problems of the type (7) have also been considered for operators L which
are infinitesimal generators of stable Lévy processes, i.e., for operators of the form (5).
In this case, it is also possible to develop interior regularity results and boundary
potential theory by using the associated fundamental solution; see for example [280,
28, 239, 29, 30, 281].

For more general integro-differential operators (2), regularity properties of solutions
can not be proved by using the fundamental solution. Even if these are translation
invariant operators, in general nothing can be said about their fundamental solution,
and thus other methods are required.

To our knowledge, Bass-Levin [14] is the first work in this direction. It establishes
interior Hölder regularity of solutions to Lu = 0, being L an operator with a kernel
comparable to that of the fractional Laplacian. Their result applies also to non trans-
lation invariant equations, and more precisely to equations with “bounded measurable
coefficients”. After that, Song-Vondracek [276], Bass-Kassman [13], and Kassman-
Mimica [180] extended the interior regularity results of [14] to more general classes of
integro-differential operators. These works use probabilistic techniques. Their results
are closely related to those obtained with analytical methods and described next.

Analysis and PDEs: nonlinear equations

In the last ten years the study of integro-differential equations has attracted much
interest from people in Analysis and PDEs. The main motivation for this, as explained
above, is that integro-differential equations appear in many models in different sciences.

In contrast with the probabilistic works above for linear equations, more recent
results using analytical methods often concern nonlinear integro-differential equations.

In [57], Cabré and Solà-Morales studied layer solutions to a boundary reaction
problem in Rn+1

+ , {
−∆v = 0 in Rn+1

+
∂v
∂ν

= f(v) on ∂Rn+1
+ .

An important example is the Peierls-Nabarro equation, which corresponds to f(v) =
sin(πv). As noticed in previous works of Amick and Toland [5, 289], this boundary
reaction problem in all of Rn+1

+ is equivalent to the integro-differential equation

(−∆)1/2u = f(u) in Rn.
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Indeed, given a function u in Rn, one can compute its harmonic extension v in one
more dimension, i.e., the solution to ∆v = 0 in Rn+1

+ , v = u on ∂Rn+1
+ = Rn. Then, it

turns out that the normal derivative ∂νv on Rn is exactly the half Laplacian (−∆)1/2u.
On the other hand, motivated by applications to mathematical finance, Silvestre

[271] studied the regularity of solutions to the obstacle problem for the fractional
Laplacian (−∆)s, s ∈ (0, 1). He obtained an almost-optimal regularity result for its
solution, more precisely he proved the solution to be C1+s−ε for all ε > 0.

In case s = 1/2, thanks to the aforementioned extension method, the obstacle
problem for the half-Laplacian in Rn is equivalent to the thin obstacle problem for the
Laplacian in Rn+1. For this latter problem, the optimal regularity of solutions and of
free boundaries was well known; see [7, 8]. However, for fractional Laplacians with
s 6= 1/2 no similar extension problem was available.

This situation changed when Caffarelli and Silvestre [68] introduced the extension
problem for the fractional Laplacian (−∆)s, s ∈ (0, 1). Thanks to this extension, in
a joint work with Salsa [73] they established the optimal regularity of the solution
and of the free boundary for the obstacle problem for the fractional Laplacian, for all
s ∈ (0, 1).

These developments, and specially the extension problem for the fractional Lapla-
cian, have led to a huge amount of new discoveries on nonlinear equations for frac-
tional Laplacians. Just to mention some of them, we recall the important works on
uniqueness of solutions for the equation (−∆)su = f(u) in Rn [140, 141, 55, 56]; on
the fractional Allen-Cahn equation [257, 97, 45, 46]; on nonlocal minimal surfaces
[67, 74, 75, 136, 259]; on free boundary problems involving the fractional Laplacian
[66, 103]; and many others [129, 287, 288, 127].

Of course, the extension problem is only available for (−∆)s, and thus to obtain
results for more general integro-differential operators, different methods are required.
While variational methods usually do not need the use of the extension, other type of
arguments seem to require its use. For example, it is still not known how to obtain
optimal regularity results for the obstacle problem for other linear operators of order 2s
different from the fractional Laplacian.

The regularity theory for nonlinear nonlocal equations is a very active field of re-
search. For elliptic equations in divergence form, Kassmann obtained the nonlocal
analog of the De Giorgi-Nash-Moser estimate [179] by adapting the Moser iteration
method to this nonlocal framework. Later, motivated by their previous works on
the surface quasi-geostrophic equation [76] and on the Navier-Stokes equation [293],
Caffarelli-Chan-Vasseur established the regularity theory for nonlocal parabolic equa-
tions in divergence form [61].

On the other hand, the regularity for nonlinear equations in nondivergence form
have been mostly developed by Caffarelli and Silvestre. In the foundational paper [69],
they established the basis for the theory of fully nonlinear elliptic integro-differential
equations of order 2s. They obtained existence of viscosity solutions to

{
Iu = g in Ω
u = h in Rn\Ω,

and C1+α interior regularity of such solutions. Here, I denotes a fully nonlinear oper-
ator of order 2s. Later, they established C2s+α interior regularity for convex equations
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[71], and developed a perturbative theory for non translation invariant equations [70].
More recently, this theory has been extended in many ways, for example to equations
with lower order terms or to parabolic equations; see [86, 89, 64, 187, 261, 87, 88].
Other important works in this field are [165, 9, 180, 270, 72]. As explained later on
in this Introduction, our main contribution to this field is a fine boundary regularity
result for this type of fully nonlinear problems.

Let us come back to reaction-diffusion problems. They play a central role in PDE
theory and its applications to other sciences. When the classical diffusion is replaced
by a Lévy-type one, such reaction problems take the form

{
Lu = f(x, u) in Ω
u = 0 in Rn\Ω, (8)

where L is an integro-differential operator. This type of nonlinear Dirichlet problems
have attracted much attention in the last years. Many of the mathematical works in
the literature deal with existence [131, 266, 265, 215, 137, 138], nonexistence [129, 11],
symmetry [21, 95], regularity of solutions [10, 80], and other qualitative properties of
solutions [130, 1].

For linear equations, the Lax-Milgram theorem and the Fredholm alternative lead
to existence of solutions for very general integro-differential operators [131]. For semi-
linear equations, other variational methods (like the mountain pass lemma or linking
theorems) lead also to existence results for subcritical nonlinearities [264, 265]. In case

of critical nonlinearities like f(u) = u
n+2s
n−2s + λu, a Brezis-Nirenberg type result has

been obtained by Servadei and Valdinoci [266, 267].
A very important tool to obtain symmetry results for second order (local) equations

−∆u = f(u) is the moving planes method [263, 156]. This method was first adapted to
nonlocal equations by Birkner, López-Mimbela, and Wakolbinger [21], who proved the
radial symmetry of nonnegative solutions to (−∆)su = f(u) in the unit ball Ω = B1.
Later, the moving planes method has been used to solve Serrin’s problem for the
fractional Laplacian [105, 128], and also to show nonexistence of nonnegative solutions

to supercritical and critical equations (−∆)su = u
n+2s
n−2s in star-shaped domains [129].

This nonexistence result for the fractional Laplacian by Fall and Weth [129] uses the
extension problem of Caffarelli-Silvestre and the fractional Kelvin transform to then
apply the moving planes method.

Results of the thesis (Part I)

In the rest of this Introduction we explain our main results concerning integro-diffe-
rential equations.

Chapters 1, 2, and 3 of this Part I of the thesis deal with linear and semilinear
Dirichlet problems of the type (7) and (8). More precisely, in Chapter 1 we study
fine boundary regularity properties of solutions to these problems in case L = (−∆)s,
s ∈ (0, 1). Then, in Chapter 2 we establish the Pohozaev identity for the fractional
Laplacian. After that, we obtain in Chapter 3 nonexistence results for problem (8) for
a wide class of nonlocal operators L.

Finally, the last chapter of this Part I, Chapter 4, is devoted to the study of the
boundary regularity of solutions to fully nonlinear integro-differential equations.
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Pohozaev-type identities

One of the main results of this thesis is the Pohozaev identity for the fractional Lapla-
cian.

In the classical case of the Laplace operator, the Pohozaev identity applies to
any solution to −∆u = f(x, u) in Ω, u = 0 on ∂Ω. This celebrated result due to
S. Pohozaev [237] was originally used to prove nonexistence results for critical and
supercritical nonlinearities f . For example, it gives the nonexistence of nonnegative

solutions (with zero Dirichlet data) to the critical problem −∆u = u
n+2
n−2 in star-shaped

domains —an equation appearing in some geometrical contexts such as the Yamabe
problem.

Identities of Pohozhaev-type have been widely used in the analysis of elliptic PDEs
[243, 237, 295, 118, 218, 236]. These identities are used to show monotonicity formu-
las, energy estimates for ground states in Rn, unique continuation properties, radial
symmetry of solutions, uniqueness results, or interior H1 estimates for stable solutions.
Moreover, they are also used in other contexts such as hyperbolic equations, harmonic
maps, control theory, and geometry.

Before our work, a Pohozaev identity for the fractional Laplacian was not known.
It was not even known which form should it have, if any. We find and establish here
the Pohozaev identity for the fractional Laplacian, which reads as follows.

Theorem 1. Let Ω ⊂ Rn be any bounded C1,1 domain, and let d(x) = dist(x, ∂Ω).
Let u be any bounded solution of (−∆)su = f(x, u) in Ω, u ≡ 0 in Rn \ Ω.

Then u/ds is Hölder continuous in Ω, and it holds the identity

∫

Ω

(x · ∇u)(−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx− Γ(1 + s)2

2

∫

∂Ω

( u
ds

)2

(x · ν)dσ, (9)

where Γ is the Gamma function.

Note that the boundary term u/ds|∂Ω has to be understood in the limit sense —
note that one of the statements of the theorem is that u/ds is continuous up to the
boundary.

Let us mention some consequences of Theorem 1. First, when f(x, u) does not
depend on x, our identity can be written as

(2s− n)

∫

Ω

uf(u)dx+ 2n

∫

Ω

F (u)dx = Γ(1 + s)2

∫

∂Ω

( u
ds

)2

(x · ν)dσ,

where F ′ = f . Thus, when Ω is star-shaped, it immediately leads to the nonexistence
of nontrivial solutions for supercritical nonlinearities, and also of nonnegative solutions

for the critical power f(u) = u
n+2s
n−2s —as explained above, this was previously showed

in [129] for nonnegative solutions.
Second, (9) yields the following unique continuation property: if f(x, u) is subcrit-

ical, then
u

ds

∣∣∣
∂Ω
≡ 0 on ∂Ω =⇒ u ≡ 0 in Ω.

Note that since f(u) = λu is subcritical for all λ > 0, this unique continuation property
holds for all eigenfunctions. Let us mention that this unique continuation property is
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not known for critical or for supercritical nonlinearities —in this case it is only known
for nonnegative solutions, thanks to the Hopf lemma.

Finally, from (9) we also deduce the following new integration-by-parts-type iden-
tity ∫

Ω

uxi(−∆)sv dx = −
∫

Ω

(−∆)su vxidx+ Γ(1 + s)2

∫

∂Ω

u

ds
v

ds
νi dσ,

where u ≡ v ≡ 0 in Rn \ Ω and u and v have certain regularity properties (which are
always satisfied by bounded solutions to linear or semilinear problems).

For the Laplacian −∆, the Pohozaev identity follows easily from integration by
parts or the divergence theorem. However, in this nonlocal framework these tools are
not available. The only known integration by parts formula for the fractional Laplacian
was the one for the whole Rn, which has no boundary terms. To our knowledge, our
identities above are the first ones that involve an integro-differential operator and a
boundary term (an integral over ∂Ω). They are new even in dimension n = 1. In fact,
the constant Γ(1 + s)2 in our identity seems to indicate that there is no trivial way to
prove this identity without some work.

Is it important to observe that the quantity u
ds

∣∣
∂Ω

plays the role that ∂u
∂ν

plays in
second order equations.

Let us explain the main ideas appearing in the proof of the Pohozaev identity (9).
We first assume the domain Ω to be star-shaped with respect to the origin. The result
for general domains follows from the star-shaped case using an argument involving
a partition of unity. When the domain is star-shaped, the idea of the proof is the
following. First, one writes the left hand side of the identity as

∫

Ω

(x · ∇u)(−∆)su dx =
d

dλ

∣∣∣∣
λ=1+

∫

Rn
uλ(−∆)su dx,

where uλ(x) = u(λx), λ > 1. Then, integrating by parts and making the change of
variables y =

√
λx, we obtain

∫

Rn
uλ(−∆)su dx = λ

2s−n
2

∫

Rn
w√λw1/

√
λ dy,

where
w(x) = (−∆)s/2u(x).

Thus, differentiating with respect to λ at λ = 1+, we find

∫

Ω

(x · ∇u)(−∆)su dx =
2s− n

2

∫

Rn
u(−∆)su dx+

1

2

d

dλ

∣∣∣∣
λ=1+

Iλ,

where

Iλ =

∫

Rn
wλw1/λdy.

Therefore, the Pohozaev identity is equivalent to the following:

− d

dλ

∣∣∣∣
λ=1+

∫

Rn
wλw1/λ dy = Γ(1 + s)2

∫

∂Ω

( u
ds

)2

(x · ν)dσ. (10)
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The quantity d
dλ
|λ=1+

∫
Rn wλw1/λ vanishes for any C1(Rn) function w, as can be seen

by differentiating under the integral sign. Instead, we prove that the function w =
(−∆)s/2u has a singularity along ∂Ω, and that (10) holds. The proof of (10) requires
a fine analysis on the singularity of (−∆)s/2u near the boundary. More precisely, we
show that, for x near ∂Ω, one has

(−∆)s/2u(x) = c1

{
log d(x) + c2χΩ(x)

}
+ h(x),

where h is a Cα function and c1 and c2 are constants depending only on s (which we
compute explicitly). Of course, to find such fine behavior of (−∆)s/2u near ∂Ω, a fine
boundary regularity result for u is required. This is the object of other papers in the
thesis and we describe them below.

In the proof of Theorem 1 we do not use the extension of Caffarelli-Silvestre [68]
or other very particular properties of the fractional Laplacian, but only the scale
invariance of the operator and some integration by parts in all of Rn. Thanks to this,
our methods can be used to show nonexistence of bounded solutions to some nonlinear
problems involving quite general integro-differential operators. These nonexistence
results follow from a general variational inequality in the spirit of the classical identity
by Pucci and Serrin [240]. The proof of our variational inequality follows a similar
approach to that in our proof of the Pohozaev identity. Here, instead of proving the
equality (10), we show that its left hand side is nonnegative whenever the domain Ω
is star-shaped. The operators under consideration are of the form

Lu(x) = −
∑

aij∂iju+ PV

∫

Rn
(u(x)− u(x+ y))K(y)dy,

where K is a symmetric kernel satisfying an appropriate monotonicity property. More
precisely, we assume that either aij ≡ 0 and K(y)|y|n+σ is nondecreasing along rays
from the origin for some σ ∈ (0, 2), or that (aij) is positive definite and K(y)|y|n+2 is
nondecreasing along rays from the origin. This is proved in Chapter 3, where we also
give some concrete examples of operators to which our result applies. In addition, we
establish an analogue result for quasilinear nonlocal equations.

Boundary regularity

To prove the Pohozaev identity for the fractional Laplacian we need, among other
things, the precise boundary regularity of solutions to the Dirichlet problem

{
(−∆)su = g(x) in Ω

u = 0 in Rn\Ω.

We prove in Chapter 1 that u ∈ Cs(Rn) and u/ds ∈ Cγ(Ω) for some small γ > 0
whenever the right hand side g is bounded.

Moreover, to prove the Pohozaev identity we need also higher order interior Hölder
estimates for the quotient u/ds, which we prove by finding an equation satisfied by
this quotient and using that it is Cγ(Ω); see Chapter 1 for more details.

To show the Hölder regularity of u/ds, we adapt the method of Krylov for second
order elliptic equations in nondivergence form with bounded measurable coefficients
[189] to this nonlocal framework.
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This method consists of using sub and supersolutions to prove an improvement of
oscillation lemma for u/ds, and then iterate it to deduce the Hölder regularity of this
quantity. The method is quite general, and never uses the concrete structure of the
operator: one only needs some barriers and an interior Harnack inequality. The main
difficulty on applying this method to the fractional Laplacian is the nonlocal character
of the operator, and more precisely of its Harnack inequality. Indeed, in contrast with
the second order case, the Harnack inequality for the fractional Laplacian requires the
function to be positive in all of Rn, and not only in a larger ball. Thus, a careful
control of the tails of the function is needed in order to adapt Krylov’s method to
nonlocal operators.

Our result on Cγ regularity of u/ds is improved in Chapter 4. As explained below,
we establish a Cs−ε(Ω) estimate for u/ds for all ε > 0. The results of Chapter 4
apply not only to linear equations with the fractional Laplacian, but to fully nonlinear
integro-differential equations. These equations arise in Stochastic Control with jump
processes [231] and in zero-sum Stochastic Games, as described next.

Fully nonlinear equations appear when some random variable distributions depend
on the choice of certain controls, and one looks for an optimal strategy to choose those
controls in order to maximize the expected value of the random variable. This expected
value, as a function of the starting point of the stochastic process, satisfies a fully
nonlinear elliptic equation. If the stochastic processes involved are Brownian diffusions,
the resulting PDEs are classical second order equations F (D2u) = 0. Instead, if
the stochastic processes are Lévy processes with jumps, then the equations are fully
nonlinear integro-differential equations; see the books [231] and [167].

The most standard example is the Bellman equation. Consider a family of stochas-
tic processes {Xα

t } indexed by a parameter α ∈ A, whose corresponding infinitesimal
generators are {Lα}. We consider the following dynamic programming setting: the
parameter α is a control that can be changed at any interval of time. We look for the
optimal choice of the control that will maximize the expected value of a given payoff
function h the first time that the process Xt exits a domain Ω ⊂ Rn. One can have also
a running cost g, so that the quantity to maximize is the expected final payoff minus
the expected total running cost. If we call this maximal possible expected value u(x),
in terms of the initial point X0 = x, the function u will solve the following equation

{
supα∈A Lαu = g in Ω

u = h in Rn\Ω.

The equation has to be understood in the viscosity sense; see Chapter 4.
A more general fully nonlinear equation is the Isaacs equation. In this case, one

has a stochastic zero-sum game with two players in which each player has one control.
The resulting value function u(x) satisfies the equation

inf
β

sup
α
Lαβu = g in Ω.

When Lα (or Lαβ) are uniformly elliptic second order operators of the form Lαu =∑
i,j a

(α)
ij ∂iju, then these equations can be written as

F (D2u) = g in Ω,
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with F convex in the Bellman equation, and not necessarily convex in the Isaacs
equation. Instead, if the operators Lα belong to some class L of integro-differential
operators of the form (2) —or, more generally, of the form (4)—, then we have a fully
nonlinear integro-differential equation.

The interior regularity for this type of equations is quite well understood —at least
for kernels K which are comparable to |y|−n−2s. In a series of three papers [69, 70, 71],
Caffarelli and Silvestre obtained sharp interior regularity results for fully nonlinear
integro-differential equations with kernels K in the class

L0 =

{
Lu(x) = PV

∫

Rn

(
u(x+ y)− u(x)

)
K(y)dy :

λ

|y|n+2s
≤ K(y) ≤ Λ

|y|n+2s

}

(note here the change of sign with respect to (2), just to be consistent with previous
literature). They proved existence of viscosity solutions, established their C1+γ interior
regularity [69], C2s+γ regularity in case of convex equations [71], and developed a
perturbation theory for non translation invariant equations [70].

However, almost nothing was known on boundary regularity for fully nonlinear
integro-differential equations. In Chapter 4 we develop such a theory.

As in the case of the fractional Laplacian, the correct notion of boundary regularity
for equations of order 2s is the Hölder regularity of the quotient u/ds. Recall that in
such nonlocal equations the quantity u

ds

∣∣
∂Ω

plays the role that ∂u
∂ν

plays in second
order PDEs. This quantity appears not only in our Pohozaev identity, but also in free
boundary problems [66], and in overdetermined problems for the fractional Laplacian
[105, 128] that arise naturally in shape optimization problems.

Theorem 2, stated below, establishes boundary regularity for fully nonlinear integro-
differential equations which are elliptic with respect to the class L∗ ⊂ L0 defined as
follows:

L∗ =

{
Lu =

∫

Rn

(
u(x+ y)− u(x)

)
K(y)dy; K(y) =

a (y/|y|)
|y|n+2s

, λ ≤ a ≤ Λ

}
.

Note that L∗ consists of all infinitesimal generators of stable Lévy processes belonging
to L0.

Theorem 2. Let u be any solution of the following Bellman or Isaacs equation in a
C1,1 domain Ω ⊂ Rn,

{
infβ supα Lαβu = g in Ω

u = 0 in Rn\Ω,

with Lαβ ∈ L∗ and with g ∈ L∞(Ω). Then, u/ds ∈ Cs−ε(Ω) for all ε > 0, and

‖u/ds‖Cs−ε(Ω) ≤ C
(
‖u‖L∞(Ω) + ‖g‖L∞(Ω)

)
,

where C is a constant that depends only on n, s, and the ellipticity constants λ and
Λ. Moreover, the constant C remains bounded as s ↑ 1.

It is worth mentioning that this result applies to fully nonlinear operators, but it
is new even for linear translation invariant equations Lu = g with L ∈ L∗.
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We expect the Hölder exponent s− ε to be optimal (or almost optimal) for merely
bounded right hand sides f . Moreover, we also expect the class L∗ to be the largest
scale invariant subclass of L0 for which this result is true.

For general elliptic equations with respect to L0, no fine boundary regularity results
hold. In fact, as we show in Chapter 4, the class L0 is too large for all solutions to be
comparable to ds near the boundary. The same happens for the subclasses L1 and L2

of L0, which have more regular kernels and were considered in [69, 70, 71].
The proof of Theorem 2 relies on a Cγ boundary estimate for solutions to nonlo-

cal equations with “bounded measurable coefficients”, which is obtained via Krylov’s
method. Then, for solutions to fully nonlinear equations we push the small Hölder
exponent γ > 0 up to the exponent s − ε in Theorem 2. To achieve this, new ideas
are needed, and the procedure that we develop differs substantially from boundary
regularity methods in second order equations. We use a new blow up and compactness
method, combined with a new “boundary” Liouville-type theorem.

This compactness method has the advantage that allows to deal also with non
translation invariant equations I(u, x) = g(x) in Ω, with an exterior datum u = h in
Rn \ Ω; see Chapter 4 for more details.





1Chapter One

THE DIRICHLET PROBLEM FOR THE
FRACTIONAL LAPLACIAN: REGULARITY

UP TO THE BOUNDARY

We study the regularity up to the boundary of solutions to the Dirichlet problem for
the fractional Laplacian. We prove that if u is a solution of (−∆)su = g in Ω, u ≡ 0
in Rn\Ω, for some s ∈ (0, 1) and g ∈ L∞(Ω), then u is Cs(Rn) and u/δs|Ω is Cα up to
the boundary ∂Ω for some α ∈ (0, 1), where δ(x) = dist(x, ∂Ω). For this, we develop
a fractional analog of the Krylov boundary Harnack method.

Moreover, under further regularity assumptions on g we obtain higher order Hölder
estimates for u and u/δs. Namely, the Cβ norms of u and u/δs in the sets {x ∈ Ω :
δ(x) ≥ ρ} are controlled by Cρs−β and Cρα−β, respectively.

These regularity results are crucial tools in our proof of the Pohozaev identity for
the fractional Laplacian.

1.1 Introduction and results

Let s ∈ (0, 1) and g ∈ L∞(Ω), and consider the fractional elliptic problem

{
(−∆)su = g in Ω

u = 0 in Rn\Ω, (1.1)

in a bounded domain Ω ⊂ Rn, where

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy (1.2)

and cn,s is a normalization constant.
Problem (1.1) is the Dirichlet problem for the fractional Laplacian. There are

classical results in the literature dealing with the interior regularity of s-harmonic
functions, or more generally for equations of the type (1.1). However, there are few
results on regularity up to the boundary. This is the topic of study of the paper.

Our main result establishes the Hölder regularity up to the boundary ∂Ω of the
function u/δs|Ω, where

δ(x) = dist(x, ∂Ω).

21
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For this, we develop an analog of the Krylov [189] boundary Harnack method for
problem (1.1). As in Krylov’s work, our proof applies also to operators with “bounded
measurable coefficients”. This will be treated in a future work [252]. In this paper we
only consider the constant coefficient operator (−∆)s, since in this case we can establish
more precise regularity results. Most of them will be needed in our subsequent work
[250], where we find and prove the Pohozaev identity for the fractional Laplacian,
announced in [248]. For (1.1), in addition to the Hölder regularity up to the boundary
for u/δs, we prove that any solution u is Cs(Rn). Moreover, when g is not only bounded
but Hölder continuous, we obtain better interior Hölder estimates for u and u/δs.

The Dirichlet problem for the fractional Laplacian (1.1) has been studied from the
point of view of probability, potential theory, and PDEs. The closest result to the one
in our paper is that of Bogdan [25], establishing a boundary Harnack inequality for
nonnegative s-harmonic functions. It will be described in more detail later on in the
Introduction (in relation with Theorem 1.1.2). Related regularity results up to the
boundary have been proved in [184] and [66]. In [184] it is proved that u/δs has a limit
at every boundary point when u solves the homogeneous fractional heat equation. The
same is proven in [66] for a free boundary problem for the fractional Laplacian.

Some other results dealing with various aspects concerning the Dirichlet problem
are the following: estimates for the heat kernel (of the parabolic version of this prob-
lem) and for the Green function, e.g., [24, 93]; an explicit expression of the Poisson
kernel for a ball [191]; and the explicit solution to problem (1.1) in a ball for g ≡ 1
[154]. In addition, the interior regularity theory for viscosity solutions to nonlocal
equations with “bounded measurable coefficients” is developed in [69].

The first result of this paper gives the optimal Hölder regularity for a solution u of
(1.1). The proof, which is given in Section 1.2, is based on two ingredients: a suitable
upper barrier, and the interior regularity results for the fractional Laplacian. Given
g ∈ L∞(Ω), we say that u is a solution of (1.1) when u ∈ Hs(Rn) is a weak solution (see
Definition 1.2.1). When g is continuous, the notions of weak solution and of viscosity
solution agree; see Remark 1.2.11.

We recall that a domain Ω satisfies the exterior ball condition if there exists a
positive radius ρ0 such that all the points on ∂Ω can be touched by some exterior ball
of radius ρ0.

Proposition 1.1.1. Let Ω be a bounded Lipschitz domain satisfying the exterior ball
condition, g ∈ L∞(Ω), and u be a solution of (1.1). Then, u ∈ Cs(Rn) and

‖u‖Cs(Rn) ≤ C‖g‖L∞(Ω),

where C is a constant depending only on Ω and s.

This Cs regularity is optimal, in the sense that a solution to problem (1.1) is not
in general Cα for any α > s. This can be seen by looking at the problem

{
(−∆)su = 1 in Br(x0)

u = 0 in Rn\Br(x0),
(1.3)

for which its solution is explicit. For any r > 0 and x0 ∈ Rn, it is given by [154, 24]

u(x) =
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

(
r2 − |x− x0|2

)s
in Br(x0). (1.4)
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It is clear that this solution is Cs up to the boundary but it is not Cα for any α > s.
Since solutions u of (1.1) are Cs up to the boundary, and not better, it is of

importance to study the regularity of u/δs up to ∂Ω. For instance, our recent proof
[250, 248] of the Pohozaev identity for the fractional Laplacian uses in a crucial way
that u/δs is Hölder continuous up to ∂Ω. This is the main result of the present paper
and it is stated next.

For local equations of second order with bounded measurable coefficients and in
non-divergence form, the analog result is given by a theorem of N. Krylov [189], which
states that u/δ is Cα up to the boundary for some α ∈ (0, 1). This result is the key
ingredient in the proof of the C2,α boundary regularity of solutions to fully nonlinear
elliptic equations F (D2u) = 0 —see [182, 59].

For our nonlocal equation (1.1), the corresponding result is the following.

Theorem 1.1.2. Let Ω be a bounded C1,1 domain, g ∈ L∞(Ω), u be a solution of (1.1),
and δ(x) = dist(x, ∂Ω). Then, u/δs|Ω can be continuously extended to Ω. Moreover,
we have u/δs ∈ Cα(Ω) and

‖u/δs‖Cα(Ω) ≤ C‖g‖L∞(Ω)

for some α > 0 satisfying α < min{s, 1− s}. The constants α and C depend only on
Ω and s.

To prove this result we use the method of Krylov (see [182]). It consists of trapping
the solution between two multiples of δs in order to control the oscillation of the
quotient u/δs near the boundary. For this, we need to prove, among other things, that
(−∆)sδs0 is bounded in Ω, where δ0(x) = dist(x,Rn \ Ω) is the distance function in Ω
extended by zero outside. This will be guaranteed by the assumption that Ω is C1,1.

To our knowledge, the only previous results dealing with the regularity up to the
boundary for solutions to (1.1) or its parabolic version were the ones by K. Bogdan
[25] and S. Kim and K. Lee [184]. The first one [25] is the boundary Harnack principle
for nonnegative s-harmonic functions, which reads as follows: assume that u and v
are two nonnegative functions in a Lipschitz domain Ω, which satisfy (−∆)su ≡ 0
and (−∆)sv ≡ 0 in Ω ∩ Br(x0) for some ball Br(x0) centered at x0 ∈ ∂Ω. Assume
also that u ≡ v ≡ 0 in Br(x0) \ Ω. Then, the quotient u/v is Cα(Br/2(x0)) for some
α ∈ (0, 1). In [27] the same result is proven in open domains Ω, without any regularity
assumption.

While the result in [27] assumes no regularity on the domain, we need to assume
Ω to be C1,1. This assumption is needed to compare the solutions with the function
δs. As a counterpart, we allow nonzero right hand sides g ∈ L∞(Ω) and also changing-
sign solutions. In C1,1 domains, our results in Section 1.3 (which are local near any
boundary point) extend Bogdan’s result. For instance, assume that u and v satisfy
(−∆)su = g and (−∆)sv = h in Ω, u ≡ v ≡ 0 in Rn \ Ω, and that h is positive in Ω.
Then, by Theorem 1.1.2 we have that u/δs and v/δs are Cα(Ω) functions. In addition,
by the Hopf lemma for the fractional Laplacian we find that v/δs ≥ c > 0 in Ω. Hence,
we obtain that the quotient u/v is Cα up to the boundary, as in Bogdan’s result for
s-harmonic functions.

A second result (for the parabolic problem) related to ours is contained in [184].
The authors show that any solution of ∂tu + (−∆)su = 0 in Ω, u ≡ 0 in Rn \ Ω,
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satisfies the following property: for any t > 0 the function u/δs is continuous up to
the boundary ∂Ω.

Our results were motivated by the study of nonlocal semilinear problems (−∆)su =
f(u) in Ω, u ≡ 0 in Rn \ Ω, more specifically, by the Pohozaev identity that we
establish in [250]. Its proof requires the precise regularity theory up to the boundary
developed in the present paper (see Corollary 1.1.6 below). Other works treating the
fractional Dirichlet semilinear problem, which deal mainly with existence of solutions
and symmetry properties, are [258, 264, 129, 21].

In the semilinear case, g = f(u) and therefore g automatically becomes more
regular than just bounded. When g has better regularity, the next two results improve
the preceding ones. The proofs of these results require the use of the following weighted
Hölder norms, a slight modification of the ones in Gilbarg-Trudinger [157, Section 6.1].

Throughout the paper, and when no confusion is possible, we use the notation
Cβ(U) with β > 0 to refer to the space Ck,β′(U), where k is the is greatest integer
such that k < β and where β′ = β − k. This notation is specially appropriate when
we work with (−∆)s in order to avoid the splitting of different cases in the statements
of regularity results. According to this, [ · ]Cβ(U) denotes the Ck,β′(U) seminorm

[u]Cβ(U) = [u]Ck,β′ (U) = sup
x,y∈U, x 6=y

|Dku(x)−Dku(y)|
|x− y|β′

.

Moreover, given an open set U ⊂ Rn with ∂U 6= ∅, we will also denote

dx = dist(x, ∂U) and dx,y = min{dx, dy}.

Definition 1.1.3. Let β > 0 and σ ≥ −β. Let β = k + β′, with k integer and
β′ ∈ (0, 1]. For w ∈ Cβ(U) = Ck,β′(U), define the seminorm

[w]
(σ)
β;U = sup

x,y∈U

(
dβ+σ
x,y

|Dkw(x)−Dkw(y)|
|x− y|β′

)
.

For σ > −1, we also define the norm ‖ · ‖(σ)
β;U as follows: in case that σ ≥ 0,

‖w‖(σ)
β;U =

k∑

l=0

sup
x∈U

(
dl+σx |Dlw(x)|

)
+ [w]

(σ)
β;U ,

while for −1 < σ < 0,

‖w‖(σ)
β;U = ‖w‖C−σ(U) +

k∑

l=1

sup
x∈U

(
dl+σx |Dlw(x)|

)
+ [w]

(σ)
β;U .

Note that σ is the rescale order of the seminorm [ · ](σ)
β;U , in the sense that [w(λ·)](σ)

β;U/λ =

λσ[w]
(σ)
β;U .

When g is Hölder continuous, the next result provides optimal estimates for higher
order Hölder norms of u up to the boundary.



1.1 - Introduction and results 25

Proposition 1.1.4. Let Ω be a bounded domain, and β > 0 be such that neither β
nor β + 2s is an integer. Let g ∈ Cβ(Ω) be such that ‖g‖(s)

β;Ω <∞, and u ∈ Cs(Rn) be

a solution of (1.1). Then, u ∈ Cβ+2s(Ω) and

‖u‖(−s)
β+2s;Ω ≤ C

(
‖u‖Cs(Rn) + ‖g‖(s)

β;Ω

)
,

where C is a constant depending only on Ω, s, and β.

Next, the Hölder regularity up to the boundary of u/δs in Theorem 1.1.2 can be
improved when g is Hölder continuous. This is stated in the following theorem, whose
proof uses a nonlocal equation satisfied by the quotient u/δs in Ω —see (1.39)— and
the fact that this quotient is Cα(Ω).

Theorem 1.1.5. Let Ω be a bounded C1,1 domain, and let α ∈ (0, 1) be given by

Theorem 1.1.2. Let g ∈ L∞(Ω) be such that ‖g‖(s−α)
α;Ω < ∞, and u be a solution of

(1.1). Then, u/δs ∈ Cα(Ω) ∩ Cγ(Ω) and

‖u/δs‖(−α)
γ;Ω ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
,

where γ = min{1, α + 2s} and C is a constant depending only on Ω and s.

Finally, we apply the previous results to the semilinear problem
{

(−∆)su = f(x, u) in Ω
u = 0 on Rn\Ω, (1.5)

where Ω is a bounded C1,1 domain and f is a Lipschitz nonlinearity.
In the following result, the meaning of “bounded solution” is that of “bounded

weak solution” (see definition 1.2.1) or that of “viscosity solution”. By Remark 1.2.11,
these two notions coincide. Also, by f ∈ C0,1

loc (Ω × R) we mean that f is Lipschitz in
every compact subset of Ω× R.

Corollary 1.1.6. Let Ω be a bounded and C1,1 domain, f ∈ C0,1
loc (Ω × R), u be a

bounded solution of (1.5), and δ(x) = dist(x, ∂Ω). Then,

(a) u ∈ Cs(Rn) and, for every β ∈ [s, 1 + 2s), u is of class Cβ(Ω) and

[u]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρs−β for all ρ ∈ (0, 1).

(b) The function u/δs|Ω can be continuously extended to Ω. Moreover, there exists
α ∈ (0, 1) such that u/δs ∈ Cα(Ω). In addition, for all β ∈ [α, s + α], it holds
the estimate

[u/δs]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρα−β for all ρ ∈ (0, 1).

The constants α and C depend only on Ω, s, f , ‖u‖L∞(Rn), and β.

The paper is organized as follows. In Section 1.2 we prove Propositions 1.1.1 and
1.1.4. In Section 1.3 we prove Theorem 1.1.2 using the Krylov method. In Section 1.4
we prove Theorem 1.1.5 and Corollary 1.1.6. Finally, the Appendix deals with some
basic tools and barriers which are used throughout the paper.
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1.2 Optimal Hölder regularity for u

In this section we prove that, assuming Ω to be a bounded Lipschitz domain satisfying
the exterior ball condition, every solution u of (1.1) belongs to Cs(Rn). For this,
we first establish that u is Cβ in Ω, for all β ∈ (0, 2s), and sharp bounds for the
corresponding seminorms near ∂Ω. These bounds yield u ∈ Cs(Rn) as a corollary.
First, we make precise the notion of weak solution to problem (1.1).

Definition 1.2.1. We say that u is a weak solution of (1.1) if u ∈ Hs(Rn), u ≡ 0
(a.e.) in Rn \ Ω, and

∫

Rn
(−∆)s/2u(−∆)s/2v dx =

∫

Ω

gv dx

for all v ∈ Hs(Rn) such that v ≡ 0 in Rn \ Ω.

We recall first some well known interior regularity results for linear equations in-
volving the operator (−∆)s, defined by (1.2). The first one states that w ∈ Cβ+2s(B1/2)
whenever w ∈ Cβ(Rn) and (−∆)sw ∈ Cβ(B1). Recall that, throughout this section
and in all the paper, we denote by Cβ, with β > 0, the space Ck,β′ , where k is an
integer, β′ ∈ (0, 1], and β = k + β′.

Proposition 1.2.2. Assume that w ∈ C∞(Rn) solves (−∆)sw = h in B1 and that
neither β nor β + 2s is an integer. Then,

‖w‖Cβ+2s(B1/2) ≤ C
(
‖w‖Cβ(Rn) + ‖h‖Cβ(B1)

)
,

where C is a constant depending only on n, s, and β.

Proof. Follow the proof of Proposition 2.1.8 in [270], where the same result is proved
with B1 and B1/2 replaced by the whole Rn.

The second result states that w ∈ Cβ(B1/2) for each β ∈ (0, 2s) whenever w ∈
L∞(Rn) and (−∆)sw ∈ L∞(B1).

Proposition 1.2.3. Assume that w ∈ C∞(Rn) solves (−∆)sw = h in B1. Then, for
every β ∈ (0, 2s),

‖w‖Cβ(B1/2) ≤ C
(
‖w‖L∞(Rn) + ‖h‖L∞(B1)

)
,

where C is a constant depending only on n, s, and β.

Proof. Follow the proof of Proposition 2.1.9 in [270], where the same result is proved
in the whole Rn.

The third result is the analog of the first, with the difference that it does not need
to assume w ∈ Cβ(Rn), but only w ∈ Cβ(B2) and (1 + |x|)−n−2sw(x) ∈ L1(Rn).
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Corollary 1.2.4. Assume that w ∈ C∞(Rn) is a solution of (−∆)sw = h in B2, and
that neither β nor β + 2s is an integer. Then,

‖w‖Cβ+2s(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖Cβ(B2) + ‖h‖Cβ(B2)

)

where the constant C depends only on n, s, and β.

Proof. Let η ∈ C∞(Rn) be such that η ≡ 0 outside B2 and η ≡ 1 in B3/2. Then

w̃ := wη ∈ C∞(Rn) and (−∆)sw̃ = h̃ := h− (−∆)s
(
w(1− η)

)
. Note that for x ∈ B3/2

we have

(−∆)s (w(1− η)) (x) = cn,s

∫

Rn\B3/2

−
(
w(1− η)

)
(y)

|x− y|n+2s
dy.

From this expression we obtain that

‖(−∆)s (w(1− η)) ‖L∞(B1) ≤ C‖(1 + |y|)−n−2sw(y)‖L1(Rn)

and for all γ ∈ (0, β],

[(−∆)s (w(1− η))]Cγ(B1) ≤ C‖(1 + |y|)−n−2s−γw(y)‖L1(Rn)

≤ C‖(1 + |y|)−n−2sw(y)‖L1(Rn)

for some constant C that depends only on n, s, β, and η. Therefore

‖h̃‖Cβ(B1) ≤ C
(
‖h‖Cβ(B2) + ‖(1 + |x|)−n−2sw(x)‖L1(Rn)

)
,

while we also clearly have

‖w̃‖Cβ(Rn) ≤ C‖w‖Cβ(B2) .

The constants C depend only on n, s, β and η. Now, we finish the proof by applying
Proposition 1.2.2 with w replaced by w̃.

Finally, the fourth result is the analog of the second one, but instead of assuming
w ∈ L∞(Rn), it only assumes w ∈ L∞(B2) and (1 + |x|)−n−2sw(x) ∈ L1(Rn).

Corollary 1.2.5. Assume that w ∈ C∞(Rn) is a solution of (−∆)sw = h in B2.
Then, for every β ∈ (0, 2s),

‖w‖Cβ(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖L∞(B2) + ‖h‖L∞(B2)

)

where the constant C depends only on n, s, and β.

Proof. Analog to the proof of Corollary 1.2.4.

As a consequence of the previous results we next prove that every solution u of (1.1)
is Cs(Rn). First let us find an explicit upper barrier for |u| to prove that |u| ≤ Cδs in
Ω. This is the first step to obtain the Cs regularity.

To construct this we will need the following result, which is proved in the Appendix.
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Lemma 1.2.6 (Supersolution). There exist C1 > 0 and a radial continuous function
ϕ1 ∈ Hs

loc(Rn) satisfying





(−∆)sϕ1 ≥ 1 in B4 \B1

ϕ1 ≡ 0 in B1

0 ≤ ϕ1 ≤ C1(|x| − 1)s in B4 \B1

1 ≤ ϕ1 ≤ C1 in Rn \B4 .

(1.6)

The upper barrier for |u| will be constructed by scaling and translating the super-
solution from Lemma 1.2.6. The conclusion of this barrier argument is the following.

Lemma 1.2.7. Let Ω be a bounded domain satisfying the exterior ball condition and
let g ∈ L∞(Ω). Let u be the solution of (1.1). Then,

|u(x)| ≤ C‖g‖L∞(Ω)δ
s(x) for all x ∈ Ω ,

where C is a constant depending only on Ω and s.

In the proof of Lemma 1.2.7 it will be useful the following

Claim 1.2.8. Let Ω be a bounded domain and let g ∈ L∞(Ω). Let u be the solution of
(1.1). Then,

‖u‖L∞(Rn) ≤ C(diamΩ)2s‖g‖L∞(Ω)

where C is a constant depending only on n and s.

Proof. The domain Ω is contained in a large ball of radius diamΩ. Then, by scaling
the explicit (super)solution for the ball given by (1.4) we obtain the desired bound.

We next give the

Proof of Lemma 1.2.7. Since Ω satisfies the exterior ball condition, there exists ρ0 > 0
such that every point of ∂Ω can be touched from outside by a ball of radius ρ0. Then,
by scaling and translating the supersolution ϕ1 from Lemma 1.2.6, for each of this
exterior tangent balls Bρ0 we find an upper barrier in B2ρ0 \Bρ0 vanishing in Bρ0 . This
yields the bound u ≤ Cδs in a ρ0-neighborhood of ∂Ω. By using Claim 1.2.8 we have
the same bound in all of Ω. Repeating the same argument with −u we find |u| ≤ Cδs,
as wanted.

The following lemma gives interior estimates for u and yields, as a corollary, that
every bounded weak solution u of (1.1) in a C1,1 domain is Cs(Rn).

Lemma 1.2.9. Let Ω be a bounded domain satisfying the exterior ball condition, g ∈
L∞(Ω), and u be the solution of (1.1). Then, u ∈ Cβ(Ω) for all β ∈ (0, 2s) and for
all x0 ∈ Ω we have the following seminorm estimate in BR(x0) = Bδ(x0)/2(x0):

[u]Cβ(BR(x0)) ≤ CRs−β‖g‖L∞(Ω), (1.7)

where C is a constant depending only on Ω, s, and β.
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Proof. Recall that if u solves (1.1) in the weak sense and ηε is the standard mollifier
then (−∆)s(u ∗ ηε) = g ∗ ηε in BR for ε small enough. Hence, we can regularize u,
obtain the estimates, and then pass to the limit. In this way we may assume that u is
smooth.

Note that BR(x0) ⊂ B2R(x0) ⊂ Ω. Let ũ(y) = u(x0 +Ry). We have that

(−∆)sũ(y) = R2sg(x0 +Ry) in B1 . (1.8)

Furthermore, using that |u| ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
δs in Ω —by Lemma 1.2.7—

we obtain
‖ũ‖L∞(B1) ≤ C

(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs (1.9)

and, observing that |ũ(y)| ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs(1 + |y|s) in all of Rn,

‖(1 + |y|)−n−2sũ(y)‖L1(Rn) ≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs, (1.10)

with C depending only on Ω and s.
Next we use Corollary 1.2.5, which taking into account (1.8), (1.9), and (1.10),

yields
‖ũ‖Cβ(B1/4) ≤ C

(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
Rs

for all β ∈ (0, 2s), where C = C(Ω, s, β).
Finally, we observe that

[u]Cβ(BR/4(x0)) = R−β[ũ]Cβ(B1/4).

Hence, by an standard covering argument, we find the estimate (1.7) for the Cβ semi-
norm of u in BR(x0).

We now prove the Cs regularity of u.

Proof of Proposition 1.1.1. By Lemma 1.2.9, taking β = s we obtain

|u(x)− u(y)|
|x− y|s

≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
(1.11)

for all x, y such that y ∈ BR(x) with R = δ(x)/2. We want to show that (1.11)
holds, perhaps with a bigger constant C = C(Ω, s), for all x, y ∈ Ω, and hence for all
x, y ∈ Rn (since u ≡ 0 outside Ω).

Indeed, observe that after a Lipschitz change of coordinates, the bound (1.11)
remains the same except for the value of the constant C. Hence, we can flatten the
boundary near x0 ∈ ∂Ω to assume that Ω ∩ Bρ0(x0) = {xn > 0} ∩ B1(0). Now, (1.11)
holds for all x, y satisfying |x− y| ≤ γxn for some γ = γ(Ω) ∈ (0, 1) depending on the
Lipschitz map.

Next, let z = (z′, zn) and w = (w′, wn) be two points in {xn > 0} ∩ B1/4(0), and
r = |z − w|. Let us define z̄ = (z′, zn + r), z̄ = (z′, zn + r) and zk = (1 − γk)z + γkz̄
and wk = γkw + (1 − γk)w̄, k ≥ 0. Then, using that bound (1.11) holds whenever
|x− y| ≤ γxn, we have

|u(zk+1)− u(zk)| ≤ C|zk+1 − zk|s = C|γk(z − z̄)(γ − 1)|s ≤ Cγk|z − z̄|.
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Moreover, since xn > r in all the segment joining z̄ and w̄, splitting this segment into
a bounded number of segments of length less than γr, we obtain

|u(z̄)− u(w̄)| ≤ C|z̄ − w̄|s ≤ Crs.

Therefore,

|u(z)− u(w)| ≤
∑

k≥0

|u(zk+1)− u(zk)|+ |u(z̄)− u(w̄)|+
∑

k≥0

|u(wk+1)− u(wk)|

≤

(
C
∑

k≥0

(
γkr
)s

+ Crs

)
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)

≤ C
(
‖u‖L∞(Rn) + ‖g‖L∞(Ω)

)
|z − w|s,

as wanted.

The following lemma is similar to Proposition 1.2.2 but it involves the weighted
norms introduced above. It will be used to prove Proposition 1.1.4 and Theorem 1.1.5.

Lemma 1.2.10. Let s and α belong to (0, 1), and β > 0. Let U be an open set with
nonempty boundary. Assume that neither β nor β + 2s is an integer, and α < 2s.
Then,

‖w‖(−α)
β+2s;U ≤ C

(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
(1.12)

for all w with finite right hand side. The constant C depends only on n, s, α, and β.

Proof. Step 1. We first control the Cβ+2s norm of w in balls BR(x0) with R = dx0/2.
Let x0 ∈ U and R = dx0/2. Define w̃(y) = w(x0 +Ry)− w(x0) and note that

‖w̃‖Cα(B1) ≤ Rα[w]Cα(Rn)

and
‖(1 + |y|)−n−2sw̃(y)‖L1(Rn) ≤ C(n, s)Rα[w]Cα(Rn).

This is because

|w̃(y)| = |w(x0 +Ry)− w(x0)| ≤ Rα|y|α[w]Cα(Rn)

and α < 2s. Note also that

‖(−∆)sw̃‖Cβ(B1) = R2s+β‖(−∆)sw‖Cβ(BR(x0)) ≤ Rα‖(−∆)sw‖(2s−α)
β;U .

Therefore, using Corollary 1.2.4 we obtain that

‖w̃‖Cβ+2s(B1/2) ≤ CRα
(
[w]Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
,

where the constant C depends only on n, s, α, and β. Scaling back we obtain

k∑

l=1

Rl−α‖Dlw‖L∞(BR/2(x0)) +R2s+β−α[w]Cβ+2s(BR/2(x0)) ≤

≤ C
(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

α;U

)
,

(1.13)
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where k denotes the greatest integer less that β + 2s and C = C(n, s). This bound
holds, with the same constant C, for each ball BR(x0), x0 ∈ U , where R = dx0/2.

Step 2. Next we claim that if (1.13) holds for each ball Bdx/2(x), x ∈ U , then
(1.12) holds. It is clear that this already yields

k∑

l=1

dk−αx sup
x∈U
|Dku(x)| ≤ C

(
‖w‖Cα(Rn) + ‖(−∆)sw‖(2s−α)

β;U

)
(1.14)

where k is the greatest integer less than β + 2s.
To prove this claim we only have to control [w]

(−α)
β+2s;U —see Definition 1.1.3. Let

γ ∈ (0, 1) be such that β + 2s = k + γ. We next bound

|Dkw(x)−Dkw(y)|
|x− y|γ

when dx ≥ dy and |x − y| ≥ dx/2. This will yield the bound for [w]
(−α)
β+2s;U , because if

|x− y| < dx/2 then y ∈ Bdx/2(x), and that case is done in Step 1.
We proceed differently in the cases k = 0 and k ≥ 1. If k = 0, then

dβ+2s−α
x

w(x)− w(y)

|x− y|2s+β
=

(
dx
|x− y|

)β+2s−α
w(x)− w(y)

|x− y|α
≤ C‖w‖Cα(Rn).

If k ≥ 1, then

dβ+2s−α
x

|Dkw(x)−Dkw(y)|
|x− y|γ

≤
(

dx
|x− y|

)γ
dβ+2s−α−γ
x |Dkw(x)−Dkw(y)| ≤ C‖w‖(−α)

k;U ,

where we have used that β + 2s− α− γ = k − α.
Finally, noting that for x ∈ BR(x0) we have R ≤ dx0 ≤ 3R, (1.12) follows from

(1.13), (1.14) and the definition of ‖w‖(−α)
α+2s;U in (1.1.3).

Finally, to end this section, we prove Proposition 1.1.4.

Proof of Proposition 1.1.4. Set α = s in Lemma 1.2.10.

Remark 1.2.11. When g is continuous, the notions of bounded weak solution and
viscosity solution of (1.1) —and hence of (1.5)— coincide.

Indeed, let u ∈ Hs(Rn) be a weak solution of (1.1). Then, from Proposition 1.1.1
it follows that u is continuous up to the boundary. Let uε and gε be the standard
regularizations of u and g by convolution with a mollifier. It is immediate to verify
that, for ε small enough, we have (−∆)suε = gε in every subdomain U ⊂⊂ Ω in the
classical sense. Then, noting that uε → u and gε → g locally uniformly in Ω, and
applying the stability property for viscosity solutions [69, Lemma 4.5], we find that u
is a viscosity solution of (1.1).

Conversely, every viscosity solution of (1.1) is a weak solution. This follows from
three facts: the existence of weak solution, that this solution is a viscosity solution as
shown before, and the uniqueness of viscosity solutions [69, Theorem 5.2].

As a consequence of this, if g is continuous, any viscosity solution of (1.1) belongs
to Hs(Rn) —since it is a weak solution. This fact, which is not obvious, can also
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be proved without using the result on uniqueness of viscosity solutions. Indeed, it
follows from Proposition 1.1.4 and Lemma 1.4.4, which yield a stronger fact: that
(−∆)s/2u ∈ Lp(Rn) for all p < ∞. Note that although we have proved Proposition
1.1.4 for weak solutions, its proof is also valid —with almost no changes— for viscosity
solutions.

1.3 Boundary regularity for u/δs

In this section we study the precise behavior near the boundary of the solution u to
problem (1.1), where g ∈ L∞(Ω). More precisely, we prove that the function u/δs|Ω
has a Cα(Ω) extension. This is stated in Theorem 1.1.2.

This result will be a consequence of the interior regularity results of Section 1.2
and an oscillation lemma near the boundary, which can be seen as the nonlocal analog
of Krylov’s boundary Harnack principle; see Theorem 4.28 in [182].

The following proposition and lemma will be used to establish Theorem 1.1.2. They
are proved in the Appendix.

Proposition 1.3.1 (1-D solution in half space, [66]). The function ϕ0, defined by

ϕ0(x) =

{
0 if x ≤ 0

xs if x ≥ 0 ,
(1.15)

satisfies (−∆)sϕ0 = 0 in R+.

The lemma below gives a subsolution in B1 \ B1/4 whose support is B1 ⊂ Rn and
such that it is comparable to (1− |x|)s in B1.

Lemma 1.3.2 (Subsolution). There exist C2 > 0 and a radial function ϕ2 = ϕ2(|x|)
satisfying 




(−∆)sϕ2 ≤ 0 in B1 \B1/4

ϕ2 = 1 in B1/4

ϕ2(x) ≥ C2(1− |x|)s in B1

ϕ2 = 0 in Rn \B1 .

(1.16)

To prove Hölder regularity of u/δs|Ω up to the boundary, we will control the oscil-
lation of this function in sets near ∂Ω whose diameter goes to zero. To do it, we will
set up an iterative argument as it is done for second order equations.

Let us define the sets in which we want to control the oscillation and also auxiliary
sets that are involved in the iteration.

Definition 1.3.3. Let κ > 0 be a fixed small constant and let κ′ = 1/2 + 2κ. We may
take, for instance κ = 1/16, κ′ = 5/8. Given a point x0 in ∂Ω and R > 0 let us define

DR = DR(x0) = BR(x0) ∩ Ω

and
D+
κ′R = D+

κ′R(x0) = Bκ′R(x0) ∩ {x ∈ Ω : −x · ν(x0) ≥ 2κR} ,
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where ν(x0) is the unit outward normal at x0; see Figure 1.1. By C1,1 regularity of the
domain, there exists ρ0 > 0, depending on Ω, such that the following inclusions hold
for each x0 ∈ ∂Ω and R ≤ ρ0:

BκR(y) ⊂ DR(x0) for all y ∈ D+
κ′R(x0) , (1.17)

and

B4κR(y∗ − 4κRν(y∗)) ⊂ DR(x0) and BκR(y∗ − 4κRν(y∗)) ⊂ D+
κ′R(x0) (1.18)

for all y ∈ DR/2, where y∗ ∈ ∂Ω is the unique boundary point satisfying |y − y∗| =
dist(y, ∂Ω). Note that, since R ≤ ρ0, y ∈ DR/2 is close enough to ∂Ω and hence the
point y∗ − 4κRν(y∗) lays on the line joining y and y∗; see Remark 1.3.4 below.

Ω

BR

BR/2

Bκ′R

DR

D+
κ′R

x0

y∗

Figure 1.1: The sets DR and D+
κ′R

Remark 1.3.4. Throughout the paper, ρ0 > 0 is a small constant depending only on Ω,
which we assume to be a bounded C1,1 domain. Namely, we assume that (1.17) and
(1.18) hold whenever R ≤ ρ0, for each x0 ∈ ∂Ω, and also that every point on ∂Ω can
be touched from both inside and outside Ω by balls of radius ρ0. In other words, given
x0 ∈ ∂Ω, there are balls of radius ρ0, Bρ0(x1) ⊂ Ω and Bρ0(x2) ⊂ Rn \ Ω, such that

Bρ0(x1)∩Bρ0(x2) = {x0}. A useful observation is that all points y in the segment that
joins x1 and x2 —through x0— satisfy δ(y) = |y − x0|. Recall that δ = dist( · , ∂Ω).

In the rest of this section, by |(−∆)su| ≤ K we mean that either (−∆)su = g
in the weak sense for some g ∈ L∞ satisfying ‖g‖L∞ ≤ K or that u satisfies −K ≤
(−∆)su ≤ K in the viscosity sense.

The first (and main) step towards Theorem 1.1.2 is the following.

Proposition 1.3.5. Let Ω be a bounded C1,1 domain, and u be such that |(−∆)su| ≤ K
in Ω and u ≡ 0 in Rn \ Ω, for some constant K. Given any x0 ∈ ∂Ω, let DR be as in
Definition 1.3.3.

Then, there exist α ∈ (0, 1) and C depending only on Ω and s —but not on x0—
such that

sup
DR

u/δs − inf
DR

u/δs ≤ CKRα (1.19)

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.
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To prove Proposition 1.3.5 we need three preliminary lemmas. We start with the
first one, which might be seen as the fractional version of Lemma 4.31 in [182]. Recall
that κ′ ∈ (1/2, 1) is a fixed constant throughout the section. It may be useful to regard
the following lemma as a bound by below for infDR/2 u/δ

s, rather than an upper bound
for infD+

κ′R
u/δs.

Lemma 1.3.6. Let Ω be a bounded C1,1 domain, and u be such that u ≥ 0 in all of Rn

and |(−∆)su| ≤ K in DR, for some constant K. Then, there exists a positive constant
C, depending only on Ω and s, such that

inf
D+
κ′R

u/δs ≤ C
(

inf
DR/2

u/δs +KRs
)

(1.20)

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.

Proof. Step 1. We do first the case K = 0. Let R ≤ ρ0, and let us call m =
infD+

κ′R
u/δs ≥ 0. We have u ≥ mδs ≥ m(κR)s on D+

κ′R. The second inequality is a

consequence of (1.17).
We scale the subsolution ϕ2 in Lemma 1.3.2 as follows, to use it as lower barrier:

ψR(x) := (κR)sϕ2

(
x

4κR

)
.

By (1.16) we have




(−∆)sψR ≤ 0 in B4κR \BκR

ψR = (κR)s in BκR

ψR ≥ 4−sC2(4κR− |x|)s in B4κR \BκR

ψR ≡ 0 in Rn \B4κR .

Given y ∈ DR/2, we have either y ∈ D+
κ′R or δ(y) < 4κR, by (1.18). If y ∈ D+

κ′R

it follows from the definition of m that m ≤ u(y)/δ(y)s. If δ(y) < 4κR, let y∗ be the
closest point to y on ∂Ω and ỹ = y∗+4κν(y∗). Again by (1.18), we have B4κR(ỹ) ⊂ DR

and BκR(ỹ) ⊂ D+
κ′R. But recall that u ≥ m(κR)s in D+

κ′R, (−∆)su = 0 in Ω, and u ≥ 0
in Rn. Hence, u(x) ≥ mψR(x − ỹ) in all Rn and in particular u/δs ≥ 4−sC2m on the
segment joining y∗ and ỹ, that contains y. Therefore,

inf
D+
κ′R

u/δs ≤ C inf
DR/2

u/δs . (1.21)

Step 2. If K > 0 we consider ũ to be the solution of
{

(−∆)sũ = 0 in DR

ũ = u in Rn \DR.

By Step 1, (1.21) holds with u replaced by ũ.
On the other hand, w = ũ − u satisfies |(−∆)sw| ≤ K and w ≡ 0 outside DR.

Recall that points of ∂Ω can be touched by exterior balls of radius less than ρ0. Hence,
using the rescaled supersolution KR2sϕ1(x/R) from Lemma 1.2.6 as upper barrier and
we readily prove, as in the proof of Lemma 1.2.7, that

|w| ≤ C1KR
sδs in DR .

Thus, (1.20) follows.
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The second lemma towards Proposition 1.3.5, which might be seen as the fractional
version of Lemma 4.35 in [182], is the following.

Lemma 1.3.7. Let Ω be a bounded C1,1 domain, and u be such that u ≥ 0 in all of Rn

and |(−∆)su| ≤ K in DR, for some constant K. Then, there exists a positive constant
C, depending on Ω and s, such that

sup
D+
κ′R

u/δs ≤ C
(

inf
D+
κ′R

u/δs +KRs
)

(1.22)

for all R ≤ ρ0, where ρ0 > 0 is a constant depending only on Ω.

Proof. Step 1. Consider first the case K = 0. In this case (1.22) follows from the
Harnack inequality for the fractional Laplacian [191] —note that we assume u ≥ 0
in all Rn. Indeed, by (1.17), for each y ∈ D+

κ′R we have BκR(y) ⊂ DR and hence
(−∆)su = 0 in BκR(y). Then we may cover D+

κ′R by a finite number of balls BκR/2(yi),
using the same (scaled) covering for all R ≤ ρ0, to obtain

sup
BκR/2(yi)

u ≤ C inf
BκR/2(yi)

u.

Then, (1.22) follows since (κR/2)s ≤ δs ≤ (3κR/2)s in BκR/2(yi) by (1.17).
Step 2. When K > 0, we prove (1.22) by using a similar argument as in Step 2 in

the proof of Proposition 1.3.6.

Before proving Lemma 1.3.9 we give an extension lemma —see [125, Theorem 1,
Section 3.1] where the case α = 1 is proven in full detail.

Lemma 1.3.8. Let α ∈ (0, 1] and V ⊂ Rn a bounded domain. There exists a (nonlin-
ear) map E : C0,α(V )→ C0,α(Rn) satisfying

E(w) ≡ w in V , [E(w)]C0,α(Rn) ≤ [w]C0,α(V ), and ‖E(w)‖L∞(Rn) ≤ ‖w‖L∞(V )

for all w ∈ C0,α(V ).

Proof. It is immediate to check that

E(w)(x) = min

{
min
z∈V

{
w(z) + [w]Cα(V )|z − x|α

}
, ‖w‖L∞(V )

}

satisfies the conditions since, for all x, y, z in Rn,

|z − x|α ≤ |z − y|α + |y − x|α .

We can now give the third lemma towards Proposition 1.3.5. This lemma, which
is related to Proposition 1.3.1, is crucial. It states that δs|Ω, extended by zero outside
Ω, is an approximate solution in a neighborhood of ∂Ω inside Ω.
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Lemma 1.3.9. Let Ω be a bounded C1,1 domain, and δ0 = δχΩ be the distance function
in Ω extended by zero outside Ω. Let α = min{s, 1 − s}, and ρ0 be given by Remark
1.3.4. Then,

(−∆)sδs0 belongs to Cα(Ωρ0) ,

where Ωρ0 = Ω ∩ {δ < ρ0}. In particular,

|(−∆)sδs0| ≤ CΩ in Ωρ0 ,

where CΩ is a constant depending only on Ω and s.

Proof. Fix a point x0 on ∂Ω and denote, for ρ > 0, Bρ = Bρ(x0). Instead of proving
that

(−∆)sδs0 = cn,sPV

∫

Rn

δ0(x)s − δ0(y)s

|x− y|n+2s
dy

is Cα(Ω ∩Bρ0) —as a function of x—, we may equivalently prove that

PV

∫

B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy belongs to Cα(Ω ∩Bρ0). (1.23)

This is because the difference

1

cn,s
(−∆)sδs0 − PV

∫

B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy =

∫

Rn\B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy

belongs to Cs(Bρ0), since δs0 is Cs(Rn) and |x|−n−2s is integrable and smooth outside
a neighborhood of 0.

To see (1.23), we flatten the boundary. Namely, consider a C1,1 change of variables
X = Ψ(x), where Ψ : B3ρ0 → V ⊂ Rn is a C1,1 diffeomorphism, satisfying that ∂Ω
is mapped onto {Xn = 0}, Ω ∩ B3ρ0 is mapped into Rn

+, and δ0(x) = (Xn)+. Such
diffeomorphism exists because we assume Ω to be C1,1. Let us respectively call V1 and
V2 the images of Bρ0 and B2ρ0 under Ψ. Let us denote the points of V × V by (X, Y ).
We consider the functions x and y, defined in V , by x = Ψ−1(X) and y = Ψ−1(Y ).
With these notations, we have

x− y = −DΨ−1(X)(X − Y ) +O
(
|X − Y |2

)
,

and therefore

|x− y|2 = (X − Y )TA(X)(X − Y ) +O
(
|X − Y |3

)
, (1.24)

where

A(X) =
(
DΨ−1(X)

)T
DΨ−1(X)

is a symmetric matrix, uniformly positive definite in V2. Hence,

PV

∫

B2ρ0

δ0(x)s − δ0(y)s

|x− y|n+2s
dy = PV

∫

V2

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g(X, Y )dY,



1.3 - Boundary regularity for u/δs 37

where we have denoted

g(X, Y ) =

(
(X − Y )TA(X)(X − Y )

|x− y|2

)n+2s
2

J(Y )

and J = | detDΨ−1|. Note that we have g ∈ C0,1(V2 × V2), since Ψ is C1,1 and we
have (1.24).

Now we are reduced to proving that

ψ1(X) := PV

∫

V2

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g(X, Y )dY, (1.25)

belongs to Cα(V +
1 ) (as a function of X), where V +

1 = V1 ∩ {Xn > 0}.
To prove this, we extend the Lipschitz function g ∈ C0,1(V2 × V2) to all Rn. Namely,

consider the function g∗ = E(g) ∈ C0,1(Rn×Rn) provided by Proposition 1.3.8, which
satisfies

g∗ ≡ g in V2 × V2 and ‖g∗‖C0,1(Rn×Rn) ≤ ‖g‖C0,1(V2×V2) .

By the same argument as above, using that V1 ⊂⊂ V2, we have that ψ1 ∈ Cα(V +
1 )

if and only if so is the function

ψ(X) = PV

∫

Rn

(Xn)s+ − (Yn)s+

|(X − Y )TA(X)(X − Y )|
n+2s

2

g∗(X, Y )dY.

Furthermore, from g∗ define g̃ ∈ C0,1(V2×Rn) by g̃(X,Z) = g∗(X,X+MZ) detM ,
where M = M(X) = DΨ(X). Then, using the change of variables Y = X + MZ we
deduce

ψ(X) = PV

∫

Rn

(Xn)s+ −
(
en · (X +MZ)

)s
+

|Z|n+2s
g̃(X,Z)dZ.

Next, we prove that ψ ∈ Cα(Rn), which concludes the proof. Indeed, taking into
account that the function (Xn)s+ is s-harmonic in Rn

+ —by Proposition 1.3.1— we
obtain

PV

∫

Rn

(e′ ·X ′)s+ − (e′ · (X ′ + Z))s+
|Z|n+2s

dZ = 0

for every e′ ∈ Rn and for every X ′ such that e′ ·X ′ > 0. Thus, letting e′ = eTnM and
X ′ = M−1X we deduce

PV

∫

Rn

(Xn)s+ −
(
en · (X +MZ)

)s
+

|Z|n+2s
dZ = 0

for every X such that (eTnM) · (M−1X) > 0, that is, for every X ∈ Rn
+.

Therefore, it holds

ψ(X) =

∫

Rn

φ(X, 0)− φ(X,Z)

|Z|n+2s

(
g̃(X,Z)− g̃(X, 0)

)
dZ,

where
φ(X,Z) = (en · (X +MZ))s+
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satisfies [φ]Cs(V2×Rn) ≤ C, and ‖g̃‖C0,1(V2×Rn) ≤ C.

Let us finally prove that ψ belongs to Cα(V +
1 ). To do it, let X and X̄ be in V +

1 .
Then, we have

ψ(X)− ψ(X̄) =

∫

Rn

Θ(X, X̄, Z)

|Z|n+2s
dZ,

where

Θ(X,X̄, Z) =
(
φ(X, 0)− φ(X,Z)

)(
g̃(X,Z)− g̃(X, 0)

)

−
(
φ(X̄, 0)− φ(X̄, Z)

)(
g̃(X̄, Z)− g̃(X̄, 0)

)

=
(
φ(X, 0)− φ(X,Z)− φ(X̄, 0) + φ(X̄, Z)

)(
g̃(X,Z)− g̃(X, 0)

)

−
(
φ(X̄, 0)− φ(X̄, Z)

)(
g̃(X,Z)− g̃(X, 0)− g̃(X̄, Z) + g̃(X̄, 0)

)
.

(1.26)

Now, on the one hand, it holds

|Θ(X, X̄, Z)| ≤ C|Z|1+s, (1.27)

since [φ]Cs(V2×Rn) ≤ C and ‖g̃‖C0,1(V2×Rn) ≤ C.
On the other hand, it also holds

|Θ(X, X̄, Z)| ≤ C|X − X̄|s min{|Z|, |Z|s}. (1.28)

Indeed, we only need to observe that

∣∣g̃(X,Z)− g̃(X, 0)− g̃(X̄, Z) + g̃(X̄, 0)
∣∣ ≤ C min

{
min{|Z|, 1}, |X − X̄|

}

≤ C min{|Z|1−s, 1}|X − X̄|s.

Thus, letting r = |X − X̄| and using (1.27) and (1.28), we obtain

|ψ(X)− ψ(X̄)| ≤
∫

Rn

|Θ(X, X̄, Z)|
|Z|n+2s

dZ

≤
∫

Br

C|Z|1+s

|Z|n+2s
dZ +

∫

Rn\Br

Crs min{|Z|, |Z|s}
|Z|n+2s

dZ

≤ Cr1−s + C max{r1−s, rs} ,

as desired.

Next we prove Proposition 1.3.5.

Proof of Proposition 1.3.5. By considering u/K instead of u we may assume that K =
1, that is, that |(−∆)su| ≤ 1 in Ω. Then, by Claim 1.2.8 we have ‖u‖L∞(Rn) ≤ C for
some constant C depending only on Ω and s.

Let ρ0 > 0 be given by Remark 1.3.4. Fix x0 ∈ ∂Ω. We will prove that there
exist constants C0 > 0, ρ1 ∈ (0, ρ0), and α ∈ (0, 1), depending only on Ω and s, and
monotone sequences (mk) and (Mk) such that, for all k ≥ 0,

Mk −mk = 4−αk , −1 ≤ mk ≤ mk+1 < Mk+1 ≤Mk ≤ 1 , (1.29)
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and

mk ≤ C−1
0 u/δs ≤Mk in DRk = DRk(x0) , where Rk = ρ14−k. (1.30)

Note that (1.30) is equivalent to the following inequality in BRk instead of DRk —
recall that DRk = BRk ∩ Ω.

mkδ
s
0 ≤ C−1

0 u ≤Mkδ
s
0 in BRk = BRk(x0) , where Rk = ρ14−k . (1.31)

If there exist such sequences, then (1.19) holds for all R ≤ ρ1 with C = 4αC0/ρ
α
1 .

Then, by increasing the constant C if necessary, (1.19) holds also for every R ≤ ρ0.
Next we construct {Mk} and {mk} by induction.
By Lemma 1.2.7, we find that there exist m0 and M0 such that (1.29) and (1.30)

hold for k = 0 provided we pick C0 large enough depending on Ω and s.
Assume that we have sequences up to mk and Mk. We want to prove that there

exist mk+1 and Mk+1 which fulfill the requirements. Let

uk = C−1
0 u−mkδ

s
0 . (1.32)

We will consider the positive part u+
k of uk in order to have a nonnegative function

in all of Rn to which we can apply Lemmas 1.3.6 and 1.3.7. Let uk = u+
k −u

−
k . Observe

that, by induction hypothesis,

u+
k = uk and u−k = 0 in BRk . (1.33)

Moreover, C−1
0 u ≥ mjδ

s
0 in BRj for each j ≤ k. Therefore, by (1.32) we have

uk ≥ (mj −mk)δ
s
0 ≥ (mj −Mj +Mk −mk)δ

s
0 ≥ (−4−αj + 4−αk)δs0 in BRj .

But clearly 0 ≤ δs0 ≤ Rs
j = ρs14−js in BRj , and therefore using Rj = ρ14−j

uk ≥ −ρ−α1 Rs
j(R

α
j −Rα

k ) in BRj for each j ≤ k .

Thus, since for every x ∈ BR0 \BRk there is j < k such that

|x− x0| < Rj = ρ14−j ≤ 4|x− x0|,

we find

uk(x) ≥ −ρ−α1 Rα+s
k

∣∣∣∣
4(x− x0)

Rk

∣∣∣∣
s(∣∣∣∣

4(x− x0)

Rk

∣∣∣∣
α

− 1

)
outside BRk . (1.34)

By (1.34) and (1.33), at x ∈ BRk/2(x0) we have

0 ≤ −(−∆)su−k (x) = cn,s

∫

x+y/∈BRk

u−k (x+ y)

|y|n+2s
dy

≤ cn,s ρ
−α
1

∫

|y|≥Rk/2
Rα+s
k

∣∣∣∣
8y

Rk

∣∣∣∣
s(∣∣∣∣

8y

Rk

∣∣∣∣
α

− 1

)
|y|−n−2s dy

= Cρ−α1 Rα−s
k

∫

|z|≥1/2

|8z|s(|8z|α − 1)

|z|n+2s
dz

≤ ε0ρ
−α
1 Rα−s

k ,
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where ε0 = ε0(α) ↓ 0 as α ↓ 0 since |8z|α → 1.
Therefore, writing u+

k = C−1
0 u−mkδ

s
0 + u−k and using Lemma 1.3.9, we have

|(−∆)su+
k | ≤ C−1

0 |(−∆)su|+mk|(−∆)sδs0|+ |(−∆)s(u−k )|
≤ (C−1

0 + CΩ) + ε0ρ
−α
1 Rα−s

k

≤
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα−s
k in DRk/2.

In the last inequality we have just used Rk ≤ ρ1 and α ≤ s.
Now we can apply Lemmas 1.3.6 and 1.3.7 with u in its statements replaced by

u+
k , recalling that

u+
k = uk = C−1

0 u−mkδ
s in DRk

to obtain

sup
D+
κ′Rk/2

(C−1
0 u/δs −mk) ≤ C

(
infD+

κ′Rk/2
(C−1

0 u/δs −mk) +
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)

≤ C

(
infDRk/4(C

−1
0 u/δs −mk) +

(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
.(1.35)

Next we can repeat all the argument “upside down”, that is, with the functions
uk = Mkδ

s − u instead of uk. In this way we obtain, instead of (1.35), the following:

sup
D+
κ′Rk/2

(Mk − C−1
0 u/δs) ≤ C

(
inf
DRk/4

(Mk − C−1
0 u/δs) +

(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
. (1.36)

Adding (1.35) and (1.36) we obtain

Mk −mk ≤ C

(
inf
DRk/4

(C−1
0 u/δs −mk) + inf

DRk/4
(Mk − C−1

0 u/δs) +
(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)

= C

(
inf

DRk+1

C−1
0 u/δs − sup

DRk+1

C−1
0 u/δs +Mk −mk +

(
C1ρ

s−α
1 + ε0ρ

−α
1

)
Rα
k

)
,

(1.37)

and thus, using that Mk −mk = 4−αk and Rk = ρ14−k,

sup
DRk+1

C−1
0 u/δs − inf

DRk+1

C−1
0 u/δs ≤

(
C−1
C

+ C1ρ
s
1 + ε0

)
4−αk .

Now we choose α and ρ1 small enough so that

C − 1

C
+ C1ρ

s
1 + ε0(α) ≤ 4−α.

This is possible since ε0(α) ↓ 0 as α ↓ 0 and the constants C and C1 do not depend on
α nor ρ1 —they depend only on Ω and s. Then, we find

sup
DRk+1

C−1
0 u/δs − inf

DRk+1

C−1
0 u/δs ≤ 4−α(k+1),

and thus we are able to choose mk+1 and Mk+1 satisfying (1.29) and (1.30).
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Finally, we give the:

Proof of Theorem 1.1.2. Define v = u/δs|Ω and K = ‖g‖L∞(Ω). As in the proof of
Proposition 1.3.5, by considering u/K instead of u we may assume that |(−∆)su| ≤ 1
in Ω and that ‖u‖L∞(Ω) ≤ C for some constant C depending only on Ω and s.

First we claim that there exist constants C, M > 0, α̃ ∈ (0, 1) and β ∈ (0, 1),
depending only on Ω and s, such that

(i) ‖v‖L∞(Ω) ≤ C.

(ii) For all x ∈ Ω, it holds the seminorm bound

[v]Cβ(BR/2(x)) ≤ C
(
1 +R−M

)
,

where R = dist(x,Rn \ Ω).

(iii) For each x0 ∈ ∂Ω and for all ρ > 0 it holds

sup
Bρ(x0)∩Ω

v − inf
Bρ(x0)∩Ω

v ≤ Cρα̃.

Indeed, it follows from Lemma 1.2.7 that ‖v‖L∞(Ω) ≤ C for some C depending only
on Ω and s. Hence, (i) is satisfied.

Moreover, if β ∈ (0, 2s), it follows from Lemma 1.2.9 that for every x ∈ Ω,

[u]Cβ(BR/2(x)) ≤ CR−β, β ∈ (0, 2s),

where R = δ(x). But since Ω is C1,1, then provided δ(x) < ρ0 we will have

‖δ−s‖L∞(BR/2(x)) ≤ CR−s and [δ−s]C0,1(BR/2(x)) ≤ CR−s−1

and hence, by interpolation,

[δ−s]Cβ(BR/2(x)) ≤ CR−s−β

for each β ∈ (0, 1). Thus, since v = uδ−s, we find

[v]Cβ(BR/2(x)) ≤ C
(
1 +R−s−β

)

for all x ∈ Ω and β < min{1, 2s}. Therefore hypothesis (ii) is satisfied. The constants
C depend only on Ω and s.

In addition, using Proposition 1.3.5 and that ‖v‖L∞(Ω) ≤ C, we deduce that hy-
pothesis (iii) is satisfied.

Now, we claim that (i)-(ii)-(iii) lead to

[v]Cα(Ω) ≤ C,

for some α ∈ (0, 1) depending only on Ω and s.
Indeed, let x, y ∈ Ω, R = dist(x,Rn \Ω) ≥ dist(y,Rn \Ω), and r = |x− y|. Let us

see that |v(x)− v(y)| ≤ Crα for some α > 0.
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If r ≥ 1 then it follows from (i). Assume r < 1, and let p ≥ 1 to be chosen later.
Then, we have the following dichotomy:

Case 1. Assume r ≥ Rp/2. Let x0, y0 ∈ ∂Ω be such that |x− x0| = dist(x,Rn \Ω)
and |y − y0| = dist(y,Rn \ Ω). Then, using (iii) and the definition of R we deduce

|v(x)− v(y)| ≤ |v(x)− v(x0)|+ |v(x0)− v(y0)|+ |v(y0)− v(y)| ≤ CRα̃ ≤ Crα̃/p.

Case 2. Assume r ≤ Rp/2. Hence, since p ≥ 1, we have y ∈ BR/2(x). Then, using
(ii) we obtain

|v(x)− v(y)| ≤ C(1 +R−M)rβ ≤ C
(
1 + r−M/p

)
rβ ≤ Crβ−M/p.

To finish the proof we only need to choose p > M/β and take α = min{α̃/p, β −
M/p}.

1.4 Interior estimates for u/δs

The main goal of this section is to prove the Cγ bounds in Ω for the function u/δs in
Theorem 1.1.5.

To prove this result we find an equation for the function v = u/δs|Ω, that is derived
below. This equation is nonlocal, and thus, we need to give values to v in Rn \ Ω,
although we want an equation only in Ω. It might seem natural to consider u/δs,
which vanishes outside Ω since u ≡ 0 there, as an extension of u/δs|Ω. However, such
extension is discontinuous through ∂Ω, and it would lead to some difficulties.

Instead, we consider a Cα(Rn) extension of the function u/δs|Ω, which is Cα(Ω)
by Theorem 1.1.2. Namely, throughout this section, let v be the Cα(Rn) extension of
u/δs|Ω given by Lemma 1.3.8.

Let δ0 = δχΩ, and note that u = vδs0 in Rn. Then, using (1.1) we have

g(x) = (−∆)s(vδs0) = v(−∆)sδs0 + δs0(−∆)sv − Is(v, δs0)

in Ωρ0 = {x ∈ Ω : δ(x) < ρ0}, where

Is(w1, w2)(x) = cn,s

∫

Rn

(
w1(x)− w1(y)

)(
w2(x)− w2(y)

)

|x− y|n+2s
dy (1.38)

and ρ0 is a small constant depending on the domain; see Remark 1.3.4. Here, we have
used that (−∆)s(w1w2) = w1(−∆)sw2 +w2(−∆)sw1− Is(w1, w2), which follows easily
from (1.2). This equation is satisfied pointwise in Ωρ0 , since g is Cα in Ω. We have
to consider Ωρ0 instead of Ω because the distance function is C1,1 there and thus we
can compute (−∆)sδs0. In all Ω the distance function δ is only Lipschitz and hence
(−∆)sδs0 is singular for s ≥ 1

2
.

Thus, the following is the equation for v:

(−∆)sv =
1

δs0

(
g(x)− v(−∆)sδs0 + Is(v, δ

s
0)

)
in Ωρ0 . (1.39)

From this equation we will obtain the interior estimates for v. More precisely, we
will obtain a priori bounds for the interior Hölder norms of v, treating δ−s0 Is(v, δ

s
0) as a
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lower order term. For this, we consider the weighted Hölder norms given by Definition
1.1.3.

Recall that, in all the paper, we denote Cβ the space Ck,β′ , where β = k + β′ with
k integer and β′ ∈ (0, 1].

In Theorem 1.1.2 we have proved that u/δs|Ω is Cα(Ω) for some α ∈ (0, 1), with
an estimate. From this Cα estimate and from the equation for v (1.39), we will find

next the estimate for ‖u/δs‖(−α)
γ;Ω stated in Theorem 1.1.5.

The proof of this result relies on some preliminary results below.
Next lemma is used to control the lower order term δ−s0 Is(v, δ

s
0) in the equation

(1.39) for v.

Lemma 1.4.1. Let Ω be a bounded C1,1 domain, and U ⊂ Ωρ0 be an open set. Let s
and α belong to (0, 1) and satisfy α + s ≤ 1 and α < s. Then,

‖Is(w, δs0)‖(s−α)
α;U ≤ C

(
[w]Cα(Rn) + [w]

(−α)
α+s;U

)
, (1.40)

for all w with finite right hand side. The constant C depends only on Ω, s, and α.

To prove Lemma 1.4.1 we need the next

Lemma 1.4.2. Let U ⊂ Rn be a bounded open set. Let α1, α2,∈ (0, 1) and β ∈ (0, 1]
satisfy αi < β for i = 1, 2, α1+α2 < 2s, and s < β < 2s. Assume that w1, w2 ∈ Cβ(U).
Then,

‖Is(w1, w2)‖(2s−α1−α2)
2β−2s;U ≤ C

(
[w1]Cα1 (Rn) + [w1]

(−α1)
β;U

)(
[w2]Cα2 (Rn) + [w2]

(−α2)
β;U

)
, (1.41)

for all functions w1, w2 with finite right hand side. The constant C depends only on
α1, α2, n, β, and s.

Proof. Let x0 ∈ U and R = dx0/2, and denote Bρ = Bρ(x0). Let

K =
(

[w1]Cα1 (Rn) + [w1]
(−α1)
β;U

)(
[w2]Cα2 (Rn) + [w2]

(−α2)
β;U

)
.

First we bound |Is(w1, w2)(x0)|.

|Is(w1, w2)(x0)| ≤ C

∫

Rn

∣∣w1(x0)− w1(y)
∣∣∣∣w2(x0)− w2(y)

∣∣
|x0 − y|n+2s

dy

≤ C

∫

BR(0)

Rα1+α2−2β[w1]
(−α1)
β;U [w2]

(−α2)
β;U |z|2β

|z|n+2s
dz +

+ C

∫

Rn\BR(0)

[w1]Cα1 (Rn)[w2]Cα2 (Rn)|z|α1+α2

|z|n+2s
dz

≤ CRα1+α2−2sK .

Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). Next, we bound |Is(w1, w2)(x1)−Is(w1, w2)(x2)|.
Let η be a smooth cutoff function such that η ≡ 1 on B1(0) and η ≡ 0 outside B3/2(0).
Define

ηR(x) = η

(
x− x0

R

)
and w̄i =

(
wi − wi(x0)

)
ηR , i = 1, 2 .
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Note that we have

‖w̄i‖L∞(Rn) = ‖w̄i‖L∞(B3R/2) ≤
(

3R

2

)αi
[wi]Cαi (Rn)

and

[w̄i]Cβ(Rn) ≤ C

(
[wi]Cβ(B3R/2)‖η‖L∞(B3R/2) + ‖wi − wi(0)‖L∞(B3R/2)[wi]Cβ(B3R/2)

)

≤ CRαi−β
(

[wi]Cαi (Rn) + [wi]
(−αi)
β;U

)
.

Let
ϕi = wi − wi(x0)− w̄i

and observe that ϕi vanishes in BR. Hence, ϕi(x1) = ϕi(x2) = 0, i = 1, 2. Next, let us
write

Is(w1, w2)(x1)− Is(w1, w2)(x2) = cn,s (J11 + J12 + J21 + J22) ,

where

J11 =

∫

Rn

(
w̄1(x1)− w̄1(y)

)(
w̄2(x1)− w̄2(y)

)

|x1 − y|n+2s
dy

−
∫

Rn

(
w̄1(x2)− w̄1(y)

)(
w̄2(x2)− w̄2(y)

)

|x2 − y|n+2s
dy ,

J12 =

∫

Rn\BR

−
(
w̄1(x1)− w̄1(y)

)
ϕ2(y)

|x1 − y|n+2s
+

(
w̄1(x2)− w̄1(y)

)
ϕ2(y)

|x2 − y|n+2s
dy ,

J21 =

∫

Rn\BR

−
(
w̄2(x1)− w̄2(y)

)
ϕ1(y)

|x1 − y|n+2s
+

(
w̄2(x2)− w̄2(y)

)
ϕ1(y)

|x2 − y|n+2s
dy ,

and

J22 =

∫

Rn\BR

ϕ1(y)ϕ2(y)

|x1 − y|n+2s
− ϕ1(y)ϕ2(y)

|x2 − y|n+2s
dy .

We now bound separately each of these terms.
Bound of J11. We write J11 = J1

11 + J2
11 where

J1
11 =

∫

Rn

(
w̄1(x1)− w̄1(x1 + z)− w̄1(x2) + w̄1(x2 + z)

)(
w̄2(x1)− w̄2(x1 + z)

)

|z|n+2s
dz,

J2
11 =

∫

Rn

(
w̄1(x2)− w̄1(x2 + z)

)(
w̄2(x1)− w̄2(x1 + z)− w̄2(x2) + w̄2(x2 + z)

)

|z|n+2s
dz .

To bound |J1
11| we proceed as follows

|J1
11| ≤

∫

Br(0)

Rα1−β[w1]
(−α1)
β;U |z|βRα2−β[w2]

(−α2)
β;U |z|β

|z|n+2s
dz+

+

∫

Rn\Br(0)

Rα1−β[w1]
(−α1)
β;U rβRα2−β[w2]

(−α2)
β;U |z|β

|z|n+2s
dz

≤ CRα1+α2−2βr2β−2sK .
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Similarly, |J2
11| ≤ CRα1+α2−2βr2β−2sK.

Bound of J12 and J21. We write J12 = J1
12 + J2

12 where

J1
12 =

∫

Rn\BR
−ϕ2(y)

w̄1(x1)− w̄1(x2)

|x1 − y|n+2s
dy

and

J2
12 =

∫

Rn\BR
−ϕ2(y)

(
w̄1(x2)− w̄1(y)

){ 1

|x1 − y|n+2s
− 1

|x2 − y|n+2s

}
dy .

To bound |J1
12| we recall that ϕ2(x1) = 0 and proceed as follows

|J1
12| ≤ C

∫

Rn\BR
|x1 − y|α2 [ϕ2]C0,α2 (Rn)

Rα1−β[w1]
(−α1)
β;U rβ

|x1 − y|n+2s
dy

≤ CRα1+α2−β−2srβK ≤ CRα1+α2−2βr2β−2sK.

We have used that [ϕ2]Cα2 (Rn) = [w − w̄]Cα2 (Rn) ≤ 2[w]Cα2 (Rn), r ≤ R, and β < 2s.
To bound |J2

12|, let Φ(z) = |z|−n−2s. Note that, for each γ ∈ (0, 1], we have

|Φ(z1 − z)− Φ(z2 − z)| ≤ C|z1 − z2|γ|z|−n−2s−γ (1.42)

for all z1, z2 in BR/2(0) and z ∈ Rn \BR(0). Then, using that ϕ2(x2) = 0,

|J2
12| ≤ C

∫

Rn\BR
|x2 − y|α1+α2 [ϕ2]Cα2 (Rn)[ϕ2]Cα2 (Rn)

|x1 − x2|2β−2s

|x2 − y|n+2β
dy

≤ CRα1+α2−2βr2β−2sK .

This proves that |J12| ≤ CRα1+α2−2βr2β−2sK. Changing the roles of α1 and α2 we
obtain the same bound for |J21|.

Bound of J22. Using again ϕi(xi) = 0, i = 1, 2, we write

J22 =

∫

Rn\BR

(
ϕ1(x1)− ϕ1(y)

)(
ϕ2(x1)− ϕ2(y)

)( 1

|x1 − y|n+2s
− 1

|x2 − y|n+2s

)
dy .

Hence, using again (1.42),

|J22| ≤ C

∫

Rn\BR
|x1 − y|α1+α2 [ϕ2]C0,α2 (Rn)[ϕ2]C0,α2 (Rn)

|x1 − x2|2β−2s

|x1 − y|n+2β
dy

≤ CRα1+α2−2βr2β−2sK .

Summarizing, we have proven that for all x0 such that dx = 2R and for all x1, x2 ∈
BR/2(x0) it holds

|Is(δs0, w)(x0)| ≤ CRα1−α2−2sK

and
|Is(δs0, w)(x1)− Is(δs0, w)(x2)|

|x1 − x2|2β−2s
≤ CRα1+α2−2β

(
[w]

(−α)
α+s;U + [w]Cα(Rn)

)
.

This yields (1.41), as shown in Step 2 in the proof of Lemma 1.2.10.
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Next we prove Lemma 1.4.1.

Proof of Lemma 1.4.1. The distance function δ0 is C1,1 in Ωρ0 and since U ⊂ Ωρ0 we
have dx ≤ δ0(x) for all x ∈ U . Hence, it follows that

[δs0]Cs(Rn) + [δs0]
(−s)
β;U ≤ C(Ω, β)

for all β ∈ [s, 2].
Then, applying Lemma 1.4.2 with w1 = w, w2 = δs0, α1 = α, α2 = s, and β = s+α,

we obtain

‖Is(w, δs0)‖(s−α)
2α;U ≤ C

(
[w]Cα(Rn) + [w]

(−α)
α+s;U

)
,

and hence (1.40) follows.

Using Lemma 1.4.1 we can now prove Theorem 1.1.5 and Corollary 1.1.6.

Proof of Theorem 1.1.5. Let U ⊂⊂ Ωρ0 . We prove first that there exist α ∈ (0, 1) and
C, depending only on s and Ω —and not on U—, such that

‖u/δs‖(−α)
α+2s;U ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
.

Then, letting U ↑ Ωρ0 we will find that this estimate holds in Ωρ0 with the same
constant.

To prove this, note that by Theorem 1.1.2 we have

‖u/δs‖Cα(Ω) ≤ C
(
s,Ω

)
‖g‖L∞(Ω) .

Recall that v denotes the Cα(Rn) extension of u/δs|Ω given by Lemma 1.3.8, which
satisfies ‖v‖Cα(Rn) = ‖u/δs‖Cα(Ω). Since u ∈ Cα+2s(Ω) and δ ∈ C1,1(Ωρ0), it is clear

that ‖v‖(−α)
α+2s;U <∞ —it is here where we use that we are in a subdomain U and not

in Ωρ0 . Next we obtain an a priori bound for this seminorm in U . To do it, we use the
equation (1.39) for v:

(−∆)sv =
1

δs

(
g(x)− v(−∆)sδs0 + I(δs0, v)

)
in Ωρ0 = {x ∈ Ω : δ(x) < ρ0} .

Now we will se that this equation and Lemma 1.2.10 lead to an a priori bound for
‖v‖(−α)

α+2s;U . To apply Lemma 1.2.10, we need to bound ‖(−∆)sv‖(2s−α)
α;U . Let us examine

the three terms on the right hand side of the equation.
First term. Using that

dx = dist(x, ∂U) < dist(x, ∂Ω) = δ(x)

for all x ∈ U we obtain that, for all α ≤ s,

‖δ−sg‖(2s−α)
α;U ≤ C

(
s,Ω

)
‖g‖(s−α)

α;Ω .

Second term. We know from Lemma 1.3.9 that, for α ≤ min{s, 1− s},

‖(−∆)sδs0‖Cα(Ωρ0 ) ≤ C
(
s,Ω) .
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Hence,

‖δ−sv(−∆)sδs0‖
(2s−α)
α;U ≤ diam(Ω)s‖δ−sv(−∆)sδs0‖

(s−α)
α;U ≤ C

(
s,Ω

)
‖v‖Cα(Rn)

≤ C
(
s,Ω

)
‖g‖L∞(Ω) .

Third term. From Lemma 1.4.1 we know that

‖I(v, δs0)‖(s−α)
α;U ≤ C(n, s, α)

(
‖v‖Cα(Rn) + [v]

(−α)
α+s;U

)
,

and hence

‖δ−sI(v, δs0)‖(2s−α)
α;U ≤ C(n, s,Ω, α)

(
‖v‖Cα(Rn) + [v]

(−α)
α+s;U

)

≤ C(n, s,Ω, α, ε0)‖v‖Cα(Rn) + ε0‖v‖(−α)
α+2s;U

for each ε0 > 0. The last inequality is by standard interpolation.
Now, using Lemma 1.2.10 we deduce

‖v‖(−α)
α+2s;U ≤ C

(
‖v‖Cα(Rn) + ‖(−∆)sv‖(2s−α)

α;U

)

≤ C
(
‖v‖Cα(Rn) + ‖δ−sg‖(2s−α)

α;U + ‖δ−sv(−∆)sδs0‖
(2s−α)
α;U + ‖I(v, δs0)‖(s−α)

α;U

)

≤ C(s,Ω, α, ε0)
(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
+ Cε0‖v‖(−α)

α+2s;U ,

and choosing ε0 small enough we obtain

‖v‖(−α)
α+2s;U ≤ C

(
‖g‖L∞(Ω) + ‖g‖(s−α)

α;Ω

)
.

Furthermore, letting U ↑ Ωρ0 we obtain that the same estimate holds with U replaced
by Ωρ0 .

Finally, in Ω \ Ωρ0 we have that u is Cα+2s and δs is uniformly positive and C0,1.
Thus, we have u/δs ∈ Cγ(Ω \ Ωρ0), where γ = min{1, α + 2s}, and the theorem
follows.

Next we give the

Proof of Corollary 1.1.6. (a) It follows from Proposition 1.1.1 that u ∈ Cs(Rn). The
interior estimate follow by applying repeatedly Proposition 1.1.4.

(b) It follows from Theorem 1.1.2 that u/δs|Ω ∈ Cα(Ω). The interior estimate
follows from Theorem 1.1.5.

The following two lemmas are closely related to Lemma 1.4.2 and are needed in
[250] and in Remark 1.2.11 of this paper.

Lemma 1.4.3. Let U be an open domain and α and β be such that α ≤ s < β and
β−s is not an integer. Let k be an integer such that β = k+β′ with β′ ∈ (0, 1]. Then,

[(−∆)s/2w]
(s−α)
β−s;U ≤ C

(
‖w‖Cα(Rn) + ‖w‖(−α)

β;U

)
, (1.43)

for all w with finite right hand side. The constant C depends only on n, s, α, and β.
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Proof. Let x0 ∈ U and R = dx0/2, and denote Bρ = Bρ(x0). Let η be a smooth cutoff
function such that η ≡ 1 on B1(0) and η ≡ 0 outside B3/2(0). Define

ηR(x) = η

(
x− x0

R

)
and w̄ =

(
w − w(x0)

)
ηR .

Note that we have

‖w̄‖L∞(Rn) = ‖w̄‖L∞(B3R/2) ≤
(

3R

2

)α
[w]Cα(Rn) .

In addition, for each 1 ≤ l ≤ k

‖Dlw̄‖L∞(Rn) ≤ C

l∑

m=0

‖Dm(w − w(x0))Dl−mηR‖L∞(B3R/2)

≤ CR−l+α

(
[w]Cα(Rn) +

l∑

m=1

[w]
(−α)
m,U

)
.

Hence, by interpolation, for each 0 ≤ l ≤ k − 1

‖Dlw̄‖Cl+β′ (Rn) ≤ CR−l−β
′+α

(
[w]Cα(Rn) +

l∑

m=1

[w]
(−α)
m,U

)
,

and therefore

[Dkw̄]Cβ′ (Rn) ≤ CR−β+α‖w‖(−α)
β;U . (1.44)

Let ϕ = w − w(x0) − w̄ and observe that ϕ vanishes in BR and, hence, ϕ(x1) =
ϕ(x2) = 0.

Next we proceed differently if β′ > s or if β′ < s. This is because Cβ−s equals
either Ck,β′−s or Ck−1,1+β′−s.

Case 1. Assume β′ > s. Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). We want to bound
|Dk(−∆)s/2w(x1)−Dk(−∆)s/2w(x2)|, where Dk denotes any k-th derivative with re-
spect to a fixed multiindex. We have

(−∆)s/2w = (−∆)s/2w̄ + (−∆)s/2ϕ in BR/2 .

Then,

Dk(−∆)s/2w(x1)−Dk(−∆)s/2w(x2) = cn, s
2
(J1 + J2) ,

where

J1 =

∫

Rn

{
Dkw̄(x1)−Dkw̄(y)

|x1 − y|n+s
− Dkw̄(x2)−Dkw̄(y)

|x2 − y|n+s

}
dy

and

J2 = Dk

∫

Rn\BR

−ϕ(y)

|x1 − y|n+s
dy −Dk

∫

Rn\BR

−ϕ(y)

|x2 − y|n+s
dy .
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To bound |J1| we proceed as follows. Let r = |x1 − x2|. Then, using (1.44),

|J1| =
∣∣∣∣
∫

Rn

Dkw̄(x1)−Dkw̄(x1 + z)−Dkw̄(x2) +Dkw̄(x2 + z)

|z|n+s
dz

∣∣∣∣

≤
∫

Br

Rα−β‖w‖(−α)
β;U |z|β

′

|z|n+s
dz +

∫

Rn\Br

Rα−β‖w‖(−α)
β;U rβ

′

|z|n+s
dz

≤ CRα−βrβ
′−s‖w‖(−α)

β;U .

Let us bound now |J2|. Writing Φ(z) = |z|−n−s and using that ϕ(x0) = 0,

|J2| =
∣∣∣∣
∫

Rn\BR
ϕ(y)

(
DkΦ(x1 − y)−DkΦ(x2 − y)

)
dy

∣∣∣∣

≤ C

∫

Rn\BR
|x0 − y|α[w]Cα(Rn)

|x1 − x2|β
′−s

|x0 − y|n+β
dy

≤ CRα−βrβ
′−s[w]Cα(Rn),

where we have used that

|DkΦ(z1 − z)−DkΦ(z2 − z)| ≤ C|z1 − z2|β
′−s|z|−n−β

for all z1, z2 in BR/2(0) and z ∈ Rn \BR.
Hence, we have proved that

[(−∆)s/2w]Cβ−s(BR(x0)) ≤ CRα−β‖w‖(−α)
β;U .

Case 2. Assume β′ < s. Let x1, x2 ∈ BR/2(x0) ⊂ B2R(x0). We want to bound
|Dk−1(−∆)s/2w(x1)−Dk−1(−∆)s/2w(x2)|. We proceed as above but we now use

|Dk−1w̄(x1)−Dk−1w̄(x1 + y)−Dk−1w̄(x2) +Dk−1w̄(x2 + y)| ≤
≤
∣∣Dkw̄(x1)−Dkw̄(x2)

∣∣ |y|+ |y|1+β′‖w̄‖Cβ(Rn)

≤
(
|x1 − x2|β

′ |y|+ |y|1+β′
)
Rα−β‖w‖(−α)

β;U

in Br, and

|Dk−1w̄(x1)−Dk−1w̄(x1 + y)−Dk−1w̄(x2) +Dk−1w̄(x2 + y)| ≤
≤
∣∣Dkw̄(x1)−Dkw̄(x1 + y)

∣∣ |x1 − x2|+ |x1 − x2|1+β′‖w̄‖Cβ(Rn)

≤
(
|y|β′|x1 − x2|+ |x1 − x2|1+β′

)
Rα−β‖w‖(−α)

β;U

in Rn\Br. Then, as in Case 1 we obtain [(−∆)s/2w]Cβ−s(BR(x0)) ≤ CRα−β‖w‖(−α)
β;U .

This yields (1.43), as in Step 2 of Lemma 1.2.10.

Next lemma is a variation of the previous one and gives a pointwise bound for
(−∆)s/2w. It is used in Remark 1.2.11.

Lemma 1.4.4. Let U ⊂ Rn be an open set, and let β > s. Then, for all x ∈ U

|(−∆)s/2w(x)| ≤ C(‖w‖Cs(Rn) + ‖w‖(−s)
β;U )

(
1 + | log dist(x, ∂U)|

)
,

whenever w has finite right hand side. The constant C depends only on n, s, and β.
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Proof. We may assume β < 1. Let x0 ∈ U and R = dx0/2, and define w̄ and ϕ as in
the proof of the previous lemma. Then,

(−∆)s/2w(x0) = (−∆)s/2w̄(x0) + (−∆)s/2ϕ(x0) = cn, s
2
(J1 + J2),

where

J1 =

∫

Rn

w̄(x0)− w̄(x0 + z)

|z|n+s
dz and J2 =

∫

Rn\BR

−ϕ(x0 + z)

|z|n+s
dz.

With similar arguments as in the previous proof we readily obtain |J1| ≤ C(1 +

| logR|)‖w‖(−s)
β;U and |J2| ≤ C(1 + | logR|)‖w‖Cs(Rn).

1.5 Appendix: Basic tools and barriers

In this appendix we prove Proposition 1.3.1 and Lemmas 1.3.2 and 1.2.6. Proposition
1.3.1 is well-known (see [66]), but for the sake of completeness we sketch here a proof
that uses the Caffarelli-Silvestre extension problem [68].

Proof of Proposition 1.3.1. Let (x, y) and (r, θ) be Cartesian and polar coordinates of
the plane. The coordinate θ ∈ (−π, π) is taken so that {θ = 0} on {y = 0, x > 0}. Use
that the function rs cos(θ/2)2s is a solution in the half-plane {y > 0} to the extension
problem [68],

div(y1−2s∇u) = 0 in {y > 0},
and that its trace on y = 0 is ϕ0.

The fractional Kelvin transform has been studied thoroughly in [31].

Proposition 1.5.1 (Fractional Kelvin transform). Let u be a smooth bounded function
in Rn\{0}. Let x 7→ x∗ = x/|x|2 be the inversion with respect to the unit sphere. Define
u∗(x) = |x|2s−nu(x∗). Then,

(−∆)su∗(x) = |x|−2s−n(−∆)su(x∗) , (1.45)

for all x 6= 0.

Proof. Let x0 ∈ Rn \{0}. By subtracting a constant to u∗ and using (−∆)s|x|2s−n = 0
for x 6= 0, we may assume u∗(x0) = u(x∗0) = 0. Recall that

|x− y| = |x
∗ − y∗|
|x∗||y∗|

.

Thus, using the change of variables z = y∗ = y/|y|2,

(−∆)su∗(x0) = cn,s PV

∫

Rn

−u∗(y)

|x0 − y|n+2s
dy

= cn,s PV

∫

Rn

−|y|2s−nu(y∗)

|x∗0 − y∗|n+2s
|x∗0|n+2s|y∗|n+2s dy

= cn,s|x0|−n−2s PV

∫

Rn

−|z|n−2su(z)

|x∗0 − z|n+2s
|z|n+2s |z|−2ndz

= cn,s|x0|−n−2s PV

∫

Rn

−u(z)

|x∗0 − z|n+2s
dz

= |x0|−n−2s(−∆)su(x∗0) .
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Now, using Proposition 1.5.1 we prove Lemma 1.2.6.

Proof of Lemma 1.2.6. Let us denote by ψ (instead of u) the explicit solution (1.4) to
problem (1.3) in B1, which satisfies





(−∆)sψ = 1 in B1

ψ ≡ 0 in Rn \B1

0 < ψ < C(1− |x|)s in B1 .

(1.46)

From ψ, the supersolution ϕ1 in the exterior of the ball is readily built using the
fractional Kelvin transform. Indeed, let ξ be a radial smooth function satisfying ξ ≡ 1
in Rn \B5 and ξ ≡ 0 in B4, and define ϕ1 by

ϕ1(x) = C|x|2s−nψ(1− |x|−1) + ξ(x) . (1.47)

Observe that (−∆)sξ ≥ −C2 in B4, for some C2 > 0. Hence, if we take C ≥ 42s+n(1 +
C2), using (1.45), we have

(−∆)sϕ1(x) ≥ C|x|−2s−n + (−∆)sξ(x) ≥ 1 in B4 .

Now it is immediate to verify that ϕ1 satisfies (1.6) for some c1 > 0.
To see that ϕ1 ∈ Hs

loc(Rn) we observe that from (1.47) it follows

|∇ϕ1(x)| ≤ C(|x| − 1)s−1 in Rn \B1

and hence, using Lemma 1.4.4, we have (−∆)s/2ϕ1 ∈ Lploc(Rn) for all p <∞.

Next we prove Lemma 1.3.2.

Proof of Lemma 1.3.2. We define

ψ1(x) = (1− |x|2)sχB1(x) .

Since (1.4) is the solution of problem (1.3), we have (−∆)sψ1 is bounded in B1. Hence,
for C > 0 large enough the function ψ = ψ1 +CχB1/4

satisfies (−∆)sψ ≤ 0 in B1 \B1/4

and it can be used as a viscosity subsolution. Note that ψ is upper semicontinuous,
as required to viscosity subsolutions, and it satisfies pointwise (if C is large enough)





ψ ≡ 0 in Rn \B1

(−∆)sψ ≤ 0 in B1 \B1/4

ψ = 1 in B1/4

ψ(x) ≥ c(1− |x|)s in B1.

If we want a subsolution which is continuous and Hs(Rn) we may construct it as
follows. We consider the viscosity solution (which is also a weak solution by Remark
1.2.11) of 




(−∆)sϕ2 = 0 in B1 \B1/4

ϕ2 ≡ 0 in Rn \B1

ϕ2 = 1 in B1/4.

Using ψ as a lower barrier, it is now easy to prove that ϕ2 satisfies (1.16) for some
constant c2 > 0.





2Chapter Two

THE POHOZAEV IDENTITY FOR THE
FRACTIONAL LAPLACIAN

In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem
(−∆)su = f(u) in Ω, u ≡ 0 in Rn\Ω. Here, s ∈ (0, 1), (−∆)s is the fractional
Laplacian in Rn, and Ω is a bounded C1,1 domain.

To establish the identity we use, among other things, that if u is a bounded solution
then u/δs|Ω is Cα up to the boundary ∂Ω, where δ(x) = dist(x, ∂Ω). In the fractional
Pohozaev identity, the function u/δs|∂Ω plays the role that ∂u/∂ν plays in the classical
one. Surprisingly, from a nonlocal problem we obtain an identity with a boundary
term (an integral over ∂Ω) which is completely local.

As an application of our identity, we deduce the nonexistence of nontrivial solutions
in star-shaped domains for supercritical nonlinearities.

2.1 Introduction and results

Let s ∈ (0, 1) and consider the fractional elliptic problem

{
(−∆)su = f(u) in Ω

u = 0 in Rn\Ω (2.1)

in a bounded domain Ω ⊂ Rn, where

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy (2.2)

is the fractional Laplacian. Here, cn,s is a normalization constant given by (2.50).
When s = 1, a celebrated result of S. I. Pohozaev states that any solution of (2.1)

satisfies an identity, which is known as the Pohozaev identity [237]. This classical result
has many consequences, the most immediate one being the nonexistence of nontrivial
bounded solutions to (2.1) for supercritical nonlinearities f .

The aim of this paper is to give the fractional version of this identity, that is, to
prove the Pohozaev identity for problem (2.1) with s ∈ (0, 1). This is the main result
of the paper, and it reads as follows. Here, since the solution u is bounded, the notions
of weak and viscosity solutions agree (see Remark 2.1.5).
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Theorem 2.1.1. Let Ω be a bounded and C1,1 domain, f be a locally Lipschitz function,
u be a bounded solution of (2.1), and

δ(x) = dist(x, ∂Ω).

Then,
u/δs|Ω ∈ Cα(Ω) for some α ∈ (0, 1),

meaning that u/δs|Ω has a continuous extension to Ω which is Cα(Ω), and the following
identity holds

(2s− n)

∫

Ω

uf(u)dx+ 2n

∫

Ω

F (u)dx = Γ(1 + s)2

∫

∂Ω

( u
δs

)2

(x · ν)dσ,

where F (t) =
∫ t

0
f , ν is the unit outward normal to ∂Ω at x, and Γ is the Gamma

function.

Note that in the fractional case the function u/δs|∂Ω plays the role that ∂u/∂ν plays
in the classical Pohozaev identity. Moreover, if one sets s = 1 in the above identity
one recovers the classical one, since u/δ|∂Ω = ∂u/∂ν and Γ(2) = 1.

It is quite surprising that from a nonlocal problem (2.1) we obtain a completely local
boundary term in the Pohozaev identity. That is, although the function u has to be
defined in all Rn in order to compute its fractional Laplacian at a given point, knowing

u only in a neighborhood of the boundary we can already compute
∫
∂Ω

(
u
δs

)2
(x · ν)dσ.

Recall that problem (2.1) has an equivalent formulation given by the Caffarelli-
Silvestre [68] associated extension problem —a local PDE in Rn+1

+ . For such extension,
some Pohozaev type identities are proved in [33, 46, 58]. However, these identities
contain boundary terms on the cylinder ∂Ω × R+ or in a half-sphere ∂B+

R ∩ Rn+1
+ ,

which have no clear interpretation in terms of the original problem in Rn. The proofs
of these identities are similar to the one of the classical Pohozaev identity and use
PDE tools (differential calculus identities and integration by parts).

Sometimes it may be useful to write the Pohozaev identity as

2s[u]2Hs(Rn) − 2nE [u] = Γ(1 + s)2

∫

∂Ω

( u
δs

)2

(x · ν)dσ,

where E is the energy functional

E [u] =
1

2
[u]2Hs(Rn) −

∫

Ω

F (u)dx, (2.3)

F ′ = f , and

[u]Hs(Rn) = ‖|ξ|sF [u]‖L2(Rn) =
cn,s
2

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy. (2.4)

We have used that if u and v are Hs(Rn) functions and u ≡ v ≡ 0 in Rn \ Ω, then

∫

Ω

v(−∆)su dx =

∫

Rn
(−∆)s/2u(−∆)s/2v dx, (2.5)
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which yields ∫

Ω

uf(u)dx =

∫

Rn
|(−∆)s/2u|2dx = [u]Hs(Rn).

As a consequence of our Pohozaev identity we obtain nonexistence results for prob-
lem (2.1) with supercritical nonlinearities f in star-shaped domains Ω. In Section 2.2
we will give, however, a short proof of this result using our method to establish the
Pohozaev identity. This shorter proof will not require the full strength of the identity.

Corollary 2.1.2. Let Ω be a bounded, C1,1, and star-shaped domain, and let f be a
locally Lipschitz function. If

n− 2s

2n
uf(u) ≥

∫ u

0

f(t)dt for all u ∈ R, (2.6)

then problem (2.1) admits no positive bounded solution. Moreover, if the inequality in
(2.6) is strict, then (2.1) admits no nontrivial bounded solution.

For the pure power nonlinearity, the result reads as follows.

Corollary 2.1.3. Let Ω be a bounded, C1,1, and star-shaped domain. If p ≥ n+2s
n−2s

,
then problem {

(−∆)su = |u|p−1u in Ω
u = 0 in Rn\Ω (2.7)

admits no positive bounded solution. Moreover, if p > n+2s
n−2s

then (2.7) admits no
nontrivial bounded solution.

The nonexistence of changing-sign solutions to problem (2.7) for the critical power
p = n+2s

n−2s
remains open.

Recently, M. M. Fall and T. Weth [129] have also proved a nonexistence result
for problem (2.1) with the method of moving spheres. In their result no regularity
of the domain is required, but they need to assume the solutions to be positive. Our
nonexistence result is the first one allowing changing-sign solutions. In addition, their
condition on f for the nonexistence —(2.16) in our Remark 2.1.14— is more restrictive
than ours, i.e., (2.6) and, when f = f(x, u), condition (2.15).

The existence of weak solutions u ∈ Hs(Rn) to problem (2.1) for subcritical f has
been recently proved by R. Servadei and E. Valdinoci [268].

The Pohozaev identity will be a consequence of the following two results. The first
one establishes Cs(Rn) regularity for u, Cα(Ω) regularity for u/δs|Ω, and higher order
interior Hölder estimates for u and u/δs. It is proved in our paper [249].

Throughout the article, and when no confusion is possible, we will use the notation
Cβ(U) with β > 0 to refer to the space Ck,β′(U), where k is the is greatest integer such
that k < β, and β′ = β− k. This notation is specially appropriate when we work with
(−∆)s in order to avoid the splitting of different cases in the statements of regularity
results. According to this, [·]Cβ(U) denotes the Ck,β′(U) seminorm

[u]Cβ(U) = [u]Ck,β′ (U) = sup
x,y∈U, x 6=y

|Dku(x)−Dku(y)|
|x− y|β′

.

Here, by f ∈ C0,1
loc (Ω × R) we mean that f is Lipschitz in every compact subset of

Ω× R.
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Theorem 2.1.4 ([249]). Let Ω be a bounded and C1,1 domain, f ∈ C0,1
loc (Ω×R), u be

a bounded solution of

{
(−∆)su = f(x, u) in Ω

u = 0 in Rn\Ω, (2.8)

and δ(x) = dist(x, ∂Ω). Then,

(a) u ∈ Cs(Rn) and, for every β ∈ [s, 1 + 2s), u is of class Cβ(Ω) and

[u]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρs−β for all ρ ∈ (0, 1).

(b) The function u/δs|Ω can be continuously extended to Ω. Moreover, u/δs belongs
to Cα(Ω) for some α ∈ (0, 1) depending only on Ω, s, f , ‖u‖L∞(Rn). In addition,
for all β ∈ [α, s+ α], it holds the estimate

[u/δs]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρα−β for all ρ ∈ (0, 1).

The constant C depends only on Ω, s, f , ‖u‖L∞(Rn), and β.

Remark 2.1.5. For bounded solutions of (2.8), the notions of energy and viscosity
solutions coincide (see more details in Remark 2.9 in [249]). Recall that u is an energy
(or weak) solution of problem (2.8) if u ∈ Hs(Rn), u ≡ 0 in Rn\Ω, and

∫

Rn
(−∆)s/2u(−∆)s/2v dx =

∫

Ω

f(x, u)v dx

for all v ∈ Hs(Rn) such that v ≡ 0 in Rn \ Ω.
By Theorem 2.1.4 (a), any bounded weak solution is continuous up to the boundary

and solve equation (2.8) in the classical sense, i.e., in the pointwise sense of (2.2).
Therefore, it follows from the definition of viscosity solution (see [69]) that bounded
weak solutions are also viscosity solutions.

Reciprocally, by uniqueness of viscosity solutions [69] and existence of weak solution
for the linear problem (−∆)sv = f(x, u(x)), any viscosity solution u belongs to Hs(Rn)
and it is also a weak solution. See [249] for more details.

The second result towards Theorem 2.1.1 is the new Pohozaev identity for the
fractional Laplacian. The hypotheses of the following proposition are satisfied for any
bounded solution u of (2.8) whenever f ∈ C0,1

loc (Ω × R), by our results in [249] (see
Theorem 2.1.4 above).

Proposition 2.1.6. Let Ω be a bounded and C1,1 domain. Assume that u is a Hs(Rn)
function which vanishes in Rn \ Ω, and satisfies

(a) u ∈ Cs(Rn) and, for every β ∈ [s, 1 + 2s), u is of class Cβ(Ω) and

[u]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρs−β for all ρ ∈ (0, 1).
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(b) The function u/δs|Ω can be continuously extended to Ω. Moreover, there exists
α ∈ (0, 1) such that u/δs ∈ Cα(Ω). In addition, for all β ∈ [α, s + α], it holds
the estimate

[u/δs]Cβ({x∈Ω : δ(x)≥ρ}) ≤ Cρα−β for all ρ ∈ (0, 1).

(c) (−∆)su is pointwise bounded in Ω.

Then, the following identity holds
∫

Ω

(x · ∇u)(−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx− Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

(x · ν)dσ,

where ν is the unit outward normal to ∂Ω at x, and Γ is the Gamma function.

Remark 2.1.7. Note that hypothesis (a) ensures that (−∆)su is defined pointwise in
Ω. Note also that hypotheses (a) and (c) ensure that the integrals appearing in the
above identity are finite.

Remark 2.1.8. By Propositions 1.1 and 1.4 in [249], hypothesis (c) guarantees that
u ∈ Cs(Rn) and u/δs ∈ Cα(Ω), but not the interior estimates in (a) and (b). However,
under the stronger assumption (−∆)su ∈ Cα(Ω) the whole hypothesis (b) is satisfied;
see Theorem 1.5 in [249].

As a consequence of Proposition 2.1.6, we will obtain the Pohozaev identity (Theo-
rem 2.1.1) and also a new integration by parts formula related to the fractional Lapla-
cian. This integration by parts formula follows from using Proposition 2.1.6 with two
different origins.

Theorem 2.1.9. Let Ω be a bounded and C1,1 domain, and u and v be functions
satisfying the hypotheses in Proposition 2.1.6. Then, the following identity holds

∫

Ω

(−∆)su vxi dx = −
∫

Ω

uxi(−∆)sv dx+ Γ(1 + s)2

∫

∂Ω

u

δs
v

δs
νi dσ

for i = 1, ..., n, where ν is the unit outward normal to ∂Ω at x, and Γ is the Gamma
function.

To prove Proposition 2.1.6 we first assume the domain Ω to be star-shaped with
respect to the origin. The result for general domains will follow from the star-shaped
case, as seen in Section 2.5. When the domain is star-shaped, the idea of the proof is
the following. First, one writes the left hand side of the identity as

∫

Ω

(x · ∇u)(−∆)su dx =
d

dλ

∣∣∣∣
λ=1+

∫

Ω

uλ(−∆)su dx,

where
uλ(x) = u(λx).

Note that uλ ≡ 0 in Rn\Ω, since Ω is star-shaped and we take λ > 1 in the above
derivative. As a consequence, we may use (2.5) with v = uλ and make the change of
variables y =

√
λx, to obtain

∫

Ω

uλ(−∆)su dx =

∫

Rn
(−∆)s/2uλ(−∆)s/2u dx = λ

2s−n
2

∫

Rn
w√λw1/

√
λ dy,
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where
w(x) = (−∆)s/2u(x).

Thus,
∫

Ω

(x · ∇u)(−∆)su dx =
d

dλ

∣∣∣∣
λ=1+

{
λ

2s−n
2

∫

Rn
w√λw1/

√
λ dy

}

=
2s− n

2

∫

Rn
w2dx+

d

dλ

∣∣∣∣
λ=1+

I√λ

=
2s− n

2

∫

Rn
u(−∆)su dx+

1

2

d

dλ

∣∣∣∣
λ=1+

Iλ,

(2.9)

where

Iλ =

∫

Rn
wλw1/λdy.

Therefore, Proposition 2.1.6 is equivalent to the following equality

− d

dλ

∣∣∣∣
λ=1+

∫

Rn
wλw1/λ dy = Γ(1 + s)2

∫

∂Ω

( u
δs

)2

(x · ν)dσ. (2.10)

The quantity d
dλ
|λ=1+

∫
Rn wλw1/λ vanishes for any C1(Rn) function w, as can be

seen by differentiating under the integral sign. Instead, we will prove that the function
w = (−∆)s/2u has a singularity along ∂Ω, and that (2.10) holds.

Next we give an easy argument to give a direct proof of the nonexistence result for
supercritical nonlinearities without using neither equality (2.10) nor the behavior of
(−∆)s/2u; the detailed proof is given in Section 2.2.

Indeed, in contrast with the delicate equality (2.10), the inequality

d

dλ

∣∣∣∣
λ=1+

Iλ ≤ 0 (2.11)

follows easily from Cauchy-Schwarz. Namely,

Iλ ≤ ‖wλ‖L2(Rn)‖w1/λ‖L2(Rn) = ‖w‖2
L2(Rn) = I1,

and hence (2.11) follows.
With this simple argument, (2.9) leads to

−
∫

Ω

(x · ∇u)(−∆)su dx ≥ n− 2s

2

∫

Ω

u(−∆)su dx,

which is exactly the inequality used to prove the nonexistence result of Corollary 2.1.2
for supercritical nonlinearities. Here, one also uses that, when u is a solution of (2.1),
then∫

Ω

(x · ∇u)(−∆)su dx =

∫

Ω

(x · ∇u)f(u)dx =

∫

Ω

x · ∇F (u)dx = −n
∫

Ω

F (u)dx.

This argument can be also used to obtain nonexistence results (under some decay
assumptions) for weak solutions of (2.1) in the whole Rn; see Remark 2.2.2.

The identity (2.10) is the difficult part of the proof of Proposition 2.1.6. To prove
it, it will be crucial to know the precise behavior of (−∆)s/2u near ∂Ω —from both
inside and outside Ω. This is given by the following result.
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Proposition 2.1.10. Let Ω be a bounded and C1,1 domain, and u be a function such
that u ≡ 0 in Rn\Ω and that u satisfies (b) in Proposition 2.1.6. Then, there exists a
Cα(Rn) extension v of u/δs|Ω such that

(−∆)s/2u(x) = c1

{
log− δ(x) + c2χΩ(x)

}
v(x) + h(x) in Rn, (2.12)

where h is a Cα(Rn) function, log− t = min{log t, 0},

c1 =
Γ(1 + s) sin

(
πs
2

)

π
, and c2 =

π

tan
(
πs
2

) . (2.13)

Moreover, if u also satisfies (a) in Proposition 2.1.6, then for all β ∈ (0, 1 + s)

[(−∆)s/2u]Cβ({x∈Rn: δ(x)≥ρ}) ≤ Cρ−β for all ρ ∈ (0, 1), (2.14)

for some constant C which does not depend on ρ.

The values (2.13) of the constants c1 and c2 in (2.12) arise in the expression for the
s/2 fractional Laplacian, (−∆)s/2, of the 1D function (x+

n )s, and they are computed
in the Appendix.

Writing the first integral in (2.10) using spherical coordinates, equality (2.10) re-
duces to a computation in dimension 1, stated in the following proposition. This result
will be used with the function ϕ in its statement being essentially the restriction of
(−∆)s/2u to any ray through the origin. The constant γ will be chosen to be any value
in (0, s).

Proposition 2.1.11. Let A and B be real numbers, and

ϕ(t) = A log− |t− 1|+Bχ[0,1](t) + h(t),

where log− t = min{log t, 0} and h is a function satisfying, for some constants α and
γ in (0, 1), and C0 > 0, the following conditions:

(i) ‖h‖Cα([0,∞)) ≤ C0.

(ii) For all β ∈ [γ, 1 + γ]

‖h‖Cβ((0,1−ρ)∪(1+ρ,2)) ≤ C0ρ
−β for all ρ ∈ (0, 1).

(iii) |h′(t)| ≤ C0t
−2−γ and |h′′(t)| ≤ C0t

−3−γ for all t > 2.

Then,

− d

dλ

∣∣∣∣
λ=1+

∫ ∞

0

ϕ (λt)ϕ

(
t

λ

)
dt = A2π2 +B2.

Moreover, the limit defining this derivative is uniform among functions ϕ satisfying
(i)-(ii)-(iii) with given constants C0, α, and γ.
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From this proposition one obtains that the constant in the right hand side of (2.10),
Γ(1 + s)2, is given by c2

1(π2 + c2
2). The constant c2 comes from an involved expression

and it is nontrivial to compute (see Proposition 2.3.2 in Section 5 and the Appendix).
It was a surprise to us that its final value is so simple and, at the same time, that the
Pohozaev constant c2

1(π2 + c2
2) also simplifies and becomes Γ(1 + s)2.

Instead of computing explicitly the constants c1 and c2, an alternative way to obtain
the constant in the Pohozaev identity consists of using an explicit nonlinearity and
solution to problem (2.1) in a ball. The one which is known [154, 24] is the solution
to problem {

(−∆)su = 1 in Br(x0)
u = 0 in Rn\Br(x0).

It is given by

u(x) =
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

(
r2 − |x− x0|2

)s
in Br(x0).

From this, it is straightforward to find the constant Γ(1+s)2 in the Pohozaev identity;
see Remark 2.6.4 in the Appendix.

Using Theorem 2.1.4 and Proposition 2.1.6, we can also deduce a Pohozaev identity
for problem (2.8), that is, allowing the nonlinearity f to depend also on x. In this
case, the Pohozaev identity reads as follows.

Proposition 2.1.12. Let Ω be a bounded and C1,1 domain, f ∈ C0,1
loc (Ω × R), u be a

bounded solution of (2.8), and δ(x) = dist(x, ∂Ω). Then

u/δs|Ω ∈ Cα(Ω) for some α ∈ (0, 1),

and the following identity holds

(2s− n)

∫

Ω

uf(x, u)dx+ 2n

∫

Ω

F (x, u)dx =

= Γ(1 + s)2

∫

∂Ω

( u
δs

)2

(x · ν)dσ − 2

∫

Ω

x · Fx(x, u)dx,

where F (x, t) =
∫ t

0
f(x, τ)dτ , ν is the unit outward normal to ∂Ω at x, and Γ is the

Gamma function.

From this, we deduce nonexistence results for problem (2.8) with supercritical
nonlinearities f depending also on x. This has been done also in [129] for positive
solutions. Our result allows changing sign solutions as well as a slightly larger class of
nonlinearities (see Remark 2.1.14).

Corollary 2.1.13. Let Ω be a bounded, C1,1, and star-shaped domain, f ∈ C0,1
loc (Ω×R),

and F (x, t) =
∫ t

0
f(x, τ)dτ . If

n− 2s

2
uf(x, t) ≥ nF (x, t) + x · Fx(x, t) for all x ∈ Ω and t ∈ R, (2.15)

then problem (2.8) admits no positive bounded solution. Moreover, if the inequality in
(2.15) is strict, then (2.8) admits no nontrivial bounded solution.
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Remark 2.1.14. For locally Lipschitz nonlinearities f , condition (2.15) is more general
than the one required in [129] for their nonexistence result. Namely, [129] assumes
that for each x ∈ Ω and t ∈ R, the map

λ 7→ λ−
n+2s
n−2sf(λ−

2
n−2sx, λt) is nondecreasing for λ ∈ (0, 1]. (2.16)

Such nonlinearities automatically satisfy (2.15).
However, in [129] they do not need to assume any regularity on f with respect to x.

The paper is organized as follows. In Section 2.2, using Propositions 2.1.10 and
2.1.11 (to be established later), we prove Proposition 2.1.6 (the Pohozaev identity)
for strictly star-shaped domains with respect to the origin. We also establish the
nonexistence results for supercritical nonlinearities, and this does not require any result
from the rest of the paper. In Section 2.3 we establish Proposition 2.1.10, while in
Section 2.4 we prove Proposition 2.1.11. Section 2.5 establishes Proposition 2.1.6 for
non-star-shaped domains and all its consequences, which include Theorems 2.1.1 and
2.1.9 and the nonexistence results. Finally, in the Appendix we compute the constants
c1 and c2 appearing in Proposition 2.1.10.

2.2 Star-shaped domains: Pohozaev identity and
nonexistence

In this section we prove Proposition 2.1.6 for strictly star-shaped domains. We say
that Ω is strictly star-shaped if, for some z0 ∈ Rn,

(x− z0) · ν > 0 for all x ∈ ∂Ω. (2.17)

The result for general C1,1 domains will be a consequence of this strictly star-shaped
case and will be proved in Section 2.5.

The proof in this section uses two of our results: Proposition 2.1.10 on the behavior
of (−∆)s/2u near ∂Ω and the one dimensional computation of Proposition 2.1.11.

The idea of the proof for the fractional Pohozaev identity is to use the integration
by parts formula (2.5) with v = uλ, where

uλ(x) = u(λx), λ > 1,

and then differentiate the obtained identity (which depends on λ) with respect to λ and
evaluate at λ = 1. However, this apparently simple formal procedure requires a quite
involved analysis when it is put into practice. The hypothesis that Ω is star-shaped is
crucially used in order that uλ, λ > 1, vanishes outside Ω so that (2.5) holds.

Proof of Proposition 2.1.6 for strictly star-shaped domains. Let us assume first that Ω
is strictly star-shaped with respect to the origin, that is, z0 = 0.

Let us prove that

∫

Ω

(x · ∇u)(−∆)su dx =
d

dλ

∣∣∣∣
λ=1+

∫

Ω

uλ(−∆)su dx, (2.18)
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where d
dλ

∣∣
λ=1+

is the derivative from the right side at λ = 1. Indeed, let g = (−∆)su.
By assumption (a) g is defined pointwise in Ω, and by assumption (c) g ∈ L∞(Ω).
Then, making the change of variables y = λx and using that suppuλ = 1

λ
Ω ⊂ Ω since

λ > 1, we obtain

d

dλ

∣∣∣∣
λ=1+

∫

Ω

uλ(x)g(x)dx = lim
λ↓1

∫

Ω

u(λx)− u(x)

λ− 1
g(x)dx

= lim
λ↓1

λ−n
∫

λΩ

u(y)− u(y/λ)

λ− 1
g(y/λ)dy

= lim
λ↓1

∫

Ω

u(y)− u(y/λ)

λ− 1
g(y/λ)dy + lim

λ↓1

∫

(λΩ)\Ω

−u(y/λ)

λ− 1
g(y/λ)dy.

By the dominated convergence theorem,

lim
λ↓1

∫

Ω

u(y)− u(y/λ)

λ− 1
g(y/λ) dy =

∫

Ω

(y · ∇u)g(y) dy,

since g ∈ L∞(Ω), |∇u(ξ)| ≤ Cδ(ξ)s−1 ≤ Cλ1−sδ(y)s−1 for all ξ in the segment joining
y and y/λ, and δs−1 is integrable. The gradient bound |∇u(ξ)| ≤ Cδ(ξ)s−1 follows
from assumption (a) used with β = 1. Hence, to prove (2.18) it remains only to show
that

lim
λ↓1

∫

(λΩ)\Ω

−u(y/λ)

λ− 1
g(y/λ)dy = 0.

Indeed, |(λΩ)\Ω| ≤ C(λ− 1) and —by (a)— u ∈ Cs(Rn) and u ≡ 0 outside Ω. Hence,
‖u‖L∞((λΩ)\Ω) → 0 as λ ↓ 1 and (2.18) follows.

Now, using the integration by parts formula (2.5) with v = uλ,

∫

Ω

uλ(−∆)su dx =

∫

Rn
uλ(−∆)su dx

=

∫

Rn
(−∆)s/2uλ(−∆)s/2u dx

= λs
∫

Rn

(
(−∆)s/2u

)
(λx)(−∆)s/2u(x)dx

= λs
∫

Rn
wλw dx,

where

w(x) = (−∆)s/2u(x) and wλ(x) = w(λx).

With the change of variables y =
√
λx this integral becomes

λs
∫

Rn
wλw dx = λ

2s−n
2

∫

Rn
w√λw1/

√
λ dy,

and thus ∫

Ω

uλ(−∆)su dx = λ
2s−n

2

∫

Rn
w√λw1/

√
λ dy.
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Furthermore, this leads to
∫

Ω

(∇u · x)(−∆)su dx =
d

dλ

∣∣∣∣
λ=1+

{
λ

2s−n
2

∫

Rn
w√λw1/

√
λ dy

}

=
2s− n

2

∫

Rn
|(−∆)s/2u|2 dx+

d

dλ

∣∣∣∣
λ=1+

∫

Rn
w√λw1/

√
λ dy

=
2s− n

2

∫

Ω

u(−∆)su dx+
1

2

d

dλ

∣∣∣∣
λ=1+

∫

Rn
wλw1/λ dy.(2.19)

Hence, it remains to prove that

− d

dλ

∣∣∣∣
λ=1+

Iλ = Γ(1 + s)2

∫

∂Ω

( u
δs

)2

(x · ν) dσ, (2.20)

where we have denoted

Iλ =

∫

Rn
wλw1/λ dy. (2.21)

Now, for each θ ∈ Sn−1 there exists a unique rθ > 0 such that rθθ ∈ ∂Ω. Write the
integral (2.21) in spherical coordinates and use the change of variables t = r/rθ:

d

dλ

∣∣∣∣
λ=1+

Iλ =
d

dλ

∣∣∣∣
λ=1+

∫

Sn−1

dθ

∫ ∞

0

rn−1w(λrθ)w
( r
λ
θ
)
dr

=
d

dλ

∣∣∣∣
λ=1+

∫

Sn−1

rθdθ

∫ ∞

0

(rθt)
n−1w(λrθtθ)w

(
rθt

λ
θ

)
dt

=
d

dλ

∣∣∣∣
λ=1+

∫

∂Ω

(x · ν)dσ(x)

∫ ∞

0

tn−1w(λtx)w

(
tx

λ

)
dt,

where we have used that

rn−1
θ dθ =

(
x

|x|
· ν
)
dσ =

1

rθ
(x · ν) dσ

with the change of variables Sn−1 → ∂Ω that maps every point in Sn−1 to its radial
projection on ∂Ω, which is unique because of the strictly star-shapedness of Ω.

Fix x0 ∈ ∂Ω and define

ϕ(t) = t
n−1
2 w (tx0) = t

n−1
2 (−∆)s/2u(tx0).

By Proposition 2.1.10,

ϕ(t) = c1{log− δ(tx0) + c2χ[0,1]}v(tx0) + h0(t)

in [0,∞), where v is a Cα(Rn) extension of u/δs|Ω and h0 is a Cα([0,∞)) function.
Next we will modify this expression in order to apply Proposition 2.1.11.

Using that Ω is C1,1 and strictly star-shaped, it is not difficult to see that |r−rθ|
δ(rθ)

is

a Lipschitz function of r in [0,∞) and bounded below by a positive constant (inde-

pendently of x0). Similarly, |t−1|
δ(tx0)

and min{|t−1|,1}
min{δ(tx0),1} are positive and Lipschitz functions

of t in [0,∞). Therefore,
log− |t− 1| − log− δ(tx0)



64 The Pohozaev identity for the fractional Laplacian

is Lipschitz in [0,∞) as a function of t.
Hence, for t ∈ [0,∞),

ϕ(t) = c1{log− |t− 1|+ c2χ[0,1]}v(tx0) + h1(t),

where h1 is a Cα function in the same interval.
Moreover, note that the difference

v(tx0)− v(x0)

is Cα and vanishes at t = 1. Thus,

ϕ(t) = c1{log− |t− 1|+ c2χ[0,1](t)}v(x0) + h(t)

holds in all [0,∞), where h is Cα in [0,∞) if we slightly decrease α in order to kill the
logarithmic singularity. This is condition (i) of Proposition 2.1.11.

From the expression

h(t) = t
n−1
2 (−∆)s/2u (tx0)− c1{log− |t− 1|+ c2χ[0,1](t)}v(x0)

and from (2.14) in Proposition 2.1.10, we obtain that h satisfies condition (ii) of
Proposition 2.1.11 with γ = s/2.

Moreover, condition (iii) of Proposition 2.1.11 is also satisfied. Indeed, for x ∈
Rn\(2Ω) we have

(−∆)s/2u(x) = cn, s
2

∫

Ω

−u(y)

|x− y|n+s
dy

and hence

|∂i(−∆)s/2u(x)| ≤ C|x|−n−s−1 and |∂ij(−∆)s/2u(x)| ≤ C|x|−n−s−2.

This yields |ϕ′(t)| ≤ Ct
n−1
2
−n−s−1 ≤ Ct−2−γ and |ϕ′′(t)| ≤ Ct

n−1
2
−n−s−2 ≤ Ct−3−γ for

t > 2.
Therefore we can apply Proposition 2.1.11 to obtain

d

dλ

∣∣∣∣
λ=1+

∫ ∞

0

ϕ(λt)ϕ

(
t

λ

)
dt = (v(x0))2 c2

1(π2 + c2
2),

and thus
d

dλ

∣∣∣∣
λ=1+

∫ ∞

0

tn−1w(λtx0)w

(
tx0

λ

)
dt = (v(x0))2 c2

1(π2 + c2
2)

for each x0 ∈ ∂Ω.
Furthermore, by uniform convergence on x0 of the limit defining this derivative

(see Proposition 2.4.2 in Section 2.4), this leads to

d

dλ

∣∣∣∣
λ=1+

Iλ = c2
1(π2 + c2

2)

∫

∂Ω

(x0 · ν)
( u
δs

(x0)
)2

dx0.

Here we have used that, for x0 ∈ ∂Ω, v(x0) is uniquely defined by continuity as

( u
δs

)
(x0) = lim

x→x0, x∈Ω

u(x)

δs(x)
.
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Hence, it only remains to prove that

c2
1(π2 + c2

2) = Γ(1 + s)2.

But

c1 =
Γ(1 + s) sin

(
πs
2

)

π
and c2 =

π

tan
(
πs
2

) ,

and therefore

c2
1(π2 + c2

2) =
Γ(1 + s)2 sin2

(
πs
2

)

π2

(
π2 +

π2

tan2
(
πs
2

)
)

= Γ(1 + s)2 sin2
(πs

2

)(
1 +

cos2
(
πs
2

)

sin2
(
πs
2

)
)

= Γ(1 + s)2.

Assume now that Ω is strictly star-shaped with respect to a point z0 6= 0. Then, Ω is
strictly star-shaped with respect to all points z in a neighborhood of z0. Then, making
a translation and using the formula for strictly star-shaped domains with respect to
the origin, we deduce
∫

Ω

{(x− z) · ∇u} (−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx+

− Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

(x− z) · ν dσ
(2.22)

for each z in a neighborhood of z0. This yields
∫

Ω

uxi(−∆)su dx = −Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

νi dσ (2.23)

for i = 1, ..., n. Thus, by adding to (2.22) a linear combination of (2.23), we obtain
∫

Ω

(x · ∇u)(−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx− Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

x · ν dσ.

Next we prove the nonexistence results of Corollaries 2.1.2, 2.1.3, and 2.1.13 for
supercritical nonlinearities in star-shaped domains. Recall that star-shaped means
x·ν ≥ 0 for all x ∈ ∂Ω. Although these corollaries follow immediately from Proposition
2.1.12 —as we will see in Section 2.5—, we give here a short proof of their second part,
i.e., nonexistence when the inequality (2.6) or (2.15) is strict. That is, we establish
the nonexistence of nontrivial solutions for supercritical nonlinearities (not including
the critical case).

Our proof follows the method above towards the Pohozaev identity but does not
require the full strength of the identity. In addition, in terms of regularity results for
the equation, the proof only needs an easy gradient estimate for solutions u. Namely,

|∇u| ≤ Cδs−1 in Ω,

which follows from part (a) of Theorem 2.1.4, proved in [249].
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Proof of Corollaries 2.1.2, 2.1.3, and 2.1.13 for supercritical nonlinearities. We only have
to prove Corollary 2.1.13, since Corollaries 2.1.2 and 2.1.3 follow immediately from it
by setting f(x, u) = f(u) and f(x, u) = |u|p−1u respectively.

Let us prove that if Ω is star-shaped and u is a bounded solution of (2.8), then

2s− n
2

∫

Ω

uf(x, u)dx+ n

∫

Ω

F (x, u)dx−
∫

Ω

x · Fx(x, u)dx ≥ 0. (2.24)

For this, we follow the beginning of the proof of Proposition 2.1.6 (given above) to
obtain (2.19), i.e., until the identity

∫

Ω

(∇u · x)(−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx+
1

2

d

dλ

∣∣∣∣
λ=1+

Iλ,

where

Iλ =

∫

Rn
wλw1/λ dx, w(x) = (−∆)s/2u(x), and wλ(x) = w(λx).

This step of the proof only need the star-shapedness of Ω (and not the strictly star-
shapedness) and the regularity result |∇u| ≤ Cδs−1 in Ω, which follows from Theorem
2.1.4, proved in [249].

Now, since (−∆)su = f(x, u) in Ω and

(∇u · x)(−∆)su = x · ∇F (x, u)− x · Fx(x, u),

by integrating by parts we deduce

−n
∫

Ω

F (x, u)dx−
∫

Ω

x · Fx(x, u)dx =
2s− n

2

∫

Ω

uf(x, u)dx+
1

2

d

dλ

∣∣∣∣
λ=1+

Iλ.

Therefore, we only need to show that

d

dλ

∣∣∣∣
λ=1+

Iλ ≤ 0. (2.25)

But applying Hölder’s inequality, for each λ > 1 we have

Iλ ≤ ‖wλ‖L2(Rn)‖w1/λ‖L2(Rn) = ‖w‖2
L2(Rn) = I1,

and (2.25) follows.

Remark 2.2.1. For this nonexistence result the regularity of the domain Ω is only used
for the estimate |∇u| ≤ Cδs−1. This estimate only requires Ω to be Lipschitz and
satisfy an exterior ball condition; see [249]. In particular, our nonexistence result for
supercritical nonlinearities applies to any convex domain, such as a square for instance.

Remark 2.2.2. When Ω = Rn or when Ω is a star-shaped domain with respect to
infinity, there are two recent nonexistence results for subcritical nonlinearities. They
use the method of moving spheres to prove nonexistence of bounded positive solutions
in these domains. The first result is due to A. de Pablo and U. Sánchez [236], and
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they obtain nonexistence of bounded positive solutions to (−∆)su = up in all of Rn,
whenever s > 1/2 and 1 < p < n+2s

n−2s
. The second result, by M. Fall and T. Weth [129],

gives nonexistence of bounded positive solutions of (2.8) in star-shaped domains with
respect to infinity for subcritical nonlinearities.

Our method in the previous proof can also be used to prove nonexistence results
for problem (2.7) in star-shaped domains with respect to infinity or in the whole Rn.
However, to ensure that the integrals appearing in the proof are well defined, one must
assume some decay on u and ∇u. For instance, in the supercritical case p > n+2s

n−2s
we

obtain that the only solution to (−∆)su = up in all of Rn decaying as

|u|+ |x · ∇u| ≤ C

1 + |x|β
,

with β > n
p+1

, is u ≡ 0.
In the case of the whole Rn, there is an alternative proof of the nonexistence of

solutions which decay fast enough at infinity. It consists of using a Pohozaev identity
in all of Rn, that is easily deduced from the pointwise equality

(−∆)s(x · ∇u) = 2s(−∆)su+ x · ∇(−∆)su.

The classification of solutions in the whole Rn for the critical exponent p = n+2s
n−2s

was obtained by W. Chen, C. Li, and B. Ou in [94]. They are of the form

u(x) = c

(
µ

µ2 + |x− x0|2

)n−2s
2

,

where µ is any positive parameter and c is a constant depending on n and s.

2.3 Behavior of (−∆)s/2u near ∂Ω

The aim of this section is to prove Proposition 2.1.10. We will split this proof into two
propositions. The first one is the following, and compares the behavior of (−∆)s/2u
near ∂Ω with the one of (−∆)s/2δs0, where δ0(x) = dist(x, ∂Ω)χΩ(x).

Proposition 2.3.1. Let Ω be a bounded and C1,1 domain, u be a function satisfying
(b) in Proposition 2.1.6. Then, there exists a Cα(Rn) extension v of u/δs|Ω such that

(−∆)s/2u(x) = (−∆)s/2δs0(x)v(x) + h(x) in Rn,

where h ∈ Cα(Rn).

Once we know that the behavior of (−∆)s/2u is comparable to the one of (−∆)s/2δs0,
Proposition 2.1.10 reduces to the following result, which gives the behavior of (−∆)sδs0
near ∂Ω.

Proposition 2.3.2. Let Ω be a bounded and C1,1 domain, δ(x) = dist(x, ∂Ω), and
δ0 = δχΩ. Then,

(−∆)s/2δs0(x) = c1

{
log− δ(x) + c2χΩ(x)

}
+ h(x) in Rn,
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where c1 and c2 are constants, h is a Cα(Rn) function, and log− t = min{log t, 0}. The
constants c1 and c2 are given by

c1 = c1, s
2

and c2 =

∫ ∞

0

{
1− zs

|1− z|1+s
+

1 + zs

|1 + z|1+s

}
dz,

where cn,s is the constant appearing in the singular integral expression (2.2) for (−∆)s

in dimension n.

The fact that the constants c1 and c2 given by Proposition 2.3.2 coincide with the
ones from Proposition 2.1.10 is proved in the Appendix.

In the proof of Proposition 2.3.1 we need to compute (−∆)s/2 of the product
u = δs0v. For it, we will use the following elementary identity, which can be derived
from (2.2):

(−∆)s(w1w2) = w1(−∆)sw2 + w2(−∆)sw1 − Is(w1, w2),

where

Is(w1, w2)(x) = cn,sPV

∫

Rn

(
w1(x)− w1(y)

)(
w2(x)− w2(y)

)

|x− y|n+2s
dy. (2.26)

Next lemma will lead to a Hölder bound for Is(δ
s
0, v).

Lemma 2.3.3. Let Ω be a bounded domain and δ0 = dist(x,Rn \ Ω). Then, for each
α ∈ (0, 1) the following a priori bound holds

‖Is/2(δs0, w)‖Cα/2(Rn) ≤ C[w]Cα(Rn), (2.27)

where the constant C depends only on n, s, and α.

Proof. Let x1, x2 ∈ Rn. Then,

|Is/2(δs0, w)(x1)− Is/2(δs0, w)(x2)| ≤ cn, s
2
(J1 + J2),

where

J1 =

∫

Rn

∣∣w(x1)− w(x1 + z)− w(x2) + w(x2 + z)
∣∣∣∣δs0(x1)− δs0(x1 + z)

∣∣
|z|n+s

dz

and

J2 =

∫

Rn

∣∣w(x2)− w(x2 + z)
∣∣∣∣δs0(x1)− δs0(x1 + z)− δs0(x2) + δs0(x2 + z)

∣∣
|z|n+s

dz .

Let r = |x1 − x2|. Using that ‖δs0‖Cs(Rn) ≤ 1 and supp δs0 = Ω,

J1 ≤
∫

Rn

∣∣w(x1)− w(x1 + z)− w(x2) + w(x2 + z)
∣∣min{|z|s, (diamΩ)s}

|z|n+s
dz

≤ C

∫

Rn

[w]Cα(Rn)r
α/2|z|α/2 min{|z|s, 1}
|z|n+s

dz

≤ Crα/2[w]Cα(Rn) .
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Analogously,

J2 ≤ Crα/2[w]Cα(Rn) .

The bound for ‖Is/2(δs0, w)‖L∞(Rn) is obtained with a similar argument, and hence
(2.27) follows.

Before stating the next result, we need to introduce the following weighted Hölder
norms; see Definition 1.3 in [249].

Definition 2.3.4. Let β > 0 and σ ≥ −β. Let β = k + β′, with k integer and
β′ ∈ (0, 1]. For w ∈ Cβ(Ω) = Ck,β′(Ω), define the seminorm

[w]
(σ)
β;Ω = sup

x,y∈Ω

(
min{δ(x), δ(y)}β+σ |Dkw(x)−Dkw(y)|

|x− y|β′
)
.

For σ > −1, we also define the norm ‖ · ‖(σ)
β;Ω as follows: in case that σ ≥ 0,

‖w‖(σ)
β;Ω =

k∑

l=0

sup
x∈Ω

(
δ(x)l+σ|Dlw(x)|

)
+ [w]

(σ)
β;Ω ,

while for −1 < σ < 0,

‖w‖(σ)
β;Ω = ‖w‖C−σ(Ω) +

k∑

l=1

sup
x∈Ω

(
δ(x)l+σ|Dlw(x)|

)
+ [w]

(−α)
β;Ω .

The following lemma, proved in [249], will be used in the proof of Proposition 2.3.1
below —with w replaced by v— and also at the end of this section in the proof of
Proposition 2.1.10 —with w replaced by u.

Lemma 2.3.5 ([254, Lemma 4.3]). Let Ω be a bounded domain and α and β be such
that α ≤ s < β and β − s is not an integer. Let k be an integer such that β = k + β′

with β′ ∈ (0, 1]. Then,

[(−∆)s/2w]
(s−α)
β−s;Ω ≤ C

(
‖w‖Cα(Rn) + ‖w‖(−α)

β;Ω

)
(2.28)

for all w with finite right hand side. The constant C depends only on n, s, α, and β.

Before proving Proposition 2.3.1, we give an extension lemma —see [125, Theo-
rem 1, Section 3.1] where the case α = 1 is proven in full detail.

Lemma 2.3.6. Let α ∈ (0, 1] and V ⊂ Rn a bounded domain. There exists a (nonlin-
ear) map E : C0,α(V )→ C0,α(Rn) satisfying

E(w) ≡ w in V , [E(w)]C0,α(Rn) ≤ [w]C0,α(V ), and ‖E(w)‖L∞(Rn) ≤ ‖w‖L∞(V )

for all w ∈ C0,α(V ).
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Proof. It is immediate to check that

E(w)(x) = min

{
min
z∈V

{
w(z) + [w]Cα(V )|z − x|α

}
, ‖w‖L∞(V )

}

satisfies the conditions since, for all x, y, z in Rn,

|z − x|α ≤ |z − y|α + |y − x|α .

Now we can give the

Proof of Proposition 2.3.1. Since u/δs|Ω is Cα(Ω) —by hypothesis (b)— then by Lemma
2.3.6 there exists a Cα(Rn) extension v of u/δs|Ω.

Then, we have that

(−∆)s/2u(x) = v(x)(−∆)s/2δs0(x) + δ0(x)s(−∆)s/2v(x)− Is/2(v, δs0),

where

Is/2(v, δs0) = cn, s
2

∫

Rn

(
v(x)− v(y)

)(
δs0(x)− δs0(y)

)

|x− y|n+s
dy ,

as defined in (2.26). This equality is valid in all of Rn because δs0 ≡ 0 in Rn\Ω and
v ∈ Cα+s in Ω —by hypothesis (b). Thus, we only have to see that δs0(−∆)s/2v and
Is/2(v, δs0) are Cα(Rn) functions.

For the first one we combine assumption (b) with β = s+α < 1 and Lemma 2.3.5.
We obtain

‖(−∆)s/2v‖(s−α)
α;Ω ≤ C, (2.29)

and this yields δs0(−∆)s/2v ∈ Cα(Rn). Indeed, let w = (−∆)s/2v. Then, for all x, y ∈ Ω
such that y ∈ BR(x), with R = δ(x)/2, we have

|δs(x)w(x)− δs(y)w(y)|
|x− y|α

≤ δ(x)s
|w(x)− w(y)|
|x− y|α

+ |w(x)| |δ
s(x)− δs(y)|
|x− y|α

.

Now, since

|δs(x)− δs(y)| ≤ CRs−α|x− y|α ≤ C min{δ(x), δ(y)}s−α|x− y|α,

using (2.29) and recalling Definition 2.3.4 we obtain

|δs(x)w(x)− δs(y)w(y)|
|x− y|α

≤ C whenever y ∈ BR(x) , R = δ(x)/2.

This bound can be extended to all x, y ∈ Ω, since the domain is regular, by using a
dyadic chain of balls; see for instance the proof of Proposition 1.1 in [249].

The second bound, that is,

‖Is/2(v, δs0)‖Cα(Rn) ≤ C,

follows from assumption (b) and Lemma 2.3.3 (taking a smaller α if necessary).
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To prove Proposition 2.3.2 we need some preliminaries.
Fixed ρ0 > 0, define φ ∈ Cs(R) by

φ(x) = xsχ(0,ρ0)(x) + ρs0χ(ρ0,+∞)(x). (2.30)

This function φ is a truncation of the s-harmonic function xs+. We need to introduce
φ because the growth at infinity of xs+ prevents us from computing its (−∆)s/2.

Lemma 2.3.7. Let ρ0 > 0, and let φ : R→ R be given by (2.30). Then, we have

(−∆)s/2φ(x) = c1{log |x|+ c2χ(0,∞)(x)}+ h(x)

for x ∈ (−ρ0/2, ρ0/2), where h ∈ Cs([−ρ0/2, ρ0/2]). The constants c1 and c2 are given
by

c1 = c1, s
2

and c2 =

∫ ∞

0

{
1− zs

|1− z|1+s
+

1 + zs

|1 + z|1+s

}
dz,

where cn,s is the constant appearing in the singular integral expression (2.2) for (−∆)s

in dimension n.

Proof. If x < ρ0,

(−∆)s/2φ(x) = c1, s
2

(∫ ρ0

−∞

xs+ − ys+
|x− y|1+s

dy +

∫ ∞

ρ0

xs+ − ρs0
|x− y|1+s

dy

)
.

We need to study the first integral:

J(x) =

∫ ρ0

−∞

xs+ − ys+
|x− y|1+s

dy =





J1(x) =

∫ ρ0/x

−∞

1− zs+
|1− z|1+s

dz if x > 0

J2(x) =

∫ ρ0/|x|

−∞

−zs+
|1 + z|1+s

dz if x < 0 ,

(2.31)

since

(−∆)s/2φ(x)− c1J(x) = c1

∫ ∞

ρ0

xs+ − ρs0
|x− y|1+s

dy (2.32)

belongs to Cs([−ρ0/2, ρ0/2]) as a function of x.
Using L’Hôpital’s rule we find that

lim
x↓0

J1(x)

log |x|
= lim

x↑0

J2(x)

log |x|
= 1.

Moreover,

lim
x↓0

x1−s
(
J ′1(x)− 1

x

)
= lim

x↓0
x1−s

(
−ρ0

x2

1− (ρ0/x)s

((ρ0/x)− 1)1+s
− 1

x

)

= ρ−s0 lim
y↓0

y1−s
(

1− ys

y(1− y)1+s
− (1− y)1+s

y(1− y)1+s

)

= ρ−s0 lim
y↓0

1− ys − (1− y)1+s

ys
= −ρ−s0
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and

lim
x↑0

(−x)1−s
(
J ′2(x)− 1

x

)
= lim

x↑0
(−x)1−s

(
ρ0

x2

−(−ρ0/x)s

(1 + (−ρ0/x))1+s
− 1

−x

)

= ρ−s0 lim
y↓0

y1−s
(

−1

y(1 + y)1+s
+

(1 + y)1+s

y(1 + y)1+s

)

= ρ−s0 lim
y↓0

(1 + y)1+s − 1

ys
= 0 .

Therefore,
(J1(x)− log |x|)′ ≤ C|x|s−1 in (0, ρ0/2]

and
(J2(x)− log |x|)′ ≤ C|x|s−1 in [−ρ0/2, 0),

and these gradient bounds yield

(J1 − log | · |) ∈ Cs([0, ρ0/2]) and (J2 − log | · |) ∈ Cs([−ρ0/2, 0]).

However, these two Hölder functions do not have the same value at 0. Indeed,

lim
x↓0

{
(J1(x)− log |x|)− (J2(−x)− log | − x|)

}
= lim

x↓0
{J1(x)− J2(−x)}

=

∫ ∞

−∞

{
1− zs+
|1− z|1+s

+
zs+

|1 + z|1+s

}
dz

=

∫ ∞

0

{
1− zs

|1− z|1+s
+

1 + zs

|1 + z|1+s

}
dz = c2.

Hence, the function J(x) − log |x| − c2χ(0,∞)(x), where J is defined by (2.31), is
Cs([−ρ0/2, ρ0/2]). Recalling (2.32), we obtain the result.

Next lemma will be used to prove Proposition 2.3.2. Before stating it, we need the
following

Remark 2.3.8. From now on in this section, ρ0 > 0 is a small constant depending only
on Ω, which we assume to be a bounded C1,1 domain. Namely, we assume that that
every point on ∂Ω can be touched from both inside and outside Ω by balls of radius
ρ0. In other words, given x0 ∈ ∂Ω, there are balls of radius ρ0, Bρ0(x1) ⊂ Ω and

Bρ0(x2) ⊂ Rn \Ω, such that Bρ0(x1)∩Bρ0(x2) = {x0}. A useful observation is that all
points y in the segment that joins x1 and x2 —through x0— satisfy δ(y) = |y − x0|.

Lemma 2.3.9. Let Ω be a bounded C1,1 domain, δ(x) = dist(x, ∂Ω), δ0 = δχΩ, and
ρ0 be given by Remark 2.3.8. Fix x0 ∈ ∂Ω, and define

φx0(x) = φ (−ν(x0) · (x− x0))

and
Sx0 = {x0 + tν(x0), t ∈ (−ρ0/2, ρ0/2)}, (2.33)

where φ is given by (2.30) and ν(x0) is the unit outward normal to ∂Ω at x0. Define
also wx0 = δs0 − φx0.
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Then, for all x ∈ Sx0,

|(−∆)s/2wx0(x)− (−∆)s/2wx0(x0)| ≤ C|x− x0|s/2,

where C depends only on Ω and ρ0 (and not on x0).

Proof. We denote w = wx0 . Note that, along Sx0 , the distance to ∂Ω agrees with
the distance to the tangent plane to ∂Ω at x0; see Remark 2.3.8. That is, denoting
δ± = (χΩ − χRn\Ω)δ and d(x) = −ν(x0) · (x − x0), we have δ±(x) = d(x) for all
x ∈ Sx0 . Moreover, the gradients of these two functions also coincide on Sx0 , i.e.,
∇δ±(x) = −ν(x0) = ∇d(x) for all x ∈ Sx0 .

Therefore, for all x ∈ Sx0 and y ∈ Bρ0/2(0), we have

|δ±(x+ y)− d(x+ y)| ≤ C|y|2

for some C depending only on ρ0. Thus, for all x ∈ Sx0 and y ∈ Bρ0/2(0),

|w(x+ y)| = |(δ±(x+ y))s+ − (d(x+ y))s+| ≤ C|y|2s, (2.34)

where C is a constant depending on Ω and s.
On the other hand, since w ∈ Cs(Rn), then

|w(x+ y)− w(x0 + y)| ≤ C|x− x0|s. (2.35)

Finally, let r < ρ0/2 to be chosen later. For each x ∈ Sx0 we have

|(−∆)s/2w(x)− (−∆)s/2w(x0)| ≤ C

∫

Rn

|w(x+ y)− w(x0 + y)|
|y|n+s

dy

≤ C

∫

Br

|w(x+ y)− w(x0 + y)|
|y|n+s

dy + C

∫

Rn\Br

|w(x+ y)− w(x0 + y)|
|y|n+s

dy

≤ C

∫

Br

|y|2s

|y|n+s
dy + C

∫

Rn\Br

|x− x0|s

|y|n+s
dy

= C(rs + |x− x0|sr−s) ,

where we have used (2.34) and (2.35). Taking r = |x−x0|1/2 the lemma is proved.

The following is the last ingredient needed to prove Proposition 2.3.2.

Claim 2.3.10. Let Ω be a bounded C1,1 domain, and ρ0 be given by Remark 2.3.8.
Let w be a function satisfying, for some K > 0,

(i) w is locally Lipschitz in {x ∈ Rn : 0 < δ(x) < ρ0} and

|∇w(x)| ≤ Kδ(x)−M in {x ∈ Rn : 0 < δ(x) < ρ0}

for some M > 0.

(ii) There exists α > 0 such that

|w(x)− w(x∗)| ≤ Kδ(x)α in {x ∈ Rn : 0 < δ(x) < ρ0},

where x∗ is the unique point on ∂Ω satisfying δ(x) = |x− x∗|.
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(iii) For the same α, it holds
‖w‖Cα({δ≥ρ0}) ≤ K.

Then, there exists γ > 0, depending only on α and M , such that

‖w‖Cγ(Rn) ≤ CK, (2.36)

where C depends only on Ω.

Proof. First note that from (ii) and (iii) we deduce that ‖w‖L∞(Rn) ≤ CK. Let ρ1 ≤ ρ0

be a small positive constant to be chosen later. Let x, y ∈ {δ ≤ ρ0}, and r = |x− y|.
If r ≥ ρ1, then

|w(x)− w(y)|
|x− y|γ

≤
2‖w‖L∞(Rn)

ργ1
≤ CK.

If r < ρ1, consider

x′ = x∗ + ρ0r
βν(x∗) and y′ = y∗ + ρ0r

βν(y∗),

where β ∈ (0, 1) is to be determined later. Choose ρ1 small enough so that the segment
joining x′ and y′ contained in the set {δ > ρ0r

β/2}. Then, by (i),

|w(x′)− w(y′)| ≤ CK(ρ0r
β/2)−M |x′ − y′| ≤ Cr1−βM . (2.37)

Thus, using (ii) and (2.37),

|w(x)− w(y)| ≤ |w(x)− w(x∗)|+ |w(x∗)− w(x′)|+
+ |w(y)− w(y∗)|+ |w(y∗)− w(y′)|+ |w(x′)− w(y′)|

≤ Kδ(x)α +Kδ(y)α + 2K(ρ0r
β)α + CKr1−βM .

Taking β < 1/M and γ = min{αβ, 1− βM}, we find

|w(x)− w(y)| ≤ CKrγ = CK|x− y|γ.

This proves
[w]Cγ({δ≤ρ0}) ≤ CK.

To obtain the bound (2.36) we combine the previous seminorm estimate with (iii).

Finally, we give the proof of Proposition 2.3.2.

Proof of Proposition 2.3.2. Let

h(x) = (−∆)s/2δs0(x)− c1

{
log− δ(x) + c2χΩ(x)

}
.

We want to prove that h ∈ Cα(Rn) by using Claim 2.3.10.
On one hand, by Lemma 2.3.7, for all x0 ∈ ∂Ω and for all x ∈ Sx0 , where Sx0 is

defined by (2.33), we have

h(x) = (−∆)s/2δs0(x)− (−∆)s/2φx0(x) + h̃
(
ν(x0) · (x− x0)

)
,
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where h̃ is the Cs([−ρ0/2, ρ0/2]) function from Lemma 2.3.7. Hence, using Lemma
2.3.9, we find

|h(x)− h(x0)| ≤ C|x− x0|s/2 for all x ∈ Sx0
for some constant independent of x0.

Recall that for all x ∈ Sx0 we have x∗ = x0, where x∗ is the unique point on ∂Ω
satisfying δ(x) = |x− x∗|. Hence,

|h(x)− h(x∗)| ≤ C|x− x∗|s/2 for all x ∈ {δ < ρ0/2} . (2.38)

Moreover,
‖h‖Cα({δ≥ρ0/2}) ≤ C (2.39)

for all α ∈ (0, 1− s), where C is a constant depending only on α, Ω and ρ0. This last
bound is found using that ‖δs0‖C0,1({δ≥ρ0/2}) ≤ C, which yields

‖(−∆)s/2δs0‖Cα({δ≥ρ0}) ≤ C

for α < 1− s.
On the other hand, we claim now that if x /∈ ∂Ω and δ(x) < ρ0/2, then

|∇h(x)| ≤ |∇(−∆)s/2δs0(x)|+ c1|δ(x)|−1 ≤ C|δ(x)|−n−s. (2.40)

Indeed, observe that δs0 ≡ 0 in Rn\Ω, |∇δs0| ≤ Cδs−1
0 in Ω, and |D2δs0| ≤ Cδs−2

0 in Ωρ0 .
Then, r = δ(x)/2,

|(−∆)s/2∇δs0(x)| ≤ C

∫

Rn

|∇δs0(x)−∇δs0(x+ y)|
|y|n+s

dy

≤ C

∫

Br

Crs−2|y| dy
|y|n+s

+ C

∫

Rn\Br

(
|∇δs0(x)|
|y|n+s

+
|∇δs0(x+ y)|

rn+s

)
dy

≤ C

r
+
C

r
+

C

rn+s

∫

Rn
δs−1

0 ≤ C

rn+s
,

as claimed.
To conclude the proof, we use bounds (2.38), (2.39), and (2.40) and Claim 2.3.10.

To end this section, we give the

Proof of Proposition 2.1.10. The first part follows from Propositions 2.3.1 and 2.3.2.
The second part follows from Lemma 2.3.5 with α = s and β ∈ (s, 1 + 2s).

2.4 The operator − d
dλ

∣∣
λ=1+

∫
Rwλw1/λ

The aim of this section is to prove Proposition 2.1.11. In other words, we want to
evaluate the operator

I(w) = − d

dλ

∣∣∣∣
λ=1+

∫ ∞

0

w (λt)w

(
t

λ

)
dt (2.41)
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on
w(t) = A log− |t− 1|+Bχ[0,1](t) + h(t),

where log− t = min{log t, 0}, A and B are real numbers, and h is a function satisfying,
for some constants α ∈ (0, 1), γ ∈ (0, 1), and C0, the following conditions:

(i) ‖h‖Cα((0,∞)) ≤ C0.

(ii) For all β ∈ [γ, 1 + γ],

‖h‖Cβ((0,1−ρ)∪(1+ρ,2)) ≤ C0ρ
−β for all ρ ∈ (0, 1).

(iii) |h′(t)| ≤ Ct−2−γ and |h′′(t)| ≤ Ct−3−γ for all t > 2.

We will split the proof of Proposition 2.1.11 into three parts. The first part is the
following, and evaluates the operator I on the function

w0(t) = A log− |t− 1|+Bχ[0,1](t). (2.42)

Lemma 2.4.1. Let w0 and I be given by (2.42) and (2.41), respectively. Then,

I(w0) = A2π2 +B2.

The second result towards Proposition 2.1.11 is the following.

Lemma 2.4.2. Let h be a function satisfying (i), (ii), and (iii) above, and I be given
by (2.41). Then,

I(h) = 0.

Moreover, there exist constants C and ν > 1, depending only on the constants α, γ,
and C0 appearing in (i)-(ii)-(iii), such that

∣∣∣∣
∫ ∞

0

{
h (λt)h

(
t

λ

)
− h(t)2

}
dt

∣∣∣∣ ≤ C|λ− 1|ν

for each λ ∈ (1, 3/2).

Finally, the third one states that I(w0 + h) = I(w0) whenever I(h) = 0.

Lemma 2.4.3. Let w1 and w2 be L2(R) functions. Assume that the derivative at
λ = 1+ in the expression I(w1) exists, and that

I(w2) = 0.

Then,
I(w1 + w2) = I(w1).

Let us now give the proofs of Lemmas 2.4.1, 2.4.2, and 2.4.3. We start proving
Lemma 2.4.3. For it, is useful to introduce the bilinear form

(w1, w2) = −1

2

d

dλ

∣∣∣∣
λ=1+

∫ ∞

0

{
w1 (λt)w2

(
t

λ

)
+ w1

(
t

λ

)
w2 (λt)

}
dt,
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and more generally, the bilinear forms

(w1, w2)λ = − 1

2(λ− 1)

∫ ∞

0

{
w1 (λt)w2

(
t

λ

)
+ w1

(
t

λ

)
w2 (λt)− 2w1(t)w2(t)

}
dt,

(2.43)
for λ > 1.

It is clear that limλ↓1(w1, w2)λ = (w1, w2) whenever the limit exists, and that
(w,w) = I(w). The following lemma shows that these bilinear forms are positive
definite and, thus, they satisfy the Cauchy-Schwarz inequality.

Lemma 2.4.4. The following properties hold.

(a) (w1, w2)λ is a bilinear map.

(b) (w,w)λ ≥ 0 for all w ∈ L2(R+).

(c) |(w1, w2)λ|2 ≤ (w1, w1)λ(w2, w2)λ.

Proof. Part (a) is immediate. Part (b) follows from the Hölder inequality

‖wλw1/λ‖L1 ≤ ‖wλ‖L2‖w1/λ‖L2 = ‖w‖2
L2 ,

where wλ(t) = w(λt). Part (c) is a consequence of (a) and (b).

Now, Lemma 2.4.3 is an immediate consequence of this Cauchy-Schwarz inequality.

Proof of Lemma 2.4.3. By Lemma 2.4.4 (iii) we have

0 ≤ |(w1, w2)λ| ≤
√

(w1, w1)λ
√

(w2, w2)λ −→ 0.

Thus, (w1, w2) = limλ↓1(w1, w2)λ = 0 and

I(w1 + w2) = I(w1) + I(w2) + 2(w1, w2) = I(w1).

Next we prove that I(h) = 0. For this, we will need a preliminary lemma.

Lemma 2.4.5. Let h be a function satisfying (i), (ii), and (iii) in Propostion 2.1.11,
λ ∈ (1, 3/2), and τ ∈ (0, 1) be such that τ/2 > λ−1. Let α, γ, and C0 be the constants
appearing in (i)-(ii)-(iii). Then,

∣∣∣∣h(λt)h

(
t

λ

)
− h(t)2

∣∣∣∣ ≤





C max {|t− λ|α , |t− 1/λ|α} t ∈ (1− τ, 1 + τ)

C(λ− 1)1+γ|t− 1|−1−γ t ∈ (0, 1− τ) ∪ (1 + τ, 2)

C(λ− 1)2t−1−γ t ∈ (2,∞),

where the constant C depends only on C0.
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Proof. Let t ∈ (1− τ, 1 + τ). Let us denote h̃ = h− h(1). Then,

h (λt)h

(
t

λ

)
− h(t)2 = h̃ (λt) h̃

(
t

λ

)
− h̃(t)2 + h(1)

(
h̃ (λt) + h̃

(
t

λ

)
− 2h̃(t)

)
.

Therefore, using that |h̃(t)| ≤ C0|t− 1|α and ‖h‖L∞(R) ≤ C0, we obtain
∣∣∣∣h (λt)h

(
t

λ

)
− h(t)2

∣∣∣∣ ≤ C |λt− 1|α
∣∣∣∣
t

λ
− 1

∣∣∣∣
α

+ C|t− 1|2α + C|λt− 1|α +

+C

∣∣∣∣
t

λ
− 1

∣∣∣∣
α

+ C|t− 1|α

≤ C max

{
|t− λ|α ,

∣∣∣∣t−
1

λ

∣∣∣∣
α}

.

Let now t ∈ (0, 1 − τ) ∪ (1 + τ, 2) and recall that λ ∈ (1, 1 + τ/2). Define, for
µ ∈ [1, λ],

ψ(µ) = h (µt)h

(
t

µ

)
− h(t)2.

By the mean value theorem, ψ(λ) = ψ(1)+ψ′(µ)(λ−1) for some µ ∈ (1, λ). Moreover,
observing that ψ(1) = ψ′(1) = 0, we deduce

|ψ(λ)| ≤ (λ− 1)|ψ′(µ)− ψ′(1)|.

Next we claim that

|ψ′(µ)− ψ′(1)| ≤ C|µ− 1|γ|t− 1|−1−γ. (2.44)

This yields the desired bound for t ∈ (0, 1− τ) ∪ (1 + τ, 2).
To prove this claim, note that

ψ′(µ) = th′ (µt)h

(
t

µ

)
− t

µ2
h (µt)h′

(
t

µ

)
.

Thus, using the bounds from (ii) with β replaced by γ, 1, and 1 + γ,

|ψ′(µ)−ψ′(1)| ≤ t|h′(µt)− h′(t)|
∣∣∣∣h
(
t

µ

)∣∣∣∣+ t

∣∣∣∣h
(
t

µ

)
− h(t)

∣∣∣∣ |h′(t)|+

+ t

∣∣∣∣h′
(
t

µ

)
− h′(t)

∣∣∣∣
|h(µt)|
µ2

+ t

∣∣∣∣
h(µt)

µ2
− h(t)

∣∣∣∣ |h′(t)|

≤ C|µt− t|γm−1−γ + C

∣∣∣∣
t

µ
− t
∣∣∣∣
γ

m−γ|t− 1|−1 +
C

µ2

∣∣∣∣
t

µ
− t
∣∣∣∣
γ

m−1−γ+

+
C

µ2
|µt− t|γm−γ|t− 1|−1 + C(µ− 1)|t− 1|−1

≤ C(µ− 1)γm−1−γ,

where m = min {|µt− 1|, |t− 1|, |t/µ− 1|}.
Furthermore, since µ−1 < |t−1|/2, we have m ≥ 1

4
|t−1|, and hence (2.44) follows.

Finally, if t ∈ (2,∞), with a similar argument but using the bound (iii) instead of
(ii), we obtain

|ψ(λ)| ≤ C(λ− 1)2t−1−γ,

and we are done.
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Let us now give the

Proof of Lemma 2.4.2. Let us call

Iλ =

∫ ∞

0

{
h (λt)h

(
t

λ

)
− h(t)2

}
dx.

For each λ ∈ (1, 3/2), take τ ∈ (0, 1) such that λ− 1 < τ/2 to be chosen later. Then,
by Lemma 2.4.5,

|Iλ| ≤ C(λ− 1)1+γ

∫ 1−τ

0

|t− 1|−1−γdt+ C

∫ 1

1−τ
|t− λ|α dt+

+C

∫ 1+τ

1

∣∣∣∣t−
1

λ

∣∣∣∣
α

dt+ C(λ− 1)1+γ

∫ 2

1+τ

|t− 1|−1−γdt+

+C(λ− 1)2

∫ ∞

2

t−1−sdt

≤ C(λ− 1)1+γτ−γ + C (τ + λ− 1)α+1 + C(λ− 1)1+γτ−γ +

+C

(
τ + 1− 1

λ

)α+1

+ C(λ− 1)2.

Choose now
τ = (λ− 1)θ,

with θ < 1 to be chosen later. Then,

τ + λ− 1 ≤ 2τ and τ + 1− 1

λ
≤ 2τ,

and hence
|Iλ| ≤ C(λ− 1)(α+1)θ + C(λ− 1)1+γ−θγ + C(λ− 1)2.

Finally, choose θ such that (α + 1)θ > 1 and 1 + γ − θγ > 1, that is, satisfying

1

1 + α
< θ < 1.

Then, for ν = min{(α + 1)θ, 1 + γ − γθ} > 1, it holds

∣∣∣∣
∫ ∞

0

{
h (λt)h

(
t

λ

)
− h(t)2

}
dt

∣∣∣∣ ≤ C|λ− 1|ν ,

as desired.

Next we prove Lemma 2.4.1.

Proof of Lemma 2.4.1. Let

w1(t) = log− |t− 1| and w2(t) = χ[0,1](t).

We will compute first I(w1).
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Define

Ψ(t) =

∫ t

0

log |r − 1|
r

dr.

It is straightforward to check that, if λ > 1, the function

ϑλ(t) =

(
t− 1

λ

)
log |λt− 1| log

∣∣∣∣
t

λ
− 1

∣∣∣∣+ (λ− t) log

∣∣∣∣
t

λ
− 1

∣∣∣∣

−λ
2 − 1

λ
log(λ2 − 1) log

∣∣∣∣
t

λ
− 1

∣∣∣∣−
λ2 − 1

λ
Ψ

(
λ(λ− t)
λ2 − 1

)

+2t− λt− 1

λ
log |λt− 1|

is a primitive of log |λt− 1| log
∣∣ t
λ
− 1
∣∣. Denoting Iλ =

∫∞
0
w1 (λt)w1

(
t
λ

)
dt, we have

Iλ − I1 =

∫ 2
λ

0

log |λt− 1| log

∣∣∣∣
t

λ
− 1

∣∣∣∣ dt−
∫ 2

0

log2 |t− 1|dt

= ϑλ

(
2

λ

)
− ϑλ(0)− 4

=

(
λ2 − 1

λ

){
Ψ

(
λ2

λ2 − 1

)
−Ψ

(
λ2 − 2

λ2 − 1

)}
+

(
λ− 2

λ

)
log

(
2

λ2
− 1

)
+

+

(
λ− 1

λ

)
log(λ2 − 1) log

(
2

λ2
− 1

)
− 4(λ− 1)

λ
,

where we have used that

I1 =

∫ 2

0

log2 |t− 1|dt = 2

∫ 1

0

log2 t′dt′ = 2

∫ ∞

0

r2e−rdr = 2Γ(3) = 4.

Therefore, dividing by λ− 1 and letting λ ↓ 1,

d

dλ

∣∣∣∣
λ=1+

Iλ = 2 lim
λ↓1

∫ λ2

λ2−1

λ2−2

λ2−1

log |t− 1|
t

dt+

+ lim
λ↓1

{
2 log(λ2 − 1) log

(
2

λ2
− 1

)
−

log
(

2
λ2
− 1
)

λ− 1
− 4

λ

}
.

The first term equals to

lim
M→+∞

∫ M

−M

2 log |t− 1|
t

dt,

while the second, using that log(1 + x) ∼ x for x ∼ 0, equals to

lim
λ↓1

{
2 log(λ2 − 1)

(
2

λ2
− 2

)
−

2
λ2
− 2

λ− 1
− 4

λ

}
= 0 + 4− 4 = 0.
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Hence,

d

dλ

∣∣∣∣
λ=1+

Iλ = lim
M→+∞

∫ M

−M

2 log |t− 1|
t

dt = lim
M→+∞

∫ M

−M

2 log |t|
t+ 1

dt

= lim
M→+∞

{∫ 0

−M

2 log(−t)
t+ 1

dt+

∫ M

0

2 log t

t+ 1
dt

}

= lim
M→+∞

{∫ M

0

2 log t

1− t
dt+

∫ M

0

2 log t

t+ 1
dt

}
=

∫ +∞

0

4 log t

1− t2
dt

=

∫ 1

0

4 log t

1− t2
dt+

∫ +∞

1

−4 log 1
t

1
t2
− 1

dt

t2
= 2

∫ 1

0

4 log t

1− t2
dt.

Furthermore, using that 1
1−t2 =

∑
n≥0 t

2n and that

∫ 1

0

tn log t dt = −
∫ 1

0

tn+1

n+ 1

1

t
dt = − 1

(n+ 1)2
,

we obtain ∫ 1

0

log t

1− t2
dt = −

∑

n≥0

1

(2n+ 1)2
= −π

2

8
,

and thus

I(w1) = − d

dλ

∣∣∣∣
λ=1+

Iλ = π2.

Let us evaluate now I(w2) = I(χ[0,1]). We have

∫ +∞

0

χ[0,1] (λt)χ[0,1]

(
t

λ

)
dt =

∫ 1
λ

0

dt =
1

λ
.

Therefore, differentiating with respect to λ we obtain I(w2) = 1.
Let us finally prove that (w1, w2) = 0, i.e., that

d

dλ

∣∣∣∣
λ=1+

{∫ λ

0

log |1− λt|dt+

∫ 1
λ

0

log

∣∣∣∣1−
t

λ

∣∣∣∣ dt
}

= 0. (2.45)

We have
∫ λ

0

log |1− λt|dt =
1

λ

[
(λt− 1) log |1− λt| − λt

]λ
0

=

(
λ− 1

λ

)
log(λ2 − 1)− λ,

and similarly, ∫ 1
λ

0

log

∣∣∣∣1−
t

λ

∣∣∣∣ dt =

(
1

λ
− λ
)

log

(
1− 1

λ2

)
− 1

λ
.

Thus, ∣∣∣∣∣

∫ λ

0

log |1− λt|dt+

∫ 1
λ

0

log

∣∣∣∣1−
t

λ

∣∣∣∣ dt− 2

∫ 1

0

log |1− t|dt

∣∣∣∣∣ =
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=

∣∣∣∣
2(λ2 − 1)

λ
log λ− (λ− 1)2

λ

∣∣∣∣ ≤ 4(λ− 1)2.

Therefore (2.45) holds, and the proposition is proved.

Finally, to end this section, we give the:

Proof of Proposition 2.1.11. Let us write ϕ = w0 + h, where w0 is given by (2.42).
Then, for each λ > 1 we have

(ϕ, ϕ)λ = (w0, w0)λ + 2(w0, h)λ + (h, h)λ,

where (·, ·)λ is defined by (2.43). Using Lemma 2.4.4 (c) and Lemma 2.4.2, we deduce

∣∣(ϕ, ϕ)λ − A2π2 −B2
∣∣ ≤

∣∣(w0, w0)λ − A2π2 −B2
∣∣+ C|λ− 1|ν .

The constants C and ν depend only on α, γ, and C0, and by Lemma 2.4.1 the right
hand side goes to 0 as λ ↓ 1, since (w0, w0)λ → I(w0) as λ ↓ 1.

2.5 Proof of the Pohozaev identity in non-star-shaped
domains

In this section we prove Proposition 2.1.6 for general C1,1 domains. The key idea is
that every C1,1 domain is locally star-shaped, in the sense that its intersection with
any small ball is star-shaped with respect to some point. To exploit this, we use a
partition of unity to split the function u into a set of functions u1, ..., um, each one
with support in a small ball. However, note that the Pohozaev identity is quadratic
in u, and hence we must introduce a bilinear version of this identity, namely

∫

Ω

(x · ∇u1)(−∆)su2 dx+

∫

Ω

(x · ∇u2)(−∆)su1 dx =
2s− n

2

∫

Ω

u1(−∆)su2 dx+

+
2s− n

2

∫

Ω

u2(−∆)su1 dx− Γ(1 + s)2

∫

∂Ω

u1

δs
u2

δs
(x · ν) dσ.

(2.46)

The following lemma states that this bilinear identity holds whenever the two
functions u1 and u2 have disjoint compact supports. In this case, the last term in the
previous identity equals 0, and since (−∆)sui is evaluated only outside the support of
ui, we only need to require ∇ui ∈ L1(Rn).

Lemma 2.5.1. Let u1 and u2 be W 1,1(Rn) functions with disjoint compact supports
K1 and K2. Then,

∫

K1

(x · ∇u1)(−∆)su2 dx+

∫

K2

(x · ∇u2)(−∆)su1 dx =

=
2s− n

2

∫

K1

u1(−∆)su2 dx+
2s− n

2

∫

K2

u2(−∆)su1 dx.
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Proof. We claim that

(−∆)s(x · ∇ui) = x · ∇(−∆)sui + 2s(−∆)sui in Rn\Ki. (2.47)

Indeed, using ui ≡ 0 in Rn\Ki and the definition of (−∆)s in (2.2), for each x ∈ Rn\Ki

we have

(−∆)s(x · ∇ui)(x) = cn,s

∫

Ki

−y · ∇ui(y)

|x− y|n+2s
dy

= cn,s

∫

Ki

(x− y) · ∇ui(y)

|x− y|n+2s
dy + cn,s

∫

Ki

−x · ∇ui(y)

|x− y|n+2s
dy

= cn,s

∫

Ki

divy

(
x− y

|x− y|n+2s

)
ui(y)dy + x · (−∆)s∇ui(x)

= cn,s

∫

Ki

−2s

|x− y|n+2s
ui(y)dy + x · ∇(−∆)sui(x)

= 2s(−∆)sui(x) + x · ∇(−∆)sui(x),

as claimed.
We also note that for all functions w1 and w2 in L1(Rn) with disjoint compact

supports W1 and W2, it holds the integration by parts formula

∫

W1

w1(−∆)sw2 =

∫

W1

∫

W2

−w1(x)w2(y)

|x− y|n+2s
dy dx =

∫

W2

w2(−∆)sw1. (2.48)

Using that (−∆)su2 is smooth in K1 and integrating by parts,

∫

K1

(x · ∇u1)(−∆)su2 = −n
∫

K1

u1(−∆)su2 −
∫

K1

u1x · ∇(−∆)su2.

Next we apply the previous claim and also the integration by parts formula (2.48) to
w1 = u1 and w2 = x · ∇u2. We obtain

∫

K1

u1x · ∇(−∆)su2 =

∫

K1

u1(−∆)s(x · ∇u2)− 2s

∫

K1

u1(−∆)su2

=

∫

K2

(−∆)su1(x · ∇u2)− 2s

∫

K1

u1(−∆)su2.

Hence,

∫

K1

(x · ∇u1)(−∆)su2 = −
∫

K2

(−∆)su1(x · ∇u2) + (2s− n)

∫

K1

u1(−∆)su2.

Finally, again by the integration by parts formula (2.48) we find

∫

K1

u1(−∆)su2 =
1

2

∫

K1

u1(−∆)su2 +
1

2

∫

K2

u2(−∆)su1,

and the lemma follows.
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z0

B

B′

Ω

Ω̃

supp ũ

Figure 2.1:

The second lemma states that the bilinear identity (2.46) holds whenever the two
functions u1 and u2 have compact supports in a ball B such that Ω∩B is star-shaped
with respect to some point z0 in Ω ∩B.

Lemma 2.5.2. Let Ω be a bounded C1,1 domain, and let B be a ball in Rn. Assume
that there exists z0 ∈ Ω ∩B such that

(x− z0) · ν(x) > 0 for all x ∈ ∂Ω ∩B.

Let u be a function satisfying the hypothesis of Proposition 2.1.6, and let u1 = uη1 and
u2 = uη2, where ηi ∈ C∞c (B), i = 1, 2. Then, the following identity holds
∫

B

(x · ∇u1)(−∆)su2 dx+

∫

B

(x · ∇u2)(−∆)su1 dx =
2s− n

2

∫

B

u1(−∆)su2 dx+

+
2s− n

2

∫

B

u2(−∆)su1 dx− Γ(1 + s)2

∫

∂Ω∩B

u1

δs
u2

δs
(x · ν) dσ.

Proof. We will show that given η ∈ C∞c (B) and letting ũ = uη it holds

∫

B

(x · ∇ũ)(−∆)sũ dx =
2s− n

2

∫

B

ũ(−∆)sũ dx− Γ(1 + s)2

∫

∂Ω∩B

(
ũ

δs

)2

(x · ν)dσ.

(2.49)
From this, the lemma follows by applying (2.49) with ũ replaced by (η1 + η2)u and by
(η1 − η2)u, and subtracting both identities.

We next prove (2.49). For it, we will apply the result for strictly star-shaped do-
mains, already proven in Section 2.2. Observe that there is a C1,1 domain Ω̃ satisfying

{ũ > 0} ⊂ Ω̃ ⊂ Ω ∩B and (x− z0) · ν(x) > 0 for all x ∈ ∂Ω̃.

This is because, by the assumptions, Ω∩B is a Lipschitz polar graph about the point
z0 ∈ Ω ∩ B and supp ũ ⊂ B′ ⊂⊂ B for some smaller ball B′; see Figure 2.1. Hence,
there is room enough to round the corner that Ω ∩B has on ∂Ω ∩ ∂B.

Hence, it only remains to prove that ũ satisfies the hypotheses of Proposition 2.1.6.
Indeed, since u satisfies (a) and η is C∞c (B′) then ũ satisfies

[ũ]Cβ({x∈Ω̃ : δ̃(x)>ρ}) ≤ Cρs−β
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for all β ∈ [s, 1 + 2s), where δ̃(x) = dist(x, ∂Ω̃).
On the other hand, since u satisfies (b) and we have ηδs/δ̃s is Lipschitz in supp ũ

—because dist(x, ∂Ω̃ \ ∂Ω) ≥ c > 0 for all x ∈ supp ũ—, then we find
[
ũ/δ̃s

]
Cβ({x∈Ω̃ : δ̃(x)>ρ}) ≤ Cρα−β

for all β ∈ [α, s+ α].
Let us see now that ũ satisfies (c), i.e., that (−∆)sũ is bounded. For it, we use

(−∆)s(uη) = η(−∆)su+ u(−∆)sη − Is(u, η)

where Is is given by (2.26), i.e.,

Is(u, η)(x) = cn,s

∫

Rn

(u(x)− u(y))(η(x)− η(y))

|x− y|n+2s
dy .

The first term is bounded since (−∆)su so is by hypothesis. The second term is
bounded since η ∈ C∞c (Rn). The third term is bounded because u ∈ Cs(Rn) and
η ∈ Lip(Rn).

Therefore, ũ satisfies the hypotheses of Proposition 2.1.6 with Ω replaced by Ω̃,
and (2.49) follows taking into account that for all x0 ∈ ∂Ω̃ ∩ supp ũ = ∂Ω ∩ supp ũ we
have

lim
x→x0, x∈Ω̃

ũ(x)

δ̃s(x)
= lim

x→x0, x∈Ω

ũ(x)

δs(x)
.

We now give the

Proof of Proposition 2.1.6. Let B1, ..., Bm be balls of radius r > 0 covering Ω. By
regularity of the domain, if r is small enough, for each i, j such that Bi∩Bj 6= ∅ there
exists a ball B containing Bi ∪Bj and a point z0 ∈ Ω ∩B such that

(x− z0) · ν(x) > 0 for all x ∈ ∂Ω ∩B.

Let {ψk}k=1,...,m be a partition of the unity subordinated to B1, ..., Bm, that is, a
set of smooth functions ψ1, ..., ψm such that ψ1 + · · · + ψm = 1 in Ω and that ψk has
compact support in Bk for each k = 1, ...,m. Define uk = uψk.

Now, for each i, j ∈ {1, ...,m}, if Bi ∩ Bj = ∅ we use Lemma 2.5.1, while if
Bi ∩Bj 6= ∅ we use Lemma 2.5.2. We obtain

∫

Ω

(x · ∇ui)(−∆)suj dx+

∫

Ω

(x · ∇uj)(−∆)sui dx =
2s− n

2

∫

Ω

ui(−∆)suj dx+

+
2s− n

2

∫

Ω

uj(−∆)sui dx− Γ(1 + s)2

∫

∂Ω

ui
δs
uj
δs

(x · ν) dσ

for each 1 ≤ i ≤ m and 1 ≤ j ≤ m. Therefore, adding these identities for i = 1, ...,m
and for j = 1, ...,m and taking into account that u1 + · · ·+ um = u, we find
∫

Ω

(x · ∇u)(−∆)su dx =
2s− n

2

∫

Ω

u(−∆)su dx− Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

(x · ν) dσ,

and the proposition is proved.
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To end this section we prove Theorem 2.1.1, Proposition 2.1.12, Theorem 2.1.9,
and Corollaries 2.1.2, 2.1.3, and 2.1.13.

Proof of Proposition 2.1.12 and Theorem 2.1.1. By Theorem 2.1.4, any solution u to
problem (2.8) satisfies the hypothesis of Proposition 2.1.6. Hence, using this proposi-
tion and that (−∆)su = f(x, u), we obtain

∫

Ω

(∇u · x)f(x, u)dx =
2s− n

2

∫

Ω

uf(x, u)dx+
Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2

(x · ν)dσ.

On the other hand, note that (∇u ·x)f(x, u) = ∇ (F (x, u)) ·x−x ·Fx(x, u). Then,
integrating by parts,

∫

Ω

(∇u · x)f(x, u)dx = −n
∫

Ω

F (x, u)dx−
∫

Ω

x · Fx(x, u)dx.

If f does not depend on x, then the last term do not appear, as in Theorem 2.1.1.

Proof of Theorem 2.1.9. As shown in the final part of the proof of Proposition 2.1.6
for strictly star-shaped domains given in Section 2.2, the freedom for choosing the
origin in the identity from this proposition leads to

∫

Ω

wxi(−∆)sw dx =
Γ(1 + s)2

2

∫

∂Ω

(w
δs

)2

νi dσ

for each i = 1, ..., n. Then, the theorem follows by using this identity with w = u + v
and with w = u− v and subtracting both identities.

Proof of Corollaries 2.1.2, 2.1.3, and 2.1.13. We only have to prove Corollary 2.1.13,
since Corollaries 2.1.2 and 2.1.3 follow immediately from it by setting f(x, u) = f(u)
and f(x, u) = |u|p−1u respectively.

By hypothesis (2.15), we have

n− 2s

2

∫

Ω

uf(x, u)dx ≥ n

∫

Ω

F (x, u)dx+

∫

Ω

x · Fx(x, u)dx.

This, combined with Proposition 2.1.12 gives

∫

∂Ω

( u
δs

)2

(x · ν)dσ ≤ 0.

If Ω is star-shaped and inequality in (2.15) is strict, we obtain a contradiction. On
the other hand, if inequality in (2.15) is not strict but u is a positive solution of
(2.8), then by the Hopf Lemma for the fractional Laplacian (see, for instance, [66] or
Lemma 3.2 in [249]) the function u/δs is strictly positive in Ω, and we also obtain a
contradiction.



2.6 - Appendix: Calculation of the constants c1 and c2 87

2.6 Appendix: Calculation of the constants c1 and
c2

In Proposition 2.3.2 we have obtained the following expressions for the constants c1

and c2:

c1 = c1, s
2
, and c2 =

∫ ∞

0

{
1− xs

|1− x|1+s
+

1 + xs

|1 + x|1+s

}
dx,

where cn,s is the constant appearing in the singular integral expression for (−∆)s in
dimension n.

Here we prove that the values of these constants coincide with the ones given in
Proposition 2.1.10. We start by calculating c1.

Proposition 2.6.1. Let cn,s be the normalizing constant of (−∆)s in dimension n.
Then,

c1, s
2

=
Γ(1 + s) sin

(
πs
2

)

π
.

Proof. Recall that

cn,s =
s22sΓ

(
n+2s

2

)

πn/2Γ(1− s)
. (2.50)

Thus,

c1, s
2

=
s2s−1Γ

(
1+s

2

)
√
πΓ
(
1− s

2

) .

Now, using the properties of the Gamma function (see for example [6])

Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z) and Γ(z)Γ(1− z) =

π

sin(πz)
,

we obtain

c1, s
2

=
s2s−1

√
π
·

Γ
(

1+s
2

)
Γ
(
s
2

)

Γ
(
1− s

2

)
Γ
(
s
2

) =
s2s−1

√
π
· 21−s√πΓ(s)

π/ sin
(
πs
2

) =
sΓ(s) sin

(
πs
2

)

π
.

The result follows by using that zΓ(z) = Γ(1 + z).

Let us now compute the constant c2.

Proposition 2.6.2. Let 0 < s < 1. Then,
∫ ∞

0

{
1− xs

|1− x|1+s
+

1 + xs

|1 + x|1+s

}
dx =

π

tan
(
πs
2

) .

For it, we will need some properties of the hypergeometric function 2F1, which we
prove in the next lemma. Recall that this function is defined as

2F1(a, b; c; z) =
∑

n≥0

(a)n(b)n
(c)n

zn

n!
for |z| < 1,

where (a)n = a(a+1) · · · (a+n−1), and by analytic continuation in the whole complex
plane.
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Lemma 2.6.3. Let 2F1(a, b; c; z) be the ordinary hypergeometric function, and s ∈ R.
Then,

(i) For all z ∈ C,

d

dz

{
zs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s; z)

}
=

zs

(1− z)1+s
.

(ii) If s ∈ (0, 1), then

lim
x→1

{
1

s+ 1
2F1(1 + s, 1 + s; 2 + s;x)− 1

s(1− x)s

}
= − π

sin(πs)
.

(iii) If s ∈ (0, 1), then

lim
x→+∞

{
(−x)s+1

s+ 1
2F1(1+s, 1+s; 2+s;x)− xs+1

s+ 1
2F1(1+s, 1+s; 2+s;−x)

}
= iπ,

where the limit is taken on the real line.

Proof. (i) Let us prove the equality for |z| < 1. In this case,

d

dz

{
zs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s; z)

}
=

d

dz

∑

n≥0

(1 + s)2
n

(2 + s)n

zn+1+s

n!(s+ 1)
=

=
∑

n≥0

(1 + s)n
n!

zn+s = zs
∑

n≥0

(
−1− s
n

)
(−z)n = zs(1− z)−1−s,

where we have used that (2 + s)n = n+1+s
1+s

(1 + s)n and that (a)n
n!

= (−1)n
(−a
n

)
. Thus,

by analytic continuation the identity holds in C.

(ii) Recall the Euler transformation (see for example [6])

2F1(a, b; c;x) = (1− x)c−a−b 2F1(c− a, c− b; c;x), (2.51)

and the value at x = 1

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

whenever a+ b < c. (2.52)

Hence,

1

s+ 1
2F1(1 + s, 1 + s; 2 + s;x)− 1

s(1− x)s
=

1
s+1 2F1(1, 1; 2 + s;x)− 1

s

(1− x)s
,
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and we can use l’Hôpital’s rule,

lim
x→1

1
s+1 2F1(1, 1; 2 + s;x)− 1

s

(1− x)s
= lim

x→1

1
s+1

d
dx 2F1(1, 1; 2 + s;x)

−s(1− x)s−1

= − lim
x→1

(1− x)1−s

s(s+ 1)(s+ 2)
2F1(2, 2; 3 + s;x)

= − lim
x→1

1

s(s+ 1)(s+ 2)
2F1(1 + s, 1 + s; 3 + s;x)

= − 1

s(s+ 1)(s+ 2)
2F1(1 + s, 1 + s; 3 + s; 1)

= − 1

s(s+ 1)(s+ 2)

Γ(3 + s)Γ(1− s)
Γ(2)Γ(2)

= −Γ(s)Γ(1− s)
= − π

sin(πs)
.

We have used that

d

dx
2F1(1, 1; 2 + s;x) =

1

s+ 2
2F1(2, 2; 3 + s;x),

the Euler transformation (2.51), and the properties of the Γ function

xΓ(x) = Γ(x+ 1), Γ(x)Γ(1− x) =
π

sin(πx)
.

(iii) In [20] it is proved that

Γ(a)Γ(b)

Γ(a+ b)
2F1(a, b; a+ b;x) = log

1

1− x
+R + o(1) for x ∼ 1, (2.53)

where
R = −ψ(a)− ψ(b)− γ,

ψ is the digamma function, and γ is the Euler-Mascheroni constant. Using the Pfaff
transformation [6]

2F1(a, b; c;x) = (1− x)−a 2F1

(
a, c− b; c; x

x− 1

)

and (2.53), we obtain

(1− x)1+s

1 + s
2F1(1 + s, 1 + s; 2 + s;x) =

1

1 + s
2F1

(
1 + s, 1; 2 + s;

x

x− 1

)

= log
1

1− x
+R + o(1) for x ∼ ∞.

Thus, it also holds

(−x)1+s

1 + s
2F1(1 + s, 1 + s; 2 + s;x) = log

1

1− x
+R + o(1) for x ∼ ∞,
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and therefore the limit to be computed is now

lim
x→+∞

{(
log

1

1− x
+R

)
−
(

log
1

1 + x
+R

)}
= iπ.

Next we give the:

Proof of Proposition 2.6.2. Let us compute separately the integrals

I1 =

∫ 1

0

{
1− xs

|1− x|1+s
+

1 + xs

|1 + x|1+s

}
dx

and

I2 =

∫ ∞

1

{
1− xs

|1− x|1+s
+

1 + xs

|1 + x|1+s

}
dx.

By Lemma 2.6.3 (i), we have that
∫ {

1− xs

(1− x)1+s
+

1 + xs

(1 + x)1+s

}
dx =

1

s
(1− x)−s − xs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s;x)

−1

s
(1 + x)−s +

xs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−x).

Hence, using 2.6.3 (ii),

I1 =
π

sin(πs)
− 1

s2s
+

1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−1).

Let us evaluate now I2. As before, by Lemma 2.6.3 (i),
∫ {

1− xs

(x− 1)1+s
+

1 + xs

(x+ 1)1+s

}
dx =

1

s
(x− 1)−s + (−1)s

xs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s;x)

−1

s
(1 + x)−s +

xs+1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−x).

Hence, using 2.6.3 (ii) and (iii),

I2 = −iπ + (−1)s
π

sin(πs)
+

1

s2s
− 1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−1)

= −iπ + cos(πs)
π

sin(πs)
+ i sin(πs)

π

sin(πs)
+

+
1

s2s
− 1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−1)

=
π

tan(πs)
+

1

s2s
− 1

s+ 1
2F1(1 + s, 1 + s; 2 + s;−1).

Finally, adding up the expressions for I1 and I2, we obtain
∫ ∞

0

{
1− xs

|1− x|1+s
+

1 + xs

|1 + x|1+s

}
dx =

π

sin(πs)
+

π

tan(πs)
= π · 1 + cos(πs)

sin(πs)

= π ·
2 cos2

(
πs
2

)

2 sin
(
πs
2

)
cos
(
πs
2

) =
π

tan
(
πs
2

) ,

as desired.



2.6 - Appendix: Calculation of the constants c1 and c2 91

Remark 2.6.4. It follows from Proposition 2.1.11 that the constant appearing in (2.10)
(and thus in the Pohozaev identity), Γ(1 + s)2, is given by

c3 = c2
1(π2 + c2

2).

We have obtained the value of c3 by computing explicitly c1 and c2. However, an alter-
native way to obtain c3 is to exhibit an explicit solution of (2.1) for some nonlinearity
f and apply the Pohozaev identity to this solution. For example, when Ω = B1(0),
the solution of {

(−∆)su = 1 in B1(0)
u = 0 in Rn\B1(0)

can be computed explicitly [154, 24]:

u(x) =
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

(
1− |x|2

)s
. (2.54)

Thus, from the identity

(2s− n)

∫

B1(0)

u dx+ 2n

∫

B1(0)

u dx = c3

∫

∂B1(0)

( u
δs

)2

(x · ν)dσ (2.55)

we can obtain the constant c3, as follows.
On the one hand,

∫

B1(0)

u dx =
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

∫

B1(0)

(
1− |x|2

)s
dx

=
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

|Sn−1|
∫ 1

0

rn−1(1− r2)sdr

=
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

|Sn−1|1
2

∫ 1

0

rn/2−1(1− r)sdr

=
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

|Sn−1|1
2

Γ(n/2)Γ(1 + s)

Γ(n/2 + 1 + s)
,

where we have used the definition of the Beta function

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt

and the identity

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

On the other hand,

∫

∂B1(0)

( u
δs

)2

(x · ν)dσ =

(
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

)2

|Sn−1|22s.
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Thus, (2.55) is equivalent to

(n+ 2s)
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

1

2

Γ(n/2)Γ(1 + s)

Γ(n/2 + 1 + s)
= c3

(
2−2sΓ(n/2)

Γ
(
n+2s

2

)
Γ(1 + s)

)2

22s.

Hence, after some simplifications,

c3 =
Γ(1 + s)2

Γ(n/2 + 1 + s)

n+ 2s

2
Γ

(
n+ 2s

2

)
,

and using that
zΓ(z) = Γ(1 + z)

one finally obtains
c3 = Γ(1 + s)2,

as before.



3Chapter Three

NONEXISTENCE RESULTS FOR
NONLOCAL EQUATIONS WITH CRITICAL
AND SUPERCRITICAL NONLINEARITIES

We prove nonexistence of nontrivial bounded solutions to some nonlinear problems
involving nonlocal operators of the form

Lu(x) = −
∑

aij∂iju+ PV

∫

Rn
(u(x)− u(x+ y))K(y)dy.

These operators are infinitesimal generators of symmetric Lévy processes. Our results
apply to even kernels K satisfying that K(y)|y|n+σ is nondecreasing along rays from
the origin, for some σ ∈ (0, 2) in case aij ≡ 0 and for σ = 2 in case that (aij) is a
positive definite symmetric matrix.

Our nonexistence results concern Dirichlet problems for L in star-shaped domains
with critical and supercritical nonlinearities (where the criticality condition is in rela-
tion to n and σ).

We also establish nonexistence of bounded solutions to semilinear equations in-
volving other nonlocal operators such as the higher order fractional Laplacian (−∆)s

(here s > 1) or the fractional p-Laplacian. All these nonexistence results follow from
a general variational inequality in the spirit of a classical identity by Pucci and Serrin.

3.1 Introduction and results

The aim of this paper is to prove nonexistence results for the following type of nonlinear
problems {

Lu = f(x, u) in Ω
u = 0 in Rn\Ω, (3.1)

where Ω ⊂ Rn is a bounded domain, f is a critical or supercritical nonlinearity (as
defined later), and L is an integro-differential elliptic operator. Our main results
concern operators of the form

Lu(x) = PV

∫

Rn

(
u(x)− u(x+ y)

)
K(y)dy (3.2)

93
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and

Lu(x) = −
∑

i,j

aij∂iju+ PV

∫

Rn

(
u(x)− u(x+ y)

)
K(y)dy, (3.3)

where (aij) is a positive definite matrix (independent of x ∈ Ω) and K is a nonnegative
kernel satisfying

K(y) = K(−y) and

∫

Rn

|y|2

1 + |y|2
K(y)dy <∞. (3.4)

These operators are infinitesimal generators of symmetric Lévy processes.
We will state two different nonexistence results, one corresponding to (3.2) and the

other to (3.3).
On the one hand, we consider operators (3.2) that may not have a definite order

but only satisfy, for some σ ∈ (0, 2),

K(y)|y|n+σ is nondecreasing along rays from the origin. (3.5)

Heuristically, (3.5) means that even if the order is not defined, σ acts as an upper
bound for the order of the operator —see Section 3.2 for some examples. For these
operators we prove, under some additional technical assumptions on the kernel, nonex-
istence of nontrivial bounded solutions to (3.1) in star-shaped domains for supercritical
nonlinearities. When f(x, u) = |u|q−1u, the critical power for this class of operators is
q = n+σ

n−σ .
On the other hand, we establish the analogous result for second order integro-

differential elliptic operators (3.3) with kernels K satisfying (3.5) with σ = 2. In this
case, the critical power is q = n+2

n−2
.

Moreover, we can use the same ideas to prove an abstract variational inequality that
applies to more general problems. For instance, we can obtain nonexistence results for
semilinear equations involving the higher order fractional Laplacian (−∆)s (i.e., with
s > 1) or the fractional p-Laplacian.

When L is the Laplacian −∆, the nonexistence of nontrivial solutions to (3.1)
for critical and supercritical nonlinearities in star-shaped domains follows from the
celebrated Pohozaev identity [237]. For positive solutions, this result can also be
proved with the moving spheres method [279, 242]. For more general elliptic operators
(such as the p-Laplacian, the bilaplacian ∆2, or k-hessian operators), the nonexistence
of regular solutions usually follows from Pohozaev-type or Pucci-Serrin identities [240].

When L is the fractional Laplacian (−∆)s with s ∈ (0, 1), which corresponds to
K(y) = cn,s|y|−n−2s in (3.2), this nonexistence result for problem (3.1) was first ob-
tained by Fall-Weth for positive solutions [129] (by using the moving spheres method).
In C1,1 domains, the nonexistence of nontrivial solutions (not necessarily positive) can
be deduced from the Pohozaev identity for the fractional Laplacian, recently estab-
lished by the authors in [250, 248].

Both the local operator −∆ and the nonlocal operator (−∆)s satisfy a property
of invariance under scaling. More precisely, denoting wλ(x) = w(λx), these operators
satisfy Lwλ(x) = λσLw(λx), with σ = 2 in case L = −∆ and σ = 2s in case L =
(−∆)s. These scaling exponents are strongly related to the critical powers q = n+2

n−2

and q = n+2s
n−2s

obtained for power nonlinearities f(x, u) = |u|q−1u in (3.1).
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Here, we prove a nonexistence result for problem (3.1) with operators L that may
not satisfy a scale invariance condition but satisfy (3.5) instead. Our arguments are
in the same philosophy as Pucci-Serrin [240], where they proved a general variational
identity that applies to many second order problems. Here, we prove a variational
inequality that applies to the previous integro-differential problems.

Before stating our results recall that, given σ > 0 and Ω ⊂ Rn, the nonlinearity
f ∈ C0,1

loc (Ω× R) is said to be supercritical if

n− σ
2

t f(x, t) > nF (x, t) + x · Fx(x, t) for all x ∈ Ω and t 6= 0, (3.6)

where F (x, t) =
∫ t

0
f(x, τ)dτ . When f(x, u) = |u|q−1u, this corresponds to q > n+σ

n−σ .
As explained later on in this Introduction, by bounded solution of (3.1) we mean

a critical point u ∈ L∞(Ω) of the associated energy functional.
Our first nonexistence result reads as follows. Note that it applies not only to

positive solutions but also to changing-sign ones.
In the first two parts of the theorem, we assume the solution u to be W 1,r for some

r > 1. This is a natural assumption that is satisfied when L is a pure fractional Lapla-
cian and also for those operators L with kernels K satisfying an additional assumption
on its “order”, as stated in part (c).

Theorem 3.1.1. Let K be a nonnegative kernel satisfying (3.4), (3.5) for some σ ∈
(0, 2), and

K is C1(Rn \ {0}) and |∇K(y)| ≤ C
K(y)

|y|
for all y 6= 0 (3.7)

for some constant C. Let L be given by (3.2). Let Ω ⊂ Rn be any bounded star-shaped
domain, and f ∈ C0,1

loc (Ω×R) be a supercritical nonlinearity, i.e., satisfying (3.6). Let
u be any bounded solution of (3.1). The following statements hold:

(a) If u ∈ W 1,r(Ω) for some r > 1, then u ≡ 0.

(b) Assume that K(y)|y|n+σ is not constant along some ray from the origin, and that
the nonstrict inequality

n− σ
2

t f(x, t) ≥ nF (x, t) + x · Fx(x, t) for all x ∈ Ω and t ∈ R (3.8)

holds instead of (3.6). If u ∈ W 1,r(Ω) for some r > 1, then u ≡ 0.

(c) Assume that in addition Ω is convex, that the kernel K satisfies

K(y)|y|n+ε is nonincreasing along rays from the origin (3.9)

for some ε ∈ (0, σ), and that

max
∂Br

K(y) ≤ C min
∂Br

K(y) for all r ∈ (0, 1) (3.10)

for some constant C. Then, u ∈ W 1,r(Ω) for some r > 1, and therefore state-
ments (a) and (b) hold without the assumption u ∈ W 1,r(Ω).
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Note that in part (c) we have the additional assumption that the domain Ω is
convex. This is used to prove the W 1,r regularity of bounded solutions to (3.1) (and it
is not needed for example when the operator is the fractional Laplacian, see Remark
3.6.7). Note also that condition (3.5) means in some sense that L has order at most
σ, while (3.9) means that L is at least of order ε for some small ε > 0.

Some examples to which our result applies are sums of fractional Laplacians of
different orders, anisotropic operators (i.e., with nonradial kernels), and also operators
whose kernels have a singularity different of a power at the origin. More examples are
given in Section 3.2.

Note that for f(x, u) = |u|q−1u, part (a) gives nonexistence for supercritical powers
q > n+σ

n−σ , while part (b) establishes nonexistence also for the critical power q = n+σ
n−σ .

The nonexistence of nontrivial solutions for the critical power in case that K(y)|y|n+σ

is constant along all rays from the origin remains an open problem. Even for the
fractional Laplacian (−∆)s, this has been only established for positive solutions, and
it is not known for changing-sign solutions.

The existence of nontrivial solutions in (3.1) for subcritical nonlinearities was ob-
tained by Servadei and Valdinoci [268] by using the mountain pass theorem. Their
result applies to nonlocal operators of the form (3.2) with symmetric kernels K satis-
fying K(y) ≥ λ|y|−n−σ.

As stated in Theorem 3.1.1, the additional hypotheses of part (c) lead to the
W 1,r(Ω) regularity of bounded solutions for some r > 1. This is a consequence of the
following proposition.

Proposition 3.1.2. Let Ω ⊂ Rn be any bounded and convex domain. Let L be an
operator satisfying the hypotheses of Theorem 3.1.1 (c), i.e., satisfying (3.2), (3.4),
(3.5), (3.7), (3.9), and (3.10). Let f ∈ C0,1

loc (Ω×R), and let u be any bounded solution
of (3.1). Then,

‖u‖Cε/2(Rn) ≤ C and |∇u(x)| ≤ Cδ(x)
ε
2
−1 in Ω, (3.11)

where δ(x) = dist(x, ∂Ω) and C is a constant that depends only on Ω, ε, σ, f , and
‖u‖L∞(Ω).

Note that (3.11) and the fact that Ω is convex imply u ∈ W 1,r(Ω) for all 1 < r <
1

1−ε/2 . In (3.11) the exponents ε/2 are optimal, as seen when L = (−∆)ε/2 (see [254]).

Our second nonexistence result, stated next, deals with operators of the form (3.3).
Here, the additional assumptions on Ω and K leading to the W 1,r regularity of solu-
tions are not needed thanks to the presence of the second order constant coefficients
regularizing term.

Theorem 3.1.3. Let L be an operator of the form (3.3), where (aij) is a positive
definite symmetric matrix and K is a nonnegative kernel satisfying (3.4). Assume in
addition that (3.7) holds, and that

K(y)|y|n+2 is nondecreasing along rays from the origin. (3.12)

Let Ω ⊂ Rn be any bounded star-shaped domain, f ∈ C0,1
loc (Ω × R), and u be any

bounded solution of (3.1). If (3.8) holds with σ = 2, then u ≡ 0.
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Note that for f(x, u) = |u|q−1u we obtain nonexistence for critical and supercritical
powers q ≥ n+2

n−2
.

The proofs of Theorems 3.1.1 and 3.1.3 follow some ideas introduced in our proof
of the Pohozaev identity for the fractional Laplacian [250]. The key ingredient in all
these proofs is the scaling properties both of the bilinear form associated to L and
of the potential energy associated to f . These two terms appear in the variational
formulation of (3.1), as explained next.

Recall that solutions to problem (3.1), with L given by (3.2) or (3.3), are critical
points of the functional

E(u) =
1

2
(u, u)−

∫

Ω

F (x, u) (3.13)

among all functions u satisfying u ≡ 0 in Rn \ Ω. Here, F (x, u) =
∫ u

0
f(x, t)dt, and

(·, ·) is the bilinear form associated to L. More precisely, in case that L is given by
(3.2), we have

(u, v) =

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)(
v(x)− v(x+ y)

)
K(y)dx dy, (3.14)

while in case that L is given by (3.3), we have

(u, v) =

∫

Ω

A(∇u,∇v)dx+

∫

Rn

∫

Rn

(
u(x)−u(x+y)

)(
v(x)−v(x+y)

)
K(y)dx dy, (3.15)

where A(p, q) = pTAq and A = (aij) is the matrix in (3.3).
Both Theorems 3.1.1 and 3.1.3 are particular cases of the more general result that

we state next. This result establishes nonexistence of bounded solutions u ∈ W 1,r(Ω),
r > 1, to problems of the form (3.1) with variational operators L satisfying a scaling
inequality.

Proposition 3.1.4. Let E be a Banach space contained in L1
loc(Rn), and ‖ · ‖ be a

seminorm in E. Assume that for some α > 0 the seminorm ‖ · ‖ satisfies

wλ ∈ E and ‖wλ‖ ≤ λ−α‖w‖ for every w ∈ E and λ > 1, (3.16)

where wλ(x) = w(λx).
Let Ω ⊂ Rn be any bounded star-shaped domain with respect to the origin, p > 1,

and f ∈ C0,1
loc (Ω× R). Consider the energy functional

E(u) =
1

p
‖u‖p −

∫

Ω

F (x, u), (3.17)

where F (x, u) =
∫ u

0
f(x, t)dt, and let u be a critical point of E among all functions

u ∈ E satisfying u ≡ 0 in Rn \ Ω.
Assume that f is supercritical, in the sense that

αt f(x, t) > nF (x, t) + x · Fx(x, t) for all x ∈ Ω and t 6= 0. (3.18)

If u ∈ L∞(Ω) ∩W 1,r(Ω) for some r > 1, then u ≡ 0.
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Some examples to which this result applies are second order variational operators
such as the Laplacian or the p-Laplacian, the nonlocal operators in Theorems 3.1.1 or
3.1.3, or the higher order fractional Laplacian (−∆)s (here s > 1). See Section 3.2 for
more examples.

Remark 3.1.5. Proposition 3.1.4 establishes nonexistence of nontrivial bounded solu-
tions belonging to W 1,r(Ω), r > 1. In general, removing the W 1,r assumption may be
done in two different situations:

First, it may happen that the space EΩ = {u ∈ E : u ≡ 0 in Rn \Ω} is embedded
in W 1,r(Ω), r > 1. This happens for instance when considering the natural functional
spaces associated to the Laplacian, the p-Laplacian with p > 1, the higher order
fractional Laplacian (−∆)s (with s ≥ 1), and of the nonlocal operators considered in
Theorem 3.1.3.

Second, even if the space EΩ is not embedded in W 1,r, it is often the case that by
some regularity estimates one can prove that critical points of (3.17) belong to W 1,r,
r > 1. This occurs when the operator if the fractional Laplacian, and also in Theorem
3.1.1 (c), thanks to Proposition 3.1.2.

As said before, for local operators of order 2, the nonexistence of regular solutions
usually follows from Pohozaev-type or Pucci-Serrin identities [240]. Our proofs are in
the spirit of these identities. However, for nonlocal operators this type of identity is
only known for the fractional Laplacian (−∆)s with s ∈ (0, 1) [250], and requires a
precise knowledge of the boundary behavior of solutions to (3.1) [254] (that are not
available for most L). To overcome this, instead of proving an identity we prove an
inequality which is sufficient to prove nonexistence. This approach allows us to require
much less regularity on the solution u and, thus, to include a wide class of operators
in our results.

The paper is organized as follows. In Section 3.2 we give a list of examples of op-
erators to which our results apply. In Section 3.3 we present the main ideas appearing
in the proofs of our results. In Section 3.4 we prove Proposition 3.1.4. In Section 3.5
we prove Theorems 3.1.1 and 3.1.3. Finally, in Section 3.6 we prove Proposition 3.1.2.

3.2 Examples

In this Section we give a list of examples to which our results apply.

(i) First, note that if K1, ..., Km are kernels satisfying the hypotheses of Theorem
3.1.1, and a1, ..., am are nonnegative numbers, then K = a1K1 + · · · + amKm

also satisfies the hypotheses. In particular, our nonexistence result applies to
operators of the form

L = a1(−∆)α1 + · · ·+ am(−∆)αm ,

with ai ≥ 0 and αi ∈ (0, 1). The critical exponent is q = n+2 maxαi
n−2 maxαi

.

(ii) Theorem 3.1.1 may be applied to anisotropic operators L of the form (3.2) with
nonradial kernels such as

K(y) = H(y)−n−σ,
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where H is any homogeneous function of degree 1 whose restriction to Sn−1 is
positive and C1. These operators are infinitesimal generators of σ-stable sym-
metric Lévy processes. The critical exponent is q = n+σ

n−σ .

(iii) Theorem 3.1.1 applies also to operators with kernels that do not have a power-like
singularity at the origin. For example, the one given by the kernel

K(y) =
c

|y|n+σ log
(

2 + 1
|y|

) , σ ∈ (0, 2),

whose singularity at y = 0 is comparable to |y|−n−σ
∣∣log |y|

∣∣−1
. In this example

we also have that the critical exponent is q = n+σ
n−σ .

Other examples of operators that may not have a definite order are given by
infinite sums of fractional Laplacians, such as L =

∑
k≥1

1
k2

(−∆)s−
1
k .

(iv) Theorem 3.1.3 applies to operators such as L = −∆ + (−∆)s, with s ∈ (0, 1),
and also anisotropic operators whose nonlocal part is given by nonradial kernels,
as in example (ii). For all these operators, the critical power is q = n+2

n−2
.

(v) One may take in (3.17) the W s,p(Rn) seminorm

‖u‖p =

∫

Rn

∫

Rn

|u(x)− u(y)|p

|x− y|n+ps
dx dy.

This leads to nonexistence results for the s-fractional p-Laplacian operator, con-
sidered for example in [60, 143]. The critical power for this operator is q = n+ps

n−ps .

(vi) Our results can also be used to obtain a generalization of Theorem 8 in [240],
where Pucci and Serrin proved nonexistence results for the bilaplacian ∆2 and
the polylaplacian (−∆)K , with K positive integer. More precisely, Proposition
3.1.4 can be applied to the Hs(Rn) seminorm to obtain nonexistence of bounded
solutions u to (3.1) with L = (−∆)s, s > 1. Note that the hypotheses u ∈
W 1,r(Ω) is always satisfied, since the fractional Sobolev embeddings yield that
any function u ∈ Hs(Rn) that vanishes outside Ω belongs to W 1,r(Ω) for r = 2
(see Remark 3.1.5).

As an example, when n > 2s and f(u) = λu+ |u|q−1u, one obtains nonexistence
of bounded solutions for λ < 0 and q ≥ n+2s

n−2s
and also for λ ≤ 0 and q > n+2s

n−2s
, as

in [240].

(vii) Proposition 3.1.4 can be applied to the usual W 1,p(Ω) norm to obtain nonex-
istence of bounded weak solutions to (3.1) with L = −∆p, the p-Laplacian.
These nonexistence results were obtained by Otani in [232] via a Pohozaev-type
inequality.

More generally, we may consider nonlinear anisotropic operators that come from
setting

‖u‖p =

∫

Ω

H(∇u)p|x|γdx
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in (3.17), where H is any norm in Rn. In this case, the critical power is q = n+γ+p
n+γ−p .

For γ = 0, some problems involving this class of operators were studied in
[17, 132, 112]. For γ 6= 0, nonexistence results for these type of problems were
studied in [2].

(viii) From Proposition 3.1.4 one may obtain also nonexistence results for k-Hessian
operators Sk(D

2u) with 2k < n. Recall that Sk(D
2u) are defined in terms of the

elementary symmetric polynomials acting on the eigenvalues of D2u, and that
these are variational operators. In the two extreme cases k = 1 and k = n, we
have S1(D2u) = ∆u and Sn(D2u) = detD2u.

Tso studied this problem in [292], and obtained nonexistence of solutions u ∈
C4(Ω) ∩ C1(Ω) in smooth star-shaped domains via a Pohozaev identity. Our

results give only nonexistence for supercritical powers q > (n+2)k
n−2k

, and not for
the critical one. As a counterpart, we only need to assume the solution u to be
L∞(Ω) ∩W 1,r(Ω).

3.3 Sketch of the proof

In this section we sketch the proof of the nonexistence of critical points to functionals
of the form

E(u) =
1

2
(u, u) +

∫

Ω

F (u), (3.19)

where (·, ·) is a bilinear form satisfying, for some α > 0,

uλ ∈ E and ‖uλ‖ := (uλ, uλ)
1/2 ≤ λ−α(u, u)1/2 for all λ ≥ 1, (3.20)

where uλ(x) = u(λx). Of course, this is a particular case of Proposition 3.1.4, in
which p = 2, E is a Hilbert space, and f does not depend on x. Note that in this case
condition (3.16) reads as (3.20). In case of Theorems 3.1.1 and 3.1.3, the bilinear form
is given by (3.14) and (3.15), respectively.

The proof goes as follows. Since u is a critical point of (3.19), then we have that

(u, ϕ) =

∫

Ω

f(u)ϕdx for all ϕ ∈ E satisfying ϕ ≡ 0 in Rn \ Ω.

Next we use ϕ = uλ, with λ > 1, as a test function. Note that, by (3.20), we have
uλ ∈ E, and since Ω is star-shaped, then uλ ≡ 0 in Rn \ Ω. Hence uλ is indeed an
admissible test function. We obtain

(u, uλ) =

∫

Ω

f(u)uλ dx for all λ ≥ 1. (3.21)

Now, we differentiate with respect to λ in both sides of (3.21). On the one hand, since
u ∈ L∞(Ω) ∩W 1,r(Ω), one can show —see Lemma 3.4.2— that

d

dλ

∣∣∣∣
λ=1+

∫

Ω

f(u)uλ dx =

∫

Ω

(x · ∇u)f(u) dx =

∫

Ω

x · ∇F (u)dx = −n
∫

Ω

F (u)dx.
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On the other hand,

d

dλ

∣∣∣∣
λ=1+

(u, uλ) =
d

dλ

∣∣∣∣
λ=1+

{
λ−αIλ

}
= −α(u, u) +

d

dλ

∣∣∣∣
λ=1+

Iλ,

where

Iλ = λα(u, uλ). (3.22)

We now claim that
d

dλ

∣∣∣∣
λ=1+

Iλ ≤ 0. (3.23)

Indeed, using (3.20) and the Cauchy-Schwarz inequality, we deduce

Iλ ≤ λα‖u‖‖uλ‖ ≤ ‖u‖2 = I1,

and thus (3.23) follows. Therefore, we find

−n
∫

Ω

F (u)dx = −α (u, u) +
d

dλ

∣∣∣∣
λ=1+

Iλ ≤ −α (u, u),

and since (u, u) =
∫

Ω
uf(u)dx,

∫

Ω

uf(u)dx ≤ n

α

∫

Ω

F (u)dx.

From this, the nonexistence of nontrivial solutions for supercritical nonlinearities fol-
lows immediately.

In case of Theorem 3.1.1 (b) and Theorem 3.1.3, with a little more effort we will
be able to prove that (3.23) holds with strict inequality, and this will yield the nonex-
istence result for critical nonlinearities.

When the previous bilinear form is invariant under scaling, in the sense that (3.20)
holds with an equality instead of an inequality, then one has Iλ = (u√λ, u1/

√
λ). In the

case L = (−∆)s, it is proven in [250] that

d

dλ

∣∣∣∣
λ=1+

Iλ = Γ(1 + s)

∫

∂Ω

( u
δs

)2

(x · ν)dS,

where δ(x) = dist(x, ∂Ω). This gives the boundary term in the Pohozaev identity for
the fractional Laplacian.

Remark 3.3.1. This method can also be used to prove nonexistence results in star-
shaped domains with respect to infinity or in the whole space Ω = Rn. However, one
need to assume some decay on u and its gradient ∇u, which seems a quite restrictive
hypothesis. More precisely, when f(u) = |u|q−1u and the operator is the fractional
Laplacian (−∆)s, this proof yields nonexistence of bounded solutions (decaying at
infinity) for subcritical nonlinearities q < n+2s

n−2s
in star-shaped domains with respect to

infinity, and for noncritical nonlinearities q 6= n+2s
n−2s

in the whole Rn. The classification

of entire solutions in Rn for the critical power q = n+2s
n−2s

was obtained in [94].
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3.4 Proof of Proposition 3.1.4

In this section we prove Proposition 3.1.4. For it, we will need the following lemma,
which can be viewed as a Hölder-type inequality in normed spaces. For example,

for ‖u‖ =
(∫

Rn |u|
p
)1/p

, we recover the usual Hölder inequality (assuming that the
Minkowski inequality holds).

Lemma 3.4.1. Let E be a normed space, and ‖ · ‖ a seminorm in E. Let p > 1, and
define Φ = 1

p
‖ · ‖p. Assume that Φ is Gateaux differentiable at u ∈ E, and let DΦ(u)

be the Gateaux differential of Φ at u. Then, for all v in E,

〈DΦ(u), v〉 ≤ pΦ(u)1/p′ Φ(v)1/p,

where 1
p

+ 1
p′

= 1. Moreover, equality holds whenever v = u.

Proof. Since Φ1/p is a seminorm, then by the triangle inequality we find that

Φ(u+ εv) ≤
{

Φ(u)1/p + εΦ(v)1/p
}p

for all u and v in E and for all ε ∈ R. Hence, since these two quantities coincide for
ε = 0, we deduce

〈DΦ(u), v〉 =
d

dε

∣∣∣∣
ε=0

Φ(u+ εv) ≤ d

dε

∣∣∣∣
ε=0

{
Φ(u)1/p + εΦ(v)1/p

}p
= pΦ(u)1/p′Φ(v)1/p,

and the lemma follows.

Before giving the proof of Proposition 3.1.4, we also need the following lemma.

Lemma 3.4.2. Let Ω ⊂ Rn be any bounded domain, and let u ∈ W 1,r(Ω), r > 1.
Then,

uλ − u
λ− 1

⇀ x · ∇u weakly in L1(Ω),

where uλ(x) = u(λx).

Proof. Similarly to [124, Theorem 5.8.3], it can be proved that

∫

Ω

∣∣∣∣
uλ − u
λ− 1

∣∣∣∣
r

dx ≤ C

∫

Ω

|∇u|rdx.

Thus, since 1 < r ≤ ∞, then Lr ∼= (Lr
′
)′ and hence there exists a sequence λk → 1,

and a function v ∈ Lr(Ω), such that

uλk − u
λk − 1

⇀ v weakly in Lr(Ω).

On the other hand note that, for each φ ∈ C∞c (Ω), we have

∫

Ω

u (x · ∇φ) dx = −
∫

Ω

(x · ∇u)φ dx− n
∫

Ω

uφ dx.
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Moreover, it is immediate to see that, for λ sufficiently close to 1,

∫

Ω

u
φλ − φ
λ− 1

dx = −λ−n−1

∫

Ω

u1/λ − u
1/λ− 1

φ dx+
λ−n − 1

λ− 1

∫

Ω

uφ dx.

Therefore,

∫

Ω

u (x · ∇φ) dx = lim
k→∞

∫

Ω

u
φ1/λk − φ
1/λk − 1

dx

= lim
k→∞
−
∫

Ω

uλk − u
λk − 1

φ dx− n
∫

Ω

uφ dx

= −
∫

Ω

vφ dx− n
∫

Ω

uφ dx.

Thus, it follows that v = x · ∇u.
Now, note that this argument yields also that for each sequence µk → 1 there exists

a subsequence λk → 1 such that

uλk − u
λk − 1

⇀ x · ∇u weakly in Lr(Ω).

Since this can be done for any sequence µk, then this implies that

uλ − u
λ− 1

⇀ x · ∇u weakly in Lr(Ω).

Finally, since Lr(Ω) ⊂ L1(Ω), the lemma follows.

We can now give the:

Proof of Proposition 3.1.4. Define Φ = 1
p
‖ · ‖p. Since u is a critical point of (3.17),

then

〈DΦ(u), ϕ〉 =

∫

Ω

f(x, u)ϕdx (3.24)

for all ϕ ∈ E satisfying ϕ ≡ 0 in Rn\Ω. Since Ω is star-shaped, we may choose ϕ = uλ,
with λ ≥ 1, as a test function in (3.24). We find

〈DΦ(u), uλ〉 =

∫

Ω

f(x, u)uλdx for all λ ≥ 1. (3.25)

We compute now the derivative with respect to λ at λ = 1+ in both sides of (3.25).
On the one hand, using Lemma 3.4.2 we find that

d

dλ

∣∣∣∣
λ=1+

∫

Ω

uλf(x, u)dx =

∫

Ω

(x · ∇u)f(x, u) dx

=

∫

Ω

{
x · ∇

(
F (x, u)

)
− x · Fx(x, u)

}
dx

= −
∫

Ω

{
nF (x, u) + x · Fx(x, u)

}
dx.

(3.26)
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Note that here we have used also that F (x, u) ∈ W 1,1(Ω), which follows from u ∈
L∞(Ω), (x · ∇u)f(x, u) ∈ Lr(Ω), and x · Fx(x, u) ∈ L∞.

On the other hand, let
Iλ = λα〈DΦ(u), uλ〉. (3.27)

Then,

d

dλ

∣∣∣∣
λ=1+

〈DΦ(u), uλ〉 = −α 〈DΦ(u), u〉+
d

dλ

∣∣∣∣
λ=1+

Iλ

= −α
∫

Ω

uf(x, u)dx+
d

dλ

∣∣∣∣
λ=1+

Iλ,

(3.28)

where we have used that 〈DΦ(u), u〉 =
∫

Ω
uf(x, u)dx, which follows from (3.25).

Now, using Lemma 3.4.1 and the scaling condition (3.16), we find

Iλ = λα〈DΦ(u), uλ〉 ≤ p λαΦ(u)1/p′Φ(uλ)
1/p = λα‖u‖p/p′‖uλ‖

≤ ‖u‖p/p′+1 = ‖u‖p = pΦ(u) = 〈DΦ(u), u〉 = I1,

where 1/p+ 1/p′ = 1. Therefore,

d

dλ

∣∣∣∣
λ=1+

Iλ ≤ 0.

Thus, it follows from (3.25), (3.26), and (3.28) that

−
∫

Ω

{
nF (x, u) + x · Fx(x, u)

}
dx ≤ −α

∫

Ω

uf(x, u)dx,

which contradicts (3.18) unless u ≡ 0.

3.5 Proof of Theorems 3.1.1 and 3.1.3

This section is devoted to give the

Proof of Theorem 3.1.1. Recall that u is a weak solution of (3.1) if and only if

(u, ϕ) =

∫

Ω

f(x, u)ϕdx (3.29)

for all ϕ satisfying (ϕ, ϕ) < ∞ and ϕ ≡ 0 in Rn \ Ω, where (·, ·) is given by (3.14).
Note that (3.16) is equivalent to (3.5). Thus, part (a) follows from Proposition 3.1.4,
where α = n−σ

2
.

Moreover, it follows from the proof of Proposition 3.1.4 that

−
∫

Ω

{
nF (x, u) + x · Fx(x, u)

}
dx =

σ − n
2

∫

Ω

uf(x, u)dx+
d

dλ

∣∣∣∣
λ=1+

Iλ, (3.30)

where

Iλ = λ
n−σ
2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)(
uλ(x)− uλ(x+ y)

)
K(y)dx dy.



3.5 - Proof of Theorems 3.1.1 and 3.1.3 105

Thus, to prove part (b), it suffices to show that

d

dλ

∣∣∣∣
λ=1+

Iλ < 0. (3.31)

Following the proof of Proposition 3.1.4, by the Cauchy-Schwarz inequality we find

Iλ ≤ λ
n−σ
2 ‖u‖ ‖uλ‖

=
√
I1

(∫

Rn

∫

Rn

(
u(x)− u(x+ z)

)2
λ−n−σK(z/λ)dx dz

)1/2

=
I1

2
+

1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ z)

)2
λ−n−σK(z/λ)dx dz

≤ I1.

Denote now K(y) = g(y)/|y|n+σ. Then,

I1 − Iλ ≥
1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2 {
K(y)− λ−n−σK(y/λ)

}
dx dy

=
1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2

|y|n+σ

{
g(y)− g(y/λ)

}
dx dy,

and therefore, by the Fatou lemma

− d

dλ

∣∣∣∣
λ=1+

Iλ ≥
1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2

|y|n+σ
y · ∇g(y)dx dy.

Now, recall that g ∈ C1(Rn \ {0}) is nondecreasing along all rays from the origin and
nonconstant along some of them. Then, we have that y · ∇g(y) ≥ 0 for all y, with
strict inequality in a small ball B. This yields that

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2

|y|n+σ
y · ∇g(y)dx dy > 0

unless u ≡ 0. Indeed, if u(x) − u(x + y) = 0 for all x ∈ Rn and y ∈ B then u is
constant in a neighborhood of x, and thus u is constant in all of Rn.

Therefore, using (3.30) we find that if u is a nontrivial bounded solution then

n− σ
2

∫

Ω

uf(x, u)dx <

∫

Ω

{
nF (x, u) + x · Fx(x, u)

}
dx,

which is a contradiction with (3.8).
Finally, part (c) follows from (a), (b), and Proposition 3.1.2.

To end this section, we give the

Proof of Theorem 3.1.3. As explained in the Introduction, weak solutions to problem
(3.1) with L given by (3.3) are critical points to (3.17) with p = 2 and with

‖u‖2 =

∫

Ω

A(∇u,∇u)dx+

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2
K(y)dxdy,
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where A(p, q) = pTAq and A = (aij) is the matrix in (3.3). It is immediate to see that
this norm satisfies (3.16) with α = n−2

2
whenever (3.12) holds. Moreover, since A is

positive definite by assumption, then ‖u‖W 1,2(Ω) ≤ c‖u‖2, and hence u ∈ W 1,r(Ω) with
r = 2.

Then, it follows from the proof of Proposition 3.1.4 that

n− 2

2

∫

Ω

uf(x, u)dx =

∫

Ω

{nF (x, u) + x · Fx(x, u)} dx+
d

dλ

∣∣∣∣
λ=1+

Iλ,

where

Iλ = λ
n−2
2

∫

Ω

A(∇u,∇uλ)dx+

+ λ
n−2
2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)(
uλ(x)− uλ(x+ y)

)
K(y)dxdy.

(3.32)

Now, as in the proof of Theorem 3.1.1, we find

I1 − Iλ ≥
1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2

|y|n+2

{
g(y)− g(y/λ)

}
dy,

where g(y) = K(y)|y|n+2. Thus, differentiating with respect to λ, we find that

d

dλ

∣∣∣∣
λ=1+

Iλ ≥
1

2

∫

Rn

∫

Rn

(
u(x)− u(x+ y)

)2

|y|n+2
y · ∇g(y)dy.

Moreover, since
∫
Rn

|y|2
1+|y|2K(y)dy <∞ and g is radially nondecreasing, then it follows

that limt→0 g(tτ) = 0 for almost all τ ∈ Sn−1. Thus, if K is not identically zero then
y · ∇g(y) is positive in a small ball B, and hence

d

dλ

∣∣∣∣
λ=1+

Iλ > 0

unless u ≡ 0, which yields the desired result.

3.6 Proof of Proposition 3.1.2

In this section we prove Proposition 3.1.2. To prove it, we follow the arguments used
in [254], where we studied the regularity up to the boundary for the Dirichlet problem
for the fractional Laplacian. The main ingredients in the proof of this result are the
interior estimates of Silvestre [270] and the supersolution given by the next lemma.

Lemma 3.6.1. Let L be an operator of the form (3.2), with K symmetric, positive,

and satisfying (3.9). Let ψ(x) = (xn)
ε/2
+ . Then,

Lψ ≥ 0 in Rn
+,

where Rn
+ = {xn > 0}.
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Proof. Assume first n = 1. Let x ∈ R+. Since K is symmetric, we have

Lψ(x) =
1

2

∫ +∞

−∞

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)
K(y)dy.

Then, it is immediate to see that there exists ρ > 0 such that

2ψ(x)− ψ(x+ y)− ψ(x− y) > 0 for |y| < ρ

and
2ψ(x)− ψ(x+ y)− ψ(x− y) < 0 for |y| > ρ.

Thus, using that K(y)|y|1+ε is nonincreasing in (0,+∞), and that (−∆)ε/2ψ = 0 in
R+, we find

Lψ(x) =
1

2

∫

|y|<ρ

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)
K(y)dy

+
1

2

∫

|y|>ρ

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)
K(y)dy

≥ 1

2

∫

|y|<ρ

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)K(ρ)|ρ|1+ε

|y|1+ε
dy

+
1

2

∫

|y|>ρ

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)K(ρ)|ρ|1+ε

|y|1+ε
dy

= K(ρ)|ρ|1+ε1

2

∫ +∞

−∞

2ψ(x)− ψ(x+ y)− ψ(x− y)

|y|1+ε
dy

= K(ρ)|ρ|1+ε(−∆)ε/2ψ(x) = 0.

Thus, the lemma is proved for n = 1.
Assume now n > 1, and let x ∈ Rn

+. Then,

Lψ(x) =
1

2

∫

Rn

(
2ψ(x)− ψ(x+ y)− ψ(x− y)

)
K(y)dy

=
1

4

∫

Sn−1

(∫ +∞

−∞

(
ψ(x)− ψ(x+ tτ)− ψ(x− tτ)

)
tn−1K(tτ)dt

)
dτ.

(3.33)

Now, for each τ ∈ Sn−1, the kernel K1(t) := tn−1K(tτ) satisfies K1(t)t1+ε is nonin-
creasing in (0,+∞), and in addition

ψ(x+ τt) = (xn + τnt)
ε/2
+ = τ ε/2n (xn/τn + t)

ε/2
+ .

Thus, by using the result in dimension n = 1, we find

∫ +∞

−∞

(
ψ(x)− ψ(x+ tτ)− ψ(x− tτ)

)
tn−1K(tτ)dt ≥ 0. (3.34)

Therefore, we deduce from (3.33) and (3.34) that Lψ(x) ≥ 0 for all x ∈ Rn
+, and

the lemma is proved.
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The following result is the analog of Lemma 2.7 in [254].

Lemma 3.6.2. Under the hypotheses of Proposition 3.1.2, it holds

|u(x)| ≤ Cδ(x)ε/2 for all x ∈ Ω,

where C is a constant depending only on Ω, ε, and ‖u‖L∞(Ω).

Proof. By Lemma 3.6.1, we have that ψ(x) = (xn)
ε/2
+ satisfies Lψ ≥ 0 in Rn

+. Thus, we
can truncate this 1D supersolution in order to obtain a strict supersolution φ satisfying
φ ≡ ψ in {xn < 1}, φ ≡ 1 in {xn > 1}, and Lφ ≥ c0 in {0 < xn < 1}.

We can now use Cφ as a supersolution at each point of the boundary ∂Ω to deduce
|u| ≤ Cδε/2 in Ω; see Lemma 2.7 in [254] for more details.

We next prove the following result, which is the analog of Proposition 2.3 in [254].

Proposition 3.6.3. Under the hypotheses of Proposition 3.1.2, assume that w ∈
L∞(Rn) solves Lw = g in B1, with g ∈ L∞. Then, there exists α > 0 such that

‖w‖Cα(B1/2) ≤ C
(
‖g‖L∞(B1) + ‖w‖L∞(Rn)

)
, (3.35)

where C depends only on n, ε, σ, and the constant in (3.10).

Proof. With slight modifications, the results in [270] yield the desired result.
Indeed, given δ > 0 conditions (3.5), (3.9), and (3.10) yield

κLb(x) + 2

∫

Rn\B1/4

(
|8y|η − 1

)
K(y)dy <

1

2
inf

A⊂B2, |A|>δ

∫

A

K(y)dy (3.36)

for some κ and η depending only on n, ε, σ, and the constant in (3.10). Moreover,
since our hypotheses are invariant under scaling, then (3.36) holds at every scale. Note
that (3.36) is exactly hypothesis (2.1) in [270].

Then, as mentioned by Silvestre in [270, Remark 4.3], Lemma 4.1 in [270] holds
also with (4.1) therein replaced by Lw ≤ ν0 in B1, with ν0 depending on κ. Therefore,
the Hölder regularity of w with the desired estimate (3.35) follows from [270, Theorem
5.1].

Note that it is important to have σ strictly less than 2, since otherwise condition
(3.36) does not hold.

The following is the analog of Proposition 2.2 in [254].

Proposition 3.6.4. Under the same hypotheses of Proposition 3.1.2, assume that
w ∈ Cβ(Rn) solves Lw = g in B1, with g ∈ Cβ, β ∈ (0, 1). Then, there exists α > 0
such that

‖w‖Cβ+α(B1/2) ≤ C
(
‖g‖Cβ(B1) + ‖w‖Cβ(Rn)

)
if β + α < 1,

‖w‖C0,1(B1/2) ≤ C
(
‖g‖Cβ(B1) + ‖w‖Cβ(Rn)

)
if β + α > 1,

where C and α depend only on n, ε, σ, and the constants in (3.10) and (3.7).
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Proof. It follows from the previous Proposition applied to the incremental quotients
(w(x+ h)− w(x))/|h|β and from Lemma 5.6 in [59].

As a consequence of the last two propositions, we find the following corollaries.
The first one is the analog of Corollary 2.5 in [254].

Corollary 3.6.5. Under the same hypotheses of Proposition 3.1.2, assume that w ∈
L∞(Rn) solves Lw = g in B1, with g ∈ L∞. Then, there exists α > 0 such that

‖w‖Cα(B1/2) ≤ C
(
‖g‖L∞(B1) + ‖w‖L∞(B2) + ‖(1 + |y|)−n−εw(y)‖L1(Rn)

)
,

where C depends only on n, ε, σ, and the constants in (3.7) and (3.10).

Proof. Using (3.7), the proof is exactly the same as the one in [254, Corollary 2.5].

The second one is the analog of Corollary 2.4 in [254].

Corollary 3.6.6. Under the same hypotheses of Proposition 3.1.2, assume that w ∈
Cβ(Rn) solves Lw = g in B1, with g ∈ Cβ, β ∈ (0, 1). Then, there exists α > 0 such
that

‖w‖Cβ+α(B1/2) ≤ C
(
‖g‖Cβ(B1) + ‖w‖Cβ(B2) + ‖(1 + |y|)−n−εw(y)‖L1(Rn)

)

if β + α < 1, while

‖w‖C0,1(B1/2) ≤ C
(
‖g‖Cβ(B1) + ‖w‖Cβ(B2) + ‖(1 + |y|)−n−εw(y)‖L1(Rn)

)

if β + α > 1. The constant C depends only on n, ε, σ and the constants in (3.7) and
(3.10).

Proof. Using (3.7), the proof is the same as the one in [254, Corollary 2.4].

We can finally give the

Proof of Proposition 3.1.2. Let now x ∈ Ω, and 2R = dist(x, ∂Ω). Then, one may
rescale problem (3.1)-(3.2) in BR = BR(x), to find that w(y) := u(x + Ry) satisfies
‖w‖L∞(B2) ≤ CRε/2, |w(y)| ≤ CRε/2(1 + |y|ε/2) in Rn, and ‖LRw‖L∞(B1) ≤ CRε, where

LRw(y) =

∫

Rn

(
w(y)− w(y + z)

)
KR(y)dy

and KR(y) = K(Ry)Rn+ε.
Moreover, it is immediate to check that (3.7) yields

|∇KR(y)| ≤ C
KR(y)

|y|
,

with the same constant C for each R ∈ (0, 1). The other hypotheses of Proposition
(3.1.2) are clearly satisfied by the kernels KR for each R ∈ (0, 1).

Hence, one may apply Corollaries 3.6.5 and 3.6.6 (repeatedly) to obtain

|∇w(0)| ≤ CRε/2.
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From this, we deduce that |∇u(x)| ≤ CR
ε
2
−1, and since this can be done for any x ∈ Ω,

we find
|∇u(x)| ≤ Cδ(x)

ε
2
−1 in Ω,

as desired. The Cε/2(Rn) regularity of u follows immediately from this gradient bound.

Remark 3.6.7. The convexity of the domain has been only used in the construction
of the supersolution. To establish Proposition 3.1.2 in general C1,1 domains, one only
needs to construct a supersolution which is not 1D but it is radially symmetric and
with support in Rn \ B1, as in [254, Lemma 2.6], where it is done for the fractional
Laplacian.



4Chapter Four

BOUNDARY REGULARITY FOR FULLY
NONLINEAR INTEGRO-DIFFERENTIAL

EQUATIONS

We study fine boundary regularity properties of solutions to fully nonlinear elliptic
integro-differential equations of order 2s, with s ∈ (0, 1).

We consider the class of nonlocal operators L∗ ⊂ L0, which consists of all the
infinitesimal generators of stable Lévy processes belonging to the class L0 of Caffarelli-
Silvestre. For fully nonlinear operators I elliptic with respect to L∗, we prove that
solutions to Iu = f in Ω, u = 0 in Rn \ Ω, satisfy u/ds ∈ Cs−ε(Ω) for all ε > 0, where
d is the distance to ∂Ω and f ∈ L∞.

We expect the Hölder exponent s − ε to be optimal (or almost optimal) for right
hand sides f ∈ L∞. Moreover, we also expect the class L∗ to be the largest scale
invariant subclass of L0 for which this result is true. In this direction, we show that
the class L0 is too large for all solutions to behave like ds.

The constants in all the estimates in this paper remain bounded as the order of
the equation approaches 2.

4.1 Introduction and results

This paper is concerned with boundary regularity for fully nonlinear elliptic integro-
differential equations.

Since the foundational paper of Caffarelli and Silvestre [69], ellipticity for a non-
linear integro-differential operator is defined relatively to a given set L of linear trans-
lation invariant elliptic operators. This set L is called the ellipticity class.

The reference ellipticity class from [69] is the class L0 = L0(s), containing all
operators L of the form

Lu(x) =

∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
K(y) dy (4.1)

with even kernels K(y) bounded between two positive multiples of (1 − s)|y|−n−2s,
which is the kernel of the fractional Laplacian (−∆)s.

111
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In the three papers [69, 70, 71], Caffarelli and Silvestre studied the interior regu-
larity for solutions u to {

Iu = f in Ω
u = g in Rn \ Ω,

(4.2)

being I a translation invariant fully nonlinear integro-differential operator of order 2s
(see the definition later on in this Introduction). They proved existence of viscosity
solutions, established C1+α interior regularity of solutions [69], C2s+α regularity in
case of convex equations [71], and developed a perturbative theory for non transla-
tion invariant equations [70]. Thus, the interior regularity for these equations is well
understood.

However, very few is known about the boundary regularity for fully nonlinear
problems of fractional order.

When I is the fractional Laplacian −(−∆)s, the boundary regularity of solutions
u to (4.2) is now well understood. The first result in this direction was obtained by
Bogdan, who established the boundary Harnack principle for s-harmonic functions [25]
—i.e., for solutions to (−∆)su = 0. More recently, we proved in [249] that if f ∈ L∞,
g ≡ 0, and Ω is C1,1 then u ∈ Cs(Rn) and u/ds ∈ Cα(Ω) for some small α > 0, where
d is the distance to the boundary ∂Ω. Moreover, the limit of u(x)/ds(x) as x → ∂Ω
is typically nonzero (in fact it is positive if f < 0), and thus the Cs regularity of u is
optimal. After this, Grubb [163] showed that when f ∈ Cβ with β > 0 (resp. f ∈ L∞),
g ≡ 0, and Ω is smooth, then u/ds ∈ Cβ+s−ε(Ω) (resp. u/ds ∈ Cs−ε(Ω)) for all ε > 0.
In particular, f ∈ C∞ leads to u/ds ∈ C∞(Ω). Thus, the correct notion of boundary
regularity for equations of order 2s is the Hölder regularity of the quotient u/ds.

Besides these works for the fractional Laplacian, no other result on fine boundary
regularity for more general operators was known —not even for linear equations.

Here, we obtain boundary regularity for fully nonlinear integro-differential problems
of the form (4.2) which are elliptic with respect to a class L∗ ⊂ L0 defined as follows.
L∗ consists of all linear operators of the form

Lu(x) = (1− s)
∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
a(y/|y|)
|y|n+2s

dy, (4.3)

with
a ∈ L∞(Sn−1) satisfying λ ≤ a ≤ Λ, (4.4)

where 0 < λ ≤ Λ are called ellipticity constants. The class L∗ consists of all infinites-
imal generators of stable Lévy processes belonging to L0. Our main result establishes
that when f ∈ L∞, g ≡ 0, and Ω is C1,1, viscosity solutions u satisfy

u/ds ∈ Cs−ε(Ω) for all ε > 0. (4.5)

We also obtain boundary regularity for problem (4.2) with exterior data g ∈ C2,
and also for non translation invariant operators I(u, x). These results apply to fully
nonlinear equations, but they are new even for linear translation invariant equations
Lu = f with L as in (4.3).

We believe the Hölder exponent s − ε in (4.5) to be optimal (or almost optimal)
for merely bounded right hand sides f . Moreover, we expect the class L∗ to be the
largest scale invariant subclass of L0 for which this result is true.
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For general elliptic equations with respect to L0, no fine boundary regularity results
like (4.5) hold. In fact, the class L0 is too large for all solutions to be comparable to ds

near the boundary. Indeed, we show in Section 2 that there are powers 0 < β1 < s < β2

for which the functions (xn)β1+ and (xn)β2+ satisfy

M+
L0(xn)β1+ = 0 and M−

L0(xn)β2+ = 0 in {xn > 0},

where M+
L0 and M−

L0 are the extremal operators for the class L0; see their definition in
Section 2. Hence, since (−∆)s(xn)s+ = 0 in {xn > 0}, we have at least three functions
which solve fully nonlinear elliptic equations with respect to L0 but which are not
even comparable near the boundary {xn = 0}. As we show in Section 2, the same
happens for the subclasses L1 and L2 of L0, which have more regular kernels and were
considered in [69, 70, 71].

4.1.1 The class L∗
The class L∗ consists of all infinitesimal generators of stable Lévy processes belonging
to L0. This type of Lévy processes are well studied in probability, as explained next.
In that context, the function a ∈ L∞(Sn−1) is called the spectral measure.

Stable processes are by several reasons a natural extension of Gaussian processes.
For instance, the Generalized Central Limit Theorem states that the distribution of a
sum of independent identically distributed random variables with heavy tails converges
to a stable distribution; see [255], [196], or [12] for a precise statement of this result.
Thus, stable processes are often used to model sums of many random independent per-
turbations with heavy-tailed distributions —i.e., when large outcomes are not unlikely.
In particular, they arise frequently in financial mathematics, internet traffic statistics,
or signal processing; see for instance [236, 213, 214, 228, 229, 230, 3, 186, 233, 168]
and the books [227, 255].

Linear equations Lu = f with L in the class L∗ have been already studied, specially
by Sztonyk and Bogdan; see for instance [280, 28, 239, 29, 30, 281]. Although there
were some results on the boundedness of u/ds, the Hölder regularity for the quotient
u/ds was not known. In this paper we establish it for linear and for fully nonlinear
equations.

Notice that all second order linear uniformly elliptic operators are recovered as
limits of operators in L∗ = L∗(s) as s → 1. In particular, all second order fully
nonlinear equations F (D2u, x) = f(x) are recovered as limits of the fully nonlinear
integro-differential equations that we consider. Furthermore, when s < 1 the class
of translation invariant linear operators L∗(s) is much richer than the one of second
order uniformly elliptic operators. Indeed, while any operator in the latter class is
determined by a positive definite n×n matrix, a function a : Sn−1 → R+ is needed to
determine an operator in L∗(s).

A key feature of the class L∗ for boundary regularity issues is that

L(xn)s+ = 0 in {xn > 0} for all L ∈ L∗.

This is essential first to construct barriers which are comparable to ds, and later to
prove finer boundary regularity.



114 Boundary regularity for fully nonlinear integro-differential equations

4.1.2 Equations with “bounded measurable coefficients”

The first result of in this paper, and on which all the other results rely, is Proposition
4.1.1 below.

Here, and throughout the article, we use the definition of viscosity solutions and
inequalities of [69]. Moreover, for r > 0 we denote

B+
r = Br ∩ {xn > 0} and B−r = Br ∩ {xn < 0},

and the constants λ and Λ in (4.4) are called ellipticity constants.
The extremal operators associated to the class L∗ are denoted by M+

L∗ and M−
L∗ ,

M+
L∗u = sup

L∈L∗
Lu and M−

L∗u = inf
L∈L∗

Lu.

Note that, since L∗ ⊂ L0, then M−
L0 ≤M−

L∗ ≤M+
L∗ ≤M+

L0 .

Proposition 4.1.1. Let s0 ∈ (0, 1) and s ∈ [s0, 1). Assume that u ∈ C(B1)∩L∞(Rn)
is a viscosity solution of





M+
L∗u ≥ −C0 in B+

1

M−
L∗u ≤ C0 in B+

1

u = 0 in B−1 ,
(4.6)

for some nonnegative constant C0. Then, u/xsn is Cα(B+
1/2) for some α > 0, with the

estimate
‖u/xsn‖Cα(B+

1/2
) ≤ C

(
C0 + ‖u‖L∞(Rn)

)
. (4.7)

The constants α and C depend only on n, s0, and the ellipticity constants.

It is important to remark that the constants in our estimate remain bounded as
s→ 1. This means that from Proposition 4.1.1 we can recover the classical boundary
Harnack inequality of Krylov [189].

The estimate of Proposition 4.1.1 is only a first step towards our results. It is
obtained via a nonlocal version of the method of Krylov [189] for second order equations
with bounded measurable coefficients; see also Section 9.2 in [59]. This method has
been adapted to nonlocal equations by the authors in [249], where we proved estimate
(4.7) for the fractional Laplacian (−∆)s in C1,1 domains.

As explained before, our main result is the Cs−ε regularity of u/ds in C1,1 domains
for solutions u to fully nonlinear integro-differential equations (see the next subsection).
Thus, for solutions to the nonlinear equations we push the small Hölder exponent α > 0
in (4.7) up to the exponent s−ε in (4.5). To achieve this, new ideas are needed, and the
procedure that we develop differs substantially from that in second order equations.
We use a new compactness method and the “boundary” Liouville-type Theorem 4.1.5,
stated later on in the Introduction. This Liouville theorem relies on Proposition 4.1.1.

4.1.3 Main result

Before stating our main result, let us recall the definition and motivations of fully
nonlinear integro-differential operators.
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As defined in [69], a fully nonlinear operator I is said to be elliptic with respect to
a subclass L ⊆ L0 when

M−
L (u− v)(x) ≤ Iu(x)− Iv(x) ≤M+

L (u− v)(x)

for all test functions u, v which are C2 in a neighborhood of x and having finite integral
against ωs(x) = (1− s)(1 + |x|−n−2s). Moreover, if

I (u(x0 + ·)) (x) = (Iu)(x0 + x),

then we say that I is translation invariant.
Fully nonlinear elliptic integro-differential equations naturally arise in stochastic

control and games. In typical examples, a single player or two players control some
parameters (e.g. the volatilities of the assets in a portfolio) affecting the joint distri-
bution of the random increments of n variables X(t) ∈ Rn. The game ends when X(t)
exits for the first time a certain domain Ω (as when having automated orders to sell
assets when their prices cross certain limits).

The value or expected payoff of these games u(x) depends on the starting point
X(0) = x (initial prices of all assets in the portfolio). A remarkable fact is that value
u(x) solves an equation of the type Iu = 0, where

Iu(x) = sup
α

(
Lαu+ cα

)
or Iu(x) = inf

β
sup
α

(
Lαβu+ cαβ

)
. (4.8)

The first equation, known as the Bellman equation, arises in control problems (a
single player), while the second one, known as the Isaacs equations, arises in zero-sum
games (two players). The linear operators Lα and Lαβ are infinitesimal generators
of Lévy processes, standing for all the possible choices of the distribution of time
increments of X(t). The constants cα and cαβ are costs associated to the choice of
the operators Lα and Lαβ. More involved equations with zeroth order terms and right
hand sides have also meanings in this context as interest rates or running costs. See
[60, 273, 231, 100, 69], and references therein for more information on these equations.

When all Lα and Lαβ belong to L∗, then (4.8) are fully nonlinear translation in-
variant operators elliptic with respect to L∗, as defined above.

A fractional Monge-Ampère operator has been recently introduced by Caffarelli-
Charro [62]. It is a fully nonlinear integro-differential operator which, by the main
result in [62], is elliptic with respect to L∗ whenever the right hand side is uniformly
positive.

The interior regularity for fully nonlinear integro-differential elliptic equations was
mainly established by Caffarelli and Silvestre in the well-known paper [69]. More
precisely, for some small α > 0, they obtain C1+α interior regularity for fully nonlinear
elliptic equations with respect to the class L1 made of kernels in L0 which are C1

away from the origin. For s > 1
2
, the same result in the class L0 has been recently

proved by Kriventsov [187]. These estimates are uniform as the order of the equations
approaches two, so they can be viewed as a natural extension of the interior regularity
for fully nonlinear equations of second order. There were previous interior estimates
by Bass and Levin [14] and by Silvestre [270] which are not uniform as the order of
the equation approaches 2. An interesting aspect of [270] is that its proof is short and
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uses only elementary analysis tools, taking advantage of the nonlocal character of the
equations. This is why same ideas have been used in other different contexts [72, 272].

For convex equations elliptic with respect to L2 (i.e., with kernels in L0 which are
C2 away from the origin), Caffarelli and Silvestre obtained C2s+α interior regularity
[71]. This is the nonlocal extension of the Evans-Krylov theorem. Other important
references concerning interior regularity for nonlocal equations in nondivergence form
are [241, 180, 86, 9, 165].

To give local boundary regularity results for C1,1 domains it is useful the following:

Definition 4.1.2. We say that Γ is C1,1 surface with radius ρ0 > 0 splitting B1 into
Ω+ and Ω− if the following happens.

• The two disjoint domains Ω+ and Ω− partition B1, i.e., B1 = Ω+ ∪ Ω−.

• The boundary Γ := ∂Ω+ \ ∂B1 = ∂Ω− \ ∂B1 is C1,1 surface with 0 ∈ Γ.

• All points on Γ ∩ B3/4 can be touched by two balls of radii ρ0, one contained in
Ω+ and the other contained in Ω−.

Our main result reads as follows.

Theorem 4.1.3. Let Γ be a C1,1 surface with radius ρ0 splitting B1 into Ω+ and Ω−;
see Definition 4.1.2. Let d(x) = dist (x,Γ).

Let s0 ∈ (0, 1) and s ∈ [s0, 1). Assume that I is a fully nonlinear and translation
invariant operator, elliptic with respect to L∗(s), with I0 = 0. Let f ∈ C

(
Ω+
)
, and

u ∈ L∞(Rn) ∩ C
(
Ω+
)

be a viscosity solution of

{
Iu = f in Ω+

u = 0 in Ω−.

Then, u/ds belongs to Cs−ε(Ω+ ∩B1/2

)
for all ε > 0 with the estimate

∥∥u/ds
∥∥
Cs−ε(Ω+∩B1/2)

≤ C
(
‖u‖L∞(Rn) + ‖f‖L∞(Ω+)

)
,

where the constant C depends only on ρ0, s0, ε, ellipticity constants, and dimension.

Remark 4.1.4. As in the case of the fractional Laplacian, under the hypotheses of
Theorem 4.1.3 we have that u ∈ Cs

(
Ω+ ∩B1/2

)
, with the estimate ‖u‖Cs(Ω+∩B1/2) ≤

C
(
‖u‖L∞(Rn) + ‖f‖L∞(Ω+)

)
. Indeed, one only needs to combine the interior estimates

in [69, 187, 261] (stated in Theorem 4.2.6) with the supersolution in Lemma 4.3.3,
exactly as we did in [249, Proposition 1.1] for (−∆)s.

It is important to notice that our result is not only an a priori estimate for classical
solutions but also applies to viscosity solutions. For local equations of second order
F (D2u,Du, x) = f(x), the boundary regularity for viscosity solutions to fully nonlinear
equations has been recently obtained by Silvestre-Sirakov [274]. The methods that we
introduce here to prove Theorem 4.1.3 can be used also to give a new proof of the results
for such second order fully nonlinear equations; see Section 4.8 for more details.

Besides its own interest, the boundary regularity of solutions to integro-differential
equations plays an important role in different contexts. For example, it is needed in
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overdetermined problems arising in shape optimization [105, 128] and also in Pohozaev-
type or integration by parts identities [250]. Moreover, boundary regularity issues
appear naturally in free boundary problems [66, 271].

Theorem 4.1.3 is, to our knowledge, the first boundary regularity result for fully
nonlinear integro-differential equations. It was only known that solutions u to these
equations are Cα up to the boundary for some small α > 0 (a result for u but not for
the quotient u/ds). For solutions u to elliptic equations with respect to L∗, our result
gives a quite accurate description of the boundary behavior. Namely, u/ds is Cs−ε for
all ε > 0, where d is the distance to the boundary.

This result is close to being optimal, at least when the right-hand sides f are
just bounded. Indeed, let us compare it with the best known boundary regularity
results for the fractional Laplacian (−∆)s, due to Gerd Grubb [163]. These results use
powerful machinery from Hörmander’s theory. One of the main results in [163] applies
to solutions u of the linear problem

{
(−∆)su = f in U

u = 0 in Rn \ U (4.9)

in a C∞ domain U . It states that if f is Cβ for some β ∈ [0,+∞], then u/ds is
also Cβ+s−ε up to the boundary for all ε > 0. These estimates in Hölder spaces are
actually particular cases of sharp estimates in Hörmander’s µ-spaces. Needless to say,
these remarkable results almost close the theory of boundary regularity for bounded
solutions of (4.9), and they are a major improvement of the previously available results
by the authors [249]. However, these techniques are only available for linear operators
that satisfy the so called µ-transmission property. Such operators are mainly powers of
second order linear elliptic operators. We find thus interesting to have reached, when
f is just L∞, the same boundary regularity for fully nonlinear equations.

4.1.4 A Liouville theorem and other ingredients of the proof

Theorem 4.1.3 follows by combining an estimate on the boundary, (4.10) below, with
the known interior regularity estimates in [69, 187]. The estimate on the boundary
reads as follows. If u satisfies the hypotheses of Theorem 4.1.3, then for all z ∈ Γ∩B1/2

there exists Q(z) ∈ R for which

∣∣∣u(x)−Q(z)
(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ C|x− z|2s−ε for all x ∈ B1. (4.10)

Here, ν(z) is the unit normal vector to Γ at z pointing towards Ω+.
Our proof of (4.10) differs substantially from boundary regularity methods in sec-

ond order equations. A main reason for this is not only the nonlocal character of
the estimates, but also that tangential and normal derivatives of the solution behave
differently on the boundary; recall that the solution is Cs but cannot be Lipschitz up
to the boundary.

The estimate on the boundary (4.10) relies heavily on two ingredients, as explained
next.

The first ingredient is the following Liouville-type theorem for solutions in a half
space.
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Theorem 4.1.5. Let u ∈ C(Rn) be a viscosity solution of

{
Iu = 0 in {xn > 0}
u = 0 in {xn < 0},

where I is a fully nonlinear and translation invariant operator, elliptic with respect to
L∗ and with I0 = 0. Assume that for some positive β < 2s, u satisfies the growth
control at infinity

‖u‖L∞(BR) ≤ CRβ for all R ≥ 1. (4.11)

Then,

u(x) = K(xn)s+

for some constant K ∈ R.

To prove Theorem 4.1.5, we apply Proposition 4.1.1 to incremental quotients of u in
the first (n−1)-variables. After this, rescaling the obtained estimates and using (4.11),
we find that such incremental quotients are zero, and thus that u is a 1D solution.
Then, we use that for 1D functions all operators L ∈ L∗ coincide up to a multiplicative
constant with the fractional Laplacian (−∆)s; see Lemma 4.2.1. Therefore, we only
need to prove a Liouville theorem for solutions to (−∆)sw = 0 in R+, w = 0 in R−
satisfying a growth control at infinity, which is done in Lemma 4.5.2.

The second ingredient towards (4.10) is the following compactness argument. With
u as in Theorem 4.1.3, we suppose by contradiction that (4.10) does not hold, and we
blow up the fully nonlinear equation at a boundary point (after subtracting appropriate
terms to the solution). We then show that the blow up sequence converges to an
entire solution in {x · ν > 0} for some unit vector ν. For this, we need to develop a
boundary version of a method introduced by the second author in [261]. The method
was conceived there to prove interior regularity for integro-differential equations with
rough kernels. Finally, the contradiction is reached by applying the Liouville-type
theorem stated above to the entire solution in {x · ν > 0}.

These are the main ideas used to prove (4.10). A byproduct of this blow-up method
is that the same proof yields results for non translation invariant equations; see The-
orem 4.1.6 below.

Finally, Theorem 4.1.3 follows by combining (4.10) with the interior regularity
estimates in [69, 187].

4.1.5 Non translation invariant equations

An interesting feature of the blow up and compactness argument used in this paper
is that it allows to deal also with equations depending continuously on the x variable.
For example, consider

I(u, x) = f(x) in Ω+,

where I is an operator of the form

I(u, x) = inf
β

sup
α

(∫

Rn

{
u(x+ y) + u(x− y)− 2u(x)

}
Kαβ(x, y) dy + cαβ(x)

)
. (4.12)
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The kernels Kαβ are of the form

Kαβ(x, y) = (1− s)aαβ(x, y/|y|)
|y|n+2s

, (4.13)

and satisfy, for all α and β,

0 <
λ

|y|n+2s
≤ Kαβ(x, y) ≤ Λ

|y|n+2s
for all x ∈ Ω+ and y ∈ Rn, (4.14)

inf
β

sup
α
cαβ(x) = 0 for all x ∈ Ω+, ‖cαβ‖L∞ ≤ Λ (4.15)

and ∣∣aαβ(x1, θ)− aαβ(x2, θ)
∣∣ ≤ µ

(
|x1 − x2|

)
(4.16)

for all x1, x2 ∈ Ω+ and θ ∈ Sn−1, where µ is some modulus of continuity.
As proved in [70], the operator I defined above satisfies the ellipticity condition

M−
L∗(u− v)(x) ≤ I(u, x)− I(v, x) ≤M+

L∗(u− v)(x).

The assumption (4.15) guarantees that I(0, x) = 0.
The following is our result for non translation invariant equations. In this result,

we also consider a nonzero Dirichlet condition g(x).

Theorem 4.1.6. Let Γ be a C1,1 hypersurface with radius ρ0 > 0 splitting B1 into Ω+

and Ω−; see Definition 4.1.2.
Let s0 ∈ (0, 1) and s ∈ [s0, 1). Assume that I is an operator of the form (4.12)-

(4.16). Let f ∈ C
(
Ω+
)
, g ∈ C2(B1), and u ∈ L∞(Rn) ∩C

(
Ω+
)

be a viscosity solution
of {

I(u, x) = f(x) in Ω+

u = g(x) in Ω−.

Then, given ε > 0, for all z ∈ Γ ∩ B1/2 there exists Q(z) ∈ R with |Q(z)| ≤ CC0

for which

∣∣∣u(x)− g(x)−Q(z)
(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ CC0|x− z|2s−ε for all x ∈ B1,

where

C0 = ‖f‖L∞(Ω+) + ‖g‖C2(B1) + ‖u‖L∞(Rn)

and ν(z) is the unit normal vector to Γ at z pointing towards Ω+. The constant C
depends only on n, ρ0, s0, ε, µ, and ellipticity constants.

In case g ≡ 0, the proof of Theorem 4.1.6 is almost the same as that of Theo-
rem 4.1.3. On the other hand, the full Theorem 4.1.6 follows from the case g ≡ 0 by
applying it to the function ũ = u− g.

In Theorem 4.1.6, the C2 norm of g may be replaced by the C2s+ε norm for any
ε > 0. This easily follows from the proof of the result.
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Remark 4.1.7. When the kernels Kαβ belong to L1, interior regularity estimates for
the operators I are proved in [70]. For operators I elliptic with respect to L0, these
interior estimates can be proved by using the methods of the second author [261].
Once proved these interior estimates, it follows from Theorem 4.1.6 that (u− g)/ds ∈
Cs−ε(Ω+ ∩B1/2), as in Theorem 4.1.3.

The paper is organized as follows. In Section 4.2 we give some important results on
L∗ and L0. In Section 4.3 we construct some sub and supersolutions that will be used
later. In Section 4.4 we prove Proposition 4.1.1. In Section 4.5 we show Theorem 4.1.5.
Then, in Section 4.6 we prove our main result, Theorem 4.1.3. Finally, in Section 4.7
we prove results for non-translation-invariant equations.

4.2 Properties of L∗ and L0

This section has two main purposes: to show that the class L∗ ⊂ L0 is the appropriate
one to obtain fine boundary regularity results, and to give some important results on
L∗ and L0.

4.2.1 The class L∗
For s ∈ (0, 1), we define the ellipticity class L∗ = L∗(s) as the set of all linear operators
L of the form (4.3)-(4.4).

Throughout the paper, the extremal operators (as defined in [69]) for the class L∗
are denoted by M+ and M−, that is,

M+u(x) = M+
L∗u(x) = sup

L∈L∗
Lu(x) and M−u(x) = M−

L∗u(x) = inf
L∈L∗

Lu(x).

(4.17)
The following useful formula writes an operator L ∈ L∗ as a weighted integral of

one dimensional fractional Laplacians in all directions.

Lu = (1− s)
∫

Sn−1

dθ
1

2

∫ ∞

−∞
dr

(
u(x+ rθ) + u(x− rθ)

2
− u(x)

)
a(θ)

|r|n+2s
rn−1

= −1− s
2c1,s

∫

Sn−1

dθ a(θ) (−∂θθ)su(x),

(4.18)

where

−(−∂θθ)su(x) = c1,s

∫ ∞

−∞

(
u(x+ θr) + u(x− θr)

2
− u(x)

)
dr

|r|1+2s

is the one-dimensional fractional Laplacian in the direction θ, whose Fourier symbol
is −|θ · ξ|2s.

The following is an immediate consequence of the formula (4.18).

Lemma 4.2.1. Let u be a function depending only on variable xn, i.e. u(x) = w(xn),
where w : R→ R. Then,

Lu(x) = −1− s
2c1,s

(∫

Sn−1

|θn|2sa(θ) dθ

)
(−∆)sRw(xn),

where (−∆)sR denotes the fractional Laplacian in dimension one.
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Proof. Using (4.18) we find

Lu(x) =
1− s
2c1,s

∫

Sn−1

−(−∆)sR
(
w(xn + θn · )

)
a(θ) dθ

=
1− s
2c1,s

∫

Sn−1

−|θn|2s(−∆)sR
(
w(xn + · )

)
a(θ) dθ,

as wanted.

Another consequence of (4.18) is that M+ and M− admit the following “closed
formulae”:

M+u(x) =
1− s
2c1,s

∫

Sn−1

{
Λ
(
−(−∂θθ)sw(x)

)+ − λ
(
−(−∂θθ)sw(x)

)−}
dθ

and

M−u(x) =
1− s
2c1,s

∫

Sn−1

{
λ
(
−(−∂θθ)sw(x)

)+ − Λ
(
−(−∂θθ)sw(x)

)−}
dθ.

In all the paper, given ν ∈ Sn−1 and β ∈ (0, 2s) we denote by ϕβ : R → R and
ϕβν : Rn → R the functions

ϕβ(x) := (x+)β and ϕβν (x) := (x · ν)β+. (4.19)

A very important property of L∗ is the following.

Lemma 4.2.2. For any unit vector ν ∈ Sn−1, the function ϕsν satisfies M+ϕsν =
M−ϕsν = 0 in {x · ν > 0} and ϕsν = 0 in {x · ν < 0}.

Proof. We use Lemma 4.2.1 and the well-known fact that the function ϕs(x) = (x+)s

is satisfies (−∆)sRϕ
s = 0 in {x > 0}; see for instance [249, Proposition 3.1].

Next we give a useful property of M+ and M−.

Lemma 4.2.3. Let β ∈ (0, 2s), and let M+ and M− be defined by (4.17). For any
unit vector ν ∈ Sn−1, the function ϕβν satisfies M+ϕβν (x) = c(s, β)(x · ν)β−2s and
M−ϕβν (x) = c(s, β)(x · ν)β−2s in {x · ν > 0}, and ϕβν = 0 in {x · ν < 0}. Here, c and c
are constants depending only on s, β, n, and ellipticity constants.

Moreover, c and c satisfy c ≥ c, and they are continuous as functions of the vari-
ables (s, β) in {0 < s ≤ 1, 0 < β < 2s}. In addition, we have

c(s, β) > c(s, β) > 0 for all β ∈ (s, 2s). (4.20)

and

lim
β↗2s

c(s, β) =

{
+∞ for all s ∈ (0, 1)

C > 0 for s = 1.
(4.21)



122 Boundary regularity for fully nonlinear integro-differential equations

Proof. Given L ∈ L∗, by Lemma 4.2.1 we have

Lϕβν (x) = −1− s
2c1,s

(∫

Sn−1

|θn|2sa(θ) dθ

)
(−∆)sRϕ

β(x · ν).

Hence, using the scaling properties of the fractional Laplacian and of the function ϕβ

we obtain that, for x · ν > 0,

M+ϕβν (x) = C (x · ν)β−2s max
{
−Λ(−∆)sRϕ

β(1),−λ(−∆)sRϕ
β(1)

}

and
M−ϕβν (x) = C (x · ν)β−2s min

{
−Λ(−∆)sRϕ

β(1),−λ(−∆)sRϕ
β(1)

}
,

where C = (1− s)/(2c1,s) > 0.
Therefore, to prove that the two functions c and c are continuous in the variables

(s, β) in {0 < s ≤ 1, 0 < β < 2s}, and that (4.20)-(4.21) holds, it is enough to prove
the same for

(s, β) 7−→ −(−∆)sRϕ
β(1).

We first prove continuity in β. If β and β′ belong to (0, 2s), then as β′ → β, we
have ϕβ

′ → ϕβ in C2([1/2, 3/2]) and

∫

R

∣∣ϕβ′ − ϕβ
∣∣(x) (1 + |x|)−1−2s dx→ 0.

As a consequence, (−∆)sRϕ
β′(1) → (−∆)sRϕ

β(1). It is easy to see that if s and s′

belong to (0, 1], and β < 2s, then (−∆)s
′

Rϕ
β(1)→ (−∆)sRϕ

β(1) as s′ → s.
Moreover, note that whenever β > s, the function ϕβ is touched by below by the

function ϕs − C at some point x0 > 0 for some constant C > 0. Hence, we have
(−∆)sRϕ

β(x0) > (−∆)sRϕ
s(x0) = 0. This yields (4.20).

Finally, (4.21) follows from an easy computation using the definition of (−∆)sR,
and thus the proof is finished.

4.2.2 The class L0

As defined in [69], for s ∈ (0, 1) the ellipticity class L0 = L0(s) consists of all operators
L of the form

Lu(x) = (1− s)
∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
b(y)

|y|n+2s
dy.

where
b ∈ L∞(Rn) satisfies λ ≤ b ≤ Λ.

It is clear that
L∗ ( L0.

The extremal operators for the class L0 are denoted here by M+
L0 and M−

L0 . Since
L∗ ⊂ L0, we have

M−
L0 ≤M− ≤M+ ≤M+

L0 .
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Hence, all elliptic equations with respect to L∗ are elliptic with respect to L0 and all
the definitions and results in [69] apply to the elliptic equations considered in this
paper.

As in [69, 70] we consider the weighted L1 spaces L1(Rn, ωs), where

ωs(x) = (1− s)(1 + |x|)−n−2s. (4.22)

The utility of this weighted space is that, if L ∈ L0(s), then Lu(x) can be evaluated
classically and is continuous in Bε/2 provided u ∈ C2(Bε) ∩ L1(Rn, ωs). One can then
consider viscosity solutions to elliptic equations with respect to L0(s) which are not
bounded but belong to L1(Rn, ωs). The weighted norm appears in stability results;
see [70].

As said in the Introduction, the definitions we follow of viscosity solutions and
viscosity inequalities are the ones in [69].

Next we state the interior Harnack inequality and the Cα estimate from [69].

Theorem 4.2.4 ([69]). Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let u ≥ 0 in Rn satisfy in the
viscosity sense M−

L0u ≤ C0 and M+
L0u ≥ −C0 in BR. Then,

u(x) ≤ C
(
u(0) + C0R

2s
)

for every x ∈ BR/2,

for some constant C depending only on n, s0, and ellipticity constants.

Theorem 4.2.5 ([69]). Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let u ∈ C(B1) ∩ L1(Rn, ωs)
satisfy in the viscosity sense M−

L0u ≤ C0 and M+
L0u ≥ −C0 in B1. Then, u ∈ Cα

(
B1/2

)

with the estimate

‖u‖Cα(B1/2) ≤ C
(
C0 + ‖u‖L∞(B1) + ‖u‖L1(Rn, ωs)

)
,

where α and C depend only on n, s, and ellipticity constants.

The following result is a consequence of the results in [187] in the case s ∈ (1/2, 1).
In the case s ≤ 1/2 it follows as a particular case of the results for parabolic equations
in [261].

Theorem 4.2.6 ([187], [261]). Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let f ∈ C(B1) and
u ∈ C(B1)∩L∞(Rn) be a viscosity solution of Iu = f(x) in B1, where I is translation
invariant and elliptic with respect to L0(s), with I0 = 0. Then, u ∈ Cs

(
B1/2

)
with the

estimate

‖u‖Cs(B1/2) ≤ C
(
‖f‖L∞(B1) + ‖u‖L∞(Rn)

)
,

where C depends only on n, s0, and ellipticity constants.

In fact, [187, 261] establish not only a Cs estimate, but also a Cβ one, for all
β < min{2s, 1 + α}. However, in this paper we only need the Cs estimate.
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4.2.3 No fine boundary regularity for L0

The aim of this subsection is to show that the class L0 is too large for all solutions
to behave comparably near the boundary. Moreover, we give necessary conditions on
a subclass L ⊂ L0 to have comparability of all solutions near the boundary. These
necessary conditions lead us to the class L∗.

In the next result we show that, for any scale invariant class L ⊆ L0 that contains
the fractional Laplacian (−∆)s, and any unit vector ν, there exist powers 0 ≤ β1 ≤
s ≤ β2 such that M+

L ϕ
β1
ν = 0 and M−

L ϕ
β2
ν = 0 in {x ·ν > 0}. Before stating this result,

we give the following

Definition 4.2.7. We say that a class of operators L is scale invariant of order 2s if
for each operator L in L, and for all R > 0, the rescaled operator LR, defined by

(LRu)(R · ) = R−2sL
(
u(R · )

)
,

also belongs to L.

The proposition reads as follows.

Proposition 4.2.8. Assume that L ⊂ L0(s) is scale invariant of order 2s. Then,

(a) For every ν ∈ Sn−1 and β ∈ (0, 2s) the function ϕβν defined in (4.19) satisfies

M+
L ϕ

β
ν (x) = C(β, ν)(x · ν)β−2s in {x · ν > 0},

M−
L ϕ

β
ν (x) = C(β, ν)(x · ν)β−2s in {x · ν > 0}.

(4.23)

Here, C and C are constants depending only on s, β, ν, n, and ellipticity con-
stants.

(b) The functions C and C are continuous in β and, for each unit vector ν, there
are β1 ≤ β2 in (0, 2s) such that

C(β1, ν) = 0 and C(β2, ν) = 0. (4.24)

Moreover, for all β ∈ (0, 2s),

C(β, ν)− C(β1, ν) has the same sign as β − β1 (4.25)

and

C(β, ν)− C(β2, ν) has the same sign as β − β2. (4.26)

(c) If in addition the fractional Laplacian −(−∆)s belongs to L, then we have β1 ≤
s ≤ β2.

Proof. The scale invariance of L is equivalent to a scaling property of the extremal
operators M+

L and M−
L . Namely, for all R > 0, we have

M±
L
(
u(R · )

)
= R2s(M±

L u)(R · ).
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(a) By this scaling property it is immediate to prove that given β ∈ (0, 2s) and
ν ∈ Sn−1, the function ϕβν satisfies (4.23), where

C(β, ν) := M+
L ϕ

β
ν (ν) and C(β, ν) := M−

L ϕ
β
ν (ν).

Of course, C and C depend also on s and the ellipticity constants, but these are fixed
constants in this proof.

(b) Note that, as β′ → β ∈ [0, 2s), we have ϕβ
′
ν → ϕβν in C2(B1/2(ν)) and in

L1(Rn, ωs). As a consequence, C and C are continuous in β in the interval [0, 2s).
Since ϕβν → χ{x·ν>0} as β → 0, we have that

C(ν, 0) ≤ C(ν, 0) < 0.

On the other hand, it is easy to see that

M−
L0ϕ

β
ν (ν) −→ +∞ as β ↗ 2s.

Hence, using that M−
L0 ≤M−

L , we obtain

0 < C(ν, β) ≤ C(ν, β) for β close to 2s.

Therefore, by continuity, there are β1 and β2 in (0, 2s) such that

C(β1, ν) = 0 and C(β2, ν) = 0.

To prove (4.25), we observe that if β > β1 the function ϕβν is be touched by below
by ϕβ1ν − C at some x0 ∈ {x · ν > 0} for some C > 0. It follows that

M+
L ϕ

β
ν (x0)−M+

L ϕ
β1
ν (x0) ≥M−

L0

(
ϕβν − ϕβ1ν

)
(x0) > 0.

Since the sign of M+
L ϕ

β
ν is constant in {x · ν > 0} it follows that C(ν, β) > 0 when

β > β1. Similarly one proves that C(ν, β) < 0 when β < β1, and hence (4.26).

(c) It is an immediate consequence of the results in parts (a) and (b) and the fact
that −(−∆)sϕsν = 0 in {x · ν > 0}.

Clearly, to hope for some good description of the boundary behavior of solutions
to all elliptic equations with respect to a scale invariant class L, it must be β1 = β2 for
every direction ν. Typical classes L contain the fractional Laplacian −(−∆)s. Thus,
for them, we must have β1 = β2 = s for all ν ∈ Sn−1. If this happens, then

Lϕsν = 0 in {x · ν > 0} for all L ∈ L, and for all ν ∈ Sn−1, (4.27)

since M−
L ≤ L ≤M+

L for all L ∈ L.

As a consequence, we find the following.

Corollary 4.2.9. Let β1, β2 be given by (4.24) in Proposition 4.2.8. Then, for the
classes L0, L1, and L2 we have β1 < s < β2.
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Proof. Let us show that for L = L0 the condition (4.27) is not satisfied. Indeed, we
may easily cook up L ∈ L0 so that Lϕsen(x′, 1) 6= 0 for x′ ∈ Rn−1. Namely, if we take

b(y) =
(
λ+ (Λ− λ)χB1/2

(y)
)
,

then at points x = (x′, 1) we have

0 > Lϕsen(x) = (1− s)
∫

Rn

(
u(x+ y) + u(x− y)

2
− u(x)

)
b(y)

|y|n+2s
dy,

since ϕsen is concave in B1/2(x′, 1) and (−∆)sϕsen = 0 in {xn > 0}.
By taking an smoothed version of b(y), we obtain that both L1 and L2 fail to satisfy

(4.27).

By the results in Subsection 2.1, we have that the class L∗ satisfies the necessary
condition (4.27). Although we do not have a rigorous mathematical proof, we believe
that L∗ is actually the largest scale invariant subclass of L0 satisfying (4.27).

4.3 Barriers

In this section we construct supersolutions and subsolutions that are needed in our
analysis. From now on, all the results are for the class L∗ (and not for L0).

First we give two preliminary lemmas.

Lemma 4.3.1. Let s0 ∈ (0, 1) and s ∈ [s0, 1). Let

ϕ(1)(x) =
(
dist(x,B1)

)s
and ϕ(2)(x) =

(
dist(x,Rn \B1)

)s
.

Then,

0 ≤M−ϕ(1)(x) ≤M+ϕ(1)(x) ≤ C
{

1 + (1− s)
∣∣log(|x| − 1)

∣∣} in B2 \B1. (4.28)

and

0 ≥M+ϕ(2)(x) ≥M−ϕ(2)(x) ≥ −C
{

1 + (1− s)
∣∣log(1− |x|)

∣∣} in B1 \B1/2. (4.29)

The constant C depends only on s0, n, and ellipticity constants.

Note that the above bounds are much better than
∣∣|x| − 1

∣∣−s, which would be the

expected bound given by homogeneity. This is since ϕ(1) and ϕ(2) are in some sense
close to the 1D solution (x+)s.

Proof of Lemma 4.3.1. Let L ∈ L∗. For points x ∈ Rn we use the notation x = (x′, xn)
with x′ ∈ Rn−1. To prove (4.28) let us estimate Lϕ(1)(xρ) where xρ = (0, 1 + ρ) for
ρ ∈ (0, 1) and for a generic L ∈ L∗. To do it, we subtract the function ψ(x) = (xn−1)s+,
which satisfies Lψ(xρ) = 0. Note that

(
ϕ(1) − ψ

)
(xρ) = 0 for all ρ > 0
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and that, for |y| < 1,
∣∣dist (xρ + y,B1)− (1 + ρ+ yn)+

∣∣ ≤ C|y′|2.

This is because the level sets of the two previous functions are tangent on {y′ = 0}.
Thus,

0 ≤
(
ϕ

(1)
1 − ψ

)
(xρ + y) ≤





Cρs−1|y′|2 for y = (y′, yn) ∈ Bρ/2

C|y′|2s for y = (y′, yn) ∈ B1 \Bρ/2

C|y|s for y ∈ Rn \B1.

The bound in Bρ/2 follows from the inequality as − bs ≤ (a− b)bs−1 for a > b > 0.
Therefore, we have

0 ≤ Lϕ(1)(xρ) = L
(
ϕ(1) − ψ

)
(xρ)

= (1− s)
∫ (

ϕ
(1)
1 − ψ

)
(xρ + y) +

(
ϕ

(1)
1 − ψ

)
(xρ − y)

2

a(y/|y|)
|y|n+2s

dy

≤ C(1− s)Λ

(∫

Bρ/2

ρs−1|y′|2dy
|y|n+2s

+

∫

B1\Bρ/2

|y′|2sdy
|y|n+2s

+

∫

Rn\B1

|y|sdy
|y|n+2s

)

≤ C
(
1 + (1− s)| log ρ|

)
.

This establishes (4.28). The proof of (4.29) is similar.

In the next result, instead, the bounds are those given by the homogeneity. In
addition, the constant in the bounds has the right sign to construct (together with the
previous lemma) appropriate barriers.

Lemma 4.3.2. Let s0 ∈ (0, 1) and s ∈ [s0, 1). Let

ϕ(3)(x) =
(
dist(x,B1)

)3s/2
and ϕ(4)(x) =

(
dist(x,Rn \B1)

)3s/2
.

Then,
M−ϕ(3)(x) ≥ c(|x| − 1)−s/2 for all x ∈ B2 \B1. (4.30)

and
M−ϕ(4)(x) ≥ c(1− |x|)−s/2 − C for all x ∈ B1 \B1/2. (4.31)

The constants c > 0 and C depend only on n, s0, and ellipticity constants.

Proof. Let L ∈ L∗. For points x ∈ Rn we use the notation x = (x′, xn) with x′ ∈ Rn−1.
To prove (4.31) let us estimate Lϕ(4)(xρ) where xρ = (0, 1 + ρ) for ρ ∈ (0, 1) and for

a generic L ∈ L∗. To do it we subtract the function ψ(x) = (1 − xn)
3s/2
+ , which by

Lemma 4.2.3 satisfies Lψ(xρ) = cρ−s/2 for some c > 0. We note that
(
ϕ(4) − ψ

)
(xρ) = 0

and, similarly as in the proof of Lemma 4.3.1,

0 ≥
(
ϕ(4) − ψ

)
(xρ + y) ≥





−Cρ3s/2−1|y′|2 for y = (y′, yn) ∈ Bρ/2

−C|y′|3s for y = (y′, yn) ∈ B1 \Bρ/2

−C|y|3s/2 for y ∈ Rn \B1.
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Hence,

Lϕ(4)(xρ)− cρ−s/2 = L
(
ϕ(4) − ψ

)
(xρ)

≥ −C(1− s)Λ

(∫

Bρ/2

ρ3s/2−1|y′|2dy
|y|n+2s

+

∫

B1\Bρ/2

|y′|3sdy
|y|n+2s

+

∫

Rn\B1

|y|s/2dy
|y|n+2s

)

≥ −C.

This establishes (4.31). To prove (4.30), we now define ψ(x) = (xn − 1)
3s/2
+ , and we

use Lemma 4.2.3 and the fact that ϕ(3) − ψ is nonnegative in all of Rn and vanishes
on the positive xn axis.

We can now construct the sub and supersolutions that will be used in the next
section.

Lemma 4.3.3. Let s0 ∈ (0, 1) and s ∈ [s0, 1). There are positive constants ε and C,
and a radial, bounded, continuous function ϕ1 which is C1,1 in B1+ε \B1 and satisfies





M+ϕ1(x) ≤ −1 in B1+ε \B1

ϕ1(x) = 0 in B1

ϕ1(x) ≤ C
(
|x| − 1

)s
in Rn \B1

ϕ1(x) ≥ 1 in Rn \B1+ε

The constants ε, c and C depend only on n, s0, and ellipticity constants.

Proof. Let

ψ =

{
2ϕ(1) − ϕ(3) in B2

1 in Rn \B2.

By Lemmas 4.3.1 and 4.3.2, for |x| > 1 it is

M+ψ ≤ C
{

1 + (1− s)
∣∣log(|x| − 1)

∣∣}− c(|x| − 1)−s/2 + C.

Hence, we may take ε > 0 small enough so that M+ψ ≤ −1 in B1+ε \B1. We then set
ϕ1 = Cψ with C ≥ 1 large enough so that ϕ1 ≥ 1 outside B1+ε.

Lemma 4.3.4. Let s0 ∈ (0, 1) and s ∈ [s0, 1). There is c > 0, and a radial, bounded,
continuous function ϕ2 that satisfies





M−ϕ2(x) ≥ c in B1 \B1/2

ϕ2(x) = 0 in Rn \B1

ϕ2(x) ≥ c
(
1− |x|

)s
in B1

ϕ2(x) ≤ 1 in B1/2.

The constants ε, c and C depend only on n, s0, and ellipticity constants.
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Proof. We first construct a subsolution ψ in the annulus B1 \ B1−ε, for some small
ε > 0. Then, using it, we will construct the desired subsolution in B1 \B1/2. Let

ψ = ϕ(2) + ϕ(4).

By Lemmas 4.3.1 and 4.3.2, for 1/2 < |x| < 1 it is

M−ψ ≥ −C
{

1 + (1− s)
∣∣log(1− |x|)

∣∣}+ c(1− |x|)−s/2 − C.

Hence, we can take ε > 0 small enough so that M−ψ ≥ 1 in B1 \B1−ε.
Let us now construct a subsolution in B1 \B1/2 from ψ, which is a subsolution only

in B1 \B1−ε. We consider

Ψ(x) = max
0≤k≤N

Ckψ(2k/Nx),

where N is a large integer and C > 1. Notice that, for C large enough, the set
{x ∈ B1 : Ψ(x) = ψ(x)} is an annulus contained in B1 \B1−ε.

Consider, for k ≥ 0,

Ak =
{
x ∈ B1 : Ψ(x) = Ckψ(2k/Nx)

}
.

Since A0 ⊂ B1 \B1−ε, then Ψ satisfies M−Ψ ≥ 1 in A0.
Observe that Ak = 2−k/NA0, since C−1Ψ(21/nx) = Ψ(x) in the annulus {1/2 <

|x| < 2−1/n}. Hence, for x ∈ Ak we have 2k/Nx ∈ A0 ⊂ B1 \B1−ε and

M−Ψ(x) > M−(Ckψ(2k/N · )
)
(x) = Ck22sk/NM−ψ(2k/Nx) > 1.

We then set ϕ2 = cΨ with c > 0 small enough so that ϕ2(x) ≤ 1 in B1/2.

Remark 4.3.5. Notice that the subsolution ϕ2 constructed above is C1,1 by below in
B1\B1/2, in the sense that it can be touched by below by paraboloids. This is important
when considering non translation invariant equations for which a comparison principle
for viscosity solutions is not available.

4.4 Krylov’s method

The goal of this section is to prove Proposition 4.1.1. Its proof combines the interior
Hölder regularity results of Caffarelli and Silvestre [69] and the next key Lemma.

Lemma 4.4.1. Let s0 ∈ (0, 1), s ∈ [s0, 1), and u ∈ C
(
B+

1

)
be a viscosity solution

of (4.6). Then, there exist α ∈ (0, 1) and C depending only on n, s0, and ellipticity
constants, such that

sup
B+
r

u/xsn − inf
B+
r

u/xsn ≤ Crα
(
C0 + ‖u‖L∞(Rn)

)
(4.32)

for all r ≤ 3/4.
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To prove Lemma 4.4.1 we need two preliminary lemmas.
We start with the first, which is a nonlocal version of Lemma 4.31 in [182].

Throughout this section we denote

D∗r := B9r/10 ∩ {xn > 1/10}.

Lemma 4.4.2. Let s0 ∈ (0, 1) and s ∈ [s0, 1). Assume that u satisfies u ≥ 0 in all of
Rn and

M−u ≤ C0 in B+
r ,

for some C0 > 0. Then,

inf
D∗r
u/xsn ≤ C

(
inf
B+
r/2

u/xsn + C0r
s

)
(4.33)

for all r ≤ 1, where C is a constant depending only on s0, ellipticity constants, and
dimension.

Proof. Step 1. Assume C0 = 0. Let us call

m = inf
D∗r
u/xsn ≥ 0.

We have
u ≥ mxsn ≥ m(r/10)s in D∗r . (4.34)

Let us scale and translate the subsolution ϕ2 in Lemma 4.3.4 as follows to use it
as lower barrier:

ψr(x) := (r/10)s ϕ2

(10(x−x0)
2r

)
. (4.35)

We then have, for some c > 0,





M−ψr ≥ 0 in B2r/10(x0) \Br/10(x0)

ψr = 0 in Rn \B2r/10(x0)

ψr ≥ c
(

2r
10
− |x|

)s
in B2/10(x0)

ψr ≤ (r/10)s in Br/10(x0).

It is immediate to verify that B+
r/2 is covered by balls of radius 2r/10 such that the

concentric ball of radius r/10 is contained in D∗r , that is,

B+
r/2 ⊂

⋃{
B2r/10(x0) : Br/10(x0) ⊂ D∗r

}
.

Now, if we choose some ball Br/10(x0) ⊂ D∗r and define ψr by (4.35), then by (4.34)
we have u ≥ mψr in Br/10(x0). On the other hand u ≥ mψr outside B2r/10(x0), since
ψr vanishes there and u ≥ 0 in all of Rn by assumption. Finally, M+ψr ≤ 0, and since
C0 = 0, M−u ≥ 0 in the annulus B2r/10(x0) \Br/10(x0).

Therefore, it follows from the comparison principle that u ≥ mψr in B2r/10(x0).
Since these balls of radius 2r/10 cover B+

r/2 and ψr ≥ c
(

2r
10
− |x|

)s
in B2/10(x0), we

obtain
u ≥ cmxsn in B+

r/2,
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which yields (4.33).
Step 2. If C0 > 0 we argue as follows. First, let

φ(x) = min
{

1, 2(xn)s+ − (xn)
3s/2
+

}
.

By Lemma 4.2.3, we have that M+φ ≤ −c in {0 < xn < ε} for some ε > 0 and some
c > 0. By scaling φ and reducing c, we may assume ε = 1.

We then consider

ũ(x) = u(x) +
C0

c
r2sφ(x/r).

The function ũ satisfies in {0 < xn < r}

M−ũ−M−u ≤M+

(
C0

c
r2sφ(x/r)

)
≤ −C0

and hence
M−ũ ≤ 0.

Using that u(x) ≤ ũ(x) ≤ u(x) + CC0r
s(xn)s+ and applying Step 1 to ũ, we obtain

(4.33).

The second lemma towards Proposition 4.4.1 is a nonlocal version of Lemma 4.35
in [182]. It is an immediate consequence of the Harnack inequality of Caffarelli and
Silvestre [69].

Lemma 4.4.3. Let s0 ∈ (0, 1), s ∈ [s0, 1), r ≤ 1 , and u satisfy u ≥ 0 in all of Rn and

M+u ≥ −C0 and M−u ≤ C0 in B+
r .

Then,

sup
D∗r

u/xsn ≤ C

(
inf
D∗r
u/xsn + C0r

s

)
,

for some constant C depending only on n, s0, and ellipticity constants.

Proof. The lemma is a consequence of Theorem 4.2.4. Indeed, covering the set D∗r
with balls contained in B+

r and with radii comparable to r —using the same (scaled)
covering for all r—, Theorem 4.2.4 yields

sup
D∗r

u ≤ C

(
inf
D∗r
u+ C0r

2s

)
.

Then, the lemma follows by noting that xsn is comparable to rs in D∗r .

Next we prove Lemma 4.4.1.

Proof of Lemma 4.4.1. First, dividing u by a constant, we may assume that C0 +
‖u‖L∞(Rn) ≤ 1.

We will prove that there exist constants C1 > 0 and α ∈ (0, s), depending only on n,
s0, and ellipticity constants, and monotone sequences (mk)k≥1 and (mk)k≥1 satisfying
the following. For all k ≥ 1,

mk −mk = 4−αk , −1 ≤ mk ≤ mk+1 < mk+1 ≤ mk ≤ 1 , (4.36)
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and
mk ≤ C−1

1 u/xsn ≤ mk in B+
rk
, where rk = 4−k . (4.37)

Note that since u = 0 in B−1 then we have that (4.37) is equivalent to the following
inequality in Brk instead of B+

rk

mk(xn)s+ ≤ C−1
1 u ≤ mk(xn)s+ in Brk , where rk = 4−k . (4.38)

Clearly, if such sequences exist, then (4.32) holds for all r ≤ 1/4 with C = 4αC1.
Moreover, for 1/4 < r ≤ 3/4 the result follows from (4.39) below. Hence, we only need
to construct {mk} and {mk}.

Next we construct these sequences by induction.
Using the supersolution ϕ1 in Lemma 4.3.3 we find that

− C1

2
(xn)s+ ≤ u ≤ C1

2
(xn)s+ in B+

3/4 (4.39)

whenever C1 is large enough. Thus, we may take m1 = −1/2 and m1 = 1/2.
Assume now that we have sequences up to mk and mk. We want to prove that

there exist mk+1 and mk+1 which fulfill the requirements. Let

uk = C−1
1 u−mk(xn)s+ .

We will consider the positive part u+
k of uk in order to have a nonnegative function

in all of Rn to which we can apply Lemmas 4.4.2 and 4.4.3. Let uk = u+
k −u

−
k . Observe

that, by induction hypothesis,

u+
k = uk and u−k = 0 in Brk .

Moreover, C−1
1 u ≥ mj(xn)s+ in Brj for each j ≤ k. Therefore, we have

uk ≥ (mj −mk)(xn)s+ ≥ (mj −mj +mk −mk)(xn)s+ = (−4−αj + 4−αk)(xn)s+ in Brj .

But clearly 0 ≤ (xn)s+ ≤ rsj in Brj , and therefore using rj = 4−j

uk ≥ −rsj(rαj − rαk ) in Brj for each j ≤ k .

Thus, since for every x ∈ B1 \Brk there is j < k such that

|x| < rj = 4−j ≤ 4|x|,

we find

uk(x) ≥ −rα+s
k

∣∣∣∣
4x

rk

∣∣∣∣
s(∣∣∣∣

4x

rk

∣∣∣∣
α

− 1

)
outside Brk . (4.40)

Now let L ∈ L∗. Using (4.40) and that u−k ≡ 0 in Brk , then for all x ∈ Brk/2 we
have

0 ≤ Lu−k (x) = (1− s)
∫

x+y/∈Brk

u−k (x+ y)
a(y/|y|)
|y|n+2s

dy

≤ (1− s)
∫

|y|≥rk/2
rα+s
k

∣∣∣∣
8y

rk

∣∣∣∣
s(∣∣∣∣

8y

rk

∣∣∣∣
α

− 1

)
Λ

|y|n+2s
dy

= (1− s)Λrα−sk

∫

|z|≥1/2

|8z|s(|8z|α − 1)

|z|n+2s
dz

≤ ε0r
α−s
k ,
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where ε0 = ε0(α) ↓ 0 as α ↓ 0 since |8z|α → 1. Since this can be done for all L ∈ L∗,
u−k vanishes in Brk and satisfies pointwise

0 ≤M−u−k ≤M+u−m ≤ ε0r
α−s
k in B+

rk/2
.

Therefore, recalling that

u+
k = C−1

1 u−mk(xn)s+ + u−k ,

and using that M+(xn)s+ = M−(xn)s+ = 0 in {xn > 0}, we obtain

M−u+
k ≤ C−1

1 M−u+M+(u−k )

≤ C−1
1 + ε0r

α−s
k in B+

rk/2
.

Also clearly
M+u+

k ≥M+uk ≥ −C−1
1 in B+

rk/2
.

Now we can apply Lemmas 4.4.2 and 4.4.3 with u in its statements replaced by
u+
k . Recalling that

u+
k = uk = C−1

1 u−mkx
s
n in B+

rk
,

we obtain

sup
D∗
rk/2

(C−1
1 u/xsn −mk) ≤ C

(
inf
D∗
rk/2

(C−1
1 u/xsn −mk) + C−1

1 rsk + ε0r
α
k

)

≤ C

(
inf
B+
rk/4

(C−1
1 u/xsn −mk) + C−1

1 rsk + ε0r
α
k

)
.

(4.41)

On the other hand, we can repeat the same reasoning “upside down”, that is,
considering the functions uk = mk(xn)s+ − u instead of uk. In this way we obtain,
instead of (4.41), the following

sup
D∗
rk/2

(mk − C−1
1 u/xsn) ≤ C

(
inf
B+
rk/4

(mk − C−1
1 u/xsn) + C−1

1 rsk + ε0r
α
k

)
. (4.42)

Adding (4.41) and (4.42) we obtain

mk −mk ≤ C

(
inf
B+
rk/4

(C−1
1 u/xsn −mk) + inf

B+
rk/4

(mk − C−1
1 u/xsn) + C−1

1 rsk + ε0r
α
k

)

= C

(
inf
B+
rk+1

C−1
1 u/xsn − sup

B+
rk+1

C−1
1 u/xsn +mk −mk + C−1

1 rsk + ε0r
α
k

)
.

Thus, using that mk −mk = 4−αk, α < s, and rk = 4−k ≤ 1, we obtain

sup
B+
rk+1

C−1
1 u/xsn − inf

B+
rk+1

C−1
1 u/xsn ≤

(
C−1
C

+ C−1
1 + ε0

)
4−αk .

Now we choose α small and C1 large enough so that

C − 1

C
+ C−1

1 + ε0(α) ≤ 4−α.
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This is possible since ε0(α) ↓ 0 as α ↓ 0 and the constant C depends only on n, s0,
and ellipticity constants. Then, we find

sup
B+
rk+1

C−1
1 u/xsn − inf

B+
rk+1

C−1
1 u/xsn ≤ 4−α(k+1),

and thus we are able to choose mk+1 and mk+1 satisfying (4.36) and (4.37).

To end this section, we give the

Proof of Proposition 4.1.1. Let x ∈ B+
1/2 and let x0 be its nearest point on {xn = 0}.

Let
d = dist (x, x0) = xn = dist (x,B−1 ).

By Theorem 4.2.5 (rescaled), we have

‖u‖Cα(Bd/2(x)) ≤ Cd−α
(
‖u‖L∞(Rn) + C0

)
.

Hence, since ‖(xn)−s‖Cα(Bd/2(x)) ≤ Cd−s, then for r ≤ d/2

oscBr(x)u/x
s
n ≤ Crαd−s−α

(
‖u‖L∞(Rn) + C0

)
. (4.43)

On the other hand, by Lemma 4.4.1, for all r ≥ d/2 we have

oscBr(x)∩B+
3/4
u/xsn ≤ Crα

(
‖u‖L∞(Rn) + C0

)
. (4.44)

In both previous estimates α ∈ (0, 1) depends only on n, s0, and ellipticity constants.
Let us call

M =
(
‖u‖L∞(Rn) + C0

)
.

Then, given θ > 1 we have the following alternatives

(i) If r ≤ dθ/2 then, by (4.43),

oscBr(x)u/x
s
n ≤ Crαd−s−αM ≤ Crα−(s+α)/θM.

(ii) If dθ/2 < r ≤ d/2 then, by (4.44),

oscBr(x)u/x
s
n ≤ oscBd/2(x)u/x

s
n ≤ CdαM ≤ Crα/θM.

(iii) If d/2 < r, then by (4.44)

oscBr(x)∩B+
3/4
u/xsn ≤ CrαM.

Choosing θ > s+α
α

(so that the exponent in (i) is positive), we obtain

oscBr(x)∩B+
3/4
u/xsn ≤ Crα

′
M whenever x ∈ B+

1/2 and r > 0, (4.45)

for some α′ ∈ (0, α). This means that ‖u/xsn‖Cα′ (B+
1/2

) ≤ CM , as desired.
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4.5 Liouville type theorems

The goal of this section is to prove Theorem 4.1.5.
First, as a consequence of Proposition 4.1.1 we obtain the following Liouville-type

result involving here the extremal operators (in contrast with Theorem 4.1.5). Note
also that the growth condition CRβ in this lemma holds for β < s+α (with α small),
whereas we have β < 2s in the Liouville Theorem 4.1.5.

Proposition 4.5.1. Let s0 ∈ (0, 1) and s ∈ [s0, 1). Let α > 0 be the exponent given
by Proposition 4.1.1. Assume that u ∈ C(Rn) is a viscosity solution of

M+u ≥ 0 and M−u ≤ 0 in {xn > 0},
u = 0 in {xn < 0}.

Assume that, for some positive β < s+ α, u satisfies the growth control at infinity

‖u‖L∞(BR) ≤ CRβ for all R ≥ 1. (4.46)

Then,
u(x) = K(xn)s+

for some constant K ∈ R.

Proof. Given ρ ≥ 1, let vρ(x) = ρ−βu(ρx). Note that for all ρ ≥ 1 the function vρ
satisfies the same growth control (4.46) as u. Indeed,

‖vρ‖L∞(BR) = ρ−β‖u‖L∞(BρR) ≤ ρ−βC(ρR)β = CRβ.

In particular ‖vρ‖L∞(B1) ≤ C and ‖vρ‖L1(Rn,ωs) ≤ C, with C independent of ρ. Hence,
the function ṽρ = vρχB1 satisfies M+ṽρ ≥ −C and M−ṽρ ≤ C in B1/2 ∩ {xn > 0}, and
ṽρ = 0 in {xn < 0}. Also, ‖ṽρ‖L∞(B1/2) ≤ C. Therefore, by Proposition 4.1.1 we obtain
that ∥∥vρ/xsn

∥∥
Cα(B+

1/4
)

=
∥∥ṽρ/xsn

∥∥
Cα(B+

1/4
)
≤ C.

Scaling this estimate back to u we obtain

[
u/xsn

]
Cα(B+

ρ/4
)

= ρ−α
[
u(ρx)/(ρxn)s

]
Cα(B+

1/4
)

= ρβ−s−α
[
vρ/(xn)s

]
Cα(B+

1/4
)
≤ Cρβ−s−α.

Using that β < s+ α and letting ρ→∞ we obtain

[
u/xsn

]
Cα(Rn∩{xn>0}) = 0,

which means u = K
(
xn)s+.

The previous proposition will be applied to tangential derivatives of a solution to
Iu = 0 as in the situation of Theorem 4.1.5. It gives that u is in fact a function
of xn alone. To proceed, we need the following crucial lemma It is a Liouville-type
result for the fractional Laplacian in dimension 1, and classifies all functions which are
s-harmonic in R+, vanish in R−, and grow at infinity less than |x|β for some β < 2s.
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Lemma 4.5.2. Let u satisfy (−∆)su = 0 in R+ and u = 0 in R−. Assume that, for
some β ∈ (0, 2s), u satisfies the growth control ‖u‖L∞(0,R) ≤ CRβ for all R ≥ 1. Then
u(x) = K(x+)s.

To establish the lemma, we will need the following result. It classifies all homoge-
neous solutions (with no growth condition) that vanish in a half line of the extension
problem of Caffarelli and Silvestre [68] in dimension 1 + 1.

Lemma 4.5.3. Let s ∈ (0, 1). Let (x, y) denote a point in R2, and r > 0, θ ∈ (−π, π)
be polar coordinates defined by the relations x = r cos θ, y = r sin θ. Assume that
ν > −s, and qν = rs+νΘν(θ) is even with respect y (or equivalently with respect to θ)
and solves 




div (|y|1−2s∇qν) = 0 in {y 6= 0}
limy→0 |y|1−2s∂yqν = 0 on {y = 0} ∩ {x > 0}
qν = 0 on {y = 0} ∩ {x < 0}.

(4.47)

Then,

(a) ν belongs to N ∪ {0} and

Θν(θ) = K | sin θ|s P s
ν

(
cos θ

)
,

where P µ
ν is the associated Legendre function of first kind. Equivalently,

Θν(θ) = C

∣∣∣∣cos

(
θ

2

)∣∣∣∣
2s

2F1

(
−ν, ν + 1; 1− s; 1− cos θ

2

)
,

where 2F1 is the hypergeometric function.

(b) The functions
{

Θν

}
ν∈N∪{0} are a complete orthogonal system in the subspace of

even functions of the weighted space L2
(
(−π, π), | sin θ|1−2s

)
.

Proof. We differ the proof to the Appendix.

We can now give the

Proof of Lemma 4.5.2. Let

Ps(x, y) =
p1,s

y

1
(
1 + (x/y)2

) 1+2s
2

be the Poisson kernel for the extension problem of Caffarelli and Silvestre; see [68, 55].
Given the growth control u(x) ≤ C|x|β at infinity and β < 2s, the convolution

v( · , y) = u ∗ Ps( · , y)

is well defined and is a solution of the extension problem

{
div(y1−2s∇v) = 0 in {y > 0}
v(x, 0) = u(x) for x ∈ R.
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Since (−∆)su = 0 in {x > 0} and u = 0 in {x < 0}, the function v satisfies

lim
y↘0

y1−2s∂yv(x, y) = 0 for x > 0 and v(x, 0) = 0 for x < 0.

Hence, v solves (4.47).
Let Θν , ν ∈ N∪{0}, be as in Lemma 4.5.3. Recall that rs+νΘν(θ) also solve (4.47).

By standard separation of variables, in every ball B+
R(0) of R2 the function v can be

written as a series

v(x, y) = v(r cos θ, r sin θ) =
∞∑

ν=0

aνr
s+νΘν(θ). (4.48)

To obtain this expansion we use that, by Lemma 4.5.3 (b), the functions
{

Θν

}
ν∈N∪{0}

are a complete orthogonal system in the subspace of even functions in the weighted
space L2

(
(−π, π), | sin θ|1−2s

)
, and hence are complete in L2

(
(0, π), (sin θ)1−2s

)
.

Moreover, by uniqueness, the coefficients aν are independent of R and hence the
series (4.48) provides a representation formula for v(x, y) in the whole {y > 0}.

Now, we claim that the growth control ‖u‖L∞(−R,R) ≤ CRβ with β ∈ (0, 2s) is
transferred to v (perhaps with a bigger constant C), that is,

‖v‖L∞(B+
R) ≤ CRβ.

To see this, consider the rescaled function uR(x) = R−βu(Rx), which satisfy the same
growth control of u. Then,

vR = R−βv(R · ) = uR ∗ Ps.

Since the growth control for uR is independent of R we find a bound for ‖vR‖L∞(B+
1 )

that is independent of R, and this means that v is controlled by CRβ in B+
R , as claimed.

Next, since we may assume that
∫ π

0
|Θν(θ)|2| sin θ|a dθ = 1 for all ν ≥ 0, Parseval’s

identity yields ∫

∂+BR

∣∣v(x, y)
∣∣2ya dσ =

∞∑

ν=0

|aν |2R2s+2ν+1+a,

where ∂+BR = ∂BR ∩ {y > 0}. But by the growth control, we have
∫

∂+BR

∣∣v(x, y)
∣∣2ya dσ ≤ CR2β

∫

∂+BR

ya dσ = CR2β+1+a.

Finally, since 2β < 4s < 2s + 2, this implies aν = 0 for all ν ≥ 1, and hence u(x) =
K(x+)s, as desired.

The following basic Hölder estimate up to the boundary follows from [70, Section
3]. It is also a consequence of Lemma 4.6.4, which we prove in Section 4.6.

Lemma 4.5.4 ([70]). Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let u be a solution of M+u ≥ 0
and M−u ≤ 0 in B+

1 , u = 0 in B−1 and assume that u ∈ L1(Rn, ωs). Then, for some
α > 0 it is u ∈ Cα

(
B1/2

)
and

‖u‖Cα(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖u‖L1(Rn, ωs)

)
.

The constants α and C depend only on n, s0, and ellipticity constants.
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To end this section, we finally prove Theorem 4.1.5.

Proof of Theorem 4.1.5. Note that, since β < 2s, the growth control (4.11) yields
u ∈ L1(Rn, ωs).

Given ρ ≥ 1, let vρ = ρ−βu(ρ · ). As in the proof of Proposition 4.5.1, vρ satisfies
the same growth control as u, namely, ‖vρ‖L∞(BR) ≤ CRβ. Hence,

‖vρ‖L∞(B1) ≤ C and ‖vρ‖L1(Rn,ωs) ≤ C.

Moreover, since u satisfies Iu = 0 in {xn > 0} and I0 = 0 we have that M+u ≥ 0 and
M−u ≤ 0 in {xn > 0}. This implies that M+vρ ≥ 0 and M−vρ ≤ 0 in B+

1 . Then it
follows from Lemma 4.5.4 that

‖vρ‖Cα(B1/2) ≤ C.

Scaling the previous estimate back to u and setting ρ = R, we obtain

[u]Cα(BR) ≤ CRβ−α.

Next, given τ ∈ Sn−1 with τn = 0 and given h > 0, we consider the “tangential”
incremental quotients v(1)(x) = u(x+hτ)−u(x)

hα
. We have shown that

‖v(1)‖L∞(BR) ≤ CRβ−α.

Moreover, since I is translation invariant, v(1) satisfies M+v(1) ≥ 0 and M−v(1) ≤ 0 in
{xn > 0}. Hence, we can apply again the previous scaling argument to v(1) and obtain

[v(1)]Cα(BR) ≤ CRβ−2α for all R ≥ 1.

Thus, we have a new growth control for v(2)(x) = u(x+hτ)−u(x)
h2α

. We can keep iterating
in this way until we obtain (after a finite number N of iterations)

∥∥∥∥
u(x+ hτ)− u(x)

h

∥∥∥∥
L∞(BR)

≤ CRβ−1. (4.49)

Now, v(N) = u(x+hτ)−u(x)
h

satisfies M+v(N) ≥ 0, M−v(N) ≤ 0 in {xn > 0} and
v(N) = 0 in {xn < 0}. Moreover, v(N) satisfies the growth control (4.49) with exponent
β − 1 < 2s − 1 < s. Hence, using Proposition 4.5.1 we conclude that v(N) ≡ 0.
Therefore, u(x + hτ) = u(x) for all h > 0 and for all unit vector τ with τn = 0.
This means that u depends only on the variable xn. That is, u(x) = w(xn) for some
function w : R −→ R.

Now, if ũ is a test function of the form ũ(x) = w̃(xn), Lemma 4.2.1 yields

M+ũ(x) = sup
L∈L∗

Lũ

= sup
λ≤a≤Λ

1− s
2c1,s

(∫

Sn−1

|θn|2sa(θ) dθ

)
(−∆)sRw̃(xn)

= C
{

Λ
(
−(−∆)sRw̃(xn)

)+ − λ
(
−(−∆)sRw̃(xn)

)−}
.

(4.50)
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Similarly,

M−ũ(x) = C
{
λ
(
−(−∆)sw̃(xn)

)+ − Λ
(
−(−∆)sw̃(xn)

)−}
. (4.51)

Finally, recall that u solves Iu = 0 in Rn
+, and I0 = 0. In particular we have M+u ≥ 0

and M−u ≤ 0 in Rn
+ in the viscosity sense. Note that, since u(x) = w(xn), then we

may test the viscosity inequalities using only test functions of the type ũ(x) = w̃(xn).
Hence, using (4.50) and (4.51) we deduce that w is a viscosity solution of (−∆)sw = 0
in R+ and w = 0 in R−. Clearly, w satisfies the growth control ‖w‖L∞(0,R) ≤ CRβ.
Therefore we deduce, using Lemma 4.5.2, that u(x) = w(xn) = K(x+

n )s.

4.6 Regularity by compactness

In this section we prove the main result of the paper: the boundary regularity in C1,1

domains for fully nonlinear elliptic equations with respect to the class L∗, given by
Theorem 4.1.3.

As explained in the Introduction, the following result is the main ingredient in the
proof of Theorem 4.1.3.

Proposition 4.6.1. Let s0 ∈ (0, 1), δ ∈ (0, s0/4), ρ0 > 0, and β = 2s0 − δ be given
constants.

Let Γ be a C1,1 hypersurface with radius ρ0 splitting B1 into Ω+ and Ω−; see Defi-
nition 4.1.2.

Let s ∈ [s0,max{1, s0 + δ}] and f ∈ C(Ω+). Assume that u ∈ C(B1) ∩ L∞(Rn) is
a solution of Iu = f in Ω+ and u = 0 in Ω−, where I is a fully nonlinear translation
invariant operator elliptic with respect to L∗(s).

Then, for all z ∈ Γ ∩B1/2 there is a constant Q(z) with |Q(z)| ≤ CC0 for which

∣∣∣u(x)−Q(z)
(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ CC0|x− z|β for all x ∈ B1,

where ν(z) is the unit normal vector to Γ at z pointing towards Ω+ and

C0 = ‖u‖L∞(Rn) + ‖f‖L∞(Ω+).

The constant C depends only on n, ρ0, s0, δ, and ellipticity constants.

The proof of Proposition 4.6.1 is by contradiction, using a blow up and compactness
argument. In order to fix ideas, we prove first the following reduced version of the
statement.

Let u ∈ C(B1)∩L∞(Rn) be a viscosity solution of Iu = 0 in B+
1 and u = 0

in B−1 . Then, given β ∈ (s, 2s), there are Q ∈ R and C > 0 such that

∣∣u(x)−Q(xn)s+
∣∣ ≤ C|x|β for all x ∈ B1. (4.52)

The constant C is independent of x, but it could depend on everything else,
also on u.
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We next prove (4.52) by contradiction. If (4.52) were false then it would be (by
the contraposition of Lemma 4.6.2 below)

sup
r>0

r−β
∥∥u−Q∗(r)(xn)s+

∥∥
L∞(Br)

= +∞,

where

Q∗(r) := arg minQ∈R

∫

Br

(
u(x)−Q(xn)s+

)2
dx =

∫
Br
u(x) (xn)s+ dx∫
Br

(xn)2s
+ dx

. (4.53)

Then, a useful trick is to define the monotone in r quantity

θ(r) = sup
r′>r

(r′)−β max
{∥∥u−Q∗(r′)(xn)s+

∥∥
L∞(Br′ )

, (r′)s
∣∣Q∗(2r′)−Q∗(r′)

∣∣
}
,

which satisfies θ(r)↗∞ as r ↘ 0. Then, there is a sequence rm ↘ 0 such that

(rm)−β max
{∥∥u−Q∗(rm)(xn)s+

∥∥
L∞(Brm )

, (rm)s
∣∣Q∗(2rm)−Q∗(rm)

∣∣
}
≥ θ(rm)

2
.

(4.54)
We then consider the blow up sequence

vm(x) =
u(rmx)− (rm)sQ∗(rm)(xn)s+

(rm)βθ(rm)
.

Note that (4.54) is equivalent to

max

{
‖vm‖L∞(B1) ,

∣∣∣∣∣

∫
B2
vm(x) (xn)s+ dx∫
B2

(xn)2s
+ dx

−
∫
B1
vm(x) (xn)s+ dx∫
B1

(xn)2s
+ dx

∣∣∣∣∣

}
≥ 1/2. (4.55)

Also, by definition of Q∗(rm), we have

∫

B1

vm(x)(xn)s+ dx = 0, (4.56)

which is the optimality condition of “least squares”.
In addition, by definition of θ, we have

(r′)s−β|Q∗(2r′)−Q∗(r′)|
θ(r)

≤ 1 for all r′ ≥ r.

Thus, for R = 2N we have

rs−β|Q∗(rR)−Q∗(r)|
θ(r)

≤
N−1∑

j=0

2j(β−s)
(2jr)s−β|Q∗(2j+1r)−Q∗(2jr)|

θ(r)

≤
N−1∑

j=0

2j(β−s) ≤ C2N(β−s) = CRβ−s.
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Moreover, vm satisfy the growth control

‖vm‖L∞(BR) =
1

θ(rm)(rm)β
∥∥u−Q∗(rm)(xn)s+

∥∥
L∞(BrmR)

≤ Rβ

θ(rm)(rmR)β
∥∥u−Q∗(rmR)(xn)s+

∥∥
L∞(BrmR)

+

+
1

θ(rm)(rm)β
|Q∗(rmR)−Q∗(rm)| (rmR)s

≤ Rβθ(rmR)

θ(rm)
+ CRβ

≤ CRβ,

(4.57)

for all R ≥ 1, where we have used the definition θ and its monotonicity.
In addition, since M+(xn)s+ = M−(xn)s+ = 0 in {xn > 0}, and Iu = 0 in B+

1 , we
obtain that

Ĩmvm = 0 in B+
1/rm

,

for some Ĩm translation invariant and elliptic with respect to L∗. It follows, using the
basic Cα estimate up to the boundary of Lemma 4.5.4 that (up to taking a subsequence)

vm −→ v locally uniformly in Rn.

Moreover, since all the vm’s satisfy the growth control (4.70), and β < 2s, by the
dominated convergence theorem we obtain that

∫

Rn

∣∣vm − v
∣∣(x)ωs(x) dx→ 0.

Also, by Theorem 42 in [70] a subsequence of Ĩm converges weakly to some translation
invariant operator Ĩ elliptic with respect to L∗. Hence, the stability result in [70] yields

Ĩv = 0 in {xn > 0} and v = 0 in {xn < 0}.

Furthermore, passing to the limit the growth control (4.70) we obtain ‖v‖L∞(BR) ≤ Rβ

for all R ≥ 1. Thus, the Liouville type Theorem 4.1.5 implies

v(x) = K(xn)s+.

Passing (4.56) to the limit (using uniform convergence) we find

∫

B1

v(x)(xn)s+ dx = 0.

But passing (4.55) to the limit, we obtain a contradiction.
To prove Proposition 4.6.1 we will need a more involved version of this argument,

but the main idea is essentially contained in the previous reduced version. Before
proving Proposition 4.6.1, let us give some preliminary results.

The following lemma is for general continuous functions u, not necessarily solutions
to some equation.
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Lemma 4.6.2. Let β > s and ν ∈ Sn−1 be some unit vector. Let u ∈ C(B1) and
define

φr(x) := Q∗(r) (x · ν)s+, (4.58)

where

Q∗(r) := arg minQ∈R

∫

Br

(
u(x)−Q(x · ν)s+

)2
dx =

∫
Br
u(x) (x · ν)s+ dx∫
Br

(x · ν)2s
+ dx

.

Assume that for all r ∈ (0, 1) we have

∥∥u− φr
∥∥
L∞(Br)

≤ C0r
β. (4.59)

Then, there is Q ∈ R satisfying |Q| ≤ C
(
C0 + ‖u‖L∞(B1)

)
such that

∥∥u−Q(x · ν)s+
∥∥
L∞(Br)

≤ CC0r
β

for some constant C depending only on β and s.

Proof. We may assume ‖u‖L∞(B1) = 1. By (4.59), for all x′ ∈ Br we have

∣∣φ2r(x
′)− φr(x′)

∣∣ ≤
∣∣u(x′)− φ2r(x

′)
∣∣+
∣∣u(x′)− φr(x′)

∣∣ ≤ CC0r
β.

But this happening for every x′ ∈ Br yields, recalling (4.58),

∣∣Q∗(2r)−Q∗(r)
∣∣ ≤ CC0r

β−s.

In addition, since ‖u‖L∞(B1) = 1, we clearly have that

|Q∗(1)| ≤ C. (4.60)

Since β > s, this implies the existence of the limit

Q := lim
r↘0

Q∗(r).

Moreover, using again β − s > 0,

∣∣Q−Q∗(r)
∣∣ ≤

∞∑

m=0

∣∣Q∗(2−mr)−Q∗(2−m−1r)
∣∣ ≤

∞∑

m=0

CC02−m(β−s)rβ−s ≤ CC0r
β−s.

In particular, using (4.60) we obtain

|Q| ≤ C(C0 + 1). (4.61)

We have thus proven that for all r ∈ (0, 1)
∥∥u−Q(x · ν)s+‖L∞(Br) ≤ ‖u−Q∗(r)(x · ν)s+‖L∞(Br) +

+ ‖Q∗(r)(x · ν)s+ −Q(x · ν)s+‖L∞(Br)

≤ C0r
β + |Q∗(r)−Q|rs ≤ C(C0 + 1)rβ.
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The following lemma will be used in the proof of Theorem 4.1.3 to obtain com-
pactness for sequences of elliptic operators of variable order. Its proof is almost the
same as the proof of Lemma 3.1 of [261].

Lemma 4.6.3. Let s0 ∈ (0, 1), sm ∈ [s0, 1], and Im such that

• Im is a fully nonlinear translation invariant operator elliptic with respect to
L∗(sm).

• Im0 = 0.

Then, a subsequence of sm → s ∈ [s0, 1] and a subsequence of Im converges weakly
(with the weight ωs0) to some fully nonlinear translation invariant operator I elliptic
with respect to L∗(s).

Proof. We may assume by taking a subsequence that sm → s ∈ [s0, 1]. Consider the
class L =

⋃
s∈[s0,1] L∗(s). This class satisfies Assuptions 23 and 24 of [70]. Also, each

Im is elliptic with respect to L. Hence using Theorem 42 in [70] there is a subsequence
of Im converging weakly (with the weight ωs0) to a translation invariant operator I,
also elliptic with respect to L. Let us see next that I is in fact elliptic with respect
to L∗(s) ⊂ L. Indeed, for test functions u and v that are quadratic polynomials in a
neighborhood of x and that belong to L1(Rn, ωs0), the inequalities

M−
smv(x) ≤ Im(u+ v)(x)− Imu(x) ≤M+

smv(x)

pass to the limit to obtain

M−
s v(x) ≤ I(u+ v)(x)− Iu(x) ≤M+

s v(x).

The following lemma will be used to obtain a Cγ estimate up to the boundary
for solutions to fully nonlinear integro-differential equations. This estimate will be
useful in the proof of Proposition 4.6.1. It is essentially a consequence of the proof of
Theorem 3.3 in [70]. Note that, in contrast with Proposition 4.6.1, in this lemma the
assumption of regularity of the domain is only “from the exterior”. Namely, we only
assume that the exterior ball condition is satisfied.

Lemma 4.6.4. Assume that B1 is divided into two disjoint subdomains Ω1 and Ω2

such that B1 = Ω1 ∪ Ω2. Assume that Γ := ∂Ω1 \ ∂B1 = ∂Ω2 \ ∂B1 is a C0,1 surface
and that 0 ∈ Γ. Moreover assume that, for some ρ0 > 0, all the points on Γ∩B3/4 can
be touched by a ball of radius ρ0 ∈ (0, 1/4) contained in Ω2.

Let s0 ∈ (0, 1) and s ∈ [s0, 1]. Let α ∈ (0, 1), g ∈ Cα
(
Ω2

)
, and u ∈ C(B1) ∩

L1(Rn, ωs) satisfy in the viscosity sense

M+u ≥ −C0 and M−u ≤ C0 in Ω1, u = g in Ω2.

Then, there is γ ∈ (0, α) such that u ∈ Cγ
(
B1/2

)
with the estimate

‖u‖Cγ(B1/2) ≤ C
(
‖u‖L∞(B1) + ‖g‖Cα(Ω2) + ‖u‖L1(Rn,ωs) + C0

)
.

The constants C and γ depend only on n, s0, α, ρ0, and ellipticity constants.
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Proof. Let ũ = uχB1 . Then ũ satisfies M+ũ ≥ −C ′0 and M−ũ ≤ C ′0 in Ω1 ∩ B3/4 and
ũ = g in Ω2, where C ′0 ≤ C

(
C0 + ‖u‖L1(Rn,ωs)

)
. Here, the constant C depends only on

n, s0, and ellipticity constants.
The proof consists of two steps.
First step. We next prove that there are δ > 0 and C such that for all z ∈ Γ∩B1/2

it is
‖ũ− g(z)‖L∞(Br(z)) ≤ Crδ for all r ∈ (0, 1), (4.62)

where δ and C depend only on n, s0, C ′0, ‖u‖L∞(B1), ‖g‖Cα(Ω2), and ellipticity constants.
Let z ∈ Γ∩B1/2. By assumption, for all R ∈ (0, ρ0) there yR ∈ Ω2 such that a ball

BR(yR) ⊂ Ω2 touches Γ at z, i.e., |z − yR| = R.
Let ϕ1 and ε > 0 be the supersolution and the constant in Lemma 4.3.3. Take

ψ(x) = g(yR) + ‖g‖Cα(Ω2)

(
(1 + ε)R

)α
+
(
C ′0 + ‖u‖L∞(B1)

)
ϕ1

(
x− yR
R

)
.

Note that ψ is above ũ in Ω2 ∩ B(1+ε)R. On the other hand, from the properties of
ϕ1, it is M+ψ ≤ −

(
C ′0 + ‖u‖L∞(B1)

)
R−2s ≤ −C ′0 in the annulus B(1+ε)R(yR) \BR(yR),

while ψ ≥ ‖u‖L∞(B1) ≥ ũ outside B(1+ε)R(yR). It follows that ũ ≤ ψ and thus we have

ũ(x)−g(z) ≤ C
(
Rα+(r/R)s

)
for all x ∈ Br(z) and for all r ∈ (0, εR) andR ∈ (0, ρ0).

Here, C denotes a constant depending only on n, s0, C ′0, ‖u‖L∞(B1), ‖g‖Cα(Ω2), and
ellipticity constants. Taking R = r1/2 and repeating the argument up-side down we
obtain

|ũ(x)− g(z)| ≤ C
(
rα/2 + rs/2

)
≤ Crδ for all x ∈ Br(z) and r ∈ (0, ε1/2)

for δ = 1
2

min{α, s0}. Taking a larger constant C, (4.62) follows.
Second step. We now show that (4.62) and the interior estimates in Theorem 4.2.5

imply ‖u‖Cγ(B1/2) ≤ C, where C depends only on the same quantities as above.
Indeed, given x0 ∈ Ω1 ∩B1/2, let z ∈ Γ and r > 0 be such that

d = dist (x0,Γ) = dist (x0, z).

Let us consider

v(x) = ũ

(
x0 +

d

2
x

)
− g(z).

We clearly have
‖v‖L∞(B1) ≤ C and ‖v‖L1(Rn,ωs) ≤ C.

On the other hand, v satisfies

M+v(x) = (d/2)2sM+ũ(x0 + rx) ≤ C ′0 in B1

and
M−v(x) = (d/2)2sM−ũ(x0 + rx) ≥ −C ′0 in B1.

Therefore, Theorem 4.2.5 yields

‖v‖Cα(B1/2) ≤ C
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or equivalently
[u]Cα(Bd/4(x0)) ≤ Cd−α. (4.63)

Combining (4.62) and (4.63), using a similar argument as in the proof of Proposition
4.1.1, we obtain

‖u‖Cγ(Ω1∩B1/2) ≤ C,

as desired.

We can now give the

Proof of Proposition 4.6.1. The proof is by contradiction. Assume that there are se-
quences Γk, Ω+

k , Ω−k , sk, fk, uk, and Ik that satisfy the assumptions of the proposition.
That is, for all k ≥ 1:

• Γk is a C1,1 hyper surface with radius ρ0 splitting B1 into Ω+
k and Ω−k .

• sk ∈ [s0,max{1, s0 + δ}].

• Ik is translation invariant and elliptic with respect to L∗(sk).

• ‖uk‖L∞(Rn) + ‖fk‖L∞(Ω+
k ) = 1 (by scaling we may assume C0 = 1).

• uk is a solution of Ikuk = fk in Ω+
k and uk = 0 in Ω−k .

Suppose for a contradiction that the conclusion of the proposition does not hold. That
is, for all C > 0, there are k and z ∈ Γk ∩B1/2 for which no constant Q ∈ R satisfies

∣∣∣uk(x)−Q
(
(x− z) · νk(z)

)sk
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1. (4.64)

Above, νk(z) denotes the unit normal vector to Γk at z, pointing towards Ω+
k .

In particular, noting that sk ∈ [s0, s0 + δ] and β ≥ s0 + 2δ by assumption, and
using Lemma 4.6.2, we obtain

sup
k

sup
z∈Γk∩B1/2

sup
r>0

r−β ‖uk − φk,z,r‖L∞(Br(z))
=∞, (4.65)

where
φk,z,r(x) = Qk,z(r)

(
(x− z) · νk(z)

)sk
+

(4.66)

and

Qk,z(r) := arg minQ∈R

∫

Br(z)

∣∣∣uk(x)−Q
(
(x− z) · νk(z)

)sk
+

∣∣∣
2

dx

=

∫
Br(z)

uk(x)
(
(x− z) · νk(z)

)sk
+
dx

∫
Br(z)

(
(x− z) · νk(z)

)2sk

+
dx

.

Next define the monotone in r quantity

θ(r) := sup
k

sup
z∈Γk∩B1/2

sup
r′>r

(r′)−β max

{∥∥uk − φk,z,r′
∥∥
L∞(Br′ (x0))

,

(r′)s |Qk,z(2r
′)−Qk,z(r

′)|
}
.
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We have θ(r) < ∞ for r > 0 and θ(r) ↗ ∞ as r ↘ 0. Clearly, there are sequences
rm ↘ 0, km, and zm → z ∈ B1/2, for which

(rm)−β max

{
‖ukm − φkm,zm,rm‖L∞(Brm (xm)) ,

(rm)s |Qkm,zm(2rm)−Qkm,zm(rm)|
}
≥ θ(rm)/2.

(4.67)

From now on in this proof we denote φm = φkm,zm,rm , νm = νkm(zm), and sm = skm .
In this situation we consider

vm(x) =
ukm(zm + rmx)− φm(zm + rmx)

(rm)βθ(rm)
.

Note that, for all m ≥ 1,
∫

B1

vm(x)
(
x · νm

)sm
+
dx = 0. (4.68)

This is the optimality condition for least squares.
Note also that (4.67) is equivalent to

max

{
‖vm‖L∞(B1) ,

∣∣∣∣∣

∫
B2
vm(x) (x · νm)sm+ dx∫
B2

(x · νm)2sm
+ dx

−
∫
B1
vm(x) (x · νm)sm+ dx∫
B1

(x · νm)2sm
+ dx

∣∣∣∣∣

}
≥ 1/2,

(4.69)
which holds for all m ≥ 1.

In addition, by definition of θ, for all k and z we have

(r′)s−β|Qk,z(2r
′)−Qk,z(r

′)|
θ(r)

≤ 1 for all r′ ≥ r > 0.

Thus, for R = 2N we have

rsk−β|Qk,z(rR)−Qk,z(r)|
θ(r)

≤
N−1∑

j=0

2j(β−sk) (2jr)sk−β|Qk,z(2
j+1r)−Qk,z(2

jr)|
θ(r)

≤
N−1∑

j=0

2j(β−sk) ≤ C2N(β−sk) = CRβ−sk ,

where we have used β − sk ≥ δ.
Moreover, we have

‖vm‖L∞(BR) =
1

θ(rm)(rm)β
∥∥ukm −Qkm,zm(rm)

(
(x− zm) · νm

)sm
+

∥∥
L∞(BrmR)

≤ Rβ

θ(rm)(rmR)β
∥∥ukm −Qkm,zm(rmR)

(
(x− zm) · νm

)sm
+

∥∥
L∞(BrmR)

+

+
1

θ(rm)(rm)β
|Qkm,zm(rmR)−Qkm,zm(rm)| (rmR)sm

≤ Rβθ(rmR)

θ(rm)
+ CRβ,
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and hence vm satisfy the growth control

‖vm‖L∞(BR) ≤ CRβ for all R ≥ 1. (4.70)

We have used the definition θ(r) and its monotonicity.
Now, without loss of generality (taking a subsequence), we assume that

νm −→ ν ∈ Sn−1.

Then, the rest of the proof consists mainly in showing the following Claim.

Claim. A subsequence of vm converges locally uniformly in Rn to some function v
which satisfies Ĩv = 0 in {x · ν > 0} and v = 0 in {x · ν < 0}, for some Ĩ translation
invariant and elliptic with respect to L∗.

Once we know this, a contradiction is immediately reached using the Liouville type
Theorem 4.1.5, as seen at the end of the proof.

To prove the Claim, given R ≥ 1 and m such that rmR < 1/2 define

Ω+
R,m =

{
x ∈ BR : (zm + rmx) ∈ Ω+

km
and x · νm(zm) > 0

}
.

Notice that for all R and k, the origin 0 belongs to the boundary of Ω+
R,m.

We will use that vm satisfies an elliptic equation in Ω+
R,m. Namely,

Ĩmvm(x) =
(rm)2sm

(rm)βθ(rm)
fkm(zm + rmx) in Ω+

R,m. (4.71)

where Ĩm is defined by

Ĩm

(
w(zm + r · )− φm(zm + r · )

(rm)βθ(rm)

)
(x) =

(rm)2sm

(rm)βθ(rm)

(
Ikmw

)
(zm + rx),

for all test function w. Equivalently, for all test function v,

Ĩmv(x) :
(∗)
=

(rm)2sm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm) v

(
· − zm
r

)
+ φm( · )

)
(zm + rmx)

(∗∗)
=

(rm)2sm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm) v

(
· − zm
rm

))
(zm + rmx),

the last identity being valid only in {x · νm > 0} since M+φm = M−φm = 0 in
{(x− z) · νm > 0}.

Note that the right hand side of (4.71) converges uniformly to 0 as rm ↘ 0, since
β = 2s0 − δ < 2sm and θ(rm)↗∞.

Using that Ikm is translation invariant and elliptic with respect to L∗(sm) and that
Ikm0 = 0 we readily show that Ĩm is also elliptic with respect to L∗(sm) (i.e., with the
same ellipticity constants Λ and λ, which are always fixed). Also, since the domains
Ω+
R,m are always contained in {(x− zm) · νm > 0} we may define Ĩm by (∗∗), and hence

it is a translation invariant operator.
In order to prove the convergence of a subsequence of vm we first obtain, for every

fixed R ≥ 1, a uniform in m bound for ‖vm‖Cδ(BR), for some small δ > 0. Then the local
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uniform convergence of a subsequence of vm follows from the Arzelà-Ascoli theorem.
Let us fix R ≥ 1 and consider that m is always large enough so that rmR < 1/4.

Let Σ−m be the half space which is “tangent” to Ω−km at zm, namely,

Σ−m :=
{

(x− zm) · ν(zm) < 0
}
.

The first step is showing that, for all m and for all r < 1/4,

∥∥ukm − φm
∥∥
L∞(Br(zm)∩(Ω−km∪Σ−m)) ≤ Cr2sm ≤ Cr2s0 (4.72)

for some constant C depending only on s0, ρ0, ellipticity constants, and dimension.
Indeed, we may rescale and slide the supersolution ϕ1 from Lemma 4.3.3 and use

the fact that all points of Γkm ∩B3/4 can be touched by balls of radius ρ0 contained in
Ω−km . We obtain that

|ukm| ≤ C
(
dist (x,Ω−km)

)sm
,

with C depending only on n, s0, ρ0, and ellipticity constants. On the other hand, by
definition of φm we have

|φm| ≤ C
(
dist (x,Σ−m)

)sm
.

But by assumption, points on Γk ∩B3/4 can be also touched by balls of radius ρ0 from
the Ω+

km
side, and hence we have a quadratic control (depending only on ρ0) on on how

Γkm separates from the hyperplane ∂Σ−m. As a consequence, in Br(zm) ∩ (Ω−km ∪ Σ−m)
we have

C
(
dist (x,Ω−km)

)sm ≤ Cr2sm and C
(
dist (x,Σ−m)

)sm ≤ Cr2sm .

Hence, (4.72) holds.
We use now Lemma 4.6.4 to obtain that, for some small γ ∈ (0, s0),

‖ukm‖Cγ(B1/8(zm)) ≤ C for all m.

On the other hand, clearly

‖φm‖Cγ(B1/8(zm)) ≤ C for all m.

Hence, ∥∥ukm − φm
∥∥
Cγ(Br(zm)∩(Ω−km∪Σ−m)) ≤ C. (4.73)

Next, interpolating (4.72) and (4.73) we obtain, for some positive δ < γ small
enough (depending on γ, s0, and δ),

∥∥ukm − φm
∥∥
Cδ(Br(zm)∩(Ω−km∪Σ−m)) ≤ Cr2s0−δ = Crβ. (4.74)

Therefore, scaling (4.74) we find that

∥∥vm
∥∥
Cδ(BR\Ω+

R,m) ≤ C for all m with rmR < 1/4. (4.75)

Next we observe that the boundary points on ∂Ω+
R,m ∩ B3R/4 can be touched by

balls of radius (ρ0/rm) ≥ ρ0 contained in BR \ Ω+
R,m. We then apply Lemma 4.6.4
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(rescaled) to vm. Indeed, we have that vm solves (4.71) and satisfies (4.75). Thus, we
obtain, for some δ′ ∈ (0, δ),

∥∥vm
∥∥
Cδ′ (BR/2)

≤ C(R), for all m with rmR < 1/4, (4.76)

where we write C(R) to emphasize the dependence on R of the constant, which also
depends on s0, ρ0, ellipticity constants, and dimension, but not on m.

As said above, the Arzelà-Ascoli theorem and the previous uniform (in m) Cδ′

estimate (4.76) yield the local uniform convergence in Rn of a subsequence of vm to
some function v.

Next, since all the vm’s satisfy the growth control (4.70), and 2s0 > β, by the
dominated convergence theorem we have vm −→ v in L1(Rn, ωs0).

In addition, by Lemma 4.6.3 there is a subsequence of sm converging to some
s ∈ [s0,min{1, s0 + δ}] and a subsequence of Ĩm which converges weakly to some
translation invariant operator Ĩ, which is elliptic with respect to L∗(s). Hence, it
follows from the stability result in [70, Lemma 5] that Ĩv = 0 in all of Rn. Thus, the
Claim is proved.

Finally, passing to the limit the growth control (4.70) on vm we find ‖v‖L∞(BR) ≤ Rβ

for all R ≥ 1. Hence, by Theorem 4.1.5, it must be

v(x) = K
(
x · ν(z)

)s
+
.

Passing (4.68) to the limit, we find

∫

B1

v(x)
(
x · ν(z)

)s
+
dx = 0.

But passing (4.69) to the limit, we reach the contradiction.

Before giving the proof of Theorem 4.1.3, we prove the following.

Lemma 4.6.5. Let Γ be a C1,1 surface of radius ρ0 > 0 splitting B1 into Ω+ and Ω−;
see Definition 4.1.2. Let d(x) = dist (x,Ω−). Let x0 ∈ B1/2 and z ∈ Γ be such that

dist (x0,Γ) = dist (x0, z) =: 2r.

Then, ∥∥∥
(
(x− z) · ν(z)

)s
+
− ds(x)

∥∥∥
L∞(Br(x0))

≤ Cr2s, (4.77)

[
ds −

(
(x− z) · ν(z)

)s
+

]
Cs−ε(Br(x0))

≤ Crs, (4.78)

and [
d−s
]
Cs−ε(Br(x0))

≤ Cr−2s+ε. (4.79)

The constant C depends only on ρ0.
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Proof. Let us denote
d̄(x) =

(
(x− z) · ν(z)

)
+
.

First, since Γ is C1,1 with curvature radius bounded below by ρ0, we have that
|d̄− d| ≤ Cr2 in Br(x0), and thus (4.77) follows.

To prove (4.78) we use on the one hand that

∥∥∇d−∇d̄
∥∥
L∞(Br(x0))

≤ Cr, (4.80)

which also follows from the fact that Γ is C1,1. On the other hand, using the inequality
|as−1 − bs−1| ≤ |a− b|max{as−2, bs−2} for a, b > 0, we find

∥∥ds−1 − d̄s−1
∥∥
L∞(Br(x0))

≤ Cr2 max
{∥∥ds−2

∥∥
L∞(Br(x0))

,
∥∥d̄s−2

∥∥
L∞(Br(x0))

}
≤ Crs.

(4.81)
Thus, using (4.80) and (4.81), we deduce

[
ds − d̄s

]
C0,1(Br(x0))

=
∥∥ds−1∇d− d̄s−1∇d̄

∥∥
L∞(Br(x0))

≤ Crs.

Therefore, (4.78) follows.
Finally, interpolating the inequalities

[
d−s
]
C0,1(Br(x0))

= ‖d−s−1∇d‖L∞(Br(x0)) ≤ Cr−s−1 and ‖d−s‖L∞(Br(x0)) ≤ Cr−s,

(4.79) follows.

We can finally give the

Proof of Theorem 4.1.3. As usual, we may assume that

‖u‖L∞(Rn) + ‖f‖L∞(Ω+) ≤ 1.

First, note that by Proposition 4.6.1 we have that, for all z ∈ Γ ∩ B1/2, there is
Q = Q(z) such that

|Q(z)| ≤ C and ‖u−Q
(
(x− z) · ν(z)

)s
+
‖L∞(BR(z)) ≤ CR2s−ε (4.82)

for all R > 0, where C depends only on n, s0, ρ0, ε, and ellipticity constants.
Indeed, let δ = min{ε/2, s0/4} and take a partition s0 < s1 < · · · < sN = 1 of

[s0, 1] satisfying |sj+1 − sj| ≤ δ. Then, using Proposition 4.6.1 with s0 replaced by sj,
(4.82) holds for all s ∈ [sj, sj+1] with a constant Cj depending only on n, sj, ρ0, and
ellipticity constants. Taking C = maxj Cj, (4.82) holds for all s ∈ [s0, 1].

Now, to prove the Cs−ε estimate up to the boundary for u/ds we must combine
the Cs interior estimate for u in Theorem 4.2.6 with (4.82). To do it, we will use a
similar argument for “glueing estimates” as in the proof of Proposition 4.1.1. However,
here we need to be more precise in the argument because we want to obtain the best
possible Hölder exponent.

Let x0 be a point in Ω+ ∩B1/4, and let z ∈ Γ be such that

2r := dist (x0,Γ) = dist (x0, z) < ρ0.



4.6 - Regularity by compactness 151

Note that Br(x0) ⊂ B2r(x0) ⊂ Ω+ and that z ∈ Γ ∩B1/2 (since 0 ∈ Γ).
We claim now that there is Q = Q(x0) such that |Q(x0)| ≤ C,

‖u−Qds‖L∞(Br(x0)) ≤ Cr2s−ε, (4.83)

and
[u−Qds]Cs−ε(Br(x0)) ≤ Crs, (4.84)

where the constant C depends only on n, s0, ε, ρ0, and ellipticity constants.
Indeed, (4.83) follows immediately combining (4.82) and (4.77).
To prove (4.84), let

vr(x) = r−su(z + rx)−Q (x · ν(z))s+.

Then, (4.82) implies
‖vr‖L∞(B4) ≤ Crs−ε

and
‖vr‖L1(Rn, ωs) ≤ Crs−ε.

Moreover, vr solves the equation

Ĩvr = rsf(z + rx) in B2(x̃0),

where x̃0 = (x0 − z)/r satisfies |x̃0 − z| = 2 and Ĩ is translation invariant and elliptic
with respect to L∗. Hence, using the interior estimate in Theorem 4.2.6 we obtain
[vr]Cs−ε(B1(x̃0)) ≤ Crs−ε. This yields that

rs−ε
[
u−Q

(
(x− z) · ν(z)

)s
+

]
Cs−ε(Br(x0))

= rs[v]Cs−ε(B1(x̃0)) ≤ Crsrs−ε.

Therefore, using (4.78), (4.84) follows.
Let us finally show that (4.83)-(4.84) yield the desired result. Indeed, note that,

for all x1 and x2 in Br(x0),

u

ds
(x1)− u

ds
(x2) =

(
u−Qds

)
(x1)−

(
u−Qds

)
(x2)

ds(x1)
+
(
u−Qds

)
(x2)

(
d−s(x1)−d−s(x2)

)
.

By (4.84), and using that d is comparable to r in Br(x0), we have

∣∣(u−Qds
)
(x1)−

(
u−Qds

)
(x2)

∣∣
ds(x1)

≤ C|x1 − x2|s−ε.

Also, by (4.83) and (4.79),

∣∣u−Qds
∣∣(x2)

∣∣d−s(x1)− d−s(x2)
∣∣ ≤ C|x1 − x2|s−ε.

Therefore,
[u/ds]Cs−ε(Br(x0)) ≤ C.

From this, we obtain the desired estimate for ‖u/ds‖Cs−ε(Ω+∩B1/2) by summing a geo-
metric series, as in the proof of Proposition 1.1 in [249].
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4.7 Non translation invariant versions of the re-
sults

Proposition 4.7.1. Let s0 ∈ (0, 1), δ ∈ (0, s0/4), ρ0 > 0, and β = 2s0 − δ be given
constants.

Let Γ be a C1,1 hypersurface with radius ρ0 > 0 splitting B1 into Ω+ and Ω−; see
Definition 4.1.2.

Let s ∈ [s0,max{1, s0 + δ}], and f ∈ C(Ω+). Assume that u ∈ C(B1) ∩ L∞(Rn) is
a viscosity solution of I(u, x) = f(x) in Ω+ and u = 0 in Ω−, where I is an operator
of the form (4.12)-(4.16).

Then, for all z ∈ Γ ∩B1/2 there exists Q(z) ∈ R with |Q(z)| ≤ C for which
∣∣∣u(x)−Q(z)

(
(x− z) · ν(z)

)s
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1,

where ν(z) is the unit normal vector to Γ at x pointing towards Ω+. The constant C
depends only on n, ρ0, s0, δ, ‖u‖L∞(Rn), ‖f‖L∞(Ω+), the modulus of continuity µ, and
ellipticity constants.

Proof. It is a variation of the Proof of Proposition 4.6.1. Hence, it is again by contra-
diction. Assume that there are sequences Γk, Ω+

k , Ω−k , sk, Ik, fk, and uk that satisfy
the assumptions of the proposition. That is, for all k ≥ 1:

• Γk is a C1,1 hyper surface with radius ρ0 splitting B1 into Ω+
k and Ω−k .

• sk ∈ [s0,max{1, s0 + δ}].

• Ik is elliptic with respect to L∗(sk) and satisfies (4.12)-(4.16) (with I and s
replaced by Ik and sk, respectively).

• ‖uk‖L∞(Rn) + ‖fk‖L∞(Ω+
k ) = 1.

• uk is a solution of Ik(uk, x) = fk(x) in Ω+
k and uk = 0 in Ω−k .

But suppose that the conclusion of the proposition does not hold. That is, for all
C > 0, there are k and z ∈ Γk ∩B1/2 for which no constant Q ∈ R satisfies

∣∣∣uk(x)−Q
(
(x− z) · νk(z)

)sk
+

∣∣∣ ≤ C|x− z|β for all x ∈ B1. (4.85)

Above, νk(z) denotes the unit normal vector to Γk at z, pointing towards Ω+
k .

As in the proof of Proposition 4.6.1, using Lemma 4.6.2, we have that

sup
k

sup
z∈Γk∩B1/2

sup
r>0

r−β ‖uk − φk,z,r‖L∞(Br(z))
=∞. (4.86)

where φk,z,r is given by (4.66).
We next define θ(r) and the sequences rm ↘ 0, km, φm, νm, and zm → z ∈ B1/2 as

in the proof of Proposition 4.6.1.
Again, we also define

vm(x) =
ukm(zm + rmx)− φm(zm + rmx)

(rm)βθ(rm)
,
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which satisfies (4.68), (4.69), and the growth control (4.70).
Note that, up to a subsequence, we may assume that νm → ν ∈ Sn−1.
The rest of the proof consists in showing

Claim. A subsequence of vm converges locally uniformly in Rn to some function v
which satisfies Ĩv = 0 in {x · ν > 0} and v = 0 in {x · ν < 0}, for some Ĩ translation
invariant and elliptic with respect to L∗.

Once we know this, a contradiction is immediately reached using the Liouville type
Theorem 4.1.5, as seen at the end of the proof.

To prove the Claim, given R ≥ 1 and m such that rmR < 1/2 define

Ω+
R,m =

{
x ∈ BR : (zm + rmx) ∈ Ω+

km
and x · νm(zm) > 0

}
.

Notice that for all R and k, the origin 0 belongs to the boundary of Ω+
R,m.

We will use that vm satisfies an elliptic equation in Ω+
R,m. Namely,

Ĩm(vm, x) =
(rm)2skm

(rm)βθ(rm)
f(zm + rmx) in Ω+

R,m. (4.87)

where Ĩm is defined by

Ĩm

(
w(zm + r · )− φm(zm + r · )

(rm)βθ(rm)
, x

)
=

(rm)2skm

(rm)βθ(rm)
Ikm(w , zm + rx),

for all test function w. Equivalently, for all test function v,

Ĩm(v, x)
(∗)
=

(rm)2skm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm)v

(
· − zm
rm

)
+ φm( · ) , zm + rmx

)

(∗∗)
=

(rm)2skm

(rm)βθ(rm)
Ikm

(
(rm)βθ(rm)v

(
· − zm
rm

))
(zm + rmx)

(∗∗∗)
= inf

β
sup
α

(∫

Rn

{
v(x+ y) + v(x− y)− 2v(x)

}
K

(m)
αβ (zm+ rmx, y) dy+

+
(rm)2skmc

(m)
αβ (zm+ rx)

(rm)βθ(rm)

)
.

The last two identities hold only in {x · νm > 0} since M+φm = M−φm = 0 in
{(x− z) · νm > 0}.

Note that the right hand side of (4.87) converges uniformly to 0 as rm ↘ 0 since
β = 2s0 − δ < 2skm and θ(rm)↗∞.

Using that Ikm is elliptic with respect to L∗(skm) and that Ikm(0, x) = 0, we readily
show that Ĩm is also elliptic with respect to L∗(skm).

Note that, since Im is elliptic with respect to L∗(skm), and ‖fkm‖L∞ ≤ 1, then

M+
skm

ukm ≥ −1 and M−
skm

ukm ≤ 1 in Ω+,

and the same inequalities hold for vm. Hence, by the same argument as in the proof
of Proposition 4.6.1, we find that

∥∥vm
∥∥
Cδ
′
(BR/2)

≤ C(R), for all m with rmR < 1/4,
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where C(R) depends only on R, n, s0, ρ0, and ellipticity constants, but not on m.
Then, the Arzelà-Ascoli theorem yields the local uniform convergence in Rn of a

subsequence of vm to some function v. Thus, the Claim is proved.
Next, since all the vm’s satisfy the growth control (4.70), and 2s0 > β, by the

dominated convergence theorem vm → v in L1(Rn, ωs0).
Let now Ĩm be the sequence of translation invariant operators defined by

Ĩmw = inf
β

sup
α

(∫

Rn

{
w(x+ y) + w(x− y)− 2w(x)

}
K

(m)
αβ (zm, y) dy

)
.

Note that, for all test functions w,

Ĩm(w, x)− Ĩm(w) −→ 0 uniformly in compact sets of {(x− z) · ν > 0}. (4.88)

Indeed, by (4.16),

∣∣∣K(m)
αβ (zm + rmx, y)−K(m)

αβ (zm, y)
∣∣∣ ≤

(
1− skm

) µ(Crm)

|y|n+2skm
−→ 0

and ∣∣∣∣∣
(rm)2skmc

(m)
αβ (zm+ rx)

(rm)βθ(rm)

∣∣∣∣∣ ≤ Λ(rm)2skm−β −→ 0,

where µ is the modulus of continuity of the kernels Kαβ(x, y) with respect to x.
On the other hand, by Lemma 4.6.3 there is a subsequence of skm converging to

some s ∈ [s0,min{1, 2s0 − δ}] and a subsequence of Ĩm which converges weakly to
some translation invariant operator Ĩ, which is elliptic with respect to L∗(s). Hence,
by (4.88), it follows that Ĩm → Ĩ weakly in compact subsets of {x · ν > 0}. Therefore,
using the stability result in [70, Lemma 5], Ĩv = 0 in {x · ν > 0}.

Finally, passing to the limit the growth control (4.70) on vm, we find ‖v‖L∞(BR) ≤
CRβ for all R ≥ 1. Hence, by Theorem 4.1.5, it must be

v(x) = K
(
x · ν(z)

)s
+
.

But passing (4.68) and (4.69) to the limit we find a contradiction.

We next prove Theorem 4.1.6.

Proof of Theorem 4.1.6. In case that g ≡ 0, the result follows from Proposition 4.7.1
by using the same argument as is the proof of Theorem 4.1.3 (partition of [s0, 1] into
intervals of length smaller than ε/2).

When g is not zero, we consider ū = u− gχB1 . Then ū satisfies ū ≡ 0 in Ω− and

Ī(ū, x) = f̄(x) in Ω+ ∩B3/4,

where
Ī(w, x) = I(w + gχB1 , x)− I(gχB1 , x)

and
f̄(x) = I(gχB1 , x) + f(x).

Then, applying the result for g ≡ 0 to the function ũ, the theorem follows.
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4.8 Final comments and remarks

Here we would like to make a few remarks and talk about some open problems and
future research directions.

Higher regularity of u/ds. In the proof of the Liouville-type Theorem 4.1.5,
one starts with a solution satisfying |u(x)| ≤ C(1 + |x|β). Then, one proves that the
tangential derivatives satisfy |∂τu(x)| ≤ C(1+ |x|β−1). Hence, if β−1 < s, Proposition
4.5.1 implies that ∂τu ≡ 0, and thus u is 1D.

The fact that we only use β < 1 + s seems to indicate that the quotient u/ds could
belong to C1−ε, and not only to Cs−ε. However, for functions with growth at infinity
2s ≤ β < 1 + s, the integro-differential operators cannot be evaluated.

In fact, only having β − 1 < s + α would suffice to obtain ∂τu = c(xn)s+, and
this seems enough to classify solutions in the half space. However, as before, such
approach would require to give sense to the equation for functions that grow “too
much” at infinity.

Therefore, the following question remains open. Is it possible to prove that u/ds

belongs to C1+α when considering more regular kernels and right hand sides?

More general linear equations. In a future work we are planning to obtain Cs−ε

regularity up to the boundary of u/ds for linear equations involving general operators
L of the form (4.3), where a is any measure (not supported in an hyperplane) which
does not necessarily satisfy (4.4). We will also obtain higher order regularity of u/ds

for linear equations when a ∈ Ck(Sn−1), f ∈ Ck(Ω), and Ω is Ck+2.

Equations with lower order terms. We could have included lower order terms
in the equations. Indeed, the compactness methods in Section 4.6 involve a blow up
procedure. We have seen in Section 4.7 that non translation invariant equations with
continuous dependence on x become translation invariant after blow up, and hence
our methods still apply. Similarly, we could have considered equations with certain
lower order terms, which disappear after blow up.

Second order fully nonlinear equations. As said in the introduction, with the
methods developed in this paper one can prove the C1,α and C2,α boundary estimates
for fully nonlinear equations F (D2u,Du, x) = f(x).

Obstacle and free boundary problems. The regularity theory for the obstacle
problem (or other free boundary problems) is related to the boundary regularity of
solutions to fully nonlinear elliptic equations. In this paper we have shown that L∗
is the appropriate class to obtain fine regularity properties up to the boundary. We
therefore wonder if one could obtain regularity results for free boundary problems
involving operators in L∗ similar to those for the fractional Laplacian [271].

4.9 Appendix

In this appendix we give the

Proof of Lemma 4.5.3. Let us show first the statement (a). Recall that a = 1 − 2s.
We first note that the Caffarelli-Silvestre extension equation ∆u+ a

y
∂yu = 0 is written
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in polar coordinates x = r cos θ, y = r sin θ, r > 0, θ ∈ (0, π) as

urr +
1

r
ur +

1

r2
uθθ +

a

r sin θ

(
sin θ ur + cos θ

uθ
r

)
= 0.

Note the homogeneity of the equation in the variable r. If we seek for (bounded at 0)
solutions of the form u = rs+νΘν(θ), then it must be ν > −s and

Θ′′ν + a cotg θΘ′ν + (s+ ν)(s+ ν + a)Θν = 0.

If we want u to satisfy the boundary conditions

u(x, 0) = 0 for x < 0 and |y|a∂yu(x, y)→ 0 as y → 0,

then Θν must satisfy
{

Θν(θ) = Θν(0) + o
(
(sin θ)2s

)
→ 0 as θ ↘ 0

Θν(π) = 0.
(4.89)

We have used that, for x > 0

lim
y↘0

ya∂yu(x, y) = 0 ⇒ u(x, y) = u(x, 0) + o(y2s),

since a = 1− 2s.
To solve this ODE, consider

Θν(θ) = (sin θ)sh(cos θ).

After some computations and the change of variable z = cos θ one obtains the following
ODE for h(z):

(1− z2)h′′(z)− 2zh′(z) +

(
ν + ν2 − s2

1− z2

)
h(z) = 0.

This is the so called “associated Legendre differential equation”. All solutions to this
second order ODE solutions are given by

h(z) = C1P
s
ν (z) + C2Q

s
ν(z),

where P s
ν and Qs

ν are the “associated Legendre functions” of first and second kind,
respectively.

Translating (4.89) to the function h, using that sin θ ∼ (1− cos θ)1/2 as θ ↘ 0 and
sin θ ∼ (1 + cos θ)1/2 as θ ↗ π, we obtain

{
(1− z)s/2h(z) = c+ o

(
(1− z)s

)
as z ↗ 1

limz↘−1(1 + z)s/2h(z) = 0.
(4.90)

Let us prove that P s
ν fulfill all these requirements only for ν = 0, 1, 2, 3, . . . , while

Qs
ν have to be discarded. To have a good description of the singularities of P s

ν (z) at
z = ±1 we use its expression as an hypergeometric function

P s
ν (z) =

1

Γ(1− s)
(1 + z)s/2

(1− z)s/2
2F1

(
−ν, ν + 1; 1− s; 1− z

2

)
.
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Using this and the definition of 2F1 as a power series we obtain

P s
ν (z) =

1

Γ(1− s)
2s/2

(1− z)s/2

{
1− ν(ν + 1)

1− s
1− z

2
+ o
(
(1− z)2

)}
as z ↗ 1.

Hence, (1− z)s/2P s
ν (z) = c+O

(
1− z

)
= c+ o

(
(1− z)s

)
as desired.

For the analysis as z ↘ −1 we need to use Euler’s transformation

2F1(a, b; c;x) = (1− x)c−b−a 2F1(c− a, c− b; c;x),

obtaining

P s
ν (z) =

1

Γ(1− s)
(1 + z)s/2

2s/2

(
1 + z

2

)−s {
2F1(1− s− ν,−s− ν; 1− s; 1) + o(1)

}

as z ↘ −1. It follows that the zero boundary condition is satisfied if and only if

2F1(1− s− ν,−s− ν; 1− s; 1) =
Γ(1− s)Γ(s)

Γ(−ν)Γ(1 + ν)
= 0.

This implies ν = 0, 1, 2, 3, . . . , so that Γ(−ν) =∞.
With a similar analysis one easily finds that the functions Qs

ν(x) do not satisfy
(4.90) for any ν ≥ −s.

The statement (b) of the Lemma follows from the Sturm-Liouville theory after
observing that the ODE

Θ′′ν + a cotg θΘ′ν − λΘν = 0

can be written as (
| sin θ|a Θ′ν

)′
= λ| sin θ|aΘν . (4.91)

Indeed, we may regularize the problem by solving, for θ ∈ (−π, π), the ODE

(
(sin2 θ + ε2)a/2 f ′ε

)′
= λ(sin2 θ + ε2)a/2fε (4.92)

with the regularized boundary conditions

{
f(−θ) = f(θ)

f(−π) = f(π) = 0.

For (4.92), we obtain a complete orthonormal system {fε,k}k≥0 in the subspace of even
functions of weighted space L2

(
(−π, π), (sin2 θ+ε2)a/2

)
. Then one proves that as ε→ 0

the functions fε,k converges in (0, π) to a solution of (4.91) satisfying the boundary
conditions (4.89). Since the limit of a complete orthogonal system is a also complete
orthogonal system and we have obtained all the solutions to the limiting equation,
these have to be a complete system.
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Introduction to Part II

This second part of the thesis is devoted to study the regularity of stable solutions to
reaction-diffusion equations.

Reaction-diffusion equations play a central role in PDE theory and its applications
to other sciences. They model many problems, running from Physics (fluids, combus-
tion, etc.), Biology and Ecology (population evolution, illness propagation, etc.), to
Financial Mathematics and Economy (Black-Scholes equation, price formation, etc.).
They also play an important role in some geometric problems: the problem of pre-
scribing a curvature on a manifold, conformal classification of varieties, and parabolic
flows on manifolds.

Background and previous results

The regularity of minimizers to nonlinear elliptic equations is a classical problem in
the Calculus of Variations appearing, for instance, in Hilbert’s 19th problem. An
important example in Geometry is the regularity of minimal hypersurfaces of Rn which
are minimizers of the area functional. A deep result from the seventies states that these
hypersurfaces are smooth if n ≤ 7, while in R8 the Simons cone

S =
{
x ∈ R8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8

}
(4.93)

is a minimizing minimal hypersurface with a singularity at x = 0 [159]. The same
phenomenon —the fact that regularity holds in low dimensions— happens for other
nonlinear equations in bounded domains. For instance, let u be a solution of

{
−∆u = f(u) in Ω

u = 0 on ∂Ω.
(4.94)

It is still an open problem to show that local minimizers (and, more generally, stable
solutions) of this equation are bounded when n ≤ 9. In dimensions n ≥ 10 there are
examples of singular solutions to this problem which are local minimizers. Namely,

u(x) = log
1

|x|2
is a solution of (4.94) with f(u) = 2(n− 2)eu and Ω = B1,

which is stable if n ≥ 10 and a local minimizer if n ≥ 11 [44].
Of special importance is the following class of reaction-diffusion problems with

interior reaction. Consider



−∆u = λf(u) in Ω ⊂ Rn

u > 0 in Ω
u = 0 on ∂Ω,

(4.95)
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with λ > 0, posed in a bounded smooth domain Ω. We assume the nonlinearity f to
satisfy

f is C2, nondecreasing, convex, f(0) > 0, and lim
t→+∞

f(t)

t
= +∞. (4.96)

Typical examples are −∆u = λeu (known as Gelfand problem, used to model combus-
tion processes) or −∆u = λ(1 + u)p, with p > 1.

Under these conditions, it is well known that there exists an extremal value λ∗ ∈
(0,+∞) of the parameter λ such that for each 0 < λ < λ∗ there exists a positive
minimal solution uλ of (4.95), while for λ > λ∗ the problem has no solution, even in
the weak sense. Here, minimal means the smallest positive solution. For λ = λ∗, there
exists a weak solution, called the extremal solution of (4.95), which is given by

u∗(x) = lim
λ↑λ∗

uλ(x).

In 1997 H. Brezis and J. L. Vázquez [36] raised the question of studying the reg-
ularity of the extremal solution u∗, i.e., to decide whether u∗ is or is not a classical
solution depending on f and Ω. This is equivalent to determine whether u∗ is bounded
or unbounded. The importance of the problem stems in the fact that the existence
of other non-minimal solutions for λ < λ∗ depends strongly on the regularity of the
extremal solution [120].

The regularity of stable solutions was studied in the seventies and eighties for
different nonlinearities f , essentially exponential or power nonlinearities. In both
cases a similar result holds: if n ≤ 9 then any stable solution u is bounded for every
domain Ω [177, 102, 212], while for n ≥ 10 there are examples of unbounded stable
solutions even in the unit ball —as the one given before.

At present, it is known that this result holds true for all nonlinearities f when the
domain Ω is a ball [43], and also in general domains for a class of nonlinearities that
satisfy a quite restrictive condition at infinity —the limit in (4.98) to exist.

The case of general f was studied first by Nedev in 2000 [225], who proved that the
extremal solution of (4.95) is bounded for every nonlinearity f satisfying (4.96) and for
every domain Ω if n ≤ 3. He also gave Lp estimates for u∗ for n ≥ 4, and proved that
u∗ ∈ H1(Ω) in every dimension when the domain is strictly convex. Finally, the best
known result so far states that all stable solutions are bounded in dimensions n ≤ 4,
for any nonlinearity f and any domain Ω [42, 295].

The problem is still open in dimensions 5 ≤ n ≤ 9. As mentioned before, a partial
result in that direction is that all stable solutions are bounded in dimensions n ≤ 9
when the domain is a ball [43].

Results of the thesis (Part II)

In Chapter 5 we study the regularity of stable solutions u to (4.94) in the class of
domains that we call of double revolution. These are those domains which are invariant
under rotations of the first m variables and of the last n−m variables, that is,

Ω =
{

(x1, x2) ∈ Rm × Rn−m : (s = |x1|, t = |x2|) ∈ Ω2

}
,
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where Ω2 ⊂ R2 is a bounded domain even (or symmetric) with respect to each coordi-
nate. We prove the following.

Theorem 3. Let Ω ⊂ Rn be any bounded and convex domain of double revolution. Let
f be any nonlinearity satisfying (4.96), and let u∗ be the extremal solution of (4.95).
Then, u∗ is bounded whenever n ≤ 7.

Except for the radial case, our result is the first partial answer valid for all nonlin-
earities in dimensions 5 ≤ n ≤ 9.

The proofs of the results in [102, 225, 43, 256, 42] use heavily the stability of the
extremal solution u∗. In fact, one first proves estimates for any regular stable solution
u of (4.94), then one applies them to the minimal solutions uλ, and finally by monotone
convergence such estimates also hold for the extremal solution u∗.

Recall that a solution of (4.94) is said to be stable if the second variation of energy
at u is nonnegative, i.e., if

Qu(ξ) =

∫

Ω

|∇ξ|2 − f ′(u)ξ2 ≥ 0

for all C1 functions ξ vanishing on ∂Ω. Obviously, every local minimizer of the energy
functional

E(u) =

∫

Ω

1

2
|∇u|2 − F (u),

where F ′ = f , is a stable solution of (4.94).
For the exponential nonlinearity f(u) = eu, the proof of Crandall-Rabinowitz [102]

is based on the choice ξ = eαu − 1 in the stability condition, with α > 0 chosen
appropriately. Combining the stability condition with the equation, they find an Lp

bound for eu if p < 5. Since −∆u = λeu, then u ∈ W 2,p and, by the Sobolev
embeddings, u ∈ L∞ if n < 10. Nedev’s result for n ≤ 3 [225] uses ξ = h(u) in the
stability condition, with h chosen appropriately depending on f .

The proofs of the estimates in [43, 42], instead, use as a test function ξ = |∇u|η
(or ξ = urη in the radial case), and then compute Qu(|∇u|η) in the stability property
satisfied by u. The expression of Qu in terms of η does not depend on f , and a
clever choice of the test function η leads to L∞ and Lp bounds depending on the
dimension n (but not on f). This idea was inspired on the proof of Simons theorem
on the nonexistence of singular minimal cones in Rn for n ≤ 7; see the survey [44].

Our proof of Theorem 3 uses as test functions in the stability condition ξ = usη1

and ξ = utη2. Taking appropriate functions η1 and η2, this leads to inequalities of the
form ∫

Ω2

(
s−αu2

s + t−βu2
t

)
dsdt ≤ C,

where s and t are the two radial coordinates describing Ω. Here, the values of α and
β depend on n and m. When n ≤ 7, these values are large enough to deduce an L∞

bound for u, as stated in Theorem 3. When n ≥ 8, we obtain Lp bounds for the
solution u via some new weighted Sobolev inequalities established in Chapter 5 (see
also the Introduction to Part III).

Chapters 6 and 7 deal with the regularity of extremal solutions to semilinear prob-
lems involving now the fractional Laplacian (−∆)s; see the Introduction to Part I
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for the definition, motivation, and mathematical background on this type of nonlocal
problems.

The regularity of the extremal solution was investigated for the spectral fractional
Laplacian As in the unit ball Ω = B1 by Capella-Dávila-Dupaigne-Sire [80]. They
proved the boundedness of all extremal solutions in dimensions n ≤ 6 for all s ∈
(0, 1). Recall that the spectral fractional Laplacian As is defined via the Dirichlet
eigenfunctions of the Laplacian −∆ in Ω. It can be also defined through an extension
problem in the cylinder Ω × R+. Thus, this operator is different but related to the
fractional Laplacian (−∆)s —recall the extension problem for (−∆)s explained in
the Introduction to Part I. Also in this direction, Davila-Dupaigne-Montenegro [107]
studied the extremal solution for a boundary reaction problem with mixed Dirichlet-
Neumann condition. Thus, as before, this problem is related to the half-Laplacian.

Here, we study the extremal solution to
{

(−∆)su = λf(u) in Ω
u = 0 in Rn \ Ω.

(4.97)

Our results (Theorems 4 and 5 below) are the first ones on extremal solutions for the
fractional Laplacian (−∆)s.

In Chapter 6 we prove the following.

Theorem 4. Let Ω be any bounded smooth domain in Rn, s ∈ (0, 1), f be a function
satisfying (4.96). Let u∗ be the extremal solution of (4.97).

(i) Assume that Ω is convex. Then, u∗ belongs to Hs(Rn) for all n ≥ 1 and all
s ∈ (0, 1).

(ii) Assume that the following limit exists

τ := lim
t→+∞

f(t)f ′′(t)

f ′(t)2
. (4.98)

Then, u∗ is bounded whenever n < 10s.

The limit (4.98) exists for exponential and power type nonlinearities. Thus, their
extremal solutions are bounded whenever n < 10s. It is important to notice that, in
the limit s ↑ 1, n < 10 is optimal.

Regarding part (i), as in the case s = 1, a priori one only knows that u∗ and f(u∗)
are in L1, but not u∗ ∈ Hs. To prove the Hs regularity of the extremal solution we
follow the ideas of Nedev for s = 1. This requires two main ingredients: the Pohozaev
identity for the fractional Laplacian proved in Part I, and an L∞ estimate near the
boundary of convex domains. We establish this L∞ boundary estimate via the moving
planes method.

To prove part (ii) of the result, we argue similarly to the classical case s = 1,
following the approach of Nedev [225] and Sanchón [256]. When trying to adapt their
arguments to the fractional Laplacian, some identities that for s = 1 come from local
integration by parts are no longer available for s < 1. We succeed to replace these
identities by appropriate inequalities. They are sharp for s → 1, but not for smaller
values of s.
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In this direction, although the condition n < 10s in Theorem 4(ii) is optimal for s
close to 1, it is not optimal for small values of s ∈ (0, 1). In fact, Theorem 4 does not
give any L∞ estimate for s ≤ 0.1, while we expect extremal solutions to be bounded
in dimensions n ≤ 7 for all s ∈ (0, 1). The following result goes in this direction.

In Chapter 7 we prove, under some symmetry assumptions on the domain Ω,
a sharp boundedness result for extremal solutions with the exponential nonlinearity
f(u) = eu. The result reads as follows.

Theorem 5. Let Ω be a bounded smooth domain in Rn which is, for every i = 1, ..., n,
convex in the xi-direction and symmetric with respect to {xi = 0}. Let s ∈ (0, 1), and
let u∗ be the extremal solution of problem (4.97) with f(u) = eu.

Then, u∗ is bounded for all s ∈ (0, 1) whenever n ≤ 7. Moreover, the same holds if
n = 8 and s & 0′28206..., or if n = 9 and s & 0′63237....

The result is new even in the unit ball.
The hypotheses of Theorem 5 on n and s —i.e., n ≤ 7, or n = 8 and s & 0′28206...,

or n = 9 and s & 0′63237...— are equivalent to the following inequality

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) >
Γ2
(
n+2s

4

)

Γ2
(
n−2s

4

) , (4.99)

where Γ is the Gamma function.
Condition (4.99) makes Theorem 5 sharp in the following sense. One can find

a singular stable solution to (−∆)su = λeu in B1, with a certain nonzero exterior
condition g in Rn \ B1, whenever (4.99) does not hold. Indeed, the function u(x) =
log |x|−2s solves {

−∆u = λ0e
u in B1

u = g(x) in Rn \B1

for g(x) = log |x|−2s in Rn \B1. See Chapter 7 for more details.
To prove Theorem 5, one may think on extending the classical proof of Crandall-

Rabinowitz [102], i.e., using ξ = eαu − 1 as a test function in the stability condition.
When doing this, one only obtains regularity in dimensions n < 10s. Thus, different
methods are needed. Our proof goes as follows. We first assume by contradiction
that u∗ is singular, and we prove a lower bound for u∗ near its singular point. More
precisely, we show that for all ε > 0 there exists r > 0 such that

u∗(x) ≥ (1− ε) log
1

|x|2s
in Br.

This is why we need to assume the domain Ω to be even and convex —in this case,
the singular point is necessarily the origin. Then, in the stability condition we take an
explicit function ξ(x) ∼ |x|−β, with β chosen appropriately. In case that (4.99) holds,
this argument leads to a contradiction, and hence the extremal solution is bounded.
Similar ideas were already used by Dávila-Dupaigne-Montenegro [107] when studying
the extremal solution for the boundary reaction problem described before.





5Chapter Five

REGULARITY OF STABLE SOLUTIONS IN
DOMAINS OF DOUBLE REVOLUTION

We consider the class of semi-stable positive solutions to semilinear equations −∆u =
f(u) in a bounded domain Ω ⊂ Rn of double revolution, that is, a domain invariant
under rotations of the first m variables and of the last n −m variables. We assume
2 ≤ m ≤ n−2. When the domain is convex, we establish a priori Lp and H1

0 bounds for
each dimension n, with p =∞ when n ≤ 7. These estimates lead to the boundedness
of the extremal solution of −∆u = λf(u) in every convex domain of double revolution
when n ≤ 7. The boundedness of extremal solutions is known when n ≤ 3 for any
domain Ω, in dimension n = 4 when the domain is convex, and in dimensions 5 ≤ n ≤ 9
in the radial case. Except for the radial case, our result is the first partial answer valid
for all nonlinearities f in dimensions 5 ≤ n ≤ 9.

5.1 Introduction and results

Let Ω ⊂ Rn be a smooth and bounded domain, and consider the problem



−∆u = λf(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(5.1)

where λ is a positive parameter and the nonlinearity f : [0,∞) −→ R satisfies

f is C1, nondecreasing, f(0) > 0, and lim
τ→∞

f(τ)

τ
=∞. (5.2)

It is well known (see the excellent monograph [120] and references therein) that
there exists an extremal parameter λ∗ ∈ (0,∞) such that if 0 < λ < λ∗ then problem
(5.1) admits a minimal classical solution uλ, while for λ > λ∗ it has no solution, even
in the weak sense. Here, minimal means smallest. Moreover, the set {uλ : 0 < λ < λ∗}
is increasing in λ, and its pointwise limit u∗ = limλ→λ∗ uλ is a weak solution of problem
(5.1) with λ = λ∗. It is called the extremal solution of (5.1).

When f(u) = eu, it is well known that u ∈ L∞(Ω) if n ≤ 9, while u∗(x) = log 1
|x|2

if n ≥ 10 and Ω = B1. An analogous result holds for f(u) = (1 + u)p, p > 1.
In the nineties H. Brezis and J.L. Vázquez [36] raised the question of determining
the regularity of u∗, depending on the dimension n, for general convex nonlinearities
satisfying (5.2). The first general results were proved by G. Nedev [225, 226] —see
[69] for the statement and proofs of the results of [226].
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Theorem 5.1.1 ([225],[226]). Let Ω be a smooth bounded domain, f be a function
satisfying (5.2) which in addition is convex, and u∗ be the extremal solution of (5.1).

i) If n ≤ 3, then u∗ ∈ L∞(Ω).

ii) If n ≥ 4, then u∗ ∈ Lp(Ω) for every p < n
n−4

.

iii) Assume either that n ≤ 5 or that Ω is strictly convex. Then u∗ ∈ H1
0 (Ω).

In 2006, the first author and A. Capella [43] studied the radial case. Their result
establishes optimal L∞ and Lp regularity results in every dimension for general f .

Theorem 5.1.2 ([43]). Let Ω = B1 be the unit ball in Rn, f be a function satisfying
(5.2), and u∗ be the extremal solution of (5.1).

i) If n ≤ 9, then u∗ ∈ L∞(Ω).

ii) If n ≥ 10, then u∗ ∈ Lp(Ω) for every p < pn, where

pn = 2 +
4

n
2+
√
n−1
− 2

. (5.3)

iii) For every dimension n, u∗ ∈ H3(Ω).

The best known result was established in 2010 by the first author [42] and estab-
lishes the boundedness of u∗ in convex domains in dimension n = 4. Related ideas
recently allowed the first author and M. Sanchón [69] to improve Nedev’s Lp estimates
of Theorem 5.1.1 when n ≥ 5:

Theorem 5.1.3 ([42],[69]). Let Ω ⊂ Rn be a convex, smooth and bounded domain, f
be a function satisfying (5.2), and u∗ be the extremal solution of (5.1).

i) If n ≤ 4, then u∗ ∈ L∞(Ω).

ii) If n ≥ 5, then u∗ ∈ Lp(Ω) for every p < 2n
n−4

= 2 + 4
n
2
−2

.

The boundedness of extremal solutions remains an open question in dimensions
5 ≤ n ≤ 9, even in the case of convex domains and convex nonlinearities.

The aim of this paper is to study the regularity of the extremal solution u∗ of (5.1)
in a class of domains that we call of double revolution. The class contains domains
much more general than balls, but is much simpler than general convex domains. In
this class of domains our main result establishes the boundedness of the extremal
solution u∗ in dimensions n ≤ 7, whenever Ω is convex. An interesting point of our
work is that it has led us to a new Sobolev and isoperimetric inequality (Proposition
5.1.7 below) with a monomial weight or density. In a future paper [50], we treat a
more general version of these Sobolev and isoperimetric inequalities with densities (see
Remark 5.1.8 below) for which we can compute best constants, as well as extremal
sets and functions. They are in the spirit of recent works on manifolds with a density;
see F. Morgan’s survey [218] for more information.
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Let n ≥ 4 and

Rn = Rm × Rk with n = m+ k, m ≥ 2, and k ≥ 2. (5.4)

For each x ∈ Rn we define the variables
{
s =

√
x2

1 + · · ·+ x2
m

t =
√
x2
m+1 + · · ·+ x2

n.

We say that a domain Ω ⊂ Rn is a domain of double revolution if it is invariant
under rotations of the first m variables and also under rotations of the last k variables.
Equivalently, Ω is of the form Ω = {x ∈ Rn : (s, t) ∈ Ω2} where Ω2 is a domain in R2

symmetric with respect to the two coordinate axes. In fact, Ω2 = {(y1, y2) ∈ R2 : x =
(x1 = y1, x2 = 0, ..., xm = 0, xm+1 = y2, xm+2 = 0, ..., xn = 0) ∈ Ω} is the intersection
of Ω with the (x1, xm+1)-plane. Note that Ω2 is smooth if and only if Ω is smooth. Let

us call Ω̃ the intersection of Ω2 with the positive quadrant of R2, i.e.,

Ω̃ =
{

(s, t) ∈ R2 : s > 0, t > 0, and

(x1 = s, x2 = 0, ..., xm = 0, xm+1 = t, xm+2 = 0, ..., xn = 0) ∈ Ω
}
.

(5.5)

Since {s = 0} and {t = 0} have zero measure in R2, we have that

∫

Ω

v dx = cm,k

∫

Ω̃

v(s, t)sm−1tk−1dsdt

for every L1(Ω) function v = v(x) which depends only on the radial variables s and t.
Here, cm,k is a positive constant depending only on m and k.

In the previous theorems, the regularity of u∗ is proved using its semi-stability.
More precisely, the minimal solutions uλ of (5.1) turn out to be semi-stable solutions.
A solution is semi-stable if the second variation of energy at the solution is nonnegative;
see (5.9) below. We will prove that any semi-stable classical solution u of (5.1), and
more generally of (5.8) below, depends only on s and t, and hence we can identify it
with a function u = u(s, t) defined in (R+)2 = (0,∞)2 which satisfies the equation

uss + utt +
m− 1

s
us +

k − 1

t
ut + f(u) = 0 for (s, t) ∈ Ω̃. (5.6)

Moreover, in the case of convex domains we will also have us ≤ 0 and ut ≤ 0 (for
s > 0, t > 0) and hence, u(0) = ‖u‖L∞ (see Remark 5.2.1).

The following is our main result. We prove that, in convex domains of double
revolution, the extremal solution u∗ is bounded when n ≤ 7, and it belongs to H1

0 and
certain Lp spaces when n ≥ 8. We also prove that in dimension n = 4 the convexity
of the domain is not required for the boundedness of u∗ (in [42], convexity of Ω was a
requirement in general domains of R4).

Theorem 5.1.4. Assume (5.4). Let Ω ⊂ Rn be a smooth and bounded domain of
double revolution, f be a function satisfying (5.2), and u∗ be the extremal solution of
(5.1).
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a) Assume either that n = 4 or that n ≤ 7 and Ω is convex. Then, u∗ ∈ L∞(Ω).

b) If n ≥ 8 and Ω is convex, then u∗ ∈ Lp(Ω) for all p < pm,k, where

pm,k = 2 +
4

m
2+
√
m−1

+ k
2+
√
k−1
− 2

. (5.7)

c) Assume either that n ≤ 6 or that Ω is convex. Then, u∗ ∈ H1
0 (Ω).

Remark 5.1.5. Let qm,k = m
2+
√
m−1

+ k
2+
√
k−1

. Since q(x) := x
2+
√
x−1

is a concave function

in [2,∞), we have q′(x)−q′(n−x) ≥ 0 in [2, n
2
], and thus q(x)+q(n−x) is nondecreasing

in [2, n
2
]. Hence, q2,n−2 ≤ qm,k ≤ qn

2
,n
2
, and therefore pn

2
,n
2
≤ pm,k ≤ p2,n−2. Thus,

asymptotically as n→∞,

2 +
2
√

2√
n
' pn

2
,n
2
≤ pm,k ≤ p2,n−2 ' 2 +

4√
n
.

Instead, in a general convex domain, Lp estimates are only known for p ' 2 + 8
n

(see
Theorem 5.1.3 ii above), while in the radial case one has Lp estimates for p ' 2 + 4√

n

(see Theorem 5.1.2 ii).

The proofs of the results in [225, 226, 43, 42, 69] use the semi-stability of the
extremal solution u∗. In fact, one first proves estimates for any regular semi-stable
solution u of {

−∆u = f(u) in Ω
u = 0 on ∂Ω,

(5.8)

then one applies these estimates to the minimal solutions uλ (which are semi-stable),
and finally by monotone convergence the estimates also hold for the extremal solution
u∗.

Recall that a classical solution u of (5.8) is said to be semi-stable if the second
variation of energy at u is nonnegative, i.e., if

Qu(ξ) =

∫

Ω

{
|∇ξ|2 − f ′(u)ξ2

}
dx ≥ 0 (5.9)

for all ξ ∈ C1
0(Ω). For instance, every local minimizer of the energy is a semi-stable

solution.
The proof of the estimates in [43, 42, 69] was inspired by the proof of Simons

theorem on the nonexistence of singular minimal cones in Rn for n ≤ 7 (see [44] for
more details). The key idea is to take ξ = |∇u|η (or ξ = urη in the radial case)
and compute Qu(|∇u|η) in the semi-stability property satisfied by u. In this way the
expression of Qu in terms of η turns out not to depend on f and, thanks to this,
a clever choice of the test function η leads to Lp and L∞ bounds depending on the
dimension n but valid for all nonlinearities f .

In this paper we will proceed in a similar way, proving first results for general
positive semi-stable solutions of (5.8) and then applying them to uλ to deduce estimates
for u∗. We will take ξ = usη and ξ = utη separately instead of ξ = |∇u|η, and this
will lead to bounds for∫

Ω

u2
ss
−2α−2dx and

∫

Ω

u2
t t
−2β−2dx (5.10)
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sP

Ω̃

t

Q

Figure 5.1: A non-convex domain for which the maximum of u∗ will not be u∗(0)

for any α <
√
m− 1 and β <

√
k − 1.

When the domain Ω is convex, we will have the additional information ‖u‖L∞ =
u(0), us ≤ 0, and ut ≤ 0, which combined with (5.10) will lead to L∞ and Lp estimates
for u∗.

Instead, when the domain Ω is not convex the maximum of u may not be achieved
at the origin —see Figure 1 for an example in which u(0) will be much smaller than
‖u‖L∞ . Thus, in nonconvex domains we can not apply the same argument. However,
if the maximum is away from {s = 0} and {t = 0} (as in Figure 1) then the problem
is essentially two dimensional near the maximum, since dx = cm,ks

m−1tk−1dsdt and
both s and t will be positive and bounded below around the maximum. Thus, the
two dimensional Sobolev inequality will hold near the maximum. We will still have
to prove some boundary estimates, for instance estimates near the boundary points
P and Q in Figure 1. But, by the same reason as before, near P the coordinate s
is positive and bonded below. Thus, the problem near P will be essentially 1 + k
dimensional, and we assume k = n−m ≤ n− 2. This will allow us, if 1 + k ≤ n− 1
are small enough, to use Nedev’s [225] W 2,p estimates to obtain boundary estimates.

Our result for general positive semi-stable solutions of (5.8) reads as follows. It
states global estimates controlled in terms of boundary estimates.

Proposition 5.1.6. Assume (5.4). Let Ω ⊂ Rn be a smooth and bounded domain
of double revolution, f be any C1 function, and u be a positive bounded semi-stable
solution of (5.8).

Let δ be any positive real number, and define

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

Then, for some constant C depending only on Ω, δ, n, and also p in part b) below,
one has:

a) If n ≤ 7 and Ω is convex, then ‖u‖L∞(Ω) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
.

b) If n ≥ 8 and Ω is convex, then ‖u‖Lp(Ω) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
for

each p < pm,k, where pm,k is given by (5.7).

c) For all n ≥ 4, ‖u‖H1
0 (Ω) ≤ C‖u‖H1(Ωδ).
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To prove part b) of Proposition 5.1.6 we will need a new weighted Sobolev inequality
in (R+)2 = {(σ, τ) ∈ R2 : σ > 0, τ > 0}. We will use this inequality in the (σ, τ)-plane
defined after the change of variables

σ = s2+α, τ = t2+β,

where α and β are the exponents in (5.10). It states the following.

Proposition 5.1.7. Let a > −1 and b > −1 be real numbers, being positive at least
one of them, and let

D = 2 + a+ b.

Let u be a nonnegative Lipschitz function with compact support in R2 such that u ∈
C1({u > 0}),

uσ ≤ 0 and uτ ≤ 0 in (R+)2,

with strict inequalities whenever u > 0. Then, for each 1 ≤ q < D there exists a
constant C, depending only on a, b, and q, such that

(∫

(R+)2
σaτ b|u|q∗dσdτ

)1/q∗

≤ C

(∫

(R+)2
σaτ b|∇u|qdσdτ

)1/q

, (5.11)

where q∗ = Dq
D−q .

Remark 5.1.8. When a and b are nonnegative integers, inequality (5.11) is a direct
consequence of the classical Sobolev inequality in RD. Namely, define in RD = Ra+1×
Rb+1 the radial variables σ = |(x1, . . . , xa+1)| and τ = |(xa+2, . . . , xD)|. Then, for
functions u defined in RD depending only on the variables σ and τ , write the integrals
appearing in the classical Sobolev inequality in RD in terms of σ and τ . Since dx =
ca,bσ

aτ bdσdτ , the obtained inequality is precisely the one given in Proposition 5.1.7.
Thus, the previous proposition extends the classical Sobolev inequality to the case

of non-integer exponents a and b. In another article, [50], we prove inequality (5.11)
with (R+)2 replaced by (R+)d and with σaτ b replaced by the monomial weight

xA := xA1
1 · · ·x

Ad
d ,

where A1, ..., Ad are nonnegative real numbers. We also prove a related isoperimet-
ric inequality with best constant, a weighted Morrey’s inequality, and we determine
extremal sets and functions for some of these inequalities.

In section 4 we establish the weighted Sobolev inequality of Proposition 5.1.7 as a
consequence of a new weighted isoperimetric inequality. Our proof is simple but does
not give the best constant (in contrast with the more involved proof that we will give
in [50] giving the best constant). When a and b belong to (0, q− 1) —i.e., (0, 1) when
q = 2, as in our application) inequality (5.11) also follows from a result of P. Hajlasz
[166] in a very general framework of weights or measures. His result does not give the
best constant and, besides, its constant depends on the support of the function.

We will need to use the proposition for some exponents a and b in (−1, 0) —this
happens for instance when m = 2 or m = 3. In this case the assumption uσ ≤ 0,
uτ ≤ 0 is crucial for the inequality to hold with the optimal exponent q∗. Without
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this assumption, a Sobolev inequality is still true but with a smaller exponent than q∗

(this also follows from the results in [166]). For a > q − 1 the weight is no longer in
the Muckenhoupt class Aq and the results in [166] do not apply.

The paper is organized as follows. In section 2 we prove the estimates of Proposition
5.1.6. Section 3 deals with the regularity of the extremal solution of (5.1). Finally, in
section 4 we prove the weighted Sobolev inequality of Proposition 5.1.7.

5.2 Proof of Proposition 5.1.6

We start with a remark on the symmetry and monotonicity properties of solutions to
(5.8), as well as on the regularity of the functions us and ut.

Remark 5.2.1. Note that when the domain is of double revolution, any bounded semi-
stable solution u of (5.8) will depend only on the variables s and t. To prove this,
define v = xiuxj − xjuxi , with i 6= j. Note that u will will depend only on s and t if
and only if v ≡ 0 for each i, j ∈ {1, ...,m} and for each i, j ∈ {m+ 1, ..., n}.

We first see that, for such indexes i and j, v is a solution of the linearized equation
of (5.8):

∆v = ∆(xiuxj − xjuxi)
= xi∆uxj + 2∇xi · ∇uxj − xj∆uxi − 2∇xj · ∇uxi
= xi(∆u)xj − xj(∆u)xi
= −f ′(u){xiuxj − xjuxi}
= −f ′(u)v.

Note that v is a tangential derivative of u along ∂Ω since Ω is a domain of double
revolution. Therefore, since u = 0 on ∂Ω then v = 0 on ∂Ω. Thus, multiplying the
equation by v and integrating by parts, we obtain

∫

Ω

{|∇v|2 − f ′(u)v2}dx = 0.

But since u is semi-stable, the first Dirichlet eigenvalue λ1(∆ + f ′(u); Ω) ≥ 0.
If λ1(∆ + f ′(u); Ω) > 0, the previous inequality leads to v ≡ 0.
If λ1(∆ +f ′(u); Ω) = 0, then we must have v = Kφ1, where K is a constant and φ1

is the first Dirichlet eigenfunction of ∆ + f ′(u), which we may take to be positive in
Ω. But since v is the derivative of u along the vector field ∂t = xi∂xj − xj∂xi , and its
integral curves are closed, v can not have constant sign. Thus, K = 0, that is, v ≡ 0.

Hence, we have seen that any classical semi-stable solution u of (5.8) depends only
on the variables s and t. Moreover, by the classical result of Gidas-Ni-Nirenberg [156],
when Ω is even and convex with respect each coordinate and u is a positive solution,
we have uxi ≤ 0 when xi > 0, for i = 1, ..., n. In particular, when Ω is a convex domain
of double revolution, we have that us < 0 and ut < 0 for s > 0, t > 0, (s, t) ∈ Ω̃. In
particular,

‖u‖L∞(Ω) = u(0).

On the other hand, by standard elliptic regularity for (5.8) and its linearization,
every bounded solution u of (5.8) satisfies u ∈ W 3,p(Ω) ∩ C2,ν(Ω) for all p < ∞ and
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0 < ν < 1. In particular,

us ∈ H2
loc(Ω\{s = 0}) and ut ∈ H2

loc(Ω\{t = 0}),

since us = ux1
x1
s

+ · · · + uxm
xm
s

and ut = uxm+1

xm+1

t
+ · · · + uxn

xn
t

. In addition, since
u = u(s, t) is the restriction to the first quadrant of the (x1, xm+1)-plane of an even
C2,ν function of x1 and xm+1, we deduce that

us ∈ Lip(Ω), ut ∈ Lip(Ω), us = 0 when s = 0, and ut = 0 when t = 0. (5.12)

We note that us and ut do not belong to C1(Ω), neither to H2(Ω). For instance, the
solution of −∆u = 1 in B1 ⊂ Rn is given by u = 1

2n
(1− s2 − t2) and, thus, us = − 1

n
s

is only Lipschitz in Ω.

Before proving Proposition 5.1.6, we will need two preliminary results. The first
one, Lemma 5.2.2, was already used in [43, 42]. In this paper we use it taking the
function c on its statement to be us and ut. Note that c = us ∈ H2

loc(Ω\{s = 0}) but
us is not H2 in a neighborhood in Ω of {s = 0}.

Lemma 5.2.2. Let u be a bounded semi-stable solution of (5.8), V be an open set
with V ⊂ Ω, and c be a H2

loc(V ) function. Then,

∫

Ω

c{∆c+ f ′(u)c}η2dx ≤
∫

Ω

c2|∇η|2dx

for all η ∈ C1(V ) with compact support in V .

Proof. It suffices to set ξ = cη in the semi-stability condition (5.9) and then integrate
by parts in V .

We now apply Lemma 5.2.2 separately with c = us and with c = ut, and then we
choose appropriately the test function η to get the following result. This estimate is
the key ingredient in the proof of Proposition 5.1.6.

Lemma 5.2.3. Assume (5.4). Let Ω ⊂ Rn be a smooth and bounded domain of double
revolution, f be any C1 function, and u be a positive bounded semi-stable solution of
(5.8). Let α and β be such that

0 ≤ α <
√
m− 1 and 0 ≤ β <

√
k − 1.

Then, for each δ > 0 there exists a constant C, which depends only on Ω, δ, n, α, and
β, such that

(∫

Ω

{
u2
ss
−2α−2 + u2

t t
−2β−2

}
dx

)1/2

≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
, (5.13)

where

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.
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Proof. We will prove only the estimate for u2
ss
−2α−2; the other term can be estimated

similarly.
Differentiating (5.6) with respect to s, we obtain

∆us − (m− 1)
us
s2

+ f ′(u)us = 0 in Ω\{s = 0}.

Hence, setting c = us in Lemma 5.2.2 (recall that c = us ∈ H2
loc(Ω\{s = 0}) by

Remark 5.2.1), we have that

(m− 1)

∫

Ω

u2
s

η2

s2
dx ≤

∫

Ω

u2
s|∇η|2dx (5.14)

for all η ∈ C1(Ω\{s = 0}) with compact support in Ω\{s = 0}.
We claim now that inequality (5.14) is valid for each η ∈ C1(Ω) with compact

support in Ω. Namely, take any such function η, and let ζδ be a smooth function
satisfying 0 ≤ ζδ ≤ 1, ζδ ≡ 0 in {s ≤ δ}, ζδ ≡ 1 in {s ≥ 2δ}, and |∇ζδ| ≤ C/δ.
Applying (5.14) with η replaced by ηζδ (which is C1 and has compact support in
Ω\{s = 0}), we obtain

(m− 1)

∫

Ω

u2
s

η2ζ2
δ

s2
dx ≤

∫

Ω

u2
s|∇(ηζδ)|2dx. (5.15)

Now, we find
∫

Ω

u2
s|∇(ηζδ)|2dx =

∫

Ω

u2
s

{
|∇η|2ζ2

δ + η2|∇ζδ|2 + 2ηζδ∇η∇ζδ
}
dx

≤
∫

Ω

u2
s|∇η|2ζ2

δ dx+
C

δ2

∫

{δ≤s≤2δ}∩Ω

u2
sdx

≤
∫

Ω

u2
s|∇η|2ζ2

δ dx+ Cδm−2‖us‖2
L∞({δ≤s≤2δ),

where C denote different positive constants, and we have used that η and |∇η| are
bounded. Since us is continuous in Ω and us = 0 on {s = 0} by (5.12), we have
‖us‖L∞({s≤2δ}) → 0 as δ → 0. Recall also that m− 2 ≥ 0. Therefore, letting δ → 0 in
(5.15) we obtain (5.14), and our claim is proved.

Moreover, by approximation by C1(Ω) functions with compact support in Ω, we
see that (5.14) is valid also for each η ∈ Lip(Ω) with compact support in Ω.

Let us set η = ηε in (5.14), where

ηε =

{
s−αρ if s > ε
ε−αρ if s ≤ ε

and ρ =

{
0 in Ωδ/3

1 in Ω\Ωδ/2,

and ρ is a smooth function. Note that ηε ∈ Lip(Ω) and has compact support in Ω.
Then, since α2 < 1

2
(α2 +m− 1) < m− 1,

|∇ηε|2 ≤





1
2
(α2 +m− 1)s−2α−2ρ2 in (Ω\Ωδ/2) ∩ {s > ε}

1
2
(α2 +m− 1)s−2α−2ρ2 + Cs−2α in Ωδ/2 ∩ {s > ε}
Cε−2α in Ω ∩ {s ≤ ε},



176 Regularity of stable solutions in domains of double revolution

we deduce from (5.14)

m− 1− α2

2

∫

Ω∩{s>ε}
u2
ss
−2α−2ρ2dx ≤ C

∫

Ωδ/2∩{s>ε}
u2
ss
−2αdx+ Cε−2α

∫

Ω∩{s≤ε}
u2
sdx,

where C denote different constants depending only on the quantities appearing in the
statement of the lemma. Note that we can bound the dependence of the constants in
m and k by a constant depending on n, since for each n there is a finite number of
possible m and k. Now, since us ∈ L∞(Ω), the last term is bounded by C‖us‖2

L∞ε
m−2α.

Making ε→ 0 and using that

2α < 2
√
m− 1 ≤ m, (5.16)

we deduce ∫

Ω

u2
ss
−2α−2ρ2dx ≤ C

∫

Ωδ/2

u2
ss
−2αdx.

Hence, since ρ ≡ 1 in Ω\Ωδ/2,

∫

Ω\Ωδ/2
u2
ss
−2α−2dx ≤ C

∫

Ωδ/2

u2
ss
−2αdx ≤ C

∫

Ωδ/2

u2
ss
−2α−2dx. (5.17)

From this we deduce that, for another constant C,
∫

Ω

u2
ss
−2α−2dx ≤ C

∫

Ωδ/2

u2
ss
−2α−2dx. (5.18)

Let 0 < ν < 1 to be chosen later. On the one hand, using that us ∈ Lip(Ω)
and us(0, t) = 0 (by (5.12)), and that Ω is smooth, we deduce that |us(s, t)| ≤
Csν‖us‖C0,ν(Ωδ/2) in Ωδ/2 ∩ {s < δ}. Moreover, since −∆u = f(u) in Ωδ and u|∂Ω = 0,

by W 2,p estimates we have ‖u‖C1,ν(Ωδ/2) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
. It follows

that
‖s−νus‖L∞(Ωδ/2∩{s<δ}) ≤ C

(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
.

Thus, also in all Ωδ/2 we have

‖s−νus‖L∞(Ωδ/2) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
. (5.19)

On the other hand, recalling (5.16) and taking ν sufficiently close to 1 such that
m− 2α− 2 + 2ν > 0, we will have

∫

Ωδ/2

u2
ss
−2α−2dx ≤ ‖s−νus‖2

L∞(Ωδ/2)

∫

Ωδ/2

s−2α−2+2νdx ≤ C‖s−νus‖2
L∞(Ωδ/2).

Hence, using also (5.18) and (5.19),

∫

Ω

u2
ss
−2α−2dx ≤ C

(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)2
,

as claimed.
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Using Lemma 5.2.3 we can now establish Proposition 5.1.6.

Proof of Proposition 5.1.6. Using Lemma 5.2.3 and making the change of variables

σ = s2+α, τ = t2+β

in the integral in (5.13), one has

{
sm−1ds = cασ

m
2+α
−1dσ

tk−1dt = cβτ
k

2+β
−1dτ,

and thus,

∫

Ũ

σ
m

2+α
−1τ

k
2+β
−1(u2

σ + u2
τ )dσdτ ≤ C

(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)2
. (5.20)

Here, Ũ denotes the image of the two dimensional domain Ω̃ in (5.5) after the trans-
formation (s, t) 7→ (σ, τ). The constant in (5.20) depends on α and β. However, later
we will choose α and β depending only on m and k and hence the constants will be
controlled by constants depending only on n (since for each n there are a finite number
of integers m and k).

a) We assume Ω to be convex. Recall that in this case ‖u‖L∞ = u(0); see Remark
5.2.1.

From (5.20), setting ρ =
√
σ2 + τ 2 and taking into account that in {τ < σ < 2τ}

we have ρ
2
< σ < ρ and ρ

3
< τ < ρ, we obtain

∫

Ũ∩{τ<σ<2τ}
ρ

m
2+α

+ k
2+β
−2(u2

σ + u2
τ )dσdτ ≤ C

(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)2
. (5.21)

Now, for each angle θ we have

u(0) ≤
∫

lθ

|∇(σ,τ)u|dρ,

where lθ is the segment of angle θ in the (σ, τ)-plane from the origin to ∂Ũ . Integrating
in arctan 1

2
< θ < arctan 1 = π

4
,

u(0) ≤ C

∫ π
4

arctan 1
2

∫

lθ

|∇(σ,τ)u|dρdθ = C

∫

Ũ∩{τ<σ<2τ}

|∇(σ,τ)u|
ρ

dσdτ. (5.22)

Now, applying Schwarz’s inequality and taking into account (5.21) and (5.22),

u(0) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)(∫

Ũ∩{τ<σ<2τ}
ρ−( m

2+α
+ k

2+β )dσdτ

)1/2

.

This integral is finite when
m

2 + α
+

k

2 + β
< 2.
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Therefore, if
m

2 +
√
m− 1

+
k

2 +
√
k − 1

< 2 (5.23)

then we can choose α <
√
m− 1 and β <

√
k − 1 such that the integral is finite.

Hence, since ‖u‖L∞(Ω) = u(0), if condition (5.23) is satisfied then

‖u‖L∞(Ω) ≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
.

Let

qm,k =
m

2 +
√
m− 1

+
k

2 +
√
k − 1

.

If n ≤ 7 then by Remark 5.1.5 we have that qm,k ≤ qn
2
,n
2
≤ q 7

2
, 7
2
< 2 (note that

the function q = q(x) in the remark is increasing in x). Instead, if n ≥ 8 then
qm,k ≥ q2,n−2 ≥ q2,6 > 2. Hence, (5.23) is satisfied if and only if n ≤ 7.

b) We assume that Ω is convex and that n ≥ 8. Note that qn
2
,n
2

= n

2+
√

n
2
−1

< n
2
,

and thus

pm,k > 2 +
4

n
2
− 2

=
2n

n− 4
.

Hence, without loss of generality we may assume that

2n

n− 4
≤ p < pm,k

and we can choose nonnegative numbers α and β such that α2 < m − 1, β2 < k − 1,
and

p = 2 +
4

m
2+α

+ k
2+β
− 2

. (5.24)

This is because the expression (5.24) is increasing in α and β, and its value for α = β =
0 is 2n

n−4
. In addition, since qm,k ≥ q2,n−2 ≥ q2,6 > 2, we have that m

2+α
+ k

2+β
− 2 > 0

and that one of the numbers m
2+α
− 1 or k

2+β
− 1 is positive.

Hence, we can apply now Proposition 5.1.7 to u = u(σ, τ) with a = m
2+α
− 1,

b = k
2+β
− 1 and q = 2 < D = m

2+α
+ k

2+β
. We deduce that

(∫

Ũ

σ
m

2+α
−1τ

k
2+β
−1|u|pdσdτ

)1/p

≤ C

(∫

Ũ

σ
m

2+α
−1τ

k
2+β
−1|∇(σ,τ)u|2dσdτ

)1/2

.

Here we have extended u by zero outside Ũ , obtaining a nonnegative Lipschitz function.
By Remark 5.2.1 it satisfies us < 0 and ut < 0 whenever u > 0, s > 0, and t > 0 since
Ω is convex, and therefore uσ < 0 and uτ < 0 whenever u > 0, σ > 0, and τ > 0. Note
also that q∗ = 2∗ = 2D

D−2
= 2 + 4

D−2
= p. Thus, combining the last inequality with

(5.20), we have

(∫

Ũ

σ
m

2+α
−1τ

k
2+β
−1|u|pdσdτ

)1/p

≤ C
(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
.
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Finally, since
∫

Ũ

σ
m

2+α
−1τ

k
2+β
−1|u|pdσdτ = cα,β

∫

Ω̃

sm−1tk−1|u|pdsdt = cα,β,m,k‖u‖pLp(Ω),

we conclude
‖u‖Lp(Ω) ≤ C

(
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ)

)
.

c) Here we do not assume Ω to be convex. We set α = 0 in Lemma 5.2.3. Estimate
(5.17) in its proof gives

∫

Ω\Ωδ/2
u2
ss
−2dx ≤ C

∫

Ωδ/2

u2
sdx,

and therefore, for a different constant C,
∫

Ω

u2
sdx ≤ C

∫

Ωδ/2

u2
sdx.

Since, for 1 ≤ i ≤ m and m+ 1 ≤ j ≤ n, uxi = us
xi
s

and uxj = ut
xj
t

, this leads to

‖u‖H1
0 (Ω) ≤ C‖∇u‖L2(Ω) ≤ C‖u‖H1(Ωδ),

as claimed.

5.3 Regularity of the extremal solution

This section is devoted to give the proof of Theorem 5.1.4. The estimates for convex
domains will follow easily from Proposition 5.1.6 and the boundary estimates in convex
domains of de Figueiredo, Lions, and Nussbaum [110]. These boundary estimates (see
also [42] for their proof) follow easily from the moving planes method [156].

Theorem 5.3.1 ([110],[156]). Let Ω be a smooth, bounded, and convex domain, f be
any Lipschitz function, and u be a bounded positive solution of (5.8). Then, there exist
constants δ > 0 and C, both depending only on Ω, such that

‖u‖L∞(Ωδ) ≤ C‖u‖L1(Ω),

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

We can now give the proof of Theorem 5.1.4. The main part of the proof are the
estimates for non-convex domains. They will be proved by interpolating the W 1,p and
W 2,p estimates of Nedev [225] and our estimate of Lemma 5.2.3, and by applying the
classical Sobolev inequality as explained in Remark 5.1.8.

Proof of Theorem 5.1.4. As we have pointed out, the estimates for convex domains
are a consequence of Proposition 5.1.6 and Theorem 5.3.1. Namely, we can apply the
estimates of Proposition 5.1.6 to the bounded and semi-stable minimal solutions uλ
of (5.1) for λ < λ∗, and then by monotone convergence the estimates hold for the
extremal solution u∗. Note that ‖uλ‖L1(Ω) ≤ ‖u∗‖L1(Ω) <∞ for all λ < λ∗.
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To prove part c) for convex domains, we use part c) of Proposition 5.1.6 with
δ replaced by δ/2 and δ given by Theorem 5.3.1. We then control ‖u‖H1(Ωδ/2) by
‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ) using boundary estimates. Finally, we use Theorem 5.3.1.
Next we prove the estimates in parts a) and c) for non-convex domains.

We start by proving part a) when Ω is not convex. We have that n = 4, i.e.
m = k = 2. In [225] (see its Remark 1) it is proved that the extremal solution satisfies
u∗ ∈ W 1,p(Ω) for all p < n

n−3
. Thus, since n = 4, for each p < 4 we have

∫

Ω

|u∗s|pdx ≤ C and

∫

Ω

|u∗t |pdx ≤ C.

Assume that ‖u∗‖L∞(Ωδ) ≤ C for some δ > 0 —which we will prove later. Then,
by Lemma 5.2.3, for all γ < 4 we have

∫

Ω

s−γ|u∗s|2dx ≤ C and

∫

Ω

t−γ|u∗t |2dx ≤ C.

Hence, for each λ ∈ [0, 1],

∫

Ω

(s−λγ|u∗s|p−λ(p−2) + t−λγ|u∗t |p−λ(p−2))dx ≤ C.

Setting now σ = sκ, τ = tκ, and

κ = 1 +
λγ

p− λ(p− 2)
,

we obtain ∫

Ũ

σ
2
κ
−1τ

2
κ
−1|∇(σ,τ)u

∗|p−λ(p−2)dσdτ ≤ C,

and taking p = 3, γ = 3 and λ = 3/4 (and thus κ = 2), we obtain

∫

Ũ

|∇(σ,τ)u
∗|9/4dσdτ ≤ C.

Finally, applying Sobolev’s inequality in the 2 dimensional plane (σ, τ), u∗ ∈ L∞(Ω).
It remains to prove that ‖u∗‖L∞(Ωδ) ≤ C for some δ > 0. Since u∗ ∈ W 1,p(Ω) for

every p < 4, we have ∫

Ωδ

st|∇u∗|pdsdt ≤ C.

Since the domain is smooth, we must have 0 /∈ ∂Ω (otherwise the boundary would have
an isolated point) and hence, there exist r0 > 0 and δ > 0 such that Ωδ ∩ Br0(0) = ∅.
Thus, s ≥ r0/

√
2 in Ωδ ∩ {s > t} and t ≥ r0/

√
2 in Ωδ ∩ {s < t}. It follows that

∫

Ωδ∩{s>t}
t|∇u∗|pdsdt ≤ C and

∫

Ωδ∩{s<t}
s|∇u∗|pdsdt ≤ C.

Taking p ∈ (3, 4), we can apply Sobolev’s inequality in dimension 3 (as explained in
Remark 5.1.8), to obtain u∗ ∈ L∞(Ωδ ∩ {s > t}) and u∗ ∈ L∞(Ωδ ∩ {s < t}). Note
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that u∗ does not vanish through all ∂(Ωδ ∩ {s > t}) and ∂(Ωδ ∩ {s < t}), but it
vanishes on their intersection with ∂Ω —a sufficiently large part of ∂(Ωδ ∩ {s > t})
and ∂(Ωδ ∩ {s < t}) to apply the Sobolev inequality. Therefore u∗ ∈ L∞(Ωδ), as
claimed.

To prove part c) in the non-convex case, let n ≤ 6. By Proposition 5.1.6, it suffices
to prove that u∗ ∈ H1(Ωδ) for some δ > 0. Take r0 and δ such that Ωδ ∩ Br0(0) = ∅,
as in part a).

In [225] it is proved that u∗ ∈ W 2,p(Ω) for p < n
n−2

. Thus, by the previous lower
bounds for s and t in {s > t} and {s < t} respectively,

∫

Ωδ∩{s>t}
tk−1|D2u∗|pdsdt ≤ C and

∫

Ωδ∩{s<t}
sm−1|D2u∗|pdsdt ≤ C.

Since n ≤ 6, m ≥ 2, and k ≥ 2, we have that k ≤ 4 and m ≤ 4. It follows that
2k+2
k+3

< n
n−2

and 2m+2
m+3

< n
n−2

. Thus, we may take p = 2k+2
k+3

and p = 2m+2
m+3

respectively
in the two previous estimates. Now applying Sobolev’s inequality in dimension k + 1
and m+1 respectively, we obtain ∇u∗ ∈ L2(Ωδ∩{s > t}) and ∇u∗ ∈ L2(Ωδ∩{s < t}).
Therefore, u∗ ∈ H1(Ωδ).

5.4 Weighted Sobolev inequality

It is well known that the classical Sobolev inequality can be deduced from the isoperi-
metric inequality. This is done by applying first the isoperimetric inequality to the
level sets of the function and then using the coarea formula. In this way one deduces
the Sobolev inequality with exponent 1 on the gradient. Then, by applying Hölder’s
inequality one deduces the general Sobolev inequality. Here, we will proceed in this
way to prove the Sobolev inequality of Proposition 5.1.7.

Recall that we will apply this Sobolev inequality to the function u defined on
the (σ, τ)-plane, where σ = s2+α and τ = t2+β. Recall also that this application
will be in convex domains, and thus u satisfies the hypothesis of Proposition 5.1.7,
i.e., uσ ≤ 0 and uτ ≤ 0, with strict inequality whenever u > 0. Hence, since the
isoperimetric inequality will be applied to the level sets of u, it suffices to prove a
weighted isoperimetric inequality for bounded domains Ũ ⊂ (R+)2 = (0,∞)2 satisfying
the following property:

(P) For all (σ, τ) ∈ Ũ , Ũ(·, τ) := {σ′ > 0 : (σ′, τ) ∈ Ũ} and Ũ(σ, ·) := {τ ′ > 0 :

(σ, τ ′) ∈ Ũ} are intervals which are strictly decreasing in τ and σ, respectively.

We denote

m(Ũ) =

∫

Ũ

σaτ bdσdτ and m(∂Ũ ∩ (R+)2) =

∫

∂Ũ∩(R+)2
σaτ bdσdτ.

Note that in the weighted perimeter m(∂Ũ ∩ (R+)2) the part of ∂Ũ on the σ and τ
coordinate axes is not counted. The following isoperimetric inequality holds in domains
satisfying property (P) above, under no further regularity assumption on them.
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Proposition 5.4.1. Let Ũ ⊂ (R+)2 be a bounded domain satisfying (P) above, a > −1
and b > −1 be real numbers, being positive at least one of them, and

D = a+ b+ 2.

Then, there exists a constant C depending only on a and b such that

m(Ũ)
D−1
D ≤ Cm(∂Ũ ∩ (R+)2).

Proof. First, by symmetry we can suppose a > 0.
Property (P) ensures that there exists a unique well defined decreasing, bounded,

and continuous function ψ : (0, σ)→ (0,∞) for some σ > 0 such that

Ũ = {(σ, τ) ∈ (R+)2 : τ < ψ(σ)}. (5.25)

In addition, extending ψ by zero in [σ,∞), ψ is continuous and nonincreasing. Even
that we could have ψ′ = −∞ at some points, |ψ′| = −ψ′ is integrable (since ψ is
bounded) and thus ψ ∈ W 1,1(R). We have that

m(Ũ) =
1

b+ 1

∫ +∞

0

σaψb+1dσ and m(∂Ũ ∩ (R+)2) =

∫ +∞

0

σaψb
√

1 + ψ′2dσ.

Let µ > 0 be such that

m(Ũ) =
µD

(a+ 1)(b+ 1)
. (5.26)

We claim that
ψ(σ) < µ for σ > µ.

Assume that this is false. Then, we would have ψ(σ′) ≥ µ for some σ′ > µ, and hence

m(Ũ) ≥ 1

b+ 1

∫ σ′

0

σaψb+1dσ >
1

b+ 1

∫ µ

0

σaµb+1dσ =
µD

(a+ 1)(b+ 1)
,

a contradiction. On the other hand, since a > 0, b+ 1 > 0, and ψ′ ≤ 0,

m(∂Ũ ∩ (R+)2) =

∫ +∞

0

σaψb
√

1 + ψ′2dσ

≥ c

∫ +∞

0

σaψb
{

1− b+ 1

a
ψ′
}
dσ

= c

∫ +∞

0

σa
{
ψb − d

dσ

(
ψb+1

a

)}
dσ

= c

∫ +∞

0

σaψb+1

(
1

ψ
+

1

σ

)
dσ,

for some constant c depending only on a and b.
Finally, taking into account that ψ(σ) < µ for σ > µ, we obtain that 1

ψ
+ 1

σ
≥ 1

µ

for each σ > 0. Thus, recalling (5.26),

m(∂Ũ ∩ (R+)2) ≥ c

∫ +∞

0

σaψb+1

(
1

ψ
+

1

σ

)
dσ ≥ c

µ
m(Ũ) = cm(Ũ)

D−1
D ,

as claimed.
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Now we are able to prove our Sobolev inequality from the previous isoperimetric
inequality. We follow the proof given in [120] for the classical unweighted case.

Proof of Proposition 5.1.7. We will prove first the case q = 1.
Letting χA denote the characteristic function of the set A, we have

u(σ, τ) =

∫ +∞

0

χ[u(σ,τ)>λ]dλ.

Thus, by Minkowski’s integral inequality

(∫

(R+)2
σaτ b|u|

D
D−1dσdτ

)D−1
D

≤
∫ +∞

0

(∫

(R+)2
σaτ bχ[u(σ,τ)>λ]dσdτ

)D−1
D

dλ

=

∫ +∞

0

m({u(σ, τ) > λ})
D−1
D dλ.

Since uσ ≤ 0 and uτ ≤ 0, with strict inequality when u > 0, the level sets {u(σ, τ) > λ}
satisfy property (P) in the beginning of Section 4. In fact, since uτ < 0 at points where
u = λ > 0, the implicit function theorem gives that the function ψ in (5.25) when

Ũ = {u(σ, τ) > λ} is C1 in (0, σ). Thus, Proposition 5.4.1 leads to

m ({u(σ, τ) > λ})
D−1
D ≤ Cm

(
∂{u(σ, τ) > λ} ∩ (R+)2

)

= Cm
(
{u(σ, τ) = λ} ∩ (R+)2

)
,

whence

(∫

(R+)2
σaτ b|u|

D
D−1dσdτ

)D−1
D

≤ C

∫ +∞

0

m
(
{u(σ, τ) = λ} ∩ (R+)2

)
dλ.

Let uev be the even extension of u with respect to σ and τ in R2. Then,

∫ +∞

0

m
(
{u(σ, τ) = λ} ∩ (R+)2

)
dλ =

1

4

∫ +∞

0

m ({uev(σ, τ) = λ}) dλ,

and by the coarea formula

∫ +∞

0

m ({uev(σ, τ) = λ}) dλ =

∫

R2

σaτ b|∇uev|dσdτ.

Thus, we obtain

(∫

(R+)2
σaτ b|u|

D
D−1dσdτ

)D−1
D

≤ C

∫

(R+)2
σaτ b|∇u|dσdτ,

and the proposition is proved for q = 1.
Finally, let us prove the case 1 < q < D. Take u satisfying the hypotheses of

Proposition 5.1.7, and define v = uγ, where γ = q∗

1∗
. Since γ > 1, we have that v also
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satisfies the hypotheses of the proposition, and we can apply the weighted Sobolev
inequality with q = 1 to get

(∫

(R+)2
σaτ b|u|q∗dσdτ

)1/1∗

=

(∫

(R+)2
σaτ b|v|

D
D−1dσdτ

)D−1
D

≤ C

∫

(R+)2
σaτ b|∇v|dσdτ.

Now, |∇v| = γuγ−1|∇u|, and by Hölder’s inequality it follows that

∫

(R+)2
σaτ b|∇v|dσdτ ≤ C

(∫

(R+)2
σaτ b|∇u|qdσdτ

)1/q (∫

(R+)2
σaτ b|u|(γ−1)q′dσdτ

)1/q′

.

But from the definition of γ and q∗ it follows that

γ − 1

q∗
=

1

1∗
− 1

q∗
=

1

q′
, (γ − 1)q′ = q∗,

and hence

(∫

(R+)2
σaτ b|u|q∗dσdτ

)1/q∗

≤ C

(∫

(R+)2
σaτ b|∇u|qdσdτ

)1/q

,

as desired.



6Chapter Six

THE EXTREMAL SOLUTION FOR THE
FRACTIONAL LAPLACIAN

We study the extremal solution for the problem (−∆)su = λf(u) in Ω, u ≡ 0 in Rn\Ω,
where λ > 0 is a parameter and s ∈ (0, 1). We extend some well known results for the
extremal solution when the operator is the Laplacian to this nonlocal case. For general
convex nonlinearities we prove that the extremal solution is bounded in dimensions
n < 4s. We also show that, for exponential and power-like nonlinearities, the extremal
solution is bounded whenever n < 10s. In the limit s ↑ 1, n < 10 is optimal. In
addition, we show that the extremal solution is Hs(Rn) in any dimension whenever
the domain is convex.

To obtain some of these results we need Lq estimates for solutions to the linear
Dirichlet problem for the fractional Laplacian with Lp data. We prove optimal Lq

and Cβ estimates, depending on the value of p. These estimates follow from classical
embedding results for the Riesz potential in Rn.

Finally, to prove the Hs regularity of the extremal solution we need an L∞ estimate
near the boundary of convex domains, which we obtain via the moving planes method.
For it, we use a maximum principle in small domains for integro-differential operators
with decreasing kernels.

6.1 Introduction and results

Let Ω ⊂ Rn be a bounded smooth domain and s ∈ (0, 1), and consider the problem

{
(−∆)su = λf(u) in Ω

u = 0 in Rn\Ω, (6.1)

where λ is a positive parameter and f : [0,∞) −→ R satisfies

f is C1 and nondecreasing, f(0) > 0, and lim
t→+∞

f(t)

t
= +∞. (6.2)

Here, (−∆)s is the fractional Laplacian, defined for s ∈ (0, 1) by

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy, (6.3)

185
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where cn,s is a constant.
It is well known —see [36] or the excellent monograph [120] and references therein—

that in the classical case s = 1 there exists a finite extremal parameter λ∗ such that
if 0 < λ < λ∗ then problem (6.1) admits a minimal classical solution uλ, while for
λ > λ∗ it has no solution, even in the weak sense. Moreover, the family of functions
{uλ : 0 < λ < λ∗} is increasing in λ, and its pointwise limit u∗ = limλ↑λ∗ uλ is a weak
solution of problem (6.1) with λ = λ∗. It is called the extremal solution of (6.1).

When f(u) = eu, we have that u∗ ∈ L∞(Ω) if n ≤ 9 [102], while u∗(x) = log 1
|x|2 if

n ≥ 10 and Ω = B1 [177]. An analogous result holds for other nonlinearities such as
powers f(u) = (1 +u)p and also for functions f satisfying a limit condition at infinity;
see [256]. In the nineties H. Brezis and J.L. Vázquez [36] raised the question of deter-
mining the regularity of u∗, depending on the dimension n, for general nonlinearities
f satisfying (6.2). The first result in this direction was proved by G. Nedev [225], who
obtained that the extremal solution is bounded in dimensions n ≤ 3 whenever f is
convex. Some years later, X. Cabré and A. Capella [43] studied the radial case. They
showed that when Ω = B1 the extremal solution is bounded for all nonlinearities f
whenever n ≤ 9. For general nonlinearities, the best known result at the moment is
due to X. Cabré [42], and states that in dimensions n ≤ 4 then the extremal solution
is bounded for any convex domain Ω. Recently, S. Villegas [295] have proved, using
the results in [42], the boundedness of the extremal solution in dimension n = 4 for all
domains, not necessarily convex. The problem is still open in dimensions 5 ≤ n ≤ 9.

The aim of this paper is to study the extremal solution for the fractional Laplacian,
that is, to study problem (6.1) for s ∈ (0, 1).

The closest result to ours was obtained by Capella-Dávila-Dupaigne-Sire [80]. They
studied the extremal solution in Ω = B1 for the spectral fractional Laplacian As. The
operator As, defined via the Dirichlet eigenvalues of the Laplacian in Ω, is related to
(but different from) the fractional Laplacian (6.3). We will state their result later on
in this introduction.

Let us start defining weak solutions to problem (6.1).

Definition 6.1.1. We say that u ∈ L1(Ω) is a weak solution of (6.1) if

f(u)δs ∈ L1(Ω), (6.4)

where δ(x) = dist(x, ∂Ω), and

∫

Ω

u(−∆)sζdx =

∫

Ω

λf(u)ζdx (6.5)

for all ζ such that ζ and (−∆)sζ are bounded in Ω and ζ ≡ 0 on ∂Ω.
Any bounded weak solution is a classical solution, in the sense that it is regular

in the interior of Ω, continuous up to the boundary, and (6.1) holds pointwise; see
Remark 6.2.1.

Note that for s = 1 the above notion of weak solution is exactly the one used in
[35, 36].

In the classical case (that is, when s = 1), the analysis of singular extremal solutions
involves an intermediate class of solutions, those belonging to H1(Ω); see [36, 212].
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These solutions are called [36] energy solutions. As proved by Nedev [226], when the
domain Ω is convex the extremal solution belongs to H1(Ω), and hence it is an energy
solution; see [69] for the statement and proofs of the results in [226].

Similarly, here we say that a weak solution u is an energy solution of (6.1) when
u ∈ Hs(Rn). This is equivalent to saying that u is a critical point of the energy
functional

E(u) =
1

2
‖u‖2

Ḣs −
∫

Ω

λF (u)dx, F ′ = f, (6.6)

where

‖u‖2
Ḣs =

∫

Rn

∣∣(−∆)s/2u
∣∣2 dx =

cn,s
2

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy = (u, u)Ḣs (6.7)

and

(u, v)Ḣs =

∫

Rn
(−∆)s/2u(−∆)s/2v dx =

cn,s
2

∫

Rn

∫

Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)

|x− y|n+2s
dxdy.

(6.8)
Our first result, stated next, concerns the existence of a minimal branch of solutions,

{uλ, 0 < λ < λ∗}, with the same properties as in the case s = 1. These solutions are
proved to be positive, bounded, increasing in λ, and semistable. Recall that a weak
solution u of (6.1) is said to be semistable if

∫

Ω

λf ′(u)η2dx ≤ ‖η‖2
Ḣs (6.9)

for all η ∈ Hs(Rn) with η ≡ 0 in Rn\Ω. When u is an energy solution this is equivalent
to saying that the second variation of energy E at u is nonnegative.

Proposition 6.1.2. Let Ω ⊂ Rn be a bounded smooth domain, s ∈ (0, 1), and f be a
function satisfying (6.2). Then, there exists a parameter λ∗ ∈ (0,∞) such that:

(i) If 0 < λ < λ∗, problem (6.1) admits a minimal classical solution uλ.

(ii) The family of functions {uλ : 0 < λ < λ∗} is increasing in λ, and its pointwise
limit u∗ = limλ↑λ∗ uλ is a weak solution of (6.1) with λ = λ∗.

(iii) For λ > λ∗, problem (6.1) admits no classical solution.

(iv) These solutions uλ, as well as u∗, are semistable.

The weak solution u∗ is called the extremal solution of problem (6.1).
As explained above, the main question about the extremal solution u∗ is to decide

whether it is bounded or not. Once the extremal solution is bounded then it is a
classical solution, in the sense that it satisfies equation (6.1) pointwise. For example,
if f ∈ C∞ then u∗ bounded yields u∗ ∈ C∞(Ω) ∩ Cs(Ω).

Our main result, stated next, concerns the regularity of the extremal solution for
problem (6.1). To our knowledge this is the first result concerning extremal solutions
for (6.1). In particular, the following are new results even for the unit ball Ω = B1

and for the exponential nonlinearity f(u) = eu.
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Theorem 6.1.3. Let Ω be a bounded smooth domain in Rn, s ∈ (0, 1), f be a function
satisfying (6.2), and u∗ be the extremal solution of (6.1).

(i) Assume that f is convex. Then, u∗ is bounded whenever n < 4s.

(ii) Assume that f is C2 and that the following limit exists:

τ := lim
t→+∞

f(t)f ′′(t)

f ′(t)2
. (6.10)

Then, u∗ is bounded whenever n < 10s.

(iii) Assume that Ω is convex. Then, u∗ belongs to Hs(Rn) for all n ≥ 1 and all
s ∈ (0, 1).

Note that the exponential and power nonlinearities eu and (1 + u)p, with p > 1,
satisfy the hypothesis in part (ii) whenever n < 10s. In the limit s ↑ 1, n < 10
is optimal, since the extremal solution may be singular for s = 1 and n = 10 (as
explained before in this introduction).

Note that the results in parts (i) and (ii) of Theorem 6.1.3 do not provide any
estimate when s is small (more precisely, when s ≤ 1/4 and s ≤ 1/10, respectively).
The boundedness of the extremal solution for small s seems to require different methods
from the ones that we present here. Our computations in Section 6.3 suggest that the
extremal solution for the fractional Laplacian should be bounded in dimensions n ≤ 7
for all s ∈ (0, 1), at least for the exponential nonlinearity f(u) = eu. As commented
above, Capella-Dávila-Dupaigne-Sire [80] studied the extremal solution for the spectral
fractional Laplacian As in Ω = B1. They obtained an L∞ bound for the extremal
solution in a ball in dimensions n < 2

(
2 + s+

√
2s+ 2

)
, and hence they proved the

boundedness of the extremal solution in dimensions n ≤ 6 for all s ∈ (0, 1).
To prove part (i) of Theorem 6.1.3 we borrow the ideas of [225], where Nedev proved

the boundedness of the extremal solution for s = 1 and n ≤ 3. To prove part (ii) we
follow the approach of M. Sanchón in [256]. When we try to repeat the same arguments
for the fractional Laplacian, we find that some identities that in the case s = 1 come
from local integration by parts are no longer available for s < 1. Instead, we succeed
to replace them by appropriate inequalities. These inequalities are sharp as s ↑ 1, but
not for small s. Finally, part (iii) is proved by an argument of Nedev [226], which for
s < 1 requires the Pohozaev identity for the fractional Laplacian, recently established
by the authors in [254]. This argument requires also some boundary estimates, which
we prove using the moving planes method; see Proposition 6.1.8 at the end of this
introduction.

An important tool in the proofs of the results of Nedev [225] and Sanchón [256] is
the classical Lp to W 2,p estimate for the Laplace equation. Namely, if u is the solution
of −∆u = g in Ω, u = 0 in ∂Ω, with g ∈ Lp(Ω), 1 < p <∞, then

‖u‖W 2,p(Ω) ≤ C‖g‖Lp(Ω).

This estimate and the Sobolev embeddings lead to Lq(Ω) or Cα(Ω) estimates for the
solution u, depending on whether 1 < p < n

2
or p > n

2
, respectively.
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Here, to prove Theorem 6.1.3 we need similar estimates but for the fractional
Laplacian, in the sense that from (−∆)su ∈ Lp(Ω) we want to deduce u ∈ Lq(Ω) or
u ∈ Cα(Ω). However, Lp to W 2s,p estimates for the fractional Laplace equation, in
which −∆ is replaced by the fractional Laplacian (−∆)s, are not available for all p,
even when Ω = Rn; see Remarks 6.7.1 and 6.7.2.

Although the Lp to W 2s,p estimate does not hold for all p in this fractional frame-
work, what will be indeed true is the following result. This is a crucial ingredient in
the proof of Theorem 6.1.3.

Proposition 6.1.4. Let Ω ⊂ Rn be a bounded C1,1 domain, s ∈ (0, 1), n > 2s,
g ∈ C(Ω), and u be the solution of

{
(−∆)su = g in Ω

u = 0 in Rn\Ω. (6.11)

(i) For each 1 ≤ r < n
n−2s

there exists a constant C, depending only on n, s, r, and
|Ω|, such that

‖u‖Lr(Ω) ≤ C‖g‖L1(Ω), r <
n

n− 2s
.

(ii) Let 1 < p < n
2s

. Then there exists a constant C, depending only on n, s, and p,
such that

‖u‖Lq(Ω) ≤ C‖g‖Lp(Ω), where q =
np

n− 2ps
.

(iii) Let n
2s
< p < ∞. Then, there exists a constant C, depending only on n, s, p,

and Ω, such that

‖u‖Cβ(Rn) ≤ C‖g‖Lp(Ω), where β = min

{
s, 2s− n

p

}
.

We will use parts (i), (ii), and (iii) of Proposition 6.1.4 in the proof of Theorem
6.1.3. However, we will only use part (iii) to obtain an L∞ estimate for u, we will
not need the Cβ bound. Still, for completeness we prove the Cβ estimate, with the
optimal exponent β (depending on p).

Remark 6.1.5. Proposition 6.1.4 does not provide any estimate for n ≤ 2s. Since
s ∈ (0, 1), then n ≤ 2s yields n = 1 and s ≥ 1/2. In this case, any bounded domain is
of the form Ω = (a, b), and the Green function G(x, y) for problem (6.14) is explicit; see
[24]. Then, by using this expression it is not difficult to show that G(·, y) is L∞(Ω) in
case s > 1/2 and Lp(Ω) for all p <∞ in case s = 1/2. Hence, in case n < 2s it follows
that ‖u‖L∞(Ω) ≤ C‖g‖L1(Ω), while in case n = 2s it follows that ‖u‖Lq(Ω) ≤ C‖g‖L1(Ω)

for all q <∞ and ‖u‖L∞(Ω) ≤ C‖g‖Lp(Ω) for p > 1.

Proposition 6.1.4 follows from Theorem 6.1.6 and Proposition 6.1.7 below. The
first one contains some classical results concerning embeddings for the Riesz potential,
and reads as follows.

Theorem 6.1.6 (see [278]). Let s ∈ (0, 1), n > 2s, and g and u be such that

u = (−∆)−sg in Rn, (6.12)

in the sense that u is the Riesz potential of order 2s of g. Assume that u and g belong
to Lp(Rn), with 1 ≤ p <∞.
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(i) If p = 1, then there exists a constant C, depending only on n and s, such that

‖u‖Lqweak(Rn) ≤ C‖g‖L1(Rn), where q =
n

n− 2s
.

(ii) If 1 < p < n
2s

, then there exists a constant C, depending only on n, s, and p,
such that

‖u‖Lq(Rn) ≤ C‖g‖Lp(Rn), where q =
np

n− 2ps
.

(iii) If n
2s
< p < ∞, then there exists a constant C, depending only on n, s, and p,

such that
[u]Cα(Rn) ≤ C‖g‖Lp(Rn), where α = 2s− n

p
,

where [ · ]Cα(Rn) denotes the Cα seminorm.

Parts (i) and (ii) of Theorem 6.1.6 are proved in the book of Stein [278, Chapter
V]. Part (iii) is also a classical result, but it seems to be more difficult to find an exact
reference for it. Although it is not explicitly stated in [278], it follows for example
from the inclusions

I2s(L
p) = I2s−n/p(In/p(L

p)) ⊂ I2s−n/p(BMO) ⊂ C2s−n
p ,

which are commented in [278, p.164]. In the more general framework of spaces with
non-doubling n-dimensional measures, a short proof of this result can also be found in
[147].

Having Theorem 6.1.6 available, to prove Proposition 6.1.4 we will argue as follows.
Assume 1 < p < n

2s
and consider the solution v of the problem

(−∆)sv = |g| in Rn,

where g is extended by zero outside Ω. On the one hand, the maximum principle yields
−v ≤ u ≤ v in Rn, and by Theorem 6.1.6 we have that v ∈ Lq(Rn). From this, parts
(i) and (ii) of the proposition follow. On the other hand, if p > n

2s
we write u = ṽ+w,

where ṽ solves (−∆)sṽ = g in Rn and w is the solution of
{

(−∆)sw = 0 in Ω
w = ṽ in Rn\Ω.

As before, by Theorem 6.1.6 we will have that ṽ ∈ Cα(Rn), where α = 2s− n
p
. Then,

the Cβ regularity of u will follow from the following new result.

Proposition 6.1.7. Let Ω be a bounded C1,1 domain, s ∈ (0, 1), h ∈ Cα(Rn \ Ω) for
some α > 0, and u be the solution of

{
(−∆)su = 0 in Ω

u = h in Rn\Ω. (6.13)

Then, u ∈ Cβ(Rn), with β = min{s, α}, and

‖u‖Cβ(Rn) ≤ C‖h‖Cα(Rn\Ω),

where C is a constant depending only on Ω, α, and s.
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To prove Proposition 6.1.7 we use similar ideas as in [249]. Namely, since u is
harmonic then it is smooth inside Ω. Hence, we only have to prove Cβ estimates near
the boundary. To do it, we use an appropriate barrier to show that

|u(x)− u(x0)| ≤ C‖h‖Cαδ(x)β in Ω,

where x0 is the nearest point to x on ∂Ω, δ(x) = dist(x, ∂Ω), and β = min{s, α}.
Combining this with the interior estimates, we obtain Cβ estimates up to the boundary
of Ω.

Finally, as explained before, to show that when the domain is convex the extremal
solution belongs to the energy class Hs(Rn) —which is part (iii) of Theorem 6.1.3—
we need the following boundary estimates.

Proposition 6.1.8. Let Ω ⊂ Rn be a bounded convex domain, s ∈ (0, 1), f be a locally
Lipschitz function, and u be a bounded positive solution of

{
(−∆)su = f(u) in Ω

u = 0 in Rn\Ω. (6.14)

Then, there exists constants δ > 0 and C, depending only on Ω, such that

‖u‖L∞(Ωδ) ≤ C‖u‖L1(Ω),

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

This estimate follows, as in the classical result of de Figueiredo-Lions-Nussbaum
[110], from the moving planes method. There are different versions of the moving
planes method for the fractional Laplacian (using the Caffarelli-Silvestre extension,
the Riesz potential, the Hopf lemma, etc.). A particularly clean version uses the
maximum principle in small domains for the fractional Laplacian, recently proved
by Jarohs and Weth in [175]. Here, we follow their approach and we show that this
maximum principle holds also for integro-differential operators with decreasing kernels.

The paper is organized as follows. In Section 6.2 we prove Proposition 6.1.2. In
Section 6.3 we study the regularity of the extremal solution in the case f(u) = eu.
In Section 6.4 we prove Theorem 6.1.3 (i)-(ii). In Section 6.5 we show the maximum
principle in small domains and use the moving planes method to establish Proposition
6.1.8. In Section 6.6 we prove Theorem 6.1.3 (iii). Finally, in Section 6.7 we prove
Proposition 6.1.4.

6.2 Existence of the extremal solution

In this section we prove Proposition 6.1.2. For it, we follow the argument from Propo-
sition 5.1 in [43]; see also [120].

Proof of Proposition 6.1.2. Step 1. We first prove that there is no weak solution for
large λ.
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Let λ1 > 0 be the first eigenvalue of (−∆)s in Ω and ϕ1 > 0 the corresponding
eigenfunction, that is,





(−∆)sϕ1 = λ1ϕ1 in Ω
ϕ1 > 0 in Ω
ϕ1 = 0 in Rn \ Ω.

The existence, simplicity, and boundedness of the first eigenfunction is proved in [265,
Proposition 5] and [267, Proposition 4]. Assume that u is a weak solution of (6.1).
Then, using ϕ1 as a test function for problem (6.1) (see Definition 6.1.1), we obtain

∫

Ω

λ1uϕ1dx =

∫

Ω

u(−∆)sϕ1dx =

∫

Ω

λf(u)ϕ1dx. (6.15)

But since f is superlinear at infinity and positive in [0,∞), it follows that λf(u) > λ1u
if λ is large enough, a contradiction with (6.15).

Step 2. Next we prove the existence of a classical solution to (6.1) for small λ.
Since f(0) > 0, u ≡ 0 is a strict subsolution of (6.1) for every λ > 0. The solution u
of {

(−∆)su = 1 in Ω
u = 0 on Rn\Ω (6.16)

is a bounded supersolution of (6.1) for small λ, more precisely whenever λf(maxu) <
1. For such values of λ, a classical solution uλ is obtained by monotone iteration
starting from zero; see for example [120].

Step 3. We next prove that there exists a finite parameter λ∗ such that for λ < λ∗

there is a classical solution while for λ > λ∗ there does not exist classical solution.
Define λ∗ as the supremum of all λ > 0 for which (6.1) admits a classical solution.

By Steps 1 and 2, it follows that 0 < λ∗ < ∞. Now, for each λ < λ∗ there exists
µ ∈ (λ, λ∗) such that (6.1) admits a classical solution uµ. Since f > 0, uµ is a bounded
supersolution of (6.1), and hence the monotone iteration procedure shows that (6.1)
admits a classical solution uλ with uλ ≤ uµ. Note that the iteration procedure, and
hence the solution that it produces, are independent of the supersolution uµ. In
addition, by the same reason uλ is smaller than any bounded supersolution of (6.1).
It follows that uλ is minimal (i.e., the smallest solution) and that uλ < uµ.

Step 4. We show now that these minimal solutions uλ, 0 < λ < λ∗, are semistable.
Note that the energy functional (6.6) for problem (6.1) in the set {u ∈ Hs(Rn) :

u ≡ 0 in Rn \ Ω, 0 ≤ u ≤ uλ} admits an absolute minimizer umin. Then, using that
uλ is the minimal solution and that f is positive and increasing, it is not difficult to
see that umin must coincide with uλ. Considering the second variation of energy (with
respect to nonpositive perturbations) we see that umin is a semistable solution of (6.1).
But since umin agrees with uλ, then uλ is semistable. Thus uλ is semistable.

Step 5. We now prove that the pointwise limit u∗ = limλ↑λ∗ uλ is a weak solution
of (6.1) for λ = λ∗ and that this solution u∗ is semistable.

As above, let λ1 > 0 the first eigenvalue of (−∆)s, and ϕ1 > 0 be the corresponding
eigenfunction. Since f is superlinear at infinity, there exists a constant C > 0 such
that

2λ1

λ∗
t ≤ f(t) + C for all t ≥ 0. (6.17)
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Using ϕ1 as a test function in (6.5) for uλ, we find

∫

Ω

λf(uλ)ϕ1dx =

∫

Ω

λ1uλϕ1dx ≤
λ∗

2

∫

Ω

(f(uλ) + C)ϕ1dx.

In the last inequality we have used (6.17). Taking λ ≥ 3
4
λ∗, we see that f(uλ)ϕ1 is

uniformly bounded in L1(Ω). In addition, it follows from the results in [249] that

c1δ
s ≤ ϕ1 ≤ C2δ

s in Ω

for some positive constants c1 and C2, where δ(x) = dist(x, ∂Ω). Hence, we have that

λ

∫

Ω

f(uλ)δ
sdx ≤ C

for some constant C that does not depend on λ. Use now u, the solution of (6.16), as
a test function. We obtain that

∫

Ω

uλdx = λ

∫

Ω

f(uλ)udx ≤ C3λ

∫

Ω

f(uλ)δ
sdx ≤ C

for some constant C depending only on f and Ω. Here we have used that u ≤ C3δ
s in

Ω for some constant C3 > 0, which also follows from [249].
Thus, both sequences, uλ and λf(uλ)δ

s are increasing in λ and uniformly bounded
in L1(Ω) for λ < λ∗. By monotone convergence, we conclude that u∗ ∈ L1(Ω) is a
weak solution of (6.1) for λ = λ∗.

Finally, for λ < λ∗ we have
∫

Ω
λf ′(uλ)|η|2dx ≤ ‖η‖2

Ḣs , where ‖η‖2
Ḣs is defined by

(6.7), for all η ∈ Hs(Rn) with η ≡ 0 in Rn \ Ω. Since f ′ ≥ 0, Fatou’s lemma leads to

∫

Ω

λ∗f ′(u∗)|η|2dx ≤ ‖η‖2
Ḣs ,

and hence u∗ is semistable.

Remark 6.2.1. As said in the introduction, the study of extremal solutions involves
three classes of solutions: classical, energy, and weak solutions; see Definition 6.1.1.
It follows from their definitions that any classical solution is an energy solution, and
that any energy solution is a weak solution.

Moreover, any weak solution u which is bounded is a classical solution. This can be
seen as follows. First, by considering u∗ηε and f(u)∗ηε, where ηε is a standard mollifier,
it is not difficult to see that u is regular in the interior of Ω. Moreover, by scaling, we
find that |(−∆)s/2u| ≤ Cδ−s, where δ(x) = dist(x, ∂Ω). Then, if ζ ∈ C∞c (Ω), we can
integrate by parts in (6.5) to obtain

(u, ζ)Ḣs =

∫

Rn

∫

Rn

(
u(x)− u(y)

)(
ζ(x)− ζ(y)

)

|x− y|n+2s
dx dy =

∫

Ω

λf(u)ζdx (6.18)

for all ζ ∈ C∞c (Ω). Hence, since f(u) ∈ L∞, by density (6.18) holds for all ζ ∈ Hs(Rn)
such that ζ ≡ 0 in Rn \ Ω, and therefore u is an energy solution. Finally, bounded
energy solutions are classical solutions; see Remark 2.11 in [249] and [268].
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6.3 An example case: the exponential nonlinearity

In this section we study the regularity of the extremal solution for the nonlinearity
f(u) = eu. Although the results of this section follow from Theorem 6.1.3 (ii), we
exhibit this case separately because the proofs are much simpler. Furthermore, this
exponential case has the advantage that we have an explicit unbounded solution to
the equation in the whole Rn, and we can compute the values of n and s for which
this singular solution is semistable.

The main result of this section is the following.

Proposition 6.3.1. Let Ω be a smooth and bounded domain in Rn, and let u∗ the
extremal solution of (6.1). Assume that f(u) = eu and n < 10s. Then, u∗ is bounded.

Proof. Let α be a positive number to be chosen later. Setting η = eαuλ − 1 in the
stability condition (6.9) (note that η ≡ 0 in Rn \ Ω), we obtain that

∫

Ω

λeuλ(eαuλ − 1)2dx ≤ ‖eαuλ − 1‖2
Ḣs . (6.19)

Next we use that (
eb − ea

)2 ≤ 1

2

(
e2b − e2a

)
(b− a) (6.20)

for all real numbers a and b. This inequality can be deduced easily from the Cauchy-
Schwarz inequality, as follows

(
eb − ea

)2
=

(∫ b

a

etdt

)2

≤ (b− a)

∫ b

a

e2tdt =
1

2

(
e2b − e2a

)
(b− a).

Using (6.20), (6.8), and integrating by parts, we deduce

‖eαuλ − 1‖2
Ḣs =

cn,s
2

∫

Rn

∫

Rn

(
eαuλ(x) − eαuλ(y)

)2

|x− y|n+2s
dxdy

≤ cn,s
2

∫

Rn

∫

Rn

1
2

(
e2αuλ(x) − e2αuλ(y)

)
(αuλ(x)− αuλ(y))

|x− y|n+2s
dxdy

=
α

2

∫

Ω

e2αuλ(−∆)suλdx.

Thus, using that (−∆)suλ = λeuλ , we find

‖eαuλ − 1‖2
Ḣs ≤

α

2

∫

Ω

e2αuλ(−∆)suλdx =
α

2

∫

Ω

λe(2α+1)uλdx. (6.21)

Therefore, combining (6.19) and (6.21), and rearranging terms, we get

(
1− α

2

)∫

Ω

e(2α+1)uλ − 2

∫

Ω

e(α+1)uλ +

∫

Ω

eαuλ ≤ 0.

From this, it follows from Hölder’s inequality that for each α < 2

‖euλ‖L2α+1 ≤ C (6.22)
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for some constant C which depends only on α and |Ω|.
Finally, given n < 10s we can choose α < 2 such that n

2s
< 2α + 1 < 5. Then,

taking p = 2α + 1 in Proposition 6.1.4 (iii) (see also Remark 6.1.5) and using (6.22)
we obtain

‖uλ‖L∞(Ω) ≤ C1‖(−∆)suλ‖Lp(Ω) = C1λ‖euλ‖Lp(Ω) ≤ C

for some constant C that depends only on n, s, and Ω. Letting λ ↑ λ∗ we find that
the extremal solution u∗ is bounded, as desired.

The following result concerns the stability of the explicit singular solution log 1
|x|2s

to equation (−∆)su = λeu in the whole Rn.

Proposition 6.3.2. Let s ∈ (0, 1), and let

u0(x) = log
1

|x|2s
.

Then, u0 is a solution of (−∆)su = λ0e
u in all of Rn for some λ0 > 0. Moreover, u0

is semistable if and only if

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) ≤
Γ2
(
n+2s

4

)

Γ2
(
n−2s

4

) . (6.23)

As a consequence:

• If n ≤ 7, then u is unstable for all s ∈ (0, 1).

• If n = 8, then u is semistable if and only if s . 0′28206....

• If n = 9, then u is semistable if and only if s . 0′63237....

• If n ≥ 10, then u is semistable for all s ∈ (0, 1).

Proposition 6.3.2 suggests that the extremal solution for the fractional Laplacian
should be bounded whenever

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) >
Γ2
(
n+2s

4

)

Γ2
(
n−2s

4

) , (6.24)

at least for the exponential nonlinearity f(u) = eu. In particular, u∗ should be bounded
for all s ∈ (0, 1) whenever n ≤ 7. This is an open problem.

Remark 6.3.3. When s = 1 and when s = 2, inequality (6.24) coincides with the ex-
pected optimal dimensions for which the extremal solution is bounded for the Laplacian
∆ and for the bilaplacian ∆2, respectively. In the unit ball Ω = B1, it is well known
that the extremal solution for s = 1 is bounded whenever n ≤ 9 and may be singular
if n ≥ 10 [43], while the extremal solution for s = 2 is bounded whenever n ≤ 12 and
may be singular if n ≥ 13 [106]. Taking s = 1 and s = 2 in (6.24), one can see that
the inequality is equivalent to n < 10 and n . 12.5653..., respectively.

We next give the
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Proof of Proposition 6.3.2. First, using the Fourier transform, it is not difficult to
compute

(−∆)su0 = (−∆)s log
1

|x|2s
=

λ0

|x|2s
,

where

λ0 = 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) .

Thus, u0 is a solution of (−∆)su0 = λ0e
u0 .

Now, since f(u) = eu, by (6.9) we have that u0 is semistable in Ω = Rn if and only
if

λ0

∫

Rn

η2

|x|2s
dx ≤

∫

Rn

∣∣(−∆)s/2η
∣∣2 dx

for all η ∈ Hs(Rn).

The inequality ∫

Ω

η2

|x|2s
dx ≤ H−1

n,s

∫

Rn

∣∣(−∆)s/2η
∣∣2 dx

is known as the fractional Hardy inequality, and the best constant

Hn,s = 22sΓ2
(
n+2s

4

)

Γ2
(
n−2s

4

)

was obtained by Herbst [169] in 1977; see also [142]. Therefore, it follows that u0 is
semistable if and only if

λ0 ≤ Hn,s,

which is the same as (6.23).

6.4 Boundedness of the extremal solution in low
dimensions

In this section we prove Theorem 6.1.3 (i)-(ii).

We start with a lemma, which is the generalization of inequality (6.20). It will be
used in the proof of both parts (i) and (ii) of Theorem 6.1.3.

Lemma 6.4.1. Let f be a C1([0,∞)) function, f̃(t) = f(t)− f(0), γ > 0, and

g(t) =

∫ t

0

f̃(s)2γ−2f ′(s)2ds. (6.25)

Then, (
f̃(a)γ − f̃(b)γ

)2

≤ γ2
(
g(a)− g(b)

)
(a− b)

for all nonnegative numbers a and b.
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Proof. We can assume a ≤ b. Then, since d
dt

{
f̃(t)γ

}
= γf̃(t)γ−1f ′(t), the inequality

can be written as

(∫ b

a

γf̃(t)γ−1f ′(t)dt

)2

≤ γ2(b− a)

∫ b

a

f̃(t)2γ−2f ′(t)2dt,

which follows from the Cauchy-Schwarz inequality.

The proof of part (ii) of Theorem 6.1.3 will be split in two cases. Namely, τ ≥ 1 and
τ < 1, where τ is given by (6.10). For the case τ ≥ 1, Lemma 6.4.2 below will be an
important tool. Instead, for the case τ < 1 we will use Lemma 6.4.3. Both lemmas are
proved by Sanchón in [256], where the extremal solution for the p-Laplacian operator
is studied.

Lemma 6.4.2 ([256]). Let f be a function satisfying (6.2), and assume that the limit
in (6.10) exists. Assume in addition that

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
≥ 1.

Then, any γ ∈ (1, 1 +
√
τ) satisfies

lim sup
t→+∞

γ2g(t)

f(t)2γ−1f ′(t)
< 1, (6.26)

where g is given by (6.25).

Lemma 6.4.3 ([256]). Let f be a function satisfying (6.2), and assume that the limit
in (6.10) exists. Assume in addition that

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
< 1.

Then, for every ε ∈ (0, 1− τ) there exists a positive constant C such that

f(t) ≤ C(1 + t)
1

1−(τ+ε) , for all t > 0.

The constant C depends only on τ and ε.

The first step in the proof of Theorem 6.1.3 (ii) in case τ ≥ 1 is the following result.

Lemma 6.4.4. Let f be a function satisfying (6.2). Assume that γ ≥ 1 satisfies
(6.26), where g is given by (6.25). Let uλ be the solution of (6.1) given by Proposition
6.1.2 (i), where λ < λ∗. Then,

‖f(uλ)
2γf ′(uλ)‖L1(Ω) ≤ C

for some constant C which does not depend on λ.
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Proof. Recall that the seminorm ‖ · ‖Ḣs is defined by (6.7). Using Lemma 6.4.1, (6.8),
and integrating by parts,

∥∥∥f̃(uλ)
γ
∥∥∥

2

Ḣs
=
cn,s
2

∫

Rn

∫

Rn

(
f̃(uλ(x))γ − f̃(uλ(y))γ

)2

|x− y|n+2s
dxdy

≤ γ2 cn,s
2

∫

Rn

∫

Rn

(
g(uλ(x))− g(uλ(y))

)
(uλ(x)− uλ(y))

|x− y|n+2s
dxdy

= γ2

∫

Rn
(−∆)s/2g(uλ)(−∆)s/2uλ dx

= γ2

∫

Ω

g(uλ)(−∆)suλ dx

= γ2

∫

Ω

f(uλ)g(uλ)dx.

(6.27)

Moreover, the stability condition (6.9) applied with η = f̃(uλ)
γ yields

∫

Ω

f ′(uλ)f̃(uλ)
2γ ≤

∥∥∥f̃(uλ)
γ
∥∥∥

2

Ḣs
.

This, combined with (6.27), gives

∫

Ω

f ′(uλ)f̃(uλ)
2γ ≤ γ2

∫

Ω

f(uλ)g(uλ). (6.28)

Finally, by (6.26) and since f̃(t)/f(t)→ 1 as t→ +∞, it follows from (6.28) that

∫

Ω

f(uλ)
2γf ′(uλ) ≤ C (6.29)

for some constant C that does not depend on λ, and thus the proposition is proved.

We next give the proof of Theorem 6.1.3 (ii).

Proof of Theorem 6.1.3 (ii). Assume first that τ ≥ 1, where

τ = lim
t→∞

f(t)f ′′(t)

f ′(t)2
.

By Lemma 6.4.4 and Lemma 6.4.2, we have that

∫

Ω

f(uλ)
2γf ′(uλ)dx ≤ C (6.30)

for each γ ∈ (1, 1 +
√
τ).

Now, for any such γ, we have that f̃ 2γ is increasing and convex (since 2γ ≥ 1), and
thus

f̃(a)2γ − f̃(b)2γ ≤ 2γf ′(a)f̃(a)2γ−1(a− b).
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Therefore, we have that

(−∆)sf̃(uλ)
2γ(x) = cn,s

∫

Rn

f̃(uλ(x))2γ − f̃(uλ(y))2γ

|x− y|n+2s
dy

≤ 2γf ′(uλ(x))f̃(uλ(x))2γ−1cn,s

∫

Rn

uλ(x)− uλ(y)

|x− y|n+2s
dy

= 2γf ′(uλ(x))f̃(uλ(x))2γ−1(−∆)suλ(x)

≤ 2γλf ′(uλ(x))f(uλ(x))2γ,

and thus,

(−∆)sf̃(uλ)
2γ ≤ 2γλf ′(uλ)f(uλ)

2γ := v(x). (6.31)

Let now w be the solution of the problem

{
(−∆)sw = v in Ω

w = 0 in Rn\Ω, (6.32)

where v is given by (6.31). Then, by (6.30) and Proposition 6.1.4 (i) (see also Remark
6.1.5),

‖w‖Lp(Ω) ≤ ‖v‖L1(Ω) ≤ C for each p <
n

n− 2s
.

Since f̃(uλ)
2γ is a subsolution of (6.32) —by (6.31)—, it follows that

0 ≤ f̃(uλ)
2γ ≤ w.

Therefore, ‖f(uλ)‖Lp ≤ C for all p < 2γ n
n−2s

, where C is a constant that does not

depend on λ. This can be done for any γ ∈ (1, 1 +
√
τ), and thus we find

‖f(uλ)‖Lp ≤ C for each p <
2n(1 +

√
τ)

n− 2s
. (6.33)

Hence, using Proposition 6.1.4 (iii) and letting λ ↑ λ∗ it follows that

u∗ ∈ L∞(Ω) whenever n < 6s+ 4s
√
τ .

Hence, the extremal solution is bounded whenever n < 10s.
Assume now τ < 1. In this case, Lemma 6.4.3 ensures that for each ε ∈ (0, 1− τ)

there exist a constant C such that

f(t) ≤ C(1 + t)m, m =
1

1− (τ + ε)
. (6.34)

Then, by (6.33) we have that ‖f(uλ)‖Lp ≤ C for each p < p0 := 2n(1+
√
τ)

n−2s
.

Next we show that if n < 10s by a bootstrap argument we obtain u∗ ∈ L∞(Ω).
Indeed, by Proposition 6.1.4 (ii) and (6.34) we have

f(u∗) ∈ Lp ⇐⇒ (−∆)su∗ ∈ Lp =⇒ u∗ ∈ Lq =⇒ f(u∗) ∈ Lq/m,
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where q = np
n−2sp

. Now, we define recursively

pk+1 :=
npk

m(n− 2spk)
, p0 =

2n(1 +
√
τ)

n− 2s
.

Now, since

pk+1 − pk =
pk

n− 2spk

(
2spk −

m− 1

m
n

)
,

then the bootstrap argument yields u∗ ∈ L∞(Ω) in a finite number of steps provided

that (m − 1)n/m < 2sp0. This condition is equivalent to n < 2s + 4s1+
√
τ

τ+ε
, which is

satisfied for ε small enough whenever n ≤ 10s, since 1+
√
τ

τ
> 2 for τ < 1. Thus, the

result is proved.

Before proving Theorem 6.1.3 (i), we need the following lemma, proved by Nedev
in [225].

Lemma 6.4.5 ([225]). Let f be a convex function satisfying (6.2), and let

g(t) =

∫ t

0

f ′(τ)2dτ. (6.35)

Then,

lim
t→+∞

f ′(t)f̃(t)2 − f̃(t)g(t)

f(t)f ′(t)
= +∞,

where f̃(t) = f(t)− f(0).

As said above, this lemma is proved in [225]. More precisely, see equation (6) in

the proof of Theorem 1 in [225] and recall that f̃/f → 1 at infinity.
We can now give the

Proof of Theorem 6.1.3 (i). Let g be given by (6.35). Using Lemma 6.4.1 with γ = 1
and integrating by parts, we find

‖f(uλ)‖2
Ḣs =

cn,s
2

∫

Rn

∫

Rn

(f(uλ(x))− f(uλ(y)))2

|x− y|n+2s
dxdy

≤ cn,s
2

∫

Rn

∫

Rn

(g(uλ(x))− g(uλ(y))) (uλ(x)− uλ(y))

|x− y|n+2s
dxdy

=

∫

Rn
(−∆)s/2g(uλ)(−∆)s/2uλdx

=

∫

Rn
g(uλ)(−∆)suλdx

=

∫

Ω

f(uλ)g(uλ).

(6.36)

The stability condition (6.9) applied with η = f̃(uλ) yields
∫

Ω

f ′(uλ)f̃(uλ)
2 ≤ ‖f̃(uλ)‖2

Ḣs ,
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which combined with (6.36) gives

∫

Ω

f ′(uλ)f̃(uλ)
2 ≤

∫

Ω

f(uλ)g(uλ). (6.37)

This inequality can be written as

∫

Ω

{
f ′(uλ)f̃(uλ)

2 − f̃(uλ)g(uλ)
}
≤ f(0)

∫

Ω

g(uλ).

In addition, since f is convex we have

g(t) =

∫ t

0

f ′(s)2ds ≤ f ′(t)

∫ t

0

f ′(s)ds ≤ f ′(t)f(t),

and thus, ∫

Ω

{
f ′(uλ)f̃(uλ)

2 − f̃(uλ)g(uλ)
}
≤ f(0)

∫

Ω

f ′(uλ)f(uλ).

Hence, by Lemma 6.4.5 we obtain

∫

Ω

f(uλ)f
′(uλ) ≤ C. (6.38)

Now, on the one hand we have that

f(a)− f(b) ≤ f ′(a)(a− b),

since f is increasing and convex. This yields, as in (6.31),

(−∆)sf̃(uλ) ≤ f ′(uλ)(−∆)suλ = f ′(uλ)f(uλ) := v(x).

On the other hand, let w the solution of the problem

{
(−∆)sw = v in Ω

w = 0 on ∂Ω.
(6.39)

By (6.38) and Proposition 6.1.4 (i) (see also Remark 6.1.5),

‖w‖Lp(Ω) ≤ ‖v‖L1(Ω) ≤ C for each p <
n

n− 2s
.

Since f̃(uλ) is a subsolution of (6.39), then 0 ≤ f̃(uλ) ≤ w. Therefore,

‖f(u∗)‖Lp(Ω) ≤ C for each p <
n

n− 2s
,

and using Proposition 6.1.4 (iii), we find

u∗ ∈ L∞(Ω) whenever n < 4s,

as desired.
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6.5 Boundary estimates: the moving planes method

In this section we prove Proposition 6.1.8. This will be done with the celebrated
moving planes method [156], as in the classical boundary estimates for the Laplacian
of de Figueiredo-Lions-Nussbaum [110].

The moving planes method has been applied to problems involving the fractional
Laplacian by different authors; see for example [94, 21, 129]. However, some of these
results use the specific properties of the fractional Laplacian —such as the extension
problem of Caffarelli-Silvestre [68], or the Riesz potential expression for (−∆)−s—, and
it is not clear how to apply the method to more general integro-differential operators.
Here, we follow a different approach that allows more general nonlocal operators.

The main tool in the proof is the following maximum principle in small domains.
Recently, Jarohs and Weth [175] obtained a parabolic version of the maximum

principle in small domains for the fractional Laplacian; see Proposition 2.4 in [175].
The proof of their result is essentially the same that we present in this section. Still, we
think that it may be of interest to write here the proof for integro-differential operators
with decreasing kernels.

Lemma 6.5.1. Let Ω ⊂ Rn be a domain satisfying Ω ⊂ Rn
+ = {x1 > 0}. Let K be a

nonnegative function in Rn, radially symmetric and decreasing, and satisfying

K(z) ≥ c|z|−n−ν for all z ∈ B1

for some positive constants c and ν, and let

LKu(x) =

∫

Rn

(
u(y)− u(x)

)
K(x− y)dy.

Let V ∈ L∞(Ω) be any bounded function, and w ∈ Hs(Rn) be a bounded function
satisfying 




LKw = V (x)w in Ω
w ≥ 0 in Rn

+ \ Ω
w(x) ≥ −w(x∗) in Rn

+,
(6.40)

where x∗ is the symmetric to x with respect to the hyperplane {x1 = 0}. Then, there
exists a positive constant C0 such that if

(
1 + ‖V −‖L∞(Ω)

)
|Ω|

ν
n ≤ C0, (6.41)

then w ≥ 0 in Ω.

Remark 6.5.2. When LK is the fractional Laplacian (−∆)s, then the condition (6.41)

can be replaced by ‖V −‖L∞|Ω|
2s
n ≤ C0.

Proof of Lemma 6.5.1. The identity LKw = V (x)w in Ω written in weak form is

(ϕ,w)K :=

∫ ∫

R2n\(Rn\Ω)2
(ϕ(x)− ϕ(y))(w(x)− w(y))K(x− y)dx dy =

∫

Ω

V wϕ

(6.42)
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for all ϕ such that ϕ ≡ 0 in Rn \ Ω and
∫
Rn
(
ϕ(x)− ϕ(y)

)2
K(x− y)dx dy <∞. Note

that the left hand side of (6.42) can be written as

(ϕ,w)K =

∫

Ω

∫

Ω

(ϕ(x)− ϕ(y))(w(x)− w(y))K(x− y)dx dy

+ 2

∫

Ω

∫

Rn+\Ω
ϕ(x)(w(x)− w(y))K(x− y)dx dy

+ 2

∫

Ω

∫

Rn+
ϕ(x)(w(x)− w(y∗))K(x− y∗)dx dy,

where y∗ denotes the symmetric of y with respect to the hyperplane {x1 = 0}.
Choose ϕ = −w−χΩ, where w− is the negative part of w, i.e., w = w+−w−. Then,

we claim that

∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy ≤ (−w−χΩ, w)K . (6.43)

Indeed, first, we have

(−w−χΩ, w)K =

∫

Ω

∫

Ω

{(w−(x)−w−(y))2+w−(x)w+(y)+w+(x)w−(y)}K(x−y)dxdy+

+ 2

∫

Ω

∫

Rn+\Ω
{w−(x)(w−(x)− w−(y)) + w−(x)w+(y)}K(x− y)dx dy

+ 2

∫

Ω

∫

Rn+
{w−(x)(w−(x)− w−(y∗)) + w−(x)w+(y∗)}K(x− y∗)dx dy,

where we have used that w+(x)w−(x) = 0 for all x ∈ Rn.

Thus, rearranging terms and using that w− ≡ 0 in Rn
+ \ Ω,

(−w−χΩ, w)K =

∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy

+

∫

Ω

∫

Ω

2w−(x)w+(y)K(x− y)dx dy+

+ 2

∫

Ω

∫

Rn+\Ω
{w−(x)w+(y)− w−(x)w−(y)}K(x− y)dx dy

+ 2

∫

Ω

∫

Rn+
{w−(x)w+(y∗)− w−(x)w−(y∗)}K(x− y∗)dx dy

≥
∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy+

+ 2

∫

Ω

∫

Rn+
w−(x)w+(y)K(x− y)dx dy+

+ 2

∫

Ω

∫

Rn+
−w−(x)w−(y∗)K(x− y∗)dx dy.
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We next use that, since K is radially symmetric and decreasing, K(x−y∗) ≤ K(x−y)
for all x and y in Rn

+. We deduce

(−w−χΩ, w)K ≥
∫ ∫

R2n\(Rn\Ω)2
(w−(x)χΩ(x)− w−(y)χΩ(y))2K(x− y)dx dy+

+ 2

∫

Ω

∫

Rn+
w−(x)w+(y)− w−(x)w−(y∗)K(x− y)dx dy,

and since w−(y∗) ≤ w+(y) for all y in Rn
+ by assumption, we obtain (6.43).

Now, on the one hand note that from (6.43) we find

∫

Ω

∫

Ω

(w−(x)− w−(y))2K(x− y)dx dy ≤ (−w−χΩ, w)K .

Moreover, since K(z) ≥ c|z|−n−νχB1(z), then

‖w−‖2
Ḣν/2(Ω)

:=
cn,s
2

∫

Ω

∫

Ω

(w−(x)− w−(y))2

|x− y|−n−ν
dx dy

≤ C‖w−‖L2(Ω) + C

∫

Ω

∫

Ω

(
w−(x)− w−(y)

)2
K(x− y)dx dy,

and therefore
‖w−‖2

Ḣν/2(Ω)
≤ C1‖w−‖L2(Ω) + C1(−w−χΩ, w)K . (6.44)

On the other hand, it is clear that
∫

Ω

V ww− =

∫

Ω

V (w−)2 ≤ ‖V −‖L∞(Ω)‖w−‖L2(Ω). (6.45)

Thus, it follows from (6.42), (6.44), and (6.45) that

‖w−‖2
Ḣν/2(Ω)

≤ C1

(
1 + ‖V −‖L∞

)
‖w−‖L2(Ω).

Finally, by the Hölder and the fractional Sobolev inequalities, we have

‖w−‖2
L2(Ω) ≤ |Ω|

ν
n‖w−‖2

Lq(Ω) ≤ C2|Ω|
ν
n‖w−‖2

Ḣν/2(Ω)
,

where q = 2n
n−ν . Thus, taking C0 such that C0 < (C1C2)−1 the lemma follows.

Now, once we have the nonlocal version of the maximum principle in small domains,
the moving planes method can be applied exactly as in the classical case.

Proof of Proposition 6.1.8. Replacing the classical maximum principle in small do-
mains by Lemma 6.5.1, we can apply the moving planes method to deduce ‖u‖L∞(Ωδ) ≤
C‖u‖L1(Ω) for some constants C and δ > 0 that depend only on Ω, as in de Figueiredo-
Lions-Nussbaum [110]; see also [34].

Let us recall this argument. Assume first that all curvatures of ∂Ω are positive.
Let ν(y) be the unit outward normal to Ω at y. Then, there exist positive constants s0

and α depending only on the convex domain Ω such that, for every y ∈ ∂Ω and every
e ∈ Rn with |e| = 1 and e ·ν(y) ≥ α, u(y−se) is nondecreasing in s ∈ [0, s0]. This fact
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follows from the moving planes method applied to planes close to those tangent to Ω
at ∂Ω. By the convexity of Ω, the reflected caps will be contained in Ω. The previous
monotonicity fact leads to the existence of a set Ix, for each x ∈ Ωδ, and a constant
γ > 0 that depend only on Ω, such that

|Ix| ≥ γ, u(x) ≤ u(y) for all y ∈ Ix.

The set Ix is a truncated open cone with vertex at x.
As mentioned in page 45 of de Figuereido-Lions-Nussbaum [110], the same can also

be proved for general convex domains with a little more of care.

Remark 6.5.3. When Ω = B1, Proposition 6.1.8 follows from the results in [21], where
Birkner, López-Mimbela, and Wakolbinger used the moving planes method to show
that any nonnegative bounded solution of

{
(−∆)su = f(u) in B1

u = 0 in Rn \B1
(6.46)

is radially symmetric and decreasing.
When u is a bounded semistable solution of (6.46), there is an alternative way to

show that u is radially symmetric. This alternative proof applies to all solutions (not
necessarily positive), but does not give monotonicity. Indeed, one can easily show that,
for any i 6= j, the function w = xiuxj − xjuxi is a solution of the linearized problem

{
(−∆)sw = f ′(u)w in B1

w = 0 in Rn \B1.
(6.47)

Then, since λ1 ((−∆)s − f ′(u);B1) ≥ 0 by assumption, it follows that either w ≡ 0 or
λ1 = 0 and w is a multiple of the first eigenfunction, which is positive —see the proof
of Proposition 9 in [265, Appendix A]. But since w is a tangential derivative then it
can not have constant sign along a circumference {|x| = r}, r ∈ (0, 1), and thus it has
to be w ≡ 0. Therefore, all the tangential derivatives ∂tu = xiuxj − xjuxi equal zero,
and thus u is radially symmetric.

6.6 Hs regularity of the extremal solution in con-
vex domains

In this section we prove Theorem 6.1.3 (iii). A key tool in this proof is the Pohozaev
identity for the fractional Laplacian, recently obtained by the authors in [254]. This
identity allows us to compare the interior Hs norm of the extremal solution u∗ with a
boundary term involving u∗/δs, where δ is the distance to ∂Ω. Then, this boundary
term can be bounded by using the results of the previous section by the L1 norm of
u∗, which is finite.

We first prove the boundedness of u∗/δs near the boundary.

Lemma 6.6.1. Let Ω be a convex domain, u be a bounded solution of (6.14), and
δ(x) = dist(x, ∂Ω). Assume that

‖u‖L1(Ω) ≤ c1



206 The extremal solution for the fractional Laplacian

for some c1 > 0. Then, there exists constants δ > 0, c2, and C such that

‖u/δs‖L∞(Ωδ) ≤ C
(
c2 + ‖f‖L∞([0,c2])

)
,

where Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Moreover, the constants δ, c2, and C depend
only on Ω and c1.

Proof. The result can be deduced from the boundary regularity results in [249] and
Proposition 6.1.8, as follows.

Let δ > 0 be given by Proposition 6.1.8, and let η be a smooth cutoff function
satisfying η ≡ 0 in Ω \ Ω2δ/3 and η ≡ 1 in Ωδ/3. Then, uη ∈ L∞(Ω) and uη ≡ 0 in
Rn \ Ω. Moreover, we claim that

(−∆)s(uη) = f(u)χΩδ/4 + g in Ω (6.48)

for some function g ∈ L∞(Ω), with the estimate

‖g‖L∞(Ω) ≤ C
(
‖u‖C1+s(Ω4δ/5\Ωδ/5) + ‖u‖L1(Ω)

)
. (6.49)

To prove that (6.48) holds pointwise we argue separately in Ωδ/4, in Ω3δ/4 \ Ωδ/4,
and in Ω \ Ω3δ/4, as follows:

• In Ωδ/4, g = (−∆)s(uη)− (−∆)su. Since uη−u vanishes in Ωδ/3 and also outside
Ω, g is bounded and satisfies (6.49).

• In Ω3δ/4 \ Ωδ/4, g = (−∆)s(uη). Then, using

‖(−∆)s(uη)‖L∞(Ω3δ/4\Ωδ/4) ≤ C
(
‖uη‖C1+s(Ω4δ/5\Ωδ/5) + ‖uη‖L1(Rn)

)

and that η is smooth, we find that g is bounded and satisfies (6.49).

• In Ω \ Ω3δ/4, g = (−∆)s(uη). Since uη vanishes in Ω \ Ω2δ/3, g is bounded and
satisfies (6.49).

Now, since u is a solution of (6.14), by classical interior estimates we have

‖u‖C1+s(Ω4δ/5\Ωδ/5) ≤ C
(
‖u‖L∞(Ωδ) + ‖u‖L1(Ω)

)
; (6.50)

see for instance [249]. Hence, by (6.48) and Theorem 1.2 in [249], uη/δs ∈ Cα(Ω) for
some α > 0 and

‖uη/δs‖Cα(Ω) ≤ C‖f(u)χΩδ/4 + g‖L∞(Ω).

Thus,

‖u/δs‖L∞(Ωδ/3) ≤ ‖uη/δs‖Cα(Ω) ≤ C
(
‖g‖L∞(Ω) + ‖f(u)‖L∞(Ωδ/4)

)

≤ C
(
‖u‖L1(Ω) + ‖u‖L∞(Ωδ) + ‖f(u)‖L∞(Ωδ/4)

)
.

In the last inequality we have used (6.49) and (6.50). Then, the result follows from
Proposition 6.1.8.
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We can now give the

Proof of Theorem 6.1.3 (iii). Recall that uλ minimizes the energy E in the set {u ∈
Hs(Rn) : 0 ≤ u ≤ uλ} (see Step 4 in the proof of Proposition 6.1.2 in Section 6.2).
Hence,

‖uλ‖2
Ḣs −

∫

Ω

λF (uλ) = E(uλ) ≤ E(0) = 0. (6.51)

Now, the Pohozaev identity for the fractional Laplacian can be written as

s‖uλ‖2
Ḣs − nE(uλ) =

Γ(1 + s)2

2

∫

∂Ω

(uλ
δs

)2

(x · ν)dσ, (6.52)

see [254, page 2]. Therefore, it follows from (6.51) and (6.52) that

‖uλ‖2
Ḣs ≤

Γ(1 + s)2

2s

∫

∂Ω

(uλ
δs

)2

(x · ν)dσ.

Now, by Proposition 6.6.1, we have that
∫

∂Ω

(uλ
δs

)2

(x · ν)dσ ≤ C

for some constant C that depends only on Ω and ‖uλ‖L1(Ω). Thus, ‖uλ‖Ḣs ≤ C, and
since u∗ ∈ L1(Ω), letting λ ↑ λ∗ we find

‖u∗‖Ḣs <∞,

as desired.

6.7 Lp and Cβ estimates for the linear Dirichlet
problem

The aim of this section is to prove Propositions 6.1.4 and 6.1.7. We prove first Propo-
sition 6.1.4.

Proof of Proposition 6.1.4. (i) It is clear that we can assume ‖g‖L1(Ω) = 1.
Consider the solution v of

(−∆)sv = |g| in Rn

given by the Riesz potential v = (−∆)−s|g|. Here, g is extended by 0 outside Ω.
Since v ≥ 0 in Rn \Ω, by the maximum principle we have that |u| ≤ v in Ω. Then,

it follows from Theorem 6.1.6 that

‖u‖Lqweak(Ω) ≤ C, where q =
n

n− 2s
,

and hence we find that

‖u‖Lr(Ω) ≤ C for all r <
n

n− 2s
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for some constant that depends only on n, s, and |Ω|.
(ii) The proof is analogous to the one of part (i). In this case, the constant does

not depend on the domain Ω.
(iii) As before, we assume ‖g‖Lp(Ω) = 1. Write u = ṽ+w, where ṽ and w are given

by
ṽ = (−∆)−sg in Rn, (6.53)

and {
(−∆)sw = 0 in Ω

w = ṽ in Rn\Ω. (6.54)

Then, from (6.53) and Theorem 6.1.6 we deduce that

[ṽ]Cα(Rn) ≤ C, where α = 2s− n

p
. (6.55)

Moreover, since the domain Ω is bounded, then g has compact support and hence ṽ
decays at infinity. Thus, we find

‖ṽ‖Cα(Rn) ≤ C (6.56)

for some constant C that depends only on n, s, p, and Ω.
Now, we apply Proposition 6.1.7 to equation (6.54). We find

‖w‖Cβ(Rn) ≤ C‖ṽ‖Cα(Rn), (6.57)

where β = min{α, s}. Thus, combining (6.56), and (6.57) the result follows.

Note that we have only used Proposition 6.1.7 to obtain the Cβ estimate in part
(iii). If one only needs an L∞ estimate instead of the Cβ one, Proposition 6.1.7 is not
needed, since the L∞ bound follows from the maximum principle.

As said in the introduction, the Lp to W 2s,p estimates for the fractional Laplace
equation, in which −∆ is replaced by the fractional Laplacian (−∆)s, are not true for
all p, even when Ω = Rn. This is illustrated in the following two remarks.

Recall the definition of the fractional Sobolev space W σ,p(Ω) which, for σ ∈ (0, 1),
consists of all functions u ∈ Lp(Ω) such that

‖u‖Wσ,p(Ω) = ‖u‖Lp(Ω) +

(∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+pσ
dx dy

) 1
p

is finite; see for example [115] for more information on these spaces.

Remark 6.7.1. Let s ∈ (0, 1). Assume that u and g belong to Lp(Rn), with 1 < p <∞,
and that

(−∆)su = g in Rn.

(i) If p ≥ 2, then u ∈ W 2s,p(Rn).

(ii) If p < 2 and 2s 6= 1 then u may not belong to W 2s,p(Rn). Instead, u ∈ B2s
p,2(Rn),

where Bσ
p,q is the Besov space of order σ and parameters p and q.

For more details see the books of Stein [278] and Triebel [290].
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By the preceding remark we see that the Lp to W 2s,p estimate does not hold in Rn

whenever p < 2 and s 6= 1
2
. The following remark shows that in bounded domains Ω

this estimate do not hold even for p ≥ 2.

Remark 6.7.2. Let us consider the solution of (−∆)su = g in Ω, u ≡ 0 in Rn \ Ω.
When Ω = B1 and g ≡ 1, the solution to this problem is

u0(x) =
(
1− |x|2

)s
χB1(x);

see [154]. For p large enough one can see that u0 does not belong to W 2s,p(B1), while
g ≡ 1 belongs to Lp(B1) for all p. For example, when s = 1

2
by computing |∇u0| we

see that u0 does not belong to W 1,p(B1) for p ≥ 2.

We next prove Proposition 6.1.7. For it, we will proceed similarly to the Cs esti-
mates obtained in [249, Section 2] for the Dirichlet problem for the fractional Laplacian
with L∞ data.

The first step is the following:

Lemma 6.7.3. Let Ω be a bounded domain satisfying the exterior ball condition, s ∈
(0, 1), h be a Cα(Rn \ Ω) function for some α > 0, and u be the solution of (6.13).
Then

|u(x)− u(x0)| ≤ C‖h‖Cα(Rn\Ω)δ(x)β in Ω,

where x0 is the nearest point to x on ∂Ω, β = min{s, α}, and δ(x) = dist(x, ∂Ω). The
constant C depends only on n, s, and α.

Lemma 6.7.3 will be proved using the following supersolution. Next lemma (and
its proof) is very similar to Lemma 2.6 in [249].

Lemma 6.7.4. Let s ∈ (0, 1). Then, there exist constants ε, c1, and C2, and a
continuous radial function ϕ satisfying





(−∆)sϕ ≥ 0 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

(6.58)

The constants c1 and C2 depend only on n, s, and β.

Proof. We follow the proof of Lemma 2.6 in [249]. Consider the function

u0(x) = (1− |x|2)s+.

It is a classical result (see [154]) that this function satisfies

(−∆)su0 = κn,s in B1

for some positive constant κn,s.
Thus, the fractional Kelvin transform of u0, that we denote by u∗0, satisfies

(−∆)su∗0(x) = |x|−2s−n(−∆)su0

(
x

|x|2

)
≥ c0 in B2 \B1.
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Recall that the Kelvin transform u∗0 of u0 is defined by

u∗0(x) = |x|2s−nu0

(
x

|x|2

)
.

Then, it is clear that

a1(|x| − 1)s ≤ u∗0(x) ≤ A2(|x| − 1)s in B2 \B1,

while u∗0 is bounded at infinity.
Let us consider now a smooth function η satisfying η ≡ 0 in B3 and

A1(|x| − 1)s ≤ η ≤ A2(|x| − 1)s in Rn \B4.

Observe that (−∆)sη is bounded in B2, since η(x)(1 + |x|)−n−2s ∈ L1. Then, the
function

ϕ = Cu∗0 + η,

for some big constant C > 0, satisfies





(−∆)sϕ ≥ 1 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

Indeed, it is clear that ϕ ≡ 0 in B1. Moreover, taking C big enough it is clear that we
have that (−∆)sϕ ≥ 1. In addition, the condition c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s is
satisfied by construction. Thus, ϕ satisfies (6.59), and the proof is finished.

Once we have constructed the supersolution, we can give the

Proof of Lemma 6.7.3. First, we can assume that ‖h‖Cα(Rn\Ω) = 1. Then, by the
maximum principle we have that ‖u‖L∞(Rn) = ‖h‖L∞(Rn) ≤ 1. We can also assume
that α ≤ s, since

‖h‖Cs(Rn) ≤ C‖h‖Cα(Rn\Ω) whenever s < α.

Let x0 ∈ ∂Ω and R > 0 be small enough. Let BR be a ball of radius R, exterior
to Ω, and touching ∂Ω at x0. Let us see that |u(x) − u(x0)| is bounded by CRβ in
Ω ∩B2R.

By Lemma 6.7.4, we find that there exist constants c1 and C2, and a radial contin-
uous function ϕ satisfying





(−∆)sϕ ≥ 0 in B2 \B1

ϕ ≡ 0 in B1

c1(|x| − 1)s ≤ ϕ ≤ C2(|x| − 1)s in Rn \B1.

(6.59)

Let x1 be the center of the ball BR. Since ‖h‖Cα(Rn\Ω) = 1, it is clear that the
function

ϕR(x) = h(x0) + 3Rα + C3R
sϕ

(
x− x1

R

)
,
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Ω

BR

B2R

x0

x1

Figure 6.1:

with C3 big enough, satisfies





(−∆)sϕR ≥ 0 in B2R \BR

ϕR ≡ h(x0) + 3Rα in BR

h(x0) + |x− x0|α ≤ ϕR in Rn \B2R

ϕR ≤ h(x0) + C0R
α in B2R \BR.

(6.60)

Here we have used that α ≤ s.
Then, since

(−∆)su ≡ 0 ≤ (−∆)sϕR in Ω ∩B2R,

h ≤ h(x0) + 3Rα ≡ ϕR in B2R \ Ω,

and
h(x) ≤ h(x0) + |x− x0|α ≤ ϕR in Rn \B2R,

it follows from the comparison principle that

u ≤ ϕR in Ω ∩B2R.

Therefore, since ϕR ≤ h(x0) + C0R
α in B2R \BR,

u(x)− h(x0) ≤ C0R
α in Ω ∩B2R. (6.61)

Moreover, since this can be done for each x0 on ∂Ω, h(x0) = u(x0), and we have
‖u‖L∞(Ω) ≤ 1, we find that

u(x)− u(x0) ≤ Cδβ in Ω, (6.62)

where x0 is the projection on ∂Ω of x.
Repeating the same argument with u and h replaced by −u and −h, we obtain the

same bound for h(x0)− u(x), and thus the lemma follows.

The following result will be used to obtain Cβ estimates for u inside Ω. For a proof
of this lemma see for example Corollary 2.4 in [249].
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Lemma 6.7.5 ([249]). Let s ∈ (0, 1), and let w be a solution of (−∆)sw = 0 in B2.
Then, for every γ ∈ (0, 2s)

‖w‖Cγ(B1/2) ≤ C

(
‖(1 + |x|)−n−2sw(x)‖L1(Rn) + ‖w‖L∞(B2)

)
,

where the constant C depends only on n, s, and γ.

Now, we use Lemmas 6.7.3 and 6.7.5 to obtain interior Cβ estimates for the solution
of (6.13).

Lemma 6.7.6. Let Ω be a bounded domain satisfying the exterior ball condition, h ∈
Cα(Rn \ Ω) for some α > 0, and u be the solution of (6.13). Then, for all x ∈ Ω we
have the following estimate in BR(x) = Bδ(x)/2(x)

‖u‖Cβ(BR(x)) ≤ C‖h‖Cα(Rn\Ω), (6.63)

where β = min{α, s} and C is a constant depending only on Ω, s, and α.

Proof. Note that BR(x) ⊂ B2R(x) ⊂ Ω. Let ũ(y) = u(x+Ry)− u(x). We have that

(−∆)sũ(y) = 0 in B1 . (6.64)

Moreover, using Lemma 6.7.3 we obtain

‖ũ‖L∞(B1) ≤ C‖h‖Cα(Rn\Ω)R
β. (6.65)

Furthermore, observing that |ũ(y)| ≤ C‖h‖Cα(Rn\Ω)R
β(1 + |y|β) in all of Rn, we find

‖(1 + |y|)−n−2sũ(y)‖L1(Rn) ≤ C‖h‖Cα(Rn\Ω)R
β, (6.66)

with C depending only on Ω, s, and α.
Now, using Lemma 6.7.5 with γ = β, and taking into account (6.64), (6.65), and

(6.66), we deduce
‖ũ‖Cβ(B1/4) ≤ C‖h‖Cα(Rn\Ω)R

β,

where C = C(Ω, s, β).
Finally, we observe that

[u]Cβ(BR/4(x)) = R−β[ũ]Cβ(B1/4).

Hence, by an standard covering argument, we find the estimate (6.63) for the Cβ norm
of u in BR(x).

Now, Proposition 6.1.7 follows immediately from Lemma 6.7.6, as in Proposition
1.1 in [249].

Proof of Proposition 6.1.7. This proof is completely analogous to the proof of Propo-
sition 1.1 in [249]. One only have to replace the s in that proof by β, and use the
estimate from the present Lemma 6.7.6 instead of the one from [249, Lemma 2.9].



7Chapter Seven

REGULARITY FOR THE FRACTIONAL
GELFAND PROBLEM UP TO DIMENSION 7

We study the problem (−∆)su = λeu in a bounded domain Ω ⊂ Rn, where λ is a
positive parameter. More precisely, we study the regularity of the extremal solution
to this problem.

Our main result yields the boundedness of the extremal solution in dimensions
n ≤ 7 for all s ∈ (0, 1) whenever Ω is, for every i = 1, ..., n, convex in the xi-direction
and symmetric with respect to {xi = 0}. The same holds if n = 8 and s & 0′28206...,
or if n = 9 and s & 0′63237.... These results are new even in the unit ball Ω = B1.

7.1 Introduction and results

Let s ∈ (0, 1) and Ω be a bounded smooth domain in Rn, and consider the problem

{
(−∆)su = λeu in Ω

u = 0 in Rn\Ω. (7.1)

Here, λ is a positive parameter and (−∆)s is the fractional Laplacian, defined by

(−∆)su(x) = cn,sPV

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy. (7.2)

The aim of this paper is to study the regularity of the so-called extremal solution of
the problem (7.1).

For the Laplacian−∆ (which corresponds to s = 1) this problem is frequently called
the Gelfand problem [151], and the existence and regularity properties of its solutions
are by now quite well understood [191, 177, 223, 212, 102]; see also [144, 234].

Indeed, when s = 1 one can show that there exists a finite extremal parameter
λ∗ such that if 0 < λ < λ∗ then it admits a minimal classical solution uλ, while for
λ > λ∗ it has no weak solution. Moreover, the pointwise limit u∗ = limλ↑λ∗ uλ is a weak
solution of problem with λ = λ∗. It is called the extremal solution. All the solutions
uλ and u∗ are stable solutions.

On the other hand, the existence of other solutions for λ < λ∗ is a more delicate
question, which depends strongly on the regularity of the extremal solution u∗. More
precisely, it depends on the boundedness of u∗.

213
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It turns out that the extremal solution u∗ is bounded in dimensions n ≤ 9 for any
domain Ω [212, 102], while u∗(x) = log 1

|x|2 is the (singular) extremal solution in the
unit ball when n ≥ 10. This result strongly relies on the stability of u∗. In the case
Ω = B1, the classification of all radial solutions to this problem was done in [201] for
n = 2, and in [177, 223] for n ≥ 3.

For more general nonlinearities f(u) the regularity of extremal solutions is only
well understood when Ω = B1. As in the exponential case, all extremal solutions
are bounded in dimensions n ≤ 9, and may be singular if n ≥ 10 [43]. For general
domains Ω the problem is still not completely understood, and the best result in that
direction states that all extremal solutions are bounded in dimensions n ≤ 4 [42, 295].
In domains of double revolution, all extremal solutions are bounded in dimensions
n ≤ 7 [49]. For more information on this problem, see [36] and the monograph [120].

For the fractional Laplacian, the problem was studied by J. Serra and the author
[253] for general nonlinearities f . We showed that there exists a parameter λ∗ such
that for 0 < λ < λ∗ there is a branch of minimal solutions uλ, for λ > λ∗ there is no
bounded solutions, and for λ = λ∗ one has the extremal solution u∗, which is a stable
solution. Moreover, depending on the nonlinearity f and on n and s, we obtained L∞

and Hs estimates for the extremal solution in general domains Ω. Note that, as in
the case s = 1, once we know that u∗ is bounded then it follows that it is a classical
solution; see for example [249].

For the exponential nonlinearity f(u) = eu, our results in [253] yield the bounded-
ness of the extremal solution in dimensions n < 10s. Although this result is optimal
as s → 1, it is not optimal, however, for smaller values of s ∈ (0, 1). More precisely,
an argument in [253] suggested the possibility that the extremal solution u∗ could be
bounded in all dimensions n ≤ 7 and for all s ∈ (0, 1). However, our results in [253]
did not give any L∞ estimate uniform in s.

The aim of this paper is to obtain better L∞ estimates for the fractional Gelfand
problem (7.1) whenever Ω is even and convex with respect to each coordinate axis.
Our main result, stated next, establishes the boundedness of the extremal solution u∗

whenever (7.3) holds and, in particular, whenever n ≤ 7 independently of s ∈ (0, 1).
As explained in Remark 7.2.2, we expect this result to be optimal.

Theorem 7.1.1. Let Ω be a bounded smooth domain in Rn which is, for every i =
1, ..., n, convex in the xi-direction and symmetric with respect to {xi = 0}. Let s ∈
(0, 1), and let u∗ be the extremal solution of problem (7.1). Assume that either n ≤ 2s,
or that n > 2s and

Γ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) >
Γ2
(
n+2s

4

)

Γ2
(
n−2s

4

) . (7.3)

Then, u∗ is bounded. In particular, the extremal solution u∗ is bounded for all s ∈ (0, 1)
whenever n ≤ 7. The same holds if n = 8 and s & 0′28206..., or if n = 9 and
s & 0′63237....

The result is new even in the unit ball Ω = B1.
We point out that, for n = 10 condition (7.3) is equivalent to s > 1.
Let us next comment on some works related to problem (7.1).
On the one hand, for the power nonlinearity f(u) = (1 + u)p, p > 1, the problem

has been recently studied by Dávila-Dupaigne-Wei [109]. Their powerful methods are
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based on a monotonicity formula and a blow-up argument, using the ideas introduced
in [108] to study the case of the bilaplacian, s = 2. For this case s = 2, extremal
solutions with exponential nonlinearity have been also studied; see for example [106].

On the other hand, Capella-Dávila-Dupaigne-Sire [80] studied the extremal solu-
tion in the unit ball for general nonlinearities for a related operator but different than
the fractional Laplacian (7.2). More precisely, they considered the spectral fractional
Laplacian in B1, i.e., the operator As defined via the Dirichlet eigenvalues of the Lapla-
cian in B1. They obtained an L∞ bound for u∗ in dimensions n < 2

(
2 + s+

√
2s+ 2

)

and, in particular, their result yields the boundedness of the extremal solution in
dimensions n ≤ 6 for all s ∈ (0, 1).

Another result in a similar direction is [107], where Dávila-Dupaigne-Montenegro
studied the extremal solution of a boundary reaction problem. Recall that problems
of the form (7.1) involving the fractional Laplacian can be seen as a local weighted
problem in Rn+1

+ by using the extension of Caffarelli-Silvestre. Similarly, the spectral
fractional Laplacian As can be written in terms of an extension in Ω×R+. Thus, the
boundary reaction problem studied in [107] is also related to a “fractional” problem
on the boundary, in which s = 1/2. Although in this paper we never use the extension
problem for the fractional Laplacian, we will use some ideas appearing in [107] to prove
our results, as explained next.

Recall that the key property of the extremal solution u∗ is that it is stable [120, 253],
in the sense that ∫

Ω

λeu
∗
η2dx ≤

∫

Rn

∣∣(−∆)s/2η
∣∣2 dx

for all η ∈ Hs(Rn) satisfying η ≡ 0 in Rn \ Ω.
In the classical case s = 1, the main idea of the proof in [102] is to take η = eαu

∗−1
in the stability condition to obtain a W 2,p bound for u∗. When n < 10, this W 2,p

estimate leads, by the Sobolev embeddings, to the boundedness of u∗. This is also the
approach that we followed in [253] to obtain regularity in dimensions n < 10s.

Here, instead, we assume by contradiction that u∗ is singular, and we prove a lower
bound for u∗ near its singular point. This is why we need to assume the domain Ω to
be even and convex —in this case, the singular point is necessarily the origin. Then,
in the stability condition we take an explicit function η(x) with the same expected
singular behavior as eαu

∗(x) (given by the previous lower bound). More precisely, we
take as η a power function of the form η(x) ∼ |x|−β, with β chosen appropriately.
This idea was already used in [107], where Dávila-Dupaigne-Montenegro studied the
extremal solution for a boundary reaction problem.

The paper is organized as follows. First, in Section 7.2 we give some remarks
and preliminary results that will be used in the proof of our main result. Then, in
Section 7.3 we prove Theorem 7.1.1.

7.2 Some preliminaries and remarks

In this section we recall some facts that will be used in the proof of Theorem 7.1.1.
First, recall that a weak solution u of (7.1) is said to be stable when

∫

Ω

λeuη2dx ≤
∫

Rn

∣∣(−∆)s/2η
∣∣2 dx (7.4)
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for all η ∈ Hs(Rn) satisfying η ≡ 0 in Rn \ Ω; see [253] for more details. Note also
that, integrating by parts on the right hand side, one can write (7.4) as

∫

Ω

λeuη2dx ≤
∫

Ω

η(−∆)sη dx. (7.5)

We will use this form of the stability condition in the proof of Theorem 7.1.1.
Next we recall a computation done in [253] in which we can see that condition (7.3)

arises naturally.

Proposition 7.2.1 ([253]). Let s ∈ (0, 1), n > 2s, and u0(x) = log 1
|x|2s . Then, u0 is

a solution of
(−∆)su0 = λ0e

u0 in all of Rn,

with

λ0 = 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

) . (7.6)

Moreover, setting

Hn,s = 22sΓ2
(
n+2s

4

)

Γ2
(
n−2s

4

) , (7.7)

u0 is stable if and only if λ0 ≤ Hn,s.

We point out that Hn,s is the best constant in the fractional Hardy inequality, even
though we will not use such inequality in this paper.

Remark 7.2.2. This proposition suggests that there could exist a stable singular solu-
tion to (7.1) in the unit ball whenever λ0 ≤ Hn,s. In fact, we may consider a larger
family of problems than (7.1), by considering nonhomogeneous Dirichlet conditions of
the form u = g in Rn \ Ω. For all these problems, our result in Theorem 7.1.1 still
remains true; see Remark 7.3.3. In the particular case Ω = B1 and g(x) = log |x|−2s

in Rn \ B1, the extremal solution to the new problem is exactly u∗(x) = log |x|−2s in
B1 whenever λ0 ≤ Hn,s. Thus, when λ0 ≤ Hn,s we have a singular extremal solution
for some exterior condition g.

We expect the sufficient condition (7.3) of Theorem 7.1.1 to be optimal since it is
equivalent to λ0 > Hn,s.

The condition λ0 > Hn,s, appeared and was discussed in Remark 3.3 in [253].

We next give a symmetry result, which is the analog of the classical result of
Berestycki-Nirenberg [18]. It does not require any smoothness of Ω. From this result
it will follow that, under the hypotheses of Theorem 7.1.1, the solutions uλ(x) attain
its maxima at x = 0.

When Ω = BR, there are a number of papers proving the radial symmetry of
solutions for nonlocal equations. However, we have not found any reference in which
the following result is proved.

Lemma 7.2.3. Let Ω be a bounded domain which is convex in the x1-direction and
symmetric with respect to {x1 = 0}. Let f be a locally Lipschitz function, and u be a
bounded positive solution of

{
(−∆)su = f(u) in Ω

u = 0 in Rn\Ω.
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Then, u is symmetric with respect to {x1 = 0}, and it satisfies

∂x1u < 0 in Ω ∩ {x1 > 0}.

Proof. For the case of the Laplacian −∆, the result follows from the moving planes
method and the maximum principle in small domains; see [18] and also, for exam-
ple, [34, 41]. For the fractional Laplacian (−∆)s (or even for more general integro-
differential operators), one can easily check that the same proof can be carried out
by using the nonlocal maximum principle in small domains given by Lemma 5.1 in
[253].

As said before, this lemma yields that solutions uλ of (7.1) satisfy

‖uλ‖L∞(Ω) = uλ(0).

This allows us to locate the (possible) singularity of the extremal solution u∗ at the
origin, something that is essential in our proofs.

Finally, to end this section, we compute the fractional Laplacian on a power func-
tion, something needed in the proof of Theorem 7.1.1.

Proposition 7.2.4. Let (−∆)s be the fractional Laplacian in Rn, with s > 0 and
n > 2s. Let α ∈ (0, n− 2s). Then,

(−∆)s|x|−α = 22s Γ
(
α+2s

2

)
Γ
(
n−α

2

)

Γ
(
n−α−2s

2

)
Γ
(
α
2

) |x|−α−2s,

where Γ is the Gamma function.

Proof. We use Fourier transform, defined by

F [u](ξ) = (2π)−n/2
∫

Rn
u(x)e−iξ·xdx.

Then, one has that
F
[
(−∆)su

]
(ξ) = |ξ|2sF [u](ξ). (7.8)

On the other hand, the function |x|−α, with 0 < α < n, has Fourier transform

κβ F
[
| · |−β

]
(ξ) = κn−β|ξ|β−n, κβ := 2β/2Γ(β/2) (7.9)

(see for example [197, Theorem 5.9], where another convention for the Fourier trans-
form is used, however).

Hence, using (7.9) and (7.8), we find that

F
[
(−∆)s| · |−α

]
(ξ) = |ξ|2sF

[
| · |−α

]
(ξ)

=
κn−α
κα
|ξ|α+2s−n =

κn−α
κα

κα+2s

κn−α−2s

F
[
| · |−α−2s

]
(ξ).

Thus, it follows that

(−∆)s|x|−α =
κn−α
κα

κα+2s

κn−α−2s

|x|−α−2s = 22s Γ
(
α+2s

2

)
Γ
(
n−α

2

)

Γ
(
n−α−2s

2

)
Γ
(
α
2

) |x|−α−2s,

as claimed.
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7.3 Proof of the main result

The aim of this section is to prove Theorem 7.1.1. We start with two preliminary
lemmas.

The first one gives a lower bound for the singularity of an unbounded extremal
solution. As we will see, this is an essential ingredient in our proof of Theorem 7.1.1.
A similar result was established in [107] in the case of the boundary reaction problem
considered there.

Lemma 7.3.1. Let n, s, and u∗ as in Theorem 7.1.1, and assume that u∗ is unbounded.
Then, for each σ ∈ (0, 1) there exists r(σ) > 0 such that

u∗(x) > (1− σ) log
1

|x|2s

for all x satisfying |x| < r(σ).

Proof. We will argue by contradiction. Assume that there exist σ ∈ (0, 1) and a
sequence {xk} → 0 for which

u∗(xk) ≤ (1− σ) log
1

|xk|2s
. (7.10)

Recall that, by Lemma 7.2.3, we have uλ(0) = ‖uλ‖L∞ . Thus, since u∗ is unbounded
by assumption, we have

‖uλ‖L∞(Ω) = uλ(0) −→ +∞ as λ→ λ∗.

In particular, there exists a sequence {λk} → λ∗ such that

uλk(0) = log
1

|xk|2s
.

Define now the functions

vk(x) =
uλk(|xk|x)

‖uλk‖L∞
=
uλk(|xk|x)

log 1
|xk|2s

, x ∈ Ωk =
1

|xk|
Ω.

These functions satisfy 0 ≤ vk ≤ 1, vk(0) = 1, and

(−∆)svk −→ 0 uniformly in Ωk as k →∞.

Indeed,

(−∆)svk(x) =
1

log 1
|xk|2s

|xk|2sλkeuλk (|xk|x) ≤ λk
log 1

|xk|2s
≤ λ∗

log 1
|xk|2s

−→ 0.

Note also that the functions vk are uniformly Hölder continuous in compact sets of
Rn, since |(−∆)svk| are uniformly bounded. Hence, it follows from the Arzelà-Ascoli
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theorem that, up to a subsequence, vk converges uniformly in compact sets of Rn to
some function v satisfying

(−∆)sv ≡ 0 in Rn, 0 ≤ v ≤ 1, v(0) = 1.

Thus, it follows from the strong maximum principle that v ≡ 1.

Therefore, we have that

vk(x) −→ 1 uniformly in compact sets of Rn,

and in particular
uλk(xk)

log 1
|xk|2s

= vk (xk/|xk|) −→ 1.

This contradicts (7.10), and hence the lemma is proved.

In the next lemma we compute the fractional Laplacian of some explicit functions
in all of Rn. The constants appearing in these computations are very important, since
they are very related to the ones in (7.3).

Lemma 7.3.2. Let s ∈ (0, 1), n > 2s, and ε > 0 be small enough. Then

(−∆)s|x|
2s−n+ε

2 = (Hn,s +O(ε)) |x|
−2s−n+ε

2

and

(−∆)s|x|2s−n+ε =
(
λ0

ε

2s
+O(ε2)

)
|x|−n+ε,

where Hn,s and λ0 are given by (7.7) and (7.6), respectively.

Proof. To prove the result we use Proposition 7.2.4 and the properties of the Γ function,
as follows.

First, using Proposition 7.2.4 with α = 1
2
(n− 2s− ε) and with α = n− 2s− ε, we

find

(−∆)s|x|
2s−n+ε

2 = 22sΓ
(
n+2s−ε

4

)
Γ
(
n+2s+ε

4

)

Γ
(
n−2s+ε

4

)
Γ
(
n−2s−ε

4

) |x|−2s−n+ε
2

and

(−∆)s|x|2s−n+ε = 22sΓ
(
n−ε

2

)
Γ
(

2s+ε
2

)

Γ
(
ε
2

)
Γ
(
n−2s−ε

2

) |x|−n+ε,

where Γ is the Gamma function.

Since Γ(t) is smooth and positive for t > 0, then it is clear that

22sΓ
(
n+2s−ε

4

)
Γ
(
n+2s+ε

4

)

Γ
(
n−2s+ε

4

)
Γ
(
n−2s−ε

4

) = 22s

(
Γ
(
n+2s

4

)

Γ
(
n−2s

4

)
)2

+O(ε) = Hn,s +O(ε).

Thus, the first identity of the Lemma follows.
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To prove the second identity, we use also that Γ(1 + t) = tΓ(t). We find,

22sΓ
(
n−ε

2

)
Γ
(

2s+ε
2

)

Γ
(
ε
2

)
Γ
(
n−2s−ε

2

) = 22s Γ
(
n−ε

2

)
Γ
(

2s+ε
2

)

Γ
(
1 + ε

2

)
Γ
(
n−2s−ε

2

) ε
2

= 22s Γ
(
n
2

)
Γ(s)

Γ(1)Γ
(
n−2s

2

) (1 +O(ε))
ε

2

= 22sΓ
(
n
2

)
sΓ(s)

Γ
(
n−2s

2

)
( ε

2s
+O(ε2)

)

= 22sΓ
(
n
2

)
Γ(1 + s)

Γ
(
n−2s

2

)
( ε

2s
+O(ε2)

)

=
λ0

2s
ε+O(ε2).

Thus, the lemma is proved.

We can now give the proof of our main result.

Proof of Theorem 7.1.1. First, note that when n ≤ 2s the result follows from [253],
since we proved there the result for n < 10s. Thus, from now on we assume n > 2s.

To prove the result for n > 2s we argue by contradiction, that is, we assume that
u∗ is unbounded and we show that this yields λ0 ≤ Hn,s. As we will see, Lemma 7.3.1
plays a very important role in this proof.

Let uλ, with λ < λ∗, be the minimal stable solution to (7.1). Using ψ in the
stability condition (7.5), we obtain

∫

Ω

λeuλψ2 ≤
∫

Ω

ψ(−∆)sψ.

Moreover, ψ2 as a test function for the equation (7.1), we find

∫

Ω

uλ(−∆)s(ψ2) =

∫

Ω

λeuλψ2.

Thus, we have
∫

Ω

uλ(−∆)s(ψ2) ≤
∫

Ω

ψ(−∆)sψ for all λ < λ∗. (7.11)

Next we choose ψ appropriately so that (7.11) combined with Lemma 7.3.1 yield a
contradiction. This function ψ will be essentially a power function |x|−β, as explained
in the Introduction.

Indeed, let ρ0 be small enough so that Bρ0(0) ⊂ Ω. For each small ε > 0, let us
consider a function ψ satisfying

1. ψ(x) = |x| 2s−n+ε2 in Bρ0(0) ⊂ Ω.

2. ψ has compact support in Ω.

3. ψ is smooth in Rn \ {0}.
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Now, since the differences ψ(x) − |x| 2s−n+ε2 and ψ2(x) − |x|2s−n+ε are smooth and
bounded in all of Rn (by definition of ψ), then it follows from Lemma 7.3.2 that

(−∆)sψ(x) ≤ (Hn,s + Cε) |x|
−2s−n+ε

2 + C (7.12)

and
(−∆)s(ψ2)(x) ≥

(
λ0

ε

2s
− Cε2

)
|x|−n+ε − C, (7.13)

where C is a constant that depends on ρ0 but not on ε.
In the rest of the proof, C will denote different constants, which may depend on

ρ0, n, s, Ω, and σ, but not on ε. Here, σ is any given number in (0, 1).
Hence, we deduce from (7.11)-(7.12)-(7.13), that

(
λ0

ε

2s
− Cε2

)∫

Ω

uλ|x|ε−ndx ≤ (Hn,s + Cε)

∫

Ω

|x|ε−ndx+ C. (7.14)

We have used that
∫

Ω
uλ ≤ C uniformly in λ. Since the right hand side does not

depend on λ, we can let λ −→ λ∗ to find that (7.14) holds also for λ = λ∗.
Next, for the given σ ∈ (0, 1), we apply Lemma 7.3.1. Since u∗ is unbounded by

assumption, we deduce that there exists r(σ) > 0 such that

u∗(x) ≥ (1− σ) log
1

|x|2s
in Br(σ).

Thus, we find

(1− σ)
(
λ0

ε

2s
− Cε2

)∫

Br(σ)

|x|ε−n log
1

|x|2s
dx ≤ (Hn,s + Cε)

∫

Ω

|x|ε−ndx+ C. (7.15)

Now, we have

∫

Br(σ)

|x|ε−n log
1

|x|2s
dx = 2s|Sn−1|

∫ r(σ)

0

rε−1 log
1

r
dr

= 2s|Sn−1| (r(σ))ε
1− ε log 1

r(σ)

ε2

≥
{

2s|Sn−1| (r(σ))ε − Cε
} 1

ε2

and ∫

Ω

|x|ε−ndx ≤ |Sn−1|
∫ 1

0

rε−1dr + C = |Sn−1|1
ε

+ C.

Therefore, by (7.15),

(1− σ)
(
λ0

ε

2s
− Cε2

){
2s|Sn−1| (r(σ))ε − Cε

} 1

ε2
≤ (Hn,s + Cε) |Sn−1|1

ε
+ C.

Hence, multiplying by ε and rearranging terms,

(1− σ)λ0 (r(σ))ε ≤ Hn,s + Cε.
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Letting now ε→ 0 (recall that σ ∈ (0, 1) is an arbitrary given number), we find

(1− σ)λ0 ≤ Hn,s.

Finally, since this can be done for each σ ∈ (0, 1), we deduce that

λ0 ≤ Hn,s,

a contradiction.

Remark 7.3.3. Note that in our proof of Theorem 7.1.1 the exterior condition u ≡ 0 in
Rn \Ω plays no role. Thus, the same result holds true for (7.1) with any other exterior
condition u = g in Rn \ Ω.

On the other hand, note that the nonlinearity f(u) = eu plays a very important
role in our proof. Indeed, to establish (7.11) we have strongly used that f ′(u) = f(u),
since we combined the stability condition (in which f ′(u) appears) with the equation
(in which only f(u) appears). It seems difficult to extend our proof to the case of more
general nonlinearities. Even for the powers f(u) = (1 + u)p, it is not clear how to do
it.



IIIPart Three

ISOPERIMETRIC
INEQUALITIES WITH

DENSITIES





Introduction to Part III

In this last part of the thesis we study weighted Sobolev and isoperimetric inequalities.
Let us first recall what is an isoperimetric problem with a weight —also called

density. Given a weight w (that is, a positive function w), one wants to character-
ize minimizers of the weighted perimeter

∫
∂E
w among those sets E having weighted

volume
∫
E
w equal to a given constant. A set solving the problem, if it exists, is

called an isoperimetric set (or simply a minimizer). This question, and the associated
isoperimetric inequalities with weights, have attracted much attention recently; see for
example [222], [207], [98], [134], and the nice survey [218].

An important motivation for studying such isoperimetric inequalities with weights
are their applications to Analysis and PDEs [162, 204, 49], in Geometry [91, 218, 221],
and in Probability [194, 32].

As explained in Part II, while studying reaction-diffusion equations we were led to
some Sobolev and isoperimetric inequalities with monomial weights. More precisely,
by using the stability property of solutions u we obtained control on some integrals of
the form ∫

Ω2

(
s−αu2

s + t−βu2
t

)
dsdt,

where Ω2 ⊂ (R+)2 and u ≡ 0 on ∂Ω2 ∩ (R+)2 (note that u may not vanish on the axes
of the s-t plane). From this, we wanted to deduce an Lp bound for u.

After the change of variables σ = s2+α, τ = t2+β, the problem transforms into the
following: given nonnegative a and b, find the largest exponent q > 2 for which the
weighted inequality

(∫

Ω̃2

σaτ b|u|qdσdτ
)1/q

≤ C

(∫

Ω̃2

σaτ b|∇u|2dσdτ
)1/2

(7.16)

holds for all smooth functions u vanishing on ∂Ω̃2 ∩ (R+)2. These weights are not in
the Muckenhoupt class and the inequality (7.16) had not been proved in the literature.

In Chapter 5 of Part II (the work on domains of double revolution), we already es-
tablished this embedding in (R+)2 by proving first a weighted isoperimetric inequality.
However, we did not find there its best constant, neither the extremal functions. In
this Part III we accomplish this (also in the corresponding isoperimetric inequalities)
not only in dimension 2 as above, but also in all dimensions n ≥ 1, and also for all
exponents p in the right hand side |∇u|p. More precisely, in Chapter 8 we establish
the following Sobolev inequality with monomial weights.

Theorem 6. Let n ≥ 1, and let us consider a monomial weight of the form xA =
|x1|A1 · · · |xn|An with every Ai ≥ 0 a real number.

Let D = n+ A1 + · · ·+ An, and let also

Rn
∗ = {x ∈ Rn : xi > 0 for all i such that Ai > 0}. (7.17)
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Then, for each 1 ≤ p < D, we have

(∫

Rn∗
xA|u|p∗dx

)1/p∗

≤ Cp

(∫

Rn∗
xA|∇u|pdx

)1/p

, (7.18)

where p∗ = pD
D−p .

We also obtain an explicit expression for the best constant Cp in inequality (7.18),
as well as extremal functions for which the best constant is attained.

For p > D and p = D, we prove weighted versions of the classical Morrey and
Trudinger inequalities, respectively.

The proof of inequality (7.18) is based on a new weighted isoperimetric inequality,

(∫

E

xAdx

)D−1
D

≤ C

∫

∂E

xAdσ(x) for all E ⊂ Rn
∗ ,

with the optimal constant C depending on n,A1, ..., An. Note that the part ∂E ∩ ∂Rn
∗

has zero weighted perimeter, since xA vanishes on ∂Rn
∗ . We establish it by adapting

a proof of the classical Euclidean isoperimetric inequality due to X. Cabré. Our proof
uses a linear Neumann problem for the operator x−Adiv(xA∇ · ) combined with the
Alexandroff contact set method (or ABP method). The best constant is attained
by domains of the form E = BR(0) ∩ Rn

∗ —recall that Rn
∗ is defined by (7.17). In

other words, this solves the isoperimetric problem in Rn for monomial weights w(x) =
|x1|A1 · · · |xn|An .

The solution to the isoperimetric problem in Rn with a weight w is known only for
few weights, even in the case n = 2. For example, in Rn with the Gaussian weight
w(x) = e−|x|

2
all the minimizers are half-spaces [32, 96], and with w(x) = e|x|

2
all

the minimizers are balls centered at the origin [247]. For more general radial weights
w(|x|) in Rn, the log-convex density conjecture states that balls about the origin are
isoperimetric whenever logw(r) is convex. The conjecture is sustained by the fact
that the convexity of logw(r) is equivalent to the stability of balls about the origin.
The conjecture was formulated in 2006 [247], and remained open for some years —see
[207, 134, 185] for some partial results on this problem. It has been recently solved by
Chambers [84].

Other isoperimetric problems with radial weights w(|x|) have also been solved. In
the plane (n = 2) with the homogeneous weight |x|α, the minimizers depend on the
values of α. On the one hand, Carroll-Jacob-Quinn-Walters [82] showed that when
α < −2 all minimizers are R2 \ Br(0), r > 0, and that when −2 ≤ α < 0 minimizers
do not exist. On the other hand, when α > 0 Dahlberg-Dubbs-Newkirk-Tran [104]
proved that all minimizers are circles passing through the origin (in particular, not
centered at the origin).

Hence, radial homogeneous weights may lead to nonradial minimizers. Our isoperi-
metric inequality with monomial weights w(x) = |x1|A1 · · · |xn|An gives a nontrivial
example in which the contrary happens: nonradial weights lead to radial minimizers.

In Chapter 9 we study more general isoperimetric problems with densities. We
obtain a family of sharp isoperimetric inequalities with homogeneous weights in con-
vex cones Σ ⊂ Rn. We prove that Euclidean balls centered at the origin solve the
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isoperimetric problem in any open convex cone Σ of Rn (with vertex at the origin) for
a whole class of nonradial homogeneous weights. More precisely, our main result reads
as follows.

Theorem 7. Let Σ ⊂ Rn be any open convex cone. Let w be continuous, positively
homogeneous of degree α ≥ 0, and such that w1/α is concave in the cone Σ. Then,

Pw(E; Σ)

w(E ∩ Σ)
D−1
D

≥ Pw(B1; Σ)

w(B1 ∩ Σ)
D−1
D

for all sets E with finite measure, where D = n+ α.

Here, w(E ∩Σ) and Pw(E; Σ) denote the weighted volume and weighted perimeter
of the set E inside Σ, that is,

w(E ∩ Σ) =

∫

Ω∩Σ

w(x)dx and

∫

∂E∩Σ

w(x)dS.

Note that the part of the boundary of E that lies on the boundary of the cone ∂Σ is
not counted.

When w ≡ 1, this inequality is known as the Lions-Pacella isoperimetric inequality
in convex cones [200]. On the other hand, when w is a monomial weight and Σ = Rn

∗ ,
we recover our isoperimetric inequality with monomial weights.

As before, the proof of this result consists of applying the ABP method to a linear
Neumann problem involving now the operator w−1div(w∇u), where w is the weight.
More precisely, we essentially solve the following Neumann problem in E ⊂ Σ





w−1div(w∇u) = bE in E

∂u

∂ν
= 1 on ∂E ∩ Σ

∂u

∂ν
= 0 on ∂E ∩ ∂Σ,

(7.19)

where the constant bE is chosen, after integrating by parts, so that the problem ad-
mits a solution (bE depends only on weighted perimeter and volume of E). If u is C1

up to the boundary ∂E —which is not always the case, and this leads to technical
difficulties—, then by touching the graph of u by below with planes (as in the ABP
method) we find that B1 ∩ Σ ⊂ ∇u(E). From this, using the area formula, an appro-
priate weighted geometric-arithmetic means inequality, and the concavity condition on
the weight w, we deduce our weighted isoperimetric inequality. Since the solution of
(7.19) is u(x) = 1

2
|x|2 when E = B1∩Σ, in this radial case all the chain of inequalities

in our proof become equalities, and this yields the sharpness of the constant in our
inequality.

We also solve weighted anisotropic isoperimetric problems in cones for the same
class of weights. In these anisotropic problems, the perimeter of a smooth domain E
is given by ∫

∂E∩Σ

H(ν(x))w(x)dS,
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where ν(x) is the unit outward normal to ∂E at x, and H is a nonnegative, positively
homogeneous of degree one, and convex function. For these problems, we prove that
the Wulff set

W =
{
x ∈ Rn : x · ν < H(ν) for all ν ∈ Sn−1

}

is the minimizer of the weighted anisotropic quotient. In particular, the solution of
such weighted isoperimetric problems does not depend on the weight w. For the
unweighted case w ≡ 1, this anisotropic isoperimetric problem is known as the Wulff
inequality, and was established by Taylor [284, 285] in 1974.

It is worth saying that our proof of Theorem 7 follows a totally different approach
from those of Lions-Pacella [200] and Taylor [284, 285]. Thus, as a particular case
of our results of Chapter 9, we provide with new proofs of both the isoperimetric
inequality in convex cones of Lions-Pacella and of the Wulff inequality.



8Chapter Eight

SOBOLEV AND ISOPERIMETRIC
INEQUALITIES WITH MONOMIAL

WEIGHTS

We consider the monomial weight |x1|A1 · · · |xn|An in Rn, where Ai ≥ 0 is a real number
for each i = 1, ..., n, and establish Sobolev, isoperimetric, Morrey, and Trudinger
inequalities involving this weight. They are the analogue of the classical ones with
the Lebesgue measure dx replaced by |x1|A1 · · · |xn|Andx, and they contain the best or
critical exponent (which depends on A1, ..., An). More importantly, for the Sobolev
and isoperimetric inequalities, we obtain the best constant and extremal functions.

When Ai are nonnegative integers, these inequalities are exactly the classical ones in
the Euclidean space RD (with no weight) when written for axially symmetric functions
and domains in RD = RA1+1 × · · · × RAn+1.

8.1 Introduction and results

In this paper we establish Sobolev, Morrey, Trudinger, and isoperimetric inequalities
in Rn with the weight xA, where A = (A1, ..., An) and

xA := |x1|A1 · · · |xn|An , A1 ≥ 0, ..., An ≥ 0. (8.1)

They were announced in our previous article [49]. In fact, their interest and appli-
cations arose in [49], where we had n = 2 in (8.1). In that paper we studied the
regularity of stable solutions to reaction-diffusion problems in bounded domains of
double revolution in RN . That is, domains of RN which are invariant under rotations
of the first m variables and of the last N −m variables, i.e.,

Ω = {(x1, x2) ∈ Rm × RN−m : (s = |x1|, t = |x2|) ∈ Ω2},

where Ω2 ⊂ (R+)2 is a bounded domain.
The first step towards the results in [49] consisted of obtaining bounds for some

integrals of the form ∫

Ω2

{
s−αu2

s + t−βu2
t

}
ds dt,

where u is any stable solution and s and t are, as above, the two radial coordinates
describing Ω. Then, from this bound we needed to deduce that u ∈ Lq(Ω), with q as
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large as possible. After a change of variables of the form s = σγ1 , t = τ γ2 , what we
needed to establish is the following Sobolev inequality. Given a > −1 and b > −1,
find the greatest exponent q for which

(∫

Ω̃2

σaτ b|u|qdσdτ
)1/q

≤ C

(∫

Ω̃2

σaτ b|∇u|2dσdτ
)1/2

holds for all smooth functions u vanishing on ∂Ω̃2 ∩ (R+)2, where Ω̃2 = {(σ, τ) ∈
(R+)2 : (s = σγ1 , t = τ γ2) ∈ Ω2} is an arbitrary bounded domain of (R+)2.

On the one hand, we obtained that u ∈ L∞(Ω̃2) whenever the right hand side is
finite for some a, b with a+ b < 0. On the other hand, in case a+ b > 0 we established
the following.

Throughout the paper, C1
c (Rn) denotes the space of C1 functions with compact

support in Rn.

Proposition 8.1.1 ([49]). Let a and b be real numbers such that

a > −1, b > −1, and a+ b > 0.

Let u be a nonnegative C1
c (R2) function such that

uσ ≤ 0 and uτ ≤ 0 in {σ > 0, τ > 0}. (8.2)

with strict inequalities in the set {u > 0}. Then, there exists a constant C, depending
only on a and b, such that

(∫

{σ>0, τ>0}
σaτ b|u|2∗dσdτ

)1/2∗

≤ C

(∫

{σ>0, τ>0}
σaτ b|∇u|2dσdτ

)1/2

, (8.3)

where 2∗ = 2D
D−2

and D = a+ b+ 2.

In [49] we also obtained Sobolev inequalities with other powers |∇u|p, 1 ≤ p < D.
By a standard scaling argument one sees that the exponent 2∗ = 2D

D−2
in (8.3) is

optimal, in the sense that (8.3) can not hold with any other exponent larger than this
one. In addition, when a < 0 or b < 0 inequality (8.3) is not valid without assumption
(8.2); see Remark 8.3.3 for more details.

Remark 8.1.2. When a and b are positive integers, inequality (8.3) is exactly the
classical Sobolev inequality in RD = Ra+1 × Rb+1 for functions which are radially
symmetric on the first a+ 1 variables and on the last b+ 1 variables.

Indeed, for each z ∈ RD write z = (z1, z2), with z1 ∈ Ra+1 and z2 ∈ Rb+1, and
define (σ, τ) = (|z1|, |z2|) ∈ {σ ≥ 0, τ ≥ 0}. Now, for each function u in (R+)2 we
define ũ(z) = u(|z1|, |z2|). We have that |∇zũ| = |∇(σ,τ)u|. Moreover, an integral over
RD of a function depending only on |z1| and |z2| can be written as an integral in (R+)2

with dz = ca,bσ
aτ bdσdτ for some constant ca,b. Therefore, writing in the coordinates

(σ, τ) the classical Sobolev inequality in RD for the function ũ, we obtain the validity
of (8.3). Note that if a > 0 and b = 0 then we obtain the inequality in {σ > 0} instead

of {σ > 0, τ > 0}, that is,
(∫
{σ>0} σ

a|u|2∗dσdτ
)1/2∗

≤ C
(∫
{σ>0} σ

a|∇u|2dσdτ
)1/2

—

and this motivates definition (8.4) below in the case of a general monomial xA.
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The same argument as in the previous remark, but now with multiple axial sym-
metries, shows the following. When A1, ..., An are nonnegative integers, the Sobolev,
isoperimetric, Morrey, and Trudinger inequalities with the monomial weight

xA = |x1|A1 · · · |xn|An

are exactly the classical ones in

RA1+1 × · · · × RAn+1

when written in radial coordinates for functions which are radially symmetric with
respect to the first A1 + 1 variables, also with respect to the next A2 + 1 variables, and
so on until radial symmetry with respect to the last An + 1 variables.

The aim of this paper is to extend inequality (8.3) in R2 to the case of Rn with
any weight of the form (8.1), i.e., of the form xA = |x1|A1 · · · |xn|An . When Ai are
nonnegative real numbers, we prove that this weighted Sobolev inequality holds for
any function u ∈ C1

c (Rn) — and thus assumption (8.2) is not necessary. We obtain also
Sobolev inequalities with |∇u|2 replaced by other powers |∇u|p. More importantly,
we find the best constant and extremal functions in these inequalities. For this, a
crucial ingredient is a new isoperimetric inequality involving the weight xA and with
best constant. This is Theorem 8.1.4 below, a main result of this paper. In addition,
we prove Morrey and Trudinger type inequalities involving the monomial weight. All
these results were announced in our previous paper [49].

The first result of the paper is the Sobolev inequality with a monomial weight, and
reads as follows. Here, and in the rest of the paper, we denote

Rn
∗ = {(x1, ..., xn) ∈ Rn : xi > 0 whenever Ai > 0} (8.4)

and
B∗r = Br(0) ∩ Rn

∗ .

For each 1 ≤ p < ∞, let W 1,p
0 (Rn, xAdx) be the closure of the space of C1

c (Rn) under

the norm
(∫

Rn x
A(|u|p + |∇u|p)dx

)1/p
.

Theorem 8.1.3. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
1 ≤ p < D be a real number. Then,

(a) There exists a constant Cp such that for all u ∈ C1
c (Rn),

(∫

Rn∗
xA|u|p∗dx

) 1
p∗
≤ Cp

(∫

Rn∗
xA|∇u|pdx

) 1
p

, (8.5)

where p∗ = pD
D−p and xA is given by (8.1).

(b) The best constant Cp is given by the explicit expression (8.31)-(8.32). When
p = 1, this constant is not attained in W 1,1

0 (Rn, xAdx). Instead, when 1 < p < D
it is attained in W 1,p

0 (Rn, xAdx) by the functions

ua,b(x) =
(
a+ b|x|

p
p−1

)1−D
p
, (8.6)

where a and b are any positive constants.
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Note that the exponent p∗ is exactly the same as in the classical Sobolev inequality,
but in this case the “dimension” is given by D instead of n. Note also that when
A1 = ... = An = 0 then D = n and (8.5) is exactly the classical Sobolev inequality.
As before, a scaling argument shows that the exponent p∗ is optimal, in the sense that
(8.5) can not hold with any other exponent.

Note that the integrals in (8.5) are computed over Rn
∗ but the functions u involved

need not vanish on the coordinate hyperplanes on ∂Rn
∗ . Let us mention that ua,b are

extremal functions for inequality (8.5), but we do not know if these are all extremal
functions for the inequality — except in the case when all Ai are integers.

The Sobolev inequalities in all of Rn follow easily (without the best constant) from
the ones in Rn

∗ by applying them at most 2n times (one for each hyperoctant of Rn,
that is, for each set {εixi > 0, i = 1, ..., n}, where εi ∈ {−1, 1}) and adding up the
obtained inequalities. Consider now functions u ∈ C1

c (Rn) that are even with respect
to those variables xi for which Ai > 0. They arise naturally in nonlinear problems in
RD whenever D is an integer (see [49]). Among these functions, the Sobolev inequality
in all of Rn has also as extremals the functions ua,b in (8.6).

After a change of variables of the form xi = yγii , (8.5) yields new inequalities of the
form

‖u‖Lp∗ (Rn∗ ) ≤ C
n∑

i=1

‖xαii uxi‖Lp(Rn∗ ),

where αi are arbitrary exponents in [0, 1); see Corollary 8.3.5. In these inequalities, the
exponent on the left hand side is given by p∗ = pD

D−p , where D = n+ α1

1−α1
+ · · ·+ αn

1−αn .

When p > 1 and Ai < p − 1 for all i = 1, ..., n, the weight (8.1) belongs to
the Muckenhoupt class Ap, and thus part (a) — without the best constant and for
bounded domains — can be deduced from some classical results on weighted Sobolev
inequalities. Indeed, it follows from a classical result of Fabes-Kenig-Serapioni [126]
that for any bounded domain Ω ⊂ Rn there exists q > p for which ‖u‖Lq(Ω,xAdx) ≤
C‖u‖W 1,p

0 (Ω,xAdx) holds. Moreover, the optimal exponent q = p∗ can be found by using

a result of Hajlasz [166, Theorem 6]. However, in general the monomial weight (8.1)
does not satisfy the Muckenhoupt condition Ap and Theorem 8.1.3 cannot be deduced
from these results on weighted Sobolev inequalities, even without the best constant in
the inequality.

The main ingredient in the proof of Theorem 8.1.3 is a new weighted isoperimetric
inequality with best constant, given by Theorem 8.1.4 below. Let us mention that
if one is willing not to have the best constant in the Sobolev inequality, we give
an alternative and more elementary proof of part (a) of Theorem 8.1.3 under some
additional hypotheses. Namely, we assume Ai > 0 for all i and uxi ≤ 0 in {xi > 0, i =
1, ..., n} — an assumption equivalent to (8.2) in Proposition 8.3 and which suffices for
some applications to nonlinear problems.

The following is the new isoperimetric inequality with a monomial weight.

Theorem 8.1.4. Let A be a nonnegative vector in Rn, xA given by (8.1), and D =
A1 + · · ·+ An + n. Let Ω ⊂ Rn be a bounded Lipschitz domain. Denote

m(Ω) =

∫

Ω

xAdx and P (Ω) =

∫

∂Ω

xAdσ.
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Then,
P (Ω)

m(Ω)
D−1
D

≥ P (B∗1)

m(B∗1)
D−1
D

, (8.7)

where B∗1 = B1(0) ∩ Rn
∗ is the unit ball intersected with Rn

∗ , and Rn
∗ is given by (8.4).

It is a surprising fact that the weight xA is not radially symmetric but still Euclidean
balls centered at the origin (intersected with Rn

∗ ) minimize this isoperimetric quotient.
Recently, these type of isoperimetric inequalities with weights (also called “with

densities”) have attracted much attention; see the nice survey of F. Morgan in the
Notices of the AMS [218]. In a forthcoming paper [52] we will prove new weighted
isoperimetric inequalities in convex cones of Rn that extend Theorem 8.1.4; some of
them have been announced in [51].

Equality in (8.7) holds when Ω = B∗r = Br(0)∩Rn
∗ , where r is any positive number.

We expect these balls centered at the origin intersected with Rn
∗ to be the unique

minimizers of the isoperimetric quotient. However, our proof involves the solution of
an elliptic equation and due to an issue on its regularity we need to regularize slightly
the domain Ω. This is why we can not obtain that B∗r are the unique minimizers of
(8.7). In a future paper [53] (still in progress) we will study the non uniformly elliptic
operator (8.9) below and prove some regularity results in Rn

∗ which may lead to the
characterization of equality in the isoperimetric inequality (8.7).

Remark 8.1.5. Note that, when A 6= 0, the entire balls Br = Br(0) are not minimizers
of the isoperimetric quotient. This is because

P (B∗1)

m(B∗1)
D−1
D

= 2−
k
D

P (B1)

m(B1)
D−1
D

<
P (B1)

m(B1)
D−1
D

,

where k is the number of positive entries in the vector A. However, if we look for the
minimizers of the isoperimetric quotient P (Ω)/m(Ω)

D−1
D among all sets Ω which are

symmetric with respect to each plane {xi = 0} with i such that Ai > 0, then the balls
Br(0) solve this isoperimetric problem.

As explained below in Remark 8.2.2, the fact that P (Ω)/m(Ω)
D−1
D ≥ c for some

constant c > 0 smaller than the one in (8.7) (and hence, nonoptimal) is an interesting
consequence of the isoperimetric inequality in product manifolds of A. Grigor’yan [161].

As said before, our sharp isoperimetric inequality (8.7) is the crucial ingredient
needed to prove Theorem 8.1.3 on the Sobolev inequality, especially part (b) on the best
constant and on extremals. Indeed, we prove part (b) by applying our isoperimetric
inequality with best constant together with two results of Talenti. The first one is
a radial symmetrization result, which applies since our isoperimetric inequality (8.7)
gives the best constant and the sets Br(0) ∩ Rn

∗ are extremal sets for any r > 0.
The second one is a result in dimension 1, which characterizes the minimizers of the
functional

J(u) =

(∫∞
0
rD−1|u′|p

)1/p

(∫∞
0
rD−1|u|p∗

)1/p∗
,

where p∗ = pD
D−p .
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When n = 2 and A1 = 0, our Sobolev and isoperimetric inequalities with best
constant were already obtained by Maderna and Salsa [204] in 1981. Namely, they
proved the sharp isoperimetric inequality in {(x, y) ∈ R2 : y > 0} with weight yk, k >
0, and from it they deduced the Sobolev inequality with weight yk. These inequalities
arose in the study of an elliptic problem which involved the operator y−kdiv(yk∇u)
in {(x, y) ∈ R2 : y > 0}, where k is any positive number. Using symmetrization
techniques and their weighted isoperimetric inequality, they obtained sharp estimates
for the solution of the problem. To prove the isoperimetric inequality with weight yk

they first established the existence of a minimizer for the perimeter functional under
constraint of fixed area, then computed the first variation of this functional, and finally
solved the obtained ODE to deduce that minimizers must be half balls. Their result
can be seen as a particular case of Theorem 8.1.4 by setting n = 2 and A1 = 0. Our
proof of the weighted isoperimetric inequality will be completely different from the one
in [204], as explained next.

The proof of Theorem 8.1.4 follows the ideas introduced by the first author in a
new proof of the classical isoperimetric inequality; see [40, 41] or the last edition of
Chavel’s book [91]. It is quite surprising (and fortunate) that this proof (which gives
the best constant) can be adapted to the case of monomial weights.

The proof of the classical isoperimetric inequality from [40, 41] considers the linear
problem {

∆u = c in Ω
∂u
∂ν

= 1 on ∂Ω,
(8.8)

where c is the unique constant for which the problem has a solution. Then, one uses
an argument similar to the Alexandroff-Bakelman-Pucci method (also called ABP
method; see for example [157]) applied to this solution u. Using this argument and
the classical inequality between the arithmetic mean (AM) and the geometric mean
(GM), the isoperimetric inequality follows. When Ω = B1, the solution of (8.8) is
u(x) = |x|2/2 and all inequalities in the proof become equalities. Here we consider a
similar problem to (8.8) but where the Laplacian is replaced by the operator

x−Adiv(xA∇u) = ∆u+ A1
ux1
x1

+ · · ·+ An
uxn
xn

. (8.9)

Now, using the same ABP argument with this new problem and a weighted version of
the AM-GM inequality, we obtain (8.7). An essential fact in our proof (and this is why
B1(0)∩Rn

∗ is the minimizer) is that the function u(x) = |x|2/2 also solves the equation
x−Adiv(xA∇u) = c for some constant c > 0. In addition, it has normal derivative
uν = 1 on ∂B1, as in problem (8.8).

When A1, ..., An are nonnegative integers, the operator (8.9) is the Laplacian in
the space RD = RA1+1× · · ·×RAn+1 written in radial coordinates. Thus, if instead Ai
are not integers, (8.9) can be seen as some kind of Laplacian in a fractional dimension
D. This class of operators was studied by A. Weinstein and others for n = 2, and the
theory on these equations is called “Generalized Axially Symmetric Potential Theory”;
see for example [298]. In case A1 = · · · = An−1 = 0 and An = a ∈ (−1, 1), the operator
x−Adiv(xA∇u) appears in the re-interpretation of the fractional Laplacian as a local
problem in one higher dimension; see [69].
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The paper [174] by Ivanov and Nazarov establishes some weighted Sobolev inequal-
ities for W 1,p functions with multiple radial symmetries — a space of functions denoted
by W 1,p

sym. Their result is related to ours in the case in which all the exponents Ai are
nonnegative integers. They prove that for functions with multiple radial symmetries
in RD, the embedding W 1,p

sym(B1) ⊂ Lq(B1; |x|α), with p < D and α > 0, holds for
some exponents q depending on α that are greater than p∗ = pD/(p−D).

Some theorems of trace and interpolation type for functional spaces with weights
of the form (8.1) were proved by A. Cavallucci [83] in 1969. Namely, he established
some inequalities of the form

‖Dλf‖Lp((R+)m×{0},yBdy) ≤ C
(
‖f‖Lp((R+)n,xAdx) + ‖Dlf‖Lp((R+)n,xAdx)

)
,

where m ≤ n, yB = yB1
1 · · · yBmm and xA = xA1

1 · · ·xAnn are two monomial weights, and λ
and l are multiindices satisfying a certain condition involving A, B, m, n, and p. Note
that in these inequalities the exponent p is the same in both sides, and thus they are
not Sobolev-type inequalities. To obtain his results, the author used a representation
of Dλf in terms of integral transforms of Dlf .

The third result of our paper is the weighted version of the Morrey inequality,
which reads as follows.

Theorem 8.1.6. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
p > D be a real number. Then, there exists a constant C, depending only on p and D,
such that

sup
x 6=y, x, y∈Rn∗

|u(x)− u(y)|
|x− y|α

≤ C

(∫

Rn∗
xA|∇u|pdx

)1/p

(8.10)

for all u ∈ C1
c (Rn), where α = 1− D

p
.

As a consequence, if Ω ⊂ Rn is a bounded domain and u ∈ C1
c (Ω) then

sup
Ω
|u| ≤ C diam(Ω)1−D

p

(∫

Ω

xA|∇u|pdx
)1/p

. (8.11)

This weighted Morrey inequality will be deduced from the bound

|u(y)− u(0)| ≤ C

∫

B∗r

|∇u(x)|
|x|D−1

xAdx, (8.12)

which holds for each y ∈ B∗r/2, Recall that we denote B∗r = Br(0) ∩Rn
∗ . This bound is

well known for A = 0 and D = n; see for example Lemma 7.16 in Gilbarg-Trudinger
[157]. We prove (8.12) in two steps. First, we show that it suffices to prove it for
integers Ai, i = 1, ..., n. Then, we deduce the integer case from the classical one A = 0
with an argument as in Remark 8.1.2.

The next result is the weighted version of the classical Trudinger inequality.

Theorem 8.1.7. Let A be a nonnegative vector in Rn, D = A1 + · · · + An + n, and
Ω ⊂ Rn be a bounded domain. Then, for each u ∈ C1

c (Ω),

∫

Ω

exp

{(
c1|u|

‖∇u‖LD(Ω,xAdx)

) D
D−1

}
xAdx ≤ C2m(Ω),

where m(Ω) =
∫

Ω
xAdx, and c1 and C2 are constants depending only on D.
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Our proof of this result is based on a bound for the best constant (8.32) in the
weighted Sobolev inequality as p goes to D. Then, the Trudinger inequality will follow
by expanding exp(·) as a power series and applying the weighted Sobolev inequality
to each term of the series. The obtained series is convergent thanks to the mentioned
bound for the best constant (8.32).

Finally, adding up the results of Theorems 8.1.3, 8.1.6, and 8.1.7 we obtain the
following continuous embeddings, which are weighted versions of the classical Sobolev
embeddings.

Recall that the Orlicz space Lϕ(X, dµ) is defined as the space of measurable func-
tions u : X → R such that

‖u‖Lϕ(X,dµ) = inf

{
K > 0 :

∫

X

ϕ

(
|u|
K

)
dµ ≤ 1

}

is finite. Setting ϕ(t) = tp we recover the definition of the Lp spaces.

Corollary 8.1.8. Let A be a nonnegative vector in Rn, xA be given by (8.1), and
D = A1 + · · · + An + n. Let k ≥ 1 be an integer and p ≥ 1 be a real number. Then,
for any bounded domain Ω ⊂ Rn we have the following continuous embeddings:

(i) If kp < D then
W k,p

0 (Ω, xAdx) ⊂ Lq(Ω, xAdx),

where q is given by 1
q

= 1
p
− k

D
.

(ii) If kp = D then
W k,p

0 (Ω, xAdx) ⊂ Lϕ(Ω, xAdx),

where
ϕ(t) = exp

(
t

D
D−1

)
− 1.

(iii) If kp > D then
W k,p

0 (Ω, xAdx) ⊂ Cr,α(Ω),

where r = k − [D
p

]− 1, and α = [D
p

] + 1− D
p

whenever D
p

is not an integer, or α
is any positive number smaller than 1 otherwise.

The paper is organized as follows. In section 2 we give the proof of the weighted
isoperimetric inequality. Section 3 establishes the weighted Sobolev inequalities, while
in section 4 we obtain their best constants and extremal functions. Section 5 deals with
the weighted Morrey inequality. Finally, in section 6 we prove the weighted Trudinger
inequality and Corollary 8.1.8.

8.2 Proof of the Isoperimetric inequality

In this section we prove the isoperimetric inequality with a monomial weight. Our
proof extends the one of the classical isoperimetric inequality due to the first author
[40, 41] (see also the last edition of [91]). In fact, setting A = 0 in the following proof
we obtain exactly the original one. It is quite surprising (and fortunate) that this proof
(which gives the best constant) can be adapted to the case of monomial weights. A
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crucial fact in being able to obtain the sharp constant in the isoperimetric inequality
is that

u(x) = |x|2/2,
x ∈ B1 ∩ Rn

∗ , is the solution of



÷(xA∇u) = bΩx

A in Ω

xA
∂u

∂ν
= xA on ∂Ω,

(8.13)

for some constant bΩ > 0 when Ω = B1 ∩ Rn
∗ .

In a forthcoming paper [52] we will use similar ideas to prove new sharp isoperi-
metric inequalities with homogeneous weights in open convex cones Σ of Rn. We have
already announced some of them in [51]. Note that monomial weights are homoge-
neous functions in the convex cone Σ = Rn

∗ . In fact, the results in [52] extend the
present isoperimetric inequality with a monomial weight.

Proof of Theorem 8.1.4. By symmetry, we can assume that A = (A1, ..., Ak, 0, ..., 0),
with Ai > 0 for i = 1, ..., k, where 0 ≤ k ≤ n.

Moreover, we can also suppose that Ω is contained in Rn
∗ . Indeed, split the domain

Ω in at most 2k disjoint subdomains Ωj, j = 1, ..., J , each one of them contained in
the cone {εixi > 0, i = 1, ..., k} for different εi ∈ {−1, 1}, and with Ω = Ω1 ∪ · · · ∪ΩJ .
Then, since the weight is zero on {xi = 0} for each i = 1, ..., k, we have that P (Ω) =∑J

j=1 P (Ωj) and m(Ω) =
∑J

j=1m(Ωj). Therefore

P (Ω)

m(Ω)
D−1
D

≥ min
1≤j≤J

{
P (Ωj)

m(Ωj)
D−1
D

}
=:

P (Ωj0)

m(Ωj0)
D−1
D

,

with strict inequality unless J = 1. After some reflections, we may assume that
Ωj0 ⊂ Rn

∗ . Moreover, since Ωj0 is the intersection of a Lipschitz domain of Rn with
Rn
∗ , Ωj0 can be approximated in weighted area and perimeter by smooth domains Ωε

with Ωε ⊂ Ωj0 ⊂ Rn
∗ .

Therefore, from now on we assume:

Ω is smooth and Ω ⊂ Rn
∗ .

In particular, xA ≥ c in Ω for some positive constant c.
Let u be a solution of the Neumann problem




÷(xA∇u) = bΩx

A in Ω

∂u

∂ν
= 1 on ∂Ω,

(8.14)

where the constant bΩ is chosen so that the problem has a unique solution up to an
additive constant, i.e.,

bΩ =
P (Ω)

m(Ω)
. (8.15)

Since the equation in (8.14),

x−A ÷ (xA∇u) = ∆u+
A1

x1

ux1 + · · ·+ An
xn
uxn = bΩ (8.16)
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is uniformly elliptic in Ω, u is smooth in Ω. The C1,1 regularity of u up to Ω will be
crucial in the rest of the proof.

The following comment is not necessary to complete the proof, but it is useful to
notice it here. Problem (8.14) is equivalent to (8.13) since ∂Ω ⊂ Rn

∗ . At the same
time, when Ω = B∗1 = B1 ∩ Rn

∗ the solution to (8.13) is given by u(x) = |x|2/2, and
we will have that all inequalities in the rest of the proof are equalities for Ω = B∗1 (see
Remark 8.2.1 for more details).

Coming back to the solution u of (8.14), consider the lower contact set of u, defined
by

Γu = {x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y − x) for all y ∈ Ω}.

It is the set of points where the tangent hyperplane to the graph of u lies below u in
all Ω. Define also

Γ∗u = {x ∈ Γu : ux1(x) > 0, ..., uxk(x) > 0} = Γu ∩ (∇u)−1(Rn
∗ ).

We claim that

B∗1 ⊂ ∇u(Γ∗u), (8.17)

where B∗1 = B1(0) ∩ Rn
∗ .

To show (8.17), take any p ∈ Rn satisfying |p| < 1. Let x ∈ Ω be a point such that

min
y∈Ω
{u(y)− p · y} = u(x)− p · x

(this is, up to a sign, the Legendre transform of u). If x ∈ ∂Ω then the exterior
normal derivative of u(y) − p · y at x would be nonpositive and hence (∂u/∂ν)(x) ≤
p · ν ≤ |p| < 1, a contradiction with (8.14). It follows that x ∈ Ω and, therefore, that
x is an interior minimum of the function u(y) − p · y. In particular, p = ∇u(x) and
x ∈ Γu. Thus B1 ⊂ ∇u(Γu). Intersecting now both sides of this inclusion with Rn

∗ ,
claim (8.17) follows. It is interesting to visualize geometrically the proof of the claim
(8.17), by considering the graphs of the functions p · y+ c for c ∈ R. These are parallel
hyperplanes which lie, for c close to −∞, below the graph of u. We let c increase and
consider the first c for which there is contact or “touching” at a point x. It is clear
geometrically that x 6∈ ∂Ω, since |p| < 1 and ∂u/∂ν = 1 on ∂Ω.

Now, from (8.17) we deduce

m(B∗1) ≤
∫

∇u(Γ∗u)

pAdp ≤
∫

Γ∗u

(∇u(x))A detD2u(x)dx

=

∫

Γ∗u

(∇u(x))A

xA
detD2u(x)xAdx.

(8.18)

We have applied the area formula to the smooth map ∇u : Γ∗u → Rn, and we have
used that its Jacobian, detD2u, is nonnegative in Γu by definition of this set.

We use now the weighted version of the arithmetic-geometric mean inequality,

wλ11 · · ·wλmm ≤
(
λ1w1 + · · ·+ λmwm
λ1 + · · ·+ λm

)λ1+···+λm
. (8.19)
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Here λi and wi are arbitrary nonnegative numbers. To prove this inequality, take
logarithms on both sides and use the concavity of the logarithm. We apply (8.19) to
the numbers wi = uxi/xi and λi = Ai for i = 1, ..., k, and to the eigenvalues of D2u(x)
and λj = 1 for j = k + 1, ..., k + n. They are all nonnegative when x ∈ Γ∗u. We obtain

(
ux1
x1

)A1

· · ·
(
uxk
xk

)Ak
detD2u ≤

(
A1

ux1
x1

+ · · ·+ Ak
uxk
xk

+ ∆u

A1 + · · ·+ Ak + n

)A1+···+Ak+n

in Γ∗u.

This, combined with (8.16)

A1
ux1
x1

+ · · ·+ Ak
uxk
xk

+ ∆u =
÷(xA∇u)

xA
≡ bΩ,

yields ∫

Γ∗u

(∇u(x))A

xA
detD2u(x)xAdx ≤

∫

Γ∗u

(
bΩ

D

)D
xAdx.

Therefore, by (8.18) and (8.15),

m(B∗1) ≤
(

P (Ω)

Dm(Ω)

)D
m(Γ∗u) ≤

(
P (Ω)

Dm(Ω)

)D
m(Ω).

Thus, we conclude that

Dm(B∗1)
1
D ≤ P (Ω)

m(Ω)
D−1
D

. (8.20)

Finally, an easy computation — using that |x|2/2 solves (8.13) with bΩ = D in
Ω = B∗1 — gives P (B∗1) = Dm(B∗1). Thus,

Dm(B∗1)
1
D = P (B∗1)/m(B∗1)

D−1
D (8.21)

and the isoperimetric inequality (8.7) follows.

Remark 8.2.1. An alternative (and more instructive) way to finish the proof goes as
follows. When Ω = B∗1 we consider u(x) = |x|2/2 and Γu = B∗1 . Now, ∂u/∂ν = 1 is
only satisfied on Rn

∗ ∩∂Ω but, since xA ≡ 0 on ∂Rn
∗ ∩∂Ω, we have bB∗1 = P (B∗1)/m(B∗1)

— as in (8.15). This is because |x|2/2 solves problem ÷(xA∇u) = bΩx
A in Ω, xAuν =

xA on ∂Ω for Ω = B∗1 . For these concrete Ω and u one verifies that all inequalities in the
proof are equalities, and therefore from (8.20) we deduce the isoperimetric inequality
(8.7).

Remark 8.2.2. The fact that P (Ω)/m(Ω)
D−1
D ≥ c for some nonoptimal constant c is an

interesting consequence of the following result of A. Grigor’yan [161] (see also [219]).
We say that a manifold M satisfies the m-isoperimetric inequality if there exists a

positive constant c such that µ(∂Ω) ≥ cµ(Ω)
m−1
m for each Ω ⊂M . In [161], he proved

that if M1 and M2 are manifolds that satisfy the m1-isoperimetric and m2-isoperimetric
inequalities, respectively, then the product manifold M1×M2 satisfies the (m1 +m2)-
isoperimetric inequality. By applying this result to Mi = (R, xAii dxi), this allows us to
reduce the problem to n = 1, and in this case the isoperimetric inequality is easy to
verify.
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8.3 Weighted Sobolev inequality

The aim of this section is to prove the Sobolev inequality with a monomial weight,
that is, part (a) of Theorem 8.1.3.

As in the classical inequality in Rn, we can deduce any weighted Sobolev inequal-
ity from the isoperimetric inequality with the same weight via the coarea formula.
Moreover, if the isoperimetric inequality has the sharp constant then this procedure
gives the optimal constant for the Sobolev inequality when the exponent is p = 1 (see
the following proof and also Remark 8.3.1). This classical argument is valid even on
Riemannian manifolds; see for example [91]. We use it to prove part (a) of Theorem
8.1.3.

Proof of Theorem 8.1.3 (a). We prove first the case p = 1. By density arguments, we
can assume u ≥ 0 and also u ∈ C∞c (Rn). Moreover, by approximation we can suppose
u ∈ C∞c (Rn

∗ ). Indeed, consider ũε = uηε, where ηε ∈ C∞c (Rn
∗ ) is a function satisfying

ηε ≡ 1 in the set {xi > ε whenever Ai > 0} and |∇ηε| ≤ C/ε. Then, it is clear that

‖uηε‖
L

D
D−1 (Rn∗ ,xAdx)

−→ ‖u‖
L

D
D−1 (Rn∗ ,xAdx)

as ε→ 0. Moreover,

‖∇ηε‖L1(Rn∗ ,xAdx) ≤
∑

Ai>0

∫

{0≤xi≤ε}

C

ε
xAdx ≤

∑

Ai>0

CεAi −→ 0,

and thus
‖∇(uηε)‖L1(Rn∗ ,xAdx) −→ ‖∇u‖L1(Rn∗ ,xAdx).

Thus, we now have u ∈ C∞c (Rn
∗ ). For each t ≥ 0, define

{u > t} := {x ∈ Rn
∗ : u(x) > t} and {u = t} := {x ∈ Rn

∗ : u(x) = t}.

By Theorem 8.1.4 and Sard’s Theorem, we have

m({u > t})
D−1
D ≤ C1P ({u > t}) = C1

∫

{u=t}
xAdσ (8.22)

for almost all t (those t for which {u = t} is smooth). Here, C1 is the optimal constant
in (8.7), i.e., recalling (8.21)

C1 =
P (B∗1)

m(B∗1)
D−1
D

= Dm(B∗1)
1
D . (8.23)

Letting χA be the characteristic function of the set A, we have

u(x) =

∫ +∞

0

χ{u(x)>τ}dτ.

Thus, by Minkowski’s integral inequality

(∫

Rn∗
xAu

D
D−1dx

)D−1
D

≤
∫ +∞

0

(∫

Rn∗
χ{u(x)>τ}x

Adx

)D−1
D

dτ

=

∫ +∞

0

m({u > τ})
D−1
D dτ.
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Inequality (8.22), together with the coarea formula, yield

(∫

Rn∗
xAu

D
D−1dx

)D−1
D

≤ c0

∫ +∞

0

∫

{u=t}
xAdσ dτ = c0

∫

Rn∗
xA|∇u|dx,

and the theorem is proved for p = 1.
It remains to prove the case 1 < p < D. Take u ∈ C1

c (Rn), and define v = |u|γ,
where γ = p∗

1∗
. Since, γ > 1, we have v ∈ C1

c (Rn), and we can apply the weighted
Sobolev inequality with exponent p = 1 (proved above) to get

(∫

Rn∗
xA|u|p∗dx

)1/1∗

=

(∫

Rn∗
xA|v|

D
D−1dx

)D−1
D

≤ c0

∫

Rn∗
xA|∇v|dx.

Now, |∇v| = γ|u|γ−1|∇u|, and by Hölder’s inequality we deduce

∫

Rn∗
xA|∇v|dx ≤ C

(∫

Rn∗
xA|∇u|pdx

)1/p(∫

Rn∗
xA|u|(γ−1)p′dx

)1/p′

.

Finally, from the definition of γ and p∗ it follows that

1

1∗
− 1

p′
=

1

p∗
, (γ − 1)p′ = p∗,

and hence, (∫

Rn∗
xA|u|p∗dx

)1/p∗

≤ C

(∫

Rn∗
xA|∇u|pdx

)1/p

.

Remark 8.3.1. Since the constant appearing in (8.22) is optimal, this proof gives the
optimal constant for the weighted Sobolev inequality for p = 1. This is because for
each Lipschitz open set E there exists an increasing sequence of smooth functions
uε → χE, such that ‖∇uε‖L1(Rn∗ ,xAdx) → P (E).

Moreover, for p = 1 it follows from the previous proof (in fact from the use of
Minkowski’s inequality) that if equality is attained by a function u, then all the sets
{u > t} must coincide for t ∈ (0,maxu). That is, the extremal function must be a
characteristic function. This proves that the optimal constant is not attained by any
W 1,1

0 (Rn, xAdx) function for p = 1.

We give now an alternative and short proof of part (a) of Theorem 8.1.3 — without
best constant — under some additional assumptions. Indeed, under the hypotheses
Ai > 0 for all i and uxi ≤ 0 in {xi > 0, i = 1, ..., n}, we establish the weighted Sobolev
inequality (8.5) following the ideas used in [49] to prove the isoperimetric inequality in
dimension n = 2 (without best constant) with the weight σaτ b. The following proof is
much more elementary than the previous one, which used the weighted isoperimetric
inequality. It does not use any elliptic problem nor the coarea formula, and it is
also shorter. However, it does not give the best constant in the inequality, even for
p = 1. The monotonicity hypotheses uxi ≤ 0 in {xi > 0, i = 1, ..., n} are equivalent to
(8.2) in Proposition 8.3. As said before, the weighted Sobolev inequality under these
monotonicity assumptions suffices for some applications to nonlinear problems.
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Proposition 8.3.2. Let A be a positive vector in Rn and 1 ≤ p < D be a real number.
Then, there exists a constant C such that for all u ∈ C1

c (Rn) satisfying

uxi ≤ 0 in (R+)n for i = 1, ..., n, (8.24)

we have (∫

(R+)n
xA|u|p∗dx

)1/p∗

≤ C

(∫

(R+)n
xA|∇u|pdx

) 1
p

,

where p∗ = pD
D−p and D = A1 + · · ·+ An + n.

Proof. It suffices to prove the case p = 1, since the inequality for 1 < p < D follows
from it by applying Hölder’s inequality — see the previous proof of Theorem 8.1.3 (a).

From assumption (8.24), we deduce u ≥ 0 in (R+)n. Now, integrating by parts we
have

∫

(R+)n
xA(|uxi |+ · · ·+ |uxn|)dx = −

∫

(R+)n
xA(ux1 + · · ·+ uxn)dx

=

∫

(R+)n
xAu

(
A1

x1

+ · · ·+ An
xn

)
dx,

and thus ∫

(R+)n
xAu

(
1

x1

+ · · ·+ 1

xn

)
dx ≤ K

∫

(R+)n
xA|∇u|dx, (8.25)

where K =
√
n/miniAi.

Let now λ > 0 be such that
∫

(R+)n
xAu

D
D−1dx = bλD,

where b =
∫
{0≤xi≤1} x

Adx. Here {0 ≤ xi ≤ 1} = {x ∈ Rn : 0 ≤ xi ≤ 1 for i = 1, ..., n}.
We claim that, for each x ∈ (R+)n we have u(x)

1
D−1 ≤ λ

xi
for some i ∈ {1, ..., n}.

Indeed, otherwise there would exist y ∈ (R+)n such that u(y)
1

D−1 > λ
yi

for each i, and
therefore

u(y)
D
D−1 >

λD

yA+1
,

where A + 1 = A + (1, ..., 1) = (A1 + 1, ..., An + 1). But, by (8.24), u(x) ≥ u(y) if
0 ≤ xi ≤ yi for all i = 1, ..., n. We deduce

∫

{0≤xi≤yi}
xAu(x)

D
D−1dx > λD

∫

{0≤xi≤yi}
xAy−A−1dx = λD

∫

{0≤zi≤1}
zAdz = bλD,

a contradiction.
Hence,

u(x)
1

D−1 ≤ λ

(
1

x1

+ · · ·+ 1

xn

)
in (R+)n,
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and therefore
∫

(R+)n
xAu

D
D−1dx ≤ λ

∫

(R+)n
xAu

(
1

x1

+ · · ·+ 1

xn

)
dx. (8.26)

Finally, taking into account the value of λ

λ = b−
1
D

(∫

(R+)n
xAu

D
D−1dx

) 1
D

,

we deduce from (8.26) and (8.25) that

(∫

(R+)n
xAu

D
D−1dx

)D−1
D

≤ b−
1
D

∫

(R+)n
xAu

(
1

x1

+ · · ·+ 1

xn

)
dx

≤ Kb−
1
D

∫

(R+)n
xA|∇u|dx.

This completes the proof and gives as constant Kb−
1
D , computed explicitly within the

proof.

This proof can not be used to establish the classical Sobolev inequality. Indeed,
the constant on the right hand side blows up as Ai → 0 for some i. It is surprising
that the above proof of the Sobolev inequality with the monomial weight xA, A > 0,
seems more elementary than those of the classical Sobolev without weight.

The following remark justifies our assumption A ≥ 0 in the weighted Sobolev
inequality (8.5). It is related to the monotonicity assumption (8.2) in Proposition 8.3.

Remark 8.3.3. When a < 0 or b < 0 inequality (8.3) is not valid without the mono-
tonicity assumption (8.2). To prove it, we only need to take functions u with support
away from the origin, as follows. Assume that a < 0, a+ b > 0 (and thus b > 0), and
that (8.3) holds for functions u with support in the ball B1(x0), with x0 = (2, 0). Then,
since σa is bounded in this ball from above and below by positive constants, the same
inequality holds — with a larger constant C — with the weight σaτ b replaced by τ b.
But, since a < 0, we have q′ := 2D′

D′−2
< 2D

D−2
, where D′ = b+ 2. This is a contradiction

with the fact that the exponent q′ is optimal for the weight τ b (which can be seen by
a scaling argument, i.e., considering the rescaled functions uλ(x) = u(x0 + λ(x− x0)),
with λ ≥ 1). Of course, when a and b are both nonnegative this argument does not
work.

Remark 8.3.4. One can think on adapting the classical proof of the Sobolev inequality
by Gagliardo and Nirenberg (see for example [124]) to the case of monomial weights.
As we show next, this leads to inequality

(∫

Rn
xA|u|

n
n−1dx

)n−1
n

≤
∫

Rn
x
n−1
n
A|∇u|dx, (8.27)

but not to our Sobolev inequality (8.5) with the same weight xA in both integrals. The
constant C (which does not appear) on the right hand side equals 1. To prove (8.27),
one shows first that

|xi|
n−1
n
Ai |u(x)| ≤

∫

R
|yi|

n−1
n
Ai |∇u(x1, ..., xi−1, yi, xi+1, ..., xn)|dyi. (8.28)
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This follows by integrating uyi on (xi,+∞) if xi > 0 and on (−∞, xi) if xi < 0, and
using |xi| ≤ |yi| in these halflines. Then, (8.28) yields

|x1|
A1
n · · · |xn|

An
n |u(x)|

n
n−1 ≤

n∏

i=1

(∫ +∞

−∞
|∇u(x1, ..., yi, ..., xn)||yi|

n−1
n
Aidyi

) 1
n−1

.

Integrating both sides with respect to the measure x
n−1
n
Adx we deduce

∫

Rn
xA|u(x)|

n
n−1dx ≤

∫

Rn

n∏

i=1

(∫ +∞

−∞
|∇u(x1, ..., yi, ..., xn)||yi|

n−1
n
Aidyi

) 1
n−1

x
n−1
n
Adx,

and the proof of (8.27) is completed in the same way as the classical one with the

measures dxi and dyi replaced by dµi(xi) = |xi|
n−1
n
Aidxi and dµi(yi) = |yi|

n−1
n
Aidyi.

Different from (8.5), inequality (8.27) is the Sobolev inequality for the Riemannian
manifold conformal to Rn with conformal factor g = xA. Indeed, the Riemannian
gradient in Rn with this metric is given by ∇Ru = x−

A
n∇u, and hence it holds

x
n−1
n
A|∇u| = xA|∇Ru|.

Moreover, from this Sobolev inequality one can deduce the following isoperimetric
inequality (with nonoptimal constant) on this manifold

(∫

Ω

xAdx

)n−1
n

≤
∫

∂Ω

x
n−1
n
Adσ.

To end this section, we give an immediate consequence of Theorem 8.1.3. Recall
that in [49] we wanted to prove inequality (8.29) for n = 2 and that, after a change of
variables, we saw that it is equivalent to the Sobolev inequality (8.5) with a monomial
weight.

Corollary 8.3.5. Let α1, ..., αn be real numbers such that αi ∈ [0, 1). There exists a
constant C such that for all u ∈ C1

c (Rn),

(∫

Rn∗
|u|p∗dx

) 1
p∗
≤ C

(∫

Rn∗

{
|x1|pα1|ux1|p + · · ·+ |xn|pαn|uxn|p

}
dx

) 1
p

, (8.29)

where p∗ = pD
D−p and D = n+ α1

1−α1
+ · · ·+ αn

1−αn .

Proof. It suffices to make the change of variables yi = x1−αi
i in (8.29) and then apply

Theorem 8.1.3 with Ai = αi
1−αi .

The optimal exponent in (8.29) is p∗ = pD
D−p , as in (8.5). However, in (8.29) the

constant D has no clear interpretation in terms of any “dimension”.
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8.4 Best constant and extremal functions

In this section we obtain the best constant and the extremal functions in the weighted
Sobolev inequality (8.5).

The first step is to compute the measure of the unit ball in Rn
∗ with the weight

xA. From this, we will obtain the optimal constant in the isoperimetric inequality and,
therefore, the optimal constant in Sobolev inequality for p = 1 (see Remark 8.3.1).

Lemma 8.4.1. Let A be a nonnegative vector in Rn and B∗1 = B1(0) ∩ Rn
∗ . Then,

∫

B∗1

xAdx =
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)

2kΓ
(
1 + D

2

) ,

where D = A1 + · · ·+ An + n and k is the number of strictly positive entries of A.

Proof. We will prove by induction on n that

∫

B1

xAdx =
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)

Γ
(
1 + D

2

) ,

where B1 is the unit ball in Rn. After this, the the lemma follows by taking into
account that m(B∗1) = m(B1)/2k.

For n = 1 it is immediate. Assume that this is true for n − 1 and let us prove
it for n. Let us denote x = (x′, xn), A = (A′, An), with x′, A′ ∈ Rn−1, and D′ =
A1 + · · ·+ An−1 + n− 1. Then,

∫

B1

xAdx =

∫ 1

−1

|xn|An
(∫

|x′|≤
√

1−x2n
x′A

′
dx′

)
dxn

=

∫ 1

−1

|xn|An
(

(1− x2
n)

D′
2

∫

|y′|≤1

y′A
′
dy′
)
dxn

=

∫

|y′|≤1

y′A
′
dy′
∫ 1

−1

|xn|An(1− x2
n)

D′
2 dxn,

and hence it remains to compute
∫ 1

−1
|xn|An(1− x2

n)
D′
2 dxn.

Making the change of variables x2
n = t one obtains

∫ 1

−1

|xn|An(1− x2
n)

D′
2 dxn = 2

∫ 1

0

xAnn (1− x2
n)

D′
2 dxn

=

∫ 1

0

t
An−1

2 (1− t)
D′
2 dt

= B

(
An + 1

2
, 1 +

D′

2

)
,

where B is the Beta function. Now, since

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, (8.30)
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then
∫

B1

xAdx =

∫

|y′|≤1

y′A
′
dy′
∫ 1

−1

xAnn (1− x2
n)

D′
2 dxn

=
Γ
(
A1+1

2

)
· · ·Γ

(
An−1+1

2

)

Γ
(
1 + D′

2

) ·
Γ
(
An+1

2

)
Γ
(
1 + D′

2

)

Γ
(
1 + D

2

)

=
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)

Γ
(
1 + D

2

) ,

and the lemma follows.

Now, as in the classical Sobolev inequality, we find the extremal functions in our
weighted Sobolev inequality by reducing it to the radial case. To do this, we use a
weighted version of a rearrangement inequality due to Talenti [282]. His result states
that, whenever balls minimize the isoperimetric quotient with a weight w, there exists
a radial rearrangement (of u) which preserves

∫
f(u)w dx and decreases

∫
Φ(|∇u|)w dx

(under some conditions on Φ). When w = xA, this is stated in the following.

Proposition 8.4.2. Let u be a Lipschitz continuous function in Rn
∗ with compact

support in Rn
∗ . Then, denoting m(E) =

∫
E
xAdx, there exists a radial rearrangement

u∗ of u such that

(i) m({|u| > t}) = m({u∗ > t}) for all t,

(ii) u∗ is radially decreasing,

(iii) for every Young function Φ (i.e., convex and increasing function that vanishes
at 0), ∫

Rn∗
Φ(|∇u∗|)xAdx ≤

∫

Rn∗
Φ(|∇u|)xAdx.

Proof. It is a direct consequence of the main theorem in [282] and our isoperimetric
inequality (8.7).

We can now find the best constant in the weighted Sobolev inequality (8.5). The
proof is based on Proposition 8.4.2, which allows us to reduce the problem to radial
functions in Rn

∗ . Then, the functional that we must minimize is exactly the same as in
the classical Sobolev inequality but with a noninteger exponent D in the 1D weight,
and the proof finishes by applying another result of Talenti in [283].

Proposition 8.4.3. The best constant in the Sobolev inequality (8.5) is given by

C1 = D

(
Γ
(
A1+1

2

)
Γ
(
A2+1

2

)
· · ·Γ

(
An+1

2

)

2kΓ
(
1 + D

2

)
) 1

D

for p = 1 (8.31)

and by

Cp = C1D
1
D
−1− 1

p

(
p− 1

D − p

) 1
p′


 p′Γ(D)

Γ
(
D
p

)
Γ
(
D
p′

)




1
D

for 1 < p < D. (8.32)
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Here, p′ = p
p−1

and k is the number of positive entries in the vector A.

Moreover, this constant is not attained by any function in W 1,1
0 (Rn, xAdx) when

p = 1. Instead, when 1 < p < D this constant is attained in W 1,p
0 (Rn, xAdx) by

ua,b(x) =
(
a+ b|x|

p
p−1

)1−D
p
,

where a and b are arbitrary positive constants.

Before giving the proof of Proposition 8.4.3, we recall Lemma 2 from [283], where
the best constant for the classical Sobolev inequality is obtained.

Lemma 8.4.4 ([283]). Let m, p, and q be real numbers such that

1 < p < m and q =
mp

m− p
.

Let u be any real-valued function of a real variable r, which is Lipschitz continuous
and such that

∫ +∞

0

rm−1|u′(r)|pdr < +∞ and u(r)→ 0 as r → +∞.

Then, (∫ +∞
0

rm−1|u(r)|qdr
) 1
q

(∫ +∞
0

rm−1|u′(r)|pdr
) 1
p

≤

(∫ +∞
0

rm−1|ϕ(r)|qdr
) 1
q

(∫ +∞
0

rm−1|ϕ′(r)|pdr
) 1
p

=: J(ϕ),

where ϕ is any function of the form

ϕ(r) = (a+ brp
′
)1−m

p

with a and b positive constants. Here p′ = p/(p− 1).
Moreover,

J(ϕ) = m−
1
p

(
p− 1

m− p

) 1
p′
[

1

p′
B

(
m

p
,
m

p′

)]− 1
m

,

where B is the Beta function.

We can now give the

Proof of Proposition 8.4.3. For p = 1, the best constant in Sobolev inequality is the
same than in the isoperimetric inequality (see Remark 8.3.1). Recalling (8.23), it is
given by C1 = Dm(B∗1)1/D. Thus, the value of C1 follows from Lemma 8.4.1. That C1

is not attained by any W 1,1
0 (Rn, xAdx) function was explained in Remark 8.3.1.

Let now 1 < p < D, u be a C1(Rn
∗ ) function with compact support in Rn

∗ , and u∗
be its radial rearrangement given by Proposition 8.4.2. Then, by the proposition,

‖∇u∗‖Lp(Rn∗ ,xAdx)

‖u∗‖Lp∗ (Rn∗ ,xAdx)

≤
‖∇u‖Lp(Rn∗ ,xAdx)

‖u‖Lp∗ (Rn∗ ,xAdx)

.
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Moreover,
∫

Rn∗
xA|u∗|p∗dx =

∫ ∞

0

(∫

∂B∗r

xA|u∗|p∗dσ
)
dr

=

∫ ∞

0

rD−1|u∗|p∗
(∫

∂B∗1

xAdσ

)
dr

= P (B∗1)

∫ ∞

0

rD−1|u∗|p∗dr

and, analogously, ∫

Rn∗
xA|∇u∗|pdx = P (B∗1)

∫ ∞

0

rD−1|u′∗|pdr.

Therefore, the best constant in the Sobolev inequality can be computed as

inf
u∈C1

c (Rn)

‖∇u‖Lp(Rn∗ ,xAdx)

‖u‖Lp∗ (Rn∗ ,xAdx)

= P (B∗1)
1
D inf
u∈C1

c (R)

(∫∞
0
rD−1|u′|pdr

)1/p

(∫∞
0
rD−1|u|p∗dr

)1/p∗
,

where we have used that 1
p
− 1

p∗
= 1

D
. Recalling (8.21) and (8.23), we have

P (B∗1)
1
D = D

1
Dm(B∗1)

1
D = D

1
D
−1C1.

The value of Cp follows from Lemma 8.4.4, using (8.31) and (8.30). From Lemma 8.4.4
it also follows that the functions ua,b in (8.6) attain the best constant Cp.

To end this section, we prove part (b) of Theorem 8.1.3.

Proof of Theorem 8.1.3 (b). For p = 1 this was proved in Section 8.3; see Remark
8.3.1. For p > 1 the result is proved in Proposition 8.4.3.

8.5 Weighted Morrey inequality

In this section we prove Theorem 8.1.6. The main ingredient to establish the result is
the following lemma.

Lemma 8.5.1. Let A be a nonnegative vector in Rn and D = A1 + · · ·+An + n. Let
u ∈ C1

c (Rn) and y ∈ Rn
∗ . Then,

|u(y)− u(0)| ≤ C

∫

B∗
2|y|

|∇u(x)|
|x|D−1

xAdx,

where B∗2|y| = B2|y|(0) ∩ Rn
∗ and C is a constant depending only on D.

Proof. By symmetry, we can assume that A = (A1, ..., Ak, 0, ..., 0) with Ai > 0 for all
i = 1, ..., k.

Let us define Bi = dAie (the smallest integer greater than or equal to Ai), B =
(B1, ..., Bn), and N = B1 + · · · + Bk + n. For each Lipschitz function u in Rn, define
ũ in RN = RB1+1 × · · · × RBk+1 × Rn−k as

ũ(X) = u(|X1|, ..., |Xk|, Xk+1),
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with Xi ∈ RBi+1 for i = 1, ..., k and Xk+1 ∈ Rn−k. Notice that ũ ∈ Lip(RN).
We use next the following classical inequality in RN (see for example Lemma 7.16

in [157]). For all X and Y in RN ,

|ũ(Y )− ũ(X)| ≤ C

∫

B2R(X)

|∇ũ(Z)|
|Z|N−1

dZ, (8.33)

where R = |X−Y |. Setting X = 0 in (8.33) and writing the integral over RN in radial
coordinates — as in Remark 8.1.2 —, we deduce

|u(y)− u(0)| ≤ C

∫

B2|y|(0)

|∇ũ(Z)|
|Z|N−1

dZ = C̃

∫

B∗
2|y|

|∇u(z)|
|z|N−1

zBdz. (8.34)

It is important here to have X = 0, otherwise the inequality over RN can not be
written in radial coordinates as an integral over Rn. In addition, we have used also
that R = 2|Y | = 2|y|.

Now, clearly xα = xα1
1 · · ·xαnn ≤ |x|α1+···+αn whenever α is a nonnegative vector in

Rn and x ∈ Rn
∗ . Thus, taking α = B − A we obtain

xB

|x|B1+···+Bk
≤ xA

|x|A1+···+Ak
. (8.35)

Finally, from (8.34) and (8.35) we deduce

|u(y)− u(0)| ≤ C

∫

B∗
2|y|

|∇u(x)|
|x|N−1

xBdx ≤ C

∫

B∗
2|y|

|∇u(x)|
|x|D−1

xAdx,

as desired. Note that we can choose the constant C to depend only on D, since for
each D there exist only a finite number of possible integer values for n,B1, ..., Bn.

As said before, our proof of Lemma 8.5.1 requires to take X = 0, since otherwise
one can not write (8.33) in RN as an inequality in Rn.

We can now give the:

Proof of Theorem 8.1.6. Step 1. We first prove

|u(y)− u(z)|
|y − z|1−

D
p

≤ C

(∫

Rn∗
xA|∇u|pdx

) 1
p

(8.36)

for z = 0. Let y ∈ Rn
∗ and r = 2|y|. By Lemma 8.5.1 and by Hölder’s inequality, we

have that

|u(y)− u(0)| ≤ C

∫

B∗r

|∇u|
|x|D−1

xAdx

≤ C

(∫

B∗r

xA|∇u|pdx
) 1

p
(∫

B∗r

xA

|x|p′(D−1)
dx

) 1
p′

≤ C

(∫

Rn∗
xA|∇u|pdx

) 1
p
(∫ r

0

ρD−1−p′(D−1)dρ

) 1
p′

= C

(∫

Rn∗
xA|∇u|pdx

) 1
p

r1−D
p ,
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where p′ = p/(p − 1) and C denotes different constants depending only on p and D.
Hence, (8.36) is proved for z = 0 and y ∈ Rn

∗ .
Step 2. We now prove (8.36) for y and z in Rn

∗ such that y − z ∈ Rn
∗ . Applying

the inequality proved in Step 1 to the function v(ỹ) = u(ỹ + z), ỹ ∈ Rn, at the point
ỹ = y − z ∈ Rn

∗ , we deduce

|u(y)− u(z)| ≤ C

(∫

z+Rn∗
(x− z)A|∇u(x)|pdx

) 1
p

|y − z|1−
D
p ,

where z+Rn
∗ = {x ∈ Rn : x− z ∈ Rn

∗}. Therefore, since (x− z)A ≤ xA if x and x− z
belong to Rn

∗ , this case of (8.36) follows.
Step 3. We finally prove (8.36) for all y and z in Rn

∗ . Define w ∈ Rn
∗ as wi =

min{yi, zi} for all i. Then, it is clear that y−w ∈ Rn
∗ and z −w ∈ Rn

∗ . Hence, we can
apply the inequality proved in Step 2 to obtain

|u(y)− u(w)| ≤ C

(∫

Rn∗
xA|∇u|pdx

) 1
p

|y − w|1−
D
p

and

|u(z)− u(w)| ≤ C

(∫

Rn∗
xA|∇u|pdx

) 1
p

|z − w|1−
D
p .

Since |y − w|2 + |z − w|2 = |y − z|2, from these two inequalities we deduce that

|u(y)− u(z)| ≤ 2C

(∫

Rn∗
xA|∇u|pdx

) 1
p

|y − z|1−
D
p

for all y, z ∈ Rn
∗ . This finishes the proof of (8.36).

Let us prove now (8.11). Let x0 ∈ Ω ⊂ Rn be such that supΩ |u| = |u(x0)|. After a
finite number of reflections with respect to the coordinate hyperplanes, we may assume
that x0 ∈ Rn

∗ . Call ũ the function u after doing such reflections, defined in the reflected

domain Ω̃. Since ũ ≡ 0 on ∂Ω̃, we have

sup
Ω
|u| · diam(Ω)−1+D

p = |ũ(x0)| · diam(Ω̃)−1+D
p ≤ sup

x, y∈Rn∗

|ũ(x)− ũ(y)|
|x− y|1−

D
p

.

The right hand side of this inequality is now bounded using (8.10). The proof is
finished controlling the integral over Rn

∗ in (8.10) by an integral over Ω ⊂ Rn. This is
needed because of the reflections done initially.

8.6 Weighted Trudinger inequality and proof of Corol-
lary 8.1.8

In this section we prove Theorem 8.1.7 and Corollary 8.1.8. The proof of the weighted
Trudinger inequality is based on a bound for the best constant of the weighted Sobolev
inequality as p goes to D. Then, the result follows by expanding exp(·) as a power series
and using the weighted Sobolev inequality in each term. To prove the convergence of
this series we need the mentioned bound, which is stated in the following result.
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Lemma 8.6.1. Let A be a nonnegative vector in Rn, D = A1 + · · ·+An +n, and p be
such that 1 < p < D. Let Cp be the optimal constant of the Sobolev inequality (8.5),
given by (8.31)-(8.32). Then,

Cp ≤ C0p
1− 1

D
∗ ,

where p∗ = pD
D−p and C0 is a constant which depends only on D.

Proof. The optimal constant is given by

Cp = C1D
1− 1

D
− 1
p

(
p− 1

D − p

) 1
p′


 p′Γ(D)

Γ
(
D
p

)
Γ
(
D
p′

)




1
D

,

where p′ = p/(p− 1) and C1 is a constant which only depends on A and n. It is easy
to see that the constant Cp is bounded as p ↓ 1. Thus, we only have to look at the
limit p ↑ D. It follows from the above expression that

Cp ≤ C(D − p)−
1
p′ ,

where C does not depend on p. Hence, taking into account that 1
p′

= 1− 1
D
− 1

p∗
and

D − p = pD/p∗, we deduce

Cp ≤ C0p
1− 1

D
− 1
p∗

∗ ≤ C0p
1− 1

D
∗ .

Finally, it is easy to see that C1 — which is given by (8.31) — can be bounded by a
constant depending only on D, and therefore we can choose the constant C0 to depend
only on D.

We can now give the:

Proof of Theorem 8.1.7. Let u ∈ C1
c (Ω). From Theorem 8.1.3 and Lemma 8.6.1 we

deduce that ∫

Ω

xA|u|qdx ≤ Cq
0q
q− q

D

(∫

Ω

xA|∇u|
qD
q+D dx

) q+D
D

for each q > 1, where C0 is a constant which depends only on D. Moreover, by Hölder’s
inequality,

∫

Ω

xA|∇u|
qD
q+D dx ≤

(∫

Ω

xAdx

) D
q+D

(∫

Ω

xA|∇u|Ddx
) q

q+D

,

and thus ∫

Ω

xA|u|qdx ≤ m(Ω)Cq
0q
qD−1

D ‖∇u‖q
LD(Ω,xAdx)

. (8.37)

Now, dividing the function u by some constant if necessary, we can assume

‖∇u‖LD(Ω,xAdx) = 1.
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Let c1 be a positive constant to be chosen later. Then, using (8.37) with q = kD
D−1

,
k = 1, 2, 3, ..., we obtain

∫

Ω

exp
{

(c1|u|)
D
D−1

}
xAdx = m(Ω) +

∑

k≥1

c
kD
D−1

1

k!

∫

Ω

|u|
kD
D−1xAdx

≤ m(Ω) +m(Ω)
∑

k≥1

c
kD
D−1

1

k!
(C0)

kD
D−1

(
kD

D − 1

)k

= m(Ω) +m(Ω)
∑

k≥1

kk

k!

(
D

D − 1
(c1C0)

D
D−1

)k
.(8.38)

Choose c1 (depending only on D) satisfying D
D−1

(c1C0)
D
D−1 < 1

e
. Then, by Stirling’s

formula

k! ∼
(
k

e

)k√
2πk,

we deduce that the series (8.38) is convergent, and thus

∫

Ω

exp

{(
c1|u|

‖∇u‖LD(Ω,xAdx)

) D
D−1

}
xAdx ≤ C2m(Ω),

as claimed. Note that the constants c1 and C2 depend only on D.

To end the paper, we give the

Proof of Corollary 8.1.8. It follows from Theorems 8.1.3, 8.1.6, and 8.1.7. For a do-
main Ω ⊂ Rn that is not contained in Rn

∗ , these results need to be applied to the
intersections of Ω with each of the 2k quadrants, where k is the number of positive
entries of the vector A — see the proof of (8.11) in Theorem 8.1.6.



9Chapter Nine

SHARP ISOPERIMETRIC INEQUALITIES
VIA THE ABP METHOD

We prove some old and new isoperimetric inequalities with the best constant using the
ABP method applied to an appropriate linear Neumann problem. More precisely, we
obtain a new family of sharp isoperimetric inequalities with weights (also called den-
sities) in open convex cones of Rn. Our result applies to all nonnegative homogeneous
weights satisfying a concavity condition in the cone. Remarkably, Euclidean balls cen-
tered at the origin (intersected with the cone) minimize the weighted isoperimetric
quotient, even if all our weights are nonradial —except for the constant ones.

We also study the anisotropic isoperimetric problem in convex cones for the same
class of weights. We prove that the Wulff shape (intersected with the cone) minimizes
the anisotropic weighted perimeter under the weighted volume constraint.

As a particular case of our results, we give new proofs of two classical results: the
Wulff inequality and the isoperimetric inequality in convex cones of Lions and Pacella.

9.1 Introduction and results

In this paper we study isoperimetric problems with weights —also called densities.
Given a weight w (that is, a positive function w), one wants to characterize minimizers
of the weighted perimeter

∫
∂E
w among those sets E having weighted volume

∫
E
w equal

to a given constant. A set solving the problem, if it exists, is called an isoperimetric
set or simply a minimizer. This question, and the associated isoperimetric inequalities
with weights, have attracted much attention recently; see for example [222], [207], [98],
[134], and [218].

The solution to the isoperimetric problem in Rn with a weight w is known only for
very few weights, even in the case n = 2. For example, in Rn with the Gaussian weight
w(x) = e−|x|

2
all the minimizers are half-spaces [32, 96], and with w(x) = e|x|

2
all the

minimizers are balls centered at the origin [247]. Instead, mixed Euclidean-Gaussian
densities lead to minimizers that have a more intricate structure of revolution [145].
The radial homogeneous weight |x|α has been considered very recently. In the plane
(n = 2), minimizers for this homogeneous weight depend on the values of α. On the
one hand, Carroll-Jacob-Quinn-Walters [82] showed that when α < −2 all minimizers
are R2\Br(0), r > 0, and that when −2 ≤ α < 0 minimizers do not exist. On the other
hand, when α > 0 Dahlberg-Dubbs-Newkirk-Tran [104] proved that all minimizers are

253
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circles passing through the origin (in particular, not centered at the origin). Note
that this result shows that even radial homogeneous weights may lead to nonradial
minimizers.

Weighted isoperimetric inequalities in cones have also been considered. In these
results, the perimeter of E is taken relative to the cone, that is, not counting the part
of ∂E that lies on the boundary of the cone. In [114] Dı́az-Harman-Howe-Thompson
consider again the radial homogeneous weight w(x) = |x|α, with α > 0, but now in an
open convex cone Σ of angle β in the plane R2. Among other things, they prove that
there exists β0 ∈ (0, π) such that for β < β0 all minimizers are Br(0)∩Σ, r > 0, while
these circular sets about the origin are not minimizers for β > β0.

Also related to the weighted isoperimetric problem in cones, the following is a
recent result by Brock-Chiaccio-Mercaldo [37]. Assume that Σ is any cone in Rn with
vertex at the origin, and consider the isoperimetric problem in Σ with any weight w.
Then, for BR(0) ∩ Σ to be an isoperimetric set for every R > 0 a necessary condition
is that w admits the factorization

w(x) = A(r)B(Θ), (9.1)

where r = |x| and Θ = x/r. Our main result —Theorem 9.1.3 below— gives a sufficient
condition on B(Θ) whenever Σ is convex and A(r) = rα, α ≥ 0, to guarantee that
BR(0) ∩ Σ are isoperimetric sets.

Our result states that Euclidean balls centered at the origin solve the isoperimetric
problem in any open convex cone Σ of Rn (with vertex at the origin) for a certain class
of nonradial weights. More precisely, our result applies to all nonnegative continuous
weights w which are positively homogeneous of degree α ≥ 0 and such that w1/α is
concave in the cone Σ in case α > 0. That is, using the previous notation, w = rαB(Θ)
must be continuous in Σ and rB1/α(Θ) must be concave in Σ. We also solve weighted
anisotropic isoperimetric problems in cones for the same class of weights. In these
weighted anisotropic problems, the perimeter of a domain Ω is given by

∫

∂Ω∩Σ

H(ν(x))w(x)dS,

where ν(x) is the unit outward normal to ∂Ω at x, and H is a positive, positively
homogeneous of degree one, and convex function. Our results were announced in the
recent note [51].

In the isotropic case, making the first variation of weighted perimeter (see [247]),
one sees that the (generalized) mean curvature of ∂Ω with the density w is

Hw = Heucl +
1

n

∂νw

w
, (9.2)

where ν is is the unit outward normal to ∂Ω and Heucl is the Euclidean mean curvature
of ∂Ω. It follows that balls centered at the origin intersected with the cone have
constant mean curvature whenever the weight is of the form (9.1). However, as we
have seen in several examples presented above, it is far from being true that the solution
of the isoperimetric problem for all the weights satisfying (9.1) are balls centered at
the origin intersected with the cone. Our result provides a large class of nonradial



9.1 - Introduction and results 255

weights for which, remarkably, Euclidean balls centered at the origin (intersected with
the cone) solve the isoperimetric problem.

In Section 9.2 we give a list of weights w for which our result applies. Some concrete
examples are the following:

dist(x, ∂Σ)α in Σ ⊂ Rn,

where Σ is any open convex cone and α ≥ 0 (see example (ii) in Section 9.2);

xaybzc, (axr + byr + czr)α/r, or
xyz

xy + yz + zx
in Σ = (0,∞)3,

where a, b, c are nonnegative numbers, r ∈ (0, 1] or r < 0, and α > 0 (see examples
(iv), (v), and (vii), respectively);

x− y
log x− log y

,
xa+1yb+1

(xp + yp)1/p
, or x log

(y
x

)
in Σ = (0,∞)2,

where a ≥ 0, b ≥ 0, and p > −1 (see examples (viii) and (ix));

(
σl
σk

) α
l−k

, 1 ≤ k < l < n, in Σ = {σ1 > 0, ..., σl > 0},

where σk is the elementary symmetric function of order k and α > 0 (see example
(vii)).

Our isoperimetric inequality with an homogeneous weight w of degree α in a con-
vex cone Σ ⊂ Rn yields as a consequence the following Sobolev inequality with best
constant. If D = n+ α, 1 ≤ p < D, and p∗ = pD

D−p , then

(∫

Σ

|u|p∗w(x)dx

)1/p∗

≤ Cw,p,n

(∫

Σ

|∇u|pw(x)dx

)1/p

(9.3)

for all smooth functions u with compact support in Rn —in particular, not necessarily
vanishing on ∂Σ. This is a consequence of our isoperimetric inequality, Theorem 9.1.3,
and a weighted radial rearrangement of Talenti [292], since these two results yield the
radial symmetry of minimizers.

The proof of our main result follows the ideas introduced by the first author [40, 41]
in a new proof of the classical isoperimetric inequality (the classical isoperimetric
inequality corresponds to the weight w ≡ 1 and the cone Σ = Rn). Our proof consists
of applying the ABP method to an appropriate linear Neumann problem involving the
operator

w−1div(w∇u) = ∆u+
∇w
w
· ∇u,

where w is the weight.
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9.1.1 The setting

The classical isoperimetric problem in convex cones was solved by P.-L. Lions and
F. Pacella [200] in 1990. Their result states that among all sets E with fixed volume
inside an open convex cone Σ, the balls centered at the vertex of the cone minimize
the perimeter relative to the cone (recall that the part of the boundary of E that lies
on the boundary of the cone is not counted).

Throughout the paper Σ is an open convex cone in Rn. Recall that given a mea-
surable set E ⊂ Rn the relative perimeter of E in Σ is defined by

P (E; Σ) := sup

{∫

E

div σ dx : σ ∈ C1
c (Σ,Rn), |σ| ≤ 1

}
.

When E is smooth enough,

P (E; Σ) =

∫

∂E∩Σ

dS.

The isoperimetric inequality in cones of Lions and Pacella reads as follows.

Theorem 9.1.1 ([200]). Let Σ be an open convex cone in Rn with vertex at 0, and
B1 := B1(0). Then,

P (E; Σ)

|E ∩ Σ|n−1
n

≥ P (B1; Σ)

|B1 ∩ Σ|n−1
n

(9.4)

for every measurable set E ⊂ Rn with |E ∩ Σ| <∞.

The assumption of convexity of the cone can not be removed. In the same paper
[200] the authors give simple examples of nonconvex cones for which inequality (9.4)
does not hold. The idea is that for cones having two disconnected components, (9.4)
is false since it pays less perimeter to concentrate all the volume in one of the two
subcones. A connected (but nonconvex) counterexample is then obtained by joining
the two components by a conic open thin set.

The proof of Theorem 9.1.1 given in [200] is based on the Brunn-Minkowski in-
equality

|A+B|
1
n ≥ |A|

1
n + |B|

1
n ,

valid for all nonempty measurable sets A and B of Rn for which A + B is also mea-
surable; see [154] for more information on this inequality. As a particular case of our
main result, in this paper we provide a totally different proof of Theorem 9.1.1. This
new proof is based on the ABP method.

Theorem 9.1.1 can be deduced from a degenerate case of the classical Wulff in-
equality stated in Theorem 9.1.2 below. This is because the convex set B1 ∩ Σ is the
Wulff shape (9.6) associated to some appropriate anisotropic perimeter. As explained
below in Section 9.3, this idea is crucial in the proof of our main result. This fact has
also been used recently by Figalli and Indrei [133] to prove a quantitative isoperimet-
ric inequality in convex cones. From it, one deduces that balls centered at the origin
are the unique minimizers in (9.4) up to translations that leave invariant the cone (if
they exist). This had been established in [200] in the particular case when ∂Σ \ {0} is
smooth (and later in [246], which also classified stable hypersurfaces in smooth cones).
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The following is the notion of anisotropic perimeter. We say that a function H
defined in Rn is a gauge when

H is nonnegative, positively homogeneous of degree one, and convex. (9.5)

Somewhere in the paper we may require a function to be homogeneous; by this we
always mean positively homogeneous.

Any norm is a gauge, but a gauge may vanish on some unit vectors. We need to
allow this case since it will occur in our new proof of Theorem 9.1.1 —which builds
from the cone Σ a gauge that is not a norm.

The anisotropic perimeter associated to the gauge H is given by

PH(E) := sup

{∫

E

div σ dx : σ ∈ C1
c (Rn,Rn), sup

H(y)≤1

(σ(x) · y) ≤ 1 for x ∈ Rn

}
,

where E ⊂ Rn is any measurable set. When E is smooth enough one has

PH(E) =

∫

∂E

H
(
ν(x)

)
dS,

where ν(x) is the unit outward normal at x ∈ ∂E.
The Wulff shape associated to H is defined as

W = {x ∈ Rn : x · ν < H(ν) for all ν ∈ Sn−1}. (9.6)

We will always assume that W 6= ∅. Note that W is an open set with 0 ∈ W . To
visualize W , it is useful to note that it is the intersection of the half-spaces {x · ν <
H(ν)} among all ν ∈ Sn−1. In particular, W is a convex set.

From the definition (9.6) of the Wulff shape it follows that, given an open convex
set W ⊂ Rn with 0 ∈ W , there is a unique gauge H such that W is the Wulff shape
associated to H. Indeed, it is uniquely defined by

H(x) = inf
{
t ∈ R : W ⊂ {z ∈ Rn : z · x < t}

}
. (9.7)

Note that, for each direction ν ∈ Sn−1, {x · ν = H(ν)} is a supporting hyperplane
of W . Thus, for almost every point x on ∂W —those for which the outer normal ν(x)
exists— it holds

x · ν(x) = H(ν(x)) a.e. on ∂W. (9.8)

Note also that, since W is convex, it is a Lipschitz domain. Hence, we can use the
divergence theorem to find the formula

PH(W ) =

∫

∂W

H(ν(x))dS =

∫

∂W

x · ν(x)dS =

∫

W

div(x)dx = n|W |, (9.9)

relating the volume and the anisotropic perimeter of W .
When H is positive on Sn−1 then it is natural to introduce its dual gauge H◦, as

in [4]. It is defined by
H◦(z) = sup

H(y)≤1

z · y.
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Then, the last condition on σ in the definition of PH(·) is equivalent to H◦(σ) ≤ 1 in
Rn, and the Wulff shape can be written as W = {H◦ < 1}.

Some typical examples of gauges are

H(x) = ‖x‖p =
(
|x1|p + · · ·+ |xn|p

)1/p
, 1 ≤ p ≤ ∞.

Then, we have that W = {x ∈ Rn : ‖x‖p′ < 1}, where p′ is such that 1
p

+ 1
p′

= 1.
The following is the celebrated Wulff inequality.

Theorem 9.1.2 ([299, 284, 285]). Let H be a gauge in Rn which is positive on Sn−1,
and let W be its associated Wulff shape. Then, for every measurable set E ⊂ Rn with
|E| <∞, we have

PH(E)

|E|n−1
n

≥ PH(W )

|W |n−1
n

. (9.10)

Moreover, equality holds if and only if E = aW + b for some a > 0 and b ∈ Rn except
for a set of measure zero.

This result was first stated without proof by Wulff [299] in 1901. His work was
followed by Dinghas [117], who studied the problem within the class of convex poly-
hedra. He used the Brunn-Minkowski inequality. Some years later, Taylor [284, 285]
finally proved Theorem 9.1.2 among sets of finite perimeter; see [286, 139, 209] for
more information on this topic. As a particular case of our technique, in this paper
we provide a new proof of Theorem 9.1.2. It is based on the ABP method applied
to a linear Neumann problem. It was Robert McCann (in a personal communication
around 2000) who pointed out that the first author’s proof of the classical isoperimetric
inequality also worked in the anisotropic case.

9.1.2 Results

The main result of the present paper, Theorem 9.1.3 below, is a weighted isoperi-
metric inequality which extends the two previous classical inequalities (Theorems 9.1.1
and 9.1.2). In particular, in Section 9.4 we will give a new proof of the classical Wulff
theorem (for smooth domains) using the ABP method.

Before stating our main result, let us define the weighted anisotropic perimeter
relative to an open cone Σ. The weights w that we consider will always be continuous
functions in Σ, positive and locally Lipschitz in Σ, and homogeneous of degree α ≥
0. Given a gauge H in Rn and a weight w, we define (following [16]) the weighted
anisotropic perimeter relative to the cone Σ by

Pw,H(E; Σ) := sup

{∫

E∩Σ

div(σw)dx : σ ∈ Xw,Σ , sup
H(y)≤1

(σ(x) · y) ≤ 1 for x ∈ Σ

}
,

where E ⊂ Rn is any measurable set with finite Lebesgue measure and

Xw,Σ :=
{
σ ∈

(
L∞(Σ)

)n
: div(σw) ∈ L∞

(
Σ
)
and σw = 0 on ∂Σ

}
.
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It is not difficult to see that

Pw,H(E; Σ) =

∫

∂E∩Σ

H
(
ν(x)

)
w(x)dS (9.11)

whenever E is smooth enough.
The definition of Pw,H is the same as the one given in [16]. In their notation, we

are taking dµ = wχΣ dx and Xw,Σ = Xµ.
Moreover, when H is the Euclidean norm we denote

Pw(E; Σ) := Pw,‖·‖2(E; Σ).

When w ≡ 1 in Σ and H is the Euclidean norm we recover the definition of P (E; Σ);
see [16].

Given a measurable set F ⊂ Σ, we denote by w(F ) the weighted volume of F

w(F ) :=

∫

F

w dx.

We also denote
D = n+ α.

Note that the Wulff shape W is independent of the weight w. Next we use that if
ν is the unit outward normal to W ∩ Σ, then x · ν(x) = H(ν(x)) a.e. on ∂W ∩ Σ,
x · ν(x) = 0 a.e. on W ∩ ∂Σ, and x · ∇w(x) = αw(x) in Σ. This last equality follows
from the homogeneity of degree α of w. Then, with a similar argument as in (9.9), we
find

Pw,H(W ; Σ) =

∫

∂W∩Σ

H(ν(x))w(x)dS =

∫

∂W∩Σ

x · ν(x)w(x)dS

=

∫

∂(W∩Σ)

x · ν(x)w(x)dS =

∫

W∩Σ

div(xw(x))dx

=

∫

W∩Σ

{nw(x) + x · ∇w(x)} dx = Dw(W ∩ Σ).

(9.12)

Here —and in our main result that follows— for all quantities to make sense we need
to assume that W ∩Σ 6= ∅. Recall that both W and Σ are open convex sets but that
W ∩ Σ = ∅ could happen. This occurs for instance if H|Sn−1∩Σ ≡ 0. On the other
hand, if H > 0 on all Sn−1 then W ∩ Σ 6= ∅.

The following is our main result.

Theorem 9.1.3. Let H be a gauge in Rn, i.e., a function satisfying (9.5), and W
its associated Wulff shape defined by (9.6). Let Σ be an open convex cone in Rn with
vertex at the origin, and such that W ∩ Σ 6= ∅. Let w be a continuous function in Σ,
positive in Σ, and positively homogeneous of degree α ≥ 0. Assume in addition that
w1/α is concave in Σ in case α > 0.

Then, for each measurable set E ⊂ Rn with w(E ∩ Σ) <∞,

Pw,H(E; Σ)

w(E ∩ Σ)
D−1
D

≥ Pw,H(W ; Σ)

w(W ∩ Σ)
D−1
D

, (9.13)

where D = n+ α.
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Remark 9.1.4. Our key hypothesis that w1/α is a concave function is equivalent to
a natural curvature-dimension bound (in fact, to the nonnegativeness of the Bakry-
Émery Ricci tensor in dimension D = n + α). This was suggested to us by Cédric
Villani, and has also been noticed by Cañete and Rosales (see Lemma 3.9 in [79]). More
precisely, we see the cone Σ ⊂ Rn as a Riemannian manifold of dimension n equipped
with a reference measure w(x)dx. We are also given a “dimension” D = n + α.
Consider the Bakry-Émery Ricci tensor, defined by

RicD,w = Ric−∇2 logw − 1

D − n
∇ logw ⊗∇ logw.

Now, our assumption w1/α being concave is equivalent to

RicD,w ≥ 0. (9.14)

Indeed, since Ric ≡ 0 and D − n = α, (9.14) reads as

−∇2 logw1/α −∇ logw1/α ⊗∇ logw1/α ≥ 0,

which is the same condition as w1/α being concave. Condition (9.14) is called a
curvature-dimension bound; in the terminology of [294] we say that CD(0, D) is satis-
fied by Σ ⊂ Rn with the reference measure w(x)dx.

In addition, C. Villani pointed out that optimal transport techniques could also
lead to weighted isoperimetric inequalities in convex cones; see Section 9.1.3.

Note that the shape of the minimizer is W ∩ Σ, and that W depends only on H
and not on the weight w neither on the cone Σ. In particular, in the isotropic case
H = ‖·‖2 we find the following surprising fact. Even that the weights that we consider
are not radial (unless w ≡ 1), still Euclidean balls centered at the origin (intersected
with the cone) minimize this isoperimetric quotient. The only explanation that one
has a priori for this fact is that Euclidean balls centered at 0 have constant generalized
mean curvature when the weight is homogeneous, as pointed out in (9.2). Thus, they
are candidates to minimize perimeter for a given volume.

Note also that we allow w to vanish somewhere (or everywhere) on ∂Σ.
Equality in (9.13) holds whenever E∩Σ = rW ∩Σ, where r is any positive number.

However, in this paper we do not prove that W ∩Σ is the unique minimizer of (9.13).
The reason is that our proof involves the solution of an elliptic equation and, due to an
important issue on its regularity, we need to approximate the given set E by smooth
sets. In a future work with E. Cinti and A. Pratelli we will refine the analysis in
the proof of the present article and obtain a quantitative version of our isoperimetric
inequality in cones. In particular, we will deduce uniqueness of minimizers (up to sets
of measure zero). The quantitative version will be proved using the techniques of the
present paper (the ABP method applied to a linear Neumann problem) together with
the ideas of Figalli-Maggi-Pratelli [135].

In the isotropic case, a very recent result of Cañete and Rosales [79] deals with
the same class of weights as ours. They allow not only positive homogeneities α > 0,
but also negative ones α ≤ −(n − 1). They prove that if a smooth, compact, and
orientable hypersurfaces in a smooth convex cone is stable for weighted perimeter
(under variations preserving weighted volume), then it must be a sphere centered at
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the vertex of the cone. In [79] the stability of such spheres is proved for α ≤ −(n− 1),
but not for α > 0. However, as pointed out in [79], when α > 0 their result used
together with ours give that spheres centered at the vertex are the unique minimizers
among smooth hypersurfaces.

Theorem 9.1.3 contains the classical isoperimetric inequality, its version for convex
cones, and the classical Wulff inequality. Indeed, taking w ≡ 1, Σ = Rn, and H = ‖·‖2

we recover the classical isoperimetric inequality with optimal constant. Still taking
w ≡ 1 and H = ‖ · ‖2 but now letting Σ be any open convex cone of Rn we have
the isoperimetric inequality in convex cones of Lions and Pacella (Theorem 9.1.1).
Moreover, if we take w ≡ 1 and Σ = Rn but we let H be some other gauge we obtain
the Wulff inequality (Theorem 9.1.2).

A criterion of concavity for homogeneous functions of degree 1 can be found for
example in [217, Proposition 10.3], and reads as follows. A nonnegative, C2, and
homogeneous of degree 1 function Φ on Rn is concave if and only if the restrictions
Φ(θ) of Φ to one-dimensional circles about the origin satisfy

Φ′′(θ) + Φ(θ) ≤ 0.

Therefore, it follows that a nonnegative, C2, and homogeneous weight of degree α > 0
in the plane R2, w(x) = rαB(θ), satisfies that w1/α is concave in Σ if and only if

(B1/α)′′ +B1/α ≤ 0.

Remark 9.1.5. Let w be an homogeneous weight of degree α, and consider the isotropic
isoperimetric problem in a cone Σ ⊂ Rn. Then, by the proofs of Proposition 3.6 and
Lemma 3.8 in [247] the set B1(0) ∩ Σ is stable if and only if

∫

Sn−1∩Σ

|∇Sn−1u|2w dS ≥ (n− 1 + α)

∫

Sn−1∩Σ

|u|2w dS (9.15)

for all functions u ∈ C∞c (Sn−1 ∩ Σ) satisfying
∫

Sn−1∩Σ

uw dS = 0. (9.16)

Stability being a necessary condition for minimality, from Theorem (9.1.3) we deduce
the following. If α > 0, Σ is convex, and w1/α is concave in Σ, then (9.15) holds.

For instance, in dimension n = 2, inequality (9.15) reads as
∫ β

0

(u′)2w dθ ≥ (1 + α)

∫ β

0

u2w dθ whenever

∫ β

0

uw dθ = 0, (9.17)

where 0 < β ≤ π is the angle of the convex cone Σ ⊂ R2. This is ensured by our
concavity condition on the weight w,

(
w1/α

)′′
+ w1/α ≤ 0 in (0, β). (9.18)

Note that, even in this two-dimensional case, it is not obvious that this condition on
w yields (9.15)-(9.16). The statement (9.17) is an extension of Wirtinger’s inequality
(which corresponds to the case w ≡ 1, α = 0, β = 2π). It holds, for example, with
w = sinα θ on S1 —since (9.18) is satisfied by this weight. Another extension of
Wirtinger’s inequality (coming from the density w = rα) is given in [104].
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In Theorem 9.1.3 we assume that w is homogeneous of degree α. In our proof, this
assumption is essential in order that the paraboloid in (9.26) solves the PDE in (9.24),
as explained in Section 9.3. Due to the homogeneity of w, the exponent D = n+α can
be found just by a scaling argument in our inequality (9.13). Note that this exponent
D has a dimension flavor if one compares (9.13) with (9.4) or with (9.10). Also, it
is the exponent for the volume growth, in the sense that w(Br(0) ∩ Σ) = CrD for all
r > 0. The interpretation of D as a dimension is more clear in the following example
that motivated our work.

Remark 9.1.6. The monomial weights

w(x) = xA1
1 · · ·xAnn in Σ = {x ∈ Rn : xi > 0 whenever Ai > 0}, (9.19)

where Ai ≥ 0, α = A1 + · · ·+An, and D = n+A1 + · · ·+An, are important examples
for which (9.13) holds. The isoperimetric inequality —and the corresponding Sobolev
inequality (9.3)— with the above monomial weights were studied by the first two
authors in [49, 50]. These inequalities arose in [49] while studying reaction-diffusion
problems with symmetry of double revolution. A function u has symmetry of double
revolution when u(x, y) = u(|x|, |y|), with (x, y) ∈ RD = RA1+1 × RA2+1 (here we
assume Ai to be positive integers). In this way, u = u(x1, x2) = u(|x|, |y|) can be seen
as a function in R2 = Rn, and it is here where the Jacobian for the Lebesgue measure
in RD = RA1+1 × RA2+1, xA1

1 xA2
2 = |x|A1|y|A2 , appears. A similar argument under

multiple axial symmetries shows that, when w and Σ are given by (9.19) and all Ai
are nonnegative integers, and H is the Euclidean norm, Theorem 9.1.3 follows from
the classical isoperimetric inequality in RD; see [50] for more details.

In [49] we needed to show a Sobolev inequality of the type (9.3) in R2 with the
weight and the cone given by (9.19). As explained above, when Ai are all nonneg-
ative integers this Sobolev inequality follows from the classical one in dimension D.
However, in our application the exponents Ai were not integers —see [49]—, and thus
the Sobolev inequality was not known. We showed a nonoptimal version (without
the best constant) of that Sobolev inequality in dimension n = 2 in [49], and later
we proved in [50] the optimal one in all dimensions n, obtaining the best constant
and extremal functions for the inequality. In both cases, the main tool to prove these
Sobolev inequalities was an isoperimetric inequality with the same weight.

An immediate consequence of Theorem 9.1.3 is the following weighted isoperimetric
inequality in Rn for symmetric sets and even weights. It follows from our main result
taking Σ = (0,+∞)n.

Corollary 9.1.7. Let w be a nonnegative continuous function in Rn, even with respect
to each variable, homogeneous of degree α > 0, and such that w1/α is concave in
(0,∞)n. Let E ⊂ Rn be any measurable set, symmetric with respect to each coordinate
hyperplane {xi = 0}, and with |E| <∞. Then,

Pw(E;Rn)

|E|D−1
D

≥ Pw(B1;Rn)

|B1|
D−1
D

, (9.20)

where D = n+ α and B1 is the unit ball in Rn.
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The symmetry assumption on the sets that we consider in Corollary 9.1.7 is satisfied
in some applications arising in nonlinear problems, such as the one in [49] explained
in Remark 9.1.6. Without this symmetry assumption, isoperimetric sets in (9.20) may
not be the balls. For example, for the monomial weight w(x) = |x1|A1 · · · |xn|An in
Rn, with all Ai positive, B1 ∩ (0,∞)n is an isoperimetric set, while the whole ball Br

having the same weighted volume as B1 ∩ (0,∞)n is not an isoperimetric set (since it
has longer perimeter).

We know only of few results where nonradial weights lead to radial minimizers.
The first one is the isoperimetric inequality by Maderna-Salsa [204] in the upper half
plane R2

+ with the weight xα2 , α > 0. To establish their isoperimetric inequality, they
first proved the existence of a minimizer for the perimeter functional under constraint
of fixed area, then computed the first variation of this functional, and finally solved
the obtained ODE to find all minimizers. The second result is due to Brock-Chiacchio-
Mercaldo [37] and extends the one in [204] by including the weights xαn exp(c|x|2) in
Rn

+, with α ≥ 0 and c ≥ 0. In both papers it is proved that half balls centered
at the origin are the minimizers of the isoperimetric quotient with these weights.
Another one, of course, is our isoperimetric inequality with monomial weights [50]
explained above (see Remark 9.1.6). At the same time as us, and using totally different
methods, Brock, Chiacchio, and Mercaldo [38] have proved an isoperimetric inequality
in Σ = {x1 > 0, ..., xn > 0} with the weight xA1

1 · · ·xAnn exp(c|x|2), with Ai ≥ 0 and
c ≥ 0.

In all these results, although the weight xA1
1 · · ·xAnn is not radial, it has a very

special structure. Indeed, when all A1, ..., An are nonnegative integers the isoperimet-
ric problem with the weight xA1

1 · · ·xAnn is equivalent to the isoperimetric problem in
Rn+A1+···+An for sets that have symmetry of revolution with respect to the first A1 + 1
variables, the next A2 + 1 variables, ..., and so on until the last An + 1 variables; see
Remark 9.1.6. By this observation, the fact that half balls centered at the origin are
the minimizers in Rn

+ with the weight xA1
1 · · ·xAnn or xA1

1 · · ·xAnn exp(c|x|2), for c ≥ 0
and Ai nonnegative integers, follows from the isoperimetric inequality in Rn+A1+···+An

with the weight exp(c|x|2), c ≥ 0 (which is a radial weight). Thus, it was reasonable to
expect that the same result for noninteger exponents A1, ..., An would also hold —as
it does.

After announcing our result and proof in [51], Emanuel Milman showed us a nice
geometric construction that yields the particular case when α is a nonnegative integer
in our weighted inequality of Theorem 9.1.3. Using this construction, the weighted
inequality in a convex cone is obtained as a limit case of the unweighted Lions-Pacella
inequality in a narrow cone of Rn+α. We reproduce it in Remark 9.6.1 —see also the
blog of Frank Morgan [220].

9.1.3 The proof. Related works

The proof of Theorem 9.1.3 consists of applying the ABP method to a linear
Neumann problem involving the operator w−1div(w∇u), where w is the weight. When
w ≡ 1, the idea goes back to 2000 in the works [40, 41] of the first author, where the
classical isoperimetric inequality in all of Rn (here w ≡ 1) was proved with a new
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method. It consisted of solving the problem




∆u = bΩ in Ω

∂u

∂ν
= 1 on ∂Ω

for a certain constant bΩ, to produce a bijective map with the gradient of u, ∇u :
Γu,1 −→ B1, which leads to the isoperimetric inequality. Here Γu,1 ⊂ Γu ⊂ Ω and Γu,1
is a certain subset of the lower contact set Γu of u (see Section 9.3 for details). The
use of the ABP method is crucial in the proof.

Previously, Trudinger [291] had given a proof of the classical isoperimetric inequal-
ity in 1994 using the theory of Monge-Ampère equations and the ABP estimate. His
proof consists of applying the ABP estimate to the Monge-Ampère problem

{
detD2u = χΩ in BR

u = 0 on ∂BR,

where χΩ is the characteristic function of Ω and BR = BR(0), and then letting R→∞.
Before these two works ([291] and [40]), there was already a proof of the isoperi-

metric inequality using a certain map (or coupling). This is Gromov’s proof, which
used the Knothe map; see [294].

After these three proofs, in 2004 Cordero-Erausquin, Nazaret, and Villani [101] used
the Brenier map from optimal transportation to give a beautiful proof of the anisotropic
isoperimetric inequality; see also [294]. More recently, Figalli-Maggi-Pratelli [135]
established a sharp quantitative version of the anisotropic isoperimetric inequality,
using also the Brenier map. In the case of the Lions-Pacella isoperimetric inequality,
this has been done by Figalli-Indrei [133] very recently. As mentioned before, the
proof in the present article is also suited for a quantitative version, as we will show in
a future work with Cinti and Pratelli.

After announcing our result and proof in [51], we have been told that optimal
transportation techniques à la [101] could also be used to prove weighted isoperimetric
inequalities in certain cones. C. Villani pointed out that this is mentioned in the
Bibliographical Notes to Chapter 21 of his book [294]. A. Figalli showed it to us with
a computation when the cone is a halfspace {xn > 0} equipped with the weight xαn.

9.1.4 Applications

Now we turn to some applications of Theorems 9.1.3 and Corollary 9.1.7.
First, our result leads to weighted Sobolev inequalities with best constant in convex

cones of Rn. Indeed, given any smooth function u with compact support in Rn (we
do not assume u to vanish on ∂Σ), one uses the coarea formula and Theorem 9.1.3
applied to each of the level sets of u. This establishes the Sobolev inequality (9.3) for
p = 1. The constant Cw,1,n obtained in this way is optimal, and coincides with the
best constant in our isoperimetric inequality (9.20).

When 1 < p < D, Theorem 9.1.3 also leads to the Sobolev inequality (9.3) with best
constant. This is a consequence of our isoperimetric inequality and a weighted radial
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rearrangement of Talenti [292], since these two results yield the radial symmetry of min-
imizers. See [50] for details in the case of monomial weights w(x) = |x1|A1 · · · |xn|An .

If we use Corollary 9.1.7 instead of Theorem 9.1.3, with the same argument one
finds the Sobolev inequality

(∫

Rn
|u|p∗w(x)dx

)1/p∗

≤ Cw,p,n

(∫

Rn
|∇u|pw(x)dx

)1/p

, (9.21)

where p∗ = pD
D−p , D = n + α, and 1 ≤ p < D. Here, w is any weight satisfying the

hypotheses of Corollary 9.1.7, and u is any smooth function with compact support in
Rn which is symmetric with respect to each variable xi, i = 1, ..., n.

We now turn to applications to the symmetry of solutions to nonlinear PDEs. It
is well known that the classical isoperimetric inequality yields some radial symmetry
results for semilinear or quasilinear elliptic equations. Indeed, using the Schwartz
rearrangement that preserves

∫
F (u) and decreases

∫
Φ(|∇u|), it is immediate to show

that minimizers of some energy functionals (or quotients) involving these quantities
are radially symmetric; see [238, 292]. Moreover, P.-L. Lions [191] showed that in
dimension n = 2 the isoperimetric inequality yields also the radial symmetry of all
positive solutions to the semilinear problem−∆u = f(u) inB1, u = 0 on ∂B1, with f ≥
0 and f possibly discontinuous. This argument has been extended in three directions:
for the p-Laplace operator, for cones of Rn, and for Wulff shapes, as explained next.

On the one hand, the analogue of Lions radial symmetry result but in dimension
n ≥ 3 for the p-Laplace operator was proved with p = n by Kesavan and Pacella in
[183], and with p ≥ n by the third author in [260]. Moreover, in [183] it is also proved
that positive solutions to the following semilinear equation with mixed boundary con-
ditions 




−∆pu = f(u) in B1 ∩ Σ

u = 0 on ∂B1 ∩ Σ

∂u

∂ν
= 0 on B1 ∩ ∂Σ

(9.22)

have radial symmetry whenever p = n. Here, B1 is the unit ball and Σ any open
convex cone. This was proved by using Theorem 9.1.1 and the argument of P.-L.
Lions mentioned above.

On the other hand, Theorem 9.1.2 is used to construct a Wulff shaped rearrange-
ment in [4]. This yields that minimizers to certain nonlinear variational equations
that come from anisotropic gradient norms have Wulff shaped level sets. Moreover,
the radial symmetry argument in [191] was extended to this anisotropic case in [17],
yielding the same kind of result for positive solutions of nonlinear equations involving
the operator Lu = div (H(∇u)p−1∇H(∇u)) with p = n. In the same direction, in
a future paper [254] we will use Theorem 9.1.3 to obtain Wulff shaped symmetry of
critical functions of weighted anisotropic functionals such as

∫ {
Hp(∇u)− F (u)

}
w(x) dx.

Here, w is an homogeneous weight satisfying the hypotheses of Theorem 9.1.3 and H
is any norm in Rn. As in [260], we will allow p 6= n but with some conditions on F in
case p < n.
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Related to these results, when f is Lipschitz, Berestycki and Pacella [19] proved
that any positive solution to problem (9.22) with p = 2 in a convex spherical sector Σ
of Rn is radially symmetric. They used the moving planes method.

9.1.5 Plan of the paper

The rest of the article is organized as follows. In Section 9.2 we give examples
of weights for which our result applies. In Section 9.3 we introduce the elements
appearing in the proof of Theorem 9.1.3. To illustrate these ideas, in Section 9.4 we
give the proof of the classical Wulff theorem via the ABP method. In Section 9.5 we
prove Theorem 9.1.3 in the simpler case w ≡ 0 on ∂Σ and H = ‖ · ‖2. Finally, in
Section 9.6 we present the whole proof of Theorem 9.1.3.

9.2 Examples of weights

When w ≡ 1 our main result yields the classical isoperimetric inequality, its version for
convex cones, and also the Wulff theorem. On the other hand, given an open convex
cone Σ ⊂ Rn (different than the whole space and a half-space) there is a large family
of functions that are homogeneous of degree one and concave in Σ. Any positive power
of one of these functions is an admissible weight for Theorem 9.1.3. Next we give some
concrete examples of weights w for which our result applies. The key point is to check
that the homogeneous function of degree one w1/α is concave.

(i) Assume that w1 and w2 are concave homogeneous functions of degree one in an
open convex cone Σ. Then, wa1w

b
2 with a ≥ 0 and b ≥ 0, (wr1 + wr2)α/r with

r ∈ (0, 1] or r < 0, and min{w1, w2}α, satisfy the hypotheses of Theorem 9.1.3
(with α = a+b in the first case). More generally, if F : [0,∞)2 → R+ is positive,
concave, homogeneous of degree 1, and nondecreasing in each variable, then one
can take w = F (w1, w2)α, with α > 0.

(ii) The distance function to the boundary of any convex set is concave when defined
in the convex set. On the other hand, the distance function to the boundary of
any cone is homogeneous of degree 1. Thus, for any open convex cone Σ and
any α ≥ 0,

w(x) = dist(x, ∂Σ)α

is an admissible weight. When the cone is Σ = {xi > 0, i = 1, ..., n}, this weight
is exactly min{x1, ..., xn}α.

(iii) If the concavity condition is satisfied by a weight w in a convex cone Σ′ then it
is also satisfied in any convex subcone Σ ⊂ Σ′. Note that this gives examples of
weights w and cones Σ in which w is positive on ∂Σ \ {0}.

(iv) Let Σ1, ...,Σk be convex cones and Σ = Σ1 ∩ · · · ∩ Σk. Let

δi(x) = dist(x, ∂Σi).
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Then, the weight
w(x) = δA1

1 · · · δ
Ak
k , x ∈ Σ,

with A1 ≥ 0, ..., Ak ≥ 0, satisfies the hypotheses of Theorem 9.1.3. This follows
from (i), (ii), and (iii). Note that when k = n and Σi = {xi > 0}, i = 1, ..., n,
then Σ = {x1 > 0, ..., xn > 0} and we obtain the monomial weight

w(x) = xA1
1 · · ·xAnn .

(v) In the cone Σ = (0,∞)n, the weights

w(x) =
(
A1x

1/p
1 + · · ·+ Anx

1/p
n

)αp
,

for p ≥ 1, Ai ≥ 0, and α > 0, satisfy the hypotheses of Theorem 9.1.3. Similarly,
one may take the weights

w(x) =

(
A1

xr1
+ · · ·+ An

xrn

)−α/r
,

with r > 0, or the limit case

w(x) = min{A1x1, · · · , Anxn}α.

This can be showed using the Minkowski inequality. More precisely, the first
one can be showed using the classical Minkowski inequality with exponent p ≥
1, while the second one using a reversed Minkowski inequality that holds for
exponents p = −r < 0.

In these examples Σ = (0,∞)n and therefore by Corollary 9.1.7 we find that
among all sets E ⊂ Rn which are symmetric with respect to each coordinate
hyperplane, Euclidean balls centered at the origin minimize the isoperimetric
quotient with these weights.

(vi) Powers of hyperbolic polynomials also provide examples of weights. An homoge-
neous polynomial P (x) of degree k defined in Rn is called hyperbolic with respect
to a ∈ Rn provided P (a) > 0 and for every λ ∈ Rn the polynomial in t, P (ta+λ),
has exactly k real roots. Let Σ be the component in Rn, containing a, of the set
{P > 0}. Then, Σ is a convex cone and P (x)1/k is a concave function in Σ; see
for example [149] or [65, Section 1]. Thus, for any hyperbolic polynomial P , the
weight

w(x) = P (x)α/k

satisfies the hypotheses of Theorem 9.1.3. Typical examples of hyperbolic poly-
nomials are

P (x) = x2
1 − λ2x

2
2 − · · · − λnx2

n in Σ =

{
x1 >

√
λ2x2

2 + · · ·+ λnx2
n

}
,

with λ2 > 0,...,λn > 0, or the elementary symmetric functions

σk(x) =
∑

1≤i1<···<ik≤n

xi1 · · ·xik in Σ = {σ1 > 0, ..., σk > 0}
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(recall that Σ is defined above as a component of {P > 0}). Other examples are

P (x) =
∏

1≤i1<···<ir≤n

r∑

j=1

xij in Σ = {xi > 0, i = 1, ..., n},

which have degree k =
(
n
r

)
(this follows by induction from the first statement

in example (i); see also [15]), or the polynomial det(X) in the convex cone of
symmetric positive definite matrices —which we consider in the space Rn(n+1)/2.

The interest in hyperbolic polynomials was originally motivated by an important
paper of Garding on linear hyperbolic PDEs [148], and it is known that they form
a rich class; see for example [149], where the same author showed various ways
of constructing new hyperbolic polynomials from old ones.

(vii) If σk and σl are the elementary symmetric functions of degree k and l, with

1 ≤ k < l ≤ n, then (σl/σk)
1
l−k is concave in the cone Σ = {σ1 > 0, ..., σk > 0};

see [206]. Thus,

w(x) =

(
σl
σk

) α
l−k

is an admissible weight. For example, setting k = n and l = 1 we find that we
can take

w(x) =

(
x1 · · ·xn

x1 + · · ·+ xn

) α
n−1

in Theorem 9.1.3 or in Corollary 9.1.7.

(viii) If f : R→ R+ is any continuous function which is concave in (a, b), then

w(x) = x1f

(
x2

x1

)

is an admissible weight in Σ = {x = (r, θ) : arctan a < θ < arctan b}.

(ix) In the cone Σ = (0,∞)2 ⊂ R2 one may take

w(x) =

(
x1 − x2

log x1 − log x2

)α

for α > 0. In addition, in the same cone one may also take

w(x) =
1

e

(
xx11 x

−x2
2

) α
x1−x2 .

This can be seen by using (viii) and computing f in each of the two cases. When
α = 1, these functions are called the logarithmic mean and the identric mean of
the numbers x1 and x2, respectively.

Using also (viii) one can check that, in the cone Σ = (0,∞)2, the weight w(x) =
xy(xp + yp)−1/p is admissible whenever p > −1. Then, using (i) it follows that

w(x) =
xa+1yb+1

(xp + yp)1/p

is an admissible weight whenever a ≥ 0, b ≥ 0, and p > −1.
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9.3 Description of the proof

The proof of Theorem 9.1.3 follows the ideas introduced by the first author in a new
proof of the classical isoperimetric inequality; see [40, 41] or the last edition of Chavel’s
book [91]. This proof uses the ABP method, as explained next.

The Alexandroff-Bakelman-Pucci (or ABP) estimate is an L∞ bound for solutions
of the Dirichlet problem associated to second order uniformly elliptic operators written
in nondivergence form,

Lu = aij(x)∂iju+ bi(x)∂iu+ c(x)u,

with bounded measurable coefficients in a domain Ω of Rn. It asserts that if Ω is
bounded and c ≤ 0 in Ω then, for every function u ∈ C2(Ω) ∩ C(Ω),

sup
Ω
u ≤ sup

∂Ω
u+ C diam(Ω) ‖Lu‖Ln(Ω),

where C is a constant depending only on the ellipticity constants of L and on the
Ln-norm of the coefficients bi. The estimate was proven by the previous authors in
the sixties using a technique that is nowadays called “the ABP method”. See [41] and
references therein for more information on this estimate.

The proof of the classical isoperimetric inequality in [40, 41] consists of applying
the ABP method to an appropriate Neumann problem for the Laplacian —instead
of applying it to a Dirichlet problem as customary. Namely, to estimate from below
|∂Ω|/|Ω|n−1

n for a smooth domain Ω, one considers the problem




∆u = bΩ in Ω

∂u

∂ν
= 1 on ∂Ω.

(9.23)

The constant bΩ = |∂Ω|/|Ω| is chosen so that the problem has a solution. Next,
one proves that B1 ⊂ ∇u(Γu) with a contact argument (for a certain “contact” set
Γu ⊂ Ω), and then one estimates the measure of ∇u(Γu) by using the area formula and
the inequality between the geometric and arithmetic means. Note that the solution of
(9.23) is

u(x) = |x|2/2 when Ω = B1,

and in this case one verifies that all the inequalities appearing in this ABP argument
are equalities. After having proved the isoperimetric inequality for smooth domains,
an standard approximation argument extends it to all sets of finite perimeter.

As pointed out by R. McCann, the same method also yields the Wulff theorem. For
this, one replaces the Neumann data in (9.23) by ∂u/∂ν = H(ν) and uses the same
argument explained above. This proof of the Wulff theorem is given in Section 9.4.

We now sketch the proof of Theorem 9.1.3 in the isotropic case, that is, when
H = ‖·‖2. In this case, optimizers are Euclidean balls centered at the origin intersected
with the cone. First, we assume that E = Ω is a bounded smooth domain. The key
idea is to consider a similar problem to (9.23) but where the Laplacian is replaced by
the operator

w−1div(w∇u) = ∆u+
∇w
w
· ∇u.
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Essentially (but, as we will see, this is not exactly as we proceed —because of a
regularity issue), we solve the following Neumann problem in Ω ⊂ Σ:





w−1div (w∇u) = bΩ in Ω

∂u

∂ν
= 1 on ∂Ω ∩ Σ

∂u

∂ν
= 0 on ∂Ω ∩ ∂Σ,

(9.24)

where the constant bΩ is again chosen depending on weighted perimeter and volume
so that the problem admits a solution. Whenever u belongs to C1(Ω) —which is not
always the case, as discussed below in this section—, by touching the graph of u by
below with planes (as in the proof of the classical isoperimetric inequality explained
above) we find that

B1 ∩ Σ ⊂ ∇u
(
Ω
)
. (9.25)

Then, using the area formula, an appropriate weighted geometric-arithmetic means in-
equality, and the concavity condition on the weight w, we obtain our weighted isoperi-
metric inequality. Note that the solution of (9.24) is

u(x) = |x|2/2 when Ω = B1 ∩ Σ. (9.26)

In this case, all the chain of inequalities in our proof become equalities, and this yields
the sharpness of the result.

In the previous argument there is an important technical difficulty that comes
from the possible lack of regularity up to the boundary of the solution to the weighted
Neumann problem (9.24). For instance, if Ω ∩ Σ is a smooth domain that has some
part of its boundary lying on ∂Σ —and hence ∂Ω meets tangentially ∂Σ—, then u can
not be C1 up to the boundary. This is because the Neumann condition itself is not
continuous and hence ∂νu would jump from 1 to one 0 where ∂Ω meets ∂Σ.

The fact that u could not be C1 up to the boundary prevents us from using our
contact argument to prove (9.25). Nevertheless, the argument sketched above does
work for smooth domains Ω well contained in Σ, that is, satisfying Ω ⊂ Σ. If, in
addition, w ≡ 0 on ∂Σ we can deduce the inequality for all measurable sets E by an
approximation argument. Indeed, if w ∈ C(Ω) and w ≡ 0 on ∂Σ then for any domain
U with piecewise Lipschitz boundary one has

Pw(U ; Σ) =

∫

∂U∩Σ

w dS =

∫

∂U

w dS.

This fact allows us to approximate any set with finite measure E ⊂ Σ by bounded
smooth domains Ωk satisfying Ωk ⊂ Σ. Thus, the proof of Theorem 9.1.3 for weights
w vanishing on ∂Σ is simpler, and this is why we present it first, in Section 9.5.

Instead, if w > 0 at some part of (or everywhere on) ∂Σ it is not always possible
to find sequences of smooth sets with closure contained in the open cone and approx-
imating in relative perimeter a given measurable set E ⊂ Σ. This is because the
relative perimeter does not count the part of the boundary of E which lies on ∂Σ. To
get around this difficulty (recall that we are describing the proof in the isotropic case,
H ≡ 1) we need to consider an anisotropic problem in Rn for which approximation is
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possible. Namely, we choose a gauge H0 defined as the gauge associated to the convex
set B1∩Σ; see (9.7). Then we prove that Pw,H0( · ; Σ) is a calibration of the functional
Pw( · ; Σ), in the following sense. For all E ⊂ Σ we will have

Pw,H0(E; Σ) ≤ Pw(E; Σ),

while for E = B1 ∩ Σ,
Pw,H0(B1; Σ) = Pw(B1 ∩ Σ; Σ).

As a consequence, the isoperimetric inequality with perimeter Pw,H0(·; Σ) implies the
one with the perimeter Pw(·; Σ). For Pw,H0(·; Σ) approximation results are available
and, as in the case of w ≡ 0 on ∂Σ, it is enough to consider smooth sets satisfying
Ω ⊂ Σ —for which there are no regularity problems with the solution of the elliptic
problem.

To prove Theorem 9.1.3 for a general anisotropic perimeter Pw,H(·; Σ) we also
consider a “calibrated” perimeter Pw,H0(·; Σ), where H0 is now the gauge associated
to the convex set W ∩ Σ. Note that, as explained above, even for the isotropic case
H = ‖ ·‖2 we have to consider an anisotropic perimeter (associated to B1∩Σ) in order
to prove Theorem 9.1.3.

9.4 Proof of the classical Wulff inequality

In this section we prove the classical Wulff theorem for smooth domains by using the
ideas introduced by the first author in [40, 41]. When H is smooth on Sn−1, we show
also that the Wulff shapes are the only smooth sets for which equality is attained.

Proof of Theorem 9.1.2. We prove the Wulff inequality only for smooth domains, that
we denote by Ω instead of E. By approximation, if (9.10) holds for all smooth domains
then it holds for all sets of finite perimeter.

By regularizing H on Sn−1 and then extending it homogeneously, we can assume
that H is smooth in Rn \ {0}. For non-smooth H this approximation argument will
yield inequality (9.10), but not the equality cases.

Let u be a solution of the Neumann problem





∆u =
PH(Ω)

|Ω|
in Ω

∂u

∂ν
= H(ν) on ∂Ω,

(9.27)

where ∆ denotes the Laplace operator and ∂u/∂ν the exterior normal derivative of
u on ∂Ω. Recall that PH(Ω) =

∫
∂Ω
H
(
ν(x)

)
dS. The constant PH(Ω)/|Ω| has been

chosen so that the problem has a unique solution up to an additive constant. Since
H|Sn−1 and Ω are smooth, we have that u is smooth in Ω. See [224] for a recent
exposition of these classical facts and for a new Schauder estimate for (9.27).

Consider the lower contact set of u, defined by

Γu =
{
x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y − x) for all y ∈ Ω

}
. (9.28)
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It is the set of points where the tangent hyperplane to the graph of u lies below u in
all Ω. We claim that

W ⊂ ∇u(Γu), (9.29)

where W denotes the Wulff shape associated to H, given by (9.6).
To show (9.29), take any p ∈ W , i.e., any p ∈ Rn satisfying

p · ν < H(ν) for all ν ∈ Sn−1.

Let x ∈ Ω be a point such that

min
y∈Ω
{u(y)− p · y} = u(x)− p · x

(this is, up to a sign, the Legendre transform of u). If x ∈ ∂Ω then the exterior normal
derivative of u(y)−p·y at x would be nonpositive and hence (∂u/∂ν)(x) ≤ p·ν < H(ν),
a contradiction with the boundary condition of (9.27). It follows that x ∈ Ω and,
therefore, that x is an interior minimum of the function u(y) − p · y. In particular,
p = ∇u(x) and x ∈ Γu. Claim (9.29) is now proved. It is interesting to visualize
geometrically the proof of the claim, by considering the graphs of the functions p ·y+c
for c ∈ R. These are parallel hyperplanes which lie, for c close to −∞, below the graph
of u. We let c increase and consider the first c for which there is contact or “touching”
at a point x. It is clear geometrically that x 6∈ ∂Ω, since p · ν < H(ν) for all ν ∈ Sn−1

and ∂u/∂ν = H(ν) on ∂Ω.
Now, from (9.29) we deduce

|W | ≤ |∇u(Γu)| =
∫

∇u(Γu)

dp ≤
∫

Γu

detD2u(x) dx. (9.30)

We have applied the area formula to the smooth map ∇u : Γu → Rn, and we have
used that its Jacobian, detD2u, is nonnegative in Γu by definition of this set.

Next, we use the classical inequality between the geometric and the arithmetic
means applied to the eigenvalues of D2u(x) (which are nonnegative numbers for x ∈
Γu). We obtain

detD2u ≤
(

∆u

n

)n
in Γu. (9.31)

This, combined with (9.30) and ∆u ≡ PH(Ω)/|Ω|, gives

|W | ≤
(
PH(Ω)

n|Ω|

)n
|Γu| ≤

(
PH(Ω)

n|Ω|

)n
|Ω|. (9.32)

Finally, using that PH(W ) = n|W | —see (9.9)—, we conclude that

PH(W )

|W |n−1
n

= n|W |
1
n ≤ PH(Ω)

|Ω|n−1
n

. (9.33)

Note that when Ω = W then the solution of (9.27) is u(x) = |x|2/2 since ∆u = n
and uν(x) = x · ν(x) = H

(
ν(x)

)
a.e. on ∂W —recall (9.8). In particular, ∇u = Id

and all the eigenvalues of D2u(x) are equal. Therefore, it is clear that all inequalities
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(and inclusions) in (9.29)-(9.33) are equalities when Ω = W . This explains why the
proof gives the best constant in the inequality.

Let us see next that, when H|Sn−1 is smooth, the Wulff shaped domains Ω = aW+b
are the only smooth domains for which equality occurs in (9.10). Indeed, if (9.33) is
an equality then all the inequalities in (9.30), (9.31), and (9.32) are also equalities.
In particular, we have |Γu| = |Ω|. Since Γu ⊂ Ω, Ω is an open set, and Γu is closed
relatively to Ω, we deduce that Γu = Ω.

Recall that the geometric and arithmetic means of n nonnegative numbers are equal
if and only if these n numbers are all equal. Hence, the equality in (9.31) and the fact
that ∆u is constant in Ω give that D2u = aId in all Γu = Ω, where Id is the identity
matrix and a = PH(∂Ω)/(n|Ω|) is a positive constant. Let x0 ∈ Ω be any given point.
Integrating D2u = aId on segments from x0, we deduce that

u(x) = u(x0) +∇u(x0) · (x− x0) +
a

2
|x− x0|2

for x in a neighborhood of x0. In particular, ∇u(x) = ∇u(x0) + a(x − x0) in such a
neighborhood, and hence the map ∇u− aI is locally constant. Since Ω is connected,
we deduce that the map ∇u− aI is indeed a constant, say ∇u− aI ≡ y0.

It follows that∇u(Γu) = ∇u(Ω) = y0+aΩ. By (9.29) we know that W ⊂ ∇u(Γu) =
y0 + aΩ. In addition, these two sets have the same measure since equalities occur in
(9.30). Thus, y0 +aΩ is equal to W up to a set of measure zero. In fact, in the present
situation, since W is convex and y0 + aΩ is open, one easily proves that W = y0 + aΩ.
Hence, Ω is of the form ãW + b̃ for some ã > 0 and b̃ ∈ Rn.

9.5 Proof of Theorem 9.1.3: the case w ≡ 0 on ∂Σ
and H = ‖ · ‖2

For the sake of clarity, we present in this section the proof of Theorem 9.1.3 under the
assumptions w ≡ 0 on ∂Σ and H = ‖ · ‖2. The proof is simpler in this case. Within
the proof we will use the following lemma.

Lemma 9.5.1. Let w be a positive homogeneous function of degree α > 0 in an open
cone Σ ⊂ Rn. Then, the following conditions are equivalent:

• For each x, z ∈ Σ, it holds the following inequality:

α

(
w(z)

w(x)

)1/α

≤ ∇w(x) · z
w(x)

.

• The function w1/α is concave in Σ.

Proof. Assume first α = 1. A function w is concave in Σ if and only if for each x, z ∈ Σ
it holds

w(x) +∇w(x) · (z − x) ≥ w(z). (9.34)
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Now, since w is homogeneous of degree 1, we have

∇w(x) · x = w(x). (9.35)

This can be seen by differentiating the equality w(tx) = tw(x) and evaluating at t = 1.
Hence, from (9.34) and (9.35) we deduce that an homogeneous function w of degree 1
is concave if and only if

w(z) ≤ ∇w(x) · z.
This proves the lemma for α = 1.

Assume now α 6= 1. Define v = w1/α, and apply the result proved above to the
function v, which is homogeneous of degree 1. We obtain that v is concave if and only
if

v(z) ≤ ∇v(x) · z.

Therefore, since ∇v(x) = α−1w(x)
1
α
−1∇w(x), we deduce that w1/α is concave if and

only if

w(z)1/α ≤ ∇w(x) · z
αw(x)1− 1

α

,

and the lemma follows.

We give now the

Proof of Theorem 9.1.3 in the case w ≡ 0 on ∂Σ and H = ‖ · ‖2. For the sake of sim-
plicity we assume here that E = U ∩ Σ, where U is some bounded smooth domain in
Rn. The case of general sets will be treated in Section 9.6 when we prove Theorem
9.1.3 in its full generality.

Observe that since E = U ∩ Σ is piecewise Lipschitz, and w ≡ 0 on ∂Σ, it holds

Pw(E; Σ) =

∫

∂U∩Σ

w(x)dx =

∫

∂E

w(x)dx. (9.36)

Hence, using that w ∈ C(Σ) and (9.36), it is immediate to prove that for any y ∈ Σ
we have

lim
δ↓0

Pw(E + δy; Σ) = Pw(E; Σ) and lim
δ↓0

w(E + δy) = w(E).

We have denoted E + δy = {x + δy , x ∈ E}. Note that Pw(E + δy; Σ) could not
converge to Pw(E; Σ) as δ ↓ 0 if w did not vanish on the boundary of the cone Σ.

By this approximation property and a subsequent regularization of E + δy (a de-
tailed argument can be found in the proof of Theorem 9.1.3 in next section), we see
that it suffices to prove (9.13) for smooth domains whose closure is contained in Σ.
Thus, from now on in the proof we denote by Ω, instead of E, any smooth domain
satisfying Ω ⊂ Σ. We next show (9.13) with E replaced by Ω.

At this stage, it is clear that by approximating w|Ω we can assume w ∈ C∞(Ω).
Let u be a solution of the linear Neumann problem




w−1div(w∇u) = bΩ in Ω (with Ω ⊂ Σ)

∂u

∂ν
= 1 on ∂Ω.

(9.37)
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The Fredholm alternative ensures that there exists a solution of (9.37) (which is unique
up to an additive constant) if and only if the constant bΩ is given by

bΩ =
Pw(Ω; Σ)

w(Ω)
. (9.38)

Note also that since w is positive and smooth in Ω, (9.37) is a uniformly elliptic problem
with smooth coefficients. Thus, u ∈ C∞(Ω). For these classical facts, see Example 2
in Section 10.5 of [171], or the end of Section 6.7 of [157].

Consider now the lower contact set of u, Γu, defined by (9.28) as the set of points
in Ω at which the tangent hyperplane to the graph of u lies below u in all Ω. Then,
as in the proof of the Wulff theorem in Section 9.4, we touch by below the graph of
u with hyperplanes of fixed slope p ∈ B1, and using the boundary condition in (9.37)
we deduce that B1 ⊂ ∇u(Γu). From this, we obtain

B1 ∩ Σ ⊂ ∇u(Γu) ∩ Σ (9.39)

and thus

w(B1 ∩ Σ) ≤
∫

∇u(Γu)∩Σ

w(p)dp

≤
∫

Γu∩(∇u)−1(Σ)

w(∇u(x)) detD2u(x) dx

≤
∫

Γu∩(∇u)−1(Σ)

w(∇u)

(
∆u

n

)n
dx.

(9.40)

We have applied the area formula to the smooth map ∇u : Γu → Rn and also the clas-
sical arithmetic-geometric means inequality —all eigenvalues of D2u are nonnegative
in Γu by definition of this set.

Next we use that, when α > 0,

sαtn ≤
(
αs+ nt

α + n

)α+n

for all s > 0 and t > 0,

which follows from the concavity of the logarithm function. Using also Lemma 9.5.1,
we find

w(∇u)

w(x)

(
∆u

n

)n
≤



α
(
w(∇u)
w(x)

)1/α

+ ∆u

α + n




α+n

≤

( ∇w(x)·∇u
w(x)

+ ∆u

D

)D

.

Recall that D = n+ α. Thus, using the equation in (9.37), we obtain

w(∇u)

w(x)

(
∆u

n

)n
≤
(
bΩ

D

)D
in Γu ∩ (∇u)−1(Σ). (9.41)

If α = 0 then w ≡ 1, and (9.41) is trivial.
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Therefore, since Γu ⊂ Ω, combining (9.40) and (9.41) we obtain

w(B1 ∩ Σ) ≤
∫

Γu∩(∇u)−1(Σ)

(
bΩ

D

)D
w(x)dx =

(
bΩ

D

)D
w(Γu ∩ (∇u)−1(Σ))

≤
(
bΩ

D

)D
w(Ω) = D−D

Pw(Ω; Σ)D

w(Ω)D−1
.

(9.42)

In the last equality we have used the value of the constant bΩ, given by (9.38).
Finally, using that, by (9.12), we have Pw(B1; Σ) = Dw(B1 ∩ Σ), we obtain the

desired inequality (9.13).
An alternative way to see that (9.42) is equivalent to (9.13) is to analyze the

previous argument when Ω = B1∩Σ. In this case Ω * Σ and therefore, as explained in
Section 9.3, we must solve problem (9.24) instead of problem (9.37). When Ω = B1∩Σ
the solution to problem (9.24) is u(x) = |x|2/2. For this function u we have Γu = B1∩Σ
and bB1∩Σ = Pw(B1; Σ)/w(B1 ∩ Σ) —as in (9.38). Hence, for these concrete Ω and
u one verifies that all inclusions and inequalities in (9.39), (9.40), (9.41), (9.42) are
equalities, and thus (9.13) follows.

9.6 Proof of Theorem 9.1.3: the general case

In this section we prove Theorem 9.1.3 in its full generality. At the end of the section,
we include the geometric argument of E. Milman that provides an alternative proof of
Theorem 9.1.3 in the case that the exponent α is an integer.

Proof of Theorem 9.1.3. Let
W0 := W ∩ Σ,

an open convex set, and nonempty by assumption. Since λW0 ⊂ W0 for all λ ∈ (0, 1),
we deduce that 0 ∈ W 0. Therefore, as commented in subsection 9.1.1, there is a unique
gauge H0 such that its Wulff shape is W0. In fact, H0 is defined by expression (9.7)
(with W and H replaced by W0 and H0).

Since H0 ≤ H we have

Pw,H0(E; Σ) ≤ Pw,H(E; Σ) for each measurable set E,

while, using (9.11),

Pw,H0(W0; Σ) = Pw,H(W ; Σ) and w(W0) = w(W ∩ Σ).

Thus, it suffices to prove that

Pw,H0(E; Σ)

w(E)
D−1
D

≥ Pw,H0(W0; Σ)

w(W0)
D−1
D

(9.43)

for all measurable sets E ⊂ Σ with w(E) <∞.
The definition of H0 is motivated by the following reason. Note that H0 vanishes

on the directions normal to the cone Σ. Thus, by considering H0 instead of H, we will
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be able (by an approximation argument) to assume that E is a smooth domain whose
closure is contained in Σ. This approximation cannot be done when H does not vanish
on the directions normal to the cone —since the relative perimeter does not count the
part of the boundary lying on ∂Σ, while when E ⊂ Σ the whole perimeter is counted.

We split the proof of (9.43) in three cases.
Case 1. Assume that E = Ω, where Ω is a smooth domain satisfying Ω ⊂ Σ.
At this stage, it is clear that by regularizing w|Ω and H0|Sn−1 we can assume

w ∈ C∞(Ω) and H0 ∈ C∞(Sn−1).
Let u be a solution to the Neumann problem




w−1div(w∇u) = bΩ in Ω

∂u

∂ν
= H0(ν) on ∂Ω,

(9.44)

where bΩ ∈ R is chosen so that the problem has a unique solution up to an additive
constant, that is,

bΩ =
Pw,H0(Ω; Σ)

w(Ω)
. (9.45)

Since w is positive and smooth in Ω, and H0, ν, and Ω are smooth, we have that
u ∈ C∞(Ω). See our comments following (9.37)-(9.38) for references of these classical
facts.

Consider the lower contact set of u, defined by

Γu = {x ∈ Ω : u(y) ≥ u(x) +∇u(x) · (y − x) for all y ∈ Ω}.

We claim that
W0 ⊂ ∇u(Γu) ∩ Σ. (9.46)

To prove (9.46), we proceed as in the proof of Theorem 9.1.2 in Section 9.4. Take
p ∈ W0, that is, p ∈ Rn satisfying p · ν < H0(ν) for each ν ∈ Sn−1. Let x ∈ Ω be a
point such that

min
y∈Ω
{u(y)− p · y} = u(x)− p · x.

If x ∈ ∂Ω then the exterior normal derivative of u(y)− p · y at x would be nonpositive
and, hence, (∂u/∂ν)(x) ≤ p · ν < H0(p), a contradiction with (9.44). Thus, x ∈ Ω,
p = ∇u(x), and x ∈ Γu —see Section 9.4 for more details. Hence, W0 ⊂ ∇u(Γu), and
since W0 ⊂ Σ, claim (9.46) follows.

Therefore,

w(W0) ≤
∫

∇u(Γu)∩Σ

w(p)dp ≤
∫

Γu∩(∇u)−1(Σ)

w(∇u) detD2u dx. (9.47)

We have applied the area formula to the smooth map ∇u : Γu → Rn, and we have
used that its Jacobian, detD2u, is nonnegative in Γu by definition of this set.

We proceed now as in Section 9.5. Namely, we first use the following weighted
version of the inequality between the arithmetic and the geometric means,

aα0a1 · · · an ≤
(
αa0 + a1 + · · ·+ an

α + n

)α+n

,
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applied to the numbers a0 =
(
w(∇u)
w(x)

)1/α

and ai = λi(x) for i = 1, ..., n, where λ1, ..., λn

are the eigenvalues of D2u. We obtain

w(∇u)

w(x)
detD2u ≤



α
(
w(∇u)
w(x)

)1/α

+ ∆u

α + n




α+n

≤

( ∇w(x)·∇u
w(x)

+ ∆u

α + n

)α+n

. (9.48)

In the last inequality we have used Lemma 9.5.1. Now, the equation in (9.44) gives

∇w(x) · ∇u
w(x)

+ ∆u =
div(w(x)∇u)

w(x)
≡ bΩ,

and thus using (9.45) we find

∫

Γu∩(∇u)−1(Σ)

w(∇u) detD2u dx ≤
∫

Γu∩(∇u)−1(Σ)

w(x)

(
bΩ

D

)D
dx

≤
∫

Γu

w(x)

(
bΩ

D

)D
dx =

(
Pw,H0(Ω; Σ)

Dw(Ω)

)D
w(Γu).

(9.49)

Therefore, from (9.47) and (9.49) we deduce

w(W0) ≤
(
Pw,H0(Ω; Σ)

Dw(Ω)

)D
w(Γu) ≤

(
Pw,H0(Ω; Σ)

Dw(Ω)

)D
w(Ω). (9.50)

Finally, using that, by (9.12), we have Pw,H0(W ; Σ) = Dw(W0), we deduce (9.43).
An alternative way to see that (9.50) is equivalent to (9.43) is to analyze the

previous argument when Ω = W0 = W ∩ Σ. In this case Ω * Σ and therefore, as
explained in Section 9.3, we must solve problem





w−1div (w∇u) = bΩ in Ω

∂u

∂ν
= H0(ν) on ∂Ω ∩ Σ

∂u

∂ν
= 0 on ∂Ω ∩ ∂Σ

(9.51)

instead of problem (9.44). When Ω = W0, the solution to problem (9.51) is

u(x) = |x|2/2.

For this function u we have Γu = W0 and bW0 = Pw,H0(W0; Σ)/w(W0) —as in (9.45).
Hence, for these concrete Ω and u one verifies that all inclusions and inequalities in
(9.46), (9.47), (9.48), (9.49), and (9.50) are equalities, and thus (9.43) follows.

Case 2. Assume now that E = U ∩ Σ, where U is a bounded smooth open set
in Rn. Even that both U and Σ are Lipschitz sets, their intersection might not be
Lipschitz (for instance if ∂U and ∂Σ meet tangentially at a point). As a consequence,
approximating U ∩ Σ by smooth sets converging in perimeter is a more subtle issue.
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However, we claim that there exists a sequence {Ωk}k≥1 of smooth bounded domains
satisfying

Ωk ⊂ Σ and lim
k→∞

Pw,H0(Ωk; Σ)

w(Ωk)
D−1
D

≤ Pw,H0(E; Σ)

w(E)
D−1
D

. (9.52)

Case 2 follows immediately using this claim and what we have proved in Case 1. We
now proceed to prove the claim.

It is no restriction to assume that en, the n-th vector of the standard basis, belongs
to the cone Σ. Then, ∂Σ is a convex graph (and therefore, Lipschitz in every compact
set) over the variables x1, . . . , xn−1. That is,

Σ = {xn > g(x1, . . . , xn−1)} (9.53)

for some convex function g : Rn−1 → R.
First we construct a sequence

Fk = {xn > gk(x1, . . . , xn−1)}, k ≥ 1 (9.54)

of convex smooth sets whose boundary is a graph gk : Rn−1 → R over the first n − 1
variables and satisfying:

(i) g1 > g2 > g3 > . . . in B, where B is a large ball B ⊂ Rn−1 containing the
projection of U .

(ii) gk → g uniformly in B.

(iii) ∇gk → ∇g almost everywhere in B and |∇gk| is bounded independently of k.

(iv) The smooth manifolds ∂Fk = {xn = gk(x1, . . . , xn−1)} and ∂U intersect transver-
sally.

To construct the sequence gk, we consider the convolution of g with a standard mollifier

g̃k = g ∗ kn−1η(kx) +
C

k

with C is a large constant (depending on ‖∇g‖L∞(Rn−1)) to guarantee g̃k > g in B.
It follows that a subsequence of g̃k will satisfy (i)-(iii). Next, by a version of Sard’s
Theorem [164, Section 2.3] almost every small translation of the smooth manifold
{xn = g̃k(x1, . . . , xn−1)} will intersect ∂U transversally. Thus, the sequence

gk(x1, . . . , xn−1) = g̃k(x1 − yk1 , . . . , xn−1 − ykn−1) + ykn

will satisfy (i)-(iv) if yk ∈ Rn are chosen with |yk| sufficiently small depending on k
—in particular to preserve (i).

Let us show now that Pw,H0(U ∩ Fk; Σ) converges to Pw,H0(E; Σ) as k ↑ ∞. Note
that (i) yields Fk ⊂ Fk+1 for all k ≥ 1. This monotonicity will be useful to prove the
convergence of perimeters, that we do next.

Indeed, since we considered the gauge H0 instead of H, we have the following
property

Pw,H0(E; Σ) =

∫

∂U∩Σ

H0(ν(x))w(x)dx =

∫

∂E

H0(ν(x))w(x)dx. (9.55)
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This is because ∂E = ∂(U ∩ E) ⊂ (∂U ∩ Σ) ∪ (U ∩ ∂Σ) and

H0(ν(x)) = 0 for almost all x ∈ ∂Σ. (9.56)

Now, since ∂(U ∩ Fk) ⊂ (∂U ∩ Fk) ∪ (U ∩ ∂Fk) we have

0 ≤ Pw,H0(U ∩ Fk; Σ)−
∫

∂U∩Fk
H0(ν(x))w(x)dx ≤

∫

U∩∂Fk
H0(νFk(x))w(x)dx.

On one hand, using dominated convergence, (9.53), (9.54), (ii)-(iii), and (9.56), we
readily prove that ∫

U∩∂Fk
H0(νFk(x))w(x)dx→ 0.

On the other hand, by (i) and (ii), Fk ∩ (B ×R) is an increasing sequence exhausting
Σ ∩ (B × R). Hence, by monotone convergence

∫

∂U∩Fk
H0(ν(x))w(x)dx→

∫

∂U∩Σ

H0(ν(x))w(x)dx = Pw,H0(E; Σ).

Therefore, the sets U ∩ Fk approximate U ∩ Σ in L1 and in the (w,H0)-perimeter.
Moreover, by (iv), U ∩ Fk are Lipschitz open sets.

Finally, to obtain the sequence of smooth domains Ωk in (9.52), we use a partition
of unity and local regularization of the Lipschitz sets U ∩ Fk to guarantee the con-
vergence of the (w,H0)-perimeters. In case that the regularized sets had more than
one connected component, we may always choose the one having better isoperimetric
quotient.

Case 3. Assume that E is any measurable set with w(E) <∞ and Pw,H0(E; Σ) ≤
Pw,H(E; Σ) < ∞. As a consequence of Theorem 5.1 in [16], C∞c (Rn) is dense in the
space BVµ,H0 of functions of bounded variation with respect to the measure µ = wχΣ

and the gauge H0. Note that our definition of perimeter Pw,H0(E; Σ) coincides with the
(µ,H0)-total variation of the characteristic function χE, that is, |DµχE|H0 in notation
of [16]. Hence, by the coarea formula in Theorem 4.1 in [16] and the argument in
Section 6.1.3 in [208], we find that for each measurable set E ⊂ Σ with finite measure
there exists a sequence of bounded smooth sets {Uk} satisfying

lim
k→∞

w(Uk ∩ Σ) = w(E) and lim
k→∞

Pw,H0(Uk; Σ) = Pw,H0(E; Σ).

Then we are back to Case 2 above, and hence the proof is finished.

After the announcement of our result and proof in [51], Emanuel Milman showed
us a nice geometric construction that yields the weighted inequality in Theorem 9.1.3
in the case that α is a nonnegative integer. We next sketch this construction.

Remark 9.6.1 (Emanuel Milman’s construction). When α is a nonnegative integer the
weighted isoperimetric inequality of Theorem 9.1.3 (when H = ‖ · ‖2) can be proved
as a limit case of the Lions-Pacella inequality in convex cones of Rn+α. Indeed, let
w1/α > 0 be a concave function, homogeneous of degree 1, in an open convex cone
Σ ⊂ Rn. For each ε > 0, consider the cone

Cε =
{

(x, y) ∈ Rn × Rα : x ∈ Σ, |y| < εw(x)1/α
}
.
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From the convexity of Σ and the concavity of w1/α we have that Cε is a convex cone.
Hence, by Theorem 9.1.1 we have

P (Ẽ; Cε)
|Ẽ ∩ Cε|

n+α−1
n+α

≥ P (B1; Cε)
|B1 ∩ Cε|

n+α−1
n+α

for all Ẽ with |Ẽ ∩ Cε| <∞, (9.57)

where B1 is the unit ball of Rn+α. Now, given a Lipschitz set E ⊂ Rn, consider the
cylinder Ẽ = E × Rα one finds

|Ẽ ∩ Cε| =
∫

E∩Σ

dx

∫

{|y|<εw(x)1/α}
dy = ωαε

α

∫

E∩Σ

w(x)dx = ωαε
αw(E ∩ Σ)

and

P (Ẽ; Cε) =

∫

∂E∩Σ

dS(x)

∫

{|y|<εw(x)1/α}
dy = ωαε

α

∫

∂E∩Σ

w(x)dS = ωαε
αPw(E; Σ).

On the other hand, one easily sees that, as ε ↓ 0,

P (B1; Cε)
|B1 ∩ Cε|

n+α−1
n+α

= (ωαε
α)

1
n+α

(
Pw(B1; Σ)

w(B1 ∩ Σ)
n+α−1
n+α

+ o(1)

)
,

where B1 is the unit ball of Rn. Hence, letting ε ↓ 0 in (9.57) one obtains

Pw(E; Σ)

w(E ∩ Σ)
n+α−1
n+α

≥ Pw(B1; Σ)

w(B1 ∩ Σ)
n+α−1
n+α

,

which is the inequality of Theorem 9.1.3 in the case that H = ‖·‖2 and α is an integer.
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