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ABSTRACT 

Graphene, a two-dimensional sp2-hybridized network of carbon atoms has received a remarkable 

cornucopia of new physics and served as a unique model system, due particularly to its electronic 

properties, which could have interesting applications in electronic, spintronic or quantum devices. The first 

part of the thesis describes the modulation of graphene’s structural and electrical properties with various 

kinds of doping; such as deep ultraviolet irradiation in ambient atmosphere, deep ultraviolet light irradiation 

in different gaseous environments, and electron beam irradiation. We have fabricated graphene (exfoliated 

and chemical vapor deposition grown graphene) field effect transistors using photolithography and electron 

beam lithography and characterized with AFM, Raman spectroscopy and transport measurement using low 

noise standard lock-in amplifier technique. We have explored how the ultraviolet light exposure tunes the 

electrical properties of graphene in an ambient atmosphere, confirmed by the shift of Dirac point position 

towards positive gate voltage, revealing p-type doping for graphene without degradation of mobility. We 

found that the doping is stable for a time scale of months. This method became more useful when half the 

graphene device was exposed by ultraviolet light, while the other half part was covered by a mask to make 

a sharp p-n junction. The doping effect became more prominent and controllable when it was made in an 

oxygen environment. The most interesting phenomena were observed when doped graphene was restored 

to a pristine state using ultraviolet light irradiation in a nitrogen environment. Furthermore, we have 

investigated the doping tunability with ultraviolet light irradiation on mechanically exfoliated single-, bi-, 

and trilayer graphenes without significantly degrading its charge carrier mobility. In a further study, the 

structural deformation of graphene was investigated by irradiation of an electron beam. The graphene 

structure changes its phase in various stages, where graphene transforms gradually from a crystalline to a 

nanocrystalline form and after a certain irradiation time into an amorphous form. This irradiation effect 

acts as an n-type dopant for graphene. In this case, mobility decreases with the gradual increase of 

irradiation dose, which implies the formation of localized states. The second part of the thesis describes 

carbon nanotube networks as flexible and transparent electrodes for electronic devices, particularly for high 

frequency applications. The observed results show that at low frequencies, the impedance increases as the 

density of nanotube networks decreases, as expected. Both the real and imaginary parts of impedance 

(measured up to 20 GHz) abruptly decrease as the frequency increases over the cut-off frequency. The cut-

off frequency not only depends on the carbon nanotube density of the network, but also on the sample 

geometry. The Nyquist diagram suggests a simple equivalent circuit composed of a parallel combination 

of a resistor and a capacitor. The experimental results are in line with calculations made by electrochemical 

spectroscopy simulations. The results show that the electrical behavior is mostly determined by the contact 

resistance between the nanotubes, which are in a completely disordered distribution in the network. We 

show that carbon nanotube flexible conducting films, which may be transparent, could be competitive for 

some applications, such as displays, photovoltaic solar cells or selective sensors. 



 

 

 

 

RESUM 

El grafè, considerat com una xarxa bidimensional d’àtoms de carboni units per enllaços híbrids sp2, és un 

tema de recerca molt prolífer en els últims anys, com a model de sòlid bidimensional, i molt particularment 

degut a les seves propietats electròniques, que poden tenir aplicacions interessants en dispositius 

electrònics, spintrònics o quàntics. La primera part de la Tesi descriu la modificació de les propietats 

estructurals i elèctriques del grafè utilitzant diferents mètodes per a dopar-lo: radiació ultraviolada d’alta 

energia (DUV) en atmosfera ambient, DUV en diferents gasos tals com oxigen o nitrogen,  o irradiant amb 

un feix d’electrons (e-beam). Hem fabricat transistors d’efecte de camp (FET) amb grafè (exfoliat a partir 

del grafit, o bé obtingut per  deposició química en fase vapor, CVD) utilitzant fotolitografia i e-beam 

litografia, i els hem caracteritzat mitjançant AFM, espectroscòpia Raman i mesures de transport elèctric, 

per a les que hem utilitzat la tècnica d’amplificació de baix soroll, el lock-in. Hem investigat com 

l’exposició a la llum ultraviolada en atmosfera ambient, modula les propietats elèctriques del grafè, de 

manera que la posició del punt de Dirac es desplaça cap a tensions de porta positives, cosa que implica 

dopatge de tipus-p, sense que hi hagi degradació de la mobilitat. El dopatge és estable al menys durant 

mesos. Amb el mateix mètode, quan només la meitat del dispositiu és exposat a la radiació ultraviolada 

mentre l’altre meitat és recobert per una màscara metàl·lica, hem obtingut una unió p-n. L’efecte de dopatge 

és més important i controlable, quan és fet en atmosfera d’oxigen. L’efecte més interessant que hem 

observat és la reversibilitat, quan el grafè dopat retorna al seu estat primitiu, en ser irradiat amb llum 

ultraviolada en atmosfera de nitrogen. També hem investigat el dopatge amb llum ultraviolada del grafè 

exfoliat mecànicament, de una, dues o tres capes, observant que es produeix sense una degradació 

significativa de la mobilitat dels portadors de càrrega. Posteriorment hem estudiat la deformació estructural 

del grafè quan és irradiat amb un feix d’electrons. Hem observat canvis estructurals en diferents etapes: el 

grafè evoluciona gradualment, a partir de la forma cristal·lina, cap a una fase d’estructura nanocristal·lina 

i finalment, després d’una certa dosi de irradiació, presenta una estructura  amorfa. L’efecte d’ irradiar el 

grafè amb electrons actua com a dopant tipus-n, però en aquest cas la mobilitat decreix en incrementar la 

dosi, això implica que hi ha formació d’estats localitzats. La segona part de la Tesi tracta de capes primes 

de nanotubs de carboni, com a elèctrodes flexibles i transparents per a dispositius electrònics, en particular 

per aplicacions d’alta freqüència.  Els resultats obtinguts mostren que, a baixes freqüències, la impedància 

augmenta en disminuir la densitat de nanotubs, tal com cal esperar. Tan la part real com la part imaginària 

de la impedància (mesurada fins a 20 GHz) decreixen abruptament en augmentar la freqüència més enllà 

de la freqüència de tall. La freqüència de tall no depèn únicament de la densitat de nanotubs en la capa, 

sinó també de la geometria de la mostra. El diagrama de Nyquist es pot interpretar amb un circuit equivalent 

consistent simplement en una resistència i un condensador en paral·lel. Els resultats experimentals s’ajusten 

bé a les simulacions fetes per espectroscòpia d’impedàncies (EIS). Els resultats posen en evidència que el 

comportament elèctric queda majoritàriament determinat per la resistència de contacte entre els nanotubs, 



 

 

 

 
que formen la xarxa amb una distribució totalment desordenada. Hem vist que capes primes de nanotubs 

de carboni conductores i flexibles, que poden ser també transparents, poden ser competitives en diferents 

aplicacions, com ara pantalles, cel·les solars fotovoltaiques o sensors selectius. 
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Chapter 1 

1 Introduction 

 

 

1.1 Overview and history of graphene 

The history of graphene begins with graphite which consists of stacked layers of carbon atoms. In these 

stacked layers, the carbon atoms are arranged in a hexagonal lattice and strongly covalent bonds with each 

other. However, the atoms of two adjunct layers are weakly bound by a van der Waals force. Such a single 

layer of graphite is called graphene. This two-dimensional sp2-hybridized network of carbon atoms has 

received a remarkable cornucopia of new physics due to its novel linear dispersion relation, together with 

unique electronic properties such as ambipolar transport, Dirac particle quantum Hall effect including 

anomalous integer quantum Hall effect and quantized opacity. The scientific importance of graphene 

becomes significantly greater in the field of materials science and condensed matter physics, because 

graphene makes a unique model system which is reliable for studying a variety of unusual phenomena and 

technological applicability. The perfect honeycomb monolayer structure of carbon atoms is treated as a 

theoretical model for describing the properties of various carbon-based materials such as graphite, 

fullerenes, and carbon nanotubes. The theoretical investigation of two-dimensional (2D) crystals revealed 

that graphene would be unstable in reality due to thermal fluctuations [1-5].  Various experimental results 

have been in accord with this theoretical presumption that graphite thin films become thermodynamically 

unstable below a certain thickness. Furthermore, the initial steps were set out by Geim, Novoselov, and 

Kim when graphene emerged as a real sample with isolation of astonishingly thin carbon films and 

eventually monolayer graphene by simple exfoliation using Scotch tape [6-8]. No further proof is required 

for its importance in fundamental physics, whereas its effectiveness will be more evident after its 

appearance in commercially applicable products. Much research effort is being devoted to understanding 

the main physical properties of graphene. In particular, the remarkable electronic properties of graphene 

have provided significant motivation towards a better understanding of their physical features and have 

been transformed into real technological applications. However, the absence of band gap is a main obstacle, 

which limits its use for electronic logic devices. Thus, development strategies have been introduced for 

inducing band gap in graphene, some of which are being successfully utilized to tailor the electronic 

properties of graphene by controlled tunings, which include chemical doping, dual gate with external 

electric field, etc. 
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1.2 Basic electronic properties of carbon based structures 

The atomic structure of graphene is solely defined as a single layer of carbon atoms arranged in a hexagonal 

lattice. A single carbon atom has four valence electrons with a ground-state electronic shell configuration 

of 2s2 2p2. In case of graphene, the carbon-carbon chemical bonds are due to hybridized orbitals generated 

by the superposition of 2s with 2px and 2py orbitals. In the honeycomb lattice, the planer orbitals construct 

σ-bonds with the three nearest-neighbor carbon atoms, and the remaining 2pz orbitals having π symmetry 

orientation play a significant role in the electronic properties of graphene. The detailed layout of electronic 

structure of graphene is shown in Fig. 1(a). It can be used as a fundamental building-block paradigm to 

other carbon-based materials, since it can be folded into fullerenes, rolled up into nanotubes, or stacked 

layer by layer into graphite, as shown in Fig. 1(b).  

 
 

 

 

 

 

 

 

 

 

Figure 1.1.  (a) The ground-state electronic shell configuration of s and p hybridized orbitals generated by the superposition of 2s 

with 2px and 2py orbitals. (b) Graphene is a honeycomb lattice of carbon atoms. Graphite can be viewed as a stack of graphene 

layers. Carbon nanotubes are rolled-up cylinders of graphene and fullerenes (C60) are molecules consisting of wrapped graphene 

by the introduction of pentagons on the hexagonal lattice. (Adapted from A Catro Neto 2009 & A. Giem 2010) 

 

 

 
Figure 1.2.  (a) Honeycomb lattice of graphene. The shadowed area delineates the unit cell of graphene with its two nonequivalent 

atoms labeled by A and B. (b)  Band energy dispersion showing the degenerate K and K′ points obtained via tight binding 

approximation. (c)  The conical-shape dispersion around the charge neutrality point. (Taken from J. Güttinger et al. Rep. Prog. 

Phys. 2012) 

 
In Fig. 2 (b) and (c), one can see the band structure of graphene obtained from such a simple tight-binding 

model, which yields symmetric conduction and valence bands with respect to the Fermi energy, called the 

(a) (b) 
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charge neutrality point or Dirac point at 0 eV. The Dirac points are the junctions between the valence band 

and the conduction band. Graphene valence and conduction bands are degenerate at 6 points located on the 

corners of the Brillouin zone, also called K and K′ valleys, which are the two nonequivalent corners of the 

zone. The vertical axis is energy, while the horizontal axes are the momentum space on the graphene lattice. 

The hexagonal region (Brillouin zone) has a side length of 4π/3a and delineates the Fermi surface of the 

graphene. The low-energy dispersion near the valleys exhibits a circular conical shape. The dispersion 

relation of graphene with massless relativistic particles obtained from the Dirac equation shows that 

graphene charge carriers can behave as Dirac fermions [5].  

1.3 The structural and transport properties of graphene  

1.3.1 Structural characterization using Raman spectroscopy 

Raman spectroscopy is used as a standard nondestructive tool for the electronic structure characterization 

of carbon based crystalline films. It has also been used to measure the number of graphene layers and to 

analyze disorder, strain and doping in graphene. The D peak is attributed to A1g symmetry phonons near 

the K-zone boundary. These phonons are not Raman active due to the momentum conservation in the 

scattering, and require a defect for their activation. The G peak corresponds to the E2g optical phonon at the 

Brillouin zone center and 2D peak is the second order of the D peak. It originates from a process where 

momentum conservation is satisfied by two phonons with opposite wave vectors. The ratio and positions 

of 2D and G peaks are used to identify the number of layers of graphene. The number of layers is also 

estimated from the full width half maxima (FWHM) of 2D peaks. Figure 1.3(a) shows the Raman spectra 

of graphene and bulk graphite with 514 nm laser wave length. Figure 3(b) shows the comparison of the 2D 

peaks in graphene and graphite. The four components 2D1A, 2D1B, 2D2A, and 2D2B of the 2D peak after 

Lorentzian fitting in bilayer graphene with an excitation wavelengths 514.5 and 633 nm are shown in Fig. 

1.3(c). Figure 1.3(d) shows the evolution of the height and width of the 2D peak spectra comparison with 

the number of layers. The variation in the positions and shape of the 2D peak for different numbers of layer 

can be clearly seen. The phonon dispersion and electron band structure of graphene are shown in Fig. 

1.3(e), where the black lines correspond to the calculated band structure for graphene with equal lattice 

spacing, whereas the red, blue and green dotted points are the experimental data from various references. 

The straight red lines at Γ and K represent the E2g and A1g-like eigenvectors of aromatic clusters on those 

of graphene, respectively, which are obtained from Kohn anomalies in the phonon dispersions equations 

of graphite.  
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Figure 1.3. (a) Raman spectra for graphene and bulk graphite with an excitation wave length 514 nm. (b) Comparison of the 2D 

peaks in graphene and graphite. (c) The four components of the 2D peak (2D1A, 2D1B, 2D2A, and 2D2B) in bilayer graphene. (d)  

Evolution of the height and width of the 2D peak spectra comparison with number of layers. (e)  The phonon dispersion and 

electron band structure of graphene, calculated at the experimental and equilibrium lattice spacing. The dotted points are the 

experimental data and the straight red lines at Γ and K are obtained from Kohn anomalies in the phonon dispersions equations of 

graphite. Adapted from (A. C. Ferrari, et al. Sol. Stat. Comm. 2007, PRL 2006 & PRB 2000) 

(e) 

(c) 
(d) 
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1.3.2 Transport properties of graphene  

Much attention has been devoted to the transport properties of graphene since the experimental realization 

of isolated graphene [6]. However, the effective implications depend mostly on patterning device 

architectures in which their electronic properties can be tuned in a predetermined and controlled way. An 

interesting phenomena can be observed experimentally when a graphene device with an isolated oxide gate 

experiencing strong tunability of carrier density under a modulating electrical field and an isotropic cone-

like structure of the energy relation is observed. Robust degeneracy at the Dirac point is split and this 

isotropic cone-like structure of the energy relation is now composed of two distinct valley structures with 

highly anistropic dispersions [9]. Figure 4 (a) shows the schematic of graphene field effect transistor 

of SiO2/Si substrate with Au electrodes. Figure 1.4 (b) shows the ambipolar electrical transport in single 

layer graphene. The positive (negative) back gate voltage (Vg) induces the concentration change of 

electrons (holes) for the field effect device on silicon dioxide substrate. The prompt decrease in resistivity 

(ρ) on addition of charge carriers corresponds to the high mobility of the graphene device. The Dirac cones 

in the insets in Fig. 1.4 (a) represent the modulation of Fermi energy (EF) with changing Vg changes [10]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. (a) Schematic of graphene field effect transistor on SiO2/Si substrate.  (b) Ambipolar electrical transport in single layer 

graphene. The resistivity as function of back gate voltage (Vg) at temperature of 1K. (Adapted from A. K. Geim and K. S. 

Novoselov, Nature Materials 2007) 

 

The carrier density and mobility of the graphene devices can be calculated by various methods, which are 

given below: 

 

1) The first method is to calculate the mobility of the graphene device using the Drude model: =1/ne 

where the resistivity of the graphene device is =RW/L, R (resistance), W (width of graphene channel), 

and L (length of graphene channel). The “n” is the carrier density, which can be calculated from Hall 
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measurements (n=1/(Rxy/B)e). The Hall measurement configuration and the sketch of the obtained Hall 

resistance as a function of magnetic field (B) are shown in Fig. 1.5(a) and (b), respectively. 

 

 

Figure 1.5.  (a) Graphene Hall measurement configuration. (b) The sketch of Hall resistance as a function of magnetic field (B). 

(c) The gate capacitance of oxide layer (Cg) can be obtained from the slope of charge carrier density versus gate voltage. 

 

2) The second method for the calculation of mobility is = (1/Cg)(/Vg), where Cg is the gate capacitance 

of oxide layer and /Vg is the slop of conductivity ( as the function of the gate voltages (Vg) of the 

graphene device. The calculation of /Vg is shown in Figure 1.6(a) and gate capacitance can be obtained 

from the slope of charge carrier density as a function of the gate voltage. 

 

3) The third method for the graphene mobility calculation is =1/ne, where ne= Cg (Vg-VDirac), Cg is the 

gate capacitance of oxide layer, Vg is the gate voltages and VDirac is the voltage of the graphene device at 

the Dirac point  

   

Figure 1.6. (a)The conductivity as a function of gate voltage. The solid red line corresponds to linear fit of (/Vg). (b) The 

measured Hall resistance as a function of magnetic field (B). The solid black line is the experimental data and the red line is the 

line fit used to obtain the slope.  (c) The gate capacitance of oxide layer (Cg) obtained from the slope of charge carrier density as a 

function of gate voltage. 
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1.4 Motivation of work 

In this section, I explain the motivation for the work presented in this thesis. The experimental realization 

of the doping effect in graphene opened the way for the exploration of many fundamental properties. In 

this thesis I focus on the following issues: 

 

 How essential is it to tune the Fermi level of the carriers in graphene? 

 How are the structural properties affected by doping of graphene? 

 How are the electrical transport properties tuned by varying the carrier density with doping? 

 How does the effect of ultraviolet light tailor the Fermi level of graphene? 

 What is the influence of a p-n junction in graphene on its transport properties? 

 How do the doping properties depend on the layers, when we go from a linear dispersion 

(single-layer graphene) to the parabolic dispersion that is present in bi- or trilayer graphene? 

 How do the different environments affect the structural and electrical properties of graphene? 

 How can the structural disorder be controlled during doping? 

 High frequency (40 MHz to 20 GHz) applications of carbon nanotube network for flexible and 

transparent electronics with different measurement geometries. 

1.5 Organization of the thesis 

The thesis is organized as follows: 

 

 Chapter 2 is devoted to a detailed overview of device fabrication methods and characterization tools. This 

chapter includes the production of graphene using a mechanical exfoliated technique and large scale growth 

of graphene using chemical vapor deposition method. The graphene transfer procedure is also addressed in 

this chapter. The device fabrication techniques such as photolithography and electron beam lithography 

pattering processes are also described. The Raman spectroscopy and transport measurement techniques 

using standard low noise lock-in two and four probe methods are given in this chapter.  

 

Chapter 3 of the thesis reports the tuning of electronic properties of single-, bi-, and trilayer mechanically 

exfoliated graphenes using deep ultraviolet (DUV) light. Raman spectroscopy and charge transport 

measurements reveal that DUV light imposes p-doping to single-, bi-, and trilayer graphenes. The Raman 

peak frequencies and intensity ratio of single-, bi-, and trilayer graphenes are analyzed as a function of 

irradiation time. The Dirac point is also analyzed as a function of irradiation time indicating the p-type 

doping effect for all single-, bi-, and trilayer graphenes. Our study demonstrates that DUV irradiation is a 

non-destructive approach to tailor the electrical properties of single-, bi-, and trilayer graphenes, while 

maintaining the important structural and electrical properties. 
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Chapter 4 contains a detailed study of the formation of p-n junction with stable p-doping in graphene field 

effect transistors using deep UV irradiation. Modification of the electronic properties of single-layer 

chemical vapor deposition (CVD)-grown graphene by DUV light irradiation is studied in this chapter. The 

Raman spectra suggests p-doping in graphene field effect transistors (FETs) with DUV irradiation. In the 

transport measurements, the Dirac point is shifted towards positive gate voltage with increasing DUV light 

exposure time, revealing the strong p-doping effect without a large increase of resistance. The doping is 

found to be stable in graphene devices, with a slight change in mobility. A p-n junction is also constructed 

by DUV light exposure on selected regions of graphene, and investigated by gate voltage dependent 

resistivity measurements and current-voltage characteristics. 

 

Chapter 5 of the thesis deals with the improvement of the doping technique described in Chapter 4. This 

work comprises the ultraviolet light induced reversible modulation of doping in graphene transistors with 

efficient photocurrent generation. The reversible modulation in different gases (dry oxygen and nitrogen 

environments) moved us firmly towards the controllable doping and de-doping mechanism. Hole doping 

is observed by DUV irradiation with oxygen flow, but becomes reversed with nitrogen flow in transport 

measurements supported with Raman and X-ray photoelectron spectroscopy. The generation of efficient 

photocurrent provides the possibility of integrating high-efficiency optoelectronic devices. 

 

Chapter 6 describes the structural and electrical evolution of chemical vapor deposition grown graphene 

by electron beam irradiation induced disorder. The defect formation mechanism in chemical vapor 

deposition grown single-layer graphene devices is investigated by gradually increasing electron beam (e-

beam) irradiation doses. The Raman spectra provide evidence of strong lattice disorder due to e-beam 

irradiation. In particular, the result suggests that the graphene changes from the crystalline form to the 

nanocrystalline form and then towards the amorphous form with increasing irradiation dose. The defect 

parameters are calculated by a phenomenological model of amorphization trajectory for graphitic materials. 

Mobility decreases gradually with a gradual increase of irradiation dose, which implies the formation of 

localized states in e-beam irradiated graphene. The Dirac point is shifted towards negative gate voltage, 

indicating n-doping in graphene with an increasing e-beam irradiation dose. 

 

Chapters 7 presents the analysis of single-walled carbon nanotube networks, which are expected to be 

suitable as miniaturized flexible radio frequency RC filters and also have important implications for high 

frequency devices. The thickness and roughness of the thin film of SWCNTs are examined by atomic force 

microscopy. The surface morphology obtained by atomic force microscopy shows that most of the growth 

on polypropylene carbonate substrate is homogeneous. The frequency-dependent impedance 

measurements of SWCNTs network on transparent and flexible substrates is performed by using two 

different techniques, i.e., two probe and Corbino reflectometry setups. The impedance measurements show 
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that the cut-off frequency decreases with increasing density of SWCNTs. The real part of the impedance 

as a function of cut-off frequency shows the same slope in both measuring techniques. For the case of two-

probe impedance measurements, the measured impedance is large and is mainly due to high contact 

resistance. As expected, the cut-off frequency not only depends on the density of the network, but on other 

factors such as geometry in the measurement setup. 

 

Chapter 8 provides a thorough discussion of the doping effect on graphene-based devices and a summary 

of whole work. 
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Chapter 2 

2 Experimental methods 

 

 
 

 

In this chapter I describe graphene growth, device fabrication processes and experimental details of our 

measurements. 

2.1 Fabrication of graphene flakes by mechanical exfoliation of graphite using 

the scotch tape technique 

The micromechanical cleavage of bulk graphite is also commonly known as the “Scotch tape” method. The 

silicon substrate with 300 nm silicon oxide as a top layer is glued onto glass slide using double-sided sticky 

tape.  A few pieces of graphite are placed on scotch tape and peeled off many times. This procedure makes 

fresh graphene layers glued with tape. The scotch tape together with the graphene are pressed onto the SiO2 

substrate. Van der Waals forces make single, multilayer or graphite pieces remain on the SiO2 after 

removing the tape. The exfoliated single, bi- or trilayer graphene flakes can be identified using optical 

microscopy due to the interference effects of light between SiO2 and graphene.  

 

2.2 Graphene towards large scale production  

The mechanical exfoliation technique has a low cost, but, it is highly uncontrollable for the size and number 

of layers of graphene. Furthermore, the yield of graphene is low and the flakes have rather small dimensions 

of a few microns. Although most of the fundamental research can be done using this method, alternative 

techniques for large-scale production of graphene are required. There are two main directions in this area: 

(i) epitaxial growth of graphene on SiC substrate; and (ii) chemical vapor deposition on metal substrate. 

The epitaxial growth of graphene on SiC substrate requires very high-temperatures and is relatively 

expensive. However, chemical vapor deposition (CVD) on metal (Cu, Ni) substrate is relatively cheaper 

than the growth on SiC and is a more promising approach for large-scale production of graphene. Most of 

the samples discussed in this thesis were obtained this method with help from Dr. Chanyong Hwang’s 

group in the Korea Research Institute of Standards and Science, and Prof. Seung-Hyun Chun’s group at 

Sejong University. The detailed procedure of graphene growth using CVD method on Cu foil is given as: 

Large-area high-quality monolayer graphene samples were grown on 25 μm thick Cu foils (Alfa Aesar, 

99.8 %, #13382) by remote radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) 

system. The graphene growth setup of PECVD with inductively coupled plasma source is shown in Fig. 

2.1. The CVD chamber was pumped with pressure up to ~10-7 Torr with turbo-molecular-pump. 
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Polycrystalline Cu foil was accumulated in the chamber. Before starting gas flow into the chamber, the Cu 

substrate was heated up to 830 °C. H2 gas was then introduced into the chamber at a flow rate of 40 standard 

cubic centimeter per minute (sccm). The hydrogen gas was then discharged by RF power of 50 W for two 

minutes to purge the surface oxides of copper foil. During the growth of graphene, the RF plasma was 

generated for 3 minutes with a continuous flow of a mixture of argon (40 sccm) and methane (1 sccm) gas 

at a pressure of 10 mTorr. Subsequently the sample was cooled down to room temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The plasma-enhanced chemical vapor deposition setup with inductively coupled plasma source. (Taken from Research 

institute of precision instruments) 

 

2.3 Graphene transfer method  

The graphene film grown on Cu foil was transferred to a SiO2/Si substrate with the wet transfer method. 

The Cu foil was spin-coated (850 rpm for 10sec, 2500 rpm for 60sec) with a thin layer of polymethyl 

methacrylate (PMMA). The bottom Cu foil was then removed by etching in a 1 molar solution of 

ammonium persulfate (APS) ((NH4)2S2O8), and the PMMA membrane was washed with de-ionized water. 

The graphene film with the PMMA membrane was then transferred to heavily p-doped Si substrate with a 

300 nm thick SiO2 top layer, and graphene on the SiO2/Si substrate was kept in acetone for one day to 

dissolve the PMMA layer. The diagram of the chemical vapor deposition grown graphene transfer method 

from copper foil to the silicon dioxide substrate is shown in Fig. 2.2. 
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Figure 2.2. Diagram of the chemical vapor deposition grown graphene transfer method from copper foil to the silicon dioxide 

substrate.  

 

2.4 Fabrication recipe of a graphene device on silicon dioxide substrate 

The fabrication of the graphene device proceeds as follows:  

The first step is the sonication of SiO2/Si substrates in acetone for 5 min, and then the substrates are flushed 

with methanol. This step helps to remove dust particles and other residues from the wafer surface, leading 

to a better adhesion of graphene. The sample is dried with nitrogen gas and baked on a hot plate at 180 ̊C 

for 60 sec to eliminate the water molecules and other solvents. Then graphene is transferred onto the silicon 

dioxide substrate using the scotch tape method for mechanical exfoliated graphene and the wet transfer 

method for CVD grown graphene, as mentioned above. After that, photolithography patterning is 

conducted using the process described below:  

2.5 Photolithography patterning on graphene  

The bilayer photolithography resist process utilizes an ethyl lactate (EL9) and SPR (3612) coating. Initially, 

the EL9 resist is spin-coated at the rate of 5000 rpm for 30 sec on the graphene containing piece of silicon 

wafer. The substrate is then baked at 170 ̊C in a heating oven for 120 sec, and after that the SPR is spin-

coated at the rate of 5000 rpm for 30 sec and baked at 95 ̊C for 120 sec. The photoresist creates a thin film 

on the surface of samples with a high-speed spinner, and the baking process helps to dry out the film 

completely. The dried samples are then exposed under UV light for 4.5 sec using a mask aligner for the 

desired pattern. The exposed samples are developed in CPD-18 for 55 sec, which removes the exposed 

region of the SPR. The complete removal of SPR from the desired area is performed by oxygen plasma 

treatment for 8 minutes. For the removal of EL9, a flood exposure of DUV is conducted for 15 minutes 

and developed in the mixture of cholorobenzene and xylene (3:1) for 3 minutes. After these steps, the 
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samples are ready for metal deposition. Since the resist residue in the exposed area still remains, it may 

cause a high resistance between electrode connections. To avoid this problem, the samples are exposed 

under oxygen plasma for 15 seconds to completely remove the resist residue. Finally, the metal deposition 

is carried out using a thermal evaporation system. The diagram of the photolithography patterning 

procedure is shown in Fig. 2.3.  The large photolithographic patterns after Au deposition for exfoliated 

graphene and Hall bars patterns of CVD-grown graphene are shown in Fig. 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 2.3. Diagram of photolithography patterning and metal deposition.  
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Figure 2.4. (a) The large photolithographic pattern after Au deposition on SiO2/Si substrate. (b) Inside view of the large pattern 

after photolithography and Au deposition for the exfoliated graphene sample. (c) and (d)  patterns of CVD-grown graphene Hall 

bars.     

 

2.6 Electron beam lithography patterning on graphene  

The bilayer electron beam resist-recipe utilizes copolymer ethyl lactate (EL9) and polymethylmethacrylate 

(PMMA 950K A2). This recipe is intended for metal liftoff.  Spin coating of EL9 is performed at the rate 

of 5000 rpm for 30 sec on the graphene samples after photolithography patterning. The sample is then 

baked at 170 ̊C in a heating oven for 1 hour. Oven heating is preferred to hot plate baking for uniform 

baking. The second layer is spin-coated by the PMMA resist at 5000 rpm for 30 sec. The resulting thickness 

of resist film is determined by the coating speed and can also be controlled using a diluted percentage of 

the EL and PMMA, as shown in Fig. 2.5 (a) and (b), respectively. The thickness ratio between the resist 

and deposited material has to be at least 2:1 for a better lift-off process.  
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Figure 2.5. (a) The copolymer resist ethyl lactate and (b) polymethylmethacrylate resulting thickness of resist with coating speed 

and diluted percentage. (Taken from microchem corp.) 

 

The designed pattern of contacts made by means of AutoCAD are written using electron beam lithography 

(EBL). In this technique, a beam of electrons exposes the required pattern of contacts on the sample covered 

with polymer (resist). The positive resist is commonly used, although in some cases negative resist may 

also be preferred. The electron beam breaks polymer chains in the exposed regions. For EBL exposure, we 

normally use 20 kV of accelerating voltage for electrons with an area dose of 100-150 μC/cm2. The sample 

is developed for 10 sec in a 3:1 (60 mL: 20 mL) mixture of IPA (propan-2-ol) and MIBK (4-methyl-2-

pentanone) at 20 ̊C. The sample is washed in IPA for more cleaning. To prevent drying marks, the sample 

is dried by blowing dry nitrogen. After EBL exposure, the broken chains become soluble in the developer. 

The resultant sample is covered with polymer, except for the places where the contacts have to be deposited. 

The next stage is to evaporate the metal on the sample for the contacts. The evaporation is done in a vacuum 

(~ 2×10−6 Torr) by thermal evaporation. We usually evaporate thin layer of Cr as an adhesion layer 

followed by the Au layer. The exact thickness of the deposited materials is monitored by the thickness 

monitor. The sample covered with metal is dipped into a beaker half filled with acetone for lifting off 

polymers. The acetone reacts with the resist underneath the metal and breaks it down by lifting up the 

undesired metal layer. Figure 2.6 shows the E-beam lithography patterning and metal deposition. A 

scanning electron microscope image of E-beam lithographic patterns on graphene Hall bar is shown in Fig. 

2.7. The sample with a pattern of metal contacts is mounted on a chip and then wire-bonded using indium. 

Finally, the sample is ready to be measured. 

(b) 
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Figure 2.6.  Diagram of E-beam lithography patterning and metal deposition.  

 

 

 

 

 

 

 

 

 

Figure 2.7.  Scanning electron microscope image of E-beam lithographic (a-b) exfoliated graphene patterns (c) CVD grown 

graphene Hall bar pattern. 

 

2.7 Patterning using metal masks  

Patterning using a metallic hard mask is an alternate strategy for making a clean residue-free interface 

between metal and graphene. This scheme is promising for large area patterning on graphene such as CVD 

grown. However, this method is not useful for small-scale patterning. The Au patterns on the SiO2/Si 

substrate and CVD grown graphene on the SiO2/Si substrate using Al metal masks are shown in Fig. 2.8.      

20m 

(a)                                               (b)                                        (c) 
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Figure 2.8. (a) The Au patterning on SiO2/Si substrate using metal masks. (b) The Au patterning on CVD grown graphene on 

SiO2/Si substrate using Al metal masks.      
 

2.8 Setup of the lock-in based electrical transport measurements 

The samples are mounted onto the electrical transport measurement setup after bonding with indium wires. 

The measurements are performed with the standard lock-in technique. The lock-in amplifier 

(signal recovery 7265 DSP) produces an ac voltage with an operating frequency range from 1 mHz to 250 

kHz. This ac voltage is used as a reference for generating the ac-current in an I-V measurement. The back 

gate voltage can be directly applied to the graphene using a voltage source (Keithley 2400). The two and 

four probe measurement method of measurements are mainly adopted. In the two-probe setup, the current 

is applied between two electrodes and the voltage drop is measured between the same set of electrodes.  In 

this method, the measured output resistance contains the contributions of the contact resistance of the 

metallic contact leads. However, in the four-probe configuration the measured resistance is the sample 

resistance itself without any contributions from the contacts leads. The two outer electrodes are connected 

to the current source and two inner electrodes to the voltage probes. The measurement configuration for 

both the four- and two-probe setup is shown in Fig. 2.9 (a) and (b), respectively. Figure 2.10 (a) shows the 

electrical transport measurement configuration of the graphene Hall bar device. The data acquisition during 

measurements are automatically controlled by LabView software. The LabView setup during data 

acquisition of graphene transport measurements is shown in Fig. 2.10 (b). 

(a) (b) 
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Figure 2.9. (a) The four-probe electrical transport measurement setup of graphene using Lock-in technique and controlled by 

LabView software. (b) The two-probe electrical transport measurement using the same Lock-in technique.  
 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. (a)  The transport measurement configuration of the graphene Hall bar device (b) The LabView setup during data 

acquisition of graphene electrical transport measurements. 

  

2.9 Doping with DUV irradiation 

The modification of graphene properties by DUV is investigated by transport measurements and Raman 

spectroscopy. The DUV system (Lamp Model: UXM-501 MA) is used for the experiment. The maximum 

limit of lamp voltage and current are 20 V and 25 A, respectively. The dominant lamp wavelength of DUV 

light is 220 nm with uniformity of 3.6 % and its average intensity is 11 mW/cm2.  

(a) (b) 

(a) (b) 
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2.10 Structural disorder with E-beam irradiation 

The Tescane VEGA 3 scanning electron microscope (SEM) is used to study the e-beam irradiation effect 

on graphene. The different dose e-beam irradiation is conducted with the use of the Raith GmbH 

lithography system, which permits an accurate control of the irradiation dose and the location of the 

exposed area. The experiment is performed with an accelerating voltage of 20 keV of e-beam at a working 

distance of 3.55 m. The Faraday cup of the sample stage is used to measure the beam current, which for 

this experiment is 14.9 pA. 

2.11 Impedance analysis 

Two different impedance analyzers are used: (1) Agilent E8362B network analyzer with a frequency range 

from 10 MHz to 20 GHz, and (2) Agilent 4294A network analyzer with a frequency range from 40 Hz to 

110 MHz for high frequency measurements of CNT network on flexible on PC substrate.  
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Chapter 3 

3 Tuning the electrical properties of exfoliated graphene layers by 
deep ultraviolet irradiation 

 
 

It is a matter of huge concern in graphene-based nano- and optoelectronic devices to tune the electrical 

properties of graphene layers, while sustaining its unique band structure and their electrical holdings. Here, 

we report the tuning of electronic properties of single-, bi-, and trilayer mechanically exfoliated graphenes 

by deep ultraviolet irradiation (DUV). Raman spectroscopy and electrical transport measurements reveal 

that DUV light imposes p-doping to single-, bi-, and trilayer graphenes. The shift of the G and 2D peak 

wave number and intensity ratio of single-, bi-, and trilayer graphenes are evaluated as a function of 

irradiation time. The Dirac point shift is analyzed as a function of irradiation time, which indicates the p-

type doping effect for all single-, bi-, and trilayer graphenes. Our investigation demonstrates that DUV 

irradiation is a non-destructive approach to tailor the electrical properties of single-, bi-, and trilayer 

graphenes, while maintaining their important structural and electrical characteristics. 

 

3.1 Introduction 

Graphene, a two-dimensional sp2-hybridized network of carbon atoms with perfect crystalline structure,  

enables remarkable exploration of fundamental physics as well as the exciting potential applications for 

electronic devices [7, 10]. In addition, graphene attracts great attention due to its unique electronic 

properties, such as ambipolar transport with high charge carrier mobility and transparency [6, 8, 11, 12]. 

These distinctive properties make graphene an ideal candidate for the application of transparent conducting 

electrodes like other carbon-based materials [13-15]. The structural and electrical properties of graphene 

are extremely affected and modified via chemical doping, metal doping, and high energy electron or ion 

irradiation [16-19]. The controlled tunability is an essential to make the graphene devices more suitable for 

technological applicability. Chemical doping is one of the most common approaches for the modification 

of structural and electrical properties; however, it produces structural disorders [20-24]. The high energy 

electron or ion irradiations therefore mostly induce the large structural defects in graphene [18, 25-30]. The 

exchange of carbon atoms in the graphene lattice with dopant atoms may provide another route, but this 

substitute doping may have some disadvantages that cause the disorder in the honeycomb structure and 

potentially reduce the carrier mobility of the graphene [18, 31, 32]. The application of oxygen plasma 

treatment is able to tailor the electrical properties of graphene through oxidation, but the induced structural 

disorders are irrepressible [33, 34]. However, these complications can be avoided by employing an 

alternative approach for the tunability while preserving the honeycomb structure of graphene. Theoretical 
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predictions suggest that the modification of graphene with photo oxidation is a conceivable approach for 

tuning the properties of graphene [35-37]. Some experimental studies have been carried out to investigate 

molecular photo-assisted desorption and absorption, particularly with the ultraviolet light effect on pristine 

and functionalized graphene layers [38-40]. However, a comprehensive methodology is still required for 

the tunability of graphene from neutral to doped states for flourishing applications. In this work, we 

concentrate on the defect-free modulation of graphene. Recently, graphene-based research shows great 

interest in the investigation into the modification of electrical properties as a function of the number of 

graphene layers. The electronic structure and morphology become different by increasing the number of 

graphene layers [41]. For example, the electronic structure of single-layer graphene (SLG) is distinct from 

bilayer graphene (BLG) and trilayer graphene (TLG). The study of different graphene layers is more 

important, because the optical, structural and electrical properties obviously change when we go from a 

linear spectrum (single-layer graphene) to the parabolic spectrum that is present in bi- or trilayer graphene. 

The stacking of more graphene layers reduces the sheet resistance, which makes graphene a more suitable 

candidate for conducting electronic devices [42-44]. On the other hand, the transparency of graphene layers 

decreases linearly in proportion to the number of layers, in the order of 2.3% for each layer in the visible 

region. However, more than 90 % transparency may still be achieved with up to three layers of graphene 

[11].  

 

Here we report the tuning of electronic properties of mechanically exfoliated single-, bi-, and trilayer 

graphenes by DUV irradiation without significantly degrading its charge carrier mobility. Raman 

spectroscopy and charge transport measurements reveal that the DUV irradiation effect tunes the properties 

of single-, bi-, and trilayer graphene layers towards p-type doping. The shift of Dirac point positions for 

single-, bi-, and trilayer graphenes is investigated as a function of DUV irradiation time. It is found that the 

charge neutrality point shifts toward positive gate voltage with increase of DUV irradiation time for single-

, bi-, and trilayer graphenes, which evidently confirms the p-doping effect. The results indicate that DUV 

irradiation is a non-destructive approach to tuning the properties of single-, bi-, and trilayer graphenes, 

while preserving the optical, structural and electrical assets. 

 

3.2 Device fabrication and characterization 

3.2.1 Preparation of graphenes  

The SLG, BLG, and TLG films are obtained by mechanical exfoliation of natural graphite flakes by using 

adhesive tape, and then transferred onto a 300 nm SiO2 supported with Si wafer. The layer numbers of the 

graphene films are identified by optical microscope and Raman spectroscopy, as shown in Fig. 3.1 (a), (b) 

and (c). The big patterned electrodes (Cr/Au of 5/30 nm) for all SLG, BLG, and TLG are made by 
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photolithography on Si/SiO2 substrate. The electrodes are made by e-beam lithography and evaporation of 

Cr/Au (6/50 nm) for electrical transport measurements. The device structures of SLG, TLG, and BLG are 

shown in Fig. 3.1(a), (b) and (c), respectively. 

3.2.2 DUV doping and characterization 

The modification of graphene properties by DUV is investigated by transport measurements and Raman 

spectroscopy. The gate voltage-dependent resistivity measurements and Raman spectroscopy are 

implemented on pristine graphene, and after different durations of DUV treatment on SLG, BLG, and TLG 

devices. Raman spectra are performed with a Renishaw micro spectrometer with the laser wavelength of 

514.5 nm over wave number from 1100 to 3200 cm-1. The laser power is kept at ∼1.0 mW to prevent the 

introduction of defects and local heating due to the laser. The SLG, BLG, and TLG are exposed with DUV 

light for a certain period of time, and four terminal Dirac point measurements are taken using a standard 

lock-in amplifier technique at room temperature in a vacuum.  

3.3 Results and discussion 

The optical microscope images of the SLG, BLG and TLG field effect transistor devices fabricated on 

SiO2/Si substrates are shown after photolithography and e-beam lithography in Fig. 3.1(a-f), respectively. 

Initially, these numbers of graphene layers were identified on the basis of their optical contrast and then 

further confirmed by Raman spectroscopy [45, 46]. Figure 3.1(g) shows the Raman spectra of pristine SLG, 

BLG, and TLG. The ratio of I2D/IG peaks are found to be 5.1, 1.34 and 0.96 for pristine SLG, BLG and 

TLG, respectively. The characteristic G and 2D peaks for pristine SLG appear around 1583.8 and 2680.2 

cm-1, for pristine BLG observed at 1584.75 and 2699.85 cm-1, while for pristine TLG they appear around 

1581.57 and 2703.18 cm-1, respectively. A broad 2D peak is fitted with four Lorentz curves, as shown in 

Fig. 3.1(h), which confirms the bilayer graphene. Figure 3.1(i) shows the six Lorentz curve fitting of a 

broad 2D band of TLG. The absence of the D peak in pristine SLG, BLG, and TLG is an indication of 

defect-free high quality graphenes. 
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Figure 3.1. (a, b, c) Optical microscopy images of single-, bi-, and trilayer exfoliated graphene devices after photolithography. (d, 

e, f) Optical microscopy images after e-beam lithography. (g) Raman spectra of pristine single-, bi-, and trilayer graphene. (h) 

Lorenz curve fitting of the 2D peak for bilayer and (i) fitting for trilayer graphene. 
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Figure 3.2. Raman spectra of (a,c,d) pristine and DUV irradiated single, bi- and trilayer graphene for (t= 5, 10, 15, and 30 min), 

(b,d,f) Raman G and 2D spectra of pristine and DUV modified SLG for clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. (a-c) Shift of G and 2D peak positions of SLG, BLG, and TLG for period of DUV irradiation time. (b) The ratio of 

peak intensities ratio of G and 2D for SLG, BLG, and TLG are plotted as a function of DUV irradiation time. 
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Figure 3.2 (a) shows the Raman spectra of SLG before and after different periods of DUV irradiation time 

(5, 10, 15, and 30 min). The D peak is not observed on increasing irradiation time, which indicates that 

DUV irradiation does not change the lattice structure of graphene. The upward shifting of G and 2D peak 

positions are responsible for p-doping, as shown in Fig. 3.2(b). It has already been reported that the shifting 

of G and 2D peak positions toward lower wavenumber and upper wavenumber is attributed to n-type and 

p-type doping, respectively [25, 26, 47-49]. Raman spectra of BLG for pristine graphene and after different 

periods of irradiation time are shown in Fig. 3.2c. The intensity of the D peak undergoes no increase in 

BLG after modification with DUV irradiation for different time durations, as shown in Fig. 3.2(c). The 

upward shifting of G and 2D peak positions are shown in Fig. 2(d) for clarity. The shifting of the G peak 

position toward higher wavenumber is attributed to p-doping of bilayer graphene. Figure 3.2(e) shows the 

Raman spectra of TLG for pristine graphene and after different periods of irradiation time. The upward 

shifting of G and 2D peak positions are shown in Fig. 5.2(f) for clarity. The shifting of G peak positions 

toward higher wave number is also attributed to p-doping for trilayer graphene. The shift of G and 2D peak 

positions of SLG, BLG, and TLG before and after DUV irradiation are shown in Fig. 3.3(a), (b), and (c), 

respectively. For all SLG, BLG, TLG, the G and 2D peak positions are shifted to higher wave number, 

which is attributed to p-doping. The general trend of the shifting of peak positions is similar for a different 

number of graphene layers. Figure 3.3(d) shows the intensity ratio of 2D and G peaks (I2D/IG) before and 

after DUV irradiation for different periods for SLG, BLG, and TLG. The I2D/IG of SLG shows a slight 

decrease when increase irradiation time is increased, while in BLG and TLG it remains significantly 

unchanged with an increase irradiation time. This decrease in the I2D/IG ratio may be due to the increase in 

the carrier density of graphene, as previously reported [50].  

 

The p-doping effect of exfoliated SLG, BLG, and TLG is further confirmed by Dirac point measurements. 

Resistivity as a function of gate voltage (Vg) before and after DUV irradiation treatment of SLG, BLG, 

and TLG is shown in Fig. 3.4. 

 

 

 

 

 

 

 

  

 

 

Figure 3.4. The general trend of the transformation of the Dirac point position for SLG, BLG, and TLG, before (left side) and after 

(right side) DUV irradiation for 30 minutes. 
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Figure 3.5. Resistivity as a function of back gate voltage (Vg) for the (a) SLG pristine and after different periods of DUV irradiation 

time. (b) BLG pristine and after different periods of DUV irradiation time. (c) TLG pristine and after different periods of DUV 

irradiation time. 

 

 

Resistivity as a function of gate voltage (Vg) before and after DUV irradiation treatment of SLG, BLG, and 

TLG are shown in Fig. 3.5. Figure 3.5(a) shows the Dirac point (VDirac) of SLG for different periods of 

time. After taking the measurements of pristine graphene, the device is then exposed to DUV light for the 

desired amount of time and afterwards the electrical transport measurements are taken after subsequent 

steps. The VDirac of the pristine SLG is found around Vg = -16 V and the VDirac shifts towards positive Vg 

on increasing DUV exposure time and is reached at Vg= 12 V after 30 minutes, which is indicative of p-

type doping in exfoliated SLG. Figure 3.5(b) and (c) show the VDirac of BLG and TLG for different periods 

of time. The VDirac of the pristine BLG is found around Vg= -15 V and Vg= -36 V for TLG. The VDirac shifts 

towards positive Vg on increasing DUV exposure time and is reached at Vg= 8 V and -11V, respectively, 

after 30 minutes, which indicates p-type doping in exfoliated BLG and TLG. 

 

The gradual shifts of Dirac point positions with irradiation time for SLG, BLG and TLG are shown in Fig. 

3.6(a), while Fig. 3.6(b) shows the change charge carrier density (n) as a function of irradiation time.  The 

charge carrier density is obtained from the relation n= Cg│VDi -VDp│/e, where Cg is the gate capacitance, 

115 aF/μm2, obtained for our SiO2/Si substrate; VDp represents the Dirac point of SLG, BLG, and TLG, 

and VDi  is the Dirac point after different periods of DUV irradiation time [51]. The n increases with the 

increasing the period of DUV exposure time. These modifications in charge carrier density are related to 

the tunability of the Fermi level of graphene layers. Thus, DUV irradiation significantly modulates the 

Fermi level of graphene. Similar trends in charge carrier densities are observed for BLG and TLG as a 

function of irradiation time, as shown in Fig. 3.6(b).  
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Figure 3.6. (a) The shift of Dirac point positions with different periods of irradiation tine for SLG, BLG, and TLG. (b) Change of 

charge carrier density (n) as a function of irradiation time for SLG, BLG, and TLG. (c) The electrons and holes mobilities as a 

function of irradiation time for SLG, BLG, and TLG. 

 
The mobility (μ) of different graphene layers are obtained by taking the slope of the conductivity of Dirac 

points before and after irradiation for different periods of time, and are calculated using the relation 

μ=(1/Cg)(/Vg), where  (1/Resistivity) is the conductivity of graphene layers and Vg is the back gate 

voltage. Figure 5c shows the mobility of pristine and DUV doped single, bi- and trilayer graphenes. The 

mobilities are found to be sustainable for all graphene layers after different periods of irradiation time. 

These results are in line with the previously reported transport measurements of DUV irradiation on 

chemical vapor deposition grown single layer graphene [49].  

 

The holes formation in graphene is the result of photo-oxidation of oxygen molecules under DUV 

irradiation. Theoretical investigations have determined that oxygen molecules dissociate in the presence of 

UV light [52]. These dissociated molecules lead to the generation of oxygen-containing groups which can 

easily attach themselves to the most stable sites of graphene and provide favorable conditions for p-doping 

of graphene [52-54].  During the photo-oxidation process with DUV light, the O2 molecules absorb 185 

nm photons to form two O(3P) atoms in the ground state, as this energy is sufficient to break the molecular 

bond: O2+ hυ =2O(3P); and these dissociated O(3P) atoms attach themselves to the most stable adsorption 

sites of the graphene [55]. The photon energy (E=h(c/λ)) of DUV light is inversely proportional to the 

wavelength, and this energy is reduced for higher wavelengths. Therefore, the shift of the Dirac point 

position may have less effect at a lower energy (i.e. increased wavelength), because the dissociation of 

oxygen molecules to form oxygen atoms will be smaller, while the effect will be more prominent at higher 

energy (i.e. decreased wavelength) due to the large amount dissociation of oxygen molecules. The intensity 

of DUV light determines the concentration of carriers in the graphene, while for higher intensities the 

carrier concentration effectively increases, which greatly enhances the doping level.  
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3.4 Conclusion 

We have investigated the tunability of mechanically exfoliated single-, bi-, and trilayer graphene layers 

using DUV irradiation for different periods of time. The Raman spectroscopy and transport measurements 

reveal the p-doping effect under DUV irradiation for all single-, bi-, and trilayer graphene layers. The shift 

of G and 2D peak positions and intensity ratios for single-, bi-, and tri-layer graphene layers are evaluated 

as a function of irradiation time. The shift in the G and 2D bands in the Raman spectra towards higher 

wavenumber suggests p-doping in the graphene devices. The absence of the D peak in Raman spectra after 

irradiation reveals the defect-free modulation of graphene layers. The Dirac point is shifted towards 

positive gate voltage for single-, bi-, and trilayer graphenes on increasing DUV irradiation time, which is 

attributed to the strong p-doping effect. Thus, DUV irradiation doping significantly modulates the Fermi 

level of graphene layers while sustaining its mobility. The results indicate that DUV irradiation can 

significantly tailor the properties of graphene layers without degrading structural and electrical holding. 

Doping using DUV irradiation is a suitable photo-assisted scheme for modulating the electronic properties 

of graphene layers for future graphene-based transparent electronic devices. 
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Chapter 4 

4 Formation of p-n junction with stable p-doping in graphene field 
effect transistors using deep UV irradiation 

 
 

We demonstrate the modification of the electronic properties of single layer chemical vapor deposition 

(CVD) grown graphene by deep ultraviolet (DUV) light irradiation. The shift in G and 2D bands in Raman 

spectroscopy towards higher wave numbers suggests p-doping in graphene field effect transistors (FETs). 

In the transport measurement, the Dirac point is shifted towards positive gate voltage on increasing the 

DUV light exposure time, revealing the strong p-doping effect without any significant increase in 

resistance. The doping is found to be stable in graphene devices with a slight change in mobilities. We have 

also constructed the p-n junction with DUV light exposure on a selective region of graphene and 

investigated by gate voltage the dependent resistivity measurement and current-voltage characteristics.  

 

4.1 Introduction  

In recent times, graphene, a two-dimensional sp2-hybridized network of carbon atoms with one atom 

thickness, has been recognized as an important material for electronic devices due to its unique electronic 

properties such as ambipolar transport [10, 12]. Single layer graphene films can be obtained by different 

methods such as mechanical exfoliation of graphite [6]. However, it is very difficult to control the number 

of layers and to achieve large-scale production by using mechanical exfoliation. The epitaxial growth of 

graphene on SiC substrate is another way to do this, but it requires very high-temperatures and is also 

expensive [56], However, chemical vapor deposition (CVD) on metal (Cu, Ni) substrate is the most feasible 

and promising approach for large-scale production of graphene [57]. Tuning of the Fermi level of graphene 

is an important factor for electronic applications [58]. A number of approaches have recently been applied 

to tuning the electronic properties of graphene, for example, electron, ion beam irradiation, with metal 

deposition, absorption of gas molecules, chemical and electrochemical doping [19, 25, 35, 59, 60]. The 

electrical transport properties of graphene are very sensitive to local perturbations or defects induced by  

adsorption or desorption of gas molecules, as well as surface charge doping from various aromatic 

molecules, which often degrades the carrier mobility of graphene [20, 35-37, 59, 61]. It is highly desirable 

to develop an alternative way to tune the doping level without reducing the mobility of graphene. One 

plausible technique is to modulate the Fermi level of graphene by surface modification. M. Grujicic et al. 

have reported the computational calculations for the interactions of an oxygen molecule with single-walled 

carbon nanotubes and their oxidation under UV light  [62]. There are three major approaches for oxidizing 

graphene. Oxygen plasma treatment and electron beam irradiation are two well-known methods to oxidize 
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graphene, but treatments of the above-mentioned methods create defects in graphene [25, 33, 34, 63, 64]. 

The third most suitable technique is the oxidation of graphene without defects as generated by UV light in 

atmosphere [39, 65, 66]. However, only a few experimental studies have been done so far to investigate 

the molecular photo-assisted desorption and absorption, particularly with the UV light effect on pristine or 

functionalized CVD grown graphene layer [38, 39, 67, 68]. P. Joo et al. have recently reported the optical 

switching of spiropyran functionalized graphene multilayer FETs by UV light. S. Huh et al. have studied 

the UV/Ozone-Oxidized of graphene using Raman dye molecules such as rhodamine B (RhB), rhodamine 

6G (R6G), and crystal violet [39]. M. Kim et al. have reported the modulation of doping in functionalized 

graphene by pyrene tethered disperse red (DR1P) [38]. Theoretically, it has been observed that oxygen 

molecules react with graphene in the presence of UV light to produce oxygen containing groups (such as 

the dissociation of an oxygen molecule into oxygen atoms) [55]. These oxygen atoms form a stable 

structure on the sites of pristine graphene and induce p-type doping [52, 69].   

 

We have investigated the doping in CVD grown graphene film with deep ultraviolet (DUV) light. Raman 

spectroscopy and transport measurements reveal that DUV light produces p-doping for CVD grown 

graphene. The shift of G and 2D peak frequencies and the intensity ratios of these peaks are analyzed as a 

function of DUV light exposure time. The back gate voltage dependent resistivity for single-layer graphene 

is also analyzed as function of DUV light exposure time. The maximum resistivity corresponding to the 

Dirac point is shifted toward positive gate voltage when increasing the DUV light exposure time. We have 

constructed the p-n junction in the single-layer CVD grown graphene by exposing half of the graphene 

with DUV light, while remaining halft is covered with metal mask. The results indicate that modification 

by DUV light is an appropriate approach to tailor the electrical properties of graphene without introducing 

unusual defects in graphene. 

 

4.2 Experimental 

Large-area high-quality monolayer graphene samples are synthesized on 25 μm thick Cu foils (Alfa Aesar, 

99.8 %, #13382) by remote radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-

PECVD) system. The CVD chamber is pumped with pressure up to ~10-7 Torr with a turbo-molecular-

pump. Polycrystalline Cu foil is accumulated in the chamber. Before starting gas flow into the chamber, 

the Cu substrate is heated up to 830 °C. H2 gas is then introduced into the chamber at a flow rate of 40 

standard cubic centimeter per minute (sccm). The hydrogen gas is then discharged by RF power of 50 W 

for two minutes to purge the surface oxides of copper foil. During the growth of graphene, the RF plasma 

is generated for 3 minutes with a continuous flow of a mixture of argon (40 sccm) and methane (1 sccm) 

gas at a pressure of 10 mTorr. Subsequently the sample is cooled down to room temperature. The grown 

graphene film on Cu foil is transferred to the Si substrate with the wet transfer method. The Cu foil is spin-
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coated (850 rpm for 10sec, 2500 rpm for 60sec) with a thin layer of polymethyl methacrylate (PMMA). 

The lower Cu foil is then removed by etching in a 1 molar solution of ammonium persulfate (APS) 

((NH4)2S2O8), and the PMMA membrane is washed with de-ionized water. The graphene film with the 

PMMA membrane is then transferred to heavily p-doped Si substrate with 300 nm thick SiO2 top layer, 

and the graphene on the Si/SiO2 substrate is kept in acetone for one day in order to dissolve the PMMA 

layer [57]. The diagram of the DUV irradiated graphene device is shown in Fig. 4.1. The DUV light (= 

220 nm, average intensity of 11 mW/cm2) is applied for the doping of the graphene. Raman spectra are 

measured with a Renishaw micro-spectrometer over a wave number from 1100 to 3200 cm-1 with the laser 

wavelength of 514.5 nm. The spot size is ∼1 μm, and power is kept at ∼1.0 mW to avoid local heating. 

The Cr/Au (5/30nm) contacts are made by using a metal mask and a thermal evaporation system. The 

electrical measurements are performed using the standard lock-in technique with an ac current of 50 A at 

11.7 Hz.  

 

 

 

 

 

 

 

 

 
Figure 4.1. Diagram of DUV light exposed CVD grown single-layer graphene FET structure. 

 

4.3 Results and discussion 

Raman spectroscopy has been used as a standard nondestructive tool for the electronic structure 

characterization of carbon based crystalline films. It has also been used to measure the number of graphene 

layers and to analyze disorder, strain and doping in graphene. We have utilized Raman spectroscopy to 

detect the doping effect in graphene resulting from the DUV exposure. Fig. 4.2(a) shows the Raman spectra 

of single layer CVD grown graphene before and after modification with DUV light for different exposure 

times, and also shows the characteristic peaks of single-layer graphene. The very small peak around 1345 

cm-1 in pristine CVD grown graphene is attributed to D or the defect peak for graphene. The D peak is 

attributed to A1g symmetry phonons near the K-zone boundary. These phonons are not Raman-active due 

to the momentum conservation in the scattering, and require a defect for their activation. Therefore, the 

intensity of D peak is indicative of defects in graphene. The very small intensity of D peak indicates the 

good quality of our graphene samples. However the intensity of the D peak is not significantly changed 

with time.  The characteristic G and 2D peaks appears around 1583 cm-1 and 2682 cm-1 respectively, for 
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pristine single layer CVD grown graphene, as similarly reported by others [39]. The G peak corresponds 

to the E2g optical phonon at the Brillouin zone center and the 2D peak is the second order of the D peak. It 

originates from a process where momentum conservation is satisfied by two phonons with opposite wave 

vectors. The full width at half maximum (FWHM) of the 2D band is about 30 cm-1, and the ratio of 2D/G 

peak intensity is ~ 2.3 for the pristine graphene in Fig. 4.2(a), indicating a single layer of graphene. The 

shift of G and 2D peaks are clearly observed in Fig. 4.2(b), the G peak transforms from 1583 to 1588 cm-

1and the 2D peak moves from 2682 to 2690 cm-1. This blue shift of both G and 2D peak positions is 

attributed to p-doping of graphene. It has already been reported that red and blue shifting of the G and 2D 

peak positions are attributed to n-type and p-type doping, respectively, in single-layer graphene [43, 47, 

70]. This blue shift of the G and 2D peak positions increases with an increase in the exposure time [10, 67]. 

Fig. 4.2(c) shows the intensity ratio of the D and G peaks (ID/IG) as a function of exposure time. The minor 

change in the ratio of the D/G peak intensity implies a negligible change in sp2 hybridization before and 

after DUV light exposure. These defects appearing along the catalyst boundaries are usually generated 

during growth in CVD graphene. The small ratio ~0.38 of the D/G peak intensity from the Raman spectra 

of single-layer graphene indicates the relatively low defect density. It also indicates that the intensity of the 

D peak of CVD grown graphene is slightly enhanced after first exposure to DUV light, and then it does not 

significantly change with an increase in the exposure time. The slight increase in ID/IG may be due to the 

increasing oxygen bonding with carbon atoms during DUV exposure. The intensity ratio of the 2D and G 

peaks (I2D/IG) is found to decrease from 2.3 to 1.08 with an increase in exposure time. This decrease in the 

ratio of I2D/IG may be due to an increase in the carrier density of graphene, as previously reported.[50] 

Although the shift of the Raman band position indicated doping of graphene, the shift can be also induced 

by other factors such as compressive strain. The concise confirmation of doping can be obtained by 

electrical transport measurements. The p-doping of CVD grown graphene is confirmed by gate voltage 

dependent resistivity measurements. Fig. 4.3(a) shows the resistivity as a function of back gate voltage (Vg) 

before and after DUV exposure for different periods of time. The Dirac point (VDirac) of the pristine CVD 

grown graphene is found around zero volts. The graphene devices are then exposed to DUV light for a 

desired time, and the electrical transport measurements are performed under ambient atmosphere. The VDirac 

move towards positive Vg with increasing DUV exposure time indicates p-type doping. It is initially near 

~0V for pristine graphene and then shifts rapidly towards positive gate voltage up to ∼35 V after 100 

minutes of DUV exposure. The formation of holes (p-type doping) is the result of the photo-oxidation of 

the graphene layer with DUV light exposure [71].  

 

The p-doping of CVD grown graphene is confirmed by gate voltage-dependent resistivity measurements. 

Fig. 4.3(a) shows the resistivity as a function of back gate voltage (Vg) before and after DUV exposure for 

different periods of time. The Dirac point (VDirac) of the pristine CVD grown graphene is found around zero 

volts. The graphene devices are then exposed to DUV light for a desired time, and the electrical transport 
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measurements are performed under ambient atmosphere. The VDirac move towards positive Vg with 

increasing DUV exposure time indicates p-type doping. It is initially near ~0V for pristine graphene and 

then shifts rapidly towards positive gate voltage up to ∼35 V after 100 minutes of DUV exposure. The 

formation of holes (p-type doping) as the result of the photo-oxidation of the graphene layer with DUV 

light exposure [71].  

 

 

Figure 4.2. (a) Raman spectra of pristine CVD grown graphene and DUV light modified CVD grown graphene (b) Raman G and 

2D spectra of pristine and DUV exposed graphene (c) The ratio of the intensities for the 2D and G peaks and the ratio of the 

intensities for the D and G peaks are plotted as a DUV exposure time. 

                                                                       

 

Figure 4.3. (a) Resistivity as a function of back gate voltage (Vg) for the single layer CVD grown graphene before and after DUV 

light for different exposure time (b) Charge carrier concentration as a function of DUV light exposure time at different gate voltage 

(c) Mobility as a function of DUV light exposure time at different gate voltage; Inset shows the Dirac points shift as function of 

DUV light exposure time. 
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Theoretically, it has been predicted that oxygen molecules dissociate in the presence of UV light. These 

dissociated molecules react with graphene to create oxygen containing groups and induce p-type doping 

[53]. These oxygen atoms may also attach themselves to the most stable site of the graphene [52, 54].  In 

this process, O2 molecules absorb 185 nm photons to form two O(3P) in the ground state and this energy is 

sufficient to break the molecular bond: O2+hυ= 2O(3P) and the bridge site are the most stable within the 

possible adsorption sites of dissociated O(3P) atoms on graphene [55]. The energy of DUV light is inversely 

dependent on the wavelength, because E=h(c/), and for higher wavelengths the energy decreases. 

Therefore, below the minimum limit of energy (i.e. increase in wavelength), the oxygen molecules cannot 

dissociate to oxygen atoms and the Dirac point position shift will be lower for higher wavelengths. The 

intensity of DUV light determines the amount of carrier concentration in the graphene, but after a certain 

limit of time it saturates, because only a finite number of charge carriers can adsorb on the graphene surface. 

Noticeably, the graphene does not dope by water molecules [53]. However, the exact physical mechanism 

for an adequate description of the absorption of water molecules on graphene modified by UV light 

interaction is not clear at present. Nevetheless, we could expect that water molecules absorb photons from 

UV light, which causes the water molecule to dissociate into an H-OH bond and then break down to H and 

H-O bonds. O. Leenaerts et al. have theoretically examined the effect of H and H-O bonds on graphene 

surface, but small amounts of charge transfer has been observed for different orientations [72]. 

 

The shift of VDirac as a function of DUV light exposure time is shown in the inset in Fig. 4.3 (c). There is 

no significant change observed in the resistivity at Dirac points of the CVD grown graphene with DUV 

light exposure. Figure 4.3 (b) shows the charge carrier density as a function of DUV light exposure time at 

different gate voltages.  The charge density is obtained from the relation  
Diracgg VVCne  , where Cg is 

the gate capacitance ~101 aF/μm2, which was obtained for our Si/SiO2 substrate.[51] The mobility of the 

samples was obtained using relation   1
  ne , where e is the electronic charge, n is the charge carrier 

density and ρ is the resistivity of the FET device, as shown in Fig. 4.3 (c). It is observed that mobility is 

not significantly affected by the DUV light exposure.  

 

It is vital for the application of electronic devices that the doping should be stable. This important point is 

confirmed by measuring the back gate dependent resistivity of same device after two months. It is found 

that the Dirac point is stable after a couple of weeks, as shown in Fig. 4 (a). After confirmation of stable p-

type doping of single layer CVD grown graphene by DUV light, we investigate the exposure of DUV light 

doping as route for p-n junction formation in CVD grown graphene. Half of the graphene is covered with 

a metal mask and then the graphene device is exposed to DUV light. The uncovered half of graphene device 

is affected by DUV light, whereas the other half remains unaffected. The black curve shows the resistance 

profile of the untreated region of the graphene device and the Dirac point is found to be about +8 V. The 
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Dirac point is shifted toward a more positive gate voltage (~+36 V) for the DUV exposed region, as shown 

in the red curve. The blue curve in Fig. 4.4 (b) shows the resistance profile for the combined region of 

pristine graphene and the DUV light exposed region of graphene. In this case, the gate dependent resistance 

reveals two distinct Dirac points due to two different regions. The observed two separate gate voltages 

peaks correspond to the Dirac point at each region of the device. Therefore, a p-n junction can be 

constructed in the graphene device with the application of an appropriate gate voltage. Since DUV light 

acts as a p-type dopant for graphene, it raises the Fermi level of the p-doped region; however the untreated 

region remains at the same Fermi level as pristine graphene. This difference in the Fermi level creates a 

junction across the boundary. Fig. 4.4 (c) shows the current-voltage (I-V) characteristics of the pristine and 

DUV exposed exposed graphene region at different back gate voltages. We apply the back gate voltage of 

V= 0, +20 and +40 V, as in Fig. 4.4 (c). The I-V curves at V= 0 and +40 V correspond to an n-n and an p-

p junction, respectively, while the I-V curve at V= +20 V represents the p-n junction. It is well recognized 

that the I-V curve for a semiconductor junction exhibits the nonlinear behavior due to the depletion region, 

but in the case of graphene the depletion region is not expected between the doped and undoped regions of 

graphene due to the gapless band structure. The I-V curves show linear behavior in all regions of graphene 

and the results are consistent with these explanation.  

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. (a) Resistivity as a function of gate voltage (Vg) black curve of the pristine single layer CVD grown graphene, red 

curve of 100 minutes DUV exposed single layer CVD grown graphene  and the blue curve shows the doping stability after two 

months (b) Resistivity as a function of gate voltage (Vg)  black curve of the pristine single layer CVD grown graphene, red curve 

of DUV light exposed and blue curve with two distinct Dirac points shows the combination of pristine+DUV exposed region (c) 

I-V characteristics at different gate voltages pristine+DUV exposed region. 
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4.4 Conclusion 

We have investigated an effective doping method for large area CVD grown graphene. The scheme adopted 

in this work has the advantage that doping can be tuned without disturbing the physical configuration of 

graphene FET devices. The shift in the G and 2D bands in Raman spectroscopy towards a higher wave 

number suggests the p-doping in graphene FET devices. In back gate voltage-dependent resistivity 

measurement, the Dirac point is shifted toward a more positive gate voltage when the DUV light exposure 

time is increased, which indicates a strong p-doping effect without any significant increase in resistance. 

Doping is found to be stable in graphene devices with a slight change in mobilities. The back gate-

dependent resistivity measurements indicate tunable p-doping and p-n junction formation with DUV light, 

an appropriate approach for modifying the electrical properties. This promising photo-assisted approach 

holds potential interest for future graphene-based electronic devices and sensors.  
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Chapter 5 

5 Ultraviolet light induced reversible modulation of doping in 
graphene transistors with efficient photocurrent generation 

 

 

 We show the reversible doping in graphene using deep ultraviolet (DUV) irradiation and flow of dry 

oxygen and nitrogen. Hole doping is observed by DUV irradiation with oxygen flow, but becomes reversed 

with nitrogen flow. The generation of efficient photocurrent enables the integration of high-efficiency 

optoelectronic devices.  

 

5.1 Introduction 

Graphene, a two-dimensional sp2-hybridized network of carbon atoms, has been the object of much 

attention due to its novel linear dispersion relation, resulting in unique electronic properties [10, 12]. 

Because of these distinctive properties, graphene is expected to be a prospective material for electronics 

applications [13, 73].  The extremely sensitive planar structure of graphene readily absorbs the molecules 

acting as donors or acceptors [20, 74]. A number of theoretical and experimental studies have investigated 

the irradiation or molecular doping effect on mechanically exfoliated or chemically derived graphene layers 

[16, 25, 26, 36, 37, 61, 75]. A route for efficient doping in graphene is to replace carbon atoms in the 

graphene lattice with dopant atoms [18, 31, 32]. However, this type of substitutional doping leads to 

disorder in honeycomb structure, which in turn gives rise to defects in graphene. These defects due to local 

perturbations, a non-covalent detaching or latching, can be avoided by employing a alternative approach 

for electron or hole doping while preserving the honeycomb structure of graphene. Controlling the Dirac 

point of graphene is a crucial for the application of nanoelectronic and optoelectronic devices. A plausible 

technique is to modulate the doping level in graphene by surface modification [35], since the graphene 

surface is very sensitive to adsorption or desorption of gas molecules [20]. However, only a few 

experimental studies have so far investigated the molecular photo-assisted desorption and absorption, 

particularly the ultraviolet light effect on the pristine and functionalized vapor deposition (CVD) grown 

graphene layer [38, 39, 49, 67, 76].  

In this work, we demonstrate reversible hole doping in CVD grown graphene films with DUV irradiation 

in gas flow environment. We characterize the doping effects by using electrical transport, Raman and X-

ray photoelectron spectroscopy (XPS) measurements. The reversible doping process is explained by the 
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formation mechanism of NO molecules and detachment from the graphene surface, and an efficient 

photocurrent is generated in a DUV, DUV/O2 and DUV/N2 environment. 

 

5.2 Experimental  

5.2.1 Graphene growth and device fabrication  

Large area graphene films are grown on 25 μm thick Cu foils by the same method as that described in 

Chapter 4. The Cr/Au (6/35nm) contacts with size of 500×500 m2 are made by using a metal mask and a 

thermal evaporation system. The Cr/Au contacts are located in a square shape and the distance between 

contacts is 3.6 mm. We use van der Pauw method to measure the resistivity of graphene [77], where an ac 

current of 50 A at 11.7 Hz is used. The DUV light lamp (= 220 nm, average intensity of 11 mW/cm2) in 

O2 or N2 gas flow is applied for doping of the graphene. Doping treatments in this experiment can be 

performed without affecting the physical configuration of the graphene devices. The doping effects of 

graphene are examined by Raman spectroscopy, XPS and electrical transport measurements. 
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Figure 5.1.  (a) Raman mapping of peak intensity ratios of 2D and G and (b) peak intensity ratios of D and G. (c) Mapping of 

position of the G peak and (d) position of the 2D peak. (e) Diagram of the doping mechanism during DUV irradiation in different 

gas atmospheres.   

5.3 Results and discussion  

5.3.1 Evaluation of Raman spectra of  DUV irradiated graphene 

We employ Raman spectroscopy with 514.5 nm laser excitation to study the intrinsic properties of 

graphene. The detailed investigation on the quality of CVD grown graphene over the large area is confirmed 

by Raman mapping and can be seen in Fig. 5.1 (a-d). The 2D/G peak intensity ratio is greater than 4.5 for 

graphene on the Si/SiO2 substrate, indicating a single layer of graphene. However, a very low D peak 

intensity is observed in Raman spectra of graphene, which reveals a relatively high quality with low defect 

density. These defects or vacancies present along the catalyst boundaries are usually generated during 

growth in CVD graphene. The diagram for DUV induced doping through adsorption and desorption of 

gaseous molecules on graphene is shown in Fig. 5.1 (e).  Raman spectroscopy is used to trace the general 

trend of DUV irradiation effects with and without gaseous environment, as shown in Fig. 5.2 (a,b). This 

shift is found to be more prominent in a DUV/O2 environment, but becomes less effective with O2, as 

shown in Fig. 5.2 (c,d). The shift in peak positions is also well controlled in the DUV/N2 case rather than 

on N2 flow without DUV.   
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Figure 5.2. (a) Raman spectra of pristine graphene, DUV iradiated graphene in O2 flow (denoted by DUV/O2), DUV irradiated 

graphene in N2 flow (denoted by DUV/N2) after DUV/O2. DUV treatments were done for 60 minutes. (b) Raman spectra of pristine 

graphene, graphene in O2 flow for 60 minutes, graphene in N2 flow for 60 minutes after the O2 flow treatment. (c) Shift of the 

Raman band position between treatments with and without DUV irradiation,  changes in the G band position for pristine graphene, 

graphene in O2 flow, graphene in N2 flow. (d) The changes in the 2D band position for pristine graphene, graphene in O2 flow, 

graphene in N2 flow. 

 

5.3.2 Transport measurements of DUV irradiated graphene  

A detailed study of doping mechanism is carried out by electrical transport measurement. The graphene 

field effect transistor devices are exposed by DUV irradiation in a gas flow for a desired time, and then the 

electrical transport measurements are performed in a vacuum at room temperature. The charge neutrality 

point is identified by resistivity measurement as a function of back gate voltage (Vg). Figure 5.3 (a) shows 

that the charge neutrality point moves toward positive Vg as DUV light irradiated graphene, indicating p-

type doping. The shift of the charge neutrality point increases rapidly with the initial treatment and tends 

to saturate as the DUV irradiation time increases beyond 60 min. The charge neutrality point is initially 

near ~5V for pristine graphene, which is slightly p-doped. As the irradiation time increases, the charge 

neutrality point shifts towards positive gate voltage up to ~54 V after 60 min of DUV irradiation in O2 gas 

flow. Initially, the resistivity of the graphene device is increased during DUV irradiation under O2 gas flow, 

but remains stable in subsequent DUV treatments.  
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Figure 5.3. Resistivity as a function of back gate voltage (Vg) for (a) DUV irradiated graphene in O2 flow, (b) DUV irradiated 

graphene in N2 flow after DUV/O2. Resistivity as a function of back gate voltage (Vg) for (c) graphene in O2 flow, (d) graphene in 

N2 flow after the O2 flow treatment. 

 

This reason for this increase in resistivity remains unclear, but may be due to the interaction of DUV light 

with residues or dangling bonds on graphene in an O2 environment. Figure 5.3 (b) shows that the reversal 

of hole doping is produced by DUV irradiation under an N2 gas flow. The charge neutrality point shifts 

from 54 V to 13V after 15 min DUV irradiation under N2 gas flow, and reaches the initial value of 5V after 

60 min DUV irradiation. The resistivity of the graphene field effect transistor devices are found to increase 

during the irradiation process. The efficiency of DUV irradiation is compared by simple gas flow treatment. 

Figure 5.3 (c,d) shows the charge neutrality point shift under O2 and N2 gas flow without irradiation of 

DUV light. Hole doping by O2 gas flow treatment is reported for exfoliated graphene [78]. While dry 

oxygen binding is reversible by re-exposure to flowing Ar gas, the hole doping by oxygen binding becomes 

irreversible under wet environments [53].  In Fig. 5.3 (c) a similar hole doping effect is observed in the 

treatment of dry O2 gas flow without irradiation of DUV light. However, the hole doping effect is smaller 

than that with DUV irradiation. The charge neutrality point shifts up to ~28 V after 60 min O2 gas flow.  In 

subsequent treatment, as shown in Fig. 5.3 (d), graphene was exposed by N2 gas flow for certain durations. 

The electrical measurement after N2 gas flow shows a very small down-shift of the charge neutrality point, 

indicating that N2 gas flow without DUV irradiation does not affect the hole doping of graphene [78]. The 

level of hole doping can be estimated by changing the carrier concentration. The carrier concentration 

change (n) of graphene after treatment in this experiment can be estimated by the charge neutrality point 

shift (VD), n = CgVD /e, where Cg is the back gate capacitance, and e is electron charge. By using the 

back gate capacitance (Cg) in our Si/SiO2 substrate, 101 aF/m2, we show n after the time duration in O2 

and N2 gas flow with or without DUV irradiation, as can be seen in Fig. 5.4. After 60 min DUV irradiation 

in O2 gas flow, n increases to 3×1012 cm-2. The increment of the carrier concentration is very small for the 

gas flow without DUV irradiation. The carrier concentration is completely restored to the initial state after 

60 min DUV irradiation in N2 gas flow. However, the treatment by N2 gas without DUV irradiation hardly 

affects the carrier concentration of graphene. The adsorption of oxygen on the graphene film has already 

been studied [78]. However, we find that the doping effect due to oxygen is greater when graphene is 

exposed by DUV light. Conversely, the minimum amount of energy is required to release oxygen from the 
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graphene surface. Therefore, during N2 flow under DUV light, nitrogen atoms react with oxygen atoms and 

desorbs oxygen atom from the surface of the graphene. DUV light would be able to provide enough energy 

to bring about electron adsorption or desorption from the surface of the graphene.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Carrier concentration change (n) as a function of exposure time for DUV irradiated graphene in O2 flow and DUV 

irradiated graphene in N2 flow after DUV/O2. Charge neutrality point for graphene in O2 flow and graphene in N2 flow after the 

O2 flow treatment.  

 

5.3.3 X-ray photoelectron spectroscopy of pristine and DUV irradiated graphene  

The absorption and desorption of oxygen is further identified using XPS spectra. For pristine CVD 

graphene, only C-C is observed at 284.6 eV. However, an additional peak evolves as a result of oxidation 

at 288.5 eV, which is attributed to the C-O bond, as shown in Fig. 5.5 (a).  This peak is found to be slightly 

broadened and appears at 284.5eV, where the downward shift is caused by hole doping [13, 39]. During 

DUV/O2 treatment, the oxygen atoms become more reactive after gaining energy from DUV light, and 

further chemically react with carbon atoms of graphene, which leads to the formation of epoxide groups  

[39, 76, 79]. The deconvoluted XPS spectrum after DUV/O2 treatment is shown in Fig. 5.5 (b). This slightly 

broad peak with additional shoulder peaks can be fitted by three peaks. The C-C bond peak appears 

at∼284.5 eV, while the other two peaks appear at∼285.9 eV and ~288.5 eV, which correspond to C-O and 

C=O bonds, respectively [80]. The formation of C-O and C=O bonds evidently represents the formation of 

oxygen-containing groups on the graphene surface [79]. However, these C-O and C=O peaks vanish after 

DUV/N2 treatment on graphene, which indicates the recovery of graphene to its pristine state. 
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Figure 5.5. (a) C 1s XPS spectra of pristine CVD grown graphene (black curve), after being oxidized with DUV/O2 (red curve) 

and then recovery with DUV/N2 treatment. (b) The deconvoluted spectra after DUV and oxygen treatment show the appearance of 

the oxygen containing groups on the graphene. 

 
We have performed further experiments on pristine and doped graphene to eliminate ambiguities and to 

arrive at a better understanding of the role of DUV irradiation. Resistivity of pristine graphene as a function 

of back gate voltage is studied for various exposure times of DUV irradiation in N2 gas flow. The pristine 

graphene shows the charge neutrality point at ~13 V, as one may see in Fig. 5.6 (a). As the exposure time 

of DUV irradiation in N2 gas flow increases, the charge neutrality point decreases and reaches at ~5V after 

60 min exposure time. The treatment by DUV irradiation in N2 gas flow (DUV/N2) removes oxygen from 

graphene, reducing p-doping by oxygen adsorbates. Oxygen adsorbs on the graphene surface during the 

sample fabrication process. 

We note that the overall resistivity of graphene does not change by DUV/N2 treatment. The shift of the 

charge neutrality point of graphene has been examined after various exposure times of N2 gas flow without 

DUV irradiation, as shown in Fig. 5.6 (b). The shift of the charge neutrality point is only 1 V from ~16 V 

for the pristine graphene to ~15 V for 60 min exposure time. The treatment without DUV irradiation is not 

effective for removing oxygen adsorbates on graphene. After graphene is p-doped by DUV irradiation in 

O2 gas flow for 60 min, the graphene sample is exposed to N2 gas flow. The gate voltage-dependent 

resistivity of the p-doped graphene sample after a certain exposure time to N2 gas flow without DUV 

irradiation. The effect of this treatment is found to be very small compared to DUV/N2. The charge 

neutrality point shifts only from ~53 V to ~50 V after 60 min N2 gas flow, as shown in Fig. 5.6 (c). We 

find that DUV irradiation is necessary to reverse the hole doping, while the hole doping itself remains 

almost same with only N2 gas flow. The graphene is hardly restored to the undoped state by this treatment. 

A summary of the three treatments may be seen in Fig. 5.6 (d). The shift of the charge neutrality point after 

each treatment shows the effectiveness of desorption of oxygen adsorbates from graphene. The largest shift 

occurs for treatment with DUV irradiation. The DUV treatment in N2 gas flow may be used for purifying 

graphene from p-doping caused by the sample fabrication process. Stability of doping is an important 
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requirement for device applications. We note that the treatment developed in this work makes very stable 

doping of graphene. It is known that physically adsorbed gaseous molecules are easily desorbed in the 

atmospheric environment. However, we find that the treatment by using O2 gas flow under DUV irradiation 

results in a stable doping of graphene. The p-doping state of graphene has been maintained for two months 

in the atmospheric environment, as shown in Fig. 5.6 (e). 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. (a) Resistivity as a function of back gate voltage after DUV illumination in N2 gas flow on pristine graphene. (b)  

Resistivity of graphene as a function of back gate voltage after exposure to N2 gas flow. (c) Resistivity of p-doped graphene as a 

function of back gate voltage after N2 gas flow.  The graphene sample was p-doped by 60 min DUV/ O2 treatment before the 

measurement.  (d) Change of charge neutrality point (VCNP) as a function of exposure time for the N2 gas treatments. (e) Stability 

of doping after DUV/O2 treatment. Resistivity as a function of gate voltage remains almost unaffected after 2 months in the 

atmospheric environment. 
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5.3.4 Photo-conductance measurement of the graphene transistor in DUV, DUV/O2 and DUV/N2 

environments 

Finally, conductance as a function of time intervals in three different environments such as DUV, DUV/O2 

and DUV/N2 facilitates the generation of efficient photocurrent in graphene, as shown in Fig. 5.7 (a). The 

DUV and DUV/O2 environments show relativity good photocurrent response in comparison with DUV/N2. 

Photo-conductance responses as a function of time with continuous irradiation of DUV/O2 and DUV/N2 

are shown in Fig. 5.7 (b). Photo-conductivity rapidly increases for the case of DUV and DUV/O2 in contrast 

to the case of DUV/N2. 

 

Figure 5.7. (a) Photo-conductance measurement of the graphene transistor in DUV, DUV/O2 and DUV/N2 environments. (b) 

Continuous sweep of conductance curve versus time with DUV irradiation (black) DUV /O2 (red) and DUV/N2 (blue). 

 

5.4 Conclusion 

In conclusion, we have developed an effective doping method for large area CVD grown graphene. The 

doping methods developed in this work have the advantage that graphene doping can be performed without 

disturbing the physical configuration of the graphene device. Moreover, the doping effect is stable and can 

also be restored to the neutral state without disturbing the physical configuration of the device. The 

dissociated oxygen atoms, O2 and O3 molecular species are thought to induce hole doping to graphene. In 

the reversing process, oxygen atom is transformed into a NO molecule in a nitrogen gas environment, while 

the O2 and O3 molecules, combined with N atoms, change to NO and NO2 molecules. Then NO and NO2 

molecules are desorbed from graphene with the aid of DUV irradiation. The doping method using gas flow 

has so far proved to be unstable in an atmospheric environment. However, the doping by gas molecules 

with DUV irradiation is a feasible method to be applied in various graphene devices, and the generation of 

efficient photocurrent enables the integration of high-efficiency sensing and optoelectronic devices. 

 

 

 

0 500 1000 1500 2000
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

 (b)

C
o

n
d

u
ct

an
ce

 (
S

)

Time (Sec)

 DUV

 DUV/O
2

 DUV/N
2

0 500 1000 1500 2000

0.0001

0.0002

0.0003  (a)

C
o

n
d

u
ct

an
ce

 (
S

)

Time (Sec)

 DUV

 DUV/O
2

 DUV/N
2



 

 

 

 

 46 

Chapter 6 

6 The structural and electrical evolution of chemical vapor deposition 
grown graphene by electron beam irradiation induced disorder 

 

 

The defect formation mechanism in chemical vapor deposition grown single layer graphene devices has 

been investigated by increasing the electron beam (e-beam) irradiation doses gradually up to 750 e-/nm2. 

The evolution of D peaks in Raman spectra provides evidence of strong lattice disorder due to e-beam 

irradiation. Particularly, the trajectory of D and G peak intensities ratio (ID/IG) suggests that graphene 

changes from crystalline to nanocrystalline and then towards the amorphous form when the irradiation dose 

increases. The defect parameters were calculated by phenomenological model of amorphization trajectory 

for graphitic materials.  Mobility decreases gradually from ~1200 to ~80 cm2/V s as the irradiation dose 

gradually increases, which implies the formation of localized states in e-beam irradiated graphene. The 

Dirac point shifts towards negative gate voltage, which indicates n-doping in graphene on increasing the 

e-beam irradiation dose. 

 

6.1 Introduction 

Graphene has recently attracted much attention due to its fascinating properties, such as its extremely high 

mobility, quantum electronic transport and high elasticity [6, 10]. These properties demonstrate the 

potential application of graphene in future solid-state devices and as a candidate as an alternative to 

traditional semiconductors. Growth on a metal substrate by chemical vapour deposition (CVD) is the most 

promising and the cheapest technique for the production of large area graphene, among various other 

methods [13, 57]. It is also compatible with the current large-scale integrated circuit fabrication processes 

[13, 73, 81, 82]. However, the absence of a band-gap in the pristine graphene makes it unsuitable for 

transistors with a high on-off ratio [83]. Hence, tailoring the electronic properties by means of defects and 

geometrical confinement is important in order to realize graphene as a competitive material for future 

electronics [84, 85].  

Graphene-based nanodevices are currently being studied extensively. The fabrication and characterization 

of graphene devices often require an extensive use of scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM), which are sources of e-beam. The irradiation of e-beam may 

damage the graphene lattice and can create some defects. Recently, polymethyl methacrylate (PMMA) has 

also been used as insulating layer to the top gate electrode in field effect transistor of graphene devices [86]. 

The creation of the PMMA insulating layer on top of the graphene requires significant amount of e-beam 
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dose. Therefore, the intentional or unintentional use of sources of e-beam (SEM and TEM) strongly affects 

the intrinsic properties of graphene [16, 64]. Some research groups have reported the effect of electron and 

ion beam radiation on exfoliated graphene [16, 29, 64, 87-91]. A. A. Balandin and co-workers have 

extensively investigated the effects of e-beam irradiation on the structural, electronic and thermal properties 

of mechanical exfoliated graphene sheets [16, 75, 92-95]. Recently, some effects of e-beam irradiation on 

CVD grown graphene have been reported [25]. The lattice defects due to irradiation can be considered as 

a potential source of intervalley scattering, which could in principle induce insulating behavior in the e-

beam irradiated graphene [96]. However, a detailed investigation is still required to study the effects of e-

beam irradiation on CVD grown graphene for its practical use and basic scientific interest. 

 

Here we present the systematic study of the effect of e-beam irradiation on CVD grown graphene. The 

effects of an electron beam of various doses (125 to 750 e-/nm2) are investigated by Raman spectroscopy 

and transport measurements. The resistivity versus back gate voltage measurement shows the shift of the 

Dirac point towards negative gate voltage on increasing the dose of e-beam irradiation. The shift of the 

Dirac point position towards negative gate voltage is an indication of electron doping and is also confirmed 

by the red shift of G and 2D peaks in Raman spectra. The growth of the D and G peak intensities ratio with 

increasing irradiation dose leads to an amorphization trajectory, which suggests that the structure of 

graphene film transforms from crystalline to nanocrystalline and then to an amorphous form. The 

crystalline size is estimated by the Tuinstra-Koening and Ferrari-Robertson relation and the defect 

parameters are theoretically calculated, which is in excellent agreement with experimental results. 

 

6.2 Experimental  

The CVD graphene samples are synthesized by same method as previously discussed in Chapter 4 [19, 25, 

59]. The CVD grown graphene film on Cu foil is transferred after spin-coating a thin layer of PMMA on 

the SiO2 (300nm)/Si (p-doped) substrate [19, 25, 59]. The CVD grown graphene on the SiO2/Si substrate 

is kept in acetone for one day to completely remove the PMMA layer from the graphene surface; it is then 

rinsed in methanol and dried with nitrogen gas. The transferred CVD graphene on SiO2 substrate is pre-

patterned with big electrodes and alignment marks (Cr/Au of 5/30 nm) fabricated by photolithography. The 

unwanted CVD graphene is removed by a combination of photolithography and oxygen plasma etching 

techniques. The inner electrode is made by e-beam lithography and evaporation of Cr/Au (5/55 nm) for 

transport measurement. The exact location of the area of exposure is identified by using alignment marks. 

The e-beam irradiation of different dose is conducted by using the Raith GmbH lithography system, which 

permits an accurate control of the irradiation dose and the location of the exposed area. The experiment is 

performed with accelerating voltage of 20 keV of e-beam, at a working distance of 3.55 m. The Faraday 

cup of the sample stage is used to measure the beam current, which is 14.9 pA for this experiment. The 
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dose is applied in such a way that the electrodes circumvent the exposure to the e-beam irradiation of the 

graphene channel.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. (a) Scanning electron micrograph (SEM) image of the device fabricated by simultaneous process of photo- and e-beam 

lithography. The graphene appears as a dark color in the middle of micrograph. (b) Diagram of e-beam exposure on graphene 

channel.  

 
Raman spectra are measured with a Renishaw micro-spectrometer over a wave number from 1100 to 3200 

cm-1 with the laser power 1 mW and wavelength of 514.5 nm at room temperature. The back-gate dependent 

electrical measurements are performed to examine the modification in resistivity by e-beam irradiation. 

Fig. 6.1(a) is the scanning electron micrograph image of the fabricated device, and Fig. 6.1(b) shows the 

graphene channel by e-beam exposure. 

 

6.3 Results and discussion 

6.3.1 Evaluation of Raman spectra of e-beam irradiated graphene 

Figure 6.2 shows the Raman spectra of pristine and e-beam irradiated graphene samples at room 

temperature for various doses from 125 to 750 e-/nm2. The D and G peaks appear around 1347 and 1587 

cm-1, respectively as shown in Fig. 6.2(a), and these values are similar to those previously reported values 

obtained in pristine CVD grown graphene [97]. However, the very small D peak in pristine CVD graphene 

indicates high quality graphene. The D peak is attributed to A1g symmetry phonons near the K-zone 

boundary. These phonons are not Raman active due to the momentum conservation in the scattering, and 

require a defect for their activation [98]. The G peak corresponds to the in-plane bond stretching motion of 

the pairs of carbon atoms with E2g optical phonon at the Brillouin zone centre. The increase of D and D’ 

peaks with increasing e-beam irradiation suggests that the disorder has been induced. Initially, the intensity 

of both D and D’ peaks increases on increase of the dose after each irradiation step. However, after a certain 

e-beam dose, this trend is reversed and is observed for both D and D’ peaks. The 2D peak is the second 

order of the D peak and appears around 2690 cm-1, which originates from a process where momentum 
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conservation is satisfied by two phonons with opposite wave vectors; no defects are required for their 

activation and thus they are always present. The change of D, G and D’ peaks affected by e-beam irradiation 

are evaluated by the multiple Lorentzian curve fittings, as shown Fig. 6.2 (b). Fig. 6.3(a) shows the shift in 

the D peak position and the full width half maximum (FWHM) of D peak as a function of the e-beam 

irradiation dose. The FWHM of D peaks and shift in peak positions for the pristine and e-beam irradiated 

graphene are obtained by using the Lorentzian fit in Raman spectra from Fig. 6.2(b). The FWHM of the D 

peak decreases up to a certain value of irradiation doses, while for higher doses it returns towards the 

original magnitude. The D peak becomes sharper from 125 to 375 e-/nm2 irradiation doses, and the 

magnitude of FWHM has a smaller value in this regime. The positions of the G and 2D peaks as functions 

of the irradiation dose are shown in Fig. 6.3(b), and these peaks shift towards lower wave number with a 

gradual increase in the irradiation dose similar to the D peak. The inset in Fig. 6.3(b) shows the crystalline 

size (La) of graphene as a function of the e-beam irradiation dose. The value of La decreases rapidly as the 

e-beam irradiation dose increases, which indicates that graphene transforms from a crystalline to an 

amorphous state. Fig. 6.4 (a) shows the intensity ratio of the D and G peaks (ID/IG) as a function of 

crystalline size. This plot is divided into two regions. Initially, the ID/IG ratio increases up to a certain value 

of the irradiation dose, while in the second region, when it reaches a certain limit it drops down gradually 

on further increase of the e-beam irradiation dose. This trend can be explained by the amorphization 

trajectory model proposed by A. C. Ferrari et al.  [45]. 
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Figure 6.2. (a) Raman shift for various e-beam irradiation doses. The peaks D, G and 2D appear around 1347, 1587 and 2690 cm-

1, respectively. The disorder induced D and D’ peaks is raised after e-beam irradiation. (b) Evaluation of Raman spectra by the 

multiple Lorentzian curve fittings of D, G and D’ peaks, respectively with measured data. 
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Figure 6.3. (a) Position and full width half maximum (FWHM) of D peak as a function of e-beam irradiation dose. (b) Position of 

G and 2D peak as a function of e-beam irradiation dose. Inset: Crystalline size (La) as a function of e-beam irradiation dose.  

 

The first trend, i.e. the increase of ID/IG, specifies that the crystalline graphene is transformed into a 

nanocrystalline form, and the second trend, i.e. the gradual decrease in the ID/IG ratio, suggests that 

nanocrystalline graphene is transformed into an amorphous carbon film. This is due to the large number of 

defects introduced at a higher dose, and most parts of nanocrystalline graphene are converted into an  sp2 

amorphous carbon film. The region below 375 e-/nm2 e-beam irradiation doses corresponds to the 

nanocrystalline phase, and crystalline size (La) of this phase can be estimated by the Tuinstra-Koening 

relation (ID/IG ∝1/La), as shown in Eq. (1), where C() 4.4 nm (at exciting laser light = 514 nm) [99]. 

However, the second region, which has above 375 e-/nm2 e-beam irradiation doses, follows the Ferrari and 

Robertson relation (ID/IG ∝ La
2), as shown in Eq. (2) [45]. Here C’() 0.58 /nm2 is estimated by consistency 

of ID/IG at the irradiation dose of 375 e-/nm2. The resulting plot of ID/IG ratio as a function of La calculated 

for both regions is shown in Fig. 6.4 (a). The ID/IG ratio decreases on increasing La in the region where La 

> 2 nm, i.e. the nanocrystalline state, and the ratio increases in the region where La < 2 nm, i.e. the 

amorphous state. This region is represented as amorphous sp2 carbons film having lower values of La.  The 

value of ID/IG ratio is consistent with the previous observation for CVD graphene [25].  
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Here, we have fitted Eq. (3)  to calculate the structural disorder in graphene as in the previously reported 

model used to calculate structural disorder by Ar+ ion bombardment [27]. The two regions with different 

length scales are defined by structurally disordered and active regions. The rS and rA are the radii of the 

structurally disordered and activated regions, respectively, and here rA is always greater than rS. As the 

defect density increases, the D band intensity also increases and then reaches a maximum. Meanwhile, the 

activated regions start to overlap and these regions eventually saturate. By further increasing the defect 

density in graphene, the D band intensity decreases because structurally the disordered areas start to 
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dominate. The CA parameter in Eq. (3) is a measure of the maximum possible value of the ID/IG ratio in 

graphene. Theoretically, the parameter CA could be possible only when mixing of K-K’ wave vector is 

allowed. However, in this situation there would be no structural change in the hexagonal network of carbon 

atoms. Therefore, CA can be defined in terms of electron-phonon coupling elements between the and K 

points [100]. The CS parameter is the value of the ID/IG ratio in the highly disordered limit. The red line 

curve is in excellent agreement with the experimental results in Fig. 6.4(a), by taking the parameters CA = 

5.20048, CS = 0.34096, rA = 1.56084 nm and rS = 1.08089 nm. The experimental data and fitting curve are 

plotted in log-log scale for clarity in Fig. 6.4 (b).  

 

The electron energy loss is an important parameter to describe the influence of irradiation effect. We can 

estimate the electron energy loss, K, in the graphene by using the relation K = (E/x).t. Here, t is the 

thickness of the graphene layer and E/x is the electron stopping power, which is governed by inelastic 

interactions with the target material. It contributes to various physical phenomena, such as ionization of the 

target atoms and electronic excitations, and leads to local bond breaking and amorphization. It has a value 

of 2.89 eV/nm for graphitic materials [101]. Using t= 0.34 nm [102], the estimated energy loss is found to 

be ~0.893 eV for graphene [101, 103].  

 

Figure 6.4. Implementation of Eq. (3) on ID/IG as a function of average distance La between defects, induced by e-beam irradiation.  

Instead of the integrated area ratio, we use the intensity ratio, because below La ~2 nm, the G and D’ peaks overlap. The solid red 

line is the theoretical modelling data of Eq. (3) and the black dots are the experimental data. (b) The theoretical fit obtained by 

using Eq. (3) and experimental data of ID/IG vs. La are plotted on a log-log scale for clarity. 

 

6.3.2 Transport measurements of E-beam irradiated graphene devices 

The effect of an e-beam irradiation dose on graphene lattice modification is studied by measuring resistivity 

as a function of back-gate voltage (Vg) for various e-beam irradiation doses, as shown in Fig. 6.5(a). 

Resistivity is calculated by using =RW/L, where R is the measured resistance, W is width and L is the 

length of graphene channel. The Dirac point shifts from 18 V to -9.5 V with controlled e-beam exposure 
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the transport properties and transforms graphene doping from the hole type to electron type doping. In 

order to analyze the difference between pristine and irradiated samples quantitatively, we employ the semi-

classical Drude model to calculate the mobility, =(ne)-1, where is the resistivity, n=Cg|Vg-VDirac|/e and 

Cg is gate capacitance taken to be 115 aF/m2 for 300 nm SiO2 substrate [104], which is the same as that 

obtained from our Hall measurements.  Fig. 6.5(b) shows the trend of mobility of the graphene device as a 

function of the irradiation dose, and the mobility is found to decrease gradually from ~1200 to ~80 cm2/V 

sec as the e-beam irradiation dose increases. The inset in Fig. 6.5(b) shows the resistivity at the Dirac point 

as a function of the irradiation dose, and it is observed that resistivity rapidly increases on increasing the e-

beam irradiation dose. The increase in the device resistance supports the amorphization trajectory, which 

suggests that graphene is transformed into the nanocrystalline and then into the amorphous form when e-

beam irradiation is increased. Therefore, we may conclude that graphene becomes amorphous rather than 

re-crystalline at a higher e-beam irradiation.  

     

Figure 6.5. (a) Resistivity of graphene as a function of back gate voltage (Vg) for various doses. (b) Mobility of graphene as a 

function of e-beam irradiation dose at different gate voltage. The inset shows the resistivity at the Dirac point as a function of the 

e-beam irradiation dose.  
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6.4 Conclusion 

We have introduced the defects in inductively-coupled plasma-enhanced chemical vapor deposition-grown 

graphene by e-beam irradiation. Raman spectra and transport measurements reveal the mechanisms of 

disorder formation in graphene. The appearance of a large D peak is attributed to lattice damage of the 

graphene layer upon applying e-beam irradiation. The evolution of D and G peak intensities ratio (ID/IG) 

follows the amorphization trajectory with increasing irradiation dose, which implies that graphene is 

converted from a crystalline form into a nanocrystalline form, and then after a certain limit it is transformed 

into an amorphous form. The crystalline size is calculated by the Tuinstra-Koening and Ferrari-Robertson 

relations, and the quantification of defect parameters is performed by fitting the phenomenological model 

of the amorphization trajectory for graphitic materials, which is consistent with experimental results. In 

transport measurements, the Dirac point shiftd towards negative gate voltage, indicating the n-doping in 

graphene. Resistance increases persistently and mobility decreases gradually from ~1200 to ~80 cm2/V sec 

with a higher dose exposure. This may be attributed to the formation of disordered states in e-beam 

irradiated graphene.  
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Chapter 7 

7 High frequency impedance of single-walled carbon nanotube 
networks on flexible substrate 

 

 

We report the impedance measurement analysis of single-walled carbon nanotube networks (SWCNT), 

which are expected to be suitable as miniaturized flexible radio frequency RC filters and also have 

important implications for high frequency devices. The thickness and roughness of the thin film of SWCNT 

are examined by atomic force microscopy. The Bode plots using two probe measurement setup give the 

dependence of real and imaginary impedances on frequency. Nyquist plots of carbon nanotube networks 

on a flexible substrate are close to real circles, indicating that the material is conducting, and suggest a 

simple equivalent circuit having a resistor in parallel with a capacitor. The tunnels among different carbon 

nanotubes are capable of storing electric charge. The accumulative capacitances of tunnels for three varied 

concentrations are calculated by electrochemical impedance spectroscopy simulations to fit the observed 

Nyquist plots. We have also investigated the frequency dependent impedance measurements of SWCNT 

network by using Corbino reflectometry setups. The impedance measurements show the cut-off frequency 

increases with increasing density of SWCNT. High frequency impedance as a function of cut-off frequency 

reveals the same slope (on the log-log plot) in both measuring techniques and the slope is independent on 

sample geometries. However, the cut-off frequencies observed by the Corbino reflectometry technique are 

three orders of magnitude higher than those observed by the two-probe technique, even for the same density 

SWCNT network. 

 

7.1 Introduction 

Thin transparent and flexible networks with randomly distributed single-walled carbon nanotubes 

(SWCNTs) are emerging as novel materials for various applications, particularly as flexible electronic 

materials [105-116]. The CNT networks are also expected to be used in the development of logic circuits 

such as radio-frequency identification tags [117]. These SWCNT network films are useful for flexible 

networks in different fields, including sensors, electrodes, and filters [116-118]. For such applications, the 

use of SWCNT networks on flexible plastic substrate has various advantages including fast deposition 

process, low-temperature and non-vacuum process [105, 113, 116, 119], which help to reduce the cost of 

the devices. On the other hand, for an efficient use of their functionality it is necessary to understand the 

electrical properties of thin film of SWCNT networks on flexible substrate [120]. The junction resistance 

is dominant to the overall resistance in thin film network of SWCNTs because the nanotube-nanotube 

junction resistance is much larger than the nanotube resistance itself [121-123]. However, the resistance of 
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nanotube network shows nonlinear behavior with thickness [123, 124]. When the thickness of thin film of 

SWCNT networks reaches the order of tens of nanometers, the conduction through metallic tubes is 

dominant resulting in a metallic behavior [125, 126]. It is reported that semiconducting wires, ribbons, and 

membranes are other promising materials for flexible electronics with high-speed performances because 

they retain high carrier mobility and relative flexibility [127, 128]. Similar work have reported using Si 

nano-membranes with a current gain cut-off frequency of 1.9 GHz on plastic substrate for high speed 

devices, although their flexibility has yet to be studied [129]. The performance of GaAs wires-based 

transistor is examined up to 1.55 GHz under mechanical stress [130]. Recently, carbon nanotubes have 

attracted much interest as they offer great potential for high frequency flexible electronics due to their 

excellent electrical, optical and mechanical properties. Several groups have studied the dc performances of 

flexible transistors based on SWCNTs, and it has been found that SWCNTs have more advantages than the 

other materials for their flexible electronic performances [105, 131-133]. The frequency-dependent 

impedance investigation of different network densities and high value of cut-off frequency is not only 

helpful to miniaturize the SWCNTs network, but is also important for high speed transistor and transparent 

shielding material applications. Grüner et al. have investigated the frequency and electric field dependent 

conductivity of a thin film of the SWCNT network on flexible plastic substrate [134, 135]. They found that 

the frequency-dependent ac conductivity and nonlinear electric-field-dependent dc conductivity are 

strongly dependent on film thickness [134, 135]. They also found that the ac conductivity is frequency-

independent up to the cut-off frequency (f0 ) is defined as where the real part of the impedance decreases 

suddenly or where the imaginary part has maximum value and that it obeys approximate power law 

behavior beyond f0 [134, 135]. Burke and co-workers measured the microwave conductivity of individual 

SWCNTs and investigated their operation as a transistor at 2.6 GHz [118, 136, 137]. Petit et al. found that 

conductivities at dc and up to 10 GHz are almost the same for the films with thickness in the range of tens 

of micrometers [126]. However, there is a lack of high frequency-dependent impedance investigation with 

systematic variation of network SWCNTs densities and different sample geometries. In addition, 

determination of the cut-off frequency is yet to be resolved because the impedance measurements by 

different techniques provide different values of cut-off frequency. The ac-electrochemical impedance 

spectroscopy (ac-EIS) can be used to characterize the SWNT films. The advantages of ac-EIS analysis over 

the dc analysis include detail characterization of the local electrical behavior of materials. Generally, ac-

EIS measurement techniques employing commercially available frequency response analyzers may not be 

applicable directly to probe kinetic processes occurring in the materials under a driving force. A single 

impedance spectrum commonly referred to as a “Nyquist plot” or a “Cole-Cole plot” consists of a set of 

impedance data collected in a wide range of frequency. Due to such a frequency sweep, it is hardly possible 

to construct the real time Nyquist plots, which are often required for kinetic studies [138].   
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We studied the frequency-dependent impedance measurements for SWCNT networks with varying density 

and different sample geometries. The SWCNTs density of the films is controlled by optimizing the 

concentration of nanotubes in an SDS aqueous solution. The thickness and transparency are also controlled 

by the number of spray passes over the substrate. The sample A1 is made by the least number of spray 

passes, so the lowest density is expected. As the number of spray passes increases from A1 to A8, the 

density also increases in sequence. We also compare the measurements by different techniques. We found 

that f0 extracted from the frequency-dependent impedance measurement remarkably depends on the 

measurement technique, even for same density SWCNTs network. The cut-off frequency determined by 

two probe impedance is lower than that of the Corbino reflectometry setup, and their comparisons are 

discussed in detail. Raman and AFM are also used to characterize SWCNTs network. We also observed 

that the transmittance of SWCNTs network is closely related to the density of SWCNTs.  

 

7.2 Experimental 

The conductive network of SWCNT is prepared on the substrate of polypropylene carbonate (PPC). The 

SWCNTs are dissolved in a 1% solution of aqueous sodium dodecyl sulfate (SDS), and then the suspension 

is sonicated for 1 h at 40 W using a probe sonicator. The suspension is then vigorously sprayed on the PC 

substrate, which is heated at 120 ̊C. The heating of the substrate is done to prevent the agglomeration of 

SWCNTs. After several layers of nanotubes have been sprayed onto the PC, the substrate is submerged and 

shaken in distilled water in order to remove the rest of SDS. As a result, a conductive layer is deposited on 

the PC substrate [105]. The samples are made with different densities for characterizations. Raman spectra 

are taken using the RENISHAW spectrometer having 633-nm laser wavelength under ambient conditions. 

Surface morphology is recorded by using the atomic force microscope (NanoFocus Inc.). Two-probe 

contact and the Corbino reflectometry setups, which are ideal for broadband impedance measurements of 

resistive materials [139], are used to investigate the impedance of the SWCNT networks [112]. The two-

probe method is used because SWCNT thin films exhibit high impedance and the contact resistance should 

be several orders of magnitude lower. In order to measure the impedance in the broad frequency range, two 

instruments are used, as shown in Fig. 7.1(a) and (b); Agilent E8362B network analyzer with a frequency 

range from 10 MHz to 20 GHz and Agilent 4294A network analyzer with a frequency range from 40 Hz 

to 110 MHz.  
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Figure 7.1. Figure 1. (a) Diagram of SWCNT on polypropylene carbonate substrate with Ag contacts in two probe impedance 

measurement setup (b) Diagram of Corbino reflectometry setup with panel mount SMA connector for microwave frequency range. 

7.3 Results and discussion 

7.3.1 Raman spectroscopy, surface morphology and optical absorption analysis 

Figure 7.2(a) shows the Raman spectra for SWCNTs network with various densities, prepared on flexible 

PPC substrate. The most characteristic features in Raman spectra of SWCNTs show a behavior similar to 

that reported previously [140, 141]. The peak at the high energy range from 1550 to 1650 cm−1 corresponds 

to the tangential G mode, and a peak around ~1300 cm−1 is related to the inter-band with defect-induced 

vibration (D mode). The G/D peaks ratio in Raman spectra are 2.017, which is indicative of the high purity 

of SWCNTs network. Figure 7.2 (b) shows the optical transmittance as a function of wavelength for various 

SWCNTs network films. The highly dense SWCNTs network shows low transmittance, whereas the 

slightly dense SWCNTs network shows high transmittance. The inset is the photograph of optically 

transparent SWCNTs network. The least density of SWCNTs network corresponds to the maximum 

transparency of ∼95 %. Since all the SWCNTs samples are obtained using the same method and made 

from the same batch, we can relate transmittance to the SWCNTs density. 

 

 

 

 

 

 

 

 

 

Figure 7.2.  (a) Raman spectra of SWCNT thin film network on PC substrate with different densities of CNT used for two-probe 

and Corbino geometry impedance measurements. (b) Transmittance as a function of wavelength for various density networks. 

Inset shows the photograph of SWCNT network on polypropylene carbonate flexible substrate. 
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The surface morphology is studied by atomic force microscopy (AFM) to verify the dispersion of SWCNTs 

on PPC substrate. As observed from the topography image in Fig. 7.3(a) for sample A1, the cluster network 

is distributed over a large area of the PPC substrate with mostly uniform thickness. The bright part on the 

topography image highlighted shows a number of clusters agglomerated on that part of the surface. The 

root-mean-square (RMS) roughness is estimated to be ∼12 nm. The AFM estimated size of CNT bundles 

to be approximately 15-20 nm. The thickness profile taken by drawing the line in the middle of topography 

image shows the average thickness of the CNT film∼27 nm, as seen in Fig. 7.3(b). 

 

 

 

 

 

 

 

                                                                 

 

 

Figure 7.3. (a) AFM image of a nanotube thin film area 4x4 µm2. (b) Thickness profile taken by drawing the line in the middle of 

topography image. The average thickness of the SWCNT film is 27 nm and RMS roughness is around 12 nm. The SWCNT bundle 

size is approximately 15-20 nm. 

 

7.3.2 Impedance analysis with two-probe setup up to 100 MHz 

To analyze the electronic characteristics in the SWCNTs network, the impedance measurements are 

employed on rectangular shape samples with length and width 1.5 and 0.5 cm, respectively, at room 

temperature. The charge carrier transport through this kind of network is thought to be limited not only by 

the conductivity along the nanotubes themselves, but by the large inter-tube resistance associated with 

barriers to charge propagation that arises at the tube-tube junctions. As expected for a network with 

significant randomness, the impedance is frequency and density-dependent.  

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Bode plots showing the real (a) and imaginary (b) parts of impedance as a function of frequency for SWCNT thin film 

networks with different density of samples S1, S2, and S3. 
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The two dimensional Bode plots for the real component (Z’) and the imaginary part (Z’’) are shown in 

Figs. 7.4(a) and 7.4(b), respectively. As observed from Fig. 7.4(a) at low frequencies, the impedance 

increases as the density of SWCNTs network decreases. The impedance remains constant up to a certain 

frequency and then starts to decrease at a constant rate. The cut-off frequency is defined as where the real 

part of the impedance decreases suddenly or where the imaginary part has maximum value. The cut-off 

frequency in Bode plots is related to the mean distance between nanotubes or gaps in random nanotube 

networks [112]. Since the gaps between SWCNTs act as a parallel plate capacitor, any increase in the 

density makes the gaps smaller, while at the same time the impedance decreases when the mean distance 

between the nanotube network decreases. In the Bode plot, the imaginary component (Z’’) increases in the 

range from 103 to 105 Hz, while Z’ remain constant and both the real and imaginary parts of impedance 

abruptly decrease as the frequency increases over the cut-off frequency.  As can be seen in Fig. 7.5(a), the 

complex impedance variation with frequency follows an approximately real circle resembling a Debye 

relaxation peak [142]. At low densities, these conducting networks contain some highly resistive nanotubes, 

while at higher density pathways are formed among metallic nanotubes. This can be described with a model 

that includes both semiconducting and metallic pathways [113]. These ideas have been elaborated by other 

groups [114, 143]. All these models are based on the inherent randomness and driven charge transport 

across arbitrary barriers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5. (a) Nyquist plot showing the imaginary part (-Z’’) vs real part (Z’) of impedance of SWCNT thin film networks with 

different densities of samples S1, S2, and S3. The inset shows a simple equivalent circuit composed of parallel combination of 
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resistor and capacitor. The electrochemical impedance spectroscopy (EIS) simulation plot (b) for sample S1 with resistance R =550 

Ω and capacitance C =1.89 × 10-9 F, (c) for sample S2 with resistance R = 418 Ω and capacitance C = 5.16 × 10-9 F, and (d) for 

sample S3 with resistance R = 338 Ω and capacitance C = 7.83 × 10-8 F. 

 

 
The SWCNTs network can serve as semiconducting channels when the density is lower than the percolation 

threshold, and they serve as a metallic interconnect or as a conducting sheet for high network densities. 

These results can be simulated by a simple equivalent circuit composed of parallel combination of a resistor 

and a capacitor [inset in Fig. 7.5(a)]. The contribution of resistance and capacitance is calculated by using 

electrochemical impedance spectroscopy simulations (EIS), as shown in Figs. 7.5(b)–7.5(d), respectively, 

while the simulated resistances (R) are obtained as 550, 418, and 338 Ω for three samples S1, S2, and S3, 

the accumulation capacitances are calculated as 1.89 × 10-9, 5.16 × 10-9, and 7.83 × 10-8 F, respectively. 

The results presented above indicate that band-stop RC flexible filters can be assembled successfully from 

a carbon nanotube film grown on a flexible substrate. The range of the cut-off frequency can be tuned by 

varying the density of SWCNTs networks. 

 

7.3.3 Impedance analysis up to 20 GHz 

The ac measurements are performed in frequency range from 40 Hz to 110 MHz by two-probe 

measurement and from 10 MHz to 20 GHz with the Corbino reflectometry setup. Here, we use eight 

samples with different SWCNT densities. For each density, we prepare four different sample geometries. 

Three samples with width (W) of 0.5 cm- and different lengths (L) of 1.5, 3 and 6 cm are characterized by 

the two-probe contact method. The fourth sample, with circular geometry with a diameter (D) of 1.9 mm, 

is characterized by the Corbino reflectometry setup. A schematic view of the two-probe measurement 

method is shown in Fig. 7.1(a). The Corbino geometry setup is shown in Fig. 7.1(b). The real and imaginary 

components of the ac impedance as a function of frequency are presented in Fig. 7.6 and 7.7., while Fig. 

7.6 shows the ac impedance measured by the two-probe method, Fig. 7.7 shows the ac impedance measured 

by Corbino reflectometry setup. In Fig. 7.6(a) and Fig. 7.7(a), the real part of impedance in the frequency 

range from 40 to 105 Hz and from 107 to 5× 108 Hz is almost constant. In general, the impedance measured 

at a given frequency reflects typically the response within a length scale of wavelength. Therefore, the 

impedance measurement will probe longer length scales at low frequencies [135]. This phenomenon is 

related to the fact that there is not enough time for electrons to cross all the junctions on their way through 

the nanotube random paths during one period of the electric field, T = 1/f0 , where f0= 1/2πRCtotal, R is 

resistance and Ctotal= CQ+CES (CQ is quantum capacitance, and CES electrostatic capacitance) of CNT 

network [118, 144]. In Fig. 7.6(b), the imaginary component (Z′′) increases from 103 to 105 Hz, then both 

real and imaginary components of impedance start to decrease above a particular frequency, which is 

defined as the cut-off frequency (f0 ). These results are in line with the previous two-probe measurements, 

as shown in Fig.7.4. However, f0 in the Corbino reflectometry setup is in the range of 109 Hz, which is 
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higher than that of the two-probe method, as shown in 7.8. The impedance Z(ω) is calculated from 

measured scattering parameters by the given formula [134], a(= 0.5 mm) and b (= 1.9 mm) are the inner 

and outer diameters of the sample contact, respectively. S11 (ω) is the scattering parameter at an angular 

frequency, ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. (a) Frequency dependence of real component and (b) imaginary component of impedance with various densities of 

samples measured by two probe method. Length and width of the sample are 1.5 cm and 0.5 cm, respectively. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.7. Impedance as a function of frequency of SWCNT thin film networks with various densities. (a) Real component and 

(b) imaginary component measured by Corbino reflectometry (panel mount SMA connector with inner and outer diameters a = 0.5 

mm and b = 1.9 mm, respectively) setup. 
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Figure 7.8. The impedance at cut-off frequency as a function of cut-off frequency (f0 ) of SWCNT thin film networks with different 

densities. In the two-probe measurement, the width was 0.5 cm and lengths were 1.5, 3 and 6 cm, respectively. In the Corbino 

reflectometry setup the circular shape sample has a diameter of D = 1.9 mm. 

 
Figure 7.8 shows the real part of impedance (Z′) at f0 (on log-log plot) for different samples. The upper 

group of green points represents the impedance dependence of samples with length L= 1.5 cm measured 

by the two-probe method. The lower group of green points corresponds to the impedance dependence of 

samples with diameter D= 1.9 mm measured by the Corbino reflectometry setup. The blue and red points 

represent the impedance dependence for samples with lengths L= 3 and 6 cm, respectively, measured by 

the two-probe method. We observe that the impedance dependence on the cut-off frequency of all the 

samples lies on the same slop. For the two-probe impedance measurements, the impedance measured is  

probably  greater due to high contact resistance [145]. As expected, f0 not only depends on the density of 

the network, but also on other factors such as geometry in the measurement setup. The results show that 

the behavior is mostly determined by the contact resistance between the SWCNTs, which are completely 

disordered in the network. As the SWCNTs density increases there are more connections between the tubes, 

which causes the cut-off frequency to increase [135]. These results are in good agreement with the results 

the previously reported [135], and as predicated by the theory of universality of ac conduction in completely 

disordered solids and verified experimentally in different solids  [146].  

 

7.4 Conclusions 

We study the effects of frequency-dependent impedance measurements of SWCNTs network on 

transparent and flexible substrates between two different measurement techniques; the two-probe setup and 
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the Corbino reflectometry setup. The large value of the G/D peaks ratio in Raman spectra indicates the high 

quality of SWCNT networks. AFM analysis shows the large area growth of SWCNTs with uniform 

thickness on most parts of the substrate. The observations by optical absorption spectroscopy confirm the 

high transparency from 79 to 95 % for samples with various CNT densities in our experiment. The sharp 

decrease in impedance obtained by the Bode plots is associated with the mean distance of the SWCNTs 

network, while the real components of impedance show a constant behavior up to the defined cut-off 

frequency, after which it decreases abruptly. The imaginary components of impedance show maximum 

value at cut-off frequency. The Nyquist diagram suggests a simple equivalent circuit composed of a parallel 

combination of a resistor and a capacitor. The simulated values for these RC circuits fit well with 

experimental data; the R values decrease and the C values increase as the SWCNTs density increases. The 

films should be a plausible candidate for a flexible band-stop filter. The impedance measurements show 

that the cut-off frequency decreases as the density of SWCNTs increases. The log-log plot of ac impedances 

as a function of cut-off frequency reveal the same slope in all the samples regardless of sample geometry 

or measurement setup. This can be explained by the theory of ac conduction in very disordered systems. 
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Chapter 8 

8 Summary and outlook 

 

 

 
We highlight the importance of the modulation of graphene properties with various kinds of doping. There 

are several challenges at present for the doping of graphene, such as structural deformation, mobility 

degradation, controlled doping, reproducibility and unstability. In general, the graphene devices are found 

to be p-type due to adsorption of oxygen molecules from ambient atmosphere and charge trapping between 

graphene and substrates. Therefore, some thoughtful strategies are required in order to overcome these 

challenges.  

 

We tune the graphene properties using various techniques, such as DUV irradiation in ambient atmosphere, 

DUV irradiation in different gaseous environments, and electron beam irradiation. We investigate the DUV 

irradiation effect on different number of graphene layers. The tuning of electronic properties of 

mechanically exfoliated single-, bi-, and trilayer graphenes by DUV irradiation are studied without 

significantly degrading its charge carrier mobility. To some extent, controlled p-type doping is feasible. We 

find that DUV irradiation in ambient atmosphere shows the p-type doping effect in graphene, while the 

doping level can be well-controlled with irradiation time without degradation of mobility. Raman 

spectroscopy and charge transport measurements reveal that DUV irradiation effects tune the properties of 

single-, bi-, and trilayer graphene layers towards p-type doping. The shift in of the Dirac point for single-, 

bi-, and trilayer graphenes is also investigated as a function of DUV irradiation time. It is found that the 

charge neutrality point is shifted toward positive gate voltage on increasing the DUV irradiation time for 

all single-, bi-, and trilayer graphenes. However the doping effect slightly decreases when the number of 

layers is increased, and one may even identify clearly the effect of tunability on multilayer graphene. The 

results indicate that DUV irradiation is a non-destructive approach to tuning the electrical properties of 

single-, bi-, and trilayer graphenes, while preserving the electrical properties.  

 

The doping phenomena can be explained by the dissociation of oxygen molecules in the presence of UV 

light. The dissociated molecules react with graphene to create oxygen-containing groups and induce p-type 

doping. The shift of the Dirac point position towards positive gate voltages confirms the p-type doping. 

These oxygen atoms can attach themselves onto the most stable site of graphene. During the photo-

oxidation process with DUV light, the O2 molecules absorb enough energy from photons to form two 

oxygen ions in the ground state. These dissociated oxygen ions attach themselves to different sites and will 

remain on the most stable adsorption site of the graphene. The intensity of DUV light determines the change 
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of carrier concentration in the graphene. However, the change of carrier concentration saturates after a 

certain limit of time, since only a finite number of dopants can be adsorbed on the graphene surface. This 

method becomes more useful when half the graphene device is covered and the remaining half is exposed 

to DUV light so that a sharp p-n junction is constructed. Since DUV light in the atmosphere acts as p-type 

dopant for graphene, it raises the Fermi level of the p-doped region; however, the untreated region remains 

at the same Fermi level as pristine graphene. This difference in the Fermi level creates a junction across 

the boundary. Nevertheless, I-V characteristics curves show linear behavior, because the depletion region 

is not expected between the doped and undoped region of graphene, due to the gapless band structure.  

 

Furthermore, the DUV effect becomes more prominent and controllable at a higher range when the doping 

is performed in an oxygen environment. The most interesting phenomena are observed when doping of 

graphene retreats towards pristine graphene using DUV irradiation in a nitrogen environment. The p-doping 

effect is observed in an ambient atmosphere with DUV light, as discussed in the above paragraph, and 

shows a similar trend in an oxygen environment, which indicates p-type doping. The shift of the charge 

neutrality point increases rapidly with the DUV light on graphene in an oxygen environment. The reversal 

of hole doping is observed by DUV irradiation under nitrogen gas flow. The resistivity of the graphene 

field effect transistor devices are found to increase slightly during the irradiation process and effect of DUV 

irradiation is also compared with simple gas flow treatment. The charge neutrality point is examined after 

oxygen and nitrogen gas flow without irradiation of DUV light. The hole doping effect is found in the 

treatment of dry oxygen gas flow without irradiation of DUV light. However, the hole doping effect is 

smaller than that with DUV irradiation. Subsequent treatment of nitrogen gas flow shows a very small 

down-shift to the charge neutrality point. We find that the doping effect due to oxygen is more significant 

when graphene is exposed by DUV light. Conversely, a minimum amount of energy provided by DUV 

light is required to release oxygen from the surface of graphene. Therefore, during nitrogen flow under 

DUV light, nitrogen atoms react with oxygen atoms and desorb oxygen atoms from the surface of graphene. 

We find that the treatment by using oxygen gas flow under DUV irradiation results in a stable doping of 

graphene. The p-doping state of graphene is maintained for couple of months in the atmospheric 

environment. The absorption and desorption of oxygen is further identified using XPS spectra. During 

DUV treatment in an oxygen environment, the oxygen atoms become more reactive after gaining energy 

from DUV light and further chemically react with carbon atoms of graphene, leading to the formation of 

epoxide groups. The deconvoluted XPS spectrum after DUV and oxygen treatment shows a slightly broader 

peak with additional shoulder peaks that can be fitted by three peaks. The first peak is assigned to the C-C 

bond, whereas the other two peaks correspond to C-O and C=O bonds, respectively. However, these C-O 

and C=O peaks vanish after treatment with DUV in a nitrogen environment of graphene, which indicates 

the recovery of graphene to its pristine state. 
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The structural deformation due to electron beam irradiation is an important factor in graphene device 

fabrication. We have intentionally irradiated the graphene devices with various controlled doses using 

electron beam irradiation. The structurally deformed graphene undergoes various phases, where graphene 

transforms from a crystalline to a nanocrystalline form, and then after a certain irradiation time it changes 

into amorphous form. The crystalline size is calculated by the Tuinstra-Koening and Ferrari-Robertson 

relations, and the quantification of defect parameters is performed by fitting the phenomenological model 

of the amorphization trajectory for graphitic materials, which is consistent with experimental results. The 

resistance of the graphene devices increases after irradiation. This observation supports the amorphization 

trajectory, which suggests the transformation of graphene to the nanocrystalline and then to the amorphous 

form on increasing the e-beam irradiation. During this process, the graphene devices are found to be n-type 

doped and the doping level is increased by increasing the dose factor. The other important consequence of 

this technique is that graphene devices which are good conductors of electricity and heat can be transformed 

into electrical and thermal insulators as well as having important implications for band-gap opening. 

 

The last section of the thesis describes SWCNTs network for different applications to flexible and 

transparent electronic devices; in particular, to high frequency devices. We fabricate the flexible and 

transparent electrodes and characterize them by AFM, Raman- and optical absorption spectroscopy. We 

measure the electrical impedances up to 100 MHz for the two-probe measurements and up to 20 GHz for 

the Corbino geometry setup. The two dimensional Bode plots for the real and the imaginary components 

define the frequency-dependent impedance behavior of SWNTs network. The observed results show that 

at low frequencies the impedance increases as the density of SWCNTs network decreases. The impedance 

remains constant up to a certain frequency or cut-off frequency and then decreases abruptly. The cut-off 

frequency in Bode plots is related to the mean distance between nanotubes or gaps in random nanotube 

networks. Since the gaps between SWCNTs act as a parallel plate capacitor, by increasing the density the 

gaps become smaller, and as a result the capacitance increases and the impedance decreases. Both the real 

and imaginary parts of impedance abruptly decrease as the frequency increases over the cut-off frequency. 

As the SWCNTs density increases there are more connections between the tubes, making the cut-off 

frequency increase. The cut-off frequency not only depends on the carbon nanotube density of the network, 

but depends on the geometry in the measurement setup. We observe that the impedance dependence on the 

cut-off frequency of all the samples lies on the same slope. The Nyquist diagram suggests a simple 

equivalent circuit composed of a parallel combination of a resistor and a capacitor. The simulated values 

for these RC circuits fit well with experimental data. The films should be a plausible candidate for a flexible 

band-stop filter. The results show that the behavior is mostly determined by the contact resistance between 

the SWCNTs, which have a completely disordered distribution in the network. These results are in good 

agreement with the previously reported theory of universality of ac conduction in disordered solids.  
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The systematic study described in Chapters 3, 4, and 5 for tuning the properties of graphene by DUV light 

has many practical applications. Due to defects free doping and the long-term stability of this technique, it 

could be applied on an industrial scale and may be further employed with other two-dimensional materials 

such as MoS2, WS2, WSe2.  The controlled defects formation with electron beam irradiation, as described 

in Chapter 6, can modify the properties of graphene according to the required applications of the devices, 

and this method can be used to tune the properties of other two-dimensional materials as well. Flexible and 

transparent electronic devices have great importance in different electronic applications, such as electrodes 

in photovoltaic cells, sensors and displays. The method described in Chapter 7 is a very simple and cost-

effective for large scale production of carbon nanotubes based flexible and transparent high frequency 

electronics. This method can be improved by controlling the thickness of carbon nanotubes more precisely 

and selecting the carbon nanotubes.  
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