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The giant Ægir and the goddess Rán, who represent the sea in Norse mythology, had nine

daughters whose names are poetic terms for different characteristics of ocean waves:

... The name of Ægir’s wife is Rán, and they have nine daughters, as has before been written:

Himinglæva, the wave reflecting the sky; Dúfa, the pitching wave; Blóðughadda, the blood-

red color wave; Hefring, the surging wave; Uðr, the frothing wave; Hrönn, the grasping

wave; Bylgja, the big wave; Dröfn, the foam wave; Kólga, the chilling wave ...

Skáldskaparmál section of Snorri Sturluson’s Prose Edda, Iceland, 13th century.
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Abstract
The present thesis aims at developing a basis for the numerical simulation of

multiphase flows of immiscible fluids. This approach, although limited by the com-
putational power of the present computers, is potentially very important, since most
of the physical phenomena of these flows often happen on space and time scales
where experimental techniques are impossible to be utilized in practice. In particular,
this research is focused on developing numerical discretizations suitable for three-
dimensional (3-D) unstructured meshes, being the discretization on Cartesian grids
as one particular case. This decision has been adopted in order to develop numerical
algorithms adaptable to domains presenting boundaries with complex geometries. In
addition, it is important to mention that within the Heat and Mass Transfer Technological
Center (CTTC) research group, this thesis is the first attempt of discretizing these flows
on 3-D unstructured meshes. Hence, rather than focusing on the study of the physics
associated to these flows, most of the work is focused on the numerical discretization
of the equations that govern them.

This work comprises seven chapters, the first one is an introduction to the type
of flows considered, as well to the methodology used to study them. The next five
chapters are the core of this dissertation, and encompass from the implementation
of an interface-capturing method to the numerical resolution of the Navier-Stokes
equations. In particular, the contents of this five chapters have been submitted or
published in international journals and conferences, hence, they are written to be self-
contained and only minor changes have been introduced with respect to the original
papers. Consequently, some theoretical and numerical contents, as the advection of
interfaces or the discretization of the Navier-Stokes equations, are repeated along
them. The last chapter contains the concluding remarks, as well as ideas on how the
present work could be continued. At the end, there are four appendices including
material that may be useful in order to follow some parts of this work, but that has
been placed apart so that the normal reading of the thesis is not disturbed.

In detail, the first chapter delimits the considered multiphase flows to the case
in which the components are immiscible fluids — two or more fluids incapable of
being mixed to form a homogeneous substance. In particular, the focus is placed on
those cases where two or more continuous streams of different fluids are separated
by interfaces, and hence, correspondingly named separated flows. Additionally, once
the type of flow is determined, the chapter introduces the physical characteristics and
the models available to predict its behavior, as well as the mathematical formulation
that sustains the numerical techniques developed within this thesis.

The second chapter introduces and analyzes a new geometrical Volume-of-Fluid
(VOF) method for capturing interfaces on 3-D Cartesian and unstructured meshes.
The method reconstructs interfaces as first- and second-order piecewise planar ap-
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vi Abstract

proximations (PLIC), and advects volumes in a single unsplit Lagrangian-Eulerian
(LE) geometrical algorithm based on constructing flux polyhedrons by tracing back
the Lagrangian trajectories of the cell-vertex velocities. In this way, the situations of
overlapping between flux polyhedrons are minimized.

Complementing the previous chapter, the third one proposes a parallelization
strategy for the VOF method. The main obstacle is that the computing costs are
concentrated in the interface between fluids. Consequently, if the interface is not
homogeneously distributed, standard domain decomposition (DD) strategies lead
to imbalanced workload distributions. Hence, the new strategy is based on a load
balancing process complementary to the underlying domain decomposition. Its
parallel efficiency has been analyzed using up to 1024 CPU-cores, and the results
obtained show a gain with respect to the standard DD strategy up to∼12×, depending
on the size of the interface and the initial distribution.

In order to gain experience in the discretization of the Navier-Stokes equations
on 3-D unstructured meshes, the fourth chapter describes and studies the case of
single-phase flow to later extend it to the case of multiphase immiscible flow. In short,
there are two main mesh discretizations for the calculation of these equations, the
collocated and staggered schemes. Collocated schemes locate velocities at the same
grid points as pressures, while staggered discretizations locate variables at different
points within the mesh. One of the most important characteristics of the discretization
schemes, aside from accuracy, is their capacity to discretely conserve kinetic energy,
specially when solving turbulent flow. Hence, this chapter analyzes the accuracy and
conservation properties of two particular collocated and staggered mesh schemes.

The extension of the numerical schemes suitable for the single-phase Navier-
Stokes equations to the case of multiphase immiscible flow is developed in the fifth
chapter. Particularly, while the numerical techniques for the simulation of turbulent
flow have evolved to discretely preserve mass, momentum and, specially, kinetic
energy, the mesh schemes for the discretization of multiphase immiscible flow, instead
of focusing on the conservation properties, have evolved to improve their stability and
robustness. Therefore, this chapter presents and analyzes two particular collocated
and staggered mesh discretizations, able to simulate multiphase immiscible flow,
which favor the discrete conservation of mass, momentum and kinetic energy.

Finally, the sixth chapter numerically simulates the Richtmyer-Meshkov (RM)
instability of two incompressible immiscible liquids. This chapter, rather than being a
detailed study of the physical phenomena of RM instabilities, is a general assessment
of the numerical methods developed along this thesis. In particular, the instability
has been simulated by means of a VOF method and a staggered mesh scheme. The
corresponding numerical results have shown the capacity of the discrete system to
obtain accurate results for the RM instability.
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1

Introduction

The main topic of this research is the numerical simulation of multiphase flow of
immiscible fluids on unstructured meshes. In this introductory chapter, the physical
characteristics and the models available to predict its behavior are presented, as well
as the mathematical formulation that sustains the numerical techniques developed in
this research. From these, the main objectives and outline of the thesis are derived.

1.1 Multiphase flow of immiscible fluids

In the context of this thesis, the term multiphase flow is used to refer to any fluid flow
consisting of more than one phase or component. In particular, the focus is placed on
those circumstances in which the components are immiscible fluids — two or more
fluids incapable of being mixed to form a homogeneous substance. Technically, two or
more immiscible fluids should be considered multi-fluid flow, but often are referred to
as multiphase flow due to their similarity in behavior; see the work by Brennen [1] for
a detailed explanation. Consequently, the flows considered have some level of phase
or component separation at a scale well above the molecular level. This constraint
still leaves an enormous spectrum of different multiphase flows. For instance, one
could classify them according to the state of the different phases or components
and, therefore, refer to gas/solid flows, gas/liquid flows, liquid/liquid flows and
so on. Moreover, multiphase flows are also generally categorized depending on the
components distribution: disperse or separated. The disperse flow consists of finite
particles, drops or bubbles (the disperse phase) distributed in a connected volume of
the continuous phase, while separated flow refers to the situation where two or more
continuous streams of different fluids are separated by interfaces. This research work
is mainly centered on the latter situation.

The separated flow type, usually named interfacial due to the interface that
separates the phases, is found in a large variety of physical and biological phenomena,
ranging from the prediction of atmospheric conditions to the study of blood flow,

1
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and in engineering applications, as for example, cavitation in pumps and turbines,
sprays or injection processes. In particular, a typical example of interfacial flow is
the collision between liquid drops or the coalescence of gas bubbles; see Fig. 1.1.
Understanding the flow in these situations not only involves the study of velocity
and pressure fields in the air and water phases, but also of the interface between
them. This latter part is much more difficult than the former because the interface is
subject to a number of relevant physical phenomena, at scales much smaller than the
typical sizes of drops or bubbles. For instance, a tough complication is the change in
interface topology that occurs when the drops collide or the bubbles coalesce. This
considerably complicates the physics and sharpens the requirements that the models
of flow prediction must satisfy in order to resolve the motion in a satisfactory way.

Figure 1.1: Examples of interfacial flow. Top left: Atomization of a liquid jet [2]. Top
right: Atmospheric clouds. Bottom: Coalescence of two rising bubbles [3].
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1.2 Models of flow prediction

A recurrent theme in fluid mechanics and, hence, also in the study of multiphase flow,
is the need to model and predict the detailed behavior of flows and the phenomena
that they manifest. Basically, there are three main approaches to explore them: (1)
experimentally, through laboratory-scaled models equipped with appropriate instru-
mentation; (2) theoretically, using mathematical equations and approximations for the
flow; and (3) computationally, setting up a discrete system of equations and numeri-
cally solving it on high performance computers. Clearly, there are some applications
in which full-scale laboratory models are possible, but in many cases the laboratory
model needs to be scaled in grand proportion or its cost becomes unaffordable, thus,
in such situations the use of reliable theoretical models are an important tool for the
analysis of the flow.

Most of these theoretical models are based on mathematical equations developed
some centuries ago. However, the incapacity of finding their analytical solutions
forced the scientists and engineers to simplify them: using hypothesis valid for
specific fluid and flow characteristics and/or approximating them to parametric
models. The simplification of the mathematical models has resulted useful for a
large variety of low complexity cases, but as science and engineering have advanced
the demanded problems have become more and more complex, till the point that
these simplified models have failed in extrapolating reliable results. Fortunately, the
appearance of high performance computing systems in the last decades has renovated,
by means of using numerical techniques, the interest on the resolution of the full
equations. For instance, complex turbulent, multiphase, compressible or combustion
flows, unthinkable of being resolved just some decades ago, are now tackled by
solving their discrete equivalent systems on supercomputers. This has attracted the
interest from the technological companies, which are starting to rely on this approach
— scaled to low cost computer clusters — to design and improve their products. Even
so, the computer power required to solve most of the industrial applications is far
beyond the present capability. However, in the case of affordable problems the use of
this computational approach provides high quality data to the scientific community,
facilitating the development of new accurate simplified models, which later may be
used to characterize more complex cases.

In particular, multiphase flows may be mathematically modeled in different man-
ners, depending if they are disperse or separated. In disperse flows, the trajectory
model and two-fluid model are usually used. Trajectory models assess the motion of
the disperse phase by following either the motion of the actual particles or the motion
of larger representative particles. The details of the flow around each of the particles
are incorporated into assumed drag, lift and moment forces acting on and altering the
trajectory of those particles. Alternatively, two-fluid models treat the disperse phase
as a second continuous phase mixed and interacting with the continuous phase. As a
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consequence, conservation equations of mass, momentum and energy are required for
each fluid, in which interaction terms that model the exchange of mass, momentum
and energy between them are included. Thus, this approach involves difficult aver-
aging processes in order to characterize the properties of the disperse phase. On the
contrary, separated flows present many fewer issues, since one single set of equations
is used to solve the flow in the different fluids, coupling them through appropriate
kinematic and dynamic conditions at the interface. Particularly, this dissertation
is mainly focused on separated flows, therefore, the complete formulation of the
mathematical equations corresponding to this latter model are presented in the next
section.

1.3 Mathematical formulation

The research undertaken in this thesis considers the separated multiphase flow as
a set of subdomains, Ωk, filled with individual phases, which together compose a
single domain, Ω; see Fig. 1.2. These subdomains are separated by an interface, Γ, that
determines a discontinuity of density, viscosity and pressure, as well of some other
physical variables. In addition, the location of this discontinuity in three-dimensions
is considered to be a smooth surface, which links the different phases by transferring
momentum between them and, in the case of neglectable phase change, evolves
according to the velocity field as

dxΓ

dt
= u(xΓ, t), (1.1)

where xΓ refers to the points on the phase interface.
The mathematical derivation exposed in this section is based on three general

principles: the continuum fluid hypothesis, the hypothesis of sharp interfaces and the
restriction of the effects from intermolecular forces. First, the approximation of a fluid
as a continuum is a fundamental principle of fluid dynamics, and is valid in most
practical cases — above 1nm for liquids in ambient conditions. Second, the transition
from one phase to another occurs on very small scales, comparable to the scales of
nanometers. Thus, the assumption that interfaces have an infinitesimal thickness is
sufficiently correct. Third, the intermolecular forces, that play an important role in
interface physics, are modelled by retaining just the effect from the surface tension
force. Additionally to these three assumptions, this dissertation is restricted to in-
compressible flow of Newtonian fluids, since the fact of considering compressibility
effects and non-Newtonian properties incorporate overwhelming complexities to the
mathematical model.

Under these considerations and assumptions, the separated multiphase flow can
be described for each phase k using the incompressible continuity and Navier-Stokes
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Figure 1.2: Schematic drawing representing a separated multiphase flow. The domain,
Ω, is divided in two subdomains separated by an interface, Γ.

equations, written as
∇·u = 0, (1.2)

∂(ρku)
∂t

+∇· (ρkuu) = −∇p +∇· (µk[∇u +∇Tu]) + S, (1.3)

where ρk and µk are the constant density and dynamic viscosity of each phase k, t
refers to time and u, p and S represent velocity, pressure and a general source term,
e.g., gravitational acceleration, ρkg.

A single set of these equations, Eqs. 1.2 and 1.3, can be used to describe the flow
in the whole domain, Ω, by introducing the jump of the different quantities across
the interfaces [4]. This jump can be defined, regarding Fig. 1.2, as

[x]Γ = x2 − x1, (1.4)

where xk denotes the limiting values of a variable x when an interface is approached
from phase k. For example, this definition can be used to mathematically express the
change of density and dynamic viscosity at the interface depicted in Fig. 1.2, resulting
in

[ρ]Γ = ρ2 − ρ1 and [µ]Γ = µ2 − µ1. (1.5)

Moreover, in the absence of phase change, the velocity field is assumed to be continu-
ous across the interface. This can be written in jump notation as

[u]Γ = 0. (1.6)
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In contrast, the existence of surface tension forces leads to a discontinuity in the
normal stresses at the phase interface. This translates into a pressure jump that can be
expressed as

[p]Γ = σκ + 2[µ]ΓnΓ
T · ∇u·nΓ, (1.7)

where σ is the surface tension coefficient, κ is the curvature of the phase interface and
nΓ is the phase interface normal. Finally, making use of these jump conditions, the
continuity and Navier-Stokes equations applicable to each individual phase, Eqs. 1.2
and 1.3, can be extended to a whole domain formulation as

∇·u = 0, (1.8)

∂(ρu)
∂t

+∇· (ρuu) = −∇p +∇· (µ[∇u +∇Tu]) + ρg + σκnΓδ(x− xΓ), (1.9)

where ρ and µ vary across the interface, x represents a general point and δ is the Dirac
delta function concentrated on the interface.

1.4 Objectives of the thesis

The numerical simulation, or Computational Fluid Dynamics (CFD), is a powerful tool
to understand the physics of multiphase flows of immiscible fluids, as well to design
or improve engineering equipments encompassing such type of flows. This approach
relies on the discretization of the mathematical equations describing the flow — in
this case presented in Sec. 1.3 —, and takes advantage of the computational power of
the modern parallel computing resources to solve, on a discrete basis, the resulting
system of equations. At first sight, the limitations of the numerical techniques and
computational power make it impossible to consider the solution of all the regimes
of multiphase flow, forcing us to stay at rather low Reynolds (Re) and Weber (We)
numbers. However, these methods are potentially very important. For one, the
continuous improvement of the available computational power continuously extends
the range of affordable problems. Second, and more destacable, the phenomena under
consideration often happen on space and time scales where experimental techniques
are difficult to be utilized in practice.

Until now, most of the computational techniques for the numerical simulation
of flows with interfaces have been based on Cartesian discretizations of the spatial
domain, which sometimes have been restricted to only two-dimensional (2-D) grids.
The applicability of this Cartesian approach to simulate flows, although intuitive for
discretization purposes, is restricted to very simple domains, which in most cases
are mainly academic configurations. For instance, in recent years the primary at-
omization [5–7] and the motion of bubbles and drops [8–10] have been numerically
simulated by means of Cartesian discretizations; see Fig. 1.3 for examples. This
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contrasts with the state-of-the-art in turbulence modelling, which is already tackling
three-dimensional (3-D) cases on the basis of unstructured mesh discretizations, as
for example, the direct numerical simulations (DNS) of the turbulent flow around
airfoils [11–13]. This difference in discretization schemes between turbulent and
multiphase flows is logic, since till now many researchers have been occupied with
the numerical solution of laminar and turbulent incompressible flow — which makes
sense due to its importance in engineering problems —, and consequently, not much
effort has been paid to the solution of multiphase flow. Therefore, due to its youthful-
ness, the numerical simulation of flows with interfaces has been addressed mainly on
Cartesian grids. However, due to the recent maturation gained on turbulence mod-
elling, as well on the multiphase simulation on 3-D Cartesian grids, various research
groups have started to focus their attention on the development of discretizations
suitable for multiphase flow on 2-D and 3-D unstructured meshes. For example, in
the past year the research group Computational Thermo-Fluids Laboratory [14], led by
Olivier Desjardins at Cornell University [15], presented one of the first DNS of primary
atomization in complex geometries [16], demonstrating that the numerical simulation
of multiphase flows on unstructured meshes is feasible.

Figure 1.3: Examples of numerical simulations. Left: Atomization of a turbulent
liquid jet [14]. Right: Bubble distribution in a vertical channel for two different cases
of void fraction [17].

Therefore, considering the actual state-of-the-art in the field of numerical simula-
tion of multiphase flow, the main objectives of this thesis are:

• Develop a suitable formulation for the numerical simulation of multiphase flow
of immiscible fluids on complex geometries.

• Implement the numerical formulation on the basis of a parallel high perfor-
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mance computing (HPC) platform suitable for 3-D unstructured meshes.

• Conduct computational simulations of the phenomena comprising the physics
of multiphase flows and analyze the resulting numerical data.

To do so, the equation of interface motion, Eq. 1.1, and the equations of continuity,
Eq. 1.8, and Navier-Stokes, Eq. 1.9, have been discretized and introduced into the
TermoFluids (TF) CFD platform [18]. This platform consists of a HPC CFD code
suitable for 3-D unstructured meshes, as well for Cartesian grids, developed and
maintained by Termo Fluids S.L. [19], which is a spin-off from the Heat and Mass Transfer
Technological Center (CTTC) [20] of the Technical University of Catalonia (UPC) [21]. The
initial purpose of this software was to solve turbulent flows on complex geometries
by using unstructured grids — see the PhD theses of Oriol Lehmkuhl [22] and Ricard
Borrell [23] for details —, but now is being extended in order to simulate other types of
fluid dynamics problems, such as: compressible and low-mach number flows, solid-
liquid phase change, combustion, moving grid, adaptive mesh refinement (AMR)
and, in particular, multiphase flow. In detail, this research has implemented in the
TF code: (1) a 3-D Volume-of-Fluid (VOF) method [24], suitable for unstructured
meshes, in order to capture the motion of the interface; and (2) a symmetry-preserving
discretization [25] of the Navier-Stokes equations, on 3-D unstructured meshes, able to
calculate the solution of the velocity and pressure fields in the presence of multiphase
flow with interfaces.

1.5 Outline of the thesis

As has been mentioned, this thesis aims at creating a numerical basis for the simu-
lation of multiphase immiscible flows within the TF CFD code. To accomplish this
goal, first, the physical phenomena that characterize this type of flows, together
with the mathematical formulation that describes them, are explained in Chapter 1,
Introduction.

The next two chapters are devoted to the development of a VOF method able to
capture interfaces on 3-D unstructured meshes. In detail, Chapter 2, Capturing inter-
faces on 3-D unstructured meshes: Volume-of-Fluid method, accurately presents
the geometrical algorithm of the VOF method implemented, as well as the numerical
results of the accuracy tests performed. Coordinately, the design of the parallelization
strategy utilized to improve the computational performance of the interface capturer
is described in Chapter 3, Parallelization of the Volume-of-Fluid method.

In the following chapters, the discretization of the Navier-Stokes equations on
3-D unstructured meshes is meticulously studied with the aim to analyze its discrete
conservation properties. First, Chapter 4, Discretization of the Navier-Stokes equa-
tions on unstructured meshes, analyzes the equations in the case where no interfaces
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are found in the domain. Next, a similar study is performed in Chapter 5, Conserva-
tive discretization of multiphase immiscible flow, but considering the case where
different fluids separated by interfaces are present.

Finalizing this thesis, the numerical simulation of the Richtmyer-Meshkov (RM)
instability of two incompressible immiscible liquids is performed in Chapter 6, Nu-
merical simulation of the Richtmyer-Meshkov instability, permitting a general as-
sessment of the different methods developed. As final point, conclusions and future
research are highlighted in Chapter 7, Conclusions and further research.

Moreover, four appendices are included to complement some parts of this thesis.
In particular, an introduction to the discretization of partial differential equations
(PDE) on unstructured meshes is presented in Appendix A, Discretization of the
convection-diffusion equation. Some vector calculus identities, important for the
discretization and study of PDEs, are listed in Appendix B, Vector calculus identities.
The parallel computing systems utilized to perform the numerical simulations of
this thesis are shown in Appendix C, Parallel computing resources. Finally, the
publications resulting from this research are listed in Appendix D, Main publications
in the context of this thesis.
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2

Capturing interfaces on

3-D unstructured meshes:

Volume-of-Fluid method

Main contents of this chapter have been published in:

L. Jofre, O. Lehmkuhl, J. Castro, and A. Oliva. A 3-D Volume-of-Fluid Advection Method Based
on Cell-Vertex Velocities for Unstructured Meshes. Computers & Fluids, 94:14–29, 2014.

Abstract. A new geometrical Volume-of-Fluid (VOF) method for capturing interfaces on three-
dimensional (3-D) Cartesian and unstructured meshes is introduced. The method reconstructs
interfaces as first- and second-order piecewise planar approximations (PLIC), and advects vol-
umes in a single unsplit Lagrangian-Eulerian (LE) geometrical algorithm based on constructing
flux polyhedrons by tracing back the Lagrangian trajectories of the cell-vertex velocities. In this
way, the situations of overlapping between flux polyhedrons are minimized, consequently, the
accuracy in the solution of the advection equation is improved by minimizing the creation of
overshoots (volume fractions over one), undershoots (volume fractions below zero) and wisps
(fluid in void regions or vice versa). However, if not treated carefully, the use of cell-vertex
velocities may result in the construction of flux polyhedrons that contain nonplanar faces
and that do not conserve volume. Therefore, this work explains in detail a set of geometric
algorithms necessary to overcome these two drawbacks. In addition, the new VOF method
is analyzed numerically on 3-D Cartesian and unstructured meshes, first, by reconstructing
the interface of spherical geometries and, second, by evaluating the final advection result of a
sphere placed in a rotation, shear and deformation field.
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2.1 Introduction

The numerical simulation of immiscible multi-fluid flows is currently an object of
intense research, since it is present in fields as varied as engineering, fundamental
physics or geophysics. These kind of flows are called interfacial due to the thin
region, named interface, that separates them. Typical examples are the simulation
of sprays, jets and injection processes or the study of hydrodynamic phenomena
such as movement of bubbles, breakup of drops and wave motion. So far, many
different strategies exist to calculate interface motion, most of them recapitulated in
the work by Scardovelli and Zaleski [1]. In general, all of them may be classified in
two main groups: interface-tracking and interface-capturing. On the one hand, the
interface-tracking approaches chase the interface as it moves: (1) defining the interface
as a boundary between two subdomains of a moving grid [2–5] or (2) following the
Lagrangian trajectories of massless particles [6–10]. On the other hand, the interface-
capturing approaches describe the motion of the interface by embedding the different
fluids into a fixed grid with the help of scalar values. In particular, from this last
group, the two main options of choice are the Volume-of-Fluid (VOF) [11–14] and
Level-Set (LS) [15–18] methods, as well as algorithms based on combinations of both,
like the Coupled Level-Set/Volume-of-Fluid method [19–21].

Each of the methods classified in the above paragraph excels in the simulation of
a particular interfacial problem. For instance, in Arbitrary Lagrangian-Eulerian (ALE)
methods [3–5], the mesh is updated continuously to fit the variation of the interface,
which is a good approach for fluid-particle flows [22, 23], simplifying the analysis
near the interface. Another example are the Front-Tracking (FT) methods [8–10],
these employ separate sets of discrete points to represent each of the individual
interfaces, resulting accurate for the simulation of dense bubbly flow [24–26], since
large numbers of points can be used on the interface and merging of bubbles can be
explicitly controlled. However, considering general multi-fluid flows, where large
interface topology changes may be found, both ALE and FT approaches result in
fairly complex implementations. On the contrary, interface-capturing methods, like
VOF and LS, have the natural ability to handle topological changes, which for many
applications, such as atomization [18, 27] or breakup and coalescence of drops [28, 29],
is an important advantage. In particular, both VOF and LS methods, in order to locate
interfaces, embed the different fluids into a static mesh by means of fluid volume
fraction values; i.e., a value between 0 and 1 in cells containing the interface, and
values 0 or 1 in cells completely empty or filled of a particular fluid, respectively.
The main difference is that VOF methods do it in a discontinuous manner while LS
methods describe the interface as the zero level-set of an auxiliary function. Therefore,
the principal advantage of VOF methods over LS ones is their inherent conservation
of volume, however, LS methods are more accurate in calculating geometric quantities
such as curvature and normal vectors. In consequence, from all these options, this
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paper is focused on the VOF method, since it represents one of the most accurate
options to capture interfaces and their complex deformation, including breakups and
coalescence, while complying with the volume preservation constraint.

In the VOF method, the temporal evolution of the volume fraction function is
governed by an advection equation. A first option is to solve it by means of stan-
dard numerical convection schemes, resulting appropiate for grids ranging from
two-dimensional (2-D) Cartesian to three-dimensional (3-D) unstructured. However,
because the volume fraction is a discontinuous function, this approach easily diffuses
the interface when is advected, which contrary, should remain sharp. This shortcom-
ing can be minimized, but not completely overcome, by combining high-resolution
and compressive schemes [30–33]. A second option is to advect volume fractions
based on a reconstructed interface determined by the volume fraction field (volume
tracking). Hence, interface reconstruction is an important part of any volume tracking
VOF method. In fact, given its importance, the methods for interface reconstruction
have evolved from the original simple line interface calculation (SLIC) and piecewise
linear interface calculation (PLIC) for 2-D Cartesian grids — accurately detailed in
the work by Rider and Kothe [12] — to a large variety of equivalent methods suitable
for 3-D Cartesian and unstructured grids. In particular, considering the two main
interface reconstruction methods, the PLIC is the favored one in many implemen-
tations, since the use of lines/planes (2-D or 3-D) to reconstruct interfaces provides
improved results. Contrary, the SLIC method is a better option to reconstruct inter-
faces in the case of cells containing more than two fluids. Moreover, other methods
involving parabolic [13], spline [34,35] and least-square [36] reconstructions have also
been presented, however, the complexities of their implementations do not generally
compensate their improvements in accuracy. Focusing on PLIC methods, modern
implementations are based on the first-order accurate interface reconstruction by
Youngs [37], which positions each reconstructed interface line/plane, defined by a
slope/normal and intercept, within the cell. The slope/normal of the line/plane is
given by the gradient of the volume fractions, and the intercept follows from invoking
volume conservation. Starting from this implementation, the following ones have
evolved to provide second-order accuracy on Cartesian meshes [38], second-order
accuracy with efficient algorithms on 2-D [39] and 3-D [40] Cartesian meshes, and
first-order accuracy on spherical coordinates [41]. Similarly, in the case of unstruc-
tured meshes, the methods have evolved from 2-D first- [42] and second-order [43,44]
implementations to 3-D first- [45] and second-order [46–48] ones.

On the other hand, based on the reconstructed interface, several schemes have
been developed to advect the volume fractions. In general, geometrical advection
schemes may be categorized in directional (operator) split and unsplit algorithms.
Split algorithms integrate the advection equation along each coordinate direction,
while unsplit algorithms integrate the equation in a single computational step. There-
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fore, split advection is much simpler to implement, but requires a reconstruction and
advection step for each dimension. However, in the case of unstructured meshes,
operator split schemes cannot be used, leaving unsplit advection algorithms as the
only option. Moreover, as referred in the work by Shahbazi et al. [49], advection
schemes may also be classified depending if the advective fluxes are defined explicitly
as advection flux volumes across mesh cell faces (Eulerian) or obtained as remapped
volumes from polyhedron intersection operations (Lagrangian-Eulerian). In general,
the first implementations on Cartesian grids were based on the Eulerian approach;
see the work by Rider and Kothe [12] for descriptions of 2-D Cartesian split and
unsplit Eulerian advection algorithms. However, the implementation of Eulerian
schemes on unstructured grids is difficult, since it is very complicated to compute
the fluid volume fluxes on such geometries. Otherwise, the Lagrangian-Eulerian (LE)
advection method, which consists of three typical stages: a Lagrangian projection, an
interface reconstruction and a remapping, is suitable for both Cartesian and unstruc-
tured meshes. Hence, recently published volume tracking VOF implementations,
generally thought for unstructured meshes, rely on unsplit LE advection schemes.
For example, typical works on unsplit LE advection algorithms for 2-D Cartesian
and unstructured meshes are the ones by López et al. [34], and Shahbazi et al. [49]
and Ashgriz et al. [50], respectively. Further, in the case of 3-D meshes the most
relevant recent works are the ones by Liovic et al. [14] and Hernández et al. [35] for
Cartesian discretizations, and the ones by Ivey and Moin [51] and Marić et al. [45] for
unstructured grids.

Given the proven capability of VOF methods to handle large topological changes
and conserve volume, specially on 2-D Cartesian grids, the aim of this paper is
to develop a geometrical VOF method suitable for the case of 3-D unstructured
discretizations, since it is a situation that has not been much explored yet. In fact
(to our knowledge), just our previous work [52] and the recent papers by Ivey and
Moin [51] and Marić et al. [45] deal with the implementation (reconstruction and
advection) of volume tracking VOF methods on 3-D unstructured meshes. The
topology of unstructured meshes dictates the interface reconstruction and advection
algorithms, as well as the underlying geometrical operations. In particular, this work
reconstructs interfaces by means of the 3-D unstructured versions of the first-order
Parker and Youngs [53] and second-order LVIRA [38] PLIC methods. As for the
time integration of the advection equation, this paper proposes to implement a 3-D
unstructured unsplit LE geometrical algorithm based on the Lagrangian trajectories
of the cell-vertex velocities. In detail, the advection strategy is similar to the one
presented by Marić et al. [45], since both approaches choose to calculate the advection
volume fluxes by tracing back the Lagrangian trajectories of the cell-vertex velocities
in order to minimize over/underlapping situations. However, some differences
between both papers can be found. For instance, in the work by Marić et al. the
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method to ensure that the volumes of the swept-face polyhedra equal the ones
defined by the advection equation relies on an iterative approach, while in this work
the solution is given by an efficient analytical method similar to the one proposed
by Hernández et al. [35]. In addition, this work presents results of advection tests
on 3-D Cartesian and unstructured meshes, while Marić et al. just provide results
on Cartesian grids. All these similarities and differences between recent papers,
along with the details of the advection method, will be extensively explained in the
following sections.

The main purpose of this paper is to detail accurately the implementation of a
geometrical VOF method suitable for 3-D unstructured grids. Hence, Sec. 2.2 exposes
the mathematical formulation of the VOF method on unstructured meshes. Next,
Secs. 2.3 and 2.4 explain in detail the geometrical implementations of the interface
reconstruction and advection methods. Following, Sec. 2.5 presents numerical results
of reconstruction (sphere and hollowed sphere) and advection (rotational, shearing
and deformation flow) accuracy tests. Finally, conclusions are drawn in Sec. 2.6.

2.2 Volume-of-Fluid method

In VOF methods, the fluids interface is captured by embedding it into a static grid
with the help of scalar values. In particular, a volume fraction scalar field, Ck, is
defined for each fluid k, determining the fraction of volume that occupies within
each computational cell. Basically, Ck = 0 for cells that do not contain fluid k, Ck = 1
for cells that only contain the k’th fluid and 0 < Ck < 1 if part but not all of a cell’s
volume is occupied by the k’th fluid. These cells in which different fluids coexist
are referred as interface or mixed cells. Indeed, Ck can be defined as the normalized
integral of the volume fraction Heaviside step function, Ck(x, t), defined as

Ck(x, t) =
{

1 if there is fluid k
0 otherwise, (2.1)

where x is a position in space and t refers to time instant. Therefore, for each cell c,
with volume Vc, its k’th fluid volume fraction at time t is evaluated as

Ck[c, t] =
∫

Ck(x, t)dVc

Vc
. (2.2)

Assuming that the fluids are immiscible and that their movement is defined by
a unique velocity field, i.e., uk = u for each fluid k, the interface motion can then be
captured by solving the respective conservation equation

∂Ck
∂t

+∇· (Cku) = 0. (2.3)
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As previously commented in the introduction, Eq. 2.3 might be discretized as a
standard advection equation. For instance, Darwish and Moukalled [32] propose to
discretize the transient term by means of a second-order Crank-Nicholson scheme
and to use a special convection scheme, named STACS, that switches between SUPER-
BEE [54] (compressive) and STOIC [55] (high-resolution) schemes. This solution may
be computationally fast and easy to implement on 3-D unstructured meshes, however,
it tends to produce diffuse interfaces as they are integrated in time. Another more
common approach is the volume tracking method, which advects volume fractions
based on a reconstructed interface determined by the volume fraction field. In a
summarized form, this method solves the advection equation by using the interface
reconstruction to geometrically calculate the volumetric fluxes of fluid k across mesh
cell faces. Indeed, this approach preserves the interface sharpness, but requires com-
plex and computationally expensive geometrical routines to construct and truncate
flux volumes. In particular, applying the divergence theorem and using the first-order
Euler explicit time scheme, the volume tracking VOF method presented in this paper
discretizes Eq. 2.3 for each cell as

Cn+1
k − Cn

k +
1
Vc

∑
f∈F(c)

Vn
k, f = 0, (2.4)

where the superscript n refers to the discrete time level and Vk, f is the volumetric
flow of fluid k across face f ; see Fig. 2.1. In order to calculate Vk, f , two consecutive
steps are required: interface reconstruction and advection. First, the interface is
reconstructed by means of PLIC methods. In particular, two different methods are
implemented on the basis of 3-D unstructured meshes: (1) least-squares gradient
(LSG) approach of the Parker and Youngs method [53] and (2) least-squares Volume-
of-Fluid interface reconstruction algorithm (LVIRA) [38]. Second, once the interface
has been reconstructed, the advection step geometrically constructs volumetric flows
(polyhedrons) at mesh cell faces and, later, cuts them by the reconstructed interface in
order to compute the amount of fluid k across the faces, Vk, f . As a novelty, this work
presents a 3-D unstructured unsplit LE geometrical algorithm, that tries to minimize
the over/underlapping situations by constructing flux polyhedrons from cell-vertex
velocities. Both steps are fully described in the following sections.

2.3 Interface reconstruction

The interface separating different fluids is a thin region that can be approximated to a
surface. Therefore, the interface reconstruction step tries to find a geometric shape
that best approximates this surface. In this work, the PLIC approach is chosen to
represent interfaces, thus, in the case of 3-D grids the interfaces are represented for
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Figure 2.1: Representation on a 2-D unstructured grid of two situations, a and b,
sharing the same total volumetric flow (hatched area), but presenting different values
of Vk, f (double hatched area).

each cell by a plane
n · x− d = 0, (2.5)

where x, n and d are the coordinates of a point on the plane, the unit normal of the
plane and the signed distance from the origin to the plane, respectively.

The principal reconstruction constraint is local volume conservation, i.e., the
reconstructed interface must truncate the cell verifying

Ck =
Vk
Vc

, (2.6)

where Ck and Vk are the volume fraction and volume of fluid k for cell c, respectively,
and Vc is the volume of the entire cell. Hence, given a normal n, it is necessary to find
the constant d in Eq. 2.5 such that the intersection of the corresponding half-space
and cell satisfies Eq. 2.6.

Since a unique interface configuration does not exist, the interface geometry
must be inferred based on local data and the assumptions of a particular algorithm.
Particularly, PLIC methods differ in how the normal n is computed, but for a given
normal, d is uniquely defined from Eq. 2.6. A commonly used method to efficiently
find d is the Brent’s root-finding algorithm [56], since it is a combination of the
bisection, secant and inverse quadratic interpolation methods.

2.3.1 Youngs method

In the Youngs interface reconstruction method [53], the plane normal is computed by
approximating it to the normalized gradient of the volume fraction scalar field, Ck, as
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n =
−∇Ck
|∇Ck|

. (2.7)

In particular, considering the case of 3-D unstructured meshes consisting of general-
ized polyhedra, it is convenient to use a vertex-connectivity least-squares gradient
procedure [57].

2.3.2 Least-squares VOF interface reconstruction algorithm

In the least-squares VOF interface reconstruction algorithm (LVIRA) [38], the interface
normal n is computed by minimizing the error functional

E(n) =

 ∑
nb∈C(c)

(Ck,nb
re f − Ck,nb(n))

2

1/2

, (2.8)

where subscript nb refers to the cells around cell c that share a common vertex with
it (neighbor cells), Cre f

k,nb is the neighbor cell reference volume fraction and Ck,nb(n)
is the neighbor cell actual (reconstructed) volume fraction taken by extending the
interface of central cell c, under the constraint that the corresponding plane exactly
reproduces the volume fraction in the cell under consideration; see Fig. 2.2.

The normal n, in three dimensions, can be described by polar coordinates, hence,
the LVIRA implementation requires an algorithm for the minimization of a nonlinear
function of two variables. In the present work, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [56] is used.

The LVIRA method requires more computational resources than the Youngs one,
since for each cell an error has to be minimized, but it is second-order accurate
(reconstructs planar interfaces exactly) while Youngs is just first-order.

2.4 Interface advection

2.4.1 Unsplit Lagrangian-Eulerian advection

As previously said in the introduction, this work focuses on developing a geomet-
rical advection scheme suitable for 3-D unstructured meshes, hence, in order to
efficiently deal with unstructured grids, as well as Cartesian, the choice of an unsplit
LE advection method is preferred. In addition, making use of an unsplit algorithm,
although it implies more complicated geometric operations: (1) results in a faster
implementation than split advection, since it just requires one interface reconstruction
and time integration per time step; and (2) avoids the generation of direction split
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Figure 2.2: Representation on a 2-D unstructured mesh of the LVIRA error functional.
Given a central cell c, its plane interface reconstruction (boldface line) is extended to
the neighbor cells and for each one Ck,nb

re f − Ck,nb(n) is calculated (hatched areas)
and added to the LVIRA error E(n).

errors [12, 42]. Therefore, following the LE strategy, the fluid k volume fractions are
advected forward in time, as described in Eq. 2.4, by geometrically calculating the k’th
volumetric fluxes, Vk, f , across mesh cell faces. In particular, the interface geometry
evaluated in the previous step is used to discriminate, in the zones where two or
more fluids coexist, which part of the volumetric flux corresponds to each of them.
The different steps required to evaluate these volumetric fluxes at any face f , and
consequently calculate Eq. 2.4, are presented below:

1. Calculate the total volumetric flux value. The value of the total advection volume
is evaluated as

Vf = |u f ·n f |A f ∆t, (2.9)

where ∆t is the time step and u f , n f and A f correspond, respectively, to the
velocity, the unit-outward normal and the area of face f . Notice that u f is
explicitly given if an analytic velocity field is used, or differently, u f ·n f is the
face velocity flux provided by the solution of the momentum equations in the
case of a full problem.

2. Construct the total volumetric flux polyhedron. A polyhedron with volume Vf must
be constructed over face f . In particular, a vertex-matched approach is used by
setting the direction of the extrusion edges equal to the velocity vectors at the
face vertices. This approach minimizes flux over/underlapping and ensures
volume preservation. Further details are described in Subs. 2.4.3.

3. Truncate the part of the volumetric flux polyhedron corresponding to each fluid. If the
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polyhedron only contains one fluid, truncation is not necessary, since Vk, f is
equal to Vf or 0, depending on the fluid being considered. Otherwise, geometric
operations are required in order to truncate the part of the polyhedron corre-
sponding to each fluid. In particular, the stencil of neighboring cells considered
for the calculations are the cells that share at least one vertex with face f . For
each of those, three actions are performed to evaluate the local part of Vk, f :
(1) evaluate the intersection of the flux polyhedron and the cell; (2) if it is an
interface cell, truncate the resulting polyhedron by the reconstructed interface;
(3) add to Vk, f the volume of the polyhedron resulting from the two previous
actions. The basic geometric operation of the first two actions is the truncation
of a polyhedron by a plane, details on its implementation can be found in [58].

4. Calculate the new k’th fluid volume fraction. Once the values of Vk, f have been
calculated for the different faces of a cell, the k’th volume fractions at time n + 1,
Cn+1

k , can be calculated by evaluating Eq. 2.4.

In the following subsections, steps 2 and 3 are explained in detail. Especially
step 2 since it is the one related to the production of polyhedron over/underlapping,
which, as discussed by Rider and Kothe [12], tends to produce volume fraction
over/undershoots that decrease accuracy.

2.4.2 Minimizing over/underlapping

Situations of polyhedron overlapping are produced when two or more polyhedrons
generated from different faces share a common part of their volume. Alternatively,
underlapping is intrinsically generated from overlapping situations, i.e., polyhedrons
do not embrace the correct amount of domain since some part of their volume is
wasted in overlapping with other polyhedrons. Different polyhedron constructions
may produce overlapping. For instance, an easy way to construct flux polyhedrons is
by using face velocities. In this way, if velocities are not parallel, it may happen that
polyhedrons created from contiguous edge faces overlap, as shown by polyhedrons
A and B in Fig. 2.3. In order to overcome this problem, different methods exist in
the literature that propose to construct special flux polyhedrons. For example, the
2-D edge-matched flux polygon advection (EMFPA-2D) method proposed and imple-
mented on Cartesian meshes by López et al. [34], based on constructing edge-matched
flux polygons at cell faces, which avoids over/underlapping between polygons. Ex-
tension of this method to 3-D meshes has been first accomplished for Cartesian grids
by Hernández et al. [35], although making use of face-matched flux polyhedrons
(FMFPA-3D) instead of EMFPA, and later has been generalized for unstructured
grids and exactly using edge-matched flux polyhedrons (EMFPA-3D) by Ivey and
Moin [51] — FMFPA-3D may present some over/underlapping between flux polyhe-
dra constructed at cell faces with only one common vertex, as depicted in Fig. 2.3 by
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polyhedrons C, D and E, while EMFPA-3D prevents this over/underlapping between
polyhedrons.

Figure 2.3: Overlapping between flux regions. Polyhedrons A and B overlap since
they are constructed from face velocities. Polyhedrons C, D and E are constructed
from interpolated face velocities, hence, overlapping may just occur between polyhe-
drons that share only one common vertex.

Another approach to minimize over/underlapping between flux polyhedrons is to
construct them by tracing back the Lagrangian trajectories of the cell-vertex velocities.
These vertex velocities may be explicitly given in the case of using an analytical
velocity field or, in a general case, may be distance-interpolated from the velocities
of the cells sharing the vertex. In this way, the over/underlappings between flux
polyhedrons represented in Fig. 2.3 are avoided, since, as shown in Fig. 2.4, instead
of creating a different face for each polyhedron that shares an edge or a vertex with
another, a unique face is used for all them. Indeed, this idea is initially considered in
the work by Liovic et al. [14], however, they finally decide to assign cell-face velocities
to vertices in order to avoid the construction of flux polyhedrons having nonplanar
faces. Even so, Mencinger and Žun [44] rely on this solution to implement their 2-D
advection method suited for adaptive moving grids. Recently, this approach has been
presented on 3-D Cartesian and unstructured meshes in a previous work [52] and,
almost parallely in time with this paper, by Marić et al. [45], although they have just
tested it on Cartesian grids. Hence, in order to reinforce this idea and analyze it on
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3-D unstructured meshes, we also propose to construct flux polyhedrons by using
cell-vertex velocities to minimize over/underlapping problems.

Figure 2.4: Overlapping between flux regions is minimized if polyhedrons are con-
structed by using cell-vertex velocities, since polyhedrons that share an edge or a
vertex are created by using the same velocity components and, consequently, they
share the same face instead of having different ones.

The construction of flux polyhedrons by using cell-vertex velocities considerably
minimizes the number of over/underlappings, as shown in Fig. 2.4, but implies to
deal with nonplanar surfaces. In fact, Liovic et al. [14] state that, even if orthogonal
meshes are considered, using cell-vertex velocities results in having flux polyhedrons
composed of five nonplanar faces. For example, if we analyze the situation depicted
in Fig. 2.5, where polyhedron A is constructed by using vertices a, b and c, and their
corresponding traced back Lagrangian trajectories to generate points d = a− ∆tua,
e = b− ∆tub and f = c− ∆tuc, it can be observed that if a plane is created by points
a, b and d, point e may not live on it. This is a major complication that must be taken
into account when constructing flux polyhedrons in Sec. 2.4.3.

2.4.3 Construction of flux polyhedrons

This paper proposes to construct flux polyhedrons by using cell-vertex velocities in
order to minimize overlapping, as shown in Fig. 2.4, but as explained in Fig. 2.5, this
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Figure 2.5: The construction of flux polyhedrons by using cell-vertex velocities (points
a, b and c, and their corresponding traced back Lagrangian trajectories to generate
points d = a − ∆tua, e = b − ∆tub and f = c − ∆tuc) produces faces that are
nonplanar surfaces. If a plane is created by using points a, b and d, it can be seen that
point e may not live on it.

solution creates polyhedrons with nonplanar surfaces. The straightforward manner
to handle this complication is to approximate them by a set of tetrahedrons. In this
way, it is ensured that all the polyhedrons comprised in the calculation are composed
of convex tetrahedrons and, consequently, it is avoided the necessity to implement
complex geometrical tools able to deal with nonconvex polyhedrons. This procedure
is depicted in Fig. 2.6a. First, the centroid, pc, of the polyhedron defined by points a,
b, c, d, e and f is calculated. Second, for each nonplanar face its centroid is calculated
from its known vertices. For example, points a, b, d and e represent a nonplanar face,
therefore, its centroid fc is calculated. Third, each nonplanar face is approximated to
four tetrahedrons defined by the centroids of the polyhedron, pc, and face, fc, and two
consecutive vertices of the face. For instance, in the face considered in Fig. 2.6a, four
different tetrahedrons (gray scale) are used to define the volume comprised between
the centroid of the polyhedron and points a, b, d and e. It is important to notice that
this procedure is in accordance with the idea of nonoverlapping polyhedrons, since
the centroid of two nonplanar faces belonging to two different polyhedrons that share
an edge are placed in the same position in space, thus, the volumes contained by
these two faces do not overlap.
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Figure 2.6: (a) Nonplanar faces are approximated by four different tetrahedrons (gray
scale), implying the use of face vertices (a, b, d, e), face centroid (fc) and polyhedron
centroid (pc). (b) The volume of the flux polyhedron is adjusted by placing the
centroid of the back face in a specific position which makes it be equal to Vf .

In addition to the problem of having nonplanar faces, another complication is
that the volume of the resulting polyhedron may not equal Vf = |u f · n f |A f ∆t, thus,
the conservation of volume required in Eq. 2.4 is not ensured — this condition is
straightforwardly fulfilled if flux polyhedrons are constructed by using cell-face
velocities, but it is not directly accomplished when using cell-vertex velocities. In
the scientific literature, there are different approaches to solve this issue: (1) use a
scalar coefficient to proportionally correct the geometric flux volumes [14, 34]; (2)
calculate analytically [35] or iteratively [45] the position of the polyhedron’s back
face such that the volume of the resulting polyhedron equals Vf ; (3) parametrically
modify the lenght of the polyhedron’s traced back Lagrangian trajectories to produce
a polyhedron with volume Vf [44]. We choose the analytic option of the second
approach for its good relation between performance and complexity, although we
propose some differences. In particular, both Hernández et al. [35] and Marić et al. [45]
adjust the polyhedron’s back face so that its volume is equal to Vf by moving the end
points as a whole (points d, e and f in Fig. 2.6). Differently, we propose to analytically
calculate the specific position of the centroid of the polyhedron’s back face such that
the resulting polyhedron fulfills the volume condition; i.e., regarding Fig. 2.6, we fix
points d, e and f, but we change the position of the centroid of the polyhedron’s back
face. In this way, the proposed polyhedron preserves volume while the traced back
Lagrangian trajectories are not modified.

The volume adjustment method is better explained if considering Fig. 2.6b. In this
case, the polyhedron’s back face is defined by points d = a− ∆tua, e = b− ∆tub and
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f = c− ∆tuc. First, the centroid of the polyhedron’s back face placed in the standard
position, bc*, is calculated by using the position of points d, e and f as

bc* =
1
3
(d + e + f). (2.10)

Second, this point bc* together with the polyhedron’s centroid, pc, are used to
determine the unit vector, l, of the line where we choose to place the final centroid of
the polyhedron’s back face, bc. In detail, this unit vector is defined as

l =
bc*− pc
|bc*− pc| . (2.11)

In this way, the generic position of the centroid of the polyhedron’s back face can be
expressed as

bc = pc + λl, (2.12)

where λ is a scalar value that needs to be calculated.
Third, the front, side and back faces of the polyhedron are decomposed in tetrahe-

drons, as previously explained, and the volume of each one is calculated by using the
method presented by Tuzikov et al. [59]. For instance, if a tetrahedron is defined by
points a, b, c and the coordinates origin (T1 = T(a, b, c)), its volume is

VT1 =
1
6
[a · (b× c)]. (2.13)

Similarly, in a general case like the polyhedron defined in Fig. 2.6a by points a, fc, b
and pc, the volume may be evaluated as

VT2 =
1
6
[a · (fc× b) + a · (b× pc) + a · (pc× fc) + b · (fc× pc)]. (2.14)

Deepening, this expression may be largely simplified if it is noticed that the terms
comprised of points defining interior faces of the polyhedron (e.g., a · (b× pc), a ·
(pc× fc) and b · (fc× pc)) will cancel out between them when it is summed the
volume of all the different tetrahedrons that comprise it. Thus, in the case that VT2
is to be evaluated as part of the total volume of the polyhedron, Eq. 2.14 may be
simplified to

VT2 =
1
6
[a · (fc× b)]. (2.15)

Hence, the volume of the different tetrahedrons (four for each face) that compose
the side faces are calculated from the method of Tuzikov et al. [59] by using the
coordinates of the points that define them, and the summation of all them is saved
as S. Same scheme is used to evaluate the volume of the three tetrahedrons defining
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the front face and the sum is stored as F. Also, although the position of bc is still
unknown, the same method can be applied to express the volume defined by the back
face, B, as

B =
1
6
[bc · (e× d) + bc · (d× f) + bc · (f× e)]. (2.16)

In this way, the volume of the entire polyhedron, which must equal Vf , may be
defined as

Vf = F + S + B. (2.17)

Then, if the volume of the polyhedron’s back face is transformed to group the terms
multiplying bc, by writing

B =
1
6
[bc · (e× d + d× f + f× e)] =

1
6
[bc · B′], (2.18)

the volume of the polyhedron may be rewritten as

Vf = F + S +
1
6
[bc · B′]. (2.19)

Fifth, if the generic position of bc, Eq. 2.12, is introduced into Eq. 2.19, the value of
λ can be calculated analytically as

λ =
6(Vf − F− S)− pc · B′

l · B′ . (2.20)

Finally, once the value of λ is known, Eq. 2.12 determines the position of the
centroid of the polyhedron’s back face, bc, such that the polyhedron’s volume equals
Vf .

2.4.4 Truncation of flux polyhedrons

Once the flux polyhedron is constructed, it needs to be truncated by the reconstructed
interface in order to determine the part of it corresponding to fluid k, Vk, f . Since this
operation is complex and time consuming, especially for 3-D grids, it is important
to simplify it by identifying the three situations depicted in Fig. 2.7. For instance,
if the advection equation, Eq. 2.4, is solved for fluid 1, three different polyhedrons
may be defined: (1) polyhedron A is situated completely outside fluid 1, hence, its
flux volume is zero; (2) polyhedron C is totally immersed in fluid 1, consequently, its
flux volume is directly Vf ; (3) polyhedron B is cut by an interface plane, as a result,
this one needs to be constructed and truncated in order to evaluate the portion of
its volume that belongs to fluid 1. In the third case, the local parts corresponding to
fluid 1 of the neighboring cells that share at least one vertex with the face need to be
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calculated. For each of these cells, three actions are performed to evaluate the local
part of V1, f : (1) the flux polyhedron is truncated by the faces of the cell; (2) if it is an
interface cell, the resulting polyhedron is truncated by the reconstructed interface;
(3) the volume of the polyhedron resulting from the two previous actions is added
to V1, f . Notice that the main operation in the first two actions is the truncation of a
polyhedron by a plane, what is a very complex geometrical operation in the 3-D case,
but, since we propose to decompose flux polyhedrons by sets of convex tetrahedrons,
the geometrical solutions proposed by López and Hernández [58] may be directly
utilized.

Figure 2.7: Schematic drawing representing a 3-D unstructured mesh, the flux polyhe-
drons constructed and the interface between fluids 0 and 1. Three different situations
are sketched: (1) polyhedron A is situated outside fluid 1, (2) polyhedron B is cut by
the interface and (3) polyhedron C is totally immersed in fluid 1.

2.4.5 Correction of undershoots, overshoots and wisps

On occassions, some errors may be introduced to the solution of the advection equa-
tion, Eq. 2.4, generating, in the cells close to the interface, undershoots (Ck < 0),
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overshoots (Ck > 1) or wisps (fluid in void regions or vice versa) that later make more
difficult to reconstruct correctly the interface. These errors are caused basically by
discretization errors and velocity fields with nonzero divergence. In order to improve
the boundedness of the interface, when any of the previous errors occurs is useful
to use a local redistribution algorithm similar to the one proposed by Harvie and
Fletcher [60], but modified for 3-D unstructured meshes as described in Alg. 1.

Algorithm 1 Redistribution of non-real k volume fractions
1: for 0 ≤ c < nonRealCells do
2: if Ck,c < 0 then
3: while Ck,c < 0 do
4: Find surrounding cell with highest Ck ⇒ Ck,max
5: Vaux = Ck,max ·Vmax + Ck,c ·Vc
6: Ck,max = max(Vaux/Vmax, 0)
7: Ck,c = min(Vaux/Vc, 0)
8: end while
9: else {Ck,c > 1}

10: while Ck,c > 1 do
11: Find surrounding cell with lowest Ck ⇒ Ck,min
12: Vaux1 = Ck,min ·Vmin + (Ck,c − 1) ·Vc
13: Vaux2 = (Ck,min − 1) ·Vmin + Ck,c ·Vc
14: Ck,max = min(Vaux1/Vmin, 1)
15: Ck,c = max(Vaux2/Vc, 1)
16: end while
17: end if
18: end for

First, cells that present undershoots are corrected by transferring fluid k from the
surrounding cells with highest k volume fractions. For instance, if a cell presents a k
volume fraction value under 0, part of the volume of fluid k of the surrounding cell
with highest Ck is used to fill the cell under consideration. Hence, at the end the result
is that the cell presents a volume fraction value of 0 while the surrounding cell still
contains a volume of fluid k between real values.

Second, cells with overshoots are adjusted by transferring the extra volume to the
surrounding cells with lowest Ck in a similar way as the undershoots. For example,
if a cell presents a Ck over 1, the extra volume is transferred to the surrounding cell
with lowest Ck, carefully checking that the surrounding cell is able to gain the volume
without becoming an overshoot. In this way, the overshoot cell is fixed to a volume
fraction value of 1 without creating new overshoots or undershoots.

Finally, cells containing fluid/void wisps are corrected to values 0 or 1 depending
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on their surrounding cells: the Ck of a fluid cell surrounded just by cells is changed to
0, alternatively, void cells surrounded by fluid cells are changed to 1.

2.5 Numerical tests

The accuracy of the reconstruction and advection algorithms presented in this paper
is studied in detail by implementing them in the TermoFluids parallel unstructured
CFD platform [61] and performing numerical tests. These are performed on 3-D
Cartesian and unstructured meshes containing different number of cells. In particular,
the Cartesian grids used are named according to the number of cells in which each
direction (x, y and z) is discretized, while the unstructured meshes are named by
utilizing the name of the Cartesian grid that contains a similar number of total
cells. The results on Cartesian grids are compared to the ones found in the scientific
literature. In contrast, in the case of 3-D unstructured meshes, this paper is one of the
first works in where numerical results of advection tests are presented.

Another important issue is the quality of the meshes used. In this work, the quality
of a mesh cell is defined as the ratio between the radius of an inscribed sphere to a
circumscribed one (aspect ratio). The values are scaled, so that an aspect ratio of 1 is
perfectly regular, and an aspect ratio of 0 indicates that the element has zero volume.
In this way, the Cartesian grids used in this paper present aspect ratios of 1, while the
unstructured ones present average aspect ratios between 0.7 (coarse mesh) and 0.9
(dense mesh).

2.5.1 Reconstruction tests

The sphere and hollowed sphere tests are used to examine the accuracy of the re-
construction methods presented in Sec. 2.3. These test problems are stationary, i.e.,
no advection is performed and hence there is no error due to discretization in time.
In particular, the sphere test reconstructs a sphere of radius 0.325 and the hollowed
sphere test a sphere of radius 0.4 (convex surface) with a spherical core of radius 0.2
(concave surface) hollowed out of it, on a cube of length 1.

The interface reconstruction error is measured as the difference between the exact
interface and the reconstructed one. An L1 error norm is used, which as found in the
work by Liovic et al. [14], in the continuous limit is the integral

EL1 =
∫
|χ(x)− χ̃(x)|dV, (2.21)

where χ(x) is the exact interface topology and χ̃(x) is its approximation obtained
using an interface reconstruction method.
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The error norm L1 results are shown in Tabs. 2.1 and 2.2. In particular, the Youngs
algorithm shows first-order accuracy and better results on coarse grids (103 - 203

cells), while LVIRA is second-order accurate and performs better when the grid is
refined (403 - 803 cells), but requires more computational time since it performs a 2-D
minimization. Furthermore, the results on Cartesian grids are similar to the ones
obtained on equivalent unstructured meshes, except for the very coarse meshes where
Cartesian grids present better results.

It is important to note that the calculation of the Youngs interface reconstruction is
faster on unstructured meshes than on Cartesian ones due to the less number of faces
per cell — tetrahedrons are composed of four faces while hexahedrons of six. On the
contrary, the LVIRA interface reconstruction method performs faster on Cartesian
grids than on unstructured meshes since the number of surrounding cells per cell
is minor in the first case — a hexahedral cell is surrounded by twenty-six cells that
share at least one vertex with it, while a tetrahedral cell is surrounded, depending on
the mesh configuration, by sixty to seventy cells.

The reconstruction planes of the sphere and hollowed sphere interface reconstruc-
tion tests are shown, on successively refined meshes, from Fig. 2.8 to Fig. 2.15. The
reconstructed spheres of the hollowed sphere test have been cutted by its half to show
the inner interface.

Sphere Cartesian Unstructured
mesh Youngs LVIRA Youngs LVIRA
103 1.87E−3 2.79E−3 4.86E−3 1.06E−2

203 5.85E−4 1.68 6.68E−4 2.06 8.66E−4 2.49 1.30E−3 3.03

403 2.51E−4 1.22 1.64E−4 2.02 2.79E−4 1.64 3.47E−4 1.91

803 1.21E−4 1.06 4.55E−5 1.85 9.88E−5 1.50 8.07E−5 2.10

Table 2.1: EL1 errors for the sphere interface reconstruction tests. The computed
orders of accuracy between meshes are in italics on the right side.

Hollowed Cartesian Unstructured
mesh Youngs LVIRA Youngs LVIRA
103 3.60E−3 5.35E−3 1.62E−2 2.41E−2

203 1.13E−3 1.67 1.20E−3 2.16 1.64E−3 3.30 2.46E−3 3.29

403 4.80E−4 1.23 3.06E−4 1.97 5.34E−4 1.62 6.43E−4 1.94

803 2.29E−4 1.07 8.52E−5 1.85 1.89E−4 1.50 1.49E−4 2.11

Table 2.2: EL1 errors for the hollowed sphere interface reconstruction tests. The
computed orders of accuracy between meshes are in italics on the right side.
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Figure 2.8: Reconstructions of the sphere using the Youngs algorithm on successively
refined Cartesian grids.

Figure 2.9: Reconstructions of the sphere using the LVIRA algorithm on successively
refined Cartesian grids.

Figure 2.10: Reconstructions of the sphere using the Youngs algorithm on successively
refined unstructured meshes.

Figure 2.11: Reconstructions of the sphere using the LVIRA algorithm on successively
refined unstructured meshes.
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Figure 2.12: Reconstructions of the hollowed sphere using the Youngs algorithm on
successively refined Cartesian grids.

Figure 2.13: Reconstructions of the hollowed sphere using the LVIRA algorithm on
successively refined Cartesian grids.

Figure 2.14: Reconstructions of the hollowed sphere using the Youngs algorithm on
successively refined unstructured meshes.

Figure 2.15: Reconstructions of the hollowed sphere using the LVIRA algorithm on
successively refined unstructured meshes).
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2.5.2 Advection tests

The rotation, shear and deformation tests are used to analyze the accuracy of the
advection algorithm presented in Sec. 2.4. The tests are solved on 3-D Cartesian and
unstructured meshes using the Youngs and LVIRA reconstruction methods.

The advection error is measured as the difference between the initial and final
(after advection) volume fraction functions. Similar to Liovic et al. [14], an L1 error
norm is used, which in the discrete form is the summation

EL1 = ∑
c∈Ω

Vc|C̃k,c − Ck,c|, (2.22)

where Ck,c and C̃k,c are the volume fraction functions for fluid k before and after
advection, respectively, and Vc refers to the volume of cell c. In addition, the relative
conservation of volume, Em1 , between the initial and final total volume occupied by
fluid k is calculated for each case, which as proposed by Aulisa et al. [62], may be
expressed as

Em1 =
|∑c∈Ω C̃k,c −∑c∈Ω Ck,c|

∑c∈Ω Ck,c
. (2.23)

Rotation flow

The rotation flow test is a simple problem that induces no change in the interface
topology and is largely used to test VOF implementations, e.g., Rider and Kothe [12],
Liovic et al. [14] and Aulisa et al. [62]. Starts with a sphere of radius 0.15 centered
at (0.5, 0.75, 0.5) in a cube of length 1 and, then, is advected for a complete turn in a
rotation flow field:

u = y− y0,
v = −(x− x0), (2.24)
w = 0.0,

where x0, y0 and z0 are the coordinates of the center of the cube. In particular, a CFL
value of 1.0 for the calculation of the time step is used (maximum velocity 1.0) in this
test.

The error norm L1 results for the 3-D rotation advection tests are shown in Tab. 2.3.
In general, the results obtained on Cartesian meshes are similar to the ones presented
by Hernández et al. [35], while results for successively refined unstructured meshes
are of same order of magnitude as the Cartesian ones. In addition, notice that the
results on Cartesian grids present first-order accuracy when using the Youngs re-
construction algorithm and second-order if using LVIRA. However, the accuracy
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on unstructured meshes is not as easy to analyze, since the proportionality in cell
size is not maintained when meshes are densified. Even so, the results on unstruc-
tured meshes tend to be first- and second-order for Youngs and LVIRA algorithms,
respectively.

Shear flow

The shear flow test is a more complex problem which combines a single vortex in the
xy-plane with a laminar pipe flow in the z-direction. Many authors have used it to
test their VOF algorithms, e.g., Rider and Kothe [12], Du et al. [10], Liovic et al. [14]
and Aulisa et al. [62]. The test starts with a sphere of radius 0.15 placed at position
(0.5, 0.75, 0.25) in a 1.0×1.0×2.0 rectangular prism domain and, then, is advected by
the velocity flow field:

u = sin(2πy)sin2(πx)cos
(

πt
T

)
,

v = −sin(2πx)sin2(πy)cos
(

πt
T

)
, (2.25)

w = Umax

(
1− r

R

)2
cos
(

πt
T

)
,

where r =
√
(x− x0)2 + (y− y0)2, x0 = 0.5, y0 = 0.5, R = 0.5 and Umax = 1.0. In

this test, a CFL value of 0.5 is used for the calculation of the time step (maximum
velocity 1.0) and the test period is set to T = 3.

The norm L1 errors for the 3-D shear advection tests are written in Tab. 2.4.
The table shows that the results obtained on Cartesian grids are of same order of
magnitude as the ones presented by Liovic et al. [14] (from 10−3 on coarse grids to
10−4 on dense ones), while results on unstructured meshes present similar errors
than the Cartesian ones. Furthermore, as previously pointed out in the rotation tests,
the Youngs reconstruction method is first-order while the LVIRA one tends to be
second-order, both on Cartesian as on unstructured meshes.

The interface reconstruction planes of the shear tests for the different meshes and
reconstruction methods are plotted at half-period, T/2, from Fig. 2.16 to Fig. 2.19.
Notice that, when meshes are refined, the reconstructed interfaces become smoother,
both on Cartesian grids as on unstructured ones. Moreover, the conservation of
volume remains delimited between 10−9 and 10−11, what proves that Eq. 2.4 is being
accurately resolved by using the volume-adjusted flux polyhedrons proposed in
Sec. 2.4.3.
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Deformation flow

The final problem used to analyze the accuracy of the advection algorithm is the
deformation flow test, which was first proposed by LeVeque [63]. The test consists in
a sphere of radius 0.15 centered at (0.35, 0.35, 0.35) within a unit cube domain that is
deformed in a solenoidal velocity flow field:

u = 2sin2(πx)sin(2πy)sin(2πz)cos
(

πt
T

)
,

v = −sin(2πx)sin2(πy)sin(2πz)cos
(

πt
T

)
, (2.26)

w = −sin(2πx)sin(2πy)sin2(πz)cos
(

πt
T

)
.

In this problem, a CFL value of 0.5 for the calculation of the time step is used (maxi-
mum velocity 2.0) and the test period is set to T = 3.

The L1 errors for the deformation tests are shown in Tab. 2.5. The first observation
is that the results on Cartesian meshes are similar to the ones found in the scientific
literature, e.g., Du et al. [10], Liovic et al. [14], Hernández et al. [35]. In particular,
all these literature results range from 10−3 (323 grids) to 10−4 (1283 grids). On the
contrary, errors on unstructured meshes tend to be larger than Cartesian ones on
coarse meshes, but converge to Cartesian results when meshes are densified. The
main reason for this error difference between both mesh types, is the better capacity
of Cartesian grids over unstructured ones to reconstruct interfaces if given a same
amount of cells. Furthermore, the results show that the LVIRA reconstruction method
obtains better results than the Youngs one, both on Cartesian as on unstructured
meshes.

The interface reconstruction planes of the deformation tests for the different
meshes and reconstruction methods are depicted at maximum deformation, T/2,
from Fig. 2.20 to Fig. 2.23. The figures clearly show that the deformation applied to the
spheres is so large that the meshes used are not fine enough to correctly reconstruct
the interface. Even so, when using the LVIRA reconstruction method, the interface at
the extremely deformed zones is reconstructed in a smoother manner. In this way,
the advection step cuts the flux polyhedrons by more accurate planes, resulting in
better overall outcomes. Furthermore, notice that when using unstructured coarse
meshes (323), the interface reconstruction planes at T/2 are not accurate compared to
the Cartesian ones, see Fig. 2.22 and 2.23, but as meshes are densified (643 and 1283)
results rapidly converge to the Cartesian ones, as analyzed in Sec. 2.5.1. Finally, it is
important to mention that, even when using coarse grids ( 323), the conservation of
volume is good (around 10−9), what means that the break up of the interface is due to
its inaccurate reconstruction, not by loss or gain of volume.
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Rotation Cartesian Unstructured
mesh Youngs LVIRA Youngs LVIRA
323 4.23E−4 5.47E−4 4.25E−4 6.30E−4

643 1.62E−4 1.39 1.29E−4 2.08 1.79E−4 1.25 2.31E−4 1.45

1283 7.93E−5 1.03 3.46E−5 1.90 7.50E−5 1.25 6.79E−5 1.76

Table 2.3: EL1 errors for the rotation advection tests. The computed orders of accuracy
between meshes are in italics on the right side.

Shear Cartesian Unstructured
mesh Youngs LVIRA Youngs LVIRA

32x32x64 4.06E−3 4.08E−3 6.15E−3 5.97E−3

64x64x128 1.29E−3 1.66 1.46E−3 1.48 2.03E−3 1.60 1.64E−3 1.87

128x128x256 5.45E−4 1.24 3.53E−4 2.05 8.53E−4 1.25 5.37E−4 1.61

Table 2.4: EL1 errors for the shear advection tests. The computed orders of accuracy
between meshes are in italics on the right side.

Deformation Cartesian Unstructured
mesh Youngs LVIRA Youngs LVIRA
323 7.47E−3 6.92E−3 1.02E−2 1.02E−2

643 2.77E−3 1.43 2.43E−3 1.51 4.45E−3 1.20 3.54E−3 1.53

1283 8.14E−4 1.77 6.37E−4 1.93 9.43E−4 2.24 7.20E−4 2.30

Table 2.5: EL1 errors for the deformation advection tests. The computed orders of
accuracy between meshes are in italics on the right side.
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Figure 2.16: Interface reconstruction planes at half period for the 3-D shear flow test
using the Youngs algorithm on successively refined Cartesian grids. The top row
shows the xy-plane view, while the bottom one the xz-plane view.

Figure 2.17: Interface reconstruction planes at half period for the 3-D shear flow test
using the LVIRA algorithm on successively refined Cartesian grids. The top row
shows the xy-plane view, while the bottom one the xz-plane view.
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Figure 2.18: Interface reconstruction planes at half period for the 3-D shear flow test
using the Youngs algorithm on successively refined unstructured meshes. The top
row shows the xy-plane view, while the bottom one the xz-plane view.

Figure 2.19: Interface reconstruction planes at half period for the 3-D shear flow test
using the LVIRA algorithm on successively refined unstructured meshes. The top
row shows the xy-plane view, while the bottom one the xz-plane view.
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Figure 2.20: Interface reconstruction planes at half period for the 3-D deformation
flow test using the Youngs algorithm on successively refined Cartesian grids. The
images are two side views of the test at the instant of maximum deformation.

Figure 2.21: Interface reconstruction planes at half period for the 3-D deformation
flow test using the LVIRA algorithm on successively refined Cartesian grids. The
images are two side views of the test at the instant of maximum deformation.
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Figure 2.22: Interface reconstruction planes at half period for the 3-D deformation
flow test using the Youngs algorithm on successively refined unstructured meshes.
The images are two side views of the test at the instant of maximum deformation.

Figure 2.23: Interface reconstruction planes at half period for the 3-D deformation
flow test using the LVIRA algorithm on successively refined unstructured meshes.
The images are two side views of the test at the instant of maximum deformation.
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2.6 Conclusions

A geometrical Volume-of-Fluid method based on a new approach for the multidimen-
sional advection has been proposed for capturing interfaces on 3-D Cartesian and
unstructured meshes. In particular, the first-order Parker and Youngs [53] and second-
order LVIRA [38] interface reconstruction methods have been implemented on 3-D
unstructured meshes, while the proposed advection step constructs flux polyhedrons
by using the Lagrangian trajectories of the cell-vertex velocities. In detail, the advec-
tion method presents similarities with the one recently published by Marić et al. [45],
since both works use cell-vertex velocities, but differs in that ours adjusts analitically
the volume of the flux polyhedrons. Moreover, this work presents more complete
advection results, since tests on unstructured meshes are performed. The use of
cell-vertex velocities minimizes the situation of over/underlapping between flux
polyhedrons, however, the volume of the polyhedrons needs to be adjusted in or-
der to correctly solve the advection equation. For this purpose, a set of geometric
algorithms have been explained in detail in Sec. 2.4. In addition, the possible nu-
merical errors introduced to the solution when advecting volumes in time — e.g.,
undershoots, overshoots and wisps — are sorted out by using a local redistribution
algorithm similar to the one proposed by Harvie and Fletcher [60], but extended to
unstructured meshes.

The accuracy of the interface reconstruction algorithms has been studied by solv-
ing the sphere and hollowed sphere reconstruction tests, using Cartesian and unstruc-
tured meshes ranging from 103 to 803 cells (approximate for unstructured meshes).
The results obtained are of same order of magnitude as the ones found in the literature,
e.g., Liovic et al. [14] and Ahn and Shashkov [46]. In addition, the tests demonstrate
that the Youngs algorithm is first-order accurate and exhibits better results on coarse
grids (103 - 203 cells), while LVIRA is second-order accurate and performs better
when the grid is refined (403 - 803 cells), but requires more computational time since
it performs a 2-D minimization.

The rotation, shear and deformation flow tests have been used to analyze the
accuracy of the advection algorithm developed in this work. The tests are solved on 3-
D Cartesian grids and, for the first time in the scientific literature, on 3-D unstructured
meshes using the Youngs and LVIRA reconstruction methods. First, the rotation and
shear flow test results obtained on Cartesian grids are similar to the ones presented by
Hernández et al. [35] and Liovic et al. [14], respectively, while results for successively
refined unstructured meshes are of same order of magnitude as the Cartesian ones.
Second, the deformation test results on Cartesian meshes follow the behavior and
magnitude of the different errors presented in the literature, e.g., Du et al. [10],
Liovic et al. [14] and Hernández et al. [35], while errors for unstructured meshes tend
to be larger than Cartesian ones on coarse meshes, but converge to Cartesian results as
meshes are densified. Hence, the fact that the results on Cartesian grids are similar to
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the ones found in the literature and that the results on unstructured meshes are similar
to the former ones, demonstrates that the proposed unsplit advection algorithm
solves correctly the advection equation both on Cartesian as on unstructured meshes.
Furthermore, independently of the type of mesh used, the three tests show that the
Youngs reconstruction method is first-order while LVIRA tends to be second-order.
Finally, the conservation of volume remains delimited between 10−9 and 10−11 for
all tests, what proves that the advection equation is accurately solved if cell-vertex
velocities are used to construct flux polyhedrons and their volumes are adjusted.
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Parallelization of the

Volume-of-Fluid method

Main contents of this chapter have been published in:

L. Jofre, R. Borrell, O. Lehmkuhl, and A. Oliva. Parallel Load Balancing Strategy for Volume-of-
Fluid Methods on 3-D Unstructured Meshes. Under review in Journal of Computational Physics,
2014.

Abstract. Volume-of-Fluid (VOF) is one of the methods of choice to reproduce the interface
motion in the simulation of multi-fluid flows. One of its main strengths is its accuracy in cap-
turing sharp interface geometries, although requiring for it a number of geometric calculations.
Under these circumstances, achieving parallel performance on current supercomputers is a
must. The main obstacle for the parallelization is that the computing costs are concentrated
only in the discrete elements that lie on the interface between fluids. Consequently, if the
interface is not homogeneously distributed throughout the domain, standard domain decom-
position (DD) strategies lead to imbalanced workload distributions. In this paper, we present
a new parallelization strategy for general unstructured VOF solvers, based on a dynamic
load balancing process complementary to the underlying DD. Its parallel efficiency has been
analyzed and compared to the DD one using up to 1024 CPU-cores on an Intel SandyBridge
based supercomputer. The results obtained on the solution of several artificially generated
test cases show a speedup of up to ∼12× with respect to the standard DD, depending on the
interface size, the initial distribution and the number of parallel processes engaged. Moreover,
the new parallelization strategy presented is of general purpose, therefore, it could be used
to parallelize any VOF solver without requiring changes on the coupled flow solver. Finally,
note that although designed for the VOF method, our approach could be easily adapted to
other interface-capturing methods, such as the Level-Set, which may present similar workload
imbalances.
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3.1 Introduction

The numerical simulation of immiscible multi-fluid flows is fundamental to better
understand many phenomena of interest in different disciplines such as engineer-
ing, hydrodynamics, geophysics or fundamental physics. Typical examples are the
simulation of sprays, injection processes, bubbles, breakup of drops, wave motion,
etc. These type of flows are characterized by the existence of an interface, separating
the different fluids, which needs to be reproduced by the simulation method. So far,
different numerical methods exist to reproduce the interface motion. These can be
classified into two main groups: interface-tracking and interface-capturing methods.
On the one hand, the interface-tracking approaches chase the interface as it moves: (1)
defining the interface as a boundary between subdomains of a moving mesh [1–3]; (2)
following the Lagrangian trajectories of massless particles [4–6]. On the other hand,
the interface-capturing approaches describe the motion of the interface by embedding
the different fluids into a static mesh. In particular, from this last group, the two
main options of choice are the Volume-of-Fluid (VOF) [7–9] and Level-Set (LS) [10–12]
methods, as well as algorithms based on combinations of both. From all these options,
this paper is focused on the VOF method. This is based on geometrically reconstruct
the fluids interface and, according to it, evaluate the portion of advected volumetric
flux corresponding to each fluid. Its major strength is the accuracy achieved by some
of its implementations on capturing sharp interfaces and their complex deformation,
including breakups, while complying with the volume preservation constraint. This
accuracy results in high computational costs. However, in the last decade, with the
increase of the available computing power, different interfacial problems have been
successfully tackled using it. Examples are the simulation of the drop breakup phe-
nomenon by Renardy [13], the bubble motion by Annaland et al. [14], the solution of
wave impact problems by Kleefsman et al. [15] or the numerical study of primary and
impinging jet atomizations by Fuster et al. [16], Tomar et al. [17] and Chen et al. [18].

In general, on the simulation of interfacial multi-fluid flows with VOF meth-
ods, the computing costs are dominated by the Navier-Stokes (NS) flow solver, and
specifically by the solution of the Poisson system derived from the incompressibility
constraint. Even so, the cost of the VOF calculations is not negligible at all. Its relative
weight depends on different factors, such as the algorithms chosen, the effectiveness
of its implementation, the physical case being considered, the type of geometric
discretization used, the computing system employed, etc. As an example, on the
sequential simulation of the Richtmyer-Meshkov instability [19] with an unstructured
tetrahedral mesh of 250K cells, our VOF solver represents 22% of the computing
costs. A similar percentage was reported by Le Chenadec and Pitsch [20], on the
solution of a diesel jet with a Cartesian mesh of 256×256×1152 cells. Anyway, beyond
the percentage obtained for any particular simulation, it is a certainty that, in the
high performance computing context, the cost of the VOF calculations will become
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more and more important while the algorithmic solutions adopted disregard parallel
performance issues. Besides, by contrast, many efforts are employed by the scientific
community on the parallelization of NS flow solvers and, in particular, on Poisson
solvers [21, 22]. Considering, for example, the aforementioned Richtmyer-Meshkov
instability case, with the DD approach we measured a raise of the VOF cost up to 84%
when engaging 128 CPU-cores while, with the new parallelization strategy presented
in this paper, the percentage is kept at 24%.

The limitations of the standard DD approach can also be observed in the work
by Aráujo et al. [23] focused on the 3-D simulation of injection processes. Their
tests show a maximum parallel efficiency of 50% with up to 80 CPU-cores, including
both the momentum and the VOF solvers. Another study on parallel algorithms
for multiphase flows is the work of Sussman [24], based on solving the pressure
Poisson equation by means of a multi-level solver and the interface motion through a
coupled LS and VOF method [25]. This last work, however, is mainly focused on the
performance of the pressure solver and, after all, no more than 16 CPU-cores were
used in the parallel performance tests. Surprisingly, we could not find other relevant
works on the literature presenting new alternatives for the parallelization of VOF
methods.

Broadening the literature search to LS-based interface-capturing approaches, we
found an additional parallelization alternative studied by Herrmann [26], which may
be adapted to VOF methods. In particular, LS methods require the solution of an extra
partial differential equation (PDE) to maintain the interface sharp. Similarly to VOF
methods, this interface re-initialization process is not well balanced if the interface
is not homogeneously distributed throughout the domain. Herrmann proposes to
generate two independently adapted grids for the solution of the flow and interface
motion, respectively. While no restrictions are imposed on the Navier-Stokes grid,
an equidistant Cartesian grid is adopted for the interface motion solution, with
enough resolution to ensure accuracy of the LS method at any part of the domain,
avoiding the application of complex adaptive mesh refinement (AMR) algorithms.
This configuration also simplifies the LS parallelization since, in order to achieve a
good workload balance, tasks can be easily reassigned between parallel processes
without geometric information exchange. This approach was tested on the solution
of the Zalesak’s disk case, obtaining a slightly sub-optimal speedup with up to 128
CPU-cores [26]. In a later work, Herrmann applied the same strategy on a multi-scale
Eulerian/Lagrangian two-phase flow algorithm [27], where the LS grid method was
used for the Eulerian part, the overall algorithm showed an excellent speedup with
up to 2048 CPU-cores.

Therefore, considering the good parallel performance achieved by Herrmann with
his load balancing strategy, our purpose has been to develop a similar strategy for the
parallelization of VOF methods on general unstructured meshes. Moreover, we solve
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both the motion of the flow and of the interface in the same mesh, without imposing
any restriction to it. Consequently, the load balancing algorithm and its computing
profile undergo major changes with respect to the Herrmann approach. For instance,
when a task is reassigned, in the Cartesian case no geometric information needs
to be transmitted since the mesh is homogeneous, contrary, in the general case the
geometric characteristics of the discrete elements engaged on the task need to be
transmitted as well. Additionally, our load balancing approach is based on a precise
optimization algorithm, rather than iteratively reassign tasks until some threshold
imbalance is reached or the process stalls. Finally, note that although our algorithm
has been developed for VOF methods, it could be easily adapted to the parallelization
of LS methods on unstructured grids.

Hence, this paper presents a new strategy for the parallelization of VOF methods
on unstructured meshes, which is based on a dynamic load balancing process com-
plementary to the DD. The rest of the document is organized as follows: in the next
section, the mathematical formulation of the VOF method on unstructured meshes is
presented. The standard domain decomposition and our new load balancing paral-
lelization strategy are detailed in Sec. 3.3. An exhaustive analysis and comparison
of the parallel performance issues of both methods are presented in Sec. 3.4. Finally,
conclusions are drawn in Sec. 3.5.

3.2 Volume-of-Fluid method

Volume-of-Fluid methods capture the fluids interface by embedding it into a fixed
grid. In particular, a fraction scalar field, Ck, is defined for each fluid k, determining
the fraction of volume that occupies within each grid cell. Basically, Ck = 0 for cells
that do not contain fluid k, Ck = 1 for cells which only contain the k’th fluid, and
finally 0 < Ck < 1 if part but not all of a cell’s volume is occupied by the k’th fluid.
These cells in which different fluids coexist are referred to as interface cells. Indeed, Ck
can be defined as the normalized integral of a fluid’s characteristic function Ck(x, t),
such that

Ck(x, t) =
{

1 if there is fluid k
0 otherwise, (3.1)

where x is a position in space and t refers to a time instant. Therefore, for each cell c,
its k’th fluid volume fraction value is evaluated as

Ck[c, t] =
∫

Ck(x, t)dVc

Vc
, (3.2)

where Vc refers to the cell volume.
Assuming that the fluids are immiscible, and that their movement is defined by

a unique velocity field, i.e., uk = u for each fluid k, the interface motion can then be
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captured by solving the respective conservation equation

∂Ck
∂t

+∇· (Cku) = 0. (3.3)

Applying the divergence theorem and using a first-order explicit time scheme, the
relative discrete equation reads

Cn+1
k − Cn

k +
1
Vc

∑
f∈F(c)

Vn
k, f = 0, (3.4)

where the superscript n refers to the discrete time level, F(c) to the set of faces of cell
c, and Vk, f is the volumetric flow of fluid k across face f .

VOF methods are characterized by the geometric evaluation of the volumetric
flows, which is split into two consecutive phases: (1) the interface reconstruction
according to the volume fraction fields; (2) the evaluation of the advection of each
fluid, in accordance with the velocity field and the interface geometry previously
reconstructed. Both phases are described in more detail in the following subsections.
Additionally, further details can be found in our previous work [28].

3.2.1 Interface reconstruction

In this work, the fluids interface is reconstructed following the piecewise linear
interface calculation (PLIC) approach. This means that within each grid cell, the
interface is represented by a plane described with the equation

n · x− d = 0, (3.5)

where n is a unit normal vector to the plane and d sets its position.
Specifically, we evaluate n by means of the standard first-order Youngs method [29].

This is based on the normalized gradient of the volume fraction scalar field, Ck, that is

n =
−∇Ck
|∇Ck|

. (3.6)

In particular, with the aim of obtaining smooth solutions avoiding sharp angles
between adjacent planes, we evaluate the gradient by means of a vertex-connectivity
least-squares method [30].

Once fixed the unitary normal vector n, d is found by placing the plane at the
position that fulfills the initial condition

Ck =
Vk
Vc

, (3.7)
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where Vk is the volume occupied by fluid k within the cell. Particularly, we perform
this search by means of the iterative Brent’s minimization method [31].

It is important to note that the interface reconstruction within each cell is an inde-
pendent process. In other words, for any interface cell, given its geometric description
and some values of the field Ck, its interface reconstruction can be evaluated indepen-
dently. This is a crucial point for our load balancing strategy, since it means that the
global reconstruction calculation can be decomposed into unitary tasks, which can
be then reassigned through the parallel processes in order to balance the workload.
In particular, in the load balancing process we are only reassigning the evaluation
of constant d, which is the most time-consuming part of the reconstruction process.
Therefore, when the interface reconstruction within a cell is reassigned, the informa-
tion to be transmitted is the geometric description of the cell and the corresponding
values of the fields Ck and ∇Ck.

3.2.2 Interface advection

Once the interface has been reconstructed, the advection is performed by geomet-
rically calculating the volumetric fluxes Vk, f ; see Eq. 3.4. The interface geometry
evaluated in the previous step is necessary in order to discriminate, in the zones
where two or more fluids coexist, which part of the volumetric flux corresponds to
each fluid. Note that when two fluids coexist, it is only necessary to advect one of
them, the solution of the other is obtained as the complement. The steps required to
evaluate the volumetric fluxes, Vk, f , at any face f are presented below:

1. Quantify the total volumetric flux. The value of the total advection volume is
calculated as

Vf = |u f ·n f |A f ∆t, (3.8)

where ∆t is the time step, u f the velocity at face f , and n f and A f correspond,
respectively, to the unit-outward normal and the area of face f . Particularly, in
order to limit the stencil of neighboring cells engaged, the CFL restriction is
fixed to one. Thus, the flux polyhedron will always be contained in the stencil of
cells that share at least one vertex with the face being considered. Consequently,
this is the stencil of neighboring cells being used on the calculations.

2. Construct the polyhedron representing the volumetric flux. A polyhedron with
volume Vf is constructed over face f . In particular, we are employing a vertex-
matched approach with the aim to minimize flux over/underlapping situations
that degrade the volume conservation principle. This approach is based on
setting the direction of the extrusion edges equal to the velocity vectors at the
face vertices. A 2-D illustration of it is shown in Fig. 3.1a, while an extended
description can be found in [28].
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3. Truncate the part of the volumetric flux polyhedron corresponding to each fluid. If
the polyhedron only contains one fluid, truncation is not necessary, since Vk, f
is equal to 0 or Vf ; this situation is illustrated by cases A and C of Fig. 3.2,
respectively. Therefore, in this case, computing costs are negligible. Otherwise,
it is necessary to truncate the part of the polyhedron corresponding to each
fluid; case B in Fig. 3.2. This operation is performed independently on each cell
of the face neighboring cells stencil; see Fig. 3.1b. In particular, three actions are
performed for each of these neighboring cells: (1) evaluate its intersection with
the flux polyhedron; (2) if it is an interface cell, truncate the resulting polyhedron
by the interface plane; (3) add to Vk, f the volume of the polyhedron resulting
from the two previous actions. Note that the basic geometric operation used
in the first two steps is the truncation of a polyhedron by a plane. A general
algorithm to perform it is described in the work by López et al. [32].

Figure 3.1: (a) Construction of the total volumetric flux polyhedron (abdc), point c is
evaluated by tracing back the Lagrangian trajectory of point a for the time step ∆t,
i.e., c = a− ∆tua; idem for point d. (b) Truncation of the part of the volumetric flux
polyhedron corresponding to fluid 1.

As in the reconstruction phase, the evaluation of the fluids advection through
any face is an independent process. Therefore, the advection calculation can also
be decomposed into unitary tasks. Note that in the load balancing process, we
only count as unitary task the evaluation of the volumetric fluxes at faces with
a neighboring interface cell. As explained above, the other cases are trivial and
irrelevant in terms of computing cost. In particular, the information required to
evaluate the fluids advection through any face is: the velocity vector at its vertices
and, for all the elements of the stencil of neighboring cells, its geometric description,
the respective volume fraction value and, in the case of being an interface cell, the
interface reconstruction plane.
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Figure 3.2: Possible initial situations on the evaluation of the fluids advection: (1)
The volumetric flux polyhedron contains only one fluid (cases A and C); (2) Different
fluids coexist within the volumetric flux polyhedron (case B).

3.3 Parallelization strategy

3.3.1 Standard domain decomposition

The domain decomposition is a standard strategy for the parallel solution of PDEs.
The initial discretized domain is divided into P subdomains with similar number
of cells, distributed then between P parallel processes to perform the computations.
The subset of discrete elements assigned to a parallel process is referred as its owned
elements, while the rest of elements are named external. Thus, for any parallel process,
we may talk about owned cells, owned nodes, owned components of a scalar field,
external nodes, external faces, etc. Since the system of equations generally links
unknowns owned by different subdomains, to perform calculations in parallel is
necessary the transmission of data between parallel processes. Here we refer to
the external elements required by any parallel process as its halo elements. Each
parallel process obtains its halo elements from neighboring subdomains by means of
communications throughout the network, referred to as halo updates. In particular,
note that a halo element that varies on its owner parallel process needs to be updated
before being used, otherwise, the parallel and sequential executions would differ.

The DD approach has been extensively used in many VOF-based codes for the
simulation of immiscible multi-fluid flows; see for example [33–35]. Using the DD for
the VOF calculations is relatively simple, since it is just necessary to define the halo
requirements of the parallel processes and introduce some halo updates. Moreover,
since the rest of calculations, like the solution of the Navier-Stokes equations, may be
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parallelized using the same DD strategy, it becomes easy to assemble the solution of
the whole system. In particular, two halo updates are needed to solve Eq. 3.4: (1) to
the volume fraction scalar fields, before the reconstruction phase; and (2) to the field
composed of the interface reconstruction planes, before the advection phase.

Since in the VOF calculations the work is concentrated on the discrete elements
around the fluids interface, the workload of the parallel processes will only be well bal-
anced if the interface is homogeneously distributed through the different subdomains.
Unfortunately, the contrary occurs in many situations. For example, the simulation
of gas bubbles within a liquid media may produce really imbalanced distributions
or, in hydrodynamics simulations, the sea surface is generally located in a specific
zone of the domain, involving only the subdomains covering it. In particular, Fig. 3.3
illustrates an imbalanced situation for a simplified case where two fluids coexist in a
discrete domain divided in four parts.

Figure 3.3: Decomposition of an unstructured grid where two fluids coexist. The
interface between fluids is not homogeneously distributed throughout the domain.

In order to overcome the degradation of the parallel performance produced by
the load imbalance, a possible strategy is to adapt the mesh partition to the interface
distribution. In cases with predictable and constant interface location this adaptive
strategy can be very convenient. However, in a general case some drawbacks appear:
(1) the location of the interface may be not known a priori; (2) it may vary during the
simulation, having to readapt the domain partitions; (3) the VOF adapted partition
may be inappropriate or perform poorly for other parts of the code. For example,
the numerical simulation of gas bubbly flows [14] requires, usually, a random initial-
ization of the bubbles pattern inside the domain. Thus, in these cases the adapted
mesh partition cannot be evaluated a priori. Moreover, any possible adapted partition
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would no longer suit the pattern of the bubbles as they evolve in time, having to
readapt the partition several times. In addition, it has been found that adapting the
mesh partition to the interface distribution, instead of prioritizing the minimization
of halo requirements, optimizes the parallelization of the VOF algorithm but can
decrease significantly the parallel performance of the Navier-Stokes solver [36].

3.3.2 New parallelization strategy

We propose a new parallelization strategy based on a dynamic load balancing process
that reduces the common imbalance obtained from the standard domain decompo-
sition. With this objective in mind, the reconstruction and advection unitary tasks
are transported between different parallel processes overpassing the initial mesh
partition. Consequently, when an unitary task is reassigned to a new parallel process,
all the discrete data required to perform it (geometric and algebraic information),
need to be transported to the new committed parallel process.

Note that, in the advection process, the geometry of the interface around any face
is required in order to discriminate the portion of its volumetric flux corresponding
to each fluid (terms Vn

k, f of Eq. 3.4). This coupling between the resconstruction and
advection phases makes it difficult to perform only one communication episode for all
the algorithm. Indeed, a second level of data transfer, after the interface reconstruction
and before the advection, seems inevitable to ensure the availability of the interface
geometry around any face through which two or more fluids are advected. Under
these circumstances, in order to avoid a complex data interdependence management
and better adjust the result, we prefer to perform separately the load balancing of the
reconstruction and advection phases.

The load balancing algorithm presented in this work consists in the five main steps
outlined in the next items. Further details about them are given in the subsections
below.

1. Determine the workload. Each parallel process, p, evaluates its workload, Wp.
When the cost of the tasks is variable, weights are used in order to optimize the
accuracy of the assigned loads. Further details are given in Sec. 3.3.2.

2. Define a new balanced distribution. This is performed in two steps. First, an
optimal workload per parallel process, Wopt, is determined taking into account
possible overheads on the solution of the tasks being reassigned; see Sec. 3.3.2.
Second, a new tasks distribution is determined according to the previous load
per process target. The corresponding algorithm, namely Alg. 3, defines also
the communication scheme to transfer the data.

3. Move data. The data needed to perform the reassigned tasks is transported,
through the local memories of the parallel processes involved in the solution,
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according to the scheme determined in the previous step. This redistribution is
performed by means of non-blocking point-to-point communications. However,
to avoid inconsistencies, any parallel process does not start the next step until
the communications in which it is involved are completed. Buffering is used
to group all the data transactions between two parallel processes in only one
message, using an independent buffer for each communication.

4. Solve VOF tasks. These tasks may be a set of interface reconstructions within
interface cells, or fluids advection evaluations at faces around the interface. The
parallel processes committed to solve both external (received from other parallel
processes) and owned tasks, start with the solution of the external ones. In
this way, the communications required to send back the results to the owner
processes can be overlapped with the solution of the owned tasks.

5. Collect solutions. The processes which reassigned part of their tasks to others, re-
ceive the solutions back in buffers and store them in the corresponding memory
space.

To summarize, the main steps of our load balancing strategy are outlined in Alg. 1.
Remaining details are attained in the following subsections. Note that Alg. 1 is applied
twice: first on the reconstruction phase and, afterward, on the advection phase.

Algorithm 1 Parallel load balancing strategy
1: Determine the workload
2: Define a new balanced distribution
3: Move data
4: Solve VOF tasks
5: Collect solutions

Analysis of the algorithm

The diagram shown in Fig. 3.4 illustrates the computing time distribution for the
VOF algorithm using the new parallelization strategy. In particular, the test case
represented is a translation applied to 64 spheres contained in a cubic domain dis-
cretized by means of an unstructured mesh of 1000K cells; see Fig. 3.8.b. This test
was executed using 128 CPU-cores. Note that the advection costs dominate the VOF
execution, while the overhead produced by the load balancing is around ∼5%. In the
rest of tests presented in the next section, we have observed that the relative weight
of the load balancing step varies with the number of parallel processes engaged. On
the contrary, the ratio between the reconstruction and advection phases has shown to
be almost constant, meaning that same parallel performance is obtained for both.
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Figure 3.4: Computing time distribution for the new parallelization strategy.

More in detail, Fig. 3.5 shows the distribution of the computing time through the
different steps of Alg. 1 for the advection phase. The left part of the figure illustrates
the flowchart for a parallel process overloaded, i.e., which reassigns some of its tasks to
others. While the right part represents an underloaded parallel process, receiving tasks
from the overloaded ones. The height of each rectangular box is proportional to the
cost of the corresponding step of Alg. 1. The communications between both groups
are illustrated with lines or boxes across the two columns. These occur in steps 3 and
5 (“Move data” and “Collect solutions”). Note that the communications of step 5
are asynchronous and, consequently, are represented by means of a line that couples
different levels of the flowcharts. Step 2 (“Define a new balanced distribution”)
is also represented with a horizontal box across both columns because collective
communications are required to perform it. These three steps constitute the part of the
algorithm which increases its cost with the number of parallel processes. Therefore,
it becomes a degradation factor for the speedup. The rest of the algorithm can
be executed independently by each parallel process and reduces its cost when the
number of parallel processes increases. More details on these aspects are shown in
the numerical tests of Sec. 3.4.

The main difference in the flowchart of the overloaded and underloaded parallel
processes occurs around the data movement of step 3 (“Move data”). Before it, the
first ones pack in buffers the information to be sent while the last ones become idle.
After it, the underloaded parallel processes need to unpack the required information
from the received buffers before performing any external VOF task. Note that the
tasks distribution can be balanced in order to compensate the overcosts produced
by the unpacking operations and, hence, reduce idle times; see Sec. 3.3.2. The same
situation is repeated on the communication required to collect the solution of the
reassigned tasks in step 5 (“Collect solutions”). However, in this case, the size of the
communication is much smaller and its cost, compared with the one of the pack and
unpack operations, is almost negligible. For this reason, they are all represented by
means of a simple line.

Finally, note that all the steps of Alg. 1, except the solution of the VOF tasks (step
4), can be considered pure overcosts, since they are not part of the solution itself but
part of the balancing process. However, in the next section it is demonstrated that
these overcosts are widely outweighed by the gain achieved with the load balancing.
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Figure 3.5: Flowchart of the advection process, from the perspective of an “overloaded
CPU” (left) and an “underloaded CPU” (right). The height of each rectangular box is
proportional to the cost of the corresponding step of the algorithm.

Buffering

The geometric and algebraic data required to perform the VOF tasks are heteroge-
neous and not continuously stored in memory. Consequently, in order to move them
through the network, we have explicitly defined pack functions, to store them into
communication buffers, and unpack functions, to read the received information and
reconstruct the stored objects before performing the calculations. Moreover, buffers
are also used to group all data moves between two parallel processes in only one
message, and thus reduce latency costs.

In particular, we have optimized our implementation of the pack and unpack
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functions for unstructured tetrahedral meshes, which is the type of meshes that
we have used in the numerical experiments. In this case, in order to reassign a
reconstruction task, 16 floating point elements need to be sent: 12 accounting for the
vertices components, 1 for the volume fraction value and 3 for the gradient of the
volume fraction field; an example is illustrated in Fig. 3.6. Note that the faces of a
tetrahedron are just defined by the different combinations of its vertices, therefore,
it is not necessary to explicitly determine its composition. Similar strategies are
possible for prismatic cells, however, in a general case with more complex polyhedra,
information of the faces composition may be required for the cell description into the
buffer.

Figure 3.6: Illustration of the data packed into the communication buffer for a reas-
signed reconstruction task.

On the other hand, the advection tasks require many more elements to be transmit-
ted. For each mesh face, any element of the stencil of neighboring cells sharing at least
one vertex with it, could be engaged on the calculation of the fluids advection through
it. However, in order to minimize the communication costs, we try to discard some
of the neighboring cells that are not required for the calculations. In particular, we
can restrict to the neighboring cells that: (1) contain the fluid being considered and (2)
have at least one vertex at the upstream side of the face plane (with respect to the flux),
since the volumetric flux polyhedron is built into that side; see Fig. 3.7. Therefore,
for each reassigned advection task are packed: 9 floating point elements, describing
the components of the velocity field in the face vertices, and up to 17 floating point
elements for each engaged neighboring cell — 12 to describe its geometry, 1 for its
volume fraction and, in case of interface cell, 4 more defining the interface plane.
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Figure 3.7: Representation of the flux polyhedron used on the fluids advection evalu-
ation at face f .

Weight of a task

In the first step of Alg. 1 each parallel process evaluates its workload, Wp. This is
performed by assigning a weight to each owned unitary task and then adding up all
these weights.

In the reconstruction phase, different weights are not necessary because recon-
structing the interface has almost the same cost for any interface cell. In this case, for
each parallel process, p, the workload can be set equal to the number of its owned
unitary tasks, Np.

A different situation occurs in the evaluation of the fluids’ advection. As explained
in Sec. 3.2.2, the advection calculation in a face only has a significant cost when its
flux polyhedron intersects an interface cell. The evaluation of the advection for the
faces matching this condition composes the set of unitary tasks to be distributed. At
any of these faces, the advection evaluation requires geometric calculations with its
neighboring cells that meet three conditions: (1) share at least one vertex with the
face, (2) contain the fluid being advected and (3) have no null intersection with the
advection polyhedron. The number of cells of this subset may be a good approach
for the weight of the corresponding unitary task. Nevertheless, since the evaluation
of the workloads is not part of the solution but just part of the process to find a
good distribution, it must be a relative fast process. On this regard, constructing
the advection polyhedron and checking its intersection with the neighboring cells
(condition 3) would be too costly. Consequently, when defining the weight of a
task, we substitute condition 3 by the less restrictive but easier to evaluate condition:
“being in the upstream side of the face” — the same condition used in the pack
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function described in the previous subsection. For example, in Fig. 3.7, considering
the advection of fluid 1, with our approximation the relative weight of the task
represented would be 5, while the precise (but too costly to evaluate) weight is 3.
Even so, as shown in the numerical tests, using weights has a clear positive impact on
the load balancing of the advection phase.

Overcost of external tasks

On the “Solve VOF tasks” step of Alg. 1, external tasks have an additional cost
due to the buffers unpacking. This overcost should be taken into account when
defining the new balanced distribution. We introduce it by means of a coefficient α,
such that when a task is reassigned the cost of its solution is multiplied by (1 + α).
Note that only the overcost produced by the unpack process is taken into account.
The communication costs are not included in the definition of α because affect both
overloaded (“senders”) and underloaded (“receivers”) parallel processes, so they do
not produce an additional imbalance. On the other hand, the imbalance produced
by the pack process, which is executed only in the overloaded processes, cannot be
compensated with a proper tasks distribution, because the subsequent communication
synchronizes the parallel processes.

The coefficient α depends on the ratio between the cost of executing a VOF task,
and the cost of the process of unpacking the data required to perform it. In the
reconstruction phase, both magnitudes are almost constant for all reassigned tasks.
On the contrary, both are variable in the advection phase. In this case, we evaluate α
as an average overcost for all the reassigned tasks. Note that α mainly depends on
the type of grid (e.g., orthogonal or tetrahedral), the VOF algorithm implemented
and the computing equipments being used. While, on the other hand, since we
are considering unitary tasks, α is independent of the mesh size, of the number of
parallel processes and of the interface size and distribution within the domain. Under
these conditions, we measure α by running a test with a rather coarse mesh and few
parallel processes. This measurement is then valid for any execution with the same
equipment and mesh type. In particular, for all the numerical tests shown in Sec. 3.4,
the value of α for the reconstruction and advection phases was fixed to 0 and 0.1,
respectively. Therefore, with the algorithms being used, in the reconstruction phase,
the cost of the unpacking process is negligible, compared to the cost of finding the
linear reconstruction of the interface (which requires an iterative Brent’s root search).
While, in the advection phase, the average overcost produced by the unpacking
process represents 10%.

Define a new balanced distribution

The second step of Alg. 1 is divided in the two substeps described in detail below.
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Optimal workload per CPU. We first determine the optimal workload per parallel
process, Wopt, independently of the particular reassignment of tasks required to
achieve it.

When the cost of the external and owned tasks is equivalent (α = 0), the theoretical
optimum, referred as W∗opt, is the average workload

W∗opt = Wavg =
∑P

p=0 Wp

P
. (3.9)

Nevertheless, as stated in the previous subsection, in general, external tasks may
suffer an overcost produced by the unpack process, which multiplies its cost by 1 + α,
with α ≥ 0. This means that in general W∗opt ≥ Wavg. Under this circumstances,
given an initial distribution, finding an optimal redistribution or, what is the same, an
optimal workload per parallel process, becomes a NP-complete problem. Equivalent
formulations of it can be found in [37]. Therefore, we have to focus on heuristic
approaches.

In the present application, there is an important advantage: given an estimated
optimal workload per process, Wopt, it can be easily determined if it is higher or lower
than the theoretical optimum, W∗opt. On the one hand, the leftover workload from
parallel processes with Wp > Wopt is

L
(
Wopt

)
=

P

∑
p=0

max(0, Wp −Wopt). (3.10)

On the other hand, the workload required to reach Wopt by the underloaded processes,
is

R
(
Wopt

)
=

P

∑
p=0

max(0, Wopt −Wp)

1 + α
. (3.11)

Finally, the balance is

B
(
Wopt

)
= L

(
Wopt

)
− R

(
Wopt

)
. (3.12)

Hence, if B
(
Wopt

)
= 0, the optimal workload has been found. Otherwise, if B

(
Wopt

)
>

0, it means that Wopt < W∗opt and, finally, B
(
Wopt

)
< 0 indicates that Wopt > W∗opt. In

fact, B
(
Wopt

)
is a continuous function and the more closer to zero is its value, the

better is the corresponding approximation. Under these circumstances, a root finding
algorithm can be used in order to approach the theoretical optimum. In particular,
we adopt the simple and well known bisection method, detailed in Alg. 2.

The bisection method requires two initial guesses, Wa
opt and Wb

opt, such that

B
(

Wa
opt

)
and B

(
Wb

opt

)
have different sign. On the one hand, we can take Wa

opt =
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Algorithm 2 Iterative calculation of the optimal weight per process
1: Wa

opt = Wavg

2: Wb
opt = (1 + α)Wavg

3: for 0 ≤ i < numIte do
4: if B((Wa

opt + Wb
opt)/2) < 0 then

5: Wb
opt = (Wa

opt + Wb
opt)/2

6: else
7: Wa

opt = (Wa
opt + Wb

opt)/2
8: end if
9: end for

10: Wopt = (Wa
opt + Wb

opt)/2

Wavg with B(Wa
opt) ≥ 0, since, as previously stated, Wavg ≤ W∗opt. On the other

hand, given an initial tasks distribution and considering α > 0, note that the optimal
workload depends on the percentage of tasks that need to be reassigned. The larger
the movements required, the larger the number of tasks that multiply its cost by
1 + α and, consequently, the larger becomes W∗opt. In particular, if all the tasks were
reassigned, the theoretical optimum would be (1 + α)Wavg. However, this extreme
is not possible because some tasks will always remain in its owner parallel process.
Hence, we can affirm that W∗opt ≤ (1 + α)Wavg and, therefore, B((1 + α)Wavg) ≤ 0. In
conclusion, we can take as initial guesses Wa

opt = Wavg and Wb
opt = (1 + α)Wavg. Note

that the length of the initial interval is αWavg. In our case, this is 0 and 0.1Wavg for
the reconstruction and advection phases, respectively. Therefore, in the advection
case, since the initial maximal error is 10% and each iteration of the bisection method
halves it, we can affirm that in 4 iterations the error of our approach is less than 1%.
This precision is more than enough for our application context and, what is more,
the cost of these 4 iterations is almost negligible compared to the overall solution
time. For the reconstruction it is not necessary any iterative process, being α = 0 the
optimal solution is just the average workload.

Tasks reassignment algorithm. Once an optimal workload per parallel process is
calculated with the algorithm defined above, it is necessary to determine a new
distribution of tasks fulfilling it. With the aim of better understandability, in Alg. 3
we first describe this process for the case of tasks with equal cost.

For each parallel process p the only input of the Alg. 3 is its initial workload
Wp = Np, while the output are two arrays, SendTo and RecvFrom, of dimension P,
storing in the k’th position the number of tasks to be sent and to be received to/from
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process k, respectively. For instance, SendTo[0] = 5 would mean that the process
being considered, i.e., process p, has to reassign 5 of its owned tasks to process 0.
Note that, since we are assuming that all tasks have the same cost, it is not relevant
which particular tasks are redistributed.

At the first line of the algorithm, a collective all-gather communication is per-
formed in order to get the whole interface distribution on each parallel process. This
is stored in an array I such that I[k] = Nk. The rest of the algorithm is executed inde-
pendently at each parallel process. This implies that some calculations are repeated
but, since their cost is very low, it is more efficient to replicate calculations rather than
using communications.

In the second line of Alg. 3 it is executed Alg. 2, described in the previous subsec-
tion, in order to find the optimal workload Wopt.

From lines 3 to 7, the vectors S and R of dimension P are evaluated, containing in
the k’th position the number of owned tasks to be sent (reassigned) and the number of
external tasks to be received by the k’th parallel process, respectively. Their evaluation
is straightforward from the comparison of I[k] with Nopt, where Nopt refers to the
closest integer to Wopt. Some adjustment may be necessary to minimize the errors
produced by the integer round-offs. Note that for any k ∈ [0, ..., P− 1], it is not
possible that both S[k] and R[k] are different than zero. For instance, S[k] > 0
indicates that process k is overloaded, i.e., I[k] > Nopt. Thus, some of its tasks need
to be reassigned to other processes. Obviously, this means that it does not require
additional external tasks, i.e., R[k] = 0. In the same way, if R[k] > 0 then S[k] = 0.
Finally, at line 7, the total number of tasks to be reassigned on the load balancing
process, referred as Nre, is evaluated as Nre = ∑p S[p], which equals ∑p R[p].

In the next loop of the algorithm, lines 8-17, the reassignment of tasks is organized.
In detail, for each of the Nre tasks that need to be reassigned, an overloaded and an
underloaded parallel process are committed to send and receive it, respectively. This
information is stored in the arrays SendTask and RecvTask, of dimension Nre, storing
in the i’th position the rank of the process sending and receiving the i’th reassigned
task, respectively. There is not a unique form to organize this redistribution, in this
case we arrange it by the rank of the parallel processes.

Finally, once the overall tasks redistribution is defined, the evaluation of the
vectors SendTo and RecvFrom, which define the particular communications involving
process p, is straightforward. This is performed in the last loop of the algorithm,
corresponding to lines 18-22.

In the case of tasks with different computing costs additional complexities need to
be considered. In particular, the new distribution is defined according to the weight of
the tasks being reassigned. This was not necessary in the previous case since all tasks
had the same cost. The new implementation is shown in Alg. 4. For each parallel
process, the inputs of the algorithm are its initial workload, Wp; its number of owned
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elements, Np; and an array of dimension Np containing the weight of each owned
task, WI. The outputs are the same SendTo and RecvFrom vectors obtained with
Alg. 3. In fact, the second and third loops of Alg. 3, used to determine the overall
distribution of tasks and the particular movements involving process p, are repeated
at the end of Alg. 4. The difference between both algorithms is on the determination
of vectors S and R. The steps of the new algorithm are described next.

Algorithm 3 Tasks reassignment for process p (task weights not considered)
1: AllGather communication of initial tasks distribution: I[k] = Nk
2: Apply Alg. 2 to find Wopt
3: for 0 ≤ k < P do
4: aux = min(Nopt, I[k])
5: S[k] = I[k]− aux
6: R[k] = min

(
0, Nopt−aux

1+α

)
7: end for
8: Nre = ∑k S[k]
9: count_send = count_recv = 0

10: for 0 ≤ k < P do
11: if S[k] > 0 then
12: for 0 ≤ i < S[k] do
13: SendTask[count_send] = k
14: ++ count_send
15: end for
16: else
17: for 0 ≤ i < R[k] do
18: RecvTask[count_recv] = k
19: ++ count_recv
20: end for
21: end if
22: end for
23: for 0 ≤ i < Nre do
24: if SendTask[i] == p then
25: ++ SendTo[RecvTask[i]]
26: end if
27: if RecvTask[i] == p then
28: ++ RecvFrom[SendTask[i]]
29: end if
30: end for
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Algorithm 4 Tasks reassigment for process p (weights considered)
1: AllGather communication of initial workload distribution: W[k] = Wk
2: Apply Alg. 2 to find Wopt
3: if Wp > Wopt then
4: count_solve = count_weight = 0
5: for 0 ≤ i < Np do
6: if (count_weight + WI[i]) ≤Wopt then
7: count_weight + = WI[i]
8: ++ count_solve
9: else

10: break;
11: end if
12: end for
13: for count_solve ≤ i < Np do
14: WIre,p[i− count_solve] = WI[i]
15: end for
16: S[p] = Np − count_solve
17: else
18: S[p] = 0
19: end if
20: AllGather communication to get the whole vector S on each parallel process
21: AllGatherv communication of reassigned tasks weights: WIre =

⊕
k WIre,k

22: Nre = ∑k S[k]
23: count_recv = 0
24: for 0 ≤ k < P do
25: R[k] = 0
26: recv_weight = Wopt −W[k]
27: if recv_weight > 0 then
28: for count_recv ≤ i < Nre do
29: if (recv_weight− (1 + α)WIre[i]) ≥ 0 then
30: ++ count_recv
31: ++ R[k]
32: recv_weight − = (1 + α) WIre[i]
33: end if
34: end for
35: end if
36: end for
37: ...lines 8 - 22 of Alg. 3
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At the first line of Alg. 4, a collective all-gather communication is performed in
order to get the workload distribution vector, W, such that W[k] = Wk. Subsequently,
in the second line, it is executed the Alg. 2 described in the previous subsection in
order to find the optimal workload, Wopt.

In the next loop, lines 3-15, are evaluated: (1) S[p], the number of tasks being
reassigned (sent) by the executing process, i.e., process p; (2) WIre,p, a vector of
dimension S[p] containing the weight of the particular tasks being reassigned by
process p. The criteria used is that the overloaded parallel processes reassign the last
elements of its tasks list, so the values of WIre,p correspond to those elements.

The whole vector S is then obtained at each parallel process by means of an all-
gather communication, line 16. However, in order to evaluate R we also need to
gather the weight of all the tasks being reassigned. This is performed by means of a
“vector” all-gather communication rather than a simple one, line 17, because the size of
the vectors WIre,k is variable. In fact, this information is contained in vector S, which
is used to define the collective communication. As a result of the communication,
the complete set of weights of tasks being reassigned are obtained in the vector WIre,
arranged in ascending number of the owner parallel process.

In the next loop, lines 18-28, vector R is evaluated according to the values of WIre
and the initial load of each parallel process. Note that the coefficient (1 + α) is used
in order to take into account the unpacking overcosts. Finally, as stated above, once S
and R have been evaluated, the algorithm continues with the last two loops of Alg. 3.

3.4 Numerical tests

In this section, the new load balancing (LB) strategy is tested and compared with the
standard DD approach. Both methods have been implemented within the TermoFluids
(TF) parallel CFD software platform [38]. Therefore, its comparison accounts only
for differences on the parallelization strategy. Tests have been performed on the
IBM MareNostrum-III supercomputer at the Barcelona Supercomputing Center [39].
MareNostrum-III is based on Intel SandyBridge 8-core processors at 2.6 GHz (2 per
node), iDataPlex Compute Racks, a Linux Operating System and an Infiniband
FDR10 interconnection network. The number of CPU-cores engaged in our numerical
experiments ranges between 16 and 1024 units.

Since we are only interested in parallel performance issues, we consider a canonical
test case consisting of a translation applied to a set of spheres, which represent an
interface between two fluids, and are placed in a cubic domain; see Fig. 3.8. In
this way, we can easily control the size and distribution of the interface within the
domain, and measure their influence on the parallel performance. In a general case,
the interface may be deformed by a shifting velocity field. However, the computing
pattern of the VOF part of the code would be exactly the same than the one of our
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canonical test case. Therefore, the conclusions about the parallel performance of VOF
algorithms derived from this paper are generic.

Our measurements have been obtained after averaging over several iterations
of the same time step in order to avoid dispersion by canceling outlier results. In
particular, the translation applied is defined by the vector ut = 1/

√
3(1, 1, 1), the

radius of the spheres is 0.0425 and they are uniformly distributed in a 1×1×1 cubic
domain. Unless otherwise stated, the underlying geometric discretization is a mesh
of 1000K tetrahedral cells, and the domain decomposition is performed by means
of the graph partitioning tool METIS [40]. In Fig. 3.8, three interface configurations
used in the following numerical experiments are shown. Moreover, their detailed
characteristics are given in Tab. 3.1.

Name No. interface cells % interface cells
2×2×2 3120 0.3
4×4×4 25254 2.5
8×8×8 204778 20.0

Table 3.1: Detailed characteristics of different interface configurations used in the
numerical experiments.

Figure 3.8: Representation of different grids of spheres, which define the interface
between two fluids, used in the numerical experiments: (a) 2×2×2, (b) 4×4×4 and
(c) 8×8×8.

The first test considered is the strong speedup of the complete VOF algorithm
using the standard DD approach. Note that with the DD strategy, acceleration can
only be achieved when the overall domain partition further splits the interface and,
consequently, divides the VOF computing costs. Results are shown in Fig. 3.9 for the
interface configurations mentioned above, ranging the number of CPU-cores between
16 and 1024. Two a priory expected trends are clearly observed: (1) the strong speedup
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improves with the size and the extension covered by the interface within the domain;
(2) increasing the number of parallel processes engaged in the execution implies that
the parallel efficiency (PE) falls. In particular, regarding the second trend, for the
2×2×2 configuration the PE decreases from 59% (with 32 CPU-cores) down to 3%
(with 1024 CPU-cores). In fact, the total acceleration achieved in this case from 16
to 1024 CPU-cores is around 2×, while the number of parallel processes increases
64×. Note that in this case the interface is relatively very small and concentrated
around eight points; see Fig. 3.8a. The situation improves when the interface covers a
larger part of the domain and, consequently, a larger percentage of CPU-cores become
involved in the VOF calculations: for the 4×4×4 configuration the PE varies from 87%
to 11%, and for the 8×8×8 one from 92% to 48%. Note also that with 1024 CPU-cores
the workload per parallel process is rather low: in ascending order of number of
spheres, the ideal workload per process would be around 3, 24 and 192 interface cells,
respectively. This fact relativizes the poor results achieved with the highest number of
CPU-cores for the coarser interfaces. However, these cases allow us to better analyze
aspects of the speedup degradation that may become hidden when the computing
costs dominate.

By looking a little deeper into the causes that degrade the acceleration of the DD
approach, we have, on the one hand, the effects of the poor workload distribution
and, on the other hand, the cost of the communications required on the halo updates.
The influence of the second aspect is considered in Fig. 3.10, where the percentage of
the communications cost over the total cost of the VOF algorithm is presented. Again,
the general picture looks as expected: (1) the percentage of the communications cost
grows with the number of CPU-cores; (2) when the size of the interface grows, the
relative weight of the communications falls. Nevertheless, the most relevant aspect
shown in Fig. 3.10 is that in all cases the percentage of the communications cost is
below 1.7%. The subsequent conclusion is that the communications cost is negligible
compared to computations. Therefore, the acceleration depends only on the workload
distribution condition. This statement is reinforced by the result shown in Fig. 3.11,
where the imbalance obtained for each of the mesh partitions used in the previous
tests is represented. The imbalance is evaluated as the difference between the number
of interface cells of the most overloaded parallel process and the average of interface
cells per process, divided by the latter. The values obtained agree with our statement.
For example, looking at the 8×8×8 case, the imbalance obtained using 1024 CPU-
cores is 1.2× the average number of interface cells, thus, the parallel process with
maximum workload has to solve (1×) + (1.2×) = 2.2× the average. According
to this, and assuming for simplicity an ideal load balance with 16 CPU-cores and
an equal solution cost for all interface cells, the strong speedup obtained should be
64/2.2 = 29×, which is close to the observed strong speedup of 30×.
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Figure 3.9: Speedup of the VOF solution using the DD strategy for the 2×2×2, 4×4×4
and 8×8×8 interface configurations.
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algorithm with the DD parallelization strategy.
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Figure 3.11: Imbalance obtained on each of the test cases studied. The imbalance
is evaluated as the difference between the number of interface cells for the most
overloaded parallel process and the average of interface cells per process, divided by
the average.

The strong speedup is now analyzed for the new parallelization strategy, with
identical test conditions to those set for the DD approach. The results, depicted in
Fig 3.12, show a speedup qualitetively similar to that obtained with the DD algorithm,
but quantitatively better. The improvement achieved is more noticeable the more
imbalanced the case is. In the most extreme situation, using 1024 CPU-cores, the leap
obtained in the PE by using the LB instead of the DD is from 48% to 63% for case
8×8×8, from 11% to 50% for case 4×4×4 and from 3% to 28% for case 2×2×2; see
Figs. 3.9 and 3.12. This improvement is also evident with lower numbers of CPU-cores.
For example, with 128 CPU-cores, the leap is from 70% to 93%, from 42% to 83%
and from 16% to 67% for the 8×8×8, 4×4×4, and 2×2×2 interfaces, respectively. In
conclusion, we observe that the LB strategy consistently outperforms the DD one.

In Fig. 3.13, as previously done for the DD strategy, we show the relative cost
of the communications over the total cost of the VOF algorithm. These occur in the
steps 2, 3 and 5 of Alg. 1. Again, the relative weight of the communications is propor-
tional to the number of CPU-cores engaged and inversely proportional to the interface
size, i.e., the workload. However, there is a major difference with respect to the results
obtained for the DD parallelization: while the communications cost always represents
less than 1.7% of the total time for the DD strategy, it reaches up to 50% with the LB
one. In particular, in ascending order of number of spheres, with 1024 CPU-cores,
communications represent 48%, 23% and 11% of the total compute time, respectively.
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Figure 3.12: Speedup of the VOF solution using the LB strategy for the 2×2×2,
4×4×4 and 8×8×8 interface configurations.
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Figure 3.13: Percentage of the communication costs over the total cost of the VOF
algorithm with the LB parallelization strategy.
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Therefore, in contrast to what happens with the DD strategy, the speedup of the LB
approach is limited by the cost of the communications required to move the data
between parallel processes. Nevertheless, the degree of initial imbalance determines
also the parallel performance, since the more imbalance there is, the larger is the
amount of data that needs to be reassigned.

All tests presented up to this point refer to the strong speedup of the DD and
LB strategies. Nevertheless, in order to contrast their real performance, we must
compare their solution times for a VOF iteration, instead of their acceleration with
respect to themselves. Accordingly, the ratio between both solution times is shown
in Fig. 3.14 for the test cases studied in the previous figures. At the initial point,
with 16 CPU-cores, all cases present a certain imbalance that favors the LB approach.
This produces a speedup that ranges from 1.15 for the 8×8×8 case up to 1.43 for
the 2×2×2 one. The rest of values derive from the differences already shown in
the acceleration trends of both methods; see Figs. 3.9 and 3.12. Consequently, the
initial speedup widens much more for the coarser interfaces. At the end, with 1024
CPU-cores, the speedup achieved by using our new approach ranges from 1.5× for
the 8×8×8 configuration, up to 11.6× for the coarser interface case.
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Figure 3.14: Speedup of the LB strategy versus the DD one for the VOF solution of
the 2×2×2, 4×4×4 and 8×8×8 interface configurations with different number of
CPU-cores.

The next test is devoted to further analyze the effects of the initial interface
distribution on the parallel performance. For this purpose, three new configurations
are considered; see Fig. 3.15. On the one hand, the new configuration 4×8×8 is
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obtained by removing the spheres of the 8×8×8 interface that are located in one
half of the domain. On the other hand, the configurations R-8×8×8 and R-4×8×8
are obtained by assigning random positions to the spheres of the respective grids,
restricting them to one half of the domain for the case R-4×8×8. In Fig. 3.16, it is
compared the VOF solution time for these three new configurations together with
the 8×8×8 one, using 512 CPU-cores and both parallelization strategies. Analyzing
first the effect of randomly placing the grids of spheres, i.e., comparing the first and
second, and the third and forth columns of the DD and LB blocks in Fig. 3.16; it is
clear that it produces a negative effect only for the DD strategy. The DD degradation
was predictable, since setting the spheres positions randomly widens the imbalance.
On the other hand, for the LB one, this additional imbalance should increase a little
the data transfer requirements on the load balancing process. However, this effect
is not perceptible in the solution time because, as shown in Fig 3.13, the weight of
communications is relatively low in this case (∼5%). Note that we have carried out all
the previous tests on grids of spheres uniformly distributed throughout the domain,
the imbalance was therefore principally produced by the sparsity of the interface that
leaves many processes with little or zero workload. As shown in the present test,
random distributions may increase the imbalance and, thus, the performance of the
LB with respect to the DD methodology.

Figure 3.15: Three additional configurations of spheres: (a) 4×8×8, (b) R-8×8×8 and
(c) R-4×8×8.

In the test shown in Fig. 3.16 we have also proposed the artificially generated
situation in which half of the domain is empty. By doing this, the VOF workload is
almost halved. Therefore, we would ideally expect that the solution time was halved
as well. The real effect is observed by comparing columns first and third, and second
and fourth of the DD and LB blocks, respectively. Using the DD approach, there is no
time reduction, since the processors of the non-emptied half retain its workload. On
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the other hand, with the LB strategy the workload is redistributed and the solution
time is halved in both situations. This test shows the robustness of the new strategy
in situations of imbalance in which the parallel performance of the DD is seriously
degraded.
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Figure 3.16: Comparative of the time required by the DD and LB strategies to solve
the interface configurations 4×8×8 and 8×8×8 using 512 CPU-cores.

In the above tests different interface configurations have been considered, however,
the underlying 3-D discretization has been kept constant. The effects of varying it
are shown in Fig. 3.17. In particular, the strong speedup of the LB algorithm on
the solution of the 4×4×4 interface for two additional 3-D meshes of sizes 250K
and 4000K, together with the results presented previously for the 1000K mesh, are
depicted. When the 3-D discretization is varied, the number of interface cells also
varies but in a lower degree, since the fluids interface is bidimensional. On the
other hand, the distribution of the interface within the domain remains constant.
However, this does not ensure that the partitions imbalance is the same, since the
mesh partitioning is not based on geometrical criteria, but on topological criteria. The
results obtained look as expected: the speedup improves by increasing the computing
load, i.e., the mesh size. There are two main reasons for this: (1) the relative weight
of the communications decreases; (2) the relative weight of any residual imbalance
remaining after the load balancing process decreases as well. Particularly, the strong
speedup results shown in Fig. 3.17 are very similar for all the 3-D meshes up to 128
CPU-cores. Indeed, in this range the communication overcosts remain rather low for
all cases. As these costs grow and become more significant, differences appear on the
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speedup. For instance, with 1024 CPU-cores, where the differences are the largest, the
communications cost represents 48%, 24% and 18% of the solution time for the 250K,
1000K and 4000K mesh, respectively. Additionally, note that with 1024 CPU-cores, for
the 250K mesh the ideal workload per CPU-core is minimal, only around 9 interface
cells. As a consequence, a residual imbalance of only one interface cell on the new
distribution degrades the imbalance by 10%. On the contrary, for the 4000K mesh
the ideal load per CPU grows up to 63 interface cells, so this potential degradation is
below 1.5%. In any case, note that the situation described in this test is practically the
same one which occurs when the interface is varied by increasing or decreasing its
size on a fixed 3-D grid. In fact, since only the interface cells are engaged on the VOF
calculations, the size of the 3-D mesh is only important as it determines the size of the
interface.
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Figure 3.17: Speedup of the LB strategy on the solution of the 4×4×4 interface
configuration for three different 3-D meshes of sizes 250K, 1000K and 4000K.

Once our LB parallelization strategy has been extensively compared to the stan-
dard DD approach, the influence of the improvements introduced during the devel-
opment of the algorithm are analyzed in the last test. In particular, these are two:
(1) considering the overcost caused by the unpack process on the solution of the
reassigned tasks (coefficient α); (2) assigning a weight to each task according to its
relative cost. Neither of these two optimizations are necessary on the reconstruction
phase because, on the one hand, the unpack operation cost is negligible with respect
to the reconstruction calculations (α = 0) and, on the other, the unitary tasks have
all the same cost. Therefore, results are shown only for the advection phase. Indeed,
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with our implementation the advection phase represents always around 85% of the
solution time, so it essentially determines the overall performance. In Fig. 3.18 the
reduction achieved on the advection solution time by the different optimizations is
shown: (1) considering coefficient α (LB Alpha); (2) introducing weights (LB Weight);
(3) considering both optimizations together (LB Optimal). The tests are executed on
the 1000K mesh for the 4×4×4 interface configuration, on the range of CPU-cores
previously considered. At first sight, it is clear that the larger the CPU-cores engaged,
the larger is the influence of the optimizations. Indeed, the optimizations are more
relevant because the load balancing itself becomes more significant too. In particular,
the benefit obtained by considering only the unpack overcosts (LB Alpha) is rather
limited, not reaching 3%. In fact, there is an intrinsic limitation of 10%, since α = 0.1.
For VOF algorithms, geometric discretizations or computing systems that result in a
larger α, this optimization could be much more important. On the other hand, using
weights in order to optimize the balancing process (LB Weight) results in greater
benefits that reach up to 19%. Finally, by setting both optimizations together (LB
Optimal), the benefits reach up to 23%. Note also that both optimizations are mutually
beneficial since, in general, the time reduction achieved by their interaction is superior
to the sum of the reductions achieved separately.
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Figure 3.18: Reduction achieved on the advection solution time by different optimiza-
tions of the LB algorithm: (1) considering coefficient α (LB Alpha); (2) introducing
weights (LB Weight); (3) considering both optimizations together (LB Optimal). The
test case is the 4×4×4 interface configuration on the 1000K mesh.
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3.5 Conclusions

A new parallelization strategy for VOF methods has been presented and studied in
detail. It has been developed with the aim of overcoming the workload imbalance
obtained with the standard domain decomposition when the fluids interface is not
homogeneously distributed throughout the domain. Basically, it consists in a dynamic
load balancing process, complementary to the underlying domain decomposition,
that reassigns tasks from processes with higher workload to processes with lower
workload. This process is applied separately to the reconstruction and advection
phases of the VOF algorithm. Since the initial domain decomposition is surpassed
and the algorithm is applied to general unstructured discretizations, all the geometric
and algebraic data required to perform any reassigned task need to be transmitted
with it. In particular, communications are managed by means of buffers, and specific
pack and unpack functions to, respectively, read and write data from them. To better
achieve the desired load balance, two important issues need to be considered: the
variable cost of the tasks being distributed and the overcost produced when a task
is reassigned. An optimal workload balance leads to an NP-complete problem, for
which a fast heuristic has been found giving a solution with 99% precision in few
steps. Moreover, all the algorithms necessary to implement the new strategy have
been described in detail.

An exhaustive analysis and comparison of the standard domain decomposition
and our load balancing strategy has been performed. Several test cases, based on
grids of spheres (representing the interface between fluids) distributed within a cubic
domain, have been generated in order to measure the influence of the initial imbalance
and of the problem size. These tests have been executed in the MareNostrum-III
supercomputer of the Barcelona Supercomputing Center, engaging up to 1024 CPU-
cores. It has been asserted that the efficiency of the DD strategy depends only on the
load balancing or, equivalently, the interface distribution within the domain. Our
LB strategy overcomes the imbalance, but the redistribution cost cancels part of the
gains achieved from it. Anyway, when directly comparing both strategies, the result
is that the larger the initial imbalance, the larger the speedup achieved by the LB
algorithm respect to the DD one. We have observed speedups up to ∼12× for the
most ill-conditioned situations, but even in situations where the interface is almost
spread throughout all the domain, the speedup achieved is ∼1.5× in average.

With this scenario in mind, the new parallelization strategy presented may be a
feasible option to be considered when solving multi-fluid flows by means of VOF
methods. Moreover, our approach could be easily adapted to other interface-capturing
methods, like the Level-Set, which suffer from a similar workload imbalance.
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4

Discretization of the

Navier-Stokes equations

on unstructured meshes

Main contents of this chapter have been published in:

L. Jofre, O. Lehmkuhl, J. Ventosa, F. X. Trias, and A. Oliva. Conservation Properties of Unstruc-
tured Finite-Volume Mesh Schemes for the Navier-Stokes Equations. Numerical Heat Transfer,
Part B, 65:53–79, 2014.

Abstract. The continuity and Navier-Stokes equations describe fluid flow by conserving mass
and momentum. There are two main mesh discretizations for the calculation of these equations,
the collocated and staggered schemes. Collocated schemes locate the velocity field at the same
grid points as the pressure one, while staggered discretizations locate variables at different
points within the mesh. One of the most important characteristics of the discretization schemes,
aside from accuracy, is their capacity to discretely conserve kinetic energy, specially when
solving turbulent flow. Hence, this work analyzes the accuracy and conservation properties of
two particular collocated and staggered mesh schemes by solving a Rankine vortex, an exact
sinusoidal function and the turbulent flow over a circular cylinder at Re = 3900.
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4.1 Introduction

The continuity and Navier-Stokes equations are a general model that describes fluid
flow by conserving mass and momentum, the latter being derived from Newton’s
second law applied to a fluid. These set of equations cannot be solved analytically.
Instead, one of the multiple approaches is to set up a discrete system of equations that
can be solved with computers. One of the main difficulties when discretizing these
equations is the location of velocity and pressure node points, since an inadequate
arrangement may produce a checkerboard pressure solution caused by the decoupling
of velocity and pressure fields. Over the years, two main mesh discretizations for
the calculation of the discrete Navier-Stokes equations have been developed, the
collocated and staggered schemes.

Collocated mesh schemes locate the velocity field at the same grid points as
the pressure one, which can result in a checkerboard pressure problem as shown by
Patankar [1]. In order to minimize this problem, Rhie and Chow [2] proposed a special
interpolation to compute the velocity field at cell faces for curvilinear grids. Later,
Davidson [3] and Marthur et al. [4] extended the methodology to unstructured meshes.
All these strategies did not conserve kinetic energy, as analyzed by Morinishi et al. [5],
who stated that collocated mesh methods contain a kinetic energy conservation error
of the formO(∆tm, ∆hn) due to the improper pressure gradient formulation. In recent
years, the scheme’s kinetic energy conservation has been improved on unstructured
meshes: (1) using a least-squares procedure to calculate the pressure-gradient term
that advances cell-centered velocities by Mahesh et al. [6], although making the
formulation not stable enough for all kind of grids; (2) utilizing vectors that span
the null space of the discrete pressure Laplacian to obtain a smooth pressure field
by Shashank et al. [7], despite being only accomplished for Cartesian grids. Another
approach has been presented by Felten and Lund [8] for curvilinear grids and recast
in a slightly different manner to unstructured meshes by Lehmkuhl et al. [9,10], which
proposes a special definition for the projected velocity face flux that exactly conserves
mass, resulting in a kinetic energy conservation error of the form O(∆tm, ∆h2).

On the other hand, a staggered mesh scheme is any numerical scheme where
variables are located at different points within the mesh. While different staggering
schemes are possible [11–13], this work is interested in the scheme presented for
2-D unstructured meshes by Perot [14] and analyzed on 3-D unstructured meshes
by Zhang et al. [15], since it is a generalization to unstructured meshes of the one
originally presented by Harlow and Welch [16]. This scheme locates pressure at cell
centers and normal velocities at cell faces while not displaying spurious pressure
modes, i.e., there is no red-black uncoupling of the pressure unknowns. As a counter-
part, normal face velocities are discretized in time, thus, cell-centered velocities need
to be interpolated from face normal values.
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The main purposes of this work are to accurately formulate the collocated scheme
utilized extensively by Lehmkuhl et al. [9, 10] and Rodríguez et al. [17, 18], extend
Perot’s [14] staggered discretization by studying a different cell-centered velocity in-
terpolation, and to analyze the conservation properties and accuracy of both schemes.
In this way, an improved knowledge of both schemes will be gained. Going forward,
mesh discretizations will be chosen according to the main flow properties to be fa-
vored in complex problems regarding, for example, multiphase flow, combustion
problems, or fluids with nonconstant physical properties. First, both discretization
strategies are explained in detail in Sec. 4.2. Next, their conservation of mass, momen-
tum and kinetic energy is studied in Sec. 4.3. Finally, different problems are solved in
Sec. 4.4 to test their conservation properties and accuracy, such as a Rankine vortex,
an exact sinusoidal function and the turbulent flow over a circular cylinder.

4.2 Discrete Navier-Stokes equations

The divergence form of the incompressible continuity and Navier-Stokes equations is

∇·u = 0, (4.1)

∂u
∂t

+∇· (uu) = −1
ρ
∇p + ν∆u, (4.2)

where u is the velocity, p the pressure and ρ and ν the constant density and kinematic
viscosity, respectively. The finite-volume spatial discretization of these equations on a
general arbitrary mesh scheme, using discrete matrix operators, is written as

Mu = 0, (4.3)

Ω
du
dt

+ C(u)u + νDu +
1
ρ

Gp = 0, (4.4)

where u and p are the vectors of velocities and pressures. The diagonal matrix Ω
describes the volume of cells, matrices C(u) and D are the convective and diffusive
operators, and matrices G and M represent the gradient and divergence operators.

Discrete conservation properties are related to the symmetries of these matrices as
studied in detail by Verstappen and Veldman [19]. Hence, kinetic energy is conserved
if and only if the discrete convective operator is skew-symmetric, i.e., the transpose of
the matrix is also its negative, C(u) = −C(u)∗, and if the negative conjugate transpose
of the discrete gradient operator is equal to the divergence operator, M = −G∗. On
the other hand, since diffusive terms must be dissipative, the diffusive operator must
be symmetric and positive-definite, i.e., the matrix is equal to its transpose D = D∗,
and z∗Dz > 0 for all nonzero z.
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4.2.1 Collocated mesh scheme

The collocated mesh scheme calculates velocity and pressure fields at cell centers
and needs particular interpolations and special velocity fluxes at faces, in order to
minimize the kinetic energy error and conserve mass exactly, respectively.

The velocity-pressure coupling of the momentum equation, Eq. 4.2, is solved by
means of a classical fractional step projection method along with a first-order explicit
time advancement, written as

un+1 − up = −∆t
ρ
∇pn+1, (4.5)

up = un − ∆t [∇· (unun)− ν∆un] , (4.6)

where superscript n refers to time instant, up is the predictor velocity, and ∆t is the
time step.

First, the predictor velocity is discretized by integrating Eq. 4.6 over a cell c and
applying the divergence theorem to its bordering faces, f ∈ F(c), giving

up
c = un

c −
∆t
Vc

 ∑
f∈F(c)

φn
f Ûn

f A f − ν ∑
f∈F(c)

(un
nb − un

c )
A f

δd f

 , (4.7)

where Vc is the volume of cell c, φ f is the convected face velocity, Û f is the normal face
velocity, n̂ f is the outward-unit face normal, A f is the face surface, subscripts c and nb
refer to the cell itself and the face-neighbor one, and length δd f is the normal-projected
distance between the centroids of cells c and nb; see Fig. 4.1.

Next, taking the divergence of Eq. 4.5, applying the incompressibility condition,
Eq. 4.1, and discretizing over cell c, yields a discrete Poisson equation

∑
f∈F(c)

Ûp
f A f =

∆t
ρ ∑

f∈F(c)
(pn+1

nb − pn+1
c )

A f

δd f
, (4.8)

which solves the pressure field. When the solution of pn+1 is obtained, un+1 results
from discretizing Eq. 4.5 over cell c as

un+1
c = up

c −
∆t
ρVc

∑
f∈F(c)

pn+1
f n̂ f A f , (4.9)

where p f is the pressure interpolated to face f .
Notice that no specific interpolations for φn

f , Ûp
f and pn+1

f have been explained
yet. Therefore, in order to fulfill the skew-symmetric conservation requirement of the
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Figure 4.1: Variable arrangement and notation for the collocated scheme on a 2-D
unstructured mesh. The schematic representation shows the collocated position of
velocity, u, and pressure, p. The cell c where the discretization is analyzed is shown in
gray, with an example of face f and its corresponding neighbor cell nb, outward-unit
normal n̂ f and centroids’ distance, δd f .

discrete convective operator, the convected face velocity is evaluated as φn
f =

1
2 (u

n
c +

un
nb) [19]. On the other hand, the normal face predictor velocity and face pressure

are calculated as Ûp
f = 1

2 (u
p
c + up

nb)· n̂ f and pn+1
f = 1

2 (pn+1
c + pn+1

nb ), minimizing the
kinetic energy conservation error as analyzed by Felten and Lund [8].

Finally, the evaluation of the normal face velocity, Ûn+1
f , needs to be studied in

detail in order to exactly conserve mass. Thus, taking again the divergence of Eq. 4.5
and discretizing over cell c gives

∑
f∈F(c)

Ûn+1
f A f − ∑

f∈F(c)
Ûp

f A f = −
∆t
ρ ∑

f∈F(c)
(pn+1

nb − pn+1
c )

A f

δd f
, (4.10)

which can be arranged in the following form

∑
f∈F(c)

[
Ûn+1

f A f − Ûp
f A f +

∆t
ρ
(pn+1

nb − pn+1
c )

A f

δd f

]
= 0. (4.11)

Next, imposing a more restrictive but easier condition that asks each face to equal
zero, the following equation is obtained

Ûn+1
f = Ûp

f −
∆t
ρ

(pn+1
nb − pn+1

c )

δd f
. (4.12)
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Then, if the predictor normal face velocity is evaluated as the semi-sum Ûp
f = 1

2 (u
p
c +

up
nb)· n̂ f and up is substituted using Eq. 4.9, Eq. 4.12 is rewritten as

Ûn+1
f =

1
2
(un+1

c + un+1
nb )· n̂ f −

∆t
ρ

[
(pn+1

nb − pn+1
c )

δd f

]
(4.13)

+
∆t
ρ

1
2

 1
Vc

∑
f∈F(c)

pn+1
f n̂ f A f +

1
Vnb

∑
f∈F(nb)

pn+1
f n̂ f A f

 · n̂ f ,

which is similar to the mass-conserving normal face velocity proposed by Felten and
Lund [8].

4.2.2 Staggered mesh scheme

The staggered mesh scheme stores pressure and other scalar quantities at cell centers
while normal velocities are distributed to cell faces. Each face stores only the normal
component of velocity, therefore, the cell-centered velocity vector has to be recovered
from face normal values. This recovery or interpolation of velocity vector from face
normal quantities is not unique, and it is a defining characteristic of each staggered
mesh scheme, leading to different properties for the solution. This work focuses
on the staggered mesh discretization developed for 2-D unstructured meshes by
Perot [14] and extended to 3-D meshes by Zhang et al. [15].

In order to develop the staggered discretization, some preliminary remarks are
needed. First, face-centered control volumes are defined for each face f as Vf =

(Wa
f + Wb

f )A f , where W f is the distance between the face and each neighboring
cell circumcenter and A f is the surface of face f ; see Fig. 4.2. Second, convective
and diffusive terms are calculated at cell centers as non-volumetric quantities and
distance-interpolated to faces using W f .

Thus, integrating Eq. 4.5 and 4.6 over face f control volume and taking a dot
product with the face normal vector, n f , results in the discrete staggered form of the
fractional step projection method

Un+1
f = Up

f −
∆t

ρVf
(pn+1

b − pn+1
a )A f , (4.14)

Up
f = Un

f −
∆t
Vf

[
Wa

f (ca − da) + Wb
f (cb − db)

]
·n f A f . (4.15)

Subscripts a and b refer to the two cells adjacent to face f , and c and d are the
non-volumetric cell-centered discretizations of the convective and diffusive terms
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Figure 4.2: Variable arrangement and notation for the staggered scheme on a 2-D
unstructured mesh. The schematic representation shows the staggered position of
the normal velocity, U, and the cell-centered location of pressure, p. Face f and its
neighboring cells a and b, where the cell-to-face operator is explained, are shown
together with distances Wa

f and Wb
f . On the other hand, the face-to-cell operator is

shown by representing cell c and an example of face f where the interpolation is
taken using distance xCG

f − xCC
c .

evaluated for each cell c as

cc =
1
Vc

∑
f∈F(c)

φn
f Ûn

f A f , dc =
1
Vc

∑
f∈F(c)

ν(un
nb − un

c )
A f

δd f
, (4.16)

where the convected face velocity, φ f , is evaluated as previously defined for the
collocated formulation and length δd f is once again the distance between cell nodes.

Next, taking the divergence of Eq. 4.5, using the incompressibility condition, and
discretizing over cell c gives the discrete Poisson equation already presented, Eq. 4.8,
but in this case no interpolation is needed since the normal face predictor velocity, Up

f ,
is given by Eq. 4.15 and δd f is now the distance between cell circumcenters. When
the solution of pn+1 is calculated, Eq. 4.14 is used to obtain the normal face velocities
at instant n + 1, Un+1

f .
Finally, the staggered mesh scheme discretizes normal face velocities in time,

then, cell-centered velocities need to be interpolated from face normal values. In this
work, two different interpolations will be analyzed: the one presented by Perot [14]
(staggered a) and a different one proposed by the authors (staggered b).
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On the one hand, Perot (staggered a) proposes to apply Gauss’ divergence theorem
for cell c to the product of position r and velocity u, giving∫

Ωc
u dV +

∫
Ωc

r(∇ · u) dV = ∑
f∈F(c)

∫
∂Ω f

Ûr dA, (4.17)

where r = x− x0 is the position vector from the cell circumcenter and Û is the outward
normal face velocity. Then, if a first-order approximation of the velocity field (constant
u) is assumed, Eq. 4.17 is rewritten as

uc =
1
Vc

∑
f∈F(c)

Û f rc
f A f , (4.18)

and rc
f = xCG

f − xCC
c is the vector from cell circumcenter, xCC

c , to face centroid, xCG
f .

On the other hand, this study presents a different approach for the reconstruction
of cell-centered velocities (staggered b) based on a least-squares procedure [20], which
resembles to the work of Vidovic [21]. In this way, the cell-centered velocity is thought
to be approximated in the vicinity of the cell centroid, r0, as a polynomial of the form

uc(r) = a + bx + cy + dz, (4.19)

where r is the position vector, relative to point r0, of a point where uc is to be recon-
structed, and a, b, c and d are the unknowns to be determined. Hence, for each cell c
a system of equations is created by imposing at its surrounding cell faces, f ∈ S(c),
that the scalar product of velocity, uc(r), and outward-unit face normal, n̂ f , equals
the normal face velocity, Û f , written as

uc(r)· n̂ f = Û f , (4.20)

which sets up the following linear system of equations

Ax = b, (4.21)

where

A = (4.22)
n̂x,0 n̂y,0 n̂z,0 n̂x,0x0 n̂x,0y0 n̂x,0z0 n̂y,0x0 n̂y,0y0 n̂y,0z0 n̂z,0x0 n̂z,0y0 n̂z,0z0

...
...

...
...

...
...

...
...

...
...

...
...

n̂x, f n̂y, f n̂z, f n̂x, f x f n̂x, f y f n̂x, f z f n̂y, f x f n̂y, f y f n̂y, f z f n̂z, f x f n̂z, f y f n̂z, f z f

,

x = [a0 a1 a2 b0 b1 b2 c0 c1 c2 d0 d1 d2]
T , (4.23)

b =
[
Û0 . . . Û f

]T . (4.24)
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The resulting system is overdetermined since for each cell there are more sur-
rounding faces than polynomial coefficients, A f×12x12×1 = b f×1. In this way, the
system is modified by applying a least-squares procedure which multiplies both
sides of the equation by the transpose AT , giving a standard square system of linear
equations, (ATA)x = ATb. Finally, the solution of the square system can be obtained
by multiplying both sides by (ATA)−1, resulting in the following expression

x = [(ATA)−1AT ]b. (4.25)

Notice that the matrix product (ATA)−1AT needs to be calculated just once, since
it deals only with geometric quantities. Thus, the solution of the linear system is
manageable, as it is comprised of just a matrix-vector product.

4.3 Conservation properties

Conservation of mass and momentum is intrinsic to the continuity and Navier-
Stokes equations, since they are derived specifically for the conservation of these
particular quantities, thus, a suitable discretization has to conserve them. On the
other hand, secondary conservation involves the conservation of derived quantities,
such as kinetic energy, entropy and vorticity, which are not directly unknowns of the
numerical system and, hence, cannot be directly imposed during the construction of
numerical methods, but are of great importance for the physics of problems.

4.3.1 Mass conservation

Global conservation of mass invokes the integral of Eq. 4.1 over the whole domain,
Ω. Thus, if the domain integral is transformed to a summation of integrals for each
control volume that form the domain, c ∈ Ω, the following expression is obtained∫

Ω
∇·u dV = ∑

c∈Ω

∫
Ωc
∇·u dV = ∑

c∈Ω
∑

f∈F(c)
Û f A f . (4.26)

In the collocated case a special definition for the normal face velocity, Eq. 4.13, has
been developed in order to exactly conserve mass for each cell c. On the other hand,
for the staggered case no interpolation of the normal face velocity is needed, since it
is calculated at cell faces by definition of the scheme. Hence, in both cases the mass is
locally conserved, expressed for each cell c as∫

Ωc
∇·u dV =

∫
∂Ωc

u· n̂ dS = ∑
f∈F(c)

Û f A f = 0. (4.27)
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Then, global mass conservation, Eq. 4.26, equals zero, since it is a summation of locally
mass-conserving quantities.

4.3.2 Momentum conservation

The conservation of momentum is a straightforward consequence of writing the
equations in divergence form. However, a proof of conservation of momentum may
be natural for collocated schemes but not obvious for staggered ones on unstructured
meshes. The inherent difficulty is due to the fact that the velocity vector is not a
primary variable for staggered schemes.

Collocated momentum conservation

Total conservation of momentum is obtained by integrating Eq. 4.2 over the entire
domain, which is transformed to a summation of integrals for each control volume
that form the domain and converted to surface integrals by applying the divergence
theorem, as previously done for mass conservation, giving

∑
c∈Ω

duc

dt
Vc + ∑

c∈Ω
∑

f∈F(c)
φ f Û f A f (4.28)

= −1
ρ ∑

c∈Ω
∑

f∈F(c)
p f n̂ f A f + ν ∑

c∈Ω
∑

f∈F(c)
(unb − uc)

A f

δd f
.

Notice that Û f , n̂ f and (unb − uc) are quantities that present equal values but with
different sign when evaluating them at a face f from two adjacent interior cells. In
this way, interior fluxes cancel out and Eq. 4.28 is evaluated as the summation over
boundary faces, f ∈ F(∂Ω), written as

∑
c∈Ω

duc

dt
Vc + ∑

f∈F(∂Ω)

φ f Û f A f (4.29)

= −1
ρ ∑

f∈F(∂Ω)

p f n̂ f A f + ν ∑
f∈F(∂Ω)

(u f − ua)
A f

δd f
,

which is a proof of momentum conservation for collocated meshes since it states
that the change in momentum is due only to the fluxes through the boundary of the
domain.

Staggered momentum conservation

The primary quantity in staggered mesh schemes is the normal face velocity. Thus,
integrating Eq. 4.2 over face f control volume, as explained in detail in Sec. 4.2.2, and
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taking a dot product with the face normal vector, n f , gives the discretized momentum
equation for the normal face velocity, U f , written as

(Wa
f + Wb

f )A f
dU f

dt
+ (Wa

f ca + Wb
f cb)A f ·n f (4.30)

= −1
ρ
(pb − pa)A f + (Wa

f da + Wb
f db)A f ·n f .

Discrete staggered conservation of momentum is shown by multipliying Eq. 4.30
by the face normal vector, n f , and summing over all faces of the domain, f ∈ F(Ω),
giving the following equation

∑
f∈F(Ω)

(Wa
f + Wb

f )A f
dU f

dt
n f + ∑

f∈F(Ω)

(Wa
f ca + Wb

f cb)A f ·n f n f (4.31)

= −1
ρ ∑

f∈F(Ω)

(pb − pa)A f n f + ∑
f∈F(Ω)

(Wa
f da + Wb

f db)A f ·n f n f .

Then, the goal is to recast this equation as an equation for cell velocity.
First, the sum over faces of the time derivative term in Eq. 4.31 needs to be recast

as a summation over cells. There are two situations, depending on which cell-centered
velocity reconstruction is chosen: staggered a or b. On the one hand, if Perot’s cell
velocity interpolation is considered, the following analysis is developed

∑
f∈F(Ω)

(Wa
f + Wb

f )A f
dU f

dt
n f =

d
dt

 ∑
f∈F(Ω)

(ra
f − rb

f )A f U f

 (4.32)

=
d
dt

∑
c∈Ω

 1
Vc

∑
f∈F(c)

Û f rc
f A f

Vc

 = ∑
c∈Ω

duc

dt
Vc,

where the first equality is true since for each face f the following expression stands

(Wa
f + Wb

f )n f = xCC
b − xCC

a (4.33)

= (xCG
f − xCC

a )− (xCG
f − xCC

b ) = ra
f − rb

f ,

while the second equality is the transformation from face to cell summation, account-
ing that Ûb

f = −Ûa
f , and the third one follows from Eq. 4.18. On the other hand, if the
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staggered b cell velocity reconstruction is adopted, the formulation writes as

∑
f∈F(Ω)

(Wa
f + Wb

f )A f
dU f

dt
n f = ∑

f∈F(Ω)

(ra
f − rb

f )A f
d(uc·n f )

dt
(4.34)

= ∑
c∈Ω

duc

dt

 ∑
f∈F(c)

rc
f · n̂ f A f

 = ∑
c∈Ω

duc

dt
Vc,

where Eqs. 4.20 and 4.33 are used in the first transformation, the second one applies
the equality Ûb

f = −Ûa
f and takes out of the face summation the velocity derivative,

and finally, the third one identifies the face summation as the volume of cell c.
Second, sums over all faces of the domain for convective and diffusive terms in

Eq. 4.31 can be recast as summations over boundary faces, expressed as

∑
f∈F(Ω)

(Wa
f ca + Wb

f cb)A f ·n f n f = ∑
c∈Ω

cc·

 ∑
f∈F(c)

n f n f Wc
f A f

 (4.35)

= ∑
c∈Ω

cc· IVc = ∑
c∈Ω

ccVc = ∑
c∈Ω

∑
f∈F(c)

φ f Û f A f = ∑
f∈F(∂Ω)

φ f Û f A f ,

∑
f∈F(Ω)

(Wa
f da + Wb

f db)A f ·n f n f = ∑
c∈Ω

dc·

 ∑
f∈F(c)

n f n f Wc
f A f

 = ∑
c∈Ω

dc· IVc

= ∑
c∈Ω

dcVc = ∑
c∈Ω

∑
f∈F(c)

ν(unb − uc)
A f

δd f
= ν ∑

f∈F(∂Ω)

(u f − ua)
A f

δd f
, (4.36)

where the term in brackets is a known geometric result from the divergence theorem
and is equal to the identity tensor multiplied by the cell volume, IVc. Terms cc and dc
are expanded using Eq. 4.16 and interior fluxes exactly cancel out, leaving just fluxes
through the boundary faces.

Third, the pressure term in Eq. 4.31 can be straightforward rearranged as

∑
f∈F(Ω)

(pb − pa)A f n f =− ∑
c∈Ω

pc ∑
f∈F(c)

n̂ f A f (4.37)

+ ∑
f∈F(∂Ω)

p f n̂ f A f = ∑
f∈F(∂Ω)

p f n̂ f A f .

In summary, it is shown that Eq. 4.31 can be recast to Eq. 4.29 by using Eqs. 4.32 to
Eq. 4.37. Hence, the momentum conservation for the staggered schemes is proved,
since it states that the change in momentum is due only to the fluxes through the
boundary of the domain, as in the collocated scheme case.
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4.3.3 Kinetic energy conservation

The conservation of kinetic energy is the most important property when solving
turbulent flows. In this type of flow, the energy is convected from the main flow
into the large eddies, and from them into the next smaller ones, and so on until it is
dissipated in the smallest eddies found. Then, if no external sources are present, the
rate of change of total energy is just determined by dissipation. Thus, discretization
strategies with excessive numerical dissipation can alter the physics of the problem in
a very important proportion.

The transport equation for kinetic energy is derived from the momentum equation,
Eq. 4.2, by taking the velocity dot product and assuming incompressible fluid. In this
way, the specific kinetic energy 1

2 u · u can be shown to obey

∂( 1
2 u · u)
∂t

+∇ · [u(1
2

u · u)] = −1
ρ
∇ · (pu) + ν∇ · (u×ω)− νω ·ω, (4.38)

where ω = ∇× u is the vorticity. The important characteristic of this equation is that
it is conservative except for the negative definite sink term involving the product of
viscosity and enstrophy, νω ·ω. In the absence of external forces and viscosity, the
kinetic energy is simply redistributed but not created or destroyed. Similarly, discrete
systems will be kinetic energy conservative if convective and pressure terms in the
discrete kinetic energy equation are shown to be conservative [22].

Collocated kinetic energy conservation

In order to investigate the collocated conservation of kinetic energy, the momentum
equation, Eq. 4.2, is discretized over the whole domain and multiplied by the velocity
vector, u. Then, the resulting equation can be transformed to a summation of surface
integrals for each cell c, written as

∑
c∈Ω

uc·
duc

dt
Vc + ∑

c∈Ω
uc· ∑

f∈F(c)
φ f Û f A f (4.39)

= −1
ρ ∑

c∈Ω
uc· ∑

f∈F(c)
p f n̂ f A f + ν ∑

c∈Ω
uc· ∑

f∈F(c)
(unb − uc)

A f

δd f
,

where terms from left to right correspond to time derivative, convection, pressure
and diffusion contributions to the kinetic energy equation.

The detailed analysis of Eq. 4.39 is simplified if an important identity involving
combinations of interpolation and differentiation operators is introduced. The identity
was first presented by Morinishi et al. [5] and restated in finite-volume form by Felten
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and Lund [8]. The relation writes

ϕc ∑
f∈F(c)

ψ̄ f Q f + ψc ∑
f∈F(c)

ϕ̄ f Q f = ∑
f∈F(c)

ϕ̂ψQ f + (ϕcψc) ∑
f∈F(c)

Q f , (4.40)

where ϕ and ψ are two general variables, Q f is a general quantity known on the cell
face, i.e., no interpolation is needed, the overbars refer to interpolated values, and
ϕ̂ψ = 1

2 (ϕcψnb + ϕnbψc) is a special interpolator operator for products.
First, the convective term of Eq. 4.39 is transformed by specializing Eq. 4.40 to

ϕ = u, ψ = φ and Q f = Û f A f , then, using the continuity equation, Eq. 4.1, assuming
that u f =

1
2 (uc + unb) and canceling out equal terms, the convective expression can

be rewritten as

∑
c∈Ω

uc· ∑
f∈F(c)

φ f Û f A f = ∑
c∈Ω

∑
f∈F(c)

1
2

uc· (2φ f −φc)Û f A f , (4.41)

where φ f is evaluated as the semi-sum of the two adjacent cell velocities, i.e., using
the symmetry-preserving convective scheme.

Second, if the pressure term in Eq. 4.39 is analyzed in a similar fashion by taking
ϕ = u, ψ = p and Q f = n̂ f A f , and Eq. 4.13 is used to simplify the expression, the
following relation results

∑
c∈Ω

uc· ∑
f∈F(c)

p f n̂ f A f = ∑
c∈Ω

∑
f∈F(c)

ûp· n̂ f A f −
δt
ρ ∑

c∈Ω
pc ∑

f∈F(c)

[
(pnb − pc)

A f

δd f

]

+
δt
ρ ∑

c∈Ω
pc ∑

f∈F(c)

1
2

 1
Vc

∑
f∈F(c)

p f n̂ f A f +
1

Vnb
∑

f∈F(nb)
p f n̂ f A f

 · n̂ f A f . (4.42)

Finally, noticing that interior fluxes in Eq. 4.41 and Eq. 4.42 cancel out, Eq. 4.39
can be rewritten as

∑
c∈Ω

d( 1
2 uc·uc)

dt
Vc + ∑

f∈F(∂Ω)

1
2

ua· (2φ f −φa)Û f A f = −
1
ρ ∑

f∈F(∂Ω)

ûp· n̂ f A f

− δt
ρ2 ∑

c∈Ω
pc ∑

f∈F(c)

1
2

 1
Vc

∑
f∈F(c)

p f n̂ f A f +
1

Vnb
∑

f∈F(nb)
p f n̂ f A f

 · n̂ f A f (4.43)

+
δt
ρ2 ∑

c∈Ω
pc ∑

f∈F(c)

[
(pnb − pc)

A f

δd f

]
+ ν ∑

c∈Ω
uc· ∑

f∈F(c)
(unb − uc)

A f

δd f
,
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which states, that in the absence of viscosity (ν = 0), the change in kinetic energy
is due to the fluxes through the boundary of the domain and a kinetic energy error
from the pressure term. This pressure error term arises from the special definition
for the normal face velocity, Eq. 4.13, needed to exactly conserve mass on collocated
schemes. Notice that when using first-order interpolations (semi-summed variables
from adjacent cells) and a symmetry-preserving convection scheme, the kinetic energy
conservation error is minimized.

It is of great interest to evaluate the scaling order of the kinetic energy pressure
error since it can not be eliminated. Looking in detail Eq. 4.43, it can be shown that
the spatial pressure error scales like O(∆h2), as deduced by Felten and Lund [8],
while the time pressure error scales as O(∆t), but can be reduced through the use of
different time integration schemes, as studied by Fishpool and Leschziner [23].

This result can be related to the symmetries of discrete operators in the following
way: (1) the convective term in Eq. 4.43 presents no kinetic energy error, since the
convection scheme has been chosen to make the convective operator skew-symmetric;
(2) the need for a special definition for the normal face velocity, Eq. 4.13, makes the
divergence-gradient relation, M = −G∗, not true, therefore, a pressure gradient error
term arises in Eq. 4.43.

Staggered kinetic energy conservation

The staggered kinetic energy equation starts from the staggered momentum equation,
Eq. 4.31. First, Eqs. 4.32 to Eq. 4.37 are used to recast the summation over faces as a
summation over cells. Second, the resulting equation is multiplied by velocity, u. In
this way, the staggered kinetic energy equation is shown to obey the same equation
as in the collocated case, Eq. 4.39.

Next, the convective term is converted to flux form as done for the collocated
case, Eq. 4.41, while the pressure term is analyzed by specializing Eq. 4.40 as ϕ = u,
ψ = p, Q f = n̂ f A f and noticing that no special definition is needed for the normal
face velocity, giving

∑
c∈Ω

uc· ∑
f∈F(c)

p f n̂ f A f = ∑
c∈Ω

∑
f∈F(c)

ûp· n̂ f A f . (4.44)

Finally, knowing that interior fluxes cancel out, Eq. 4.39 is rewritten as

∑
c∈Ω

d( 1
2 uc·uc)

dt
Vc + ∑

f∈F(∂Ω)

1
2

ua· (2φ f −φa)Û f A f (4.45)

= −1
ρ ∑

f∈F(∂Ω)

ûp· n̂ f A f + ν ∑
c∈Ω

uc· ∑
f∈F(c)

(unb − uc)
A f

δd f
,
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which states that in the absence of viscosity (ν = 0), the change in kinetic energy is
due only to the fluxes through the boundary of the domain.

In this case, the two necessary discrete operator properties needed to conserve
kinetic energy are fulfilled: (1) the convective term is evaluated by a symmetry-
preserving convective scheme making the discrete convective operator skew-symmetric;
(2) the normal face velocity does not need a special definition since it is the primary
quantity, then, the divergence-gradient relation, M = −G∗, holds true.

4.4 Conservation and accuracy tests

Three different problems will be solved to test the conservation properties and ac-
curacy of the unstructured mesh schemes previously presented. First, conservation
properties will be analyzed by solving a Rankine vortex with zero mass flux at the
boundaries. Second, an accuracy assessment will be presented using an exact sinu-
soidal function. Finally, the schemes will be tested in a turbulent flow over a circular
cylinder at Reynolds number 3900.

4.4.1 Rankine vortex

In order to test the conservation properties of the schemes presented in Sec. 4.2, the
Rankine vortex problem is chosen because it has zero mass flux at the boundaries,
but is inherently unsteady. It is a two-dimensional flow since the motion only occurs
in the xy-plane.

The Rankine vortex model is given by the combination of a rigid-body rotation
within a core and a decay of angular velocity outside. The tangential velocity, uθ , of a
Rankine vortex with circulation, Γ, and radius, R, is given by

uθ(r) =
{

Γr/2πR2 r 6 R,
Γ/2πr r > R. (4.46)

In particular, the Rankine vortex solved in this work is placed at the center of a
3-D domain (1.0×1.0×h), the initial tangential velocity reaches a maximum of 0.16
m/s at radius R = 0.01 m, and circulation equals Γ = 0.032π m2/s. The density and
viscosity of the fluid are ρ = 1.0 kg/m3 and ν = 0.01 m2/s, respectively. The domain
is meshed with 3665 unstructured triangular prisms, which corresponds to a mesh
size of h = 0.025, the time step is fixed at ∆t = 0.0025 s, and all boundaries are slip
walls.
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Figure 4.3: Dissipation rate of kinetic energy using collocated, staggered a and b mesh
schemes versus time with ν = 0.01.
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The total discrete momentum for each mesh scheme is calculated at every time
step using Eq. 4.29. Results corroborate that collocated and both staggered a and b
discretizations conserve total momentum exactly as expected from Eq. 4.29, since
there is no flow across the domain boundaries. In this problem, velocity’s x and y
components are symmetric about the vortex axis and its z-component is zero, thus,
the initial total momentum is zero and it remains constant through the test.

The rate of change of total kinetic energy, dk/dt = d( 1
2 u·u)/dt, and the total

physical dissipation, −νω·ω, for each mesh scheme are calculated at every time step
using Eqs. 4.43 and 4.45, and results are plotted in Fig. 4.3. Since there is no flow
across the domain boundaries, the change of total kinetic energy with time should be
due only to the effect of dissipation, as described by Eq. 4.38, i.e., dk/dt and −νω·ω
should match for each time instant. Looking in detail at Fig. 4.3, it can be seen that
for both staggered schemes the rate of change of total kinetic energy and physical
dissipation exactly coincide, while in the collocated case a subtle difference can be
appreciated and is related to the pressure error term present in Eq. 4.43.

The kinetic energy error can be studied in detail if the viscosity is set to zero,
ν = 0.0. Then, if any difference exists between physical dissipation and rate of change
of total kinetic energy, it is due to the pressure error term. Results in Fig. 4.4 show
that both staggered schemes numerically conserve kinetic energy since the difference
between the two quantities is zero at each time instant, while the collocated scheme
presents a decreasing difference of order 10−7.

It is interesting to study numerically the scaling order of this kinetic energy error
intrinsic to the collocated mesh scheme, which depends on mesh size and time
integration, as previously analyzed in Sec. 4.3.3. First, the comparison between this
pressure error term and mesh size is evaluated by solving the Rankine vortex test
with zero viscosity on five succesively refined meshes (h = 0.05 to h = 0.0125) with a
fixed time step ∆t = 5× 10−4 s. Second, the relation between the pressure error term
and the time integration is analyzed by solving the same test on the h = 0.025 mesh,
while trying three different time steps (5× 10−4, 1× 10−4 and 5× 10−5) using Euler
(first-order) and second-order gear like [23] integration schemes.

The mesh size study is plotted in Fig. 4.5. Results show that if the mesh is refined,
the difference between rate of change of kinetic energy and physical dissipation is
reduced in a second-order manner (overall order equals 1.87). This result matches with
the theoretical approach introduced in Sec. 4.3.3, which states that the spatial pressure
error scales like O(∆h2). Additionally, it is important to notice that when solving
turbulent problems using direct numerical simulation (DNS) or large-eddy simulation
(LES), the mesh size is small enough to make the kinetic energy error imperceptible for
the physics of such problems. Proof of the barely affected kinetic energy conservation,
if using meshes fine enough, is the works by Rodríguez et al. [17, 18], which solve
turbulent flows using the collocated scheme analyzed in this paper.



4.4. CONSERVATION AND ACCURACY TESTS 107

-1e-05

-8e-06

-6e-06

-4e-06

-2e-06

 0

 0  0.001  0.002  0.003  0.004  0.005

d
k
/d

t 
v
s
. 

-ν
ω

·ω

Time

0.05000

0.03750

0.02500

0.01875

0.01250

Figure 4.5: Difference between kinetic energy rate of change and physical dissipation
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Results of the time integration analysis are plotted in Fig. 4.6. Some remarks can
be made from close look at the figure. The first conclusion is that successively smaller
time steps converge to smaller errors for both time integration methods, although
bigger time steps present less error at the initial steps. The second conclusion is related
to the time integration method. The analysis of the kinetic energy conservation for the
collocated mesh scheme, Sec. 4.3.3, has been developed using a first-order explicit time
integration method for simplicity, but, as proposed by Fishpool and Leschziner [23],
using other time integration methods may decrease the kinetic energy error. Hence, it
is clear from Fig. 4.6 that if a second-order gear like integration time scheme is used,
results are greatly improved compared to the ones obtained by a simple Euler time
integration. The reason for this improvement arises from the fact that when using
gear-like time integration schemes, the time step multiplying the pressure error term
in Eq. 4.43 is diminished by a scaling factor (2/3 for a second-order case), therefore,
the pressure error term is consequently minimized and so is the difference between
the rate of change of kinetic energy and physical dissipation.

In summary, this test demonstrates numerically the discrete conservation prop-
erties introduced theoretically in Sec. 4.3. First, staggered mesh schemes discretely
preserve momentum and kinetic energy exactly. Second, the collocated mesh scheme
conserves momentum, but presents a kinetic energy error of the form O(∆tm, ∆h2),
due to an improper pressure gradient formulation.

4.4.2 Numerical tests of accuracy: exact sinusoidal function

Accuracy of the different mesh schemes presented in this work is studied by com-
paring numerical results to the analytical solution of an exact sinusoidal function.
In each case, a sinusoidal function is assigned to the input variables: cell-centered
velocities, u, in the collocated case, while normal face velocities, U, in the staggered
ones. Then, numerical normal face velocities for the collocated case are obtained from
Eq. 4.13, considering the ideal situation where pressure terms vanish, while numerical
cell-centered velocities are calculated from Eqs. 4.18 and 4.25 for staggered a and b
cases, respectively. Finally, the root-square-mean error (rms), xrms, is calculated by
comparing analytical and numerical results, which is defined as

xrms =

√
1
n
(x1

2 + · · ·+ xn2), (4.47)

where xi corresponds to each individual error out of n values.
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The stream function is set to be ψ = 1
2πN sin(2πNx)cos(2πNy)k. Hence, deriva-

tion of ψ, u = ∇×ψ, gives the following velocity field

u = −sin(2πNx)sin(2πNy),
v = −cos(2πNx)cos(2πNy), (4.48)
w = 0,

with a maximum velocity magnitude of one.
Instead of changing the mesh size, which is a cube (1.0×1.0×1.0) meshed with

9676 tetrahedra, mesh refinement is performed by changing the wavelength of the
input sine functions. The average mesh volume is calculated as Vavg = 1

c ∑c Vc, giving
an average mesh spacing equal to ∆Xavg = 3

√
3Vavg = 0.068. The effective length of

the domain is defined as Le f f = 1/N, where N is a variable integer, such that larger
values of N correspond to coarser effective meshes. Thus, the relative mesh size is
defined to be h = ∆Xavg/Le f f = 0.068N.

Errors of velocity accuracy are obtained for relative mesh sizes ranging from
0 to 1.5 and are plotted in Fig. 4.7. The results show that collocated normal face
velocity errors are smaller than staggered cell-centered velocity ones for almost all
relative mesh sizes, considering the ideal situation where pressure terms in Eq. 4.13
vanish. On the other hand, the staggered b scheme presents slightly smaller errors
than the staggered a one for all three velocity components and relative mesh sizes.
Moreover, Fig. 4.8 takes a close look at U and ux errors obtained for relative mesh
sizes ranging from 0 to 0.25 and calculates their approximated regression equations.
It is observed that collocated and staggered b errors are almost second-order, while
staggered a ones are just first-order. Additionally, staggered a errors for relative mesh
sizes between 0.05 and 0.15 are two times larger than collocated and staggered b ones,
hence, considerable accuracy differences may be observed when solving problems
using this range of relative mesh sizes.

4.4.3 Turbulent flow over a circular cylinder at Re = 3900

As final test, conservation properties and accuracy are assesed by solving the turbulent
flow past a circular cylinder. This is an extensively used canonical case to perform
studies of the turbulence behavior around bluff bodies. Additionally, it is a flow
pattern found in many practical situations where cylindrical structures exist, e.g.,
towers, power supply wires, heat exchangers, and others.

Experiments provide evidence that the flow around a circular cylinder behaves
differently depending on the Reynolds number. For example, steady laminar flow
is obtained, with two vortices forming after the cylinder, for Reynolds numbers up
to nearly 40. Furthermore, the von Kármán vortex street is formed at Reynolds
numbers up to 190. Then, the flow evolves from two to three dimensionality [24]
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around Reynolds number 260. Later, the shear layers detaching from the cylinder
become turbulent at Reynolds number around 1200, as reported by Prasad and
Williamson [25]. However, the value of laminar-to-turbulent transition varies in the
literature from 300 to 3000. Finally, the boundary layer on the cylinder becomes
turbulent before separation at postcritical Reynolds numbers [26], beyond 3.5× 106.

In this test, the effects of the mesh discretization on the flow past a circular cylinder
at ReD = Ure f D/ν = 3900 are studied. This case has been largely investigated both
experimentally and numerically, e.g., by Kravchenko and Moin [27], Ma et al. [28],
Parnaudeau et al. [29], and Lehmkuhl et al. [10]. Hence, there is much knowledge
reported in the literature. Moreover, notice that it is clearly turbulent, since it is
situated beyond the laminar-to-turbulent transition point (3.0× 103), therefore, the
consequences of the unwanted numerical dissipation for the different schemes can be
analyzed in detail.

Problem definition and computational domain

The flow over a circular cylinder is solved using a computational domain of dimen-
sions [-4D,10D]×[-6D,6D]×[0,πD] in the stream-, cross-, and span-wise directions,
respectively, with a circular cylinder of diameter D placed at position (0, 0, 0). The
boundary condition at inflow consists of a uniform velocity (u, v, w) = (1, 0, 0), slip
conditions are imposed at top and bottom boundaries, at outlet a pressure-based
condition is used, no-slip conditions are prescribed at the cylinder’s surface, and
periodic boundary conditions are imposed at the spanwise direction.

The Navier-Stokes equations are discretized and the problem is solved for up to
200 time units using an unstructured mesh of 2.78M cells generated by the constant-
step extrusion of a two-dimensional grid (43446 triangles × 64 planes). Under these
conditions, the spanwise coupling of the discrete Poisson equation, Eq. 4.8, yields
circulant submatrices that are diagonalizable in a Fourier space. This allows us to
solve the Poisson equation by means of a Fast Fourier Transform (FFT) method. The
algorithm used is based on the explicit calculation and direct solution of a Schur
complement system for the independent 2-D systems. For more details the reader is
referred to Borrell et al. [30].

The purpose of this study is not to compute the DNS solution of the problem,
instead, the main idea is to analyze the accuracy and conservation of kinetic energy
for turbulent flows. Consequently, the mesh used is clearly not fine enough, therefore,
the problem is solved with and without carrying LES. In the present work, the wall-
adapting local eddy-viscosity (WALE) [31] is used to model the subgrid scales (SGS).
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Figure 4.9: Scaled energy spectra of the cross-stream velocity at
P ≡ [x/D = 2.0, y/D = 0.0] compared to Lehmkuhl et al. [10] numerical re-
sults: (a) using no SGS model; (b) with SGS model.
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Energy spectrum

In order to analyze the turbulent steady state, measurements have been carried out
by locating probes at different positions and data have been collected from time
50 to 200 time units. In short, results are just presented for the probe located at
P ≡ [x/D = 2.0, y/D = 0.0] in the wake centerline. The main frequencies of the
fluctuations of the cross-stream velocity component have been computed by using
the Lomb periodogram technique. The resulting spectra have also been averaged in
the azimutal direction. Results are plotted against DNS results from Lehmkuhl et
al. [10] in Fig. 4.9.

For all three mesh schemes, the different spectra follow the main features of the
DNS one. For example, the dominant peaks at fvs = 0.21, which correspond with the
large-scale vortex shedding frequency, are in agreement with the values reported in
the literature; e.g., fvs = 0.21 (Kravchenko and Moin [27]), fvs = 0.203 (Ma et al. [28]),
fvs = 0.208 (Parnaudeau et al. [29]), and fvs = 0.215 (Lehmkuhl et al. [10]).

Some important differences between results are observable. First, collocated re-
sults, with and without the SGS model, present larger dynamic ranges than staggered
ones. This means that when using fine enough meshes and small time steps, the
collocated kinetic energy error is surely minimized, as demonstrated in Sec. 4.4.1.
Hence, under these conditions the collocated’s accuracy outperforms the staggered
ones; see Sec. 4.4.2. Thus, the small dissipative scales are better resolved and able
to extract an improved amount of energy. Second, carrying out LES adds artificial
dissipation to model the SGS, hence, the high-frequency energy hump, observable in
Fig. 4.9a due to the insufficient amount of energy dissipation provided by the mesh, is
minimized for all three mesh schemes. However, the addition of this extra dissipation
may affect intermediate energy frequencies. For example, when modelling the SGS,
the fvs’s second harmonic is minimized for all three mesh schemes, although, it is
more noticeable in the collocated case.

Average statistics in the wake

In order to analyze the wake configuration, the time-average streamwise velocity and
streamwise velocity profile at x/D = 1.06 have been computed. In Figs. 4.10 and 4.11,
average results are plotted against values reported in the literature: experimental
results from Parnaudeau et al. [29] and numerical results from Lehmkuhl et al. [10]
(short recirculation zone, Mode S solution).

Results in Figs. 4.10 and 4.11 clearly demonstrate that the use of a SGS scheme is
needed since the mesh used is not fine enough to properly calculate the dissipative
small scales. If no LES is carried out, both collocated and staggered a and b solutions
are far from matching literature results, although, solutions rapidly coincide with
reference ones if SGS models are introduced. However, a reasonable conclusion taken
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Figure 4.10: Averaged streamwise velocity in the wake compared to Parnaudeau et
al. [29] and Lehmkuhl et al. [10] results: (a) without SGS model; (b) using SGS model.
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Figure 4.11: Averaged streamwise velocity profile at x/D = 1.06 compared to Par-
naudeau et al. [29] and Lehmkuhl et al. [10] results: (a) using no SGS model; (b) with
SGS model.
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from Figs. 4.10 and 4.11 is that using the collocated or staggered schemes tends to
favor significantly different solutions, even though larger time units simulations
should be analyzed.

The collocated scheme produces an averaged streamwise velocity solution similar
to the one obtained by Parnaudeau et al. [29], presenting a long and less energy-
concentrated recirculation zone Lr/D = 1.51, see Fig. 4.10b, and a more pronounced
U-shape average streamwise velocity profile at x/D = 1.06; see Fig. 4.11b. On the
other hand, streamwise velocity results provided by staggered schemes resemble
the ones presented by Lehmkuhl et al. [10], thus, shorter dense energy-concentrated
recirculation zones are observed Lr/D = 1.26, see Fig. 4.10b, and a V-shape average
streamwise velocity profile at x/D = 1.06 is recognized in Fig. 4.11b.

It is important to notice that the staggered b streamwise velocity result, using
the SGS model, fits in a better manner than the staggered a the solution obtained
by Lehmkuhl et al. [10], specifically, the averaged velocity at Lr/D = 1.26. This
ameliorate performance of staggered b over staggered a is explained by the better
accuracy of the first over the latter when fine meshes are used, as seen in Fig. 4.8.

4.5 Conclusions

The continuity and Navier-Stokes equations are specifically derived for the conser-
vation of mass and momentum, thus, collocated and both staggered schemes are
shown to discretely conserve them: Eq. 4.27 is the proof of mass conservation, while
Eq. 4.29 states that the change in momentum is due only to the fluxes through the
domain boundaries. On the other hand, conservation of kinetic energy is the most
important property when solving turbulent flow, since the energy is convected from
the large eddies to the small dissipative scales. Hence, discretization strategies that
incorporate extra numerical dissipation can importantly modify the solution of the
problem. Consequently, collocated and staggered discrete expressions of kinetic en-
ergy conservation are presented in Eqs. 4.43 and 4.45, respectively. They state that,
in the absence of viscosity (ν = 0), the change in kinetic energy is due to the fluxes
through the boundary of the domain for the staggered schemes, plus a kinetic energy
error from the pressure term for the collocated one. This pressure error term arises
from the special definition for the normal face velocity, Eq. 4.13, needed to exactly
conserve mass in the collocated scheme.

The Rankine vortex test has shown that staggered mesh schemes preserve mo-
mentum and kinetic energy, while the collocated one conserves momentum, but
presents a kinetic energy error of the form O(∆tm, ∆h2). Thus, densifying meshes
and using small time steps or high-order temporal schemes decreases the collocated
kinetic energy error. In this way, when solving turbulent problems using DNS or
LES, the mesh size and time steps are small enough to make the kinetic energy error
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imperceptible for the physics of such problems.
An accuracy study for the different mesh schemes has been performed by com-

paring numerical results to the analytical solution of an exact sinusoidal function.
Results show that collocated normal face velocity errors are smaller than staggered
cell-centered velocity ones for all relative mesh sizes, considering the ideal situation
where pressure terms in Eq. 4.13 vanish. On the other hand, staggered b accuracy
results present slightly smaller errors than staggered a ones for all three velocity
components and relative mesh sizes. Moreover, regression equations have been cal-
culated for the three schemes in a relative mesh size range from 0 to 0.25, showing
that collocated and staggered b accuracy errors are nearly second-order, while the
staggered a ones are first-order.

The turbulent flow over a circular cylinder at Re = 3900 has been solved using the
collocated and both staggered schemes to test their properties in more demanding
problems. Although all three mesh schemes present good agreement with literature
results if LES are carried out, some main differences between them have been found.
First, collocated results present larger dynamic ranges than staggered ones, due to a
better resolution of the small dissipative scales, thus, extracting more energy out of
the system. This result demonstrates that if using fine enough meshes and small time
steps, the collocated kinetic energy error is certainly minimized, hence, under these
conditions the collocated’s accuracy outperforms the staggered ones. Second, the
collocated scheme tends to produce a long and less energy-concentrated recirculation
zone with a more pronounced U-shape average streamwise velocity profile. On the
other hand, staggered schemes favor short dense energy-concentrated recirculation
zones with V-shape average streamwise velocity profiles. Moreover, as demonstrated
in the accuracy test, the staggered b scheme presents better accuracy performance,
thus, its streamwise velocity result, using the SGS model, fits the reference solution in
a better manner than the staggered a one.

As final summary, the authors conclude that if incompressible turbulent flow is to
be solved, using time-explicit algorithms with fine unstructured meshes and small
time steps, the collocated scheme is a better option over the staggered ones: (1) the
pressure kinetic energy error is unnoticeable in such situations; (2) presents good
accuracy; (3) it is a fast scheme that does not need the calculation of circumcenters.
However, the use of the collocated scheme to solve problems regarding other fluid
or flow characteristics, e.g., fluids with nonconstant physical properties or with high
gradients, presence of discontinuous sources, multiphase flow, combustion problems,
or others, may produce spurious pressure modes (checkerboard). In these situations
the staggered schemes presented in this study are a good alternative, especially the
staggered b mesh discretization, since it presents better accuracy than the staggered
a one, although it requires a more complicated and computationally demanding
cell-centered velocity reconstruction.
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5

Conservative discretization

of multiphase immiscible

flow

Main contents of this chapter have been published in:

L. Jofre, O. Lehmkuhl, and A. Oliva. Conservation Properties of Finite-Volume Mesh Schemes
for the Simulation of Multiphase Immiscible Flow. To be submitted to International Journal of
Multiphase Flow, 2014.

Abstract. The simulation of separated multiphase flow, in which the fluids involved are
immiscible, is of great importance for different fundamental physics problems and for a large
variety of industrial applications. For instance, in the simulation of liquid-gas interfaces, such as
bubbly flow, atomization and wave motion, in the design of sprays and combustion processes
or in the study of atmospheric phenomena. This particular type of multiphase flow is governed
by the continuity and Navier-Stokes equations in the variable-density incompressibility limit,
which constitute a general model that describes fluid flow by conserving mass and momentum.
However, the conservation of secondary derived quantities, such as kinetic energy — which is
fundamental for the correct resolution of turbulence —, cannot be imposed explicitly during the
construction of the equivalent discrete model. Therefore, this work presents and analyzes two
unstructured finite-volume mesh discretizations, collocated and staggered, able to simulate
multiphase flow presenting fluids with different physical properties. In particular, these mesh
schemes are constructed such that conserve mass and momentum numerically, while minimize
errors in the conservation of kinetic energy. These properties are analyzed both theoretically
and numerically, the latter by considering a three-dimensional vortex, an exact sinusoidal
function and the drag force on a spherical bubble in a turbulent pipe flow.
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5.1 Introduction

Separated multiphase flows of immiscible fluids are found in many engineering
applications and fundamental physics problems. For example, in the study of fuel
injection processes, in the formation, movement and deformation of bubbles and
drops, in the design of sprays and jets or in the simulation of wave motion. These type
of flows are usually denominated interfacial flows, since the contact of immiscible
fluids produces a thin region named interface that separates them. In detail, these
interfacial flows are governed by the continuity and Navier-Stokes equations in the
variable-density incompressibility limit. Additionally, they require the resolution
of an extra equation that describes the topology of the interface as it changes due
the velocity field. On the one hand, the collocated and staggered mesh schemes are
the principal models for the calculation of the discrete Navier-Stokes equations. On
the other hand, the approaches based on tracking or capturing the interface have
emerged as the main methods to describe the interface motion between fluids.

Any collocated mesh discretization calculates velocity and pressure at centers of
cells, while requires specific interpolations for some variables and special evaluations
of mass fluxes at cell faces. This particular placement of variables may produce
checkerboard-pressure solutions caused by the decoupling of velocity and pressure.
On the contrary, staggered mesh schemes directly solve mass fluxes at faces, and
pressure at centers of cells, thus, these do not display spurious pressure modes. As a
counterpart, velocities at centers of cells need to be interpolated from face mass fluxes.
In addition, staggered schemes require the utilization of cell circumcenters, what may
result in difficulties, since, if cells with poor aspect ratios are used, the circumcenters
may be found outside their corresponding cells. Even so, both schemes are suitable
for the numerical simulation on three-dimensional (3-D) Cartesian and unstructured
grids.

A major difficulty when solving interfacial flow is caused by the interface itself
since it is subject to different length and time scales [1]. For example, usually the
dominant small-scale is determined by the relation between surface tension and
viscosity, while the largest scale corresponds to the change in interface topology due
to the velocity field provided by the solution of the momentum equations. Therefore,
numerical methods for the simulation of interfacial flow require the selection of
the model that properly represents the interface in a discrete manner, as well as
the determination of the forces that need to be considered to correctly simulate the
physics. Given these requirements, this work chooses to consider interfaces as two-
dimensional (2-D) smooth surfaces that represent the discontinuity of density and
viscosity, while gravity and surface tension are the forces taken into account.

In the last decade, important efforts have been made to improve the stability and
robustness of the discrete models for the simulation of multiphase immiscible flows:
(1) studying in detail the Poisson’s pressure matrix [2–5] and (2) proposing complex
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interpolations of density at cell faces [6–8]. However, hardly any attention has been
paid to analyze the conservation properties of such discrete models, in a contrary
way to the recent numerical techniques for the simulation of turbulent flow [9–13],
which have evolved to discretely preserve mass, momentum and, specifically, kinetic
energy, by using first-order skew-symmetric formulations at expenses of increasing
the local truncation error. In particular, this new approach has resulted successful for
turbulent problems [14–17], changing the priorities of the discretization schemes for
the Navier-Stokes equations. Moreover, this new thinking has also been extended
to the simulation of variable-density low-Mach number flows on the basis of finite-
difference schemes [18–20]. Therefore, this work aims at introducing the idea of
conservative discretizations for the simulation of multiphase immiscible flow on
3-D unstructured meshes, extending in this way the recently proposed approach on
Cartesian grids by Fuster [21]. In addition, density and viscosity, instead of being
evaluated as discontinuous variables at the interface, they are convoluted, since it
has been found by Denner and van Wachem [22] that, although questionable from a
physical perspective, this remarkably improves the results and is crucial to mantain
numerical stability for high density ratios.

Hence, the main purpose of this work is to accurately formulate two schemes
suitable for 3-D unstructured meshes, collocated and staggered, that priorize the
conservation of the discrete properties of mass, momentum and kinetic energy. In this
way, this work extends the idea of fully conservative schemes to multiphase flows
having immiscible fluids. First, Sec. 5.2 presents a brief mathematical description
of the interface motion between fluids. Second, both discretization strategies for
the Navier-Stokes equations are explained in detail in Sec. 5.3. Next, their discrete
conservations of mass, momentum and kinetic energy are studied in Sec. 5.4. Finally,
various problems are solved in Sec. 5.5 to test their conservation properties and
accuracy, such as a three-dimensional vortex, an exact sinusoidal function and the
drag force on a spherical bubble in a turbulent pipe flow.

5.2 Motion of the interface between fluids

The interface between two or more immiscible fluids constitutes a material surface
whose motion is described by

dxΓ

dt
= u(xΓ, t), (5.1)

where subscript Γ refers to a point on the interface between fluids. In general, the
methods used to locate the interface characterized by Eq. 5.1 may be classified in
two large groups: interface-tracking and interface-capturing. On the one hand, the
interface-tracking approaches chase the interface as it moves: (1) defining the interface
as a boundary between two subdomains of a moving grid [23–25] or (2) following
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the Lagrangian trajectories of massless particles [26–28]. This procedure simplifies
the analysis near the interface, as a counterpart, large topology changes are not easily
handled. On the other hand, the interface-capturing approaches describe the motion
of the interface by embedding the different fluids into a static grid with the help of
scalar values. In particular, two fundamental methods have emerged during the last
decades: Volume-of-Fluid [29–31] and Level-Set [32–34]. The Volume-of-Fluid (VOF)
method inherently conserves volume and maintains interfaces sharp, but requires
complex geometric algorithms. Otherwise, the Level-Set (LS) technique is a fast way
to capture interfaces, represented by the middle contour of a signed distance function,
but at expenses of not proprerly conserving volume. However, Olsson and Kreiss [35]
have recently solved this issue by proposing a special scalar level-set, resulting in
a new family of methods named Conservative Level-Set (CLS). Given its improved
volume conservation, this approach has gained importance in the last years; see for
example [36, 37].

Particularly, this work chooses the VOF method, since its formulation preserves
volume, large changes in interface topology are handled properly and interfaces
between fluids are described acutely. In detail, this method defines a fluid-volume
fraction, Ck, as the portion of volume filled with fluid k, expressed as

Ck =
1

VΩ

∫
Ω

H(x− xΓ)dx, (5.2)

where H is the Heaviside function, providing, for each fluid k, a continuity equation
for the fluid-volume fraction, written as

∂Ck
∂t

+∇· (Cku) = 0. (5.3)

Then, integrating Eq. 5.3 over a cell c, applying the divergence theorem to its bor-
dering faces, f ∈ F(c), assuming a first-order explicit time scheme and considering
incompressible flow, results in the following fluid k discrete continuity equation

Cn+1
k − Cn

k +
1
Vc

∑
f∈F(c)

Vn
k, f = 0, (5.4)

where Vc represents the volume of cell c, the superscript n refers to the discrete time
level, Vn

k, f is the fluid k volumetric flow across face f and the total volumetric flow is
defined as

Vf = |u f ·n f |A f ∆t = ∑
k

Vk, f , (5.5)

defining u f , n f and A f as the velocity, the normal outward unit vector and the surface
of face f , respectively, while ∆t refers to time step.
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In particular, volume tracking VOF methods calculate geometrically the solution of
Eq. 5.4 in two consecutive steps, denominated: interface reconstruction and advection.
First, the interface is reconstructed by approximating its form to a geometric surface
from volume fraction values. Once the interface is reconstructed, the advection step
constructs volume fluxes at cell faces, cuts them by the reconstructed interface and,
finally, computes the amount of fluid k passing through the faces in a time step. For
an extended development of the geometrical VOF method the reader is referred to
Jofre et al. [38].

5.3 Discrete Navier-Stokes equations

Multiphase flows of immiscible fluids are governed by the continuity and Navier-
Stokes equations in the variable-density incompressibility limit, written in divergence
form as

∇·u = 0, (5.6)

∂(ρu)
∂t

+∇· (ρuu) = −∇p +∇· (µ[∇u +∇Tu]) + S, (5.7)

where u, p and S represent velocity, pressure and a general source term, e.g., gravita-
tional acceleration, ρg, and surface tension, Tσ. Additionally, density, ρ, and dynamic
viscosity, µ, are interpolated from the properties of each fluid k by means of the
fluid-volume fraction values, written as

ρ = ∑
k

Ckρk and µ = ∑
k

Ckµk. (5.8)

In general, the finite-volume spatial discretization of Eqs. 5.6 and 5.7 may be
written, using discrete matrix operators, as

Mu = 0, (5.9)

Ω
d(ρu)

dt
+ C(ρu)u + Gp + D(µ)u + ΩS = 0, (5.10)

where u, p and S are the vectors of velocities, pressures and source terms. The
diagonal matrix Ω describes the volume of cells, matrices C(ρu) and D(µ) are the
convective and diffusive operators, and matrices G and M represent the gradient and
divergence operators, respectively.

At this point, like Verstappen and Veldman [11] propose, the discrete conservation
properties may be easily analyzed if the symmetries of these matrices are studied.
Therefore, kinetic energy is conserved if and only if the discrete convective operator
is skew-symmetric, i.e., the transpose of the matrix is also its negative, C(ρu) =
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−C(ρu)∗, and if the negative conjugate transpose of the discrete gradient operator
is equal to the divergence operator, M = −G∗. On the other hand, the diffusive
operator must be symmetric and positive-definite in order to be dissipative, i.e., the
matrix is equal to its transpose D(µ) = D(µ)∗, and z∗D(µ)z > 0 for all nonzero z.

5.3.1 Collocated mesh scheme

Collocated mesh discretizations, independently of the time integration chosen, calcu-
late velocity and pressure at centers of cells, while require specific interpolations for
some variables and special evaluations of mass fluxes at cell faces, in order to mini-
mize the kinetic energy error and exactly conserve mass, respectively. In particular,
the collocated scheme presented in this work solves the velocity-pressure coupling of
the momentum equation, Eq. 5.7, by means of a classical fractional step projection
method along with a first-order explicit time advancement — higher order temporal
schemes can be used, but for clarity the first-order one is chosen —, written as

ρn+1un+1 − ρn+1up = −∆t∇pn+1, (5.11)

ρn+1up = ρnun − ∆t
[
∇· (ρnunun)−∇· (µn[∇un +∇Tun])− Sn+1

]
, (5.12)

where the superscript n refers to time instant, up is the predictor velocity, and ∆t is
the time step.

First, the predictor discrete velocity is obtained by dividing Eq. 5.12 by density,
ρn+1, integrating over a cell c and applying the divergence theorem to its bordering
faces, f ∈ F(c), giving

up
c =

ρn
c un

c

ρn+1
c
− ∆t

ρn+1
c Vc

∑
f∈F(c)

φn
f M̂n

f (5.13)

+
∆t

ρn+1
c Vc

 ∑
f∈F(c)

µn
f

[
(un

nb − un
c )

A f

δd f
+∇Tun

f · n̂ f A f

]+
∆t

ρn+1
c Vc

Sn+1
c Vc,

where Vc is the volume of cell c, φ f is the convected velocity at face f , M̂ f , n̂ f and A f
are the outward mass flux, the normal outward unit vector and the surface of face f ,
respectively, subscript nb refers to the neighbor cell sharing a face and length δd f is
the normal-projected distance between the centroids of cells c and nb; see Fig. 5.1.

Next, dividing Eq. 5.11 by density, ρn+1, multiplying by the divergence operator,
applying the incompressibility condition, Eq. 5.6, and discretizing over a cell c, yields
the discrete Poisson’s pressure equation

∑
f∈F(c)

M̂p
f

ρn+1
f

= ∆t ∑
f∈F(c)

1
ρn+1

f

(pn+1
nb − pn+1

c )
A f

δd f
, (5.14)
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Figure 5.1: Arrangement of variables and notation for the collocated scheme on a 2-D
unstructured mesh. The schematic representation shows the collocated position of
velocity, u, and pressure, p. The cell c where the discretization is analyzed is shown
in gray, with an example of a face f and its corresponding neighbor cell nb, normal
outward unit vector n̂ f and distance δd f between centroids.

which solves the pressure field at time instant n + 1. Following the obtention of this
pn+1 field, un+1 results from discretizing Eq. 5.11 over a cell c as

un+1
c = up

c −
∆t

ρn+1
c Vc

∑
f∈F(c)

pn+1
f n̂ f A f , (5.15)

where p f is the pressure interpolated to face f .
Notice that the specific interpolations for φn

f , M̂p
f , ρn+1

f , up
f , and pn+1

f have not
been explained yet. Therefore, in order to fulfill the skew-symmetric requirement
of the discrete convective operator, the convected velocity at face f is evaluated by
means of a symmetry-preserving scheme [11], written as

φn
f =

1
2
(un

c + un
nb). (5.16)

Moreover, the predictor mass flux, density, predictor velocity and pressure at face f
are calculated as

M̂p
f = ρn+1

f up
f · n̂ f A f , ρn+1

f =
1
2
(ρn+1

c + ρn+1
nb ), up

f =
1
2
(up

c + up
nb), (5.17)

pn+1
f =

1
2
(pn+1

c + pn+1
nb ), (5.18)
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minimizing, as it will be demonstrated in Sec. 5.4, the kinetic energy conservation
error.

Finally, the evaluation of the mass flux at face f , M̂n+1
f , needs to be studied in

detail in order to exactly conserve mass. Thus, taking again the divergence of Eq. 5.11
and discretizing over a cell c, gives

∑
f∈F(c)

M̂n+1
f − ∑

f∈F(c)
M̂p

f = −∆t ∑
f∈F(c)

(pn+1
nb − pn+1

c )
A f

δd f
, (5.19)

which may be arranged in the following form

∑
f∈F(c)

[
M̂n+1

f − M̂p
f + ∆t(pn+1

nb − pn+1
c )

A f

δd f

]
= 0. (5.20)

Next, if for each face f the term between brackets is equalized to zero — it is a more
restrictive condition, but at the same time provides an easier formulation —, the mass
flux at a face f may be expressed as

M̂n+1
f = M̂p

f − ∆t(pn+1
nb − pn+1

c )
A f

δd f
. (5.21)

At this point, if the predictor mass flux is evaluated by means of Eq. 5.17 and up is
substituted using Eq. 5.15, Eq. 5.21 may be rewritten as

M̂n+1
f = ρn+1

f
1
2
(un+1

c + un+1
nb )· n̂ f A f − ∆t(pn+1

nb − pn+1
c )

A f

δd f
(5.22)

+
ρn+1

f ∆t

2

 1
ρn+1

c Vc
∑

f∈F(c)
pn+1

f n̂ f A f +
1

ρn+1
nb Vnb

∑
f∈F(nb)

pn+1
f n̂ f A f

 · n̂ f A f .

5.3.2 Staggered mesh scheme

The staggered mesh scheme calculates pressure and other scalar quantities at cell
centers, while mass fluxes are distributed to cell faces. Each face stores only the mass
flux, therefore, the cell-centered velocity vector has to be recovered from face normal
values. This recovery of velocity vector from face normal values is not unique and
it is a defining characteristic of each staggered mesh scheme, leading to different
properties for the solution.

In particular, this work extends the scheme developed by Perot [10], which is
suitable for solving incompressible flows on unstructured meshes, to flows having
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Figure 5.2: Arrangement of variables and notation for the staggered scheme on a 2-D
unstructured mesh. The schematic representation shows the staggered position of
the mass flux, M, and the location of pressure at a center of a cell, p. The face f and
its neighboring cells a and b, where the cell-to-face operator is explained, are shown
together with the distances Wa

f and Wb
f . On the other hand, the face-to-cell operator

is shown by representing a cell c and an example of face f where the interpolation is
explained by showing the distance xCG

f − xCC
c .

fluids with variable density. For this purpose, some preliminary remarks are needed.
First, face-centered control volumes are defined for each face f as Vf = (Wa

f +Wb
f )A f ,

where W f is the distance between the face circumcenter and each of the circumcenters
of the neighbor cells that share the face, while A f is the surface of the considered
face; see Fig. 5.2. Second, the convective, diffusive and source terms are calculated at
centers of cells as non-volumetric quantities and, later, interpolated to faces using W f .

Thereby, the staggered discrete form of the momentum equation is given by the
integration of Eq. 5.7 over the control volume of a face f , taking a dot product with
the face normal vector, n f , and solving the velocity-pressure coupling by means of
a classical fractional step method along with a first-order explicit time integration
— higher order temporal schemes can be also used —, resulting in

Mn+1
f = Mp

f − ∆t(pn+1
b − pn+1

a )
A f

(Wa
f + Wb

f )
, (5.23)

Mp
f = Mn

f −∆t
[
Wa

f (c
n
a − dn

a − sn+1
a ) + Wb

f (c
n
b − dn

b − sn+1
b )

]
·n f

A f

(Wa
f + Wb

f )
, (5.24)

where subscripts a and b refer to the two cells adjacent to face f and c, d and s are the
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non-volumetric cell-centered discretizations of the convective, diffusive and source
terms, evaluated for each cell c as

cn
c =

1
Vc

∑
f∈F(c)

φn
f M̂n

f , sn+1
c =

1
Vc

Sn+1
c Vc, (5.25)

dn
c =

1
Vc

∑
f∈F(c)

µn
f

[
(un

nb − un
c )

A f

δd f
+∇Tun

f · n̂ f A f

]
,

considering that the convected velocity at face f , φ f , is evaluated by a symmetry-
preserving scheme [11] and length δd f is once again the distance between the nodes
of the cells adjacent to face f .

Next, dividing Eq. 5.23 by face density, ρn+1
f , summing over the bordering faces

of cell c and making use of the incompressibility constraint, results in the already
presented discrete Poisson’s pressure equation, Eq. 5.14. However, no interpolation
for the predictor mass flux is needed in this case, since it is given directly by Eq. 5.24.
In addition, δd f is now the distance between the circumcenters of the two cells sharing
face f . Analogously, once the solution of Eq. 5.14 is calculated, Eq. 5.23 is used to
obtain the face mass fluxes at instant n + 1, Mn+1

f .
Finally, the staggered mesh scheme discretizes mass fluxes in time, thus, velocities

at centers of cells need to be interpolated from face normal values. In this way, apply-
ing the divergence theorem for a cell c to the product of position, r, and momentum,
ρu, gives ∫

Ωc
ρu dV +

∫
Ωc

r(∇ · (ρu)) dV = ∑
f∈F(c)

∫
∂Ω f

r(ρu)· n̂ f dA, (5.26)

where r = x− x0 is the position vector from the circumcenter of cell c. Hence, if a
first-order approximation of the momentum field (constant ρu) is assumed, Eq. 5.26
is rewritten as

uc =
1

ρcVc
∑

f∈F(c)
rc

f M̂ f , (5.27)

being rc
f = xCG

f − xCC
c the vector from the circumcenter of cell c, xCC

c , to the centroid

of face f , xCG
f .

5.4 Conservation properties

The Navier-Stokes equations are derived specifically for the conservation of momen-
tum, thus, most discretizations found in the scientific literature conserve this property.
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On the contrary, the conservation of secondary derived quantities, such as kinetic
energy, entropy and vorticity — which are not directly unknowns of the numerical
system and, in consequence, cannot be directly imposed during the construction of
the numerical methods — is not always considered, even though their remarkable
importance in the physics of the problems to be solved. Hence, this section develops
and analyzes the conservation of mass, momentum and, more importantly, of kinetic
energy for the collocated and staggered schemes previously presented.

5.4.1 Mass conservation

Global mass conservation invokes the integral of Eq. 5.6 over the whole domain, Ω.
Thus, if the entire integral is transformed to a summation of integrals for each control
volume that form the domain, c ∈ Ω, the following expression is obtained∫

Ω
∇·u dV = ∑

c∈Ω

∫
Ωc
∇·u dV = ∑

c∈Ω
∑

f∈F(c)
Û f A f . (5.28)

Defining the normal face velocity, U f , as the mass flux at a face, M f , divided by
face density, ρ f , and area, A f , rewrites Eq. 5.28 as

∫
Ω
∇·u dV = ∑

c∈Ω
∑

f∈F(c)
Û f A f = ∑

c∈Ω
∑

f∈F(c)

M̂ f

ρ f
. (5.29)

In the collocated case, a special definition for mass fluxes at faces, Eq. 5.22, has
been developed in order to exactly conserve mass in each cell c. Thus, the local
conservation of mass for the collocated scheme is demonstrated by dividing Eq. 5.19
by face density, rearranging terms and making use of Eq. 5.14, giving

∑
f∈F(c)

M̂n+1
f

ρn+1
f

= ∑
f∈F(c)

[
M̂p

f

ρn+1
f

− ∆t
ρn+1

f

(pn+1
nb − pn+1

c )
A f

δd f

]
= 0. (5.30)

On the contrary, for the staggered case no interpolation of mass fluxes at faces
is needed, since they are directly calculated there. Hence, dividing Eq. 5.23 by face
density, summing over the faces of a cell, reorganizing terms and making use of the
staggered version of the discrete Poisson’s equation, Eq. 5.14, results in the staggered
local conservation of mass, shown as

∑
f∈F(c)

M̂n+1
f

ρn+1
f

= ∑
f∈F(c)

[
M̂p

f

ρn+1
f

− ∆t
ρn+1

f

(pn+1
nb − pn+1

c )
A f

(Wa
f + Wb

f )

]
= 0. (5.31)
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Summarizing, in both cases mass is locally conserved, consequently, the global
mass conservation, Eq. 5.28, equals zero, which is expressed as

∫
Ω
∇·u dV = ∑

c∈Ω

∫
Ωc
∇·u dV = ∑

c∈Ω
∑

f∈F(c)
Û f A f = ∑

c∈Ω
∑

f∈F(c)

M̂ f

ρ f
= 0. (5.32)

5.4.2 Momentum conservation

The conservation of momentum is a straightforward consequence of writing the
equations in divergence form. However, a proof of conservation of momentum may
be natural for collocated schemes, but not obvious for staggered discretizations on
unstructured meshes. The inherent difficulty is due to the fact that the velocity vector
is not a primary variable for staggered schemes.

Collocated momentum conservation

The total conservation of momentum is obtained by integrating Eq. 5.7 over the entire
domain, which is transformed to a summation of integrals for each control volume
that form the domain and converted to surface integrals by applying the divergence
theorem, giving

∑
c∈Ω

d(ρcuc)

dt
Vc + ∑

c∈Ω
∑

f∈F(c)
φ f M̂ f = − ∑

c∈Ω
∑

f∈F(c)
p f n̂ f A f (5.33)

+ ∑
c∈Ω

∑
f∈F(c)

µ f

[
(unb − uc)

A f

δd f
+∇Tu f · n̂ f A f

]
+ ∑

c∈Ω
ScVc.

Notice that M̂ f , n̂ f and (unb − uc) are quantities that present equal values but
with different sign when evaluating them at a face f from two adjacent interior cells.
In this way, interior fluxes cancel out and Eq. 5.33 is evaluated as the summation over
boundary faces, f ∈ F(∂Ω), written as

∑
c∈Ω

d(ρcuc)

dt
Vc + ∑

f∈F(∂Ω)

φ f M̂ f = − ∑
f∈F(∂Ω)

p f n̂ f A f (5.34)

+ ∑
f∈F(∂Ω)

µ f

[
(u f − ua)

A f

δd f
+∇Tu f · n̂ f A f

]
+ ∑

c∈Ω
ScVc,

which states that the change in momentum is due to the fluxes through the boundary
of the domain and the source terms.
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Staggered momentum conservation

The primary quantity in staggered mesh schemes is the mass fluxes at faces. Thus,
integrating Eq. 5.7 over the control volume of a face f , as explained in detail in
Sec. 5.3.2, and taking the dot product with its normal unit vector, n f , gives the
discretized momentum equation for the mass flux at faces, M f , written as

(Wa
f + Wb

f )
dM f

dt
+ (Wa

f ca + Wb
f cb)A f ·n f = −(pb − pa)A f (5.35)

+ (Wa
f da + Wb

f db)A f ·n f + (Wa
f sa + Wb

f sb)A f ·n f .

Next, the discrete staggered conservation of momentum is obtained if Eq. 5.35 is
multiplied by the normal unit vector of face f , n f , and is summed over all the faces of
the domain, f ∈ F(Ω), giving the following equation

∑
f∈F(Ω)

(Wa
f + Wb

f )
dM f

dt
n f + ∑

f∈F(Ω)

(Wa
f ca + Wb

f cb)A f ·n f n f

= − ∑
f∈F(Ω)

(pb − pa)A f n f + ∑
f∈F(Ω)

(Wa
f da + Wb

f db)A f ·n f n f (5.36)

+ ∑
f∈F(Ω)

(Wa
f sa + Wb

f sb)A f ·n f n f ,

then, the goal is to recast this equation as an equation for velocities at centers of cells.
First, the summation over faces of the time derivative in Eq. 5.36 is recast as a

summation over cells, developed as

∑
f∈F(Ω)

(Wa
f + Wb

f )
dM f

dt
n f =

d
dt

 ∑
f∈F(Ω)

(ra
f − rb

f )M f

 (5.37)

=
d
dt

∑
c∈Ω

 1
ρcVc

∑
f∈F(c)

rc
f M̂ f

 ρcVc

 = ∑
c∈Ω

d(ρcuc)

dt
Vc,

where the first equality is true, since for each face f the following expression applies

(Wa
f + Wb

f )n f = xCC
b − xCC

a (5.38)

= (xCG
f − xCC

a )− (xCG
f − xCC

b ) = ra
f − rb

f ,

while the second one corresponds to the transformation from face to cell summation,
noticing that M̂b

f = −M̂a
f , and the third one is straightforward from Eq. 5.27.
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Second, the summations over all faces of the domain for the convective and
diffusive terms in Eq. 5.36 are equivalent to the summations over boundary faces,
expressed as

∑
f∈F(Ω)

(Wa
f ca + Wb

f cb)A f ·n f n f = ∑
c∈Ω

cc·

 ∑
f∈F(c)

n f n f Wc
f A f

 (5.39)

= ∑
c∈Ω

cc· IVc = ∑
c∈Ω

ccVc = ∑
c∈Ω

∑
f∈F(c)

φ f M̂ f = ∑
f∈F(∂Ω)

φ f M̂ f ,

∑
f∈F(Ω)

(Wa
f da + Wb

f db)A f ·n f n f = ∑
c∈Ω

dc·

 ∑
f∈F(c)

n f n f Wc
f A f

 (5.40)

= ∑
c∈Ω

dc· IVc = ∑
c∈Ω

dcVc = ∑
c∈Ω

∑
f∈F(c)

µ f

[
(unb − uc)

A f

δd f
+∇Tu f · n̂ f A f

]

= ∑
f∈F(∂Ω)

µ f

[
(u f − ua)

A f

δd f
+∇Tu f · n̂ f A f

]
,

where the first term in brackets is a known geometric result of the divergence theorem
and is equal to the identity tensor multiplied by the cell volume, IVc. Next, terms
cc and dc are expanded using Eq. 5.25 and interior fluxes are canceled out exactly,
leaving just fluxes through the boundary faces.

Third, source terms in Eq. 5.36 are converted to a summation over all the cells of
the domain, written as

∑
f∈F(Ω)

(Wa
f sa + Wb

f sb)A f ·n f n f = ∑
c∈Ω

sc·

 ∑
f∈F(c)

n f n f Wc
f A f

 (5.41)

= ∑
c∈Ω

sc· IVc = ∑
c∈Ω

scVc = ∑
c∈Ω

ScVc.

Fourth, the pressure term in Eq. 5.36 can be straightforwardly rearranged as

∑
f∈F(Ω)

(pb − pa)A f n f =− ∑
c∈Ω

pc ∑
f∈F(c)

n̂ f A f (5.42)

+ ∑
f∈F(∂Ω)

p f n̂ f A f = ∑
f∈F(∂Ω)

p f n̂ f A f .

In summary, it is shown that Eq. 5.36 can be recast as Eq. 5.34 by using Eqs. 5.37
to 5.42. Hence, equivalently to the collocated scheme case, the change in momentum
for the staggered discretization is due to the fluxes through the boundary of the
domain and the source terms.
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5.4.3 Kinetic energy conservation

The conservation of kinetic energy is an important property especially when solving
turbulent flows, since energy is convected from the main flow into the large eddies,
and from them into the next smaller ones, and so on until being dissipated by molec-
ular forces in the smallest eddies. Hence, if no external sources are present, the rate of
change of total kinetic energy is just determined by dissipation. Thus, discretization
strategies with excessive numerical dissipation can alter the physics of a problem in a
very important proportion.

In detail, the transport equation for kinetic energy is derived from the momentum
equation, Eq. 5.7, by taking the velocity dot product and assuming incompressible
fluid. In this way, the kinetic energy, 1

2 ρu · u, can be shown to obey the following
transport equation

∂( 1
2 ρu · u)

∂t
+∇ · [u(1

2
ρu · u)] = −∇ · (pu) +∇ · (µu×ω) (5.43)

− µω ·ω + [2(∇µ×ω) +∇µ · ∇u + (∇µ · ∇)u] · u + S · u,

where ω = ∇× u is the vorticity. The important characteristic of this equation is that
it is conservative except for the non-divergence terms of the second line. Hence, in
the absence of external forces and viscosity, the kinetic energy is simply redistributed
but not created or destroyed. Similarly, discrete systems will be kinetic energy
conservative if convective and pressure operators are shown to be conservative [39].

Collocated kinetic energy conservation

In order to investigate the conservation of kinetic energy for the collocated scheme, the
momentum equation, Eq. 5.7, is discretized over the whole domain and multiplied by
the velocity vector, u. Then, the resulting equation can be transformed to a summation
of surface integrals for each cell c, written as

∑
c∈Ω

uc·
d(ρcuc)

dt
Vc + ∑

c∈Ω
uc· ∑

f∈F(c)
φ f M̂ f = − ∑

c∈Ω
uc· ∑

f∈F(c)
p f n̂ f A f (5.44)

+ ∑
c∈Ω

uc· ∑
f∈F(c)

µ f

[
(unb − uc)

A f

δd f
+∇Tu f · n̂ f A f

]
+ ∑

c∈Ω
uc·ScVc,

where, from left to right, the terms correspond to the values of time derivative,
convection, pressure, diffusion and source. At this point, the detailed analysis of
Eq. 5.44 is simplified by making use of the two identities presented in the Appendix,
these involve combinations of interpolations and differentiation operators.
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First, the convective term of Eq. 5.44 is transformed by specializing Eq. 5.64 to
ϕ = u, ψ = φ, χ = ρ and Q f = Û f A f , then, using the continuity equation, Eq. 5.6,
and canceling out equal terms, the convective expression can be rewritten as

∑
c∈Ω

uc· ∑
f∈F(c)

φ f M̂ f = ∑
c∈Ω

∑
f∈F(c)

1
4

uc· (4φ f ρ f −φcρc)Û f A f , (5.45)

where φ f is evaluated as the semi-sum of the velocities of the two adjacent cells, i.e.,
using the symmetry-preserving convection scheme [11].

Second, if the pressure term in Eq. 5.44 is analyzed in a similar fashion, making
use of Eq. 5.62, by taking ϕ = u, ψ = p and Q f = n̂ f A f , and Eq. 5.22 is used to
simplify the expression, results in the following relation

∑
c∈Ω

uc· ∑
f∈F(c)

p f n̂ f A f = ∑
c∈Ω

∑
f∈F(c)

ûp· n̂ f A f − ∑
c∈Ω

pc ∑
f∈F(c)

δt
ρ f

[
(pnb − pc)

A f

δd f

]

+ ∑
c∈Ω

pc ∑
f∈F(c)

δt
2

 1
ρcVc

∑
f∈F(c)

p f n̂ f A f +
1

ρnbVnb
∑

f∈F(nb)
p f n̂ f A f

 · n̂ f A f . (5.46)

Finally, notice that interior fluxes in Eqs. 5.45 and 5.46 cancel out, thus, Eq. 5.44
can be rewritten as

∑
c∈Ω

d( 1
2 ρcuc·uc)

dt
Vc + ∑

f∈F(∂Ω)

1
4

ua· (4φ f ρ f −φaρa)Û f A f = (5.47)

− ∑
f∈F(∂Ω)

1
2

(
ua p f + u f pa

)
· n̂ f A f + ∑

c∈Ω
pc ∑

f∈F(c)

δt
ρ f

[
(pnb − pc)

A f

δd f

]

− ∑
c∈Ω

pc ∑
f∈F(c)

δt
2

 1
ρcVc

∑
f∈F(c)

p f n̂ f A f +
1

ρnbVnb
∑

f∈F(nb)
p f n̂ f A f

 · n̂ f A f

+ ∑
c∈Ω

uc· ∑
f∈F(c)

µ f

[
(unb − uc)

A f

δd f
+∇Tu f · n̂ f A f

]
+ ∑

c∈Ω
uc·ScVc,

which states that, in the absence of viscosity (µ = 0) and source terms, the change
in kinetic energy is due to the fluxes through the boundary of the domain and a
kinetic energy error from the pressure term. This error term arises from the different
pressure gradient evaluations between Eqs. 5.15 and 5.19, necessary to evaluate
velocities at centers of cells and mass fluxes at time n + 1, respectively. Notice that
if first-order interpolations, i.e., semi-summed variables from adjacent cells, and a
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symmetry-preserving convection scheme are used, the kinetic energy conservation
error is minimized.

It is of great importance to evaluate the scaling order of this kinetic energy pressure
error, since it can not be eliminated. Thus, the error is easily analyzed simplifying it
for each individual face f , written as

δtA f

 (pnb − pc)

ρ f δd f
− 1

2

 ∑
f∈F(c)

p f n̂ f A f

ρcVc
+ ∑

f∈F(nb)

p f n̂ f A f

ρnbVnb

 · n̂ f

 , (5.48)

resulting that the whole term depends on density and is multiplied by time step, δt,
and face surface, A f . Hence, the pressure error is proportional to ∆ρ, while spatially
scaled asO(∆h2) and temporally scaled asO(∆t), although it can be reduced through
the use of different temporal integration schemes, O(∆tm), as proposed by Felten and
Lund [12] and studied by Fishpool and Leschziner [40].

This result can be related to the symmetries of discrete operators in the following
way: (1) the convective term in Eq. 5.47 presents no kinetic energy error, since the
convection scheme has been chosen to make the convective operator skew-symmetric;
(2) the different pressure gradient evaluations between Eqs. 5.15 and 5.19 do not
respect the relation M = −G∗, therefore, a pressure gradient error term arises in
Eq. 5.47.

Staggered kinetic energy conservation

The staggered kinetic energy equation starts from the staggered momentum equation,
Eq. 5.36. First, Eqs. 5.37 to 5.42 are used to recast the summation over faces as a
summation over cells and, second, the resulting equation is multiplied by velocity, u.
In this way, the staggered kinetic energy equation is shown to obey the same equation
as in the collocated case, Eq. 5.44.

Next, the convective term is converted to flux form as done for the collocated
case, Eq. 5.45, while the pressure term is analyzed by specializing Eq. 5.62 to ϕ = u,
ψ = p, Q f = n̂ f A f and noticing that a special definition for mass fluxes at faces is not
needed, giving

∑
c∈Ω

uc· ∑
f∈F(c)

p f n̂ f A f = ∑
c∈Ω

∑
f∈F(c)

ûp· n̂ f A f . (5.49)



138 CHAPTER 5. MULTIPHASE IMMISCIBLE FLOW

Finally, knowing that interior fluxes cancel out, Eq. 5.44 is rewritten as

∑
c∈Ω

d( 1
2 ρcuc·uc)

dt
Vc + ∑

f∈F(∂Ω)

1
4

ua· (4φ f ρ f −φaρa)Û f A f =

− ∑
f∈F(∂Ω)

1
2

(
ua p f + u f pa

)
· n̂ f A f (5.50)

+ ∑
c∈Ω

uc· ∑
f∈F(c)

µ f

[
(unb − uc)

A f

δd f
+∇Tu f · n̂ f A f

]
+ ∑

c∈Ω
uc·ScVc,

which states that, in the absence of viscosity (µ = 0) and source terms, the change in
kinetic energy is due solely to the fluxes through the boundary of the domain.

In this case, the two discrete operator properties needed to conserve kinetic
energy are fulfilled: (1) the convective term is evaluated by a symmetry-preserving
convection scheme, thus, making the discrete convective operator skew-symmetric;
(2) the mass fluxes at faces do not need a special definition, since it is the primary
quantity, then, the divergence-gradient relation respects the M = −G∗ condition.

5.5 Conservation and accuracy tests

Three different problems will be solved to test the conservation properties and accu-
racy of the unstructured mesh schemes previously presented. First, the conservation
properties will be analyzed by solving a three-dimensional vortex with zero mass flux
at the boundaries. Second, an accuracy assessment will be presented using an exact
sinusoidal function. Finally, the schemes will be tested by calculating the drag force
on a spherical bubble in a turbulent pipe flow.

5.5.1 Three-dimensional vortex

The conservation properties, studied theoretically in Sec. 5.4, are verified numerically
by solving a three-dimensional vortex. This problem is chosen since it is inherently
unsteady but at the same time has zero net mass flux at the boundaries.

The spatially periodic set of 2×2 three-dimensional vortices shown in Fig. 5.3 are
described by

u = −Asin(kx)cos(ky)e−2k2νt,

v = Acos(kx)sin(ky)e−2k2νt, (5.51)
w = −A,
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Figure 5.3: Frontal (xy-plane) and lateral (yz-plane) views of the three-dimensional
vortex test. The velocity field is displayed in light gray, while the different-density
sphere is shown in dark gray.

where A = 1.0× 10−3 m/s is the velocity amplitude, k = 1 is the wave number and
ν = 0 is the kinematic viscosity, which is set to zero to eliminate the effects of the
diffusive term.

The vortex is solved in a box of side 2π×2π×2π meshed by means of 66000
triangular prisms that correspond to a mesh size of h = 0.2. In detail, the 3-D mesh
is generated by extruding a 2-D grid, discretized in 2200 triangles, 30 times with a
constant step. Moreover, the box is filled with two different fluids, one with density
ρ1 = 1 kg/m3 that occupies the entire cube except for a sphere of radius R = π/2,
fixed in the center, that corresponds to the other fluid, which may present different
densities ρ2 = 10, 100, 1000 kg/m3. A constant time step of ∆t = 1.0× 103 s is used.
Besides, boundaries X and Y are considered slip walls, while periodic conditions are
set for Z ones.

First, mass and total momentum for each mesh scheme and sphere’s density, ρ2,
are calculated at every time step using Eqs. 5.32 and 5.34. The results corroborate
that both collocated and staggered schemes conserve mass and total momentum, as
theoretically expected, since there is no net flux across the domain boundaries. Notice
that in this problem, the x and y velocity components are symmetric about the axis of
the vortex and its z-component is periodic, thus, the inital mass and total momentum
are zero and they remain invariable through the test.
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Figure 5.4: Rate of change of kinetic energy, upwind-convection and pressure versus
time, using both collocated and staggered mesh schemes with ∆ρ = 10.
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Figure 5.5: Rate of change of kinetic energy and pressure versus time, using the
symmetry-preserving collocated and staggered mesh schemes with ∆ρ = 10.
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Figure 5.6: Error in kinetic energy for the collocated scheme caused by pressure
versus mesh size for different density ratios.
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Figure 5.7: Error in kinetic energy for the collocated scheme caused by pressure
versus time step for different density ratios.
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Furthermore, this test is really appropriate to study the conservation of kinetic
energy since viscosity is set to zero, there is no net mass flux at the boundaries and
no source terms exist. Under these conditions, the continuous transport equation for
kinetic energy, Eq. 5.43, determines that the rate of change of total kinetic energy is
zero, ∂k/∂t = ∂( 1

2 ρu·u)/∂t = 0. Hence, any existing variation of kinetic energy is due
to an improper discretization. In this way, the rate of change of kinetic energy, dk/dt,
convection using symmetry-preserving [11] and upwind [41] schemes,∇· [u( 1

2 ρu ·u)],
and pressure, ∇· (pu), for each mesh scheme and sphere’s density, ρ2, are calculated
at every time step using Eq. 5.44.

On the one hand, Fig. 5.4 shows that the use of an upwind convection scheme
produces an artificial kinetic energy dissipation. Particularly for case ∆ρ = 10, the
collocated discretization produces an upwind-convection error of magnitude 10−8,
while the staggered scheme produces one of order 10−7. This difference in the error of
convection between mesh schemes is due to the different velocity fields obtained by
each one. On the other hand, Fig. 5.5 confirms that the use of the symmetry-preserving
convection scheme turns out in a zero contribution to the kinetic energy equation,
since if any nonphysical kinetic energy variation exists is solely determined by the
pressure term. Furthermore, Fig. 5.5 also demonstrates that the staggered scheme
presents a zero pressure contribution to the kinetic energy variation, on the contrary,
the collocated scheme presents a nonzero value.

It is interesting to study numerically the scaling order of this error in kinetic
energy caused by pressure which, as previously analyzed in Sec. 5.4.3, is intrinsic to
the collocated mesh scheme and depends on mesh size and time integration. First, the
comparison between the pressure error term and mesh size is evaluated by solving the
vortex, for the three different density ratios, on four succesively refined unstructured
meshes (h = 0.4 to h = 0.05) with a fixed time step ∆t = 1.0 × 10−3 s. Second,
the relation between the pressure error term and time integration is analyzed by
solving the same test on the h = 0.2 mesh with four different time steps (1.0× 10−2 to
5× 10−5) and their corresponding relative velocities, ũ (1.0× 10−2 to 5× 10−5 m/s);
i.e., ∇· (pu) is the time variation of kinetic energy due to pressure, hence, velocity
must be time-proportional, ũ = u · (∆t/1× 10−3), in order to adequately compare
pressure errors between time steps.

Results of the error in kinetic energy caused by pressure, at the first time iteration,
depending on the mesh size are plotted in Fig. 5.6. The figure shows that if the mesh
is refined, the error in kinetic energy caused by pressure is reduced in a second-
order manner independently of the density ratio. This result matches with the
theoretical approach introduced in Sec. 5.4.3, which states that the pressure error is
spatially scaled as O(∆h2). Moreover, the error difference between density ratios is
explained by the proportional pressure fields obtained from the Poisson’s pressure
equation, Eq. 5.14; i.e., the pressure field is proportional to the density ratio, since



5.5. CONSERVATION AND ACCURACY TESTS 143

it is determined from the predictor mass fluxes. Consequently with this result, it
is important to notice that when multiphase problems are solved using interface-
capturing methods, usually the required mesh size is small enough to make the error
in kinetic energy imperceptible for the physics of such type of problems.

The time integration study is plotted in Fig. 5.7. Results of the error in kinetic
energy caused by pressure, at the first time iteration, indicate that time steps smaller
provide proportionally smaller errors (first-order). Once again, the difference in
errors between density ratios is due to the different pressure fields obtained from the
Poisson’s pressure equation. Moreover, the analysis of the kinetic energy conservation
for the collocated mesh scheme, Sec. 5.4.3, has been developed, for simplicity, using a
first-order explicit time integration method, but, as proposed by Felten and Lund [12]
and studied by Fishpool and Leschziner [40], using other time integration methods
may decrease the kinetic energy error. For instance, if using a second-order gear-
like time integration scheme, the time step multiplying the pressure error term in
Eq. 5.48 is diminished by a scaling factor of 2/3, therefore, the pressure error term is
consequently minimized.

In summary, this test verifies numerically the discrete conservation properties
introduced theoretically in Sec. 5.4. On the one hand, the staggered mesh scheme
discretely preserves mass, momentum and kinetic energy, if a symmetry-preserving
convection scheme is used. On the other hand, the collocated mesh scheme conserves
mass and momentum, however, presents an error in the kinetic energy conservation
proportional to ∆ρ of the formO(∆tm, ∆h2), due to the difference in pressure gradient
evaluation between Eqs. 5.15 and 5.19.

5.5.2 Exact sinusoidal function

The accuracy of the two mesh schemes presented in this work is studied by means of
comparing numerical results to the analytical solution of an exact sinusoidal function.
In each case, a sinusoidal function is assigned to the input variables: velocities at
centers of cells, u, in the collocated case, while normal face velocities, U, in the
staggered case. Then, numerical normal face velocities are obtained from Eq. 5.22
for the collocated case, dividing by face density and considering the ideal situation
in which pressure terms vanish, while numerical velocities at the centers of cells are
calculated from Eq. 5.27 for the staggered discretization. Finally, the root-square-
mean error (rms), xrms, is calculated by comparing analytical and numerical results,
its definition is written as

xrms =

√
1
n
(x1

2 + · · ·+ xn2), (5.52)

where xi corresponds to each of the n individual errors.
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Figure 5.8: Velocity error, xrms, versus relative mesh size with ∆ρ = 10. Normal
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A stream function, determined by ψ = 1
2πN sin(2πNx)cos(2πNy)k, is utilized in

order to ensure that the resulting analytical velocity field is divergence-free. In this
way, the derivation of ψ, defined as u = ∇×ψ, gives the following velocity field

u = −sin(2πNx)sin(2πNy),
v = −cos(2πNx)cos(2πNy), (5.53)
w = 0,

with a maximum velocity magnitude of one. The test is performed in a cube of side
1.0×1.0×1.0 meshed by means of 9676 tetrahedral cells. Similarly to the previous
test, Sec. 5.5.1, fluid with density ρ1 = 1 kg/m3 occupies the entire cube except for a
sphere of radius R = 0.15, which is fixed in the center of the domain and filled with a
fluid that presents different densities ρ2 = 10, 100, 1000 kg/m3.

In addition, instead of changing the mesh size, mesh refinement is performed by
changing the wavelength of the input sine functions and, consequently, the radius
of the centered sphere. In this way, the average mesh volume is calculated as Vavg =
1
c ∑c Vc, giving an average mesh spacing equal to ∆Xavg = 3

√
3Vavg = 0.068, while the

effective length of the domain is defined as Le f f = 1/N, being N a variable integer
value that is increased or decreased in order to enlarge or refine the effective mesh,
respectively. In consequence, the relative mesh size is defined as h = ∆Xavg/Le f f =
0.068N.

Velocity accuracy errors are obtained for relative mesh sizes ranging from 0 to 1.6
and plotted in Fig. 5.8 just for ∆ρ = 10, since results appear to be independent to the
density ratio. The figure shows that collocated normal face velocity errors are smaller
than staggered cell-centered velocity ones for all relative mesh sizes, considering the
ideal situation in which pressure terms in Eq. 5.22 vanish. Going further, Fig. 5.9
zooms errors U and ux between relative mesh sizes 0 and 0.35, and shows their
approximated regression equations. This figure demonstrates that collocated errors
are almost second-order, f (h)c = 0.2h1.5, while staggered ones are just first-order
(imposed by construction), f (h)s = 0.6h. Consequently, although different quantities
have been analyzed to study the accuracy of both schemes, due to their distinct
constructions, it is reasonable to conclude that the collocated scheme presents a
slightly higher order of accuracy than the staggered one.

5.5.3 Drag force on a spherical bubble in a turbulent pipe flow

The final examination of the collocated and staggered schemes, in terms of conserva-
tion and accuracy properties, is performed by calculating the drag force acting on a
high-Reynolds-number clean spherical bubble fixed on the axis of a turbulent pipe
flow. This test is chosen since it has been found by Merle et al. [42] that the drag force
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acting on the bubble is influenced by all the length and time scales down to the Kol-
mogorov microscales. Hence, the use of kinetic-energy-conserving schemes should
result in better calculated solutions respect to the ones obtained by non-conserving
ones.

In particular, the problem under consideration falls into the classification of bubbly
flow, which differs in three important aspects from bluff body flows. First, when the
liquid is pure enough, it has the possibility to slip along the surface of the bubbles, in
contrast to the flow over rigid bodies where the no-slip condition prevails. Second,
due to the very small relative density of the bubbles compared to that of the liquid,
almost all the inertia is contained in the liquid, making inertia induced hydrodynamic
forces particularly important in the prediction of bubble motion. Third, the shape of
the bubbles may change with the local forces, adding new degrees of freedom to an
already complex problem. All these general differences together with other particular
characteristics are extensively described in the work by Magnaudet et al. [43], which
analyzes the motion of high-Reynolds-number bubbles in inhomogeneous flows. As
a note, other studies of the flow around clean spherical bubbles, written by the same
authors, may be found in the scientific literature [44–48].

The various forces acting on bubbles moving in fluids are usually named drag,
history, added mass and lift. The first one, drag, refers to the slowing-down of the
relative motion of a body in a fluid due to its viscosity. The history force, addresses
the temporal delay in boundary layer development as the relative velocity changes
with time. The added mass force, is the inertia introduced to a system because an
accelerating or decelerating body moves its surrounding fluid. Finally, the lift force
refers, as its name indicates, to the lift generated by the fluid circulation around
an immersed body. However, in this test the added mass force is considered zero
since the bubble is fixed, while the history force is neglected when compared to
the drag force due to the inertia difference between the bubble and the liquid [42].
Consequently, the analysis of forces should be reduced to the study of drag and lift,
but, in this work it is further reduced to just the study of drag.

Statement of the problem and computational domain

The setup of the problem consists of a spherical bubble (abbreviated as bl), with
diameter d and density ρbl , placed fixed at y = 0 on the y-axis of a circular pipe,
having diameter D and length L, that contains a fluid (abbreviated as f l) of density
ρ f l = 10ρbl . The Cartesian coordinate system attached to the bubble is (x, y, z). The
physics of the problem depends on the bulk and bubble Reynolds numbers. The
first one, bulk Reynolds number, is defined as Re = ρ f lubkD/µ f l , where ubk refers
to the bulk velocity. The second one, bubble Reynolds number, is expressed as
Rebl = ρblucd/µbl , being uc the time-averaged y-velocity of the flow at the centerline
of the pipe. In particular, this test chooses ρbl , Re, Rebl and ubk as 100, 6000, 500
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and 1, selected in this way so that the size of the bubble is comparable to the Taylor
microscale of the flow and is about ten times the Kolmogorov microscale.

The bubble is assumed to be clean, i.e., free of any surfactant or contaminant, and
the surface tension to be high enough for its shape to remain spherical. Under these
assumptions, the normal velocity and tangential stress are zero at the bubble surface,
written as

u · nΓ = 0
nΓ × (τ·nΓ) = 0

}
f or r = d/2, (5.54)

where nΓ is the unit vector normal to the surface of the bubble and τ = µ(∇u +
∇Tu) refers to the viscous part of the stress tensor. Accordingly, a no-slip boundary
condition is imposed at the pipe wall, while a periodic condition connects the inlet
and outlet of the pipe. In addition, the flow in the pipe is driven by forcing a pressure
difference, ∆P, between the outlet and the inlet. In detail, the averaged momentum
balance in the pipe implies that ∆P is directly related to the average shear stress at the
pipe wall, ρ f lu2

τ0
— neglecting the average force acting on the bubble, since it turns

out to be small compared to that of the average wall shear stress. In this way, ∆P may
be defined as

∆P
L

=
−4ρ f lu2

τ0

D
, (5.55)

where uτ0 is the wall shear velocity, which, in the case that Re > 4000, the Blasius
empirical correlation, taken from the boundary-layer theory by Schlichting et al. [49],
evaluates it as

uτ0 = ubk

(
0.3164Re−1/4

8

)1/2

. (5.56)

The numerical calculations reported in this section have been carried out with the
TermoFluids parallel unstructured Computational Fluid Dynamics (CFD) platform [50],
in which the collocated and staggered discretizations have been extended to a second-
order Adams-Bashforth time integration scheme. In addition, the convection term is
evaluated by first-order symmetry-preserving [11] (sp) and upwind [41] (uw) schemes.
This is done because most high-order convective schemes suitable for multiphase
flows are based on upwind-type schemes, as for example: QUICK [51], ENO [52]
or WENO [53]. In this way, differences in the results between conserving and non-
conserving discretizations may be observed.

The relation between pipe length and diameter is L = 5D and the bubble’s
diameter is chosen as L = 78d. In this way, (1) the pipe is long enough to include
even the largest-scale structures and (2) the velocity defect in the bubble’s wake
is significantly decreased before re-entering through the inlet boundary due to the
periodic condition. The resulting domain is discretized by rotating 360◦ a 2-D grid
around the y-axis, as exemplified in Fig. 5.10. In particular, the grid spacing must



148 CHAPTER 5. MULTIPHASE IMMISCIBLE FLOW

satisfy requirements for the correct resolution of the boundary layers of the pipe
and bubble, as well as the bubble’s wake. Hence, the mesh is made up of 5.4M
cells, resulting from rotating 128 times the 2-D grid discretized by means of 128
points (concentrated on the pipe wall and the bubble) in the radial direction and 330
points (accumulated at the bubble) in the axial direction. In detail, the 2-D mesh
contains the first radial point near the pipe wall at r+ = 0.94 — similarly to the grid
spacing used for the direct numerical simulation (DNS) of the turbulent pipe flow
at Re = 5300 by Eggels et al. [54]. Furthermore, the mesh is generated such that at
least three cells lie within the bubble’s boundary layer — an estimate of the thickness
is δ/d ∼ Re−1/2

bl [55] —, which, according to Legendre and Magnaudet [46], is a
necessary condition in order to properly solve all the scales in the vicinity of the
bubble.

Figure 5.10: Example of a 3-D mesh generated by rotating a 2-D grid around the
y-axis. This mesh is a coarse version of the one used for the calculations, however,
correctly exemplifies the grid refinement near the pipe wall and bubble surface.

Turbulent pipe flow at Reynolds number 5300

Prior to simulating the flow over the spherical bubble, the solution of the turbulent
pipe flow at Re = 5300 without the bubble is analyzed. This initial test, aside of
being a method to check the numerical model without interfaces, will generate a
fully developed turbulent flow useful to start the simulation with the bubble. The
calculations are performed in the same domain, which in this case is discretized as in
the DNS by Eggels et al. [54]: 96×128×256 gridpoints equally spaced in the radial,
rotational and axial directions, respectively. This mesh configuration produces a
rotational coupling of the discrete Poisson’s pressure equation, Eq. 5.14, resulting in
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circulant submatrices that are diagonalizable in a Fourier space. This allows us to
solve the Poisson’s pressure equation by means of a Fast Fourier Transform (FFT)
method. The algorithm used is a combination of a direct Schur complement based
decomposition (DSD) and a Fourier diagonalization. The latter decomposes the
original system into a set of mutually independent 2-D systems, which are solved by
means of the DSD algorithm. This is detailed in the work by Borrell et al. [56].

The problem solved by means of the collocated and staggered sp discretizations is
initiated with a random sinusoidal velocity field at dimensionless time t∗ = uτ0 t/D =
0, reducing in this way the required time to reach the statistically steady state. In
fact, at t∗ = 2.0 the average turbulent flow can be considered steady, thus, from
this point the collection of average data is initialized until t∗ = 4.0. Differently, the
resolution of the problem by means of the collocated and staggered uw discretizations
is initiated from the respective collocated and staggered sp instantaneous velocity
fields at t∗ = 2.0. Once the velocity fields are initialized, the transitory state is
considered to last until t∗ = 3.0, when the collection of average data is performed
during 1.0 dimensionless time unit.

The results are compared to the DNS reported by Eggels et al. [54]. In particular,
the profile of the axial mean velocity, uy, normalized by the centerline velocity, uc,
is shown in Fig. 5.11, while the root-mean-square (rms) values of the fluctuating
velocities, urms, normalized by the wall shear velocity, uτ0 , are shown in Fig. 5.12
using wall coordinates, urms

+. These two figures demonstrate that, although both con-
vection schemes are first-order accurate, the results obtained by using the sp scheme
are in good agreement with the DNS, while the ones from the uw scheme are really
inaccurate. In fact, the use of the uw scheme tends to laminarize the flow as it can be
observed in Fig. 5.11, where the shape of the uw solutions above r/D = 0.35 is similar
to a laminar profile, and specially in Fig. 5.12, where the uw velocity fluctuations are
completely different to the DNS results. This enormous difference between the sp and
uw convection schemes is related to the conservation of kinetic energy that is shown
in Fig. 5.13. In detail, the figure displays the amount of dissipation rate produced
by the convection term, −∇ · [u( 1

2 ρu · u)], of the kinetic energy equation, Eq. 5.43,
normalized by ρuτ0

3/D as function of the dimensionless time. Particularly, the figure
demonstrates that, while the sp scheme adds kinetic energy (103) into the system due
to the boundaries of the pipe, the uw scheme incorporates an artifical dissipation
(−104) into the system that results in a laminarization of the flow. Moreover, the
results obtained by the collocated and staggered sp discretizations show that they
perform similarly. Although, Fig. 5.11 reveals that the collocated scheme is slightly
more accurate between r/D = 0.3− 0.45, what is justified by the better accuracy
of the collocated scheme shown in Fig. 5.9. This demonstrates that with the mesh
size and time step (3.7× 10−4 s) used, the collocated scheme’s error in kinetic energy
conservation is really small and, hence, imperceptible for the physics of this problem.
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Drag force acting on a spherical bubble

At dimensionless time t∗ = 2uct/d = 0, the numerical simulations of the flow over a
spherical bubble are started from the velocity fields obtained from the simulations of
the turbulent pipe flow at Re = 5300. In particular, for each mesh scheme, both sp
and uw cases are initialized from the corresponding instantaneous sp velocity field at
Re = 5300. In this way, it is ensured that all cases are started from fully developed
turbulent regimes. Then, independently of the spatial discretization and convection
scheme, the initial velocity fields evolve during a transient period in order to reach
the new Reynolds number, Re = 6000, while at the same time a wake behind the
bubble is generated. This wake is similar to the one obtained in the case of a solid
sphere. However, it differs in the fact that the fluid slips through the surface of the
bubble instead of stopping. Thus, a transfer of momentum from the fluid surrounding
the bubble to the fluid inside of it is produced due to viscosity. This generates 3-D
oscillating vortices inside the bubble with a predominant negative velocity in the
y-axis; see Fig. 5.14. Therefore, in order to arrive to statistically stationary flow
conditions everywhere, simulations are advanced in time until t∗ = 20, the instant
when collection of average data is initialized.
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Figure 5.14: Velocity vectors inside the bubble: (a) yz-plane, (b) xz-plane and (c)
xy-plane.

In this paper the analysis of forces is reduced to the study of drag, which, as
demonstrated in the work by Merle et al. [42], can be fairly well predicted by Moore’s
expression, resulting in

FDrag = 6πµbld(1− 2.211/Rebl(t)
1/2)ubl , (5.57)

where Rebl(t) = ρbl‖ubl‖d/µbl and ubl are the instantaneous bubble’s Reynolds num-
ber and velocity at the center of the bubble (absolute value), respectively. Furthermore,
in order to analyze the transient evolution of this force, it is compared to the laminar
force that would be experienced by the same bubble embedded in a laminar flow

FLam = 6πµbld(1− 2.211/Rebl
1/2)ucey, (5.58)

where ey corresponds to the y-axis unitary vector and time is normalized by the time
scale d/2uc.

The instantaneous drag forces resulting from the utilization of the different mesh
and convection schemes are shown in Fig. 5.15. The outcome is that, independently of
the mesh scheme, the utilization of the uw convection scheme derives in drag forces
similar to the one that would be obtained in a laminar flow, since their values are
linear and around FDrag/FLam = 1.0. On the contrary, if utilizing the sp convection
scheme, the drag forces for the collocated and staggered discretizations randomly
oscillate around the FLam value. As seen in Tab. 5.1, this behavior agrees with the
results presented in the work of Merle et al. [42], which state that the drag fluctuations
originate in the viscous dissipation induced by the turbulence fluctuations. Hence,
this final result demonstrates that: (1) both collocated and staggered discretizations,
in the case of using the sp convection scheme, result appropriate for the numerical
simulation of turbulence; (2) conservation of kinetic energy in the case of turbulent
multiphase immiscible flow is important, since the contrary substantially modifies
the physics of the problem.
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Figure 5.15: Drag force, FDrag, normalized by FLam versus dimensionless time, d/2uc.

Merle et al. collocated sp staggered sp collocated uw staggered uw
FDrag/FLam ∼1.005 ∼1.008 ∼1.006 ∼1.002 ∼1.004
F
′
Drag/FLam ∼0.043 ∼0.046 ∼0.039 ∼0.0 ∼0.0

Table 5.1: Mean values and rms fluctuations of the drag force, FDrag, normalized by
FLam for the different mesh and convection schemes.

5.6 Conclusions

The separated multiphase flow, in which the fluids involved are immiscible, is gov-
erned by the continuity, Eq. 5.6, and Navier-Stokes, Eq. 5.7, equations in the variable-
density incompressibility limit, where the physical properties are evaluated from the
properties of each fluid by means of the fluid-volume fraction values, Eq. 5.8, given by
the location of the interface separating them, Eq. 5.3. This model specifically conserves
mass and momentum, however, the conservation of secondary derived quantities
such as kinetic energy — important for the correct resolution of turbulence — cannot
be directly imposed. Hence, this work proposes two unstructured finite-volume
mesh discretizations, collocated and staggered, that numerically conserve mass and
momentum, while at the same time minimize the errors in the conservation of kinetic
energy. On the one hand, the collocated, Sec. 5.3.1, and staggered, Sec. 5.3.2, discretiza-
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tions are shown to conserve mass exactly by Eqs. 5.30 and 5.31, respectively, while
Eq. 5.34 states that the change in momentum of both discretizations is due to the fluxes
through the boundary of the domain and the source terms. On the other hand, the
discrete conservation of kinetic energy for the collocated and staggered mesh schemes
is shown in Eqs. 5.47 and 5.50, respectively, stating that, if a symmetry-preserving
convection scheme is used and in the absence of viscosity (µ = 0) and source terms,
the change in kinetic energy is due solely to the fluxes through the boundary of the
domain for the staggered discretization, plus a kinetic energy error from the pressure
term for the collocated one. This error in the conservation of kinetic energy — intrinsic
to the collocated formulation, since it arises from the difference in pressure gradient
evaluation between Eqs. 5.15 and 5.19, necessary to exactly conserve mass — is shown
by Eq. 5.48 to be proportional to the density ratio and scaled by the mesh size and
time step as O(∆tm, ∆h2).

The theoretical conservation properties have been verified numerically by solv-
ing a three-dimensional vortex with zero mass flux at the boundaries. The test
corroborates that both collocated and staggered discretizations conserve mass and
momentum numerically, as theoretically expected, since there is no net flux across
the domain boundaries. Moreover, the test demonstrates in Fig. 5.4 that the use of an
upwind convection scheme produces an artificial kinetic energy dissipation, while
Fig. 5.5 shows that using a symmetry-preserving one turns out in a zero contribution
to the kinetic energy equation. Additionally, it is proved numerically that the stag-
gered discretization preserves kinetic energy, while Figs. 5.6 and 5.7 verify that the
collocated one presents a kinetic energy error proportional to the density ratio of the
form O(∆tm, ∆h2). In this way, it is important to notice that if multiphase problems
are to be solved by means of interface-capturing methods, usually the required mesh
size is small enough to make the error in kinetic energy imperceptible for the physics
of such problems.

The accuracy of the collocated and staggered discretizations has been analyzed
by means of comparing their numerical results with the analytical solution of an
exact sinusoidal function. The results show that collocated errors are smaller than
staggered ones for all relative mesh sizes, considering the ideal situation in which
pressure terms in Eq. 5.22 vanish. In particular, Fig. 5.9 demonstrates that collocated
errors are almost second-order, f (h)c = 0.2h1.5, while, as imposed by construction,
staggered ones are just first-order, f (h)s = 0.6h. Consequently, the test concludes that
the collocated scheme presents a slightly higher order of accuracy than the staggered
one.

The drag force acting on a high-Reynolds-number clean spherical bubble fixed
on the axis of a turbulent pipe flow has been calculated by means of the collocated
and staggered discretizations presented, using both the symmetry-preserving and
upwind convection schemes, in order to analyze their properties on turbulent cases.
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First, the problem has been solved without the bubble and the results have been
compared to DNS data. The outcome is that both mesh discretizations, in the case of
utilizing the symmetry-preserving convection scheme, are able to properly resolve
the turbulent pipe flow, while the use of the upwind scheme produces laminar so-
lutions; see Figs. 5.11 and 5.12. This result can be extrapolated to most high-order
convection schemes, e.g., QUICK, ENO or WENO, since they are all based on upwind
approximations and, hence, disregard symmetry properties. Moreover, this inital
test also demonstrates that, if fine enough meshes and small time steps are used,
the collocated kinetic energy error is certainly minimized, consequently, as seen in
Fig. 5.11, the collocated scheme is slightly more accurate than the staggered one.
Second, the bubble has been introduced in the pipe, the numerical solutions have
been obtained and, for each mesh and convection scheme, the drag force has been
calculated and plotted in Fig. 5.15. Similar to the case without the bubble, the utiliza-
tion of the upwind convection scheme, with independence of the mesh discretization,
has resulted in drag forces presenting laminar flow behaviors. Contrary, in the case
of utilizing the symmetry-preserving convection scheme, both the collocated and
staggered discretizations produce oscillating drag forces, agreeing in this way with
the benchmark results.

In summary, this work demonstrates that, in the case of multiphase immiscible
flow, the use of discretizations that properly conserve mass, momentum and kinetic
energy — instead of the conventional idea of prioritizing stability, robustness and
accuracy —, turns out in better numerical solutions, especially if turbulence dominates
the physics of the problems under consideration. On this regard, this paper proposes
two mesh schemes, collocated and staggered, that contemplate these restrictions,
although with different properties for the solutions. In particular, the collocated
scheme is more accurate and presents no geometric difficulties (no circumcenters are
needed), while the staggered scheme numerically preserves kinetic energy and is more
stable (do not display spurious pressure modes). Going further, the development of
discretizations presenting higher stability and/or accuracy is possible, but always
under the constraint of respecting the properties of the continuous equations.

Appendix

The detailed analysis of the discrete kinetic energy equations is simplified if two impor-
tant identities involving combinations of interpolation and differentiation operators
are introduced. The two-variable identity was first presented by Morinishi et al. [9]
and restated in finite-volume form by Felten and Lund [12], while the three-variable
one is developed in this work. Prior to presenting the identities, some definitions
are needed. In particular, ϕ, ψ and χ represent three general variables and Q f is a
general quantity known on cell faces, i.e., no interpolation is needed. Additionally,
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two special interpolator operators for products are defined as

ϕ̂ψ =
1
2
(ϕcψnb + ϕnbψc), (5.59)

ϕ̂ψχ =
1
4
(2ϕcψcχnb + 2ϕcψnbχc + 2ϕnbψcχc (5.60)

+ ϕcψnbχnb + ϕnbψcχnb + ϕnbψnbχc).

where subscripts c and nb correspond to any pair of cells sharing a face.
In this way, the two-variable relation, for a given cell c, arises from the combination

of the trivial identities

ϕc ∑
f∈F(c)

ψ̄ f Q f − ∑
f∈F(c)

ϕc
1
2
(ψc + ψnb) Q f = 0, (5.61)

ψc ∑
f∈F(c)

ϕ̄ f Q f − ∑
f∈F(c)

ψc
1
2
(ϕc + ϕnb) Q f = 0,

where the overbars refer to semi-summed interpolations. Then, if Eq. 5.59 is used to
simplify the result, the final relation is written as

ϕc ∑
f∈F(c)

ψ̄ f Q f + ψc ∑
f∈F(c)

ϕ̄ f Q f = ∑
f∈F(c)

ϕ̂ψQ f + (ϕcψc) ∑
f∈F(c)

Q f . (5.62)

Analogously, the three-variable identity is obtained from the combination of the
following relations

ϕc ∑
f∈F(c)

ψ̄ f χ̄ f Q f − ∑
f∈F(c)

ϕc
1
2
(ψc + ψnb)

1
2
(χc + χnb) Q f = 0,

ψc ∑
f∈F(c)

ϕ̄ f χ̄ f Q f − ∑
f∈F(c)

ψc
1
2
(ϕc + ϕnb)

1
2
(χc + χnb) Q f = 0, (5.63)

χc ∑
f∈F(c)

ϕ̄ f ψ̄ f Q f − ∑
f∈F(c)

χc
1
2
(ϕc + ϕnb)

1
2
(ψc + ψnb) Q f = 0,

into one equation. Finally, making use of Eq. 5.61, the result is simplified to

ϕc ∑
f∈F(c)

ψ̄ f χ̄ f Q f+ψc ∑
f∈F(c)

ϕ̄ f χ̄ f Q f + χc ∑
f∈F(c)

ϕ̄ f ψ̄ f Q f (5.64)

= ∑
f∈F(c)

ϕ̂ψχQ f +
3
4
(ϕcψcχc) ∑

f∈F(c)
Q f .
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6

Numerical simulation of

the Richtmyer-Meshkov

instability

Main contents of this chapter have been published in:

L. Jofre, N. Balcázar, O. Lehmkuhl, J. Castro, and A. Oliva. Numerical Study of the Incom-
pressible Richtmyer-Meshkov Instability. Interface-Capturing Methods on General Meshes. In
Proceedings of the 15th International Conference on Fluid Flow Technologies, Budapest (Hungary),
September 2012.

Abstract. The Richtmyer-Meshkov instability occurs at a nearly planar interface separating two
fluids that are impulsively accelerated in the direction normal to the interface. This impulsive
acceleration can be the result of an impulsive body force or a passing shock wave. The initial
development of the instability creates small amplitude perturbations which initially grow
linearly with time. This is followed by a nonlinear regime with bubbles appearing in the
case of a light fluid penetrating a heavy fluid, and with spikes appearing in the case of a
heavy fluid penetrating a light fluid. This instability is important in astrophysical phenomena
and technological applications, such as: inertial confinement fusion and processes involving
explosions. In this work, the incompressible Richtmyer-Meshkov instability is numerically
simulated by means of a Volume-of-Fluid method. In addition, the numerical outcome is
compared to experimental data.
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6.1 Introduction

6.1.1 Richtmyer-Meshkov instability

The Richtmyer-Meshkov (RM) instability — named after the pioneering works of
Richtmyer [1] and Meshkov [2] — occurs at a nearly planar interface separating two
fluids that are impulsively accelerated in the direction normal to the interface, as a
result of a impulsive body force or a passing shock wave. The initial development
of the instability creates small amplitude perturbations which initially grow linearly
with time. This initial evolution is followed by a nonlinear regime with bubbles
appearing in the case of a light fluid penetrating a heavy fluid, and with spikes
appearing in the case of a heavy fluid penetrating a light fluid.

Recent experiments of the RM instability initiated with two- (2-D) and three-
dimensional (3-D) single-mode perturbations [3, 4] have verified the early time linear
growth predicted by Richtmyer. However, no nonlinear solution capable of predicting
the behavior from the early linear stages into the far nonlinear regime is available
at the moment. Many researchers have developed nonlinear analyses [5], heuristic
models [6] and analytical approaches [7], which capture some of the physics of the late-
time asymptotic flow, but they all necessarily must incorporate empirical constants
that limit their generalization.

Therefore, this work aims at numerically simulating the RM instability in order to
demonstrate the capacity of the computational techniques to study physical phenom-
ena. In particular, this paper is focused on the case of the RM instability comprised of
two incompressible immiscible liquids with two- (2-D) and three-dimensional (3-D)
single-mode initial perturbations. The interface of the instability is captured by a
Volume-of-Fluid method and the momentum equations are discretized by means of a
staggered mesh scheme. The numerical results of amplitude, velocity and vorticity
of the instability are analyzed and compared to the experimental data provided by
Niederhaus, Chapman and Jacobs [3, 4].

6.1.2 Method of interface-capturing

The contact of different fluids or phases in motion produces a thin region, named
interface, that separates them. This kind of flows are usually classified as interfacial
flows and are found in multiple fields, such as: engineering, fundamental physics
and geophysics. Typical examples of this phenomena are bubbles, drops, sprays, jets,
waves, clouds and, in particular, the RM instability.

There are many different methods to follow the motion of the interface between
fluids — a general list of them is found in the work by Scardovelli and Zaleski [8] —,
but in general these may be classified in two large groups: interface-tracking and
interface-capturing. On the one hand, the interface-tracking approaches chase the
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interface as it moves by defining it as a boundary between two subdomains of
a moving grid, or by following the Lagrangian trajectories of massless particles.
On the other hand, the interface-capturing approaches describe the motion of the
interface by embedding the different fluids into a static grid with the help of scalar
values. In particular, this work chooses the interface-capturing Volume-of-Fluid
(VOF) method, since its formulation preserves volume, large changes in interface’s
topology are properly handled and interfaces between fluids are maintained in a
sharp manner. In detail, the first VOF implementations were presented in the 1970s
for 2-D Cartesian meshes, being the method proposed by Hirt and Nichols [9] the
reference one. In recent years, the method has been improved and adapted for 3-D
meshes in a Cartesian approach by Liovic et al. [10] and, more generally, on 3-D
Cartesian and unstructured meshes by Jofre et al. [11].

6.1.3 Discretization of the Navier-Stokes equations

One of the decisions to make regarding the discretization of the Navier-Stokes equa-
tions is the placement of the velocity and pressure nodes on the grid, since an inap-
propiate selection may result in a checkerboard solution caused by the decoupling
of velocity and pressure. This issue is more critical when sharp discontinuities are
present in the domain, as in the case of multiphase flow. In order to solve this prob-
lem, there are two main mesh arrangements for the calculation of the Navier-Stokes
equations: the collocated and staggered schemes.

One of the first collocated schemes was presented by Rhie and Chow [12] for
body-fitted meshes in the 1980s. In recent years, the scheme has been extended
to unstructured meshes and improved to diminish the kinetic energy conservation
error by means of: (1) using a least-squares procedure to calculate the pressure-
gradient term [13]; (2) utilizing vectors that span the null space of the discrete pressure
Laplacian to obtain a smooth pressure field [14]; or (3) proposing a special definition
for the face mass fluxes that exactly conserves mass [15,16]. The main characteristic of
this scheme is that the velocity and pressure nodes are located at the same grid points,
what may result in a checkerboard pressure problem when solving discontinuous
flows like the RM instability.

In order to avoid this problem, a staggered mesh arrangement is used in this work.
This type of scheme is a numerical strategy where variables are located at different
points within the mesh. Many different staggering schemes are possible. However,
in this work we are interested in the scheme presented by Perot [17], since it is a
generalization to unstructured meshes of the one originally presented by Harlow
and Welch [18]. This scheme locates pressure at cell centers and normal velocities
at cell faces. The main variable is the face mass flux, from which velocity vectors at
cell centers are interpolated in such a way that momentum and kinetic energy are
conserved.
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6.2 Governing equations

A single set of mass and momentum equations may be utilized to describe the flow in
a domain composed of different fluids. In order to do so, the Navier-Stokes equations
in the variable-density incompressibility limit, together with the advection equation
that captures the motion of the interface between fluids, need to be considered.

In detail, the fluid k volume fraction color function, Ck(x, t), used to capture the
motion of the interface, is defined by an identity function as

Ck(x, t) =
{

1 if there is fluid k
0 otherwise, (6.1)

where x is a position in space and t refers to time instant. Therefore, for each cell c,
with volume Vc, its k’th fluid volume fraction at time t is evaluated as

Ck[c, t] =
∫

Ck(x, t)dVc

Vc
. (6.2)

Particularly, in the absence of phase change the volume fraction advection equation
results in

∂Ck
∂t

+∇· (Cku) = 0. (6.3)

Moreover, under the hypothesis of incompressible flow and negligible surface
tension, the conservation equations of mass and momentum are defined as

∇·u = 0, (6.4)

∂(ρu)
∂t

+∇· (ρuu) = −∇p +∇· (µ[∇u +∇Tu]) + ρg, (6.5)

where u and p represent velocity and pressure, respectively, and g is the gravitational
acceleration. Additionally, density, ρ, and dynamic viscosity, µ, are interpolated from
the properties of each fluid k by means of the fluid-volume fraction values, written as

ρ = ∑
k

Ckρk and µ = ∑
k

Ckµk. (6.6)

Therefore, the solution of the momentum equation, Eq. 6.5, provides the velocity
field used in the volume fraction advection equation, Eq. 6.3, to calculate the new
volume fraction scalar field.
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6.3 Numerical model

6.3.1 Volume-of-Fluid method

The VOF method discretizes, applying the divergence theorem and using a first-order
explicit time scheme, the volume fraction advection equation, Eq. 6.3, for each cell c
as

Cn+1
k − Cn

k +
1
Vc

∑
f∈F(c)

Vn
k, f = 0, (6.7)

where the superscript n refers to the discrete time level and Vk, f is the volumetric flow
of fluid k across face f , calculated geometrically from the total volume flux given by

Vf = |u f · n f |A f ∆t = ∑
k

Vk, f , (6.8)

where ∆t is the time step and u f , n f and A f correspond, respectively, to the velocity,
the unit-outward normal and the area of face f .

In order to calculate Vk, f , two consecutive steps are required: interface reconstruc-
tion and advection. First, the interface is reconstructed by approximating its form to a
geometric surface. In particular, this work reconstructs interfaces by planes using a
Least Square Gradient (LSG) approach of the Youngs method [19]. Second, once the
interface has been reconstructed, the advection step geometrically constructs volumet-
ric flows (polyhedrons) at mesh cell faces and, later, cuts them by the reconstructed
interface in order to compute the amount of fluid k across the faces, Vk, f . These two
steps are fully explained in the work by Jofre et al. [11].

6.3.2 Unstructured staggered mesh scheme

The multiphase flow of immiscible fluids presents sharp discontinuities in the domain
due to the difference in physical properties between fluids. Therefore, in order
to avoid possible spurious pressure modes, the Navier-Stokes equations, Eq. 6.5,
are discretized by means of the unstructured staggered mesh scheme presented
by Perot [17]. This mesh scheme, instead of evaluating velocities at cell centers,
evolves face mass fluxes, M f = ρ f u f · n f A f , in time. Hence, some preliminary
remarks are needed. First, face-centered control volumes are defined for each face
f as Vf = (Wa

f + Wb
f )A f , where W f is the distance between the circumcenter of face

f and each of the circumcenters of the neighbor cells that contain this face, while
A f is the surface of face f ; see Fig. 6.1. Second, convective, diffusive and source
terms are calculated at the centers of cells as non-volumetric quantities, later, they are
interpolated to faces using W f . In detail, the velocity-pressure coupling is solved by



168 CHAPTER 6. RICHTMYER-MESHKOV INSTABILITY

means of a fractional step procedure [20], written in staggered discrete form as

Mn+1
f = Mp

f − ∆t(pn+1
b − pn+1

a )
A f

(Wa
f + Wb

f )
, (6.9)

Mp
f = Mn

f −∆t
[
Wa

f (c
n
a − dn

a − sn+1
a ) + Wb

f (c
n
b − dn

b − sn+1
b )

]
·n f

A f

(Wa
f + Wb

f )
, (6.10)

where subscripts a and b refer to the two cells adjacent to face f and c, d and s are the
non-volumetric cell-centered discretizations of the convective, diffusive and source
terms, evaluated for each cell c as

cn
c =

1
Vc

∑
f∈F(c)

φn
f M̂n

f , sn+1
c = ρn+1

c g, (6.11)

dn
c =

1
Vc

∑
f∈F(c)

µn
f

[
(un

nb − un
c )

A f

δd f
+∇Tun

f · n̂ f A f

]
,

where φ f is the convected velocity at face f and the length δd f is the normal-projected
distance between the centroids of cells a and b.

Figure 6.1: Notation for the staggered mesh scheme on a 2-D unstructured mesh.

Next, dividing Eq. 6.9 by face density, ρn+1
f = 1

2 (ρ
n+1
c + ρn+1

nb ), summing over the
bordering faces of cell c and making use of the incompressibility constraint, results in
the discrete Poisson’s pressure equation

∑
f∈F(c)

M̂p
f

ρn+1
f

= ∆t ∑
f∈F(c)

1
ρn+1

f

(pn+1
nb − pn+1

c )
A f

δd f
, (6.12)
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which, by means of a preconditioned conjugate gradient solver [21], solves the pres-
sure field at time instant n + 1. Following the obtention of this pn+1 field, Mn+1

f is
calculated from Eq. 6.9.

Finally, the staggered mesh scheme discretizes mass fluxes in time, thus, velocities
at centers of cells need to be interpolated from face normal values. Hence, if a
first-order approximation of the momentum field (constant ρu) is assumed, the cell-
centered velocities are interpolated from the face mass fluxes as

uc =
1

ρcVc
∑

f∈F(c)
rc

f M̂ f , (6.13)

where rc
f = xCG

f − xCC
c is the vector from the circumcenter of cell c, xCC

c , to the centroid

of face f , xCG
f .

6.4 Numerical results

6.4.1 Statement of the problem

The numerical simulations of the RM instability are based on the 2-D and 3-D exper-
iments of Niederhaus and Jacobs [3] and Chapman and Jacobs [4], respectively. In
detail, the 2-D tank is 119.9 mm in width and 254.4 mm in height, while the dimen-
sions for the 3-D case are 72.6 mm in width and depth and 250 mm in height. The
lighter upper fluid, ρ1, and the heavier bottom fluid, ρ2, result in an Atwood number
equal to A = (ρ2 − ρ1)/(ρ2 + ρ1) = 0.1587. Similarly to the experiments, the initial
shape of the interface between fluids is set equal to a small periodical disturbance
in order to make the system unstable. In the 2-D case the amplitude is a0 = 0.23/k,
where k = 2π/λ, and the wavelength is λ = 82.6, while in the 3-D case the amplitude
is a0 = 0.38/k and the wavelength is λ = 48.4. In this way, the initial disturbances are
approximated as η = a0 · sin(kx) for the 2-D case, and η = a0[sin(kx) + sin(ky)] for
the 3-D one. Moreover, the acceleration pulse imparted to the fluids is numerically
approximated to a triangular shape with a duration of 26 ms, a peak magnitude of
50g, and an integrated impulse of 6.4 m/s.

The variables used to compare the numerical results to the experimental ones are
defined in Fig. 6.2, where a, ab and as are the total, bubble and spike amplitudes and
ȧ, ȧb and ȧs represent the total, bubble and spike velocities. The 2-D and 3-D cases are
numerically solved on Cartesian and unstructured meshes with average grid sizes of
h = 0.005, resulting in a mesh with 1250 cells for the 2-D test and a mesh with 11250
cells for the 3-D one, and h = 0.0025, resulting in a mesh with 4900 cells for the 2-D
test and a mesh with 84000 cells for the 3-D one. A fixed time step of 5.0× 10−4 s is
chosen to evolve the discrete equations in time.
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Figure 6.2: Schematic representation of the interface variables used to analyze the
RM instability.

6.4.2 Development of the instability

Figs. 6.3 and 6.4 are a sequence of images showing the evolution of the 2-D and
3-D RM instabilities in comparison to the Planar Laser-Induced Fluorescence (PLIF)
images from the experiments. In detail, Fig. 6.3 contains two blocks of images showing
the evolution of the light (black) and heavy (gray) fluids of the 2-D RM instability
at times (relative to the midpoint of spring impact): (first) -14 ms, (second) 102 ms,
(third) 353 ms and (fourth) 686 ms. Similarly, Fig. 6.4 shows the evolution of the
3-D RM instability at times (relative to the midpoint of spring impact): (first) -33 ms,
(second) 50 ms, (third) 300 ms and (fourth) 633 ms.

Figure 6.3: Two blocks of images showing the evolution of the light (black) and
heavy (gray) fluids of the 2-D RM instability. Top: PLIF images of the experiment
by Niederhaus and Jacobs [3]. Bottom: interface reconstruction planes from the
numerical simulation.
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Figure 6.4: Two blocks of images showing the evolution of the light (black) and
heavy (gray) fluids of the 3-D RM instability. Top: PLIF images of the experiment by
Chapman and Jacobs [4]. Bottom: interface reconstruction planes from the numerical
simulation.

The impulsive acceleration in these experiments is directed from the heavier
fluid into the lighter one. Thus, the amplitude of the instability changes sign before
growing and, immediately after inversion, retains a sinusoidal shape. Though, with
time, vortices begin to form, producing the typical mushroom pattern of the RM
instability.

6.4.3 Amplitude measurements

In the following figures, Figs. 6.5 and 6.6, the amplitudes, a, of the 2-D and 3-D RM in-
stabilities along time are plotted for the experimental and numerical results. Similarly
to the experiments of Niederhaus, Chapman and Jacobs [3, 4], these measurements
are made dimensionless by scaling the amplitude with the wave number, k, and time
with the wave number and the theoretical initial growth rate, ȧ0.

The linear theory that describes the early stages of the RM instability, developed by
Richtmyer [1], is shown to be satisfied until nondimensional time kȧ0t = 2− 3, both
by the experimental results as by the numerical solutions. In contrast, the numerical
results of the late time instability’s amplitude are not accurate enough. However,
it is believed that the numerical results would tend to the experimental ones if the
meshes were densified, since this is the pattern shown when meshes are densified
from h = 0.005 to h = 0.0025.
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Figure 6.5: Nondimensional amplitude of the instability versus nondimensional time
for the 2-D tests.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  5  10  15  20  25  30  35

k
a

ka
.
0t

linear theory

0.005 Cart.
0.005 Unstr.
0.0025 Cart.

0.0025 Unstr.
Chapman & Jacobs

Figure 6.6: Nondimensional amplitude of the instability versus nondimensional time
for the 3-D tests.
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Figure 6.7: Nondimensional velocity versus nondimensional time for the 2-D tests.
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Figure 6.8: Nondimensional velocity versus nondimensional time for the 3-D tests.
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6.4.4 Velocity measurements

The results of velocity, ȧ, for the 2-D and 3-D RM instabilities are plotted along time
in Figs. 6.7 and 6.8. The velocity, defined as the average velocity of the bubbles and
spikes, is nondimensionalized by dividing it by the theoretical initial growth rate, ȧ0,
while time is nondimensionalized by multiplying it by the wave number, k, and the
theoretical initial growth rate.

The figures show that the numerical results reproduce, in general, the experimental
ones, except in the 3-D case with coarse meshes, h = 0.005. However, when meshes
are densified, h = 0.0025, these numerical results tend to the experimental ones; see
Fig. 6.8. Moreover, it is observed, from experimental and numerical results, that 3-D
velocities present slightly faster nonlinear growth than the 2-D ones. This difference
in velocity behavior between 2-D and 3-D cases is due to the configurations of the
vorticity fields. In particular, the 2-D vortexs are stationary while the 3-D vortex
rings move alternately upward and downward, as respectively shown in Figs. 6.9
and 6.10. As a result, the interface’s velocity in the 2-D case decays with time as it is
pushed away from the vortex centers. On the contrary, in the 3-D flow the interface’s
velocity is the sum of a decaying component similar to the 2-D flow and the vortex
ring velocity associated to the vortex stretching mechanism. Thus, with time, the
interface’s velocity approaches the speed of the vortex rings.

6.4.5 Vorticity distributions

The vorticity equation, simplified for incompressible flows of inviscid fluids and
restricted to cases with conservative body forces, is written as

Dω

Dt
= (ω · ∇)u +

1
ρ2∇ρ×∇p, (6.14)

where vorticity is defined as ω = ∇× u, the term on the left-hand side is the material
derivative of the vorticity vector, the first term on the right-hand side describes
the stretching or tilting of vorticity due to the velocity gradients, and the second
term is the baroclinic mechanism accounting for the changes in vorticity due to the
intersection of density and pressure isosurfaces.

In the RM instabilities, vorticity is created during the impulsive acceleration by
the baroclinic term of Eq. 6.14. In detail, the pressure gradient during the impulsive
acceleration is hydrostatic and, thus, oriented in the direction of the acceleration,
while the density gradient is perpendicular to the fluids interface. Consequently, in
the 2-D instability case the distribution of these gradients result in the formation of
vortices oriented perpendicular to the viewing plane, as shown in Fig. 6.9. However,
in the 3-D case the vorticity results in the distribution of Fig. 6.10, which consists of
an array of vortex rings.
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Figure 6.9: Vorticity vectors, VOF reconstruction planes and mesh of the 2-D RM
instability test.

Figure 6.10: Vorticity vectors, VOF reconstruction planes and mesh of the 3-D RM
instability test.
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The difference in velocity behavior between the 2-D and 3-D cases, which is due
to the vortex stretching mechanism, can be visualized by calculating the first term
on the right-hand side of Eq. 6.14 by means of Figs. 6.9 and 6.10. In particular, the
2-D case results in a null vector space, since ω = (0, 0, ωz) and the z’th derivatives of
the velocity tensor are equal to zero. On the contrary, the 3-D case presents two main
vectors with opposite senses at the crests of the bubbles and spikes, indicating that
the interface of the instability is being stretched and its amplitude increased by the
vortex stretching mechanism.

6.5 Conclusions

In this work, the incompressible RM instability has been simulated by means of a
VOF method and a staggered mesh scheme suitable for 3-D unstructured meshes. The
numerical simulation has shown the capacity of the discrete system to obtain accurate
results of the RM instability initiated with 2-D and 3-D single-mode perturbations.
Therefore, this work encourages the authors to test their numerical model on more
complex multiphase problems.

The interface-capturing method presents good overall results on Cartesian and
unstructured meshes; see Figs. 6.3 and 6.4. In particular, when meshes are densi-
fied the numerical results of the instability’s amplitude and velocity agree with the
experimental data, as shown from Fig. 6.5 to Fig. 6.8.

The analysis of the vorticity distributions, which has been carried out by com-
bining the vorticity equation and the vorticity fields obtained from the numerical
results, reveals a main physical difference between the 2-D and 3-D cases. In the 2-D
case the stretching term of the vorticity equation due to the velocity gradients is zero,
while in the 3-D case the term presents two main vectors with opposite senses at the
crests of the bubbles and spikes. As a result, the 2-D interface’s velocity decays with
time as it is pushed away from the vortex centers, on the contrary, in the 3-D case
the interface’s velocity approaches that of the vortex ring associated to the vortex
stretching mechanism.
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7

Conclusions and further

research

As written in the abstract, the main objective of this thesis has been to develop
a basis for the numerical simulation of multiphase flows of immiscible fluids. In
addition, these numerical methods have been designed to be suitable for three-
dimensional (3-D) unstructured meshes, as well for Cartesian grids. Therefore, in
order to finalize this dissertation, the concluding remarks and future work regarding
these issues are presented in this chapter.

7.1 Conclusions

Within the Heat and Mass Transfer Technological Center (CTTC) research group, this
work is the first approach to the discretization of multiphase flow of immiscible
fluids by means of 3-D unstructured meshes. Therefore, the focus is placed on the
development of the numerical methods necessary to simulate these flows, rather
than on the numerical results corresponding to the physics under consideration. For
this purpose, the physical characteristics and the mathematical formulation of the
multiphase immiscible flow are presented in Chapter 1. In particular, this chapter
demonstrates that, through the use of jump conditions at the interfaces, a single set
of mass and momentum conservation equations can be used to describe the flow in
a domain composed of different immiscible phases. In consequence, the following
chapters develop numerical techniques, first, to locate interfaces as they move and
change topology, and second, to correctly discretize the momentum equations that
describe the configuration of flows.

In order to capture interfaces on 3-D unstructured meshes, as well on Cartesian
grids, a geometrical Volume-of-Fluid (VOF) method, based on a new approach for
the multidimensional advection, has been proposed in Chapter 2. In particular, the

179
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method reconstructs interfaces by means of the first-order Parker and Youngs [1]
and second-order LVIRA [2] interface reconstruction methods implemented on 3-D
unstructured meshes, while the proposed advection step constructs flux polyhedrons
by using the Lagrangian trajectories of the cell-vertex velocities. This procedure
minimizes the situation of over/underlapping between flux polyhedrons, however,
the volume of the polyhedrons needs to be adjusted in order to correctly solve the
advection equation. The reconstruction and advection steps of the method have been
analyzed by solving various tests on Cartesian and unstructured meshes. In detail, the
reconstruction tests show that the proposed methods produce results similar to the
ones found in the scientific literature, e.g., Liovic et al. [3] and Ahn and Shashkov [4].
In addition, the tests demonstrate that the Youngs algorithm is first-order accurate
and exhibits better results on coarse grids, while LVIRA is second-order accurate and
performs better when the grid is refined, but requires more computational time since
it performs a 2-D minimization. Moreover, results of the advection tests on Cartesian
grids are similar to the ones presented by Hernández et al. [5] and Liovic et al. [3],
while results on unstructured meshes are of same order of magnitude as the Cartesian
ones. Consequently, this demonstrates that the proposed unsplit advection algorithm
solves correctly the advection equation both on Cartesian as on unstructured meshes.
Furthermore, independently of the type of mesh used, the tests show that the use
of the Youngs reconstruction method turns out in a first-order advection algorithm,
while the use of the LVIRA method tends to produce a second-order one.

Complementing the VOF method, Chapter 3 develops a new parallelization strat-
egy. It has been developed with the aim of overcoming the workload imbalance
obtained with the standard domain decomposition (DD) when the fluids interface
is not homogeneously distributed throughout the domain. Basically, it consists in a
load balancing (LB) process, complementary to the underlying DD, that reassigns
tasks from processes with higher workload to processes with lower workload. This
process is applied separately to the reconstruction and advection steps of the VOF
algorithm. Moreover, since the initial DD is surpassed and the algorithm is applied to
general unstructured discretizations, all the geometric and algebraic data required
to perform any reassigned task need to be transmitted with it. Several tests have
been performed in the MareNostrum-III supercomputer [6], engaging up to 1024
CPU-cores. The results show that the parallel efficiency of the DD strategy depends
only on the interface distribution within the domain. On the contrary, our LB strategy
overcomes the imbalance, but the redistribution cost cancels part of the gains achieved
from it. However, when directly comparing both strategies, the result is that the larger
the initial imbalance, the larger the speedup achieved by the LB algorithm respect to
the DD one. In detail, gains up to ∼12× for the most ill-conditioned situations are
observed, but even in situations where the interface is spread throughout the domain,
the gain achieved does not drop below 1×.
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The finite-volume discretization of the continuity and Navier-Stokes equations in
the case of single-phase flow is dealt in Chapter 4. The discretization is presented by
means of a collocated and two staggered mesh schemes suitable for 3-D unstructured
meshes. In particular, the collocated discretization corresponds to the scheme exten-
sively used by Lehmkuhl et al. [7, 8] and Rodríguez et al. [9, 10], while the staggered
discretizations are the one introduced by Perot et al. [11, 12] (a) and a self-developed
one that proposes a least-squares cell-centered velocity interpolation (b). The the-
oretical analysis of their conservation properties demonstrates that, given that the
continuity and Navier-Stokes equations are specifically derived to conserve mass and
momentum, the collocated and staggered schemes presented also conserve discretely
these properties. On the other hand, the analysis of the kinetic energy conservation
— which is a really important property when solving turbulent flows, since the energy
is convected from the large eddies to the small dissipative scales — results in two
different behaviors depending upon the mesh scheme. In detail, the analysis demon-
strates that, in the absence of viscosity (µ = 0) and utilizing a symmetry-preserving
convection scheme [13], the change in kinetic energy is due to the fluxes through
the boundaries of the domain for the staggered schemes, plus an error from the
pressure term for the collocated scheme. This pressure error term arises from the
special definition of the normal face velocity needed to exactly conserve mass. These
theoretical results are numerically proved by solving a Rankine vortex. This test
shows that the staggered mesh schemes preserve numerically mass, momentum and
kinetic energy, while the collocated scheme conserves mass and momentum, but
presents a kinetic energy error of the form O(∆tm, ∆h2). Thus, densifying meshes
and using small time steps or high-order temporal schemes decreases the collocated
kinetic energy error. Moreover, an accuracy study for the different mesh schemes
is performed by comparing numerical results to the analytical solution of an exact
sinusoidal function. The results show that collocated and staggered b accuracy er-
rors are nearly second-order, while the staggered a scheme presents first-order ones.
Therefore, the authors conclude that if incompressible turbulent flow is to be solved,
using time-explicit algorithms with fine unstructured meshes and small time steps,
the collocated scheme is a better option over the staggered ones: (1) the pressure
kinetic energy error is unnoticeable in such situations; (2) presents good accuracy; (3)
it is a fast scheme that does not need the calculation of circumcenters. However, the
use of the collocated scheme to solve problems regarding other fluid or flow character-
istics, e.g., multiphase flow, combustion problems, or others, may produce spurious
pressure modes (checkerboard). In these situations the staggered schemes presented
in this study are a good alternative, especially the staggered b mesh discretization,
since it presents better accuracy than the staggered a one, although, it requires a more
complicated and computationally demanding cell-centered velocity reconstruction.
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After analyzing the case of single-phase flow, in Chapter 5 the study is extended
to the case of different fluids separated by interfaces. Similar to the previous case,
two unstructured finite-volume mesh discretizations are proposed, collocated and
staggered, that numerically conserve mass and momentum, while at the same time
minimize the errors in the conservation of kinetic energy. On the one hand, the
collocated and staggered discretizations are shown to conserve mass exactly, while
the equation of momentum conservation states that the change in momentum of
both discretizations is due to the fluxes through the boundary of the domain and the
source terms. On the other hand, the discrete conservations of kinetic energy for the
collocated and staggered mesh schemes have been derived, stating that, if a symmetry-
preserving convection scheme [13] is used and in the absence of viscosity (µ = 0)
and source terms, the change in kinetic energy is due solely to the fluxes through the
boundary of the domain for the staggered discretization, plus a kinetic energy error
from the pressure term for the collocated one. This error in the conservation of kinetic
energy — intrinsic to the collocated formulation, since it arises from the difference in
pressure gradient evaluations between the calculations of cell-centered velocities and
face mass fluxes — is shown to be proportional to the density ratio and scaled by the
mesh size and time step asO(∆tm, ∆h2). In order to numerically verify the theoretical
conservation properties, a three-dimensional vortex is solved. The test corroborates
that both collocated and staggered discretizations conserve mass and momentum
numerically. Moreover, the test demonstrates that the use of an upwind convection
scheme [14] produces an artificial kinetic energy dissipation, while using a symmetry-
preserving one turns out in a zero contribution to the kinetic energy equation. This
result can be extrapolated to most high-order convection schemes, e.g., QUICK [15],
ENO [16] or WENO [17], since they are all based on upwind approximations and,
hence, disregard symmetry properties. Additionally, it is proved numerically that the
staggered discretization preserves kinetic energy, while the collocated one presents a
kinetic energy error that, as theoretically expected, is proportional to density ratio
and decreases with mesh size and time step. Once again, the accuracy of both mesh
discretizations is analyzed by means of comparing numerical results to the analytical
solution of an exact sinusoidal function. The test concludes that collocated errors are
almost second-order, while, as imposed by construction, staggered ones are just first-
order. Therefore, summarizing, the collocated scheme is more accurate and presents
no geometric difficulties (no circumcenters are needed), while the staggered scheme
numerically preserves kinetic energy and is more stable (do not display spurious
pressure modes).

Finally, Chapter 6 performs a general assessment of the numerical methods de-
veloped in order to capture interfaces and resolve the momentum equations on
3-D unstructured meshes. The methods are tested by numerically simulating the
Richtmyer-Meshkov (RM) instability [18,19] of two incompressible immiscible liquids.
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In particular, the instability has been simulated by means of the VOF method and
the staggered mesh scheme. The numerical simulation has shown the capacity of
the discrete system to obtain accurate results of the RM instability. Therefore, the
results of this work are encouraging in terms of testing the numerical model on more
complex multiphase problems. In detail, the interface-capturing method presents
good overall results on Cartesian and unstructured meshes, since, when meshes
are densified, the numerical results of the instability’s amplitude and velocity agree
with the experimental data provided by Niederhaus, Chapman and Jacobs [20, 21].
Moreover, the analysis of the vorticity distributions, which has been carried out by
combining the vorticity equation and the vorticity fields obtained from the numerical
results, reveals a main physical difference between the 2-D and 3-D cases. In the 2-D
case the stretching term of the vorticity equation due to the velocity gradients is zero,
while in the 3-D case the term presents two main vectors with opposite senses at the
crests of the bubbles and spikes. As a result, the 2-D interface’s velocity decays with
time as it is pushed away from the vortex centers, on the contrary, in the 3-D case
the interface’s velocity approaches that of the vortex ring associated to the vortex
stretching mechanism.

7.2 Further research

The main objective of this thesis is to set the basis for the numerical simulation of mul-
tiphase flow of immiscible fluids on complex geometries. Although this objective has
been accomplished, there are still issues to be considered. For instance, the develop-
ment of other interface-capturing methods, the detailed treatment of surface tension
forces, the analysis of hybrid convection schemes suitable for fluids with interfaces,
the implementation of faster and more robust Poisson’s pressure solvers, the necessity
to incorporate adaptive mesh refinement (AMR) methods or the consideration of
phase change phenomena. Some of these issues are being currently investigated by
other researchers of the CTTC together with my collaboration, while others are still
in a very initial state. In detail, a conservative Level-Set (CLS) method [22], capable
of capturing interfaces on 3-D unstructured meshes, and an accurate surface tension
calculation [23] have been implemented and succesfully tested within the TermoFluids
(TF) CFD platform [24]. Moreover, in order to perform direct numerical simulations
(DNS) of multiphase immiscible flow, the focus is being placed on developing: (1)
hybrid convective schemes on the basis of symmetry-preserving upwind discretiza-
tions suitable for unstructured meshes [14]; (2) conjugate-gradient (CG) multigrid
Poisson’s pressure solvers [25, 26]; (3) efficient parallel AMR methods for improving
the accuracy on capturing interfaces between fluids [27]. Finally, if considering the
discretization of the phenomena related to phase change and energy, a new whole
world opens which has not been explored much yet.
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Appendix A

Discretization of the

convection-diffusion

equation

This appendix presents the discretization of the general convection-diffusion
differential equation, based on the finite-volume formulation and suitable for three-
dimensional unstructured meshes composed of arbitrary convex polyhedra, as well
for Cartesian grids.

A.1 Convection-diffusion equation

The transport equations of Computational Fluid Dynamics (CFD) and Heat Transfer
(HT) can all be expressed by the general convection-diffusion equation [1]. In detail, if
the dependent variable is denoted by φ, the general differential equation is written as

∂(ρφ)

∂t
+∇ · (ρuφ) = ∇ · (Γ∇φ) + S, (A.1)

where ρ, t and u correspond to density, time and velocity, respectively, while Γ is
the diffusion coefficient and S the source term. It may be observed, from the above
equation, that the general convection-diffusion equation is composed of four terms,
which are named correspondingly from left to right as: unsteady, convection, diffusion
and source.
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A.2 Finite-volume unstructured discretization

First, integrating Eq. A.1 over the volume of a cell c and using a first-order explicit
time scheme gives∫

Ωc

(ρφ)n+1 − (ρφ)n

∆t
dV +

∫
Ωc
∇ · (ρuφ)n dV = (A.2)∫

Ωc
∇ · (Γ∇φ)n dV +

∫
Ωc

Sn dV,

where superscript n refers to time instant and ∆t is the time step.
Second, considering the finite-volume hypothesis and applying the divergence

theorem to the bordering faces of cell c, f ∈ F(c), results in Eq. A.2 discretized as

(ρφ)n+1 − (ρφ)n

∆t
Vc + ∑

f∈F(c)
(ρ f u f φ f )

n · n̂ f A f = (A.3)

∑
f∈F(c)

(Γ f∇φ f )
n · n̂ f A f + Sn Vc,

where n̂ f and A f correspond to the normal outward unit vector and surface of face f ,
respectively, and Vc is the volume of the cell under consideration.

A.3 Evaluation of the convection term

The finite-volume discretization of the convection term, see Eq. A.3, is

C = ∑
f∈F(c)

ρ f u f φ f · n̂ f A f = ∑
f∈F(c)

(ρ f u f · n̂ f A f )φ f = ∑
f∈F(c)

M̂ f φ f , (A.4)

being M̂ f the mass flow and φ f the value of φ at face f evaluated by a convective
numerical scheme.

There are many different convective numerical schemes, some of them listed in
the work by Pérez-Segarra et al. [2], for example (see Fig. A.1):

• Upwind:

φ f = φP, i f M̂ f ≥ 0

φ f = φF, i f M̂ f < 0 (A.5)

• Symmetry-preserving:

φ f =
1
2
(φP + φF) (A.6)
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A.4 Evaluation of the diffusion term

The finite-volume discretization of the diffusion term, see Eq. A.3, is

D = ∑
f∈F(c)

Γ f∇φ f · n̂ f A f . (A.7)

On of the most common approaches to calculate this term is the Direct Gradient
Evaluation (DGE) described in the work by Pérez-Segarra et al. [2], which evaluates
the gradient directly at the cell face as (see Fig. A.1)

D = ∑
f∈F(c)

Γ f∇φ f · n̂ f A f = ∑
f∈F(c)

Γ f

(
∂φ

∂n

)
f

A f ≈ ∑
f∈F(c)

Γ f
φF′ − φP′

PF · n̂ f
A f , (A.8)

where PF is the vector between nodes P and F, and φP′ and φF′ are the projections of
the nodal values on the normal surface vector direction, n f , estimated by the gradient
at the nodal position as

φP′ ≈ φP +∇φP · PP’ and φF′ ≈ φF +∇φF · FF’. (A.9)

Figure A.1: Schematic representation of the geometric parameters needed for the
evaluation of the convection and diffusion terms.
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Appendix B

Vector calculus identities

This appendix presents a list of important vector calculus identities.

B.1 Operator notation

Notation of the symbols and differential operators used in vector calculus.

B.1.1 Nabla

The nabla symbol, ∇, can be interpreted as a vector of partial derivative operators,
and its three possible meanings — gradient, divergence and curl — can be formally
viewed as the scalar, dot and cross products, respectively, of the ∇ operator with the
field. In the three-dimensional Cartesian coordinate system R3 with coordinates (x, y,
z), ∇ is defined in terms of partial derivative operators as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (B.1)

where {x̂, ŷ, ẑ} are the unit vectors in their respective directions.

B.1.2 Gradient

The gradient of a tensor field, T, of order n, is generally written as

grad(T) = ∇T, (B.2)

and is a tensor field of order n + 1. In particular, if the tensor field has order 0, i.e., a
scalar, the resulting gradient is a vector field.
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B.1.3 Divergence

The divergence of a tensor field, T, of nonzero order n, is generally written as

div(T) = ∇ · T, (B.3)

and is a contraction to a tensor field of order n− 1. For instance, the divergence of
a vector is a scalar. The divergence of a higher order tensor field may be found by
decomposing the tensor field into a sum of outer products, thereby allowing the use
of the identity

∇ · (a⊗ T) = T(∇ · a) + (a · ∇)T, (B.4)

where a · ∇ is the directional derivative in the direction of a multiplied by its magni-
tude. Specifically, for the outer product of two vectors, a and b,

∇ · (a⊗ b) = ∇ · (abT) = b(∇ · a) + (a · ∇)b. (B.5)

B.1.4 Curl

The curl of a three-dimensional vector field, a, is generally written as

curl(a) = ∇× a, (B.6)

and is also a three-dimensional vector field.

B.1.5 Laplacian

The laplacian of a tensor field, T, is generally written as

∆T = ∇2T = (∇ · ∇)T, (B.7)

and is a tensor field of the same order.

B.2 Operator identities

In the remainder of this section, ψ and φ are scalars while a and b are vectors.

B.2.1 Distributive properties

∇(ψ + φ) = ∇ψ +∇φ (B.8)
∇ · (a + b) = ∇ · a +∇ · b (B.9)
∇× (a + b) = ∇× a +∇× b (B.10)
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B.2.2 Product rules

∇(ψφ) = φ∇ψ + ψ∇φ (B.11)
∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a) (B.12)
∇ · (ψa) = (∇ψ) · a + ψ(∇ · a) (B.13)
∇ · (a× b) = b · (∇× a)− a · (∇× b) (B.14)
∇× (ψa) = (∇ψ)× a + ψ(∇× a) (B.15)
∇× (a× b) = a (∇ · b)− b (∇ · a) + (b · ∇) a− (a · ∇)b (B.16)

B.2.3 Second derivatives

∇× (∇ψ) = 0 (B.17)
∇ · (∇× a) = 0 (B.18)
∇× (∇× a) = ∇(∇ · a)− ∆a (B.19)
∆(∇ · a) = ∇ · (∆a) (B.20)
∇ · (ψ∇φ) = ψ∆φ +∇ψ · ∇φ (B.21)

ψ∇2φ− φ∇2ψ = ∇ · (ψ∇φ− φ∇ψ) (B.22)
∆(ψφ) = ψ∆φ + 2∇ψ · ∇φ + φ∆ψ (B.23)

B.3 Vector identities

In this section, letters a, b, c and d represent vectors.

a + b = b + a (B.24)
a · b = b · a (B.25)
a× b = -b× a (B.26)
(a + b) · c = a · c + b · c (B.27)
(a + b)× c = a× c + b× c (B.28)
a · (b× c) = b · (c× a) = c · (a× b) (B.29)
a× (b× c) = (a · c)b− (a · b)c (B.30)
(a× b) · (c× d) = (a · c)(b · d)− (b · c)(a · d) (B.31)
(a · (b× c))d = (a · d)(b× c) + (b · d)(c× a) + (c · d)(a× b) (B.32)
(a× b)× (c× d) = (a · (b× d))c− (a · (b× c))d (B.33)
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B.4 Integration identities

In the remainder of this section, ψ and φ are scalars while a is a vector.

B.4.1 Volume-surface integrals

In the following volume-surface integral theorems, V denotes a three-dimensional
volume with a corresponding two-dimensional closed boundary, S = ∂V, and normal
outward unit vector, n̂.

• Divergence theorem: ∫
V
(∇ · a) dV =

∮
∂V
(a · n̂) dS (B.34)

∫
V
∇ψdV =

∮
∂V
(ψn̂) dS (B.35)

∫
V
(∇× a) dV =

∮
∂V
(n̂× a) dS (B.36)

• Green’s first identity:∫
V
(ψ∆φ +∇φ · ∇ψ) dV =

∮
∂V

ψ (∇φ · n̂) dS (B.37)

• Green’s second identity:∫
V
(ψ∆φ− φ∆ψ) dV =

∮
∂V

[(ψ∇φ− φ∇ψ) · n̂] dS (B.38)

B.4.2 Surface-curve integrals

In the following surface-curve integral theorems, S denotes a two-dimensional surface
with a corresponding one-dimensional closed boundary, C = ∂S, and tangential
counterclockwise unit vector, l̂.

• Stokes’ theorem: ∫
S
((∇× a) · n̂) dS =

∮
∂S
(a · l̂) dC (B.39)

∫
S
(n̂×∇ψ) dS =

∮
∂S
(ψl̂) dC (B.40)



Appendix C

Parallel computing

resources

This appendix lists the different parallel computing systems where the numerical
codes developed in the context of this thesis have been executed. In order to gain
acces to some of these equipments, it is required to submit state-of-the-art science
projects to competitive international calls, in which both the scientific relevance of the
presented project and the parallel performance of the code are evaluated.

C.1 JFF supercomputer, Terrassa

The JFF supercomputer, from the Heat and Mass Transfer Technological Center (CTTC),
is a HPC Beowulf cluster consisting in 40 cluster nodes, each one containing 2 AMD
Opteron with 16 Cores for each CPU, linked with 64 Gigabytes of RAM memory and
an infiniband QDR 4X network interconnection between nodes with latencies of 1.07
microseconds with a 40Gbits/s bandwith. For detailed information, visit the website
of the center: http://www.cttc.upc.edu

C.2 MareNostrum supercomputer, Barcelona

The MareNostrum supercomputer, located in the Barcelona Supercomputing Center
(BSC), is based on Intel SandyBridge 8-core processors at 2.6 GHz (2 per node),
iDataPlex Compute Racks, a Linux Operating System and an Infiniband FDR10
interconnection network, resulting in a peak performance of 1.1 Petaflops and 100.8
TB of main memory. Visit the website for more information: http://www.bsc.es
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Figure C.1: JFF supercomputer.

Figure C.2: MareNostrum supercomputer.
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C.3 Curie supercomputer, Paris

The Curie supercomputer, owned by the Grand Equipement National de Calcul Intensif
(GENCI) and operated into the Très Grand Centre de Calcul (TGCC) by the Commissariat
à l’Énergie Atomique (CEA), is a Tier0 system open to scientists through the French
participation into the Partnership for Advanced Computing in Europe (PRACE) research
infrastructure. Curie offers three different fractions of x86-64 computing resources,
from which the Curie Fat Nodes is used in this thesis. The Curie Fat Nodes cluster is
composed of 360 S6010 bullx nodes, each one with 4 8-core x86-64 CPU-cores, 128 GB
of memory and 1 local disk of 2TB. For detailed information of this supercomputer,
see the website: http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm

Figure C.3: Curie supercomputer.
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This is an exhaustive list of the publications, on international journals and confer-
ences, carried out within the framework of this thesis.

D.1 Journal Papers
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