
M U LT I - C O N S T R A I N T S C H E D U L I N G O F
M A P R E D U C E W O R K L O A D S

jordà polo

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor in Computer Science

Universitat Politècnica de Catalunya

2014

Jordà Polo: Multi-constraint scheduling of MapReduce workloads, A dis-
sertation submitted in partial fulfillment of the requirements for the
degree of Doctor in Computer Science.
© 2014

advisors:
Yolanda Becerra
David Carrera

affiliation:
Departament d’Arquitectura de Computadors
Facultat d’Informàtica de Barcelona
Universitat Politècnica de Catalunya

location:
Barcelona

A B S T R A C T

In recent years there has been an extraordinary growth of large-scale
data processing and related technologies in both, industry and aca-
demic communities. This trend is mostly driven by the need to ex-
plore the increasingly large amounts of information that global com-
panies and communities are able to gather, and has lead the introduc-
tion of new tools and models, most of which are designed around the
idea of handling huge amounts of data.

Alongside the need to manage ever larger amounts of information,
other developments such as cloud computing have also contributed
significantly to the growth of large-scale technologies. Cloud comput-
ing has dramatically transformed the way many critical services are
delivered to customers, posing new challenges to data centers. As a re-
sult, there is a complete new generation of large-scale infrastructures,
bringing an unprecedented level of workload and server consolida-
tion, that demand not only new programming models, but also new
management techniques and hardware platforms.

These infrastructures provide excellent opportunities to build data
processing solutions that require vast computing resources. However,
despite the availability of these infrastructures and new models that
deal with massive amounts of data, there is still room for improve-
ment, specially with regards to the integration of the two sides of
these environments: the systems running on these infrastructures,
and the applications executed on top of these systems.

A good example of this trend towards improved large-scale data
processing is MapReduce, a programming model intended to ease
the development of massively parallel applications, and which has
been widely adopted to process large datasets thanks to its simplic-
ity. While the MapReduce model was originally used primarily for
batch data processing in large static clusters, nowadays it is mostly
deployed along with other kinds of workloads in shared environ-
ments in which multiple users may be submitting concurrent jobs
with completely different priorities and needs: from small, almost
interactive, executions, to very long applications that take hours to
complete. Scheduling and selecting tasks for execution is extremely
relevant in MapReduce environments since it governs a job’s oppor-
tunity to make progress and determines its performance. However,
only basic primitives to prioritize between jobs are available at the
moment, constantly causing either under or over-provisioning, as the
amount of resources needed to complete a particular job are not ob-
vious a priori.

iii

This thesis aims to address both, the lack of management capa-
bilities and the increased complexity of the environments in which
MapReduce is executed. To that end, new models and techniques are
introduced in order to improve the scheduling of MapReduce in the
presence of different constraints found in real-world scenarios, such
as completion time goals, data locality, hardware heterogeneity, or
availability of resources. The focus is on improving the integration of
MapReduce with the computing infrastructures in which it usually
runs, allowing alternative techniques for dynamic management and
provisioning of resources. More specifically, it is focused in three sce-
narios that are incremental in its scope. First, it studies the prospects
of using high-level performance criteria to manage and drive the per-
formance of MapReduce applications, taking advantage of the fact
that MapReduce is executed in controlled environments in which the
status of the cluster is known. Second, it examines the feasibility and
benefits of making the MapReduce runtime more aware of the under-
lying hardware and the characteristics of applications. And finally, it
also considers the interaction between MapReduce and other kinds
of workloads, proposing new techniques to handle these increasingly
complex environments.

Following these three items described above, this thesis contributes
to the management of MapReduce workloads by 1) proposing a per-
formance model for MapReduce workloads and a scheduling algo-
rithm that leverages the proposed model and is able to adapt depend-
ing on the various needs of its users in the presence of completion
time constraints; 2) proposing a new resource model for MapReduce
and a placement algorithm aware of the underlying hardware as well
as the characteristics of the applications, capable of improving cluster
utilization while still being guided by job performance metrics; and 3)
proposing a model for shared environments in which MapReduce is
executed along with other kinds of workloads such as transactional
applications, and a scheduler aware of these workloads and its ex-
pected demand of resources, capable of improving resource utiliza-
tion across machines while observing completion time goals.

iv

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Contributions 3

1.2.1 Scheduling with Time Constraints 4

1.2.2 Scheduling with Space and Time Constraints 5

1.2.3 Scheduling with Space and Time Constraints in
Shared Environments 7

1.3 Thesis Organization 8

1.4 Acknowledgements 8

2 background 9

2.1 Processing Data with MapReduce 9

2.1.1 A Sample Application 10

2.1.2 Examples of Use 12

2.1.3 Comparison with Other Systems 14

2.2 Hadoop 16

2.2.1 Project and Subprojects 17

2.2.2 Cluster Overview 17

2.2.3 Storage with HDFS 18

2.2.4 Dataflow 20

2.3 Scheduling Concepts 23

2.3.1 Parallel Job Scheduling 23

2.3.2 Cluster Scheduling 23

2.3.3 Grid Scheduling 24

2.3.4 MapReduce Scheduling 24

2.4 Hardware Heterogeneity 26

2.5 Data Stores 27

2.5.1 Cassandra 27

2.5.2 Isolation and Consistency Levels 28

3 scheduling with time constraints 31

3.1 Introduction 31

3.2 Scheduling Principles 33

3.3 Performance Estimation 35

3.3.1 Problem Statement 35

3.3.2 Modelling Job Performance 35

3.4 Allocation Algorithm & Extensions 36

3.4.1 Basic Adaptive Scheduling 37

3.4.2 Adaptive Scheduling with Data Affinity 38

3.4.3 Adaptive Scheduling with Hardware Affinity 39

3.4.4 Hardware Acceleration: an Illustrative Example 40

v

vi contents

3.4.5 Regarding Mappers and Reducers 42

3.4.6 Modeling Application Characteristics 42

3.5 Evaluation 44

3.5.1 Workload 44

3.5.2 Execution Environment Description 45

3.5.3 Experiment 1: Basic Adaptive Scheduler 46

3.5.4 Experiment 2: Scheduling with Data Affinity 49

3.5.5 Experiment 3: Scheduling with Hardware Affin-
ity 53

3.5.6 Experiment 4: Arbitrating Between Pools 57

3.6 Related Work 59

3.7 Summary 60

4 scheduling with space and time constraints 63

4.1 Introduction 63

4.2 Resource-aware Adaptive Scheduler 65

4.2.1 Problem Statement 65

4.2.2 Architecture 66

4.2.3 Performance Model 68

4.2.4 Placement Algorithm and Optimization Objec-
tive 70

4.2.5 Task Scheduler 72

4.2.6 Job Profiles 73

4.3 Evaluation 74

4.3.1 Experimental Environment and Workload 75

4.3.2 Experiment 1: Execution with relaxed comple-
tion time goals 75

4.3.3 Experiment 2: Execution with tight completion
time goals 80

4.4 Related Work 82

4.5 Summary 83

5 scheduling in shared environments 85

5.1 Introduction 85

5.2 Enabling Key-Value Stores with Snapshot Support 86

5.2.1 Introduction 87

5.2.2 Isolation and Consistency Levels 88

5.2.3 Implementing Snapshotted Reads 90

5.2.4 Evaluation 93

5.2.5 Related Work 102

5.3 Adaptive Scheduling in Shared Environments 102

5.3.1 Introduction 103

5.3.2 Motivating example 104

5.3.3 Problem Statement 105

5.3.4 Reverse-Adaptive Scheduler 108

5.3.5 Evaluation 116

contents vii

5.3.6 Related Work 124

5.4 Summary 126

6 conclusions and future work 129

6.1 Conclusions 129

6.1.1 Scheduling with Time Constraints 129

6.1.2 Scheduling with Space and Time Constraints 130

6.1.3 Scheduling with Space and Time Constraints in
Shared Environments 131

6.2 Future Work 132

bibliography 135

L I S T O F F I G U R E S

Figure 1.1 Major steps for each contribution 4

Figure 2.1 Job submission 18

Figure 2.2 HDFS file creation 20

Figure 2.3 Local and remote reads from HDFS to Map-
Reduce 21

Figure 2.4 Hadoop dataflow 22

Figure 2.5 Architecture of the system: 2 levels of paral-
lelism 27

Figure 3.1 Slot allocation as a function of load 41

Figure 3.2 Slots needed depending on map task length 44

Figure 3.3 Distance to goal based on reduce length 44

Figure 3.4 Adaptive Scheduler (solid: maps, dotted: re-
duces) 47

Figure 3.5 Adaptive Scheduler with tighter completion time
goals (solid: maps, dotted: reduces) 48

Figure 3.6 Fair Scheduler (solid: maps, dotted: reduces) 48

Figure 3.7 Data locality without completion time 50

Figure 3.8 Data locality with completion time 52

Figure 3.9 Adaptive with data-affinity (3 delays, 1 replica) 53

Figure 3.10 Adaptive with data-affinity (3 delays, 3 repli-
cas) 54

Figure 3.11 Adaptive with Hardware Affinity 55

Figure 3.12 Basic Adaptive Scheduler 55

Figure 3.13 Heavy load on accelerated pool 57

Figure 3.14 Heavy load on non-accelerated pool 58

Figure 4.1 System architecture 67

Figure 4.2 Shape of the Utility Function when sj
req = 20,

sj
pend = 35, and rj

pend = 10 69

Figure 4.3 Experiment 1: Workload makespan with differ-
ent Fair Scheduler configurations (Y-axis starts
at 4000 seconds) 76

Figure 4.4 Experiment 1: Workload execution: (a) corre-
sponds to Fair Scheduler using 4 slots per Task-
Tracker, and (b) corresponds to RAS using a
variable number of slots per TaskTracker 78

Figure 4.5 Experiment 1: CPU utilization: (a) corresponds
to Fair Scheduler using 4 slots per TaskTracker,
and (b) corresponds to RAS using a variable
number of slots per TaskTracker 79

Figure 4.6 Experiment 1: Job Utility 80

viii

List of Figures ix

Figure 4.7 Experiment 2: Workload execution and Job util-
ity 81

Figure 5.1 Data is persisted in Cassandra by flushing a
column family’s memtable into an SSTable. 90

Figure 5.2 State of a column family in a Cassandra node
before starting a Snapshotted Read transaction. 91

Figure 5.3 State of a column family in a Cassandra node
after starting a Snapshotted Read transaction
and creating snapshot S1. 91

Figure 5.4 State of a snapshotted column family in a Cas-
sandra node after some additional writes. 92

Figure 5.5 State of a column family with two snapshots
(S1, S2). 92

Figure 5.6 State of a column family in a Cassandra node
with two snapshots after a bounded compaction. 93

Figure 5.7 Average read latency and observed through-
put for varying targets of operations per sec-
ond on Workload D 96

Figure 5.8 Average read latency and observed through-
put for varying targets of operations per sec-
ond on Workload A 97

Figure 5.9 Distribution of number of SSTables read for
each read operation on workload A when per-
forming regular and snapshotted reads 97

Figure 5.10 Average read latency on Workload A, perform-
ing regular and snapshotted reads, and vary-
ing the frequency at which SSTables are cre-
ated relative to to the default configuration 99

Figure 5.11 Average read latency for each workload, com-
paring regular reads to reading from a snap-
shot 100

Figure 5.12 Evolution of average read latency for 10 con-
secutive executions of Workload A 101

Figure 5.13 Distribution of number of SSTables read for
each read operation on workload A with mul-
tiple snapshots 102

Figure 5.14 Distribution of assigned resources over time
running the sample workload using a sched-
uler without dynamic resource availability aware-
ness 106

Figure 5.15 Distribution of assigned resources over time
running the sample workload using the Reverse-
Adaptive Scheduler 107

Figure 5.16 Step by step estimation with the Reverse-Adaptive
Scheduler from (a) to (c), and placement deci-
sion (d) 110

Figure 5.17 Shape of the Utility Function when sj
f it = 10,

sj
req = 15 sj

pend = 35, and rj
pend = 10 114

Figure 5.18 System architecture of the Reverse-Adaptive Sched-
uler 115

Figure 5.19 MapReduce simulation of the Adaptive Sched-
uler running the workload described in Sec-
tion 3.5.3 and shown in Figure 3.5 119

Figure 5.20 Experiment 1: No transactional workload. 121

Figure 5.21 Experiment 2: Scheduling with transactional work-
load. Deadline factors: 1.5x – 4x (a), 1.5x – 8x (b),
1.5x – 12x (c). 123

Figure 5.22 Experiment 3: Burstiness level classification. 124

Figure 5.23 Experiment 3: Execution with different bursti-
ness: level 1 (a), level 2 (b), and level 3 (c);
deadline factor from 1.5x to 8x. 125

L I S T O F TA B L E S

Table 2.1 Isolation Levels as defined by the ANSI/ISO
SQL Standard 28

Table 3.1 Network Bandwidth: non-restricted completion
time goal 51

Table 4.1 Workload characteristics: 3 Applications, 3 Job
instances each (Big, Medium, and Small) 76

Table 4.2 Job profiles (shuffle: consumed I/O per map
placed, upper bound set by parallelCopies,
the number of threads that pull map output
data) 76

Table 5.1 Cassandra’s read consistency levels. 89

Table 5.2 Cassandra’s write consistency levels. 89

Table 5.3 Average read latency (ms) of Workload D us-
ing Original Cassandra and Cassandra with
Snapshotted Read support (S/R, S/RwS, SR) 95

Table 5.4 Average read latency (ms) of Workload A us-
ing Original Cassandra and Cassandra with
Snapshotted Read support (S/R, S/RwS, SR) 96

Table 5.5 Average read latency (ms) using Original Cas-
sandra and Cassandra with Snapshotted Read
support (Regular, Snapshot) 99

Table 5.6 Main workload simulator configuration param-
eters. 117

x

Table 5.7 Relative time beyond deadline of each applica-
tion of the workload under real and simulated
environments 119

Table 5.8 Execution time of each application of the work-
load under real and simulated environments,
in seconds 120

L I S T I N G S

Listing 1 Word count: map() function 10

Listing 2 Word count: reduce() function 11

Listing 3 Word count: sample input 11

Listing 4 Word count: intermediate output of the first
map 11

Listing 5 Word count: final output 11

xi

1
I N T R O D U C T I O N

1.1 motivation

Current trends in computer science are driving users toward more
service-oriented architectures such as the so-called cloud platforms,
that allow provisioning of computing and storage, converting physi-
cal centralized resources into into virtual shared resources. The ideas
behind it are not that different to previous efforts such as utility or
grid computing, but thanks to the maturity of technologies like vir-
tualization, cloud computing is becoming much more efficient: cost,
maintenance and energy-wise.

At the same time, more business are becoming aware of the rele-
vance of the data they are able to gather: from social websites to log
files, there is a massive amount of information ready to be stored,
processed, and exploited. Not so long ago it was relatively difficult
to work with large amounts of data. The problem was not hard drive
capacity, which has increased significantly over the years, but access
speed, which improved at a much lower pace. However, new tools,
most of which are originally designed and built around handling big
amounts of data are making things easier. Developers are finally get-
ting used to the idea of dealing with large datasets.

Both of these changes are not coincidental and respond to certain
needs. On the one hand, nowadays it is much easier for companies
to become global, target a larger number of clients and consequently
deal with more data. On the other hand, the initial cost they are will-
ing to afford keeps shrinking. Another issue that these new technolo-
gies help to address is that benefits may only arrive when dealing
with sufficiently large data, but the upfront cost and the maintenance

1

2 introduction

of the large clusters required to process such datasets is usually pro-
hibitive compared to the benefits.

Despite the availability of new tools and the shift to service-oriented
computing, there is still room for improvement, specially with re-
gards to the integration of the two sides of this kind of environment:
the applications that provide services and the systems that run these
applications.

Next-generation data centers will be composed of thousands of hy-
brid systems in an attempt to increase overall cluster performance
and to minimize energy consumption. Applications specifically de-
signed to make the most of very large infrastructures will be lever-
aged to develop massively distributed services. Thus, data centers
will be able to bring an unprecedented degree of workload consoli-
dation, hosting in the same infrastructure distributed services from
many different users, and with completely different needs and re-
quirements.

However, as of now, developers still need to think about the re-
quirements of the applications in terms of resources (CPU, memory,
etc.), and inevitably end up either under or over-provisioning. While
nowadays it is relatively easy to update provisioning as needed in
some service-oriented environments, for many applications this pro-
cess is still manual and requires human intervention. Moving away
from the old style way of managing resources is still a challenge. In
a way, it can be though of as the equivalent of the revolution that the
introduction of time-sharing supposed in the era of batch processing.
Time-sharing allowed everyone to interact with computers as if they
were the owners of the system. Likewise, freeing users from thinking
about provisioning is the definite step to create the illusion of the
cloud as an unlimited source of computing resources.

The main obstacle, though, is that the cloud is not actually an in-
finite and free source of computing resources: maintaining it is not
trivial, resources are limited and providers need some way to priori-
tize services. If users are freed of the task of provisioning, then there
must be some other mechanism to make both, sharing and account-
ing, possible. On the other hand, some parts of these systems seem
to be ready for this shift, specially the lower level components and
the middleware. But the applications that run the services on top of
cloud platforms seem to be lagging behind. As a relatively young de-
velopment platform, it is to be expected that not all applications are
fully integrated, but it seems clear that these represent the next and
most obvious target in order to consolidate this kind of platforms.

One example of the kind of application that is worth targeting is the
MapReduce programming framework. The MapReduce model allows
developers to write massively parallel applications without much ef-
fort, and is becoming an essential tool in the software stack of many
companies that need to deal with large datasets. MapReduce fits well

1.2 contributions 3

with the idea of dynamic provisioning, as it may run on a large num-
ber of machines and is already widely used in cloud environments.
Additionally, frameworks like MapReduce also represent the kind of
component that could benefit the most from a better integration with
the computing environment since it is not only the framework itself
that takes advantage of it: it is beneficial for all the applications that
are based on the framework.

MapReduce is still mostly deployed as a tool for batch processing
in large, static clusters. The same physical resources may be shared
between a number of users with different needs, but only basic prim-
itives to prioritize between them are available. This constantly causes
either under- or over-provisioning, as the amount of resources needed
to do a particular job are not obvious a priori.

This thesis aims to study and address these problems with the idea
of improving the integration of MapReduce with the computing plat-
forms in which it is executed, allowing alternative techniques for dy-
namic management and provisioning of resources. More specifically,
it is focused in three areas. First, it will explore the prospects of using
high-level performance criteria to manage and drive the performance
of MapReduce applications, taking advantage of the fact that Map-
Reduce is executed in controlled environments in which the status
of the cluster is known. Second, it will explore the feasibility and
benefits of making the MapReduce runtime more aware of the under-
lying hardware and the characteristics of applications. And finally,
it will study the interaction between MapReduce and other kinds of
workloads, proposing new techniques to handle these increasingly
complex environments.

1.2 contributions

The contributions of this thesis revolve around the same guiding
theme: management and scheduling of environments in which Map-
Reduce plays a central role. All the work done is incremental in that
each contribution is based on the previous one, but at the same time
each one of them delves into a new topic and proposes solutions to
different problems.

Figure 1.1 illustrates the three main directions this thesis explores,
and the steps taken in each one of them. The first direction represents
scheduling MapReduce environments with Time Constraints, the sec-
ond direction represents scheduling with Space Constraints and the
third direction scheduling in Shared Environments. While each di-
rection represents a contribution, the strong point of this thesis is
combination of all of them. More details about each contribution are
provided in the following sections.

4 introduction

Resource-aware Placement

Naïve Adaptive Scheduler

Locality-awareness

Heterogeneous Hardware

Time Constraints

Space Constraints

Snapshot Isolation

Dynamic Availability

Shared Environments

Figure 1.1: Major steps for each contribution

1.2.1 Scheduling with Time Constraints

While the MapReduce model was originally used primarily for batch
data processing in large, static clusters, nowadays it is mostly used
in shared environments in which multiple users may submit concur-
rent jobs with completely different priorities and needs: from small,
almost interactive, executions, to very long programs that take hours
to complete. Scheduling and selecting tasks for execution is extremely
relevant in MapReduce environments since it governs a job’s opportu-
nity to make progress and influence its performance. However, only
basic primitives to prioritize between them are available, constantly
causing either under or over-provisioning, as the amount of resources
needed to complete a particular job are not obvious a priori.

In these highly dynamic, shared, multi-user and multi-job environ-
ments new jobs can be submitted at any time, and the actual amount
of resources available for each application can vary over time. Defin-
ing time constraints, in the form of user-specified job completion time
goals, is necessary to predict and manage the performance of these
kinds of workloads efficiently.

The first contribution of this thesis is a performance model for
MapReduce workloads and a scheduling algorithm that leverages the
proposed model and allows management of workloads with time con-
straints. The proposed scheduler is driven by continuous job perfor-
mance management and is able to adapt depending on the needs of
the users. It dynamically predicts the performance of concurrently
running MapReduce jobs and adjusts its allocation, allowing appli-

1.2 contributions 5

cations to meet their completion time goals. The scheduler relies on
estimates of individual job completion times given a particular re-
source allocation, and uses these estimates so as to maximize each
job’s chances of meeting its goals.

The scheduler is also capable of taking into account other require-
ments, such as data locality and hardware affinity. The former ensures
that jobs are run as close as possible to where the data is located in
the cluster, as long as it does not have a negative impact on the perfor-
mance. The latter allows running MapReduce on heterogeneous clus-
ters, making it possible to provide performance estimates depending
on the machines in which jobs being executed.

As shown by experiments run on real clusters, this reactive ap-
proach in which the scheduler dynamically and automatically adapts
to different kinds of jobs is one of the keys to successfully schedule
workloads in this kind of ever-changing environments. It has also
proven to be an improvement over previous MapReduce scheduling
architectures, allowing a much more intuitive and accurate way to
prioritize jobs.

The work performed in this area has resulted in the following main
publications:

[62] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Ed-
uard Ayguadé, Malgorzata Steinder, and Ian Whalley. Performance-
driven task co-scheduling for MapReduce environments. In Network
Operations and Management Symposium, NOMS, pages 373–380, Osaka,
Japan, 2010

[61] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, and
Eduard Ayguadé. Performance Management of Accelerated Map-
Reduce Workloads in Heterogeneous Clusters. In ICPP ’10: Proceed-
ings of the 39th IEEE/IFIP International Conference on Parallel Processing,
San Diego, CA, USA, 2010

[64] Jordà Polo, Yolanda Becerra, David Carrera, Malgorzata Stein-
der, Ian Whalley, Jordi Torres, and Eduard Ayguadé. Deadline-Based
MapReduce Workload Management. IEEE Transactions on Network and
Service Management, pages 1–14, 2013-01-08 2013. ISSN 1932-4537

1.2.2 Scheduling with Space and Time Constraints

MapReduce is widely used in shared environments in which appli-
cations share the same physical resources, in line with recent trends
in data center management which aim to consolidate workloads in
order to achieve cost and energy savings. At the same time, next gen-
eration data centers now include heterogeneous hardware in order to
run specialized workloads more efficiently. This combination of het-
erogeneous workloads and heterogeneous hardware is challenging
because MapReduce schedulers are not aware of the resource capac-
ity of the cluster nor the resource needs of the applications. Resource

6 introduction

management is therefore increasingly important in this scenario since
users require both high levels of automation and resource utilization
while avoiding bottlenecks.

The second contribution of this thesis is a new resource model for
MapReduce and a scheduler based on a resource-aware placement
algorithm that leverages the proposed model. The scheduler is aware
of the underlying hardware as well as the characteristics of the ap-
plications, and is capable of improving cluster utilization while still
being guided by job performance metrics. The scheduler builds upon
the one presented in the first contribution, which is also guided by
completion goals, but we take this idea a step further in order to
allow space constraints in addition to time constraints. These space
constraints, given by the availability of resources and the character-
istics of MapReduce jobs, are intended to help the scheduler make
more efficient placement decisions automatically.

In order to achieve both principles, resource awareness and contin-
uous job performance management, a new resource model for Map-
Reduce frameworks is introduced. Unlike the basic MapReduce model,
this proposal provides a more fine-grained approach that leverages re-
source profiling information to obtain better utilization of resources
and improve application performance. At the same time, it adapts to
changes in resource demand by allocating resources to jobs dynami-
cally.

This contribution represents a novel model of MapReduce schedul-
ing since it makes it possible to decide not only how many resources
are allocated to reach certain time constraints, but also how and
where in the cluster tasks should be running in order to maximize
resource utilization. This more proactive approach allows for the for-
mulation of a placement problem solved by means of a utility-driven
algorithm, which in turn provides the scheduler with the adaptabil-
ity needed to respond to changing conditions in resource demand
and availability. To measure and compare the performance of jobs,
the scheduler uses a utility function that combines the resources allo-
cated to that job with its completion time goal and job characteristics.

The work performed in this area has resulted in the following pub-
lication:

[63] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra,
Ian Whalley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé.
Resource-Aware Adaptive Scheduling for MapReduce Clusters. In
ACM IFIP USENIX 12th International Middleware Conference, pages 187–
207, Lisbon, Portugal, 2011. Springer. ISBN 978-3-642-25820-6. doi:
10.1007/978-3-642-25821-3_10

1.2 contributions 7

1.2.3 Scheduling with Space and Time Constraints in Shared Environ-
ments

The last part of this thesis focuses on a scenario that is becoming in-
creasingly important in data centers. Instead of running on dedicated
machines, MapReduce is executed along with other resource-consum-
ing workloads, such as transactional applications. All workloads may
potentially share the same data store, some of them consuming data
for analytics while others may be acting as data generators. Twitter,
Facebook, and other companies that need to handle large amounts of
data, accessing and processing it in different ways and for different
purposes, follow this approach of sharing multiple workloads on the
same data center.

These shared environments involve higher workload consolidation,
which helps improve resource utilization, but is also challenging due
to the interaction between workloads of very different nature. One of
the major issues found in this scenario is related to the integration of
the storage. Storage is a key component since it usually deals with
multiple producers and consumers of data, and often serves different
kinds of workloads at the same time: from responding to transac-
tional queries to storing the output of long-running data analytics
jobs, each one of them with slightly different needs.

There are also other issues that arise when multiple workloads are
collocated sharing the same machines. MapReduce schedulers, for in-
stance, assume that the amount of available resources remains the
same over time, but resources are no longer stable in a shared envi-
ronment with transactional workloads, which are known to be bursty
and have a varying demand over time. Hence, this scenario requires
deep coordination between management components, and single ap-
plications can not be considered in isolation but in the full context of
mixed workloads in which they are deployed.

The third contribution of this thesis is twofold: first, a scheduler
and performance model for shared environments, and second, the
necessary snapshotting mechanisms to allow the shared data store to
be used by both transactional and analytics workloads.

The proposed scheduler aims to improve resource utilization across
machines while observing completion time goals, taking into account
the resource demands of non-MapReduce workloads, and assuming
that the amount of resources made available to the MapReduce ap-
plications is dynamic and variable over time. This is achieved thanks
to a new algorithm that provides a more proactive approach for the
scheduler to estimate the need of resources that should be allocated
to each job.

The work performed in this area has resulted in the following main
publications:

8 introduction

[65] Jordà Polo, David Carrera, Yolanda Becerra, Malgorzata Stein-
der, Mike Spreitzer, Jordi Torres, and Eduard Ayguadé. Enabling Dis-
tributed Key-Value Stores with Low Latency-Impact Snapshot Sup-
port. In Proceedings of the 12th IEEE International Symposium on Net-
work Computing and Applications (NCA 2013), Boston, MA, USA, 2013.
IEEE Computer Society

[66] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Ed-
uard Ayguadé, and Malgorzata Steinder. Adaptive MapReduce Sched-
uling in Shared Environments. In Proceedings of the 14th IEEE ACM
International Symposium On Cluster, Cloud And Grid Computing (CCGrid
2014), Chicago, IL, USA, 2014. IEEE Computer Society

1.3 thesis organization

The remaining chapters of this thesis are organized as follows. Chap-
ter 2 introduces some basic concepts related to MapReduce, data-
storages, and hardware heterogeneity. Chapter 3 a introduces a sched-
uler for multi-job MapReduce workloads that is able to dynamically
build performance models of applications, and then use them for
scheduling purposes. Chapter 4 presents a resource-aware scheduling
technique for MapReduce multi-job workloads that aims at improv-
ing resource utilization across machines while observing completion
time goals. Chapter 5 is focused in how to improve the management
of MapReduce in the shared environments in which it is usually ex-
ecuted. And finally, Chapter 6 presents the conclusions and future
work of this thesis.

1.4 acknowledgements

This work is partially supported by the Ministry of Science and Tech-
nology of Spain and the European Union’s FEDER funds (TIN2007-
60625, TIN2012-34557), by the Generalitat de Catalunya (2009-SGR-
980), by the BSC-CNS Severo Ochoa program (SEV-2011-00067), by
the by the European Commission’s IST activity of the 7th Framework
Program under contract number 317862, by IBM through the 2008

and 2010 IBM Faculty Award programs, and by the HiPEAC Euro-
pean Network of Excellence (IST-004408).

2
B A C K G R O U N D

2.1 processing data with mapreduce

MapReduce [24] is a programming model used to develop massively
parallel applications that process and generate large amounts of data.
It was first introduced by Google in 2004, and has since become an
important tool for distributed computing. It is specially suited to op-
erate on large datasets on clusters of computers, as it is designed to
tolerate machine failures.

Essentially, MapReduce divides the work into small computations
in two major steps, map and reduce, which are inspired by similar
primitives that can be found in LISP and other functional program-
ming languages. The input is formed by a set of key-value pairs,
which are processed using the user-defined map function to gener-
ate a second set of intermediate key-value pairs. Intermediate results
are then processed by the reduce function, which merges values by
key.

While MapReduce is not something entirely new nor a revolution-
ary concept, it has helped to standardize parallel applications. And
even though its interface is simple, it has proved to be powerful
enough to solve a wide-range of real-world problems: from web in-
dexing to image analysis to clustering algorithms.

MapReduce provides high scalability and reliability thanks to the
division of the work into smaller units. Jobs are submitted to a master
node, which is in charge of managing the execution of applications in
the cluster. After submitting a job, the master initializes the desired
number of smaller tasks or units of work, and puts them to run on
worker nodes. First, during the map phase, nodes read and apply the
map function to a subset of the input data. The map’s partial output

9

http://labs.google.com/papers/mapreduce.html

10 background

is stored locally on each node, and served to worker nodes executing
the reduce function.

Input and output files are usually stored in a distributed file system,
but in order to ensure scalability, the master tries to assign local work,
meaning the input data is available locally. On the other hand, if a
worker node fails to deliver the unit of work it has been assigned to
complete, the master node is always able to send the work to some
other node.

2.1.1 A Sample Application

MapReduce is currently being used for many different kinds of appli-
cations, from very simple helper tools that are part of a larger envi-
ronment, to more complete and complex programs that may involve
multiple, chained MapReduce executions. This section includes a de-
scription of a typical MapReduce application, a word count, following
the steps from the input to the final result.

The goal of a word count application is to get the frequency of
words in a collection of documents. Word count was the problem
that exemplified MapReduce in the original paper [24], and has since
become the canonical example to introduce how MapReduce works.

To compute the frequency of words, a sequential program would
need to read all the documents, keeping a list of <word, count>
pairs, incrementing the appropriate count value every time a word is
found. As you will see below, MapReduce’s approach is slightly dif-
ferent. First of all, the problem is divided into two stages known as
map and reduce, named after the functions that are applied while they
are in progress. The map() function is applied to every single element
of the input, and since there is no need to do so in any particular
order, it effectively makes it possible to parallelize all the work. For
each element, map() emits key-value pairs to be worked on later dur-
ing the reduce stage. The generated key-value pairs are grouped and
processed by key, so for every key there will be a list of values. The
reduce() function is applied to these lists of values produced during
the map stage, and provides the final result.

Listings 1 and 2 show how these functions are implemented in an
application such as word count. The map() is simple: it takes a line
of the input, splits it into words, and for each word emits a <word,
count> key-value pair, where count is the partial count and thus al-
ways 1. Note that in this example the input is split into lines, but
it could have been split into some other identifiable unit (e.g. para-
graphs, documents, etc).

Listing 1: Word count: map() function

// i: key -- can be ignored in this example

// line: line contents

2.1 processing data with mapreduce 11

void map(string i, string line):

for word in line:

print word, 1 �
The reduce function takes <key, list(values)> pairs and goes through

all the values to get the aggregated result for that particular key.

Listing 2: Word count: reduce() function

// word: the key

// partial_counts: a list of partial count values

void reduce(string word, list partial_counts):

total = 0

for c in partial_counts:

total += c

print word, total �
A good exercise to understand how data is processed by Map-

Reduce is to follow step by step how a small input evolves into the
final output. For instance, imagine that the input of the word count
program is as follows:

Listing 3: Word count: sample input

Hello World

Hello MapReduce �
Since in this example the map() function is applied to every line,

and the input has two lines, it is possible to run two map() functions
simultaneously. Each function will produce a different output, but the
format will be similar: <word, 1> pairs for each word. For instance,
the map() reading the first line will emit the following partial output:

Listing 4: Word count: intermediate output of the first map

Hello, 1

World, 1 �
Finally, during the reduce stage, the intermediate output is merged

grouping outputs by key. This results in new pairs formed by key
and lists of values: <Hello, (1, 1)>, <World, (1)>, and <MapReduce,
(1)>. These pairs are then processed by the reduce() function, which
aggregates the lists and produces the final output:

Listing 5: Word count: final output

Hello, 2

World, 1

MapReduce, 1 �

12 background

Word count is an interesting example because it is simple, and the
logic behind the map() and reduce() functions is easy to understand.
As can be seen in the following examples, MapReduce is able to com-
pute a lot more than a simple word count, but even though it is pos-
sible to make these functions more complex, it is recommended to
keep them as simple as possible to help distribute the computation.
If need be, it is always possible to chain multiple executions, using
the output of one application as the input of the next one.

On the other hand, MapReduce may seem a bit overkill for a prob-
lem like word counting. For one thing, it generates huge amounts of
intermediate key-value pairs, so it may not be entirely efficient for
small inputs. But it is designed with scalability in mind, so it begins
to make sense as soon as the input is large enough. Besides, most
MapReduce programs also require some level of tweaking on both
the application itself and on the server side (block size, memory, etc).
Some of these refinements are not always obvious, and it is usually
after a few iterations that applications are ready to be run on produc-
tion.

It should also be noted this example is focused on the MapReduce
computation, and some steps such as input distribution, splitting, and
reduce partitioning are intentionally omitted, but will be described
later.

2.1.2 Examples of Use

MapReduce is specially well suited to solve embarrassingly parallel
problems, that is, problems with no dependencies or communication
requirements in which it is easy to achieve a speedup proportional to
the size of the problem when it is parallelized.

Below is the description of some of the main problems (not nec-
essarily embarrassingly parallel) and areas where MapReduce is cur-
rently used.

2.1.2.1 Distributed Search and Sort

Besides the beforementioned word frequency counting application,
searching and sorting are some of the most commonly used exam-
ples to describe the MapReduce model. All these problems also share
the fact that they are helper tools, thought to be integrated into larger
environments with other applications, very much like their pipeline-
based UNIX-like equivalent tools: wc, grep, sort, etc. Moreover, know-
ing how these problems are implemented in MapReduce can be of
great help to understand it, as they use different techniques.

A distributed version of grep is specially straightforward to imple-
ment using MapReduce. Reading line by line, maps only emit the
current line if it matches the given pattern. And since the map’s in-

2.1 processing data with mapreduce 13

termediate output can be used as the final output, there is no need to
implement the reduce() function.

Sorting is different from searching in that the map stage only reads
the input and emits everything (identity map). If there is more than
one reducer and the output is supposed to be sorted globally, the
important part is how to get the appropriate key and partition the
input so that all keys for a particular reducer N come before all the
keys for the next reducer N + 1. This way the output of the reducers
can be numbered and concatenated after they are all finished.

2.1.2.2 Inverted Indexing and Search Engines

When Google’s original MapReduce implementation was completed,
it was used to regenerate the index of their search engine. Keeping in-
dexes up to date is one of the top priorities of Internet search engines,
but web pages are created and updated every day, so an scalable so-
lution is a must.

Inverted indexes are one of the typical data structures used for
information retrieval. Basically, an inverted index contains a list of
references to documents for each word. To implement an inverted
index with MapReduce, the map reads the input and for each words
emits the document ID. Reduces then read it and output words along
with the list of documents in which they appear.

Other than Google, other major search engines such as Yahoo! are
also based on MapReduce. The need to improve the scalability of
the Free, open-source software search engine Nutch also promoted
the foundation of Hadoop, one of the most widely used MapReduce
implementations to date.

2.1.2.3 Log Analysis

Nowadays service providers generate large amounts of logs from all
kinds of services, and the benefits of analyzing them are to be found
when processing them en masse. For instance, if a provider is inter-
ested in tracking the behaviour of a client during long periods of time,
reconstructing user sessions, it is much more convenient to operate
over all the logs.

Logs are a perfect fit for MapReduce for other reasons too. First,
logs usually follow a certain pattern, but they are not entirely struc-
tured, so it is not trivial to use a RDBMS to handle them and may
require changes to the structure of the database to compute some-
thing new. Secondly, logs represent a use case where scalability not
only matters but is a key to keep the system sustainable. As services
grow, so does the amount of logs and the need of getting something
out of them.

14 background

Companies such as Facebook and Rackspace use MapReduce to ex-
amine log files on a daily basis and generate statistics and on-demand
analysis.

2.1.2.4 Graph Problems

MapReduce is not perfectly fit for all graph problems, as some of
them require walking through the vertices, which will not be pos-
sible if the mappers receive only a part of the graph, and it is not
practical to receive the whole graph as it would be way too big to
handle and require a lot of bandwidth to transfer. But there are ways
to work around these issues [22] such as using multiple map and re-
duce iterations, along with custom optimized graph representations
such as sparse adjacency matrices.

A good example of an Internet-scale graph problem solved using
MapReduce is PageRank, an algorithm that ranks interlinked ele-
ments. PageRank can be implemented as a chained MapReduce ap-
plication that at each step iterates over all the elements calculating its
PageRank value until converging.

2.1.3 Comparison with Other Systems

Analyzing and performing computations on massive datasets is not
something new, but it is not easy to compare MapReduce to other
systems since it is often used to do things in a way that simply was
not possible before using standardized tools. But besides creating a
new market, MapReduce is also drawing the attention of developers,
who use it for a wide range of purposes. The following comparison
describes some of the technologies that share some kind of the func-
tionality with MapReduce.

2.1.3.1 RDBMS

Relational Database Management Systems are the dominant choice
for transactional and analytical applications, and they have tradition-
ally been a well-balanced and good enough solution for most applica-
tions. Yet its design has some limitations that make it difficult to keep
the compatibility and provide optimized solution when some aspects
such as scalability are the top priority.

There is only a partial overlap of functionality between RDBMSs
and MapReduce: relational databases are suited to do things for which
MapReduce will never be the optimal solution, and vice versa. For in-
stance, MapReduce tends to involve processing most of the dataset,
or at least a large part of it, while RDBMS queries may be more
fine-grained. On the other hand, MapReduce works fine with semi-
structured data since it is interpreted while it is being processed,
unlike RDBMSs, where well structured and normalized data is the

2.1 processing data with mapreduce 15

key to ensure integrity and improve performance. Finally, traditional
RDBMSs are more suitable for interactive access, but MapReduce
is able to scale linearly and handle larger datasets. If the data is
large enough, doubling the size of the cluster will also make running
jobs twice as fast, something that is not necessarily true of relational
databases.

Another factor that is also driving the move toward other kind
of storage solutions are disks. Improvements in hard drives seem to
be relegated to capacity and transfer rate only. But data access in a
RDBMS is usually dominated by seek times, which have not changed
significantly for some years. Solid-state drives may prove to be a good
solution in the medium to long term [46], but they are still far from
affordable compared to HDD, and besides, databases still need to be
optimized for them.

MapReduce has been criticized by some RDBMS proponents due
to its low-level abstraction and lack of structure. But taking into ac-
count the different features and goals of relational databases and
MapReduce, they can be seen as complementary rather than opposite
models. So the most valid criticism is probably not related with the
technical merits of MapReduce, but with the hype generated around
it, which is pushing its use to solve problems for which it may not be
the best solution.

2.1.3.2 Distributed Key-value and Column-oriented DBMS

Alternative database models such as Distributed Key-Value and Col-
umn-oriented DBMS are becoming more widely used for similar rea-
sons as MapReduce. These two different approaches are largely in-
spired by Amazon’s Dynamo [25] and Google’s BigTable [19]. Key-
value storage systems have properties of databases and distributed
hash tables, while column-oriented databases serialize data by col-
umn, making it more suitable for analytical processing.

Both models depart from the idea of a fixed schema based structure,
and try to combine the best of both worlds: distribution and scalabil-
ity of systems like MapReduce with an higher and more database-
oriented level of abstraction. In fact, some of the most popular data
stores actually use or implement some sort of MapReduce. Google’s
BigTable, for instance, uses Google MapReduce to process data stored
in the system, and other column-oriented DBMS such as CouchDB
use their own implementations of MapReduce internally.

This kind of databases also mark a new trend and make it clear
that the differences between traditional databases and MapReduce
systems are blurring as developers try to get the best of both worlds.

http://databasecolumn.vertica.com/2008/01/mapreduce-a-major-step-back.html
http://couchdb.apache.org/

16 background

2.1.3.3 Grid Computing

Like MapReduce, Grid computing services are also focused on per-
forming computations to solve a single problem by distributing the
work across several computers. But these kind of platforms often built
on a cluster with a shared filesystem, which are good for CPU-bound
jobs, but not good enough for data intensive jobs. And that’s pre-
cisely one of the key differences between these kind of systems: Grid
computing does not emphasize as much as MapReduce on data, and
specially on doing the computation near the data.

Another distinction between MapReduce and Grid computing is
the interface it provides to the programmer. In MapReduce the pro-
grammer is able to focus on the problem that needs to be solved
since only the map and reduce functions need to be implemented,
and the framework takes care of the distribution, communication,
fault-tolerance, etc. In contrast, in Grid computing the programmer
has to deal with lower-level mechanisms to control the data flow,
check-pointing, etc. which makes it more powerful, but also more
error-prone and difficult to write.

2.1.3.4 Shared-Memory Parallel Programming

Traditionally, many large-scale parallel applications have been pro-
grammed in shared-memory environments such as OpenMP. Com-
pared to MapReduce, this kind of programming interfaces are much
more generic and provide solutions for a wider variety of problems.
One of the typical use cases of these systems are parallel applications
that require some kind of synchronization (e.g. critical sections).

However, this comes at a cost: they may be more flexible, but the
interfaces are also significantly more low-level and difficult to under-
stand. Another difference between MapReduce and this model is the
hardware for which each of this platform has been designed. Map-
Reduce is supposed to work on commodity hardware, while inter-
faces such as OpenMP are only efficient in shared-memory multipro-
cessor platforms.

2.2 hadoop

The code and experiments that are part of this project are all based on
Hadoop. The decision to use Hadoop is primarily supported by the
fact that Hadoop is not only the most complete Free software Map-
Reduce implementation, but also one of the best implementations
around.

Even though there are other open source MapReduce implementa-
tions, they either are still somewhat experimental or lack some com-
ponent of the full platform (e.g. a storage solution). It is more difficult
to compare to proprietary solutions, as most of them are not freely

2.2 hadoop 17

available, but judging from the results of the Terasort benchmark [51]
[52], Hadoop is able to compete even with the original Google Map-
Reduce.

This section describes how MapReduce is implemented in Hadoop,
and provides an overview of its architecture.

2.2.1 Project and Subprojects

Hadoop is currently a top level project of the Apache Software Foun-
dation, a non-profit corporation that supports a number of other well-
known projects such as the Apache HTTP Server.

Hadoop is mostly known for its MapReduce implementation, which
is in fact a Hadoop subproject, but there are also other subprojects
that provide the required infrastructure or additional components.
The core of Hadoop upon which most of the other components are
built is formed by the following subprojects:

common The common utilities and interfaces that support the other
Hadoop subprojects (configuration, serialization, RPC, etc.).

mapreduce Software framework for distributed processing of large
data sets on compute clusters of commodity hardware.

hdfs Distributed file system that runs on large clusters and provides
high throughput access to application data.

The remaining subprojects are simply additional components that
are usually used on top of the core subprojects to provide additional
features.

2.2.2 Cluster Overview

A typical Hadoop MapReduce cluster is formed by a single master,
also known as the jobtracker, and a number of slave nodes, also known
as tasktrackers. The jobtracker is in charge of processing the user’s re-
quests, and distributing and scheduling the work on the tasktrack-
ers, which are in turn supposed to execute the work they have been
handed and regularly send status reports back to the jobtracker.

In the MapReduce context, a job is the unit of work that users sub-
mit to the jobtracker (Figure 2.1), and involves the input data as well
as the map() and reduce() functions and its configuration. Jobs are
divided into two different kinds of tasks, map tasks and reduce tasks,
depending on the operation they execute. Tasktrackers control the
execution environment of tasks and are configured to run up to a cer-
tain amount of slots of each kind. It defaults to 2 slots for map tasks
and 2 slots for reduce tasks, but it can vary significantly depending
on the hardware and the kind of jobs that are run in the cluster.

http://www.apache.org/
http://www.apache.org/
http://httpd.apache.org/

18 background

Figure 2.1: Job submission

Before assigning the first map tasks to the tasktrackers, the job-
tracker divides the input data depending on its format, creating a
number of virtual splits. The jobtracker then prepares as many map
tasks as splits, and as soon as a tasktracker reports a free map slot, it
is assigned one of the map tasks (along with its input split).

The master continues to keep track of all the map tasks, and once all
of them have been completed it is able to schedule the reduce tasks1.
Except for this dependency, for the jobtracker there is no real differ-
ence between kinds of tasks, so map and reduce tasks are treated
similarly as the smallest scheduling unit.

Other than scheduling, the jobtracker must also make sure that
the system is tolerant to faults. If a node fails or times out, the jobs
the tasktracker was executing can be rescheduled by the jobtracker.
Additionally, if some tasks make no apparent progress, it is also able
to re-launch them as speculative tasks on different tasktrackers.

Note that Hadoop’s master is not distributed and represents a sin-
gle point of failure2, but since it is aware of the status of the whole
cluster, it also allows for some optimizations and reducing the com-
plexity of the system3.

2.2.3 Storage with HDFS

Hadooop MapReduce is designed to process large amounts of data,
but it does so in a way that does not necessarily integrate perfectly
well with previous tools, including filesystems. One of the character-

1 Actually, it is possible to start running reduce tasks before all map tasks are com-
pleted. For a more detailed explanation, see sections 2.2.4.

2 There have been numerous suggestions to provide a fault-tolerant jobtracker, such
as Francesco Salbalori’s proposal [69], but they have not made it into the official
distribution.

3 Initial versions of Google’s Filesystem and MapReduce are also known to have in
masters their single point of failure to simplify the design, but more recent versions
are reported to use multiple masters [67] in order to make them more fault-tolerant.

http://issues.apache.org/jira/browse/MAPREDUCE-225
http://queue.acm.org/detail.cfm?id=1594206

2.2 hadoop 19

istics of MapReduce is that it moves computation to the data and not
the other way around. In other words, instead of using an indepen-
dent, dedicated storage, the same low-cost machines are used for both
computation and storage. That means that the storage requirements
are not exactly the same as for regular, general purpose filesystems.

The Hadoop Distributed File System [6] (HDFS) is designed to ful-
fill Hadoop’s storage needs, and like the MapReduce implementation,
it was inspired by a Google paper that described their filesystem [35].
HDFS shares many features with other distributed filesystems, but it
is specifically conceived to be deployed on commodity hardware and
thus it is supposed to be even more fault-tolerant.

Another feature that makes it different from other filesystems is its
emphasis on streaming data and achieving high throughput rather
than low latency access. POSIX semantics impose many requirements
that are not needed for Hadoop applications, so in order to achieve
its goals, HDFS relaxes some of the standard filesystem interfaces.
Similarly, HDFS’s coherency model is intentionally simple in order
to perform as fast as possible, but everything comes at a cost: for
instance, once a file is created, it is not possible to change it4.

Like MapReduce, HDFS is also based on a client-server architec-
ture. It consists of a single master node, also known as the namenode,
and a number of slaves or clients known as datanodes. The namenode
keeps all the metadata associated with the filesystem (permissions,
file locations, etc.) and coordinates operations such as opening, clos-
ing or renaming. Datanodes are spread throughout the cluster and
are responsible of storing the data, allowing read and write requests.

As in other general purpose filesystems, files in HDFS are split into
one or more blocks, which is the minimum unit used to store files on
datanodes and to carry out internal operations. Note that just like
HDFS is designed to read and write very large files, its block size is
likewise larger than the block size of other filesystems, defaulting to
64 MB. Also, to ensure fault tolerance, files have a replication factor,
which is used to enforce the number of copies of each block available
in the cluster.

In order to create a new file, the client first requests it to the na-
menode, but upon approval it writes directly to the datanodes (Fig-
ure 2.2). This process is handled by the client and is transparent for
the user. Similarly, replication is coordinated by the namenode, but
data is directly transferred between datanodes. If a datanode fails or
times out, the namenode goes through all the blocks that were stored
in that datanode, issuing replication requests for all the blocks that
have fallen behind the desired replication ratio.

4 There have been patches to enable appends in previous versions of HDFS, and its
support was briefly included in 0.19.0 before dropping it in the 0.19.1 release due to
technical problems. At the moment of writing this document, there is ongoing work
to support file appends again in the upcoming 0.21 release.

20 background

Figure 2.2: HDFS file creation

2.2.4 Dataflow

The previous sections introduced how MapReduce and the filesystem
work, but one of the keys to understanding Hadoop is to know how
both systems are combined and how data flows from the initial input
to the processing and final output.

Note that although the MapReduce model assumes that data is
available in a distributed fashion, it does not directly deal with push-
ing and maintaining files across the cluster, which is the filesystem’s
job. A direct advantage of this distinction is that Hadoop’s Map-
Reduce supports a number of filesystems with different features. In
this description, though, as well as in the remaining chapters of this
document, the cluster is assumed to be running HDFS (described in
the previous section 2.2.3), which is the most widely used filesystem.

MapReduce is able to start running jobs as soon as the required
data is available in the filesystem. First of all, jobs are initialized by
creating a series of map and reduce tasks. The number of map tasks is
usually determined by the number of splits into which the input data
is divided. Splitting the input is what makes it possible to parallelize
the map phase and can have a great impact on the performance, so
splits can also be thought of as the first level of granularity of the
system, and it also shows how the filesystem and MapReduce are
integrated. For instance, if the input consists of a single 6.25 GB file
in an HDFS filesystem, using a block size (dfs.block.size) of 64 MB
and the default input format, the job will be divided into 1000 map
tasks, one for each split.

Map tasks read its share of the input directly from the distributed
filesystem, meaning they can read either locally if the data is avail-
able, or remotely from another host if it is not (Figure 2.3). While
reading and processing the input, the partial output is continuously
written to a circular memory buffer. As can be observed in Figure
2.4, as soon as the buffer reaches a certain threshold (defined by
io.sort.spill.percent, defaults to 80%), its contents are sorted and
flushed to a temporary file in the local disk. After reading the input, if

2.2 hadoop 21

Figure 2.3: Local and remote reads from HDFS to MapReduce

there is more than one temporary file, the map task will merge them
and write the merged result again to disk. Optionally, if the number
of spills is large enough, Hadoop will also perform the combine op-
eration at this point in order to make the output smaller and reduce
bandwidth usage.

Note that in the end it is always necessary to write the map’s result
to disk even if the buffer is not completely filled: map tasks run on
its own JVM instance and are supposed to finish as soon as possible
and not wait indefinitely for the reducers. So after writing to disk, the
map’s partial output is ready to be served to other nodes via HTTP.

The number of reduce tasks is determined by the user and the
job’s needs. For example, if a job requires global sorting, a single
reducer may be needed5. Otherwise, any number of reduces may be
used: using a larger number of reducers increases the overhead of the
framework, but can also help to improve the load balancing of the
cluster.

Reduce tasks are comprised of three phases: copy, sort and reduce.
Even though reduce tasks cannot be completed until all map tasks
are, it is possible to run the first phase of reduce tasks at the same
time as map tasks. During the copy phase (also known as shuffle),

5 For some kind of problems there may be more efficient options such as chaining
multiple jobs, using the output of one job as the input for the next one.

22 background

Figure
2.

4:H
adoop

dataflow

2.3 scheduling concepts 23

reduce tasks request their partitions of data to the nodes where map
tasks have already been executed, via HTTP. As soon as data is copied
and sorted in each reducer, it is passed to the reduce() function, and
its output is directly written to the distributed filesystem.

2.3 scheduling concepts

This section provides an overview of fundamental concepts behind
traditional scheduling of parallel jobs, and how they relate and apply
to MapReduce environments.

2.3.1 Parallel Job Scheduling

At the single-machine level, operating systems scheduling tradition-
ally deals with the execution of threads on the machine’s processor
or processors.

In this context, the problem of scheduling multiple parallel jobs
and their constituent threads in order to minimize some given met-
ric has been studied extensively [47, 32, 31]. Depending on the way
in which resources are shared between jobs, scheduling policies can
be classified as either single-level (time-sharing) or two-level (space-
sharing) [29]. The former approach schedules threads directly on
processors, while the latter decouples the scheduling into two deci-
sions: first, allocating processors to jobs; and second, selecting which
threads of each job to run.

In addition to considering the way in which resources are shared,
different schemes intended to schedule parallel jobs on parallel ma-
chines also differ depending on the capabilities and characteristics
of the systems and its applications. Feitelson classified parallel jobs
into rigid, moldable, evolving, or malleable [29]. Rigid jobs require a
certain predefined and fixed number of processors. Moldable jobs are
able to run with any number of processors, but the number does not
change at runtime. Evolving jobs can be thought as having a number
of phases, each with different requirements in terms of number of
processors. Malleable jobs can be executed with a dynamic number of
processors, and may be adjusted at runtime.

2.3.2 Cluster Scheduling

As architectures evolved, clusters of connected computers working
together as a single system became more popular for HPC and other
kinds of workloads.

Akin to single-machine parallel scheduling, cluster-level schedul-
ing makes use of multiple computers to execute parallel applications.
Therefore, many of the strategies used for parallel job scheduling in
parallel processors can be and have been adapted to clusters [32].

24 background

Access to cluster infrastructures was originally dominated by batch
systems. Similar to parallel job scheduling, schedulers in batch sys-
tems decide which jobs are executed, as well as when and where to
run them. A standard scheduling algorithm in this kind of environ-
ment consists of following a plain First-Come-First-Serve approach,
with some variation of backfilling, allowing some jobs in the waiting
queue to run ahead of time so as to avoid resource fragmentation
and improve the utilization of the system. Backfilling policies have
been widely studied in the literature [31]: from simple conservative
backfilling that guarantees reservations made by previously submit-
ted jobs [74], to more dynamic and aggressive approaches that may
have an impact on previously submitted jobs [48].

2.3.3 Grid Scheduling

Grid computing originated in the nineties as a metaphor for easily
available computational power, and became canonical when Ian Foster
et al coined the term [34].

Like regular clusters, the grid can also be thought of as a set of com-
putational resources. However, while clusters are generally tightly
coupled and share a centralized job management and scheduling, the
grid is usually characterized as more loosely coupled, heterogeneous,
and geographically distributed, which often leads to more decentral-
ization and imposes additional challenges.

Previously studied techniques for parallel job scheduling have been
adapted to grid systems [32], but grid scheduling generally deals with
an additional set of problems and constraints [87]. Grid scheduling
needs to take into account the fact that resources may have different
owners with different goals, and may involve a meta-scheduler and
additional steps such as resource discovery and brokering since the
grid does not control resources directly [27]. The characteristics of the
grid also lead to changes in the scheduling techniques that are used.
For instance, scheduling batch jobs on clusters often relies on user es-
timates, which are feasible in homogeneous environments; however,
the complexity of the grid requires different approaches, often based
on prediction techniques, since the user does not have enough infor-
mation to provide good estimates.

2.3.4 MapReduce Scheduling

The MapReduce model is designed to support clusters of computers
running multiple concurrent jobs, which are submitted to a central-
ized controller which deals with both job allocation and task assign-
ment.

From a scheduling perspective, MapReduce jobs are formed by two
different phases: map and reduce. A key feature of MapReduce and

2.3 scheduling concepts 25

its parallel structure is a consequence of how each one of these phases
can be split into smaller tasks. Roughly speaking, each phase is com-
posed of many atomic tasks that are effectively independent of each
other and therefore can be simultaneously executed on an arbitrary
number of multiple hosts in the cluster (or slots, in MapReduce ter-
minology). Consider an environment that provides a total of N hosts.
In scheduling theory, a job is said to be parallelizable if it can be per-
formed on an arbitrary number of hosts n ≤ N simultaneously, with
an execution time F(n) that depends on the number of hosts allocated.
F is the speedup function: if a given job is allocated more resources, it
will complete in a smaller amount of time. Both MapReduce phases,
map and reduce, can be approximated as parallelizable, and in par-
ticular malleable [85].

The problem of scheduling multiple malleable jobs has been stud-
ied to solve different metrics, such as response times or makespan [17],
but these are generally applied to simple jobs consisting of a single
kind of task [80, 81]. In MapReduce, however, a malleable approach
can’t be applied globally since jobs are actually composed of two mal-
leable sub-jobs or phases, and there is also a clear precedence between
them: tasks of the map phase are to be executed before tasks of the
reduce phase.

In addition to the issue of applying regular malleable schedul-
ing, MapReduce also presents certain unique characteristics. The task
granularity in MapReduce is not as fine-grained as the granularity
usually found in operating systems scheduling, where the alloca-
tion time if fixed and known precisely. Therefore, MapReduce tasks
are not assigned nor freed perfectly: certain running tasks may take
slightly less or more time than expected to be executed, and so new
the tasks tasks may also have to wait to run.

Traditional scheduling methods can also perform poorly in Map-
Reduce due to the need of data locality and running the computation
where the data is. Scheduling based on space-slicing is often asso-
ciated with exclusive allocation of processors to jobs, and there is
usually a notion of affinity to avoid costly context switching. Simi-
larly, traditional cluster schedulers give each user a fixed set of ma-
chines. This kind of approach is actually detrimental to MapReduce
jobs since it it prevents the execution of tasks where the data is
available [91], and may degrade its performance since all data is dis-
tributed across all nodes and not in a subset of them. Sharing the data
in the MapReduce cluster also leads to data consolidation, avoiding
costly replication of data across private clusters and allowing queries
across disjoint data sets. Some grid schedulers like Condor [77] sup-
port some kind of locality constraints, but they are focused on ge-
ographically distributed sites rather than the machine-level locality
desired for the data-intensive MapReduce workloads.

26 background

The MapReduce schedulers described in this thesis target a highly
dynamic environment as that described in [18], with multiple jobs
and multiple users, in which MapReduce workloads may share phys-
ical resources with other workloads. New jobs can be submitted at
any time with different priorities and needs: from small, almost in-
teractive executions to very long programs that may take hours to
complete.

In this scenario, the actual amount of resources available for ap-
plications can vary over time depending on the workload. The Map-
Reduce scheduler must be able to respond with an online algorithm
to the varying amounts of resources and jobs. User-defined comple-
tion time goals are used as a mechanism to prioritize jobs, but unlike
real-time systems scheduling [71], these are soft-deadlines that sim-
ply guide the execution.

2.4 hardware heterogeneity

Current research trends [72] show that next generation data centers
will contain a remarkable degree of heterogeneity of nodes (i.e. the
RoadRunner [49] cluster, composed of Opterons and Cell/BE blades),
in an attempt to improve data center power efficiency and perfor-
mance. Such heterogeneity, involving generic and specialized proces-
sors co-existing in the same data center and performing differentiated
tasks, hinders the efficient use of node resources in a convenient way.
In this scenario, the new challenge is to transparently exploit these
heterogeneous resources, such that applications can (where possible)
experience improved performance when executed on this kind of spe-
cialized system.

The work presented in this thesis takes advantage of a prototype
that extends the Hadoop runtime to access the capabilities of underly-
ing hardware accelerators [15]. The architecture of the prototype has
two main components. (see Figure 2.5). The first component is based
on Hadoop and it partitions the data and assigns a piece of work to
each node in the cluster. The second component implements a second-
level partition of the data (intra-node distribution), and does the ac-
tual computation. The processing routine executed by each node (the
map() function) invokes the second component of our prototype us-
ing the Java Native Interface [73]. Notice that this environment does
not add complexity to the task of programming applications that can
exploit hardware accelerators: programmers only have to provide a
map() function that is able to exploit specialized hardware.

2.5 data stores 27

Distributed File System (HDFS) FileSize

Split size

S

P

U

S

P

U

S

P

U

PPU

 Map()

Map()

TT

PPU

 Map()

TT

Split size

 Map()

TT

S

P

U

S

P

U

Map()

 Map()

TT
Record Record

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

Java Mappern Accelerated Mapper

SPU

Runtime

SPU

Runtime

B
lo
c
k

B
lo
c
k

Figure 2.5: Architecture of the system: 2 levels of parallelism

2.5 data stores

2.5.1 Cassandra

Apache Cassandra [45] is a distributed database management system
initially developed by Facebook for internal usage and later released
as an open source project. Cassandra inherits its data model from
Google’s BigTable [19], and its replication mechanism and distribu-
tion management from Amazon’s Dynamo [25]. We use Cassandra as
an example of a widely used key-value store known for its scalability
and support for tunable consistency.

Cassandra’s data model is schema-free, meaning there is no need
to define the structure of the data in advance. Data is organized in col-
umn families, which are similar to tables in a relational database model.
Each column family contains a set of columns, which are equivalent
to attributes, and a set of related columns compose a row. Each row
is identified by a key, which are provided by applications and are
the main identifier used to locate data, and also to distribute data
across nodes. Cassandra does not support relationships between col-
umn families, disregarding foreign keys and join operations. Know-
ing this, the best practice when designing a data model is to keep
related data in the same column family, denormalizing it when re-
quired.

The architecture of Cassandra is completely decentralized and peer-
to-peer, meaning all nodes in a Cassandra cluster are equivalent and
provide the same functionality: receive read and write requests, or

28 background

forward them to other nodes that are supposed to take care of the
data according to how data is partitioned.

When a read request is issued to any target node, this node be-
comes the proxy of the operation, determines which nodes hold the
data requested by the query, and performs further read requests to
get the desired data directly from the nodes that hold the data. Cas-
sandra implements automatic partitioning and replication mechanisms
to decide which nodes are in charge of each replica. The user only
needs to configure the number of replicas and the system assigns
each replica to a node in the cluster. Data consistency is also tunable
by the user when queries are performed, so depending on the desired
level of consistency, operations can either return as soon as possible
or wait until a majority or all nodes respond.

2.5.2 Isolation and Consistency Levels

The ultimate goal of current distributed key-value stores such as Cas-
sandra [45] is similar to other database systems, reading and writ-
ing data operations, but with a stronger focus on adapting to the in-
creased demands of large-scale workloads. While traditional databases
provide strong consistency guarantees of replicated data by control-
ling the concurrent execution of transactions, Cassandra provides tun-
able consistency in order to favour scalability and availability. While
there is no tight control of the execution of concurrent transactions,
Cassandra still provides mechanisms to resolve conflicts and provide
durability even in the presence of node failures.

Traditionally, database systems have provided different isolation
levels that define how operations are visible to other concurrent oper-
ations. The ANSI SQL standard defines 4 isolations levels, which can
be classified depending on the anomalies that they exhibit, as shown
in Table 2.1.

L E V E L R E A D P H E N O M E N A

Read Uncommitted Dirty reads

Read Committed Non-repeatable reads

Repeatable Reads Phantom reads

Serializable -

Table 2.1: Isolation Levels as defined by the ANSI/ISO SQL Standard

Reading the same table twice within a transaction will have a dif-
ferent outcome depending on the isolation level. Under the Read Un-
committed level, transactions are exposed to dirty reads, meaning a
transaction may be reading updates that have not been committed
yet. The next level, Read Committed, does not allow reading uncom-

2.5 data stores 29

mitted updates, but it still allows non-repeatable reads: a second read
within a transaction may return data updated and committed by an-
other transaction. The Repeatable Read level further guarantees that
rows that have been read remain the same within a transaction, but it
does not deal with range queries, which can lead to phantom reads (e.g.
when there are additions). Finally, Serializable provides the highest
isolation level and guarantees that the outcome of executing concur-
rent transactions is the same as if they were executed serially, avoid-
ing any kind of read anomaly.

Standard ANSI SQL isolation levels have been criticized as too
few [16], but in addition to standard ANSI SQL, other non-standard
levels have been widely adopted by database systems. One such level
is Snapshot Isolation, which guarantees that all reads made within
a transaction see a consistent version of the data (a snapshot). While
Snapshot Isolation does not exhibit any of the read anomalies defined
by standard SQL, it still does not provide as much isolation as the Se-
rializable level since it can be exposed to write anomalies instead. For
instance, two transactions reading overlapping data can make disjoint
concurrent updates (also known as write skew), which would not be
possible under the Serializable isolation level.

3
S C H E D U L I N G W I T H T I M E C O N S T R A I N T S

3.1 introduction

Cloud computing has dramatically transformed the way many critical
services are delivered to customers (for example, the Software, Plat-
form, and Infrastructure as a Service paradigms), and at the same
time has posed new challenges to data centers. The result is a com-
plete new generation of large scale infrastructures, bringing an un-
precedented level of workload and server consolidation, that demand
new programming models, management techniques and hardware
platforms. At the same time, it offers extraordinary capacities to the
mainstream market, thus providing opportunities to build new ser-
vices that require large scale computing. Therefore, data analytics is
one of the more prominent fields that can benefit from next genera-
tion data center computing.

The intersection between cloud computing and next generation
data analytics services [2] points towards a future in which massive
amounts of data are available, and users will be able to process this
data to create high value services. Consequently, building new mod-
els to develop such applications, and mechanisms to manage them,
are open challenges. An example of a programming model especially
well-suited for large-scale data analytics is MapReduce [24], intro-
duced by Google in 2004.

MapReduce workloads usually involve a very large number of small
computations executing in parallel. High levels of computation par-
titioning, and relatively small individual tasks, are a design point
of MapReduce platforms. In this respect, MapReduce workloads are
closer to online web workloads than to single-process batch jobs. And
while it was originally used primarily for batch data processing, its

31

32 scheduling with time constraints

use has been extended to shared, multi-user environments in which
submitted jobs may have completely different priorities. This change
makes scheduling even more relevant. Task selection and slave node
assignment govern a job’s opportunity to progress, and thus influence
job performance.

One of the design goals of the MapReduce framework is to max-
imize data locality across working sets, in an attempt to reduce net-
work bottlenecks and increase (where possible) overall system through-
put. Data locality is achieved when data is stored and processed on
the same physical nodes. Failure to exploit locality is one of the well-
known shortcomings of most multi-job MapReduce schedulers, since
placing tasks from different jobs on the same nodes will have a nega-
tive effect on data locality.

At the same time, there is a trend towards the adoption of het-
erogeneous hardware ([72, 49]) and hybrid systems [21] in the com-
puting industry. Heterogeneous hardware (mixing generic processors
with accelerators such as GPUs or the SPUs in the Cell/BE [37] pro-
cessor) will be leveraged to improve both performance and energy
consumption, exploiting the best features of each platform. For exam-
ple, a MapReduce framework enabled to run on hybrid systems [15]
has the potential to have considerable impact on the future of many
fields, including financial analysis, healthcare, and smart cities-style
data management. MapReduce provides an easy and convenient way
to develop massively distributed data analytics services that exploit
all the computing power of these large-scale facilities. Huge clusters
of hybrid many-core servers will bring workload consolidation strate-
gies one step closer in future data centers.

The main contribution described in this chapter is a scheduling
algorithm and technique for managing multi-job MapReduce work-
loads that relies on the ability to dynamically build performance mod-
els of the executing workloads, and uses these models to provide dy-
namic performance management. At the same time, it observes the
particulars of the execution environment of modern data analytics
applications, such as hardware heterogeneity and distributed storage.
Beyond the formulation of the problem and the description of the
scheduling technique, a prototype (called Adaptive Scheduler) has
been implemented and tested on a medium-size cluster. The experi-
ments study, separately, the following topics:

• The scheduler’s ability to meet high level performance goals
guided only by user-defined completion time goals;

• The scheduler’s ability to favor data-locality; and

• The scheduler’s ability to deal with hardware heterogeneity,
which introduces hardware affinity and relative performance
characterization for those applications that can benefit from ex-
ecuting on specialized processors.

3.2 scheduling principles 33

The remaining sections of the chapter are structured as follows. Sec-
tion 3.2 summarizes the scheduling approach. Section 3.3 describes
the method by which priorities are assigned to jobs (which is the
core of the scheduling algorithm), and Section 3.4 describes the three
different allocation policies implemented as part of the scheduler pre-
sented in this chapter. Section 3.5 presents experiments to support
the evaluation of the scheduler. Finally, Section 3.6 discusses related
work, and Section 3.7 provides a summary of the chapter.

3.2 scheduling principles

The main contribution of this chapter is to present the design, imple-
mentation and evaluation of the Adaptive Scheduler, a performance-
driven MapReduce scheduler that provides integrated management
of next generation data centers, considering data-locality of tasks and
hardware heterogeneity.

The task scheduling approach presented here enables MapReduce
runtimes to dynamically allocate resources in a cluster of machines
based on the observed progress achieved by the various jobs, and the
completion time goal associated with each job. A necessary compo-
nent of such a system is an estimator that maps the resource allo-
cation for a job to its expected completion time. Such an estimator
can easily be implemented, provided that information about the total
amount of computation to be performed by a job is known in advance.
One way to provide this information would be to derive it from prior
executions of the job: however, this approach is neither practical (as
it cannot be guaranteed that prior executions of the job exist), nor
accurate (as prior executions of the job were likely performed over a
different data set and may therefore have completely different char-
acteristics).

This thesis follows a different approach which is to dynamically
estimate the completion time of a job during its execution. In doing
so, the scheduler takes advantage of the fact that MapReduce jobs
are a collection of a large number of smaller tasks. More specifically,
the hypothesis in which the scheduler is based is that from a subset
of tasks that have completed thus far, it is possible to predict the
properties of remaining tasks. It should be noted that MapReduce
tasks may vary widely in their execution characteristics depending
on the data set they process. Hence, while this estimation technique
is not expected to provide accurate predictions all the time, but when
combined with dynamic scheduling it will permit fair management
of the completion times of multiple jobs.

The main goal and metric of the scheduler is to minimize the dis-
tance to the deadline of the jobs. Completion time estimates and per-
formance goals are the basis for dynamically calculate the priority of
each job. Two additional extensions to this policy have also designed

34 scheduling with time constraints

and implemented, considering two different kinds of job affinity: data
affinity and hardware affinity. Recall, however, that meeting the per-
formance goal of each job remains the primary criteria that guides
scheduling decisions: affinities are only favored when possible.

For the data affinity extension, data locality is taken into account
before making scheduling decisions. Data locality is achieved when
data is stored and processed on the same physical nodes. This work
proposes a policy that improves the percentage of local tasks by delay-
ing the execution of remote tasks while the performance goal of the
job is still reachable. Although other schedulers delay the execution of
remote tasks to favor data locality ([90, 91]), this proposal is the only
one that also considers the completion time goal of the applications
before delaying.

The hardware-affinity extension enables the scheduler to deal with
heterogeneous hardware (general purpose cores and specialized ac-
celerators such as GPUs) and thus to exploit the multi-level paral-
lelism available in next generation heterogeneous clusters. This fea-
ture will allow the scheduler to determine, at runtime, if some tasks
are ‘accelerable’: that is, if they can benefit from executing on nodes
enabled with accelerators. These accelerable tasks will, if possible, be
assigned to nodes with accelerators. Once again, meeting the perfor-
mance goal for all kind of tasks is still the main goal of the schedul-
ing mechanism. This proposal represents the first MapReduce sched-
uler that is able to manage heterogeneous hardware while observing
jobs’ completion time goals. This extension focuses on just one hard-
ware heterogeneity dimension. However, it is feasible to add more
heterogeneity considerations to the scheduling criteria. For example,
[63] describes an extended task scheduling approach to consider the
amount of resources available at each node together with the particu-
lar resource requirements of each application.

The scheduling technique targets a highly dynamic environment,
such as that described in [18], in which new jobs can be submitted
at any time, and in which MapReduce workloads share physical re-
sources with other workloads, both MapReduce and not. Thus, the
actual amount of resources available for MapReduce applications can
vary over time. The dynamic scheduler introduced in this chapter
uses the completion time estimate for each job given a particular re-
source allocation to adjust the resource allocation to all jobs. If there
are enough resources to meet all goals, the remaining resources are
fairly distributed among jobs. The minimum unit of resource alloca-
tion is the slot, which corresponds to a worker process created by a
TaskTracker.

The scheduler can be considered pre-emptive in that it can inter-
rupt the progress of one job in order to allocate all of its resources to
other jobs with higher priority; but it does not interrupt tasks that are
already executing. Interrupting executing tasks could be beneficial in

3.3 performance estimation 35

the case of, for example, reduce tasks with a long copy phase: this
issue is part of the future work of this thesis.

3.3 performance estimation

This section presents the method to dynamically estimate job perfor-
mance and thus calculate its priority when scheduling in a shared,
multi-job environment.

3.3.1 Problem Statement

We are given a set of jobs M to be run on a MapReduce cluster. Each
job m is associated with a completion time goal, Tm

goal . The Hadoop
cluster includes a set of TaskTrackers TT, each TaskTracker (TTt) offer-
ing a number of execution slots, st, which can host a task belonging
to any job. A job (m) is composed of a set of tasks. Each task (tm

i) takes
time αm

i to be completed, and requires one slot to execute.
A MapReduce job has two different types of tasks, depending on

the execution phase of the job: map tasks and reduce tasks. In a gen-
eral scenario, map tasks length are regular and differ from reduce
tasks length. In order to get suitable accuracy in the job performance
estimation, we estimate the performance for each job phase, map and
reduce, separately. And we decide the number of slots to allocate con-
sidering the current execution phase and the completion time goal
of the phase Tm,p

goal , which is calculated based on the completion time
goal of the job and the time required for executing each phase. For
the sake of clarity, in the description of the performance model and
in the description of the allocation algorithms, we will refer to tasks
and completion time goal, without specifying the involved execution
phase.

The set of tasks for a given job m can be divided into tasks already
completed (Cm), not yet started (Um), and currently running (Rm). We
also use Cm,t to denote the set of tasks of job m already completed by
TTt.

3.3.2 Modelling Job Performance

Let µm be the mean completed task length observed for any running
job m, denoted as µm = ∑i∈Cm αm

i
|Cm| . Let µt

m be the mean completion time
for any task belonging to a job m and being run on a TaskTracker TTt.
Notice that as the TaskTrackers are not necessarily identical, in gen-
eral µm 6= µt

m. When implementing a task scheduler which leverages a
job completion time estimator, both µm and µt

m should be considered.
However, in the work presented in this chapter, only µm is consid-
ered, i.e., all µt

ms are presumed equal. Three reasons have motivated

36 scheduling with time constraints

this decision: 1) a design goal is to keep the scheduler simple, and
therefore all slots are considered identical. Under this assumption,
estimating the allocation required by each job given its completion
time goal is an easy task that can be performed with cost O(M). If
the differences between TaskTrackers are taken into account, the cost
of making the best allocation for multiple jobs could grow to be ex-
ponential. 2) The scenario in which task scheduling occurs is highly
dynamic, and thus the scheduling and completion time estimate for
each job is updated every few minutes. Therefore, a highly accurate
prediction provides little help when scheduling tasks in a scenario
in which external factors change the execution conditions over time.
The approach is focused on dynamically driving job allocation under
changing conditions. And 3) the completion time estimate for a job m
can only benefit from having information relative to a particular Task-
Tracker if at least one task that belongs to the job has been scheduled
in that TaskTracker. In practice, it is likely that each job will have had
tasks scheduled on only a small fraction of the TaskTrackers.

For any currently executing task tm
i we define βm

i as the task’s
elapsed execution time, and δm

i as the remaining task execution time.
Notice that αm

i = βm
i + δm

i , and that δi and αm
i are unknown. Our

completion time estimation technique relies on the assumption that,
for each on-the-fly task tm

i , the observed task length αm
i will satisfy

αm
i = µm, and therefore δm

i = µm − βm
i .

3.4 allocation algorithm & extensions

In order to complete the implementation of the scheduler it is neces-
sary to provide an allocation algorithm that assigns free slots to jobs
based on their priority and affinity features.

Jobs are organized in an ordered queue based on their priority. The
current implementation updates the priority queue on every call to
the scheduler, which has a cost of O(n log n), where n is the number
of running jobs. This has proven adequate for testing purposes and
keeps the prototype simple. However, as the queue may not change
much between updates, and the number of available slots is usually
small, this approach results in unnecessary work. We plan to improve
efficiency by updating the queue in a background process.

In the event that several jobs have the same priority, one of them is
chosen arbitrarily. This is not a problem as, once a slot is allocated to
one of these jobs, its priority will decrease, and the next slot will be
allocated to one of the other jobs that previously had the same prior-
ity. When two jobs that have already missed their deadlines compete
for resources, the scheduler fairly equalizes their expected comple-
tion times with respect to their goals. When there are slots that are
not needed to satisfy the completion time goal of all the jobs, the sched-
uler allocates excess slots to jobs with the highest priority. Priorities

3.4 allocation algorithm & extensions 37

are updated after each allocation, so the process does not necessarily
assign all excess slots to the same job.

In the following subsections we present and evaluate three different
allocation algorithms:

• Basic Adaptive Scheduling: does not consider any kind of job
affinity: the performance goals of the jobs are the only guide for
scheduling decisions (see section 3.4.1);

• Adaptive Scheduling with Data Affinity: data locality consid-
erations complement the information about job priority when
making scheduling decisions (see section 3.4.2); and

• Adaptive Scheduling with Hardware Affinity: hardware affinity
complement the information about job priority when making
scheduling decisions (see section 3.4.3).

3.4.1 Basic Adaptive Scheduling

The priority of each job is calculated based on the number of slots
to be allocated concurrently to that job over time so as to reach its
completion time goal. For such purposes, we still need to estimate the
amount of pending work for each job, assuming that each allocated
slot will be used for time µm. Such estimation needs to consider both
the tasks that are in the queue waiting to be started, and those that are
currently on execution. Based on these two parameters, we propose
that the number sm

req of slots to be allocated in parallel to a job m can
be estimated as:

sm
req =

(
∑i∈Rm δm

i
µm

+ |Um|
)
∗ µm

Tm
goal − Tcurr

− |Rm| (1)

where Tm
goal is the completion time goal for job m, and Tcurr is the

current time. Therefore, the order in queue is defined by sm
req, dynam-

ically calculated for each job.
The scheduling policy must consider some special jobs which get

the highest priority in the system. First, jobs that have already missed
their deadline. For such a job, the scheduler tries to at least complete
it as soon as possible, which helps avoid job starvation. Second, jobs
with no completed task. Immediately after a job is submitted, there is
no data available and it is not possible to estimate the required slots
or the completion time (if there is more than one such job, the oldest
one comes first). In summary, the priority of the job is calculated
as follows: First, jobs that have already missed the deadline. Second,
recently submitted jobs for which there is no available data. Finally,
executing jobs based on their sm

req. The Adaptive Scheduler’s code can
be found at [57].

38 scheduling with time constraints

3.4.2 Adaptive Scheduling with Data Affinity

To enable the Basic Adaptive Scheduling with a mechanism to im-
prove data locality, we defer, if possible, the execution of those tasks
that are assigned to run on TaskTrackers with no local data, thus
allowing other jobs, possibly with local tasks, to use that slot. The de-
cision to defer remote tasks is made dynamically on a per-job basis,
each time the next task to schedule happens to be remote. The com-
putation is guided by two parameters: the current distance of the job
from its performance goal, and the maximum number of delays that
the user agrees to allow for each task of the job. When the next task
to schedule cannot execute locally to its data, the Adaptive Scheduler
uses the estimated number of required slots to determine whether
remote tasks may be avoided or not: if the job has already been as-
signed enough slots to meet the deadline, then remote tasks will be
deferred until the maximum number of delays per task is reached. In
situations when no tasks with local data in the TaskTracker are ready
to run, the JobTracker will decide to start a task that needs remote
data.

This approach is completely different and unique to the Adaptive
Scheduler since it is based on the job’s performance goal. One of the
advantages it provides over other approaches is that it allows the
execution of remote tasks when it is needed to meet the performance
goal of jobs, instead of just avoiding all remote executions.

The Fair Scheduler ([90, 91]) also aims to improve data locality of
jobs by delaying the execution of remote tasks. However, this sched-
uler uses a fixed maximum time delay defined statically, which ap-
plies to all running jobs without considering the distance of each job
from its performance goal, and thus it can cause jobs to miss their
goals. For example, let’s consider a workload composed of two ap-
plications: one of them with a sufficiently relaxed completion time
goal to be ignored during the deferring decision, and the other one
with a tight completion time goal that requires the scheduler to ex-
ecute some remote task in order to meet its completion time goal.
In this situation, taking a per-application delay decision enables the
system to get the maximum data locality factor for each application
without missing their completion goal time. For the first application,
the scheduler defers all remote tasks; and for the second one it stops
delaying remote tasks when the completion time goal gets compro-
mised.

Even for executions that have very relaxed job performance goals,
and for which meeting performance goals should not be an issue,
defining the locality delay in a static and global fashion is not desir-
able in a system that must handle all kinds of workloads and data
placement patterns.

3.4 allocation algorithm & extensions 39

For the sake of clarity, consider the following two scenarios that il-
lustrate the need for a dynamic approach to defining per-application
locality delay. Assume that, in both scenarios, the performance goals
of the jobs is sufficiently relaxed to be ignored during the deferring
decision. In the first case, imagine an application for which all data
blocks are stored on the same DataNode, and thus, to achieve maxi-
mum locality, the job’s tasks must be run sequentially, and the locality
delay must be set to an extremely high value; in a second case, imag-
ine the same application having a replica of all data blocks in each
node of the cluster, and thus, a locality delay has no effect.

3.4.3 Adaptive Scheduling with Hardware Affinity

Scheduling jobs that contain both accelerable and non-accelerable
MapReduce task implementations requires the scheduler to keep track
of different kinds of TaskTrackers depending on the hardware char-
acteristics of the nodes in which they are running. Whenever a job
is deployed with an accelerator-based version of its code and one
of the tasks for that job is scheduled to run on an accelerator-enabled
TaskTracker, the code that will run in that node will be the accelerator-
specific version. Otherwise, the regular non-accelerated Java version
of the code will be run on the node.

TaskTrackers are configured and grouped into pools of machines
with different features: TaskTrackers running on regular machines
(non accelerator-enabled) are included in the regular pool Preg, while
TaskTrackers running on accelerated machines are included into the
accelerated pool denoted by Pacc. These pools are used not only to fa-
vor the affinity and execute accelerable tasks on accelerator-enabled
nodes, but also to detect whether new jobs may benefit from accel-
erators or not. During an initial calibration stage, immediately after
jobs are submitted, the scheduler first makes sure to execute at least
one map task on each pool. Then, as soon as these initial tasks are
completed, the scheduler decides whether or not a job will benefit
from running on machines from that pool by comparing the observed
elapsed task times on accelerated TaskTrackers (µm

acc) with those ob-
tained on the regular pool (µm

reg). Recall that some jobs that are I/O
bound may not clearly benefit from task acceleration even if their
code can be run on an accelerator. In that case, providing affinity to
accelerator-enabled nodes would bring no benefit and could even re-
sult in competition for accelerators with other jobs that in fact could
take advantage of them. Therefore, only in the case that the speedup
obtained when running on one of the accelerated pools (µm

reg/µm
acc)

passes a certain configurable threshold will the job be marked as ac-
celerable, and will preferably run on TaskTrackers from Pacc. Other-
wise it will be marked as regular and will be preferably executed on
Preg. In this version of the scheduler we are considering accelerable

40 scheduling with time constraints

map tasks only, but it would be straightforward to extend it for accel-
erable reduces as well. The main changes would involve a calibration
stage for reduces.

Other than detecting accelerable jobs, the scheduler itself still as-
signs resources depending on job priority, which is in turn primarily
based on the need of task slots to meet the completion time goal (sm

req).
However, this estimation is now slightly different: for accelerable jobs,
only the mean time of tasks executed on accelerator-enhanced hard-
ware are observed:

sm
req,acc =

(
∑i∈Rm

acc
δm

i
µm

acc
+ |Um

acc|
)
× µm

acc

Tm
goal − Tcurr

− |Rm
acc| (2)

It should be noted, though, that this approach results in another
issue: even though jobs can be easily prioritized within each pool, the
scheduler still needs a global prioritization if there are not enough
resources to meet the completion time goals. This is accomplished by
normalizing the need of slots of accelerable jobs (sm

req,extra) depending
on the observed speedup as well as the capacity of the accelerated
pool:

sm
req,extra =

(
µm

reg

µm
acc

)
×
(

sm
req,acc −∑t∈Pacc

st

)
(3)

For the sake of clarity, take for instance a cluster with 10 slots run-
ning on accelerator-enabled machines, and a job whose map tasks
take 50s to complete on an accelerator and 100s on a regular machine.
Since it is accelerable, if the job needs 10 or less slots to meet the
completion time goal, the scheduler will try to schedule it on accel-
erators only. However, if the job is missing its goal and accelerable
nodes are not enough, the number of required slots will change ac-
cordingly: an estimation of 15 accelerated slots to meet the comple-
tion goal will be normalized to 10 accelerated slots and 10 regular
slots ((100/50)× (15− 10)).

This way accelerable jobs are prioritized over regular ones with a
similar need for resources, but the latter are not excluded from run-
ning if they have a much tighter completion time goal. Similarly, if
there are not enough resources to complete an accelerable job on time,
these are able to request additional non-accelerated slots, consider-
ing the performance difference among the execution on each kind of
nodes.

3.4.4 Hardware Acceleration: an Illustrative Example

While we will show real examples of such situation in Section 3.5.5,
in this section we develop a theoretical model to illustrate how dif-
ferent jobs exhibiting different acceleration properties pose different

3.4 allocation algorithm & extensions 41

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
cl

u
st

er
 n

o
d

es
 a

ll
o

ca
te

d
 (

%
)

Load, based on accelerated task time (%)

Non-accelerated pool

Accelerated pool

Speedup 1x
Speedup 2x
Speedup 3x
Speedup 4x
Speedup 5x

Figure 3.1: Slot allocation as a function of load

challenges to the scheduler. We consider a hypothetical cluster of ma-
chines running one accelerable job, and suppose that a fraction of the
available nodes (10%) are enabled with hardware accelerators (the
accelerated pool) while the remaining are not enabled with this tech-
nology (the non-accelerated pool).

As defined above, let sm
req,acc be the number of slots to be allocated

in parallel to an accelerable job m in the accelerated pool to make its
goal, TT the set of TaskTrackers in the cluster, and st the number of
execution slots offered by a TaskTracker t. Then, we define the load
of the system at any moment as:

load =
sm

req,acc

∑t∈Pacc
st

(4)

Therefore, a load of 50% means that job m requires an allocation
equivalent to the 50% of the slots available in the accelerated pool
Pacc to meet its goal. Notice that this definition of load is based on
sm

req,acc and thus, on µm
acc. Therefore, load is calculated based on the

average value µm
acc observed for the group of TaskTrackers of Pacc.

Figure 3.1 represents the effect of running accelerated tasks on the
non-accelerated pool. Such situation is required when the load of the
accelerated pool, as defined in (4), is beyond its capacity. This point
can be seen in the figure when the allocated fraction of the cluster
is above the size of the accelerated pool, indicated with the horizon-
tal line and corresponding to 10% of the node count in the cluster.
Beyond that point, accelerable tasks start running also on the non-
accelerated pool, using non-accelerated versions of the code. There-
fore, their performance is lower than when they run in the acceler-
ated pool, and the difference depends on the per-task speedup of
each job. In the figure we have included the simulation for different

42 scheduling with time constraints

jobs, each one with a different per-task speedup (from 1x to 5x). This
example illustrates how jobs that show high per-tasks speedups in
the accelerated pool will force the scheduler to steal resources from
the non-accelerated pool to satisfy the demand of the job, missing the
goal in many situations.

Section 3.5.5 will show this effect on real workloads running in a
prototype on top of a medium-size cluster.

Finally, notice that while the presented mechanism assumes that
only two pools are defined in the system, regular and accelerated, it
could be easily extended to support different types of accelerators.
Then, affinity could be enforced across pools based on the speedup
observed for each one of them, being the generic pool the last on to
use for accelerable jobs.

3.4.5 Regarding Mappers and Reducers

The discussion in the previous sections applies to both map and re-
duce tasks. Each TaskTracker has a number of slots for map tasks and
number of slots for reduce tasks. MapReduce application are usually
dominated by the time required to complete the map tasks, but cases
where the reduce tasks dominate can also occur. In both cases, jobs
start with a Map phase, in which performance data is collected, and
is followed by the Reduce phase.

The scheduler cannot make assumptions about the reduce phase
before completing reduce tasks. When a job is submitted, a job com-
pletion timeframe is derived from the distance between the present
time and the completion time goal associated to the job. Both map
and reduce phase must complete within the completion timeframe,
one after the other.

In our system, a user can use the configuration files of Hadoop to
provide an estimate of the relative cost of a reduce task compared to
that of a map task. If no estimate is provided, the scheduler assumes
that the computational cost of a map task is the same as that of a
reduce task. As the number of map and reduce tasks to complete for
a job is known in advance (when the input is split), the scheduler can
estimate the cost of the reduce phase once the map phase is started.

3.4.6 Modeling Application Characteristics

This section evaluates different kinds of applications and how its
characteristics affect the scheduler. The efficiency of the scheduler
depends on the ability to determine the time at which the map phase
should be completed in order to allow the reduce phase enough time
to complete afterwards, and the assumption that the granularity of
tasks in the map phase is enough to significantly change completion
time of jobs through dynamic resource allocation. A job will only be

3.4 allocation algorithm & extensions 43

able to meet its goal if both phases complete on time; we analyze each
phase separately.

During the map phase the scheduler leverages the malleability of
the map tasks to complete within its timeframe by allocating cluster
resources dynamically. Figure 3.2 shows the adaptability of the sched-
uler for jobs with different map task lengths and deadlines when said
tasks take longer than initially expected. In particular the Figure not
only shows when is it possible to correct a wrong estimation, but also
the amount of additional resources needed to complete it while still
meeting its completion goal, also described by the following equation:
s(d, l) = (100÷ l)/(d÷ l).

The amount of slots (s) needed to adapt and correct a wrong esti-
mation depends on the distance to the deadline (d) and the length of
map tasks relative to the deadline (l). It can be measured comparing
the number of sequential task executions, or waves, when the dis-
tance to the deadline is 100% with the number of waves when the
distance is smaller. Hence the slots factor represents the additional
slots needed. As expected from the baseline scenario, when the dead-
line is 100%, any kind of job, independently of its map task length, is
able to complete with 1.0X of the estimated slots.

As shown in Figure 3.2, there is room to adapt to inaccurate es-
timations during the map phase since small variations make up for
most cases. For instance, it’s easy to adjust the scheduler when the
inaccuracy is small and the distance to deadline is still close to 100%.
It is also expected that the longer the task length, the more difficult it
is for the scheduler to react. For jobs with smaller task lengths, there
must be a huge inaccuracy in the estimation (>80-90%) to make it dif-
ficult for the scheduler to react, and that’s to be expected since one of
the keys of the MapReduce paradigm is to split the computation into
smaller chunks. On the other hand, in the extreme case of a job with
a map length bigger than 50%, meaning the number of map tasks is
significantly smaller than the number of available slots and all the
tasks are executed in a single wave: there is little the scheduler can
do, but simply because there is no way to improve the scheduling.

While the scheduler leverages the malleability of the map phase
to complete it within its timeframe, as described in Section 3.3, the
time committed to the reduce phase given a completion time goal is
derived from user estimates, and any mistake in this estimation will
result in errors. The gray gradient in Figure 3.3 shows the impact
of wrong reduce estimations on the total execution time (assuming
perfect malleability of the map phase), which can also be explained
with the equation: d(rl, rd) = (rl × rd)/100, where the deviation d is
a function of the reduce deviation (rd), and the length of the reduce
phase relative to the total length of the job (rl). In this case devia-
tion of the job is then directly proportional to the deviation of the
reduce phase and its weight within the job. As it can be observed

44 scheduling with time constraints

Figure 3.2: Slots needed depending on map task length

Figure 3.3: Distance to goal based on reduce length

in the Figure, which shows jobs with different reduce characteristics,
the deviation caused by the reduce estimation is negligible when the
reduce phase is small. For longer reduce phases, there must be a sig-
nificant inaccuracy to affect the total execution; we have found in our
experiments that inaccuracies in the estimations based on previous
executions are always smaller than 5%.

3.5 evaluation

In this section we present four experiments to show the effectiveness
of the proposed scheduling techniques. The experiments are based on
the Adaptive Scheduler prototype for Hadoop which implements the
task and job scheduling algorithms presented in previous sections.

3.5.1 Workload

The workload that we used for our experiments is composed of the
following MapReduce applications:

• WordCount: takes a set of text files as input, and counts the
number of times each word appears. This application has a reg-
ular task length distribution.

• Join: joins two data tables on a given column. Each map task
processes a split of one of the two data tables—for each record

3.5 evaluation 45

in the split, the mappers emit key,value where the key is the
join key and the value is the record (tagged to indicate which
of the two tables it came from). The reducers separate input
records according to the tag, and perform a cross-product on
the resulting two sets of records.

• Simulator: execution harness for a placement algorithm [18]. By
varying the numbers of nodes and applications, in addition to
the memory and CPU capacities of the nodes and demands of
the applications, the algorithm can be made to execute for dif-
ferent lengths of time. Input data is negligible.

• Sort: sorting application as distributed in Hadoop. Both map()
and reduce() are basically identity functions, and the main work
of the application is performed by the internal runtime func-
tions.

• Montecarlo: CPU intensive application with little input data.
Two implementations of the map() function have been used: one
written in pure Java, and another using Cell/BE-accelerated
code.

• Crypt: represents data-intensive accelerable applications. We have
two implementations of a 128-bit AES encryption algorithm:
one written in Java, and another using Cell-accelerated code.
Encrypts an input of 60GB in all experiments.

The specific workloads are described along with each experiment.
Some applications, such as Simulator and Join, have an irregular dis-
tribution of task lengths. Also, both Montecarlo and Crypt benefit
from executing on nodes with acceleration support (with a speedup
of up to 25x and 2.5x respectively). Other applications do not benefit
from acceleration.

3.5.2 Execution Environment Description

The four experiments can be grouped into two sets. The first set of
experiments requires a homogeneous, general-purpose cluster to eval-
uate the efficiency of the completion time prediction technique using
the Adaptive Scheduler with and without data affinity (experiments
1 and 2). For these experiments, we use a Hadoop cluster consisting
of 61 2-way 2.1Ghz PPC970FX nodes with 4GB of RAM, connected
using a gigabit ethernet.

In the second set of experiments (3 and 4) we evaluate the ability
of the scheduler to dynamically manage heterogeneous pools of hard-
ware. For these experiments we use a heterogeneous cluster, consist-
ing of regular nodes and nodes enabled with acceleration support,
to evaluate the scheduler with hardware affinity. The system used

46 scheduling with time constraints

to run this set of experiments is a 61 IBM QS22 cluster: each blade
is equipped with 2x 3.2Ghz Cell processors and 8GB of RAM, and
connected using gigabit ethernet. Due to technical restrictions in our
facility we have not been able to integrate both clusters. Therefore,
to simulate an environment in which only some of the nodes are en-
abled with accelerators, we create two logical partitions: a 54 node
partition is considered to have no acceleration support (limited to the
PPU of the Cell processors), and 6 nodes are accelerated (full access
to SPUs).

Both sets of experiments were run using Hadoop 0.21. One of the
nodes was configured to be both JobTracker and NameNode, and the
60 remaining nodes were used as DataNodes and TaskTrackers. Each
TaskTracker was configured to run a maximum of one task in parallel
(one slot for map tasks and one for reduce tasks).

3.5.3 Experiment 1: Basic Adaptive Scheduler

For this experiment we use a synthetic mix of applications to com-
pose a realistic scenario of a MapReduce execution environment. The
application set is composed of 4 different MapReduce applications
that share resources during their execution: Simulator, Wordcount,
Sort and Join. We configure each application with a particular com-
pletion time goal, derived from the completion time that each applica-
tions achieves when run in isolation. In this experiment two different
scenarios have been evaluated. The first part of the experiment uses
deadlines that all applications are able to meet, while the second part
explores the behaviour of the scheduler when it’s not possible to meet
all the deadlines, and then compares the results with the Fair Sched-
uler.

In the first scenario, the set of applications is configured as follows:
a big Simulator job (J1), which is configured to have a completion
time goal of 6,000s (this is 1.69X its in-isolation completion time of
3,549s); a WordCount job (J2) configured with a completion time goal
of 3,000s (2.37X its in-isolation completion time of 1,264s); a Sort job
(J3) configured with a completion time of 3,000s (4.98X its in-isolation
completion time of 602s); and two identical runs of the Join applica-
tion (J4 and J5), each with a completion time goal of 150s (1.48X their
in-isolation completion time of 101s each).

Figure 3.4 represents the execution of the workload over time. For
the sake of clarity we group jobs by application into different rows.
Each row contains solid and dotted lines, representing the number of
running map and reduce tasks respectively. Jobs J1 to J5 are submitted
at times S1 to S5, and the completion time goals are D1 to D5.

Simulator (J1) is the first job submitted and every slot is allocated
to it, as there is nothing else in the system. When J2 is submitted,
it shares resources with J1, and together they use every slot in the

3.5 evaluation 47

20

40

60

S1

D1

20

40

60

S2

D2

20

40

60

R
u

n
n

in
g

 t
as

k
s

S3

D3

0

20

40

60

0 1000 2000 3000 4000 5000 6000
Elapsed time (s)

S4

D4

S5

D5

Figure 3.4: Adaptive Scheduler (solid: maps, dotted: reduces)

system. The scheduler allocates some slots to Sort (J3) when it is sub-
mitted, but as soon as the first map tasks are completed the slots
return to J1 and J2 since they are estimated to have higher need of
slots. Later, a short and high priority Join (J4) is submitted, and is
allocated most of the resources in order to meet its goal. When J4 is
finished, the resources return to J1 and J2. J3 resumes the execution
of map tasks as it gets closer to its goal, leaving enough time to com-
plete the reduce tasks. A second instance of Join (J5) is submitted, and
again is assigned most of the resources. J2 completes close to its goal,
at which point J1 is once again allocated the entire system and meets
its goal.

In the second configuration of this experiment the completion time
goals are set to be much tighter in order to show how the scheduler
behaves when it’s not possible to meet the completion time goals. The
set of applications is: a Simulator (J1) with the same completion time
goal of 6,000s (1.69X); Wordcount (J2) is now configured with a com-
pletion goal of 1,500s (1.18X); Sort (J3) is configured to complete after
650s (1.08X); and the Join executions (J4 and J5) are both configured
with a completion time goal of 120s (1.18X).

As it can be observed in Figure 3.5, it is no longer possible to meet
the goals of any of the jobs in the system since jobs J2-J5 have tighter
completion time goals. But note that even though jobs are not meeting
their completion time goals, slots are still being evenly distributed ac-
cording to their relative size. On the other hand, J1 takes longer than
in the previous configuration, but that is simply a side effect of the
lack of resource awareness in Hadoop, which leads to variable results
depending on how applications are mixed during its execution.

48 scheduling with time constraints

20

40

60

S1

D1

20

40

60

S2

D2

20

40

60

R
un

ni
ng

 ta
sk

s

S3

0

20

40

60

0 1000 2000 3000 4000 5000 6000
Elapsed time (s)

S4

D4

S5

D5

D3

Figure 3.5: Adaptive Scheduler with tighter completion time goals (solid:
maps, dotted: reduces)

20

40

60

S1

D1

20

40

60

R
u

n
n

in
g

 t
as

k
s

S2

D2

20

40

60

S3

D3

0

20

40

60

0 1000 2000 3000 4000 5000 6000

Elapsed time (s)

S4

D4

S5

D5

Figure 3.6: Fair Scheduler (solid: maps, dotted: reduces)

3.5 evaluation 49

Once we had seen the effectiveness of the basic scheduler, we wanted
to compare its behavior with a state of the art MapReduce scheduler.
For such purpose, we used the Fair Scheduler [90], which uses job pri-
orities to make scheduling decisions, in place of our completion time
goal oriented scheduler. Figure 3.6 shows the execution of the Fair
Scheduler with its default configuration. As expected, high-priority
jobs miss their goal. This is especially noticeable for J2, J4 and J5,
which take twice as much time as their desired completion time goals.
J3 on the other hand does not take so long because it has a significant
reduce phase, and there is not as much competition for reduce slots
as there is for maps. Fair Scheduler supports weights to prioritize
applications, which could be used to emulate the behaviour of com-
pletion time goals. However, weights are a static setting that need to
be configured in advance, and could be challenging as the complexity
of the workload increases. See [60] for an extended comparison with
the Fair Scheduler considering different weights.

3.5.4 Experiment 2: Scheduling with Data Affinity

Experiment 2 illustrates how the scheduler simultaneously manages
two different goals when running a mixed set of jobs concurrently:
meeting completion time goals and maximizing data locality. Notice
that the former is the main scheduling criteria, while the latter is a
best effort approach.

For this purpose we ran two different tests: with and without com-
pletion time goals. We evaluate two different configurations of the
Adaptive Scheduler with Data Affinity: setting the maximum delay
per remote task to either one or three attempts. Experiments are ex-
ecuted twice: once with the block replication factor set to one, and
another one with replication set to three.

3.5.4.1 Workload without completion time goals

This part aims to determine if the Adaptive Scheduler enhanced with
data affinity considerations is able to improve the percentage of local
tasks for a set of applications that have relaxed completion time goals.
The relaxed completion time goals mean that the scheduler can con-
centrate on achieving data locality. We compare the results achieved
by the Adaptive Scheduler with Data Affinity (maximum delay set
to one and to three) with both the Basic Adaptive Scheduler and the
Fair Scheduler.

This experiment focuses on the locality of map tasks, and so the
workload is composed of two instances of the Join application and
three instances of WordCount. The Simulator application is not used
since it has a negligible amount of data, so the number of local task
will not vary regardless of the scheduler used, and Sort is not used
because it is mostly reduce-oriented. We used a balanced distribution

50 scheduling with time constraints

0

20

40

60

80

100

Fair Adaptive
(original)

Adaptive
(1 delay)

Adaptive
(3 delays)

Fair Adaptive
(original)

Adaptive
(1 delay)

Adaptive
(3 delays)

N
um

be
r

of
 m

ap
 ta

sk
s

(%
)

Remote Local

3 replicas1 replica

Figure 3.7: Data locality without completion time

of the input data of the applications across all the nodes storing data.
This data distribution permits the Fair Scheduler to prioritize the exe-
cution of local tasks and thus to achieve a high percentage of locality.
This is because each node stores the same amount of data and each
map task of these applications is fed with the same amount of bytes
(one data block).

Figure 3.7 shows the percentage of local tasks achieved for the
evaluated configurations. We can see that all configurations achieve
higher locality percentage when using three replicas per block than
when using just one. For both replication factors, the configuration
that exhibits the highest percentage of remote tasks is the Basic Adap-
tive Scheduler, followed by the Fair Scheduler with 24.6% of tasks
executed remotely with one replica per block, and 15.6% executed
remotely with three replicas. Configurations that use the Adaptive
Scheduler with Data Affinity significantly improve on these percent-
ages. In the worst case, when just one delay is allowed per remote task
and the replica factor is one, the percentage of local tasks achieved is
around 98%, and in the best scenario, allowing three delays per re-
mote tasks and using three replicas per block, almost all tasks (99.8%)
are executed local to their data.

Table 3.1 shows the benefits that this improvement in data locality
may have on the execution of the applications. As it can be seen in
the amount of data transmitted across the network, when there are
three replicas per block, the Adaptive Scheduler with Data Affinity
uses 82.6% less network bandwidth than that used by the Fair Sched-
uler. If the replication factor is one, then the reduction in the required
network bandwidth is around 70.7%. Notice that although the per-
centage of local tasks achieved by the Fair Scheduler is greater than

3.5 evaluation 51

scheduler block replicas data volume

Fair Scheduler 1 40.94 GB

3 33.48 GB

Basic Adaptive Scheduler 1 21.24 GB

3 10.47 GB

Adaptive Scheduler with 1 12.00 GB

data-affinity (1 delay) 3 6.16 GB

Adaptive Scheduler with 1 12.00 GB

data-affinity (3 delays) 3 5.83 GB

Table 3.1: Network Bandwidth: non-restricted completion time goal

the percentage achieved by the Basic Adaptive Scheduler, the amount
of data transmitted across the network with the Fair Scheduler is big-
ger. This is because the input data required by the tasks that happen
to be remote in the case of the Fair Scheduler is greater than the input
data required by the remote tasks in the case of the Basic Adaptive
Scheduler.

Despite the improvements in network bandwidth usage, the overall
makespan of the workload is not significantly different in this execu-
tion environment. For instance, a map task of the Wordcount appli-
cation takes an average of 92±3s when executed locally, and 93±4s
when executed remotely. Both times are almost the same since Word-
count needs more CPU and input bandwidth is not critical. However,
higher performance improvement is expected under other environ-
ments, with a different network topology, or with other applications
that are more sensitive to the performance of reading the input. To
check the latter assumption we measured the map length of the Sort
(which is an identity function and thus its time is bounded by the
time of pulling the input data) and we observed that it takes 12±2s
for local tasks and 17±3s for remote tasks.

3.5.4.2 Workload with completion time goals

This test evaluates the efficiency of the Adaptive Scheduler with Data
Affinity when the applications have tight deadlines. In this situation,
meeting the performance goal is the main goal of the Adaptive Sched-
uler and thus, remote task will be delayed only if this decision does
not compromise the performance goals. The purpose of the experi-
ment is twofold: on one hand we want to measure the percentage
of task locality achieved when this is not the main criteria; on the
other hand we want to evaluate if deferring some remote tasks makes

52 scheduling with time constraints

0

20

40

60

80

100

Adaptive
(original)

Adaptive
(1 delay)

Adaptive
(3 delays)

Adaptive
(original)

Adaptive
(1 delay)

Adaptive
(3 delays)

N
um

be
r

of
 m

ap
 ta

sk
s

(%
)

Remote Local

1 replica 3 replicas

Figure 3.8: Data locality with completion time

the scheduler fail in making the applications meet their performance
goals.

The workload used for these executions is the same as the one
described in section 3.5.4.1: three instances of WordCount and two in-
stances of Join. We executed this workload using both Basic Adaptive
Scheduler and with Data Affinity.

Figure 3.8 shows the percentage of local tasks achieved for all the
executions of the workload. The percentage of local tasks increases
for all the configurations if we increase the number of replicas per
block from one to three. The Adaptive Scheduler with Data Affinity
always achieves a higher percentage of local tasks. This happens even
if we compare the most restrictive configuration with data affinity
(one replica per block and just one delay per remote task) and the
least restrictive configuration without data affinity (three replicas and
a limit of three delays per remote tasks). Observe that in the least
restrictive configuration, the percentage of local tasks achieved with
Data Affinity is close to 100%.

This percentage of local tasks is achieved without compromising
the ability of the jobs to achieve their completion time goals. This can
be seen looking at the execution over time of the workload. Figure 3.9
and Figure 3.10 show the results when the maximum delay per re-
mote task is set to three and the block replication factor is set to one
and to three respectively. WordCount jobs are submitted at time S1,
S2 and S3 respectively and their completion time goals are D1, D2 and
D3; Join jobs are submitted at S4 and S5, and their completion time
goals are D4 and D5. We can see in the graphs that all WordCount
jobs meet their completion time goal. The execution with 3 replicas
shows a better performance than the execution with a single replica

3.5 evaluation 53

20

40

60

S1

D1

20

40

60

S2

D2

20

40

60

R
un

ni
ng

 ta
sk

s

S3

D3

0

20

40

60

1000 2000 3000 4000 5000
Elapsed time (s)

S4

D4

S5

D5

Figure 3.9: Adaptive with data-affinity (3 delays, 1 replica)

for all of them, as the specified delay to improve data locality is lower.
However, with one replica, the performance achieved by the jobs is
still affordable as it is lower than their performance goal. Join jobs,
with 3 replicas, also meet their completion time goal. However, when
the replication factor is one (and thus more tasks are remote), both in-
stances of Join miss their completion time goal. The characteristics of
this job makes it more sensitive to misestimations and possible delays
of remote tasks: they are short jobs (with tight completion time goals
and few tasks to schedule) and so there are few chances to correct
the effects of a wrong decision. Also, this configuration – with just
one replica – is not the usual scenario for MapReduce applications as
it limits the reliability. In these graphs we can see that the Join jobs
are able to get more concurrent slots than when setting to three the
maximum delay per remote task and thus, to improve their perfor-
mance. In the case of the execution with one replica per block, one of
the Join instances makes its performance goal and the other misses
it just slightly. Recall that the percentage of local task for this config-
uration is around 98% (see figure 3.8) and thus, although this is not
the configuration that gets the highest data locality percentage, it is
a reasonable configuration candidate if we need to set the replication
factor to one and if we have to execute applications with few tasks
and very tight completion time goals.

3.5.5 Experiment 3: Scheduling with Hardware Affinity

In this experiment we evaluate the execution of the same workload
using two different configurations, and show the benefits of adding

54 scheduling with time constraints

20

40

60

S1

D1

20

40

60

S2

D2

20

40

60
R

un
ni

ng
 ta

sk
s

S3

D3

0

20

40

60

0 1000 2000 3000 4000 5000
Elapsed time (s)

S4

D4

S5

D5

Figure 3.10: Adaptive with data-affinity (3 delays, 3 replicas)

hardware affinity support to the Adaptive Scheduler when running
simultaneously accelerable and non-accelerable applications. The con-
figurations are as follows:

• Configuration 1.1. Adaptive Scheduler with Hardware Affin-
ity and 10% of the nodes enabled with hardware acceleration.
In this case, the scheduler prioritizes allocation of accelerator-
enabled nodes to accelerable applications, as described in 3.4.3.

• Configuration 1.2. Basic Adaptive Scheduler. Although this sched-
uler does not distinguish the kind of hardware, 10% of the
nodes are still enabled with hardware acceleration support. Thus,
all map tasks assigned to accelerated nodes execute the acceler-
ated code (if available).

The workload is composed of one instance of the WordCount ap-
plication, which is not able to exploit hardware acceleration support,
and two instances of the Montecarlo simulation, which exhibit a high
speedup on accelerated nodes. The first job that is submitted is the
WordCount application. Afterwards, the first Montecarlo simulation
is submitted at S2, and a second Montecarlo job is submitted 300s after
the first one completes, at time S3. Recall that S3 will vary depend-
ing on the actual completion time of the first instance. WordCount is
set to have a relaxed completion time goal –5,000s (D1)–, while Mon-
tecarlo jobs have tighter completion time goals – 2,200s (D2) for the
first instance and 500s (D3) for the second one. The goal for the first
instance of Montecarlo can be met running only with resources from
the accelerated pool, while the goal for the second one is so tight that

3.5 evaluation 55

R
un

ni
ng

 ta
sk

s

20

40

60
Wordcount

0

20

40

60

0 1000 2000 3000 4000 5000

R
un

ni
ng

 ta
sk

s

Elapsed time (s)

S2 D2S3 D3 Montecarlo 1
Montecarlo 2

Figure 3.11: Adaptive with Hardware Affinity

20

40

60

R
un

ni
ng

 ta
sk

s

Wordcount

0

20

40

60

0 1000 2000 3000 4000 5000

R
un

ni
ng

 ta
sk

s

Elapsed time (s)

S2 D2 S3 D3 Montecarlo 1
Montecarlo 2

Figure 3.12: Basic Adaptive Scheduler

56 scheduling with time constraints

both accelerated and non-accelerated resources must be used to meet
it.

Figure 3.11 shows the results for Configuration 1.1. An horizontal
line marks the limit of the accelerated pool. Recall that WordCount
initially runs across the two pools, but without exploiting the accel-
eration capabilities of the accelerated pool, because no accelerated
code is provided for this application. When the first Montecarlo job
is submitted (S2), the Adaptive Scheduler starts the calibration phase:
executing two tasks for this job, one in each pool, to evaluate the
speedup. When the first estimation of resource demand is done, the
scheduler starts allocating resources to the job in the accelerated pool.
The job completes at time 863s. Shortly after that, the second Mon-
tecarlo instance is submitted (S3). Due to its tighter completion time
goal, and after the initial execution of one task in each partition to
calibrate the estimation, the scheduler determines that for this second
instance to meet its goal, the job needs to be spread across both par-
titions. The job meets its deadline and completes at 1824s. Note that
this second Montecarlo instance performs slightly faster than the first
Montecarlo instance, although it is running most of the time using 9x
times more nodes than the first one (this situation is deeply analysed
in Section 3.4.3). After that, WordCount gets all the resources again
until completion.

Figure 3.12 shows the results for Configuration 1.2, in which the
Adaptive Scheduler is not aware of hardware heterogeneity. In this
case, all maps of all jobs execute across all nodes. As shown, the
number of nodes assigned to the first Montecarlo job is higher than
when using the Adaptive Scheduler with hardware affinity. The rea-
son for this is that, as the Adaptive Scheduler assigns nodes to this job
that do not have hardware acceleration support, the execution of the
non-accelerated version of these maps increases considerably the av-
erage map time for this job (recall that this non-accelerated version is
around 25x slower than the accelerated version). Thus the job requires
more nodes to meet its completion time goal. However, in spite of the
higher number of assigned nodes, the execution time of this job is
still more than twice the execution of the same job under the same ex-
ecution conditions but using hardware affinity during the scheduling.
Note also that this configuration also increases the execution time of
the WordCount application. This is because, as this application has a
very relaxed completion time goal, it has a low priority for the sched-
uler that assigns to WordCount only the nodes that the Montecarlo
simulation does not need to meet its tight goal. Regarding the exe-
cution of the second job of the Montecarlo simulation there are not
noticeable differences between this configuration and the configura-
tion considering hardware affinity because its tight completion time
goal requires in both configurations to get most of the nodes in the
cluster.

3.5 evaluation 57

20

40

60

R
un

ni
ng

 ta
sk

s Wordcount

20

40

60

R
un

ni
ng

 ta
sk

s

S2 D2 Crypt

0

20

40

60

0 1000 2000 3000 4000

R
un

ni
ng

 ta
sk

s

Elapsed time (s)

S3 D3 Montecarlo 1
Montecarlo 2

Figure 3.13: Heavy load on accelerated pool

3.5.6 Experiment 4: Arbitrating Between Pools

In this experiment we evaluate the Adaptive Scheduler when arbitra-
tion between both pools is required. We use a workload composed of
a WordCount job (which is not accelerable), the Montecarlo simula-
tion (which is accelerable and has a high per-task speedup) and the
Crypt application (which is accelerable and has a moderate per-task
speedup).

We show the results for the following two configurations:

• Configuration 2.1. Shows how the Adaptive Scheduler arbitrates
allocation inside the accelerated pool when accelerable jobs are
competing. In addition, the tight deadline for accelerable jobs
forces the scheduler to allocate them nodes from the non-accelerated
pool.

• Configuration 2.2. Illustrates how a non-accelerable job can steal
nodes from the accelerated pool when needed to meet its com-
pletion time goal.

Figure 3.13 shows the result for Configuration 2.1, in which the
load on the accelerated pool is high. We execute one instance of
Crypt and Wordcount and two instances of Montecarlo, in order to
increase the load on the accelerated pool. A horizontal line in the
graphs marks the number of nodes in the accelerated pool.

We first launch the job that executes the WordCount application.
After determining that it is not accelerable, the scheduler assigns to
the job all the available resources in the cluster until the job that ex-
ecutes the Crypt application is submitted (S2). Once the scheduler

58 scheduling with time constraints

20

40

60

R
un

ni
ng

 ta
sk

s

D1 Wordcount

20

40

60

R
un

ni
ng

 ta
sk

s

S2

D2

Crypt

0

20

40

60

0 1000 2000 3000 4000

R
un

ni
ng

 ta
sk

s

Elapsed time (s)

S3

D3

Montecarlo

Figure 3.14: Heavy load on non-accelerated pool

decides that this job is accelerable, it starts applying the affinity crite-
ria: as WordCount map tasks running on accelerated nodes finish, the
scheduler assigns those nodes to Crypt. When the job for the Monte-
carlo simulation starts (S3), both jobs have to share the accelerated
pool. The scheduler decides how to allocate these nodes considering
the completion time goal of each job. In this example, Montecarlo
has a tighter completion time than Crypt and therefore gets more
nodes than Crypt. At the same time, WordCount continues execut-
ing on nodes from the non-accelerated pool, as they are enough for
this job to meet its completion time goal. After the first instance of
the Montecarlo simulation is completed, a second instance of Mon-
tecarlo is submitted, in this case with a very tight completion time
goal. This forces the Adaptive Scheduler to assign most of the nodes
in the cluster (from both the accelerated and non-accelerated pools)
to this job. When this job completes, Crypt and WordCount continue
to run using only the nodes from the accelerated and non-accelerated
pool respectively, until the scheduler detects that Crypt does not have
enough resources to meet its completion time goal. At this point, the
scheduler starts allocating some non-accelerated nodes to Crypt as
well. When Crypt completes, WordCound starts running across all
nodes in the cluster and finally meets its goal. Notice from this exper-
iment that when the scheduler detects that accelerated nodes are not
enough to meet the completion time goal of accelerable job (Crypt
and Montecarlo), the number of non-accelerated nodes required to
compensate the shortage of accelerated nodes is considerably higher
for Montecarlo than for Crypt. As discussed in Section 3.4.3, this is

3.6 related work 59

due to the different per-task speedup of both jobs: 25x in the case of
Montecarlo tasks and 2.5x in the case of Crypt tasks.

Figure 3.14 shows the results for Configuration 2.2, in which the
accelerable jobs have relaxed completion time goals and the non-
accelerable job is submitted with a very tight completion goal. We
execute one instance of each application. Initially, the scheduler es-
timates that WordCount and Crypt will be able to meet their goals.
But shortly after Montecarlo is submitted, the scheduler notices that
WordCount will need more resources to meet its goal and thus claims
some nodes from the accelerated pool. After WordCount completes,
the remaining jobs continue sharing the accelerated pool, but most of
it is assigned to Crypt since it has a higher need of slots. Once the
scheduler acknowledges that Crypt too will meet its completion goal
and Montecarlo becomes more needy (at around time 2,850s), both
jobs start sharing the pool more equally until completion.

3.6 related work

Process scheduling is a deeply explored topic for parallel applications,
considering different type of applications, different scheduling goals
and different platform architectures ([30]). There has also been some
work focused on adaptive scalable schedulers based on job sizes ([43,
84]), but in addition to some of these ideas, our proposed scheduler
takes advantage of one of the key features of MapReduce: the fact
that jobs are composed of a large number of similar tasks.

MapReduce scheduling has been discussed in the literature, and
different approaches have been presented. The initial scheduler pro-
vided by the Hadoop distribution uses a very simple FIFO policy,
considering five different application priorities. In addition, in order
to isolate the performance of different jobs, the Hadoop project is
working on a system for provisioning dedicated Hadoop clusters to
applications [7], but this approach can result in resource underuti-
lization. There are several proposals of fair scheduling implementa-
tions to manage data-intensive and interactive applications executed
on very large clusters for MapReduce environments ([90, 91]) and
for Dryad ([41, 42]). The main concern of these scheduling policies is
to give equal shares to each user and achieve maximum utilization
of the resources. However, scheduling decisions are not dynamically
adapted based on job progress, so this approach is not appropriate
for applications with different performance goals.

There have been other proposals that involve setting high-level
completion goals for MapReduce applications. In addition to our ini-
tial implementation [60], others have shown interest in this partic-
ular topic. FLEX [86] is a scheduler proposed as an add-on to the
Fair Scheduler to provide Service-Level-Agreement (SLA) guarantees.
More recently [82] introduces a novel resource management frame-

60 scheduling with time constraints

work that consists of a job profiler, a model for MapReduce jobs and
a SLO-scheduler based on the Earliest Deadline First scheduling strat-
egy.

In [70], the authors introduce a system to manage and dynami-
cally assign the resources of a shared cluster to multiple Hadoop in-
stances. Priorities are defined by users using high-level policies such
as budgets. This system is designed for virtualized environments, un-
like the proposed work, which is implemented as a regular Hadoop
MapReduce scheduler and thus is able to run on standard Hadoop
installations and provide more accurate estimations.

Regarding the execution of MapReduce applications on heteroge-
neous hardware, in [89] the authors consider the influence that hard-
ware heterogeneity may have on the scheduling of speculative tasks.
Our proposal in orthogonal to this one as we do not face the schedul-
ing of speculative tasks and we have not enable this option in the
configuration of our execution environment. In [5] the authors focus
on avoiding stragglers (which may cause the execution of speculative
tasks). They show that most of them are due to network traffic. Thus,
although dealing with stragglers is not the focus of our proposal, our
scheduler is also avoiding them as the percentage of local task that
it is able to achieve is around 100%. There are several works in the
literature that consider the heterogeneity trend on current execution
platforms. [72] studies the impact of heterogeneity on large clusters
and presents techniques to include task placement constraints.

More recently, Hadoop schedulers have focused on being more
aware of both resources available in each node and resources required
by applications [11]. In [63] we adapt the Adaptive Scheduler to be
resource-aware.

3.7 summary

This chapter presents a scheduler for multi-job MapReduce environ-
ments that is able to dynamically build performance models of the
executing workloads, and then use these models for scheduling pur-
poses. This ability is leveraged to adaptively manage workload per-
formance while observing and taking advantage of the particulars
of the execution environment of modern data analytics applications,
such as hardware heterogeneity and distributed storage.

The scheduler targets a highly dynamic environment in which new
jobs can be submitted at any time with different user-defined com-
pletion time goals. Thus the actual amount of resources available for
applications can vary over time depending on the workload. Beyond
the formulation of the problem and the description of the schedul-
ing algorithm and technique, a working prototype called Adaptive
Scheduler has been implemented. Using the prototype and medium-
sized clusters (of the order of tens of nodes), the following aspects

3.7 summary 61

have been studied separately: the scheduler’s ability to meet high-
level performance goals guided only by user-defined completion time
goals; the scheduler’s ability to favor data-locality in the scheduling
algorithm; and the scheduler’s ability to deal with hardware hetero-
geneity, which introduces hardware affinity and relative performance
characterization for those applications that can benefit from executing
on specialized processors.

The work described in this chapter is a summary of the following
main publications:

[62] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Ed-
uard Ayguadé, Malgorzata Steinder, and Ian Whalley. Performance-
driven task co-scheduling for MapReduce environments. In Network
Operations and Management Symposium, NOMS, pages 373–380, Osaka,
Japan, 2010

[61] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, and
Eduard Ayguadé. Performance Management of Accelerated Map-
Reduce Workloads in Heterogeneous Clusters. In ICPP ’10: Proceed-
ings of the 39th IEEE/IFIP International Conference on Parallel Processing,
San Diego, CA, USA, 2010

[64] Jordà Polo, Yolanda Becerra, David Carrera, Malgorzata Stein-
der, Ian Whalley, Jordi Torres, and Eduard Ayguadé. Deadline-Based
MapReduce Workload Management. IEEE Transactions on Network and
Service Management, pages 1–14, 2013-01-08 2013. ISSN 1932-4537

4
S C H E D U L I N G W I T H S PA C E A N D T I M E
C O N S T R A I N T S

4.1 introduction

In recent years, the industry and research community have witnessed
an extraordinary growth in research and development of data-analytic
technologies, and the adoption of MapReduce [24] has been pivotal
to this phenomenon. Pioneer implementations of MapReduce [8] have
been designed to provide overall system goals (e.g. job throughput).
Thus, support for user-specified goals and resource utilization man-
agement have been left as secondary considerations at best. But both
capabilities are arguably crucial for the further development and adop-
tion of large-scale data processing. On one hand, more users wish for
ad-hoc processing in order to perform short-term tasks [79]. Further-
more, in a cloud environments users pay for resources used. There-
fore, providing consistency between price and the quality of service
obtained is key to the business model of the cloud. Resource man-
agement, on the other hand, is also important as providers are moti-
vated by profit and hence require both high levels of automation and
resource utilization while avoiding bottlenecks.

The main challenge in enabling resource management in Hadoop
clusters stems from the resource model adopted in MapReduce. Ha-
doop expresses capacity as a function of the number of tasks that can
run concurrently in the system. To enable this model the concept of
slot was introduced as the minimum schedulable unit in the system.
Slots are bound to a particular type of task, either reduce or map, and
one task of the appropriate type is executed in each slot. The main
drawback of this approach is that slots are fungible across jobs: a task

63

64 scheduling with space and time constraints

(of the appropriate type) can execute in any slot, regardless of the job
of which that task forms a part.

This loose coupling between scheduling and resource management
limits the opportunity to efficiently control the utilization of resources
in the system. Providing support for user-specified goals in Map-
Reduce clusters is also challenging, due to high variability induced by
the presence of outlier tasks (tasks that take much longer than other
tasks) [5, 59, 86, 82]. Solutions to mitigate the detrimental impact of
such outliers typically rely on scheduling techniques such as specu-
lative scheduling [89], and killing and restarting of tasks [5]. These
approaches, however, may result in wasted resources and reduced
throughput. More importantly, all existing techniques are based on
the typed-slot model and therefore suffer from the aforementioned
limitations.

This chapter presents a Resource-aware Adaptive Scheduler for
MapReduce [1] (hereafter RAS), capable of improving resource uti-
lization and which is guided by completion time goals. In addition,
it also addresses the system administration issue of configuring the
number of slots for each machine, which—as will be demonstrated—
has no single, homogeneous, and static solution on a multi-job Map-
Reduce cluster.

While existing work focuses on the typed-slot model—wherein the
number of tasks per worker is fixed throughout the lifetime of the
cluster, and slots can host tasks from any job—the proposed approach
offers a novel resource-aware scheduling technique which advances
the state of the art in several ways:

• Extends the abstraction of ‘task slot’ to ‘job slot’. A ‘job slot’ is
job specific, and has an associated resource demand profile for
map and reduce tasks.

• Leverages resource profiling information to obtain better utiliza-
tion of resources and improve application performance.

• Adapts to changes in resource demand by dynamically allocat-
ing resources to jobs.

• Seeks to meet soft-deadlines via a utility-based approach.

• Differentiates between map and reduce tasks when making re-
source-aware scheduling decisions.

The structure of this chapter is as follows. The scheduler’s design
and implementation is described in detail in Section 4.2. An evalua-
tion of our prototype in a real cluster is is presented in Section 4.3.
And finally, Section 4.4 discusses the related work.

4.2 resource-aware adaptive scheduler 65

4.2 resource-aware adaptive scheduler

The driving principles of RAS are resource awareness and continu-
ous job performance management. The former is used to decide task
placement on TaskTrackers over time, and is the main object of study
of this chapter. The latter is used to estimate the number of tasks to
be run in parallel for each job in order to meet some performance
objectives, expressed in the form of completion time goals, and as de-
scribed in Chapter 3 was extensively evaluated and validated in [59].

In order to enable this resource awareness, this proposal introduces
the concept of ‘job slot’. A job slot is an execution slot that is bound
to a particular job, and a particular task type (reduce or map) within
that job. This is in contrast to the traditional approach, wherein a slot
is bound only to a task type regardless of the job. The rest of the chap-
ter will use the terms ‘job slot’ and ‘slot’ interchangeably. This exten-
sion allows for a finer-grained resource model for MapReduce jobs.
Additionally, the scheduler determines the number of job slots, and
their placement in the cluster, dynamically at run-time. This contrasts
sharply with the traditional approach of requiring the system admin-
istrator to statically and homogeneously configure the slot count and
type on a cluster. This eases the configuration burden and improves
the behavior of MapReduce clusters.

Completion time goals are provided by users at job submission
time. These goals are treated as soft deadlines in as opposed to the
strict deadlines familiar in real-time environments: they simply guide
workload management.

4.2.1 Problem Statement

We are given a set of MapReduce jobs J = {1, . . . , J}, and a set of
TaskTrackers T T = {1, . . . , TT}. We use j and tt to index into the
sets of jobs and TaskTrackers, respectively. With each TaskTracker tt
we associate a series of resources, R = {1, . . . , R}. Each resource of
TaskTracker tt has an associated capacity Ωtt,1, . . . , Ωtt,r. In our work
we consider disk bandwidth, memory, and CPU capacities for each
TaskTracker. Note that extending the algorithm to accommodate for
other resources, e.g., storage capacity, is straightforward.

A MapReduce job (j) is composed of a set of tasks, already known
at submission time, that can be divided into map tasks and reduce
tasks. Each TaskTracker tt provides to the cluster a set of job-slots in
which tasks can run. Each job-slot is specific for a particular job, and
the scheduler will be responsible for deciding the number of job-slots
to create on each TaskTracker for each job in the system.

Each job j can be associated with a completion time goal, T j
goal , the

time at which the job should be completed. When no completion time
goal is provided, the assumption is that the job needs to be completed

66 scheduling with space and time constraints

at the earliest possible time. Additionally, with each job we associate
a resource consumption profile. The resource usage profile for a job
j consists of a set of average resource demands Dj = {Γj,1, . . . , Γj,r}.
Each resource demand consists of a tuple of values. That is, there is
one value associated for each task type and phase (map, reduce in
shuffle phase, and reduce in reduce phase, including the final sort).

We use symbol P to denote a placement matrix of tasks on Task-
Trackers, where cell Pj,tt represents the number of tasks of job j placed
on TaskTracker tt. For simplicity, we analogously define PM and PR,
as the placement matrix of Map and Reduce tasks. Notice that P =

PM + PR. Recall that each task running in a TaskTracker requires a
corresponding slot to be created before the task execution begins, so
hereafter we assume that placing a task in a TaskTracker implies the
creation of an execution slot in that TaskTracker.

Based on the parameters described above, the goal of the scheduler
presented in this chapter is to determine the best possible placement
of tasks across the TaskTrackers as to maximize resource utilization
in the cluster while observing the completion time goal for each job.
To achieve this objective, the system will dynamically manage the
number of job-slots each TaskTracker will provision for each job, and
will control the execution of their tasks in each job-slot.

4.2.2 Architecture

Figure 4.1 illustrates the architecture and operation of the resource-
aware scheduler. The system consists of five components: Placement
Algorithm, Job Utility Calculator, Task Scheduler, Job Status Updater
and Job Completion Time Estimator.

Most of the logic behind RAS resides in the JobTracker. We con-
sider a scenario in which jobs are dynamically submitted by users.
Each submission includes both the job’s completion time goal (if one
is provided) and its resource consumption profile. This information
is provided via the job configuration XML file. The JobTracker main-
tains a list of active jobs and a list of TaskTrackers. For each active job
it stores a descriptor that contains the information provided when the
job was submitted, in addition to state information such as number of
pending tasks. For each TaskTracker (TT) it stores that TaskTracker’s
resource capacity (Ωtt).

For any job j in the system, let sj
pend and rj

pend be the number of map
and reduce tasks pending execution, respectively. Upon completion
of a task, the TaskTracker notifies the Job Status Updater, which trig-
gers an update of sj

pend and rj
pend in the job descriptor. The Job Status

Updater also keeps track of the average task length observed for ev-
ery job in the system, which is later used to estimate the completion
time for each job.

4.2 resource-aware adaptive scheduler 67

Submission time (static information)

Job Submission

Placement Control loop

Task Trackers

(running tasks for

multiple jobs)

Task Completion

Assign Tasks (������
�

, ������
�

) to meet �	, �
, Ω��

New (�	, �
) to enforce until

next control cycle (T)

Evaluate Placement

�’

in this round

U��′�

�����
�

, r����
�

, J, Γ�

System Description

List of TaskTrackers TT, Resource Capacities Ω��

Job Profile

(#maps, #reduces,

resource demands Γ�)

Completion Time Goal

(�����
�

)

J: Dynamic list of jobs in the system

and their associated profile and

current state

(�����
�

, r����
�

, Γ�)
����
�

Job

completion

time estimator

Update �����
�

, r����
�

�	, �

TT, Ω��

Job Tracker

Operation in control cycles of period T

Job Status

Updater

�����
�

Placement

Algorithm

Job Utility

Calculator

�����
�

Task Scheduler

Avg. Task length

Figure 4.1: System architecture

The Job Completion Time Estimator estimates the number of map
tasks that should be allocated concurrently (sj

req) to meet the comple-
tion time goal of each job. To perform this calculation it relies on the
completion time goal T j

goal , the number of pending map tasks (sj
pend),

and the observed average task length. Notice that the scenario we fo-
cus on is very dynamic, with jobs entering and leaving the system
unpredictably, so the goal of this component is to provide estimates
of sj

req that guide resource allocation. This component leverages the
techniques already described in [59].

The core of RAS is the Placement Control loop, which is composed
of the Placement Algorithm and the Job Utility Calculator. They op-
erate in control cycles of period T, which is of the order of tens of
seconds. The output of their operation is a new placement matrix P
that will be active until the next control cycle is reached (current time
+ T). A short control cycle is necessary to allow the system to react
quickly to new job submissions and changes in the task length ob-
served for running jobs. In each cycle, the Placement Algorithm com-
ponent examines the placement of tasks on TaskTrackers and their
resource allocations, evaluates different candidate placement matri-
ces and proposes the final output placement to be enforced until next
control cycle. The Job Utility Calculator calculates a utility value for
an input placement matrix which is then used by the Placement Al-
gorithm to choose the best placement choice available.

The Task Scheduler is responsible for enforcing the placement de-
cisions, and for moving the system smoothly between a placement
decision made in the last cycle to a new decision produced in the
most recent cycle. The Task Scheduler schedules tasks according to

68 scheduling with space and time constraints

the placement decision made by the Placement Controller. Whenever
a task completes, it is the responsibility of the Task Scheduler to se-
lect a new task to execute in the freed slot, by providing a task of the
appropriate type from the appropriate job to the given TaskTracker.

The following sections will concentrate on the problem solved by
the Placement Algorithm component in a single control cycle.

4.2.3 Performance Model

To measure the performance of a job given a placement matrix, we
define a utility function that combines the number of map and re-
duce slots allocated to the job with its completion time goal and job
characteristics. Below we provide a description of this function.

Given placement matrices PM and PR, we can define the number
of map and reduce slots allocated to a job j as sj

alloc = ∑tt∈T T PM
j,tt and

rj
alloc = ∑tt∈T T PR

j,tt correspondingly.

Based on these parameters and the previous definitions of sj
pend and

rj
pend, we define the utility of a job j given a placement P as:

uj(P) = uM
j (PM) + uR

j (PR), where P = PM + PR (5)

where uM
j is a utility function that denotes increasing satisfaction

of a job given a placement of map tasks, and uR
j is a utility function

that shows satisfaction of a job given a placement of reduce tasks. The
definition of both functions is:

uM
j (PM) =


sj

alloc−sj
req

sj
pend−sj

req
sj

alloc ≥ sj
req

log(sj
alloc)

log(sj
req)
− 1 sj

alloc < sj
req

(6)

uR
j (PR) =

log(rj
alloc)

log(rj
pend)

− 1 (7)

Notice that in practice a job will never get more tasks allocated to
it than it has remaining: to reflect this in theory we cap the utility at
uj(P) = 1 for those cases.

The definition of u differentiates between two cases: (1) the satis-
faction of the job grows logarithmically from −∞ to 0 if the job has
fewer map slots allocated to it than it requires to meet its completion
time goal; and (2) the function grows linearly between 0 and 1, when
sj

alloc = sj
pend and thus all pending map tasks for this job are allocated

a slot in the current control cycle. Notice that uM
j is a monotonically

4.2 resource-aware adaptive scheduler 69

sreq
j = 20

spend
j = 35

rpend
j = 10

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

Allocated Map Slots

salloc
j 0 5 10 15 20 25 30 35 40 45 50

Allocated Reduce Slots

ralloc
j

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

Utility

Figure 4.2: Shape of the Utility Function when sj
req = 20, sj

pend = 35, and

rj
pend = 10

increasing utility function, with values in the range (−∞, 1]. The in-
tuition behind this function is that a job is unsatisfied (uM

j < 0) when
the number of slots allocated to map tasks is less than the minimum
number required to meet the completion time goal of the job. Fur-
thermore, the logarithmic shape of the function stresses the fact that
it is critical for a job to make progress and therefore at least one slot
must be allocated. A job is no longer unsatisfied (uM

j = 0) when the

allocation equals the requirement (sj
alloc = sj

req), and its satisfaction is
positive (uM

j > 0) and grows linearly when it gets more slots allocated
than required. The maximum satisfaction occurs when all the pend-
ing tasks are allocated within the current control cycle (sj

alloc = sj
pend).

The intuition behind uR
j is that reduce tasks should start at the earli-

est possible time, so the shuffle sub-phase of the job (reducers pulling
data produced by map tasks) can be fully pipelined with execution of
map tasks. The logarithmic shape of this function indicates that any
placement that does not run all reducers for a running job is unsatis-
factory. The range of this function is [−1, 0] and, therefore, it is used
to subtract satisfaction of a job that, independently of the placement
of map tasks, has unsatisfied demand for reduce tasks. If all the re-
duce tasks for a job are allocated, this function gets value 0 and thus,
uj(P) = uM

j (PM).
Figure 4.2 shows the generic shape of the utility function for a job

that requires at least 20 map tasks to be allocated concurrently (sj
req =

20) to meet its completion time goal, has 35 map tasks (sj
pend = 35)

pending to be executed, and has been configured to run 10 reduce

70 scheduling with space and time constraints

tasks (rj
pend = 10), none of which have been started yet. On the X

axis, a variable number of allocated slots for reduce tasks (rj
alloc) is

shown. On the Y axis, a variable number of allocated slots for map
tasks (sj

alloc) is shown. Finally, the Z axis shows the resulting utility
value.

4.2.4 Placement Algorithm and Optimization Objective

Given an application placement matrix P, a utility value can be calcu-
lated for each job in the system. The performance of the system can
then be measured as an ordered vector of job utility values, U. The
objective of RAS is to find a new placement P of jobs on TaskTrack-
ers that maximizes the global objective of the system, U(P), which is
expressed as follows:

max min
j

uj(P) (8)

min Ωtt,r −∑
tt
(∑

j
Pj,tt) ∗ Γj,r (9)

such that

∀tt∀r (∑
j

Pj,tt) ∗ Γj,r ≤ Ωtt,r (10)

This optimization problem is a variant of the Class Constrained
Multiple-Knapsack Problem. Since this problem is NP-hard, the sched-
uler adopts a heuristic inspired by [75], and which is outlined in Algo-
rithm 1. The proposed algorithm consists of two major steps: placing
reduce tasks and placing map tasks.

Reduce tasks are placed first to allow them to be evenly distributed
across TaskTrackers. By doing this we allow reduce tasks to better
multiplex network resources when pulling intermediate data and also
enable better storage usage. The placement algorithm distributes re-
duce tasks evenly across TaskTrackers while avoiding collocating any
two reduce tasks. If this is not feasible—due to the total number of
tasks—it then gives preference to avoiding collocating reduce tasks
from the same job. Recall that in contrast to other existing schedulers,
RAS dynamically adjusts the number of map and reduce tasks allo-
cated per TaskTracker while respecting its resource constraints. No-
tice also that when reduce tasks are placed first, they start running
in shuffle phase, so that their demand of resources is directly propor-
tional to the number of map tasks placed for the same job. Therefore,
in the absence of map tasks for the same job, a reduce task in shuffle
phase only consumes memory. It therefore follows that the system is
unlikely to be fully booked by reduce tasks.

4.2 resource-aware adaptive scheduler 71

Algorithm 1 Placement Algorithm run at each Control Cycle

Inputs PM(job,tt): Placement Matrix of Map tasks, PR(job,tt): Place-
ment Matrix of Reduce tasks, J: List of Jobs in the System, D:
Resource demand profile for each job, TT: List of TaskTrackers in
the System
Γj and Ωtt: Resource demand and capacity for each Job each
TaskTracker correspondingly, as used by the auxiliary function
room_ f or_new_job_slot
{————————— Place Reducers —————————}

1: for job in J do
2: Sort TT in increasing order of overall number of reduce tasks

placed (first criteria), and increasing order of number of reduc-
ers job placed (second criteria)

3: for tt in TT do
4: if room_ f or_new_job_slot(job, tt) & rjob

pend > 0 then
5: PR(job, tt) = PR(job, tt) + 1
6: end if
7: end for
8: end for

{————————— Place Mappers —————————}
9: for round = 1. . . rounds do

10: for tt in TT do
11: jobin ← min U(jobin, P), room_ f or_new_job_slot(jobin, tt),
12: jobout ← max U(jobout, P), PM(jobout, tt) > 0
13: repeat
14: Pold ← P
15: jobout ← max U(jobout, P), P(jobout, tt) > 0
16: PM(jobout, tt) = PM(jobout, tt)− 1
17: jobin ← min U(jobin, P), room_ f or_new_job_slot(jobin, tt)
18: until U(jobout, P) < U(jobin, Pold)

19: P← Pold
20: repeat
21: jobin ← min U(jobin, P), room_ f or_new_job_slot(jobin, tt)
22: PM(jobin, tt) = PM(jobin, tt) + 1
23: until 6 ∃job such that room_ f or_new_job_slot(job, tt)
24: end for
25: end for
26: if map phase of a job is about to complete in this control cycle

then
27: switch profile of placed reducers from shuffle to reduce and

wait for Task Scheduler to drive the transition.
28: end if

72 scheduling with space and time constraints

The second step is placing map tasks. This stage of the algorithm is
utility-driven and seeks to produce a placement matrix that balances
satisfaction across jobs while treating all jobs fairly. This is achieved
by maximizing the lowest utility value in the system. This part of the
algorithm executes a series of rounds, each of which tries to improve
the lowest utility of the system. In each round, the algorithm removes
allocated tasks from jobs with the highest utility, and allocates more
tasks to the jobs with the lowest utility. For the sake of fairness, a task
gets de-allocated only if the utility of its corresponding job remains
higher than the lowest utility of any other job in the system. This
results in increasing the lowest utility value across jobs in every round.
The loop stops after a maximum number of rounds has reached, or
until the system utility no longer improves. This process allows for
satisfying the optimization objective introduced in Equation 8.

Recall that RAS is resource-aware and hence all decisions to re-
move and place tasks are made considering the resource constraints
and demands in the system. Furthermore, in order to improve sys-
tem utilization it greedily places as many tasks as resources allow.
This management technique is novel and allows for satisfying the op-
timization objective introduced in Equation 9.

The final step of the algorithm is to identify if any running jobs
will complete their map phase during the current control cycle. This
transition is important because it implies that reduce tasks for those
jobs will start the reduce phase. Therefore, the algorithm has to switch
the resource demand profile for the reduce tasks from ‘shuffle’ to
‘reduce’. Notice that this change could overload some TaskTrackers
in the event that the ‘reduce’ phase of the reduce tasks uses more
resources than the ‘shuffle’ phase. RAS handles this by having the
Task Scheduler drive the placement transition between control cycles,
and provides overload protection to the TaskTrackers.

4.2.5 Task Scheduler

The Task Scheduler drives transitions between placements while en-
suring that the actual demand of resources for the set of tasks run-
ning in a TaskTracker does not exceed its capacity. The placement
algorithm generates new placements, but these are not immediately
enforced as they may overload the system due to tasks still running
from the previous control cycle. The Task Scheduler component takes
care of transitioning without overloading any TaskTrackers in the sys-
tem by picking jobs to assign to the TaskTracker that do not exceed
its current capacity, sorted by lowest utility first. For instance, a Task-
Tracker that is running 2 map tasks of job A may have a different
assignment for the next cycle, say, 4 map tasks of job B. Instead of
starting the new tasks right away while the previous ones are still
running, new tasks will only start running as previous tasks complete

4.2 resource-aware adaptive scheduler 73

and enough resources are freed. Recall that the scheduler is adaptive
as it continuously monitors the progress of jobs and their average
task length, so that any divergence between the placement matrix pro-
duced by the algorithm and the actual placement of tasks enforced by
the Task Scheduler component is noticed and considered in the fol-
lowing control cycle. The Task Scheduler component is responsible
for enforcing the optimization objective shown in Equation 10.

4.2.6 Job Profiles

The proposed job scheduling technique relies on the use of job pro-
files containing information about the resource consumption for each
job. Profiling is one technique that has been successfully used in the
past for MapReduce clusters. Its suitability in these clusters stems
from the fact that in most production environments jobs are ran peri-
odically on data corresponding to different time windows [79]. Hence,
profiles remains fairly stable across runs [82].

Our profiling technique works offline. To build a job profile we run
a job in a sandbox environment with the same characteristics of the
production environment. We run the job in isolation multiple times
in the sandbox using different configurations for the number of map
task slots per node (1 map, 2 maps, ..., up to N). The number of reduce
tasks is set to the desired level by the user submitting the job. In the
case of multiple reduce tasks, they execute on different nodes.

From the multiple configurations, we select that one in which the
job completed fastest, and use that execution to build our profile. We
monitor CPU, I/O and memory usage in each node for this configu-
ration using vmstat. The reasoning behind this choice is that we want
to monitor the execution of a configuration in which competition for
resources occurs and some system bottlenecks are hit, but in which
severe performance degradation is not yet observed.

Note that obtaining CPU and memory is straight forward for the
various phases. For example, if the bottleneck is CPU (that is to say,
the node experiences 100% CPU utilization) and there are 4 map tasks
running, each map task consumes 25% CPU. Profiling I/O in the shuf-
fle phase is less trivial. Each reduce task has a set of threads respon-
sible for pulling map outputs (intermediate data generated by the
map tasks): the number of these threads is a configurable parameter
in Hadoop (hereafter parallelCopies). These threads are informed
about the availability and location of a new map output whenever
a map task completes. Consequently, independent of the number of
map outputs available, the reduce tasks will never fetch more than
parallelCopies map outputs concurrently. During profiling we en-
sure that there are at least parallelCopies map outputs available for
retrieval and we measure the I/O utilization in the reduce task while

74 scheduling with space and time constraints

shuffling. It can therefore be seen that our disk I/O measurement is
effectively an upper bound on the I/O utilization of the shuffle phase.

In RAS we consider jobs that run periodically on data with uniform
characteristics but different sizes. Since the map phase processes a
single input split of fixed size and the shuffle phase retrieves par-

allelCopies map outputs concurrently (independently of the input
data size) their resource profile remain similar. Following these obser-
vations, the completion time of the map tasks remains the same while
the completion time of the shuffle phase may vary depending on the
progress rate of the map phase. The case of the reduce phase is more
complicated. The reducer phase processes all the intermediate data
at once and this one tends to increase (for most jobs we know of) as
the input data size increases. In most of the jobs that we consider we
observe that the completion time of the reduce phase scales linearly.
However, this is not always the case. Indeed, if the job has no reduce
function and simply relies on the shuffle phase to sort, we observe
that the completion time scales super-linearly (n × log(n)). Having
said that, our approach can be improved, for example by using his-
torical information.

Profile accuracy plays a role in the performance of RAS. Inaccu-
rate profiles lead to resource under- or overcommitment. This depen-
dency exists in a slot-based system too, as it also requires some form
of profiling to determine the optimal number of slots. The optimal
slot number measures a job-specific capacity of a physical node de-
termined by a bottleneck resource for the job, and it can be easily
converted into an approximate resource profile for the job (by divid-
ing bottleneck resource capacity by the slot number). Provided with
these profiles, RAS allows jobs with different optimal slot numbers
to be co-scheduled, which is a clear improvement over classical slot-
based systems. The profiling technique used in this chapter allows
multi-resource profiles to be built, which helps improve utilization
when scheduling jobs with different resource bottlenecks. Since the
sandbox-based method of profiling assumes that resource utilization
remains stable among different runs of the same job on different data,
it may fail to identify a correct profile for jobs that do not meet this
criterion. For those jobs, an online profiler or a hybrid solutions with
reinforcement learning may be more appropriate since RAS is able to
work with profiles that change dynamically and allows different pro-
filing technologies to be used for different jobs. While not addressing
in this chapter, such techniques have been studied in [38, 54, 76].

4.3 evaluation

In this section we include results from two experiments that explore
the two objectives of RAS: improving resource utilization in the clus-
ter (Experiment 1) and meeting jobs’ completion time goals (Exper-

4.3 evaluation 75

iment 2). In Experiment 1, we consider resource utilization only,
and compare RAS with a state-of-the-art non-resource-aware Hadoop
scheduler. In order to gain insight on how RAS improves resource
utilization, we set a relaxed completion time goal with each job. This
allow us to isolate both objectives and reduce the effect of completion
time goals in the algorithm. In Experiment 2, we consider comple-
tion time goals on the same workload. Thus effectively evaluating all
capabilities of RAS.

4.3.1 Experimental Environment and Workload

We perform all our experiments on a Hadoop cluster consisting of
22 2-way 64-bit 2.8GHz Intel Xeon machines. Each machine has 2GB
of RAM and runs a 2.6.17 Linux kernel. All machines in the cluster
are connected via a Gigabit Ethernet network. The version of Hadoop
used is 0.23. The cluster is configured such that one machine runs the
JobTracker, another machine hosts the NameNode, and the remaining
20 machines each host a DataNode and a TaskTracker.

To evaluate RAS we consider a representative set of applications
included in the Gridmix benchmark, which is part of the Hadoop dis-
tribution. These applications are Sort, Combine and Select. For each
application we submit 3 different instances with different input sizes,
for a total of 9 jobs in each experiment. A summary of the workload
can be seen in Table 4.1, including the label used for each instance
in the experiments, the size of its associated input data set, the sub-
mission time, and the time taken by each job to complete if the entire
experimental cluster is dedicated to it. Additionally, we include the
actual completion times observed for each instance in Experiment 1

and 2. Finally, for Experiment 2, we include also the completion time
goal associated to each instance.

The resource consumption profiles provided to the scheduler are
shown in Table 4.2. They were obtained following the description
provided in Section 4.2.6. The values are the percentage of each Task-
Tracker’s capacity that is used by a single execution of the sub-phase
in question.

4.3.2 Experiment 1: Execution with relaxed completion time goals

The goal of this experiment is to evaluate how RAS improves resource
utilization compared to the Fair Scheduler when completion time
goals are so relaxed that the main optimization objective of the al-
gorithm is to maximize resource utilization (see Equation 17). To this
end we associate with each job instance an highly relaxed completion
time goal. We run the same workload using both the Fair Scheduler
and RAS and compare different aspects of the results.

76 scheduling with space and time constraints

sort combine select

Instance label J1 J8 J9 J2 J6 J7 J3 J4 J5

Input size (GB) 90 19 6 5 13 50 10 25 5

Submission time (s) 0 2,500 3,750 100 600 1,100 200 350 500

Length in isolation (s) 2,500 350 250 500 750 2,500 400 280 50

experiment 1

Completion time (s) 3,113 3,670 4,100 648 3,406 4,536 1,252 608 623

experiment 2

Completion time (s) 3,018 3,365 4,141 896 2,589 4,614 802 550 560

Completion time goal (s) 3,000 3,400 4,250 850 2,600 6,000 1,250 1,100 950

Table 4.1: Workload characteristics: 3 Applications, 3 Job instances each (Big,
Medium, and Small)

sort combine select

Map/Shuffle/Reduce Map/Shuffle/Reduce Map/Shuffle/Reduce

CPU 30%/-/20% 25%/-/10% 15%/-/10%

I/O 45%/0.15%/50% 10%/0.015%/10% 20%/0.015%/10%

Memory 25%/-/60% 10%/-/25% 10%/-/25%

Table 4.2: Job profiles (shuffle: consumed I/O per map placed, upper bound
set by parallelCopies, the number of threads that pull map out-
put data)

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8

E
la

p
se

d
 j

o
b

 t
im

e
(s

)

Number of map tasks per tasktracker

Fair
Adaptive

Figure 4.3: Experiment 1: Workload makespan with different Fair Scheduler
configurations (Y-axis starts at 4000 seconds)

4.3 evaluation 77

Dynamic task concurrency level per TaskTracker. Our first objec-
tive in this experiment is to study how the dynamic management
of the level of task concurrency per-TaskTracker improves workload
performance. To this end, we run the same workload using the Fair
Scheduler with different concurrency level configurations: specifically,
we vary the maximum number of map slots per TaskTracker from 1 to
8, and compare the results with the execution using RAS. Results are
shown in Figure 4.3. As can be seen, the best static configuration uses
4 concurrent map tasks per TaskTracker (80 concurrent tasks across
20 TaskTrackers). Configurations that result in low and high concur-
rency produce worse makespan due to resources being underutilized
and overcommitted, respectively.

We observe that RAS outperforms the Fair Scheduler for all config-
urations, showing an improvement that varies between 5% and 100%.
Our traces show that the average task concurrency level in RAS was
3.4 tasks per TaskTracker. Recall that the best static configuration of
per-TaskTracker task concurrency depends on the workload charac-
teristics. As workloads change over time in real systems, even higher
differences between static and dynamic management would be ob-
served. RAS overcomes this problem by dynamically adapting task
concurrency level based on to the resource usage in the system.

Resource allocation and Resource utilization. Now we look in
more detail at the execution of the workload using RAS as com-
pared to the Fair Scheduler running a static concurrency level of 4.
Figures 4.4a and 4.4b show the task assignment resulting from both
schedulers. For the sake of clarity, we group jobs corresponding to
the same application (Sort, Combine or Select) into different rows.
Each row contains solid and dotted lines, representing the number of
running map and reduce tasks respectively. The submission time for
each job is shown by a (labeled) vertical line, following the conven-
tion presented in Table 4.1. Combine and Select are configured to run
one single reduce task per job since there is no benefit from running
them with more reduce tasks on our testing environment; the dotted
line representing the reduce is at the bottom of the chart. As it can be
observed, RAS does not allocate more concurrent map slots than the
Fair Scheduler during most of the execution. Moreover, the sum of re-
duce and map tasks remains lower than the sum of reduce and map
tasks allocated by the Fair Scheduler except for a small time interval
(∼ 100s) immediately after the submission of Job 6 (J6). RAS is able
to improve the makespan while maintaining a lower level of concur-
rency because it does better at utilizing resources which ultimately
results in better job performance. To get a better insight on how RAS
utilizes resources as compared to the Fair Scheduler we plot the CPU
utilization for both schedulers in Figures 4.5a and 4.5b. These figures
show the percentage of CPU time that TaskTrackers spent running
tasks (either in system or user space), and the time that the CPU was

78 scheduling with space and time constraints

 20

 40

 60

 80

 100

R
u
n
n
in

g
 t

as
k
s

(S
o
rt

) J1 J8 J9

 20

 40

 60

 80

 100

R
u
n
n
in

g
 t

as
k
s

(C
o
m

b
in

e) J2 J6 J7

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u
n
n
in

g
 t

as
k
s

(S
el

ec
t)

Elapsed time (s)

J3 J4 J5

(a) Fair Scheduler

 20

 40

 60

 80

 100

R
u
n
n
in

g
 t

as
k
s

(S
o
rt

) J1 J8 J9

 20

 40

 60

 80

 100

R
u
n
n
in

g
 t

as
k
s

(C
o
m

b
in

e) J2 J6 J7

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u
n
n
in

g
 t

as
k
s

(S
el

ec
t)

Elapsed time (s)

J3 J4 J5

(b) RAS

Figure 4.4: Experiment 1: Workload execution: (a) corresponds to Fair Sched-
uler using 4 slots per TaskTracker, and (b) corresponds to RAS
using a variable number of slots per TaskTracker

4.3 evaluation 79

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 U

sa
g

e
(%

)

Elapsed time (s)

Running Wait

(a) Fair Scheduler

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
P

U
 U

sa
g

e
(%

)

Elapsed time (s)

Running Wait

(b) RAS

Figure 4.5: Experiment 1: CPU utilization: (a) corresponds to Fair Scheduler
using 4 slots per TaskTracker, and (b) corresponds to RAS using
a variable number of slots per TaskTracker

waiting. For each metric we show the mean value for the cluster, and
the standard deviation across TaskTrackers. Wait time represents the
time that the CPU remains idle because all threads in the system are
either idle or waiting for I/O operations to complete. Therefore, it is
a measure of resource wastage, as the CPU remains inactive. While
wait time is impossible to avoid entirely, it can be reduced by im-
proving the overlapping of tasks that stress different resources in the
TaskTracker. It is noticeable that in the case of the Fair Scheduler the
CPU spends more time waiting for I/O operations to complete than
RAS. Further, modifying the number of concurrent slots used by the
Fair Scheduler does not improve this result. The reason behind this
observation is key to our work: other schedulers do not consider the
resource consumption of applications when making task assignment
decisions, and therefore are not able to achieve good overlap between
I/O and CPU activity.

Utility guidance. Finally, to illustrate the role of the utility function
in RAS, Figure 4.6 shows the utility value associated with each job
during the execution of the workload. Since the jobs have extremely
lax completion time goals, they are assigned a utility value above 0

immediately after one task for each job is placed. As can be seen, the
allocation algorithm balances utility values across jobs for most of
the execution time. In some cases, though, a job may get higher util-

80 scheduling with space and time constraints

-1

 0

 1

U
ti

li
ty

(S
o
rt

)

-1

 0

 1

U
ti

li
ty

(C
o
m

b
in

e)

-1

 0

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
ti

li
ty

(S
el

ec
t)

Elapsed time (s)

Figure 4.6: Experiment 1: Job Utility

ity than the others: this is explained by the fact that as jobs get closer
to completion, the same resource allocation results in higher utility.
This is seen in our experiments: for all jobs, the utility increases until
all their remaining tasks are placed. In this experiment we can also
see that Job 7 has a very low utility right after it is launched (1,100s)
in contrast with the relatively high utility of Job 1, even though most
resources are actually assigned to Job 7. This is because while Job 1

has very few remaining tasks, no tasks from Job 7 have been com-
pleted and thus its resource demand estimation is not yet accurate.
This state persists until approximately time 1,650s).

4.3.3 Experiment 2: Execution with tight completion time goals

In this experiment we evaluate the behavior of RAS when the appli-
cations have stringent completion time goals. To do this we associate
a tight completion time goal with the workload described for our
previous experiment.

Figure 4.7a shows the number of concurrent tasks allocated to each
job during the experiment. We use vertical lines and labels to indi-
cate submission times (labeled J1 to J9) and completion time goals
(labeled D1 to D9) for each of the nine jobs in the workload. To il-
lustrate how RAS manages the tradeoff between meeting completion
time goals and maximizing resource utilization, we look at the partic-
ular case of Job 1 (Sort), Job 7 (Combine) and Job 8 (Sort), submitted
at times J1 (0s), J7 (1,100s) and J8 (2,500s) respectively. In Experiment
1 their actual completion times were 3,113s, 4,536s and 3,670s, while
in Experiment 2 they completed at times 3,018s, 4,614s and 3,365s re-
spectively. Because their completion time goals in Experiment 2 are
3,000s, 6,000s and 3,400s (a factor of 1.2X, 1.9X and 2.5X compared
to their length observed in isolation), the algorithm allocates more
tasks to Job 1 and Job 8 at the expense of Job 7, which sees its actual
completion time delayed with respect to Experiment 1 but still makes
its more relaxed goal. It is important to remark again that completion

4.3 evaluation 81

 20

 40

 60

 80

 100
R

u
n

n
in

g
 t

as
k

s
(S

o
rt

)
J1 J8 J9

D1

D8 D9

 20

 40

 60

 80

 100

R
u

n
n

in
g

 t
as

k
s

(C
o

m
b

in
e)

J2 J6 J7

D2

D6

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
u

n
n

in
g

 t
as

k
s

(S
el

ec
t)

Elapsed time (s)

J3
J4

J5

D3
D4

D5

(a)

-2

-1

 0

 1

U
ti

li
ty

(S
o

rt
)

-2

-1

 0

 1

U
ti

li
ty

(C
o

m
b

in
e)

-2

-1

 0

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U
ti

li
ty

(S
el

ec
t)

Elapsed time (s)

(b)

Figure 4.7: Experiment 2: Workload execution and Job utility

82 scheduling with space and time constraints

time goals in our scheduler are soft deadlines used to guide the work-
load management as opposed to strict deadlines in which missing a
deadline is associated with strong penalties. Finally, notice that Job 1

and Job 8 would have clearly missed their goals in Experiment 1: here,
however, RAS adaptively moves away from the optimal placement in
terms of resource allocation to adjust the actual completion times of
jobs. Recall that RAS is still able to leverage a resource model while
aiming at meeting deadlines, and still outperforms the best configu-
ration of Fair Scheduler by 167 seconds, 4,781s compared to 4,614s.

To illustrate how utility is driving placement decisions, we include
Figure 4.7b, which shows the utility of the jobs during the work-
load execution and gives a better intuition of how the utility func-
tion drives the scheduling decisions. When a job is not expected to
reach its completion time goal with the current placement, its utility
value goes negative. For instance, starting from time 2,500s when J8 is
launched and the job still has very few running tasks, the algorithm
places new tasks to J8 at the expense of J7. However, as soon as J8 is
running the right amount of tasks to reach the deadline, around time
3,000s, both jobs are balanced again and the algorithm assigns more
tasks to J7.

4.4 related work

Much work have been done in the space of scheduling for Map-
Reduce. Since the number of slots in a Hadoop cluster is fixed through
out the lifetime of the cluster, most of the proposed solutions can be
reduced to a variant of the task-assignment or slot-assignment problem.
The Capacity Scheduler [88] is a pluggable scheduler developed by
Yahoo! which partition resources into pools and provides priorities
for each pool. Hadoop’s Fair Scheduler [89] allocates equal shares
to each tenant in the cluster. Quincy scheduler [42] proposed for the
Dryad environment [40] also shares similar fairness goals. All these
schedulers are built on top of the slot model and do not support user-
level goals.

The performance of MapReduce jobs has attracted much interest
in the Hadoop community. Stragglers, tasks that take an unusually
long time to complete, have been shown to be the most common
reason why the total time to execute a job increases [24]. Speculative
scheduling has been widely adopted to counteract the impact of strag-
glers [24, 89]. Under this scheduling strategy, when the scheduler de-
tects that a task is taking longer than expected it spawns multiple in-
stances of the task and takes the results of the first completed instance,
killing the others [89]. In Mantri [5] the effect of stragglers is mitigated
via the ‘kill and restart’ of tasks which have been identified as po-
tential stragglers. The main disadvantage of these techniques is that
killing and duplicating tasks results in wasted resources [89, 5]. In

4.5 summary 83

RAS we take a more proactive approach, in that we prevent stragglers
resulting from resource contention. Furthermore, stragglers caused
by skewed data cannot be avoided at run-time [5] by any existing tech-
nique. In RAS the slow-down effect that these stragglers have on the
end-to-end completion time of their corresponding jobs is mitigated
by allocating more resources to the job so that it can still complete in
a timely manner.

Recently, there has been increasing interest in user-centric data ana-
lytics. One of the seminal works in this space is [59]. In this work, the
authors propose a scheduling scheme that enables soft-deadline sup-
port for MapReduce jobs. It differs from RAS in that it does not take
into consideration the resources in the system. Flex [86] is a scheduler
proposed as an add-on to the Fair Scheduler to provide Service-Level-
Agreement (SLA) guarantees. More recently, ARIA [82] introduces a
novel resource management framework that consists of a job profiler,
a model for MapReduce jobs and a SLO-scheduler based on the Ear-
liest Deadline First scheduling strategy. Flex and Aria are both slot-
based and therefore suffers from the same limitations we mentioned
earlier. One of the first works in considering resource awareness in
MapReduce clusters is [26]. In this work the scheduler classifies tasks
into good and bad tasks depending on the load they impose in the
worker machines. More recently, the Hadoop community has also rec-
ognized the importance of developing a resource-aware scheduling
for MapReduce. [12] outlines the vision behind the Hadoop sched-
uler of the future. The framework proposed introduces a resource
model consisting of a ‘resource container’ which is—like our ‘job
slot’—fungible across job tasks. We think that our proposed resource
management techniques can be leveraged within this framework to
enable better resource management.

4.5 summary

This chapter presents a resource-aware scheduling technique for Map-
Reduce multi-job workloads that aims at improving resource utiliza-
tion across machines while observing completion time goals. Existing
MapReduce schedulers define a static number of slots to represent
the capacity of a cluster, creating a fixed number of execution slots
per machine. This abstraction works for homogeneous workloads, but
fails to capture the different resource requirements of individual jobs
in multi-user environments. The proposed technique leverages job
profiling information to dynamically adjust the number of slots on
each machine, as well as workload placement across them, to maxi-
mize the resource utilization of the cluster. In addition, this technique
is also guided by user-provided completion time goals for each job.

The work described in this chapter is based on the following main
publication:

84 scheduling with space and time constraints

[63] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra,
Ian Whalley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé.
Resource-Aware Adaptive Scheduling for MapReduce Clusters. In
ACM IFIP USENIX 12th International Middleware Conference, pages 187–
207, Lisbon, Portugal, 2011. Springer. ISBN 978-3-642-25820-6. doi:
10.1007/978-3-642-25821-3_10

5
S C H E D U L I N G W I T H S PA C E A N D T I M E
C O N S T R A I N T S I N S H A R E D E N V I R O N M E N T S

5.1 introduction

This chapter focuses on a scenario that is becoming increasingly im-
portant in data centers. Instead of running on dedicated machines,
MapReduce is executed along with other resource-consuming work-
loads, such as transactional applications. All workloads may poten-
tially share the same data store, some of them consuming data for
analytics while others may be acting as data generators. Twitter, Face-
book, and other companies that need to handle large amounts of
data, accessing and processing it in different ways and for different
purposes, follow this approach of sharing multiple workloads on the
same data center.

These shared environments involve higher workload consolidation,
which helps improve resource utilization, but is also challenging due
to the interaction between workloads of very different nature. One of
the major issues found in this scenario is related to the integration of
the storage. Storage is a key component since it usually deals with
multiple producers and consumers of data, and often serves different
kinds of workloads at the same time: from responding to transac-
tional queries to storing the output of long-running data analytics
jobs, each one of them with slightly different needs.

There are also other issues that arise when multiple workloads are
collocated sharing the same machines. MapReduce schedulers, for in-
stance, assume that the amount of available resources remains the
same over time, but resources are no longer stable in a shared envi-
ronment with transactional workloads, which are known to be bursty
and have a varying demand over time. Hence, this scenario requires

85

86 scheduling in shared environments

deep coordination between management components, and single ap-
plications can not be considered in isolation but in the full context of
mixed workloads in which they are deployed.

This chapter is focused on two related problems found in shared
environments with MapReduce. First, Section 5.2 addresses one of
the issues found in shared environments where multiple workloads
may use the same data store for different purposes. In particular, the
proposal uses a distributed key-value store as a good compromise be-
tween traditional databases and distributed filesystems, and enables
it with the necessary snapshotting mechanisms to be used by both
transactional and analytics workloads. This contribution is presented
first since it establishes and validates the scenario. Later, Section 5.3
introduces a scheduler and a performance model for MapReduce in
shared environments. The proposed scheduler aims to improve re-
source utilization across machines while observing completion time
goals, taking into account the resource demands of non-MapReduce
workloads, and assuming that the amount of resources made avail-
able to the MapReduce applications is dynamic and variable over
time. This is achieved thanks to a new algorithm that provides a more
proactive approach for the scheduler to estimate the need of resources
that should be allocated to each job.

5.2 enabling distributed key-value stores with snapshot

support

Current distributed key-value stores generally provide greater scala-
bility at the expense of weaker consistency and isolation. However,
additional isolation support is becoming increasingly important in
the environments in which these stores are deployed, where different
kinds of applications with different needs are executed, from trans-
actional workloads to data analytics. While fully-fledged ACID sup-
port may not be feasible, it is still possible to take advantage of the
design of these data stores, which often include the notion of multi-
version concurrency control, to enable them with additional features
at a much lower performance cost and maintaining its scalability and
availability. This section explores the effects that additional consis-
tency guarantees and isolation capabilities may have on a state of the
art key-value store: Apache Cassandra. We propose and implement
a new multiversioned isolation level that provides stronger guaran-
tees without compromising Cassandra’s scalability and availability.
As shown in our experiments, our version of Cassandra allows Snap-
shot Isolation-like transactions, preserving the overall performance
and scalability of the system.

5.2 enabling key-value stores with snapshot support 87

5.2.1 Introduction

In recent years, the industry and research community have witnessed
an extraordinary growth in research and development of data-analytic
technologies. In addition to distributed, large-scale data processing
with models like MapReduce, new distributed data stores have been
introduced to deal with huge amounts of structured and semi-struc-
tured data: Google’s BigTable [19], Amazon’s Dynamo [25], and oth-
ers often modeled after them. These key-value data stores were cre-
ated out of need for highly reliable and scalable databases, and they
have been extremely successful in introducing new ways to think
about large-scale models and help solve problems that require deal-
ing with huge amounts of data.

The emergence of these new data stores, along with its widespread
and rapid adoption, is changing the way we think about storage. Only
a few years ago, relational database systems used to be the only back-
end storage solution, but its predominant and almost exclusive po-
sition is now being challenged. While scalable key-value stores are
definitely not a replacement for RDBMs, which still provide a richer
set of features and stronger semantics, they are marking an important
shift in storage solutions. Instead of using a single database system on
a high-end machine, many companies are now adopting a number of
different and complementary technologies, from large-scale data pro-
cessing frameworks to key-value stores to relational databases, often
running on commodity hardware or cloud environments.

This new scenario is challenging since key-value stores are being
adopted for uses that were not initially considered, and data must
sometimes be accessed and processed with a variety of tools as part
of its dataflow. In this environment, distributed key-value stores are
becoming one of the corner-stones as they become the central com-
ponent of the back-end, interacting concurrently with multiple pro-
ducers and consumers of data, and often serving different kinds of
workloads at the same time: from responding to transactional queries
to storing the output of long-running data analytics jobs.

Consistency and isolation become increasingly important as soon
as multiple applications and workloads with different needs interact
with each other. Providing strong semantics and fully-fledged trans-
actions on top of distributed key-value stores often involves a signif-
icant penalty on the performance of the system since it is orthogonal
to its goals. So, while fully-fledged ACID support may not be feasible,
it is still possible to take advantage of the design of these data stores,
which often include the notion of multiversion concurrency control,
to enable them with additional features at a much lower performance
cost and maintaining its scalability and availability.

This is the approach we are following here. Our goal is to provide
stronger isolation on top of a distributed key-value store in order

88 scheduling in shared environments

to allow certain operations that would otherwise not be possible or
require significant effort on the client side, but without compromising
its performance. We implement this improved isolation level in the
form of readable snapshots on top of Apache Cassandra, a state of
the art distributed column-oriented key-value store.

The following sections describe our approach and implementation.
Section 5.2.2 describes isolation and consistency levels in Cassandra.
Section 5.2.3 describes how we have extended the level of isolation
and how we implement it on top of Cassandra. An evaluation of
our implementation is studied in Section 5.2.4. Finally, Section 5.2.5
discusses the related work.

5.2.2 Isolation and Consistency Levels

The ultimate goal of current distributed key-value stores such as Cas-
sandra [45] is similar to other database systems, reading and writ-
ing data operations, but with a stronger focus on adapting to the in-
creased demands of large-scale workloads. While traditional databases
provide strong consistency guarantees of replicated data by control-
ling the concurrent execution of transactions, Cassandra provides tun-
able consistency in order to favour scalability and availability. While
there is no tight control of the execution of concurrent transactions,
Cassandra still provides mechanisms to resolve conflicts and provide
durability even in the presence of node failures.

Traditionally, database systems have provided different isolation
levels that define how operations are visible to other concurrent oper-
ations. Standard ANSI SQL isolation levels have been criticized as too
few [16], but in addition to standard ANSI SQL, other non-standard
levels have been widely adopted by database systems. One such level
is Snapshot Isolation, which guarantees that all reads made within a
transaction see a consistent version of the data (a snapshot).

Cassandra, on the other hand, unlike traditional databases, does
not provide any kind of server-side transaction or isolation support.
For instance, if an application needs to insert related data to multiple
tables, additional logic will be needed on the application (e.g. to man-
ually roll-back the changes if one operation fails). Instead, Cassandra
provides a tunable consistency mechanism that defines the state and
behaviour of the system after executing an operation, and basically
allows specifying how much consistency is required for each query.

Tables 5.1 and 5.2 show Cassandra’s tunable read and write consis-
tency levels, respectively.

As it can be derived from their description, strong consistency can
only be achieved when using Quorum and All consistency levels.
More specifically, strong consistency can be guaranteed as long as
equations 11 and 12 hold true. The former ensures that a read opera-

5.2 enabling key-value stores with snapshot support 89

L E V E L D E S C R I P T I O N

One Get data from the first node to respond.

Quorum Wait until majority of replicas respond.

All Wait for all replicas to respond.

Table 5.1: Cassandra’s read consistency levels.

L E V E L D E S C R I P T I O N

Zero Return immediately, write value asynchronously.

Any Write value or hint to at least one node.

One Write value to log and memtable of at least one node.

Quorum Write to majority of replicas.

All Write to all replicas.

Table 5.2: Cassandra’s write consistency levels.

tion will always reflect the most recent write, while the latter ensures
the consistency of concurrent write operations.

Write replicas + Read replicas > Replication factor (11)

Write replicas + Write replicas > Replication factor (12)

Operations that use weaker consistency levels, such as Zero, Any
and One, are not guaranteed to read the most recent data. However,
this weaker consistency provides certain flexibility for applications
that can benefit from better performance and do not have strong con-
sistency needs.

5.2.2.1 Extending Cassandra’s Isolation

While Cassandra’s consistency is tunable, it does not offer a great deal
of flexibility when compared to traditional databases and its support
for transactions. Cassandra applications could benefit from extended
isolation support, which would be specially helpful in the environ-
ments in which Cassandra is being used, and remove the burden of
additional logic on the application side.

Lock-based approaches, used to implement true serializable trans-
actions, are not desirable due to the distributed and non-blocking na-
ture of Cassandra, since locks would have a huge impact on the per-
formance. But there are other approaches that seem more appropriate,

90 scheduling in shared environments

Memtable SSTables

Data Data Data Data

Index Index Index

Figure 5.1: Data is persisted in Cassandra by flushing a column family’s
memtable into an SSTable.

such as multiversion concurrency. Cassandra, unlike other key-value
or column stores, does not provide true multiversion capabilities and
older versions of the data are not guaranteed to be available in the
system, but its timestamps provide a basic notion of versions that can
be the basis for multiversion-like capabilities.

Our goal is then to extend Cassandra to support an additional iso-
lation level that will make it possible to provide stronger semantics
using a multiversioned approach. In particular, we implement read-
only transactions, guaranteeing that reads within a transaction are re-
peatable and exactly the same. This kind of transactions are specially
relevant in the environments in which Cassandra is being adopted,
where there’s a continuous stream of new data and multiple con-
sumers that sometimes need to operate on a consistent view of the
database. Our proposal is similar to Snapshot Isolation in that it guar-
antees that all reads made in a transaction see the same snapshot of
the data, but it is not exactly the same since we are not concerned
with conflicting write operations. Hence from now on we call this
new isolation level Snapshotted Reads.

5.2.3 Implementing Snapshotted Reads

Implementing Snapshotted Reads requires multiple changes in dif-
ferent parts of Cassandra: first, the data store, to enable creating and
maintaining versioned snapshots of the data, and second, the reading
path, in order to read specific versions of the data.

5.2.3.1 Data Store

Cassandra nodes handles data for each column family using two
structures: memtable and SSTable. A memtable is basically an in-
memory write-back cache of data; once full, a memtable is flushed
to disk as an SSTable. So, while there is a single active memtable per
node and column family, there is usually a larger number of associ-
ated SSTables, as shown in Figure 5.1. Also, note that when memta-
bles are persisted to disk as SSTables, an index and a bloom filter are
also written along with the data, so as to make queries more efficient.

5.2 enabling key-value stores with snapshot support 91

Memtable SSTables

...

Figure 5.2: State of a column family in a Cassandra node before starting a
Snapshotted Read transaction.

Memtable SSTables

S1 S1 S1 S1{}

Figure 5.3: State of a column family in a Cassandra node after starting a
Snapshotted Read transaction and creating snapshot S1.

Once a memtable is flushed, its data is immutable and can’t be
changed by applications, so the only way to update a record in Cas-
sandra is by textitappending data with a newer timestamp.

Our implementation of Snapshotted Reads takes advantage of the
fact that SSTables are immutable to allow keeping multiple versions
of the data and thus providing effective snapshots to different transac-
tions. This mechanism is described in the following figures. Figure 5.2
shows the data for a column family stored in a particular node: there
is data in memory as well as in three SSTables. Once we begin a Snap-
shotted Read transaction, a new snapshot of the data is created by 1)
emptying the memtable, flushing its data into a new SSTable, and 2)
assigning an identifier to all SSTables, as shown in Figure 5.3.

After the snapshot is created, the transaction will be able to read
from it for as long as the transaction lasts, even if other transactions
keep writing data to the column family. It is also possible for multi-
ple transactions to keep their own snapshots of the data, as shown
in the following figures. Figure 5.4 shows the state of column family
when writes occur after a snapshot (S1). Writes continue to operate
as expected, eventually creating new SSTables: in this particular ex-
ample, there is new data in the memtable as well as in two SSTables.
If a transaction were to begin a new Snapshotted Read and create
new snapshot, the procedure would be the same: flush and assign
identifiers to SSTables, as shown in Figure 5.5.

5.2.3.2 Reading and Compacting

Reading from a snapshot during a transaction is a matter of select-
ing data from the appropriate SSTables during the collation process,
ignoring SSTables that are not part of the snapshot.

92 scheduling in shared environments

Memtable SSTables

S1 S1 S1 S1...

Figure 5.4: State of a snapshotted column family in a Cassandra node after
some additional writes.

Memtable SSTables

S1
S2

S1
S2

S1
S2

S1
S2

S2 S2 S2

{}

Figure 5.5: State of a column family with two snapshots (S1, S2).

However, multiple records may still be available even within a snap-
shot, and Cassandra provides mechanisms to address this kind of di-
verging results, such as read repair. Read repair simply pushes the
most recent record to all replicas when multiple records are found
during a read operation. Since there is no way to push new data to
an older snapshot, read repair is disabled for Snapshotted Read trans-
actions.

Compaction, on the other hand, is a background operation that
merges SSTables, combining its columns with the most recent record
and removing records that have been overwritten. Compaction re-
moves duplication, freeing up disk space and optimizing the perfor-
mance of future reads by reducing the number of seeks. The default
compaction strategy is based on the size of SSTables, but does not con-
sider snapshots, so it may delete relevant data for our transactions.

We have implemented a new compaction strategy that takes into
account snapshots. The main idea behind the new strategy is to com-
pact SSTables only within certain boundaries, namely snapshots. Us-
ing this bounded compaction strategy, only SSTables that share ex-
actly the same set of snapshots are considered for compaction. For in-
stance, continuing with the same example in Figure 5.5, compaction
can only be applied to the older four SSTables (identified as S1 and S2)

5.2 enabling key-value stores with snapshot support 93

Memtable SSTables

S1
S2

S2...

Figure 5.6: State of a column family in a Cassandra node with two snapshots
after a bounded compaction.

or the remaining three SSTables (identified as S2). One of the possible
outcomes of a major compaction is shown in Figure 5.6.

5.2.3.3 API Extension

Finally, in order to support snapshots, some changes have been made
to Cassandra’s API, including 3 new operations: create snapshot, delete
snapshot, and get data from a particular snapshot.

Operations to create or delete a snapshot take 2 arguments: first,
the snapshot identifier, and then, optionally, the name of a column
family. If no column family is specified, all column families in the cur-
rent namespace are snapshotted. The operation to retrieve data from
a snapshot resembles and works exactly like Cassandra’s standard
get operation with an additional argument to specify the snapshot
identifier from which the data is to be retrieved.

5.2.4 Evaluation

In this section we include results from three experiments that explore
the performance of our implementation of Snapshotted Reads for Cas-
sandra. Experiment 1 shows the overall performance of the system
under different loads in order to compare the maximum throughput
achievable with each version of Cassandra. In Experiment 2 we com-
pare Cassandra with and without Snapshotted Read support using
a synthetic benchmark in order to see what is the impact of keep-
ing snapshots under different workloads trying to achieve maximum
throughput. Finally, Experiment 3 studies how does our implementa-
tion perform and scale in the presence of multiple snapshots.

5.2.4.1 Environment

The following experiments have been executed on a Cassandra clus-
ter consisting of 20 Quad-Core 2.13 GHz Intel Xeon machines with a
single SATA disk and 12 GB of memory, connected with a gigabit eth-
ernet network. The version of Cassandra used for all the experiments
is 1.1.6.

94 scheduling in shared environments

In these experiments we run the synthetic workloads provided by
the Yahoo! Cloud Serving Benchmark (YCSB) tool [23]. The work-
loads are defined as follows:

a : update heavy. Read/update ratio: 50%/50%. Application exam-
ple: session store recording recent actions.

b : read mostly. Read/update ratio: 95%/5%. Application exam-
ple: photo tagging; add a tag is an update, but most operations
are to read tags.

c : read, modify, write . Read/read-modify-write ratio: 50%/50%.
Application example: user database, where user records are read
and modified by the user or to record user activity.

d : read only. Read/update ratio: 100%/0%. Application example:
user profile cache, where profiles are constructed elsewhere (e.g.
Hadoop).

e : read latest. Read/insert ratio: 95%/5%. Application example:
user status updates, people want to read the latest.

The execution of each workload begins with the same initial dataset,
which consists of 380,000,000 records (approximately 400 GB in to-
tal) stored across the 20 nodes of the cluster with a single replica,
meaning each node stores approximately 20 GB of data, and thus ex-
ceeds the capacity of the memory. During each execution, a total of
15,000,000 read and/or write operations, depending on the workload,
are executed from 5 clients on different nodes. Cassandra nodes are
configured to run the default configuration for this system, consisting
of 16 threads for read operations and 32 threads for writes.

The following tables and figures show the results of running the
workloads with two different versions of Cassandra: the original ver-
sion and our version of Cassandra with Snapshotted Read support.
Note that for our version of Cassandra we also compare regular reads,
which are equivalent to reading in the original Cassandra, regular
reads in the presence of a snapshot, and finally snapshotted reads,
which get data from one particular snapshot.

5.2.4.2 Experiment 1: Throughput

In this experiment we execute two workloads with different config-
urations in order to explore how does Cassandra perform reads un-
der different loads (which are specified to the YCSB client as target
throughputs). We first study the workload D, which only performs
read operations, since our changes to Cassandra are focused on the
read path. We then execute workload A in order to validate the results
under update-intensive workloads.

5.2 enabling key-value stores with snapshot support 95

Tables and figures in this section show the four different kinds of
ways to read data from Cassandra that we compare in this exper-
iment: the first one reading from the Original Cassandra, and the
remaining three reading from Cassandra with Snapshotted Read sup-
port. In particular, for Cassandra with Snapshotted Read Support we
evaluate performing regular reads (S/R), performing regular reads
in the presence of a snapshot (S/RwS), and performing Snapshotted
Reads (S/SR). The measured results are the average and correspond-
ing standard deviation after running 5 executions of each configura-
tion.

Table 5.3 and Figure 5.7 show the results of running workload D.
As it can be observed, latency is similar under all configurations for
each target throughput, and the same pattern can be observed in all
executions: on the one hand the performance of regular reads is sim-
ilar, independently of the version of Cassandra and the presence of
the snapshot, and on the other hand reading from the snapshot is
slightly slower with a slowdown around 10%.

Operations/s Original S/R S/RwS S/SR

1000 6.09 6.15 6.18 6.54

2000 7.44 7.46 7.64 7.96

3000 10.15 10.44 10.51 11.42

4000 13.18 13.33 13.45 14.06

5000 18.47 18.46 18.60 19.39

Table 5.3: Average read latency (ms) of Workload D using Original Cassan-
dra and Cassandra with Snapshotted Read support (S/R, S/RwS,
SR)

Figure 5.7 also shows the standard deviation of the executions, and
the real throughput achieved with each target (shown as a black line).
As it can be seen in this workload, the observed throughput grows
linearly with the target throughput until its optimal level, which is
approximately 4400 operations per second when running the Original
Cassandra. After reaching the maximum throughput, latency simply
degrades without any benefit in terms of throughput.

Similarly, Table 5.4 and Figure 5.8 show the results of running work-
load A (50% read, 50% update) under different loads. The main dif-
ference in this workload compared to workload D (100% read) is the
performance of reading from the snapshot, which is slightly faster. If
more than one record is found when reading a key, Cassandra will
merge the multiple records and select the right one. However, in this
particular experiment, the snapshot is created under perfect condi-
tions and SSTables are fully compacted. So, while regular reads may
degrade slightly over time as new SSTables are created by updates

96 scheduling in shared environments

 0

 5

 10

 15

 20

 25

 1000 2000 3000 4000 5000
 1000

 2000

 3000

 4000

 5000

R
ea

d
La

te
nc

y
(m

s)

R
ea

l T
hr

ou
gh

pu
t (

op
s/

s)

Target Throughput (ops/s)

Original
S/R

S/RwS
S/SR

Throughput

Figure 5.7: Average read latency and observed throughput for varying tar-
gets of operations per second on Workload D

and not yet compacted, the latency of snapshotted reads remains
mostly the same since snapshots are not updated.

Operations/s Original S/R S/RwS S/SR

4000 8.25 8.47 8.44 7.71

5000 9.25 9.25 9.22 8.68

6000 11.32 11.69 11.57 10.38

7000 14.19 14.42 14.30 13.76

8000 15.36 15.77 15.45 14.78

9000 18.59 18.73 18.97 18.17

Table 5.4: Average read latency (ms) of Workload A using Original Cassan-
dra and Cassandra with Snapshotted Read support (S/R, S/RwS,
SR)

Therefore, the differences in the performance when reading from
a snapshot depending on the kind of workload can be explained by
how Cassandra handles read and write operations, and the strategy
used to compact SSTables. As described in Section 2.5.1, Cassandra
first writes data to a memtable, and once it is full it is flushed to disk
as a new SSTable, which eventually will be compacted with other
SSTables. Compaction is not only important to reclaim unused space,
but also to limit the number of SSTables that must be checked when
performing a read operation and thus its performance. Our version

5.2 enabling key-value stores with snapshot support 97

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5000 6000 7000 8000 9000
 5000

 6000

 7000

 8000

 9000
R

ea
d

La
te

nc
y

(m
s)

R
ea

l T
hr

ou
gh

pu
t (

op
s/

s)

Target Throughput (ops/s)

Original
S/R

S/RwS
S/SR

Throughput

Figure 5.8: Average read latency and observed throughput for varying tar-
gets of operations per second on Workload A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8

T
ho

us
an

ds
 o

f R
eq

ue
st

s

Number of SSTables Read

Original
Snapshot

Figure 5.9: Distribution of number of SSTables read for each read operation
on workload A when performing regular and snapshotted reads

98 scheduling in shared environments

of Cassandra with Snapshotted Read support uses a custom com-
paction strategy, as described in Section 5.2.3.2. While our bounded
compaction strategy is necessary to keep data from snapshots, it also
makes compaction less likely since it will not allow compaction be-
tween snapshot boundaries.

The consequences of this behaviour for Cassandra with Snapshot-
ted Read support are twofold: first, as observed, reading from a snap-
shot may be faster on workloads in which data is mostly updated
(and snapshots eventually consolidated), and second, it may make
regular reads slower when snapshots are present, due to the increased
amount of SSTables caused by our compaction strategy.

Figure 5.9 shows the distribution of how many SSTables must be
checked during read queries in workload A. As it can be observed,
there is a significant difference between reading from a snapshot
and performing a regular read. While snapshotted reads always get
the data from a single SSTable, regular reads require checking two
SSTables or more at least half of the time. Again, it should be noted
that there is nothing that makes snapshot intrinsically less prone to
spreading reads to multiple SSTables, it is simply their longer-term
nature that helps consolidate and compact snapshots. Regular reads,
on the other hand, need to deal with the latest updates, so they are
more likely to be spread across multiple SSTables.

In order to compare how does the number of SSTables impact our
version of Cassandra, we also executed the update-intensive work-
load A, and then increased the frequency at which the number of
SSTables are generated, thus increasing the number of SSTables. As it
can be observed in Figure 5.10, while performing regular reads with
Original Cassandra becomes slower when we force a larger number of
SSTables, reading from a snapshot remains mostly unchanged since
it simply reads from the same subset of SSTables all the time.

5.2.4.3 Experiment 2: Read Latency

In this experiment we compare the latency of reading operations un-
der different workloads in order to find out what’s the impact of
supporting snapshotted reads as well as what’s the performance of
reading from a snapshot compared to a regular read under a wider
variety of scenarios.

This experiment compares two different kinds of ways to read: the
first one reading from the Original Cassandra, and the second one
reading from a snapshot on our version of Cassandra with Snapshot-
ted Read support. We omit here the results of regular reads on our
version of Cassandra since they are similar to Original Cassandra. All
workloads are executed 5 times, and the YCSB client is configured to
run with the maximum number of operations per second.

These workloads show different behaviours. One the one hand, in
read-modify workloads, including A and B, data is updated but the

5.2 enabling key-value stores with snapshot support 99

 18

 18.2

 18.4

 18.6

 18.8

 19

 19.2

 19.4

 19.6

 19.8

 20

 20.2

Default 2x 4x 8x

R
ea

d
La

te
nc

y
(m

s)

SSTable Creation Frequency

Original
Snapshot

Figure 5.10: Average read latency on Workload A, performing regular and
snapshotted reads, and varying the frequency at which SSTables
are created relative to to the default configuration

size of the data set (number of keys) remains the same. On the other
hand, in write-once workloads, which include D and E (read-only and
read-insert respectively), each record is only written once and it’s
not modified afterwards. Finally, workload C can be thought of as a
special case since half of the operations are composed and perform a
read followed by a write operation.

As shown in Table 5.5 and Figure 5.11, the latency of reading from
a single snapshot is similar to performing regular reads. Generally
speaking, reading from the original Cassandra is slightly faster, and
the slower reads are from our version of Cassandra performing snap-
shotted reads on read-intensive workloads.

Table 5.5: Average read latency (ms) using Original Cassandra and Cassan-
dra with Snapshotted Read support (Regular, Snapshot)

Workload Original Snapshot

A 18.59 18.17

B 18.66 18.75

C 19.08 20.04

D 18.47 19.39

E 12.07 12.73

100 scheduling in shared environments

 0

 5

 10

 15

 20

 25

A B C D E

R
ea

d
La

te
nc

y
(m

s)

Workload

Original
Snapshot

Figure 5.11: Average read latency for each workload, comparing regular
reads to reading from a snapshot

As it can be observed, read-modify workloads (A, B) are the work-
loads that remain closer to each other, independently of the kind of
read we are performing. Workload A remains faster when reading
from a snapshot than when reading regularly, while snapshotted read
under workload B is slightly slower since the amount of updates is
relatively small and thus regular reads almost always involve a single
SSTable. On the other hand, both write-once workloads (D, E) display
a much more noticeable difference between the two kinds of reads
since data is only written once and so each operation reads from ex-
actly one SSTable.

5.2.4.4 Experiment 3: Increasing the Number of Snapshots

While the previous experiments discuss the performance of different
kinds of reads with a single fully-compacted snapshot, in this exper-
iment we evaluate the evolution of the performance under a more
realistic scenario in which multiple snapshots are created and read
during its execution.

In order to test multiple snapshots and compare the results of previ-
ous experiments, we execute workload A ten times consecutively one
after another. In particular, we execute 3 different versions in this ex-
periment: first the original Cassandra performing regular reads, and
then our version of Cassandra, either creating a single snapshot at
the beginning (S/1), or creating a new snapshot for each iteration
(S/N). Since workload A involves at least 50% of update operations,

5.2 enabling key-value stores with snapshot support 101

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

R
ea

d
La

te
nc

y
(m

s)

Number of Iterations

Original
S/1
S/N

Figure 5.12: Evolution of average read latency for 10 consecutive executions
of Workload A

we ensure an increasing number of SSTables as new snapshots are
created.

As shown in Figure 5.12, after the first few executions, the perfor-
mance of read operations degrades slightly over time as new consec-
utive executions of workload A are completed, independently of the
version of Cassandra we are running. Regular reads with Original
Cassandra and snapshotted reads with our version of Cassandra and
a single snapshot both become more stable after a few iterations and
do not change too much afterwards. However, as it could be expected,
departing from the initial scenario with fully compacted SSTables and
keeping multiple snapshots becomes noticeably slower over time as
shown in the Figure. When creating a new snapshot for each itera-
tion (S/N), read latency goes from 18.17 ms during the first iteration
to 22.87 after all iterations with 10 snapshots.

The varying performance can also be explained in terms of how
the data is read and stored as SSTables. For instance, while with the
original version of Cassandra there are 193 SSTables in the cluster
after all executions, with our version of Cassandra creating a new
snapshot for each iteration (S/N) there are as many as 532 SSTables.
Figure 5.13 also shows the evolution of the distribution of SSTables
read for each operation. As expected, at the beginning when there is
only one snapshot and the data is still well compacted, all operations
only read from a single SSTable. However, as soon as we introduce
more snapshots (3 and 5 as shown in the Figure), the number of seeks
to SSTables for each read operation increases as well, thus making
read operations slower.

102 scheduling in shared environments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9 10

T
ho

us
an

ds
 o

f R
eq

ue
st

s

Number of SSTables Read - 1 snapshot

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9 10

T
ho

us
an

ds
 o

f R
eq

ue
st

s

Number of SSTables Read - 3 snapshots

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1 2 3 4 5 6 7 8 9 10

T
ho

us
an

ds
 o

f R
eq

ue
st

s

Number of SSTables Read - 5 snapshots

Figure 5.13: Distribution of number of SSTables read for each read operation
on workload A with multiple snapshots

5.2.5 Related Work

There have been many efforts to implement features usually avail-
able in relational databases on top of distributed data stores [3, 10,
36], and, as other have pointed out [55, 28], this further proves that
some of their functionality is converging. Isolation and transactional
support for distributed data stores is also a widely studied topic,
and there has been some related work done, including support for
lock-free transactions [44] and snapshot isolation [68] for distributed
databases.

There has also been work more focused on stronger semantics
for distributed key-value data stores. Google’s Percolator [56] imple-
ments snapshot isolation semantics by extending Bigtable with multi-
version timestamp ordering using a two-phase commit, while Span-
ner [28] and Megastore [13] also provide additional transactional sup-
port for Bigtable. In [92] and [93] the authors also implement snap-
shot isolation for HBase, allowing multi-row distributed transactions
for this column-oriented database. While the former approach uses
additional meta-data on top of standard HBase, the latter introduces
a more advanced client to support snapshot isolation transactions.

There has not been much work done in the space of isolation for
Cassandra in particular since improving it is orthogonal to its design,
and other than the configurable consistency levels, there is basically
no support for transactions. Cassandra currently only provides sup-
port to create backup snapshots, which are only meant to be used as
a way to backing up and restoring data on disk. So, unlike our pro-
posal, with backup snapshots it is only possible to read from one of
these snapshots at at time and reading from a different snapshot in-
volves reloading the database.

5.3 adaptive mapreduce scheduling in shared environ-
ments

In this section we present a MapReduce task scheduler for shared
environments in which MapReduce is executed along with other re-
source-consuming workloads, such as transactional applications. All
workloads may potentially share the same data store, some of them

5.3 adaptive scheduling in shared environments 103

consuming data for analytics purposes while others acting as data
generators. This kind of scenario is becoming increasingly important
in data centers where improved resource utilization can be achieved
through workload consolidation, and is specially challenging due to
the interaction between workloads of different nature that compete
for limited resources. The proposed scheduler aims to improve re-
source utilization across machines while observing completion time
goals. Unlike other MapReduce schedulers, our approach also takes
into account the resource demands for non-MapReduce workloads,
and assumes that the amount of resources made available to the Map-
Reduce applications is variable over time. As shown in our experi-
ments, our proposal improves the management of MapReduce jobs in
the presence of variable resource availability, increasing the accuracy
of the estimations made by the scheduler, thus improving completion
time goals without an impact on the fairness of the scheduler.

5.3.1 Introduction

In recent years, the industry and research community have witnessed
an extraordinary growth in research and development of data-related
technologies. In addition to distributed, large-scale data processing
workloads such as MapReduce [24], other distributed systems have
been introduced to deal with the management of huge amounts of
data [19] [25] providing at the same time support for both data-ana-
lytics and transactional workloads.

Instead of running these services in completely dedicated envi-
ronments, which may lead to underutilized resources, it is becom-
ing more common to multiplex different and complementary work-
loads in the same machines. This is turning clusters and data centers
into shared environments in which each one of the machines may be
running different applications simultaneously at any point in time:
from database servers to MapReduce jobs to other kinds of appli-
cations [14]. This constant change is challenging since it introduces
higher variability and thus makes performance of these systems less
predictable.

In particular, in this section we consider an environment in which
data analytics jobs, such as MapReduce applications, are collocated
with transactional workloads. In this scenario, deep coordination be-
tween management components is critical, and single applications
can not be considered in isolation but in the full context of mixed
workloads in which they are deployed. Integrated management of re-
sources in presence of MapReduce and transactional applications is
challenging since the demand for transactional workloads is known
to be bursty and varying over time, while MapReduce schedulers
usually expect that available resources are unaltered over time. Trans-
actional workloads are usually of higher priority than analytics jobs

104 scheduling in shared environments

because they are directly linked to the QoS perceived by the users. As
such, in our approach transactional workloads are considered as crit-
ical and we assume that only resources not needed for transactional
applications can be committed to MapReduce jobs.

In this work we present a novel scheduler, the Reverse-Adaptive
Scheduler, that allows the integrated management of data processing
frameworks such as MapReduce along with other kinds of workloads
that can be used for both, transactional and analytics workloads. The
scheduler expects that each job is associated a completion time goal
that is provided by users at job submission time. These goals are
treated as soft deadlines as opposed to the strict deadlines familiar
in real-time environments: they simply guide workload management.
We also assume that the changes in workload intensity over time for
transactional workloads can be well characterised, as has been previ-
ously stated in the literature [53].

Existing previous work on MapReduce scheduling involved esti-
mating the resources that needed to be allocated to each job in or-
der to meet its completion goals [59, 63, 82]. This naive estimation
worked fine under the assumption that the total amount of resources
remained stable over time. However, in a scenario with consolidated
workloads we are targeting a more dynamic environment in which
resources are shared with other frameworks and availability changes
depending on external and a priori unknown factors. The scheduler
proposed here proactively deals with dynamic resource availability
while still being guided by completion time goals.

While resource management has been widely studied in MapReduce
environments, to our knowledge no previous work has focused on
shared scenarios with transactional workloads.

The remaining sections are organized as follows. We first present
a motivating example to illustrate the problem that the proposed
scheduler aims to address in Section 5.3.2. After that, we provide
an overview of the problem in Section 5.3.3, and then describe our
scheduler in Section 5.3.4. An evaluation of our proposal is studied
in Section 5.3.5. Finally, Section 5.3.6 discusses the related work.

5.3.2 Motivating example

Consider a system running two major distributed frameworks: a Map-
Reduce deployment used to run background jobs, and a distributed
data-store that handles transactional operations and serves data to
a front-end. Both workloads share the same machines, but since the
usage of the front-end changes significantly over time depending on
external the activity of external entities, so does the availability of
resources left for the MapReduce jobs. Notice that the demand of re-
sources over time for the front-end activities is supposed to be well

5.3 adaptive scheduling in shared environments 105

characterized [53], and therefore it can be assumed to be known in
advance in the form of a given function f (t).

In the proposed system, the MapReduce workload consists of 3

identical jobs: J1, J2, and J3. All jobs are submitted at time 0, but have
different deadlines: D1 (6.5h), D2 (15h), and D3 (23.1h). Co-located
with the MapReduce jobs, we have a front-end driven transactional
workload that consumes available resources over time. The amount of
resources committed to the critical transactional workload is defined
by the function f (t).

Figure 5.14 shows the expected outcome of an execution using a
MapReduce scheduler that is not aware of the dynamic availability
of resources and thus assumes resources remain stable over time. Fig-
ure 5.15 shows the behaviour of a scheduler aware of changes in avail-
ability and capable of leveraging the characteristics of other work-
loads to scheduler MapReduce jobs. In both Figures, the solid thick
line represents f (t). Resources allocated to the transactional work-
load are shown as the white region on top of f (t), while resources
allocated to the MapReduce workload are shown below f (t), being
each job represented by a different pattern. X-axis shows time, while
Y-axis represents compute nodes allocated to the workloads.

Figure 5.14 represents the expected behavior of a scheduler that
is not aware of the presence of other workloads. As it is not able to
predict a future reduction in available resources, it is not able to cope
with dynamic availability and misses the deadline of the first two jobs
because it unnecessarily assigns tasks from all jobs (e.g. from time 0

to 5, and from time 7 to 11 approximately). On the other hand, Fig-
ure 5.15 shows the behaviour of the scheduler presented in this sec-
tion, the Reverse-Adaptive Scheduler, which distributes nodes across
jobs considering future availability of resources. From time 0 to D1,
most of the tasktrackers are assigned tasks from J1, and the remain-
ing to J2 since it also needs those resources to reach its goal on time.
From time D1 to D2, most of the resources go to J2 in order to meet a
tight goal. However, as soon as J2 is estimated to reach its deadline, a
few tasks from J3 are assigned as well starting around time 4. Finally,
from time D2 until the end only tasks from J3 remain to be executed.

5.3.3 Problem Statement

We are given a cluster of machines, formed by a set of nodes N =

{1, . . . , N} in which we need to run different workloads. We use n
to index the set of nodes. We are also given a set of MapReduce jobs
J = {1, . . . , J}, that has to be run in N . We use j to index the set of
MapReduce jobs.

Each node n hosts two main processes: a MapReduce slave and
a non-MapReduce process that represents another kind workload.
While MapReduce usually consists of a tasktracker and a datanode

106 scheduling in shared environments

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

D1 D2 D3

J1 J2 J3

Figure 5.14: Distribution of assigned resources over time running the sample
workload using a scheduler without dynamic resource availabil-
ity awareness

in Hadoop terminology, we summarize both of them for simplicity
and refer to them as the tasktracker process hereafter. Similarly, The
non-MapReduce process could represent any kind of workload but
we identify it as data-store in this section.

We refer to the set of MapReduce processes, or tasktrackers, as
T T = {1, . . . , N} and the set of data-store processes committed to
the front-end activity as DS = {1, . . . , N}, and we use tt and ds re-
spectively to index these sets.

With each node n we associate a series of resources,R = {1, . . . , R}.
Each resource of node n has an associated capacity Ωn,1, . . . , Ωn,r,
which is shared between the capacity allocated to the tasktracker and
to the data-store so that Ωn,1 = (Ωtt,1 + Ωds,1), . . . , Ωn,r = (Ωtt,r +

Ωds,r).
The usage of each data-store ds, and thus each of its resources

Ωds,1, . . . , Ωds,r, changes over time depending on the demand imposed
by its users, defined by a function f (t). In turn, since the capacity of
each node remains the same, the available resources for each task-
tracker tt, Ωtt,1, . . . , Ωtt,r, also changes to adapt to the remaining ca-
pacity left by the data-store.

A MapReduce job (j) is composed of a set of tasks, already known
at submission time, that can be divided into map tasks and reduce
tasks. Each tasktracker tt provides to the cluster a set of job-slots in
which tasks can run. Each job-slot is specific for a particular job, and

5.3 adaptive scheduling in shared environments 107

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

D1 D2 D3

J1 J2 J3

Figure 5.15: Distribution of assigned resources over time running the sample
workload using the Reverse-Adaptive Scheduler

the scheduler will be responsible for deciding the number of job-slots
to create on each tasktracker for each job in the system.

Each job j can be associated with a completion time goal, T j
goal , the

time at which the job should be completed. When no completion time
goal is provided, the assumption is that the job needs to be completed
at the earliest possible time.

Additionally, with each job we associate a resource consumption
profile. The resource usage profile for a job j consists of a set of av-
erage resource demands Dj = {Γj,1, . . . , Γj,r}. Each resource demand
consists of a tuple of values. That is, there is one value associated for
each task type and phase (map, reduce in shuffle phase, and reduce
in reduce phase, including the final sort).

We use symbol P to denote a placement matrix with the assignment
of tasks to tasktrackers, where cell Pj,tt represents the number of tasks
of job j placed on tasktracker tt. For simplicity, we analogously define
PM and PR, as the placement matrix of Map and Reduce tasks. Notice
that P = PM + PR. Recall that each task running in a tasktracker
requires a corresponding slot to be created before the task execution
begins, so hereafter we assume that placing a task in a tasktracker
implies the creation of an execution slot in that tasktracker.

108 scheduling in shared environments

5.3.4 Reverse-Adaptive Scheduler

The driving principles of the scheduler are resource availability aware-
ness and continuous job performance management. The former is
used to decide task placement on tasktrackers over time, while the
latter is used to estimate the number of tasks to be run in parallel
for each job in order to meet performance objectives, expressed in
the form of completion time goals. Job performance management has
been extensively evaluated and validated in our previous work, pre-
sented as the Adaptive Scheduler [59] [63]. This section extends the re-
source availability awareness of the scheduler when the MapReduce
jobs are collocated with other time-varying workloads.

One key element of this proposal is the variable S f it, which is an
estimator of the minimal number of tasks that should be allocated
in parallel to a MapReduce job to keep its chances to reach its dead-
line, assuming that the available resources will change over time as
predicted by f (t). Notice that the novelty of this estimator is the fact
that it also considers the variable demand of resources introduced by
other external workloads. Thus, the main components of the Reverse-
Adaptive Scheduler, as described in the following sections, are:

• S f it estimator. Described in Section 5.3.4.2.

• Utility function that leverages S f it used as a per-job performance
model. Described in Section 5.3.4.3.

• Placement algorithm that leverages the previous two compo-
nents. Described in Section 5.3.4.4.

5.3.4.1 Intuition

The intuition behind the reverse scheduling approach is that it di-
vides time into stationary periods, in which no job completions are
expected. One period ends and starts in instants in which a job com-
pletion time goal is expected. When a job is expected to complete at
the end of a period, the scheduler calculates the amount of resource
to be allocated during the period for the job to make its completion
goal. If the available resources are not enough, the amount of pending
work is pushed back to the immediately preceding period. Notice that
the amount of the available resources for the period is determined by
the function f (t), that estimates the resources that will have to be
committed to the non-MapReduce workloads. When more than one
job co-exists in the same period, they compete for the available re-
sources, and they are allocated following a fairness criteria that will
try to make all jobs obtain the same utility from the decided schedule.

For the sake of clarity, Figure 5.16 retakes the example presented
in Section 5.3.2 and shows how the placement decision is made step
by step. Starting at the desired completion time, which is represented

5.3 adaptive scheduling in shared environments 109

by the deadline of the last job, we assign as many tasks as possible
from the jobs that are supposed to be running within that timeframe,
compressed between that deadline and the previous one. In this case
only J3 is running and we are able to assign most of its tasks, as shown
in Figure 5.16a. Next we estimate the timeframe between time 17 and
38 as shown in Figure 5.16b, in which we would like to run all the
tasks from J2 and the remaining ones from J3. The scheduler is able
to run the remaining tasks from J3, but since there are not enough
resources to run all the tasks from J2, the remaining ones are carried
to the last timeframe. Similarly, in the final step of the estimation as
shown in Figure 5.16c, the scheduler evaluates the timeframe between
1 and 17, in which it is supposed to execute J1 and the remaining tasks
from J2.

Once the estimation of expected availability is completed, the sched-
uler is aware of all the steps needed to reach its desired state from the
current state, and therefore proceeds to create the next placement of
jobs that will satisfy its final goal.

5.3.4.2 Estimation of the resources to allocate to each job

We consider a scenario in which jobs are dynamically submitted by
users. Each submission includes both the job’s completion time goal
(if one is provided) and its resource consumption profile. This infor-
mation is provided via the job configuration file. The scheduler main-
tains a list of active jobs and a list of tasktrackers. For each active job
it stores a descriptor that contains the information provided when the
job was submitted, in addition to state information such as number
of pending tasks. For each tasktracker tt, the scheduler also knows
its resource capacity at any point in time, Ωtt,1, . . . , Ωtt,r since it can
be derived from a function that describes the transactional workload
pattern, f (t).

For any job j in the system, let sj
pend be the number of map tasks

pending of execution. The scheduler estimates the minimum num-
ber of map tasks that should be allocated concurrently during the
next placement cycle, sj

f it, by reversing the expected execution assum-

ing all jobs meet their completion time goal T j
goal , and relying on the

observed task length (µj) and the availability of resources over time
(Ωtt).

Algorithm 2 shows how this estimation takes place. We first start
assuming that for each job j, sj

f it equals the number of pending tasks

sj
pend (lines 1-3), and then proceed to subtract as many tasks as possi-

ble beginning from the job with the last deadline to the job with the
earliest deadline (lines 5-8), and as long as they fit within the avail-
able amount of resources (lines 9-17). The algorithm uses the f it()
function, which given a job j and two points in time a and b returns
the amount of tasks from job j that can be assigned between time a

110 scheduling in shared environments

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

D2 D3

(a)

6 12 18 24
Hours

0

20

40

60

80

100
Nu

m
be

r o
f n

od
es

D1 D2

(b)

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

D1

(c)

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

D1 D2 D3

(d)

Figure 5.16: Step by step estimation with the Reverse-Adaptive Scheduler
from (a) to (c), and placement decision (d)

5.3 adaptive scheduling in shared environments 111

Algorithm 2 Reverse fitting algorithm to estimate s f it

Inputs J: List of Jobs in the system; sj
pend: Number of pending map

tasks for each job; Γj and Ωtt: Resource demand and capacity for
each job and tasktracker correspondingly, as used by the auxiliary
function f it

1: for j in J do
2: sj

f it = sj
pend

3: end for
4: P = []

5: Sort J by completion time goal
6: for j in J do
7: a = Tnext(J)

goal // deadline for the next job in J

8: b = T j
goal // deadline for j

9: for p in P do
10: if sp

f it > 0 then
11: sp

f it = sp
f it − f it(p, a, b)

12: end if
13: end for
14: if sj

f it > 0 then

15: sj
f it = sj

f it − f it(j, a, b)
16: end if
17: Add j to P
18: end for
19: return sj

f it for each job in J

112 scheduling in shared environments

and b, taking into consideration the profile and resource requirements
of said job. Notice also how on every iteration we try to fit tasks be-
tween the two last deadlines (lines 7-8), and try to assign tasks from
jobs with the latest deadlines first as long as they still have remaining
tasks left (lines 9-13).

In addition to the main estimator sj
f it, which estimates the mini-

mum number of tasks to be allocated for each job during the next
placement cycle, we also calculate the average number of tasks that
should be allocated over time considering a fixed availability of re-
sources equal to the average amount of resources from current time to
its deadline, sj

req. The latter is used to assign remaining the resources
left after allocating the minimum number of tasks with the former, if
any.

5.3.4.3 Performance Model

To measure the performance of a job given a placement matrix, we
define a utility function that combines the number of map and re-
duce slots allocated to the job with its completion time goal and job
characteristics. Below we provide a description of this function.

Given placement matrices PM and PR, we can define the number
of map and reduce slots allocated to a job j as sj

alloc = ∑tt∈T T PM
j,tt and

rj
alloc = ∑tt∈T T PR

j,tt correspondingly.

Based on these parameters and the previous definitions of sj
pend and

rj
pend, we define the utility of a job j given a placement P as:

uj(P) = uM
j (PM) + uR

j (PR), where P = PM + PR (13)

and where uM
j is a utility function that denotes increasing satis-

faction of a job given a placement of map tasks, and uR
j is a utility

function that shows satisfaction of a job given a placement of reduce
tasks. The definition of both is as follows:

uM
j (PM) =



log(sj
alloc)

log(sj
f it)
− 1 sj

alloc < sj
f it

sj
alloc−sj

f it

2×(sj
req−sj

f it)
sj

f it < sj
alloc < sj

req

sj
alloc−sj

req

2×(sj
pend−sj

req)
+ 1

2 sj
f it < sj

req < sj
alloc

sj
alloc−sj

f it

sj
pend−sj

f it

sj
req ≤ sj

f it < sj
alloc

(14)

uR
j (PR) =

log(rj
alloc)

log(rj
pend)

− 1 (15)

5.3 adaptive scheduling in shared environments 113

Notice that in practice a job will never get more tasks allocated to
it than it has remaining: to reflect this in theory we cap the utility at
uj(P) = 1 for those cases.

The definition of u differentiates between three cases: (1) the satis-
faction of the job grows logarithmically from −∞ to 0 if the job has
fewer map slots allocated to it than it requires to meet its completion
time goal; (2) the function grows linearly between 0 and 0.5, when
sj

alloc = sj
req and thus in addition to the absolute minimum required

for the next control cycle, the job is also allocated the estimated num-
ber of slots required over time to meet the completion time goal; and
(3) the function grows linearly between 0.5 and 1.0, when sj

alloc = sj
pend

and thus all pending map tasks for this job are allocated a slot in the
current control cycle.

Notice that uM
j is a monotonically increasing utility function, with

values in the range (−∞, 1]. The intuition behind this function is that
a job is unsatisfied (uM

j < 0) when the number of slots allocated to
map tasks is less than the minimum number required to meet the
completion time goal of the job. Furthermore, the logarithmic shape
of the function stresses the fact that it is critical for a job to make
progress and therefore at least one slot must be allocated. A job is no
longer unsatisfied (uM

j = 0) when the allocation equals the require-

ment (sj
alloc = sj

req), and its satisfaction is positive (uM
j > 0) and grows

linearly when it gets more slots allocated than required. The max-
imum satisfaction occurs when all the pending tasks are allocated
within the current control cycle (sj

alloc = sj
pend). The intuition behind

uR
j is that reduce tasks should start at the earliest possible time, so the

shuffle sub-phase of the job (reducers pulling data produced by map
tasks) can be fully pipelined with execution of map tasks. The loga-
rithmic shape of this function indicates that any placement that does
not run all reducers for a running job is unsatisfactory. The range of
this function is [−1, 0] and, therefore, it is used to subtract satisfac-
tion of a job that, independently of the placement of map tasks, has
unsatisfied demand for reduce tasks. If all the reduce tasks for a job
are allocated, this function gets value 0 and thus, uj(P) = uM

j (PM).
Figure 5.17 shows the generic shape of the utility function for a

job that requires at least 10 map tasks allocated during the next cycle
(sj

f it = 10), 15 map tasks concurrently over time (sj
req = 15) to meet

its completion time goal, has 35 map tasks (sj
pend = 35) pending to be

executed, and has been configured to run 10 reduce tasks (rj
pend = 10),

none of which have been started yet. On the X axis, a variable number
of allocated slots for reduce tasks (rj

alloc) is shown. On the Y axis,
a variable number of allocated slots for map tasks (sj

alloc) is shown.
Finally, the Z axis shows the resulting utility value.

114 scheduling in shared environments

sj
fit = 10

sj
req = 15

sj
pend = 35

rjpend = 10

 0 5 10 15 20 25 30 35 40 45 50

Allocated Map Slots

sj
alloc

 0 5 10 15 20 25 30 35 40 45 50

Allocated Reduce Slots

rjalloc

-13
-12
-11
-10

-9
-8
-7
-6
-5
-4
-3
-2
-1
 0
 1

Utility

Figure 5.17: Shape of the Utility Function when sj
f it = 10, sj

req = 15 sj
pend =

35, and rj
pend = 10

5.3.4.4 Job Placement Algorithm

Given an application placement matrix P, a utility value can be calcu-
lated for each job in the system. The performance of the system can
then be measured as an ordered vector of job utility values, U. The
objective of the scheduler is to find a new placement P of jobs on
tasktrackers that maximizes the global objective of the system, U(P),
which is expressed as follows:

max min
j

uj(P) (16)

min Ωtt,r −∑
tt
(∑

j
Pj,tt) ∗ Γj,r ∀r (17)

such that

∀tt∀r (∑
j

Pj,tt) ∗ Γj,r ≤ Ωtt,r (18)

and Ωn,r = Ωtt,r + Ωds,r (19)

This optimization problem is a variant of the Class Constrained
Multiple-Knapsack Problem. Since this problem is NP-hard, the sched-
uler adopts a heuristic inspired by [75]. While not described here, the
Placement Algorithm itself is the same as that described in the previ-
ous chapter in Section 4.2.4, but using the proposed utility function
described in Section 5.3.4.3.

5.3 adaptive scheduling in shared environments 115

Submission time (static information)

Job Submission

Placement Control loop

Task Trackers

(running tasks for
multiple jobs)

Task Completion

Assign Tasks (𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 , 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑗𝑗) to meet 𝑃𝑃𝑀𝑀, 𝑃𝑃𝑅𝑅, Ω𝑡𝑡𝑡𝑡

New (𝑃𝑃𝑀𝑀, 𝑃𝑃𝑅𝑅) to enforce until
next control cycle (T)

Evaluate Placement
𝑃𝑃’

 in this round

U(𝑃𝑃𝑃)

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑗𝑗 , r𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗 , J, Γ𝑗𝑗

System Description

List of TaskTrackers TT

Job Profile
(#maps, #reduces,

resource demands Γ𝑗𝑗)

Completion Time Goal
(𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑗𝑗)

J: Dynamic list of jobs in the system
and their associated profile and

current state
(𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑗𝑗 , r𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗 , Γ𝑗𝑗)
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
𝑗𝑗 , Workload

Estimator

Update 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑗𝑗 , r𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗

𝑃𝑃𝑀𝑀, 𝑃𝑃𝑅𝑅
TT

Job Tracker

Operation in control cycles of period T

Job Status
Updater

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑗𝑗

Placement
Algorithm

Job Utility
Calculator

𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑗𝑗

Task Scheduler

Avg. Task length

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗 ,Ω𝑡𝑡𝑡𝑡

Figure 5.18: System architecture of the Reverse-Adaptive Scheduler

5.3.4.5 Scheduler Architecture

Figure 5.18 illustrates the architecture and operation the scheduler.
The system consists of five components: Placement Algorithm, Job
Utility Calculator, Task Scheduler, Job Status Updater and Workload
Estimator. Each submission includes both the job’s completion time
goal (if one is provided) and its resource consumption profile.

Most of the logic behind the scheduler resides the utility-driven
Placement Control Loop and the Task Scheduler. The former is re-
sponsible for producing placement decisions, while the latter is re-
sponsible for enforcing the decisions made by the former. The Place-
ment Control Loop operates in control cycles of period T. Its output
is a new placement matrix P that will be active until the next control
cycle is reached (current time + T). The Task Scheduler is responsi-
ble for enforcing the placement decisions. The Job Utility Calculator
calculates a utility value for an input placement matrix which is then
used by the Placement Algorithm to choose the best placement choice
available. Upon completion of a task, the TaskTracker notifies the Job
Status Updater, which for any job j in the system, triggers an update
of sj

pend and rj
pend in the job descriptor. The Job Status Updater also

keeps track of the average task length observed for every job in the
system, which is later used to estimate the completion time for each
job. The Workload Estimator estimates the number of map tasks that
should be allocated concurrently (sj

req) to meet the completion time
goal of each job, as well as the parameter Sj

f it.
In this work we concentrate on the estimation of the parameter

Sj
f it that feeds the Placement Algorithm, as well as the performance

116 scheduling in shared environments

model used by the Job Utility Calculator. The major change in this ar-
chitecture compared to the scheduler presented in the previous chap-
ter in Section 4.2.4 is the introduction of the Workload Estimator, that
not only estimates the demand for MapReduce tasks as did in pre-
vious work, but also provides estimates for the data-store resource
consumption, derived from the calculation of f (t).

5.3.5 Evaluation

This section includes the description of the experimental environ-
ment, including the simulation platform we have built, and the results
from the experiments that explore the improvements of our scheduler
compared to previous existing schedulers: the default FIFO scheduler,
the Adaptive Scheduler described in [63], and the Reverse-Adaptive
scheduler proposed in this section.

In Experiment 1 (Section 5.3.5.2) we consider the standard scenario
in which MapReduce is the only workload running in the system and
thus the performance of the scheduler should be similar to previous
approaches. In Experiment 2 (Section 5.3.5.3) we introduce an addi-
tional workload in order to gain insight on how does the proposed
scheduler perform in this kind of shared environment. And finally,
Experiment 3 (Section 5.3.5.4) shows the impact that the burstiness
of transactional workloads may have on the scheduler.

5.3.5.1 Simulation Platform

In order to simulate a shared environment, we built a system with
two components. First, a workload generator to model the behaviour
of multiple clients submitting jobs to the MapReduce cluster. And
second, a server simulator to handle the workloads’ submissions and
schedule jobs depending on different policies.

The workload generator that describes the behaviour of clients takes
the cluster configuration information as well as the desired workload
parameters, and instantiates a number of jobs to meet those require-
ments. Table 5.6 describes the main workload configuration parame-
ters used for the experiments. The dynamic availability of resources
of the transactional workload (f (t)) is based on a real trace obtained
from Twitter’s frontend during an entire day, and has the same shape
as that shown in Figures 5.14 and 5.15, with peak transactional uti-
lization around hour 18. The distribution of MapReduce job lengths,
which determines the number of tasks of each job, follows a lognor-
mal that resembles the job sizes observed in known traces from Ya-
hoo! and Facebook [20], but scaled down to a smaller number of jobs
to fit into the 100-node cluster used during the simulations. For the
distribution of deadlines factors we use a 3 different categories: tight
(between 1.5x and 4x), regular (from 1.5x to 8x), and relaxed (from
1.5x to 12x).

5.3 adaptive scheduling in shared environments 117

parameter value description

Cluster size 100 Total number of nodes in
the system.

Node availability f (t) Function that represents
the available number of
nodes over time.

System load 0.2− 1.0 Utilization of the Map-
Reduce workload dur-
ing the simulation. Deter-
mines the number of jobs.

Arrival distribution Poisson: n ≈ 200−
2500, λ ≈ 1.5− 15

How arrivals are dis-
tributed over time. De-
pends on system load.

Job length distribution Lognorm: µ = 62.0,
σ = 15.5

Determines the number
of tasks of each job.

Deadline distribution Uniform:
1.5x− [4, 8, 12]x

Factor relative to comple-
tion time of jobs when ex-
ecuted in isolation.

Table 5.6: Main workload simulator configuration parameters.

In the experiments we simulate a total of 7 days, and in order to
make sure the simulation is in a steady state we study and generate
all the statistics for the 5 days in the middle, considering only jobs
that either start or finish within that time window. For each experi-
ment we obtain the averages and standard deviations of running 10

different simulated workloads generated with the same configuration
parameters.

The simulation platform is written in Python using the NumPy and
SciPy packages, and the Reverse-Adaptive implementation in partic-
ular is based on splines for fast, approximate curve fitting, interpo-
lation and integration. While our proposal has not been optimized
and is slower than the other schedulers we are simulating, it does not
represent a performance issue for the amount of concurrent jobs that
are usually executed in this kind of environment, specially consider-
ing MapReduce clusters run the scheduler on a dedicated machine
and decisions are only made once per placement cycle, which is in
the order of tens of seconds. In our experiments with hundreds to
few thousands of jobs the scheduler is able to generate placement
matrices in a time that always remains in the order of milliseconds.
Our current implementation easily scales up to thousands of jobs and
nodes.

118 scheduling in shared environments

Validation of the Simulation Platform

The MapReduce simulator allows recreating the conditions of com-
plex environments in which multiple workloads with different char-
acteristics are executed in the same set of machines as MapReduce.

In order to validate the accuracy of the MapReduce scheduling
component of the simulator, we compare the simulator to a execu-
tion in a real environment. To that end we reproduce an experiment
executed in an actual Hadoop MapReduce cluster, and convert the
executed applications into a simulated workload.

The environment we simulate resembles the cluster of 61 nodes de-
scribed in Section 3.5.2, and the set of applications is the same as that
described in Section 3.5.1. In particular, we chose to reproduce one of
the experiments described in Section 3.5.3. The synthetic mix of appli-
cations comprised in this workload represent a realistic scenario due
to the different characteristics of each job. There are 4 different Map-
Reduce applications that share the available resources during the ex-
ecution. We configure each application with a particular completion
time goal, derived from the completion time that each one of the ap-
plications achieves when executed in isolation. The completion time
goals are set to be tight in order to show how the scheduler behaves
when it’s not possible to meet all completion time goals.

In the original experiment, the set of applications is as follows: a
Simulator (J1) with a completion time goal of 6,000s (1.69X over its
completion time in isolation); Wordcount (J2) is configured with a
completion goal of 1,500s (1.18X); Sort (J3) is configured to complete
after 650s (1.08X); and the Join executions (J4 and J5) are both config-
ured with a completion time goal of 120s (1.18X).

The MapReduce simulator is limited to running a single phase, and
so it’s not possible to simulate both map and reduce phases at the
same time. For this particular workload, the reduce phase of some
of the applications (Simulator, Wordcount, and Join) is negligible due
to either the absence of any real computation or the use of combin-
ers. However, the Sort application involves significant computation
during the reduce phase, and its deadline must be adapted since the
simulator will not be able to simulate the reduce phase. Thus, while
the deadline factor of the Simulator, Wordcount and Join applications
remains the same for the simulation, the simulated Sort execution
is slightly different since it only accounts for the map phase, which
represents a fraction of the total completion time.

Figure 5.19 shows the evolution of how the simulator allocates tasks
over time for each application. For the sake of clarity, jobs are grouped
by application into different rows. Jobs J1 to J5 are submitted at times
S1 to S5, and the completion time goals are D1 to D5. This execution
using the scheduler ought to be compared to Figure 3.5 (page 48),
which shows the evolution of the real execution. As it can be observed,
the behaviour of applications during the simulation is similar to the

5.3 adaptive scheduling in shared environments 119

0

20

40

60

Ru
nn

in
g

ta
sk

s
S1

D1

0

20

40

60

Ru
nn

in
g

ta
sk

s

S2

D2

0

20

40

60

Ru
nn

in
g

ta
sk

s

S3

D3

0 1000 2000 3000 4000 5000 6000
Elapsed time (s)

0

20

40

60

Ru
nn

in
g

ta
sk

s

S4 S5

D4 D5

Figure 5.19: MapReduce simulation of the Adaptive Scheduler running the
workload described in Section 3.5.3 and shown in Figure 3.5

real execution, and at a glance the only significant difference is the
lack of reducers on J3.

Tables 5.7 and 5.8 provide more details about how far from the
deadline is each one of the applications of the workload under both,
real and simulated executions, as well as its execution time. The main
differences can be found in J1 and J3 (Simulator application and Sort
application, respectively). J1 represents an applications with irregu-
lar task lengths, a feature that the simulation is not able to capture
correctly since it assumes regular task lengths. However, as shown in
Table 5.7, the time beyond the deadline relative to the whole execu-
tion (which is longer than 6000s for J1) remains small. As for J3, the

J1 J2 J3 J4 J5

Real execution 2% 17% 36% 38% 36%

Simulated execution 1% 18% 33% 42% 39%

Difference -1% +1% -3% +4% +3%

Table 5.7: Relative time beyond deadline of each application of the workload
under real and simulated environments

120 scheduling in shared environments

J1 J2 J3 J4 J5

Real execution 6130.75 1816.08 427.05
†

194.53 185.21

Simulated execution 6058.15 1821.94 395.73 207.93 197.23

Table 5.8: Execution time of each application of the workload under real
and simulated environments, in seconds

† The execution time of the map phase is shown here to ease the comparison with
the simulation; the full execution takes 1031.30 seconds.

difference can be explained due to the lack of support to simulate
the reduce phase: the time beyond the deadline in the real execution
is much higher because its execution is also longer, but again, when
comparing the adapted relative time of each map phase, they are
closer to each other (0.36 vs 0.33). Note that both J1 and J3 represent
certain kinds of applications that are not considered as part of the
workloads simulated in this chapter, but the simulator is still able to
provide accurate results.

5.3.5.2 Experiment 1: No Transactional Workload

The goal of this experiment is to evaluate the scenario in which there
is no additional workload other than MapReduce itself, and to assess
that the scheduler does not introduce any flaw even in the worst-case
scenario in which there is no transactional workload. It also repre-
sents the standard scenario considered by most MapReduce sched-
ulers, which are only concerned with assigning tasks to a fixed num-
ber of nodes in the cluster.

To this end we disable the transactional workload on the simulator
and make all resources available to the MapReduce workload. We
then run the same experiments using the default FIFO scheduler,
the Adaptive scheduler, and our proposed scheduler, the Reverse-
Adaptive scheduler.

Figure 5.20 shows the percentage of missed deadlines for each
scheduler under different configurations. On the first row the dis-
tribution of deadline factors assigned to jobs (meaning the time each
job is given to complete) is uniformly distributed and ranges from a
minimum of 1.5x to a maximum of 4x. On the second and third rows,
the maximum deadline factor is increased to 8x and 12x respectively.
Each row shows different load factors as well, which represent how
busy is the cluster: from 0.2 (very small load) to 1.0 (fully loaded). As
it can be observed, there is a significant difference between the default
FIFO scheduler, which always misses more deadlines, and the other
deadline-aware schedulers. Also, as expected, increasing the maxi-
mum deadline factor also has an impact on the number of missed
deadlines on all schedulers, but even more so on the Adaptive and

5.3 adaptive scheduling in shared environments 121

Reverse-Adaptive schedulers since that gives them more flexibility
and a higher chance of distributing the execution of jobs.

On the other hand, in this scenario the Reverse-Adaptive sched-
uler performs exactly like the Adaptive scheduler under all configu-
rations since it is not able to leverage the information about the char-
acteristics of other non-MapReduce workloads in order to improve its
performance. But it also shows that under no circumstances will the
Reverse-Adaptive scheduler perform worse than previous deadline-
aware schedulers in terms of missed deadlines.

0.2 0.4 0.6 0.8 1.0
Load factor

0
20
40
60
80

100

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines (deadline factor: 1.5 - 4x)

0.2 0.4 0.6 0.8 1.0
Load factor

0
20
40
60
80

100

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines (deadline factor: 1.5 - 8x)

0.2 0.4 0.6 0.8 1.0
Load factor

0
20
40
60
80

100

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines (deadline factor: 1.5 - 12x)

fifo adaptive reverse

Figure 5.20: Experiment 1: No transactional workload.

5.3.5.3 Experiment 2: Transactional Workload

In this experiment we evaluate the Reverse-Adaptive scheduler in the
presence of transactional workloads, and compare it to other sched-
ulers, showing also additional metrics that help understand the be-
haviour of our algorithm. In particular, we study the same workload
under different load levels: from 0.2 (low load) to 0.8 (high load); and
also with different deadline factor distributions, ranging from 1.5x–4x
to 1.5–12x. The transactional workload changes the availability of re-
sources over time, and is based on a real trace as described in 5.3.5.1.

Figure 5.21 shows the results for each deadline factor distribution:
1.5x – 4x (Figure 5.21a), 1.5x – 8x (Figure 5.21b), 1.5x – 12x (Fig-
ure 5.21c). And each figure shows the number of jobs that miss their
deadline (1st row), time beyond deadline for jobs that miss their dead-
line (2nd row), and distance to deadline for jobs that meet their dead-
line (3rd row). For this experiment we also run a fourth execution of
the simulator with a different optimization goal that only takes into
account minimizing the number of missed deadlines, and does not

122 scheduling in shared environments

consider any fairness goals found in other schedulers. It is shown
in the first row of Figures 5.21a to 5.21c as a horizontal line on the
Reverse-Adaptive scheduler bars. We use these as a reference to dis-
tinguish why are schedulers missing deadlines, as it marks the min-
imum amount of jobs that will miss their deadline independently of
the policies of the scheduler.

As it can be observed in the three figures, introducing a dynamic
transactional workload allows the scheduler to improve the number
of missed deadlines without a significant impact on other metrics.
As shown in Figure 5.21a, which represents executions when run-
ning with a tight deadline factor distribution between 1.5x and 4x,
the number of deadlines missed by the Reverse-Adaptive scheduler
is always noticeable lower than that of the Adaptive and FIFO sched-
ulers (1st row), while the time beyond deadline is only slightly lower
(2nd row), and distance to deadline remains mostly the same with
very small variations (3rd row). These results remain the same with
more relaxed deadline factors as shown in Figure 5.21b and 5.21c. No-
tice that the improvement in terms of percentage of missed deadlines
with the Reverse-Adaptive scheduler compared to other schedulers is
similar despite the different deadline factors. This is basically because
in these three scenarios the actual chance of improving is similar, as
shown by the horizontal lines marking the percentage of jobs that will
be missed for certain.

5.3.5.4 Experiment 3: Burstiness of Transactional Workload

This experiment explores the impact of transactional workload bursti-
ness on the scheduler. While the previous experiment shows that the
scheduler is able to leverage the characteristics of the transactional
workload to improve the performance of the scheduler, in this exper-
iment we show how the shape of the availability function affects the
chances of improving the overall results. In particular, burstiness in
this scenario means variability between the highest and lowest points
of the availability function. Figure 5.22 shows the different burstiness
levels evaluated in this experiment: from high burstiness (level 3) to
low burstiness (level 1). As a reference to compare to previous execu-
tions, note that Experiment 1 has no burstiness at all, while Experi-
ment 2 represents high burstiness (equivalent to level 3).

Figure 5.23 shows the number of jobs that miss their deadline when
running with the different burstiness levels. To simplify this experi-
ment we only execute the simulator with a medium deadline factor
(1.5x to 8x). As it can be observed, the more bursty the availability
function, the more likely is the scheduler able to improve its per-
formance and lower the amount of missed deadlines. This is basi-
cally because the higher variability of high burstiness levels makes
the available resources less predictable and estimations less accurate.

5.3 adaptive scheduling in shared environments 123

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(a)

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(b)

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(c)

Figure 5.21: Experiment 2: Scheduling with transactional workload. Dead-
line factors: 1.5x – 4x (a), 1.5x – 8x (b), 1.5x – 12x (c).

124 scheduling in shared environments

However, with lower burstiness (and thus variability), availability is
not as likely to change, so estimations are still relatively accurate.

6 12 18 24
Hours

0

20

40

60

80

100

Nu
m

be
r o

f n
od

es

Burstiness Levels

Level 1 Level 2 Level 3

Figure 5.22: Experiment 3: Burstiness level classification.

5.3.6 Related Work

Much work has been done in the space of scheduling for MapReduce.
Since the number of resources and slots in a Hadoop cluster is fixed
through out the lifetime of the cluster, most of the proposed solutions
can be reduced to a variant of the task-assignment or slot-assignment
problem. The Capacity Scheduler [88] is a pluggable scheduler devel-
oped by Yahoo! which partitions resources into pools and provides
priorities for each pool. Hadoop’s Fair Scheduler [89] allocates equal
shares to each tenant in the cluster. All these schedulers are built on
top of the same resource model and do not support high-level user-
defined goals nor dynamic availability in shared environements.

The performance of MapReduce jobs has attracted much interest in
the Hadoop community. Recently, there has been increasing interest
in user-centric data analytics, as proposed in [59], which introduces a
scheduling scheme that enables soft-deadline support for MapReduce
jobs. It differs from the presented proposal in that it does not take
into consideration neither the resources of the system nor other work-
loads. Similarly, Flex [86] is a scheduler proposed as an add-on to the
Fair Scheduler to provide Service-Level-Agreement (SLA) guarantees.
More recently, Aria [82] introduces a novel resource management
framework that consists of a job profiler, a model for MapReduce jobs
and a SLO-scheduler based on the Earliest Deadline First scheduling
strategy. Flex and Aria are both slot-based and therefore suffers from
the same limitations we mentioned earlier.

5.3 adaptive scheduling in shared environments 125

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(a)

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(b)

0.2 0.4 0.6 0.8
Load factor

0
10
20
30
40
50
60
70
80

Nu
m

be
r o

f j
ob

s
(%

) Missed deadlines

0.2 0.4 0.6 0.8
Load factor

0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
(h

)

Time beyond deadline (jobs that miss deadline)

0.2 0.4 0.6 0.8
Load factor

0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(h

)

Distance to deadline (jobs that meet deadline)

fifo adaptive reverse

(c)

Figure 5.23: Experiment 3: Execution with different burstiness: level 1 (a),
level 2 (b), and level 3 (c); deadline factor from 1.5x to 8x.

126 scheduling in shared environments

New platforms have been proposed to mix MapReduce frameworks
like Hadoop with other kinds of workloads. Mesos [39] intends to
improve cluster utilization on shared environments, but is focused
on batch-like and HPC instead of transactional workloads. Finally,
the Hadoop community has also recognized the importance of de-
veloping a resource-aware scheduling for MapReduce. [12] outlines
the vision behind the Hadoop scheduler of the future. The frame-
work proposed introduces a resource model consisting of a ‘resource
container’ which is fungible across jobs. We think that our proposed
resource management techniques can be leveraged within this frame-
work to enable better resource management.

5.4 summary

The first part of this Chapter presented a technique to provide stronger
isolation support on top of distributed key-value stores, and imple-
mented it for Apache Cassandra.

The proposed approach takes advantage of the fact that one of the
major structures used to persist data in this kind of stores are SSTa-
bles, which are immutable. This proposal modifies Cassandra so as to
keep SSTables when requested by concurrently running transactions,
effectively allowing multi-versioned concurrency control for read op-
erations on Cassandra in the form of snapshots. As shown in our
evaluation, the new version of Cassandra with Snapshotted Read sup-
port is able to read from snapshots with a low impact on read latency
and the overall performance of the system. While regular reads are
slightly slower on the new version of Cassandra, operations that read
from a snapshot are sometimes faster due to its limited scope.

This approach to improve the isolation capabilities of distributed
key-value stores without compromising its performance is specially
interesting in the environments in which these stores are nowadays
executed, which tend to involve a range of technologies on the back-
end side instead of a single database solution, and different applica-
tions and workloads running at the same time sharing and processing
the same data.

The second part of this Chapter presented the Reverse-Adaptive
Scheduler, which introduces a novel resource management and job
scheduling scheme for MapReduce when executed in shared envi-
ronments along with other kinds of workloads. The proposed sched-
uler is capable of improving resource utilization and job performance.
The model introduced here allows for the formulation of a place-
ment problem which is solved by means of a utility-driven algorithm.
This algorithm in turn provides the scheduler with the adaptability
needed to respond to changing conditions in resource demand and
availability of resources.

5.4 summary 127

The scheduler works by estimating the need of resources that should
be allocated to each job, but in a more proactive way than previously
existing work, since the estimation takes into account the expected
availability of resources. In particular, the proposed algorithm con-
sists of two major steps: reversing the execution of the workload and
generating the current placement of tasks. Reversing the execution
of the workload involves creating an estimated placement of the full
workload over time, assigning tasks in the opposite direction: starting
at the desired end state and finishing at the current state. The reversed
placement is used as an estimation to know how many tasks are left
at the current state, which allows the scheduler to determine what’s
the need of tasks for each job and how should they share the available
resources. The presented scheduler relies on existing profiling infor-
mation based on previous executions of jobs to make scheduling and
placement decisions.

The work described in this chapter has resulted in the following
main publications:

[65] Jordà Polo, David Carrera, Yolanda Becerra, Malgorzata Stein-
der, Mike Spreitzer, Jordi Torres, and Eduard Ayguadé. Enabling Dis-
tributed Key-Value Stores with Low Latency-Impact Snapshot Sup-
port. In Proceedings of the 12th IEEE International Symposium on Net-
work Computing and Applications (NCA 2013), Boston, MA, USA, 2013.
IEEE Computer Society

[66] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Ed-
uard Ayguadé, and Malgorzata Steinder. Adaptive MapReduce Sched-
uling in Shared Environments. In Proceedings of the 14th IEEE ACM
International Symposium On Cluster, Cloud And Grid Computing (CCGrid
2014), Chicago, IL, USA, 2014. IEEE Computer Society

6
C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusions

6.1.1 Scheduling with Time Constraints

The first contribution of this thesis, presented in Chapter 3, consists
of a performance model for multi-job MapReduce workloads and
a scheduling algorithm that leverages the model and allows man-
agement with time constraints. The effectiveness of the scheduler is
demonstrated through a prototype implementation and evaluation
on the Hadoop platform.

MapReduce jobs are composed of a large number of tasks known
in advance during the job initialization phase (when the input data
is split into smaller chunks). This characteristic can be leveraged to
dynamically estimate the progress of MapReduce applications at run
time. Therefore, adaptive schedulers can be developed to allow users
to provide high-level performance objectives, such as completion time
goals.

The proposed scheduler dynamically adjusts the allocation of avail-
able execution slots across jobs so as to meet their completion time
goals, provided at submission time. The system continuously mon-
itors the average task length for all jobs in all nodes, and uses this
information to calculate and adjust the expected completion time for
all jobs. Beyond completion time objectives, the presented scheduler
also observes two additional high-level performance goals: first, it en-
forces data locality when possible, reducing the total volume of net-
work traffic for a given workload; and secondly, it is also able to deal
with hybrid machines composed of generic processors and hardware
accelerators that can carry specialized tasks.

129

130 conclusions and future work

Data locality is increased by introducing simple yet effective mech-
anisms into the task scheduler, while still meeting high-level perfor-
mance goals. Improved locality does not necessarily result in better
performance for the individual jobs, but it is always correlated with
lower network consumption.

Heterogeneous nodes and processors offer certain advantages to
some MapReduce workloads, providing specialized cores that can
perform critical tasks more efficiently. Exploiting such hardware in-
frastructure requires some kind of awareness on the part of the task
scheduler, providing hardware affinity when necessary. Real-time mon-
itoring of tasks allows the scheduler to evaluate the real benefits of
running each workload on different platforms, and the scheduler is
able decide the best distribution of tasks accordingly. Depending on
the individual performance goals of each job, and on the availability
of generic and hardware-specific code for each application, the sched-
uler is able to decide which version to run on top of the available
hardware. Low-level programming languages that support different
parallel platforms can provide an even greater advantage in these
heterogeneous scenarios.

To evaluate the proposed scheduler, the prototype is deployed in
two clusters of machines running Hadoop: one of them equipped
with general purpose processors, and another one enabled with hard-
ware accelerators. A number of experiments are executed to demon-
strate the effectiveness of the proposed technique with regards to
the three objectives: completion time goals, data locality and sup-
port for hardware accelerators. The results are also compared with
another state-of-the-art Hadoop scheduler, and show how the pro-
posed scheduler enables users to define and predict the performance
of the system more accurately. Compared to other schedulers, the pro-
totype is able to improve the performance of MapReduce workloads
when these are composed of jobs with different priorities, jobs with
a high network consumption, and also jobs that benefit from special-
ized hardware.

6.1.2 Scheduling with Space and Time Constraints

The second contribution of this thesis, described in Chapter 4, is
a new resource model for MapReduce and a scheduler based on
a resource-aware placement algorithm that leverages the proposed
model. The scheduler, built upon the one presented in the first contri-
bution, is aware of the underlying hardware as well as the characteris-
tics of the applications, and is capable of improving cluster utilization
while still being guided by job performance metrics.

The foundation of this scheduler is a resource model based on a
new abstraction, namely the “job slot”. This model allows for the
formulation of a placement problem which the scheduler solves by

6.1 conclusions 131

means of a utility-driven algorithm. This algorithm in turn provides
the scheduler with the adaptability needed to respond to changing
conditions in resource demand.

The presented scheduler relies on existing profiling information
based on previous executions of jobs to make scheduling and place-
ment decisions. Profiling of MapReduce jobs that run periodically
on data with similar characteristics is an easy task, which has been
used by many others in the community in the past. However, this
proposal pioneers a novel technique for scheduling reduce tasks by
incorporating them into the utility function driving the scheduling
algorithm. The proposed approach works well in most scenarios, but
it may need to rely on preempting reduce tasks to release resources
for jobs with higher priority. The scheduler considers three resource
capacities: CPU, memory and I/O, but it could be easily extended to
incorporate additional resources of the tasktrackers.

A prototype of the scheduler has been implemented on top of Ha-
doop, and its source code is publicly available at [57]. In order to
evaluate the prototype, a number of experiments have been executed
in a real cluster driven by representative MapReduce workloads, and
compared to a state-of-the-art scheduler. The experiments show the
effectiveness of this proposal, which is able to improve cluster utiliza-
tion in multi-job MapReduce environments, even in the presence of
completion time constraints. The results also show the benefits of us-
ing simple job profiles, which enable the scheduler with the required
knowledge to improve its performance. To the best of our knowledge
the proposed scheduler is the first scheduling framework to use a
new resource model in MapReduce and also the first to leverage re-
source information to improve the utilization of resources in the sys-
tem while still meeting completion time goals on behalf of users.

6.1.3 Scheduling with Space and Time Constraints in Shared Environ-
ments

Finally, the third contribution of this thesis, presented in Chapter 5,
addresses two related problems found in shared environment sce-
narios with MapReduce. First, a scheduler and performance model
for shared environments that allows an integrated management of
resources in the presence of other non-MapReduce workloads, and
second, the necessary mechanism to allow the shared data store to be
used for both, transactional and analytics workloads.

The proposed scheduler is able to improve resource utilization
across machines while observing completion time goals, taking into
account the resource demands of non-MapReduce workloads, and
assuming that the amount of resources made available to the Map-
Reduce applications is dynamic and variable over time. This is
achieved thanks to a new algorithm that provides a more proactive

132 conclusions and future work

approach for the scheduler to estimate the need of resources that
should be allocated to each job.

A prototype of the scheduler has been evaluated in a simulated
environment and compared to other MapReduce schedulers. Exper-
iments driven by representative MapReduce workloads demonstrate
the effectiveness of this proposal, which is capable of improving re-
source utilization and job performance in the presence of other non-
MapReduce workloads. To the best of our knowledge this is the first
scheduling framework to take into account other workloads, such as
transactional workloads, in addition to leveraging resource informa-
tion to improve the utilization of resources in the system and meet
completion time goals on behalf of users.

On the other hand, the proposal to enable the storage with addi-
tional isolation capabilities is implemented on top of a distributed
key-value store, which is used as a good middle ground between tra-
ditional databases and distributed filesystems. This approach takes
advantage of the fact that one of the major structures used to persist
data in this kind of stores is immutable, which helps minimize the
performance impact of supporting the additional operations required
to run different kinds of workloads.

A prototype of this proposal has been implemented and evalu-
ated on top of the key-value store Cassandra. As shown by the ex-
periments run on a real cluster using a well-known benchmark, the
prototype is capable of providing snapshots without a significant
penalty on its performance. This approach then effectively allows a
data stores to be used for analytics and provide support for some
transactional operations at the same time.

6.2 future work

The work performed in this thesis opens several interesting proposals
that could be explored as part of future work.

• As part of this thesis, a simple profile is used to determine re-
source utilization based on previous executions (offline), and
a model based on task allocation is used to estimate the per-
formance of jobs (online). While this approach has proved to
be good for most applications, there is still room for improve-
ment with regards to the characterization of jobs in order to im-
prove the management of MapReduce workloads. A more fine-
grained profile could help characterize the details of each phase,
and would make it easier to avoid certain bottlenecks. Another
option to improve the performance management would be re-
using data and statistics from previous executions. This is not
trivial since the same job may be executed using a completely
different input and thus potentially have different behaviours.

6.2 future work 133

But ideally, repeated executions would provide more data over
time.

• The scheduler presented in this thesis is aware of resources
such as CPU, disk IO and memory consumption. It would be
trivial to add additional resources and hardware constraints to
the placement algorithm as long as they affect a single node,
e.g. disk capacity. But there are certain resources that require a
more thoughtful approach since they depend not only on the
MapReduce job itself, but also on other variables that require
cluster-level awareness. An example of one such resource is net-
work utilization, which can change significantly depending on
where is data located in the underlying distributed filesystem.

• Reduce tasks have traditionally been one of the most challeng-
ing aspects of MapReduce scheduling, yet it is still sometimes
overlooked. Reduce tasks are hard to schedule because they are
meant to be run as a single non-preemptive wave of tasks, and
they actually consist of different sub-phases: 1) copying all the
data from the map tasks, and 2) performing the actual reduce
function. Most schedulers launch reduce tasks as soon as possi-
ble in order to start the data transfer beforehand. However, this
approach is not perfect since reduce tasks will keep running un-
til all maps are completed. It should be possible to improve the
scheduling of reduce tasks by either introducing some kind of
separation between its sub-phases, or finding the optimal exe-
cution that minimizes its waiting time.

• The simplicity of MapReduce is one of the keys to its wide-
spread adoption, but sometimes it also forces users to use cer-
tain workarounds to overcome some of its limitations. When
the two-phase map and reduce model is not enough to produce
the desired results, some applications resort to chaining multiple
MapReduce jobs as a sequence of operations. These are becom-
ing even more common with high-level abstraction layers on
top of Hadoop (e.g. Pig [50] or Hive [78]), which tend to trans-
form programs into sequences of back-to-back MapReduce jobs.
This kind of applications pose significant issues for MapReduce
schedulers since they should be thought of as a single unit, but
in practice become a number, sometimes unknown, of jobs. A
more thoughtful study and characterization of the dataflow of
sequential applications would be useful for any scheduler.

B I B L I O G R A P H Y

[1] Adaptive Scheduler. https://issues.apache.org/jira/

browse/MAPREDUCE-1380.

[2] NASA Nebula project. URL http://nebula.nasa.gov.

[3] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi
Silberschatz, and Alexander Rasin. Hadoopdb: an architectural
hybrid of mapreduce and dbms technologies for analytical work-
loads. Proc. VLDB Endow., 2(1):922–933, August 2009. ISSN 2150-
8097.

[4] Rajendra Akerkar, editor. Big Data Computing. Taylor & Francis
Group – CRC Press, 2013. ISBN 978-1-46-657837-1. URL http:

//www.taylorandfrancis.com/books/details/9781466578371/.

[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Green-
berg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris. Rein-
ing in the outliers in Map-Reduce clusters using Mantri. In 9th
USENIX Conference on Operating Systems Design and Implementa-
tion, pages 1–16, Berkeley, USA, 2010.

[6] Apache Software Foundation. HDFS Architecture, 2009.
URL http://hadoop.apache.org/common/docs/current/hdfs_

design.html.

[7] Apache Software Foundation. Hadoop on Demand, 2009. URL
http://hadoop.apache.org/core/docs/r0.20.0/hod_user_

guide.html.

[8] Apache Software Foundation. Hadoop MapReduce, 2009. URL
http://hadoop.apache.org/.

[9] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above
the clouds: a Berkeley view of cloud computing. Tech-
nical report, University of California at Berkeley, February
2009. URL http://berkeleyclouds.blogspot.com/2009/02/

above-clouds-released.html.

[10] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox,
Michael J. Franklin, and David A. Patterson. Piql: success-
tolerant query processing in the cloud. Proc. VLDB Endow., 5

(3):181–192, November 2011. ISSN 2150-8097.

135

https://issues.apache.org/jira/browse/MAPREDUCE-1380
https://issues.apache.org/jira/browse/MAPREDUCE-1380
http://nebula.nasa.gov
http://www.taylorandfrancis.com/books/details/9781466578371/
http://www.taylorandfrancis.com/books/details/9781466578371/
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/r0.20.0/hod_user_guide.html
http://hadoop.apache.org/core/docs/r0.20.0/hod_user_guide.html
http://hadoop.apache.org/
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html
http://berkeleyclouds.blogspot.com/2009/02/above-clouds-released.html

136 bibliography

[11] Arun C. Murthy, Chris Douglas, Mahadev Konar, Owen
O’Malley, Sanjay Radia, Sharad Agarwal, Vinod K V. Ar-
chitecture of Next Generation Apache Hadoop MapReduce
Framework. URL https://issues.apache.org/jira/secure/

attachment/12486023/.

[12] Arun Murthy. Next Generation Hadoop Scheduler. URL
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/

mapreduce-nextgen-scheduler/.

[13] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey
Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander
Lloyd, and Vadim Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In Proceedings of
the Conference on Innovative Data system Research, 2011.

[14] Luiz André Barroso, Jimmy Clidaras, and Urs Hol-
zle. The datacenter as a computer: An introduction
to the design of warehouse-scale machines, second edi-
tion. Synthesis Lectures on Computer Architecture, 8(3):1–
154, 2013. doi: 10.2200/S00516ED2V01Y201306CAC024.
URL http://www.morganclaypool.com/doi/abs/-10.2200/

S00516ED2V01Y201306CAC024.

[15] Yolanda Becerra, Vicenç Beltran, David Carrera, Marc Gonzalez,
Jordi Torres, and Eduard Ayguadé. Speeding up distributed
mapreduce applications using hardware accelerators. In ICPP
’09: Proceedings of the 2009 International Conference on Parallel Pro-
cessing, pages 42–49, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-0-7695-3802-0.

[16] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A critique of ANSI SQL isola-
tion levels. In Proceedings of the 1995 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD ’95, pages 1–
10, New York, NY, USA, 1995. ACM. ISBN 0-89791-731-6. doi:
10.1145/223784.223785.

[17] Jacek Błażewicz, Maciej Machowiak, Jan Węglarz, Mikhail Y Ko-
valyov, and Denis Trystram. Scheduling malleable tasks on par-
allel processors to minimize the makespan. Annals of Operations
Research, 129(1-4):65–80, 2004. ISSN 0254-5330.

[18] David Carrera, Malgorzata Steinder, Ian Whalley, Jordi Torres,
and Eduard Ayguadé. Enabling resource sharing between trans-
actional and batch workloads using dynamic application place-
ment. In Middleware ’08: Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, pages 203–222, New York,
NY, USA, 2008. Springer-Verlag New York, Inc. ISBN 3-540-
89855-7.

https://issues.apache.org/jira/secure/attachment/12486023/
https://issues.apache.org/jira/secure/attachment/12486023/
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/
http://www.morganclaypool.com/doi/abs/-10.2200/S00516ED2V01Y201306CAC024
http://www.morganclaypool.com/doi/abs/-10.2200/S00516ED2V01Y201306CAC024

bibliography 137

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26,
June 2008. ISSN 0734-2071. doi: 10.1145/1365815.1365816. URL
http://doi.acm.org/10.1145/1365815.1365816.

[20] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith,
and Randy H. Katz. A methodology for understanding map-
reduce performance under diverse workloads. Technical Report
UCB/EECS-2010-135, EECS Department, University of Califor-
nia, Berkeley, Nov 2010. URL http://www.eecs.berkeley.edu/

Pubs/TechRpts/2010/EECS-2010-135.html.

[21] Byung-Gon Chun, Gianluca Iannaccone, Giuseppe Iannaccone,
Randy Katz, Gunho Lee, and Luca Niccolini. An energy case for
hybrid datacenters. In Workshop on Power Aware Computing and
Systems (HotPower’09), Big Sky, MT, USA, 2009, 10/2009 2009.

[22] Jonathan Cohen. Graph twiddling in a mapreduce world. Com-
puting in Science and Engineering, 11(4):29–41, 2009. ISSN 1521-
9615. doi: 10.1109/MCSE.2009.120. URL http://dx.doi.org/10.

1109/MCSE.2009.120.

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakr-
ishnan, and Russell Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium on Cloud
computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152.

[24] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04: Sixth Symposium on
Operating System Design and Implementation, pages 137–150, San
Francisco, CA, December 2004. URL http://labs.google.com/

papers/mapreduce.html.

[25] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: amazon’s highly available key-value store. In Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, SOSP ’07, pages 205–220, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. doi: 10.1145/1294261.1294281. URL
http://doi.acm.org/10.1145/1294261.1294281.

[26] Jaideep Dhok and Vasudeva Varma. Using pattern classifica-
tion for task assignment. URL http://researchweb.iiit.ac.

in/~jaideep/jd-thesis.pdf.

http://doi.acm.org/10.1145/1365815.1365816
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-135.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-135.html
http://dx.doi.org/10.1109/MCSE.2009.120
http://dx.doi.org/10.1109/MCSE.2009.120
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://doi.acm.org/10.1145/1294261.1294281
http://researchweb.iiit.ac.in/~jaideep/jd-thesis.pdf
http://researchweb.iiit.ac.in/~jaideep/jd-thesis.pdf

138 bibliography

[27] Fangpeng Dong and Selim G Akl. Scheduling algorithms for
grid computing: State of the art and open problems. School of
Computing, Queen’s University, Kingston, Ontario, 2006.

[28] James Corbett et all. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX conference on Op-
erating Systems Design and Implementation, OSDI’12, pages 251–
264, Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-1-
931971-96-6.

[29] Dror Feitelson. Job scheduling in multiprogrammed parallel sys-
tems. IBM Research Report, 19790, 1997.

[30] Dror G. Feitelson and Larry Rudolph. Parallel job scheduling:
Issues and approaches. In JSSPP, pages 1–18, 1995.

[31] Dror G Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Ken-
neth C Sevcik, and Parkson Wong. Theory and practice in paral-
lel job scheduling. In Job scheduling strategies for parallel processing,
pages 1–34. Springer Berlin Heidelberg, 1997.

[32] Dror G Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Par-
allel job scheduling–a status report. In Job Scheduling Strategies for
Parallel Processing, pages 1–16. Springer Berlin Heidelberg, 2005.

[33] Ian Foster and Ian Kesselman. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan-Kaufmann, 2002.

[34] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations. International
journal of high performance computing applications, 15(3):200–222,
2001.

[35] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google File System. SIGOPS Oper. Syst. Rev., 37(5):29–43,
2003. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/1165389.
945450. URL http://labs.google.com/papers/gfs.html.

[36] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy,
and Thomas Anderson. Scalable consistency in scatter. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 15–28, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043559.

[37] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe,
and T. Yamazaki. A novel SIMD architecture for the cell hetero-
geneous chip-multiprocessor. 2005.

[38] Herodotos Herodotou and Shivnath Babu. Profiling, What-if
Analysis, and Cost-based Optimization of MapReduce Programs.
VLDB, 2010.

http://labs.google.com/papers/gfs.html

bibliography 139

[39] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-
odsi, Anthony D Joseph, Randy Katz, Scott Shenker, and Ion
Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX conference on Net-
worked systems design and implementation, pages 22–22. USENIX
Association, 2011.

[40] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-
nis Fetterly. Dryad: distributed data-parallel programs from se-
quential building blocks. In Proceedings of the 2nd ACM SIGOP-
S/EuroSys European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-636-3.

[41] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Den-
nis Fetterly. Dryad: distributed data-parallel programs from se-
quential building blocks. In 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 59–72, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-636-3.

[42] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder,
Kunal Talwar, and Andrew Goldberg. Quincy: fair scheduling
for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP
’09, pages 261–276, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-752-3. URL http://www.sigops.org/sosp/sosp09/

papers/isard-sosp09.pdf.

[43] Predrag R. Jelenkovic, Xiaozhu Kang, and Jian Tan. Adaptive
and scalable comparison scheduling. In SIGMETRICS’07, NY,
USA. ACM. ISBN 978-1-59593-639-4.

[44] F. Junqueira, B. Reed, and M. Yabandeh. Lock-free transac-
tional support for large-scale storage systems. In Dependable
Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st
International Conference on, pages 176 –181, june 2011. doi:
10.1109/DSNW.2011.5958809.

[45] Avinash Lakshman and Prashant Malik. Cassandra: a decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev., 44(2):
35–40, April 2010. ISSN 0163-5980. doi: 10.1145/1773912.1773922.
URL http://doi.acm.org/10.1145/1773912.1773922.

[46] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and
Sang-Woo Kim. A case for flash memory SSD in enterprise
database applications. In SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data,
pages 1075–1086, New York, NY, USA, 2008. ACM. ISBN 978-1-
60558-102-6. doi: http://doi.acm.org/10.1145/1376616.1376723.

http://www.sigops.org/sosp/sosp09/papers/isard-sosp09.pdf
http://www.sigops.org/sosp/sosp09/papers/isard-sosp09.pdf
http://doi.acm.org/10.1145/1773912.1773922

140 bibliography

[47] Joseph YT Leung. Handbook of scheduling: algorithms, models, and
performance analysis. CRC Press, 2004.

[48] David A Lifka. The anl/ibm sp scheduling system. In Job Schedul-
ing Strategies for Parallel Processing, pages 295–303. Springer, 1995.

[49] Los Alamos National Laboratory. High-Performance Computing:
Roadrunner. URL http://www.lanl.gov/roadrunner/.

[50] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Ku-
mar, and Andrew Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099–1110.
ACM, 2008.

[51] Owen O’Malley. Terabyte sort on Apache Hadoop, 2008. URL
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.

pdf.

[52] Owen O’Malley and Arun Murthy. Winning a 60 second dash
with a yellow elephant, 2009. URL http://developer.yahoo.

com/blogs/hadoop/Yahoo2009.pdf.

[53] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and
Asser Tantawi. Dynamic estimation of cpu demand of web traffic.
In Proceedings of the 1st international conference on Performance eval-
uation methodolgies and tools, valuetools ’06, New York, NY, USA,
2006. ACM. ISBN 1-59593-504-5. doi: 10.1145/1190095.1190128.
URL http://doi.acm.org/10.1145/1190095.1190128.

[54] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and
Asser N. Tantawi. Dynamic estimation of cpu demand of web
traffic. In VALUETOOLS, page 26, 2006.

[55] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,
David J. DeWitt, Samuel Madden, and Michael Stonebraker. A
comparison of approaches to large-scale data analysis. In Pro-
ceedings of the 2009 ACM SIGMOD International Conference on
Management of data, SIGMOD ’09, pages 165–178, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-551-2. doi: 10.1145/1559845.
1559865.

[56] Daniel Peng and Frank Dabek. Large-scale incremental pro-
cessing using distributed transactions and notifications. In 9th
USENIX Symposium on Operating Systems Design and Implementa-
tion, 2010.

[57] Jordà Polo. Adaptive Scheduler, 2009. URL https://issues.

apache.org/jira/browse/MAPREDUCE-1380.

http://www.lanl.gov/roadrunner/
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf
http://www.hpl.hp.com/hosted/sortbenchmark/YahooHadoop.pdf
http://developer.yahoo.com/blogs/hadoop/Yahoo2009.pdf
http://developer.yahoo.com/blogs/hadoop/Yahoo2009.pdf
http://doi.acm.org/10.1145/1190095.1190128
https://issues.apache.org/jira/browse/MAPREDUCE-1380
https://issues.apache.org/jira/browse/MAPREDUCE-1380

bibliography 141

[58] Jordà Polo. Big Data Computing, chapter Big Data Process-
ing with MapReduce. In Akerkar [4], 2013. ISBN 978-1-
46-657837-1. URL http://www.taylorandfrancis.com/books/

details/9781466578371/.

[59] Jordà Polo, David Carrera, Yolanda Becerra, Malgorzata Stein-
der, and Ian Whalley. Performance-driven task co-scheduling
for MapReduce environments. In Network Operations and Man-
agement Symposium, NOMS, pages 373–380, Osaka, Japan, 2010.

[60] Jordà Polo, David Carrera, Yolanda Becerra, Malgorzata Stein-
der, and Ian Whalley. Performance-driven task co-scheduling for
MapReduce environments. In Proceedings of the 12th IEEE/IFIP
Network Operations and Management Symposium, pages 373–380,
Osaka, Japan, 2010.

[61] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, and Ed-
uard Ayguadé. Performance Management of Accelerated Map-
Reduce Workloads in Heterogeneous Clusters. In ICPP ’10: Pro-
ceedings of the 39th IEEE/IFIP International Conference on Parallel
Processing, San Diego, CA, USA, 2010.

[62] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Eduard
Ayguadé, Malgorzata Steinder, and Ian Whalley. Performance-
driven task co-scheduling for MapReduce environments. In Net-
work Operations and Management Symposium, NOMS, pages 373–
380, Osaka, Japan, 2010.

[63] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian
Whalley, Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé.
Resource-Aware Adaptive Scheduling for MapReduce Clusters.
In ACM IFIP USENIX 12th International Middleware Conference,
pages 187–207, Lisbon, Portugal, 2011. Springer. ISBN 978-3-642-
25820-6. doi: 10.1007/978-3-642-25821-3_10.

[64] Jordà Polo, Yolanda Becerra, David Carrera, Malgorzata Steinder,
Ian Whalley, Jordi Torres, and Eduard Ayguadé. Deadline-Based
MapReduce Workload Management. IEEE Transactions on Net-
work and Service Management, pages 1–14, 2013-01-08 2013. ISSN
1932-4537.

[65] Jordà Polo, David Carrera, Yolanda Becerra, Malgorzata Steinder,
Mike Spreitzer, Jordi Torres, and Eduard Ayguadé. Enabling Dis-
tributed Key-Value Stores with Low Latency-Impact Snapshot
Support. In Proceedings of the 12th IEEE International Symposium
on Network Computing and Applications (NCA 2013), Boston, MA,
USA, 2013. IEEE Computer Society.

[66] Jordà Polo, David Carrera, Yolanda Becerra, Jordi Torres, Eduard
Ayguadé, and Malgorzata Steinder. Adaptive MapReduce Sched-

http://www.taylorandfrancis.com/books/details/9781466578371/
http://www.taylorandfrancis.com/books/details/9781466578371/

142 bibliography

uling in Shared Environments. In Proceedings of the 14th IEEE
ACM International Symposium On Cluster, Cloud And Grid Com-
puting (CCGrid 2014), Chicago, IL, USA, 2014. IEEE Computer
Society.

[67] Sean Quinlan. GFS: Evolution on fast-forward. ACM
Queue, 2009. URL http://portal.acm.org/ft_gateway.cfm?id=

1594206&type=pdf.

[68] Dharavath Ramesh, Amit Kumar Jain, and Chiranjeev Kumar.
Implementation of atomicity and snapshot isolation for multi-
row transactions on column oriented distributed databases using
rdbms. In Communications, Devices and Intelligent Systems, 2012
International Conference on, pages 298 –301, dec. 2012. doi: 10.
1109/CODIS.2012.6422197.

[69] Francesco Salbalori. Proposal for a fault tolerant Hadoop Job-
tracker, November 2008. URL http://sites.google.com/site/

hadoopthesis/Home/FaultTolerantHadoop.pdf.

[70] Thomas Sandholm and Kevin Lai. Mapreduce optimization
using regulated dynamic prioritization. In SIGMETRICS ’09:
Proceedings of the eleventh international joint conference on Mea-
surement and modeling of computer systems, pages 299–310, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-511-6. URL
http://doi.acm.org/10.1145/1555349.1555384.

[71] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Caccamo,
John Lehoczky, and Aloysius K Mok. Real time scheduling the-
ory: A historical perspective. Real-time systems, 28(2-3):101–155,
2004.

[72] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein,
Rasekh Rifaat, and Chita R. Das. Modeling and synthesizing
task placement constraints in Google compute clusters. In 2nd
ACM Symposium on Cloud Computing, SOCC ’11, pages 3:1–3:14,
NY, USA, 2011. ACM. ISBN 978-1-4503-0976-9.

[73] Sun Microsystems, Inc. Java Native Interface. URL http://java.

sun.com/docs/books/jni.

[74] David Talby and Dror G Feitelson. Supporting priorities and
improving utilization of the ibm sp scheduler using slack-based
backfilling. In Parallel Processing, 1999. 13th International and 10th
Symposium on Parallel and Distributed Processing, 1999. 1999 IPP-
S/SPDP. Proceedings, pages 513–517. IEEE, 1999.

[75] Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and
Giovanni Pacifici. A scalable application placement controller

http://portal.acm.org/ft_gateway.cfm?id=1594206&type=pdf
http://portal.acm.org/ft_gateway.cfm?id=1594206&type=pdf
http://sites.google.com/site/hadoopthesis/Home/FaultTolerantHadoop.pdf
http://sites.google.com/site/hadoopthesis/Home/FaultTolerantHadoop.pdf
http://doi.acm.org/10.1145/1555349.1555384
http://java.sun.com/docs/books/jni
http://java.sun.com/docs/books/jni

bibliography 143

for enterprise data centers. In Procs. of the 16th intl. conference on
World Wide Web, WWW ’07, pages 331–340, NY, USA, 2007. ACM.
ISBN 978-1-59593-654-7.

[76] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. A hy-
brid reinforcement learning approach to autonomic resource
allocation. In Proceedings of the 2006 IEEE International Con-
ference on Autonomic Computing, pages 65–73, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 1-4244-0175-5. doi:
10.1109/ICAC.2006.1662383.

[77] Douglas Thain, Todd Tannenbaum, and Miron Livny. Dis-
tributed computing in practice: The condor experience. Con-
currency and Computation: Practice and Experience, 17(2-4):323–356,
2005.

[78] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):
1626–1629, 2009.

[79] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba
Borthakur, Namit Jain, Joydeep Sen Sarma, Raghotham Murthy,
and Hao Liu. Data warehousing and analytics infrastructure
at facebook. In Proceedings of the 2010 international conference on
Management of data, SIGMOD ’10, pages 1013–1020, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0032-2.

[80] John Turek, Joel L Wolf, and Philip S Yu. Approximate algo-
rithms scheduling parallelizable tasks. In Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures,
pages 323–332. ACM, 1992.

[81] John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Pra-
soon Tiwari, Jason Glasgow, Uwe Schwiegelshohn, and Philip S.
Yu. Scheduling parallelizable tasks to minimize average re-
sponse time. In Proceedings of the Sixth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, SPAA ’94, pages
200–209, New York, NY, USA, 1994. ACM. ISBN 0-89791-671-
9. doi: 10.1145/181014.181331. URL http://doi.acm.org/10.

1145/181014.181331.

[82] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell.
ARIA: Automatic Resource Inference and Allocation for Map-
Reduce Environments. In 8th IEEE International Conference on
Autonomic Computing, Karlsruhe, Germany, June 2011.

[83] Tom White. Hadoop: The Definitive Guide. O’Reilly and Yahoo!
Press, 2009. URL http://www.hadoopbook.com/.

http://doi.acm.org/10.1145/181014.181331
http://doi.acm.org/10.1145/181014.181331
http://www.hadoopbook.com/

144 bibliography

[84] Adam Wierman and Misja Nuyens. Scheduling despite inex-
act job-size information. In Proceedings of the 2008 ACM SIG-
METRICS international conference on Measurement and modeling of
computer systems, pages 25–36, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-005-0.

[85] Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vib-
hore Kumar, Sujay Parekh, Kun-Lung Wu, and Andrey Balmin.
FLEX: A Slot Allocation Scheduling Optimizer for MapReduce
Workloads. In Indranil Gupta and Cecilia Mascolo, editors, Mid-
dleware 2010, volume 6452 of Lecture Notes in Computer Science,
pages 1–20. Springer Berlin / Heidelberg, 2010.

[86] Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar, Vib-
hore Kumar, Sujay Parekh, Kun-Lung Wu, and Andrey Balmin.
Flex: A slot allocation scheduling optimizer for mapreduce work-
loads. In Indranil Gupta and Cecilia Mascolo, editors, Middleware
2010, volume 6452 of Lecture Notes in Computer Science, pages 1–
20. Springer Berlin / Heidelberg, 2010.

[87] Fatos Xhafa and Ajith Abraham. Computational models and
heuristic methods for grid scheduling problems. Future genera-
tion computer systems, 26(4):608–621, 2010.

[88] Yahoo! Inc. Capacity scheduler. http://developer.yahoo.com/

blogs/hadoop/posts/2011/02/capacity-scheduler/.

[89] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy
Katz, and Ion Stoica. Improving MapReduce performance in
heterogeneous environments. In 8th USENIX Conference on Op-
erating systems design and implementation, pages 29–42, Berkeley,
USA, 12/2008 2008. USENIX Association. URL http://dblp.

uni-trier.de/db/conf/osdi/osdi2008.html.

[90] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. Job scheduling for
multi-user Map-Reduce clusters. Technical Report UCB/EECS-
2009-55, 2009.

[91] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. Delay scheduling: a
simple technique for achieving locality and fairness in cluster
scheduling. In 5th European conference on Computer systems, pages
265–278, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-577-
2.

[92] Chen Zhang and H. De Sterck. Supporting multi-row distributed
transactions with global snapshot isolation using bare-bones
hbase. In 11th IEEE/ACM International Conference on Grid Comput-
ing, pages 177 –184, oct. 2010. doi: 10.1109/GRID.2010.5697970.

http://developer.yahoo.com/blogs/hadoop/posts/2011/02/capacity-scheduler/
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/capacity-scheduler/
http://dblp.uni-trier.de/db/conf/osdi/osdi2008.html
http://dblp.uni-trier.de/db/conf/osdi/osdi2008.html

bibliography 145

[93] Chen Zhang and Hans De Sterck. Hbasesi: Multi-row distributed
transactions with global strong snapshot isolation on clouds.
Scalable Computing: Practice and Experience, pages –1–1, 2011.

bibliography 147

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Scheduling with Time Constraints
	1.2.2 Scheduling with Space and Time Constraints
	1.2.3 Scheduling with Space and Time Constraints in Shared Environments

	1.3 Thesis Organization
	1.4 Acknowledgements

	2 Background
	2.1 Processing Data with MapReduce
	2.1.1 A Sample Application
	2.1.2 Examples of Use
	2.1.3 Comparison with Other Systems

	2.2 Hadoop
	2.2.1 Project and Subprojects
	2.2.2 Cluster Overview
	2.2.3 Storage with HDFS
	2.2.4 Dataflow

	2.3 Scheduling Concepts
	2.3.1 Parallel Job Scheduling
	2.3.2 Cluster Scheduling
	2.3.3 Grid Scheduling
	2.3.4 MapReduce Scheduling

	2.4 Hardware Heterogeneity
	2.5 Data Stores
	2.5.1 Cassandra
	2.5.2 Isolation and Consistency Levels

	3 Scheduling with Time Constraints
	3.1 Introduction
	3.2 Scheduling Principles
	3.3 Performance Estimation
	3.3.1 Problem Statement
	3.3.2 Modelling Job Performance

	3.4 Allocation Algorithm & Extensions
	3.4.1 Basic Adaptive Scheduling
	3.4.2 Adaptive Scheduling with Data Affinity
	3.4.3 Adaptive Scheduling with Hardware Affinity
	3.4.4 Hardware Acceleration: an Illustrative Example
	3.4.5 Regarding Mappers and Reducers
	3.4.6 Modeling Application Characteristics

	3.5 Evaluation
	3.5.1 Workload
	3.5.2 Execution Environment Description
	3.5.3 Experiment 1: Basic Adaptive Scheduler
	3.5.4 Experiment 2: Scheduling with Data Affinity
	3.5.5 Experiment 3: Scheduling with Hardware Affinity
	3.5.6 Experiment 4: Arbitrating Between Pools

	3.6 Related Work
	3.7 Summary

	4 Scheduling with Space and Time Constraints
	4.1 Introduction
	4.2 Resource-aware Adaptive Scheduler
	4.2.1 Problem Statement
	4.2.2 Architecture
	4.2.3 Performance Model
	4.2.4 Placement Algorithm and Optimization Objective
	4.2.5 Task Scheduler
	4.2.6 Job Profiles

	4.3 Evaluation
	4.3.1 Experimental Environment and Workload
	4.3.2 Experiment 1: Execution with relaxed completion time goals
	4.3.3 Experiment 2: Execution with tight completion time goals

	4.4 Related Work
	4.5 Summary

	5 Scheduling in Shared Environments
	5.1 Introduction
	5.2 Enabling Key-Value Stores with Snapshot Support
	5.2.1 Introduction
	5.2.2 Isolation and Consistency Levels
	5.2.3 Implementing Snapshotted Reads
	5.2.4 Evaluation
	5.2.5 Related Work

	5.3 Adaptive Scheduling in Shared Environments
	5.3.1 Introduction
	5.3.2 Motivating example
	5.3.3 Problem Statement
	5.3.4 Reverse-Adaptive Scheduler
	5.3.5 Evaluation
	5.3.6 Related Work

	5.4 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Scheduling with Time Constraints
	6.1.2 Scheduling with Space and Time Constraints
	6.1.3 Scheduling with Space and Time Constraints in Shared Environments

	6.2 Future Work

	Bibliography

