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Abstract 

 

In this century some of our main issues are energy shortage and pollution. 

This work will briefly describe these problems, proposing a plan of action 

combining energy saving and different sustainable energy sources. Within 

different types of renewable energy sources, solar energy is the most abundant 

one. To make solar energy a more sustainable and cost effective technology we 

focus on enhancing the optical characteristics of thin film solar cells. In this 

category, organic solar cells are good options for their exiguous amount of 

material and the low energy needed for the fabrication process. This technology 

can be lightweight, transparent, flexible and conformal in order to be applied to 

and integrated in various architectural solutions and consumer electronics. After 

a study of the physics of such devices and on how to optically enhance their 

performances, we will show some examples where we theoretically and 

experimentally collect the solar radiation with optical antennas. We report, for the 

first time in literature, a nanogap antenna that efficiently couples the light in our 

active material thin film. Finally, we elaborate on the concept of building 

integrated photovoltaics introducing some examples of solar façades. Based on 

our research, we are able to design and fabricate an organic transparent solar cell 

with a visible transparency above 20% and an optically enhanced photon – 

electron conversion efficiency remarkably similar to its opaque equivalent. 
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Resumen 

 

En el presente siglo, algunas de las prioridades son la escasez de la energía 

y la contaminación. Este trabajo describirá brevemente estos problemas y 

propondrá un plan de acción que combina el ahorro energético con diferentes 

fuentes sostenibles de energía. Dentro de estas fuentes de energía renovables, la 

energía solar es la más abundante. Con el objetivo de hacer la tecnología solar 

más sostenible y eficiente económicamente nos concentramos en aumentar las 

características ópticas en celdas solares de película delgada. Dentro de esta 

categoría, las celdas solares orgánicas son una buena opción porque su desarrollo 

requiere bajas cantidades de materiales y su fabricación es de baja energía 

embebida. Adicionalmente, esta tecnología puede ser liviana, transparente, 

flexible mecánicamente y modular para ser aplicada e integrada en varias 

soluciones arquitectónicas y de electrónica de consumo. Luego de estudiar los 

procesos físicos en tales dispositivos y de determinar las metodologías para 

aumentar ópticamente sus desempeños, mostraremos algunos ejemplos donde 

teórica y experimentalmente se colecta la radiación solar mediante antenas 

ópticas. Se reporta por primera vez, una antena de nanogap que acopla 

eficientemente la luz en la capa activa de la celda solar. Finalmente, se desarrolla 

el concepto de tecnología fotovoltaica integrada en edificaciones tras introducir 

algunos ejemplos de fachadas solares. Basados en nuestra investigación, fue 

posible diseñar y fabricar una celda solar orgánica transparente cuya transparencia 

en el rango visible estuvo por encima del 20% y una eficiencia de conversión 

foton-electron aumentada ópticamente que resulto notoriamente similar a la celda 

solar orgánica opaca equivalente. 
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Résumé 

 

La rareté grandissante des ressources en énergie associée à une 

augmentation de la pollution font partie des enjeux plus importants de ce siècle. 

Cette thèse décrira brièvement ces deux problématiques et proposera un plan 

d’action combinant économie d’énergie et diversité des sources d’énergies 

renouvelables. Parmi les formes d’énergies renouvelables disponibles, l’énergie 

solaire est la plus abondante. Pour faire de l’énergie solaire une ressource plus 

durable et plus rentable économiquement, nous proposons d’amplifier les 

propriétés optiques de cellules solaires en couches minces. Dans cette catégorie, 

les cellules solaires organiques représentent un choix pertinent de part la faible 

quantité de matériau nécessaire ainsi que la faible énergie nécessaire au procédé 

de fabrication. Cette technologie peut être légère, transparente et flexible de sorte 

qu’elle peut être utilisée dans différentes solutions architecturales s’adaptant à des 

produits électroniques pour le grand publique. Suivra la théorie sous jacente à ces 

dispositifs et l’explication de la manière dont leurs performances sont améliorées. 

Nous présenterons quelques exemples où l’on collecte la radiation solaire avec 

une antenne optique. Ainsi, nous faisons la toute première démonstration d’une 

antenne auto-assemblée qui couple efficacement la lumière dans le matériau 

constituant la couche mince que nous utilisons. Finalement, nous développons le 

concept de cellules photovoltaïques intégrées en présentant différents cas de 

façades solaires. Ces travaux nous ont permis de concevoir et de fabriquer une 

cellule solaire organique transparente avec une transparence dans le visible de 

20% et une efficacité de conversion photon-électron améliorée, similaire à une 

cellule équivalente opaque.   
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Riassunto 

 

  La difficile reperibilità di risorse energetiche e l’inquinamento sono alcuni 

dei problemi più importanti di questo secolo. In questo lavoro saranno presentati 

brevemente questi temi proponendo un piano d’azione che abbini il risparmio 

energetico alle differenti fonti di energia rinnovabili. Nell’insieme delle fonti 

energetiche rinnovabili l’energia solare è senz’altro la più abbondante. Con 

l’obbiettivo di rendere lo sfruttamento di tale energia più sostenibile ed 

economicamente vantaggioso, ci premuriamo di migliorare le caratteristiche 

ottiche di celle fotovoltaiche a film sottile. In questa categoria utilizziamo, tra le 

diverse opzioni,  le celle solari organiche in quanto la loro fabbricazione richiede 

una quantità di materiale minimo e un basso consumo energetico. Inoltre questi 

tipi di dispositivi possono essere leggeri, trasparenti, flessibili e conformabili alle 

superfici su cui sono applicati. Questa è una tecnologia che potrebbe essere 

implementata e integrata in varie soluzioni architettoniche o nell’ elettronica di 

consumo. Dopo aver presentato i principi fisici di tali dispositivi e determinato le 

metodologie ottiche per aumentarne le prestazioni, vengono illustrati alcuni 

esempi dove, teoricamente e sperimentalmente, riusciamo a intercettare la 

radiazione solare con antenne ottiche. Riportiamo, per la prima volta in letteratura, 

un’antenna ottica con nano-gap che accoppia efficacemente la luce solare nel 

nostro materiale attivo a film sottile. Nell’ultima parte sviluppiamo il concetto di 

tecnologia solare integrata negli edifici, introducendo alcuni esempi di facciate 

solari. Basando il design sulla nostra ricerca, è possibile realizzare una cella solare 

fotovoltaica organica trasparente, con una trasparenza superiore del 20% e un’ 

efficienza di conversione fotone-elettrone migliorata grazie all’ottica, che  risulta 

molto vicina all’ equivalente cella fotovoltaica organica non trasparente. 
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Glossary 

 

PV  –  photovoltaic. 

Cell  –  the basic unit of a PV panel. 

kW  –  kilowatt. 

MW  –  megawatt. 

GW  –  gigawatt. 

VOC  –  open circuit current. 

JSC  –  short circuit current. 

Vm  –  voltage for the maximal solar cell power. 

Jm  –  current for the maximal solar cell power. 

Bulk heterojunction –  in this type of photovoltaic cell, the electron donor and acceptor are 
mixed together, forming a polymer blend. 

OPV  –  organic PV. 

NP  –  nano particle. 

L  – longitudinal light polarization. 

T  – transversal light polarization. 

k vector –  light propagation vector. 

AuNP – gold NP. 

EQE  –  external quantum efficiency. 

AFM  –  atomic force microscope. 

SEM  –  scanning electron microscope. 

FiT  –  feed-in tariff. 

BIPV – build integrated PV. 

BIOPV– build integrated organic PV. 

STBIOPV– semi-transparent OPV. 

D65 – CIE standard illuminant D65. 

V(λ) – human photopic spectral response. 

ARC  –  antireflection coating. 

IR  –  infrared. 
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MLD  –  dielectric multilayer. 

STC  –  semi-transparent PV cell. 

RoSH   –  directive on the restriction of the use of certain hazardous substances in electrical 
and electronic equipment. 

CIGS  –  copper indium gallium selenide (CuInxGa(1-x)Se2). 

CdTe  –  Cadmium telluride (CdTe). 

D  –  diode. 

I  –  photocurrent. 

RP  –  parallel resistance / shunt resistance. 

RS  –  series resistance. 

V  –  voltage. 

J  –  photocurrent normalized for 1 cm2 PV cell. 

�  –  efficiency. 

Pmax  –  maximal electrical power. 

FF  –  fill factor. 

Plight  –  light power. 

D-A  –  donor - acceptor. 

HTL  –  hole transporting layer. 

ETL  –  electron transporting layer. 

T(λ)  –  transmission in function of the wavelength. 

λ  –  wavelength. 

DTT  –  dithiothreitol. 

AM1.5G –  standard sun radiation after passing the air mass of 1.5, useful to represent the 
overall yearly sun radiation average for mid-latitudes. 

SSP  –  surface plasmon polariton. 

LSPR –  localized surface plasmon resonance. 

NI  –  nano island.  

UV  –  ultra violet. 

VLT  –  visible light transmission. 

L –  luminosity. 

Different materials are listed in appendix A.    
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1.  
Renewable energies context  

This chapter contains an overview of the world current energy 

situation, with emphasis on renewable energies. We mention a few 

examples of new dynamics in energy planning and production. With 

the knowledge of how much energy the sun provides us with every 

year this paper focuses on photovoltaic technologies and on 

upcoming solutions that will accompany a whole new range of 

applications. 
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1.1 Energies global status 

 

The year 2012 was characterized by a slow economical growth while global 

energy consumption grew by 1.8% with respect to the previous year. This growth was 

only due to emerging countries since all Western countries registered a minus sign. In 

Europe the total consumption decreased by -0.5% and in US by a significant -2.8% [1.1]. 

Looking at our consumption levels for the last two years for the different energy sources, 

we see that our annual consumption percentage of fossil fuels has been constant*. While 

the production of nuclear energy was lowered from 4.9% in 2011 to 4.5%. Hydropower 

and other renewable energies increased their presence with a total percentage of 8.6% 

of the shared primary energy consumption.  

Being optimistic, ideally assuming a 0% energy consumption growth, (and 

thereby denying pollution, CO2 emissions and a reduction in quality of life) and 

considering the world proved fuel reserves, we can see that crude oil and natural gas 

will only last us for 50 years and coal for another 70 years. If we compare these total 

reserves with other energy sources [1.1-1.2] it is clear that it would be sensible to move 

towards a world more driven by renewable energies. Figure 1.1 (adapted from [1.2]) 

visualizes a comparison between the total proved reserves. Fossil fuels are represented 

in the middle, the yearly potential of renewable energies on the left and the small red 

box in the lower right corner represents the worlds annual energy consumption. The 

external yellow box represents the total amount of solar energy that reaches earth each 

year.  

                                                            
* of the yearly energy consumption, oil represents 33.1%, gas 23.9% and coal 29.9%. 
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Figure 1.1: Solar irradiation (external yellow box) compared with established global 

energy resources (internal small boxes) and annual global energy consumption 

(smallest red box). Fossil fuels and uranium are expressed with their total reserves 

while renewable energies with their yearly potential. 

 

Geographically speaking this scenario is very diverse accounting the different 

resources of each continent. Considering only Europe and applying the, above 

mentioned, 0% energy consumption growth, we see that oil and gas reserves will be 

finished within the next 10 years while coal has a bit of a longer span. Uranium has been 



C h a p t e r  1 .  R e n e w a b l e  e n e r g i e s  c o n t e x t  | 32 

 

 

proven to be economically as well as health and environmentally unsustainable [1.3] 

and does not provide a significant improvement in the total amount of reserves. The 

prospect of lacking resources in a near future has motivated Europe to become the 

driving force within renewable energies developments. In 2013 12% of all energy 

consumption in Europe is coming exclusively from renewable energies. The goal† for 

2020 is to reach a renewable energy coverage of 20% [1.4], and with the so called 

“rethinking 2050” project [1.5] they are gathering experts and collecting  ideas  to reach 

a 100% sustainable energy production within 2050. 

 

 

Figure 1.2: A scheme for implementation of renewable energy for a sustainable 

future. 

 

                                                            
† These targets, known as the "20-20-20" targets, set three key objectives for 2020: 
A 20% reduction in EU greenhouse gas emissions from 1990 levels; 
Raising the share of EU energy consumption produced from renewable resources to 20%; 
A 20% improvement in the EU's energy efficiency. 
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 In figure 1.2 is presented a simplified model of a sustainable energy production 

with the factors necessary for a successful outcome. It shows how we ought to create 

responsible policies based on dialog balancing “science and technology” and “quality 

of life and environment”. The reassessed policies will then be pared with a light set of 

regulations. The regulations are there to encourage the production of sustainable energy, 

without rushing technologies in development by placing them under not suitable 

circumstances. 

A sustainable energy production is possible, if the above-mentioned parameters 

are taken into account and if an advanced grid management [1.6-1.8] is implemented 

accordingly to ensure the de-localized and non-constant energy production and 

consumption. Specifically in Europe a welfare-enhancing business model [1.9] is 

possible considering the broad range of new technologies. Differentiating between the 

various energy sources is fundamental. Amongst all the sustainable energy sources, the 

sun is the most promising one due to its enormous yearly potential (see figure 1.1). 

Thermal solar energy is already economically favourable in sunny countries. In 

Barcelona [1.10] all new constructions need to have, amongst all of the energy saving 

parameters, a solar thermal system for heating and hot water. Besides solar thermal, 

thermal photovoltaic is getting increased attention, but thermal photovoltaic is 

unfortunately not suitable for rooftop applications.  

Photovoltaic technology, which converts direct solar radiation into electricity, 

seems to be the most efficient way of exploiting the potential of the sun. This technology 

is growing every year and new solutions are emerging from research. In Japan for 

example, in July 2012, after the Fukushima Tsunami-Nuclear Disaster, a series of 

incentives were made for various energy resources and in particular to residential 

photovoltaic [1.11].  

Because of the declining fossil fuel reserves, we aim in the near future to 

implement more renewable energies that will go hand in hand with a reduction of 

polluting energy productions. Based on the yearly solar potential, we will focus in this 

work on photovoltaics and in particular on ultra-thin film photovoltaics in order to 

broaden application possibilities and reduce production and installation costs. 
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1.2 The special case of photovoltaics 

 

Solar cell technologies are each year becoming bigger contributors to the total 

yearly energy production. As shown in figure 1.3, the rapid growth in the last years 

achieved in 2011-12 a constant growth value of about 30 GW/year in newly installed 

PVs modules. 

 

 

Figure 1.3: Evolution of global PV cumulative installed capacity 2000-2012 (MW) 

[1.12]. 
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 Together with the newly installed PV modules a development in solar cell 

recycling technologies is emerging. With a life span of 20 years for a silicon 

photovoltaic panel, the “PV cycle” association [1.13] is determined on developing 

knowledge on PV recycling processes and in increasing the number of collection points, 

see table 1.1. A side the gathering of old photovoltaics modules, reviewing the 

regulations schemes is important to keep the energy production at a real effectiveness 

rate.  

 

Table 1.1: Newly installed PVs capacity and total recycle collection points [1.12, 

1.13]. 

 2011 newly 
installed capacity 

2012 newly 
installed capacity 

Recycle Collection 
points 

Germany  7.5 GW 7.6 GW 90 
China 2.5 GW 5.0 GW n.a. 

Italy  9.5 GW 3.4 GW 77 

US  1.9 GW 3.3 GW n.a. 
Japan  1.3 GW 2.0 GW n.a. 

France  1.8 GW 1.1 GW 41 

Spain 0.5 GW 0.3 GW 9 
 

Until now the PV market has been driven by financially motivated corporate 

companies more than environmental values, the pursuit of life quality and cost-benefits 

of the chosen technology. In Germany [1.14], there are positive examples of small 

producing and distributing companies that with a reasonable feed-in tariff (FiT) for 

building integrated photovoltaic (BIPV), are keeping up the market although solar 

radiation is not altogether favourable for the European climate. In Italy one can find a 

good balance between solar radiation and feed-in tariff [1.15-1.16] (funding finished the 

6th of July 2013), despite the presence of big producing companies that speculated in PV 

ground installations in the previous years. Probably the worst scenario in this sense is 

yet to come in Spain where the amount of solar radiation can encourage the proliferation 

of BIPV, even without any feed-in tariff, in small communities or families. Here big 

corporate economic interests are acting against self-sufficient energy families and 

communities by suggesting an “energy self consumption” tax [1.17] on energy produced 
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by PV modules and home mini wind turbines. The 2012 PV market in Europe slightly 

decreased compared to the previous year as a result of the uncertain climate, see the 

table in figure 1.3.  

An alternative way to improve the quality of the PV industry is to gradually 

introduce a specific RoHS directive [1.18] in this area where the threshold of economic 

advantage is already achieved (in the year 2000 the price of a 3kW household PV system 

was 20,000 euro while now the same system costs around 6,000 euro). Additionally it 

would be preferable to discourage ground plant installation in the non-desert areas and 

there focus the economical efforts in favouring the BIPV solutions.  

 

Figure 1.4: Historic‡ summary of champion cell efficiencies for various photovoltaic 

technologies, adapted from [1.19]. 

                                                            
‡ Note how the graph starts after the 1973-74 oil crisis. 
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Within the field of building integrated photovoltaics, lightweight modules 

(capable of being transparent, flexible or conformal) are the high-end energy 

technologies to pursue. The biggest fundamental issue is how to develop a photovoltaics 

energy production that is affordable and low on pollution. In this field, a lot of research 

and development efforts are exploring different approaches as shown in figure 1.4.  

The currently used technologies come, for the majority, from the central part of 

figure 1.4 where the solar cell efficiency is somewhere between 10 % and 25 % with a 

high installation cost.  Taking into account their volume and weight, these technologies 

are, basically, only for rooftops and ground installations. The future possibilities for the 

photovoltaic technology are the introduction of highly performing solar cells combined 

with solar concentrators and antireflection coatings capable of an efficiency level of 

about 44% [1.20-1.22]. Many research groups are looking 10 years ahead trying to 

achieve a 50 % efficiency level [1.23]. In this case, the cost can be kept reasonable by 

reducing the size of solar cell devices thanks to the solar concentrator design (which can 

reach a magnification of up to a 1000x).  

The lower part of figure 1.4 is dedicated to thin film technologies, which can 

more easily be installed because of their lightweight. Additionally some upcoming 

technologies will be transparent, flexible and usable in completely new applications like 

window energy generation or direct power source for consumer electronics. 

Summarizing, for reducing costs in the production of photovoltaics energy, there 

are two strategies: the first one is to enhance the efficiency and concentrating the light, 

allowing for less material and space consumption. The second one is applying cheap, 

lightweight and transparent materials in order to broaden the installation possibilities. 

This work is dedicated to finding a general solution for optimizing the light inside a 

solar cell, and in particular in ultra-thin solar cells that have an active material with a 

thickness below 200 nm. In the next chapter, the physics of a solar cell is presented, 

introducing the optical enhancement overview in chapter 3. In chapter 4, we show 

theoretically and experimentally some optically enhanced designs, while in chapter 5 

we will show theoretically and experimentally a transparent solar cell that performs 

closely to its opaque correspondent.
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2. 
Solar cells physics 

Solar cell devices can be schematized and solved as a simple 

electrical circuit. The external observables like current and voltage 

can be measured and compared in the same way for all the different 

technologies. On the other hand, the intrinsic characteristics of the 

device and its physics depend on each particular case. Special 

attention is devoted to organic photovoltaics and its light – electron 

conversion scheme. We present the morphology characteristics of 

the absorbing material and we analyze the architecture of two 

different devices. 
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2.1 I-V characteristics of a solar cell.  

 

The study of the electrical characteristics of photovoltaic devices is generally 

common to all the different technologies and it could be represented as a basic electrical 

circuit. A solar cell in the dark state is schematized like a diode “D” and when irradiated 

by light it can be schematized as a current generator “IL”. Figure 2.1 represents the 

electric behaviour of a such system [2.1]. The parallel resistance “RP” is commonly also 

called shunt resistance (or RSh) and takes in account all the current losses in the solar 

cell. The series resistance “RS” takes into account all the electric connection. 

 

 

Figure 2.1: Simplified schematic representation of a solar cell device, single diode 

equivalent circuit model with parallel and series resistances. 

 

The most widely used method for solar cell characterization is the current-voltage 

characteristic of the cells, i.e. I/V measurement [2.1, 2.2]. It provides very important 

electrical properties of the cell, from which one can judge how the cell parameters have 

to be further changed, in order to achieve a higher efficiency in sun-light harvesting. 

The  I/V characteristic is influenced by the conductivity of materials and interfaces, 

exciton or charge carrier diffusion lengths, traps and recombination. Those parasitic 
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resistances can also be modelled as before, see figure 2.1, with a RP and RS. Ideally, RP 

would be infinite and would not provide an alternate path for current to flow, while RS 

would be zero, resulting in no further voltage drop before the load. 

Solving the circuit, using the Shockley equation for an ideal diode where “VD” is 

the diode voltage and “ID” is the diode current, we obtain the observables used in 

evaluating the performances of any solar cell device:  
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     (2.1) 
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where “n” is the ideality factor, that represents how closely the diode follows the ideal 

diode equation, and “IS” is the saturation current of the diode.  

Then:  
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   (2.4) 

Further on, we can calculate the most important parameter for evaluating 

performance of a solar cell: the efficiency “η”. This value expresses how much of the 

incident light power on the photovoltaic cell “Plight” is converted into electric power 

“Pmax”:  
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The measurement of the I/V characteristics is done in the following way: during 

illumination, a voltage is applied to the electrodes of the cell and the flowing current is 

measured. The current is divided by the exact cell surface, thus normalized to 1 cm2. 

From now on, we will indicate “I” as a general current while “J” represents the current 

normalized and consequently they became equivalent for a 1 cm2 solar cell. In Figure 

2.2 we can observe a typical J/V curve.  

 

 

Figure 2.2: A typical Current/Voltage characteristic for a solar cell. “VOC” and “JSC” 

are the open circuit voltage and current, “Vm” and “Jm” are the voltage and the current 

at the point of maximal cell power. 

 

As known, the electrical power of a device is the product of current and voltage. 

The electrical power has a maximum at one point of the J/V curve. This is the point 

where current and voltage is marked as Jm and Vm, respectively. Exactly their product 

gives Pmax of the solar cell. On the J/V curve there are two other important points, VOC 

and JSC, that we can directly measure in our experiments. The short circuit current is 

Jm 

Vm 

Jph 

Voc 

         Jsc 

 

J(current density) 

Voltage 

FF = 

dark 

illumination 

Pmax 
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called JSC and is the point where the curve cuts the Y-axis (or current density axis). There 

the applied external voltage goes to  zero. This is the point where the measured current 

is exactly the current yielded by the solar cell if its electrodes were short-circuited (from 

there “SC”). The open circuit voltage (VOC) is the intersection of the J/V curve with the 

X-axis (or voltage axis). There the applied external voltage is exactly equal to the 

internal voltage of the cell, so no current will flow. These points are respectively the 

maximal current, and the maximum voltage that the cell can deliver. In case of the ideal 

diode their product would give the maximal power of the cell, but in reality one more 

fundamental factor is induced, the fill factor (FF):  

 

�� =
�� ∙ ��
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     (2.6) 

 

The fill factor shows how strong the form of the J/V curve deflects from the curve form 

of an ideal diode. Consequently, the power conversion efficiency of the solar cell is 

being calculated using the following equation:  
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Therefore, the J/V measurement of a photovoltaic device gives us some very useful 

information about the device and its internal contact interfaces. A more accurate study 

can be done looking closer into the physics of a specific solar cell technology. In this 

work we focus on organic devices as they represent a suitable technology for BIPV and 

consumer electronics as mentioned in Chapter 1. 
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2.2 Organic solar cell characteristics 

 

The organic photovoltaic technology is a special case where all the electrical I-V 

characteristics are the same as other photovoltaic technologies, but the device physics is 

different. When light hits the active material, a photon is absorbed and one electron-hole 

pair (exciton) is generated. In the case of silicon, this exciton is automatically dissociated 

in a hole and an electron thereby generating electrical current, while in an organic 

material the exciton is tightly bound and has a limited lifetime before it recombines 

[2.3]. This translates into a diffusion length of about 10nm in the organic material. In 

order to dissociate, the exciton has to reach a donor-acceptor interface (D-A) facilitating 

the generation of electrical current. This D-A consists of different charge carrier 

semiconducting material, one having good transport properties for holes (donor) and the 

other favouring the transport of electrons (acceptor). 

In this section, for the sake of simplification we schematize the device as a two 

layer material. Later in this work we present the use of a bulk heterojunction consisting 

of a blend of the two materials in order to minimize the bottleneck of the exciton 

diffusion length [2.4] (we bring the interface as close as possible to the area where the 

exciton is generated). Assuming that the light is absorbed in the material creating an 

exciton, Figure 2.3 (a), this exciton has to travel until it finds an interface, Figure 2.3 

(b), that allows an easier charge separation. At the interface point, both the electron and 

the hole are free to move, Figure 2.3 (c), in the direction of the electrode that will collect 

the carriers, Figure 2.3 (d). 
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Figure 2.3: Schematic illustration of light harvesting in a bilayer organic solar cell 

device, (a) the light is absorbed and an exciton is created, (b) the exciton moves in the 

material until finds an interlayer that separates the electron and the hole, at this point 

the charges can travel (c) and be collected (d) reaching the respective electrode.  

  

In the steps of Figure 2.3 we encounter a quenching mechanism that recombines 

the excitons or carriers and consequently reduces the overall efficiency. In the light 

absorption process, depending on the material characteristic and thickness, we are 

typically able to absorb about 2/3 of the incident light in the working spectra of the 

specific material. This is translated in the photon absorption efficiency “ηabs(λ)”, figure 

2.3a.  We are not able to absorb the remaining 1/3 of the photons because we are limited 

by the exciton diffusion length. This limitation leads to a typical organic solar cell active 

material not being thicker than 200 nm. The absorption efficiency is also strongly 

depending on the incident wavelength for two reasons: First of all the wave profile for 

each wavelength inside the active material has to be related to the volume of interaction 

in the active material§. Secondly, independent of its size the active material has a 

different wavelength response (refractive index). Analysing the other steps in light 

harvesting in a bilayer organic solar cell, we realize that they are wavelength 

independent. After the absorption step a photon is converted into an exciton and we can 

represent the efficiency of the exciton diffusion, figure 2.3b, as “ηed”. Once the exciton 

reaches the interface we can assign a charge separation efficiency “ηcs” quantifying the 

                                                            
§ integrating the active layer volume and the field intensity distribution in the active layer will 
give the photon absorption value 



C h a p t e r  2 .  S o l a r  c e l l s  p h y s i c s  | 46 

 

 

number of excitons over the total amount dissociated. The charge transfer efficiency 

“ηct” identifies the number of charges, which can effectively go from the interface of the 

bilayer material to the edge of the active layer itself, figure 2.3c. At the end of the process 

the charges need to be collected from the electrodes to create current and generate 

power, and this charge collection efficiency can be expressed as “ηcc”. Now we can take 

into account all the different efficiencies to obtain a general expression for the number 

of photons arriving on the device that are converted into electrons; this defines the 

external quantum efficiency (EQE): 

 

���(�) = ����(�)������������	

    (2.8) 

 

 As observed before, the only efficiency parameter dependent on the wavelength 

is the absorption efficiency, all the other parameters are wavelength independent since 

they represent an intrinsic characteristic of the system. Performances are related to the 

devices architecture and materials, a preference is reserved for an active material with a 

high ability of forming excitons that can travel efficiently and dissociate into their 

constituent electron-hole pairs, and reach the cell electrodes. Different strategies were 

implemented from the first bi-layer donor-acceptor solar cell. A mix of the two materials 

were introduced to compensate for the poor exciton diffusion length. Some of the 

proposed nano-geometries are reported in Figure 2.4. 
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Figure 2.4: (a) An idealized bulk heterojunction structure, (b) Mixture of two 

dissimilar molecules leading to recombination, (c) Mixture of two dissimilar 

molecules leading to efficient exciton diffusion [2.5]. 

 

In Figure 2.4 (a), an idealized bulk heterojunction structure is represented. The 

segregation of D-A molecules (or polymers) leads to an “interdigitated” structure with 

lateral feature sizes no larger than the exciton diffusion lengths. Figure 2.4 (b) shows a 

mixture of two dissimilar molecules, planar stacked, where disruption of the molecular 

stacks leads to charge trapping and ultimately recombination. While in Figure 2.4 (c) 

percolating paths are formed across the film consisting of a mixture of a planar stacking 

and spherically symmetric molecule. The nano-structured, spatially distributed D-A 

interface is responsible for efficient exciton diffusion in the mixture. This active 

materials nano-structuration is often associated with the morphology of the blend and 

could principally be improved by chemical or physical treatments. This improvement 

can for example be obtained by annealing in different ambient conditions, by having a 

different concentration in the mixture of the two materials or by physical nano-

structuration [2.5]. 

 It is hard to achieve the control of excitons in nanoscale systems [2.6] and this 

requires novel approaches. Nowadays the problem of exciton diffusion is readdressed 
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as “quantum coherence” [2.7]. It is possible to modify the internal resistance of the 

device by playing with the blend morphology [2.8]. 

 A widely used donor material was Poly3-hexylthiophene (P3HT), which has 

intrinsically a 20 nm of exciton diffusion length [2.9-2.12]. This material has reached 

an efficiency between 2 and 5% depending on the device structure and the conditions of 

fabrication. Recently progress was made in obtaining “low bandgap” materials pushing 

the solar cell efficiencies above 8%. As acceptor materials the fullerene (PCBM) and 

fullerene derivatives are still considered the most efficient solution. A more extensive 

listing of active materials is reported in Appendix A. 

 To complete an organic solar cell device, other layers are added around the active 

layer to efficiently collect the carriers and ensure correct functioning of the device. Two 

electrodes are needed, one of them transparent in order to let the light transmit to the 

active layer. In between the active material and the electrodes a transporting layer is 

needed to optimize the efficiency and to electrically stabilize the device itself. A 

schematic of such multilayer device is shown in Figure 2.5 where (a) represents a direct 

configuration and (b) an inverted configuration. 

 

     

Figure 2.5: Architecture types depending on the charges collected by the semi-

transparent electrode through which the sunlight enters the cell. 
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A direct configuration is when the light passes through the transparent electrode 

hitting the hole transporting layer** (HTL), then the active layer, followed by the 

electron transporting layer†† (ETL) and at the end it encounters the back electrode. The 

holes travel to the transparent electrode while the electrons go to the back electrode. In 

the inverted structure the light first comes to the ETL and then the HTL. Therefore the 

electrons are travelling to the transparent electrode while the holes are travelling to the 

back electrode. In the way these devices are fabricated a typical material for HTL in 

direct configuration is PEDOT while in indirect configuration is MoO3. For the ETL a 

thin layer of LiF is used in direct configuration while ZnO is a promising alternative in 

an inverted device. An ITO layer is typically used as transparent electrode, but any 

material with good transparency and good carrier mobility can be used. For a more 

descriptive list of materials see Appendix A. 

More structures were fabricated using the above mentioned structure as building 

blocks. Semi-transparent devices can for example be obtained simply by having a 

transparent electrode in both sides of the solar cell. A more advanced use of direct and 

inverted solar cells has been made by implementing tandem configurations. Recently 

these configurations have shown their potential even in the case of transparent devices 

[2.13-2.17]. As the word tandem suggests, we are in presence of piled up devices. For 

example a Series Tandem Solar Cell is the superposition of two direct or inverted solar 

cells, here the voltage sums up taking advantage of the double device structure. Opposed 

to this is the case of Parallel Tandem Solar Cells where a direct device is connected with 

an inverted one (or vice versa) and the two active layers absorption causes an 

incensement of the current.  

An inverted configuration remarkably results in a more stable device that exhibits 

a longer life span [2.18-2.23]. Considering that our structure responds better in such 

configuration we will from now on in the experiment within this work consider only 

inverted organic solar cell devices. 

                                                            
** HTL has also the function of electron blocking layer 
†† ETL has also the function of hole blocking layer 
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In conclusion, there are many ways to improve the photon-electron conversion 

efficiency: we can modify the morphology of the active material, we can implement new 

and more promising low band gap materials capable of absorbing a wider spectrum of 

light. Basically these methods influence internal factors while we foresee great 

improvements within optical enhancements of organic solar cells. Because of standard 

devices geometry and materials thickness the blend cannot absorb 1/3 of the incident 

light in the range of the blend absorption spectrum. When we include the limitation of 

the active material band gap, 2/3 of the overall solar spectrum is currently not used. 
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3. 
Optical enhancements 

This chapter will briefly treat the optimization of a solar cell. In 

particular we will describe how to enhance the photon flux in order 

to achieve the maximum efficiency and photocurrent generation. 

Then a more extensive treatment will be dedicated to sub wavelength 

devices optimization. 
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3.1 Optimizations of a solar cell 

 

There are many approaches to enhance the performance of a solar cell. The 

internal factors‡‡ of the performance are not directly treated in this work, we focus 

specifically on the external factors that influence the efficiency. These external factors 

are related to light management. Indeed photocurrent generation in a solar cell can be 

increased if the photon flux increases. The total photon flux used in the photocurrent 

generation process consists of the flux density incident on the solar cell minus the 

fraction reflected R(λ) and transmitted T(λ) in the case of transparent photovoltaics. 

There are different solutions valid for mostly all the PVs technologies that could be used 

to manage the light collection and its enhancement inside the active layer. We briefly 

summarize the main ones: 

 

1)  Solar collector: it is a system commonly based on reflective optics 

or Fresnel lenses, which increases the intake of photon flux in the solar cell. The 

main motivation is the reduction in system cost due to the reduction of the 

material used for the solar cell itself. In theory, concentration ratios of over 46000 

are possible, but in practice the temperature increase and the resistance losses are 

limiting this theoretical ratio to few hundreds “sun” [3.1]. If we apply this system 

in “high junction”§§ limit remarkably it could increase the efficiency of all the 

system to over 44% [1.9]. The idea behind this method for light control is very 

old [3.2], having been used by the ancient Greek scientist Archimedes, in the 

famous fight against the roman military ships as shown in the fresco [3.3] of 

figure 3.1.  

                                                            
‡‡ Like charge recombination, crystallinity or temperature. 
§§ Where the sun light is absorbed typically by 3 or 4 junctions - each of them dedicated to 
different parts of the solar spectrum. 
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Figure 3.1: Fresco of one of the first, documented, solar collector where the sun light 

is collected and redirected on a ship [3.3]. 

 

2)  Anti reflection coating (ARC): it is used to reduce the reflectivity 

of the solar cell (for an uncoated silicium R is about 30% in the visible range) to 

less than a few percent [3.4-3.8]. Commonly, ARCs are optimized for the 

absorption wavelength range of a specific solar cell. They are important also in 

transparent photovoltaics since they allow a higher amount of light to pass in the 

device.  

3)  Back side reflector: it consists of a mirror and/or diffractive 

element placed on the bottom side of the solar cell that allows light trapping 

inside the cell itself [3.9]. Light transmitted through the solar cell is reflected 

back by this mirror therefore increasing the total photon flux increasing the 

number of additional passes of light inside the active material. Internally reflected 

rays often increase the photon flux density.  

4)  Photon recycling: it is used in materials where the radiative 

recombination is an important loss mechanism. That is the case, for example, of 
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light trapping structure. Here the reabsorption of the emitted photon can enhance 

the photon density itself [3.10-3.11].  

5)  Up/down conversion: it consists in adding an extra layer of material 

that up/down converts (through absorption and re-emission of photons) a part of 

the incident radiation into different wavelength ranges. It is used for converting 

parts of the incident spectrum that normally are lost into wavelength ranges that 

can be absorbed by the solar cell. Until now a fabrication of a real device that 

exploits this possibility is far from being readily available, mainly due to the 

instability of the materials involved in the conversion. However, there is 

nowadays a big interest in this field [3.12].  

 

For thin devices, where the lightweight and cost effectiveness is important [3.13], 

none of the optical management scheme described above can be implemented unless 

they demonstrate simplicity in the fabrication process and compatibility with the 

existing technologies. As an example a self-assembled technique could be one of the 

tools that could be implemented. We mainly focus on solutions 2, 3, 4 that we consider 

to be more suitable for thin films technologies. Moreover, we want in this work to 

enhance the photon flux in maximum 200 nm of active layer, which makes things far 

more problematic as described in the next paragraph.  

We will describe here the principles of operation of an ARC. In an ARC, the first 

layer that accommodates the sun light into the device has a fundamental importance in 

light management. This part can indeed be used to enhance the light passing through the 

device. The reflectivity at the interface between two media is determined by their 

refractive indices, for instance air with refractive index n0 and a substrate with refractive 

index nAL. In the simplest case of planar surfaces, at normal incidence, the light is 

reflected with probability:  

 

� = �
��−���

��+���
�

�

	

     (3.1) 
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For air we can consider n0=1, and since most materials used in photovoltaics have 

indices nAL of 3 - 4 (2 for organic materials) at visible wavelengths, around 30-40% of 

the incident light is reflected at the interface. To reduce reflection, a thin layer of 

dielectric film with refractive index nl satisfying n0< nl< nAL, can be applied to the 

surface of a device and serves as an ARC [3.1].  

To achieve minimum reflection losses at a certain incident wavelength λ0, the 

ARC should have an index nl satisfying  

 

�� = ��� ∙ ���	

     (3.2) 

 

and the thickness t determined by  

 

� =
��

4��
	

     (3.3) 

 

However, although n0=l is constant across the full solar spectrum, the refractive index 

nAL  typically varies significantly in this wavelength range. Therefore, index match at 

one wavelength does not mean high light admission over the entire solar spectrum. At 

the same time, the well-admitted light needs to be well absorbed by the active material. 

Keeping all the internal device parameters constant we are enhancing the EQE by 

allowing more photons to effectively reach the active photo conversion layer. This 

relation can best be seen with the following expression for short-circuit current density:  
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where Nph(λ) is the incident solar photon flux at that wavelength and q is the electron 

charge. Clearly, JSC is influenced by an integrated effect of ARC and the active layer 

absorption over the whole solar spectrum.  

We can further improve the ARC by adding one ore more additional layers. The 

layer indices should increase consecutively from air (n0) to first coating (n1) to second 

coating (n2) and to active layer (nAL) [3.1], i.e. 

  

�� < �� < �� < ��� 

(3.5) 

 

For single incident wavelength, zero reflectivity is achieved when both films have 

quarter-wave thickness and satisfies:  
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(3.6) 

 More specific studies are needed to improve each of the PVs technology. 

Basically both an ARC and a back reflector solution are aimed at enhancing the light 

path inside the active material, while the photon recycling concept is more connected to 

the creation of an optical cavity that will keep photons inside the active material layer 

as much as possible. All these methods are studied to enhance the photon – electron 
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conversion efficiency by increasing the amount, and the permanence, of photons inside 

the active layer. 

From now on we will focus on the special case of ultra-thin photovoltaics that 

have active layers lower than 200 nm and that consequently require special attention for 

the light management in the device. 
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3.2 Optical enhancements for ultra-thin film solar cells 

 

We refer here to ultrathin film solar cell technologies, characterized by an active 

layer of thickness lower than 200 nm. This is due to intrinsic material properties, as in 

the case of organic materials [3.14-3.16]. However, thicknesses well below the 

diffraction limit imply only little absorption of the incident light that greatly limits the 

efficiency of the solar cell.  In such devices the light management or photon control is 

fundamental to restore higher efficiencies. In such thin systems one can take advantage 

of different properties of light. Considering that the sun light has an optical coherence 

of about 1 µm we can design our device to exploit optical interference effects. Knowing 

the electric field “E” and taking into account both real “n” and imaginary “k” refractive 

index of our materials we can calculate the light absorbed in any layer from its material 

properties and equation (3.7). Our final objective will be to calculate the light absorbed 

in the active layer in order to determine the total JSC: 

 

���� = 2�� � �
�(�)�(�)��

��

����

����

|�(�, �)|�����. 

(3.7) 

 

 Considering the photon flux and that the EQE has only the light absorption 

efficiency that depends on the wavelength we can rewrite the shot circuit current 

equation from equation (3.4) to equation (3.8): 
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where φ is the part of the EQE, see equation 2.8, which does not depend on the 

wavelength. Equation (3.8) is important not only for the correct design of a photovoltaic 

solar cell, but also for testing the effective validity of an optical design. This allows us 

to have a direct comparison between the theory and the experimental data. For example 

with an EQE measurement setup, for testing the wavelength dependence validity, we 

can retrieve, point by point, all the current generated by our device at each wavelength. 

Alternatively, with the J/V characteristic, we can compare the measured total short 

circuit current, that in this case represents our evaluation parameter, with the one 

calculated using the equation 3.8. 

 Looking more in details at the light matter interaction we would like that all the 

photons were absorbed in the active layer material, but this is not possible intrinsically 

because the material thickness is much smaller than the incident wavelength and this 

mismatch, as observed before, is one of the causes of a not optimal photon-carrier 

conversion. To overcome this problem one might introduce a cavity resonator that 

enhances the probability of a photon to be absorbed in the active material. In this way a 

photon will stay “longer” in the active material volume (longer optical path) and the 

overall wave could fit in a more optimal way the volume of the active material. Typically 

optical cavities are designed for a specific wavelength and therefore for having high 

quality factor Q. This means that a beam will reflect a large number of times with little 

attenuation***. In our case we are interested in low quality resonator that allows a broad 

spectrum of interaction, with the solar spectrum. Additionally our target would be to 

                                                            
*** the Q factor is, in the bandwidth formulation, the ratio between the resonance frequency ν0 
and the full width at half-maximum bandwidth Δν of the resonance: Q= ν0/ Δν 



C h a p t e r  3 .  O p t i c a l  e n h a n c e m e n t s  | 60 

 

 

confine [3.17] the electromagnetic field in a volume of the same order of magnitude as 

our active layer volume.  

 Many methods can be used to create a cavity [3.17], from simply having two 

mirrors or Bragg mirrors to the whispery gallery modes of a sphere or toroid. Photonic 

crystal cavities are also a good candidate thanks to their potentially reduced modal 

volume, but as drawback they work mostly for specific wavelength range. In chapter 5 

we show how the combination of an ARC, an a-periodic 1D photonic crystal (multilayer, 

in order to have a broadband response) and two semi-transparent metal mirror, used also 

as electrodes, can enhance an OPV semi-transparent device to achieve a JSC near to a 

non-transparent (opaque) device.  

 Moreover we could imagine how the confinement of light in a small volume 

could be associated, in a bigger scale, to the problem of coupling efficiently the radio 

frequencies to electric circuits. As we know this problem was solved by introducing the 

concept of antenna. In our case to be able to implement an optical antenna we need to 

scale down the problem by million times [3.18, 3.19], considering the size difference 

between optical and radio wavelengths†††. With optical antennas we would like to 

manipulate the sun light, by efficiently trap the light (far field, see chapter 4) in our thin 

film device, in order to maximize the number of photons, and their permanence, inside 

the active material. Such a system could also be associated with an optical resonator 

with a poor quality factor but with an incredibly small volume of interaction and 

relatively broad spectrum. An antenna can be designed for this scope and, as an example, 

placed in the upper layers, the ones that first accommodate the sun light. In this case we 

would like to maximize the light scattered into the active material. This is possible, in 

theory, because the scattering is connected with the antenna geometry. In the following 

Chapter 4 we will go deeper into this topic and we show how to effectively couple the 

light in an OPV device by manipulating the antenna design. 

 

                                                            
††† Radio wavelengths are in the range between 10 cm and 10 m, depending on the 
technology, while we harness the sun's energy mostly between 300 nm and 1800 nm. 
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4.  
Optical nano-antenna improved 

OPVs 

Introducing plasmonic resonant scatterers in photovoltaic devices is 

a promising way to increase energy conversion efficiencies by 

trapping incoming light in ultra-thin solar cells. Colloidal plasmonic 

oligomers are obtained following a cost-effective self-assembly 

strategy and incorporated in organic-based cells produced using 

spin-coating techniques in ambient air conditions. We report an 

interesting increase of both external quantum efficiency and short 

circuit current for solar cells loaded with plasmonic oligomers 

compared with reference organic cells with and without isolated gold 

nanoparticles. Theoretical calculations demonstrate that the 

wavelength dependent EQE enhancement is a resonant process due 

to the increased scattering efficiency in plasmonic antennas allowed 

by a chemically controlled 1 nm nanogap. This method opens the 

way towards roll-to-roll fabrication of efficient plasmonic ultra-thin 

photovoltaic devices. 
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4.1 Optical antennas effects 

 

The optical enhancement of a thin film is a critical factor knowing that typically 

the light that can be effectively absorbed is in the range between 400 nm and 600 nm, 

but, in order to achieve a good light harvesting device, we need to absorb light in the 

300 nm - 1100 nm band interval. Violet and UV light is typically in the first few nm of 

the thin film while red and IR radiations pass through the device without being 

effectively absorbed. In the field of thin film photovoltaics, as mentioned in the first 

chapter, OPVs are promising opto-electronic devices to produce electricity because they 

are cost effective, possibly transparent and flexible [4.1–4.3]. Indeed they still suffer 

from weak electro-optical performances compared with inorganic thicker cells and thus 

require considerable efforts to increase their efficiency. Enhanced light matter 

interaction has been also the focus of many investigations over the last year, because it 

may solve severe challenges, such as the miniaturization of detectors thereby reducing 

the response time and space needed, increase their sensitivity, or, indeed, for more 

efficient and cheaper thin-film solar cells [4.1-4.5].  

Increased power conversion can be obtained by enhancing light matter-

interactions in the active material [4.4, 4.5]. In this context, optical antennas have 

attracted keen interest because the resonances supported either by nanoparticles or nano-

structured electrodes are broadband and match well with the solar spectrum [4.6–4.8]. 

Most of the experimental work in organic cells shows evidence of indirect effects like 

exciton lifetime reduction [4.9], electrical device improvement [4.10–4.12], blend 

morphology modifications [4.13, 4.14], refractive index modification and other side 

effects like blend stabilization [4.15]. These effects produce mostly a spectral invariant 

enhancement contrary to what happens when direct resonant plasmonic effects are 

involved such as enhanced near-field and far-field scattering [4.16-4.20]. However, the 

efficiency of metallic particles in solar cells is hindered by the inherent ohmic losses of 

noble metals in the visible range. Large dielectric particles supporting lossless Mie 
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resonances are also promising for optimizing forward scattering processes [4.21, 4.22], 

but their diameters are typically of the order of λ/2. They are thus incompatible with 

organic solar cells requiring thin film geometries to avoid charge recombination.   

In this chapter we will focus on designs that place the metallic optical antennas 

not in a direct contact with the blend but with the transporting layer. These designs limit 

the parasitic losses and the electrical performance deterioration. The design here 

presented is schematized in Figure 4.1: image (a) shows how placing the nano-antennas 

in the ETL (in the indirect configuration) could enhance the light path inside the device 

and the possibility, for the light itself, to be absorbed by the active material; image (b) 

shows how the light can excite a mode at the back electrode interface in order to enhance 

the light localization. 

 

      

 

Figure 4.1: Optically enhanced OPVs schematic, (a) a surface plasmon resonance 

enhanced device with NPs located in a random configuration, (b) a surface plasmon 

polaritons enhanced device with a grating displaced in a periodic configuration. 

 

In Figure 4.1 (a) we enhance and tune the absorption of the thin film containing organic 

molecules by the coupling to surface plasmon resonance. Here part of the light, from the 
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far field, is converted to the near field at a nanometer scale and then re-emitted again in 

the designed direction. In this case the nanoparticles are randomly deposited on the 

transparent electrode and are discussed in the next paragraph where, also, a new 

geometry is presented. In Figure 4.1 (b) we enhance and tune the active layer absorption 

by using the surface plasmon polaritons existing at metallic interfaces. This case is 

discussed in the last paragraph of this chapter (chapter 4, paragraph 3). Another option 

would be to cover the metallic nanoparticles with a dielectric material and then embed 

them in the active material, but this has the disadvantage of reducing the volume of the 

blend itself while it could directly harvest the near field. We also discuss the near field 

enhancement in more detail in the last paragraph of this chapter using an innovative 

design.  
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4.2. Self-assembled plasmonic nanogap antennas for 

organic photovoltaics (random configuration) 

 

In this paragraph we focus on the scattering properties of nano-antennas and we 

introduce, for the first time, the design of a compact and highly performing solution. 

The scattering efficiencies of metallic nanoparticles can be improved by tuning their 

shape and size [4.23, 4.24] or by modifying their surrounding environment [4.25]. 

Because of the geometry constraints in thin film solar cells, we follow a scalable self-

assembly method to form plasmonic oligomers that feature increased scattering cross-

sections per particle in the visible range. We show that those antennas with a chemically 

controlled ~1 nm gap can be introduced in organic based thin solar cells to enhance both 

the external quantum efficiency and short-circuit current. Cost-effective fabrication 

strategies are used for both the antennas and the ultra-thin film cells obtained using 

standard spin-coating techniques in ambient-air conditions. We underline the role 

played by the efficient light scattering of nanogap antennas compared to isolated 

nanoparticles, by comparing theoretical calculations to wavelength dependent EQE 

measurements.  

 

4.2.1 Scattering efficiency 

Metallic particles are resonant scatterers that are generally characterized by their 

extinction and scattering cross-sections [4.26, 4.27]. Such quantities are not intrinsic 

properties of particles and depend on the surrounding environment [4.25]. It is actually 

possible to increase the scattering and decrease the absorption of metallic nanoparticles 

by engineering their local environment, and more precisely by increasing the electric 

local density of states. In this section, we propose to modify the electromagnetic 

environment of a particle by simply approaching a second particle to form a dimer 
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antenna. Metallic nanogap antennas are very interesting plasmonic devices for 

increasing, in a very small volume confined in the nanogap, the electric local density of 

states allowing the fabrication of very fast single photon sources [4.28]. The coupling 

between the two particles has been well theorized by the quasi-static hybridization 

model and recently extended to non quasi-static dipolar cases [4.29, 4.30]. Depending 

on the conditions of illumination, the scattering efficiency can be either red- or blue-

shifted [4.31].  

 

Figure 4.2: Scattering cross-section of a 40 nm gold particle with respect to the 

incident wavelength when considering a monomer (black line) or a dimer when the 

incident electric field is polarized along (L, blue dashed line+circles) or perpendicular 

(T, red line+squares) to the axis of the dimer. The average over both polarizations is 

represented by the green line. In the case of a dimer, this ratio is averaged over the 

incident polarization, the dimer is illuminated in normal incidence, i.e. the incident k 

vector is normal to the dimer axis. These cross-sections are estimated per particle and 

normalized with respect to the particle surface area. 
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In this section, emphasis is placed on the increase of the scattering efficiency of 

a particle when coupled in a dimer. In order to quantify the increase of the scattering 

efficiency of particles when strongly coupled in a dimer, we plot in Figure 4.2 the 

scattering cross-section of a particle either isolated (monomer) or assembled in a dimer 

surrounded by a homogeneous medium made of spin-coated TiO2 anatase nanocrystals 

whose dispersive refractive index was measured by ellipsometry. The dimer is 

illuminated in normal incidence, i.e. the incident k vector is normal to the dimer axis, 

with an incident electric field parallel or perpendicular to the axis. The refractive index 

of metal is taken from Palik [4.32]. The scattering efficiency of the monomer exhibits a 

resonant peak due to the excitation of the dipolar plasmonic mode on the particle around 

560 nm. In the case of the dimer, the scattering efficiency strongly depends on the 

incident polarization. When the incident electric field is parallel to the dimer axis (T), 

the spectral feature of the scattering efficiency is very similar to the monomer while, 

when the incident electric field is normal to the dimer axis (L), the scattering efficiency 

features two strongly red-shifted peaks. The first peak around 770 nm is linked to the 

dipolar longitudinal bright mode and the second is a hybridized mode of quadrupolar 

order. The two peaks are separated by a well pronounced dip that is characteristic of the 

very small gap [4.33]. We can observe that, over a broad spectral range, the scattering 

efficiency of a particle can be strongly enhanced when coupled in a dimer. Figure 4.2 

shows how small gold particles coupled in nanogap antennas in a high index medium, 

exhibit higher scattering than isolated AuNPs.  

Additionally, plotting the field map in Figure 4.3, we can observe how the dimer 

is enhancing the electric field inside the active material and how the light is scattered in 

the forward and lateral direction. For the red part of the spectrum, right images, we 

observe how a monomer is ineffective while a dimer is exhibiting its maximum 

interaction with light. 
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Figure 4.3: Electric field map for dimer and monomer for different wavelength, 

longitudinal and transversal polarizations. 

 

4.2.2 Fabrication 

Self-assembly strategies for plasmonic solar cells are attractive because they are 

cost-effective and lead to a random structuring that allows efficient light trapping effects 

over a large spectral range. All the processes used in this study are based on bottom-up 

approaches in air and at low temperatures (between 15 °C and 150 °C). Because of their 

low oxidation, we use gold nanoparticles [4.34–4.36] even if other materials like silver 

[4.13, 4.14, 4.37] should offer lower ohmic losses.  
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Figure 4.4: (a) Schematic representation of the fabricated and characterized solar 

cells. It is composed of a 100 nm thick Ag layer, a 10 nm thick MoO3 layer, a 170 nm 

thick P3HT:PCBM layer, a 60 nm thick TiO2 layer and a 120 nm thick ITO layer 

covered by a thick glass layer. (b) Optical density of two solutions of colloidal gold 

particles (2nM concentration of AuNPs). Red line: monomers of 40 nm gold particles, 

green line: same solution after performing the self-assembly method. (c-d) Self-

assembled oligomers on an ITO substrate imaged by scanning electron microscopy. c: 

monomer solution, d: oligomer solution composed of monomers (70%), dimers (23%) 

and trimers (7%). 49% of the particles are coupled in oligomers. 

 

The geometry of the organic solar cells is schematically depicted in Figure 4.4a. 

The self-assembly method is based on two ligand exchange steps in water: phosphine 

coated AuNPs are aggregated in dimers and trimers by adding small amounts of 
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dithiothreitol (DTT, to crosslink the particles) and sodium chloride (to screen 

electrostatic repulsion between particles) before the nanogap antennas are stabilized by 

adding an excess of thiolated ethylene glycol oligomers (to avoid the formation of larger 

groupings) [4.38]. The overall reaction process takes less than ten minutes and these 

small groupings are compatible with a thin film solar cell without modifying the device 

functionality. In order to evidence that self-assembly occurs, we measured the extinction 

spectra of two suspensions of 40 nm gold particles (2 nM concentrations), with and 

without the self-assembly process (see Figure 4.4b). The spectral features show the 

appearance of a second peak at 630 nm for the solution with DTT corresponding to the 

excitation of longitudinally coupled modes in dimers and trimers. The self-assembly 

process is also associated with a decrease of the main peak at 520 nm, corresponding to 

the dipolar plasmonic mode of the monomers and transverse modes in the oligomers. 

The difference between the extinction spectra of the 2 solutions can also be observed in 

the picture of the 2 samples (inset). Longitudinal resonances at 630 nm for dimers in 

water correspond to an interparticle gap of the order of 1-1.5 nm as estimated in Mie 

theory, in good agreement with the length of the molecular DTT linkers. We use a stable 

suspension containing gold nanoparticle (AuNP) monomers (70%), dimers (23%) and 

trimers (7%) meaning that 49% of the particles are coupled (as estimated in scanning 

electron microscopy, see Figure 4.4c and 4.3d). The particle density is estimated to be 

12 NPs per mm2. 

Solar cell devices are fabricated using a glass substrate coated by a 120 nm thick layer 

of ITO. The gold nanoparticles are spin coated in 2 steps after UVO activation process 

and N2 gun cleaning. Both procedures are fundamental to link the plasmonic nanogap 

antennas to the ITO layer, as displayed in Figure 4.4 (c-d) obtained with a scanning 

electron microscope. Then a solution of anatase TiO2 nanocrystals is spincoated on top 

of the ITO and gold antennas, as a 60 nm ETL. The SEM images show that after the 

spin-coating process, the oligomers are horizontal with respect to the ITO surface. The 

thickness of the TiO2 layer being 50% larger than the diameter of the particles, the 

AuNPs will not be in direct contact with the active layer [4.39]. This high refractive 

index interlayer is aimed at scattering the incident light in the forward direction, but also 

at transporting the generated electrons to the ITO electrode. It typically provides higher 
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cell performances than sol-gel TiO2 layers [4.40]. A 170 nm thick active layer made by 

a 1:1 P3HT:PCBM solution is spin coated on top of the TiO2 layer. A 10 nm thin layer 

of MoO3 is finally evaporated on the blend as HTL and a silver electrode is thermally 

deposited to complete the device. 

 

4.2.3 Electro-optical characterization 

The solar cell efficiencies are measured with a solar simulator implemented with 

an EQE measurement set-up. We can observe in Figure 4.5 a broadband effect of the 

plasmonic nanogap antennas on the efficiency of the solar cell compared to a standard 

organic cell, and, more importantly, compared to the cell loaded with isolated AuNPs. 

This graph highlights the interest of plasmonic nanogap antennas for photovoltaic 

applications. However, the gain in EQE between cells loaded with monomers and 

oligomers solutions is more visible in the blue-green part of the spectrum (λ < 550nm). 

The interest of oligomers over monomers almost disappears in the 525 nm - 600 nm 

range.  

 

Figure 4.5: (a) Measurements of the External Quantum Efficiency with respect to 

the wavelength and (b) J-V curves for the three cells, standard (black line) and 

loaded with plasmonic monomers (red line) and oligomers (green line). External 

quantum efficiency in %, wavelength in nm, short circuit current JSC in mA/cm2 and 

tension in V. 
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The increased performance of the plasmonic cells, especially doped with 

oligomers, is further demonstrated in the I-V solar simulator measurements (see Figure 

4.5b). The efficiencies of the three solar cell geometries are summarized in Table 4.1. 

Comparing the solar cell without nanoparticles and the one loaded with the plasmonic 

oligomers, we are able to reach an overall 11% increase in short circuit current, while 

for the monomers, the increase in short circuit current is only 8%. Overall, the solar cell 

efficiency goes from 2.8% with the standard organic cell to 3.2% with plasmonic 

oligomers.  

 

Table 4.1: Solar cell characteristics measured from I-V solar simulator. 

Solar cell device 
FF      
[%] 

VOC 

[mV] 
JSC 

[mA/cm2] 
Eff   
[%] 

Standard 51.8 632.8 8.58 2.8 

Adding Single Au 40 nm NPs 52.8 622.3 9.29 3.0 

Adding nanogap antennas 53.5 621.2 9.52 3.2 

 

The efficiency of the pristine solar cells results from a thorough optimization 

process for devices fabricated in an ambient air environment and at room temperature 

(23 °C), compatible with roll-to-roll applications [4.40]. Let us stress that we used an 

inverted configuration that brings more stability compared with a direct solar cell device.  
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Figure 4.6: (Left scale) Relative difference in % of the EQE between the solar cells 

loaded with oligomers and monomers (green line) and between the pristine solar cells 

and the solar cells loaded with monomers (orange line) as a function of the 

wavelength. (Right scale, blue line) Normalized difference between the scattering 

cross-sections calculated with a dimer and a monomer. In the case of the dimer, the 

scattering cross-section is calculated per particle, and is averaged over both 

polarizations. 

 

In order to better visualize the increased performance offered by plasmonic nanogap 

antennas compared with monomers, we plot in Figure 4.6 the relative difference of EQE 

between cells loaded with oligomers and monomers as a function of the wavelength. 

This graph shows the large enhancement of the EQE function offered by plasmonic 

nanogap antennas. We report on the same graph the difference between the scattering 

cross-sections calculated with a dimer (averaged over the incident polarization) and a 

monomer. Very interestingly, we see that the two peaks and the dip in relative EQE are 

related respectively to an increase and a decrease of the scattering efficiency. In the 400 

nm - 525 nm range, the increased performance is very broadband as it comes from 

Wavelength λ in nm 
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improved scattering from many high order multipolar modes in oligomers compared to 

monomers. The peak around 650 nm is narrow as it comes specifically from one 

quadrupolar mode observed on Figure 4.2. Around 550 nm, monomers are as efficient 

as oligomers as this frequency range corresponds both to the dipolar resonance of 

isolated AuNPs and to the transverse dipolar modes of coupled AuNPs. In this 

wavelength range the main effect is due to indirect plasmonic enhancements and the 

scattering efficiency is not high enough to be visualized in the EQE graph. 

We also report in Figure 4.6 the relative difference of EQE between a pristine cell and 

one loaded with monomers as a function of the wavelength. In this case, the performance 

improvement of the cell containing AuNPs is due to indirect effects that have already 

been observed in the literature for similar device geometries [4.9-4.15]. It is important 

to note that these wavelength independent processes will be of comparable magnitude 

in cells containing isolated and self-assembled AuNPS, thanks to equivalent particle 

concentrations, and they cannot account for the wavelength dependent EQE 

improvement reported on Figure 4.6 for cells containing oligomers. 

The results confirm the significant EQE improvement offered by oligomers in the 

spectral range where the EQE of the blend is maximal (450 nm - 550 nm) and indicates 

that they will be of high interest for lower bandgap materials thanks to their quadrupolar 

and dipolar longitudinal modes around 650 nm and 775 nm, respectively. 

 

4.2.4 Conclusion 

In this section we demonstrated how coupled plasmonic scatterers can be 

incorporated in organic solar cells to improve their short circuit current by more than 

12% [4.55] using low-tech, scalable approaches (colloidal self-assembly and standard 

spin-coating). Furthermore, by comparing theoretical calculations and EQE 

measurements, we demonstrate that coupling processes in nanogap antennas induce a 

wavelength specific enhancement linked to improved scattering. This allows us to 

circumvent the inherently weak scattering cross-sections of small AuNPs while staying 

compatible with thin film solar cell geometries. This approach, which is compatible with 
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roll-to-roll processing, could also be applied to lower bandgap active polymers by 

exploiting resonant longitudinal modes, in order to cover a broader part of the solar 

spectrum. 

 

4.2.5 Experimental Section 

 

Plasmonic oligomers assembly:  

The self-assembly of AuNP oligomers is described in detail elsewhere [4.38]. In brief, 

commercial citrate coated 40 nm AuNPs (BBInternational) are stabilized with bis (p - 

sulfonatophenyl) phenylphosphine (BSPP, Strem Chemicals), concentrated by 

centrifugation and stored at 4 °C for up to one year. A typical oligomer synthesis is 

performed using 1 pmol AuNPs in a 1mM DTT, 50 mM NaCl solution with a 100 mL 

reaction volume (milliQ water). After a 5 min incubation time, an excess (1 nmol) of 

thiolated, methyl-terminated ethylene glycol oligomer (Polypure) is added to stop the 

cross-linking effect of DTT by passivating the AuNPs. The NaCl concentration is 

reduced by adding water to a final volume of 1 mL before storing the oligomer 

suspension for several months. Electrophoresis can be used to separate dimers and 

trimers from isolated particles [4.38] but this purification step requires up to one hour 

and reduces considerably the yield and scalability of the fabrication process. 

 

Synthesis of TiO2 nanoparticles: 

Nanocrystalline TiO2 particles were synthesized using a procedure previously reported 

[4.42] and based on a sol–gel technique followed by growth under hydrothermal 

conditions [4.43]. This recipe was slightly modified in order to obtain a really fine 

particle size suspension (6 nm in average), which allowed forming very uniform TiO2 

films (that will cover completely the gold NPs and the ITO layer) [4.44].  
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Solar cell fabrication: 

The fabrication of the devices, except for the last two steps which involve high vacuum 

deposition, was performed in ambient air conditions. A TiO2 nanocrystalline film was 

deposited by spin-coating on top of ITO covered fused silica substrate and thermally 

annealed on a hotplate in air (150 °C 10 min) resulting in a 60 nm layer with a wide-

band-gap of 3.2 eV [4.45] and a 4.1 eV work function. The active P3HT:PCBM (1:1 wt 

in oDCB) layer was deposited by spin-coating at room temperature (23 °C) and treated 

by solvent annealing during 5 min to obtain a 170 nm layer. Finally a 10 nm MoO3 and 

100 nm Ag layers were thermally evaporated to complete the devices. This is in an 

optically optimized inverted configuration for more stable and reliable measurements 

[4.42]. 

 

Electro-Optical characterization: 

Electrical characterization (J-V measurements) was done employing an ABET 

technologies Sun 3000 solar simulator under AM1.5G conditions and a Keithley 2420 

sourcemeter. The external quantum efficiency was measured with a solar cell spectral 

response measurement system from PC measurements, inc. model QEX10. The 

integration of the EQE spectra under the AM1.5G solar spectrum yields JSC values that 

are consistent with the ones obtained from the J-V measurements (reported in Table 

4.1). Three different devices were tested for each configuration with comparable EQE 

and J-V behavior (the differences between the same configuration are below 2%).  

 

Numerical simulations: 

The scattering efficiencies were calculated with an in-house numerical code based on 

the Generalized Mie Theory [4.46]. Calculations were all perfomed with a mutipole 

order N=30. The refractive index of gold was tabulated in published data [4.32]. The 

surrounding medium made of TiO2 is considered as infinite and homogeneous. The 

refractive index was taken from ellipsometry measurements performed in ICFO on 

anatase TiO2.  
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4.3 Plasmonic enhanced solar absorbers (periodic 

configuration) 

 

In the present paragraph we show that the absorption of a thin layer containing 

organic molecules can be enhanced and spectrally tuned by the coupling of surface 

plasmon resonances of metallic particles and surface plasmon polaritons existing at 

metallic interfaces. In this section we try to combine the two effects by implementing a 

plasmonic periodic structure just above the back electrode. We enhance light trapping 

and photocurrent by placing these properly designed nano-structures in a new low band 

gap active layer made of PBDTTT:PC71BM.  

 

4.3.1 Electric field enhancements 

Localized surface plasmon resonances (LSPR) of metallic particles turned out to 

be useful because of their sub-wavelength sized localization of light which creates hot-

spots where the intensity is enhanced up to several orders of magnitude as well as 

because of their spectral tunability from the visible to the near infrared spectral range 

[4.47-4.49]. 

Additionally at metal-dielectric interfaces, surface plasmon polaritons (SPPs) 

feature a very strong confinement of the light perpendicular to the interface. These 

evanescent waves enhance the electromagnetic fields close to the surface which enables 

for (bio-) chemical sensing, enhances the nonlinear optical response, or increases the 

interaction of light with molecules. Recently, periodically nano-patterned metallic 

surfaces have been used to combine extended SPPs and LSPRs to improve the light 

extraction through metal films [4.50]. Hence, controlling the structure at the nanoscale 

can be used to tailor the optical response spectrally. 
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In this paragraph we combine those two effects and we demonstrate the potential 

of this approach to increase the light collection efficiency and their spectrally tunability 

in combination with a thin active layer made of PBDTTT: PC71BM. The latter one has 

been chosen because of its practical importance as a low bandgap blend layer in highly 

efficient organic solar cells. Its optimal thickness is about 90nm and it needs a strong 

light confinement scheme to fully express its photon harnessing capability.  

Furthermore, we analyzed the changes in the light absorption by measuring the 

generated photocurrent. Hence, such an analysis includes both, once again, the changes 

in the optical device properties as well as its consequences to the overall (electrical) 

device performance. To ensure the electrical operation, additional buffer layers on both 

sides of the active layer had to be included to facilitate the charge carrier separation as 

depicted in Figure 4.7. As electric field enhancement structure we use gold disks or 

islands (NIs) that are separated by a dielectric layer of SiO2 from the Au surface to 

facilitate a strong light trapping inside the active layer. To avoid charge recombination 

and trapping we embed the structure in a thin layer of ZnO (ETL). 

 

 

Figure 4.7: Schematic of the solar cell with nano-structuration: (a) 3D representation, 

(b) 2D representation with dimensions. 
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4.3.2 Theoretical analysis 

The absorption of molecules in the active layer defines the device performance 

but the other materials used in the device also play an important role. The buffer layers 

or the semi-transparent electrode have their characteristic optical properties and together 

with the layer's thicknesses and textures may cause a strongly wavelength dependent 

response due to (guided) modes or, more generally, the local density of states [4.51]. 

This has been revealed by simulating the device performance with a commercial 

software and by taking the absorption in all the absorbing materials accordingly with 

equation 3.7. By plotting the absorption curves, Figure 4.8, we observe how the 

absorption in the blend and in the other materials is enhanced by the presence of the 

grating. We observe a good enhancement between 450 nm and 770 nm with a peak in 

the red part of the solar spectrum.  

 

Figure 4.8: Electromagnetic field distribution and contribution of the individual layers 

to the absorption response. The comparison of the planar cell (dashed) to the nano-

structured cell (solid) reveals that the reduced back reflection originates mainly from 

the enhanced absorption in the active blend layer. 
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 A plot of the electric field map around the gold nano-island clarifies the light path 

in the device in Figure 4.9. We can observe how at 755 nm the light path is strongly 

modified by the presence of the NIs. The Pointing vector indicates that the light is 

scattered in the forward and laterally diffused while the colour map shows the electric 

field enhancement around the island. 

 

 

 

Figure 4.9: The strong near-field interaction between the metallic particle and the 

substrate increases the electromagnetic field inside the active layer. 

 

As shown in Figure 4.8, the plasmon resonance is located near 750 nm. Here we observe 

that the difference between Ablend of the grating and Ablend of the planar is maximal.   This 

resonance is influenced from the other layers and depending on the NIs geometry the 

absorptions of such layers are modified. Two cases were demonstrated experimentally 

for gold NIs of 30 nm height on a SiO2 spacer of 25 nm. The first structure was 
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developed with a period (Δ) of 450 nm and 65 nm NIs radius (r). The second had a 

period of 550 nm and 95 nm NIs radius. As mentioned, the geometry of the nano-island 

enhances the absorption of the active layer in this region but also the parasitic absorption 

of the other layers. However, the consequent high scattering produced by the nano-

structure, especially in the blue, added to the relatively low parasitic absorption enabled 

an important enhancement in the photon absorption by the active layer.  

 

4.3.3 Device fabrication 

The devices were experimentally implemented in the inverted structure Au/nano-

structure/ZnO/PBDTTT-C:PC71BM/MoO3(I)/Ag/MoO3(II) on top of fused silica 

substrates as sketched in Fig 4.6. The back electrode was a 100 nm thick Au layer 

deposited on a previously cleaned fused silica substrate followed by the evaporation of 

a 1-nm-thin Ti layer to facilitate the adhesion of 40 nm thick SiO2, followed by a second 

1-nm-thin Ti layer to facilitate the adhesion of 30-nm-thick Au layer. The gold-silica 

NIs have been fabricated using negative-tone electron beam sensitive resist to structure 

9 mm2 sized areas. After the selectively etching of the unprotected gold and silica using 

an argon-plasma all the way down till reaching the bottom gold electrode, the resist was 

removed using oxygen plasma. The nano-structured surface was inspected using 

secondary electron microscopy to measure the device dimensions. If the nanostructure 

is too dense this process can last several hours and can give a substrate with poor 

wettability compromising the correct functioning of a device.  

On top of the combined electrode Au+NIs the rest of the photovoltaic device was 

developed. That included a 30 nm thick ZnO used as electron transporting layer and 

obtained by sol-gel [4.52], a 85 nm active layer of PBDTTT:PC71BM processed 

according to the reference [4.53] in an inert atmosphere, a 10 nm MoO3 deposited by 

thermal evaporation at 1 Å s-1, a 10 nm top semi-transparent Ag electrode deposited at 

6 Å s-1 and -15 °C and a final 10 nm MoO3 used as a protection for the Ag layer. The 

high quality of the electrode, made at low temperature to avoid atoms diffusion in the 

other layers [4.54], guarantee a free post-thermal annealing device. All the thickness of 



C h a p t e r  4 .  O p t i c a l  n a n o - a n t e n n a  i m p r o v e d  O P V s  | 82 

 

 

the layers were measured by tapping AFM and the shape of the NIs was transferred into 

the whole device as shown by the AFM profile in Figure 4.10. 

 

 

Figure 4.10: AFM image of the nano-structure. 

  

4.3.4 Results and discussion 

The fabricated devices were electrically characterized immediately after 

fabrication by determining the external quantum efficiency as a function of the incident 

wavelength by using a solar cell spectral response measurement system with a 10 nm 

step resolution. The resulting measurements are presented in Figure 4.11 (a) and (c). As 

predicted by the numerical analysis‡‡‡ shown in Figure 4.11 (b) and (d), the enhancement 

was found mainly in the visible spectral range peaking around the orange-red spectral 

range from 580 nm to 720 nm. 

                                                            
‡‡‡ We use equation (3.8) for this scope. 
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Figure 4.11: The EQE is enhanced for the different nano-structures. The measured 

data (left) are in close agreement with the expected theoretical predictions (right). The 

SEM images shown as an inset in (b) and (d) have been taken after the lithography 

under 45-degree tilled angle-of incidence. 

 

The black curves in Figure 4.11 (a) and (c) represent the relative increase of the EQE. 

Besides the overall increase in the visible spectral region, strongly increased values of 

the EQE in the near-infrared spectral range have been found. Their electrical response 

of the nano-structured device is increased up to 20% which was expected in the case of 

r= 65 and Δ = 450 nm. This fact is in good agreement with the theory which 

demonstrates that the near (hot spots) and far field (scattering) effects of the nano-islands 

are improving the device spectral response. In the case of r= 95 and Δ = 550 nm we 

observe an overall enhancement in the order of 10%, but we can not observe the 

plasmonic resonance peak as expected from the theory. This can be due to an 

inhomogeneous grating or to a plasmonic resonance more redshifted than expected. 

Wavelength λ in nm 

Wavelength λ in nm 

Wavelength λ in nm 

Wavelength λ in nm 
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In conclusion, we demonstrated that the coupling of localized surface plasmon 

resonance of metallic particles to surface plasmon polaritons at metallic interfaces can 

be used to increase the light absorption and conversion to electrical charges. The 

coupling can be controlled and tuned with the lateral and out of plane separation and the 

size of the nanoparticles and allows for a spectral tuning of the active layer absorption, 

thereby increasing the efficiency within certain wavelength range in thin-film devices.  
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5.   
Semi-transparent and Optical cavity  

enhanced OPVs 

 

Transparency is a key factor for BIPV solutions, because solar 

facades are commonly used in solar architecture or bioclimatic 

architecture for reducing energy consumption. In this work we 

present a qualitative method to evaluate the visible transparency. We 

then apply the method to our new concept of optically enhanced 

multilayer transparent organic solar cell. 

 

  



C h a p t e r  5 .  S e m i - t r a n s p a r e n t  a n d  O p t i c a l  c a v i t y  e n h a n c e d  O P V s  | 86 

 

 

 

5.1  Transparent solar facades 

 

A growing number of systems need the sun radiation as a fundamental 

component. From agriculture to water management we need to accurately use the sun 

energy and part of its spectrum. In for example agriculture we are able to trap solar 

radiation in order to make the plants grow in a controlled environment. In water 

management we can block solar radiation that will compromise [5.1] the drinkability of 

the water, as well as use a part of the solar energy to sterilize water. Throughout history 

glass has been used as an universal solar façade because it is transparent over the entire 

solar spectrum, blocking only UV radiation as well as heat. Ergo glass is an ideal 

material for creating an artificial greenhouse effect in a building, and for further benefit, 

the part of the solar spectrum that is not visible and has a weak heat power can be used 

to produce electricity.  

 

5.1.1 Transparent solutions 

 One of the biggest step towards reducing the consumption of fossil fuels is the 

introduction of a series of promising designs for increasing energy efficiency in 

buildings. Historically one of the most used system is the solar façade. To effectively 

use such solution it is fundamental to take into account the buildings orientation and sun 

inclination. With recent technological developments it is possible to use solar energy 

also in areas where the solar radiation is not optimal or where buildings are not correctly 

orientated. There are studies on opaque solar facades [5.2], but this kind of system 

cannot directly transform the solar radiation into heat gain in buildings, whereas 

transparent, semi-transparent and translucent solar facade systems are able to do so [5.3]. 

Those systems fall into two categories: passive and active solar facades. They are 

commonly considered building integratable and often combine thermal and photovoltaic 

effects.  
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In the passive systems we find the naturally ventilated transparent façade that 

uses wind pressure and/or natural convection to heat or cool down the building. The 

design phase is essential in the passive systems. To be fully efficient they need to be 

planned with the construction of the building. Trying to implement them in already built 

constructions will rarely reach maximum potential.  

In the active solar façade systems we can find mechanically ventilated solutions 

that can heat or cool the environment suiting the users needs. Amongst active systems 

are semi-transparent building integrated photovoltaic (STBIPV) that allows the sun to 

pass through the façade utilizing a part of the solar spectrum for electricity production 

via photovoltaic effect. This production of electricity can be obtained by using a semi-

transparent OPV (STBIOPV) device, see figure 5.1, which allows an appropriate 

amount of visible light into the building. It is fundamental for a healthy work 

environment and basic life quality to have visible light entering. The different 

perceptions of “life quality” have in relation to colour theory led to different points of 

view on how to implement “visible transparency”. In this work we will present what we 

think is the most suitable system for visible transparency or luminosity quantification 

[5.4] that fits the photovoltaic design procedure. 

 

 

Figure 5.1: Schematic diagram of semi-transparent building-integrated 

organic photovoltaic (STBIOPV). 
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5.1.2 Visible transparency 

The brightness of an object, as perceived by the human eye, is quantified by the 

luminosity L. It is also called “visible light transmission” (VLT) or “photopic 

transmission” and corresponds to the integrated transmission spectrum of an object or 

device T(λ) over the whole visible spectrum, weighted by the photopic spectral response 

of a typical human eye V(λ) and the spectrum of the illuminant. For daylight 

illumination, the CIE D65(λ) is used as the illuminant. The spectrum of such illuminant, 

shown in figure 5.1, is very close to the black-body radiation with a color temperature 

of 6500K.  

To calculate the luminosity of a solar device, which in application on a 

transparent window can be thought of as filter, one simply calculates the area under the 

transmission spectrum curve weighted by the Photopic Curve V(λ), shown and the 

illuminant spectrum I(λ) both  in figure 5.2, and normalize  by the area under the product 

of photopic curve and illuminant spectrum as in equation 5.1. 

 

L =
∫ T(λ)V(λ)D65(λ)dλ

∫ V(λ)D65(λ)dλ
 

                    (5.1) 

 



C h a p t e r  5 .  S e m i - t r a n s p a r e n t  a n d  O p t i c a l  c a v i t y  e n h a n c e d  O P V s  | 89 

 

 

 

Figure 5.2: Human eye and illumination information for the analyzed 

semi-transparent devices: Illuminant D65 (solid orange line) and human 

photopic spectral response (black line) [5.4]. 

 

 In the next paragraph we show how to enhance the solar cell performance 

of a semi-transparent solar cell while keeping a good visible transparency for 

BIPV applications. 
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5.2 Enhanced Light Harvesting in Semi-transparent 

Organic Solar Cells using an Optical Cavity configuration 

 

We introduced a new solar cell design in order to fabricate transparent solar cell 

devices with 20% of luminosity and a power conversion efficiency near to a standard 

opaque solar cell. These results are obtained using the combination of different 

structures that contribute to the optical enhancement of the device.  

 

5.2.1 Semi-transparent OPVs 

Recent developments in the field of organic photovoltaics have demonstrated the 

enormous potential of such technology for integration into renewable energy generation 

elements that require a certain degree of transparency. It has been experimentally shown 

that 30% transparent polymer solar cells may exhibit power conversion efficiencies 

above 5% in single junction devices [5.5] and above 7 % for tandem ones [5.6]. 

Typically, in an organic cell the active material layer is sufficiently thin to present visible 

transparencies higher than 50%. However, semi-transparency in organic cells can only 

be achieved when the opaque back metal contact is replaced by a semi-transparent thin 

electrode [5.5-5.22]. The use of two, front and back, semi-transparent electrodes 

automatically leads to a decrease in the effectiveness of the light harvesting capacity of 

the solar cell [5.5,5.8-5.27]. Several approaches have been considered to partially 

recover such lost light harvesting effectiveness at those wavelengths invisible to the eye. 

Recently, using a non-periodic one-dimensional photonic crystal the short circuit current 

(Jsc) of a semi-transparent cell was brought close to 97% the one from the corresponding 

opaque cell. The multilayer dielectric structure (MLD) was designed ad hoc to enhance 

the external quantum efficiency at the near IR and UV wavelengths while maintaining 

transparency in the visible [5.5]. The combined use of an anti-reflection coating (ARC) 
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on the front of the cell and a Bragg reflector on the back was also implemented to reach 

semi-transparent cells performing at 71% of the corresponding opaque one [5.22]. 

 

5.2.1 New design and fabrication for semi-transparent OPVs 

In the current paragraph we propose to enclose the active material layer in 

between two metal electrodes that form an optical cavity designed to optimize photon 

trapping inside the cell. At the same time such electrodes are kept sufficiently thin to 

ensure a visible transparency higher than 20%. To increase near IR light trapping, while 

maintaining transparency in the visible, an ARC is deposited on top of the front metal 

contact while a non-periodic MLD is inserted in between the back metal contact and the 

substrate. The optimal layer configuration for such MLD was designed specifically for 

the cell architecture under study. With a device architecture as the one shown 

schematically in Figure 5.3, we achieved semi-transparent cells which PCE was 5.3%, 

corresponding to 90% the PCE of the opaque cell. The visible transparency of such cells 

differed little from the semi-transparent cell which did not include the MLD, a cell that 

achieved a PCE of only 3.0%. 
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Figure 5.3: Schematic illustration of the semi-transparent device cell architecture 

incorporating the MLD between the glass and the Au thin metal electrode and ARC 

above the Ag thin metal electrode. Near IR light is partially confined in the active 

layer (PTB7:PCBM) while the luminosity or visible transparency for the device is kept 

above 20 %. 

 

We fabricated two different types of semi-transparent cells (STC1 & STC2) and an 

opaque cell, which we used as the reference cell to evaluate the PV performance of the 

semi-transparent cells. The opaque cell was in an inverted configuration with the 
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following architecture: as active material we used 90 nm of a PTB7:PC71BM blend, the 

bottom electrode was an opaque layer of 120 nm of Au and the top electrode was a semi-

transparent layer of 10 nm of Ag. As ETL we used a layer of ZnO and as HTL a layer 

of MoO3. On top of the Ag electrode we deposited a two-layer ARC made of MoO3 and 

LiF. For the semi-transparent devices we used the exact same architecture except that 

the Au electrode was thinned down to 13 nm. We used the same active material and 

blocking layers as in the opaque cell, while we used two different configurations for the 

external light harvesting structure. As seen in Figure 5.3, for STC1 we incorporated in 

between the Au electrode and the substrate a six-layer 1-dimensional MLD made, 

alternatively, of TiO2 and SiO2. This structure was designed to maximize the current 

while keeping the overall luminosity of the solar cell above 20%. STC2 did not 

incorporate any MLD. Both, STC1 and STC2 incorporated the same ARC on top of the 

Ag electrode we used for the opaque one. The metallic character of both electrodes, 

ensured a certain degree of light tapping for STC1 and STC2, however, as we shall see 

below light trapping in STC2 was rather limited. 

 

5.2.2 Electro-optical characterization 

As shown in Figure 5.4, the transparency of STC1 relative to STC2 increased in 

the 430 nm - 510 nm range and in the blue part of the spectrum while experiencing a 

slight reduction in the rest of the visible spectrum. STC1 exhibited a considerable 

reduction in transparency beyond 600 nm up to 770 nm. The overall luminosity was 

similar when comparing STC1 with STC2, however, as seen in Figure 5.4, the 

combination of the MLD and ARC to localize light in the near IR can also enhanced 

transparency in the blue part of the spectrum. Consequently STC1 exhibits two peaks in 

transparency around 390 nm and 475 nm.  
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Figure 5.4: Light transmission for STC1 (dotted line) and for STC2 (dashed grey 

line). Inset: Picture of STC1 (top image) and STC2 (bottom image). 

 

To evaluate the PV performance of the two semi-transparent devices we 

performed J-V measurements under 100 mW/cm2 illumination from an AM1.5G solar 

simulator. The corresponding J-V curves and PV parameters were compared with the 

corresponding measurements from the opaque cell. As may be seen in Figure 5.5 and 

Table 5.1, the JSC from the STC1 device is close to double the one from the STC2. 

Remarkably, as seen in Figure 5.5, the JSC for STC1 is very close to the one for the 

opaque cell. On the contrary, the lack of an effective near IR light trapping structure for 

STC2 leads to a JSC which is, in that latter case, only 53% the one for the opaque cell. 

When comparing the other PV parameters, summarized in Table 5.1, we observe a minor 

decrease in the VOC in the amount of 2% from the opaque solar cell to both transparent 

ones, STC1 and STC2. Similarly, a minor decrease is observed for the FF from the 

opaque solar cell in the amount of 2.5% for STC2 and 5.7% for STC1. Such minor 

reduction observed in both parameters can be, to a large extent, attributed to the thinning 

down of the gold electrode. The deposition of such electrode on top of the MLD has also 

Wavelength λ [nm] 
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a minor influence on the electrical characteristics of the solar cell provided that the 

observed decrease in FF is slightly larger for STC1 than for STC2. In fact, the thin gold 

electrode of STC2 was deposited on a polished glass, while for STC1 was deposited 

above the MLD comprising six sputtered dielectric thin films. In any case, since the FF 

and VOC were affected only marginally by the MLD (cf. Table 5.1), the PCE of STC1 

was 1.8 times larger than the one from STC2. 

 

 

Figure 5.5: Measured J-V curves for the semi-transparent device (STC1) shown in 

Figure 5.3 (solid green) for the STC2 (solid cyan), and for the opaque solar cell (solid 

black). 
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Table 5.1: Solar cell J-V characteristics. 
 

Solar cell device 
Jsc 

[mA cm-2] 

Jsc/Jsc
MAX 

[ratio] 

Voc 

[V] 

FF 

[%] 

Eff 

[%] 

Visible 

Transparency 

[%] 

STC1 10.7 0.964 0.728 67.9 5.3 21.4 

Opaque 11.1 1 0.739 72.0 5.9 - 

STC2 5.9 0.532 0.723 70.2 3.0 23.5 

 

 

To better understand the JSC behavior and its wavelength dependence we 

measured the EQEs for all three devices. The measured EQE for the STC1 device, 

shown in Figure 5.6a, is rather close to the one of the opaque cell, exhibiting in the 500 

nm to 800 nm wavelength range a very similar behavior. In the smaller wavelength range 

spanning from 670 nm to 720 nm, the EQE for STC1 is even larger than the EQE for 

the opaque cell, indicating a more effective photon trapping by the MLD combined with 

a thin Au layer than the thicker Au. Such MLD enhanced EQE for STC1 is in accordance 

with the reduced transmission seen in Figure 5.4 for that same wavelength range. For 

about 100 nm, between 620 and 720 nm, such EQE exhibits a maximum value close to 

65% while the EQE for STC2 is down to 25% or less. In fact, the lack of an effective 

photon trapping at any wavelength for STC2 leads to an EQE that remains down to about 

25% in a broad wavelength range spanning from 350 nm to 700 nm.  
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Figure 5.6: Experimentally measured (a) and Simulated (b) external quantum 

efficiencies for the semi-transparent device showed in the Figure 5.3 incorporating the 

MLD (in green) a semi-transparent solar cell without light trapping (in cyan) and the 

opaque solar cell (in black). 

 

(a) 

(b) 
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Such main features observed in the EQEs of the fabricated devices could be well 

predicted using a model [5.5, 5.28] based on the transfer matrix formalism applied to 

determine the EQE of thin film photovoltaic devices. We used an inverse integration 

procedure [5.28] to determine numerically the relative thicknesses of the six layers from 

the MLD. In this inverse integration to determine the configuration of the semi-

transparent device including a MLD, the target solution was a device that would perform 

with the highest PCE with the only constraint of a visible transparency or luminosity 

higher than 20%. The predicted EQE can be seen in Figure 5.6b. Note that the 

numerically determined EQEs reproduce, in all three cases, very well the behavior of 

the measured EQEs. 

 

5.2.3 Discussion 

To conclude, we have implemented an external optical cavity configuration 

applied to thin film semi-transparent polymer cells that, to a large extent, avoided the 

loss in photon harvesting capacity exhibited by the majority of semi-transparent cells. 

Indeed, the JSC for a cell device incorporating such cavity configuration, which exhibited 

a 21% visible transparency, corresponded to 96.4% the JSC of the corresponding opaque 

cell. A small reduction in the other two PV parameters when thinning down the Au 

electrode led to a final PCE for the semi-transparent cell assisted with near IR light 

trapping of 90% the one for the opaque cell. The 21% visible transparency we 

demonstrated [5.33] here may find applications in PV building integration where 20% 

average visible transparencies are acceptable. In the event that such MLD configuration 

would be applied to polymers with a red shifted absorption relative to the PTB7, higher 

degrees of transparencies in the visible would be achievable. This would extend the 

areas for application of such PV technology to power up electronic devices where higher 

visible transparencies may be required. 
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5.2.4 Experimental 

 

Multilayer fabrication: The fabricated devices were grown on soda-lime glass 

substrates. The SiO2 and TiO2 thin films of the MLD were grown using reactive 

magnetron sputtering in high vacuum [5.29-5.31]. Argon was used as sputter gas and 

oxygen as reactive gas. The SiO2 films exhibited a refractive index about 1.49 at 550 

nm, while the TiO2 thin films exhibited a refractive index about 2.45 at 550 nm. The 

MLD was deposited close to normal incident to prevent any optical problem related to 

refractive index decrease due to an increment in the porosity of the film. As indicated 

below, on top of the MLD we deposited, by thermal evaporation, a thin layer of Au as 

electrode before proceeding with the PV device fabrication.  

 

Device fabrication: A ZnO film was deposited by spin-coating on top of the gold 

electrode and thermally annealed on a hotplate in air (200 °C during 30 min) resulting 

in a 30 nm thick layer. The PTB7:PC71BM (1:1.5 wt in CB) layer was deposited by spin-

coating and treated by solvent annealing during 5 min and by vacuum annealing during 

30 min to obtain a 90 nm layer. Finally, a 10 nm MoO3 was thermally evaporated and 

to finish the devices a Ag thin electrode was deposited. 

 

ARC and metal electrodes fabrication: Both the transparent and the opaque gold 

electrodes were thermally evaporated in a high vacuum system (Mini SPECTROS™, 

Kurt J. Lesker Company). The speed of deposition for gold was 3 Å s-1 to obtain a final 

thickness of 13 nm for the semi-transparent cells and 120 nm for the opaque one. 

Thinning down the electrode requires a lot of technical tuning and 13 nm is a good 

thickness that keeps an high transparency, a good electrical conductivity and an high 

field confinement. Thickness below 10 nm starts to have unwanted island configurations 

when we are searching for a functioning device with a good transparency. To complete 

the cell we thermally evaporated a transparent thin Ag electrode on top of the MoO3 

previously deposited. The deposition rate for Ag was 5.5 Å s-1 while the sample was 

placed on a cooled holder in order to decrease Ag surface diffusion and thereby prevent 

3D island growth by altering the standard nucleation process [5.32]. The Ag electrode 
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was deposited using masks made with laser beam cutting technology which yielded 

well-defined cell areas. Finally, on all cells, we deposited a two layer ARC comprising 

a layer of MoO3 (n=2.17 at 550 nm) and a layer of LiF (n=1.24 at 550nm). The 

deposition rate for such materials were 1 Å s-1. Pellets/stones were used as material for 

evaporation. The residual vacuum pressure was below 10-6 torr in order to prevent any 

contamination. The ARC was deposited close to normal incident. The thickness for all 

evaporated layers was monitored using a crystal oscillator during deposition and later 

verified from the transmission curves adjusted using the calculated electromagnetic field 

transmission.  

 

Measurement systems: Electrical characterization (J-V measurements) was done 

employing an ABET technologies Sun 3000 solar simulator under AM1.5G illumination 

conditions and a Keithley 2420 source meter. The external quantum efficiency was 

measured with a solar cell spectral response measurement system from PC 

measurements, inc. model QEX10. The integration of the EQE spectra under the 

AM1.5G solar spectrum yielded JSC values that were consistent with the ones obtained 

from the J-V measurements (reported in Table 5.1). 
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Conclusions and Remarks 

 

The solar energy harnessing is limited in thin film photovoltaics due to the small 

volume of interaction between the electromagnetic wave and the active material. Taking 

the extreme case of the organic solar cell, where the active layer thickness has to be 

smaller than 200 nm, we have shown different optical enhancement schemes.  

In this work, we used self-assembled randomly distributed nanogap antennas in 

order to maximize the light path in the device thanks to the scattering properties of such 

antennas. The electric field from the far field is collected by the antennas that scatter the 

light in a lateral and forward direction. A contribution to these phenomena are given by 

the presence of  high refractive index TiO2 nano-crystals around the antennas, they 

optically help to direct the light in the wanted direction and are electrically able to 

transfer the electrons from the active material to the electrode. Thanks to the external 

quantum efficiency measurements we can compare the devices wavelength response 

with the nanogap antenna scattering cross section embedded in the TiO2 media. This 

method shows for the first time how the optical characteristics of an antenna can be 

retrieved when coupled in an organic solar cell device. 

 

 
Wavelength λ in nm 
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 Additionally we used a periodic structure to exploit the near field light 

localization and the surface plasmon polariton effect. This has a positive effect in the 

photon electron conversion measurement.  

 

 

 

In the case of semi-transparent organic photovoltaic, where the absence of a 

reflecting back electrode strongly reduces the amount of light absorbed in the active 

material, we implemented a multilayer dielectric scheme in order to enhance the light 

absorption without sacrificing the visible transparency. Here, we designed, fabricated 

and tested a transparent device that almost exhibits the same performances as an opaque 

one while keeping a visible transparency above 20%. This result fits correctly with our 

simulations, giving us a powerful tool for designing the structures that are best suited 

for a specific application. 
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 Using optical enhancement techniques allows us to reduce to a minimum the 

consumption of material we use to fabricate photovoltaic structures. Furthermore, with 

optical enhancement, we can give a contribution to the achievement of the maximal 

theoretical efficiency opening a possible mass production scenario.  Most of the 

emerging solar cell technologies propose a lightweight product that would allow for 

minimal installation costs and could be applied to consumer electronics. Finally, thanks 

to the versatility of the multilayer design, one could choose for a specific application, 

the most suitable balance between performance and visible transparency, only by 

changing the surrounding multilayer without changing the electrical characteristic of the 

device itself. 
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Appendix A 

Materials and methods 

 

This chapter summarizes most of the materials and deposition methods used during the 

present thesis. Several different materials were evaluated for their application to organic solar 

devices. Such evaluation   concerned plasmonic materials, organic active materials, buffer 

layers (semiconducting hole and electron transporting films) and electrodes (not just metals 

but also transparent conductive oxides).  

 

 

A.1 Deposition methods 

 

Three basic deposition methods were employed depending on the materials 

characteristics: spincoating, thermal evaporation and magnetron sputtering (both RF and DC).  

Spincoating is the basic process for depositing organic and nanoparticle layers:  a 

substrate rotates while a liquid solution spreads on its surface. The speed diagram of such 

process is shown in figure A.1(a).  

Thermal evaporation is used for developing layer of metals (such as aluminium, silver, 

gold, calcium) or exciton blocking layers (such as Lithium fluoride (LiF) or Molybdenum 

oxide (MoO3)). In this process a metal boat is heated in high vacuum conditions following 

the procedure presented in figure A.1(b), leading to the evaporation of the material contained 

in the boat. For some organic layers such as Bathocuproine (BCP) the evaporation control 

was done by temperature instead of power. 
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(a) 

 

(b) 

 

(c) 

 

Figure A.1: Deposition methods diagrams employed (a) spincoating, (b) thermal 

evaporation and (c) sputtering [5.4].  
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Finally, sputtering is a method based on the bombardment of a target for depositing 

thin layers. Using this method several layers were deposited which include oxides (SiO2, 

TiO2, NiO) or transparent conductive oxides (TCO) such as Indium tin oxide (ITO). The 

process involves a strike step were the plasma is started and a deposition step. Both steps are 

summarized in the figure A.1(c). 

 

 

 

A.2 Materials 

 

Several materials were considered in the design process and then, after the simulation 

step, we selected the most suitable ones for the fabrication process. This session discusses the 

materials actually employed in the device implementation. We present the chemical structure, 

the relevant optical properties and some comments on the deposition methods and recipes 

used.  

 

 

A.2.1 Plasmonic Material 

 

We use commercial citrate coated 40 nm AuNPs stabilized with bis(p-

sulfonatophenyl) phenylphosphine (BSPP), concentrated by centrifugation and stored at 4 ◦C 

for up to one year. Then we link them with dithiothreitol (DTT), following  the procedure 

described in [4.38].  

We characterize the solutions measuring the extinction spectrum.  This is the main tool 

we have to reveal the plasmonic behaviour of such suspensions, providing information  on 

the material and geometry implemented. 
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Figure A.2: Extinction spectra of mPEG stabilized single particles (red line) and 

electrophoretically optimized oligomer solution (green line) suspensions. Inset: left 

monomers, right oligomers. 

To verify that the short cross-linker allows efficient plasmon coupling necessary for 

high field enhancements, we measure the extinction spectrum of the oligomer suspension 

compared to a single-particle sample, as shown in figure A2. The single-particle sample 

exhibits a typical dipolar plasmon resonance at 530 nm. The oligomer sample exhibits an 

additional strongly red-shifted side-band that peaks at 650 nm. This band corresponds to the 

longitudinally coupled dipole mode for a 40 nm diameter AuNP dimer with an interparticle 

distance between 1 and 1.5 nm in a homogeneous dielectric environment with refractive index 

1.4. The interparticle gap  is consistent with the length of DTT. The 650 nm resonance induces 

a strong color change in the particle suspension, clearly visible in the inset: while the reference 

single-particle sample is red, the suspension with the larger AuNP groupings appears purple 

due to absorption and scattering of both green and red light. The colour difference  is a strong 

indication that the oligomers kept their geometry before the self-assembling step on the ITO 

substrate. The geometry is tested afterwards with SEM imaging, see Figure 4.4 in the article. 
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We attach the nanoparticles on the ITO layer by UVO activation process. This process 

can orientate upwards the H group, that in presence of nitrogen, forms NH group. Gold can 

be attatched on the NH group and this process can be repeated several times to allow for the 

optimal NPs concentration on the ITO surface. 

 

 

A.2.2 Active materials 

The active layer in an organic photovoltaic device is based in two basic organic materials 

named donor and acceptor. This active layer can be structured as a planar (bilayer) or as a 

bulk (blend) heterojunction [5.4]. The donor is the material that mainly absorbs light and 

where excitons are generated. The most widely used donor material is poly(3-hexylthiophene) 

(P3HT). When excitons are created, they diffuse until reaching an interface with the acceptor 

material where they split into separated charges. The most typically used acceptor material is 

phenyl-C61-butyric acid methyl ester (PCBM) which is a fullerene derivative. These 

polymers were deposited by spincoating and the tables on the next pages present the materials 

employed during the development of the current thesis. 
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Single donor layer: Poly(3-hexylthiophene) (P3HT) 

 
 

 

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in Chlorobenzene or 

Dichlorobenzene and left stirring overnight under N2 atmosphere with 

concentrations ranging from 5 to 30 mg/mL. 

 

Recipe guide: 

Ramp 1 (sec) 0 

Speed 1 (rpm) 550 

Dwell 1 (sec) 60 

Ramp 2 (sec) 10 

Speed 2 (rpm) 1000 

Dwell 2 (sec) 70 

Ramp 3 (sec) 0 

 

For this P3HT single layer the thickness depends on the concentration according to 

T(nm)=6.5[P3HT]-20 where the [P3HT] is given in mg/mL 
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Single acceptor layer: Phenyl-C61-butyric acid methyl ester (PC61BM) 

 

  

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in Dichloromethane and 

left stirring overnight under N2 atmosphere with concentrations 5 mg/mL.  

 

Recipe guide: 

Ramp 1 (sec) 0 

Speed 1 (rpm) 4000 

Dwell 1 (sec) 10 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

For this PC61BM single layer the thickness was around 20nm. 
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Single acceptor layer: Fullerene-C60 

 

 
 

Deposition method: Thermal evaporation 

 

Recipe guide: 

Temperature (ºC) 440 

Rate (Å/s)  1 

Tooling factor (%) 16.2 

 

The final thickness of the top layer  was always   less than 10nm.  
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Bulk-heterojunction:  

Poly(3-hexylthiophene) (P3HT) : Phenyl-C61-butyric acid methyl ester (PC61BM) 

 

 

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in Chlorobenzene or 

Dichlorobenzene and left stirring overnight under N2 atmosphere with proportion 

1:1 (wt) and 20 mg/mL of P3HT.  

 

Recipe guide: 

Ramp 1 Speed 1 Dwell 1 Ramp 2 Speed 2 Dwell 2 Ramp 3 

0 500 60 10 S2 100 0 

 

Ramp 1 (sec) 0 

Speed 1 (rpm) 500 

Dwell 1 (sec) 60 

Ramp 2 (sec) 10 

Speed 2 (rpm) �2 

Dwell 2 (sec) 100 

Ramp 3 (sec) 0 

 

Where the resulting thickness of the layer on top of PEDOT was given by �(��) =

278 ∙ �
	

���

����	��� + 37 and on top of TiO2-nc was given by �(��) = 192 ∙ �
	

���

����	��� 

The devices including P3HT:PC61BM where treated with post-thermal annealing 

(150ºC during 1 min) when the devices were finished with aluminum. 
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Bulk-heterojunction: 

Poly(3-hexylthiophene) (P3HT) :Indene-C60 bisadduct (ICBA) 

 

 

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in Dichlorobenzene and 

left stirring overnight under N2 atmosphere with proportion 1:1 (wt) and 17 mg/mL 

of P3HT.  

 

Recipe guide: 

Ramp 1 (sec) 0 

Speed 1 (rpm) 550 

Dwell 1 (sec) 60 

Ramp 2 (sec) 10 

Speed 2 (rpm) 950 

Dwell 2 (sec) 120 

Ramp 3 (sec) 0 

 

Where the resulting thickness of the layer on top of TiO2-np was around 120nm and 

the layer included a thermal annealing of 150ºC during 10 min in N2 atmosphere.  
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Bulk-heterojunction:  

Poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-

thieno[3, 4-b]thiophene-2,6-diyl] (PBDTTT) : [6,6]-phenyl C71 butyric acid methyl 

ester (PC71BM) 

 

 
 

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in Dichlorobenzene 

(97%) + 1,8-Diiodo-octane (3%) and left stirring overnight under N2 atmosphere with 

proportion 1:1.5 (wt) and 10 mg/mL of PBDTTT.  

 

Recipe guide: 

Ramp 1 (sec) 1 

Speed 1 (rpm) 800 

Dwell 1 (sec) 120 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

After the spincoating, this layer was left 5 min slow drying, 5 min under soft vacuum 

and 20 min under high vacuum. Its resulting thickness on top of PEDOT or ZnO was 

around 100nm.  

 

  



A p p e n d i x  A .  M a t e r i a l s  a n d  m e t h o d s  | 116 

 

 

Bulk-heterojunction:  

Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-

[(2-ethylhe-xyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) : [6,6]-phenyl C71 

butyric acid methyl ester (PC71BM) 

 

 
 

Deposition method: Spincoating 

Deposition details: Chemical solution prepared a day before in chlorobenzene (97%) 

+ 1,8-Diiodo-octane (3%) and left stirring overnight at 50ºC under N2 atmosphere 

with proportion 1:1.5 (%wt) and 10 mg/mL of PTB7.  

 

Recipe guide: 

Ramp 1 (sec) 1 

Speed 1 (rpm) 1800 

Dwell 1 (sec) 60 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

The resulting thickness of the layer on top of PEDOT or ZnO was around 90nm.  
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A.2.3 Buffer layers 

The electron transporting layers (ETLs) and hole transporting layers (HTLs) are placed at the 

interfaces of the active material and the electrodes in order to block excitons and either holes 

or electrons, respectively. These materials commonly [5.4] present a very high energy 

bandgap and the ones employed in this thesis were: 

 

Electron-transporting layers 

Titanium dioxide (TiO2) (Anatase) 

TiOx 

 

 

Deposition method: Spincoating (nanoparticles) 

 

Nanoparticles synthesis: 

Nanocrystalline TiO2 particles were synthesized using a procedure previously 

reported and based on a sol-gel technique followed by growth under hydrothermal 

conditions [4.43]. This recipe was slightly modified in order to obtain a really fine 

particle size suspension (6 nm in average), which allowed forming very uniform TiO2 

films, and which have already been used to build highly reflectance structures in dye 

solar cells [4.44]. Concretely, titanium isopropoxide (20 ml, Aldrich 97%) was 

hydrolyzed after the addition to Milli-Q water (36 ml) and the stirring for 1 hour. Once 

this stage was completed, the product was filtered using 1.2 μm RTTP Millipore 

membranes, washed several times with distilled water and placed in a teflon reactor 

with 3.9 ml of 0.6 M tetramethylammonium hydroxide (~2.8M, Fluka). After 

homogeneizing the suspension with a stir bar, the reactor was placed in an oven 

preheated at 120º C, where it was kept for 3 hours. Peptization process took place 

during the heating in the presence of tetramethylammonium hydroxide. After this, a 
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bluish colloidal suspension of titanium oxide crystallites with anatase structure was 

obtained. Later centrifugation at 14.000 rpm for 10 minutes allowed eliminating 

some large aggregates from the dispersion. 

 

Deposition details: Aqueous solutions of nanoparticles (~25% wt) were further 

diluted until reaching concentrations ranging from 2 to 5% (wt) and in a mixture 

80:20 of methanol:water (volume). The solution was spincoated in air. The fine 

particle size allowed very flat surfaces and in contrast to sputtered TiO2, it did not 

require high temperature processing. This feature allows an optimal deposition on 

top of ITO and prevents indium diffusion and the consequent ITO degradation. 

 

Recipe guide (3.5% wt): 

Ramp 1 Speed 1 Dwell 1 Ramp 2 Speed 2 Dwell 2 Ramp 3 

S1/10.000 S1 60 0 0 0 0 

 

Ramp 1 (sec) �1/1000 

Speed 1 (rpm) �1 

Dwell 1 (sec) 60 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

The layer was treated with thermal annealing in a hotplate in air (125ºC during 10 

min) and the resulting thickness of the layer on top of ITO was given by �(��) =

97 ∙ �
���

�����	���. 
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Zinc oxide (ZnO) 

ZnOx 

 

Deposition method: Spincoating (sol-gel) 

Solution preparation: The sol-gel precursor was prepared following reference [2.18]. 

The solution was left stirring and applied by spincoating in ambient air 

 

Recipe guide: 

Ramp 1 Speed 1 Dwell 1 Ramp 2 Speed 2 Dwell 2 Ramp 3 

0 6000 60 0 0 0 0 

 

Ramp 1 (sec) 0 

Speed 1 (rpm) 6000 

Dwell 1 (sec) 60 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

The layer was further thermal annealed at 200ºC during 20 min in air and the 

resulting thickness of the layer on top of ITO was around 30nm.  
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Bathocuproine (BCP) 

 

 
 

Deposition method: Thermal evaporation 

 

Recipe guide: 

Temperature (ºC) 135 

Rate (Å/s)  0.5 

Tooling factor (%) 12.8 

The resulting thickness of the layer on top of was always less than 10nm.  

  



A p p e n d i x  A .  M a t e r i a l s  a n d  m e t h o d s  | 121 

 

 

Lithium fluoride (LiF) 

LiF 

 

Deposition method: Thermal evaporation 

Deposition details: Small pieces (crystals) were evaporated in alumina crucibles 

 

Recipe guide: 

Ramp 1 (sec) 140 

Power 1 (%) 12 

Soak time 1 (sec) 30 

Ramp 2 (sec) 1 

Power 2 (%) 8 

Soak time 2 (sec) 100 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 30 

Tooling factor (%) 44.5 

The resulting thickness of the layer on top of was never more than 2 nm.  
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Lithium cobalt oxide (LiCoO2) 

Deposition method: Reactive sputtering 

Deposition details: This layer was always developed on top of organic layers at room 

temperature. 

 

Recipe guide: 

Power strike (W) 40 

Pressure strike (mTorr) 40 

Ramp up (sec) 18 

Deposition power (W) 70 RF 

Deposition Pressure (mTorr) 2.5 [20 Ar : 10 O2] 

Deposition temperature (ºC) RT 

Height (cm) 30 

Deposition Rate (Å/s) 0.075 

Ramp down (sec) 42 

 

The resulting thickness of the layer on top of the organic layer was always kept below 

1nm.  
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Hole-transporting layers 

 

Molybdenum oxide (MoO3) 

MoOx 

 

Deposition method: Thermal evaporation 

Deposition details: Molybdenum oxide pieces were placed in alumina crucibles and 

thermally evaporated 

 

Recipe guide: 

Ramp 1 (sec) 60 

Power 1 (%) 8.3 

Soak time 1 (sec) 70 

Ramp 2 (sec) 5 

Power 2 (%) 6.6 

Soak time 2 (sec) 200 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 30 

Tooling factor (%) 53 

 

The  thickness of the deposited layer always ranged between 3 and 40 nm.  
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Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) 

 

  

Deposition method: Spincoating 

Deposition details: Solutions from Clevios (Al 4083) were filtered before deposition 

 

Recipe guide: 

Ramp 1 (sec) 5 

Speed 1 (rpm) �1 

Dwell 1 (sec) 30 

Ramp 2 (sec) 0 

Speed 2 (rpm) 0 

Dwell 2 (sec) 0 

Ramp 3 (sec) 0 

 

The typical thermal annealing was 125ºC during 10 min in a hotplate in air and the 

resulting thickness of the layer on top of ITO was given by �(��) = 62	 ∙ �
���

�����	���  
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Nickel oxide (NiO) 

NiOx 

 

Deposition method: Sputtering 

Deposition details: This hole transporting layer was always deposited on top of ITO 

 

Recipe guide: 

Power strike (W) 40 

Pressure strike (mTorr) 40 

Ramp up (sec) 36 

Deposition power (W) 100 RF 

Deposition Pressure (mTorr) 1.5 [20Ar-10O2] 

Deposition temperature (ºC) RT 

Height (cm) 30 

Deposition Rate (Å/s) 0.09 

Ramp down (sec) 60 

 

After deposition, a plasma activation step (O2 plasma) was required for enhancing 

the final VOC of the devices. The minimum thickness of this layer on top of ITO was 

found to be 4.5nm.  
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A.2.4 Electrodes 

Two different kinds of materials were used as electrodes, transparent conductive oxides 

(TCOs) concretely Indium tin oxide (ITO) and Aluminum doped zinc oxide (AZO) and 

common metal electrodes:  

 

Indium tin oxide (ITO) 

ITO 

 

Deposition method: Reactive sputtering 

 

Recipe guide: 

Power strike (W) 40 

Pressure strike (mTorr) 40 

Ramp up (sec) 90 

Deposition power (W) 70 DC 

Deposition Pressure (mTorr) 2 [20 Ar : 10 O2] 

Deposition temperature (ºC) 100 

Height (cm) 30 

Deposition Rate (Å/s) 0.8 

Ramp down (sec) 210 

 

After the deposition, the ITO layer was thermal annealed at 300ºC in a hotplate in 

air during 5 min. The minimum thickness in order to have a good conductivity was 

around 110 nm.  

 

 



A p p e n d i x  A .  M a t e r i a l s  a n d  m e t h o d s  | 127 

 

 

Silver (Ag) 

Ag 

 

Deposition method: Thermal evaporation 

Deposition details: Silver was found to be a very good electrode where no post-

thermal annealing for the device was required. As a thin electrode was also very 

good and involved the use of low temperature substrate (~-5ºC) to avoid diffusion 

[4.54]. 

 

Recipe guide: 

Ramp 1 (sec) 60 

Power 1 (%) 12.8 

Soak time 1 (sec) 190 

Ramp 2 (sec) 33 

Power 2 (%) 14.2 

Soak time 2 (sec) 75 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 30 

Tooling factor (%) 28 
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Aluminum (Al) 

Al 

 

Deposition method: Thermal evaporation 

Deposition details: Deposition rate was always kept close to 1Ǻ/s to prevent boat 

damage. 

 

Recipe guide: 

Ramp 1 (sec) 60 

Power 1 (%) 10 

Soak time 1 (sec) 60 

Ramp 2 (sec) 33 

Power 2 (%) 13 

Soak time 2 (sec) 60 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 30 

Tooling factor (%) 69 

 

The resulting thickness of the layer was typically over 100 nm.  
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Calcium (Ca) 

Ca 

 

Deposition method: Thermal evaporation 

Deposition details: This layer was used as an electrode and was always employed in 

the electron transporting layer interface in combination with aluminum or silver. 

 

Recipe guide: 

Ramp 1 (sec) 240 

Power 1 (%) 6.5 

Soak time 1 (sec) 160 

Ramp 2 (sec) 60 

Power 2 (%) 7 

Soak time 2 (sec) 60 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 60 

Tooling factor (%) 60 

 

The resulting thickness of the layer on top of the organic was around 20 nm.  
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Gold (Au) 

Au 

 

Deposition method: thermal evaporation 

Deposition details: Gold was found to be a very good electrode where no post-

thermal annealing for the device was required. As a thin electrode, it need to have a 

thickness above 9 nm to avoid the presence of nano islands. To be attached on a 

glass substrate it needs an extra layer of Titanium, typically of about 2nm, otherwise 

the fabrication process on it need to be extremely careful. Thanks to its high 

penetration depth can be 20% thicker than Silver, but the same transparency can be 

kept. 

 

Recipe guide: 

Ramp 1 (sec) 120 

Power 1 (%) 10.5 

Soak time 1 (sec) 80 

Ramp 2 (sec) 120 

Power 2 (%) 15 

Soak time 2 (sec) 60 

Deposition Rate (Å/s) 1 

Ramp 3 (sec) 30 

Tooling factor (%) 39 
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Cupper (Cu) 

Cu 

 

Deposition method: thermal evaporation 

 

Recipe guide: 

Power strike (W) 40 

Pressure strike (mTorr) 40 

Ramp up (sec) 12 

Deposition power (W) 20 DC 

Deposition Pressure (mTorr) 12 

Deposition temperature (ºC) RT 

Height (cm) 30 

Deposition Rate (Å/s) 0.131 

Ramp down (sec) 12 

 

The percolation limit was found to be around 7nm. 
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Nickel (Ni) 

Ni 

 

Deposition method: thermal evaporation 

 

Recipe guide: 

Power strike (W) 40 DC 

Pressure strike (mTorr) 40 

Ramp up (sec) 12 

Deposition power (W) 20 DC 

Deposition Pressure (mTorr) 3 

Deposition temperature (ºC) RT 

Height (cm) 30 

Deposition Rate (Å/s) 0.108 

Ramp down (sec) 12 

 

The percolation limit was found to be around 4 nm. 
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A.2.5 Other materials 

SiO2 was employed in combination with TiO2 for growing 1-dimensional photonic crystals 

of few layers. The properties of TiO2 and the following table summarizes the ones for SiO2 

 

Silicon oxide (SiO2) 

SiOx 

 

Deposition method: sputtering 

 

Recipe guide: 

Power strike (W) 40 RF 

Pressure strike (mTorr) 40 

Ramp up (sec) 360 

Deposition power (W) 100 RF 

Deposition Pressure (mTorr) 2 

Deposition temperature (ºC) RT 

Height (cm) 30 

Deposition Rate (Å/s) 0.14 

Ramp down (sec) 360 
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