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Abstract

The incorporation of high levels of small-scale non-dispatchable distributed
generation is leading to the transition from the traditional ’vertical’ power
system structure to a ’horizontally-operated’ power system, where the distri-
bution networks contain both stochastic generation and load (such as electric
vehicles recharging). This fact increases the number of stochastic inputs and
dependence structures between them need to be considered. The determin-
istic analysis is not enough to cope with these issues and a new approach is
needed. Probabilistic analysis provides a better approach.

This PhD thesis describes the grid impact analysis of charging electric
vehicles (EV) using charging curves with detailed battery modelling. A
probabilistic method using Monte Carlo was applied to a typical Spanish
distribution grid, also using mobility patterns of Barcelona. To carry out
this analysis, firstly, an IEEE test system was adapted to a typical distribu-
tion grid configuration; secondly, the EV and its battery types were modeled
taking into account the current vehicle market and the battery characteris-
tics; and, finally, the recharge control strategies were taken in account.

Once these main features were established, a statistical probabilistic model
for the household electrical demand and for the EV charging parameters was
determined. With these probabilistic models, the Monte Carlo analysis was
performed within the established scenario in order to study the lines’ and
the transformers’ loading levels. The results show that an accurate model
for the battery gives a more precise estimation about the impact on the
grid. Additionally, mobility patterns have been proved to be some of the
most important key aspects for these type of studies.
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Resumen

La incorporación de altos niveles a generación distribuida no despachable
a pequeña escala está causando la transición de los tradicionales sistemas
eléctricos de potencia ’verticales’ a los sistemas de potencia ’operados ho-
rizontalmente’, en donde dichas redes de distribución pueden contener tan-
to generación como consumos de carácter estocástico (p. ej. La recarga de
veh́ıculos eléctricos). Este hecho incrementa el número de variables estocásti-
cas y las dependencias entre estas de forma considerable. Los análisis deter-
mińısticos no son suficientes para lidiar con estos nuevos factores y se necesita
enfocar el problema de otro modo. Los análisis probabiĺısticos proporcionan
una mejor manera de abordar la situación.

Esta tesis describe el impacto de la recarga de veh́ıculos eléctricos (para los
cuales se ha usado un modelo detallado para las curvas de carga y descarga
de sus bateŕıas) en la red eléctrica. El método probabiĺıstico Monte Carlo se
ha aplicado a una red de equiparable a una red distribución española donde
también se han considerado patrones de movilidad de veh́ıculos (en este caso
de la ciudad de Barcelona). Para llevar a cabo los análisis, en primer lugar
se ha adaptado una red de estudio de IEEE con los parámetros de la red
de distribución española. A continuación se ha modelado el comportamiento
de las bateŕıas de los veh́ıculos eléctricos a partir de las caracteŕısticas de
bateŕıas de modelos reales de veh́ıculos eléctricos que ya están en el mer-
cado. Finalmente, se han considerado diferentes estrategias de control en el
momento de realizar la recarga de veh́ıculos eléctricos.

A partir de los datos obtenidos se han generado modelos estad́ısticos tanto
para los consumos domésticos de la red como para la recarga de los veh́ıculos
eléctricos. Con dichos modelos se ha llevado a cabo un análisis Monte Carlo
para estudiar los niveles de carga tanto de ĺıneas como de transformadores.
Los resultados obtenidos demuestran la importancia del correcto modelado
de las bateŕıas ya que se aumenta la precisión de los análisis. Adicionalmente,
los patrones de movilidad de la zona a estudiar han demostrado ser clave en
este tipo de estudio.
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Dissertation outline

The present PhD thesis is divided in four parts plus an introductory chapter.
Part I introduces the necessity of probabilistic assessment of electric power

systems and battery modelling. Chapter 2 describes the basis of probabilistic
analysis and yields the basis for further analysis. Chapter 3 describes the
process of EV’s battery modelling.

Part II presents the probabilistic models used in the study. Chapter 4
describes the main steps to be followed to perform the analysis. Chapter
5 describes the process to generate the probabilistic model for the grid’s
electrical demand. Finally, chapter 6 presents the process to generate the
probabilistic model for EV’s demand.

In part III the study case is presented. In chapter 7 the scenario for
the simulations is presented. Chapter 8 and chapter 9 present the impact
of the EV’s recharge without considering the household consumption and
considering it respectively.

Finally, part IV summarizes the conclusions of this work and present fu-
ture work-lines.
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Chapter 1

State of the art

The growing interest in the introduction of fossil fuel alternatives into the
transportation and the large number of projects regarding this issue show
that in the future the presence of the electric vehicle (EV) in the electric
system will be significant. Important cities in the world, such as New York,
have been the scenario of reference studies about the potential impact of
Plug-in Hybrid EV technology on grid operations and electricity system
planning [4]. This study illustrates how the proper management of charging
patterns can lead to the utilisation of the current grid without investing in
infrastructure. Other studies, like [5], conclude that in cases where Plug-
in Hybrid EVs obtain the energy from electricity for 40% of their miles,
penetrations up to 50% by the vehicle fleet would not require the increase
of electric generation capacity under optimal dispatch rules.

Therefore, it is possible to assume a future with a strong presence of EVs
[6]. Under these conditions, the use of wind, solar and renewable energies
is generally a potential alternative [7, 8] energy source. This situation will
represent an opportunity for EVs to be part of an integrated electric system,
with the ability to adapt to varying conditions by performing ancillary ser-
vices like power-frequency, power factor or voltage regulation. However, an
EV implementation introduces complexities of this integrated system into
the grid. Depending on power level, timing, and duration of the EV connec-
tion to the grid, there could be a wide variety of impacts on grid constraints,
capacity requirements, fuel types used and emissions generated [9], which
must be managed in order to reach an optimal dispatch rule. A control
system able to optimally manage all constraints and variables of electrical
transportation will lead to moderate investments into the grid and therefore
to its implementation.
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Chapter 1 State of the art

1.1 Types of vehicles

Vehicles can be classified mainly into three groups: Internal Combustion
Engine vehicles (ICE vehicles), Hybrid Electrical Vehicles (HEV) and Bat-
tery Electrical Vehicles (BEV). The ICE vehicles are the vehicles which its
only propulsion system is an internal combustion engine and its only energy
source is its fuel tank. The HEV vehicles usually combine at least two types
of different propulsions. I.e. a HEV can have a hydrogen engine and an elec-
trical motor. Finally, the BEV get all the propulsion energy from a battery
which feeds an electrical motor. It is important to highlight that both HEV
and BEV can get plugged to an electrical outlet to recharge their batteries.

Two ways of combining ICE and electrical motors are currently used in
HEV: sharing the same shaft to the vehicle’s differential transmission and
through different shafts. The Hybridization Factor (HF) is defined by [10, 11]
in order to calculate the ratio of propulsion power which comes from the
electrical motor (PEP ) and from the ICE (PICE) in a HEV (equation 1.1).

HF =
PEP

PEP + PICE
(1.1)

1.1.1 Internal Combustion Engine Vehicle definition

An ICE vehicles is a vehicle which gets its propulsion energy from an ICE
which transforms chemical energy from the fuel into kinetic energy. The
combustion of the fuel (usually a fossil fuel) takes place in a combustion
chamber where the fuels gets mixed with an oxidizer (normally air) and
propels a piston. Nowadays, ICE vehicles are equipped with an auxiliary
electrical motor which enhances the fuel economy by 5-15% (in city/urban
environments) through turning off the ICE during coasting, braking or stop-
ping [1, 12].

1.1.2 Hybrid Electrical Vehicle definition

An HEV combines a traditional ICE propulsion system with an electrical
propulsion system in order to achieve a better fuel economy. Currently, six
drive train architectures types of HEV can be distinguished [1, 12] (figure
1.1.2).

• Mild-HEV. This type of HEV (figure 1.1(a)) is propelled solely by
an electrical generator. In this type of vehicle the ICE shares the shaft
with the electrical motor. As a consequence of sharing the shaft, this

2



1.1 Types of vehicles

HEV can run without the electrical motor but it cannot run without
the ICE. This type of architecture reaches up to a 30% of fuel efficiency
and allows to reduce the size of the ICE [13].

• Series full-HEV. In this type of HEV architecture (figure 1.1(b)) the
electrical motor is the only propulsion system. This kind of vehicles
are also known as Extended Range Electric Vehicles (EREV) due to
the fact that the ICE is used to recharge the vehicle’s battery through
a high efficiency ICE. Despite of having the advantage of the battery
reduction, its efficiency drops in a 25.7%. This fact makes this type
of HEV the less efficient among the rest of types of HEV. It includes
regenerative breaking as the main system to recover and store energy
[1, 12, 14, 15].

• Parallel full-HEV. This HEV (figure 1.1(c)) are able to propel the
vehicle in three possible ways: through the electrical motor, through
the ICE and combining both the electrical motor and the ICE. The
parallel full-HEV count with a higher efficiency due to size of its bat-
tery and its electrical motor compared to the previous types of HEV
[1, 12].

• Series-parallel full-HEV. This configuration (figure 1.1(d)) com-
bines the series and parallel configuration. Nevertheless, adding both
functionalities adds more complexity to the vehicle.

• Complex full-HEV. These HEV (figure 1.1(e)) are similar to the
series-parallel full-HEV regarding its propulsion system. The major
difference is that the ICE does not injects power directly to the elec-
trical motor but it recharges the battery through a power converter
which allows a better performance of the vehicle when its running as
in a EREV mode.

• Series-parallel PHEV. The final combination (figure 1.1(f)) shares
the same properties as the previous one but it allows the possibility
of recharging its batteries from a power outlet. This feature allows a
cost saving in the fuel due to the price of electricity compared to the
price of fuel and it is a most environmental friendly alternative if the
electric energy comes from renewable energy sources.

3
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Figure 1.1: HEV drive train architectures [1]
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1.1.3 Electrical Vehicle definition

Pure electrical vehicle, also known as Battery Electrical Vehicle (BEV) or
All-Electric Vehicle (AEV), are vehicles which its only power source is elec-
trical energy stored in a battery (or energy storage system in the case of a
fuel cell vehicle.). Currently, six drive train architectures types of BEV can
be distinguished [1, 12] (figure 1.1.3).

• Conventional configuration with a clutch. This type of drive
train architecture (figure 1.2(a)) is the direct conversion from an ICE
to a BEV: the ICE is replaced by the battery, the power converter and
the electrical motor and the rest of the drive train is kept. This type
is the less efficient due to the size and the weigh of the clutch and the
gearbox.

• Conventional configuration without a clutch. This type of con-
figuration (figure 1.2(b)) is similar to the previous one described but
the clutch is removed to reduce the weight. In some cases the gearbox
is replaced by a fixed gearing to loose extra weight and reach a better
efficiency.

• Conventional configuration with integrated gearbox-differential.
This type of BEV (figure 1.2(c)) presents an integrated gearbox-differential
system into the electrical motor. In this situation the only shaft kept is
drive train which joins the wheels. This configuration gains compact-
ness compared to the previous conventional architectures presented.

• Independent electrical motors per drive wheel. This configu-
ration (figure 1.2(d)) is an evolution of the previous one and its main
enhancement respect the previous is that the drive shaft is split into
two system (one for each drive wheel) with its own power converter.
This system allows better control of the vehicle particularly when cor-
nering.

• Independent electrical motors per drive wheel with integrated
gearing. This type of architecture (figure 1.2(e)) is like the previous
(figure 1.2(d)) but it has no shafts due to the fact that a fixed gearing
is integrated in the wheel and the electrical motor is just located in its
side.

• In-wheel drive. The electrical motors are directly integrated in each
drive wheel and its controlled is performed by its respective converters
(figure 1.2(f)).
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Figure 1.2: HEV drive train architectures [1]
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1.1.4 Modes of operation

The HEV and PHEV combine both an ICE and usually an electric motor to
propel. In order to increase the driving range of the vehicle, some modes of
operation can be performed taking into account the SOC (State Of Charge)
of the vehicle. Two modes of operation can be performed in a HEV or a
PHEV [16]:

Charge sustaining mode (CS) The vehicle operates with the objective of
keeping constant its current SOC. In this mode of operation both the
ICE and the electrical motor operate jointly.

Charge depleting mode (CD) The vehicle operates with the objective of
getting a net decrease in its battery SOC. Therefore, only the electrical
motor will be used until the limit SOC (SOCL) is reached [17, 18].
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1.2 Types of energy storage systems in the EV

In contrast to the ICE vehicles or the HEV, the EV do not posses any
system to get energy from a fuel tank. Instead of this system, the EV
come generally with a combination of these three energy storage systems:
batteries, ultracapacitors and flywheel systems.

1.2.1 Battery

Batteries are electrochemical devices consisting of several electrochemical
cells which convert chemical energy into electric energy. Two types of bat-
teries exists: primary batteries (also known as disposable batteries) and
secondary batteries (rechargeable batteries). The primary batteries are de-
signed to be used once and then discarded. The secondary batteries are
designed to be used recharged and used as many time as its life cycle allows
it. Therefore, the battery types used on EV are the secondary battery type.

There are five battery types currently suitable for transportation in the
market [1, 19, 20, 21]:

• Lead-acid

• Nickel

• Zebra

• Lithium

• Metal-air

The Lead-acid battery is the cheapest type of battery presented. These
batteries are typically used in ICE vehicles and are the least environmental
friendly and heavy battery types presented. Its characteristics are [1]:

• Specific Energy [Wh/kg]. From 30 Wh/kg in the metal foil lead
acid batteries to 50 Wh/kg in the Valve regulated lead acid batteries.
The regular lead-acid battery are around 35 Wh/kg.

• Energy density [Wh/l]. Typically, this type of battery has energy
density closer to the 100 Wh/l.

• Specific power [W/kg]. The range of values are from 150 W/kg to
900 W/kg but the typical models have values of 180 W/kg.
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• Life cycles. Regular lead-acid batteries have approximately 1000 life
cycles. However, advance lead-acid batteries can reach the 1500 life
cycles.

• Efficiency [%]. The efficiencies are generally over the 80%.

• Production cost [e/kWh]. The production costs of these batteries
are estimated to be in the range of 45-150 e/kWh.

The Nickel battery types are more environmentally friendly than the Lead-
acid batteries. Its characteristics are [19, 20]:

• Specific Energy [Wh/kg]. The values of the specific energy of these
batteries are 50-95 Wh/kg. However, the most commonly used Nickel
battery, the Nickel-Cadmium battery, have specific energies in the
range of 50-60 Wh/Kg.

• Energy density [Wh/l]. The energy densities for this batteries vary
from 60 Wh/l to 300 Wh/l which corresponds to the Ni-Cd type.

• Specific power [W/kg]. Ni-Cd batteries have a specific power of 200
W/kg but the other Ni batteries have values from 100 W/kg to 300
W/kg.

• Life cycles. The life cycles of these batteries are estimated to be
around 2000. However, the Ni-Zn type only reaches the 300 cycles.

• Efficiency [%]. For most of these battery types, the efficiencies reach
values up to 75%.

• Production cost [e/kWh]. The average production cost for these
batteries is approximately 155 e/kWh. Nevertheless, the Ni-Cd bat-
teries have costs in the range of 200-250 e/kWh.

The ZEBRA batteries, built by sodium nickel chloride (NaNiCl), are bat-
teries that need to keep temperatures in the range of 300-350 oC to remain
efficient. These type of batteries present less life-cycle-cost than the lead-
acid batteries [22] but have the drawback of losing 90 Wh when the battery
is not used [23]. Its characteristics are [19, 20]:

• Specific Energy [Wh/kg]. Its specific energy is rated from 90-120
Wh/kg.

• Energy density [Wh/l]. The energy density values are around 160
Wh/l.
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• Specific power [W/kg]. The values are from 155 W/kg an in some
models the specific power can reach up to 230 W/kg.

• Life cycles. The life cycles are rated in approximately 1200.

• Efficiency [%]. For all the documented ZEBRA battery models its
efficiencies are around the 80%.

• Production cost [e/kWh]. The production costs of these batteries
are estimated to be in the range of 230-345 e/kWh. However, some
models can reach the 450 e/kWh.

Lithium batteries have the main advantage of not having the memory
effect and no poisonous metals (i.e. mercury, cadmium or lead) but it is
most expensive type [1]. Its characteristics are [1, 19]:

• Specific Energy [Wh/kg]. Several types of Lithium batteries can
be found in the market with values of specific energy in the range
of 80-250 Wh/kg. The battery with the lowest specific energy is the
Lithium-titanate (LiTiO/NiMnO2) battery with values from 80-100
Wh/kg. The highest specific energy is reached by the Lithium-ion
battery with values in the range of 118-250 Wh/kg.

• Energy density [Wh/l]. The lowest value of energy density for the
lithium batteries is rated in 220 Wh/l. However, the Lithium-ion type
can reach values up to 400 Wh/l.

• Specific power [W/kg]. For most Lithium batteries, the values
of specific power are in the range of 200-450 W/kg. However, the
Lithium-iron phosphate type (LIFePO4) reaches values form 2000 W/kg
up to 4500 W/kg and the Lithium-titanate (LiTiO/NiMnO2) reaches
values around 4000 W/kg.

• Life cycles. The vast majority of Lithium batteries have approxi-
mately 2000 life cycles except the Lithium-titanate (LiTiO/NiMnO2)
which can get up to 18000.

• Efficiency [%]. Efficiencies in this type of batteries are in the range
of 80-95%.

• Production cost [e/kWh]. The Lithium-titanate (LiTiO/NiMnO2)
has a production cost of 2000 e/kWh. However, in the rest of batteries
the costs are in the range of 110-350 e/kWh.
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Metal-air batteries have the main advantage of higher specific energy and
density respect the Lithium batteries. Its main disadvantage are its limited
life cycle and its reduced specific power [24]. Its characteristics are [1]:

• Specific Energy [Wh/kg]. Most of metal-air batteries possess a
specific energy in the range of 220-460 Wh/kg. However, the Lithium-
air type reaches values up to 1800 Wh/kg.

• Energy density [Wh/l]. The documented energy densities for metal-
air batteries are values around the 1400 Wh/l.

• Specific power [W/kg]. The values are in the range of 60-140 W/kg
[20].

• Life cycles. Life cycles of these batteries are rated in 200.

• Efficiency [%]. Efficiencies in this type of batteries are up to 60%
[20].

• Production cost [e/kWh]. Production costs are in the range of
90-120 e/kWh.
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1.2.2 Ultracapacitor

Ultracapacitors are in essence similar to regular capacitors but have capaci-
tances 20 times higher than regular capacitors, no maintenance are immune
to ambient temperature variations and have a longer life cycle . Its charac-
teristics are [1]:

• Specific Energy [Wh/kg]. Ultracapacitors’ specific energies are in
the range of 5-15 Wh/kg.

• Specific power [W/kg]. The values are in the range of 1-2 MW/kg.

• Life cycles. Ultracapacitors can last up to 40 years.

• Efficiency [%]. Efficiencies in ultracapacitors over the 95%.

1.2.3 Flywheel

Flywheel energy storage systems work under the principle of storing kinetic
energy accelerating a rotor to a very high speed and keeping it as rotational
energy. The output of this device could be mechanical energy or electrical
energy. Its characteristics are [1]:

• Specific Energy [Wh/kg]. Specific energies are in the range of 10-
150 Wh/kg.

• Specific power [W/kg]. The values are in the range of 2-10 kW/kg.

• Life cycles. Its life cycle is rated up to 15 years.

• Efficiency [%]. Efficiencies in flywheels are around 80%.
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1.3 Types of energy generation systems in the EV

The objective of implementing an energy generation system in an EV is to
extend the range of it. The most used energy generation systems in com-
mercial EVs are [1]: fuel cells, photovoltaic cells, automotive thermoelectric
generators (ATEG) and regenerative braking.
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1.3.1 Fuel cells

A fuel cell is an energy conversion system which converts chemical energy
into electrical energy. Fuel cells perform this process through electroly-
sis (giving heat and water as byproduct) proving to be a valuable option
regarding against oil dependencies and hazardous CO2 emissions [22, 23].
Therefore, fuel cells in transportation suppose a great advantage due to its
low emissions, system simplicity, silence and its high efficiency operation
[25].The most used fuel cells are [1]:

• Direct methanol fuel cells (DMFC)

• Proton exchange membrane fuel cells (PEMFC)

• Alkaline electrolyte fuel cells (AFC)

• Phosphoric acid fuel cells (PAFC)

• Molten carbonate fuel cells (MCFC)

• Solid oxide fuel cells (SOFC)

The U.S Department of Energy, studied the effect of temperature in the
output power in fuel cells [25]. This study, shows that the SOFC can work at
the highest temperatures being these in the range of 700-1000oC with power
outputs from 1 kW to 2000 kW. The MCFC operate between the 600oC and
the 700oC being able to provide from 300 kW to 10000 kW which make these
type of fuel cells the most potent type. The PAFC operate in temperatures
around the 200oC providing power in the range of 100-400 kW. The AFC,
PEMFC and DMFC operate below the 100oC with power outputs up to 100
kW.
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1.3.2 Photovoltaic cells

Photovoltaic (PV) energy its been transportation sector since 20 years ago
[26, 27, 28]. Even at the beginning of the introduction of photovoltaics in
transportation PV panels were not conceived as an option for ICE vehicles
[29], nowadays vehicles such as 2010 Prius, Aptera 2, Audi A8 and Mazda 929
include the option of a solar sunroof for air conditioning purposes [1]. Table
1.1 shows the seven types of photovoltaic technologies and their respective
efficiencies [30, 31, 32, 33, 34, 35, 36, 37, 38].

Table 1.1: PV technologies efficiencies

PV Technology Efficiency [%]
Mono-crystalline silicon 20,3-23,4
Polycrystalline 15-18,2
Thin film 8-19,9
Very high performance PV cells 21-41,1
Concentrator PV technology 25-42,2
Third generation 2,0-18,7
Innovative panel designs 1,7-10

Even a fully solar powered vehicle still remains a challenge due to the
space limitation and the low generated energy, some car manufacturers have
started to include PV on the rooftop. Through maximizing the surface of
the PV on the vehicle [39] and through control algorithms [40] the overall
efficiency can be increased [41].

1.3.3 Automotive thermoelectric generators

Thermoelectric generators (TEG) are devices which convert heat directly
into electricity using the Seebeck effect phenomenon. Thus, ATEG convert
waste heat from an ICE into electrical energy. ATEG systems can last up
to 20 years without any maintenance with a low e/Watt with efficiencies in
the range of 40-70% [42].

The first Seebeck effect devices where made of bimetallic junctions, but
nowadays Seebeck effect devices use semiconductor p-n junctions due to its
high electrical conductivity and its low thermal conductivity. The most
used materials used in these devices are Bi2Te3, PbTe, and SiGe. Other
materials like BiSb or FeSi2 are less used due to high sublimation rates or
bad mechanical strength even its good thermoelectric properties [1, 43, 44].
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1.3.4 Regenerative braking

Conventional ICE vehicles use less than a 20% of energy to propel [45, 46].
It has been estimated that approximately a 50% percent of the energy used
to brake the vehicle can be recovered using regenerative braking systems
and can enhance the driving range in a 10-25% [47, 48].

Regenerative braking is a type of braking mechanism that instead wasting
excess kinetic energy to heat due to friction in the brake linings, it converts
this excess of energy in other form of energy. The regenerative brake oper-
ates jointly with the friction brake due to the fact that it can not absorb
enough energy to stop the vehicle by itself. Therefore, due to safety issues,
both the regenerative brake and the friction brake operates togethe in an
specific ration (depending on the control implemented).There are currently
four mechanism to capture the energy in a regenerative brake [1]:

• The electrical energy is directly stored in an Energy Storage System
(ESS).

• The mechanical energy from the shaft rotation is stored in Flywheel
Energy System (FES) as rotating energy.

• Energy is stored in canisters through a compressed gas.

• Energy stored in a spring as potential energy.

In the first typology of regenerative brake, the energy is stored as electric-
ity in an ESS through an electric motor/generator. The energy recovered
from braking is around the 50% an it is currently being used in HEV and
EV [49, 50]. In the second type of regenerative brake, the rotational energy
is stored in a Flywheel. In this system, over than the 70% of the braking
energy can be recovered and it is mostly used in F1 (where is also known as
KERS). The third system uses a hydraulic motor to compress gas to use it
as energy storage [51]. It can reach values of more than the 70% of brake en-
ergy recovering and it is used mainly in heavy-duty delivery vehicles [49, 50].
The final system stores gravitational energy through a spring as potential
energy. It has been used in some train applications but the data about its
energy braking recovery ratio are not conclusive.
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1.4 Charger topologies

Chargers play a crucial role in the EV’s implementation. Due to the fact
that the battery life and the charging time is linked to the charger, in order
to be competitive in the market the chargers must be [2]: efficient, high
power density capable, reliable, low cost, low volume and low weight. The
most important drawback that chargers can produce is the one related to the
harmonic effects on electric utility distribution grids [52, 53]. However, these
effects can be reduced with an active rectifier front end [2]. The following
standards address the issue of harmonic injection in the grid: IEEE-1547,
SAE-J2894, IEC1000-3-2 and U.S National Electric Code (NEC) 690.

Electric vehicle’s chargers can be classified according to: their power levels,
unidirectional or bidirectional power flow, on-board or off-board location
and conductive or inductive charging. This section describes these possible
classifications.

1.4.1 Power Levels

The proper deployment of charging infrastructure and electric power supply
equipment (EVSE) is a vital issue due to the fact that their availability in the
market is the key to reduce on-board requirements and costs. Even the high
number of available charger technologies and standards, this is a complex
tasks because a correct deployment has to deal with [2]: charging time,
demand policies, distribution, extent, regulatory procedures, etc. Table 1.4.1
show the charging power levels (based on [2, 3]).

Level 1

Level 1 charging level is the slowest method (table 1.4.1). This level is
designed to work in AC (1 phase) with voltage levels of 120 V (US) and 230
V (EU). Even it could use the J1772 connector, it could also use the regular
house outlet connector [2]. Charging infrastructure has been reported to
cost $500-$800 [54, 55].

Level 2

Level 2 charging level (table 1.4.1) is the main method to be used in private
or public facilities [2]. This charging level is designed to work in AC (1
phase or 3 phase) with voltage levels of 240 V (US) and 400 V (EU). It
might need dedicated ESVE and the charger must be on-board the vehicle.

17



Chapter 1 State of the art

The installation costs of Level 2 infrastructure are in the range of $1.000-
$3.000 [56] (unit cost per residential unit of $3000 [2, 55]). However, some
cases such as the Tesla Roadster have an additional cost of $3.000 [57].

Level 3

Level 3 charing method is designed to be used as a commercial fast-charge
level, able of recharging the vehicle’s battery in less than 1 hour. This
method uses an off-board 3 phase circuit charger (mainly to perform ac-
dc controlled conversion) (table 1.4.1). The installation costs of Level 3
charging infrastructure are in the range of $30.000-$160.000 [58, 59]. The
maintenance of this type of installation has been reported to another major
cost [2, 60].
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1.4.2 Unidirectional and bidirectional chargers

Regarding the power flow’s direction, two possibilities exist when referring
to chargers:

Unidirectional The electricity flows from the grid to the vehicle in order to
recharge the vehicle’s battery (grid-to-vehicle) [2].

Bidirectional The electricity can flow from the grid to the vehicle and from
the vehicle to the grid. In the second option the electrical vehicle
injects power into the grid (vehicle-to-grid).

Unidirectional chargers usually consist on a two AC/DC stage converter
with an active filter in the grid’s side. However, nowadays tendency is to
implement the whole converter in a single stage type due to the benefits that
it entails regarding the weight, volume and losses reduction [61]. Due to
their simplicity in the control, their low cost (compared to the bidirectional
type) and their performance, in a high EV penetration grid this type of
chargers can fulfill most utilities requirements avoiding the safety hazards of
bidirectional chargers [2, 62, 63].

Bidirectional chargers usually consist on a two AC/DC stage converter
and support battery recharge (G2V) and battery power injection into the
grid (V2G). The first converter AC/DC stage is connected on the grid’s side
and is responsible for the correct power factor during the process [64]. The
second converter DC/DC stage has the function of regulating the battery’s
charge/discharge current [65]. When operating in the charging mode, the
AC/DC stage has to guarantee a determined current angle in order to control
the reactive power and when injecting back the power to the grid, it must
return current in a similar sinusoidal form trying inject in power stabilization
way [62, 66, 67, 68, 69]. Bidirectional chargers are only expected to work in
the Level 2 power level (section 1.4.1) because the power limitations in Level
1 (less than 1,9 kW) and the connection time in Level 3 (which is conceived
to be less than 1 hour) [2].
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1.4.3 On-board and off-board chargers

The vehicle’s charger location has been under discussion since the beginning
of EV’s deployment. Basically, two possible locations exist for the chargers:
on-board and off-board.

On-board location allows to recharge the vehicle anywhere (when an ap-
propriate power source is available) due to the fact that are power electronics
of the vehicle the responsible for the batteries’ charging. This location gives
more flexibility to the driver because only has to look for a power outlet re-
gardless the standard [2]. However, due to cost, weight and space limitations
[70, 71, 72], this location only allows Level 1 charging level.

In the other hand, off-board chargers reduce the weight and the space
of the battery charger enhancing the vehicles electric range. Additionally,
due to the fact that the charger is off-board the vehicle, the limitations
of weight and space are reduced and this configuration allows Level 2 and
Level 3. Nevertheless, the off-board charging location option is less flexible
in the sense that the vehicle’s owner needs to know the exact spots where the
battery can be recharged due to the typology and standards of the vehicle.
It is important to highlight that in this type of charger location, the risk of
vandalism needs to be taken into account [73].
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1.4.4 Conductive and Inductive charging

When recharging the vehicle two main possibilities exist: conductive and
inductive charging. In conductive charging, the cable is needed to connect
the EV with the power outlet [3]. It is the most frequent used option and
it allows the three charging levels (Level 1, Level 2 and Level 3 ). The main
drawback of this option is that a cable is needed and there is no feasible
possibility to recharge the vehicle while moving.

The inductive charging mode uses the electro-magnetic induction princi-
ple to transfer the power from the charger to the vehicle. This charging
mode does not need any cable to perform the charge and therefore the EV’s
recharge can be performed while the EV is parked or stopped at a traffic
light (stationary) or when the vehicle is moving (contactless roadbed EV
charging). This alternative reduces the necessity of fast-charge infrastruc-
ture due to the fact that the recharge can be performed while traveling,
and thus the recommended charging levels for this mode are Level 1 and
Level 2. However, the major drawback of this alternative are the low power
density and efficiencies reached through this mode and specially the man-
ufacturing complexity of the needed infrastructure to perform the recharge
[74, 75, 76, 77, 77].
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1.5 Impact of the charging into the grid

When studying the impact of an EV fleet recharge in a grid, several aspects
have to be considered prior to starting the process. Firstly, the electric grid
used in the study, taking into account the type of grid, its topology, its
voltage level and daily load profile is important. Secondly, the EV type, its
battery features and the EV fleet modelling should be defined, and finally,
the recharging control strategy has to be considered.

When studying the impact of EV recharge on electric grids, most of the
authors [78, 79, 80, 81]chose the distribution grid type to perform their
simulations. The IEEE has standardised distribution models and available
data from real grids corresponding to distribution grids.

Regarding the load profile modelling, [78] used the hourly average house-
hold load curve (available from the RELOAD data base used by the Electric-
ity Module of the National Energy Modelling System (NEMS)). A one year
period with three different day types (typical weekday, weekend and peak
day) and nine load types (space cooling, space heating, water heating, cook-
ing, cloth clothes drying, refrigeration, freezing, lighting and others) were
taken into consideration. In [79], a household load profile was extracted from
the measurements from [82]. These measurements were taken during over
the course of 24 hours in 15-minute intervals with a resolution of 15 minutes
during on an arbitrary winter day. Random load profiles based on proba-
bility density functions were used in [83]. Finally, in [81], grid load profiles
were extracted from from the Stockholm Office of Research and Statistics,
2009 [84] (most critical case). Regarding EV modelling, most authors used
a generic EV model. However, other authors chose a real model, such as
the Chevy Volt [78]. The driving ranges of electric vehicles differ amongst
the different types of EVs in [78, 81]: the values for the driving range of
electric vehicles are between 32.7 km and 64.37 km. However, regarding the
state of charge (SOC) for starting the recharge, the values established for
the different types are similar , between 20% and 30% [78, 79, 80].

Depending on the chosen EV typology, the capacity of its batteries varies
drastically. For Plug-in Hybrid EV batteries, the capacity values reported
in literature are: 8 kWh [83], 8.2 kWh (2.7h of recharging time) [81] and 11
kWh (8.8 kWh considering minimum allowable SOC) [79]. In contrast, pure
EVs have a capacity of 16 kWh, which almost doubles the capacity of the
studied Plug-in Hybrid EVs [78].

For the specific case of the Chevy Volt EV, the main features of its lithium-
ion battery are: an energy of 16 kWh, a voltage of 320 V to 350 V, a full
recharge time from 6 to 6.5 hours using a 110V outlet and an electric driving
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range of 64.37 km (40 miles) [78].
Considering vehicle fleet modelling, several authors have taken into ac-

count the average travelled distance, the methodology for the fleet modelling
and the penetration of EVs into the grid.

The travelled distance indicates the required capacity for the battery and
the energy consumed by the proposed EV. The values proposed for the
travelled distance per day are 0.01 km/day to 16.1 km/day [83], 16.1 km/day
to 32.2 km/day [83] or 32.7 km/day [81].

Regarding the methodology for fleet modelling, in [78], its authors esti-
mate how many vehicles would be in a transformer based on the established
EV penetration and also check the transformer loading capacity. Other
authors have modelled the vehicle fleet as a single large battery which com-
prises the sum of all batteries [80]. And finally, other authors estimated the
total energy amount for private car transportation for the entire year and
then it was divided by 365 in order to obtain the energy for a single day [81].

Finally, for the EV penetration, most authors use values from 0% to 20%-
30% of the EV penetration [78, 79, 80, 83, 85], although one author makes
the hypothesis of reaching 100% of the EV penetration [81].

The EV recharging control strategy determines how the EV obtains energy
from the grid. These strategies are based on how and when the recharge
is performed. According to the reviewed literature, the recharge can be
performed on one of three levels: fast, quick or slow charge. The period of
the day when the recharge is performed is usually determined by the peak
and off-peak times of the daily load profile.

Four strategies are studied in [78]: slow charging when the vehicles arrive
at home (6 pm), slow charging of peak charging, quick-charging (240V/30A)
when the vehicles arrive at home (6 pm) and quick-charging (240V/30A)
of peak charging. In order to deal with possible overloads in the trans-
former, the author proposes controlling household loads when charging ve-
hicles through an Advanced Metering Infrastructure (AMI) and performing
a stagger charge for the EV’s recharge.

In [79], two possibilities are suggested: uncoordinated and coordinated
charging. Uncoordinated charging is based on the concept in which each
individual vehicle starts the recharge at a random time step, while with
coordinated charging, the recharge is performed by minimising the grid’s
power losses through an optimisation problem, using quadratic programming
and dynamic programming. In [81], the concept of controlled recharges
is also suggested. In the studied paper, unregulated charging establishes
that people recharge their cars as soon as they get home if there are no
economic incentives; while in the regulated charging through Demand Side
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Management, the load is shifted from peak to valley periods.
Two strategies of recharge time distribution are suggested in [80]: contin-

uous recharge and timed recharge (22-6h; 21-9h). It also proposes Vehicle
to Grid (V2G) for the support of the grid in peak periods.

Finally, [86] introduces the concept of recharging the EV at the workplace
in a recharging infrastructure where the recharge is feasible, independent of
the number of available outlets and the line’s loading. Four scenarios are
suggested: a NO-EV scenario where no charging strategy is required, a Plug
and Play scenario where no pricing mechanisms are used and where EV
users recharge their cars if available outlets exist, an enhanced workplace
access scenario where recharge at work is plausible even when the workplace
does not offer any outlets, and an off-peak scenario where the recharge is
performed between 6am and 8pm.

Simulating the most realistic scenarios is critical in order to assess the
grid impact of recharging EVs. The aim of this PhD thesis is to model,
in the most detailed way, the recharge load curve of EVs using detailed
battery models. The most commonly used analysis reported in literature
[78, 79, 87, 80, 81, 83, 85] uses the constant load model, which, as a con-
servative approach, presents the worst case, with the disadvantage that the
grid impact will be overestimated. In order to proof the grid impact analy-
sis method using detailed battery modelling, a standardised IEEE grid has
been adapted to reproduce a typical distribution grid in Barcelona, com-
bined with mobility patterns. The steps to achieve these goals are: mod-
elling the electrical system, establishing the rules for the probabilistic model
for household electrical demands and the EV demand (due to its recharge),
by implementing the previous conditions in a grid and analysing the results
obtained through the Monte Carlo Method.
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Chapter 2

Probabilistic Analysis

A probabilistic analysis is based on application of statistics for probability
assessment of uncertainty. Its core is the idea of representing information
through probability densities. The methodology for probabilistic uncertainty
analysis follows these general steps:

• Modeling inputs
It includes the identification of all parameters that may contribute to
the uncertainty, the collection of the stochastic data and the process-
ing of such data to describe and represent uncertainty by probability
distribution functions.

• Modeling dependence of input data
Determine correlation of input variables is needed.

• Probabilistic load flow
Propagation of uncertainty through statistical sampling of the input
into the objective function in multiple runs and presentation of outputs
as probability distribution functions.
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2.1 Modeling inputs

A probabilistic analysis needs to obtain the probability distribution functions
that describe and represent the uncertainty of inputs. The modeling of such
random variables can be done from their statistical data. Utilities usually
collect sample values of the performance of the system variables. In most
cases, such data can be used for probabilistic analysis by codified into a
probability density functions. The statistical inference can be performed in
four ways [88]:

• by developing a non-parametric or numerically defined distribution,

• by fitting one of the standard theoretical distributions,

• by determining the maximum entropy distribution,

• by subjective codification of judgement.

Mean and variance are the basic descriptors of a random variable. A num-
ber of methods can be used for estimation of distribution parameters from
the samples: the method of moments, the method of maximum likelihood
and the Bayesian method [88, 89]. However, the exact values of such param-
eters are unknown and the statistic computed is an estimator. The method
of moments is usually used. It uses as sample moment the estimators of the
population moments, namely, sample mean x and sample variance s2.

The probability distribution models that describe the behavior of random
variables from statistical information can be generated by either fitting a
numerically defined curve into a histogram or fitting one of the theoret-
ical distributions. In order to verify the selected theoretical distribution
for representing random variables, statistical tests, known as goodness-of-fit
test, should be performed to validate the appropriateness of the selection.
Among the number of continuous probability densities, Normal or Gaussian
and Weibull distributions are commonly used in power systems studies [88].

Loads at power systems have been traditionally modeled according to a
normal distribution [90, 91, 92]. The load modeling and forecasting is af-
fected by several factors as type of customer, time, weather and economic
trends. Load forecasting normally have to consider variations in human
behavior, environmental and economic conditions, and electrical appliances
and installations. Load forecasting has become very important for utilities
and a lot of methods are being developed as regression analysis, neural net-
works and decision tree [93, 94]. Load present a high dependence of cyclic
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human behavior for seasons, day of week and time of day [95]. Such de-
pendence can be removed dividing the load in different groups with similar
statistical characteristics, that is, considering time-frames [96, 97, 98]. The
load can be modeled as a normal distribution at each time-frame. For ex-
ample, in [99] the daily load is classified into four different groups: from
Tuesday to Friday, Monday, Saturday and Sunday.

Probabilistic analysis of traditional power systems have mostly included
only the uncertainty of demand. In modern power systems, a significant
part of power production is expected to be provided by renewable based
generation units. Thus, the generation of traditional power plants should
be operated and controlled according to the generation of renewable based
units, taking into account the system restrictions [100]. Therefore, forecast-
ing of such renewable based generation has an important role and a lot of
prediction models are proposed, above all for wind power [101, 102, 103].

Load following generation might be modeled as load, that is, as normal
distribution for different time-frames. However, generation units based on
renewable sources poses new challenges, since the variability of the prime
movers is important and these neither follow a Gaussian pdf nor may present
a time dependence. For example, wind speed is sometimes modeled as a
Weibull distribution. The energy conversion system, that is, the wind tur-
bine, presents a curve that provides the output power from each wind speed.
As Figure 2.1 depicts, the distribution of the power generated by a wind tur-
bine presents a concentration at the zero and the nominal output power, and
then the power of wind turbines can not be modeled as a Weibull distribu-
tion.
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Figure 2.1: Speed/power curve and output power of a wind turbine.
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2.2 Modeling the stochastic dependencies

After deriving the probability distribution function model of each system in-
put (called marginal distribution), two methodologies can be used for mod-
eling the stochastic dependencies:

• The Stochastic Bounds Methodology (SBM)
It is applied in order to tackle model stochastic dependencies through
the definition of stochastic bounds, i.e. extreme dependence structures
that can bound all real cases [104].

• The Joint Normal Transform (JNT)
It is used when it is required to model the exact dependence structure
between clusters, based on the mutual correlations obtained by data
analysis [105].

In general, stochastic generators and system loads situated in relatively
small geographic areas are highly correlated, that is, they follow similar fluc-
tuations. Thus, these can be clustered in groups that has a strong positive
correlation in order to reduce the number of variables.

On one hand, the SBM method provides the worst-case scenarios: inde-
pendence (lower bound) and comonotonicity (upper bound). This methodol-
ogy permits a better understanding of the impact of DG based on renewable
sources, providing important information for assessing the risk of the sys-
tem. This method can be very realistic in the cases of geographically small
systems, due to the existence of strong positive dependencies between the
system inputs, while it can lead to conservative results in large power sys-
tems due to the great differences between the lower stochastic bound and
maximum stochastic bound that can appear.

On the other hand, JNT is a technique that proposes a more realistic de-
pendence modeling of systems involving a large number of stochastic inputs.
Thus, clusters of strongly positively correlated inputs are used and the exact
dependence structure between the clusters is modeled based on some corre-
lation matrix. This method is less time-simulation consuming than the SBM
and surely more accurate, as it deals with the precise relationship among
clusters. However, the data to feed it is definitely harder to obtain, because
such correlations are not readily available.

It should be pointed out when measuring the dependence if the functions
are linear or not. The Pearson correlation (normalized covariance) is useful
for measuring linear dependence, that is, for probability functions that are
linear as the normal distribution. However, it may lead to counter-intuitive
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results for non-linear functions. Therefore, other measures of correlation
should be used if non-linear functions are considered. There are different
methods to cope with this issue, as the Spearman correlation coefficient
for ranked data, the Kendall τ coefficient, and the point-biserial and phi
correlation coefficients [106].

This approach for measuring and modeling the dependence of non-linear
functions is described in [107] and the case study is reproduced in [108].
Further work regarding dependence structures can be found in [109].
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2.3 Probabilistic Load Flow

Load flow equations are a set of non-linear equations with multi-variable
inputs. The probabilistic analysis when both generation and load have
a stochastic behavior can be performed through a probabilistic load flow
(PLF). There are two main approaches for PLF: analytical or numerical.
The evolution of such methods can be found in [110] and more recently in
[111].

The analytical method is usually referred to as PLF in a narrow sense [88].
It were firstly proposed in the seventies [112] and have included DG units
lately [113, 114]. However, such method originally assumes a linearization
of the load flow equations and independence of input variables that can lead
to not exact results. Different methods have been proposed to diminish such
errors and improve the PLF [115, 116, 117, 118, 113, 119, 114, 120, 121, 122].

The numerical method is normally based on the Monte Carlo (MC) sim-
ulation method. MC simulation has been widely applied to any aspects
of power systems involving random variables [88]. The two main features
of MC simulation are random number generation and random sampling.
MC based load flow consists on applying such samples, generated according
to the probability distribution functions of generation and loads and their
correlations, into deterministic load flow equations and computing statisti-
cally the results, that is, the voltages, angles and power flows. Examples
of MC method applied to PLF for systems with DG units can be found at
[123, 124, 125].

The Monte Carlo simulation, although more time consuming, is the most
suitable method for PLF in order to overcome the limits of the analytical
methods and deal with multivariate uncertainty considering different time-
frames and when there are complex relations between systems inputs or such
inputs are not linear [98].
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Chapter 3

Battery model

In order to perform further simulations, this chapter describes the mathe-
matical model of the EV’s batteries. Mainly, three types of battery model
exist: the empirical model, the electro-chemical model and the electrical
model. The chosen model is the electrical due to its easy implementation
and due to the fact that it considers the charge level of the battery. Addi-
tionally, this model is able to represent the charge/discharge cycles of the
battery. With this model the four main battery types can be studied: Lead-
acid, Lithium, Nickel-Cadmium and Nickel metal hydride.

3.1 Battery basic concepts

As an introduction to this chapter, the following concepts regarding the
batteries performance are defined below:

C rate The C rate is a variable that stands for the current that a battery
can sustain during an hour. For example, a 1C rate indicates that a
battery of 1,8 Ah would be discharged in 1 hour at a current of 1,8
A. A 2C rate means that the same battery would be discharged at a
current of 3,6 A in half-hour.

Peukert’s Law The Peukert’s law relates the capacity of a battery with
its current; the capacity of a battery decreases at higher currents. It
establishes that the voltage drop is a direct consequence of the internal
resistance of the battery. Additionally, it determines that for high
current rates in a battery only the most superficial layers of a battery
intervene and therefore less energy is delivered.
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3.2 Battery model of the discharging process

The model is based on Trembay’s model [126] and it is represented by a
controlled voltage source with an internal resistance (figure 3.1).

0

ti·t

E Vbatt

Ibatt

E(i·t)

Figure 3.1: Trembay’s battery electrical model

The battery voltage during its discharge yields in equations 3.1, 3.2 and
3.3.

E = E0 −K ·
Q

Q− it
+A · exp(−B · it) (3.1)

A = Efull − Eexp (3.2)

Vbatt = E −R · i (3.3)

Where:

• E= voltage without a load [V]

• E0= constant voltage of the battery [V]

• K= polarization voltage [V]

• Q= battery capacity [Ah]

38



3.2 Battery model of the discharging process

• it= actual battery capacity [Ah]

• B= time constant [Ah−1]

• Vbatt= battery voltage [V]

• A= voltage drop of the exponential region [V]

• R= internal resistance [Ω]

• i= current of the battery [A]

Equations 3.1 and 3.3 model a non-linear voltage which is affected by
the current’s value and with the state of charge of the battery. This model
shows the fact that when the battery is completely depleted and no current
is flowing, the voltage drops. Additionally, this model also considers that
the maximum voltage is reached when the battery is fully charged.

The model can be divided in three zones according its behaviour (figure
3.2). The nominal section which is represented by (K · Q

Q−it) comes from
Shepherd’s original model [127], whereas the exponential term (A · exp(−B ·
it)) was added in order to cope with the initial exponential behaviour of
the discharge process. The constant term E0 is responsible for shifting the
curve through the vertical axis in order to adjust the values to the battery
features.

However, the presented model has the following limitations or previous
hypothesis:

• Constant internal resistance during charge/discharge cycles.

• Battery’s capacity remains constant.

• Temperature has no effect on charge/discharge cycles.

• Auto-discharge effect is disregarded.

• Memory effect is not considered.

• Current is considered negative during the charge process and positive
for the discharge process.
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Figure 3.2: Nickel metal hydride battery, 1,2 V and 6,5 Ah

3.2.1 Obtention of battery’s characteristics parameters

Whereas most of the parameters of the model can be obtained directly from
the battery datasheet, others have to be calculated from the discharge curve.

Below there is an example of a battery model obtention through its dis-
charge curve (figure 3.3) and with the following initial parameters:

• R=0,0046 Ω

• Q=6,5 Ah

• V=1,2 V

The three points from the figure 3.3 with known values used in order to
get the model are:

• Efull: voltage when the battery is fully charged.

• Eexp: voltage when the exponential region ends and the nominal region
starts.
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Figure 3.3: Discharge curve at 0,2 C.

• Enom: voltage when the nominal region ends.

• Qnom: battery’s capacity when the nominal region ends.

With the previous given values, the first step in the process is getting the
parameters of the exponential region A · exp(−B · it).

• A: exponential region voltage drop

A = Efull − Eexp = 1, 4V − 1, 26V = 0, 14V

• B: exponential region discharge constant

A · exp(−B · it) = A · exp(−t
τ

)⇒ τ =
1

B · i

3τ = tfexp =
3

B · i

B =
3

tfexp · i
= 2, 308Ah−1
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The parameters of the term K · Q
Q−it are calculated using equation 3.1:

• K= polarization voltage

4E = (A−K)− (−K · Q

Q−Qnom
) = K · Qnom

Q−Qnom
+A

4E = Efull − Enom +A · exp(−B ·Qnom)

K =
(Efull − Enom +A · exp(−B ·Qnom)−A) · (Q−Qnom)

Qnom

K =
1, 4− 1, 2 + 0, 14 · exp(−2, 308 · 4, 9)− 0, 14) · (6, 5− 4, 9)

4, 9

K = 0, 01633V

Once all the parameters are known, the value for E0 can be found:

• E0: constant voltage of the battery

E0 = Efull +K +R · i−A

E0 = 1.4 + 0.0125 + 0.0046 · 1.3− 0.15 = 1.272
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3.3 Battery model of the charging process

The previous model (equations 3.1 and 3.3) can be adapted to the charging
process (equation 3.4). Figure 3.4 shows the charging process of the same
battery of the section 3.2.1.
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Figure 3.4: Voltage during the charging process.

E = E0 +K · Q
it

+A · exp(−B · (it+Q)) (3.4)

However, the equation 3.5 does not consider the possibility that the bat-
tery could be completely depleted. Additionally, it is a well known fact that
the batteries’ capacity never reach the 100% and its value is usually set at
80% in order to extend the live of the battery [128]. To cope with this issue,
the hypothesis that the battery SoC is always in the range of the 15% and
95% is made.

Therefore, equation 3.5 solves this issue by introducing the term Q · Q0

100
which represents the initial SoC of the battery (where Q0 is the initial SoC
of the battery).

E = E0 +K · Q

it−Q · Q0

100

+A · exp(B · (−it+Q · Q0

100
)−B ·Q) (3.5)

Nevertheless, analyzing several battery data-sheets, its been observed that
the maximum voltage is reached at the 70-75% of the SoC [129, 130] instead
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that a the 100% which is the value obtained in the equation 3.5. Equation
3.6 solves this issue (figure 3.5).

E =



E0 + 0.7 ·K · Q

it−Q·Q0
100

+

+A · exp(B · (−it+Q · Q0

100)− 0.7 ·B ·Q) if (−it+Q · Q0

100) > 0.7

E0 −K +A if (−it+Q · Q0

100) < 0.7
(3.6)
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Figure 3.5: Charging voltage with Q0 at 15% and correcting the maximum
voltage at the 70% of the SoC.
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3.3.1 Current modelling during the charging process

The charge of the batteries is performed in two stages (section 3.3): constant
current in the first stage and constant voltage during the last stage (when
SoC reaches the 70%). Once the constant voltage region is reached, the
current decreases progressively.

Knowing that the charging current during the last stage can be modelled
as

I = Q · Vc · exp(τ · t) (3.7)

the time constant τ can be obtained when the reaming energy to charge
is the 30% of the SoC. Being QW the maximum capacity of the battery and
VC the discharge speed, then:∫ ∞

0
E ·Q · Vc · exp(τ · t) = 0.3 ·QW (3.8)

τ =
E ·Q · Vc
0.3 ·QW

(3.9)

Combining equation 3.7 with the obtained τ and considering the two
stages of the charging process, the model of the charging current can be
calculated with equation 3.10.

Ibatt =


Q · Vc · exp( (E0+A−K)·Vc·Q

0.3·QW
· (−t+ 0.7

Vc
− Q0

Vc·100))

if (−it+Q · Q0

100) > 0.7

Q · Vc if (−it+Q · Q0

100) < 0.7

(3.10)
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Figure 3.6: Charging current at 0.2 C.

3.4 Application of the battery modelling process to
existing EVs

The obtention of the characteristic parameters of the batteries has been
obtained through the Kokam data-sheets (in this case from Kokam SLPB
30205130H). The given values are for one individual cell of a battery. It is
assumed that the discharge voltage of all battery cells will be equal during
the process. The battery global voltage and the global internal resistance
will be calculated by multiplying each cell voltage and each cell internal
resistance by the number of cells in series and the global capacity multiplying
each cell capacity by the number of cells in parallel. Table 3.1 shows the
parameters used in the calculations.

Through the table 3.1, the battery parameters of different EVs are calcu-
lated (table 3.2).

Figures 3.7 and 3.8 show the difference amongst the Mini, the MIEV and
Prius during a charging process.
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Table 3.1: Cell parameters

Parameters

Efull 4,2 V
Eexp 3,7 V
Enom 3,5 V
texp 0,6 h
tnom 0,9 h

I 1,0C A
R 5,5 mΩ
Q 5 Ah

Table 3.2: Battery parameters of different brands of EVs

Mini Mitsubishi Tesla Smart Toyota
Mini-E I-MIEV Tesla Fortwo Plug-in Prius

n cells in series 102 88 101 92 55
Q [Ah] 92 50 141 41 25
V [V] 380 330 375 340 201

Q [kWh] 35 16 53 14 5
R [Ohms] 0,3049 0,4840 0,1970 0,6171 0,6050

A 61,2 52,8 60,6 55,2 33,0
B 0,04658 0,08571 0,03040 0,10453 0,17143
K 3,04623 2,62812 3,01636 2,74758 1,64257
E0 398,30 343,63 394,39 359,25 214,77
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Figure 3.7: Voltage and current curves during the charging process (Q0 =
30%, I = C10).
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Figure 3.8: Power curve during the charging process (Q0 = 30%, I = C10).

48



Part II

Probabilistic models





Chapter 4

General model used for the study

Evaluating the impact of EV recharge on a grid through a deterministic
analysis will only lead to the analysis of a specific scenario. In situations,
where many possibilities are expected, the most common procedure is to
analyse the most critical situation. However, the most critical situation is
not always the most feasible one. The Monte Carlo method allows one to
ensure that, under specific conditions, the results will be within a range
of values with a predefined probability. Because the model will be under
deterministic and probabilistic conditions, it is important to have a valid
model for both situations.

4.1 Time horizon

The chosen time horizon for the simulations is the time lapse of 24 hours.
This time horizon will be divided into one hour periods. The assumption of
independence amongst different days is made; therefore, no data relationship
is expected between day t− 1 and day t.

4.2 Statistical Variables

When performing Monte Carlo simulations, the first step is to define the
statistical variables. In this case the chosen statistical variables are:

• Regular electric demand

• Demand due to EV recharge

Both statistical variables will be modelled as regular loads, each one in-
dependent from the other one. In the same way as regular loads, these two
variables have been modelled as an active and a reactive power, with the
result of two inputs for each statistical variable; there is, however, just one
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Chapter 4 General model used for the study

input, since active and reactive power are related through a fixed power
factor which does not vary.

Both regular demand and the demand due to EV recharge are modelled
as aggregated load in each node. Equation 7.2 shows the aggregation of EVs
in each node b, for each hour h and each iteration i.

Pb h i =

nEV∑
j=1

PEV j (4.1)
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4.3 Description of the algorithm for the probabilistic
load flow implementing the statistical model for
the household and EV consumption

Figure 4.1 shows the algorithm for the load dispatching. The algorithm is
based on the Monte Carlo method. In this diagram two main parts can be
observed:

• Sample generation of the statistical variables

• Execution of probabilistic load flows

In the first part of the algorithm, the values for household and EV con-
sumption are generated. Thus, the first step in the process is to obtain the
statistical models for these two consumptions. For each different type of con-
sumption, active and reactive power will be determined for each node, hour
and iteration. As a result, the active and reactive power are PDD h b i and
QDD h b i for household demand and PEV h b i QEV h b i for the EV consump-
tion. The subscripts DD and EV stand for a consumption related to the
household demand and for the EV recharge, respectively. The subscripts h,
b and i correspond to the obtained value for the hour h, at the node b of the
grid at the current iteration i. The statistical model for the household con-
sumption, ”Statistical model of PDD h b i QDD h b i”, is obtained by studying
Spanish load profiles over the course of one year (Section 5). The statistical
model for the EV consumption ”Statistical model of PEV h b i QEV h b i”,
comes from a study where variables, such as urban mobility, technical EV
features and the number of EVs in the scenarios, are taken into account [131]
(Section 6). The next step in this sample generation is to chose the number
of iterations i and define the number of nodes b which comes defined for
the study grid. Once these values have been defined, the samples for the
household and EV consumption can be generated through their respective
statistical models previously obtained.

In the second part of the algorithm, the probabilistic load flow is run. It
consists of an iterative process where a deterministic load flow is performed
with the previously generated probabilistic values for each node, each itera-
tion and each hour. The results of this process are the voltages of each node
per load flow and iteration, and the line and transformer loadings per load
flow and iteration. All these values will allow the determination of the confi-
dence intervals and therefore the tools to compare and evaluate the different
generated scenarios.
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Sample generation for
PEV_h_b_i QEV_h_b_i

for iter = 1:i

DETERMINISTIC LOAD 
FLOW

hour = 24
NO

YES

Probability distribution of voltages 
and load flows

Sample generation for
PDD_h_b_i QDD_h_b_i

for hour = 1:h

Iter =50NO

YES

Statistical model of
PEV_h_b_i QEV_h_b_i

Statistical model of
PDD_h_b_i QDD_h_b_i

Choice of the number of iterations i and definition of 
the number of nodes b

Figure 4.1: Flow diagram for the general procedure54



Chapter 5

Generating the probabilistic model for
the grid’s electrical demand

Electrical consumption cycles can be classified depending on its predictable
patterns. These patterns can be established either for seasons, for weekdays
or for weekend days. For instance, weekdays and weekend days will have
different curve shapes, even for the same week. The main factors that de-
termine these patterns are climate and human behaviour. So therefore, it is
expected that northern countries have different load patterns than tropical
countries.

A method to obtain the probabilistic model for the electrical demand is
presented in this section. This model is obtained through two steps:

1. The creation of a statistical model able to generate random values
according to previously defined conditions.

2. The generation of samples for the performed load flows and for each
iteration.

5.1 Data processing

In order to generate a probabilistic model for the electrical demand, two
authors [132, 133] have concluded that using a normal distribution is a rea-
sonable approach. As a result, this will be the distribution used in this
study.

The data used to build the statistical model has been extracted from the
Spanish TSO REE (Red Eléctrica de España) and corresponds to Spain’s
electricity demand from January to September of 2009. Figure 5.1 depicts
the daily load profiles of Spain from January to September. Each line repre-
sents a day load profile and every month has a different line colour. Different
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Chapter 5 Generating the probabilistic model for the grid’s electrical demand

load patterns can be distinguished and since it is necessary to have an ac-
curate model, this data is aggregated according to the similarities of the
patterns.
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Chapter 5 Generating the probabilistic model for the grid’s electrical demand

The data corresponding to the months with a high variation of tempera-
ture (March, June and September) has not been considered because of the
distortion caused in the model. The autumn months (October, November
and December) have not been considered in the pattern definition because
the results obtained in this season can be extended to the Spring’s results
[131]. Therefore, three patterns are established:

• Winter (January, February)

• Spring (April, May)

• Summer (July, August)

If the consumption profiles are grouped according to the previous classi-
fication, it is possible to get a probability distribution for each hour which
follows a normal distribution [131]. As an example, Figure 5.2 shows a win-
ter weekdays histogram for 24 hours of the power demand for Spain (Figure
5.2(a)) and its standard deviation (Figure 5.2(b)), both in MW.
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Figure 5.2: Variation of the overall demand on a labour winter day of Spain
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Chapter 5 Generating the probabilistic model for the grid’s electrical demand

5.2 Adapting national demand to a standard
distribution grid

Because the studied grid is a distribution grid for a specific region, it is nec-
essary to adapt the load patterns extracted for the entire country. Therefore,
the national load curve has been adapted to the study grid. The hypothesis
that the placed transformers will be able to supply energy to all the types of
loads (household, commercial and industrial) without exceeding the allowed
loading levels when no EVs are connected to the grid is supported.

The process begins with the national load curve reduced to a unitary
curve, and then a base change is performed in order to adapt the power to
the capacity of each transformer station. In order to generate active and
reactive power, the hypothesis of a constant power factor of 0,9 was made
in order to comply with the worst case considered in the Spanish legislation
[134].
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Chapter 6

Generation of the probabilistic model
for EV demand

The objective of this section is to model the consumption generated by the
EV recharge in the distribution grid in order to evaluate its impact together
with the household demand. The EV consumption is difficult to model in
a deterministic way because it depends on factors such as urban mobility,
the EVs’ technical features and the number of EVs. Therefore, it appears
to be necessary to create a methodology able to take into account all these
factors and also able to generate a valid statistical variable for the EVs’
consumption.

The main difficulty when creating the EV statistical variable is the lack of
available data. Because of this, the statistical variable which represents the
EV consumption cannot be obtained from historical data, but will have to
be generated from a determined number of random variables following this
process:

1. Determination of a study area.

2. Determination of the total number of vehicles through the total num-
ber of trips in our area during the whole day.

3. Distribution of the previously determined travels during the day hours.

4. Distribution of the EVs along the nodes of the grid in order to recharge.

5. Determination of the energy to be recharged for each vehicle (depends
on SOC and on the penetration of EVs).

6. Association of each recharge to an EV battery type.

In general terms, the previously defined steps can be summarized in a two
main stages methodology (Figure 6.1):
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Chapter 6 Generation of the probabilistic model for EV demand

1. Generation of the EVs’ number of connections for each hour, node and
iteration.

2. Transformation of the number of connections to its corresponding con-
sumed power aggregated per node.

Accordingly, the EVs’ consumption will be obtained (following the defined
methodology) through Monte Carlo method using the following random vari-
ables:

• Distribution of the EV along the grid nodes

• Connection time of the EV

• Load curve of the battery of the EV

• Energy consumed by the EV before its connection

Finally, in order to accomplish the objective of this chapter some assump-
tion have been made during the process:

• One trip is equivalent to one vehicle.

• The 80% of the grid power is intended for domestic use.

• An EV must have its battery partially or completely discharged in
order to start a recharge.

• An EV will always be able to recharge its battery because there will
always be available outlets.

• It is assumed that EV drivers show a cautious attitude towards the
possibility of ending up with a depleted battery and will therefore
arrive at their destination before the battery is depleted.
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Figure 6.1: Flow diagram of the process ”Sample generation for EV active
and reactive power (PEV and QEV )”
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6.1 Determination of the number of vehicles per hour
in our scenario

In order to set how the EVs are distributed along the nodes of the grid to
recharge their batteries, the following variables will be taken into account:

• Number of EVs in the scenario to study

• Distribution of the connection along the nodes of the grid

• Connection time of the EV

6.1.1 Number of EV in the studied scenario

Since each EV can travel several times a day, the number of EVs available
does not represent the number of EVs that will recharge. Thus, the decisive
variable is the number of trips per node, hour and iteration (Figure 6.2).
Because the EVs’ penetration depends on the chosen scenario, the first step
is to estimate the number of trips for both combustion engine vehicles and
for EVs, then establish a fraction of these as electrical. For the simulations
in this paper, the values for the EVs’ penetration are 20% and 40% of the
full number of vehicles.

Ntrav_1_1_i Ntrav_1_2_i … Ntrav_1_b_i

… … … … Ntrav_2_b_i

Ntrav_1_1_2 Ntrav_1_2_2 … Ntrav_1_b_2 … …

Ntrav_1_1_1 Ntrav_1_2_1 … Ntrav_1_b_1 Ntrav_2_b_2 … Ntrav_h_b_i

Ntrav_2_1_1 Ntrav_2_2_1 … Ntrav_2_b_1 … …

… … … … Ntrav_h_b_2

Ntrav_h_1_1 Ntrav_h_2_1 … Ntrav_h_b_1

Figure 6.2: Matrix Ntrips

In order to determine the number of EVs, it is necessary to set [131]:

• Number of houses (nhouses)

• Number of vehicles per house(nveh/houses)

• Mean number of trips made for each vehicle in one day (ntrips/day)

64



6.1 Determination of the number of vehicles per hour in our scenario

• Ratio of how many of these trips are made through the private vehicle
(Ftrips)

With these values it is possible to determine the trips in a day ntrips day
through equation 6.1. The number of houses is calculated by [131]

ntrips day = nhouses · nveh/houses · ntrips/day · Ftrips (6.1)

Because the studied grid is an urban distribution grid, the hypothesis that
80% of the grid power is for household use is made. It is also important to
consider that the contracted power in urban areas is five times the grid’s
capacity [131]. Finally, we assume that the contracted power for each house
is 4,4 kW [131].

nhouses =
PGrid · 5 · 0, 8

4, 4
(6.2)

6.1.2 Connection time of the EVs

The massive recharge of EVs during a specific time period could lead to an
excessive demand of power that the system cannot deal with and to too low
voltages that will break the current standards. Therefore, a realistic model
is required to avoid this non-feasible situation. This model is achieved by
implementing two scenarios:

1. The EV recharges its batteries after every trip (figure 6.3). For exam-
ple: right after getting to work, during any stop made moving through
the city, arriving home at the end of the day...

2. The EV recharges its batteries at the end of the day when all trips
are completed (figure 6.4). For example, at the end of the day back at
home when all the trips have been already made.

The connection time of the EVs is obtained from the mobility curve of the
private transport in Barcelona [135]. Because the mean trip time is 21,11
minutes on weekdays and 28,34 minutes at weekends, it is assumed that
vehicles will start their recharge in the same hour when the trip is started.
As a consequence, the hourly recharge curve of the EVs will have the same
pattern as the mobility curve for private transport (figure 6.3 and figure 6.4).
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Chapter 6 Generation of the probabilistic model for EV demand

Although the mobility patterns in the entire Metropolitan area of Barcelona
are known, it is necessary to adapt these to our area of study. Equation 6.3
shows how to adapt the number of travels to the proposed study grid with a
specific power (Ntrips hour), where ntrips′ day are all trips in the metropolitan
area of Barcelona during the day, ntrips day are all trips in our area (with a
specific power) during the day and Ntrips′ hour are trips in Barcelona for the
hour h.

Ntrips hour =
ntrips day
ntrips′ day

·Ntrips′ hour =


ntrips 1

ntrips 2

...
ntrips h

 , (6.3)

In order to model the number of vehicles recharging at a specific time of
the day as a non-deterministic variable, it can be assumed that the arrivals
will follow a Poisson distribution [136]. The Poisson distribution establishes
the probability that a number k of events could happen in a determined
period of time if they occur with a known frequency and are independent of
the time of the last event. In some situations, in which the expected value
is bigger than 5, it is possible to transform the Poisson distribution into a
normal function [137] (equation 6.4), where Nµ trips h stands for the vector
with average values and Nσ trips h stands for the vector with the standard
deviations for each hour. Then, the values can be determined for each hour,
node and iteration (figure 6.2).

Nµ trips h =


ntrips 1

ntrips 2

...
ntrips h

 and Nσ trips h =


√
ntrips 1√
ntrips 2

...√
ntrips h

 (6.4)
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6.2 Distribution of the EVs along the nodes of the
grid

The assumption made for the distribution of the EVs along the nodes of the
grid are as follows:

1. Each node has the same probability of recharging an EV.

2. The number of trips in the studied area remains constant. It is assumed
that the number of trips going outside the studied area is the same as
the number of trips going inside the studied area.
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6.3 Consumed power associated with EV consumption

Once the number of trips has been determined, it is possible to associate
each travel with an EV’s recharge. In order to define each recharge, it is
necessary to have previously defined the duration of the recharge, the amount
of energy to be recharged and the battery’s load curve. In summary, the
analogy of the matrix active power of the EV’s recharge for each hour, node
and iteration will be obtained from the matrix number of trips.

6.3.1 Consumed power by EV recharge, PEV h b i

Figure 6.5 describes the process of creating the vector for the consumed
power associated with the EV’s consumption. As can be seen from the fig-
ure, the needed inputs are: the Number of trips matrix (ntrips h b i), the
probability distribution of the consumed energy and the probability distri-
bution of the battery’s capacity.

The Number of trips matrix (ntrips h b i) establishes the number of vehi-
cles recharging for each hour, node and iteration (its obtainment process is
described in Section 6.1).

It is important to highlight that even if two vehicles have travelled the
same distance using the same battery, the process of recharging the battery
does not necessarily have to be the same, since it directly depends on its
SOC. Therefore, a statistical model for the total energy to be recharged has
been generated from a list of batteries (Table 6.1). The total energy to be
recharged is defined by equation 6.5, where Ce is the specific consumption.
In this case it is 0,158 kWh/km, obtained as the mean from Table 6.1, and
D is the travelled distance which follows a log normal distribution with a
shape value of 1.929 and a scale factor of 1,508 [135, 131].

Econs EV = Ce ·D (6.5)

The type of battery which defines the load curve was also generated from
(Table 6.1). A log normal function was created from the capacities to be
generated for random batteries; and depending on the value, a known load
curve from an existent model was assigned, as Figure 6.6 shows. Addi-
tionally, Figure 6.6 depicts in its label the location parameter (Loc), scale
parameter (Scale) and sample size (N) of the log normal function obtained.

Once the number of the EV’s trips is known, the EV’s consumed energy
per trip as well as the type of battery per trip are then determined. With
these two variables, the power consumed during the EV recharge (PEV h b i)
is calculated. Additionally, this algorithm also considers the fact that the
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Probability distribution 
function for the 

consumed energy in 
one trip

Probability distribution 
function for the 

capacity of the battery

Accumulated EV’s power

Generation of the 
random sample for

Econs_EV (n)

Generation of the 
random sample for

Qbat_EV (n)  

trips = n

for trips=1:n

SI

NO

PEV_h_b_i

ntrips_h_b_i

n trips

Figure 6.5: Flow diagram of the consumed power by the EV’s recharge
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Figure 6.6: Distribution function of the batteries capacity

EV’s recharge could last for more than one hour in the Accumulated EV’s
power block. As a result, the EV’s power that would be in each node would
be the power of the EVs that have arrived at the node b and the power of
those which are still recharging because they had arrived during the previous
hours.

Following this algorithm, the EV’s power to recharge in each hour, node
and iteration (PEV h b i) can be obtained. It is important to note that this
algorithm takes into account the random characteristics of the number of
EV’s that would recharge in each node, the consumed energy for each EV
during its trip and the type of battery that the EV would have.

Finally, it can be drawn from that the connection time for each EV de-
pends directly on the travelled distance D (which follows a log normal dis-
tribution) and the specific consumption Ce which depends on the type of
battery (which also is chosen by following a log normal function).
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Table 6.1: EV and Plug-in Hybrid EV Models, Battery Type and Capacity,
and Consumption

Chapter 6 Generation of the probabilistic model for EV demand

Table 6.1: EV and Plug-in Hybrid EV Models, Battery Type and Capacity,
and Consumption

Capacity Consumption
Electric Vehicle (EV) [kWh] [kWh/km] Technology

BYD F3DM 16,5 0,160 Li-Ion
BYD e6 (75kW) 59,4 0,160 Li-Ion
BYD e6 (200kW) 59,4 0,175 Li-Ion
CHANA BENNI 9,0 - AGM
Micro-Vett Fiat 500 22,0 - Li-Ion
Mitsubishi i MiEV 16,5 0,100 Li-Ion
Smart electric drive Coupe 14,5 0,122 Li-Ion
Subaru Estella 9,0 - Li-Ion
Tata Indica Vista EV 26,5 0,133 Li-Ion
SEAT Leon Twin Drive Ecomotive 12,0 0,240 Li-Ion
Zytel Gorila 10,8 0,150 Lead-Acid
Opel Ampera 16,5 0,133 Li-Ion
REVA NXR 13,5 0,090 Li-Ion
Micro-Vett Fiorino M1-Fi(LC-EG)-Li 13,5 - Li-Ion
Micro-Vett Fiorino M1-Fi(HC-Eg)-Li(S) 21,0 0,240 Li-Ion
Micro-Vett Fiorino M1-Qu(HC-Eg)-Li(S) 21,0 0,240 Li-Ion
Micro-Vett Fiorino M1-Qu(HC-Eg)-Li(L) 32,0 0,240 Li-Ion
Smart electric drive Cabrio 14,5 0,122 Li-Ion
Think City 2010 83,0 0,144 NiNa
Peugeot ION 16,5 0,125 Li-Ion
Tesla Roadster 51,5 0,231 Li-Ion
TOYOTA Prius Plug-In Hybrid 5,0 0,062 Li-Ion
Citroen C-Zero 16,5 - Li-Ion
Mini-E 35,0 0,130 Li-Ion
Volkswagen Golf 26,5 - Li-Ion
Nissan Leaf 24,0 - Li-Ion
Chevrolet Volt 16,5 - Li-Ion
Brusa Spyder 16,0 - Li-Ion
Phoenix SUT 35,0 - Li-Ion
Lumeneo Smera 10,0 - Li-Ion
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Chapter 7

Study Case

In order to evaluate the impact caused by the EV on the grid, it is important
to choose the scenario for the simulations, which basically consists of choos-
ing a grid to be used. The type of grid chosen will define the accuracy of
the results; thus, the more realistic the grid is, the more reliable the results
will be.

When choosing the grid for the impact study, four aspects are important,
namely: the real grid, the testing grid, medium voltage and low voltage. A
real grid has the main advantage of its practically-oriented results, although
it has the disadvantage of obtaining the data. On the other hand, a testing
grid - not even being a real grid - has the advantage of the availability of
the data and the certainty of working properly. Regarding the grid voltage
level, the following assumption has been made: the extra high voltage grid
(transmission grid) has been dismissed because this grid type is intended to
deal with high amounts of energy and therefore the impact of the recharge
of EVs will not have a clear effect. However, an MV (Medium Voltage) or
LV (Low Voltage) distribution grid with a radial topology will allow a better
interpretation of the results. Even though these grids do not have massive
generation units, it is possible to find distributed generation units. Table
7.1 shows the advantages and disadvantages of the different types of grids.

Taking into account the specific aim of the study to be performed and
the benefits and drawbacks analyzed in Table 7.1, the grid to be used will
be a urban medium voltage grid. Due to the fact that it is no possible to
use real data from an existing grid and neither its exact layout configura-
tion and approximation has to be made. This approach consists in using a
IEEE standard to deal with the issue of the layout configuration and to deal
with the issue of the parameters and transformers the Spanish’s Distribute
Generator Standards will be used.
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Chapter 7 Study Case

Table 7.1: Benefits and drawbacks of performing the study with different
types of grids

Version January 26, 2014 submitted to Energies 32 of 33

Table 2. Benefits and drawbacks of performing the study with different types of grids

Voltage Topology Benefits Drawbacks

High Meshed

Introduces the possi-
bility of assessing the
impact of large gen-
eration units. Lower
error in the demand’s
modeling.

Due to the high short-
circuit grid’s power
and its topology, a re-
duced impact on the
grid is expected.

Medium Radial

Brings the opportu-
nity of introducing
distributed generation
units and assessing
its impact. Lower
error in the demand’s
modeling.

Due to the high short-
circuit grid power, a
reduced impact on the
grid is expected.

Low Radial

Due to its low short-
circuit power, a high
impact on the grid is
expected.

It is not feasible to in-
clude all small genera-
tion units. Higher er-
ror in demand model-
ing.

Table 3. Features of the proposed lines for the studied grid

A [mm2] R [Ohm/km] XL [Ohm/km] Imax [A]
240 0.125 0.116 415
400 0.0778 0.105 530

Table 4. Features of the transformers used in the studied grid

Feature Assigned Value
Power 160-250-400-630 kVA
Connection type: 250-400-630 kVA Dyn11
Voltage of the HV coupling 25 kV
No-load voltage of the LV coupling 420 V
Transformer’s tap positions -5 -2.5 0 +2.5 +5 +10
Capacity of resisting short-circuit events in the LV side 22.2 Inom
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7.1 Proposed grid

7.1 Proposed grid

In order to perform the study, the test system chosen is the IEEE 37 bus test
system because its length [138] (5.5 km) and its topology are makes this type
of grid the closest test system to a typical distribution underground grid in
Barcelona. Even through the IEEE 37 node test grid has features in common
with the desired distribution grid, aspects like voltages and impedances have
been adapted. Other grids were also studied, such as the IEEE 13 node and
the IEEE 123 node, but were discarded because of their length.

In regard to the previous discussion, it has been concluded that the study
will be based on an IEEE 37 node standard test feeder (Figure 7.1), but
adapting it to 25 kV and with all the necessary adaptations for its elements
(Table 7.2, Table 7.3 and Table 7.4). These parameters come from Endesa’s
technical standards published in their web page [139, 140, 141, 142, 143] or
from their manufacturers or providers [144, 145].
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7.1 Proposed grid

Table 7.2: Features of the proposed lines for the studied grid: subterranean
RHZ cables 18-30 kV of Al

A [mm2] R [Ohm/km] XL [Ohm/km] Imax [A]

240 0,125 0,116 415
400 0,0778 0,105 530

Table 7.3: Features of the transformers used in the studied grid

Feature Assigned Value

Power 160-250-400-630 kVA
Connection type: 250-400-630 kVA Dyn11
Voltage of the HV coupling 25 kV
No-load voltage of the LV coupling 420 V
Transformer’s tap positions -5 -2,5 0 +2,5 +5 +10
Capacity of resisting short-circuit 22,2 Inom
events in the LV side
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Chapter 7 Study Case

Table 7.4: Features of the elements used in the studied grid

Transf. st, Num. transf. Pnom [kVA] Line L [km] S [mm2]
T0 1 25000 - - -
T1 1 160 L1 0,3 400
T2 3 250+250+400 L2 0,2 400
T3 1 400 L3 0,4 240
T4 2 160+250 L4 0,4 240
T5 1 160 L5 0,3 240
T6 1 400 L6 0,2 240
T7 1 250 L7 0,3 240
T8 2 250+250 L8 0,2 240
T9 1 400 L9 0,3 240
T10 1 160 L10 0,2 240
T11 2 250 L11 0,3 240
T12 1 250 L12 0,3 240
T13 2 250+250 L13 0,3 240
T14 1 160 L14 0,3 240
T15 2 250+630 L15 0,2 240
T16 2 630+250 L16 0,4 240
T17 2 400+160 L17 0,4 240
T18 1 250 L18 0,2 240
T19 1 160 L19 0,5 240
T20 2 250+160 L20 0,1 240
T21 1 250 L21 0,4 240
T22 2 160+250 L22 0,2 240
T23 2 160+250 L23 0,3 240
T24 1 630 L24 0,2 240
T25 2 250+400 L25 0,5 240
T26 2 400+250 L26 0,2 240
T27 1 160 L27 0,3 240
T28 1 400 L28 0,2 240
T29 1 160 L29 0,2 240
T30 2 250+250 L30 0,3 240
T31 1 250 L31 0,2 240
T32 2 160+250 L32 0,7 240
T33 1 400 L33 0,3 240
T34 2 160+250 L34 0,5 240
T35 2 400+250 L35 0,3 240
T36 1 400 L36 0,4 240
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7.2 Proposed scenario

7.2 Proposed scenario

This section describes the chosen conditions for the scenario of the study
case. The conditions of the regular electrical grid demand are:

• Type of demand: electrical household demand.

• Season: winter.

• Type of day: weekday.

In order to generate the EV’s demand following the methodology proposed
in section 6, it is necessary to know the total number of trips of per day
(equation 6.1) and number of houses in our study case day (equation 6.2).
Therefore the first variable needed is PGRID. After adapting the reference
curve to our study grid, the obtained value is:

PGRID = 14540kW

The number of vehicles per houses is a direct value extracted from IDESCAT:

nveh/houses = 1, 5

In order to get number of trips per day, the table B.1 from the appendix
B is needed. The chosen value is the average of this table:

ntrips/day = 3, 64

The ratio of trips made through the private vehicle (Ftrips) comes from
[135]:

Ftrips = 0, 358

Finally, using the calculated values, the total number of trips per day is:

ntrips day = 25837
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Chapter 8

Results without the electrical
demand: recharge curve of the EV

Several authors [78, 79, 80, 81, 83, 85] performed the grid impact analysis,
using a constant recharge load model. The novelty of this study is the use
of a detailed recharge curve for the impact analysis. Thus, the objective of
this chapter is to compare the impact of the different models of batteries for
the recharge of EVs, regardless of the situation of the grid. Therefore, only
the demand created by the EV’s recharge is considered in these simulations,
which will provide a better idea of the EV’s recharge effect. The different
models for the EV’s battery recharge are:

• Constant Power: The recharge is performed at constant power (Fig-
ure 8.1(b)).

• Variable Power: The recharge is performed based on the battery’s
recharge model (Figure 8.1(a)).

• Variable power model with average values for the power to
recharge: The recharge is performed based on the battery’s recharge
model but the chosen value for the power is the average for the estab-
lished periods (Figure 8.1(c)).

Three softwares have been considered to perform the simulations: Mat-
lab, PSSE and DIgSILENT Power Factory. Comparing DIgSILENT Power
Factory with Matlab, DIgSILENT Power Factory has been chosen because
it already incorporates the load-flow algorithm and the electric system com-
ponents are already modelled in the program. PSSE is presented as a strong
option because, like DIgSILENT Power Factory does, it also offers load flow
algorithm and electrical system models. However, DIgSILENT Power Fac-
tory offers the DPL programming language which allows automating the
performance of time-consuming simulations, process the results or even ap-
ply further sequential changes to the network, subroutines or to the main

85



Chapter 8 Results without the electrical demand: recharge curve of the EV

script itself. Therefore, DIgSILENT Power Factory was chosen among the
other programs because best fits the requirements of simulations needed for
this thesis.

In order to evaluate the above mention battery models, simulations are
performed on the chosen grid (Figure 7.1), with 1000 EVs during a regu-
lar weekday with 50 iterations per hour, using the above mention software
DIgSILENT Power Factory.

Both the recharge at the end of each trip and at the end at all day trips
have been considered.
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(a) Recharge curve of a Toyota Prius’s battery
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(b) Recharge curve of a battery at constant power
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(c) Recharge curve of a Nissan Leaf’s battery

Figure 8.1: Recharge profile of the recharging process of three different types
of batteries
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Chapter 8 Results without the electrical demand: recharge curve of the EV
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Chapter 8 Results without the electrical demand: recharge curve of the EV

Figures 8.2 to 8.13 show the results of these simulations. It is important
to note the difference between the recharge power in each simulation. In the
case of the recharge after each trip (Figures 8.2 to 8.7), it can be seen that
the recharge power directly depends on the used battery model type. This
difference is based on the consideration that in the same hour all vehicles
will be connected to the grid, recharging at the maximum battery power.
Figure 8.1 shows the three model types for the battery recharge of 1650 kWh
The blue colour stands for the real energy required and red stands for the
additional energy assumed in this simulation. Several studies from [135, 131]
demonstrate that the majority of the population consume less than 4 kWh
during each trip. Accordingly, battery recharges would take place in the
exponential part of the curve. Therefore, in order to achieve a more precise
model and not include this unrealistic extra energy, it would be necessary
to measure in periods smaller than one hour when the recharge takes place
in the exponential part of the model’s curve.

For the case of the recharge at the end of all day trips (Figures 8.8 to 8.13),
the error is much smaller, since recharges are deeper and take place in the
bulk part of the curve of the recharge model where the error is minimized
due to the exponential part of the curve.

As it can be observed in the figures (from figure 8.2 to 8.13), the worst
case scenarios corresponds to the case when the Constant power recharge
battery model is used. The explanation to this result is described by the fact
that this model performs the recharge at the battery’s maximum recharge
power. Therefore, this case represents the worst case scenario.
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Chapter 9

Results with electrical demand:
impact into the distribution grid

The EV’s impact on the study grid (Figure 7.1) is studied in this section.
Prior to the simulations, it had been studied which results can provide a
better understanding of the impact of EVs. Because of the topology of
the grid and the household load profiles, it has been observed [131] that
the greatest impact is in Line 1 (L1), and because the difference is not
significant in the transformers’ loadings, the value will be the mean of them
all (equation 9.1).

Ltransf =

∑Ntransf

i=1 Ltransf i
Ntransf

(9.1)
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Chapter 9 Results with electrical demand: impact into the distribution grid

9.1 Comparison of the constant power battery’s
recharge model and variable model with mean
values for the power to recharge

The results of the Monte Carlo simulation are depicted below with 0%,
20% and 40% of EV penetration for the most unsuitable scenario (the one
with the highest household consumption, which in this case is the ”winter
weekday” case), using the constant power model (Figure 8.1(a)) and the
variable model with mean values (Figure 8.1(c)).

As Figure 9.1(a) shows, the maximum load increase occurs in Line 1 (L1)
for a penetration of 40% with the constant power model. This maximum load
increase takes place when household demand reaches its maximum (20:00h),
taking the loading level from 60 % (with no EV) to 74%. In the case of
the mean value model, the loading level in the same hour is 66%, which
corresponds with the expected accuracy of this model (Section 8). It is
important to point out that with a 40% EV penetration, the grid has already
experienced a violation of the admissible level of 60% at 8:00h; with the
constant power model and it reaches 68% and with the mean value model it
reaches 63%.

Taking into account the conclusions extracted from Section 8 (discussion
of the figures), it can be seen that for the recharge at the end of all day trips,
the differences between the batteries’ recharge models are not as significant
as in the previous scenario (Figure 8.9); the maximum difference between
the models is 1%.
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Chapter 9 Results with electrical demand: impact into the distribution grid

Figure 9.2 shows the loading level for the transformers. Comparing the
loading levels of the transformers with the line loading levels, it can be
observed that the load pattern remains the same although the transformer
case reaches higher loading levels.
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Chapter 9 Results with electrical demand: impact into the distribution grid

9.2 Extreme scenario: EV penetration of 100%

The purpose of this section is to study the effect of a 100% EV penetration
in the grid. Two situations will be considered: recharging after every trip
and recharging at the end of the day. Results will be compared with the 0%
EV penetration case.

Figure 9.3 depicts the loading profile of L1 and the transformer when
the recharge is performed after every trip. As it can be seen in the Figure
9.3(a), lines do not overload their maximum value. Nevertheless, depending
on the country’s legislation, these values can be considered not suitable
under normal operating conditions. Regarding the transformer’s loading
level (Figure 9.3(b)), it can be seen that overloading is produced all day
long except during the off-peak time period.

The EV’s recharging after all the trips of the days is shown in Figure 9.4.
For the case of the line’s loading (Figure 9.4(a)), as in the previous case,
it does not exceed 100% of its capacity but it reaches higher values (the
hour when this maximum value is achieved is the same for both scenarios).
The transformer’s loading level (Figure 9.4(b)) presents a decrease of its
loading until 17:00h. At the time of the maximum loading level (20:00h)
the loading is approximately 10% above of the ”Recharging after every trip
case” transformer’s loading level.
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Chapter 10

Conclusions

The objective of this PhD thesis is to analyse the impact of the recharge of
a fleet of EVs in a standard IEEE test system adopted to an underground
distribution grid in Barcelona (Spain), implementing an improved model for
the recharge of the batteries. In order to achieve this objective, the following
tasks have been performed:

• Obtainment of the probabilistic model for electrical demand. It con-
sists of creating a statistical model able to generate random values
according to the available data of the Spanish hourly load profile
(rescaled to the study grid). The seasonal patterns of the consumption
were obtained in order to generate a normal distribution for each hour
of each pattern. Using these normal distributions, the random values
for the hourly power due to the electrical demand can be generated.
The pattern chosen for the simulation is the winter pattern because
the highest consumptions are experienced, which results in the most
critical case.

• Battery model creation. The load curves of the different types of bat-
teries have been implemented in order to include their behaviour in
the simulations and maintain accuracy.

• Obtainment of the probabilistic model for the electrical demand due
to the EV consumption. In order to get the EV consumption, several
steps had to be taken:

1. Study of the mobility patterns of Barcelona and adaptation to
the studied area in order to get the number of EVs that would
be recharging in the area. The distribution of the number of EVs
along the nodes has been done considering that each node has
the same probability of recharging vehicles.

2. Determination of the consumed power of the EVs for each recharge.
The consumed energy per travel is based on the specific consump-
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Chapter 10 Conclusions

tion of the battery and the distance travelled. In this study the
travelled distance follows a log normal distribution with a shape
value of 1.929 and a scale factor of 1.508.

3. Obtainment of the type of battery of each EV. The type of battery
determines the specific consumption of the previous step. In the
study, a log normal function was created from the capacities to
be generated for random batteries, and depending on the value,
a known load curve from an existent model was assigned (Figure
6.6).

• One of the main interests of this study is to obtain the impact of EVs
recharging in a real distribution grid situation. Thus, an IEEE test
system has been adapted to an underground cable system used, like in
Barcelona. The main advantage of this new test system is that it also
contains mobility-related data that can be used in future studies.

• Simulation using the Monte Carlo method of the possible scenarios
using the power system simulator DIgSILENT. Once all the consump-
tions per node, hour and iteration have been determined (EV’s con-
sumption and conventional demand), deterministic load flows with
these values can be performed in order to get the confidence inter-
val for the result variables.

The results show that the impact of non-constant recharge battery models
on the grid is smaller than the impact of the constant one (Figures 8.2 to
8.13). This is caused by the significant inaccuracy of the energy consumed
during the recharge of the constant power model, due to the following two
factors:

1. The constant battery model does not take into account that during the
last stage of the recharge, consumption decreases in an exponential way
(constant voltage stage). This inaccuracy gets accentuated when the
recharge is performed during this stage (recharge after each trip).

2. The simulation using time periods with one hour resolution results
in an imprecision when the recharge lasts less than one hour. This
situation results in the recharge of more energy during the simulation
than required.

Despite the simulations using a non-constant battery model in order to
procure the results where the impact is not the highest, during the days
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of the year with the highest household consumption, transformer stations
could experience an overload of 11% due to the combination of the household
electrical consumption and the EV recharge consumption (Figure 9.2). The
lines will not have such severe problems (Figure 9.1), even though it is
possible that some lines cannot remain under 60% of admissible loading
power established by the utility. The same results can be observed for the
critical case of the 100% of EVs penetration (Figure 9.3 and Figure 9.4).

Finally, it is essential to highlight that the variables regarding mobility
aspects are some of the key factors for these kinds of studies.
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Chapter 10 Conclusions

10.1 Future work

The present work have arisen a number of interesting topics for further
research:

• Implement EV fast charge in order to assess its impact in these type
of scenarios.

• Combine both EV fast charge and EV standard charge with different
levels of penetrations and proportions to foresee possible situations.

• Implement control strategies of the charge process which consider in
real-time basis the status of the grid and allow or not the recharge of
the EV.

• Consider the EV as an energy source able to inject power on the grid
in order to improve grid’s performance and stability.
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[141] Norma Técnica Particular - Centros de Transformación en Edificio
(NTP-CT), FECSA-ENDESA Std., 2006. 79
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Appendix A

Load flow: Newton-Raphson

This chapter describes the load flow algorithm through which the voltages
and the currents have been found when performing the Montecarlo simula-
tion. The chosen method is the Newton-Raphson load flow algorithm.

A.1 Statement of the problem

Electrical grid nodes can be classified into three types:

1. Power consumption nodes (PQ nodes): in this type of nodes
there is no generation (PGi = 0 and QGi = 0) and the consumed active
power (PCi = P esp

Ci ) and the consumed reactive power (QCi = Qesp
Ci )

are known.

2. Generation nodes (PV nodes): in this type of nodes the active
power consumption (PCi = P esp

Ci ), the active power generation (PGi =
P esp
Gi ) and the voltage module (Vi = V esp

i ) are known.

3. Reference node (also known as slack or swing node): there
is only one of this type of nodes in the grid when performing the
analysis due to the fact that this node is the one where the voltage
angle reference (θn = 0) is established and therefore known. The active
power consumption is also known (PCi = P esp

Ci ).

A grid with n nodes, can be arranged as:

i = 1, 2, ..., nD being nD the number of PQ nodes
i = nD + 1, nD + 2, ..., nD + nG being nG the number of PV nodes
i = n being n the index of the slack node
where
n = nD + nG + 1
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Appendix A Load flow: Newton-Raphson

The admittance matrix of the grid, Y , can be defined as:

Y =


Y 11 Y 12 · · · Y 1n

Y 21 Y 22
. . .

...
...

. . .
. . . Y (n−1)n

Y n1 · · · Y n(n−1) Y nn

 (A.1)

where

Y ii =
∑

admittances of the circuits connected to i
(elements of the diagonal of the matrix Y )
Y ij = −

∑
admittances of the circuits between i i j

(elements outside of the diagonal of the matrix Y )

The Y matrix is a n × n complex matrix and therefore can be expressed
as the sum of a real matrix and a complex matrix:

Y = G+ jB (A.2)

where

G =


G11 G12 · · · G1n

G21 G22
. . .

...
...

. . .
. . . G(n−1)n

Gn1 · · · Gn(n−1) Gnn

 (A.3)

jB = j


B11 B12 · · · B1n

B21 B22
. . .

...
...

. . .
. . . B(n−1)n

Bn1 · · · Bn(n−1) Bnn

 (A.4)

The load flow problem is a non-linear problem which can be formulated
from the known variables of the net injected power in every grid’s node:

P esp
i = P esp

Gi − P
esp
Ci i = 1, 2, ..., nD + nG

Qesp
i = Qesp

Gi −Q
esp
Ci i = 1, 2, ..., nD

Where the load flow equations are:
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A.1 Statement of the problem

P esp
i = Vi

n∑
j=1

Vj (Gij cos θij +Bij sin θij) i = 1, 2, ..., nD + nG (A.5)

Qesp
i = Vi

n∑
j=1

Vj (Gij sin θij −Bij cos θij) i = 1, 2, ..., nD (A.6)

Defining the variables as:

Gij element of the i row and j column of G,

Bij element of the i row and j column of B.

Vi voltage module of the node i,

Vj voltage module of the node j,

P esp
i active net power injected in the node i,

Qesp
i reactive net power injected in the node i,

Thus, in order to solve 2nD + nG equations, the following variables need
to be solved:

Vi, i = 1, 2, ..., nD voltage module

θi, i = 1, 2, ..., nD + nG voltage angle
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A.2 The Newton-Raphson method

The Newton-Raphson method is an iterative process through which the vari-
ables in the non-linear equations get a value until a maximum allowed error ε
is reached or, when this error can not be reached, the system has no solution.

For every node i the difference ∆ between the initially specified power and
the calculated is defined as follows:

∆Pi = P esp
i − Vi

n∑
j=1

Vj (Gij cos θij +Bij sin θij)

i = 1, 2, ..., nD + nG

∆Qi = Qesp
i − Vi

n∑
j=1

Vj (Gij sin θij −Bij cos θij)

i = 1, 2, ..., nD

It can also be expressed in the matrix form as:[
H N
M L

]k [
∆θ

∆V/V

]k
=

[
∆P
∆Q

]k
(A.7)

The problem solving process starts through the assignation of the initial
values to the voltage module and angle variables:[

[θ |V ]T
]0

=
[
[θ1, θ2, ..., θnD+nG |V1, V2, ..., VnD ]T

]0
(A.8)

For every iteration k corrections are introduced in the system:[
[∆θ |∆V/V ]T

]k
(A.9)

and new values
[
[θ |V ]T

]k+1
of:[

θ
V

]k+1

=

[
θ
V

]k
+

[
∆θ
∆V

]k
(A.10)

being H, N , M and L sub-matrix where its terms can be calculated as:

Hij = Lij = ViVj (Gij sin θij −Bij cos θij)
Nij = −Mij = ViVj (Gij cos θij +Bij sin θij)

}
terms outside the matrix diagonal
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A.2 The Newton-Raphson method

Hii = −Qi −BiiV 2
i

Lii = Qi −BiiV 2
i

Nii = Pi +GiiV
2
i

Mii = Pi −GiiV 2
i

 terms of the matrix diagonal

When the error ε reaches its acceptable maximum value, the process stops
and the system is considered solved:

max
(∣∣∣∆P k1 ∣∣∣ , ..., ∣∣∣∆P kn−1∣∣∣ , ∣∣∣∆Qk1∣∣∣ , ..., ∣∣∣∆QknD

∣∣∣) ≤ ε
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Appendix B

Mobility data of the metropolitan
area of Barcelona

The following tables have been extracted from the mobility data of the
Barcelona’s city council mobility web (year 2006). The table B.1 stands
for number of trips that a single driver does in a day. The tables B.2 and
B.3 show the distance of the daily trips.

Table B.1: Number of daily trips.

Number of trips Frequency Percentage

1 768 0,7
2 38.202 36,0
3 4.814 4,5
4 31.439 29,6
5 5.497 5,2
6 8.884 8,4
7 2.058 1,9
8 2.043 1,9
9 735 0,7

10 552 0,5
11 260 0,2
12 281 0,3
13 75 0,1
14 5 0,0
15 5 0,0
16 1 0,0
17 2 0,0
18 1 0,0

Total 106.091 100,0

135



Appendix B Mobility data of the metropolitan area of Barcelona

Table B.2: Distance per trip (from 1 km to 25 km).

Distance [km] SUV Motorbike Total

0 238.083 30.059 268.143
1 602.950 88.765 691.715
2 290.177 79.876 370.053
3 324.435 78.808 403.243
4 208.109 54.428 262.537
5 201.670 50.056 251.726
6 124.534 29.065 153.599
7 162.700 26.749 189.448
8 120.299 13.085 133.384
9 134.415 13.391 147.806
10 126.709 17.245 143.954
11 94.242 9.767 104.009
12 99.693 7.922 107.615
13 76.374 5.609 81.982
14 84.391 5.887 90.278
15 76.074 6.403 82.477
16 54.130 4.988 59.117
17 49.746 5.317 55.064
18 50.680 3.451 54.131
19 47.240 1.460 48.700
20 45.921 2.355 48.276
21 43.880 3.842 47.722
22 42.915 2.164 45.079
23 32.629 811 33.440
24 33.904 2.026 35.931
25 35.958 3.474 39.432
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Table B.3: Distance per trip (from 26 km to 50 km).

Distance [km] SUV Motorbike Total

26 32.240 1.744 33.984
27 23.444 1.109 24.553
28 27.236 1.012 28.249
29 22.792 436 23.229
30 18.264 674 18.938
31 20.960 721 21.681
32 18.662 545 19.207
33 19.220 375 19.594
34 15.579 237 15.816
35 17.791 624 18.415
36 17.009 643 17.652
37 12.411 520 12.931
38 11.685 505 12.190
39 10.189 426 10.615
40 9.969 . 9.969
41 11.078 . 11.078
42 5.338 380 5.717
43 8.306 . 8.306
44 8.919 277 9.195
45 6.302 . 6.302
46 6.026 152 6.178
47 5.913 . 5.913
48 5.625 154 5.779
49 5.065 . 5.065
50 6.731 . 6.731
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Conference papers
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