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Resumen

El Bio-Diseño Asistido por Computadora (Bio-CAD), y la experimentación in-silico están

teniendo un creciente interés en aplicaciones biomédicas, en donde se utilizan datos cient́ıficos

provenientes de muestras reales para calcular parámetros estructurales que permiten evaluar

propiedades f́ısicas. Las tecnoloǵıas de adquisición de imagen no invasivas como la TC, µTC o

IRM, y el crecimiento constante de las prestaciones de las computadoras, permiten la adquisi-

ción, procesamiento y visualización de datos cient́ıficos con creciente grado de complejidad.

El cálculo de parámetros estructurales está basado en la existencia de dos fases (o espacios)

en la muestra: la sólida, que puede corresponder al hueso o material, y la fase porosa o vaćıa, por

tanto, tales muestras son representadas como volúmenes binarios. El modelo de representación

más común para estos conjuntos de datos es el modelo de vóxeles, el cuál es una extensión

natural a 3D de los mapas de bits 2D. En esta tesis se utilizan el modelo Extreme Verrtices

Model (EVM) y un nuevo modelo propuesto, the Compact Union of Disjoint Boxes (CUDB),

para representar los volúmenes binarios en una forma mucho más compacta. El modelo EVM

almacena sólo un subconjunto ordenado de vértices de la frontera del objeto mientras que el

modelo CUDB mantiene una lista compacta de cajas.

En esta tesis se proponen métodos para calcular los siguientes parámetros estructurales:

distribución del tamaño de los poros, conectividad, orientación, esfericidad y redondez. La

distribución del tamaño de los poros ayuda a interpretar las caracteŕısticas de las muestras

porosas permitiendo a los usuarios observar los rangos de diámetro más comunes de los poros

mediante picos en un gráfica. La conectividad es una propiedad topológica relacionada con

el género del espacio sólido, mide el nivel de interconectividad entre los elementos, y es un

indicador de las caracteŕısticas biomecánicas del hueso o de otros materiales. La orientación

de un objeto puede ser definida por medio de ángulos de rotación alrededor de un conjunto de

ejes ortogonales. La esfericidad es una medida de que tan esférica es una part́ıcula , mientras

que la redondez es la medida de la nitidez de sus aristas y esquinas.

En el estudio de estos parámetros se trabaja con muestras reales escaneadas a alta resolución

que suelen generar conjuntos de datos enormes, los cuales requieren una gran cantidad de

memoria y mucho tiempo de procesamiento para ser analizados. Por esta razón, se presenta
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un nuevo método para simplificar volúmenes binarios de una manera progresiva y sin pérdidas.

Este método genera una secuencia de niveles de detalle de los objetos, en donde cada objeto

es un volumen englobante de los objetos previos. Además de ser utilizado como apoyo en el

cálculo de parámetros estructurales, este método puede ser de utilizado en otras tareas como

transmisión progresiva, detección de colisiones y cálculo de volumen de interés.

Como parte de una investigación multidisciplinaria, se han desarrollado dos aplicaciones

prácticas para calcular parámetros estructurales de muestras reales. Un software para la de-

tección automática de puntos de viscosidad caracteŕısticos en muestras de rocas de basalto y

vidrios, y una aplicación para calcular la esfericidad y redondez de formas complejas en un

conjunto de datos de śılice.



Abstract

Bio-CAD and in-silico experimentation are getting a growing interest in biomedical applications

where scientific data coming from real samples are used to compute structural parameters that

allow to evaluate physical properties. Non-invasive imaging acquisition technologies such as

CT, µCT or MRI, plus the constant growth of computer capabilities, allow the acquisition,

processing and visualization of scientific data with increasing degree of complexity.

Structural parameters computation is based on the existence of two phases (or spaces) in the

sample: the solid, which may correspond to the bone or material, and the empty or porous phase

and, therefore, they are represented as binary volumes. The most common representation model

for these datasets is the voxel model, which is the natural extension to 3D of 2D bitmaps. In

this thesis, the Extreme Vertices Model (EVM) and a new proposed model, the Compact Union

of Disjoint Boxes (CUDB), are used to represent binary volumes in a much more compact way.

EVM stores only a sorted subset of vertices of the object’s boundary whereas CUDB keeps a

compact list of boxes.

In this thesis, methods to compute the next structural parameters are proposed: pore-size

distribution, connectivity, orientation, sphericity and roundness. The pore-size distribution

helps to interpret the characteristics of porous samples by allowing users to observe most co-

mmon pore diameter ranges as peaks in a graph. Connectivity is a topological property related

to the genus of the solid space, measures the level of interconnectivity among elements, and is

an indicator of the biomechanical characteristics of bone or other materials. The orientation

of a shape can be defined by rotation angles around a set of orthogonal axes. Sphericity is a

measure of how spherical is a particle, whereas roundness is the measure of the sharpness of a

particle’s edges and corners.

The study of these parameters requires dealing with real samples scanned at high resolution,

which usually generate huge datasets that require a lot of memory and large processing time to

analyze them. For this reason, a new method to simplify binary volumes in a progressive and

lossless way is presented. This method generates a level-of-detail sequence of objects, where

each object is a bounding volume of the previous objects. Besides being used as support in the

structural parameter computation, this method can be practical for task such as progressive

transmission, collision detection and volume of interest computation.
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As part of multidisciplinary research, two practical applications have been developed to

compute structural parameters of real samples. A software for automatic detection of charac-

teristic viscosity points of basalt rocks and glasses samples, and another to compute sphericity

and roundness of complex forms in a silica dataset.
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CHAPTER1
Introduction

1.1 Motivation

Volume modeling and visualization is a widely studied field. There is a large number of contri-

butions on general models and analysis and visualization methods. Nevertheless, the continuous

increase of applications that use this technology, as well as the size and complexity of data that

we have to deal with, have defined new challenges.

New imaging acquisition technologies, such as micro/nano computed tomography (CT),

magnetic resonance imaging (MRI) or nuclear magnetic resonance (NMR), plus the constant

growth of computer capabilities, allow the acquisition, processing and visualization of scientific

data from several fields such as biomaterials, medicine, mineralogy, geology, etc, and with

increasing degree of complexity. These acquisition methods produce volume datasets in a non-

invasive way, which can be used to compute physical properties.

The development of the bioengineering field has yielded to the appearance of a new applica-

tion of Computer-Aided Design, Bio-CAD. It refers to the computation of structural parameters

from images of samples and it is widely used in many applications. Structural parameters allow

us to measure physical properties of a sample such as osteoporosis degree of bones, suitabi-

lity of biomaterials to be used as implants, transport and distribution of fluids into rocks for

petrographic purposes, grain shape and sphericity index in silica sand for industrial and manu-

facturing applications, among others.

Structural parameters can be of different typology. All of them are based on the existence

of two or more phases (or spaces) in the sample. The most common cases involve two phases,

the solid, which may correspond to the bone or material, and the empty or porous phase and,

therefore, they are represented as binary volume datasets. Some of the structural parameters

are simply the volume of different phases or the contact surface between them, but others such

as connectivity are more complex. Other parameters consist in morphological information of

these phases, and in this case, an appropriate representation model must be defined. Many

of the methods for structural parameters computation use the voxel model, while others use

alternative representation models such as octrees or kd-trees.

Porosisity and the pore-size distribution are experimentally evaluated with a device called

1



2 Chapter 1. Introduction

porosimeter, which introduces mercury into a sample at increasing pressures, causing fluid to

flow through smaller apertures, and then the corresponding intruded volumes are obtained. This

experimental method has been simulated using volume datasets. There are other methods to

compute the porosity. Heuristic methods that cover the pore space with overlapping spheres into

the cavities and granulometry methods that perform morphological openings using geometric

elements. However, virtual porosimetry and heuristic methods rely on a previous computation

of a 1D skeleton (medial line or curve skeleton) or 2D skeleton (medial surface), which are very

time-consuming processes.

Connectivity, a topological property related to the genus of the solid space, measures the

level of interconnectivity among elements. It can be obtained from the Euler characteristic,

using the voxel model. In the solid modeling field it can also be computed from a polyhedron or

from a triangulated surface. The performance variability of existing methods is mainly caused

by the number of basic geometric elements to analyze (voxels, triangles, vertices, etc.).

This thesis aims to provide new methods to compute structural parameters, which improve

the performance of existing methods. Consequently, we work with representation models that

allow us to analyze geometrically the porous and solid spaces in an efficient and compact way.

We work with existing models and also propose a new suitable model that allows the information

to be compacted and speeds up the methods.

Besides, the study of these parameters requires dealing with the large size and complexity

of the models that result from the capturing devices, which affects the computation speed up

of their characteristics, disk storage and rendering efficiency. Simplification techniques can

diminish these problems. Moreover, in some situations it is advantageous to exchange an

exact geometric representation of an object for an approximated one, which can retain the

enough relevant information and be processed more efficiently. Therefore, we also devise a

new method to simplify binary volumes. As the proposed method is progressive, lossless, and

produces bounding objects, it can be practical for visualization, progressive transmission, and

collision detection, among other tasks. For example, simplified models can be used for collision

detection in prosthesis placement simulation, where, using simplified bounding forms, we can

discard certain zones and then work directly with the original model.

1.2 Objectives

The main objective of this thesis is to contribute to structural parameters computation with

the development of new methods. In order to accomplish this, a set of specific objectives have

been established:

• Devise a new representation model for binary volumes that allows the information to be

compacted and provides fast neighborhood operations.

• Provide a new approach for virtual porosimetry, which avoids the skeleton computation,

and gives a better performance compared with existing skeleton-based approaches.
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• Provide a method to compute the connectivity of binary volumes based on the proposed

decomposition model, that gives a better performance compared with methods that use

alternative models.

• Provide geometric methods to evaluate the sphericity and roundness indices of objects,

whose results have a high correlation with existing indices used in geology.

• Devise a framework to simplify binary volume datasets and general orthogonal pseudo-

polyhedra, in a progressive and lossless way, with good compression ratio, approximation

quality and run time. Moreover, apply this simplification framework to the computation

of the mentioned structural parameters.

• Work with datasets coming from real samples and take part in multidisciplinary projects

with other research teams.

• Develop two practical applications: an automatic detection of characteristic viscosity

points of basalt rocks and glasses samples, and sphericity and roundness computation of

complex forms in silica datasets.

• Incorporate all the developed work into a software platform to offer the aforementioned

models and methods.

1.3 Thesis Outline

Besides this chapter, the thesis is organized as follows:

Chapter 2: Background.

In this chapter, the relationship between binary volume datasets and orthogonal pseudo-

polyhedra (OPP) is explained. The main representation models used in this thesis, the

Extreme Vertices Model (EVM) and the Ordered Union of Disjoint Boxes (OUDB), repre-

sent binary volumes as OPP. Therefore, for the purpose of this thesis, these terms are

often used indistinctly.

This chapter also reviews alternative representation models and describes the state of the

art related to structural parameters computation and simplification methods.

Chapter 3: An Improved Decomposition Model for OPP.

This chapter presents a new decomposition model for OPP: the Compact Union of Dis-

joint Boxes (CUDB). This model is an improved version of OUDB. CUDB has many

desirable features versus OUDB, such as less storage size and a better efficiency in the

connected-component labeling (CCL) process. Algorithms for conversion between CUDB

and other models, and basic algorithms used in subsequent processes of structural pa-

rameters computation and simplification, such as CCL and exact collision (adjacency)

detection, are presented. CUDB performance is experimentally analyzed with phantom

and real datasets.
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Chapter 4: Structural Parameters Computation.

This chapter presents several methods to compute structural parameters of samples using

CUDB and EVM. The measured parameters are: pore-size distribution, connectivity,

orientation, sphericity and roundness.

The first method simulates mercury intrusion porosimetry. This method does not require

skeleton computation and is an iterative process that considers the diameters correspon-

ding to pressures. At each iteration, geometric tests detect throats for the corresponding

diameter and a CCL process collects the region invaded by the mercury. The method

obtains the pore-size distribution of the porous sample.

The second method computes the Euler characteristic (χ) and the genus of a volume

dataset. This method is derived from the classical method used with a voxel model and

the computation of χ and the genus is achieved by analyzing the connectivity among

CUDB-boxes and using a CCL process.

The third method computes the orientation, sphericity and roundness of objects. Orienta-

tion is defined by three mutually orthogonal unit vectors, sphericity is estimated based on

volume and surface measures, and roundness is estimated with a ray-casting-like approach.

All the methods are tested both with phantom and real datasets and compared with

previous methods based on the voxel model, and other alternative models.

Chapter 5: Lossless Orthogonal Simplification.

This chapter presents a new approach to simplify general OPP represented with EVM.

The method is incremental and produces a level-of-detail sequence of OPP, where any

object of this sequence bounds the previous objects. The sequence finishes with the axis-

aligned bounding box. Simplification is achieved using a new strategy called merging

faces, which relies on the application of 2D Boolean operations. A data structure to

encode in a progressive and lossless way the generated sequence is also devised. This

method is compared in storage size and approximation quality with other methods that

also produce bounding objects. This simplification method is applied to the computation

of the aforementioned structral parameters.

Chapter 6: Practical Applications.

In this chapter, two practical applications to compute structural parameters are presented.

The first practical application is a customized software analysis tool to automatically

detect characteristic viscosity points (CVP) from a collection of 2D images of basalt

rocks and glasses samples. This tool was developed to help determine the temperatures

corresponding to CVP together with the Hot-stage microscopy technique.

The second practical application is a software to analyze silica nano datasets. Silica sand

is normally required to have grains of an approximately uniform size. Sphericity and

roundness, two of the more important physical properties of silica sand, are analyzed.

Chapter 7: Conclusions and Future Work.

This chapter summarizes the contributions, and sketches future work lines.



CHAPTER2
Background

2.1 Introduction

This chapter describes the background and the state of the art of the main issues that are

analyzed in this thesis. It describes the main representation models of volume data where

the relationship between binary volume datasets and orthogonal pseudo-polyhedra (OPP) is

explained. The Extreme Vertices Model (EVM) and the Ordered Union of Disjoint Boxes

(OUDB), the most referenced representation models in this thesis are reviewed in more detail.

This chapter also reviews the structural parameters studied in this thesis and discusses

the state of the art of simplification methods, mainly those methods that produce progressive

approximations which are also bounding volumes.

2.2 Volume Models

Volume datasets coming from acquisition technologies must be modeled in some way before

being processed or visualized in order to obtain the desired results, i.e., once a 3D model is

obtained from a source, data needs to be represented in a generic model and then, fitted with

a volume representation model. Three possible definitions of volume are [102]:

1. It can be viewed as the process of modeling volume data, as volume scanning devices

produce a value of a dependent quantity at various locations in space.

2. It can be thought of as a generalization in dimension to surface modeling.

3. It can be viewed as the means to provide the input to the volume rendering.

Hence, volume modeling can be thought as starting with some 3D objects, manipulating them

and resulting in new 3D objects [139]. The generated object model can be used further in

different ways.

Nowadays, there are diverse proposed volume models to represent sampled data and each

one of these provides distinct features and has different advantages and drawbacks. Therefore,

5
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the use of one or another mainly depends on what kind of operations we need to apply and

which information we want to extract.

Volume data are usually registered as values in different locations of the 3D space, the

sampling locations can be organized to form either structured or unstructured meshes [66],

where structured meshes can be uniform, rectilinear or curvilinear. Figure 2.1 depicts samples

of structured meshes and an unstructured mesh.

(a) (b) (c) (d)

Figure 2.1: Data meshes: (a) Uniform, (b) rectilinear (c) curvilinear and (d) unstructured.

The most commonly used unstructured 3D data representation is the tetrahedral mesh due

to its flexibility and ability in filling any arbitrary 3D complex geometries [88]. This format is

generally used in CAD, finite element method (FEM) and simulation. Figure 2.2(a) shows an

instance of this representation. While the mesh model represents a 3D object by a collection

of polyhedra, the voxel model is a discrete collection of uniformly distributed unit cubes in 3D

space [65]. This uniform structured model is commonly used to represent sampled medical and

scientific data (see Figure 2.2(b)).

(a) (b)

Figure 2.2: (a) A tetrahedral mesh model and (b) a voxel model.

Another way of representing the topological information of 3D objects in order to be pro-

cessed by a computer is offered by Morse theory and Reeb graphs. Morse theory [54, 96] can

be thought of as a generalization of the classical theory of critical points (minima, saddles,

and maxima) of smooth functions on Euclidean spaces. Morse theory states that for a generic

function defined on a closed compact manifold (e.g. a closed surface) the nature of its critical

points determines the topology of the manifold. Reeb graphs [57] are symbolic representation

of a certain subset of Morse functions, they represent the configuration of critical points and
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their relationship, and provide a way to understand the intrinsic topological structure of an

object.

In this thesis we consider uniform meshes, because our objective is to contribute particularly

in the bioengineering field where the data acquisition devices produce rectilinear data sets by

sampling. Moreover, real samples used to compute structural parameters are composed of two

phases (solid and porous space), therefore, they are represented as binary volumes.

In most of the reported literature, the operations to study binary volume datasets are

performed directly on the classical voxel model. However, in the field of volume analysis and

visualization, several alternative models have been devised for specific purposes. Hierarchical

structures such as octrees and kd-trees have been used for Boolean operations [134], connected-

component labeling (CCL) [34], and thinning [118] [182]. Octrees are used as a means of

compacting regions and getting rid of the large amount of empty space in the extraction of

isosurfaces [179]. Their hierarchy is suitable for multi-resolution when dealing with very large

data sets [7, 77], as well as to simplify isosurfaces [167]. Kd-trees have been used to extract

two-manifold isosurfaces [50].

There are models that store surface voxels, thereby gaining storage and computational

efficiency. The semi-boundary representation affords direct access to surface voxels and performs

fast visualization and manipulation operations [51]. Certain methods of erosion, dilation and

CCL use this representation [159]. The slice-based binary shell representation stores only surface

voxels and is used to render binary volumes [69].

A binary voxel model represents an object as the union of its foreground voxels and its

continuous analog is an OPP [76]. The Extreme Vertices Model (EVM) and the Ordered

Union of Disjoint Boxes (OUDB) [1, 3] represent OPP in a compact way. EVM stores only a

sorted subset of vertices of the OPP boundary, whereas OUDB keeps a sorted list of boxes that

compose the whole object.

OPP have been used in 2D to represent the extracted polygons from numerical control data

[108]. Some 3D applications of OPP are: general computer graphics applications such as geo-

metric transformations and Boolean operations [1, 19, 38], virtual MIP without skeleton [126],

direct skeleton computation (instead of iterative peeling techniques) [36, 91], and orthogonal

hull computation [16, 17]. OPP have been also used in theory of hybrid systems to model the

solutions of reachable states [19, 30].

A brief summary of the most common models to represent binary volume datasets reported

in the literature is presented below.

2.2.1 Voxel Model

The voxel model [65, 121] is based on a regular decomposition of the 3D space into a set of

identical cubic cells called voxels. In a voxel model, voxels are all the same size and their edges

are parallel to the main axes. Formally, a voxel model V of size nx × ny × nz is defined as:

V = {vi,j,k | 0 ≤ i ≤ nx, 0 ≤ j ≤ ny, 0 ≤ k ≤ nz}
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where vi,j,k is a voxel in location (i, j, k).

From V , all geometric and topological information can be obtained. On each voxel vi,j,k,

there is a set of associated values. For a binary voxel model, the associated value of its voxels

is limited to vi,j,k ∈ {0, 1}, where 0 corresponds to the background and 1 to the foreground.

Given a voxel v, the voxels that surround it form its local neighborhood. Three kinds of

adjacency relations are defined between voxels: 6, 18 and 26-adjacency. Two voxels are 6-

adjacent if they share a face, 18-adjacent if they share an edge or a face, and 26-adjacent if

they share at least a vertex (see Figure 2.3).

(a) 6-adjacency (b) 18-adjacency (c) 26-adjacency

Figure 2.3: Kinds of adjacency of a voxel with its local neighborhood.

An adjacency pair (m, n) defines the adjacency of a binary volume dataset, meaning that the

foreground is m-adjacent and the background is n-adjacent. Using some adjacency pairs leads

to paradoxes making the choice of foreground and background to become critical, and several

times it is not clear what is the foreground and what is the background [73, 80]. Therefore,

proper adjacency pairs that avoid paradoxes are useful, in 3D these adjacency pairs are (6, 26)

and (26, 6) [76].

A binary volume model is manifold (well-composed) if it lacks the shapes shown in Figure 2.4

(middle and right), modulo reflections and rotations [79]. However, general binary volumes with

adjacency pairs (6, 26) or (26, 6) are non-manifold as 26-adjacency allows non-manifold shapes.

Figure 2.4: Non-manifold 2D (left) and 3D (middle and right) configurations.

Algorithms for the voxel model are straightforward to implement. However, just because

of the size of the source models, it has the drawbacks of the loss of geometric information and

high memory and computational power requirements [67]. To reduce the memory footprint and

the computation time of the algorithms, many alternative models have been proposed, such as

hierarchical data structures and boundary representations.
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2.2.2 Hierarchical Structures

Bintree. A bintree [136] begins with a cubic cell encompassing the represented subspace,

and a recursive subdivision (by an axis-aligned hyperplane that intersects the interior of that

subspace) into two equal parts of space is made, recording which parts are empty (outside) and

which are solid (inside). Those intermediate cells, which contain part of the data are subdivided.

The process is repeated until all cells are black or white, or a limit previously established of

subdivisions is reached.

Binary Space Partition (BSP) tree. BSP trees [100, 158] are similar to bintrees except

that the position and direction of the subdivision hyperplanes are usually selected following an

optimization heuristic (i.e., they are not axis-aligned), e.g., for improving tree balance or for

reducing the number of partitions.

Octree. Like bintrees, an octree [137, 179] begins with an initial cube, and a recursive sub-

division into eight sub-cubes of equal size is made. This model is one of the most popular

and particularly appropriate for representing sample data volumes common to scientific visua-

lization. Similar to other hierarchical models, non trivial geometric transformations such as

translation, scaling or rotation of the object may need to recompute the model. However, oc-

trees are quite apt for divide-and-conquer operations or fast hidden surface removal due to their

spatially ordered nature.

Kd-tree. A kd-tree [15, 31] is a special case of bintree, where each level is asymmetrically

divided in alternate directions according to a discriminant (e.g., X, Y or Z-coordinate). The

node’s pivotal coordinate is placed where needed for an optimal subdivision, thus creating two

child cells with different sizes. If the plane separator position is fixed in the middle position, it

is equivalent to a bintree.

In the aforementioned structures, cell subdivision is repeated until a satisfactory level of

refinement or until achieving the maximum level of recursion. Valid terminal nodes (also known

as leaf or terminal nodes) include white nodes (completely outside the object) and black nodes

(completely inside it). Whenever an octant cannot be represented as a valid terminal node, it is

denoted as a gray node. Some models, such as extended octrees [21], allow these heterogeneous

gray nodes which cut the object boundary and contain complex geometry.

Constructive Solid Geometry (CSG). CSG [121] is a well-known representation model

where simple primitive solids (boxes, spheres, general half-spaces, etc.) are combined by using

Boolean operations included directly in the representation. An object is stored as an ordered

tree with operators at the internal nodes, and simple primitives at the leaves. The drawback of

CSG representations is that they are not unique [37]. Since boundary representations are usually

more used in CAD applications, some techniques have been devised to improve the efficiency of

boundary algorithms in CSG, like the active zones tool [130] to detect and eliminate redundant
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nodes in CSG trees, trimming expressions of faces in CSG models to identify its contribution

to the boundary of the object [129] and techniques for avoiding the production of inconsistent

boundary models [14].

Extended Convex Differences Tree (ECDT). ECDT [119], a generalization of the Con-

vex Differences Tree [120], is a representation for n-dimensional polyhedra. It can be viewed as

a CSG tree with some restrictions that lead to a simpler tree than the original CSG and more

efficient operations. ECDT represents an object by a tree where every node holds a convex

bound to the set which it represents (not necessarily the convex hull). The drawback of ECDT

is the treatment of the union operation when performing Boolean operations directly.

2.2.3 Boundary Representations

When working with binary volume datasets, it is not necessary to keep the exact scanned density

values. Therefore, boundary models are also adequate to represent these kind of datasets. The

basic model for representing the polygonal surface of an object is the Boundary Representation

(B-Rep) model [98] that keeps explicitly all of the relationships between geometric elements

such as vertices, edges and faces. However, there are many proposed models for representing

the object boundary in a more compact way.

Chain Codes. The Freeman chain code [39] is the most used type of chain code. It represents

the boundary of a binary 2D object with a sequence of vectors of unit length and a set of eight

possible directions. On the digital grid, encoding is based on the fact that successive contour

points are adjacent to each other. Usually 4-connected and 8-connected grid are used, then, the

chain code is defined as the digits from 0 to 3 or 0 to 7, assigned to the 4 or 8 neighboring grid

points in a counter-clockwise sense [138]. The stated objectives of chain codes are to represent

black and white 2D images in a lossless, compact and easy to process manner.

Semi-boundary (SB) and Shell. SB is a data structure which stores in a concise way the

boundary and the interior information. This representation scheme stores only the boundary

voxels of the volume keeping the information of the interior voxels in an implicit way. It requires

seven to eight times less storage space and achieves three to five times faster computation than

the voxel model [164], and allows fast visualization and manipulation operations with a set

of ad-hoc operations specially designed to exploit the conciseness of the model [127]. Shell

representation [165] has the same indexing scheme used in the SB representation, but the set

of voxels, which belongs to the list that contains all the boundary voxels of the volume, was

redefined in order to represent objects with fuzzy boundaries. A shell consists of those voxels

that have an opacity value above a given threshold.

Cell-boundary. Cell-boundary [82] is also a very similar representation to SB, which consists

of a set of boundary cells with their voxel configurations, so, the points of the sample in SB

become vertices of the cells in the cell-boundary representation.
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EVM and OUDB. EVM [1, 3] is a very concise representation scheme in which any OPP can

be described using a subset of its vertices: the extreme vertices. EVM is actually a complete

solid model, it is an implicit B-Rep model, i.e., all the geometry and topological relations

concerning faces, edges and vertices of the represented OPP can be obtained from the EVM

[125]. This representation model has been used to prove the suitability of OPP as geometric

bounds in CSG [2]. OUDB [1, 124] is a special kind of spatial partitioning representation derived

from EVM, where an OPP is decomposed in a list of disjoint boxes. OUDB is axis-aligned like

octrees and bintrees, but the partition is done along the object geometry like BSP.

EVM and OUDB models reduce the complexity of some OPP operations. In this thesis,

the most used representation models are EVM and a new model derived from OUDB, CUDB.

Therefore, EVM and OUDB are reviewed in more detail in the next sections.

2.2.4 Extreme Vertices Model

In the following we review the main definitions and properties of the EVM used in this thesis.

For a more extensive explanation see [1] and [3].

EVM is a very concise representation scheme for OPP. Orthogonal polyhedra are two-

manifold polyhedra with all their faces oriented in the three main axes. They are also named

rectangular or isothetic. OPP are regular orthogonal polyhedra with a possible non-manifold

boundary [79]. OPP are a restricted class of polyhedra considering its geometry, but concerning

topology OPP are general, as they present any number of shells, cavities and holes. General

OPP are OPP with vertex coordinates having any value in R3. Polycubes are a subset of

OPP all of whose vertices have integer coordinates, formed by joining one or more equal cubes

(voxels) face to face.

EVM stores the extreme vertices (EV) with no additional information, such as topological

relations among vertices, edges, or faces, since all these elements can be computed from them.

Therefore, the storage requirement for an OPP P in its EVM representation is O(n), n being

the number of EV, and n ≤ v, where v is the total number of vertices.

Consider an OPP P , embedded in a 3D grid in such a way that all the vertices of P coincide

with the grid vertices. A vertex v, is classified according to the color black or white of its eight

surrounding voxels. There are 28 = 256 combinations, which applying reflections and rotations

may be grouped into 22 configurations. Eight of these configurations correspond to an EV and

are those with an odd number of black and white surrounding voxels (see Figure 2.5) while

configurations with an even number of black and white voxels do not correspond to EV [1].

Definitions

Let P be an OPP:

• Axis-prefixable: A linear element is axis-prefixable when it is parallel to a prefixed axis.

A planar element is axis-prefixable when it is perpendicular to the prefixed axis.
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(a) (b)

(c) (d)

Figure 2.5: The eight 3D configurations where a surrounded vertex is extreme vertex. (a) one voxel,
(b) three voxels, (c) five voxels, and (d) seven voxels surrounding a vertex.

• ABC-sorting: Let Q be a finite set of points in R3. The ABC-sorted set of Q is the set

resulting from sorting Q according to coordinate A, then to coordinate B, and then to

coordinate C. Thus, six possible ABC-sorted sets can be defined in 3D: XYZ, XZY, YXZ,

YZX, ZXY, and ZYX.

• Brink: is the maximal uninterrupted segment built out of a sequence of collinear and

contiguous two-manifold edges of P . Brinks are axis-prefixable.

• Extreme vertices: are the ending vertices of all brinks in P . EV (P ) ⊆ V (P ). V (P ) being

the set of all vertices of P .

• Extreme Vertices Model: is the ABC-sorted set of all EV of P . Any OPP is described by

its (and only its) set of EV.

• Cut (C): is the 2D OPP whose EVM-representation is the set of EV of P lying on a

plane perpendicular to a main axis of P . In 2D, a cut is the set of brinks lying on a line

parallel to a main axis. Cuts are axis-prefixable and Ci(P ) refers to the i-th cut of P .

• Slice: slicei(P ) is the prismatic region between two consecutive cuts Ci(P ) and Ci+1(P ).

P can be expressed as the union of all its slices in a certain orthogonal direction. Hence,

considering the orthogonal direction A, P =
⋃n−1
i=1 slicei(P ), where n is the number of

different A-coordinates in P (i.e., the number of cuts). A slice from a 3D OPP is a set of

one or more disjoint prisms, while a slice from a 2D OPP is a set of one or more disjoint

rectangles.

• Section (S): is the resulting polygon (or set of polygons) from the intersection between a

slice of P and an orthogonal plane parallel to the cuts. The base of each slice is a section.

Si(P ) refers to the i-th section of P between Ci(P ) and Ci+1(P ). In 2D, a section is the

resulting line (or set of lines) between a slice of P and an orthogonal line parallel to the

cuts.
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Figure 2.6: An EVM-represented (ABC-sorted) OPP. (a) EV marked with black dots, cuts decom-
posed in FD (blue) and BD (orange), normal vectors represented with arrows; a vertical brink from
vertex a to c is marked showing that these vertices are both EV while vertex b is non-EV. (b) Object’s
slices and sections highlighted in blue and yellow respectively.

Figure 2.6(a) shows an OPP with all its EV, cuts, slices and sections.

Properties

All of the following properties are proved in [1]. Let P be an OPP:

Property 1: Coordinate values of non-extreme vertices can be obtained from EV coordinates.

Property 2: Sections can be computed from cuts and vice versa:

S0(P ) = Sn(P ) = ∅, Si(P ) = Si−1(P )⊗∗ Ci(P ), ∀i = 1, . . . , n− 1 (2.1)

Ci(P ) = Si−1(P )⊗∗ Si(P ), ∀i = 1, . . . , n (2.2)

where n is the number of cuts and ⊗ denotes the XOR operation. Overline symbolizes

the project operator, that projects a d-dimensional set of vertices lying on an orthogonal

plane, like a cut or a section, onto the corresponding main plain, discarding their d-th

coordinate. The star exponent ∗ denotes a regularized Boolean operation. Regularized

Boolean operations are needed to ensure 3D homogeneity [160].

Property 3: The computation of any cut (Equation 2.2) can be rewritten by expressing the

⊗∗ operation as the union of differences and any cut can be decomposed into its forward

difference (FD) and backward difference (BD). For i = 1...n:

Ci(P ) = (Si−1(P )−∗ Si(P )) ∪∗ (Si(P )−∗ Si−1(P )) (2.3)

FDi(P ) = Si−1(P )−∗ Si(P ) (2.4)

BDi(P ) = Si(P )−∗ Si−1(P ) (2.5)



14 Chapter 2. Background

The application of this property allows us to obtain the oriented faces of the OPP as well as

all the hidden non-extreme vertices. FDi(P ) is the set of Ci(P ) faces whose normal vector

points to the positive side of the coordinate axis perpendicular to Ci(P ), and BDi(P ) is

the set of faces whose normal vector points to the negative side (see Figure 2.6).

Property 4: Let P and Q be two d-dimensional (d ≤ 3) OPP, having EVM(P ) and EVM(Q)

as their respective models, then:

EVM(P ⊗∗ Q) = EVM(P )⊗∗ EVM(Q) (2.6)

Property 5: Let P and Q be two OPP such that P ∩∗Q = ∅, having EVM(P ) and EVM(Q)

as their respective models, then:

EVM(P ∪∗ Q) = EVM(P )⊗∗ EVM(Q) (2.7)

Property 6. Let P and Q be two OPP such that P ⊇ Q, with EVM(P ) and EVM(Q) as

their models, then:

EVM(P −∗ Q) = EVM(P )⊗∗ EVM(Q) (2.8)

Property 3 provides proof that EVM is a complete B-Rep model and, therefore, it represents

OPP unambiguously [172]. Property 4 means that the XOR operation works in 0D, because it

applies directly to the EV of the model. Therefore, sections are obtained from planes of vertices

and vice versa by applying the XOR operation to the extreme vertices (Property 2).

General EVM Boolean operations such as union, intersection and difference are carried

out by applying recursively (in the dimension) the same Boolean operation over the 2D OPP

sections. The base case performs this operation in 1D. XOR operation is even faster, i.e.,

Property 4 is a simple point-wise XOR without section computation.

Although EVM has been extended to nD [112], in this thesis we deal with dimension n ≤ 3.

Methods

EVM has been implemented as an object with a set of methods. This section enumerates the

main methods often referenced and required in the algorithms presented in this thesis. Let P ,

C and br be EVM objects (abstract data types), and dimType and sortingType two predefined

enumerated data types:

• P.createEVM(dimType dim, sortingType ABC): Creates an empty EVM object P of

dimension dim and sorting ABC.

• P.getNextCut(): Returns the current cut of P and its A-coordinate, and set the pointer

at the following cut.

• P.getBrink(): Returns the current brink of a 1D P and set the pointer at the next brink.
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• P.getDimension(): Returns the dimension of P .

• P.getNEV (): Returns the number of extreme vertices of P .

• P.getSorting(): Returns the ABC-sorting of P .

• P.getArea(): Returns the area of the 2D OPP P .

• P.getV olume(): Returns the volume of the 3D OPP P .

• P.insertCut(EVM C, real coord): Inserts the cut C into P at A-coordinate coord.

• P.readBrink(): Returns the extreme points (P0 and P1) of a brink.

• P.setSorting(sortingType ABC): Sorts the EV of P according to the sorting ABC.

2.2.5 Ordered Union of Disjoint Boxes Model

An OPP P can be represented as a list of disjoint boxes. From an ABC-sorted EVM, the

ABC-ordered OUDB for P can be obtained. This model is the set of boxes obtained by [1]:

1. Splitting P at every internal cut of P perpendicular to the A-axis Ci(P ), i = 2, . . . , n−1,

where n is the number of cuts. Thus, obtaining an ordered sequence of A-slices, i.e.,

P =
⋃n−1
i=1 slicei(P ). See Figure 2.6(b).

2. Splitting each A-slice at every one of its internal cut perpendicular to the B-axis, thus,

obtaining a sorted sequence of disjoint boxes, i.e., slicei(P ) =
⋃ni−1
j=1 Boxi,j(P ).

Then, an OPP P is expressed in the OUDB model as:

P =

n−1⋃
i=1

ni−1⋃
j=1

Boxi,j(P ) (2.9)

(a) 8 boxes (b) 7 boxes (c) 8 boxes (d) 9 boxes

Figure 2.7: Four possible OUDB decompositions for the OPP in Figure 2.6(a). (a) XYZ-OUDB. (b)
XZY-OUDB. (c) YXZ-OUDB. (d) YZX-OUDB.
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There are six different ABC-OUDB models for a given OPP, which correspond to each of the

ABC-sorted EVM. Their corresponding sets of disjoint boxes are generally different. Figure 2.7

shows four possible OUDB decompositions for the OPP in Figure 2.6(a).

As OUDB contains a lesser number of elements than the voxel model (boxes instead of

voxels), it is very efficient in some tasks that require traversing the model, such as volume and

center of gravity computation [12], and CCL [124].

2.3 Structural Parameters

Geometrical and topological representations of the internal structures of samples used in Bio-

CAD (bones, biomaterials, rocks and other material samples) are necessary to evaluate their

physical properties. Such samples have two disjoint spaces, the pore space and solid space, thus,

they can be represented with binary volume models. The pore space, in turn, is made up of a

collection of pores that can be intuitively defined as local openings interconnected by narrow

apertures called throats (or necks) that limit the access to a larger pore [43] (see Figure 2.8).

Figure 2.8: Two pores separated by a throat.

In biological experiments, some objects cannot be directly used as experimental samples.

Thus, life sciences in general use different alternatives of experimentation. These experimental

systems can be distinguished into in-vivo representing the function of entire organisms, and

in-vitro models representing the function of certain parts outside of an organism. In-silico ex-

perimentation refers to the use of mathematical models in experiments performed on computers

[114]. In this case, volume datasets are obtained with non-invasive capturing methods such as

CT, nCT, µCT, MRI, NMR, SPECT, PET, etc. Then, a voxel model is reconstructed and

segmented in order to differentiate the two regions in the sample. This model is then used to

analyze and visualize the desired structural parameters.

Usually, porous datasets are considered adequate for analysis if they have their holes homo-

geneously distributed along the sample, and the pore size is notably smaller than the dataset

size but clearly larger than the voxel’s length [43]. That is, they contain complete holes and

the voxel resolution is high enough to clearly define their shape. For instance, Figure 2.9(a)

shows a real cylindrical sample of hydroxylapatite. Figure 2.9(b) and 2.9(c) are a slice of the

pore space before and after the binary segmentation process respectively.

The study of porous materials properties is of great utility in several disciplines. In medicine,

they are used to evaluate the degree of osteoporosis and the adequacy of synthetic biomaterial
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(a) (b) (c)

Figure 2.9: Example of biomaterial segmentation: (a) Real sample of hydroxylapatite., (b) density
values and (c) binary segmentation (in white the pore space).

implants for bone regeneration, among other applications. Bone regeneration occurs in the

cavities of the implants, where blood can flow. Biomaterial implants can be designed as tissue

scaffolds, that is, extracellular matrices onto which cells can attach and then grow and form

new tissues [152, 153]. In geology, the porous structure of a rock is related to its oil-bearing and

hydrological properties [147]. Likewise, brine inclusions in sea ice can be formalized in terms of

their morphology and connectivity [46]. Silica sands need to have a high sphericity, as where

the more round and spherical is the particle, the more resistant that particle is to crushing or

fragmenting [143]. In engineering, the durability of cementitious materials is associated with

certain mechanical and transport properties that can be evaluated based on the properties of

the pore space [150].

There are many structural parameters for describing porous materials. Some of them have

been traditionally computed using 2D methodologies and their results extended to 3D by means

of stereologic techniques, while other parameters can be computed directly from the volume

dataset. We focus on parameters and methodologies that use volume datasets. Some of this

parameters are simply the volume of different phases [163] or the contact surface between them,

but others are more complex. A non-exhaustive list of the more common structural parameters

that have been found in the literature is briefly presented below. It is mainly based on the set

of parameters computed from bones and biomaterial samples in [25] and [168].

• Porosity is a parameter linked to both the mechanical behavior of a material and

the volume available. Total porosity is defined as: poreV olume/totalV olume, where

totalV olume = solidV olume+ poreV olume.

• Pore interconnectivity is the parameter that marks the degree to which pores are

connected to each other and to the exterior of the sample. It can be computed as:

nonIsolatedPoreV olume/poreV olume.

• Pore-size distribution is a useful tool that helps to interpret the characteristics of

samples by allowing users to observe most common pore diameter ranges as peaks in a

plotted graph. It is commonly represented with just a histogram; however, a complete pore

graph is normally devised, as it provides more information and is the basis for performing
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permeability studies. For instance, it is used to evaluate the suitability of biomaterials to

form new tissues, as well as to understand fluid distribution in gas- or oil-bearing rocks.

• Connectivity [103] is a topological property related to the genus of the solid space

that measures the level of interconnectivity among elements, and is an indicator of the

biomechanical characteristics of bone or other materials. It can be computed as a global

measure of the binary volume or extracted from the pore graph model.

• Fluid flow permeability [5] is a measure of the ability of a material to transmit fluids.

A high permeability points to an easy circulation for fluids at low pressures. Usually, this

measure requires previously devising a graph representation of the pore space.

• Orientation of a shape may be defined by rotation angles around a set of orthogonal axes

[56]. Preferred orientation arises when the shape is oriented preferentially in a certain

directions or set of directions [133]. Orientation is related to anisotropy [103], which refers

to the exhibition of different values of a property when measured in different directions.

• Sphericity and Roundness. Sphericity [176] is a measure of how spherical is a particle

and is independent of its size. The more compact a particle is, the more closely it resembles

a sphere. Roundness [75] is the measure of the sharpness of a particle’s edges and corners.

Sphericity and roundness are ratios and, therefore, dimensionless numbers. They can be

applied in geology, where it is important to classify particles according to their shape.

Structural parameters such as porosity and pore interconnectivity can be straightforward

computed once the solid and pore space volumes has been defined. More interesting parameters

that require more complex methods to be analyzed are the connectivity and those related to

the morphology of the pore space that allow us to compute the pore-size distribution. Previous

work to compute these structural parameters is reviewed below.

2.3.1 Porosimetry

Pore-size distribution is usually computed with mercury intrusion porosimetry (MIP), an ex-

perimental method based on the capillary law governing liquid penetration into small pores. In

this technique, mercury is intruded into the sample at increasing pressures, causing the fluid

to flow through smaller apertures. A lab porosimeter gives pairs of applied pressure and in-

truded volume, and the Washburn’s equation can be used to obtain a pore-size histogram. This

equation assumes that pores have a circular cross-section and relates pressure to pore diameter.

D = −4Wγcosθ

ρ
(2.10)

where D is the diameter, ρ the applied pressure, γ the surface tension, θ the contact angle and

W the Washburn constant.

MIP is an in-vitro experiment performed in a wet lab and is subject to some of the common

problems associated with this kind of experiment. It entails a costly analysis, uses toxic pro-

ducts, delicate equipment, and requires a trained lab technician. Moreover, with MIP, samples
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are deformed during the experiment, due to the pressure applied, and cannot be reused. As

they are filled with mercury, they thus become toxic waste.

In-silico experimentation does not have the drawbacks discussed above, but is not free of

problems, which in this case, are related to the device’s resolution and the segmentation process.

Due to the different natures of the experiments and the possible causes of error, it is difficult

to compare experimental and in-silico results [171].

Virtual porosimetry for general porous materials simulates MIP at incremental pressures

[43]. All separated components of the pore space filled at a given pressure are considered

pores and labeled with the diameter corresponding to the applied pressure. This is a flood-fill

methodology that uses a previously computed 2D (surface) skeleton as a guide to simulate

mercury intrusion from the entry points into the pore space. Moreover, the skeleton is labeled

at each point with the corresponding distance (the maximum radius) used to allow or stop the

mercury intrusion simulation, i.e., when this radius is smaller than the radius for the current

pressure, the simulated intrusion at this pressure stops. Regions corresponding to these smaller

radii are the throats. This method is applied to biomaterial samples [170] and soil samples [32].

The latter uses the obtained pore network to compute the permeability. Several methods define

the initial set of entry points as those pore voxels which are connected to exterior; however, it

can be predefined to allow more freedom to the user in the simulation.

There are other approaches to compute the pore-size histogram and pore graph too. Some

are related to the shape-analysis discipline and also use a 2D skeleton as a tool to devise the

shape and size of pores. These approaches are heuristic methods that cover the pore space with

overlapping spheres, so that the pores are computed as the unions and differences of maximal

spheres centered at skeleton points. These methods can be applied to sand samples [147], bone

scaffolds [25], and biomaterial samples [169].

Other approaches based on the 1D (curve)-skeleton computation detect throats as the ab-

solute minima of the skeleton. Thus, pores are defined as the regions limited by throats and

solid space [85]. A graph is obtained directly from the 1D skeleton, in which nodes correspond

to pores and edges to throats [84]. Alternatively, the minimal cost paths connecting boundary

points can be computed instead of skeletons to allow methods based on porosimetry, as well as

sphere positioning, to be applied [141].

Another technique for computing pore-size histograms is granulometry. This methodology

consists in the application of successive morphological openings and does not require the com-

putation of a skeleton [26, 59, 144, 174]. A specific set of discrete spheres with diameters D

such that S(D) ⊂ S(D + 1) can be used, thereby ensuring that a larger ball will never reach

a cavity in which a smaller ball cannot enter [59]. Physical MIP has been compared with a

granulometry-based method [26].

Throats can also be detected based on the negative Gaussian curvature of the surface. This

method is used to decompose the solid space into single particles and to compute mechanical

properties such as grain size and coordination number (number of contacts per grain) [157].
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2.3.2 Fluid Flow Permeability

The flow of incompressible fluids in porous media can be modeled using commonly the Navier-

Stokes equations [106] and the Lattice-Boltzmann method [18]. A direct simulation of the

Navier-Stokes equations in a percolation porous structure can be used to study fluid-flow behav-

ior [5]. MIP simulation can also be addressed as a fluid-flow method with a Lattice-Boltzmann

method [62]. However, most approaches do not rely on the actual dynamic process of mercury

intrusion, but rather simulate it in a static way, directly measuring the pore space geometry

to obtain the pore graph. Moreover, permeability and other hydraulic properties can be com-

puted by applying Kirchoff-based methods to the obtained pore graph [32]. Geometric and

topological descriptors are also used to enhance the estimation of material permeability [166],

characterizing the pore space with a Reeb graph [57] instead of a skeleton.

2.3.3 Connectivity

Connectivity and genus are related terms used in many scientific fields, for instance, in Bio-CAD,

the connectivity is related to biomechanical properties and is used to measure the strength of

bones (osteoporosis) or the quality of the biomaterials designed to repair them. Some methods

obtain the connectivity as a global property, treating all the porous space as a single object

and analyzing the binary voxel model of the sample.

The connectivity of a volume model can be estimated from the Euler-Poincaré characteristic,

χ, which can be computed from a voxel model with the following expression [104]:

χ = n0 − n1 + n2 − n3 (2.11)

where n0, n1, n2 and n3 are, respectively, number of vertices (points), edges (linear elements),

faces (surfels) and voxels of the voxel model. This expression can be applied to several adjacency

pairs [161]. From the theory of homology, the Euler-Poincaré formula relates χ with the Betti

numbers hi [92]:

χ = h0 − h1 + h2 (2.12)

where h0, h1 and h2 are, respectively: number of connected components, connectivity and

number of isolated cavities. h0 and h2 are usually computed using CCL-based methods over

voxels, polyhedron faces or triangles, depending on the model used. Then, the connectivity h1,

which is related to the genus, can be computed from χ, h0 and h2 using Expression 2.12.

In the solid modeling field, χ can also be computed from a polyhedron using the following

expression [89]:

χ = V − E + F −R = 2(S − g) (2.13)

where V , E, F and R are, respectively: number of vertices, edges, faces and internal rings of

faces. S is the number of shells (number of sets of connected faces) and g is the genus. For the

special case of triangulated surfaces, χ can be expressed as:

χ = V − E + T (2.14)
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V , E and T being the number of vertices, edges and triangles of the mesh. A triangle mesh

can be extracted from a voxel model to approximate a given isosurface separating interior and

exterior voxels. This mesh can be obtained with the Marching Cubes algorithm [87] or one of

its derived methods that have sought to improve the topological correctness and accuracy of

the surface representation [86].

Based on the fact that a binary volume dataset can be represented in a compact way by

an orthogonal pseudo-polyhedron [68], a previous approach [13] computes χ and the genus of a

binary volume dataset using expression 2.13. In this method, the binary volume is represented

with EVM. As general datasets can present non-manifold configurations, in order to correctly

apply the aforementioned expression, the EVM-representation needs to be converted into an

homotopic manifold analog first. However, this approach has proved to be more efficient than

methods based on voxel models and triangle meshes.

Expression 2.13 and 2.12 are used to compute the connectivity of a triangular mesh repre-

senting some adenine properties in the biochemistry field [74]. In isosurface extraction, the

topology-preservation is sometimes a desirable property that can be evaluated by computing

χ [140]. The method based on Expressions 2.11 and 2.12 is used to evaluate the osteoporosis

degree of mice femur [90], human vertebrae [104] or to evaluate hydraulic properties of sintered

glass [174].

Skeletons are also used as a shape-analysis tool in the computation of connectivity. A

2D skeleton is used to devise the so-called plate/rod model [113, 149], in which the model

is segmented into linear and surface elements, and connectivity is measured as the relative

number of plate and rod elements. Other approaches [115, 116] use a 1D skeleton and apply a

line skeleton graph analysis (LSGA) based on the strong relationship between the number of

loops in the graph and connectivity.

2.3.4 Orientation

The basic method to describe the orientation of a 3D object is by means of the eigenvectors of

the covariance matrix associated to the point set of the object. This point set forms a cloud

and has some statistical distribution characterized by the mean and the covariance matrix. The

mean describes the center of mass and the covariance matrix contains information about how

the cloud is approximately spread out. Eigenvectors of that matrix give the orientation along

which the cloud has maximum and minimum statistical spread [47].

An oriented bounding box (OBB) is a box which may be arbitrarily oriented (rotated), its

faces have normals which are pairwise orthogonal [48]. An OBB can be represented with a

center point c, three extents h1 > h2 > h3, and an orientation specified with three mutually

orthogonal unit vectors v1, v2 and v3. An OBB for a set of points can be created from the

eigenvectors.

Computation of eigenvectors and eigenvalues to determine the orientation of an object

has several applications. For instance, preferred orientations are used to predict stiffness and

strength in production of fabric tensors [71] or to observe the mass transport phenomena in

ionic crystalline materials [132]. In geology, orientation of many clasts in a soil sample can be
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collected and compared graphically to provide information about their transport history and

the characterization of depositional environments [49].

2.3.5 Sphericity and Roundness

Sphericity and roundness are measures of two different morphological properties. Sphericity

is most dependent on elongation, whereas roundness is largely dependent on the sharpness of

angular protrusions (convexities) and indentations (concavities) from the object.

Sphericity may be calculated for any 3D object if its surface area and volume are known.

Wadell [176] defined the sphericity, Ψ, of an object as the ratio of the nominal surface area

(surface area of a sphere having the same volume as the object) to the actual surface area of

the object. This ratio is known as true sphericity index.

Ψ =
Sn
S

=
(36πV2)

1
3

S
(2.15)

where V and S are the volume and surface area of the object respectively, and Sn is the nominal

surface area. The sphericity index of a sphere is 1 and, by the isoperimetric inequality, any

object which is not a sphere will have a sphericity value less than 1.

Since manual measures of S are very difficult, other indices have been defined. Several

methods are based on length measurement of the three representative axes of an object [75]: a

(major axis length), b (medium axis length) and c (minor axis length). The next equations are

used frequently in geology:

Ψ = dn/a (2.16)

Ψ = (bc/a2)
1
3 (2.17)

Ψ = c/(ab)
1
2 (2.18)

Ψ = (c2/ab)
1
3 (2.19)

Equation 2.16 is a simplified sphericity index proposed by Wadell [177], where dn is the

nominal diameter (diameter of the sphere having the same volume as the object). The index

given by Equation 2.17 is called elliptical volume sphericity [75]. The sphericity index given by

Equation 2.18 provides more precision for the computation of other behavioral indices [29]. A

more widely accepted sphericity index is given by Equation 2.19 as it correlates highly with the

particle settling velocity [148].

Concerning roundness, due to the impracticality of measuring a true 3D roundness index,

several methods work with the maximum 2D projection plane (silhouette) of the object looking

for a trade-off between accuracy and time.

Roundness (R) was defined by Wadell [176] as the ratio of the average radius of curvature

of the corners and edges of the object’s silhouette to the radius of the maximum circle that can

be inscribed.
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R =
1
n

∑n
i=1 ri

rmax
(2.20)

where ri is the radius of the i-th corner curvature, n the number of corners, and rmax the radius

of the maximum inscribed circle. The value of R is 1 for a perfectly round object and less than

1 for any other object.

Results of this method are reliable but time consuming and very impractical as no definition

of curvature was established [131]. In order to improve the time required to estimate the

roundness, Krumbein [75] created a chart (see Figure 2.10) showing examples of pebbles for

which the roundness of their silhouette has been calculated using Equation 2.20 and grouped

them into nine classes.

Figure 2.10: Krumbein’s chart for visual determination of roundness [75].

After Krumbein, other methods provide estimated values that are linearly correlated with

the values given by the Krumbein’s chart (KC).

A method based on the Fourier transform [33] makes use of the sum of the amplitudes of the

first 24 coefficients of the Fourier transform. To compensate for different size rocks fragments,

the coefficients are divided by the zero-th coefficient and the sphericity aspect is eliminated by

subtracting the spectrum of the best approximating ellipse from that spectrum. This method

shows a correlation of 0.94 with the values of KC.

An alternative approach uses granulometric methods [35]. The ratio between particle’s area

before and after applying a morphological opening on its silhouette is a roundness index. This

method gets a correlation of 0.96 with the values of KC using a circular structuring element of

radius equal to 42% of the radius of the largest inscribed circle.

Discrete geometry has been used to calculate the Wadell’s original index [131]. The cur-

vature radius at each pixel of the silhouette is calculated with an algorithm that relies on the

decomposition of a discrete curve into maximal blurred segments [101], and the radius of the

largest inscribed disk is calculated using the distance transform of the silhouette. This method
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shows a correlation of 0.92 with the original index values of KC.

A true 3D roundness index of gravel shapes is possible to compute using a laser scanner

[58]. Based on the idea that the ratio between the volume and surface area of an object reflects

the roundness, this method proposes an alternative roundness index. As the ratio V/S tends to

increase with an increase in size, this ratio is divided by a representative gravel length. Using

an ellipsoid as analog of gravel shape, the geometric mean of the three representative axes of

the object (a, b, and c) is used as the representative length. The resulting index of the next

equation shows a correlation of 0.814 with the values of KC.

R =
V

S(abc)
1
3

(2.21)

However, the use of a laser scanner to compute the roundness is a very time consuming

process for multiple shapes, and not suitable for micro or nano samples.

2.4 Model Simplification

Model simplification has been extensively applied to triangular meshes [24]. Some of these

techniques have been extended to tetrahedral meshes and use a methodology to evaluate the

approximation error and the quality of the obtained mesh [23]. Methods for level-of-detail

(LOD) sequences of triangular and tetrahedral meshes can also be found extensively in the

literature [123, 162]. There also exist methods to simplify quadrilateral meshes [50, 155].

In contrast to these methods, that rely on geometric operations such as edge-collapse or

clustering, the simplification can follow other strategies. Morphological operators like filleting

and rounding, equivalent to opening and closing, can be used to simplify 2D binary images as

well as 3D triangular meshes [180]. Alternative representations can be used such as octrees

[7, 135, 167] in such a way that the geometry as well as the topology can be simplified, or

BSP [61] obtaining a LOD sequence with a decreasing number of nodes. A carving strategy is

applied to an octree model [167] as well as to a tetrahedral mesh [55] to simplify the topology.

Simplification strategies have also been developed for B-Rep models [151] by removing connected

sets of faces, and for point clouds [110].

There has been also an intensive research in surface simplification in a progressive and

lossless way, applied specially to triangle meshes [4, 42, 83, 107, 109, 111]. Early methods

are called connectivity-driven, as they change progressively the connectivity [4, 107]. Recent

approaches for triangle meshes, called geometry-driven, perform an space partitioning by using

intermediate structures like kd-trees [42] or octrees [83, 109, 111] in order to code the mesh. In

surface simplification the quality of the approximations is evaluated by some distance defined

on the points on the surface, regardless of the potentially enclosed volume [6]. The reported

compression rates for the geometry-driven techniques are better in general.
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2.4.1 Bounding Volumes

Many of the aforementioned approaches provide approximations designed either to preserve the

original topology between the original and the simplified object or just to obtain an appro-

ximated shape. Nevertheless, in some cases, it is desirable to compute an approximation that is

also a bounding volume. Bounding volumes are used in many applications like collision detection

[64], ray tracing [45, 178], graphics interaction [63] and volume of interest computation [40].

Several works use classical bounding volumes, such as spheres [70, 41] and the minimum

axis-aligned bounding box (AABB) [154, 184]. Nevertheless, other kinds of bounding volumes

are used such as convex polytopes with faces oriented in a reduced set of orientations [72] or

oriented polytopes that take into account the object’s velocity, or dynamic collision detection

[28]. Moreover, hybrid bounding volumes are also used. Bounding boxes are enhanced with

planes computed from the intersection between two objects [175]. Slab cut balls built from a ball

cut by a slab (intersection region between two parallel planes) present a good balance between

tightness and testing costs [78]. An oriented bounding box tree, enhanced with bounding

spheres at each node, is used to speed up collision detection applying the more efficient sphere

test first to eliminate distant objects [22].

Orthogonal polyhedra have been proposed as geometric bounds for constructive solid geo-

metry because general set membership operations with them are very efficient [2]. However, in

this work the authors present a Boolean operations algorithm using EVM, but do not present

methods to compute bounding orthogonal polyhedra.

There are also simplification methods that generate orthogonal approximations. Iterative

orthogonal subdivisions of the AABB of the original model can be made in order to get an pre-

defined number of cuboids (boxes) [10]. Orthogonal polyhedra are used as bounding structures

in a coarsening strategy [37], where orthogonal polyhedra are represented with the vertex-list

representation [38], which stores a subset of vertices with a weight needed for orientation pur-

poses. The authors present two simplification strategies. One of them, moving faces, performs

face displacements but fails for objects with holes or more than one connected component. The

other strategy, rectangle pairs does not have this restriction and performs a partition of the

object in boxes, takes them in pairs, obtaining the AABB of this pairs, and finally performs

the union of these AABB.

Some methods produce bounding volume hierarchies of polygonal meshes for fast collision

detection between massive models [183] and for haptic rendering [105]. Other methods produce

a hierarchy of polygonal convex volumes (a shrink-wrap around the object) [61, 94]. Meanwhile,

orthogonally convex polygons can be computed as orthogonal hulls for 2D images [17]. An

orthogonal polygon is orthogonally convex if any axis-parallel line intersects it in at most one

line segment. This problem has been extended to orthogonally convex polyhedra [16]. Such

convex polygons, like the convex hull, are not suitable to represent simplified objects with many

concavities and holes, i.e., objects that are not close to a convex shape.

Methods that generate bounding approximations evaluate the quality of the approximations

as the tightness of the bounding volume with respect to the volume of the original object.
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Progressive Simplification with Bounding Volumes

In this section, three methods that produce a progressive LOD sequence of bounding volumes

are described in some detail. These methods are compared with the proposed simplification

method presented in Chapter 5.

The first method is a technique presented by Samet and Kochut [135] to progressively

approximate and compress in a lossless way binary 3D objects represented by pointer-less

octrees. This method is forest-based and deals with the internal nodes to progressively transmit

n blocks, where n is not longer than the minimum number of either black or white blocks

in the octree. This pointer-less octree is represented by its leaf nodes, where each leaf q is

uniquely identified by the path leading from the root to q called locational code. This path is

represented as a sequence of directional codes: 1 to 8 for each of the eight directions in the

octree (UNW, UNE, USW, USE, DNW, DNE, DSW, DSE). The locational code for any node

is an integer computed by a recursive function. Although this method is progressive, not all

the approximations are a bounding volume of the original object.

The second method is a progressive solid simplification approach for 3D objects represented

by binary space partition (BSP), presented by Huang and Wang [61]. It produces a LOD

sequence with a decreasing number of nodes by using a combination of two techniques: (1)

a volume bounded convex simplification that collapse parts with small volumes into a simple

convex volume enclosing the volumetric cells on the input object, and (2) a plane collapse

method which reduces the BSP tree depth ensuring that the input object is enclosed by the

simplified BSP tree. In this way, from an initial object Γ0, a progressive sequence of simplified

BSP trees, Γi, can be computed, such that Ω(Γi) ⊆ Ω(Γi+1), i = 0, . . . , n − 1, where Ω(Γi) is

the space occupied by Γi. As the simplified object is always a convex wrapping of the original,

this approach is not suitable if the original object is not close to a convex shape.

Finally, the third method is based on a structure called bounding-planes octree (BP-O)

proposed by Melero et al. [94], which is based on an octree where each node contains a set of

planes taken from the input polygonal model. These planes form a convex bounding volume

that includes completely the portion of the 3D object contained in the node. The nodes only

contain the indices of the planes, so, all the planes are stored in an external data structure

accessed by the octree. The same idea applies to the final geometry, stored at leaf nodes.

To construct the BP-O, the polygons are classified in a 3D grid first, then, these polygons

are assigned to each leaf node and all these nodes are grouped in order to have a minimum

number of planes per node. After selecting the bounding planes at leafs, internal nodes are

built by following the path from the root node to each leaf, computing their bounding planes

in a bottom-up recursion.

One of the applications of BP-Octrees is the progressive transmission of 3D data though

the network [93], in this case, planes contained in low levels of the BP-Octree are sent first,

and so on until the leaf level. To save the generated data, it is distributed into three files, and

as the data size of the original geometry is smaller than the required data size to transmit the

full resolution contained in the BP-Octree, it is clear that the method does not compress the

information. Besides, this approach is also not suitable if the original object is not close to a
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convex shape.

2.5 Conclusions

The purpose of this chapter was to give a brief overview of the state of art of the issues that

conform the base of this thesis. Some conclusions have been derived from this review and they

have oriented the objectives of this thesis:

• Scanned images with 3D acquisition devices must be represented with some representation

model in order to manipulate them. Datasets used in this thesis are restricted to binary

volumes and there are many models to represent them, where each one offers different

capabilities and restrictions. The most common model is the voxel model, but several

proposals as EVM and OUDB, represent binary volume datasets in a more compact way.

• Most of the methods to compute the pore-size distribution of porous samples rely on a

previous computation of a skeleton (1D or 2D), which is a very time-consuming process.

• The study of other properties of materials, collectively called structural parameters, is of

interest for researchers. Several methods exist to compute the connectivity mainly based

on classical representation models. Since the measurement of a 3D roundness index is

impractical, methods to compute sphericity and roundness work with 2D projections of

the sample.

• Because of the size of the source models, sometimes it is desirable to compute a simplified

model. Moreover, if the approximation is also a bounding volume, it can be used in many

applications such as collision detection, volume of interest computation, among other

tasks.





CHAPTER3
An Improved Decomposition Model for

OPP

3.1 Introduction

In this chapter, the Compact Union of Disjoint Boxes (CUDB) model for orthogonal pseudo-

polyhedra (OPP) is presented. CUDB is a special kind of cell decomposition representation

which performs a spatial partition along the OPP geometry in a non-hierarchical sweep-based

way. CUDB improves OUDB (see Section 2.2.5) by reducing the number of boxes and preserving

the adjacency information.

Structural parameters computation as well as the simplification approach presented in the

next two chapters are based on EVM and CUDB. Therefore, in this chapter, algorithms for

conversion between EVM and CUDB as well as basic CUDB algorithms such as CCL and

collision (adjacency) detection, used in the mentioned methods, are also presented. We show

that the aforementioned CUDB operations are more efficient than the corresponding OUDB-

based ones, due to the fact that the number of elements to be analyzed is notoriously reduced.

3.2 Compact Union of Disjoint Boxes Model

Like OUDB, CUDB is also a union of disjoint boxes but a more compact one as several conti-

guous boxes are merged into one in several parts of the model. Let P be an OPP, to obtain the

ABC-OUDB model, P is subdivided by planes perpendicular to the A-axis first, and then by

planes perpendicular to the B-axis, at each cut Ci of P . Thus, every Ci splits all the geometry

of P along the corresponding plane, and therefore some local regions of P , with which Ci

actually has no relationship, are further unnecessarily divided. Figure 3.1 shows this situation

for the YZX-OUDB of an OPP P , where some cuts force unnecessary divisions. For OUDB this

constraint is mandatory to keep sorted the resulting boxes. However, in order to subdivide just

the pieces of P related with the cut which induces the splitting, this constraint can be relaxed.

Formally, let P be an OPP. The CUDB(P ) can be obtained by merging boxes in several

parts of the corresponding OUDB(P ). Then, this model is the set of boxes obtained according

29
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(a) (b)

Figure 3.1: (a) An OPP. (b) YZX-OUDB with 16 boxes.

to the next properties:

1. Let β1 and β2 be two adjacent boxes of OUDB(P ) in B-direction, and let β1
B

and β2
B

be their projections respectively onto the plane perpendicular to the B-axis, then β1 and

β2 can be merged as a single box if β1
B

= β2
B

.

2. Let β1 and β2 be two adjacent boxes of OUDB(P ) in A-direction, and let β1
A

and β2
A

be their projections respectively onto the plane perpendicular to the A-axis, then β1 and

β2 can be merged as a single box if β1
A

= β2
A

. Note that A-direction in this property is

different of B-direction of the first property.

The first property merges all unnecessary subdivisions along B-axis. Following with the previous

example, Figure 3.2(a) shows that the pairs of boxes (2, 4), (7, 8), (9, 12), (11, 13) and (15,

16) depicted in Figure 3.1(b) can be merged applying this property for the Z-axis.

The second property merges the remaining unnecessary subdivisions along A-axis. Following

with the same example, the resulting model depicted in Figure 3.2(b) shows that applying this

(a) (b)

Figure 3.2: (a) Result after first merging in Z-direction. (b) Resulting YZX-CUDB with 7 boxes after
merging in Y-direction.
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second property for the Y-axis, not only the pairs of boxes (5, 8), but also the set of boxes (2,

6, 9, 10) depicted in Figure 3.2(a) can be merged.

Then, the CUDB-representation of an OPP P , is the set of disjoint boxes of the correspon-

ding OUDB, conveniently reduced by applying the two previous merging properties. Let βi be

a box in CUDB(P ):

P =

nb⋃
i=1

βi(P ) (3.1)

where nb is the number of boxes, which is less or equal than the number of boxes in OUDB(P ).

Like OUDB, there are six different ABC-CUDB models for a given OPP, which correspond

to each of the ABC-sorted EVM, and the number of obtained boxes depends on the ABC-sorting

of the original EVM (see Figure 2.7) but we cannot know it a priori from EVM. Boxes in CUDB

are sorted according to its coordinate A, then to coordinate B, and finally to coordinate C of

its lower bound.

Although the implicit order among boxes in OUDB that defines their adjacency is lost,

preserving the adjacency information in the CUDB model is easy with a tiny storage effort.

Each box has neighboring boxes in only two orthogonal directions: A and B-direction, and for

each one there are two opposite senses, so, four arrays of pointers to the neighboring boxes

(two for each direction) are enough to preserve the adjacency information that is required for

future operations. We define these arrays as A-backward neighbors (ABN), A-forward neighbors

(AFN), B-backward neighbors (BBN) and B-forward neighbors (BFN).

To obtain the CUDB-representation it is not necessary to compute the OUDB model. CUDB

can be computed directly from EVM because merging of boxes can be performed on the fly.

CUDB has been implemented as an object with a set of properties and methods. Next, we

describe the CUDB object and the algorithms for conversion to and from EVM, for CCL and

for collision detection.

3.2.1 CUDB structure

Each box in CUDB is an object (abstract data type) with the following primitive properties

and methods. Let β be a box object and V 0 and V 1 be two objects of a predefined point3D

data type:

Box properties:

• point3D V 0, V 1: point3D objects that represents the two diagonally opposed vertices of

β, the ones with lowest and highest coordinate values.

• vector ABN,AFN,BBN,BFN : Vectors of pointers to the neighbors of β.

• integer label: The label of β.
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Box methods:

• β.createBox(point3D V 0, point3D V 1): Creates a new box β with vertices V 0 and V 1.

L is set to 0 (undefined) and vectors ABN,AFN,BBN and BFN to ∅.

• β.getLabel(): Returns the label of β.

• β.setLabel(integer label): Sets the label of β as label.

CUDB is an object with the following primitive properties and methods. Let Q be a CUDB

object, and dimType and sortingType two predefined enumerated data types:

CUDB properties:

• boolean allowNonManifolds: Flag that indicates if the boxes adjacency allows non-

manifold configurations.

• vector boxes: Vector containing the ordered boxes of Q.

• dimType dim: Dimension of Q. dimType={0D, 1D, 2D, 3D}

• integer nBoxes: Number of boxes in Q.

• sortingType sort: Sorting of Q. sortingType={XYZ, XZY, YXZ, YZX, ZXY, ZYX}

CUDB methods:

• Q.createCUDB(dimType dim, sortingType sort, boolean anm): Creates an empty CUDB

object Q of dimension dim and sorting sort, and sets flag allowNonManifolds as anm.

• Q.getBox(integer id): Returns the box at position id in the vector boxes.

• Q.getDimension(): Returns the dimension of Q.

• Q.getNBoxes(): Returns the number of boxes of Q.

• Q.getNextBox(Box β): Returns the next box to β in the vector boxes.

• Q.getSorting(): Returns the sorting of Q.

• Q.insertBox(Box β): Inserts the box β at the end of the vector Q.boxes, after its current

last element.

These properties and methods are often referenced in the algorithms presented in this chap-

ter and in the following ones.
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3.2.2 EVM to CUDB Conversion

This process follows the same strategy that the process to compute OUDB. Cuts of the EVM-

represented object are obtained sequentially, and sections are computed from them. When this

process is performed in 2D, the corresponding sections result in the boxes of the OUDB model.

For the EVM to CUDB conversion method, the same set of boxes is computed on the fly and

a box is stored in the CUDB model if it is not possible to merge it with previously computed

boxes applying the aforementioned Properties 1 and 2.

For a given box, the set of previous boxes that have to be considered for merging with it are

those boxes belonging to the previous A-slice, which can be adjacent in A-direction, and those

boxes belonging to the previous B-slice, which can be adjacent in B-direction. To facilitate this

process, temporary lists of box pointers of the current and previous slices are maintained. The

corresponding algorithm is detailed next.

As most of the algorithms dealing with EVM, the corresponding conversion algorithm is

also recursive over the dimension. The main function EVMtoCUDB (Algorithm 1) receives

an EVM-represented OPP P and a flag to indicate if the adjacency relationship among boxes

allows non-manifold configurations, and returns the CUDB-represented OPP Q containing

the neighborhood information. This function initializes the temporary lists of box pointers

prevBBoxes, currentBBoxes, prevABoxes and currentABoxes, which are defined as global

variables throughout the whole conversion process, and starts the recursion by calling the func-

tion processEVMtoCUDB() (Algorithm 2) with the original object P .

In function processEVMtoCUDB(), when dimension is 3D, the object is split at each cut in

A-direction obtaining a set of 3D A-slices, ζA = {ζ1A, ζ2A, . . . , ζ
nA

A }, where nA is the number of A-

slices. Then the algorithm applies recursively to the 2D section representing each slice, which is

split at every internal cut in B-direction obtaining a set of 2D B-slices, ζB = {ζ1B , ζ2B , . . . , ζ
nB

B },
where nB is the number of B-slices represented by their 1D sections, which are composed by a

set of collinear brinks in C-direction. Each of these brinks defines a box. Then, each 2D slice

ζiB defines one o more boxes, and each 3D slice ζjA contains all the boxes defined in its 2D slices.

In the base case, when dimension is 1D, each brink in the current slice ζiB results in a box,

which is inserted into currentBboxes. Boxes in a 2D slice ζiB can be merged with boxes in

the previous slice ζi−1B , then, in the backtracking step of the recursion when dimension is 2D,

Algorithm 1: EVMtoCUDB

Input : P ; /* EVM-represented OPP /*

Input : allowNonManifolds; /* Flag /*

Output: Q; /* CUDB-represented OPP /*

dim← P.getDimension();
Q.createCUDB(dim, P.getSorting());
Q.allowNonManifolds← allowNonManifolds;
prevBBoxes← ∅; currentBBoxes← ∅;
prevABoxes← ∅; currentABoxes← ∅;
processEVMtoCUDB(P,Q, dim, ∅, ∅); /* First call /*
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Algorithm 2: processEVMtoCUDB

Input : P ; /* EVM-represented OPP /*

Input : Output : Q; // CUDB-represented Q
Input : dim; /* Dimension parameter /*

Input : V 0; /* Lower vertex for boxes /*

Input : V 1; /* Upper vertex for boxes /*

if dim =1D then
for all brink br ∈ P do

V 0.C, V 1.C ← br.readBrink();
β.createBox(V 0, V 1); Add β to currentBBoxes;

end for

else /* dim =2D or 3D /*

Sec← ∅; Cut, coordIni← P.getNextCut();
Sec← Sec⊗ Cut; Cut, coordF in← P.getNextCut();
while Cut 6= ∅ do

if dim =3D then
V 0.A← V 1.A; V 1.A← coordF in;

else /* dim =2D /*
V 0.B ← V 1.B; V 1.B ← coordF in

end if
processEVMtoCUDB(Sec,Q, dim− 1, V 0, V 1);
if dim =3D then

mergeA();
else /* dim =2D /*

mergeB();
end if
Sec← Sec⊗ Cut; Cut, coordF in← P.getNextCut();

end while

end if

function mergeB() (Algorithm 3) is called, which compares all boxes β1 in currentBboxes

with all boxes β2 in ζi−1B (stored in prevBBoxes) for merging. In this process, when merging

property 1 is accomplished, β2 = β2 ∪ β1, and it is inserted into a list called activeBoxes.

Otherwise, β1 is inserted into currentABoxes and activeBoxes. When the process finishes, list

activeBoxes becomes prevBBoxes in order to be compared with boxes in ζi+1
B in the next call.

Similar to the merging case in B-direction, boxes in a 3D slice ζjA can be merged with boxes

in the previous slice ζj−1A . Once all the boxes of the current slice ζjA have been computed and

conveniently merged in B-direction, they are in currentAboxes. Then, in the backtracking

step of the recursion when dimension is 3D, function mergeA() (Algorithm 4) is called, which

compares all boxes β1 in currentAboxes with all boxes β2 in ζj−1A (stored in previousAboxes)

for merging. The steps in this function are quite similar to those in function mergeB(), but in

this case, the merged boxes are finally inserted into the CUDB model Q.

Note that, the adjacency information of boxes (ABN, AFN, BBN, BFN) is computed on

the fly when tests for merging are performed.
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Algorithm 3: mergeB

activeBoxes← ∅;
for all β1 ∈ currentBBoxes do

for all β2 ∈ prevBBoxes do

if β1
B

= β2
B

then /* Merging property 1 /*

β2 ← β1 ∪ β2; Add β2 to activeBoxes;
break;

else if β1
B ∩ β2

B 6= ∅ then /* According to flag allowNonManifolds /*

Add β2 to β1.BBN ;
end if

end for
if β1 was not merged then

Add β1 to currentABoxes; Add β1 to activeBoxes;
Add β1 as BFN for each box in β1.BBN;

end if

end for
prevBBoxes← activeBoxes; currentBBoxes← ∅;

Algorithm 4: mergeA

activeBoxes← ∅;
for all β1 ∈ currentABoxes do

for all β2 ∈ prevABoxes do

if β1
A

= β2
A

then /* Merging property 2 /*

β2.BBN = β2.BBN ∪ β1.BBN ; β2.BFN = β2.BFN ∪ β1.BFN ;
β2.ABN = β2.ABN ∪ β1.ABN ; β2.AFN = β2.AFN ∪ β1.AFN ;
β2 ← β1 ∪ β2; Add β2 to activeBoxes;
break;

else if β1
A ∩ β2

A 6= ∅ then /* According to flag allowNonManifolds /*

Add β2 to β1.ABN ;
end if

end for
if β1 was not merged then

Q.insertBox(β1); Add β1 to activeBoxes;
Add β1 as AFN for each box in β1.ABN;

end if

end for
prevABoxes← activeBoxes; currentABoxes← ∅;

3.2.3 CUDB to EVM Conversion

As in OUDB, all of the boxes in CUDB are disjoint. Therefore, according to EVM Property 5

(see Section 2.2.4), a simple XOR operation of all the EVM-represented boxes is necessary to

get the EVM-represented object. That is, let βi be a box in the CUDB-represented OPP P .

EVM(P ) =

nb⊗
i=1

EVM(βi) (3.2)
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where EVM(βi) is the EVM-representation of βi and nb is the number of boxes in CUDB.

3.2.4 Area and Volume Computation

Computing the volume (3D) or area (2D) is straightforward by doing a traversal of the boxes,

and making a summation of each volume or area depending on the dimension.

V olume(P ) =

nb∑
i=1

V olume(βi) (3.3)

3.2.5 Connected Component Labeling

Connected Component Labeling (CCL) is a very important operation for managing volume

datasets where multiple disconnected components that compose the volume need to be identi-

fied. Traditional voxel-based methods have been widely used [128]. OUDB has been proved to

be efficient for CCL [124, 125]. With regard to semi-boundary representations, it has been con-

cluded that CCL is better in OUDB than in semi-boundary representations when the number

of boxes in the OUDB is less than the number of boundary voxels, which generally occurs.

The typical implementation of the aforementioned approaches is based in the classical two-

pass strategy [128]: the labeling pass and the renumbering pass. In short, in the labeling pass all

elements are scanned and labeled according to their already labeled neighbors. Some labeling

ambiguities can be produced in this step which are properly registered in a set of equivalence

classes. Then, the renumbering pass solves these ambiguities and the elements are relabeled.

In the OUDB-CCL process [124], the traversal of the boxes is performed orderly, so, checking

the neighborhood of the current box involves those boxes in the immediate previous B-slice and

those boxes in the immediate previous A-slice. An improvement of the OUDB-based CCL has

been already proposed [11], where the so-called OUDB-extended is computed, which allows

jumping directly to the required box that needs to be tested, instead of querying and skipping

several intermediate boxes. However, the main drawback of previous approaches [11, 124] is the

large size of the equivalence table, because they need one entry per each new detected label.

The same two-pass strategy for CCL can be applied in CUDB. However, as CUDB contains

the boxes neighborhood information, it can bee seen as an undirected graph. Thus, the CUDB-

CCL process is based on the detection of connected components in graph theory.

Let G = (V,E) be an undirected graph without self loops, with V being a set of vertices

(the CUDB boxes) and E a set of edges defined by the neighborhood information (ABN, AFN,

BBN and BFN). A connected component in G is a maximal subgraph S = (V S , ES) in which

for any two vertices v, u ∈ V S there exists an undirected path in G with v as start and u as

end vertex [145]. A maximal subgraph means that for any additional vertex w ∈ (V \V S) there

is no path from any v ∈ V S to w.

Thus, the CUDB-CCL process has linear complexity, in terms of the sum of the numbers

of vertices and edges of the graph, using either depth-first search or breadth-first search [60].

In either case, a search that begins at some box β, will find the entire connected component

containing β. To detect all the connected components, a traversal of the boxes is performed,
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starting a new breadth-first search or depth-first search whenever a box that has not been

already labeled is detected. Algorithm 5 details the steps for the CUDB-CCL process using

a breadth-first search strategy. Figure 3.3 depicts the CUDB-CCL process for a 2D example,

where the evolution of the boxes queue used by the algorithm is shown.

Algorithm 5: CCL

Input : Q; /* CUDB-represented OPP /*

Output: Q; /* Labeled CUDB-represented OPP /*

Output: cc; /* Number of connected components /*

currentLabel← 1;
∆ = ∅ ; /* Queue of box pointers /*

for all β ∈ Q do
if β.getLabel() = ∅ then

β.setLabel(currentLabel); Add β to ∆;
while ∆ 6= ∅ do

δ = ∆.front(); ∆.pop(); /* Get and remove the next box in ∆ /*

for all γ ∈ (δ.ABN ∪ δ.AFN ∪ δ.BBN ∪ δ.BFN) do
if γ.getLabel() = ∅ then

γ.setLabel(currentLabel); ∆.push(γ);
end if

end for

end while
currentLabel = currentLabel + 1;

end if

end for
cc← currentLabel − 1;

Figure 3.3: 2D example of CUDB-CCL.
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3.2.6 Exact Collision Detection

Collision detection is an important characteristic in representation models. Sometimes we want

to determine if two or more objects collide or are adjacent. In collision detection [64] when exact

accuracy is not required, typical bounding volumes like AABB, spheres, oriented polytopes or

hybrid bounding volumes are used. However, when accuracy is important, a thorough analysis

of the contact between the involved objects needs to be done.

A straightforward solution in CUDB is to iteratively compare each of the boxes in an object

with all of the boxes in the other objects (brute force). Nevertheless, taking advantage of

the implicit order of the boxes in the CUDB model, unnecessary analysis can be avoided. A

technique to detect pairs of colliding objects from a collection of n CUDB-represented objects

is presented next. For this method it is mandatory that the CUDB-represented objects have

the same ABC-ordering; otherwise, a preprocesing must be performed first in order to set the

same ordering.

In complex scenes there might be several objects interacting. In such cases, an early detec-

tion phase can be applied to discard collisions between objects which are not close enough using

some bounding volume. Sweep and prune algorithms [27, 44] sort the objects according to the

lower and upper bounds of their bounding volumes, and when a pair of objects are very close, it

is tested to exact collision. In the presented method, a discarding of those objects whose AABB

do not collide is performed first. Then, as boxes in CUDB are ABC-sorted, all the remaining

potentially colliding objects can be tested jointly, instead of testing them in pairs.

Let Θ = {θ1, θ2, . . . , θn} be a finite sequence of n CUDB-represented potentially colliding

objects, and let ∆ = {β1, β1, . . . , βn} be a set of box pointers, where each βi points to a box in

the object θi. Initially each βi points to the first box of the corresponding object.

A collision detection between all of the boxes in ∆ is performed first, followed by an iterative

process. This process obtains the box βmin in ∆ (βi with the minimum ABC-position of its

vertex V 0) and updates it with the next box in the object θmin. If there are no more boxes

in θmin, this object is marked as not active. Otherwise, βmin is compared for collision with all

boxes βi ∈ ∆,∀i 6= min and with the subsequent neighboring boxes of each βi, say βt, until

βt.V 0 has an A-coordinate greater than βmin.V 1. Note that we do not need to compare B and

C-coordinate. The main iterative process finishes when βmin cannot be defined, which means

that all θi have been marked as not active. At the end, a set S, with object pairs (θi, θj) that

collide or are adjacent has been defined.

Algorithms 6 and 7 detail the steps of this process. Function getIndexMinBox() returns the

index min of the box in ∆ with the minimum ABC-position of its vertex V 0, such that θmin

is marked as active. If all θi are marked as no active, this function returns ∅. The worst case

time-complexity of the CUDB-based exact collision detection is O(n·m·M), where n is the

number of objects, m the number of boxes of the object having the maximum number of boxes,

and M the total number of boxes in the n objects. In any case it holds that n ≤ m ≤M .
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Algorithm 6: detectCollision

Input : Θ; /* Set of CUDB-represented objects /*

Output: S; /* Set of colliding object pairs (θi, θj) /*

Act← ∅ ; /* Vector of flags for active θi /*

∆← ∅ ; /* Vector of box pointers /*

for all θ ∈ Θ do
β ← θ.getBox(0); Add β to ∆; Add true to Act;

end for
for all βi ∈ ∆ do /* First collision test /*

testCollision(∆, i, S)
end for
min← getIndexMinBox(∆, Act);
while min 6= ∅ do

βmin ← θmin.getNextBox(βmin);
if βmin 6= ∅ then testCollision(∆,min, S);
else Act[min] =false; end if ; /* Mark θmin as not active /*

min← getIndexMinBox(∆, Act);

end while

Algorithm 7: testCollision

Input : ∆; /* Vector of box pointers /*

Input : i; /* Index of the test box in ∆ /*

Input : Output : S ; /* Set of colliding object pairs (θi, θj) /*

for all βj 6= βi ∈ ∆ do
βt ← βj ;
while βt 6= ∅ do

if βt.V 0.A > βi.V 1.A then break; end if ;
if βi ∩ βt 6= ∅ then Add pair (θi, θj) to S; break; end if ;
βt ← θj .getNextBox(βt);

end while

end for

3.3 CUDB Performance

CUDB has been compared with OUDB in number of elements and computation time for con-

version to and from EVM and CCL (using OUDB-extended version [11]). The test datasets

consists of 15 objects (see Figure 3.4). All datasets come from public volume repositories,

where from (h) to (o) are real volume models coming from CT or MRI scanners. The corre-

sponding programs have been written in C++ and tested on a PC Intel R©Core 2 Duo CPU

E6600@2.40GHz with 3.2 GB RAM and running Linux.

Table 3.1 shows the attributes of test datasets. Table 3.2 shows a comparison respect the

number of boxes in OUDB and CUDB where two possible orderings are considered (XYZ and

ZYX). Note that, although the number of boxes depends on the ABC-sorting of the original

EVM, CUDB produces less elements than EVM and OUDB in all cases, in some of them less

than 10% of elements. For instance, the XYZ-CUDB representation of the Lines dataset has
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(a) Lines (b) Temple (c) Foot (d) Cup (e) Chess

(f) Cart (g) Pegasus (h) Aneurysm (i) Lobster (j) Engine

(k) Skull (l) Mineral (m) Rock (n) Colon (o) Femur

Figure 3.4: Rendered images of the test datasets.

Table 3.1: Attributes of the test datasets. For each dataset: size in voxels, number of extreme vertices
(|EV |) and number of connected components (|CC|) for 26-adjacency.

Dataset size |EV | |CC|
Lines 500×500×500 4356 1
Temple 925×1000×472 73902 99
Foot 183×512×185 140012 6
Cup 401×401×512 215050 1
Chess 511×246×480 287360 2
Cart 585×979×1000 502986 5
Pegasus 598×800×574 709960 1

Aneurysm 213×215×240 50318 406
Lobster 244×239×49 74724 53
Engine 139×197×108 101114 9
Skull 256×256×256 506454 1624
Mineral 376×375×206 833002 724
Rock 240×406×267 1317106 1336
Colon 512×492×426 2142304 54829
Femur 463×492×628 3584724 22714

only 3.84% of boxes of the corresponding XYZ-OUDB representation (see Figure 3.5).

Table 3.3 shows the performance of both OUDB and CUDB. Although the conversion from

EVM to CUDB is a little slower than EVM to OUDB due to the extra effort to merge the
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Table 3.2: OUDB and CUDB size comparison. For each dataset: number of boxes in OUDB
(|OUDB|), CUDB (|CUDB|) and ratio considering the XYZ and ZYX-ordering.

Dataset
XYZ-ordering ZYX-ordering

|OUDB| |CUDB| % |CUDB|
|OUDB| |OUDB| |CUDB| % |CUDB|

|OUDB|

Lines 24851 954 3.84 20081 963 4.80
Temple 260279 21084 8.10 77701 18456 23.75
Foot 42671 35498 83.19 50868 34778 68.37
Cup 236642 60429 25.54 64093 46342 72.30
Chess 92919 66235 71.28 96373 57258 59.41
Cart 256370 100358 39.15 289839 113996 39.33
Pegasus 289827 191747 66.16 189078 160367 84.82

Aneurysm 12825 10705 83.47 13560 11043 81.44
Lobster 27307 19322 70.76 22226 17189 77.34
Engine 47143 25524 54.14 52229 26371 50.49
Skull 154304 114563 74.24 169920 120459 70.89
Mineral 489585 232008 47.39 582624 267368 45.89
Rock 420795 331491 78.78 428603 337005 78.63
Colon 653717 473649 72.45 542202 440360 81.22
Femur 1172072 838585 71.55 1125560 838641 74.51

(a) (b)

Figure 3.5: Lines dataset. (a) XYZ-OUDB representation with 24851 boxes. (b) XYZ-CUDB repre-
sentation with 954 boxes.

boxes, the inverse conversion is faster due to the less number of elements, and regarding the

CCL process, it is much faster in CUDB. Moreover, when computing the number of connected

components starting from the EVM model, CUDB is more efficient than OUDB (see the last

columns in this table).

In order to show the performance of the exact collision detection in CUDB, three scenes are

presented. The first one (Figure 3.6) consists of seven datasets, where the size of each is around

1283. The second scene (Figure 3.7) consists of 200 objects of the Star dataset randomly placed

in a volume of 6003 voxels. The third scene (Figure 3.8) consists of 2 objects of the Cart dataset

that have interlaced parts but do not collide.

Statistics of the collision detection test are shown in Table 3.4. Note that, although scene 3
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Table 3.3: OUDB and CUDB run time comparison in milliseconds. For each dataset the time for:
EVM to OUDB (E → O) and OUDB to EVM (O → E) conversion, OUDB-CCL (OCCL), EVM to
CUDB (E → C) and CUDB to EVM (C → E) conversion and CUDB-CCL (CCCL). The last columns
represent tO = E → O +OCCL, tC = E → C + CCCL, and the ratio between tO and tC .

Dataset
OUDB CUDB

tO tC % tC
tOE→O OCCL O→E E→C CCCL C→E

Lines 51 31 81 51 1 4 82 52 63.41
Temple 713 831 704 799 4 87 1544 803 52.01
Foot 244 106 149 254 8 142 350 262 74.86
Cup 761 549 748 830 13 251 1310 843 64.35
Chess 357 117 319 439 15 269 474 454 95.78
Cart 862 638 883 978 33 491 1500 1011 67.40
Pegasus 1286 948 994 1511 66 821 2234 1577 70.59

Aneurysm 95 12 67 96 1 62 107 97 90.65
Lobster 142 35 132 151 4 83 177 155 87.57
Engine 165 79 177 205 5 113 244 210 86.07
Skull 628 260 588 735 34 513 888 769 86.60
Mineral 1323 1298 1646 1591 76 1033 2621 1667 63.60
Rock 1713 1330 1648 2055 102 1504 3043 2157 70.88
Colon 2766 1589 2684 3266 141 2295 4355 3407 78.23
Femur 4835 3947 5049 5688 282 4189 8782 5970 67.98

Table 3.4: Statistics of the collision scenes. For each scene: total number of boxes (|boxes|) in the
scene, number of detected collisions (i.e., number of object pairs |pairs|) and time to detect the collisions
in milliseconds.

Scene |boxes| |pairs| Time (ms)

Scene 1 21963 4 17
Scene 2 256000 72 169
Scene 3 202101 0 2085

Figure 3.6: Collision scene 1. 7 datasets: Bunny (5895 boxes), Camel (2856 boxes), Chair (1693
boxes), Dragon (4853 boxes), Pegasus (4861 boxes), Sofa (141 boxes), Triceratops (1664 boxes). All
objects collide with some other object.
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Figure 3.7: Collision scene 2. 200 objects of the Star dataset. Each object has 1280 boxes in its
XYZ-CUDB representation. In red the objects that collide.

Figure 3.8: Collision scene 3. 2 objects of the Cart dataset. The original Cart has 100358 boxes, the
rotated one 101743 boxes. Both in its XYZ-CUDB. The objects actually do not collide.

has less boxes than scene 2, the required time for collision detection is bigger. This is because

there is any collision, which implies that there is not any early discarding and all boxes must

be evaluated.

3.4 Conclusions

This chapter has presented a new decomposition model for OPP, CUDB, which is an improved

version of OUDB. Algorithms for conversion to and from EVM, for CCL and exact collision (ad-

jacency) detection have also been presented. Experimental results show that CUDB is smaller

in number of elements, and so in storage size, and has a better performance for CCL than its

improved version, OUDB-extended. Although the presented exact collision detection algorithm

is CPU-based, it is efficient when exact collision detection is required directly on CUDB models.

CUDB model has been satisfactorily applied in the computation of some structural parameters

in the next chapter.





CHAPTER4
Structural Parameters Computation

4.1 Introduction

This chapter presents several methods to compute structural parameters of binary volume

datasets using CUDB and EVM as representation models. The computed parameters are:

Pore-size distribution. Section 4.2 presents a new approach to simulate MIP.

Connectivity. Section 4.3 presents a CUDB-based method to compute the Euler characteristic

(χ) and the genus.

Sphericity and roundness. Section 2.3.5 presents alternative methods to the compute sphe-

ricity and roundness indices.

4.2 CUDB-based Virtual Porosimeter

In this section, a new approach to simulate MIP is presented. The novelty of this method is that,

unlike other MIP simulation approaches, it does not require prior computation of the model’s

skeleton. This approach simulates mercury intrusion by detecting throats with a geometric

method and then performing a CCL process. The size of the detected throats is related to the

diameter corresponding to each increasing level of pressure.

In most of the reported bibliography, the operations to study the pore space are performed

directly on the classical voxel model. However, in the field of volume analysis and visualization,

several alternative models have been devised for specific purposes. Hierarchical models such as

octrees or kd-trees are not used in the presented method because it does not need a hierarchy

and because the CCL process is better suited to a sweep-based decomposition than to a tree-

based one. Sweep-based decomposition models such as OUDB or CUDB are best suited and as

CUDB has a better performance than OUDB, the presented method is based on this model.

45
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4.2.1 Method Overview

Unlike traditional approaches, which require the skeleton and the voxelization of the pore space,

the presented method uses the CUDB-encoding of the pore space. It consists of three different

ABC-sorted CUDB with different A and C-coordinate (as explained later). Let us consider the

XYZ, YZX and ZXY-sorting. Then, for each diameter Di corresponding to successive applied

pressures ρi, ρi < ρi+1, i = 1, . . . , n − 1, the invaded region Ri is computed by an iterative

process. Each pressure ρi is related to a representative diameter Di by the Washburn equation

(see Equation 2.10).

For each iteration, three main steps are applied to the CUDB-represented pore space in

order to simulate the mercury intrusion:

1. First, all pore regions smaller than the current diameter Di are discarded (see Sec. 4.2.2).

2. Second, in order to prevent improper fluid flow along the pore space, the throat detection

step determines all the transitions, smaller than the current diameter, between adjacent

pore regions (see Section 4.2.3 and 4.2.4).

3. Finally, the third step simulates the mercury intrusion, for the current diameter, by

labeling boxes as invaded or not invaded, constrained by the marked narrow throats and

mercury entry points (see Section 4.2.5).

4.2.2 Discarding Process

The first step of the simulation consists in the removal of all pore regions smaller than the current

diameter Di. Granulometry-based approaches apply mathematical openings to eliminate all

the regions smaller than a given structuring element, while keeping the larger ones almost

unchanged. The opening of a set S by a structuring element E can be expressed in terms of

the morphological operations erosion (	) and dilation (⊕) as:

S � E = (S 	 E)⊕ E

In these approaches, the pore space is represented by voxels on a cubic lattice and the

structuring element E is naturally given by a digital representation, as well. In the CUDB-based

approach, an opening-like method is used to discard small regions of the CUDB-represented

pore space that does not require explicitly performing both the erosion and dilation operations.

Moreover, it uses a CUDB-box with edge length D as structuring element.

As boxes of an ABC-sorted CUDB have no neighbors in the C-direction, the strategy is to

scan three ABC-sorted CUDB encodings of the pore space with different C-coordinate. Then,

the C-edge length of each box is tested to determine whether or not it would disappear after

erosion. For each sorting if the C-edge length of the current box is smaller than D, it is

discarded; otherwise, it is preserved.

The final result of this step is not exactly equivalent to the conventional opening operation

because, in the CUDB-based approach, the opening is carried out independently in each or-
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thogonal direction. Thus, erosion and dilation are not actually performed; however, all regions

smaller than the structuring element are removed in a fraction of the total time of a conven-

tional opening operation. Figure 4.1 illustrates the discarding process with a 2D example for

greater clarity. The 2D sample shown in the figure corresponds to the cross section of a 3D

synthetic sample.

(a) (b)

(c) (d)

Figure 4.1: Discarding process for a 2D example. (a) Segmented pore space (in white here and blue
for the other images). (b) YX-sorting: boxes with X-edge length smaller than a given diameter D are
discarded (gray). (c) XY-sorting: boxes with Y-edge length smaller than D are discarded (gray). (d)
Resulting pore region after two discarding steps.

4.2.3 Narrow Throats Detection

Once the discarding step has been completed, all regions smaller than the current diameter have

been removed from the original pore space. However, there are still transitions between adjacent

pore regions that are not defined by any edge of boxes, and, thus, will not have been detected in

the discarding process. When these transitions are smaller than the current diameter, they are

called narrow throats. Narrow throats prevent full mercury invasion of the whole pore space

at the current intrusion pressure, so detecting them is mandatory to simulate the fluid flow
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correctly. Transitions larger than the diameter for the current intrusion pressure are ignored.

Figure 4.2 illustrates the narrow throats for a given diameter represented by a ball. As can be

seen, a fluid with the given diameter could enter the boxes, but it could not pass through the

throats (in yellow).

Narrow throats can be orthogonal or oblique and all of them are shaped as rectangles. Due

to the orthogonal nature of the CUDB model, there are two possible configurations of oblique

throats: a single oblique throat, represented by a rectangle (see Figure 4.2(c)), and the general

case, represented by three rectangles (see Figure 4.2(d)).

The orientation of rectangles representing orthogonal throats is such that two components of

the normal vector of its supporting plane are zero, while for rectangles corresponding to oblique

throats, one component is zero. Therefore, there are three possible single oblique throats,

corresponding to the three main directions (see the small boxes in Figure 4.2(d)). In a general

oblique throat, three rectangles are obtained, one in each main direction, and the throat is

constructed from them.

In order to detect orthogonal and oblique narrow throats, the remaining pore space after

the discarding process must be exhaustively scanned in the three main directions. Once all

throats have been detected, they are represented with a 3D object that must be removed from

the pore space to prevent the mercury invasion. This operation is performed using EVM due

to its efficiency with Boolean operations.

(a) (b)

(c) (d)

Figure 4.2: 3D narrow throats. (a) and (b) Orthogonal throats. (c) Single oblique throat. (d) Three
oblique throats in the three main directions (blue, yellow and green).
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Orthogonal Throats Detection

Boxes in CUDB have neighboring boxes in the A and B-direction, therefore, orthogonal throats

can exist in any of these directions. As the first main axis that splits the model is A, orthogonal

throats are detected in this direction. Thus, three ABC-sorted CUDB encodings of the pore

space with different A-coordinate are required to detect all orthogonal throats.

Let βi and βj be two A-adjacent boxes, and βi
A

and βj
A

the open sets1 of their projections

respectively, over a plane perpendicular to the A-coordinate. There is an orthogonal throat

between βi and βj if the next conditions are satisfied:

(βi
A ∩ βj

A
) 6= ∅ (4.1a)

lengthC(βi
A ∩ βj

A
) < D (4.1b)

where D is the diameter corresponding to the current intruded pressure and lengthC() returns

the C-edge length of the rectangle formed by βi
A ∩ βj

A
. A lengthB condition is not considered

because the detected throat could be part of a longest one in the B-direction, which does not

occur in the C-direction as CUDB-boxes do not have neighbors in this direction. Condition

4.1a can be easily evaluated with the neighborhood information in CUDB.

Note that the intersection (throat) is simply a part of the two projections involved, as shown

in Figure 4.2(b). Both adjacent boxes may be large enough to contain the current ball; however,

the ball cannot pass from one box to the other because the throat between them is smaller than

the current diameter. The existing throat when βi
A ⊆ βj

A
or βj

A ⊆ βi
A

(see Figure 4.2(a))

can be ignored because both boxes are large enough to contain the intruded fluid as they have

survived the discarding process.

Algorithm 8 shows the steps of the orthogonal throat detection process for a single ABC-

sorting.

Algorithm 8: detectOrthogonalThroats

Input : Q; /* ABC-sorted CUDB-represented pore space /*

Input : D; /* Diameter /*

Output: ortogonals; /* Set of orthogonal throats /*

ortogonals← ∅;
for all βi ∈ Q do

for all βj ∈ βi.AFN do /* All A-forward neighbors /*

throat← βi
A ∩ βj

A
;

if lengthC(throat) < D then
Add throat to ortogonals;

end if

end for

end for

1A set is called an open set if it does not contain any of its boundary points.
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Orthogonal Throats Creation

An orthogonal throat is represented by a rectangle perpendicular to the A-coordinate. Thus,

an orthogonal throat is defined as a structure containing five coordinate values:

orthogonalThroat = {a, b0, c0, b1, c1}

where a represents the throat position in the A-coordinate, and b0, b1, c1 and c0 the coordinates

of its two diagonally opposed vertices in the B and C-direction respectively. Then, for each

orthogonal throat, an EVM cuboid of dimensions 1× |b1 − b0| × |c1 − c0| is created.

2D Oblique Throats Detection

For clarity purposes, the 2D case is analyzed first. Notice that an oblique 2D throat is an

oblique segment. The next process generates the oblique throats for an AB-sorted CUDB,

which are the same generated for the corresponding BA-sorted CUDB.

Let βi−1, βi and βi+1 be three consecutive A-adjacent boxes in an AB-sorted 2D CUDB, and

let βi
A

be the open set of the βi projection over a segment perpendicular to the A-coordinate.

Then, an oblique throat exists between βi−1 and βi+1 if the following conditions are satisfied:

(βi−1
A ∩ βi+1

A
) 6= ∅ (4.2a)

βi−1
A * βi+1

A
(4.2b)

βi−1
A + βi+1

A
(4.2c)

(βi−1
A ∩ βi+1

A
) ⊂ βi

A
(4.2d)

diagonal(βi−1, βi+1) < D (4.2e)

where D is the diameter corresponding to the current intruded pressure and diagonal() returns

the length of the diagonal of the rectangle defined by βi−1
A ∩ βi+1

A
and the distance between

both boxes in the A-direction. Figure 4.3(a) illustrates the above conditions.

However, oblique throats are not restricted to three consecutive boxes. Depending on the

geometry of the object, an oblique throat can occur between two boxes βS and βT which have

(a) (b) (c)

Figure 4.3: Oblique throats. (a) Simplest case of oblique throat (with just one intermediate box).
(b) Oblique throat with more than one intermediate box. (c) Non oblique throat.



4.2 CUDB-based Virtual Porosimeter 51

more than one intermediate box between them, as shows Figure 4.3(b). In these cases, all

of the conditions in Expression 4.2 must be satisfied for βS and βT instead of βi−1 and βi+1

respectively. Therefore, these conditions are rewritten as:

(βS
A ∩ βT

A
) 6= ∅ (4.3a)

βS
A * βT

A
(4.3b)

βS
A + βT

A
(4.3c)

(βS
A ∩ βT

A
) ⊂ βi

A
, ∀i | S < i < T (4.3d)

diagonal(βS , βT ) < D (4.3e)

Condition 4.3d means that βS
A∩βT

A
must be contained in every intermediate box projection

between βS and βT . In addition, Figure 4.3(c) shows why it is necessary to consider open sets

for conditions of Expression 4.3. Otherwise, the aforementioned conditions would be satisfied,

and the algorithm would detect oblique throats where none exist.

The previous expressions are used to detect a 2D oblique throat between βS and βT . Al-

though a rectangle is actually obtained (see the rectangle highlighted in orange color in Figures

4.3(a) and 4.3(b)), there are two options to create the oblique throat. The first one is totally

consistent with the orthogonal feature of the CUDB-based approach, and the throat is com-

puted as a L-shaped object. There are two possible L-shaped objects showed in continuous

and dashed orange lines respectively in Figures 4.3(a) and 4.3(b), and we can choose any of

them. The second strategy to compute the throat is by considering the diagonal included in

the mentioned rectangle (see the inclined line highlighted in yellow color in Figures 4.3(a) and

4.3(b)). Both strategies separate the two regions in the current scan direction, but, as the

diagonal fairly cuts the narrowing zone between the two involved regions, this strategy is used

in the final version of the presented method.

A box βS can generate several oblique throats with its consecutive boxes in the A-direction

(see Figure 4.4(a)). Therefore, in order to detect all the possible oblique throats, all conse-

cutive boxes of βS must be scanned. This process searches for any configuration that satisfies

conditions of Expression 4.3.

Conditions 4.3a and 4.3c are required conditions to stop the search process, while the others

are not. The search stops in case that Condition 4.3a is not satisfied, as every subsequent

box βT will not satisfy Condition 4.3d in the following iterations (see Figure 4.4(b)). When

Condition 4.3a is not satisfied, every subsequent box βT will not satisfy either Condition 4.3b or

4.3d in the following iterations (see Figure 4.4(c)). Moreover, the search must be also stopped

when the distance between βS .V 1 and βT .V 1 in the A-coordinate is greater than D, as the

subsequent oblique throats will be also greater than D. However, when conditions 4.3b and

4.3d are not satisfied, there may still be subsequent boxes that define throats that satisfy all

conditions of Expression 4.3, see Figures 4.4(d) and 4.4(e).
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(a) (b)

(c) (d) (e)

Figure 4.4: 2D oblique throats scanning process. (a) A box that generate several oblique throats. (b)
Expression 4.3a is not satisfied. (c) Expression 4.3c is not satisfied. (d) Expression 4.3b is not satisfied.
(e) Expression 4.3d is not satisfied.

3D Oblique Throats Detection

For a 3D ABC-sorted CUDB, the same conditions of Expression 4.3 must be satisfied, but in

this case, box projections are over a plane perpendicular to the B-coordinate. This process

generates the oblique throats for an ABC-sorted CUDB, which are the same generated for the

corresponding ACB-sorted CUDB. Therefore, three ABC-sorted CUDB encodings of the pore

space with different A-coordinate are required to detect all oblique throats.

In 3D, the oblique throat formed between βS and βT is actually an inclined rectangle (see

Figure 4.2(c)). This rectangle has a pair of inclined edges and a pair of orthogonal ones, where

the orthogonals ones are A-axis aligned. The length of the inclined edges is considered the

length of the throat, so, function diagonal() returns this value. The length of the orthogonal

edges is not considered because the detected throat could be part of a longest throat in the

A-direction; however, this length must be adjusted according to the A-edge length of every

intermediate box, since the throat must be inside all of them.

Figure 4.5(a) shows a set of boxes with ZYX-sorting and the first step of the oblique throat

detection. In this case, the inclined edges are computed based on the Y-axis. Figure 4.5(b)

shows another view of the boxes and the resulting oblique throat. Note in this case that,

the length of the orthogonal edges is determined by the length in the Z-direction of every

intermediate box. Both images show that all of the conditions in Expression 4.3 are satisfied.

Algorithms 9 and 10 show the steps of the oblique throat detection using a recursive strategy
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for a single ABC-sorting.

Algorithm 9: detectObliqueThroats

Input : Q; /* ABC-sorted CUDB-represented pore space /*

Input : D; /* Diameter /*

Output: obliques; /* Set of oblique throats /*

obliques← ∅;
I ← ∅; /* Stack of intermediate boxes pointers /*

for all βS ∈ Q do
for all βi ∈ βS .BFN do /* All B-forward neighbors /*

if βS
B + βi

B
then /* Condition 4.3c and start recursion /*

I.push(βi);
detectObliques(βS , I,D, obliques);
I.pop();

end if

end for

end for

Algorithm 10: detectObliques

Input : βS ; /* The base box /*

Input : I; /* Stack of intermediate boxes /*

Input : D; /* Diameter /*

Input : obliques; /* Set of oblique throats /*

βtop ← I.top();
if distanceB(βS , βtop) > D then

return; /* Stop process /*

end if
for all βT ∈ βtop.BFN do /* All B-forward neighbors /*

if (βS
B ∩ βT

B
) 6= ∅ and βS

B + βT
B

then /* Conditions 4.3a and 4.3c /*

validThroat←true; throat← Create oblique throat from βS to βT ;

if βS
B ⊆ βT

B
and diagonal(βS , βT ) ≥ D then /* Cond. 4.3b and 4.3e /*

validThroat←false;
end if
if validThroat then

for all βi ∈ I do

if (βS
B ∩ βT

B
) 6⊂ βi

B
then /* Condition 4.3d /*

validThroat←false; break;
end if

Adjust throat length in the A-direction according to βi
B

length;

end for
if validThroat then Add throat to obliques; end if;

end if
I.push(βT );
detectObliques(βS , I,D, obliques);

end if

end for
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Figure 4.5: ZYX-sorted set of boxes. (a) First step of oblique throat detection. (b) The resultant
oblique throat (rotated -90◦around Y).

Oblique Throats Creation

In order to save the necessary information to create an EVM-represented oblique throat, it

is defined as a structure containing six coordinate values. These coordinates represent the

parallelepiped containing the oblique throat (see Figure 4.6(a)):

obliqueThroat = {a0, b0, c0, a1, b1, c1}

where a0 and a1 define the length of the orthogonal edges, and the remaining ones define

the length of the inclined edges. In order to know the oblique throat orientation inside the

parallelepiped, we ensure that b0 < b1.

To create an EVM-represented oblique throat, the Bresenham’s algorithm [20] has been used

to determine the points that must be outlined in a square grid to form a close approximation

to the straight line representing the throat. This implementation receives the coordinates

b0, c0, b1, and c1 and generates a set of points. Then, for each point a cuboid with dimensions

|a1 − a0| × 1 × 1 is created. Therefore, an oblique throat is the result of the union of all the

created cuboids. As these cuboids are disjoint each other, according to the EVM Property 5

(see Section 2.2.4), an XOR operation is performed. Figure 4.6(b) shows an example of an

oblique throat creation.

(a) (b)

Figure 4.6: Oblique throat creation example.
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4.2.4 Narrow Throats Removal

Each computed throat separates the remaining pore space into two disjoint pieces, so removing

a throat stops the mercury passing from an invaded region to an adjacent one through the too

small removed throat. Therefore, once all EVM-represented orthogonal and oblique throats have

been created, the union of all of them in a single EVM-represented object must be performed.

Then, the difference between the EVM-represented pore space and the EVM-represented throats

produces the object partitioned along the corresponding throats.

Figure 4.7 illustrates a configuration that produces three overlapping oblique throats, shown

in Figure 4.2(d). It also shows the union of these throats and the resulting partitioning of the

object as the difference between it and the union of throats. As the oblique throat is a subset

of the pore space, in order to perform the difference Boolean operation, the EVM Property 6

is used and an XOR operation is performed instead.

(a) (b)

Figure 4.7: (a) Configuration that produces the intersection of three oblique throats (shown at Figure
4.2(d)). (b): Removed part and disjoint components obtained (the two blocks has been separated and
rotated for more clearness).

4.2.5 Mercury Intrusion Simulation

After the discarding and throats removal processes, the remaining pore space partitioned in

multiple disconnected regions is ready to simulate mercury intrusion. In the presented method,

the set of entry points is defined as those boxes labeled with a predefined label value ENTRY .

This step can be performed in a preprocessing, but, for a faster simulation, those boxes which

touch the boundary of the AABB of the solid space can be considered as entry points.

Algorithm 11 shows the steps of the simulation process for a given pore space P and diameter

D. Function simulateIntrusion() receives as input an EVM-represented pore space, which is

used to create the three CUDB encodings required by the discarding and throat detection
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processes, and returns an EVM object E that represents the pore space after the discarding

and throats removal processes. Internal conversions from CUDB to EVM are necessary to sort

the vertices and get the corresponding CUDB representations, and to perform the Boolean

operations that remove the throats.

Finally, Algorithm 12 describes the iterative process for the whole CUDB-based MIP si-

mulation. The main function, porosimeter(), evaluates all diameters Di, 1 ≤ i ≤ n in order

to simulate the corresponding mercury intrusion. After each intrusion simulation, function

detectEntryPoints() labels the corresponding boxes as ENTRY , then, a CCL is applied to

Algorithm 11: simulateIntrusion

Input : P ; /* EVM-represented pore space /*

Input : D; /* Diameter /*

Output: E; /* EVM-represented partitioned pore space /*

/* ---Discarding process--- /*

E ← P ;
for each sort in (XYZ,YZX,ZXY) do

E.setSorting(sort); Q← EVMtoCUDB(E);
Remove from Q boxes with C-edge length < D;
E ← CUDBtoEVM(Q);

end for
/* ---Throats detection process--- /*

ortThroats← ∅; oblThroats← ∅; /* Sets of orthogonal and oblique throats /*

for each sort in (XYZ,YZX,ZXY) do
E.setSorting(sort); Q← EVMtoCUDB(E);
ort← detectOrtogonalThroats(Q,D); Add ort to ortThroats;
obl← detectObliqueThroats(Q,D); Add obl to oblThroats;

end for
/* ---Throats removal process--- /*

ortEVM ← createEVMOrtThroats(ortThroats);
oblEVM ← createEVMOblThroats(oblThroats);
E ← E ⊗∗ (ortEVM ∪∗ oblEVM);

Algorithm 12: porosimeter

Input : P ; /* EVM represented pore space /*

Output: R; /* Set of CUDB-represented pore regions /*

current← P ;
for D = D1 to Dn do

E ← simulateMIP (current,D);
/* ---Intrusion simulation process--- /*

invadedCUDB ← EVMtoCUDB(E);
detectEntryPoints();
CCL(invadedCUDB);
Remove those CC of invadedCUDB no corresponding to entry regions;
Add invadedCUDB to R;
current← E;

end for
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the partitioned pore space. Any connected component (CC) having a box labeled as ENTRY

represents an entry CC. Then, those CC which are not entry components are removed because

they represent inaccessible regions. Thus, the remaining boxes represent the region invaded by

the diameter D. This invaded region is stored in a set of CUDB-represented pore regions R̂,

in order to compute the pore map. Note that after each iteration, the partitioned pore space,

after the corresponding discarding and throats removal processes, is used in the next iteration,

as those regions inaccessible by the current diameter are also inaccessible by larger diameters.

4.2.6 Pore Map Computation

Once the iterative process has finished, a set of n labeled CUDB-represented regions R =

{R1, R2, . . . , Rn} have been produced. Each region Ri corresponds to the subset of the pore

space invaded by the mercury at the intrusion pressure ρi, so, according to the Washburn law,

the following property is always satisfied:

ρi < ρj ⇒ Di > Dj ⇒ Ri ⊆ Rj , ∀i < j (4.4)

Then, let R̂i be the region invaded by the mercury exclusively at the intrusion pressure ρi ,

i.e., the region that is not invaded at any other lower pressure. For every ρi, R̂i can be obtained

in terms of the CUDB-represented regions as:

R̂1 = R1 (4.5a)

R̂i = Ri −Ri−1, ∀i = 2, . . . , n (4.5b)

Finally, the pore map, PM , in which the entire pore space is shown subdivided into pore

regions, each represented by a set of boxes, is given by:

PM =

n⋃
i=1

R̂i (4.6)

Figure 4.8 illustrates a detail of the resulting pore map for a 2D sample. Let us consider

Figure 4.8: Detail of a porosimetry.
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that mercury enters from the left side of the image. Several diameters can be identified in the

figure. Moreover, it can be seen that the narrow throat at the middle of the sample prevents

the mercury from reaching the right side of the pore space at lower input pressures (in blue).

4.2.7 Virtual Porosimeter Results

The CUDB-based method, like those based on prior computation of the skeleton, is a geometric

approach that computes the expected solution. Figure 4.9 shows two phantom datasets for

which it is easy to determine the theoretical solution. The example in (a) has only one entry

point at the top of the object, while in (b) there are two entry points. Because MIP actually

computes the volume associated with the narrowings of the object, the expected results are

different as shown in these figures. The example in (c) shows a phantom scaffold with its

expected theoretical result, where the entry points are all those touching the boundary.

Figure 4.9: Pore map of phantom datasets. (a) and (b) A single object. (c) A scaffold.

The CUDB-based approach has been compared with an skeleton-based approach where the

skeleton voxels are labeled with the chessboard distance [170]. For the two phantom datasets

in Figure 4.9 the result is the same for both and matches the expected theoretical result.

For real datasets, the skeleton-based approach can have up to a one-voxel error, due to the

medialness property of the skeleton for even distances in a discrete space. As the CUDB-based

approach requires no skeleton, it avoids such approximation errors.

Figure 4.10 shows a visual comparison of a 2D section of a real sample corresponding to a

porous biomaterial sample (PLA) with multiple entry points. Figure 4.10(c) shows the resulting

pore map obtained with the skeleton-based virtual MIP, while the other two images show

the result with the CUDB-based method. Figure 4.10(a) shows the result using the inclined

rectangle strategy for oblique throats creation, and Figure 4.10(b) the result using the L-shape

strategy (for similarity to skeleton-based). In this figure, a slight color difference between (a)
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and (c) is noted, while (b) shows almost the same colors than (c).

Figure 4.10: Pore map resulting after MIP simulation. (a) and (b) with the CUDB-based method
using the inclined rectangle and the L-shape strategy respectively, and (c) With the skeleton-based
method.

Figure 4.11: Oblique throat shape. (a) and (b) with the CUDB-based method using the inclined
rectangle and the L-shape strategy respectively, and (c) with the skeleton-based method.

For a more objective test, the pore-size distribution of the above 2D sample was computed

using the same three approaches (see Figure 4.12). As expected, the L-shape strategy gives

almost the same result than the skeleton-based approach. In this case, the difference is only

due to the medialness approximation used in the skeleton-based approach. On the other hand,

comparing these results with the result that uses the inclined rectangle strategy gives more

differences, due to the different volume associated to the two regions separated by an oblique

throat. Figure 4.11 shows a zoom of the same region of the three cases of Figure 4.10, where

the shape of an oblique throat is depicted in detail.

From the analysis of the absolute-volume histogram in Figure 4.12 with the inclined rectangle

strategy for oblique throats, the maximum difference computed between the CUDB-based and

skeleton-based approach is less than 12% with respect to the whole intruded volume. However

if the L-shape strategy is used, this maximum difference is less than 3%. These results are

consistent with the fact that the L-shape strategy is geometrically more similar to the skeleton-

based method than the inclined rectangle strategy.
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Figure 4.12: Absolute (top) and relative (bottom) pore-size distribution histograms obtained with
the CUDB-based and skeleton-based MIP methods.

The main goal of the presented CUDB-based method is its performance. Therefore, running

times with the skeleton-based method [170] have been compared in a collection of both phantom

and real 3D porous samples. Rendered images of the corresponding pore spaces are shown in

Figure 4.13 and described below.

• Scaffold. A synthetic scaffold.

• Trabecula. A synthetic trabecula fragment.

• Glass: A glass sample consisting of calcium phosphate glass with a 7.4 µm3 voxel resolu-

tion.

• Stone: A stone sample consisting of sedimentary rock from a Lybian oil-bearing unit with

a 4.4 µm3 voxel resolution.

• Soygel: Sample of hydroxyapatite with a soy-based foaming agent for bone prosthetics

with a 16 µm3 voxel resolution.

• Tween: Sample of hydroxyapatite with Tween foaming agent for bone prosthetics with a

16 µm3 voxel resolution.

• PLA: A biomaterial sample consisting of polylactic acid (PLA) with a 16 µm3 voxel

resolution.
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(a) Scaffold (b) Trabecula (c) Glass (d) Stone

(e) Soygel (f) Tween (g) PLA

Figure 4.13: Rendered images of the pore space of the test datasets.

All the real samples have been scanned by Trabeculae R© and segmented by thresholding

and applying noise filtering. To illustrate the relative speed of the CUDB-based MIP method,

Table 4.1 shows the run times for both approaches, skeleton-based and CUDB-based, using the

aforementioned samples. The corresponding programs have been written in C++ and tested

on a PC Intel R©Core 2 Duo CPU E6600@2.40GHz with 3.2 GB RAM with Linux.

Figure 4.14 shows a simulation of the mercury intrusion at three different input pressures

and the resulting 3D pore map for the Stone and Tween sample.

In regard to the comparison of the results with those of real MIP, we had been provided

with the physical porosimetry results of the biomaterial sample, PLA, and Figure 4.15 shows

the corresponding histogram (top) together with the histogram obtained with the CUDB-based

method (bottom). The shaded area in the top histogram indicates the diameter range that

cannot be reached by the CUDB-based method due to the resolution of the µCT device.

Table 4.1: MIP run time comparison. For each dataset: size of the voxel model and, run time (in
seconds) for skeleton-based (Skeleton computation and intrusion) and CUDB-based MIP approaches.

Dataset Size
Skeleton-based

CUDB-based
Sk. Comp. MIP Total

Scaffold 130x130x126 61.8 67.2 129.0 2.0
Trabecula 138x163x37 211.9 13.4 225.3 11.8
Glass 100x100x100 55.3 7.8 63.1 3.9
Stone 159x271x179 221.2 132.0 353.2 39.7
Soygel 251x251x206 1918.0 78.0 1996.0 446.2
Tween 376x375x206 2527.0 114.0 2641.0 230.6
PLA 237x220x314 2191.6 607.0 2798.6 271.7

http://www.trabeculae.com/
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Figure 4.14: Simulation of progressive mercury intrusion over the Stone (top) and Tween (bottom)
samples. From left to right: original pore space; invaded region at higher pressure; invaded region at
medium pressure; invaded region at lower pressure; putting all together.

Based on the analysis of these histograms with the aid of an expert, the conclusion is

that the diameter value corresponding to the maximum volume (which is relevant information

for materials scientists) is almost the same. Moreover, despite the different natures of the

experiments, which makes a total direct correlation difficult, the behavior of the histograms is

quite similar.

A more detailed discussion of the comparison of physical and in-silico porosimetry methods

is beyond the scope of this thesis. However, a related and extensive discussion applied to

sedimentary rock samples [171], as well as a discussion of the problems and challenges of physical

and in-silico methods applied to the study of the pore-size distribution of porous materials (such

as concrete) [26] have been presented.
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Figure 4.15: Pore-size distribution histograms for the PLA sample obtained with real (top) and the
CUDB-based virtual (bottom) MIP methods.
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4.3 Connectivity

In this section, a method to compute the Euler characteristic, χ, and the genus of binary

volume datasets represented with the CUDB model is presented. The method is derived from

the classical method used with a voxel model (see Section 2.3.3). The computation of χ and the

genus is achieved by counting the number of unitary basic elements – vertices, edges, faces and

voxels – with which a box of the CUDB model contributes, taking into account the overlapping

regions among them and using the CCL process.

4.3.1 Method Overview

The method presented in this thesis applies Expression 4.7 to each box of the CUDB to com-

pute the number of voxels (n3), face (n2), edges (n1) and vertices (n0), taking into account the

overlapping regions among boxes. Then, with the CUDB-CCL process, the connected compo-

nents (h0) and cavities (h2) of the object are obtained in order to compute the connectivity

(h1), which is related to the genus, from Expression 4.8.

χ = n0 − n1 + n2 − n3 (4.7)

χ = h0 − h1 + h2 (4.8)

Although binary volumes with adjacency pairs (6, 26) or (26, 6) are non-manifold, χ and

the genus can be computed unambiguously for them. When computing n0 and n1 in Expression

4.7, the adjacency pair must be taken into consideration in such a way that non-manifold edges

and vertices are counted once for 26-adjacency and twice for 6-adjacency. For example, in the

case of the object depicted in Figure 4.16, considering the adjacency pair (26, 6), the number

of connected components (h0) is 1, and vertices v1 to v6 and edges e1, e2 must be counted just

once because they belong to two connected voxels. Then, in this case, the genus (h1), which

can be seen as the number of handles, is 2. On the other hand, considering the adjacency pair

(6, 26), h0 = 3, and vertices v1 to v6 and edges e1, e2 must be counted twice because they

belong to two disjoint voxels. In this case, the genus is 0.

Figure 4.16: Illustrative figure consisting of 9 voxels to compute the genus depending on the selected
adjacency pair.
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In the voxel model, a simple way to compute the number of faces, edges and vertices reported

for each voxel is by checking the lower 13 neighbors (N−) of the voxel for a backward scan (see

Figure 4.17), where the 6 faces, 12 edges and 8 vertices of each visited voxel are added, and the

possible shared elements (3 faces, 9 edges and 7 vertices) are subtracted. An analogy to this

reasoning is used in the method presented here.

Z

Y
X

Figure 4.17: The lower 13 neighbors (N−) of a voxel.

It is important to point out that, independently of the used adjacency pair, (26, 6) or (6, 26),

in the binary volume model, the proposed method requires a CUDB model with the neighboring

boxes information according to 26-adjacency. This is because when a 6-adjacency is considered,

the connected components may have boxes that are 26-adjacent. So, in order to compute χ

and the genus for the (6, 26) adjacency pair, a preprocesing is performed to get the connected

component with 6-adjacency. Then, each connected component is separately analyzed with

26-adjacency to count the enclosed elements. In the case of the (26, 6) adjacency pair, the

method is applied directly. So, henceforth, let us focus on the case of the (26, 6) adjacency

pair. The proposed method can be applied with any ABC-ordering of the CUDB model.

4.3.2 Connectivity Computation

The Euler characteristic and the genus is computed based on Expression 4.7 considering a

CUDB box as a rectangular prism enclosing a finite number of voxels. Let β be a box in the

CUDB model, and let dx, dy and dz its side lengths. Then, the number of enclosed voxels (γβ),

faces (fβ), edges (eβ) and vertices (vβ) of β are computed as:

γβ = dxdydz (4.9)

fβ = [dxdy(dz + 1)] + [dx(dy + 1)dz] + [(dx + 1)dydz] (4.10)

eβ = [dx(dy + 1)(dz + 1)] + [(dx + 1)dy(dz + 1)] (4.11)

+ [(dx + 1)(dy + 1)dz] (4.12)

vβ = (dx + 1)(dy + 1)(dz + 1) (4.13)

A traversal of CUDB is performed and for each box β, its unitary elements (γβ , fβ , eβ ,

vβ) are computed according to Expressions 4.9 to 4.13. However, there are overlapping regions

among boxes and the method must deal correctly with them. To do so, for each box β, its
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backward neighbors (ABN and BBN) must be analyzed in order to subtract the elements

reported by the overlapping regions.

When an ABC-sorted CUDB model is generated considering the 26-adjacency, boxes in a

non-manifold configuration are neighbors only in one direction. Two edge-adjacent boxes βi

and βk are neighbors in the A-direction if the overlapping region between them is a segment

(part of an edge) B or C-aligned (see Figure 4.18(a) and (b)), but if the segment is A-aligned,

βi and βk are neighbors in the B-direction (see Figure 4.18(c)). Two vertex-adjacent boxes βi

and βk, are neighbors only in the A-direction (see Figure 4.18(d)).

Figure 4.18: Boxes in a non-manifold configuration.

Shared Elements Computation

Overlapping regions can be rectangles (2D), line segments (1D) (segments from now on) or

points (0D). They have to be detected and their contribution computed and added or subtracted

to the global value.

Every box βi shares a rectangle R with any box βk ∈ (βi.ABN ∪ βi.BBN) (see Figure

4.19(a) and (b) in red). The basic unitary elements enclosed by this rectangle are computed

twice and therefore they must be subtracted once. Let rx and ry be the side lengths of R, the

corresponding number of faces (fR), edges (eR) and vertices (vR) can be be computed in a way

similar to that of Expressions 4.10 to 4.13:

fR = rxry (4.14)

eR = rx(ry + 1) + (rx + 1)ry (4.15)

vR = (rx + 1)(ry + 1) (4.16)

However, more than one backward neighbor (BN) can share a segment with βi. After an

exhaustive case study of the overlapping regions among boxes in the CUDB model, where each

possible neighborhood has been analyzed, it can be concluded that, there can be 1, 2 or 3

backward neighboring boxes that share a segment with βi.

In the first case only the shared rectangle must be computed and subtracted. Note that in

some cases a degenerated rectangle is obtained (see boxes βi and βk in Figure 4.19(d)). In the

case of two BN of βi sharing a segment S, it has been subtracted twice and therefore it must

be added again. For example, in Figure 4.19(c) the red regions computed when analyzing the

pairs of boxes (βi, βk) and (βi, βt) have been subtracted and therefore the yellow region has
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Figure 4.19: Backward neighbors configurations of a box βi. (a) One ABN sharing a rectangle. (b)
One BBN sharing a rectangle. (c) Two ABN sharing a segment. (d) degenerated case of (c). (e) One
ABN and one BBN sharing a segment. (f) Two BBN sharing a segment. (g) One BBN and one ABN
sharing a segment. (h) One BBN and two ABN sharing a segment.

been subtracted twice and has to be added again. There are 4 possible configurations for two

BN of βi sharing a segment, which are described below.

Configuration C1. Two boxes βk, βt ∈ βi.ABN , where βt ∈ βk.BBN . See Figures 4.19(c)

and (d).

Configuration C2. One box βk ∈ βi.ABN and one box βt ∈ βi.BBN , where βt ∈ βk.BBN .

See Figure 4.19(e).

Configuration C3. Two boxes βk, βt ∈ βi.BBN , where βt ∈ βk.ABN . See Figure 4.19(f).

Configuration C4. One box βk ∈ βi.BBN and one box βt ∈ βi.ABN , where βt ∈ βk.ABN .

See Figure 4.19(g).

Therefore, let s be the length of the shared segment S, the number of enclosed unitary edges

(eS) and vertices (vS) of S are computed as:

eS = s (4.17)

vS = s+ 1 (4.18)

Finally, in the case of three BN of βi sharing a segment S, there is only one possible

configuration:

Configuration C5. One box βk ∈ βi.BBN and two boxes βt1, βt2 ∈ βi.ABN , where βt1, βt2 ∈
βk.ABN and ((βt1 ∈ βt2.BBN) ∧ (βt2 ∈ βt1.BBN)). See Figure 4.19(h).
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Note that configuration C5 is equivalent to two occurrences of C1 ((βk, βt1, βt2) and (βi, βt1,

βt2)) and two occurrences of C4 ((βi, βk, βt1) and (βi, βk, βt2)). However, both configurations

C4 occur when βi is being analyzed and, therefore, some shared elements with βt1 in one

occurrence and with βt2 in the other, are added twice, so, the segment S shared by βi, βk, βt1

and βt2 (highlighted in red in Figure 4.19(h)), represents the region that must be re-subtracted.

Algorithm 13: computeConnectivity

Input : Q; /* ABC-sorted CUDB /*

Output: χ, genus;
n0 ← 0; n1 ← 0; n2 ← 0; n3 ← 0;
for all box βi ∈ Q do

Compute γi, fi, ei, vi;
for all βk ∈ βi.ABN do

Compute fR, eR and vR; fi ← fi − fR; ei ← ei − eR; vi ← vi − vR;
for all βt ∈ (βi.ABN ∪ βi.BBN) do

if βt ∈ βk.BBN then /* Configurations C1 and C2 /*

Compute eS and vS ; ei ← ei + eS ; vi ← vi + vS ;
end if

end for

end for
for all βk ∈ βi.BBN do

Compute fR, eR and vR; fi ← fi − fR; ei ← ei − eR; vi ← vi − vR;
for all βt ∈ βi.BBN do

if βt ∈ βk.ABN then /* Configuration C3 /*

Compute eS and vS ; ei ← ei + eS ; vi ← vi + vS ;
end if

end for
L← ∅; /* List of box pointers /*

for all βt ∈ βi.ABN do
if βt ∈ βk.ABN then /* Configuration C4 /*

Compute eS and vS ; ei ← ei + eS ; vi ← vi + vS ;
Insert βt to L;

end if

end for
for each pair (βt1,βt2) : βt1, βt2 ∈ L do

if (βt1 ∈ βt2.BBN) or (βt2 ∈ βt1.BBN) then /* Configuration C5 /*

Compute eS and vS ; ei ← ei − eS ; vi ← vi − vS ;
end if

end for

end for
n0 ← n0 + vi; n1 ← n1 + ei; n2 ← n2 + fi; n3 ← n3 + γi;

end for
χ← n0 − n1 + n2 − n3;
h0 ← Q.CCL();
Compute the complement of Q (Qc) with 6-connectivity;
h2 ← Qc.CCL()− 1;
genus← h0 + h2 − χ;
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The number of enclosed unitary edges (eS) and vertices (vS) are computed as in Expressions

4.17 and 4.18. This case is solved by inserting all the boxes βt of configurations C4 into a list,

then this list is analyzed in order to check for boxes that are neighbors in the B-direction.

Algorithm 13 shows the steps of the χ and the genus computation considering the (26, 6)

adjacency pair and for any ABC-sorted CUDB. This algorithm computes the same number

of voxels, faces, edges and vertices that the voxel-based method. The Euler characteristic,

χ, is computing using Expression 4.7. To compute the number of connected components and

internal cavities, the connected components of the object’s complement, the CUDB-CCL process

is applied. Finally, the genus is computed using Expression 4.8.

4.3.3 Connectivity Results

The Euler characteristic and the genus has been computed for a selection of datasets with

different shape features and size. They present non-manifold configurations and may contain

isolated cavities and disconnected components. Figure 4.20 shows rendered views of the test

datasets and its size in the voxel model. All datasets come from public volume repositories

where from (i) to (o) are real volume data coming from CT or MRI scanners. Three me-

thods have been compared: a voxel-based [90], an EVM-based [13] (see Section 2.3.3) and the

CUDB-based, presented in this thesis. These methods produce exactly the same results. The

(a) DiskBrake (b) Tool (c) Wheel (d) Menger-4 (e) Knot

(f) GolfBall (g) Pegasus (h) Pelvis (i) Engine (j) Beetle

(k) Skull (l) Teddy (m) Mineral (n) Rock (o) Femur

Figure 4.20: Rendered images of the test datasets.
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corresponding programs have been written in C++ and tested on a PC Intel R©Core 2 Duo CPU

E6600@2.40GHz with 3.2 GB RAM and running Linux.

As the CUDB is obtained from the EVM and, in turn, EVM can be obtained from the voxel

model, we consider that these models are available and ignore the cost of conversion from the

voxel model, similar to the previous EVM-based method. Therefore, EVM is used o compute

the complement of the input object representation, whose run time is negligible. However, the

conversion time to compute the CUDB-representation of the complement, is considered in the

computation time of the CUDB-based method.

Table 4.2 shows the attributes of the tested datasets and Table 4.3 shows the required time in

seconds to compute χ and the genus for each referenced method. The last columns of this latter

table show the conversion times for voxel model to EVM and EVM to CUDB of the original

object, in order to show that even considering these costs, the overall time of the CUDB-based

method is better than the voxel-based.

To compute the genus, the three methods need to compute the complement of the object,

and besides, the EVM-based method needs to convert the object to a homotopic manifold

analog. Note that the CUDB-based method is very fast to compute χ, and regarding the genus

computation, it is by far, faster than the voxel-based method, in some datasets up to two orders

of magnitude (GolfBall, Pegasus, Pelvis, and Beetle). Compared with the previous EVM-based

method the CUDB-based is also faster in all the tested datasets, in some of them up to an order

of magnitude (Pegasus, Pelvis, Teddy and Femur). Furthermore, note that even considering

the conversion time E → C, the CUDB-based method remains faster than EVM-based.

Table 4.2: Attributes of the test datasets. For each dataset: size in voxels, number of foreground
voxels (|FV |), number of boxes in CUDB (|CUDB|). Next, with an adjacency pair (26, 6): number of
connected components (C+), number of isolated cavities (C−), χ and genus.

Dataset size |FV | |CUDB| C+ C− χ genus

DiskBrake 299×300×43 528798 10310 1 0 -20 11
Tool 511×339×48 1778611 11000 1 0 -10 6
Wheel 120×300×300 3809958 13207 1 0 -14 8
Menger-4 162×162×162 1280000 46704 1 0 -52864 26433
Knot 329×350×257 7509337 76831 1 0 0 1
GolfBall 510×509×511 13645424 129493 1 0 2 0
Pegasus 598×800×574 24683709 191747 1 8 2 8
Pelvis 905×1259×1108 88338560 506000 1 8 -8 13

Engine 139×197×108 901818 25524 9 194 146 130
Beetle 411×371×247 1737343 36052 17 114 -190 226
Skull 256×256×256 1112906 114563 1624 337 -1020 2471
Teddy 424×321×493 24758866 124063 59 212 -2580 1561
Mineral 376×375×206 7363953 232008 724 5 -2792 2125
Rock 240×406×267 19348939 331491 1336 17263 25828 5685
Femur 463×494×628 4014089 838585 22714 7909 -25144 43195



4.3 Connectivity 71

Table 4.3: Run time comparison in seconds. For each dataset the time to compute χ and the genus
for each referenced method, voxel-based (mvx), EVM-based (evm) and CUDB-based (cudb). Next, the
times for voxel model to EVM (V → E) and EVM to CUDB (E → C) conversion. The last column
represents T = V → E + E → C + cudb∗.

Dataset
Time χ Total time (genus)

V → E E → C T
mvx evm cudb mvx evm cudb∗

DiskBr. 0.66 0.28 0.01 2.51 0.81 0.10 0.78 0.12 1.00
Tool 1.77 0.26 0.01 6.22 0.84 0.11 1.47 0.13 1.71
Wheel 3.84 0.24 0.01 10.84 1.47 0.20 2.60 0.20 3.00
Menger-4 1.30 0.70 0.02 3.85 1.52 0.27 1.05 0.21 1.53
Knot 9.19 1.94 0.05 29.07 5.83 0.64 1.94 0.49 3.06
GolfBall 41.53 2.90 0.07 150.37 9.49 1.20 34.72 0.89 36.81
Pegasus 71.54 6.15 0.13 274.83 20.81 1.88 72.82 1.51 76.21
Pelvis 354.65 13.21 0.33 1338.77 43.98 4.27 23.33 0.55 24.59

Engine 0.77 0.62 0.02 2.43 1.77 0.21 0.71 0.21 1.12
Beetle 11.08 2.01 0.02 39.39 2.34 0.29 9.49 0.25 10.03
Skull 5.74 3.51 0.06 19.40 9.16 0.94 5.10 0.74 6.77
Teddy 20.97 3.49 0.09 74.07 10.39 1.02 18.23 0.77 20.01
Mineral 9.35 5.92 0.16 31.04 19.25 1.97 8.76 1.59 12.32
Rock 12.48 9.47 0.39 33.89 24.43 3.44 8.65 2.06 14.14
Femur 45.94 31.16 0.80 170.64 80.66 8.06 41.90 5.69 55.65
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4.4 Sphericity and Roundness

In this section, methods to compute the sphericity and roundness of binary volume datasets

are presented. In order to compute the three representative axes of the object, its oriented

bounding box (OBB) is obtained first (see Section 4.4.1). Then, several sphericity indices can

be computed (see Section 4.4.2).

Additionally, a 3D roundness index is proposed. Section 4.4.3 presents a ray-casting-like

approach based on EVM that uses basic geometric methods such as a transformation matrix

and the ray-ellipsoid intersection.

4.4.1 Oriented Bounding Box Computation

An OBB is a box which may be arbitrarily oriented, whose faces have normals which are pairwise

orthogonal. An OBB can be represented with a center point c, three edge half-lengths h1, h2

and h3, and an orientation specified with three mutually orthogonal unit vectors v1, v2 and v3

(see Figure 4.21):

OBB =

{
c +

3∑
i=1

xihiv
i : xi ∈ [−1, 1]

}
(4.19)

Figure 4.21: A 3D arbitrarily oriented bounding box.

An OBB can be constructed by examining the object’s point set. This point set forms a

cloud and have some statistical distribution characterized by a mean m = (m1,m2,m3), and a

covariance matrix C. The mean describes the center of mass and the covariance matrix contains

information about how the cloud is approximately spread out. Eigenvectors of that matrix give

the orientation along which the cloud has maximum and minimum statistical spread [47].

Given a set of n 3D points, viewed as vectors whose initial point is the origin: p1,p2, . . . ,pn,

such that pk = (pk1 , p
k
2 , p

k
3), the mean is defined as:

mi =
1

n

n∑
k=1

pki , i = 1, 2, 3 (4.20)
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and the 3×3 covariance matrix C is defined as:

Cij = Cov[i, j] =

(
1

n

n∑
k=1

pki p
k
j

)
−mimj , i, j = 1, 2, 3 (4.21)

The normalized eigenvectors of matrix C represent the orientation vectors of the OBB. Let

v1, v2 and v3 be these eigenvectors. The lower (L) and upper (U) extremes along each axis

are given by projecting all points pk onto each eigenvector and checking the minimum and

maximum coordinates in each direction:

L = {l1, l2, l3} =
{
min(v1 · pk), min(v2 · pk), min(v3 · pk)

}
, ∀ k = 1, . . . , n (4.22a)

U = {u1, u2, u3} =
{
max(v1 · pk), max(v2 · pk), max(v3 · pk)

}
, ∀ k = 1, . . . , n (4.22b)

As the i-th axis of the OBB is aligned with vi, the OBB’s edge half-length hi along this axis is

given by:

hi =
ui − li

2
, i = 1, 2, 3 (4.23)

and the center point c of the OBB is given by:

c =
1

2

3∑
i=1

(li + ui)v
i (4.24)

The same computed parameters define also the ellipsoid inscribed into the OBB, whose

principal axes have lengths a = 2h1, b = 2h2, and c = 2h3. We prefer to represent the ellipsoid

with the full-axes length instead of the semi-axes length in order to be consistent with the

equations used to compute the sphericity and roundness indices (see Section 2.3.5).

The OBB produced with the covariance method may not be a tight fit if the points are

not well distributed. The reason for this is that variations in point sampling density can skew

the eigenvectors of the covariance matrix and result in a poor orientation. However, as the

set of points to be evaluated comes from solid samples represented with a voxel model, a good

distribution can be expected.

The covariance matrix can be built from the corresponding voxel model using the voxel coor-

dinates as representative points. However, the extreme vertices (EV) of the EVM-represented

object can be used as the set of representative points. Although the number of EV is significantly

smaller than the number of voxels, the OBB produced from the EVM is very similar to the

OBB produced from the voxel model. From the analysis of the test samples, the maximum

volume difference computed between a voxel-based and a EVM-based OBB was less than 8.5%,

while the computation time is greatly reduced in the EVM-based method. Figure 4.22 shows

some samples and their computed OBB.
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Figure 4.22: Four rock samples and their OBB. The EVM-based and voxel-based OBB in continuous
(blue) and stippled (red) line respectively.

4.4.2 Sphericity Computation

Given an input object, the OBB is computed first. Then, the sphericity indices given by

Equation 2.16 to 2.19 can be directly computed from the three principal axes lengths (a, b, c) of

the inscribed ellipsoid. To compute the true sphericity index (Equation 2.15), the surface area of

the object is required. Because of the nature of EVM, the surface area of an EVM-represented

object is measured with a block-form surface extraction algorithm [127] and therefore, this

method is not suitable to estimate the object’s continuous surface area. However, there are

voxel-based methods that better estimate this value for binary volumes.

The surface area is estimated using a voxel-based scheme [97, 181], which is unbiased for

random plane orientations with small error when applied to curved surfaces. The algorithm

begins by detecting all the surface voxels (voxels with 6-connectivity to background voxels),

then, these voxels are classified into nine classes (denoted S1 to S9) according to the number

and configuration of its faces that are exposed to the background (see Fig. 4.23). Then, the

surface area S, is estimated as a linear combination of the class membership values Ni.

S =

9∑
i=1

WiNi (4.25)

The optimal computed weights Wi associated with the voxels in classes Si are: W1 ≈
0.894, W2 ≈ 1.3409, W3 ≈ 1.5879, W4 = 2, W5 = 8

3 , W6 = 10
3 [97], W7 ≈ 1.79, W8 ≈

2.68, W9 ≈ 4.08 [181].
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Figure 4.23: The nine unique surface voxel classes (modulo reflections and rotations) [181].

4.4.3 Roundness Computation

In industrial engineering, the roundness measurement of workpieces is estimated by doing a

single 2D trace covering 360◦of the workpiece, this process is usually performed with a turntable-

type instrument or a stylus-type instrument [122]. The deviation of the trace from a least-

squares circle fit to the data at equally spaced angles θi gives a roundness estimation of di − r,
where r is the radius of the circle and di the distance from the circle center to the trace [99]. A

set of random, uniformly distributed, rays can be traced to the surface of a reference ellipsoid

[156].

Based on this previous idea, a 3D roundness index is proposed. The deviations of the rays

from the surface of the object gives a roundness estimation. For efficiency purposes, instead

of generating a set of uniformly distributed rays, we propose to trace rays to each EV in the

EVM-represented object. Then, to compute the proposed EVM-roundness index, three steps

must be performed:

1. Compute the OBB of the object to obtain the principal axes of the inscribed ellipsoid.

2. Create a transformation matrix M, which transforms the OBB so that it is aligned to

the main coordinate axes and centered at the origin in order to facilitate subsequent

computations. Apply this transformation to all the EV of the object.

3. Trace a ray from the origin to each EV representing point pk of the object, and measure

the distance ∆k, between pk and the point qk, where the ray intersects the surface of the

ellipsoid.

The first step computes the OBB with the method described in Section 4.4.1. See Figure

4.24(a).

The second steps creates a transformation matrix M, which is a composition of a translation

matrix that displaces the ellipsoid center to the origin and three rotation matrices necessary to

align the ellipsoid principal axes to the main coordinate axes. Figure 4.24(b) shows the EV set
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(a) (b)

(c)

Figure 4.24: Steps to compute the EVM-roundness. (a) Calculate the OBB. (b) Transform the model
such that the reference ellipsoid is in the origin. (c) Trace rays to each EV pk and compute ∆k.

of an object and the reference ellipsoid after transformation. Note that the OBB bounds both

the object and the inscribed ellipsoid, but the object and the ellipsoid may intersect each other.

The third step applies the algorithm for ray-sphere intersection [146] properly adjusted for

an ellipsoid (see Figure 4.24(c)). The ray has an equation of the form q = p0+tp. Let p0 be the

origin (0, 0, 0), the point q = (q1, q2, q3) where the ray, passing by the EV point p = (p1, p2, p3),

crosses the ellipsoid with center at p0 and principal axes lengths a, b and c, can be computed

solving the next quadratic equation for t:

t2|p′|2 − 1 = 0, where p′ =

(
2p1
a
,

2p2
b
,

2p3
c

)
(4.26)

therefore,

q = (tp1, tp2, tp3) (4.27)

∆ = |p− q| (4.28)

The EVM-roundness index is defined as the average of the differences ∆k for all the EV

representing points pk. As the measurements depend on the size of the input object, to remove

the size effect, the average is divided by a length factor. There are several alternatives for
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this factor, e.g., the principal axes lengths (a, b, or c), the geometric mean of them or the

corresponding arithmetic mean. In the presented method the geometric mean of a, b, and c is

adopted as length factor since the EVM-roundness index is compared with a method that uses

this length factor. The average is also multiplied by a factor of 10 to enhance the readability

of the results.

R =
10

n(abc)
1
3

n∑
k=1

∆k (4.29)

where n is the number of extreme vertices.

4.4.4 EVM-roundness Correlation

In order to show the correlation of the EVM-roundness index with the roundness index defined

by Wadell, the silhouettes of the Krumbein’s chart (see Figure 2.10) have been tested in a

2D version of the proposed method. Each tested image was created with a resolution of ≈
3202 pixels. Figure 4.25 shows the relationship between Krumbein’s roundness and EVM-

roundness. These results have a linear correlation of -0.898 (negative as Krumbein’s roundness

index decreases while EVM-roundness index increases). The EVM-roundness index also has

been computed applying the OBB computed from the voxel model. It results in a better, but

not very different correlation of -0.902.

Figure 4.25: Relationship between Krumbein’s chart roundness and EVM-roundness.

For a comparison in 3D, the roundness index proposed by Hayakawa and Oguchi (HO-

roundness) R = V
S(abc)

1
3

[58] has been also computed. To get the HO-roundness, the surface

area of the object is measured using the voxel-based scheme described in Section 4.4.2.

We have used a GPL Blender extension, rockGenerator, to create a set of thirty 3D models

of rocks (see Figure 4.26). Each model was converted to a voxel model with a resolution

of ≈ 2503 voxels. Distribution of the set of rocks according to their computed sphericity

and roundness is shown in Figure 4.27. The relationship between HO-roundness and EVM-

http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Add_Mesh/Rock_Generator
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Figure 4.26: Thirty 3D rock samples created with rockGenerator.

Figure 4.27: Distribution of the rocks samples according to their sphericity and roundness.

roundness indices is shown in Figure 4.28. In this case, the results have a correlation of -0.938.

The corresponding programs have been written in C++ and tested on a PC Intel R©Core

2 Duo CPU E6600@2.40GHz with 3.2 GB RAM and running Linux. In this PC, the time

to compute the HO-roundness index for each rock sample is about 2 seconds, while for the

EVM-roundness index, it is about 0.1 seconds.

4.5 Conclusions

This chapter has presented new methods to compute the porosimetry, connectivity sphericity

and roundness of binary volume datasets. Next, some observations related to the proposed

methods are presented.

The CUDB-based virtual porosimeter simulates mercury intrusion in a porous medium and

does not require prior computation of the skeleton. As the prior computation of the skeleton

is very time-consuming, the presented approach achieves a noticeable reduction in time. The

key feature of this approach is the throat computation, because these throats make possible to
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Figure 4.28: Relationship between HO-roundness and EVM-roundness.

separate regions corresponding to different diameters. A flood-fill process is then applied using

a CCL algorithm to the reduced number of boxes of the CUDB model. The in silico approaches

are based on the geometry of the analyzed samples and the results obtained are the expected

theoretical results as shown in the experimental results section. However, comparing the results

of physical and in-silice methodologies is still a challenging task.

The method to compute the Euler characteristic and the genus exploits the advantages of

CUDB. It can be concluded that computing the connectivity is notably faster in the proposed

approach. The performance variability is caused by the dataset size but above all to their

surface intricacy: the voxel-based method performance is function of the number of voxels, but

the proposed method depends on the number of boxes, tightly related to the model’s tortuosity

(a property that represents the twist of a curve, i.e., the degree of turns or detours a model has

[52]), like the EVM-based method.

Finally, the method to estimate the sphericity is based on the computation of the object’s

OBB, which can be computed in a faster way directly from EVM. From the three OBB edge

lengths, several sphericity indices can be computed, including the true sphericity index where

a voxel-based scheme is applied to estimate the real surface area of curved surfaces. Regarding

the roundness, a new EVM-based roundness index has been proposed. The method is based on

the trace of rays to the vertices of the EVM-represented object and their intersections with a

reference ellipsoid. The resulting roundness index shows a good correlation with the Krumbein’s

chart and a better correlation with a previous 3D roundness index. Besides, the time to compute

the proposed index is very fast compared with previous voxel-based and manual methods.





CHAPTER5
Lossless Orthogonal Simplification

5.1 Introduction

In this chapter, a new approach to simplify objects is presented. It is restricted to orthogonal

pseudo-polyhedra (OPP). From an initial OPP, the method computes a level-of-detail (LOD)

sequence of bounding volumes that are also OPP. The sequence is finite and can end with a

convex OPP that is the AABB of all the sequence. Such bounding structures are denoted as

BOPP (bounding OPP). BOPP satisfy basically two properties: (1) any BOPP contains the

previous one and, therefore, all of them completely contain the original object, (2) all of the

BOPP, as well as the original object, have the same AABB.

OPP are represented with EVM and the simplification is achieved using a new approach

called merging faces (see Section 5.2), which displaces sets of faces and merges them by applying

2D Boolean operations. The method deals with general 3D orthogonal objects with any number

of shells, cavities and through holes. Different suitable strategies for merging faces are analyzed,

and a technique that relies on the object continuity in order to get a better shape preservation

by avoiding abrupt changes is also devised.

5.2 Merging Faces Strategy

5.2.1 Basic merging

The idea of the merging faces strategy is to work with pairs of consecutive cuts of an OPP,

where for each cut of a pair, a displacement of its faces in the direction of their corresponding

normal vector is applied and, then, the displaced faces are merged with those faces of the other

cut with the same normal vector. We define as B(P ), the bounding OPP (BOPP) of an OPP

P obtained with the merging faces strategy.

Formally, let P be an OPP and let CA and CB be two consecutive cuts of P and FDA,

BDA, FDB and BDB their corresponding forward and backward differences (see Equation

2.2.4). To obtain a coarsened OPP, the merging faces process displaces BDB to the position

of BDA and displaces FDA to the position of FDB . Then, the new cuts newCA and newCB

81
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that represent the merged faces and replace CA and CB respectively in the input object, are

computed according to the next equation:

newCA = BDA ∪∗ BDB (5.1a)

newCB = FDA ∪∗ FDB (5.1b)

The merging process displaces faces in the direction of their respective normal vector, i.e.,

outward of the object, but only those faces in which this displacement goes to the consecutive

cut (faces FDA of CA and BDB of CB) and then performs the union of these displaced faces

with the remaining faces of each cut which have the same normal vector (FDB of CB and BDA

of CA, respectively). Figure 5.1 shows a simple 2D example.

(a) (b) (c)

Figure 5.1: 2D example of merging faces: (a) In a first step, BDB is displaced to the position of
CA. (b) The result of the first step is newCA obtained by merging BDB and BDA and newCB = ∅,
then, in a second step, FDA is displaced to the position of CB . (c) The resulting BOPP is obtained
by merging FDA and FDB ; now newCA = ∅.

If P is represented as an ABC-sorted EVM, for a single traversal of cuts the application of

this process only will coarsen P in the A-coordinate. Therefore, to obtain B(P ) the process

must be repeated for the other two main directions. Figure 5.2 shows a 2D example where the

process is applied for the two main directions. Observe that the result can be slightly different

depending on the ordering in which the three main directions are selected. In order to speed

up the computation, the best first candidate would be the ABC-ordering with A-axis having

less number of cuts, but as EVM does not report this value, it can be approximated by cn− c1,

c1 and cn being respectively the coordinates of the first and last cut in this direction.

Although non-extreme vertices are not stored in EVM, when cuts are decomposed in forward

and backward differences, they appear (see Section 2.2.4) and the merging faces strategy deals

correctly with them. For instance, Figure 5.2(a) shows a non-extreme vertex in CB that shows

up when BDB and FDB are computed and that appears in newCB (Figure 5.2(b)).
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(a) (b) (c)

(d) (e)

Figure 5.2: 2D example with non-EV vertices. (a) Faces displaced in a first step. (b) Result after
applying Equation 5.1 and faces displaced in a second step. (c) Final result for the XY-sorting. (d)
Faces displaced for the YX-sorting. (e) Resulting BOPP.

5.2.2 Treatment of the Void Space

An OPP may have any number of rings on faces, through holes and shells (cavities or connected

components). In a general OPP, Equations 5.1 do not give the desirable result. For example,

applying this equation to the pair of cuts depicted in Figure 5.3(a), the same OPP without

coarsening is obtained. Notice that a hole in 2D is equivalent to a cavity in 3D. To deal with

this issue, the void spaces are detected first and then closed.

Given the pair of consecutive cuts (CA,CB), BDA and BDB are sets of faces whose normal

vectors point to the opposite direction of FDA and FDB , but only the pair formed by FDA

and BDB can represent a void space between the cuts. Therefore, a void space is given by the

(a) (b)

Figure 5.3: A 2D OPP with a single hole. (a) Faces merged in order to close the hole. (b)Result and
end for the XY-sorting.
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intersection of their projections, i.e.:

vSpace(CA, CB) = FDA ∩∗ BDB (5.2)

The removal of vSpace from both newCA and newCB , closes the void space between CA

and CB . Then, Equations 5.1 are extended with Equation 5.2:

newCA = (BDA ∪∗ BDB)−∗ (FDA ∩∗ BDB) (5.3a)

newCB = (FDA ∪∗ FDB)−∗ (FDA ∩∗ BDB) (5.3b)

When vSpace = ∅ Equations 5.3 and 5.1 are equivalent. As this last operation contributes

just to close interior void spaces, the subset property is still guaranteed. Figure 5.3 shows an

example with a single hole. In Figure 5.3(a) FDA = BDB and vSpace(CA, CB) = FDA =

BDB . Then, applying Equation 5.3, newCB = ∅ and the hole is closed (Figure 5.3(b)). As

shows Equations 5.3, basic merging and void space removal are simultaneously performed.

Note that the simple removal of the void space would have the same effect that the closing

morphological operation.

In 3D, all types of void space between cuts are detected as those shown in Figure 5.4. There

are cases in which the void space is not detected in all the three directions, but that is always

detected in one or two of them. For example, in Figures 5.4(a) and 5.4(b) the void space is not

detected in the Y-direction but is detected either in the X or Z-direction. However, there are

other cases in which the void space is detected in all directions. In Figure 5.4(c) a void space

is detected in the X or Y-direction and the through hole is partially closed, i.e., only the space

(a) (b)

(c) (d)

Figure 5.4: Some configurations of void spaces in 3D. (a) Concavity. (b) Through hole. (c) Through
hole in L-shape, (d) Internal hole or cavity.
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between the processed cuts gets closed, and the whole through hole will be closed in the next

direction; but, if we begin with the Z-direction, the detected void space allows us to close the

whole through hole. The cavity depicted in Figure 5.4(d) will be closed in any direction.

Although there are cases, as the simple concavity in Figure 5.4(a), that could be solved with

the application of Equations 5.1, for general void spaces, as those in Figures 5.4(b), 5.4(c) and

5.4(d), Equations 5.3 must be applied in order to completely close the hole.

Figure 5.5(a) shows a 3D example with through holes, where applying Equations 5.3 in the

X-direction, the computed new cuts, newCA = ∅ and newCB (Figure 5.5(c)) partially close the

hole, resulting in an object with a concavity (Figure 5.5(d)), which will be closed in the next

direction.

(a)
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B
=C

3
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1
C
A
=C

2
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FD
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BD
B

(b)

C
1

newC
A
=

C
4

∅

newC
B

(c) (d)

Figure 5.5: A 3D OPP with holes. (a) Original object. (b) Faces merged in a first step. (c) Resulting
cuts and (d) Result for the XYZ-sorting.

5.2.3 Merging Faces Optimization

Next, two theorems that permit to rewrite Equation 5.3 in order to be faster to compute are

proved.

Theorem 1. The projection of FD and BD of two consecutive cuts (CA,CB) are quasi-disjoint

sets respectively, i.e., FDA ∩∗ FDB = ∅ and BDA ∩∗ BDB = ∅.

Proof. The proof is based on the Jordan theorem and the fact that any ray crossing the boun-

dary of the polyhedron, alternatively goes from outside to inside and vice versa. Therefore, in
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any OPP, assuming that FDA ∩∗ FDB 6= ∅, would mean that a ray could cross FDA going

outside and then cross FDB going outside again, which is a contradiction. The same reasoning

applies to BD.

Theorem 2. vSpace(CA, CB) ⊆ (BDA ∪∗ BDB) and vSpace(CA, CB) ⊆ (FDA ∪∗ FDB).

Proof. From Eq. 5.2, vSpace(CA, CB) = FDA ∩∗ BDB . Without loss of generality:

(FDA ∩∗ BDB) ⊆ BDB ⊆ (BDA ∪∗ BDB), and thus,

(FDA ∩∗ BDB) ⊆ (BDA ∪∗ BDB)

In a similar way vSpace(CA, CB) ⊆ (FDA ∪∗ FDB) can be proved.

Therefore, according to these theorems and EVM Properties 5 and 6 that permit to perform

unions and differences in some special cases as simple point-wise XOR operations (see Section

2.2.4), Equations 5.3 can be rewritten as:

newCA = BDA ⊗∗ BDB ⊗∗ (FDA ∩∗ BDB) (5.4a)

newCB = FDA ⊗∗ FDB ⊗∗ (FDA ∩∗ BDB) (5.4b)

5.2.4 Selection Criteria for Cuts

So far, we have said that the merging faces process takes pairs of consecutive cuts for a single

traversal of cuts in any main direction. However, the way and order in which such pairs are

selected must be established. Four alternatives has been examined, which are explained below

with 2D examples. In all of them, a traversal for the XY-sorting EVM is considered, taking

cuts from lowest to highest value in the X-coordinate and supposing that there are n cuts.

Alternative 1

In this first alternative, pairs of cuts are taken in a chained form: (CA = Ci, CB = Ci+1), i =

1, i < n, i = i + 1, i.e., first the pair (C1, C2), then (C2, C3), and so on. In this alternative as

each possible pair of cuts is considered, all cuts as well as all sections are modified. However,

this alternative fails to create a valid object after applying Equation 5.4. This is due to the fact

that newCi is, in general, different when it is computed from the pair (Ci−1, Ci) than from the

pair (Ci, Ci+1).

Alternative 2

This case also considers pairs of cuts in a chained form, but instead of taking the i-th cut as

CA, the newCB of the last step is taken. The pair (C1, C2) is taken first, which generates the

pair (newC1, newC2), then (newC2, C3), then (newC3, C4), and so on. Note that only in the

first step this alternative is similar to the previous one, and each possible pair of cuts also is

taken into account, but as CA is the newCB of the previous step, there are no conflicts to

generate a valid object. However, this alternative has a cascading effect, where some faces are

dramatically extended after each step. See Figure 5.6.
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Figure 5.6: Alternative 2: Five steps for a traversal in the X-direction.

Alternative 3

This alternative consists in modifying sections instead of pairs of cuts. Pairs of cuts in a chained

form are considered again, but instead of generating two new cuts, only newCA is computed

using Equations 5.4 and then, a new section from newCA and the previous section of the original

object using Equation 2.1 is computed, i.e.:

newSi = Si−1 ⊗∗ newCA

Although this alternative seems to preserve the morphology of the object, the result is similar

to a morphological dilation operation, and therefore, the object expands, quickly losing its

appearance. See Figure 5.7.

Figure 5.7: Alternative 3: Sections creation for a traversal in the X-direction.
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Alternative 4

The last alternative consists in taking cuts two by two (CA = Ci, CB = Ci+1), i = 1, i < n, i =

i+2, i.e., first the pair (C1, C2), then (C3, C4), and so on. This alternative has the particularity

that, although all cuts are taken into account in a single traversal, those sections between cuts

that are not considered as a pair (for instance (C2, C3)) are not modified in the resulting object

(see Figure 5.8). Theorem 3 proves this statement.

Figure 5.8: Alternative 4: Three steps for a traversal in the X-direction.

Theorem 3. Let Ck and Ck+1 be two consecutive cuts of an OPP P that are not considered as

a pair in the merging faces process, and let Sk be the section between them. The new section,

newSk, between the corresponding cuts newCk and newCk+1 is not modified, i.e., newSk = Sk.

Proof. The chosen approach to prove it is by induction.

Basis. If the first modified pair is (C1, C2), then, the first cuts that are not considered as pair

are C2 and C3, so, we show that newS2 = S2. From Equations 2.1 and 2.2, can be inferred

that: Sk(P ) =
⊗∗ k

i=1Ci(P ).

⇒ newS2 = newC1 ⊗∗ newC2

According to Equations 5.4:

⇒ newS2 = (BD1 ⊗∗ BD2 ⊗∗ vSpace(C1, C2))⊗∗ (FD1 ⊗∗ FD2 ⊗∗ vSpace(C1, C2))

As ⊗∗ is associative and commutative operator:

⇒ newS2 = (BD1 ⊗∗ FD1)⊗∗ (BD2 ⊗∗ FD2)⊗∗ (vSpace(C1, C2)⊗∗ vSpace(C1, C2))

By definitions of backward and forward differences:

⇒ newS2 = C1 ⊗∗ C2

⇒ newS2 = S2

Inductive step. Let Ck and Ck+1 be two consecutive cuts that are not considered as a pair, we

assume that newSk = Sk. So, the next pair that can be processed is (Ck+1, Ck+2), in this way,

Ck+2 and Ck+3 will not be considered as a pair. Now, we show that newSk+2 = Sk+2.

⇒ newSk+2 =
⊗∗ k+2

i=1 newCi

⇒ newSk+2 = newSk ⊗∗ newCk+1 ⊗∗ newCk+2.

Similar to the basis step:

⇒ newSk+2 = newSk ⊗∗ (BDk+1⊗∗BDk+2⊗∗ vSpace(Ck+1, Ck+2))⊗∗ (FDk+1⊗∗ FDk+2⊗∗

vSpace(Ck+1, Ck+2))
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⇒ newSk+2 = newSk⊗∗ (BDk+1⊗∗FDk+1)⊗∗ (BDk+2⊗∗FDk+2)⊗∗ (vSpace(Ck+1, Ck+2)⊗∗

vSpace(Ck+1, Ck+2))

⇒ newSk+2 = newSk ⊗∗ (Ck+1 ⊗∗ Ck+2)

As newSk = Sk

⇒ newSk+2 = Sk ⊗∗ Ck+1 ⊗∗ Ck+2

⇒ newSk+2 = Sk+2

From these four alternatives, Alternative 4 was selected for the following reasons: It preserves

the object’s appearance better than the others. Alternative 1 is discarded for not creating a

valid object. Applying alternative 2 the object is drastically deformed due to the cascading

effect. Alternative 3 seems to preserve the morphology but the object expands. Figure 5.9

shows the results after running the different alternatives with one traversal for each one of

three main directions in the Binzilla dataset indicating the number of EV.

(a) 4288 EV (b) 352 EV (c) 2876 EV (d) 1146 EV

Figure 5.9: Results after running the different alternatives with one traversal for each one of three
main directions in the Binzilla dataset. (a) Original object. (b) Alternative 2. (c) Alternative 3. (d)
Alternative 4.

5.2.5 Shape Preservation

In the presented method, merging two consecutive cuts is performed in all their extension.

However, there are parts of these cuts that are isolated and merging them could result in too

abrupt changes. In this section, a technique that better preserves the shape of the simplified

object is devised.

Let (CA, CB) be the pair of cuts to be merged, we will refer as isolated faces those faces of CA

disjoint with CB (on a projecting plane) and vice versa. More formally: Let CA = {C1
A, C

2
A, . . . ,

CnA

A }, CB = {C1
B , C

2
B , . . . , C

nB

B }, IA = {I1A, I2A, . . . , I
nIA

A } and IB = {I1B , I2B , . . . , I
nIB

B } be the

sets of faces of CA, CB and the isolated faces of CA and CB respectively. The following

conditions hold for faces of sets IA and IB :

IA ⊆ CA, IB ⊆ CB (5.5a)

IiA ∩
∗ CB = ∅,∀i = 1 . . . nIA (5.5b)
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IiB ∩
∗ CA = ∅,∀i = 1 . . . nIB (5.5c)

Removing isolated faces of the merging process results in a better approximation. The

corresponding new values FD′A, BD′A, FD′B and BD′B involved in the merging process are

computed as:

FD′A = FDA −∗ IA, BD′A = BDA −∗ IA (5.6a)

FD′B = FDB −∗ IB , BD′B = BDB −∗ IB (5.6b)

these values are used in Equations 5.4 to generate newC ′A and newC ′B , such that:

newC ′A = BD′A ⊗
∗ BD′B ⊗

∗ (FD′A ∩
∗ BD′B) (5.7a)

newC ′B = FD′A ⊗
∗ FD′B ⊗

∗ (FD′A ∩
∗ BD′B) (5.7b)

after that, the isolated faces must be reintegrated. This process can be accomplished with

a union operation, however, by definition IA and CA are disjoint sets and therefore, IA and

newC ′A are also disjoint sets (the same applies to IB , CB and newC ′B). Then, according to the

EVM Property 5, an XOR operation is performed instead.

newCA = newC ′A ⊗
∗ IA (5.8a)

newCB = newC ′B ⊗
∗ IB (5.8b)

Figure 5.10 shows an example where an isolated face (if ) is depicted. Here, if remains

in place, and only those faces that share either an edge or a vertex are taken into account

throughout the merging faces process. The application of this technique does not affect to

the aforementioned subset property (see Section 5.2.1) and produces better approximations, for

instance see Figure 5.11.

(a) (b) (c)

Figure 5.10: Shape preservation example . (a) A simple 3D OPP. (b) All cuts and extreme vertices;
in red, an isolated face. (c) Result of applying merging faces with the technique to the pair (CA, CB).
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(a) 55246 EV (b) 6512 EV (c) 7320 EV

Figure 5.11: Shape preservation technique in the DiskBrake dataset. (a) Original dataset. (b) and
(c), resulting BOPP using and not using the technique respectively. Both BOPP have less than 15%
of EV of the original dataset.

Isolated Faces Detection

Detecting isolated faces in 2D is straightforward by displacing the brinks in both cuts and

checking for intersection. In the 3D case, the sets of elements to analyze are 2D faces, i.e.,

general orthogonal polygons. So, a different strategy is applied to individually separate each

face of CA and CB to detect the isolated ones.

Cuts CA and CB are converted to CUDB and their faces are extracted, and to check for

intersection, the CUDB collision detection is used (see Section 3.2.6). Algorithm 14 details

the steps for the isolated faces detection process, where function extractFaces() extracts each

connected component as an individual CUDB model, and in the set of faces F , a face fi, is a

2D-CUDB with an additional attribute that indicates the cut to which the face belongs.

Algorithm 14: getIsolatedFaces

Input : CA, CB ; /* Cuts (2D-EVM) /*

Output: IA, IB ; /* Set of isolated faces of CA and CB /*

objA ← EVMtoCUDB(CA); objB ← EVMtoCUDB(CB);
CCL(objA); CCL(objB);
F ← extractFaces(OjbA) ∪ extractFaces(OjbB);
S ← detectCollision(F ); /* Algorithm 6 /*

FA ← Faces fi ∈ F belonging to ObjA such that fi /∈ S;
FB ← Faces fi ∈ F belonging to ObjB such that fi /∈ S;
IA ← CUDBtoEVM(FA); IB ← CUDBtoEVM(FB);

5.2.6 Merging Faces Algorithm

According to Alternative 4 for cuts selection, the merging faces strategy takes cuts two by

two, first the pair (C1, C2), then (C3, C4), and so on. But, observe the particular case in Figure

5.5(b), where if CA = C1 and CB = C2, newCA and newCB will be exactly the same as CA and

CB respectively. This is due to the fact that FDA = ∅ and BDB = ∅, which is the condition

that results in any displacement. The direct application of this condition to Equation 5.4 shows

this conclusion.
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On the other hand, when the shape preservation technique is applied, there may be conse-

cutive cuts with all its faces detected as isolated (see Figure 5.12), in such cases, there will be

no displacement. Note that, the condition IA = CA is enough to determine that all faces are

isolated as it implicitly means that IB = CB , and vice versa.

Figure 5.12: Example where all elements of CA and CB are isolated.

Moreover, the merging process must be controlled by a maximum displacement allowed,

in such a way that only pairs of consecutive cuts that are at a distance less or equal than a

displacement parameter, d, are actually merged. Without this condition, far apart consecutive

cuts can be merged causing abrupt changes. Therefore, given the pair of cuts (CA = Ci, CB =

Ci+1) the conditions to merge them are:

(FDA 6= ∅ or BDB 6= ∅) (5.9a)

Not all faces of CA and CB are isolated (5.9b)

distance(CA, CB) ≤ d (5.9c)

If conditions in Expression 5.9 are fulfilled, the pair (Ci, Ci+1) is processed with Equations

5.8 to compute newCA and newCB , and the method continues, according to the selection

criteria, with the pair (Ci+2, Ci+3). Otherwise Ci is copied directly to the simplified object and

the method continues with the pair (Ci+1, Ci+2).

Nevertheless, there may be cases where all faces of all the possible pairs of cuts in the object

are isolated (see Figure 5.12), which means that the method has no effect and the complete

simplification process will never end. Therefore, in order to guarantee the property of finiteness,

when all faces of a given pair of cuts are isolated, the shape preservation technique is not applied

and Equations 5.4 instead of Equations 5.8 are used for such pair.

Another issue that has been considered is that, if cuts are analyzed in descending order

along one main direction, the result is barely different with respect to the result in ascending

order. Therefore, for symmetry preservation purposes the object is analyzed from both sides at

a time. However, this symmetrical traversal does neither improve nor reduce the performance

of the method.

Algorithm 15 shows the steps of the merging faces using a lazy evaluation strategy to improve

its performance. A given OPP P is ABC-sorted according to a given sorting and then it is

processed in the A-direction with a given parameter of distance d, and a flag to indicate if cuts

with all its faces as isolated are displaced or not.
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Algorithm 15: mergingFaces

Input : P ; /* EVM-represented OPP /*

Input : sorting; /* ABC-sorting /*

Input : d; /* Displacement parameter /*
Input : displaceIF ; /* Flag to allow displacing cuts having all its faces isolated /*

Output: Q; /* EVM-represented simplified OPP /*

Q← ∅; Q.sorting ← P.sorting;
CA, coordA ← P.getNextCut(); CB , coordB ← P.getNextCut();
CD, coordD ← P.getReverseNextCut(); CC , coordC ← P.getReverseNextCut();
ascendingOrder ←true;
while coordB < coordC do

process←false;
if ascendingOrder then

if distance(CA, CB) <= d then /* Merging condition 5.9c /*

Compute FDA and BDB ;
if FDA 6= ∅ or BDB 6= ∅ then /* Merging condition 5.9a /*

IA, IB ← getIsolatedFaces(CA, CB);
if IA 6= CA then /* Merging condition 5.9b /*

FDA ← FDA −∗ IA, BDB ← BDB −∗ IB ;
if FDA 6= ∅ or BDB 6= ∅ then /* Merging condition 5.9a /*

Compute FDB and BDA;
FDB ← FDB −∗ IB , BDA ← BDA −∗ IA;
process←true;

end if

else /* All faces are isolated /*

if displaceIF then
Compute FDB and BDA; process←true;

end if

end if

end if

end if
if process then /* Formula application /*

voidSpace← FDA ∩∗ BDB ;
newCA ← BDA ⊗∗ BDB ⊗∗ voidSpace;
newCB ← FDA ⊗∗ FDB ⊗∗ voidSpace;
if IA 6= CA then /* Not all faces are isolated /*

newCA ← newCA ⊗∗ IA; newCB ← newCB ⊗∗ IB ;
end if
Q.insertCut(newCA); Q.insertCut(newCB);
CA, coordA ← P.getNextCut(); CB , coordB ← P.getNextCut();

else /* Omit and copy cut /*

Q.insertCut(CA);
CA ← CB ; CB , coordB ← P.GetNextCut();

end if

else
***Similar operations for descending order with CC and CD

end if
ascendingOrder ← ¬ascendingOrder;

end while
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5.3 Lossy Simplification

5.3.1 Initial Considerations

According to the merging faces algorithm, when applying the shape preservation technique, if

there are pairs of cuts with all its faces isolated, there are two options, one of them preserves

the shape and the other one guarantees the finiteness of the method. Therefore, in order to take

advantage of the shape preservation technique and still guarantee that the method ends, the

strategy is to perform first three times the merging faces process, once per each main direction

(having previously determined the best sorting) with a given parameter of distance d, and not

allowing to displace isolated faces when all faces are detected as such. Then, three additional

merging faces process with the same parameter d are performed, but now allowing to displace

the isolated faces.

Besides, after applying the merging faces process in the three main directions with a given

distance d, cuts with the same distance d between them may still remain. This is because some

faces of the intermediate cuts that are not considered as pairs (see Section 5.2.4) or that were

marked as isolated and not displaced, were not modified after the merging in the three main

directions. So, with the aforementioned three additional traversals, the approximations have a

good quality and the finiteness property is guaranteed.

5.3.2 Simplification Algorithm

Let Φ0 be an initial OPP. A finite sequence Φ1,Φ2, . . . ,Φp of OPP can be generated, that fulfills

the following properties:

1. Φi+1 = B(Φi), ∀i = 0 . . . p− 1

2. Φi ⊆ B(Φi), ∀i = 0 . . . p− 1, and, therefore, Φi ⊆ Φi+1, ∀i = 0 . . . p− 1

3. Φp = AABB(Φi), ∀i = 0 . . . p

The first property indicates that the approach is incremental. The second one, corresponds

to the subset property for bounding structures. Since the face displacements are done outward

of the object, and are restricted by the cuts of the initial object, the resulting OPP will never

extend beyond these cuts and, therefore, it will contain the initial object.

The last property states that the sequence is finite and that ends with the AABB that

is shared by all of the OPP in the sequence. The AABB property can be demonstrated by

considering that the AABB of an OPP can be defined as the intersection of the six planes

corresponding to the first and last cut in the three main directions and the fact that the object

will never extend beyond the initial cuts, and, in particular, the first and last ones. Moreover,

it can be observed that the first cut only has BD faces and the last one only FD faces. Then,

in each iteration the first cut of B(Φi) will be either the same of Φi or the union of the first cut

and the BD of the second cut of Φi. Then, in the last iteration, the first cut of Φp, i.e., of the

AABB, corresponds to the union of all of the BD of all cuts. The same reasoning applies for

the last cut.



5.3 Lossy Simplification 95

According to these properties, the generated sequence seems to have similarity with a hie-

rarchy of orthogonal visual hulls [53]. The visual hull is a concept of 3D reconstruction by shape-

from-silhouette technique, where a 3D representation of an object is created by its silhouettes

within several images from different viewpoints. Each silhouette forms in their projection a

cone. The visual hull of an object is the envelope of all its possible circumscribed cones [81].

As the number of cones increases, the object is reconstructed with higher precision.

As the proposed method is incremental, it actually computes all the objects between Φ1 and

Φk for successive values of d, d = di, i = 1, ..., k, obtaining the corresponding Φi. Displacements

di can be in any units and incremented in any quantity. For OPP corresponding to digital

images the basic unit is one voxel, i.e. di = i. For general OPP, with float coordinate values,

di can take any values ranging from the minimum distance between cuts and the AABB size.

The input of the method is an EVM-represented OPP, P , which corresponds to the initial

object Φ0, and we have considered two queries of simplification:

• Give the maximum value for the displacement, dmax, i.e. the method performs iteratively

the merging faces process and stops when d > dmax.

• Give the maximum number of EV nv in the last BOPP, i.e. the sequence ends with the

object Φk, which has no more than nv extreme vertices. In the particular case of ending

with the AABB, i.e. ok = op = AABB(P ), nv must be 8.

Steps for the two queries in the proposed simplification method are shown in Algorithm

16 (maximum value for the displacement) and Algorithm 17 (maximum number of EV), where

function detectBestSorting() detects the best sorting (see Section 5.2.1). For simplify purposes,

in both cases we suppose an increment of 1 voxel. Note that Algorithm 16 performs 6 times the

merging faces process per each distance. But, in Algorithm 17 the method can stop even if the

last three merging faces processes for the same distance are not performed. This intermediate

object is an OPP that has been simplified in the three main directions.

Algorithm 16: EVMSimplification1

Input : P ; /* EVM-represented OPP /*

Input : dmax; /* Maximum value for the displacement /*

Output: Q; /* EVM-represented simplified OPP /*

Q← P ;
sort1, sort2, sort3← detectBestSorting();
for d← 1 to dmax do

Q← mergingFaces(Q, sort1, d, false);
Q← mergingFaces(Q, sort2, d, false);
Q← mergingFaces(Q, sort3, d, false);
Q← mergingFaces(Q, sort1, d, true);
Q← mergingFaces(Q, sort2, d, true);
Q← mergingFaces(Q, sort3, d, true);
if Q.getNEV () = 8 then break; end if;

end for
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Algorithm 17: EVMSimplification2

Input : P ; /* EVM-represented OPP /*

Input : nv; /* Maximum number of EV in result /*

Output: Q; /* EVM-represented simplified OPP /*

Q← P ; displaceIF ←false; d← 1;
sort1, sort2, sort3← detectBestSorting();
while Q.get nev() > nv do

Q← mergingFaces(Q, sort1, d, displaceIF );
Q← mergingFaces(Q, sort2, d, displaceIF );
Q← mergingFaces(Q, sort3, d, displaceIF );
if displaceIF then d← d+ 1; end if;
displaceIF ← ¬displaceIF ;

end while

5.4 Quality of the Approximations

The presented approach generates bounding volumes, where every object Φi+1 bounds object

Φi as tightly as possible. The quality (tightness) Θ(Φi) of a BOPP Φi is measured as the volume

difference between Φi and the original OPP Φ0, divided by the volume difference between the

volume of the AABB (Φp) and Φ0, i.e.:

Θ(Φi) =
V (Φi)− V (Φ0)

V (Φp)− V (Φ0)
, ∀i = 0 . . . p (5.10)

where V (Φi) is the volume of Φi.

This function is useful for indicating the distortion of the resulting BOPP, where Θ(Φi)

ranges from 0 (original Φ0) to 1 (AABB Φp).

5.5 Lossless Progressive Encoding

In this section, the Progressive Extreme Vertices Encoding (PEVE) is described. It is a data

structure that encodes a BOPP sequence in a progressive and lossless way, with a reduced

storage size.

5.5.1 EVM Encoding

In its raw format, EVM represents vertices as 3D points. Then, a 3D OPP is represented with a

set of 3n values, n being the number of extreme vertices (EV). In storage size, this set occupies

3nb bits, b being the number of bits to store a vertex coordinate.

EVM allows different schemes for data compression using the fact that EV are arranged in

an ordered set of cuts [1]. There is not a general scheme since for each object it depends on its

shape and the ABC-ordering. Considering an ABC-ordering, the common A-coordinates, for

EV lying on each A-cut, and the common B-coordinates, for EV lying on each AB-cut, can be

factored out. This compressed EVM uses 2 flags (2 bits) per each vertex to indicate respectively
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if the A and B-coordinates are factored out and thus, these values are not saved. Therefore, a

vertex requires at most 3b+ 2 bits when no coordinate is factored out, and only b+ 2 bits when

both the A and B-coordinates are factored out.

5.5.2 Progressive Extreme Vertices Encoding (PEVE)

Throughout the merging faces process, there can be EV of object Φi that remain in object

Φi+1. Let CA and CB be a pair of consecutive cuts, the following sets of vertices are remaining

vertices:

• Vertices belonging to (EVM(BDA)−EVM(BDB)) or to (EVM(FDB)−EVM(FDA)).

This fact can be proved by applying directly Equations 5.4.

• Vertices of the isolated faces of BDA and FDB when the shape preservation technique is

applied.

Therefore, PEVE encodes the sequence of objects in such a way that remaining vertices

are stored only once. For instance, Figure 5.13 depicts a 2D LOD sequence generated by the

presented approach. For this dataset, the method produces 3 more objects. Note that there are

some remaining EV. Figure 5.14 depicts the sequence put together and each EV is labeled with

the object numbers to which it belongs. Note that, although there are vertices that only appear

once, there are also vertices that appear in two, three and even in the four objects. Moreover,

most of these vertices appear in consecutive objects, and only one appears in non-consecutive

objects. For instance, the vertex in the upper-left corner of the object appears in all the objects,

the vertex in the bottom-right corner appears from object 1 to 3, while the vertex highlighted

in yellow appears only in objects 0 and 2.

(a) Φ0 (Original, 38 EV) (b) Φ1 (22 EV)

(c) Φ2 (12 EV) (d) Φ3 (4 EV)

Figure 5.13: Objects generated by the simplification method in a 2D dataset, indicating on each one
the number of extreme vertices (EV), which are marked with black dots. (a) Original Φ0, (b) Φ1, (c)
Φ2, (d) Φ3=AABB.
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Figure 5.14: Sequence of the Figure 5.13 put together. Each extreme vertex is labeled with the
numbers of the objects which it belongs

PEVE encodes EV of all the generated objects into a single set, by storing, for any vertex

coordinate, an indicator to which objects this EV belongs. For storage purposes, EV are

classified into the next categories:

Unique (U): it appears once, i.e., it belongs only to one object Φi of the sequence.

Consecutive (C): it has a consecutive occurrence, i.e., it belongs to all the objects in an

object interval [Φi,Φj ], j > i.

Sporadic (S): it appears several times, either as an U or a C-vertex.

In a sporadic EV, the number of times it can appear is no more than two in 2D and four in

3D as the following theorem proves.

Theorem 4. Let v be an extreme vertex in the LOD sequence, the number of non successive

occurrences throughout the simplification process is no more than two in 2D, and four in 3D.

Proof. The proof is performed by enumeration. According to the clasification of OPP vertices

(see Section 2.2.4), a vertex v is an EV if it has an odd number of black and white surrounding

voxels (see Figure 2.5). Taking into account that merging faces always displaces faces outward

the object, i.e. it enlarges the object, it can gradually go from 0 to 8 surrounding voxels, and

not vice versa. Therefore, in the worst case scenario, if the number of surrounding voxels of v

changes step by step, v can be EV at most four times (in odd configurations). The 2D case can

be proved with the same reasoning.

Furthermore, experimental tests have yielded that sporadic vertices appear rather infre-

quently, less than 6% of all the EV in the LOD sequence (see Table 5.2).

In order to encode the aforementioned information, the next v-scheme is used in PEVE. For

every vertex 2 bits are used to indicate its type, plus the following associated information that

depends on the number of objects of the sequence, p:

• U-vertex: the object number to which it belongs, i.e. log2(p) bits.

• C-vertex: the number of the first and last objects to which it belongs, i.e. 2log2(p) bits.
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• S-vertex: 2 bits to indicate the number of intervals, plus 1 bit for each interval to indicate

its type, followed by the bits for the interval information. In the worst case scenario

S-vertex can appear 4 times as C-vertex, i.e., it requires at most 2 + 4(1 + 2log2(p)) =

6 + 8log2(p) bits.

5.5.3 Data Structure for Progressive Encoding

In order to progressively decode or transmit the whole LOD sequence, PEVE must store first

those EV that belong to object Φp, then to Φp−1, and so on. Therefore, EV are sorted in the

following way:

1. First, according to the last object they belong in descending order.

2. Then, by type (first S, then C, and then U-vertices).

3. Finally, by its X,Y, and Z-coordinates in ascending order.

In this way, vertices corresponding to the more simplified object can be decoded first, then

objects with a better LOD are progressively decoded, yielding at the end the lossless information

of the original object Φ0.

Vertices are grouped by type since several U and C-vertices share the same v-scheme with

other vertices of the same type. Then, using a flag (1 bit) to indicate if the v-scheme is factored

out, this information can be omited. The number of bits needed for a vertex coordinate is

obtained from the resolution size of the dataset. Figure 5.15 depicts this data structure.

Figure 5.16 shows PEVE in ASCII format for the dataset shown in Figure 5.13. The whole

sequence has 76 vertices but only 51 vertices are encoded. After each vertex, letters U, C and

S indicate the type, followed by its v-scheme; symbol * indicates that v-scheme or a coordinate

value is factored out. Moreover, note that, when the first vertex whose last object is Φ0 appears

(vertex 29), it is not necessary to save the v-scheme of the following vertices, as all of them are

U-vertices belonging to Φ0, and therefore, this information can be omitted in the encoding.

Following with this example and considering 4 bits to code a vertex coordinate, vertex 5 is

coded with 1+4+4+1+2+2+1+2+1+2 = 20 bits, vertex 13 with 1+4+4+1+2+2+2 = 16

Figure 5.15: Data structure for PEVE, indicating the number of bits required for each element.
Top: The general structure, flagc indicates if the coordinate value is factored out, flagv indicates if the
v-scheme is factored out, b is the number of bits to encode a vertex coordinate. Bottom: structure for
the three types of vertices, where p is the number of encoded objects. Data that can eventually be
excluded is highlighted in bold and italic font.
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1: (16,1) C1-3

2: ( *,9) *

3: ( 1,1) C0-3

4: ( *,9) *

5: (12,7) S2 U0 U2

6: ( 3,1) C0-2

7: (16,7) *

8: ( 3,3) U2

9: ( 8,1) *

10: ( *,3) *

11: (12,4) *

12: (16,4) *

13: ( 3,4) C0-1

14: ( *,5) *

15: ( *,8) *

16: ( 6,5) *

17: ( *,8) *

18: (12,2) *

19: ( *,8) *

20: (15,3) *

21: ( *,7) *

22: (16,3) *

23: ( 8,4) U1

24: ( *,9) *

25: ( 9,1) *

26: ( *,9) *

27: (15,2) *

28: ( *,8) *

29: ( 7,4) U0

30: ( *,5)

31: ( *,8)

32: ( *,9)

33: ( 8,5)

34: ( *,8)

35: ( 9,3)

36: ( *,7)

37: (10,2)

38: ( *,3)

39: ( *,7)

40: ( *,8)

41: (11,1)

42: ( *,2)

43: ( *,3)

44: ( *,7)

45: ( *,8)

46: ( *,9)

47: (12,3)

48: (15,1)

49: ( *,9)

50: (16,2)

51: ( *,8)

Figure 5.16: ASCII representation of PEVE for the sequence of objects in Figure 5.14

bits, vertex 14 with 1 + 4 + 1 = 6, and vertex 30 with 1 + 4 = 5 bits. The whole LOD sequence

requires 54 bytes. Encoding each object separately with the compressed EVM (see Section 5.5.1)

requires 61 bytes, and with EVM in its raw form (2 · 4 bits per vertex), 76 bytes. Therefore, in

the first case the compression ratio is 0.88 and in the second case 0.71.

5.6 Experimental Results

The simplification method with PEVE has been tested on several 3D datasets with different

shape features such as size, number of connected components, concavities and holes. All datasets

come from public volume repositories or own collection. The corresponding programs have been

written in C++ and tested on a PC Intel R©Core 2 Duo CPU E6600@2.40GHz with 3.2 GB RAM

and running Linux.

The results of simplification reported here have been computed using Algorithm 17 with

nv = 8 and storing all the intermediate objects with PEVE. Statistics for a compilation of

twelve datasets are listed in Table 5.1. All these datasets are shown in Figure 5.11, and Figures

5.18 to 5.28. Results of the encoding of the LOD sequence are listed in Table 5.2. For these

datasets the number of bits to encode a vertex coordinate varies from 7 to 11. Note that the

number of encoded objects is not 2dmax because there can be repeated generated objects, and

they are not consider as a new object.

Figure 5.17(a) depicts the quality distortion curves of the test datasets as a function of the

percentage of total bytes decoded (transmitted) in order to get the original object. This graph

shows that the presented approach yields good approximations, Θ < 0.2, with only 10% of the

decoded data. Figure 5.17(b) gives a closeup of the first 10%. Note that the more orthogonal

or bigger is the object the less distortion it has along the simplification process (e.g., Pelvis,

PhlegmaticDragon and DoorPieces), while the opposite happens with sparse or small objects

(e.g., Aneurysm, Venus and DiskBrake).
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Table 5.1: Statistics of the test datasets. For each dataset: size in voxels, number of extreme vertices
(|EV |) in the original dataset, maximum used distance (dmax), number of processed pairs (|pairs|),
i.e., number of times Equations 5.4 is executed, and global computation time to simplify the object
until the AABB (in seconds).

Dataset Size |EV | dmax |pairs| Time (s.)

DoorPieces 268x72x394 11784 42 1001 0.87
Venus 55x55x192 15636 16 834 0.92
FanDisk 275x300x153 21010 64 1405 1.88
Bunny 127x128x98 24796 34 1219 1.86
Aneurysm 213x215x240 50318 40 6013 13.61
Foot 110x310x112 51,532 45 2613 4.79
Diskbrake 299x300x43 55246 32 2410 4.51
Engine 139x197x108 101114 17 2990 10.16
Ramesses 178x512x268 117840 38 4493 10.41
Athene 350x195x512 179400 73 4052 13.10
Phleg.Dragon 781x436x603 716840 124 16143 110.80
Pelvis 905x1259x1108 2082078 206 42665 471.30

Table 5.2: Encoding results of the test datasets. For each dataset: total number of generated objects
(|O|), total number of extreme vertices (|TEV |), total PEVE storage size in bytes, compression rates
with respect to a direct storage of the sequence in its raw EVM (crr) and with respect to the compressed
EVM (crc) (see Section 5.5.1), and percentage of sporadic vertices (%S-v).

Dataset |O| |TEV | bytes crr crc %S-v

DoorPieces 37 19948 41152 0.44 0.85 2.6
Venus 22 24803 43223 0.43 0.88 3.6
FanDisk 40 35166 78034 0.51 0.90 3.0
Bunny 29 41335 71153 0.47 0.85 3.6
Aneurysm 52 152691 315686 0.40 0.73 3.2
Foot 40 92834 198925 0.44 0.81 4.1
DiskBrake 34 108101 228187 0.45 0.84 4.4
Engine 29 171562 311643 0.41 0.79 4.3
Ramesses 41 204039 424275 0.43 0.81 3.6
Athene 54 286099 573122 0.39 0.77 4.3
Phleg.Dragon 81 1382414 3236326 0.36 0.69 5.3
Pelvis 119 4762211 11672096 0.31 0.61 5.3

5.7 Comparison with Other Methods

An ideal comparison would be against other methods with the same dataset at the same scale,

computing compression rates and evaluating the visual quality. However, as was pointed out

in Section 2.4, there are few methods that produce a progressive LOD sequence of bounding

volumes, and their corresponding results are reported in different ways making a global com-

parison hard. Nonetheless, those three methods in the revised literature that are more related

to presented one have been selected to perform ad-hoc comparisons (see Section 2.4.1).

The presented approach can generate sequences of objects in which pairs of consecutive

objects only change in very few vertices. However, we are aware that for progressive methods,
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Figure 5.17: Quality distortion curves as a function of the percentage of total bytes decoded.

logarithmically spaced approximations are quite good. Therefore, in the following comparisons

this kind of sequences have been generated, i.e., consecutive objects that satisfy the following

statement: |EV (Φi)| ≤ 0.5|EV (Φi−1)|,∀i = 1 . . . p. Table 5.3 shows the statistics for the test

datasets with this restriction.

Table 5.3: Statistics of the test datasets storing logarithmically spaced approximations. For each
dataset: total number of generated objects (|O|), total number of extreme vertices (|TEV |), total
PEVE storage size in bytes, compression rates with respect to a direct storage of the sequence in its
raw EVM (crr) and with respect to the compressed EVM (crc).

Dataset |O| |TEV | bytes crr crc

DoorPieces 9 16019 32895 0.55 0.98
Venus 9 20388 31477 0.46 0.98
FanDisk 10 28535 58865 0.56 0.99
Bunny 10 33298 51698 0.53 0.98
Aneurysm 12 81461 140685 0.49 0.96
Foot 12 70658 135211 0.51 0.98
DiskBrake 10 81462 140451 0.51 0.98
Ramesses 11 154473 291935 0.51 0.98
Athene 13 239607 432231 0.47 0.97
Tire 13 400328 695240 0.46 0.98
PhlegmaticDragon 15 968955 1972880 0.48 0.97
Pelvis 16 2871608 6170999 0.46 0.97
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5.7.1 Comparison with an Octree-based Method

The Bunny dataset has been tested by Samet and Kochut in an octree-based approximation

method [135]. The size of the volume data is 1283 and, therefore, the region octree has a

maximum depth of 7 and the method generates a LOD sequence of 8 objects. In this method,

29007 blocks are necessary to reconstruct the original Bunny. Each block is uniquely identified

with a locational code, zn, which for any node xm is an integer computed with the next recursive

expression:

zi =

{
0 i = m

9 · zi−1 + childtype(xi) m < i ≤ n

where the sequence < xi > represents all the directional codes on the path from the root node

xn to node xm and childtype returns the corresponding directional code.

Although this locational code supposes some compression degree, the authors do not explain

any way for further compression. However, the generated size of both codifications has been

compared in two different ways. First, for an octree with depth 7, in the worst case scenario

when all the directional codes are 8, this expression gives a maximum value of 8 · 90+ 8 · 91 +

· · ·+ 8 · 96 = 4782968, therefore, the locational code for each block will require at most 23 bits.

Thus, we estimate that the sequence of blocks of the Bunny requires, in this case, a total storage

size of 83396 bytes (29007 blocks · 23 bits). For the same dataset and at the same resolution,

PEVE requires 51698 bytes for a total of 33298 EV that encode 10 objects. Note that in this

case a vertex coordinate is encoded with log2(128) = 7 bits. This storage size is 0.619 of the

(a) 4307 bytes,
1498 blocks

(b) 60163 bytes,
20926 blocks

(c) 78485 bytes,
27299 blocks

(d) 83396 bytes,
29007 blocks

(e) 3880 bytes,2171 EV (f) 8806 bytes,4879 EV (g) 20796 bytes,
11429 EV

(h) 51698 bytes,
33298 EV

Figure 5.18: Bunny dataset. (a)-(d): Four objects generated with the octree-based method1. (e)-(h):
Four objects generated with our approach.

1Figures featured in paper [135].
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storage size of the octree-based method.

On the other hand, we have considered the streams (in plain text) generated by both methods

and then we have zipped them. For the octree-based method 29007 random numbers between 1

and 4782968 have been generated, and for PEVE, a file like that shown in Figure 5.16 has been

generated. In this case, the total storage size of the zipped data stream of the octree-based

method is 107162 bytes2. For PEVE, the zipped data stream requires 87107 bytes. Therefore,

this storage size is 0.812 of the storage size of the octree-based method.

Figure 5.18 depicts a visual comparison of the approximation quality of both methods. For

each object, it shows the quantity of decoded (transmitted) bytes and the number of elements

(blocks and EV respectively). In all the approximations PEVE gives a better indication of the

shape with less storage cost, and even EVM objects with 20796 and 51698 bytes look better

than object with 60163 bytes in the octree-based method (see Figures 5.18(b), 5.18(g) and

5.18(h).

5.7.2 Comparison with a BSP-based Method

The BSP-based method of Huang and Wang [61] (BSP, from now on) generates approximations

that are convex bounding volumes. Although this simplification method is progressive, it is lossy

and does not allow a progressive decoding, so, separated approximations have been compared.

Three datasets tested with BSP have been used: Pelvis, Venus and Foot (see Figures 5.19, 5.20

and 5.21). The basic element used in BSP is a plane represented by its 4 coefficients while for

EVM is an EV represented by its 3 coordinates. Therefore, these datasets have been converted

(a) ≈7605 nodes
(0.5%)

(b) ≈456285 nodes
(30%)

(c) ≈760475 nodes
(50%)

(d) 1520949 nodes
(original)

(e) 12030 EV (0.5%) (f) 130102 EV (6.2%) (g) 586502 EV (28.1%) (h) 2082078 EV (orig.)

Figure 5.19: Pelvis dataset. (a)-(d): Four objects generated with the BSP-based method3. (e)-(h):
Four objects generated with our approach.

2Similar results for more than 20 tests.
3Figures featured in paper [61].
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(a) ≈584 nodes,
(5%)

(b) ≈1167 nodes,
(10%)

(c) ≈3502 nodes,
(30%)

(d) 11673 nodes,
(original)

(e) 612 EV (3.9%) (f) 1360 EV (8.6%) (g) 4304 EV (27.5%) (h) 15636 EV (orig.)

Figure 5.20: Venus dataset. (a)-(d): Four objects generated with the BSP-based method2. (e)-(h):
Four objects generated with our approach.

(a) ≈771 nodes,
(2%)

(b) ≈3854 nodes,
(10%)

(c) ≈11561 nodes,
(30%)

(d) 38535 nodes,
(original)

(e) 630 EV (1.2%) (f) 4206 EV (8.1%) (g) 15324 EV (29.7%) (h) 51532 EV (orig.)

Figure 5.21: Foot dataset. (a)-(d): Four objects generated with the BSP-based method4. (e)-(h):
Four objects generated with our approach.

4Figures featured in paper [61].
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into EVM in such a way that the number of EV is approximately 4/3 the number of planes of

the initial object.

Table 5.4 gives the run times to obtain the LOD sequences in both methods. BSP has been

tested with C++ program on a PC with Intel R©Core 2 Quad CPU Q6600@2.40GHz. Note that

although this PC is faster than the one we used, the run times with BSP are higher. Figures

5.19, 5.20 and 5.21 show several approximations using BSP and PEVE for the three datasets

showing for each approximation the number of nodes (BSP), EV (PEVE) and the percentage

of these elements with respect to the initial object.

Table 5.4: Run time (in seconds) for the BSP-based method and PEVE.

Dataset BSP PEVE

Venus 3.30 0.92
Foot 12.50 4.79
Donna 2382.00 471.30

Concerning visual quality several observations can be made. For the Pelvis dataset, PEVE

approximations maintain better the genus (number of handles), the genus of the original Pelvis

is 13, and this value is maintained in the 28.1% approximation (see Figure 5.19(g)), the genus

for the 6.2% and 0.5% approximations are 10 and 3 respectively. For the Venus dataset, PEVE

approximations maintain better the concavities of the model than BSP. Finally, for the Foot

dataset, the fingers in PEVE are noticeable even in the 1.2% approximation (see Figure 5.21(e))

while in BSP they look wrapped from the 30% approximation (see Figure 5.21(c)).

5.7.3 Comparison with the BP-Octree Method

Melero et al. have tested the BP-Octree (BP-O) [94] to transmit progressively 3D objects

over the network. The PhlegmaticDragon dataset has been tested, which has 715933 triangles

(13298.9 kB in the PLY format). The generated BP-O uses a tree with a maximum depth of 8,

i.e., it corresponds to a LOD sequence with 9 objects. It contains 970985 planes and supposes

≈25000 kB of transmitted data (1.8 times the original size). The authors affirm that the final

geometry is never transmitted as a very fine approximation of the model is reached at leaf

nodes. However, if the original geometry was transmitted (true lossless), this size increases.

On the other hand, the original PhlegmaticDragon dataset has been represented in EVM

with 716840 EV (1309.9 kB, using the compressed EVM). Moreover, PEVE needs 1972.9 kB

(1.5 times the original size) to encode all the 15 generated objects. Note that the required

storage size in PEVE is noticeably smaller than using BP-O (7.8%) and that in PEVE the

original geometry is always transmitted without any extra cost.

Figure 5.22 compare the visual quality of the shape approximation of BP-O and PEVE.

For each approximation, it shows the percentage of decoded (transmitted) elements (planes

and EV respectively) with respect to the original object as well as the transmitted kB. In all

approximations PEVE gives a better indication of the shape with notably less storage cost.

Note that the BP-O approximation looks wrapped in low levels. Finally, although the authors
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(a) 2909 planes,
(0.3%) ≈ 74 kB

(b) 26603 planes,
(2.7%), ≈ 684 kB

(c) 403472 planes,
(41.6%) ≈ 10388 kB

(d) 970985 planes,
(100%) ≈ 25000 kB

(e) 3412 EV,
(0.3%) ≈ 8.3 kB

(f) 29140 EV,
(4.0%) ≈ 86.9 kB

(g) 318661 EV,
(34.0%) ≈ 782.8 kB

(h) 955901 EV,
(lossless) ≈ 1972.9 kB

Figure 5.22: PhlegmaticDragon dataset. (a)-(c): Four objects generated by the BP-O method5.
(d)-(f): Four objects generated by our approach.

do not indicate the PC used to generate the BP-O, they report the time it requires, 197.24

seconds, which is higher than to generate PEVE, 110.8 seconds.

More examples of approximations with PEVE are shown in Figures 5.23 to 5.28, indicating

on each object the percentage of decoded bytes in order to get the original (lossless) object.

865 B (2.6%) 1937 B (5.9%) 5571 B (16.9%) 13415 B (40.8%) 32895 B (100%)

Figure 5.23: Some BOPP of the DoorPieces dataset.

5Figures featured in paper [94].
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608 B (1.0%) 1282 B (2.2%) 3300 B (5.6%) 9617 B (16.3%) 22588 B (38.4%) 58865 B (100%)

Figure 5.24: Some BOPP of the FanDisk dataset.

8464 B (6.0%) 18072 B (12.8%) 39349 B (28.0%) 79047 B (56.2%) 140685 B (100%)

Figure 5.25: Some BOPP of the Aneurysm dataset.

275 B (1.0%) 7241 B (2.5%) 16866 B (5.8%) 44777 B (15.3%) 108270 B (37.1%) 291935 B (100%)

Figure 5.26: Some BOPP of the Ramesses dataset.

6404 B (1.5%) 16524 B (3.8%) 37090 B (8.6%) 82993 B (19.2%) 169307 B (39.2%) 432231 B (100%)

Figure 5.27: Some BOPP of the Athene dataset.
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11672 B (1.7%) 26204 B (3.8%) 60171 B (8.7%) 135518 B (19.5%) 302612 B (43.5%) 695240 B (100%)

Figure 5.28: Some BOPP of the Tire dataset.

5.8 Simplification and Structural Parameters

In this section, experimental tests of the application of the simplification method as support in

the structural parameters computation are presented and discussed. The objective is to show

that the proposed simplification method not only can be used in classical applications such as

collision detection, but also in the structural parameters computation.

5.8.1 Simplification and Pore-Size Distribution

Regarding the pore-size distribution, our hypothesis is that an approximation of a porous sam-

ple, generated with the proposed simplification method, can retain enough relevant information

and, as the approximation will contain less number of basic elements (EV in EVM and boxes

in CUDB) than the original dataset, it will be processed faster. This fact can be useful in

several situations. For instance, suppose that we have a large number of samples, and we want

to get a previous idea of their pore-size distribution in order to select the more outstanding

samples, which will be further analyzed in more detail. Then, to prove this hypothesis, the

pore-size distribution of all datasets depicted in Figure 4.13 have been computed, comparing

the corresponding histograms and run times for the original object and for two approximations.

The approximations of each dataset have been computed using Algorithm 16 with dmax = 1

and dmax = 2, respectively. Table 5.5 shows the run times to compute the pore-size distribution

of each dataset and its approximations. Note that the time required by the approximations

is less than the time required by the original object in all cases, even considering the time

Table 5.5: Time required to apply MIP to the original object and to each approximation (MIP), and
time required for the simplification (Simp) and total time (Total).

Dataset
Original dmax = 1 dmax = 2

MIP MIP Simp. Total MIP Simp. Total

Scaffold 2.0 0.4 1.2 1.6 0.1 1.7 1.8
Trabecula 11.8 4.0 2.4 6.4 1.5 4.4 5.9
Glass 3.9 1.4 2.1 3.5 0.7 5.0 5.7
Stone 39.7 9.9 13.9 23.8 1.6 21.2 22.8
Soygel 446.2 38.0 155.4 193.4 12.6 228.6 241.2
Tween 230.6 63.2 28.0 91.2 26.2 54.8 81.0
PLA 271.7 55.9 63.0 118.9 22.4 111.6 134.0
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required to compute the corresponding approximation for dmax = 1. For dmax = 2 this is also

true except for the Glass dataset. But this dataset and Scaffold are the datasets showing the

smaller run times. For the remaining five datasets the total run time is less than 60% of the

run time of the original object. Finally, note that the total run times for dmax = 1 are similar

to those for dmax = 2 and therefore we can conclude that the approximation corresponding to

dmax = 1 could be a good choice.

All the generated histograms show a similar behavior. Here, the histograms of two of the

biggest datasets (Soygel and Tween) are presented (see Figures 5.29 and 5.30). From the

analysis of these histograms, it can be noted that curves corresponding to the original object

and the approximations are very similar, specially with those corresponding to dmax = 1. It

can also be noted that, the more simplified is the object the more pores information is lost;

however, as expected, with the first approximation (dmax = 1), the objects retain enough

relevant information and are processed more efficiently.

Figure 5.29: Absolute (left) and relative (right) pore-size distribution for the Soygel sample.

Figure 5.30: Absolute (left) and relative (right) pore-size distribution for the Tween sample.

5.8.2 Simplification and Connectivity

Although connectivity preservation is not an objective of the simplification method, it has

been experimentally observed how the simplification alters the genus. Our hypothesis is that,
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datasets containing big holes will better preserve its genus than those datasets containing very

small holes. To prove this hypothesis, some datasets depicted in Figure 4.20 have been simplified

using Algorithm 17 with n = 8, i.e., until the AABB is obtained, and the genus of each

approximation has been computed.

Figure 5.31 shows the genus as a function of the percentage of total bytes required to encode

the LOD sequence. Each point in the curves corresponds to an approximation and the graphs

are drawn in a logarithmic scale to show more details in the first approximations. Figure 5.31(a)

corresponds to datasets with few and big holes, while Figure 5.31(b) corresponds to datasets

with a lot of small holes. Note that, in the former, the genus is preserved in all datasets until

approximations with 50% of encoded data, in some cases until 10%, and in the Tool dataset

even until 1%. Observe that the genus of the Knot dataset takes a leap below 30% of encoded

data. This is because as the model becomes coarser, the discretized surface of the object is

self-intersecting producing artificial tunnels. Something similar occurs with the Pegasus and

Pelvis datasets. In order to show simple cases, a torus and an open torus (C-shaped object)

have been tested. The torus has a genus of 1 and this value is preserved in all but the last

approximation (the AABB). In the case of the open torus, it has initially a genus of 0, but as

it is simplified, it is reattached increasing its genus to 1.

(a)

(b)

Figure 5.31: Genus values as a function of the percentage of total bytes decoded.
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On the other hand, note in Figure 5.31(b) that the genus of datasets with a lot of holes

quickly decreases. This is because several holes measure one or two voxels in any of their

dimensions, which implies that they are closed in the first approximations. Therefore, after this

experimental analysis, it can be concluded that, the bigger the holes, the better the genus is

maintained throughout the simplification.

5.8.3 Simplification, Sphericity and Roundness

Regarding the sphericity and roundness indices, it has been experimentally observed how the

simplification alters this values. As the sphericity is most dependent on elongation, whereas

roundness is dependent on the sharpness of the edges and corners, our hypothesis is that spheri-

city is better preserved than roundness because the simplification method keeps the AABB size

in all the approximations, but the edges and corners tend to disappear. To prove this hypothesis,

all the rock samples depicted in Figure 4.26 have been simplified using Algorithm 17 with n = 8,

computing the sphericity and roundness indices of each approximation. All the samples show a

similar behavior. For clarity purposes, graphs for seven samples (see Figure 5.32) are presented.

They are representative of the distribution of the sphericity and roundness indices.

R1 R2 R3 R4 R5 R6 R7

Figure 5.32: Rock samples tested with the simplification method.

Figures 5.33 and 5.34 show the sphericity and roundness indices respectively, as a function

of the percentage of total bytes required to encode the LOD sequence. Each point in the curves

corresponds to an approximation and the graphs are drawn in a logarithmic scale to show

more details in the first approximations. Note in Figure 5.33 that, the sphericity index changes

slightly in all samples until approximations with 10% of encoded data, and in some samples

(R2, R3 and R7) until 1%. On the other hand, note in Figure 5.34 that, as expected, the

Figure 5.33: Sphericity



5.9 Conclusions 113

Figure 5.34: Roundness

roundness index is not well preserved. However, for the first approximations (around 50% of

encoded data), it is almost the same that the original sample in all cases.

The variability of the values of the sphericity and roundness indices in the last approxima-

tions is due to the fact that sample’s shape becomes increasingly coarse in block form. Therefore,

after this experimental analysis, it can be concluded that the simplification method preserves

the sphericity index until approximations with 10% of decoded data, but the roundness index

is similar only for the first approximation.

5.9 Conclusions

This chapter has presented an approach to simplify orthogonal polyhedra and 3D binary images

represented with EVM. It generates a LOD sequence of BOPP, which fulfills the common

subset and AABB properties of bounding structures. The approach is based on a merging

faces strategy and deals with OPP with any number of holes and connected components. It

also includes a technique, based on model continuity, for a better shape preservation. Besides,

the method takes full advantage of the efficiency and robustness of EVM Boolean operations,

especially XOR. Finally, a data structure, PEVE, to encode in a progressive and lossless way

the generated LOD sequence has been presented.

From experimental results, it can be concluded that the LOD sequence generated by the

proposed simplification method is satisfactory in terms of quality of the approximation, al-

though better quality is obtained when more orthogonal is the object’s shape. Compared with

other approaches, PEVE gives good compression rates and run times. Moreover, the gener-

ated bounding approximations are tighter, in general, than in other approaches, maintaining

concavities, genus and other shape features at a very compressed size.
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Finally, experimental tests have shown that the proposed simplification method can be

employed as support in the structural parameters computation, since simplified objects provide

enough relevant information and they have faster run times.



CHAPTER6
Practical Applications

6.1 Introduction

This chapter presents two practical applications developed as part of multidisciplinary and

collaborative research. Both applications compute structural parameters of datasets coming

from real samples and rely on geometric techniques.

The first application (see Section 6.2) is a customized software analysis tool, which uses digi-

tal image processing techniques to automatically detect characteristic viscosity points (CVP)

from a collection of 2D images of the sintering process of basalt or rock samples. This tool

was developed to help determine the temperatures corresponding to CVP together with the

hot-stage microscopy technique.

The second practical application (see Section 6.3) is a software that computes the sphericity

and roundness indices of a real silica sand dataset coming from nano CT.

6.2 Hot-stage Microscopy Tool

6.2.1 Introduction

Hot-stage microscopy (HSM) is an analytical technique which combines the best properties of

microscopy and thermal analysis to enable the characterization of the physical properties of

materials as a function of temperature [173]. Viscosity-temperature curves can be obtained by

combining HSM with a dilatometric analysis. The values corresponding to the morphological

changes that occur during heating, and the different stages or physical changes that occur in

the material in the process, make it possible to obtain accurate information on the behavior of

the materials when they are subjected to a heating cycle.

During the experimental sintering process of a sample, a camera can take a picture at a

certain interval of time, getting at the end a serie of images that depicts the evolution of the

sample as it melts over time. CVP corresponding to Scholze’s definition [142] of this process

evolution are as follows:

1. First Shrinkage: Shrinkage starts.

115
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2. Maximum Shrinkage: Before the material starts to soften.

3. Softening: Softening starts.

4. Ball: The material forms a sphere.

5. Half ball: The material forms a semi-sphere.

6. Flow: The material is fused.

6.2.2 Input and Preprocessing

Every dataset consists of a collection between 300 and 700 grayscale TIFF images of 2048×1536

and 16 bits each one. Figure 6.1(a) shows one of these images. Each collection depicts the

evolution over time of the melting in the furnace of a sample. Associated with each collection

there is the applied temperature increment in ◦C/min. and a list of temperature ranges, where

for each range the following information is provided: the frequency (images/min.) at which

the pictures were taken, the corresponding first image index and the initial temperature of the

range. All this information allows to tag each image with the furnace temperature at the time

it was taken.

In order to obtain the desired measurements, the image needs to be preprocessed first.

This preprocessing basically consists of a binary threshold filter, a noise reduction filter and an

alignment operation.

Binary Threshold Filter

This filter reduces the gray scale image to a black and white one. An automatic threshold value

is computed in run time taking into account the arithmetic mean and the standard deviation

of the different gray values (see Figure 6.1(b)). However, if images have a poor contrast, the

computed threshold could not be appropriated to segment them correctly. Therefore, this

parameter can be defined by the user.

Noise Reduction

The previous operation can generate salt and pepper noise. There exist several image processing

filters that can be applied to reduce the noise. As tiny parts are considered noise instead of

features (see Figure 6.1(c)), a classical morphological opening and closing operations are applied

to the binarized image.

Alignment and Clip Operation

Images can be sloped because the camera may have been misaligned. In order to correctly

align them, the pixel column in the right half of the image and the pixel column in the left half

closest to the sample, which contain the highest number of white pixels, are detected. Then,

the correct angle to rotate the image is computed and applied to the image. Moreover the

excess floor is clipped (see Figure 6.1(d)).
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(a) (b)

(c) (d)

Figure 6.1: Example of a captured basalt image. (a) Original image. (b) After binary threshold filter.
(c) After noise reduction (Observe that the image is not aligned) (d) After alignment operation.

6.2.3 Distinctive Data Detection

After the preprocessing, a segmentation is required to separate the sample from the background.

In order to do this some distinctive data are detected first.

Distinctive Data

Distinctive data is the set of variables that help to calculate the required parameters to obtain

the CVP. These variables are (see Figure 6.2):

V0 Pixel column in the left half closest to the sample with more white pixels.

V1 Pixel column in the right half closest to the sample with more white pixels.

a Point in the left-top corner of the sample.

b Point in the right-top corner of the sample.

c Point in the left-bottom corner of the sample.

d Point in the right-bottom corner of the sample.

wmax Length of the sample’s longest row.

hmax Length of the sample’s longest column.
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Figure 6.2: Segmentation and distinctive points

area Area of the sample.

perimeter Perimeter of the sample.

Points c and d correspond to the position of the first white pixel that appears (at the bottom

of the image) from the center to the left and right of the image respectively. These positions

are used in a flood fill algorithm in order to get a segment image like that shown in Figure 6.2.

After segmenting, wmax and hmax, as well as the perimeter and the area of the sample, can

be computed.

Points a and b are not trivial to detect. These points are estimated based on the traces of

lines from the points c and d to the corners of the segmented sample AABB. Then, the position

of the first white pixels that these lines meet, correspond to the points a and b.

6.2.4 CVP Computation

Let S = {s1, s2, . . . , sn} be the set of n images that depict the evolution over time of the melting

in a furnace of a sample. For each image in S, the above described preprocessing is applied to

compute all its distinctive data. After that, the set of segmented images is ready to detect the

six CVP corresponding to Scholze’s definition.

First and Maximum Shrinkage

First and maximum shrinkage are characterized by the sample’s size starting to decrease and

reaching its maximum decrease respectively. In order to detect these CVP, the evolution of

the sample’s area along time is plotted with a line chart. The common characteristic in these
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kind of charts is that the first shrinkage occurs approximately when the line begins to drop

(see Figure 6.3), from here, the sample continues decreasing and when the line is flat again, the

maximum shrinkage is reached. At the beginning of the melting process, the sample can inflate

briefly, but, according to the experts, it generally occurs before 200◦C. So, the first values of

the chart under this temperature are ignored.

Figure 6.3: Graph of the area sample trough time.

To detect this CVP in the chart, the slope angle is computed at every point. When it is

large enough, the image si at this point corresponds to the first shrinkage CVP. Then, when

the slope angle tends to zero again, the image sj at this point corresponds to the maximum

shrinkage CVP. To increase measurement accuracy, the chart points are analyzed in groups of

3. Initially, an angle of 15◦ is considered by default as large enough to detect the curvature.

However, this parameter can be defined by the user.

Softening

The softening point is characterized by the disappearance of sharp parts and the beveling of

the corners of the sample (corners and peaks start to soften). Three different alternatives can

be applied to obtain this CVP.

1. The first alternative gets the image si having the ratio between si and its AABB areas

closest to 1.
si.area

area(AABB(si))
≈ 1 (6.1)

2. The second alternative gets the image si having the ratio between the line segment length

from a to d (or from c to b) and the diagonal length of its AABB closest to a given

threshold. This threshold is defined by the user and is initially set to 0.95.

length(si.a, si.d)

diagonal(si)
≈ threshold, length(si.c, si.b)

diagonal(si)
≈ threshold (6.2)

3. The third alternative is based on the Freeman chain code[39]. The Freeman code with

8-connected grid (see Figure 6.4) is used to encode in a counter-clockwise sense the 10%
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of the top of the image (see Figure 6.5(a)). Since the softening CVP is characterized by

corners and peaks starting to disappear, the image with the most flat top is a candidate

to represent this point. Therefore, the softening CVP is estimated as that image si having

a chain code with the maximum ratio between the number of occurrences of 6-direction

and the size of the chain. An example is shown in Figure 6.5(b).

max(countCCode6(si)/sizeCCode(si)) (6.3)

3 4 5
2 ∗ 6
1 0 7

Figure 6.4: Freeman code scheme with 8 directions.

(a)

(b)

Figure 6.5: Example of Freeman chain code. (a) The top 10% of a sample. (b) Zoom and its chain
code: 6766765666666665666. . .

Equations 6.2 and 6.3 were selected in the final application because they give a more accurate

result for the softening CVP.

Ball

This point is characterized by the sample’s shape being a ball. When the sample is close

to a circular shape, it can be seen as a circle inscribed in a square. However, the sample

actually never forms a perfect circle shape but a circular segment (see Figure 6.6(a)), where

approximately the 15% of the circle height is lost.

Then, the ratio between the line segment defined by the left-bottom corner of AABB p0

and the point b (or by the right-bottom corner of AABB and a) of length g, and the AABB

diagonal of length d, is used to determine the ball CVP (see Figure 6.6(b)).

To determine g, a line-circle intersection is performed. The line-circle intersection equation

for a line starting at point p0 = (0, 0) is defined as |v|2t2−2(v · o)t+|o|2−r2 = 0, where v is the

director vector of the line and o the center of the circle with radius r. In this case, v = (2r, 1.7r)
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(a) (b)

Figure 6.6: Circular segment. (a) A real sample shape. (a) Geometric representation.

and o = (r, 0.7r). Thus, the quadratic equation is 0.689r2t2 − 0.638r2t+ 0.049r2 = 0. Solving

for t, t ≈ 0.81463, b ≈ (1.68292r, 1.43048r), and the desired ratio g/d ≈ 0.84146.

Note that b corresponds to the point detected in the distinctive data. Therefore, the ball

CVP is estimated as that image si having the ratio g/d closest to 0.84146.

length g(si)

diagonal(si)
≈ 0.84146 (6.4)

Half Ball

This point is characterized by the sample shape being a semi-circle. As this CVP appears after

the ball CVP, it can be detected as the image si having a width twice its height.

si.wmax
si.hmax

≈ 2 (6.5)

Flow

The las CVP is assigned to the image si having the ratio si.hmax/s1.hmax closest to a constant

k. According to the experts, k is usually fixed between 10 and 16%.

si.hmax
s1.hmax

≈ k (6.6)

6.2.5 Experimental Results

The software has been written in C++ using the GTKMM toolkit as its interface. It has

been tested on a PC Intel R©Core 2 Duo CPU E6600@2.40GHz with 3.2 GB RAM and running

Linux. The software save all processed data for future analysis and allows users to modify some

parameters such as the angle for the shrinkage CVP, and the thresholds for the binary filter

and the softening and flow CVP points. Figure 6.7 shows screenshots of the developed software

Hot-stage Microscopy Tool.
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Hot-stage Microscopy Tool has been tested with several real datasets. Here, results for two

glass samples obtained from wastewater treatment plants are presented. A dataset contains

369 images and the other one 667 images. Figure 6.8 shows the results, in these cases all of the

CVP were detected using the default parameters.

(a)

(b) (c)

Figure 6.7: Screenshots of Hot-stage Microscopy Tool. (a) Main interface. (b) Temperatures window.
(c) Parameters window.
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(a)

(b)

Figure 6.8: Results of Hot-stage Microscopy Tool for two glass samples obtained from wastewater
treatment plants.
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6.3 Analysis of Real Silica nano CT

6.3.1 Introduction

Silica sand is one of the most common varieties of sand found in the world. It is used for a wide

range of applications. Sand consists of small grains or particles of mineral and rock fragments,

where the dominant component is the mineral quartz, which is composed of silica (silicon

dioxide). Sand having high silica levels and used for purposes other than the construction is

referred as silica sand or industrial sand.

Industrial uses of silica sand depend on its purity and physical characteristics. Some of the

more important physical properties are: grain size, grain shape (sphericity and roundness), grain

strength and refractoriness. For instance, silica sand particles need to have a high sphericity and

roundness, as the more round and spherical is the particle, the more resistant that particle is to

crushing or fragmenting. In this section, we focus on the sphericity and roundness computation

of the grains of a real silica nano CT.

6.3.2 Input and Preprocessing

We have been provided with a 32-bit gray scale dataset in RAW format with dimensions

131×281×332 of a silica nano CT. Some 2D slices of this dataset are depicted in Figure 6.9.

Figure 6.9: 2D slices of a silica nano CT.

In order to obtain the desired measurements, the dataset needs to be preprocessed. This

preprocessing basically consists of the next steps:

1. Convert the original dataset to a 8-bit voxel model.

2. Scale the voxel model, via trilinear interpolation, to twice its size in order to better define

the grain shapes.

3. Apply a binary threshold filter.

4. Remove noise applying morphological opening and closing operations.
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Step 3 requires a threshold that allows to yield a good segmentation of the grain shapes.

The gray value histogram is shown in Figure 6.10, in this case, high values of gray represent the

foreground and the curve helps to determine where the background ends and the foreground

begins. Note that the curve falls off around the value of 50. Therefore, thresholds of 45, 50 and

55 have been used to binarize the dataset. Figure 6.11 shows the sample after the corresponding

threshold and noise removal, where for each threshold, the number of connected components

(CC), considering 6-connectivity, is indicated. Observe that the result of applying a threshold

of 45 looks like a model having several agglomerated grains. The result of applying a threshold

of 55 seems to lose information. Therefore, we consider that the grain shapes are better defined

applying a threshold of 50.

After the preprocessing, the voxel model is converted to its corresponding CUDB-represen-

tation in order to get the connected components, which represent the grain particles. Figure 6.12

shows a graph of the number of CC according to their volumes. CC having a very small volume

are not representative of a grain particle. According to this graph, we consider as grains those

Figure 6.10: Gray value histogram of the sample.

(a) CC=1894 (b) CC=1181 (c) CC=753

Figure 6.11: Dataset after segmentation and noise removal with thresholds (a) 45, (b) 50 and (c) 55.
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Figure 6.12: Number of connected components according to their volumes.

Figure 6.13: Resulting grain particles with volume larger than 200 voxels.

CC with a volume larger than 200 voxels (shapes larger than approximately 6×6×6). Therefore,

the resulting dataset consists of 650 CC. See Figure 6.13 where the resulting grains are depicted.

6.3.3 Grain Properties Computation

After the grain particles have been correctly defined, they are converted to its EVM-representa-

tion in order to compute its sphericity and roundness indices.

Sphericity

The sphericity index of each connected component is computed using Equations 2.15 and 2.19.

Figures 6.14 and 6.15 show the bar charts that represent the number of occurrences of the

corresponding sphericity index. Although the voxel-based scheme used to compute the surface

area (see Section 4.4.2) is not well suited for too small objects, both graphs are similar and give

an estimation of the sphericity distribution.



6.4 Conclusions 127

Figure 6.14: Occurrences of sphericity indices using Equation 2.15.

Figure 6.15: Occurrences of sphericity indices using Equation 2.19.

Roundness

Regarding roundness, for each connected component, its 3D roundness index is computed using

Equation 2.21) and the EVM-based roundness (see Section 4.4.3). Figures 6.16 and 6.17 show

the bar charts that represent the number of occurrences of the corresponding roundness index.

Again, although the roundness indices are computed using different approaches, both graphs

are similar and give an estimation of the roundness distribution.

6.4 Conclusions

This Chapter has presented two practical applications, which have been used as support by

experts in order to extend their observations and help reach conclusions about the studied

samples. Hot-stage Microscopy Tool has been satisfactorily used by experts to establish the

relationship between the chemical composition, temperature and viscosity of diverse samples

such as basalts rocks and glasses. Results of the second application have been used by experts
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in nanotechnology who are interested in segmenting and analyzing the sphericity and roundness

of the silica nano sample presented here.

Figure 6.16: Occurrences of roundness indices using Equation 2.21.

Figure 6.17: Occurrences of roundness indices using Equation 4.29 (EVM-roundness).



CHAPTER7
Conclusions and Future Work

7.1 Conclusions

This thesis has proposed methods for the computation of several structural parameters of binary

volume datasets coming from both phantom and real samples. The Extreme Vertices Model

and a new proposed decomposition model, Compact Union of Disjoint Boxes (CUDB), have

been used to represent the datasets and to compute structural parameters in an efficient and

compact way. Moreover, a new EVM-based method to simplify binary volumes has been also

presented. The main contributions of the thesis are summarized as follows:

• An improved decomposition model for OPP. Experimental results show that CUDB has

several advantages compared with other decomposition models such as OUDB-extended,

mainly its performance in methods such as CCL and collision detection used in the struc-

tural parameters computation.

• A CUDB-based virtual porosimeter, which simulate mercury intrusion at increasing pre-

ssures, like the porosimeter lab device. The main advantage of this method is its perfor-

mance with respect to previous approaches as it does not require a prior computation of

the skeleton.

• A method to compute the Euler characteristic and the genus of binary volumes. This

method exploits the advantages of CUDB and is notably faster (up to two orders of

magnitude) than previous approaches.

• Methods to estimate sphericity and roundness indices based on the computation of the ob-

ject’s OBB from EVM. Several sphericity indices have been computed from the OBB. An

EVM-based roundness method based on a ray-casting-like approach has been presented,

which shows good correlations with previous methods and is faster than them.

• A new approach to simplify binary images represented with EVM. It generates a LOD

sequence of BOPP, which fulfill common properties of bounding structures. The method

deals with OPP with any number of holes and connected components, and it encodes in a

129
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progressive and lossless way the generated LOD sequence. Compared with other approa-

ches, the method gives good compression rates and run times, and the approximations

are tighter, in general, maintaining concavities, genus and other shape features. More-

over, this simplification method can be employed as support in the structural parameter

computation since the approximations provide enough relevant information and have a

faster run time than the original object.

• Two practical applications used by experts. Hot-stage Microscopy Tool has been satisfac-

torily used to detect characteristic viscosity points of basalt and glass samples. Sphericity

and roundness methods have been applied in a real silica nano CT.

The main advantage of the methods presented in this thesis to compute structural para-

meters is its performance with respect to previous approaches. On the other hand, real samples

scanned at high resolution usually generate huge datasets that require a lot of memory and

large processing time to permit their analysis. However, experimental test show that simplified

objects generated by the proposed simplification method, provide enough relevant information

while allowing faster run times.

7.2 Future Work

In this thesis, three different research fields related with binary volumes have been dealt: model

representation, structural parameters computation and model simplification. Several activities

can be proposed for each of these fields as future work:

• Development of the CUDB to B-Rep conversion. An interesting method would be the

conversion from CUDB to B-Rep. We think it is possible to obtain a B-Rep model

analyzing the boxes and its neighborhood.

• Analyze if any of the six ABC-sortings in CUDB produces an optimal number of disjoint

boxes. CUDB represents objects with a small number of elements. However, if any ABC-

sorting produces the smallest number of orthogonal disjoint boxes that cover the OPP has

not been studied. Otherwise, one could think of allowing overlapping boxes in order to

further reduce this number. Although this implies modifying the developed algorithms.

• Development of a method for pore space partitioning using a different approach to virtual

porosimetry and avoiding the skeleton computation. The narrow throats detection pre-

sented in Section 4.2.3 can be applied to this method. If the lengths of all throats in the

porous space are computed at once, they can be analyzed in order to detect the shortest

paths that connect the solid space. Then, those paths that best split the porous space can

be determined. In 2D this method is simple, since throats are represented as lines. How-

ever, in 3D case, the throats are represented as rectangles and the general oblique throat

by three rectangles, which requires some thought in order to provide a robust technique.
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• Improvement of the connectivity computation. In the proposed method, the object’s

complement is computed from EVM, therefore, conversions from CUDB to EVM and

vice versa are required. The development of a method to compute the object’s comple-

ment directly from its CUDB-representation will improve the run time of the connectivity

computation.

• Development of a method that, from an EVM model, detects the surface voxels and

classifies them into the nine classes defined by the voxel-based scheme [181] used in Section

4.4.2 to estimate the real surface area of an object. From the EVM to B-Rep algorithm

[3], it can studied an approach that directly detects and classifies the surface voxels.

• Development of a variant of the simplification method, which preserves the connectivity,

i.e., the genus. It implies defining a new treatment of the void space, where the faces

that define the holes must be exhaustively analyzed in order to prevent them from closing

completely.

• We have compared PEVE in storage and processing cost with methods that produce a

progressive LOD sequence of bounding volumes. With the aforementioned variant of the

method, the comparison can be extended to methods that use other lossless representation

models for binary volumes such as run-length-encoding [117], ray representation [95] or

triangle meshes obtained with a high accuracy to the voxel models [8, 9].

• Study of an EVM or CUDB-based data structure to encode time-varying datasets. A

variant of the PEVE structure used by the simplification method presented in this thesis

can be applied to this kind of datasets, where each 3D frame corresponds to one object.

If a dataset slightly changes frame-to-frame, it can be efficiently encoded. However, in

the opposite case, PEVE structure is not suitable and a new approach must be devised.
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[6] C. Andújar. Octree-based Simplification of Polyhedral Solids. PhD thesis, LSI-Universitat
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