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ABSTRACT 

Characterization of aquifers hydraulic parameters is a difficult task that requires field 

information. Most of the time the hydrogeologist relies on a group of values coming 

from different test to interpret the hydrogeological setting and possibly, generate a 

model. However, getting the best from this information can be challenging. 

In this thesis, three cases are explored. First, hydraulic conductivities associated with 

measurement scale of the order of 10−1 m and collected during an extensive field 

campaign near Tübingen, Germany, are analyzed. Estimates are provided at coinciding 

locations in the system using: the empirical Kozeny-Carman formulation, providing 

conductivity values, based on particle size distribution, and borehole impeller-type 

flowmeter tests, which infer conductivity from measurements of vertical flows within a 

borehole. Correlation between the two sets of estimates is virtually absent. However, 

statistics of the natural logarithm of both sets at the site are similar in terms of mean 

values and differ in terms of variogram ranges and sample variances. This is consistent 

with the fact that the two types of estimates can be associated with different (albeit 

comparable) measurement (support) scales. It also matches published results on 

interpretations of variability of geostatistical descriptors of hydraulic parameters on 

multiple observation scales. The analysis strengthens the idea that hydraulic 

conductivity values and associated key geostatistical descriptors inferred from different 

methodologies and at similar observation scales (of the order of tens of cm) are not 

readily comparable and should not be embedded blindly into a flow (and eventually 

transport) prediction model. 

Second, a data-adapted kernel regression method, originally developed for image 

processing and reconstruction is modified and used for the delineation of facies. This 
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non-parametric methodology uses both the spatial and the sample value distribution, to 

produce for each data point a locally adaptive steering kernel function, self-adjusting the 

kernel to the direction of highest local spatial correlation. The method is shown to 

outperform the nearest-neighbor classification (NNC) in a number of synthetic aquifers 

whenever the available number of data is small and randomly distributed. Still, in the 

limiting case, when the domain is profusely sampled, both the steering kernel method 

and the NNC method converge to the true solution. Simulations are finally used to 

explore which parameters of the locally adaptive kernel function yield optimal 

reconstruction results in typical field settings. It is shown that, in practice, a rule of 

thumb can be used to get suboptimal results, which are best when key prior information 

such as facies proportions is used.  

Third, the effect of water temperature fluctuation on the hydraulic conductivity profile 

of coarse sediments beneath an artificial recharge facility is model and compared with 

field data. Due to the high permeability, water travels at a high rate, and therefore also 

water with different temperature is also present on the sediment under the pond at 

different moments, this translates into different hydraulic conductivity values within the 

same layer, even though all the other parameters are the same for this layer. Differences 

of almost 79% in hydraulic conductivity were observed for the model temperatures (2 

°C – 25 °C). This variation of hydraulic conductivity in the sediment below the 

infiltration pond when water with varying temperature enters the sediment, causes the 

infiltration velocity to change with time and produces the observed fluctuation on the 

field measurements.  
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RESUMEN 

La caracterización de los parámetros hidráulicos de los acuíferos es una tarea difícil que 

requiere información de campo. La mayoría de las veces el hidrogeólogo se basa en un 

grupo de valores procedentes de diferentes pruebas para interpretar la configuración 

hidrogeológica y posiblemente , generar un modelo . Sin embargo, obtener lo mejor de 

esta información puede ser un reto. 

En esta tesis se analizan tres casos. Primero, se analizan las conductividades hidráulicas 

asociadas a una escala de medición del orden de 10 m− 1 y obtenidas durante una extensa 

campaña de campo cerca de Tübingen, Alemania. Las estimaciones se obtuvieron en 

puntos coincidentes en el sitio, mediante: la formulación empírica de Kozeny - Carman, 

proporcionando valores de conductividad, con base en la distribución de tamaño de 

partículas y las pruebas del medidor de caudal de tipo impulsor en el pozo, el cual 

infiere las medidas de conductividad a partir de los flujos verticales dentro de un pozo. 

La correlación entre los dos conjuntos de estimaciones es prácticamente ausente. Sin 

embargo, las estadísticas del logaritmo natural de ambos conjuntos en el lugar son 

similares en términos de valores medios y difieren en términos de rangos del 

variograma y varianzas de muestra. Esto es consecuente con el hecho de que los dos 

tipos de estimaciones pueden estar asociados con escalas de apoyo de medición 

diferentes (aunque comparables). También coincide con los resultados publicados sobre 

la interpretación de la variabilidad de los descriptores geoestadísticos de parámetros 

hidráulicos en múltiples escalas de observación . El análisis refuerza la idea de que los 

valores de conductividad hidráulica y descriptores geoestadísticos clave asociados al 

inferirse de diferentes metodologías y en las escalas de observación similares (en el caso 
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del orden de decenas de cm) no son fácilmente comparables y debe ser utilizados con 

cuidado en la modelación de flujo (y eventualmente, el transporte) del agua subterránea. 

En segundo lugar, un método de regresión kernel adaptado a datos, originalmente 

desarrollado para el procesamiento y la reconstrucción de imágenes se modificó y se 

utiliza para la delimitación de las facies. Esta metodología no paramétrica utiliza tanto 

la distribución espacial como el valor de la muestra, para producir en cada punto de 

datos una función kernel de dirección localmente adaptativo, con ajuste automático del 

kernel a la dirección de mayor correlación espacial local. Se demuestra que este método 

supera el NNC (por su acrónimo en inglés nearest-neighbor classification) en varios 

casos de acuíferos sintéticos donde el número de datos disponibles es pequeño y la 

distribución es aleatoria. Sin embargo, en el caso límite, cuando hay un gran número de 

muestras, tanto en el método kernel adaptado a la dirección local como el método de 

NNC convergen a la solución verdadera. Las simulaciones son finalmente utilizadas 

para explorar cuáles parámetros de la función kernel localmente adaptado dan  

resultados óptimos en la reconstrucción de resultados en escenarios típicos de campo. 

Se demuestra que, en la práctica, una regla general puede ser utilizada para obtener 

resultados casi óptimos, los cuales mejoran cuando se utiliza información clave como la 

proporción de  facies. 

En tercer lugar, se modela el efecto de la fluctuación de la temperatura del agua sobre la 

conductividad hidráulica de sedimentos gruesos debajo de una instalación de recarga 

artificial y se compara con datos de campo. Debido a la alta permeabilidad, el agua se 

desplaza a alta velocidad alta, y por lo tanto, agua con temperatura diferente también 

está presente en el sedimento bajo el estanque en diferentes momentos, esto se traduce 

en diferentes valores de conductividad hidráulica dentro de la misma capa, a pesar de 

que todos los demás parámetros son los mismos para esta capa. Se observaron 



v 
 

diferencias de casi 79 % en la conductividad hidráulica en el modelo, para las 

temperaturas utilizadas (2 º C - 25 º C ). Esta variación de la conductividad hidráulica en 

el sedimento por debajo de la balsa de infiltración cuando el agua de temperatura 

variable entra en el sedimento, causa un cambio en la velocidad de infiltración con el 

tiempo y produce las fluctuacciones observadas en las mediciones de campo. 
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1. INTRODUCTION 

1.1.  MOTIVATION AND OBJECTIVES 
 

Correlation of aquifer and aquitard materials can be challenging, due to the intrinsic 

heterogeneity in the geometry and genesis of the geological units and a general scarcity 

of data. Generating reliable hydrogeological data is both, time consuming and 

expensive, which makes impractical the efforts towards an exhaustive mapping of a 

given area and instead point measurements can be obtained by local-scale test in order 

to get representative values for the aquifer hydraulic parameters.  

 

These tests or methods can take place on the field or at the lab, and each particular 

method may provide a different parameter estimate that can then be associated with the 

same location within the natural aquifer. Geostatistical methods provide a means for 

exploring the correlation structure, allowing comparisons of the results from different 

geological settings and providing information about spatial distribution of the hydraulic 

parameters that can be used in numerical groundwater flow models. The first goal of 

this thesis is to explore the degree of correlation between conductivity values associated 

with interpretation from two different methods (impeller flowmeter measurements and 

particle-size distributions (field and laboratory –based methods, respectively)) but for 

samples from the same location by means of basic statistics and key geostatistical 

parameters. 

 



Chapter 1: Introduction 
 

2 
 

Generally, what the hydrogeologist has is a group of scattered data of hydraulic 

parameters (grain size, hydraulic conductivity, infiltration rates, etc.) from a given area; 

if there is not any other information available (i.e. a geology map) the first approach is 

to correlate those data by an interpolation method, that is, distinguishing the zone in 

areas of similar characteristics (i.e. facies). Many methods exist for scattered data 

interpolation (Franke, 1982), and some have been used for geologic facies 

reconstruction (i.e. Ritzi et al., 1994, Guadagnini et al., 2004, Tartakovsky & Wohlberg 

2004, Wohlberg et al., 2006, Tartakovsky et al., 2007). The second goal of this thesis is 

to modified a non-parametric method (a data-adapted kernel regression function), 

designed for image processing (Takeda et al. 2007), and use it to create facies maps. 

 

Daily water temperature fluctuation on surface water bodies is a common phenomenon 

due to environmental temperature changes; generally, natural water temperature 

variations can be of two types, seasonal variations (an annual cycle of low temperature 

during the winter and higher temperature during the summer) or daily fluctuations 

(generally higher temperature during day light and lower temperature at night). The 

effect of this temperature variation over groundwater recharge has been studied by some 

authors (Constantz et al., 1994, Constantz, 1998, Ronan et al. 1998, Lin et al., 2003; 

Braga et al., 2007) as hydraulic conductivity, K , is temperature dependent. The third 

goal of this thesis is to model the consequences that daily temperature variation has on 

the hydraulic conductivity profile beneath an infiltration pond with highly permeable 

soils comparing it with field data.  

 

1.2.  THESIS OUTLINE 
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This thesis is structured in five chapters, chapter 2 is based on a paper that has already 

been published, chapters 3 and 4 are based on papers that are in preparation;  in chapter 

5 major conclusions about those publications are presented. Each of these chapters 

focus on one of the objectives mentioned above. References to the papers are contained 

in a footnote at the beginning of each chapter. 

 

A geostatistical comparison among the hydraulic conductivity results obtained by means 

of two popular techniques is presented in chapter 2; here, the values obtained via 

impeller flowmeter test and the particle size distribution at a decimetrical scale are 

compared using samples and measurements from a site near Tübingen, Germany. 

Estimates are provided at coinciding locations in the system using: (1) the empirical 

Kozeny-Carman formulation, providing conductivity values, KGS, based on particle size 

distribution, and (2) borehole impeller-type flowmeter tests, which infer conductivity, 

KFM, from measurements of vertical flows within a borehole. Correlation between the 

two sets of estimates is virtually absent. However, statistics of the natural logarithm of 

KGS and KFM at the site are similar in terms of mean values (averages of ln KGS being 

slightly smaller) and differ in terms of variogram ranges and sample variances. This is 

consistent with the fact that the two types of estimates can be associated with different 

(albeit comparable) measurement (support) scales. It also matches published results on 

interpretations of variability of geostatistical descriptors of hydraulic parameters on 

multiple observation scales. The analysis strengthens the idea that hydraulic 

conductivity values and associated key geostatistical descriptors inferred from different 

methodologies and at similar observation scales (of the order of tens of cm) are not 

readily comparable and should not be embedded blindly into a flow (and eventually 

transport) prediction model. 
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To generate punctual geological information can be both, expensive and time-

consuming; therefore, most of the time geologist and hydrogeologists are faced with the 

task of generating conceptual geological maps or cross sections, interpreting scattered 

data collected in an area. In chapter 3, we explored a simple interpolation method to 

help on the delineation of facies, defined as the separation of geological units with 

distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical 

composition, etc.). In the most frequent case in subsurface hydrology, when just a few 

scattered pieces of hydrogeological information are available, facies reconstruction 

becomes a major challenge. Several methods are available that can be used to achieve 

this task, ranging from those based only on existing hard data, to those including 

secondary data, or external knowledge about sedimentological patterns. Amongst those 

that are strictly based on hard data, the best results in terms of reconstructing synthetic 

images have been obtained with the nearest neighbor classification (NNC), a simple 

model that outperformed other more complex methodologies (e.g. support vector 

machine and indicator kriging). In this chapter, we present and test the results obtained 

for facies delineation when using a data-adapted kernel regression method, originally 

developed for image processing and reconstruction. This non-parametric methodology 

uses both the spatial and the sample value distribution, to produce for each data point a 

locally adaptive steering kernel function, self-adjusting the kernel to the direction of 

highest local spatial correlation. The method is shown to outperform NNC in a number 

of synthetic aquifers whenever the available number of data is small and randomly 

distributed. Still, in the limiting case, when the domain is profusely sampled, both the 

steering kernel method and the NNC method converge to the true solution. Simulations 

are finally used to explore which parameters of the locally adaptive kernel function 
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yield optimal reconstruction results in typical field settings. It is shown that, in practice, 

a rule of thumb can be used to get suboptimal results, which are best when key prior 

information such as facies proportions is used.  

 

In chapter 4, head fluctuation in an artificial recharge pond is investigated, and a daily 

variation of the hydraulic conductivity in the sediment below the pond floor due to 

water with different temperature entering the pond is explored as the source of this 

fluctuation. Water temperature plays a major role on the groundwater–surface water 

interaction, this surface-water temperature fluctuation causes important variations on 

infiltration rates in streambeds. These variations are a consequence of variable density 

and viscosity with T. Thus, in some cases, water temperature has been pointed out as a 

proxy for infiltration rates estimation. In artificial recharge practices, though, this effect 

competes with the high infiltration rates, so that water effectively moves fast within the 

system, and the soil cannot ever be equilibrated with respect to temperature. 

 

Data from a highly permeable infiltration pond (IP) located at an experimental site, 

show daily temperature and head fluctuation on surface-water. Infiltrating flow (Qout), 

obtained from mass balance, does not present the expected theoretical behavior of high 

infiltration rates due to high surface-water temperature or vice versa; furthermore, Qout 

temporal series seems to be out of phase with temperature. This apparently 

contradictory behavior is analyzed with a one-dimensional numerical model in an 

unsaturated medium, coupled with heat transport. 
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Observed daily temperature fluctuation on the pond-water, infiltrating through the 

vadose zone, is observed to have an increasing delay with depth this variation in 

temperature affects the hydraulic conductivity (due to viscosity and density dependence 

on T).  
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2. QUANTITATIVE COMPARISON OF IMPELLER-

FLOWMETER AND PARTICLE-SIZE-DISTRIBUTION 

TECHNIQUES FOR THE CHARACTERIZATION OF 

HYDRAULIC CONDUCTIVITY VARIABILITY 
1 

 

2.1. INTRODUCTION 
 

Proper modeling of groundwater flow and subsurface transport requires assimilation of 

data on hydraulic parameters which are representative of scales that are relevant for the 

problem analyzed. Commonly used measurement and interpretation techniques are 

based on pumping tests. These typically provide equivalent or interpreted hydraulic 

parameters that are somehow integrated values within a given volume around the 

pumping and observation wells (e.g., Sanchez-Vila et al., 2006). While most of these 

interpreted values can be used to estimate the average flow behavior at some large scale, 

they can be of limited use for local-scale models, when a detailed characterization of 

spatial variability is needed. In particular, intermediate-scale models (i.e., models 

involving horizontal length scales of the order of a few hundreds of meters) need a 

detailed knowledge of the architecture of the groundwater system together with the 

description of the small scale variability of parameters such as hydraulic conductivity, 

K, at scales ranging from the order of 10−1 to 100 m. In this context, Riva et al. (2008, 

                                                
1 This chapter is based on the paper: Barahona-Palomo, M., Riva, M., Sanchez-Vila, X., Vazquez-

Sune, E. and Guadagnini, A., 2011, Quantitative comparison of impeller-flowmeter and particle-

size-distribution techniques for the characterization of hydraulic conductivity variability, 

Hydrogeology Journal, DOI: 10.1007/s10040-011-0706-5. 
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2010) showed that a detailed geostatistical characterization based on sedimentological 

data collected at the centimeter scale was essential to provide a proper stochastically-

based interpretation of the salient features of depth-averaged and multilevel 

breakthrough curves measured within an alluvial aquifer during a forced-gradient tracer 

test performed on a scale of about 50 m. 

 

Historically, a number of methods have been proposed to obtain estimates of hydraulic 

parameters at scales of a few centimeters / decimeters. These methods can be typically 

divided into two categories: (1) field-, and (2) laboratory-based methods. The latter can 

be based on the analysis and interpretation of observations taken on undisturbed or 

disturbed samples. Each particular method may provide a different parameter estimate 

that can then be associated with the same location within the natural aquifer. Therefore, 

it is relevant to properly compare the characterization of the system ensuing from 

estimates of hydraulic parameters obtained with different interpretive methods but 

representative of support scales of the same order of magnitude. 

 

Amongst the available techniques, the frequently used methods based on the analysis of 

(a) grain-size distribution (GSD) and (b) impeller flowmeter (IFM) information are 

particularly relevant. Particle-size distribution methods have been the focus of intense 

research since the late part of the XIX Century. Several compilations of empirical 

formulations developed to obtain hydraulic conductivity from particle-size distributions 

of soil samples are available (e.g., Vukovic & Soro, 1992; Fetter, 2001; Kasenow, 2002; 

Carrier, 2003; Odong, 2007; Riera et al., 2010). The idea of estimating local hydraulic 

conductivities with the aid of a flowmeter device was first proposed and developed in 
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the 1980s (e.g., Molz et al., 1989) to estimate hydraulic parameters in intermediate to 

high permeability formations. Some analyses have presented the main features of the 

GSD and IFM methodologies to obtain estimates of K at the small scale (e.g. Molz, et 

al., 1989; Wolf, et al., 1991; Hess, et al., 1992; Stauffer & Manoranjan, 1994; Boman, et 

al., 1997; Carrier, 2003; Odong, 2007). Qualitative comparisons between estimated 

conductivity values and associated key geostatistical parameters based on both methods 

can be found in the literature (e.g., Wolf et al., 1991; Stauffer and Manoranjan, 1994; 

Boman et al., 1997).  

 

This work focuses on the impact that estimates of K obtained by means of (1) empirical 

formulations based on particle-size distributions and (2) in-situ hydraulic testing 

performed by borehole impeller flowmeters can have on the geostatistical 

characterization of spatial variability of hydraulic conductivity. It is emphasized that, 

while the measurement scale associated with particle-size-based methods is sufficiently 

clear, the precise definition of the support scale of flowmeter-based hydraulic 

conductivities is still lacking (e.g., Beckie, 1996; Zlotnik et al., 2000; Zlotnik and 

Zurbuchen, 2003a). Here, for the purpose of discussion it is assumed that the 

characteristic length scales of flowmeter measurements and GSD estimates, albeit 

different, are of the same order of magnitude of the borehole diameter, i.e. (10−1 m). It is 

with this spirit that the analyses and comparisons on a dataset collected in the alluvial 

unconfined aquifer of Tübingen, Germany, are performed. This dataset was partly used 

by Neuman et al. (2007, 2008) for the probabilistic interpretation of cross-hole pumping 

tests and for a multiscale geostatistical characterization of the aquifer. In the same 

experimental site, Riva et al. (2006, 2010) performed Monte Carlo-based analyses of a 
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tracer test. As detailed in section 2.3. The Tübingen site dataset below, GSD- and IFM-

based K estimates are here available at a set of coinciding locations in the system. The 

analysis of the main statistics and key geostatistical parameters characterizing the 

heterogeneity of hydraulic conductivities estimated with GSD and IFM methods at the 

site is presented. The degree of correlation between K values obtained with the different 

methodologies examined is then explored. The results provide evidence of the lack of 

correlation between GSD- and IFM-based hydraulic conductivity values. 

 

Comparisons similar to the one presented in this work were performed at the Savannah 

River Site, South Carolina (USA) (Boman et al., 1997) and at the Cape Cod Site, USA 

(Hess et al., 1992). In the former site both IFM- and GSD-based K 

measurements/estimates taken along adjacent boreholes (i.e., boreholes were separated 

only by a few meters distance) were available. In the latter, hydraulic conductivity data 

coming from field and laboratory experiments, respectively based on IFM-

measurements and permeameter tests performed on undisturbed samples, were 

compared. As opposed to these works, it is remarked that the data set here analyzed 

comprises a large number of data points collected with GSD- and IFM-based methods at 

coinciding locations. 

 

2.2. METHODOLOGY 
 

For completeness and ease of reference, the salient features of the IFM and GSD 

methodologies used to estimate small scale hydraulic conductivity values are briefly 

reviewed. 
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2.2.1. ESTIMATES OF HYDRAULIC CONDUCTIVITY FROM IMPELLER 

FLOWMETER (IFM) DATA 

 

The borehole flowmeter methodology was developed and presented by Hufschmied 

(1986), Rehfeldt et al. (1989) and Molz et al. (1989). The technique relies on pumping 

at a fixed rate from a screened well to attain (approximately) horizontal flow in the 

surrounding of the well and vertical flow within the well bore. The distribution of 

horizontal hydraulic conductivity along the borehole is then based on measured values 

of the vertical distribution of discharge within the pumping well. The latter are taken by 

means of a down-hole impeller flowmeter. The flowmeter probe is initially positioned at 

the bottom of the screened interval while pumping. It is then systematically moved 

upwards and is maintained at a given depth until a stable velocity recording is obtained. 

The vertical distribution of hydraulic conductivity is then obtained according to (Molz 

et al., 1989; Molz et al., 1994) 

,FM i i P

i

K Q Q

K b B

∆
=

∆
 (Equation 2.1) 

Here, K  is the average hydraulic conductivity estimated at the site, e.g., from a 

pumping test; QP is the total pumping rate from the well; B is the screened thickness of 

the aquifer; ∆Qi is the discharge measured within the i-th sampling interval of vertical 

thickness ∆bi; and ,FM i
K  is the estimated value for the hydraulic conductivity 

representative of the sampled i-th vertical interval. Perfect layering of the aquifer 

system in the proximity of the well is a key assumption at the basis of (Equation 2.1). 
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Critical points in the interpretation of field information also include well losses 

(Rehfeldt et al., 1989; Molz et al., 1989). With reference to electromagnetic borehole 

flowmeters and following an observation by Boman et al. (1997), Zlotnik and 

Zurbuchen (2003b) showed that neglecting head losses can lead to biased 

interpretations. Young (1998) showed that positive skin effects can influence the data 

analysis based on (Equation 2.1) at wells without gravel packs located at Columbus Air 

Force Base, Mississippi (USA). On the other hand, the presence of a gravel pack 

mitigated these effects. 

 

Molz et al. (1989) presented a comparison between the vertical distribution of hydraulic 

conductivity, KFM(z) (z being the vertical coordinate), obtained by IFM and conductivity 

estimates obtained by other methods, such as tracer tests and multilevel slug tests, at a 

field site near Mobile, Alabama (USA). They concluded that, although hydraulic 

conductivities obtained by these three methods were not identical, they displayed 

similar spatial patterns. The authors point out that the assumption of a layered, stratified 

aquifer in the proximity of the pumping well limits the proper characterization of the 

unknown three-dimensional distribution of K. Several additional studies have been 

published on intercomparisons between hydraulic conductivity estimates based on the 

IFM technique and other methods, including dipole flow tests, multilevel slug tests, and 

permeameter tests (Wolf et al., 1991; Hess et al., 1992; Zlotnik and Zurbuchen, 2003a; 

Butler, 2005). With specific reference to comparisons between IFM- and GSD-based 

conductivity estimates, Whittaker and Teutsch (1999) perform numerical analyses on a 

hypothetical aquifer and study the impact that simulated flowmeter information and 

sieve analyses of cores have on the travel times of tracer particles. The authors observed 



Chapter 2: Quantitative comparison of impeller-flowmeter and particle-size-distribution 
techniques for the characterization of hydraulic conductivity variability 
 

13 
 

that, whilst the Gaussian simulations based on sieve analyses were better able to 

represent high permeability lenses and therefore better reproduced the variability of the 

exhaustive data set, this did not lead to a better prediction of the arrival times of 

particles. On the contrary, simulations based on data extracted from flowmeter 

measurements were consistently more accurate, despite their failure to generate regions 

of high permeability. 

 

2.2.2. ESTIMATES OF HYDRAULIC CONDUCTIVITY FROM GRAIN-SIZE 

DISTRIBUTIONS (GSD) 

 

It is well accepted that hydraulic conductivity is related to the particle-size distribution 

of granular porous media. An estimate of the hydraulic conductivity of a sample can 

then be obtained by using information on particle size distributions in empirical 

relationships (compilations of several existing relationships can be found, e.g., in 

Vukovic and Soro, 1992; Odong, 2007; Cheng and Chen, 2007; Payne et al., 2008, and 

references therein). 

 

Grain-size-based methods are typically applied to porous medium samples and the 

estimates are assumed to be independent on flow configuration. These methods are 

appealing for the estimation of hydraulic conductivity because sieve analysis practices 

are well established procedures in groundwater investigations and can be performed 

with a moderate experimental effort. Hydraulic conductivity estimates based on GSD 
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information, KGS, provided by a series of empirical methods can be synthesized by the 

following relationship 

2( )
GS e

g
K C f dφ

ν
=  (Equation 2.2) 

where g is gravity acceleration, v is the kinematic viscosity of the fluid, f(φ) is a 

function of porosity, φ, de is an effective grain diameter, and C is defined as a sorting 

coefficient. The values of C, and de, and the type of relationship, f(φ), depend on the 

formulation adopted. When applied to the same sample, the different existing empirical 

relationships provide estimates of permeability that could span more than one or two 

orders of magnitude (Custodio and Llamas, 1984; Fogg et al., 1998; Riera et al., 2010). 

A widely used formulation is that of Kozeny-Carman, where  

( )
( )

3
3

102
8.3 10 ; ;

1
eC f d d

φ
φ

φ
−

 
= × = = 

−  
  (Equation 2.3) 

Here, d10 is the grain diameter (in mm) that corresponds to 10% (by weight) of the soil 

sample passing, and KGS is given in m/day. Using (Equation 2.2) requires that porosity 

measurements be available. In case φ measurements are not directly available, an 

estimate of φ could be obtained by means of the following empirical formula (e.g., 

Vukovic and Soro, 1992) 

( )0.255 1 0.83Uφ = + ; 60

10

d
U

d

 
=  

 
 (Equation 2.4) 

where d60 is the grain diameter that corresponds to the 60% (by weight) of the sample 

passing, and U is the coefficient of uniformity. It is remarked that, as a result of sample 

homogenization which might occur during particle size analysis, values based on GSD 

methods can be considered as lying in between the two components along the principal 
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directions of the local conductivity tensor (vertical and horizontal if layers are not 

tilted). 

 

The Kozeny-Carman equation has been applied to a large variety of fine and coarse-

grain sediments, ranging from non-plastic, cohesionless silts to sand and gravel 

mixtures (Carrier, 2003; Gallardo and Marui, 2007; Odong, 2007; Wilson et al., 2008). 

The method is less reliable for very-poorly sorted soils, or soils with highly irregular 

shapes (Carrier, 2003), as well as for plastic soils (with significant clay or organic 

content, where fabric, destroyed by disturbance of the sample, influences hydraulic 

conductivity) or well-sorted cobble-sized gravel. As a general rule, the Kozeny-Carman 

equation provides good estimates of K whenever d10 ranges between approximately 0.1 

and 3.0 mm. Odong (2007) assessed the reliability of several competing empirical 

equations to estimate hydraulic conductivity from grain size distributions of 

unconsolidated aquifer materials and concluded that the best overall estimation of K is 

obtained by means of the Kozeny-Carman formula. Carrier (2003) and Barr (2005) have 

performed similar comparisons supporting the same conclusion. Examples of acceptable 

correlation between GSD K estimates and hydraulic tests have been documented by 

Zlotnik and McGuire (1998) and Cardenas and Zlotnik (2003). 

 

2.3. THE TÜBINGEN SITE DATASET 
 

The Tübingen aquifer consists of alluvial material overlain by stiff silty clay and 

underlain by hard silty clay. The lithostratigraphic characterization has been performed 

on the basis of the stratigraphy obtained from 150 mm-diameter monitoring wells 
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(Sack-Kühner, 1996; Martac and Ptak, 2003) and from one 400 mm-diameter pumping 

well. All wells were drilled to the marly bedrock constituting the impermeable aquifer 

bottom of variable depth and are surrounded by a gravel pack. The aquifer saturated 

thickness is about 5 m. Extensive field and laboratory scale aquifer investigation 

procedures were performed at the site, including grain sieve analyses, down-hole 

impeller flowmeter measurements and pumping tests. The sieve analyses were 

performed on drill core samples ranging in length from 5 to 26.5 cm and indicated very 

heterogeneous, highly conducive alluvial deposits. More than 400 grain distribution 

curves are available within the test area, distributed along 12 vertical boreholes, 

providing sufficient information to estimate hydraulic conductivity values, KGS, from 

(Equation 2.2) − (Equation 2.4). A total of 312 KFM measurements are available within 

the same wells. These were collected without installing packers in the wells. A thin 

rubber seal was placed around the impeller-type probe to increase its sensitivity to flow. 

Due to the small mean velocity head within the borehole, concentrated hydraulic losses 

associated with the device were not considered in the data interpretation. Measurements 

are related to vertical intervals with lengths ranging from 3 to 40 cm. The latter are of 

the similar order of magnitude of a typical length scale of the support (measurement) 

scale associated with samples on which the GSD-based interpretations are obtained. 

Table 1 reports the spatial coordinates of the locations of the boreholes where 

measurements have been performed, together with the main characteristics of the 

flowmeter data. The table also includes the number of flowmeter and grain-size 

distribution data, NIFM and NGSD respectively. It is noted that it is possible to obtain both 

GSD and IFM conductivity information at NMATCH = 112 coinciding locations in the 

system. In this work, ‘coinciding locations’ means a match that considers (a) the length 

and absolute location of a sample from which GSD has been analyzed, and (b) the 
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location along the vertical of the impeller flowmeter. If the GSD location falls within 

the interval determined in (b), then the two locations are considered coinciding. This 

constitutes a rather unique three-dimensional data-set which allows exploring 

extensively the relationship between the interpretations based on these two types of 

measurements. 

 

Table 2-1. x and y in Gauβ-Krüger coordinates, of the boreholes at the 

Tübingen site. Main characteristics of the flowmeter data: L (length of the 

vertical interval investigated); ∆zmin, ∆zmax (minimum and maximum distance 

between packers); d1, d2 (distances between the ground level and the first and 

last packer); Zmax, Zmin (vertical elevations of the highest and lowest packers). 

Number of data available: NIFM (IFM measurements); NGSD (GSD 

measurements); NMATCH (number of IFM and GSD data taken at the same 

vertical elevation within a borehole). 

Borehole x y 
L 

(m) 
∆zmin 
(m) 

∆zmax 

(m) 
d1 

(m) 
d2 

(m) 
Zmax 

(m a.s.l) 
Zmin 

(m a.s.l) 
NIFM NGSD NMATCH 

F0 3508686 5377739 1.40 0.05 0.15 5.06 6.46 304.52 303.02 15 12 4 
F1 3508629 5377746 2.19 0.05 0.20 4.74 6.73 305.90 303.71 13 10 2 
F2 3508680 5377687 2.34 0.05 0.15 4.40 6.67 305.99 303.65 23 20 6 
F3 3508586 5377660 0.69 0.05 0.10 8.72 9.30 301.83 301.34 9 12 0 
F4 3508419 5377670 1.47 0.05 0.15 4.48 5.86 306.70 305.23 15 9 0 
F5 3508459 5377622 2.45 0.05 0.15 4.25 6.60 306.60 304.25 23 14 8 

F6 3508500 5377574 0.60 0.05 0.10 3.90 4.40 306.71 306.16 7 18 0 

B1 3508702 5377754 0.80 0.05 0.25 4.17 4.92 305.08 304.32 8 59 7 

B2 3508703 5377759 1.85 0.03 0.06 3.98 5.78 305.35 303.55 32 55 15 

B3 3508712 5377757 3.06 0.04 0.40 3.42 6.43 305.48 302.47 41 67 20 

B4 3508691 5377769 4.85 0.05 0.35 3.55 8.32 305.86 301.08 65 69 36 

B5 3508703 5377779 3.45 0.05 0.30 3.38 6.78 305.82 302.42 61 62 14 

         Total 312 407 112 

 

 

2.4. DATA ANALYSIS AND DISCUSSION 
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The three-dimensional distributions of hydraulic conductivity estimates obtained by 

GSD and IFM interpretations at the site are here presented and discussed in terms of 

basic univariate statistics and a detailed geostatistical analysis of the available data is 

performed. The degree of correlation between the different types of measurements at the 

site is then assessed. 

 

2.4.1. UNIVARIATE STATISTICS AND GEOSTATISTICAL ANALYSIS OF THE 

DATA-SET 

 

Riva et al. (2006) present a geostatistical analysis of the hydraulic conductivity values 

calculated from grain sieve curves by means of the Beyer’s model (Beyer, 1964). On the 

basis of section 2.2.2. Estimates of hydraulic conductivity from grain-size distributions 

(GSD), these are interpreted by using (Equation 2.2) − (Equation 2.4). A high 

correlation (not shown) was found between the conductivity values obtained with these 

two empirical models. For completeness, the key statistics of the measured distributions 

of d10 and d60 are reported in appendix A. 

 

Uncertainty uK associated with conductivity values estimated on the basis of (Equation 

2.2) – (Equation 2.4) and related due to uncertainties in measured d10 and d60 can be 

assessed by the following relationship (e.g., International Organization of 

Standardization-GUM, 1995) 

2

2( )
iK d

i i

K
u u

d

 ∂
=  ∂ 

∑  i = 1, 2 (Equation 2.5) 
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where d1 and d2 respectively would be d10 and d60 and 
id

u  is the measurement 

uncertainty of di. The latter has been estimated to be less than 2% by the American 

Association for Laboratory Accreditation (2005). In this case, however, a conservative 

2% value is used for the estimation of the uncertainty. For simplicity, it is assumed that 

the quantities which were treated as constant in (Equation 2.2) – (Equation 2.4) 

(including gravity and physical properties of the fluid) are provided without uncertainty. 

On this basis, the uncertainty uK was calculated to be less than 10% for 95% of the total 

number of samples. Uncertainty associated with IFM estimates of conductivity can then 

be derived on the basis of (Equation 2.1). This is however a delicate task, because, in 

addition to typical measurement uncertainties associated with pumping flow rates and 

length scales included in (Equation 2.1), one should also take into account the 

implications of the conceptual model adopted for the system. These analyses are seldom 

performed in the field with this degree of detail. For simplicity and for the sake of the 

demonstration example here, the matter is not pursued further in this work. Additional 

details related to the uncertainty analysis performed are reported in appendix A. 

 

Sample histograms of the natural logarithm of all available hydraulic conductivity data, 

Y = ln K (conductivities are measured in m/s), estimated by means of IFM and GSD 

techniques are depicted in Figure 2-1. A summary of basic univariate statistics is 

presented in Table 2 for the complete data-sets and for the subsets of conductivity 

values estimated only at the NMATCH = 112 points where GSD and IFM data are jointly 

available. It is noted that both methods lead to average hydraulic conductivity values of 

the same order of magnitude, the GSD-based averages being slightly smaller than their 

IFM-based counterparts. They render different frequency distributions and log-

conductivity variance, that of ln KGS being larger than that of ln KFM. 
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Figure 2-1. Histograms of frequency distribution for ln KFM (continuous gray 

line) and ln KGS (discontinuous black line) values when all available points are 

used. Number of available data points is 312 for KFM and 407 for KGS. 

 

Table 2-2. Basic univariate statistics for the complete Tübingen site data-sets 

and for the subsets of conductivity values estimated only at the NMATCH = 112 

points where GSD and IFM data are jointly available. 

 
IFM 
NIFM 

IFM 
NMATCH 

GSD 
NGSD 

GSD 
NMATCH 

Minimum ln K -12 -10 -13 -9.3 
Maximum ln K -1.7 -3.6 -1.1 -1.5 
Mean ln K -6.2 -6.1 -6.7 -6.2 

Median ln K -6.1 -5.9 -7.1 -6.6 
Standard Deviation of ln K 1.5 1.3 2.0 1.8 
Skewness of ln K distribution -0.33 -0.69 0.52 0.73 

Mean K (× 10-3m/s) 6.8 4.4 12 12 

Geometric mean of K (× 10-3 m/s) 2.1 2.3 1.2 2.0 
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Table 3 summarizes the results of the Kolmogorov-Smirnov (K-S) test 

performed at a significance level α = 0.05 for the complete data-sets and for the subsets 

of data corresponding to the NMATCH points. For completeness, Figure 2-2 reports normal 

probability plots for the four sample sets analyzed. The results evidence that the two 

sets of ln KFM data pass the K-S test at α = 0.05, despite Figure 2-2a evidence that the 

subset of ln KFM values corresponding to the NMATCH locations somehow undersamples 

the tail of the distribution corresponding to the largest conductivity values (this is also 

evidenced by the skewness values reported in Table 2). On the other hand, while the 

complete set of ln KGS data does not pass the K-S test of normality at α = 0.05, the 

subset representing the NMATCH locations does. 

 

Table 2-3. Kolmogorov-Smirnov test parameters for the ln KFM and ln KGS data sets 

analyzed at the Tübingen site. All critical values are calculated for a significance level α 

= 0.05. 

  Number of points K-S measure Critical value 

ln KFM NIFM 0.060 0.077 
ln KFM NMATCH 0.074 0.129 
ln KGS NGSD 0.096 0.067 
ln KGS NMATCH 0.111 0.129 
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Figure 2-2. Normal probability plots for the ln K values obtained with (a) IFM 

and (b) GSD methods at the Tübingen site. Results obtained with the full data 

set and with data available at the NMATCH locations are reported in gray and 

black, respectively 

 

A t-test analysis was then performed to determine if the four data sets above mentioned 

can be considered as statistically different from each other. Table 4 summarizes the 

results of the tests performed upon analyzing different combinations of data sets pairs at 

a significance level α = 0.05. These analyses indicate that the two data sets 

corresponding to all KFM and KGS available measurements are not representative of 

samples belonging to the same population at the chosen significance level. 

 

Table 2-4. Calculated t values for the t-test analysis. Critical values are 

calculated for a significance level α= 0.05. 

   Test statistic Critical value Result 

ln KFM
m vs ln KGS

m 0.627 1.96 Not significant 

ln KFM
a vs ln KGS

a 3.974 1.96 Significant 
ln KFM

a vs ln KFM
m 0.667 1.96 Not significant 
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ln KGS
a vs ln KGS

m 2.517 1.96 Significant 
     a = all data points; m = only matching points.  

 

 

The observed differences suggest that, in general, GSD-based empirical formulations 

tend to provide estimates of Y which are characterized by a stronger spatial variability 

than those obtained by IFM methods. 

 

A geostatistical analysis was then performed separately for hydraulic conductivities 

obtained from each method. Horizontal and vertical sample variograms have been 

constructed. Two-point statistics for a given separation lag are considered only if these 

are calculated on the basis of at least 50 data pairs. The choice of theoretical models to 

interpret variograms is based on visual inspection of experimental data. Estimation of 

variogram parameters was performed on the basis of visual inspection. 

 

Figure 2-3 shows the horizontal and vertical sample variograms of log-conductivities 

derived from IFM and GSD analyses of all available data together with the 

corresponding theoretical models adopted. Table 5 reports the main results of the three-

dimensional geostatistical analysis. The results indicate that IFM and GSD techniques 

lead to different geostatistical depictions of the spatial variability of Y. This is consistent 

with the results of the t-test presented above and supports the idea that the two datasets 

belong to different populations. The horizontal and vertical variograms of ln KFM are 

characterized by larger ranges and smaller sills than those associated with the 

variograms of ln KGS, indicating a stronger spatial persistence than that offered by ln 

KGS. It is noted that the sills of the vertical variograms are smaller than the 
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corresponding horizontal ones. This suggests that the total variance is mostly controlled 

by interwell (rather than intrawell) variability.  

 

The reported findings are consistent with the fact that IFM- and GSD-based hydraulic 

conductivities can be interpreted as quantities associated with different, albeit of the 

same order of magnitude, support (measurement) scales. The former are somehow an 

average of the response of the system to a stress and reflect the local flow conditions 

around the well (including preferential paths, geological structures, effective porosity). 

The latter are only influenced by the local composition of the granular material and can 

display sharp spatial contrasts, giving rise to an enhanced interpreted variability of the 

system, with larger sills and shorter ranges than those associated with IFM 

interpretations. Note that this is not in contrast with the observation that the support 

scales of the two measurements are of the same order of magnitude. The pattern 

displayed by these observations is in line with published results about variability of 

geostatistical parameters of conductivity on multiple support scales (e.g., Tidwell and 

Wilson, 1999a, b; Neuman and Di Federico, 2003). 

 

Table 2-5. Results of the three-dimensional geostatistical analysis of Y = ln K. 

 ln KFM
v
 ln KFM

h
 ln KGS

v
 ln KGS

h
 

Variogram type Spherical Spherical Spherical Spherical 
Nugget 0.95 0.50 1.10 1.50 
Range (m) 2.5 55 0.45 25 
Sill 2.15 3.50 3.00 4.18 
v = vertical direction; h = horizontal direction 
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Figure 2-3. (a) Vertical variogram for ln KFM,  (b) Vertical variogram for ln KGS, 

(c) Horizontal variogram for ln KFM, and (d) Horizontal variogram for ln KGS. 

Dashed line indicates the adopted variogram models. 

 

2.4.2. CORRELATION BETWEEN DATA TYPES 

 

The degree of correlation between ln KFM and ln KGS at the site is here explored, 

considering only ln KFM and ln KGS data at the NMATCH locations. The scatter plot 

presented in Figure 2-4 shows the degree of correlation between these two variables. 

These results show that the ln KGS values are weakly correlated with ln KFM, the 

regression coefficient, R2, being close to zero. The observed lack of correlation between 
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the IFM and GSD- based measurements is also consistent with the space-averaging 

effect associated with downhole flowmeters, as opposed to the more localized 

measurement offered by GSD interpretations, as discussed in section 2.4.1. Univariate 

statistics and geostatistical analysis of the data-set. These observations further 

corroborate the idea that the relationship between vertical fluxes measured by impeller 

flowmeters and the micro-structure of the system is still not clear and should be 

questioned and further analyzed in real site applications. 

 

A possible explanation of the lack of correlation between the IFM and GSD- (or 

permeameter-) based measurements is that the former somehow average the response of 

the system to a stress and reflect the local flow conditions around the well (including 

preferential paths, geological structures, effective porosity). This might also be 

consistent with the observation that IFM conductivity estimates are associated with the 

lowest variances and largest mean values and ranges. On the other hand, KGS and KP are 

only influenced by the local composition of the granular material. The latter can display 

sharp spatial contrasts, giving rise to an enhanced interpreted variability of the system, 

with larger sills and shorter ranges than those associated with IFM interpretations. 
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Figure 2-4. Scatter plot of the ln K values obtained by the flowmeter method 

and grain sieve analysis. A weak correlation is noticeable in the graph. The 

value of the regression coefficient, R2, is reported. 

 

2.5. CONCLUSIONS 
 

A detailed analysis is presented of the basic statistics and key geostatistical parameters 

describing the three-dimensional spatial variability of hydraulic conductivities 

associated with measurement scales of the order of a few tens of cm within the alluvial 

aquifer located near the city of Tübingen, Germany. Hydraulic conductivities are 

obtained by means of impeller-type flowmeter measurements and particle-size 

sedimentological data at 112 coinciding locations in the system. The degree of 

correlation between conductivity values associated with interpretation methods based on 

impeller flowmeter measurements and particle-size distributions has then been explored. 

The work leads to the following major conclusions: 
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• The univariate statistical analysis of hydraulic conductivities estimated at the site 

highlights that the GSD-based average hydraulic conductivities are slightly 

smaller than their IFM-based counterparts. The analysis suggests that the 

variance of the natural logarithms of IFM estimates is smaller than that of GSD 

interpretations. From a statistical standpoint, the interpreted conductivities 

obtained with these methods appear to identify samples belonging to different 

populations. 

• At the site, the IFM-based log-conductivity variograms are generally 

characterized by larger ranges and smaller sills than those relying on GSD 

interpretations. As such, they render a spatial distribution of log-conductivities 

associated with relatively large correlation scales, resulting in a more spatially 

persistent depiction of heterogeneity than that rendered by their GSD-based 

counterparts. 

• Log-conductivity values based on particle-size information are essentially 

uncorrelated with their IFM counterparts at the site, with linear regression 

coefficient close to 0.0. 

• The three previous conclusions can all be associated with the fact that the IFM 

method provides estimates within a given borehole that somehow smooth or 

dampen actual (small-scale) natural variability, because the pressure distribution 

around the measuring device can be far from the theoretical distribution 

envisioned for homogeneous systems. On the other hand, GSD-based 

conductivities are only influenced by the local composition of the tested granular 

material. The latter can display significant spatial contrasts, resulting in larger 

sills and shorter ranges than those associated with IFM interpretations. These 

findings are consistent with the fact that the two types of estimates analyzed can 
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be associated with different, albeit of similar order of magnitude, support 

(measurement) scales. Precise characterization of the support scale of any given 

information is thus needed to properly include hydraulic conductivity data into 

numerical models. This is particularly needed for the assessment of the support 

scale linked IFM conductivity measurement, which is still not completely clear. 

• These results suggest that the relationship between vertical fluxes measured by 

impeller-type flowmeters and the micro-structure of the system is still not clear 

and should be tackled with great care in real site applications. 
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3. A LOCALLY ADAPTIVE KERNEL REGRESSION METHOD 

TO DELINEATE FACIES2 

 

3.1. INTRODUCTION 
 

Image reconstruction has a long history in a number of disciplines such as satellite 

image mapping, shape recognition in robotics, face recognition and license plate 

reading, among other uses (Bughin et al. 2008, Daoudi et al. 1999, Yang & Huang 1994, 

Lin & Chen 2008). The topic can be loosely subdivided into two main groups: (a) The 

reconstruction of incomplete images, where some of the pixels have no information so 

that pixel reconstruction is an inference problem; and (b) The reconstruction of noisy 

images, where some of the pixels display wrong information and the main problem is 

detecting and reclassifying the misclassified pixels.  

 

A good reconstruction work relies heavily on the presence of data and on an efficient 

reconstruction algorithm that can either complete information gaps, or else filter noisy 

signals. A particular case of reconstruction appears in subsurface hydrology, where the 

amount of available information is small, so that the initial available picture for 

reconstruction is mostly a black signal (meaning no information) with some sparse data 

scattered throughout the medium. Data regarding facies distribution relies on very few 

points (well logs), and reconstruction is a really difficult and error prone task.  

                                                
2 This chapter is based on the paper: Barahona-Palomo, M., Fernàndez-Garcia, D., and Sanchez-

Vila, X., 2013, A locally adaptive kernel regression method to delineate facies. In preparation. 
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Many methods for the interpolation of scattered data exist (Franke, 1982, and some of 

them have been used for geologic facies reconstruction (i.e. Ritzi et al., 1994, 

Guadagnini et al., 2004, Tartakovsky & Wohlberg 2004, Wohlberg et al., 2006, 

Tartakovsky et al., 2007). In particular, Tartakovsky et al. (2007) compared the 

fractional error obtained in two synthetic examples using three approaches: indicator 

kriging (IK) (Isaaks & Srivastava, 1990, Ritzi et al., 1994, Guadagnini et al., 2004), 

support vector machines (SVM) (Tartakovsky & Wohlberg 2004, Wohlberg et al., 

2006) and nearest-neighbor classification (NNC) (Dixon, 2002). Different sampling 

densities were used for comparison, ranging from 0.28% to 3.06% and located 

randomly, following a 2D Poisson random process. Here sampling density refers to the 

proportion of pixels where hard data is available (classified pixels). Their analysis 

indicated that NNC outperformed IK in terms of reconstruction error in both examples 

and SVM slightly outperformed NNC in one of the examples. 

 

There exist a number of reconstruction methods available in different disciplines that to 

our knowledge have never been used in geological reconstruction. A potential reason 

for this is that these methods were devised for the presence of massive data sets that are 

never available in geological facies reconstruction. One family of methods is based on 

kernel regression functions, widely used in signal theory for solving different problems 

such as image denoising, upscaling, interpolation, fusion, etc. Such methods have 

proved to be efficient for problems such as restoration and enhancement of noisy and/or 

incomplete sampled images. While in general regression methods have been used for 

reconstruction of images from extensive data sets, in principle there is no reason not to 
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use them when information is sparse. As an example, Takeda et al. (2007) tested a 

kernel regression method on an image reconstruction case in which only 15% of the 

pixels were present, obtaining a very good reconstruction of a 2D image.  

 

Making an analogy between image reconstruction (from irregularly sampled data) and 

facies delineation (when scattered sampling points exist), we investigate the 

performance of the SKR method considering a different problem to that for what it was 

originally developed, having far less information available for the delineation 

(reconstruction). The aim is to give insight to the different tuning parameters in the 

method in order to get a range of potential values that can make the method useful for 

geological facies reconstruction, with emphasis in delineation of connectivity patterns.  

 

This chapter is structured as follows; Section 3.2 briefly describes the fundamental 

concepts of facies reconstruction. Section 3.3 presents the details of the data-adapted 

kernel regression method. We test this method with respect to the NNC method in 

Section 3.4 by means of four synthetic images, here including the two figures profusely 

investigated by Tartakovsky et al. (2007).  

 

3.2. THE CONCEPT OF FACIES RECONSTRUCTION 
 

The term facies is used in geology to differentiate among geological units on the basis 

of interpretive or descriptive characteristics, such as conditions of formation, 

mineralogical composition, presence of fossils (biofacies), structures, grain size, etc. 
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(Tarbuck et al., 2002). In this work, we work with the consideration that each facies is a 

clear distinctive geology unit understood on the descriptive sense. Keeping this 

consideration in mind, facies reconstruction is defined as the process of assigning each 

unsampled point (eventually also the sampled ones if misclassification errors are 

admitted) to one facies. Formally, for any given facies Fk, the reconstruction problem 

can be addressed using an indicator function defined as  

                                 



 ∈

=
otherwise

F
FI

k

k 0

1
),(

x
x

                                
(Equation 3.1)  

where the indicator variable I(x,Fk) is equal to 1 when a particular point in the domain, 

x, can be classified as belonging to facies Fk and zero otherwise. In this work we 

assume that the available data from the sampling points are clearly distinctive in order 

to be unmistakenly classified as indicated in (Equation 3.1), without interpretation 

errors. From now on we consider that only two facies are used for geological mapping, 

but it could be easily extended to any finite number of facies by direct superposition. In 

such a case the problem can be posed as reconstructing only facies F1.  

 

Several methods have been proposed in the literature to estimate the spatial distribution 

of the indicator variable I(x,F1). Here we compile only three of such methods. The first 

one is indicator kriging (IK) (Journel, 1983), a method that provides a least-squares 

estimate of the probability that x belongs to F1 conditioned to nearby data. Once a 

threshold value is given, a distinction between categories (facies) can be done. The 

method relies on the theory of random functions to model the uncertainty of not having 

data at unknown locations. It accounts for the inherent spatial correlation of data but 

typically fails to properly estimate curvilinear geological bodies. Multiple point 



Chapter 3: A locally adaptive kernel regression method to delineate facies 
 

34 
 

geostatistics (Strebelle, 2000) can overcome most of these problems by largely relying 

on an empirical multivariate distribution inferred from training images, i.e., under the 

assumption that significant information about the spatial distribution of facies is known 

from external sources (outcrops, modeling of sedimentological processes,…).  

 

Alternatively, Support Vector Machine (SVM) methods are a set of popular tools for 

data mining tasks such as classification, regression, and novelty detection (Vapnik, 

1963; Bennett and Campbell, 2000). SVM takes a training data, i.e., a set of n data 

points Ji= J(xi,F1)∈{-1,1}, i=1,..,n, and separates them into two classes by delineating 

the hyperplane that has the largest distance to the nearest training data point of any 

class.  

 

Last, the nearest-neighbor classification (NNC) simply classifies each point in the 

domain by finding the nearest (not necessarily in the Euclidean sense) training point, 

looking at the corresponding class for that training point and assigning it to the 

unsampled location.  

 

A comparison of these three methods is provided in a recent series of papers by 

Tartakovsky and Wholberg (2004), Wholberg et al. (2006), and Tartakovsky et al. 

(2007). Surprisingly, the NNC method outperformed the more sophisticated ones, i.e., 

SVM and IK, indicating the validity of the parsimony principle for this problem. Yet, 

the comparison between methods in such works was done only in terms of the number 

of misclassified points, without considering other performance metrics such as 
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connectivity between facies that may have a strong relevance in the overall hydraulic 

behavior of an aquifer. We consider this issue as non-ideal and in the next section we 

seek for a method that can account for local anisotropy in the search directions to be 

able to discriminate the presence of elongated shapes. 

 

3.3. NONPARAMETRIC REGRESSION APPROACH FOR FACIES 

CLASSIFICATION 
 

3.3.1. NONPARAMETRIC REGRESSION MODELS  

 

Suppose that we ignore the fact that the target classification output is a binary function 

I(x,F1). Instead, let us consider that it is a continuous function that depends on location 

(x) and on a number of (yet unknown) parameters b=[b0,b1,…,bN]T. The regression 

model for facies classification assumes that the measured data Ii=I(xi,F1), i=1,…,n, can 

be expressed as 

iii mI ε+= );( bx ,      ni ,..,1= ,    (Equation 3.2) 

where m(xi,b) is the regression function to be determined, and εi are independent and 

identically distributed zero mean noise values. Nonparametric regression is a form of 

regression analysis in which the function m is exclusively dictated by the data. At each 

point x the conditional expected value of the dependent variable (the indicator variable) 

can be estimated, i.e., m(x,b)=E[I(x,F1)]. The interest of nonparametric regression to 

facies reconstruction resides on the fact that the conditional expected value of the 

indicator variable is exactly the probability that the given facies F1 prevails at that 

location, since 
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{ } { } { } { }1 1 1 1( , ) 1 Prob 0 Prob ProbE I F F F F= ⋅ ∈ + ⋅ ∉ = ∈x x x x    (Equation 3.3) 

By definition, the probability of occurrence of a given facies is a continuous variable 

ranging between 0 and 1. In order to separate the data into classes or facies we must 

then establish a cut-off in the estimate of the indicator variable. This is similar to the 

facies reconstruction problem posed by the geostatistical indicator kriging approach. In 

this case, Ritzi et al. (1994) has suggested to define the boundary between facies by the 

isoline Prob{x∈Fk}=pk, where pk is estimated as either the global mean of the indicator 

values or the empirical relative volumetric fraction of the facies Fk. We propose here to 

use the same approach for classifying facies with regression methods. The benefits of 

such approach will be explored in section 3.4.  

 

Two kernel regression methods, namely the classical (CKR) and the adaptive steering 

(SKR) are presented next, and later their performance is compared in a number of 

synthetic cases.  

3.3.2. CLASSICAL KERNEL REGRESSION (CKR) 

 

Let us consider a local Taylor expansion of the mean response m(x,b) of the indicator 

values around the estimation location x0, 

2 2
0 0 1 2 3 4 5 6 7( ; ) ( ; , ) ' ' ' ' ' ' ' ' '...m m b bx b y b z b x b x y b y b x z≈ = + + + + + + +x b x b x   (Equation 3.4) 

where x’=x-x0 is the distance from the estimation location, b0 is the mean response at x0, 

[b1,b2,b3]
T is the gradient of the mean response at x0, and so on. The order of the 

polynomial is in principle arbitrary. Nonparametric regression generalizes the standard 
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regression approach by locally estimating b at a given location x0 with only nearby data. 

This is done by weighting data located far away from the estimation location with a 

kernel function KH defined as 

( )xH
H

x 1

)det(

1
)( −= KKH          (Equation 3.5) 

where H is a matrix that controls the degree of smoothing and is user dependent. 

Section 3.4 will explore the choice of kernel parameters for optimal facies 

reconstruction.  

 

The kernel function K is a continuous, bounded, and symmetric real function centered at 

zero that integrates to one and typically decays with distance. The choice of the kernel is 

known not to significantly affect the final solution and therefore a standard Gaussian 

distribution is typically used for mathematical convenience. In n dimensions this is 

written as 

                                            
( ) /2

1 1
( ) exp

22

T

n
K

π
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x x x      (Equation 3.6)   

For any given estimation location x0, the principle of least squares expresses that one 

should choose as estimates of b those values that minimize the weighted sum of squared 

residuals, S(b), the residual being the difference between data values and model 

predictions,  

  S(b) = I
i
−m(x

i
;b,x0 )[ ]2

K
H

(x
i
−x0 )

i=1

n

∑       (Equation 3.7) 

Let us express equation (Equation 3.2) in matrix form,  
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eXbI +=         (Equation 3.8) 

where I=[I1,..,In]
T, e=[ ε1, …,εn]

T, and X  is a matrix composed of n rows and a number 

of columns that is associated with the degree of the polynomial chosen for b (i.e., in 3-D 

would be 4 for order 1, 10 for order 2,…) 

' ' ' '2 ' ' '2 ' '
1 1 1 1 1 1 1 1 1

' ' ' ' 2 ' ' ' 2 ' '

1 ...

... ... ... ... ...

1 ...n n n n n n n n n
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 
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  

X        (Equation 3.9) 

Then, the optimization problem is written as 

   min
b

 S(b) = min
b

 I −Xb( )TW I −Xb( )         (Equation 3.10) 

where W is a diagonal weight matrix given by  

{ })(K),...,(Kdiag 0nH01H xxxxW −−=            (Equation 3.11) 

Setting ∂S(b)/∂bj=0 to each parameter bj we obtain the following solution 

( ) WIXWXXb TT 1ˆ −
=           (Equation 3.12) 

This solution is formally the same to that of standard regression but the matrices W and 

X depend now on the estimation location x0. Knowing the optimal estimate of b, the 

probability that x belongs to F1 can be estimated by 

  
{ } { }1 1 0 1 0 0

ˆProb ( , ) ( , , )F E I F m F b∈ = = =x x x x x        (Equation 3.13) 

Let us define Weq by 

( ) WXWXXeW
TTT

eq

1

1

−
=         (Equation 3.14) 
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where e1 is a column vector with first element equal to one, and the rest equal to zero. 

Then, the Classical Kernel Regression (CKR) algorithm can be seen as a local weighted 

averaging of the data in which the probability that x belongs to F1 is determined by the 

following linear interpolation of indicator values   

0
ˆ T

eqb = ⋅W I          (Equation 3.15) 

Hence, Weq are actually the equivalent weights of the indicator data values. The forms 

of these equivalent weights are exclusively dictated by the polynomial order chosen in 

(Equation 3.4). 

 

3.3.3. STEERING KERNEL REGRESSION 

 

The SKR method comes as a direct extension of the CKR algorithm. Since the latter is 

nothing but a weighted average of indicator data values, the final regression estimate of 

Prob{x∈F1} only depends on the geometric configuration of the data, and therefore 

ignores the inherent correlations between data positions and their values. Takeda et al. 

(2007) developed a SKR algorithm to include key structural features into the estimated 

fields.  

 

The key idea behind the SKR algorithm is to modify the size and orientation of the 

regression kernel to assign more weight along the direction of highest local spatial 

correlation. The advantage of doing this to classify facies is the following: consider a 

point x0∈F1 located close to a facies boundary; the conventional CKR algorithm 
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(symmetric spherical kernel) will estimate the probability that x0 belongs to F1 by 

equally considering both nearby samples of the same facies F1 and samples of other 

facies located beyond the boundaries. The SKR method is designed to adapt the 

regression kernel to the boundary isosurface so as to assign more weight to those 

samples belonging to the same facies. This way, the denoising is affected most strongly 

along the boundaries, rather than across them, resulting in a strong preservation of 

details in the final output.  

 

The algorithm works by reorienting the smoothing matrix in the direction of the 

gradients of the mean response m(x,b) through a redefinition of the kernel matrix 

                                            
2/1−= i

steer

i hCH                                         (Equation 3.16) 

                                 ( ))ˆ,()ˆ,( bxbxC j

T

ji mm ∇⋅∇≈ ,          
ij w∈x        (Equation 3.17) 

where the overbar stands for averaging over the mean response adjacent to xi, wi is the 

window search around xi, and h is a global smoothing parameter. 

 

In contrast to the CKR algorithm, the smoothing matrix Hsteer at each individual point xi 

depends now on the solution of the regression function m(x,F1). This makes the SKR 

method to be nonlinear in nature. Its application must be therefore iterative, starting 

with a first initial estimate of m(x,F1) computed, for instance, with the CKR method. 

This estimate is used to measure the dominant orientation of the local gradients, then 

used to sequentially steer the local kernel through (Equation 3.17), resulting in 

elongated, ellipsoidal contours spread along the indicator isosurface (isocurve in 2D).  
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We must state that while the method is applicable to 3D reconstruction problems, here 

we present the details only for the 2D problems. The main reason is to be able to use the 

same synthetic examples available in the literature for geologic facies reconstruction 

using IK, SVM or NNC methods. Under these conditions, and from (Equation 3.16), the 

new form of the regression kernel is 
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     (Equation 3.18)

 

When estimating the covariance matrix Ci through (Equation 3.17), the resulting matrix 

can be rank deficient and unstable. To overcome this problem, a multiscale technique 

for estimating local gradients (Takeda et al., 2007) can be adopted. Let us consider the 

following matrix Gi formed by a collection of p estimated gradient vectors at the 

neighborhood of the sampled location xi 
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The singular value decomposition of Gi factorizes this matrix in the following form 

iiii VSUG =            (Equation 3.20) 

where the diagonal entries Sjj of Si (singular values) represent the energy in the 

dominant directions (singular vectors) of the local gradient field. These dominant 

directions are given by the column vectors of the matrix Vi. In particular, the second 

column of Vi, [V12, V22]
T, determines the direction of smallest energy and represents the 

dominant orientation angle of Ci (direction with highest local spatial correlation) by  
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The actual shape of the regression kernel is then calculated from the energy associated 

with the dominant gradient directions, 
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where λ1 is a regularization parameter that dampens the effect of noise and restricts the 

ratio from becoming degenerate. Knowing these parameters, the covariance matrix can 

be calculated by the a combination of a scaling parameter γi, a rotation matrix Ri, and an 

elongation matrix Ei by means of  

     T

iiiii RERC γ=         (Equation 3.23) 

The different terms in (Equation 3.23) are defined as 
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where λ2 is another regularization parameter aimed at dampening the effect of the noise 

and keeping the scaling parameter from becoming zero, α is a structure sensitive 

parameter satisfying that 0<α<1, and M is the number of samples in the local analysis 

window wi. 
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3.3.4. UNCERTAINTY IN FACIES CLASSIFICATION 

 

At this stage, it is important to highlight the following advantage of the SKR method 

compared to deterministic algorithms, e.g., the nearest neighbor classification (NNC). 

Statistical approaches not only provide a map of the spatial distribution of the estimates 

of indicator values (i.e., the probability that a given point belongs to a facies), but also 

the error variance of the estimates of b. If the error terms εi are uncorrelated, and all 

have the same variance σ2, then it can be shown that the estimator (Equation 3.12) is an 

unbiased estimate of b, and that the variance-covariance of the estimation matrix is  

    ( ) 12 −
= WXXC

T

b σ         (Equation 3.27) 

Thus, the variance of the estimate of Prob{x∈F1} can be determined by 

    ( ) TT

SKR 1

1

1
22 eWXXe

−
= σσ        (Equation 3.28) 

And the error variance can be estimated as  

Nn

S
s

−
=≈

)ˆ(22 b
σ       (Equation 3.29) 

Where N is the number of estimated parameters. Knowing this, one can define an 

approximate confidence region in which the border between facies is most expected to 

be found.  This will be explored in section 3.4. 

                                                                        

3.4. SYNTHETIC EXAMPLES 
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3.4.1. METHODOLOGY 

 

Since the NNC has been already demonstrated to outperform SVM and IK approaches 

(Tartakovsky et al., 2007), in this section we only compare the performance of the SKR 

method with the NNC. The NNC algorithm is provided in the Appendix for 

completeness. Four synthetic geological field settings formed with two distinct facies 

(see Figure 3-1) were used to test the SKR method and compared its performance with 

the NNC. Two of these fields, Figures 1a and 1b, are identical to the ones presented by 

Tartakovsky et al. (2007); the remaining two were specifically generated for this work. 

Figure 3-1c is a curvilinear shape, obtained from an abandoned meander in the Ebro 

river (Spain), potentially indicating the shapes of paleochannels that could be found in 

the subsurface. Figure 3-1d is just a circle, in order to test the performance of the 

algorithm for a very simple shape. Each of the figures consists of an image data 

discretized in 60×60 (=3600) pixels. Red and blue pixels correspond to facies F1 and F2, 

respectively. In accordance to previous sections, the following indicator function is used 

for facies reconstruction purposes,  

                                



∈

∈
=

2

1
1 0

1
),(

F

F
FI

x

x
x

               

 (Equation 3.30) 

The objective of the numerical simulations is to reconstruct the facies depicted in each 

individual image from a few measurements. We consider a random data set consisting 

of 10, 20, 30, 50, 80, and 110 measurements, and corresponding to a range of 0.28% to 

3.06% of the total pixels investigated. Emphasis is given to sample densities between 10 

and 30, which illustrate the most typical problem encountered in subsurface hydrology, 
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i.e., those with scarce information covering a very low portion of the simulation 

domain. The SKR is used with a quadratic polynomial approximation of the mean 

response m(x,F1) in (Equation 3.4) and a Gaussian kernel.  

 

An analysis of the fractional error of the reconstructed images is used to compare the 

performance of the SKR method with that of NNC. For each realization, the fractional 

error was obtained as the ratio of misclassified to the total number of pixels in the 

images. One hundred realizations were created for each sample density, and the 

fractional error reported is the average over the ensemble of realizations. For 

comparison purposes, selected points associated with each sample density were the 

same for the SKR and the NNC methods. It is important to notice that Tartakovsky et al. 

(2007) used only 20 (rather than 100) randomly generated realizations for each sample 

density; for this reason, our calculated fractional error for NNC, although similar, is 

slightly different to theirs. 
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Figure 3-1. Synthetic fields used for facies delineation: a and b are the same 

figures presented by Tartakovsky et al. (2007). We generated Figure 3-1 (c) and 

(d) considering a real case scenario (a meander from the Ebro river, Spain, and 

a circle a simple geometric figure). Gray and black colors indicate the two 

facies. 

 

The SKR method provides the probability of occurrence of facies F1 at a given location. 

Therefore, the output data is a continuous variable (i.e., m(x,b)∈[0,1]). A cut-off in the 

estimated values is then necessary to classify the data into facies. We explore two 

different strategies to introduce this cut-off. The first strategy considers that no prior 
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information on the relative volumetric proportion of facies is known. In this case, the 

boundary between facies is determined by the isoline Prob{x∈F1}=Prob{x∈F2}=0.5, 

expressing that both facies have the same probability of existence at the facies 

boundaries. We denote this method as SKR(0). When prior information on the relative 

volumetric proportion of facies is known, then one can defined the boundary between 

facies by the isoline Prob{x∈F1}=p1 (i.e., Prob{x∈F2}=1- p1), where p1 is estimated 

either by the global mean of the indicator values or the empirical relative volumetric 

fraction of facies F1. The latter method is similar to the facies reconstruction problem 

posed by the geostatistical indicator kriging approach proposed by Ritzi et al. (1994). 

We will refer to this strategy as SKR(%).  

 

3.4.2. CHOOSING THE KERNEL PARAMETERS 

 

Five different parameters control the solution of the SKR method: (1) the global 

smoothing parameter h, equation (Equation 3.16); (2) the size of the local orientation 

analysis window w, equation (Equation 3.17); (3) the regularization parameter λ1, 

equation (Equation 3.22); (4) the structure sensitive parameter α, equation (Equation 

3.26); and (5) a second regularization parameter λ2. This last one is directly fixed to 10-

7. A sensitivity analysis of the lowest fractional error was carried for the remaining four 

parameters.  

 

Figure 3-2 provides a series of contour plots of the lowest fractional error associated 

with the image shown in Figure 3-1a and only for the case of lowest sample density (10 
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data points). Each contour plot displays the lowest fractional error as a function of two 

parameters. Blue dots correspond to the estimated values used to generate the contour 

plots. In general, the lowest fractional error is mainly controlled by h and α, being the 

output solution quite insensitive to w and λ1. A good quality of facies classification 

reconstruction is typically obtained with h=1 (pixel), w=5 (pixel), λ1=500 and α=0.01.  

This optimum combination of parameter values is explained as follows: The structure 

sensitivity parameter α, which must satisfy the condition 0<α<1, is devised to increase 

the steering kernel area in regions where large fluctuations exist (high-frequency data), 

so that large α values are able to produce smooth estimates in those high-frequency data 

regions. The reconstruction problem in hydrogeology typically involves small densities 

and low-frequency data (scarce data) and thereby this correction is somehow uncalled 

for. Accordingly, the sensitivity analysis yields α=0.01, which basically expresses that 

the scaling factor γi is always close to 1. 

 

The window size w defines the search area over which the gradients ∇m used to 

determine the local covariance function Ci at a data point location are estimated. Results 

show that a relatively small region (w=5 pixels) is sufficient to properly capture the 

patterns of Ci, which is most likely due to the use of a small sample population and the 

lack of noise in the data values.  

 

The parameter λ1 is a regularization parameter used to avoid numerical singularities 

during the estimation of the principal components of the elongation matrix E. Results 

show that the lowest fractional error decays with increasing λ1. Large values are needed 



Chapter 3: A locally adaptive kernel regression method to delineate facies 
 

49 
 

here because S11 and S22 in equation (Equation 3.21) are relatively large for the field 

conditions considered. 

 

Given that scaling is not required (γi ≈ 1) and that the solution is not much sensitive to 

both w and λ1, the global smoothing parameter h appears as the main controlling factor. 

This parameter determines the area underneath the steering kernel so that large h values 

will increase the influence of distant data points to the final estimation. Results show 

that a small h value close to 1 pixel is required in this synthetic example, which implies 

small steering kernel areas.  

 

 

Figure 3-2. Sensitivity analysis for the four fix parameters during size of the 

local orientation analysis window ( w ), the regularization for the elongation 

parameter ( λ ), the structure sensitive parameter ( α ) and the global smoothing 

parameter (h). Blue dots indicate the different value choices for the calculation 

of the fractional errors and the red star indicates the value used for our 

calculations, coincidently with the lowest fractional error. 
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An illustration of the shape of the steering kernel ellipses obtained during the iterative 

solution of the SKR method is shown in Figure 3-3 for a sample density of 0.83% (i.e., 

30 data points). Figure 3-3a shows the reference image, whereas the series of Figures 

(b)-(e) display the reconstruction solution at different iterations. Initially, there is no 

information on the local correlation of data values (gradients) and therefore the ellipses 

are (uninformative) circles of radius close to 1 pixel. In subsequent iterations, a better 

gradient estimation is increasingly achieved and circles are reshaped to ellipses 

elongated in the direction of the highest local correlation (smallest gradient). As a result, 

large weights are given to the data values located in the direction of the local highest 

correlation while other data points are practically ignored. Based on this observation, 

the application of the SKR method to facies reconstruction can be seen as a specialized 

nearest neighbor procedure in which the distance metric is not measured by an 

Euclidian distance but in terms of the highest local correlation, changing for each data 

location.  
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Figure 3-3. Iteration comparison. a) Original figure, corresponding to Figure 3-

1(a). In all this set, random sampling points are shown as blue and red squares, 

for this example a sample density of 30 is shown.  b) Classical Kernel 

Regression result after interpolation. First, second and third iterations of the 

Steering Kernel are shown in c), d) and e), respectively.  

 

The parameter sensitivity analysis presented here considers a given sample density and 

a particular image. To complete the analysis, Figure 3-4 presents the global smoothing 

parameter h as a function of sample density and varying for each reference image. For a 

given sample density, the h value provided is the best estimate obtained manually by 

trial-and-error to minimize the fractional error. Figure 3-4 shows that, in the lowest 

sampling density, which is the typical scenario in subsurface hydrology, the lowest 

fractional error is always achieved when h=1 for both methods, i.e., the SKR(0) and the 

SKR(%). A generalization is harder to state for other sampling densities and reference 
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images. Nevertheless, it can be observed from Figures 1a and 1d that higher values are 

required for sampling densities between 30 and 80.  

 

Figure 3-4. Optimal global smoothing parameter (hb) comparison for the steering kernel 

regression function for the two SKR conditions: a) SKR(0) and b) SKR(%). Values on 

the corners of the chart indicate the sample density, while the interior axis represents the 

hb value. On this graph it is clear that for the lowest sample density (10 samples) a low 

hb value is the optimal, while for the highest sample density an intermediate value (3-4) 
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is ideal; for the other sample densities this parameter value varies between figures, with 

generally high values (above 5) for Figure 3-1 (a) and (d) on both conditions. 

 

Along the same lines, Figure 3-5 shows the fractional error obtained as a function of h 

for the four images analyzed and different sample densities considered. Other 

parameters were set to w=5 pixels, λ1=500 and α=0.01. Results show that, in most 

cases, the SKR(0) method with no prior information on the volumetric proportion of 

facies yields larger fractional errors compared to the SKR(%) method. This effect is 

significantly visible for small sample densities, which is the typical scenario in real 

applications. Moreover, the fractional error tends to increase with h, a fact that is 

especially evident for Figures 3-5b and 3-5c. 

 

Figure 3-5. Fractional error variation vs. h for the four figures analyzed, here 

they are presented in the same order as shown in Figure 3-1: a) Figure A, b) 

Figure B, c) Meander, d) Ball. Discontinuous and continuous lines represent 

respectively the fractional error when SKR(0) and SKR(%) are considered. 
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3.4.3. SIMULATION RESULTS 

 

Figure 3-6 shows the fractional error as a function of sample density for the different 

methods employed. In all cases, the fractional errors associated with both the SKR(0) 

and the SKR(%) methods are smaller than that of the NNC. Interestingly, while the 

performance of the SKR(0) method is only slightly better than that of the NNC method, 

with a relative error difference no larger than 1% in most cases, the introduction of prior 

information into the analysis via the SKR(%) method is capable of significantly 

outperform the other two approaches. This impact is most noticeable in Figure 3-1c. It is 

important to highlight here that for all the evaluated images, the benefit (in relative 

terms) given by the SKR(%) method is higher for the smaller sampling densities. This is 

an important finding in itself. Under real circumstances, in typical hydrogeology 

problems it is very likely that the number of data points will be rather limited, and as so, 

the SKR(%) method constitutes a valuable instrument to interpret facies delineation 

with the lowest estimation error.  
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Figure 3-6. Fractional error comparison. From top to bottom synthetic fields 

(a), (b), (c) and (d) as indicated in Figure 3-1. NNC stands for nearest neighbor 

classification, 0 for SKR(0) and % for SKR(%). 

 

Let us emphasize the real benefit of using SKR(%) compared to the NNC algorithm. 

Consider the problem of reconstructing the image shown in Figure 3-1a from only 30 

data points randomly located. Figure 3-7 compares the true image (cross symbols 

represent the sampling points) with the output of NNC and 4 iterations of the SKR(%) 

method. In this case, the fractional error associated with the SKR(%) method is only 

slightly better than that of the NNC but still important reconstruction features can be 

distinguished. NNC only depends on data configuration and not on the actual values or 

their spatial correlation. As such, its reconstructed image (Figure 3-7b) fails to represent 

the central spatial continuity observed in facies F1, clearly extending from the northern 

to the southern boundaries. Instead, with only four iterations, the SKR(%) is able to 
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correctly identify this spatial continuity of data values and properly represent the true 

connection north-south.  

 

Figure 3-3 illustrates the evolution of the local kernel functions associated to each data 

point in the same problem. In these images, the variable represented is the direct output 

data given by the SKR method without applying a classification strategy. We observe 

the progressive increase in the ratio of the two axes of the ellipse.

 

Figure 3-7. (a) Original figure, showing the location of the random samples 

considered (b) Nearest-neighbor classification, (c) Classic kernel regression 

ha=1. Second order steering kernel regression: (d) iteration 1, (e) iteration 2, (f) 

iteration 3. Figures c, d, e and f are the result of equation 3.30. 

 

In addition to the recognition of spatial continuity, the SKR(%) is also capable of 

providing a measure of uncertainty in the delineation of the facies boundary. In 
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principle this is not possible for a deterministic approach, such as that of the NNC 

algorithm. Figure 3-8 presents different maps to evaluate the uncertainty in the 

estimation corresponding to the same example already used previously. Interestingly, 

there is a very good correlation between low variance and high sampling density areas 

and viceversa. From this map, one can also delineate a safe zone for drawing the border 

between facies, plotted as gray areas in Figure 3-8e, those corresponding to values 

above 0.3 times the standard deviation. By visual inspection, one can appreciate a very 

good agreement between the results from the SKR(%) method (Figure 3-8e) and the 

original facies boundaries visible in Figure 3-8a. 

 

Figure 3-8. (a) Original figure, (b) steering kernel iteration 3, (c) steering 

kernel iteration 3 after equation 3.30, (d) Variance map showing the areas with 

the highest and lowest uncertainty (red and blue zones), (e) standard deviation 

map, showing in gray the area where the border between facies is more likely 

located. 
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3.5. CONCLUSIONS 

 

A non-parametric method, SKR, originally designed for image processing (Takeda et al. 

2007), has been presented and tested for its application as a facies delineation algorithm. 

The performance of the method was compared with the nearest neighbor classification, 

a method that has proven to be more efficient than others discussed in the literature 

(Tartakovsky et al., 2007). Four synthetic scenarios were used for the comparison: two 

of them identical to the figures presented by Tartakovsky et al. (2007), and the other 

two figures are new for this work, one inspired on a cartographied river meander, and 

the other being a representation of a simple geometry, a circle. For each example 

different tests were studied ranging from very sparse to sparse number of data points 

available.  

 

Two variations of the SKR method were tested depending on whether additional 

information about the exact proportion of facies was introduced in the algorithm 

(SKR(%)) or not (SKR(0)).  

 

Our results indicate that the SKR(0) method had similar or lower fractional errors than 

those obtained with NNC, except for two cases (Figure 3-1(c) and (d), with a sampling 

density of 0.28%). The SKR(%) outperformed all methods, with improvements up to 

5% in misclassified points. The improvement is better in relative terms for lowest 
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sampling densities. This finding leads us to believe that the SKR(%) method would be 

an useful tool on real cases, when scattered and few sampling data points are expected.  

 

One of the major advantages of the SKR method is the quantification of the uncertainty 

in the delineation of the facies boundaries. In this context, we presented a method to 

stochastically generate variance maps that allows one to identify potential areas where a 

boundary between facies is more likely to exist. An example of application for one of 

the study cases is provided showing the area over which there is most probably a 

boundary between facies.  
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4. INFILTRATION RATE VARIATIONS DUE TO 

TEMPERATURE FLUCTUATION IN AN ARTIFICIAL 

RECHARGE POND
3 

 

4.1. INTRODUCTION 
 

Daily water temperature fluctuation is a common phenomenon that can be observed in 

surface water bodies exposed to environmental temperature changes; generally, natural 

water temperature variations can be of two types, seasonal variations (an annual cycle of 

low temperature during the winter and higher temperature during the summer) or daily 

fluctuations (higher temperatures during day light and lower temperature at night). 

 

The impact of temperature variations in recharge has been assessed in a number of 

natural and artificial water bodies (Constanz et al., 1994; Constanz, 1998, Ronan et al., 

1998, Lin et al., 2003, Braga et al., 2007). Temperature directly affects hydraulic 

conductivity, K , as shown in Equation 4.1: 

g
K k

ρ
µ

 
=  

 
 Equation 4.1 

                                                
3 This chapter is based on the paper: Barahona-Palomo, M., Sanchez-Vila, X., Fernàndez-Garcia, 

D., Bolster, D., Pedretti, D., and Barbieri, M. 2014, Infiltration Rate Variations due to Temperature 

Fluctuation in an Artificial Recharge Pond. In preparation. 
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Where � is the intrinsic permeability, g  is the acceleration of gravity, ρ  and µ  are 

the density and viscosity of water, respectively; the latter two terms are temperature 

dependent.  

 

Rorabaugh (1963) observed that streambed percolation rates from a river in Kentucky, 

USA were directly affected by seasonal changes in stream temperature. This author 

demonstrated that the seasonal increases in percolation losses during the summer were 

entirely predicted by the expected influence of temperature on the hydraulic 

conductivity K of the streambed. The magnitude of K is strongly temperature sensitive 

as a result of the strong temperature sensitivity of the viscosity of water (Muskat, 1937). 

As a consequence, a temperature increase from 0º to 25ºC in porous materials results in 

a doubling of the ponded infiltration rate (Constantz & Murphy, 1991). 

 

During a 5 years study, Rorabaugh (1963) found that infiltration rates were comparable 

in winter and summer even though the stage was generally 10 times higher in winter. In 

another study, infiltration rates were higher in the late afternoon, when stream 

temperature is greatest, and lower in early morning, when stream temperature was lower 

(Ronan et al., 1998; Constantz, 1998; Braga et al., 2007).  

 

Viscosity of water changes by approximately 2%/ºC between the temperature range of 

15-35ºC and this change is suggested to lead to an estimated 40% change of infiltration 

rate between the summer and winter months (Lin et al., 2003). According to Iwata et al. 
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(1995), the value of K at a water temperature of 35ºC is twice that of a temperature of 

7ºC. 

 

Correction for temperature fluctuations are rarely considered during field measurements 

even though this effect might be a potential source of error (McKenzie & Cresswell, 

2002).  

 

After an extensive bibliographic research, it is our understanding that daily temperature 

variations in Artificial Recharge ponds have not been modeled and compared with field 

data, as a parameter that can manage the infiltration rate in highly permeable soils. In 

this chapter we study detailed recharge measurements in an artificial recharge basin in 

order to assess the impact of temperature variations in a temperate Mediterranean 

climate. 

 

4.2. MATERIALS AND METHODS 
 

4.2.1. STUDY SITE DESCRIPTION 

 

The study site is located close to Barcelona, Spain (Figure 4-1). The facility includes 

two ponds that were constructed for artificial recharge experimentation. Infiltration 

water is diverted from the Llobregat river and enters the first pond for settling of the 

fine sediment; water then enters the infiltration pond, constructed over coarse geologic 

materials.  
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Figure 4-1. Infiltration Pond close to Barcelona, Spain. Labeled blue dots 

indicate the location of piezometers, the black line indicates the location of the 

composite cross section shown in Figure 4-2. 

 

The site is located over quaternary fluvial deposits associated to the Llobregat river 

(Institut Geològic de Catalunya, 2011). Geological loggings of recovered cores from 

piezometers built close to and into the infiltration pond were used to construct a 

composite geological cross-section for the site (Figure 4-2). This cross-section was 

enriched with information provided by a natural gamma-ray geophysical log campaign, 

made on selected piezometers at the site.  
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According to the information gathered at the site, the upper layer is composed of fine 

sediments (silty-sand, sandy-silt) with organic matter, and it is approximately 2-5 

meters thick (designated here as top soil). This layer is underlain by a 17-20 m thick 

very permeable layer of coarse sediments (gravel and sandy-gravel), displaying lenses 

of clay with a maximum thickness of 1-2.5 meters. At the bottom, there is a low 

permeability layer of blue-clay associated to a regional Pliocene marls unit (Gàmez et 

al., 2007).  

 

 

Figure 4-2. Composite simplified geological cross-section through the 

experimental infiltration pond based on the projections of the core logging 

interpretation from piezometers A, B, C and E, and natural gamma-ray 

geophysical campaign from piezometers A, B, D and E. See Figure 4-1 for 

surface location of the cross-section. Layers with low natural gamma-ray values 
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are interpreted as coarse grain size units (sand or gravel), and layers with high 

natural gamma-ray values are interpreted as fine grain size units (silt or clay). 

 

Grain sieve analysis from samples taken at different depths and locations within 

the pond, confirm that a highly permeable material exists at the site. The 

hydraulic conductivity value obtained after the Kozeny-Carman formulation 

yields a range value of 10-4 to 10-2 m/s (see  

Table 4-1), indicative of well-sorted gravels.  

 

Table 4-1. Hydraulic conductivity values from grain sieve analysis in five 

sampling points within the pond, with the corresponding depths were samples 

were taken.  

Approximate 

Depth (cm) 

Hydraulic 

Conductivity (m/s) 

20-65 1x10-3 

75-85 9x10-4 

106-126 1x10-2 

0-24 1x10-4 

38-43 3x10-4 

 

4.2.2. EXPERIMENTAL DESIGN 
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Experimental infiltration campaigns where performed in the spring of 2009 and winter 

of 2011 at an Artificial Recharge facility. Each infiltration campaign lasted more than 

90 days; for this research, however, we have considered only the time frame during 

which the level on the infiltration pond was higher than 30 cm at the measuring point, at 

that altitude the water covered the entire pond floor, that is, 27 days for the first 

campaign and 18 days for the second.   

 

Surface water level (SWL) and temperature at the infiltration pond were measured 

during both periods, with surface water temperatures ranging between 2ºC and 25ºC. 

These two parameters fluctuated daily, they however, display a phase shift, as shown in 

Figure 4-3 and Figure 4-4. 

 

 

Figure 4-3. Water level (h) and temperature (T) on the pond, during the spring 

infiltration campaign. 
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Figure 4-4. Water level (h) and temperature (T) on the pond, during the winter 

infiltration campaign. 

 
 

Major changes in the incoming flow [Qin] to the pond, are correlated with observed 

large head variations in the surface water level (see Figure 4-5 and Figure 4-6), 

however, a daily fluctuating pattern is not observed in Qin, discarding it as the cause of 

the daily SWL fluctuations observed on the pond. 

 
 

 
Figure 4-5. Incoming flow (Qin) through time measured at the inlet. Major 

changes (increases and decreases) have a direct influence on water level at the 
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infiltration pond; water level daily fluctuations at the pond, however, do not 

seem to be related with the Qin. [spring recharge] 

 

 

 
Figure 4-6. Incoming flow (Qin) measured at the inlet as a function of time, 

compared to water level daily fluctuations at the pond. No direct correlations is 

visible [winter recharge] 

 

In order to calculate the infiltrating flow (Qout), we consider the mass balance equation:  

( )in w w out w w w w w

d
Q C T Q C T V C T

dt
ρ ρ ρ− =  Equation 4.2 

Where �� , ��, T, wV  are water density, specific heat, temperature, and volume in the 

pond, respectively. All four parameters are variable with time t.  
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Rearranging Equation 4.2 and discretizing the derivative in time, it is possible to find an 

explicit expression for Qout at time t+1 by assuming that variations in ��  , �� , �� ,  

change slowly in time. Defining A  as wet surface area (also variable in time) 

1 1
1 1

t t t t
t t

out in

A h A h
Q Q

t

+ +
+ + −

= −
∆

 Equation 4.3 

The values obtained for Qout from (Equation 4.3) are shown in Figure 4-7 and Figure 

4-8 for the two periods of time studied. Daily variations on infiltration rates, also out of 

phase with respect to the water level at the pond, are visible in such figures.  

 

 

Figure 4-7. Calculated infiltrating flow (Qout) from the mass balance Equation 

4.3 and water level (h) measured at the pond. Notice that Qout is out of phase 

with respect to h [spring recharge period].  
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Figure 4-8. Calculated infiltrating flow (Qout) from the mass balance Equation 

4.3 and water level (h) measured at the pond. Notice that Qout is out of phase 

with respect to h [winter recharge period].  

 

Considering Qout and the area of the pond we calculated an infiltration rate following a 

simple approach where I= Qout/A and show that the infiltration rate varies through time 

and that it is also out of phase with respect to SWL.  

 

An energy balance considering the calculated Qout, renders a very good correlation 

between the measured temperature at the infiltration pond and that calculated with the 

energy balance.  
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Groundwater levels and temperatures were measured during the infiltration campaigns, 

along with tensiometer readings (during both periods) and vadose zone temperature 

(during the second period) installed at different depths below the pond.  

 

The aquifer beneath the pond is an unconfined granular aquifer. Groundwater level 

beneath the bottom of the pond is approximately 6 meters deep. During the flooding 

experiments groundwater fluctuated daily, with variations of up to 50 cm during the 

spring experiment and 35 cm during the winter.  

 

 

Figure 4-9. Groundwater levels (GWL) and temperatures (GWT) below the 

infiltration pond, during the first experiment. 
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Figure 4-10. Groundwater levels (GWL) and temperatures (GWT) below the 

infiltration pond, during the second experiment. 
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Figure 4-11. Measured pressure head in the tensiometers located at 1.0 m, 1.9 m 

and 4.9 m deep below the infiltration pond, for the spring flooding event. 

 

 

Figure 4-12. Measured pressure head in the tensiometers located at 1.0 m, 1.9 m 

and 4.9 m deep below the infiltration pond, for the winter flooding event. 
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For the winter flooding event, information relative to the temperature was recorded at 

one meter depth. Even at a depth of 1m, daily variations in temperature are clearly 

observed, with ranges that are above 1ºC in some cases. 

 

 

Figure 4-13. Temperature measurements taken at one meter below the 

infiltration pond, during the winter infiltration event. Even at a 1m depth, daily 

variations in temperature are clearly visible.  
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�	�
 = ��� 
��ℎ� �ℎ�� − ��ℎ�� − ��
, �, ℎ����������Equation�4.4� 
where 	  is the volumetric water content (� ! ∙ � #!) at soil-water pressure head ℎ 

�� �; 
  is time (day); �  the vertical space coordinate (cm) positive downward; ��is 
hydraulic conductivity �� ∙ $%&#'�; and ��is the sink term.  

 

The soil hydraulic properties were described with the van Genuchten-Mualem 

constitutive relationships 

	�ℎ� = (	) + 	+ − 	)�1 + -.ℎ-/�0	+ ����������ℎ ≤ 0ℎ > 0����Equation�4.5� 
where 	)  and 	+  are the residual and saturated water contents, respectively (� ! ∙
� #!); .��> 0, 56�� #'� is related to the inverse of the air-entry pressure; 6��> 1� is a 

measure of the pore-size distribution; and� = 1 − 1 67 �(van Genuchten, 1980). 

 

The corresponding Van Genuchten-Mualem hydraulic conductivity function, K(h), is  

��ℎ� = 8�+�9: ;1 − <1 − �9' 07 =0>? ℎ ≤ 0�+ ℎ > 0������Equation�4.6� 
where  

� = 	 − 	)	+ − 	) ,��������� − 1 − �1 67 � 
where �+  is the saturated hydraulic conductivity (� ∙ $%&#' ) and A  is an empirical 

pore-connectivity parameter. 
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The hydraulic parameters 	), 	+, 6, . and A were taken from the database available in 

Schaap et al. (2001). These authors use a pedotransfer function software that uses a 

neural network model to predict hydraulic parameters from soil texture and related data. 

We used the values indicated by the authors for sand, compiled in Table 4.2. For �B, 
however, we used the value calculated for a sand horizon below the infiltration pond, 

corresponding to the finest sediment sample observed in the cross sections (see Figure 

4-2). 

 

Table 4-2. Hydraulic parameters values used in the model of the infiltration 

process, taken from Schaap et al. (2001) database, with the parameters 

corresponding to a sand. The value for �B corresponds to a fine sand. 

	) [-] 	+ [-] . [1/cm] 6 [-] �B� [cm/day] A [-] 
0.053 0.375 0.0352371 3.17687 225 -0.93 

 

We performed a one-dimensional (1-D) heat transport modeling considering the case of 

an infiltration pond. Considering the cross-section shown in Figure 4-2, we have 

assumed a highly permeable material under the infiltration pond, and therefore, consider 

a 6 m thick, unsaturated, single layer for the 1-D model.  

 

The thermal conductivity can be parameterized as a function of soil texture and soil 

water-content. There are different functions of thermal conductivity, one function is 

presented by Chung & Horton (1987):  

λ�	� = C' + C?	 + C!	D.E�������Equation�4.7� 
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where C', C?, and C!, are empirical parameters �G ∙  #' ∙ �#'�. For the simulations we 

considered the default values presented in HYDRUS-1D for sand, and are respectively 

equal to 0.228, -2.406, and 4.909.  

 

4.2.4. NUMERICAL MODELLING: INITIAL AND BOUNDARY CONDITIONS 

 

A Dirichlet-type boundary condition was imposed on the top and the bottom of the 

model, both for head and temperature. The values correspond with the measurements 

taken on the field. The values assigned at the top boundary (surface of the pond) were 

obtained from the surface water level and temperature measured on the infiltration pond 

and thus are time variable. The groundwater level and temperature assigned at the 

bottom boundary were also assigned from existing measurements registered on a 

piezometer installed within the pond.  

 

For the initial conditions, both the hydraulic head and the initial temperature for the 

vadose zone were considered to diminish linearly with depth within a range of values 

limited by the top and bottom boundary values.  

 

4.3. RESULTS AND DISCUSSION 
 

The results of the water temperature and hydraulic conductivity variations reported in 

this section include hydraulic conductivity profiles at different times and the evolution 
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of hydraulic heads with the simulation time (27 and 18 days for experiment one and 

two, respectively). The spatial discretization involved nodes separated 10 cm, leading to 

a total number of nodes of 94. The time steps were automatic selected by the code. The 

initial time step was 0.0034 days, with a minimum time step of 6.94x10-4 days (one 

minute), and a maximum time step set to 2.08x10-2 days (30 minutes).  

 

Figure 4-14 shows the water temperatures measured at 1 m beneath the infiltration pond 

compared to those given by the numerical model. The agreement can be considered 

quite good, especially for the first 15 days; the model appears to deteriorate for the last 

three days; it however captures the increasing trend measured on the field. 

 

Figure 4-14. Water temperature measured and model at one meter beneath the 

infiltration pond. Only the winter infiltration period is presented.  
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Figures 15 and 16 show the hydraulic head simulation results for points located at 1.0 

m, 1.9 m and 4.9 m below the infiltration pond surface. The results show important 

fluctuations in the head values. 

 

Figure 4-15. Model hydraulic head for the first infiltration event at different 

depths.  

 

 

Figure 4-16. Model hydraulic heads for the winter infiltration event.  
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Figures 17 and 18 present modeled hydraulic conductivity values in the soil profile for 

selected times, presenting high, low and intermediate K values. In the first infiltration 

experiment, K varied between 185.0 cm/day and 248.1 cm/day, resulting in a 34% 

difference.  In Figure 4-17 it can also be observed the daily fluctuations in the soil 

profile and rapid changes in the position in K value horizons as indicated by times 15.5 

and 16.0 days.  

 

 

Figure 4-17. Hydraulic conductivity variation on the soil profile beneath the 

infiltration pond for selected times, corresponding to the first infiltration event. 

Times 2.25 and 26.0 days represent respectively lower and higher water 

temperature entering the soil. Times 15.5 and 16.0 days are shown for 

comparison as intermediate hydraulic conductivity values and to see the effect 

of variations within a given day. 
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Figure 4-18 presents K profiles for the second infiltration event, showing extreme cases 

within the 18 days period, during that particular event. K values ranged between 138.7 

cm/day and 176.6 cm/day, showing a 27% difference in hydraulic conductivity during 

that time. 

 

 

Figure 4-18. Hydraulic conductivity variation on the soil profile beneath the 

infiltration pond for selected times, according to the model for the second 

event.  
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Considering both events, the hydraulic conductivity values ranged between 138.7 

cm/day and 248.1 cm/day, meaning a 79 % variation. In figures 17 and 18 it can also be 

observed variations within the same day, caused by the daily water temperature 

fluctuation, which causes different K values in depth, just by the difference in   water 

temperature alone. 

 

This variations of K with time in the sediment below the infiltration pond when water 

with varying temperature enters the sediment, causes the infiltration velocity change 

with time and produces the observed fluctuation on the infiltration pond. Our model 

indicates that the water retention curve, and correspondingly, the variations of hydraulic 

conductivity with depth, is key in the management of infiltration recharge. As shown, 

water temperature fluctuations might even double infiltration recharge on a typical 

range for temperate climates. These observations should be considered when designing 

for infiltration management practices. 
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5. CONCLUSIONS 

The following conclusions presented here, summarizes the conclusions presented in 

chapters 2, 3 and 4. 

• The degree of correlation between conductivity values associated with 

interpretation methods based on impeller flowmeter measurements and particle-

size distributions has then been explored. The IFM method provides estimates 

within a given borehole that somehow smooth or dampen actual (small-scale) 

natural variability, because the pressure distribution around the measuring 

device can be far from the theoretical distribution envisioned for homogeneous 

systems. On the other hand, GSD-based conductivities are only influenced by 

the local composition of the tested granular material. The latter can display 

significant spatial contrasts, resulting in larger sills and shorter ranges than those 

associated with IFM interpretations. These findings are consistent with the fact 

that the two types of estimates analyzed can be associated with different, albeit 

of similar order of magnitude, support (measurement) scales. Precise 

characterization of the support scale of any given information is thus needed to 

properly include hydraulic conductivity data into numerical models. This is 

particularly needed for the assessment of the support scale linked IFM 

conductivity measurement, which is still not completely clear. 

 

• A non-parametric method, SKR, designed for image processing (Takeda et al. 

2007), has been tested for a different field, facies delineation. This method 

performance was compared with the nearest neighbor classification, a method 

that has proven to be more efficient than others when used for facies delineation 
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by Tartakovsky et al. (2007). Four synthetic scenarios (Figure 3-1) were used for 

performance comparison between these two methods, the first two are identical 

to the figures presented by Tartakovsky et al. (2007), and the other two figures 

are new, one inspired on a meander (from the Ebro river, Spain) and the other, a 

simple geometric figure, a circle. Our results indicate that the SKR outperformed 

the NNC in most cases. Two criteria were considered for the SKR: SKR(0) and 

SKR(%); these distinctions were defined following the criteria indicated on 

(Equation 3.30). The fact that SKR(%) outperforms the NNC is a breakthrough 

for facies delineation, especially when we consider that the difference in error 

fractional error is more evident when a low sampling density is considered. This 

finding leads to believe that SKR(%) can be employed as an useful tool on real 

cases, when scattered and few sampling data are available.  

 

• A one-dimensional (1-D) heat transport modeling considering the case of an 

infiltration pond was presented. The effect of water temperature fluctuation on 

the hydraulic conductivity profile of coarse sediments beneath an artificial 

recharge facility is modeled and compared with field data. Due to the high 

permeability, water travels at a high rate, and therefore also water with different 

temperature is also present on the sediment under the pond at different moments; 

this translates into different hydraulic conductivity values within the same layer, 

even though all the other parameters remain constant within the layer. 

Differences of almost 79% in hydraulic conductivity were observed for the 

model temperatures (2 °C – 25 °C). These variations of hydraulic conductivity in 

the sediment below the infiltration pond when water with varying temperature 
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enters the sediment, causes the infiltration velocity change with time and 

produces the observed fluctuation on the field measurements.  
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APPENDIX A 

BASIC STATISTICS ON D10 AND D60 SAMPLES USED FOR THE ESTIMATION OF KGS 
 

The basic sample statistics for d10 and d60 are presented in Table A1. Figure A1 shows 

the histograms of frequency distribution for d10 and d60. For illustration purposes, a 

lognormal model based on the statistics of d10 and a normal distribution model based on 

the statistics of d60 are also presented. One can observe that d10 values show a very 

positively skewed distribution, while d60 values present a symmetric distribution.  

 
Table A1.  Basic sample statistics of d10 and d60. 

Characteristics d10 d60 

Number of samples 407 407 
Minimum [mm] 3.91E-02   3.80E-01 
Maximum [mm] 5.25E+00   4.25E+01
Mean [mm] 9.15E-01   1.37E+01
Geometric mean [mm] 6.21E-01   1.27E+01
Standard deviation [mm] 9.18E-01   4.24E+00
Skewness coefficient 2.11E+00   4.09E-01 
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Figure A1. Histograms of frequency distribution for d10 (continuous gray line) and d60 

(continuous black line) (notice the different horizontal axes). A lognormal model based 

on the statistics of d10 (dashed gray line) and normal distribution model based on the 

statistics of d60 (dashed black line) are included for illustration purposes. 

Uncertainty associated with K estimates from grain size distributions 

 

On the basis of equations (Equation 2.1) and (Equation 2.5) in chapter 2, the uncertainty 

associated with K estimates from grain size distributions, 
GSKu , can be written as 

 

( ) ( )
10 60

2 2
2 2

10 60
GS

GS GS
K d d

K K
u u u

d d

   ∂ ∂
= +   ∂ ∂   

 (A1) 

 

The Kozeny-Carman formulation reads 

( )
3

2
1021

GSK A d=
−

φ
φ

 (A2) 

where A = g C / ν is assumed to be known without uncertainty. From (Equation 2.4), it 

is recalled that the porosity, φ, can be written in terms of the uniformity coefficient, U, 

as 

( )1 Ua b= +φ ; 60

10

d
U

d

 
=  
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; a = 0.255; b = 0.83 (A3) 

Renaming d60 = z and d10 = x, and using (A1) – (A3) leads to 
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Taking derivative of [A4] with respect to x and z, leads to 
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The uncertainty associated with d10 and d60 measurements has been estimated to be less 

than 2% by the American Association for Laboratory Accreditation (2005). In this case, 

however, a conservative 2% value is used for the estimation of the uncertainty.  

 

As an example Figure A2 shows the histogram of uncertainties for the 407 samples 

included in the data set. The estimated uncertainty 
GSKu  was less than 10% for 95% of 

the total number of samples. 

 

 

Figure A2. Histogram of frequency distribution for KGS uncertainty. 
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APPENDIX B 

THE NEAREST-NEIGHBOR CLASSIFICATION (NNC) 
 

The nearest-neighbor classification (NNC) employed by Tartakovsky et al. (2007) is a 

k-nearest-neighbor classification (Hastie et al., 2001) in which the classification of a test 

point is determined by majority vote amongst the k nearest-neighbor points in the 

training set, Tartakovsky et al. (2007) considered the case in which k=1, for which the 

classification of each point in the domain is determined by finding the nearest training 

point, and assigning the known class of that point. Given a set of training data points 

Ii=I(xi, Fk), i=1,…,n, the NNC classification for an arbitrary point x in the domain is 

computed as follows: (1) Define j as the index of the training data point, from the set

{ }
1

N

i i
x

=
, which is closest to query point x ; that is, 

2
argmini ij x x= − . Usually an 

Euclidean measure is prefer as distance metric, for simplicity, however, other metric can 

be used; (2) Assign the indicator function value of training data point 
jx  (i.e., ( )jI x ) as 

the indicator function value of query point x . This classification is simple to compute, 

and has no free parameters to estimate (no optimization of the method is possible). 

 


