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Abstract

This thesis develops mathematical programming models which integrate network design (ND) and line
frequency setting (LFS) phases. These appear in transport planning studies that extend an existing urban
public transportation system (UPTS) and are suitable for underground and rapid transit systems. The ND
phase extends the working UPTS, taking as inputs the locations of candidate stretches and stations on the
new lines, as well as construction costs which cannot exceed the available infrastructure budget. Regarding
the LFS phase, frequencies and vehicles are assigned to functioning and newly built lines, providing that
they do not exceed link frequency capacities, vehicle acquisition budgets, and time horizons. The developed
models take into account the type of service patterns that may operate on the lines of the transport system.
They include local services, where vehicles halt at every node in the line, and express services, in which
vehicles halt at only a subset of nodes in the line. A passenger assignment model solves the ND and LFS
phases at the same time a global optimum under inelastic demand.

The combined model has two variants: one which deals with inelastic demand and another which faces
elasticities in demand. The latter originates from changes in the modal choice proportions of travelers and
may result from modifications in the public transport system. The former does not take into account com-
petition among several modes of transportation and it is formulated as a mixed-integer linear programming
problem. In contrast, the latter allows passengers to travel via two modes of transportation: public transport
and private car. It is formulated as a mixed-integer linear bilevel programming problem (MILBP ) with dis-
crete variables only in the upper level. In both models, a complementary network is used to model transfers
among lines and to reach the passenger’s origin and/or destination nodes when the constructed UPTS does
not cover them.

The model with inelastic demand is initially solved by means of the commercial solver CPLEX under
three different mathematical formulations for the ND phase. The first two are exact approaches based on
extensions of Traveling Salesman Problem formulations for dynamic and static treatment of the line’s sub-
tours, whereas the last one is an approximation inspired by constrained k-shortest path algorithms. In order
to deal with large-sized networks, a quasi-exact solution framework is employed. It consists of three solving
blocks: the corridor generation algorithm (CGA), the line splitting algorithm (LSA), and the specialized
Benders decomposition (SBD). The LSA and CGA methods are heuristic techniques that allow skipping
some of the non-polynomial properties, which are the more difficult properties of the mathematical pro-
gramming problem. They are related to the number of lines under construction and the number of feasible
corridors (line segments) that can be generated. As for the SBD, it is an exact method that splits the original
mathematical programming problem into a series of resolutions, composed of two mathematical problems
which are easier to solve. Regarding the elastic demand variant, it is solved under the same framework as
the specialized Benders decomposition adaptation for solving MILBP , which results from this variant for-
mulation.

The inelastic demand variant is applied to two test cases based on underground network models for the
cities of Seville and Santiago de Chile. The test cases were built for academic purposes. Origin destination
trip matrices, construction costs and other parameters required by the models have been set to likely values



using maps and published studies. They do not come from any data collection study or survey. The purpose
of these networks is to test the models and algorithms on realistic scenarios, as well as to show their poten-
tialities. Reported results show that the quasi-exact approach is comparable to approximate techniques in
terms of performance. Regarding the elastic demand variant, the model is more complex and can be applied
only to smaller networks.

Finally, some further lines of research for both modeling and algorithmic issues are discussed. Further-
more, it is stressed that the current mathematical structure of both models, as well as techniques for solving
them, can be preserved when applying any of these lines of research.

Keywords: Public transportation, network design, line planning, integrating, express service design, elas-
tic demand, constrained k-shortest paths, Benders’ Decomposition, Pareto-optimality, mixed-integer linear
programming, mixed-integer linear bilevel programming.
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Catalunya - Barcelona Tech, for his continuing help; Dr. Angel Marı́n Gracia, of the Department of Applied
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Mathematical Notation

Definition of parameters

awr Origin coordinate of the line which approximates the entropy function (7.32) - (7.33) for the o-d pair w
in the interval r.

bwr Slope of the line which approximates the entropy function (7.32)-(7.33) for the o-d pair w in the interval
r.

B Vehicle fleet capacity expressed as the number of available vehicles with no acquisition cost.

cci Cost of building a stop at node i ∈ NN
TP .

cmi Cost of stop maintenance at node i ∈ NN
TP .

ccij Cost of building a stretch at link (i, j) ∈ ANTP .

cmij Cost of stretch maintenance at link (i, j) ∈ ANTP .

cfi Cost of operation at stop i ∈ NTP .

cfij Cost of operation on stretch (i, j) ∈ ATP .

csb Cost of assigning a vehicle to any line.

cab Cost of acquiring a new vehicle.

c̄net Available budget for infrastructure.

c̄veh Available budget for acquiring new vehicles.

Dc A 0-1 column vector holding the active stretches for corridor c.

dTPij In-vehicle travel distance from node i to node j in the public transit network.

dPRIw Average traveled distance for a user belonging to the o-d pair w that uses the private mode in the
elastic demand model.

Ec A 0-1 column vector holding the active nodes for corridor c.

f Maximum number of vehicles per unit of time that can be reached.

f̄i Capacity of the node i ∈ NN
TP , defined as the maximum number of vehicles that can go through per time

unit.

f̄ij Capacity of the link (i, j) ∈ ATP , defined as the maximum number of vehicles that can go through per
time unit.



gw Number of passengers per unit of time belonging to o-d demand pair w.

gp Number of passengers per unit of time belonging to all o-d demand pairs with origin at p.

q Vehicle capacity expressed as the maximum number of users that a train can hold.

ĥ Planning time horizon.

Kr Maximum number of k-shortest rectilinear corridors which can be found.

Kc Maximum number of k-shortest circular corridors which can be found.

T In-vehicle travel time matrix for every arc linking two pair of nodes i, j ∈ NN
TP .

T̃ A copy of T which may be modified in order to compute a new feasible detour.

tTPij In-vehicle travel time from node i to node j in the public transit network.

tCOMij Walking travel time from node i to node j in the complementary transit network.

tl Layover time of the line.

ts Passenger service time at any working or constructed station in the public transit network.

ta Time per passenger spent on boarding a vehicle halting at a service node.

tx Time per passenger spent on waiting in a vehicle halting at a service node.

ty Time per passenger spent on alighting from a vehicle halting at a service node.

tmw Average time of a user belonging to the o-d pair w that wants to use the mode m in the elastic demand
model.

x Maximum allowable number of stretches in each constructed line.

α Objective weight factor whose value must be within the interval (0, 1).

θ Economic cost of a unit of time for any OD pair when using the inelastic demand model.

θw Economic cost of a unit of time for the OD pair w when using the elastic demand model.

βPRIw Parking cost at origin p(w) and destination q(w) of a user belonging to the o-d pair w that uses the
private mode in the elastic demand model.

βTPw Fare cost of a user belonging to the o-d pair w that uses the public transportation mode.

γw A factor that weighs the average traveled distance for a user belonging to the o-d pair w that uses the
private mode in the elastic demand model.

Φrmax A parameter characterizing the maximum length of a detour P ki−j ⊂ P k with k > 1 and P k rectilinear
relative to the shortest path from i to j (P 1

ij).

Φcmax A parameter characterizing the maximum length of a detour P ki−j ⊂ P k with k > 1 and P k circular
relative to the shortest path from i to j (P 1

ij).

∆r
min A parameter characterizing the minimum length of a detour P ki−j ⊂ P k with k > 1 and P k rectilinear

relative to the time length of path P k from i to j (t(P 1
ij)).

∆c
min A parameter characterizing the minimum length of a detour P ki−j ⊂ P k with k > 1 and P k circular

relative to the time length of path P k from i to j (t(P 1
ij)).



Definition of indexes

c A subindex denoting the identifier of a corridor.

i Subindex denoting the identifier of a node.

k A supra index denoting the iteration of the algorithm.

m Supra index denoting the identifier of a transportation mode.

l A supra index denoting the identifier of a line.

p A supra index denoting the identifier of a demand origin.

q A supra index denoting the identifier of a demand destination.

r Subindex denoting the identifier of an interval of the entropy discretization function in the elastic demand
model.

s Subindex denoting the identifier of the source node of a path.

t Subindex denoting the identifier of the destination/terminal node of a path.

w A supra index denoting the identifier of an origin-destination pair of demand.

(i, j) A double index denoting the identifier of a link.

a(i) A subindex denoting the identifier of a boarding link related to identifier node i.

y(i) A subindex denoting the identifier of an alighting link related to identifier node i.

x(i) A subindex denoting the identifier of a remaining link related to identifier node i.

pred(i) The node which immediately precedes node i on a certain shortest path.

pred(i, j) The node which immediately precedes node j and is on the shortest path starting at i.

Definition of functions

C(P k) A function which maps the ordered node set P k with its corresponding construction cost.

hnk A function which refers to an equation which made up the right hand side of the Benders cuts (7.85) for
n = 1 or (7.86) for n = 2.

NS(P k, P.) A function which sets the role of the node P. in path P k as service node.

t(P k) A function which maps the ordered node set P k with its total time.

Umw Value of the utility function of a user belonging to the o-d pair w that wants to use the mode m in the
elastic demand model.



Definition of sets

A Set of links contained in the global network.

Ai The arc adjacency list of node i used in Dijkstra’s shortest path algorithm.

ATP Set of links belonging to the public transport network.

AINTP Set of in-vehicle links belonging to the public transport network.

AETP Set of stretches contained in the working lines.

AETP (l) Set of stretches contained in the working line l.

ANTP Set of stretches which can be used by the new lines.

ATP (i) Set of stretches in the public transport network containing stop i.

ANxya(i) Set of links related to in-station passenger flows which are adjacent to stop i.

ANx (i) Set of links related to remaining in-station passenger flows which are adjacent to stop i.

A+
x (i) Set of links representing the remaining passenger flows in-vehicle at station that goes out of node i.

A−
x (i) Set of links representing the remaining passenger flows in-vehicle at station that goes into node i.

ACOM Set of links belonging to the complementary transit mode network.

ACOM (i) Set of links belonging to the complementary transit mode network containing node i.

B A set containing the current computed feasible candidate line.

Dp Set of o-d demand pairs which originate at node p.

ETP (i) Set of stops emerging from stop i belonging to the public transport network.

ITP (i) Set of stops incident to stop i belonging to the public transport network.

G A graph containing the global network, i.e., all subgraphs representing different transport networks.

GTP A subgraph representing the public transportation network.

GCOM A subgraph representing the complementary network which allows passengers to transfer from line
to line or from one mode to another on foot.

GPRI A subgraph representing the private network where passengers travel in their private vehicles.

L Set of lines belonging to the public transport network.

Lij Set of lines that contain stretch (i, j).

Li Set of lines that contain node i.

LE Set of working lines already in operation contained in the public transport network.

LER Set of working rectilinear lines already in operation contained in the public transport network.

LEC Set of working circular lines already in operation contained in the public transport network.

LN Set of new lines which can be constructed in the public transport network.



la(i) Set of adjacent links to public transportation node i ∈ NTP which are related to passenger flows
boarding a vehicle.

ly(i) Set of adjacent links to public transportation node i ∈ NTP which are related to passenger flows
alighting from a vehicle.

M Set of transportation modes under consideration (i.e., M = {TP, PRI}).

N Set of nodes contained in the global network.

NTP Set of nodes which can be used as stops by the public transport network.

NS+
TP Set of incoming station nodes belonging to the public transport network.

NS−
TP Set of outgoing station nodes belonging to the public transport network.

NP
TP (l) Set of passing points contained in the working line l.

NN
TP Set of stops which can be used by the new lines.

NTP (i) Set of stretches adjacent to stop i belonging to the public transport network.

O Set of origins of the demand.

P A double set containing all the feasible K-shortest paths linking a pair of nodes.

P 1 An ordered set containing the nodes corresponding to the shortest path linking a pair of nodes.

P k An ordered set containing the nodes corresponding to the k-feasible shortest path linking a pair of nodes.

P k1 The node contained in the first position of the feasible k-shortest path.

P k−1
t The node contained in the last position of the feasible k-shortest path.

P ki Node contained in the ith position of the feasible k-shortest path.

P ki−j A subpath of P k containing the subpath of the k-shortest path linking node P ki to node P kj .

Q A set containing the current computed feasible candidate lines.

Rw Set of intervals in which the entropy function for the o-d pair w has been discretized.

S Set of nodes forming a subline.

Sc Complementary of set S (i.e., S\NN
TP ), containing the nodes not involved in the subline S.

W Set containing all the o-d demand pairs.

δS Set of edges that are incident to a group S of interconnected nodes which are disconnected from the
remaining elected nodes Sc.

Λ Set of candidate corridors to be assigned to any of the lines under construction.

Ω Set of optimality benders cuts of the subproblem added to the master problem.

δn A set containing the list of nodes adjacent to n.

pred The node precedent list used in Dijkstra’s shortest path algorithm.



Definition of decision variables

bl Discrete non-negative variable denoting the number of vehicles working on line l.

∆b Discrete non-negative variable denoting the number of new vehicles obtained with the current budget
working on some lines.

f l Continuous non-negative variable denoting the number of vehicles per time unit working on line l.

f llay Continuous non-negative variable denoting the number of vehicles per time unit changing the direction
they go throughout line l.

f li Continuous non-negative variable denoting the number of vehicles per time unit working at a service stop
i in the new line l.

f lij Continuous non-negative variable denoting the number of vehicles per time unit working at stretch (i, j)
and its reverse on the new line l.

gmw Number of trips of the OD-pair w assigned to the mode m in the elastic demand model.

nli Continuous non-negative variable denoting the number of units of flow injected at node i of line l.

upij Continuous variable in [0, 1] denoting the portion of passenger flow for the demand originating at p
traversing the walking link (i, j).

vp,lij Continuous variable in [0, 1] denoting the portion of passenger flow for the demand originating at p
traversing the public transportation link (i, j) on line l.

ṽp,lij Continuous variable in [0, 1] denoting the portion of passenger flow for the demand originating at p
traversing in-vehicle stop i of line l without halting.

xl Binary variable denoting if a new line l is constructed.

xij Binary variable denoting if stretch (i, j) and its reverse is constructed.

xlij Binary variable denoting if stretch (i, j) and its reverse is contained in the new line l.

yi Binary variable denoting if stop i is constructed.

yli Binary variable denoting if node i is in the corridor used by the new line l (l ∈ LN ).

ỹli Binary variable denoting if there is a passenger flow exchange at node i in the corridor used by the new
line l (l ∈ LN ) or, equivalently, that vehicles assigned to line l halt at node i.

zlij Continuous non-negative variable denoting the amount of fictitious flow traversing a strecth (i, j) ∈
ANTP .

δlc Binary variable denoting if corridor c is assigned to line l.

∆l
yx Binary variable denoting if the corridor assigned to line l is rectilinear.

δk Binary variable denoting if Benders cut (7.86) is active.

ϕli Binary variable denoting if node i works as source on line l.

Γli Binary variable denoting if node i works as source and sink at the same time on line l.



ϕmw Value of the entropy function of a user belonging to the o-d pair w that wants to use the mode m in the
elastic demand model.

ω Continuous variable associated with the active optimality Benders cuts (6.2).

ω1 Continuous variable associated with the active optimality Benders cuts (7.85).

ω2 Continuous variable associated with the active optimality Benders cuts (7.86).

βki,p Continuous non-negative dual variable related to flow balance constraint (2.50).

ρl+,ki,p Continuous non-negative dual variable related to flow balance constraint (2.51).

ρl−,ki,p Continuous non-negative dual variable related to flow balance constraint (2.52).

χl,ki,p Continuous non-negative dual variable related to flow balance constraint (2.53).

γl,ks,p Continuous non-negative dual variable related to flow balance constraint (2.54).

πl,ks,p Continuous non-negative dual variable related to flow balance constraint (2.55).

τ l,kij Continuous non-negative dual variable related to flow balance constraint (2.56).

η Continuous dual variable related to linking constraint (7.74).



Introduction

This research work studies public transportation networks in urban scenarios and develops models to help
operators make strategy and planning decisions. In this introductory chapter, we provide a global overview
of the research to be done as well as the structure of the thesis report.

Study Objectives

This thesis focuses on developing a model which can help operators to make strategy and planning decisions
for public transportation networks in urban scenarios. With this model, they should be able to consider high
demand levels, and thus take into account some effects related to the phenomenon of congestion. To this
end, the following objectives must be fulfilled:

• 1. Finding the main elements involved in the following:

– 1.1. The costs and limitations of the network resources which are controlled by the transport
operators. For instance, the number of available vehicles and their maintenance and acquisition
costs.

– 1.2. Some planning policies which help operators save money and users save time.

– 1.3. Passenger behavior as they travel throughout the public transportation network.

– 1.4. The consideration of some effects from congestion in the network.

• 2. Adapting the elements in points 1.1 - 1.4 to a mathematical programming problem.

• 3. Experimenting with case studies to comprehensively evaluate the final version of the model and to
objectively analyze the quality of its solution.

• 4. Developing solving techniques that can provide near-optimal solutions in a period of time that is
considered reasonable by operators.

Points 1.1 - 1.4 have been finally incorporated into a mixed-integer linear programming model which has
been solved in different ways. Initially, it was solved directly by means of a CPLEX solver, version 12.4.0.
However, the time needed to solve even small-sized network was too much, and thus some decomposition
techniques and enumerative methods were used to overcome that limitation. The results for real-sized net-
works are not bad, although they can still be improved. Points 1.2 and 1.3 need further analysis, and some
more related features should be incorporated into the current model.

Contributions

The contributions of the present research are summarized in the following subsections, each of which at-
tempts to explain the motivations behind specific issues.
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Integration of the network design and frequency setting phases

State-of-the-art methods have focused mainly on sequentially solving the network design (ND) and line
frequency setting (LFS) phases. Firstly, the layout of the network is determined (line segments and stops
served), and then frequencies and passengers are assigned to it.

However, the sequential solving approach is known to have many drawbacks in other areas such as
the airline industry (Barnhardt [9]); but improvements can be made by building and solving models which
integrate some of the planning problems. The airline industry has been a leader in the development of
integrated approaches for schedule planning and recovering from disruptions. There has been research on
integrating problems such as flight scheduling and fleet assignment (Lohatepanont & Barnhart [121], Cadarso
& Marı́n [19]); fleet assignment and aircraft routing (Papadakos [148]); aircraft routing and crew scheduling
(Mercier et al. [138]); and scheduling and competitive effects (Pita et al [152], Cadarso et al. [21]). All
these problems were first developed and solved in a sequential fashion. However, their integration has proven
to outperform sequential approaches, as demonstrated in every cited paper. Therefore, integrated planning
may improve traditional sequential planning approaches. Cadarso & Marı́n [18] and Cadarso et al. [20]
demonstrate that this fact also applies in the railway industry, which must consider additional factors such as
integrated timetable planning and rolling stock assignment. Marı́n et al. [132] and Walker et al. [179] also
developed integrated approaches for the railway industry.

Developing a quasi-exact solving methodology

In the last decade, some works integrating ND and LFS have been developed. The proposed solving
methodologies rely entirely on heuristics and metaheuristics (Quak [153], Mauttone [135], Fernández et al
[72], Fan & Machemehl [68]). The authors justify their use because of the NP-hard nature of the problem
(Ignizio [94], Magnanti & Wong [126]). Thus, it seems unrealistic that real-sized instances could be solved to
near-optimality within a reasonable amount of time. However, none of these authors have tried to formulate
the problem with an appropriate mathematical structure, nor have any exact decomposition techniques been
used to solve it. In airline applications, Mercier et al. [138] and Papadakos [148] have shown that mathe-
matical programming decomposition techniques are worth using to solve related mathematical programming
models with real-sized instances to near-optimality.

Modeling issues

Although many models have been presented to tackle ND and LFS in different ways, no literature has been
found that addresses the problem of developing a model for expanding a transit network while also consid-
ering the effects of the new facilities on those already in operation, and vice versa. The design of express
services or lines has also been addressed in this thesis. Unlike previous works, this aspect is integrated into
the global model and is not considered locally, as in the works of Sun et al [170], Chen et al [47], Leiva et al
[117], Chiraphadhanakul & Barnhart [49], and Larraı́n et al [111]. In other words, those works consider that
the vehicles of a transit line may or may not halt at a bus stop while at the same time they take into account
the demand and operations of the global network. Moreover, none of the previous works have taken into
account the bus stop construction and maintenance costs as well as some or all passenger perception times,
which are key elements for correctly modeling express services. Finally, the assignment demand models
usually assume fixed modal demand, or the modal choice is carried out sequentially. First a set of lines is
determined, and then the portion of each o-d demand is assigned to them (Hasselström [90], Soehodho &
Koshi [165], among others). Only the work of Marı́n & Garcı́a-Rodenas [130] determines modal splitting,
but without considering line frequencies.
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Extended flexibility for coping with more modeling issues

The resulting model and its solving techniques are developed in such a way that further considerations of
modeling issues and algorithmic improvements do not have to be discarded. Therefore, the present research
aims to introduce a preliminary model and demonstrate its viability in terms of the computational effort
required for solving it, as well as its desirability for real-world applications.

Published and submitted articles

During the development of the present research work, some related papers have either already been published
or they are in the revision phase. They include articles in ISI journals, fully extended papers in referred con-
ferences, and conference presentations.

A preliminary study of a related problem has recently been published online in TOP journal [39]. This
problem is based on the regional railway service disruption in an urban area of Spain’s capital city of Madrid.
This disruption severely affected a huge amount of demand for those who traveled throughout this railway
network sector, and thus an auxiliary bus network was designed to alleviate this problem. Many of the
modeling issues regarding this frequency setting phase have been adopted in this model, although some sim-
plifications have been made due to time horizon restrictions.

Complementary to this journal publication, we had two publications in the referred conferences: Mode-
los de Optimización para la Planificación Robusta y la Gestión de Servicios de Transporte Público en caso
de Emergencia (MORE) [34] and Automatic Control, Modeling & Simulation (ACMOS) [38]. These con-
ferences were held in Madrid in November 2010 and in Saint Malo & Mont Saint Michel in April 2012,
respectively. Moreover, we made four presentations in: the Conference on Numerical Optimization and Ap-
plications in Engineering (CNumOpen) [36], the Congreso de Ingenierı́a del Transporte (CIT ) [33], the
European Conference on Operational Research (EURO) [35] and the International Federation of Opera-
tional Research Societies (IFORS) [37]. They took place in Barcelona in October 2010, in Madrid in July
2010, in Lisbon in July 2010 and in Melbourne in July 2011, respectively.

The first publication strictly related to this research was made in the referred conference: 12th Confer-
ence on Advanced Systems for Public Transport (CASPT12) [122], which was held in Santiago de Chile
in July 2012. This paper comprises part of the work described in chapters 2 and 5. An extension of it was
submitted in December 2012 to the Public Transport journal [123], and in August 2013 we received the first
revision, which asked for some corrections in order for it to be published.

Finally, a recent presentation was made in the new edition of the European Conference on Operational
Research (EURO) [124], which took place in Rome. It included the entire work described in these chap-
ters, plus the methodologies contained in chapters 4 and 6, as well as the experiments carried out with the
Santiago de Chile underground network, which are reported in chapter 8.

Apart from these publications, we are preparing three additional papers, which will be submitted to
ISI journals. The first one is an extension of the presentation given at Rome EURO [124], which will
include further experiments on the Santiago de Chile underground network as well as an additional study
case based on the Seville railway network. The second and third papers will be related to subsection 3.5.6
and chapter 7. Firstly, we will introduce an extension of an innovative and general methodology, explained
in subsection 3.5.6.2, which is capable of solving a subclass of mixed-integer linear bilevel problems where
discrete variables only appear on the upper level. Then, we will introduce a practical application, based on
an improved version of the elastic demand model presented in chapter 7.
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Thesis Outline

The present thesis report is organized as follows. Chapter 1 gives a summary of the state of the art, but fo-
cusing on the works related to the expected contributions (see subsection ). The following chapter introduces
the mathematical programming model which integrates the ND and LFS phases that address the objectives
outlined in points 1.1 - 1.4. Chapter 3 shows an overview of the developed solving techniques, which we
adapt to our needs in the following chapters. Chapter 4 presents the corridor generator algorithm, which
constructs a set of feasible corridors (incorporating constraints for topology, infrastructure, budget and some
planning). Chapter 5 describes the line splitting algorithm which is used to efficiently solve instances where
more than one line can be constructed. Chapter 6 explains all the techniques associated with the Benders
Decomposition, which has been applied to the inelastic demand version. Chapter 7 extends these techniques
in order to cope with the elastic demand version of the model. Chapter 8 shows the experimentation work
carried out with two study cases: the Seville and Santiago de Chile underground networks, respectively. The
model testing results have not been included in this chapter. Instead, they have been appended to the last
subsection of chapters 4 - 7. Finally, Chapter 9 gives the final conclusions and provides some lines for further
research.
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Chapter 1

Literature review

This chapter presents a summary of some of the literature works which are related to the Public Transit
Network Design Problem (PTNDP ). We have selected all these works which have some relationship to the
contributions of the present research (see the introductory section for further details). The structure of the
chapter is as follows. Firstly, we introduce the notion of the PTNDP problem. Secondly, we present works
related to the first two phases into which this problem is split. These phases are associated with the network
design (ND) and the line frequency setting (LFS) problems. The latter is also divided into two subsections
which describe two important features: the express services design and the consideration of elastic demand.
Fourthly, we review the passenger assignment models (PAM ) under un/congested scenarios. The PAM
are used to cope with passenger behavior, and thus they are part of the optimization process when dealing
withND, LFS or an integration of both problems. The fifth section of the chapter is dedicated to discussing
integrated approaches. Finally, we give a brief summary of the chapter while highlighting in which designing
phase our contributions are set out.

1.1 Public Transit network design problem

The Public Transit network design problem (PTNDP ) represents a very complex planning process. For
that reason, the whole problem is not studied; instead, it is split into four phases [25] (see figure 1.1), where
the solution of each phase depends on the resolution of its preceding one. The order and role of each phase
is as follows:

1. Global line network planning.

2. Timetable setting.

3. Vehicle scheduling.

4. Crew scheduling.

The first phase involves the allocation of the public transportation stops and its interconnections by means
of a network layout design. This design takes into account neither the frequencies nor the departure times of
the lines. The state of the art is not very extensive and the vast majority of works are approximated methods
(see Fernández et al [71], Baaj & Mahmassani [7], Mauttone & Urquhart [134]). Only the seminar works of
Laporte [106], [107], [108] and the extensions of Marı́n [128] and Escudero & Muñoz [64] have dealt with
exact methods.

The second phase, however, has been largely studied. It is split at the same time into two subphases:

1. 2.1. Frequency settings.
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Global line network 

planning

Timetables Se!ng

Vehicle scheduling 

Crew scheduling

Frequency Se�ngs 

Departure !me Se�ngs

Phase not considered in the present research

Phase considered in the present research

Figure 1.1: The four-steps framework for the Public Transit network design problem inspired by Ceder &
Wilson 1986.

2. 2.2. Departure time settings.

Subphase 2.1. takes as inputs the set of lines established in the first phase and its goal is to determine the
number of services that each line will carry. It also includes the assignment of vehicles which perform the
services and the satisfaction of some requirements related to the quality of service offered to the passengers.
To date, the most important work is that of Ceder [23], in which four different methods are proposed to
determine the frequencies. They are categorized as point-based methods or route check-based methods.

Having determined the frequencies in subphase 2.2, a line synchronization process is carried out by min-
imizing the passenger waiting times at stops. Ceder & Tal [27] proposed a synchronization method, which
was later improved on by C.B. Quak [153]. Moreover, Quak integrated this method into a set of methodolo-
gies described in Ceder [23], resulting in its successful application to the city of Amersfoort.

In certain cases, after subphase 2.1., there is an additional subphase in which a line’s short turning is
carried out. It consists of a reduction in some vehicle itineraries on a working line and starts at a subsequent
stop of the first stop and finishes at a predecessor stop of the last stop. The reason for such a reduction is the
change in the demand distribution along the line at different periods of the day. This change leaves some line
stretches without passenger activity. For instance, from midnight to dawn, it is possible that the periphery
sectors of a city have no demand. Scant literature related to this topic has been published and, among these
works, we can find the seminar papers of Ceder [24] and [26], which describe different methods for short-
turn trip categories.

The third phase aims to assign the minimum number of vehicles which carry out the services established
by a line in the second phase. If the public transportation operator works with more than one depot, this
problem is called the Multi-Depot Vehicle Scheduling Problem (MDV SP ). Otherwise, if the operator has
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only one depot, it is known as the Single-depot vehicle scheduling Problem (SDV SP ). For a comprehensive
survey of related formulations and solving techniques, the reader is referred to the works of Desrochiers et
al [56], Daduna & Paixao [51], Löbel [120] and Mesquita & Paixao [139].

Finally, the fourth phase comprises two subphases: the assignment of duties to vehicles (which is known
as the Duty Scheduling Problem (DSP )) and the assignment of these duties to drivers (which is called the
rostering problem or crew rostering). The first subphase has been largely studied (see section 4.2. of De-
saulniers & Hickman [55] for a comprehensive state of the art), whereas the second subphase has been paid
scarce attention. A good review can be found in Odoni et al [144].

In the following subsections 1.2 and 1.3, we will explain in detail phase 1 and subphase 2.1. of this
four-step framework, on which the present research is focused.

1.2 Global line network planning models

As discussed in the previous subsection, the global line network planning phase has received relatively little
attention by researchers. Most of them assume that the line segments and the allocation of stops are given
as inputs. This may be a valid simplification in a working network where the goal is to reassign planning
resources in a way that increases demand and that minimizes operator costs. However, even these situations
require the possibility of extending the network layout by adding some new lines. This need arises, for in-
stance, in railway modes like underground or train. Furthermore, for non-railway-based systems like buses,
rerouting does not entail operators investing a significant amount of money. Thus, the quality of setting line
frequency and departure times will depend also on how good this routing phase performs.

To sum up, the PTNDP problem requires that the network layout and the working line frequencies
be determined in such a way that a given objective function is minimized, subject to a set of constraints.
Different methodologies have been proposed to deal with this problem. They can be classified into the
following main categories:

1. Practical rules and ad hoc procedures.

2. Optimization analytical models for idealized situations.

3. Heuristics and metaheuristic approaches applied to more real cases.

As shown in the chronogram of figure 1.1, Mandl [127] is the pioneer and the most cited work which
tackles the PTNDP . Its solving approach consists of two phases. During the first one, a feasible initial
route network is generated, with emphasis placed on service coverage and directness; whereas the second
phase tries to minimize total travel time, including in-vehicle and waiting times. Both phases are solved by
means of heuristic procedures. The limitation of this method is that it fails to consider the demand pattern
during the first phase.

Dubois et al [60] also solved the PTNDP in two steps. Firstly, they choose a set of links (representing
streets), which will be used later to build the lines. The first step is solved by means of a heuristic pro-
cedure which minimizes in-vehicle travel times, subject to some construction costs. Then, they apply an
optimization model for solving the second phase with the subset of streets provided by the previous phase.
The limitation of this method is that its simplicity makes it incapable of solving large-sized networks.

Ceder & Wilson [25] solved the PTNDP more efficiently and realistically by considering user behav-
ior. The model aims to minimize excess travel time upon boarding, expressed as the sum of extra travel time
(with respect to the shortest travel time), plus the transfer time (if any). This is subject to maximum o-d travel
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time, bounds on the route length, and the maximum number of constructed routes. The model is solved by
means of a heuristic procedure which performs a topological bread-first search with emphasis on constraint
satisfaction.

Van Nes et al [175] carried out a survey on existing models and optimization techniques. They also
proposed a version of the PTNDP which maximizes the number of passengers reaching their destinations
without transfers, using the maximum number of available vehicles as inputs. Furthermore, they also studied
the relationship between passenger demand and network resources. As a result, they devised an elastic de-
mand design model capable of splitting the passenger flow into different transportation modes. This model
was solved by means of a heuristic procedure which simultaneously chooses the lines, sets their frequencies,
and sets the number of passengers traveling throughout.

Baaj et al [5], [6] and [7] devised an artificial intelligence method consisting of three main blocks. The
first one involves a line construction algorithm, which trades off between the user and operator costs. The
second one consists of a line analysis method called TRUST , which assigns frequencies to lines. The last
block implements a procedure called RIA, which improves the line routing obtained in the first block, so
that they look more tractable from the operator’s point of view.

The RIA procedure developed by Baaj et al in [7] was later improved upon by Mauttone & Urquhart
[134]. The main differences lie in the strategy for inserting stops into the lines and in the way some operator
costs are considered in relation to line configurations and total distances. Baaj et al [7] insert individual
stops, whereas Mauttone & Urquhart [134] add two pairs of stops related to an od-demand pair. Thus, the
latter approach allows serving more demand directly without transfers.

Fernández et al [71] proposed an interesting methodology for generating different types of lines accord-
ing to their role. They define two types of line: trunk and feeder lines. The former are used to satisfy directly
all o-d higher demand pairs, whereas the latter account for giving service to o-d lower demand pairs which
perform some transfers. To build these lines, the authors developed three methods: one for each of the two
types of line, plus a third one in order to reduce some lines which carried low levels of demand. These
methods were applied to the construction of the line layout for the Bus Rapid Transit Network of Santiago
de Chile.

Another interesting line of research is related to the resolution of the path enumerative problem (PEP ).
This problem aims to determine the k-shortest paths which are candidates for line use. One of the first papers
which applies this problem to the PTNDP is that of Van der Zijpp & Catalano [174]. Moreover, they im-
plement some user satisfaction constraints within the solving method. These consist of two behavioral rules
introduced by Schnabel and Lohse [159], which state that users do not consider taking routes whose travel
times are a ϕmax factor greater than the shortest route, given the origin and destination stops; and that they
overlap by more than a ∆min factor, since they are considered quite similar.

Following this line of research, some authors have used this method within a genetic framework. Fan &
Machemehl [68], [69] construct a pool of preliminary candidate corridors, which are then filtered by taking
into account some operator’s requirements. They include maximum and minimum distance satisfaction. This
filter provides the final pool of corridors, which are used in the genetic algorithm to determine the optimal
frequencies and the passenger assignment under static and elastic variants. A similar approach is taken by
Cipriani et al [31] for planing Rome’s public transport system. However, they extend the topology of the
corridors by generating, apart from the k-shortest paths, a TSP-like corridors. This subset aims to provide
service to important service stops which share different transportation modes and/or are situated at strategic
points of the city.
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As explained, all these works are based on obtaining a feasible line configuration whose solution quality
is not evaluated, nor is it carried out by means of an operator heuristic function (Mauttone [135]), which does
not give real insight into the optimal solution. The first analytical models were developed at the beginning of
2000. Laporte et al [106] resolved the location of a stop set by considering the trace of the line, its terminal
stations, and the maximum number of lines to be allocated. The authors developed a maximum demand
coverage criterion by means of a metric which obtains the traveling distances throughout the urban network.
In that manner, the number of users who can reach the stops from the departure points is determined, taking
into account the maximum travel time which they are willing to spend.

Laporte et al [107] extend the previous model so that the line trace or part of it can be constructed. To do
that, they incorporate a demand origin-destination matrix in collaboration with the maximum demand cover-
age criterion for choosing eligible stops. However, they leave out the exact approaches and propose different
constructive heuristics for solving them. They report which of them are the most efficient based on the exper-
iments performed on a Seville’s underground network model. Laporte et al [108] propose another extension
to deal with multiple line design. To do that, they split the problem into two phases. The first one consists of
identifying the candidate stops, whereas the second phase constructs their interconnections so that the final
network layout is obtained. This approach has an important drawback: the second phase needs an explicit
enumeration of the terminal stops of each line. Thus, some knowledge of the solution is required beforehand.

Marı́n [128] overcomes that limitation by formulating an optimization model, where neither the number
of lines to be constructed is predefined nor their terminal stops. The resulting optimization model is a pure
binary mathematical programming problem which is solved by means of CPLEX . However, optimal so-
lutions are only reported for small-sized instances, and the model is unable to give circular line topologies.
Further works of this author in collaboration with Jaramillo [129] and [131] tackle multiperiod network con-
struction and the application of decomposition methods to solve the model more efficiently. The former takes
into account different od-demand matrices (one for each time window), and thus different line configurations
may be obtained; whereas the latter deals with the network design problem for a single time window and it
is solved by means of the classical Benders decomposition (CBD) [14]. Reported results show that CPLEX
is faster than the CBD for all instances.

Escudero & Muñoz [64] accommodate Marı́n’s model in [128] to tackle circular lines. Moreover, they
managed to reduce the computing time quite significantly by solving the model in two steps. In the first step,
they solve an integer mathematical programming problem which determines the used stops as well as their
interconnections. In the second step, lines are constructed by means of an assignment procedure which links
the interconnections of stops. This procedure is based on the grade of the node.
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Figure 1.2: Chronogram of the works on the global line network planning phase.
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The present research has focused on integrating the solving techniques for the PEP (shown in [174] and
[68]) into an extension of the mathematical programming models presented by Marı́n [128] and Escudero
& Muñoz [64]. This extended mathematical programming problem will take as inputs a pool of feasible
line corridors, where feasibility is regarded as the verification of the line topology constraints as well as the
infrastructure budget and planning horizon requirements. The optimization problem will determine which
corridors are assigned to the lines and which nodes will carry out service based on passenger assignment.
Furthermore, the existence of a network layout already in operation will be considered as well.

1.3 Line frequency setting models

As shown in figure 1.3, the research on line frequency setting models (LFSM ) started in the early 80’s.
These models assume as inputs the network layout (the line segments and the location of stops), and their
main goal is to determine the working frequencies or, in other words, the number of services to be carried
out on the line.

The first solving techniques are very primitive and rely on experimental methods. The most popular
is the passenger count data approach of Ceder [23], in which some measures are taken at some stops of a
working transit network, followed by a statistic survey for creating estimates in the form of simple mathe-
matical formulas that compute the correct frequencies without saturating the system. Despite its simplicity,
the computational effort of this methodology is subject to the quality of the collected data, which means a
significant financial investment. Thus, it is not viable for large networks.

This limitation motivated the emergence of analytical models. They have been formulated by means of
a passenger assignment model (see next subsection) and in accordance with two different goals:

1. To know the required transit features (i.e., line frequencies and vehicles) or

2. To generate planning timetables.

The former have focused mainly on a planning horizon (see the works of Spiess & Florian [167], Con-
stantin & Florian [43] and Noriega & Florian [142]), whereas the latter have been studied under rigid timeta-
bles (see the recent works of Fang & Xiaogang [193], Haupt et al [91], Han et al [89] o Papola et al [149]).

The present research has focused on the first approach. Moreover, some features are taken from our
work published in [39], which presents an optimization model for overcoming service disruption in railway
networks. Despite this focalization, there still exists a huge amount of research; and thus it is very difficult
to analyze all of them. However, not many of them have considered some planning strategies such as the
express service network design or competition among different modes of transportation. For that reason, in
the following subsections we will bring some attention to the works which take these issues into account.

1.3.1 Express services design

In public transit systems with high demand levels, benefits are gained by both users and operators through
limited-stop services (i.e., express services), which serve only a subset of stops along certain lines. As shown
in the studies of Vuchic [178] and Ercolano [62], express services improve service for users because they
reduce travel times by making fewer service stops and traveling at higher speeds between stops. As for op-
erators, it fulfills demand with fewer vehicles, thanks to shorter bus cycles.

This practice has been implemented in many urban public networks. To mention some of them, Wilson
et al [185] applied stop-skipping to a light rail line in Boston. The overall system performance was largely
improved, although some portion of the demand was lost because of the increase in transfers between lines
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Figure 1.3: Chronogram of the outstanding works on frequency setting models.

that some passengers were not willing to do. Suh et al [168] introduced an express subway system in Seoul,
in which a stop-skipping service was considered. The total time savings were estimated subject to a given
origin-destination demand, distance between stations, headway and operating speed. It was found that the
total passenger travel time decreased by up to 7.8 percent through this stop-skipping service.

Despite its importance, state-of-the-art works related to express service design (ESD) are scant. As
shown in the chronogram of figure 1.4, Jordan & Turnquist [100] were the pioneers of this research. Their
model assumes that all the demand goes to the same destination (called the central business district). More-
over, they do not take into account vehicle fleet size or vehicle capacity, and they do not allow passenger
transfers. Under these assumptions, the model was stated as a working vehicle cost minimization problem
and it was solved by means of forward dynamic programming. The underlying graph structure consists of
corridor areas in which new inbound demand occurs. Thus, each area is processed from the nearest to the
most outer, assigning a number of vehicles so that minimal line headway is assured and vehicle level oc-
cupancies are tolerable. Furth [80] generalized this approach for tackling bidirectional corridors (i.e., the
demand has the same destination or emanates from the same origin stop). Moreover, he included light direc-
tion on deadheading (this concept will be explain in the following).

The works of Li et al [118], Eberlein et al [61], Fu et al [78], Liu et al [119], Sun & Hickman [169] and
Corts et al [45] focused on real-time scheduling approaches, where some stops served in a certain line ser-
vice may be skipped by a vehicle in the next service. In that manner, vehicles can arrive earlier at conflictive
stops where demand levels are higher. This kind of scheduling operation is known as deadheading and has
nothing to do with ESD. Thus, we do not provide a detailed description of these works here.

The following work on ESD is based on Ulusoy et al [173], who defined a more sophisticated op-
timization model. This model incorporates a fixed OD-demand matrix and is formulated as a non-linear
mixed-integer programming problem (MIP ), where the objective function seeks to minimize vehicle work-
ing costs as well as the user’s travel costs, including waiting, transfer and in-vehicle times. They imposed
bounds, in the form of constraints, on route headways, symmetrical route services and vehicle fleet size lim-
itations. Moreover, transfers can only occur between express and local service routes; thus transfers between
local service lines are not allowed. This MIP is solved by means of an exhaustive search algorithm, which
was implemented in MATLAB and tested on a rail transit line in the northeastern region of the USA.

Goossens et al [85] also incorporated a fixed OD-demand matrix demand for a railway system. Firstly,
the authors formulated a pure binary linear problem which dealt with a single line local service design prob-
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lem. Its objective function sought to minimize the vehicle working costs subject to link frequency capacity.
This problem was later extended to account for multiple lines which allowed transfers. At this point, its
underlying graphs were transformed to cope with ESD based on the type of vehicles which could halt at a
given stop. The vehicle type was defined according to the covering area: regional trains, interregional trains
and intercity trains. The resulting graph associated each link with a type of vehicle and was used to formulate
three equivalent optimization problems. The two latter problems had fewer variables and constraints, and
thus they were used to solve three different instances related to some parts of the Dutch railway network.

In this line of research, categorizing the type of service to be performed depends on features of the plan-
ning resources. Freyss et al [77] developed a practical methodology to determine the distribution of two
types of stops within an underground symmetric circular corridor. The type of stop determines the number
of services to carry out. At stops of type AB, all vehicles halt; whereas at stops A or B, only half of them
halt. The methodology is based on some important assumptions which do not hold in general. For instance,
constant and identical dwell times at stations do not hold in congested scenarios.

ESD has been incorporated into Bus Rapid Transit Systems (BRT’s) by Sun et al [170] and Chen et al
[47]. Both authors first defined mathematical programming formulations whose objectives aim to minimize
users waiting, in-vehicle travel times, and working costs, all of which are subject to headway bounds and
vehicle fleet size limitations. Moreover, they are solved by means of genetic algorithms. The main dif-
ferences rely on the scenarios to which the models were applied. Sun et al [170] reported results without
considering high demand levels; whereas Chen et al [47] focused on very congested scenarios (during peak
hour periods). The latter also comprehensively compared the results obtained from the ESD or the local
service design.

These two later works incorporated many features. However, they also committed an important concep-
tual error: passenger waiting times were taken into account in the objective function while the model sought a
system optimum solution. This controversy has been proven to violate the user equilibrium principle, which
states that each user chooses their itinerary according to their own selfish behavior instead of cooperating
with other users.

Leiva et al [117] overcome this error by integrating the common lines problem (CLP ) of Chriqui &
Robillard [50] into the optimization model. It was formulated as a non-linear mixed-integer problem (MIP )
and their solving approach was a heuristic algorithm that consisted of an iterative call to a simplified version
of this MIP , in which constraints related to the CLP dropped off. Between calls, some constraints were
added to force a frequency increase in those lines where the CLP constraints were violated. Each simplified
MIP was solved by means of the MINOS commercial solver. This model, however, has some important
drawbacks: the modeler has to provide all the possible service configurations explicitly, and no planning
resource capacities are taken into account. Moreover, the authors do not provide computational times in the
results, although they apply the model to a real case.

Chiraphadhanakul & Barnhart [49] developed another MIP , which includes fleet size and vehicle ca-
pacities. However, their model was limited to only one express service route and it also violated the user
equilibrium principle stated above. The innovative aspect is that the authors reported good computational
times for real-sized networks. This was accomplished by reducing the size of the MIP through bounded
variables and some heuristic rules based on experimental results. Moreover, it was turned into a linear mixed-
integer programming problem (MILP ) by enumerating the values that the frequency variables could take.
Then, the resulting MILP was repeatedly solved for each enumerated frequency value, and the one that
gave the best demand coverage was chosen as the optimal solution.

Quite recently Larraı́n et al [111] have presented a preliminary model, which is partially based on the
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work of Leiva et al [117]. It determines all types of service routes, based on a pool of predefined corridors,
and uses a framework in which the solving scheme presented in Leiva et al determines the frequencies for a
given set of routes and their type of services. This route service set is determined by another module, which
employs different heuristics developed in [110]. The framework has been tested on the underground network
of Santiago de Chile and the authors plan to develop an SW aided tool. However, they do not consider vehi-
cle fleet size limitations, although the cost of acquiring a new vehicle is taken into account in the objective
function.

1980 1990 2000 2010

1979

Jordan &

Turnquist

1986

Furth
1991

Li et al

1998

Eberlein 

et al

2003

Fu et al

2006

Goosens 

et al

2008

Sun

et al

2010

Leiva et al

Ulusoy et al

2013

Larraín et al, 

Freyss et al, Liu et al

Chiraphadhanakul  & Barnhart

2005

Sun &

 Hickman

2009

Chien 

et al

2011

Cortés 

et al

Railway, Undergound and BRT Systems applications and

Multiperiod Scheduling

Real Time 

applications

First express service

dessign models

2012

Chen 

et al

Figure 1.4: Chronogram of the works on express service design and related policies.

The present research is in the line of Leiva et al [117], Chiraphadhanakul & Barnhart [49] and Larraı́n
et al [111], where static approaches with different combinations of express service patterns can be obtained.
However, unlike these works, our model is capable of dealing with non-fixed line corridors as well as the
budgetary limitations of infrastructure and planning, which are incorporated by means of constraints and
costs in the objective function.

1.3.2 Elastic demand

In recent years several models for the design of public transport networks (line layout, frequency setting
and many others) take into account other transportation modes. Accordingly, a fraction of the demand of
the existing transportation modes may switch to the newly designed network. For evaluating the amount of
captured trips, the most popular modal split model used in these design models has been multinomial logit.
Because of this, the passenger trip assignment criterion of the network design model is elastic, with a modal
split model as the source of demand elasticities in the public transportation mode. In this thesis, the term
design models with elastic demand must be understood in this sense, and it is preferred over design models
with modal split (or choice). When referring to elastic demand, the reader must bear in mind that a modal
split model is in fact implicit.

Related state-of-the-art works are not very extensive and can be classified in several ways, according to
selected criterea. In this review, we have reduced them to two possibilities for the sake of simplicity. The
first criterion is related to the type of model used to evaluate modal splitting, whereas the second one is
associated with the modal network decision variables.

Modal splitting models can be divided into probabilistic and zero-one assignment models. The former
use a pre-fixed o-d demand matrix, which holds the total amount of demand for each o-d pair. These models
evaluate the portions of each amount to be assigned to the different existing modes of transportation by eval-
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uating a probabilistic function. The most used one is the multinomial logit function (MNL) of McFadden
[137]. See the works of Soehodho & Koshi [165], Abdulaal & LeBlanc [1], LeBlanc [114], Ferrari [73],
Lee & Vuchic [116], Laporte et al [107], Marı́n & Garcı́a-Rodenas [130], Yoo et al [190], Gallo et al [82]
and Cipriani et al [30]. In all these works, only two modes compete. The MNL function is not suitable
for use where different classes of public transportation modes compete, since it assumes that changes in the
network structure of a given mode will have proportionally equal effects on the rest (Bhat [12]). Despite this
fact, only the works of Fan & Machemehl [68], [69] and [70] have adopted another approach, based on the
nested logit model of Williams [183]. This model evaluates an MNL model at each non-leaf node of a tree.
From this node, a bunch of emanating branches contains different mode alternatives, which are considered
as belonging to a class of transportation mode, for instance, public transport. Thus, they are considered to
compete in similar conditions.

Zero-one assignment models, like probabilistic models, use a pre-fixed o-d demand matrix. They can
be regarded as simplified probabilistic models, where the probabilistic function assigns all the amount of an
o-d demand to one mode, hence their name. These models are not realistic and tend to under/overestimate
the demand. However, they are suitable for integration into an optimization model because of their easy
implementation. In this line of research, we have found the works of van Oudheusden et al [176], Bruno et
al [16], Marı́n [128], Escudero & Muñoz [64], Marı́n & Jaramillo [129] and [131].

Regarding the modal network decision variable criterion, we can divide the research into 3 categories:

1. Models where only the modal network layout variables are optimized.

2. Models where only modal network planning decision variables (frequencies, mainly) are computed or,

3. A combination of both.

Moreover, we can subdivide this criterion according to the solving scheme:

a) The layout and/or planning variables are determined first, and then the modal assignment is carried
out (sequential scheme) or,

b) The layout and/or planning variables, as well as the modal assignment, are performed at the same time
(simultaneous scheme).

Works related to category 1 include Laporte et al [107], Bruno et al [16], Marı́n & Garcı́a-Rodenas
[130], Marı́n [128], Escudero & Muñoz [64], Marı́n & Jaramillo [129] and [131]. The first two deal with the
construction of a single alignment, but using different modal splitting models and algorithms. Laporte et al
develop a set of constructive heuristics, where the ridership throughout a candidate stretch (link) is evaluated
by means of an MNL model. Bruno et al use a K-shortest path algorithm to determine the candidate set of
alignments that form the public transportation network. Then, a pedestrian subnet is constructed according
to each computed alignment. Thirdly, a binomial logit model is used to evaluate the portion of demand as-
signed to each public transportation-pedestrian subnetwork structure and the private car network. This one
is known beforehand, thus the shortest path cost are used in the probabilistic model. Moreover, in this step
the evaluation of the operator and user costs are also computed. They are used in the following and last step
to choose the best alignment. Marı́n & Garcı́a-Rodenas formulate a non-linear bilevel problem in which the
upper level operators construct the network layout that is limited by a budget and a set of maximum lines to
be constructed. The lower level determines the modal assignment by means of a bilevel logit function. This
function is approximated by a piecewise linear function and embedded into the operator level. This results
in a single linear mixed-integer level problem, which is directly solved by CPLEX solver. The algorithmic
details of the remaining works are skipped, since this information is already provided by the description in



1 Literature review 15

the fourth paragraph of this section as well as in the third to last paragraph of section 1.2.

Under category 2, we have found the works of Abdulaal & LeBlanc [1], LeBlanc [114], Ferrari [73],
Yoo et al [190] and Gallo et al [82]. The first two works are quite similar and the difference lies in the
network structure of the public transportation mode. The latter adds two types of links to the network, which
allows modeling transit time access and transfer times. In both works, the simultaneous scheme is carried
out by means of an adaptation of the Hooke-Jeeves’ heuristic, which finds good solutions in reasonable time.
Regarding the other works, they are formulated as bilevel problems and thus they are solved by means of
simultaneous schemes, but using heuristic methods. In those bilevel problems, the upper level determines
the operator decision variables (mainly frequencies) and the lower level does the modal assignment flows.
The work of Ferrari also includes transit fares on public transportation and some private car links as decision
variables at the operator level.

The third category includes the works of Hasselstrm [90], van Oudheusden et al [176], Soehodho &
Koshi [165], van Nes et al [175], Fan & Machemehl [68], [69], [70], Lee & Vuchic [116], Cipriani et al
[30]. Excluding the work of Hasselstrm and Soehodho & Koshi, the remaining works use a full simultane-
ous scheme. Moreover, whatever the scheme is, the solving techniques rely on heuristics, metaheuristics or
a combination of both methodologies, which are more or less sophisticated. We refer the reader to section
1.5 for further details on these works and some other related works which deal with inelastic demand.

We have skipped many other works which make use of some elastic demand since:

1. They were not applied to network design and/or line frequency setting problems; and/or,

2. The elastic demand was considered in the route choice of a single mode only.

The last point was adopted in the work of Ulusoy et al [173], mentioned in the previous subsection.

In this research, we have adopted a simultaneous scheme, which includes the network design and the
line frequency setting problems. Moreover, it is solved using exact methods. As a start, we studied in detail
the work of Marı́n & Garcı́a-Rodenas and found out that their model did not reproduce exactly the bimodal
logit function in the optimum. The reason for this drawback lies in the interpretation of the KKT optimality
conditions. We refer the reader to study carefully the sections 7.3, 7.3.1 and 7.4 of chapter 7 for better un-
derstanding.

All the aforementioned works and their classified criteria are summarized in table 1.1. We would like to
clarify that in the column labeled Modal Split., we have written the word ”prob. mod” for those cases in
which we didn’t find the type of probabilistic model used.

1.4 Transit passenger assignment models

A transit passenger assignment model (TPAM ) is defined as the determination of the passenger flow going
throughout a set of paths within the transit network (Desaulniers & Hickman [55]). The network layout is
supposed to be known (i.e., the line segments, location of stops and its working frequencies), and the total
demand amount per origin-destination is also pre-specified.

The TPAM is formulated assuming that the passenger’s goal is to minimize travel time or generalized
cost. To do that, several elements are taken into account, such as:

1. The modelisation of stochastic elements which are related to time issues.
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Year Author Modal Split. Variables Scheme Methodology
1979 Abdulaal & LeBlanc prob. mod. freq. simul. heur.
1988 LeBlanc prob. mod. freq. simul. heur.
1998 Bruno et al 0-1 assignment a single line seq. heur.
1999 Soehodho & Koshi MNL lines and freq. seq. + simul. heur.
1999 Ferrari MNL freq. and fares paral. heur.
2004 Fan & Machemehl nested logit lines and freq. simul. metaheur.
2005 Lee & Vuchic MNL lines and freq. simul. heur.
2006 Fan & Machemehl nested logit lines and freq. simul. metaheur.
2008 Fan & Machemehl nested logit lines and freq. simul. metaheur.
2007 Marı́n 0-1 assignment lines paral. exact
2008 Marı́n & Jaramillo 0-1 assignment lines simul. exact
2009 Marı́n & Jaramillo 0-1 assignment lines simul. exact
2009 Escudero & Muñoz MNL lines simul. exact
2009 Marı́n & Garcı́a-Rodenas 0-1 assignment lines simul. exact
2010 Yoo et al MNL freq. simul. heur.
2011 Gallo et al prob. mod. freq. simul. heur. and meta.
2012 Cipriani et al MNL lines and freq. simul. metaheur.

Table 1.1: Summary of elastic demand model features.

2. The kind of strategy (behavior) that passengers follow. This strategy may or may not include transfers
between lines and, if so, we need to take into account alighting or boarding movements as well as
waiting times.

3. Congestion effects due to the capacity resources of the network, for instance, the maximum allowable
density of users on a stop platform or in a transit vehicle.

The first TPAM models assumed all elements were deterministic. Thus, the optimization goal focused
on minimizing the travel times throughout the network links subject to the line’s working frequencies and
the passenger arrival rates at stops (Dial [57], Lampkin & Saalmans [105], le Clercq [115] (1972), Silman et
al [164] and Last & Leak [112]). In that manner, for low and moderate congested scenarios, waiting times
and boarding passengers at a stop can be estimated by means of the following formulas:

E[WT ] =
α∑

l∈Li

fl
(1.1)

Pl′ =
fl′∑

l∈Li

fl
(1.2)

where Li stands for the set of lines going through stop i. Moreover, fl is related to the frequency of line
l, and α is a parameter which depends on the distribution of passenger arrivals at the stop. Normally, this
parameter takes the value 0.5 for the Poisson distribution, whereas for uniform rates it is set to 1. Therefore,
the estimated waiting time (E[WT ]) and the probability of getting on a vehicle serving line l (Pr′) depends
mainly on the line frequencies.

These models are rather simple since they rely on a large assumption: passengers take the first bus halting
at the stop. Thus, no congestion effects due to finite vehicle capacity are taken into account. Later, Chriqui
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& Robillard [50] extended these models to cope with the common line problem (CLP ). The CLP deals
with the choice of a line among a set of lines which share either all or part of the path of an o-d demand pair.
Next, some models appeared which incorporated the concept of strategy. This idea was introduced by Spiess
[166], but was characterized by Nguyen & Pallotino [141] as a subgraph of the expanded transit network.
This subgraph was called hyperpath and consists of a subnetwork which holds a set of possible paths that
can be chosen for a given o-d demand pair.

Spiess & Florian [167] were pioneers in integrating the models of Chriqui & Robillard and Nguyen &
Pallotino into a single mathematical programming model whose dual form can be solved using a specific
algorithm for combinatorial optimization. In the case of infinite frequencies, this becomes reduced to the
classical Dijkstra algorithm.

The next generation of models have slightly introduced the phenomenon of congestion. We do not review
them since congestion effects have not been considered in the present research, although the capacity of the
link is taken into account. Regarding the concept of passenger strategies, it has been discarded as well and,
instead, we have adopted a system optimum point of view. These two simplified hypotheses allow us to skip
non-linearities and thus formulate the model as a linear mixed-integer mathematical programming problem.

Despite these simplifications, some passenger behavior features will be taken into account. For instance,
situations where passengers remain in-vehicle at a service stop will be penalized in the objective function.
Additionally, we model the time costs of boarding and alighting from a vehicle. All these costs will be con-
sidered as linear (i.e., proportional to the amount of demand related to these situations). To the best of our
knowledge, works on the state of the art consider only boarding or alighting times (see de Cea & Fernández
[53], Wu & Florian [186], Wu et al [187], Cominetti & Correa [42], Kurauchi et al [102], Cepeda et al [29]
and Lam et al [103] and [104]). The last reference combines both times.

The first type of time gives innovation to our PAM and allows us to integrate correctly the express
service design feature (see subsection 1.3.1) into the frequency setting part of the model. It is integrated by
linking the demand flows of this time to the node’s role. We have considered two possible roles: a node in
which no vehicle halts (no flow exchange) and a node where all vehicles halt (some flow exchange). Demand
flows related to the first role and that occur at nodes assigned to the second are penalized in the objective
function.
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effects.
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1.5 Integrated Global Line Planning Network and Line Frequency Setting
models

This section is devoted to describing the main state-of-the-art works which integrate the Global Line Plan-
ning Network and the Line Frequency Setting phases presented in subsections 1.2 and 1.3. The vast majority
of works solve these two phases by means of heuristics, metaheuristics or a combination of both. We have
only found the works of Wan & Lo [180] and Borndörfel et al [15], which formulate them as mixed integer
linear programming problems. However, they are too simplistic and their solving techniques are unable to
solve medium- and large-sized networks.

Regarding modeling issues, the objective function criterion is not well-established. Many works do not
consider operator costs together with passenger costs. In the works where both costs are taken into account,
some important features of passengers and/or operators are left out. For instance, boarding or alighting times
are seldom modeled and only vehicle working costs are considered as operator costs. Nonetheless, other
operator costs are important, such as the construction and maintenance costs of infrastructure resources
(stations and stretches) when designing a railway network. Apart from the objective criterion, the way the
frequency setting is carried out is rather simplistic: no works incorporate express service design and very
few works consider elastic demand. Thus, much work remains to be done in this area.

In the following subsections, we will provide a summary of each research work and/or a set of works
which have similar features. Each summary contains the stated objective criterion, the constraints imposed,
their solving approach and the case study, if any. Complementary to these summaries, we include table
1.2, which highlights the most important features of each research work. In that table, the column Scheme
shows the way the network design and line frequency problems are solved (sequential or simultaneous). The
next column Method reports the solving approach used (heuristic, metaheuristic or exact). The column Op.
Costs indicates whether or not operator costs are included in the objective function. The column Us. Costs
points out whether or not user costs are included in the objective function. The last column E.D. denotes
whether or not elastic demand is taken into account.

1.5.1 Lampkin & Saalmans, Silman, Barzily and Passy’s research work

Lampkin & Saalmans [105] and Silman et al [164] decomposed the problem into two stages. In the first one,
the set of lines is constructed. In the second, their frequencies are determined. The first stage uses heuristic
methods to construct ”skeleton” lines, which are then expanded to cover the full set of nodes in the network.

The frequencies are determined by minimizing the total passenger travel time, which is calculated as the
sum of the O-D demand multiplied by the travel time. This time the expected waiting time as a function of
route frequencies serving each origin is included, along with any transfer node on the shortest path serving
the O-D pair. Lampkin & Saalmans [105] used a random gradient-based search procedure to determine the
final frequency values, whereas Silman et al [164] employed a gradient projection method to minimize the
total travel time. Moreover, the latter adds a penalty to the objective for the estimated number of standees on
the bus.

The solving methodologies in both works were capable of solving only small-sized networks.

1.5.2 Dubois, Bell and Llibre’s research work

Dubois et al [60] decomposed the problem into three subproblems. The first one involves selecting the links
in the street network where the service operates; the second one determines the lines themselves; and the
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third one assigns them the optimal frequencies.

In the first step, a traditional network design problem is formulated, where the total passenger travel
time is minimized. This time in-vehicle times subject to a budget constraint are included, along with binary
decision variables indicating whether a street segment is in the final solution. A heuristic is used to solve it.
In the second step, the maximum set of lines is generated by using three different heuristic rules. In the last
step, the optimal line frequencies are found while considering waiting times. The solving approach consists
of a gradient-based search heuristic, which is similar to that of Lampkin & Saalmans [105].

As in the previously mentioned work, the solving methodology was capable of solving only small-sized
networks.

1.5.3 Hasselström’s research work

Hasselström [90] proposed a two-stage process of network design in which lines and frequencies are deter-
mined simultaneously. In the first stage, an initial lines set is generated; in the second stage, these lines are
refined and a detailed evaluation of them is performed along with passenger assignment.

In the first stage, the mathematical formulation includes a direct demand function, allowing the demand
to be determined endogenously. The form of the direct demand model is based on a traditional gravity model
with parameter β, where all terms that do not dependent on the route structure or on the frequencies are
rolled into a constant term for each O-D demand pair. The remaining elements of the generalized cost are
given by a function of the set of frequencies. The objective function maximizes consumer surplus and is
equivalent to maximizing the number of passengers with this demand function. As constraints, the author
considers a budget constraint that includes a cost per vehicle on each line and a required minimum frequency
of service for a zone. The latter is implemented by making use of a binary variable which indicates whether
or not a line serves the zone.

This solving approach was the first one to be applied to a real world case consisting of the city of
Goteborg, Sweden, where a little more than 60 different modal lines were taken into account. Moreover, it
was embedded into the Volvo package, a transit network planning software.

1.5.4 Marwah, Farokh, Umrigar and Patnaik’s research work

Marwah et al [133] proposed a three stage process to simultaneously construct routes and assign to them fre-
quencies in the context of bus transit systems. The first stage determines the links on the network where the
passenger flow is concentrated. Its objective is to minimize vehicle working costs as well as passenger riding
time under under no constraints. Links and nodes in which no passenger flow is involved are eliminated
and the resulting reduced network is given as inputs to the second phase. This phase constructs a large set
of candidate routes subject to bounds on route length and maximum detour constraints. The resulting route
set is given to the last phase, which selects a subset of them and assigns frequencies. Its objective function
aims to minimize only vehicle working costs and is subject to vehicle fleet size limitation, bounds on the line
frequencies and maximum flow load restriction on each link.

The first and second phases are solved by means of constructive heuristics, whereas the third one tackles
a continuous linear programming problem. Reported results are based on the city of Ahmedabad (India),
whose network representation holds 134 nodes, 1028 links (reduced to 426 links in the first phase), and
8911 o-d demand pairs. The second phase generates 457 candidate routes, which are given to the continuous
optimization problem.
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1.5.5 Ceder & Wilson’s research work

Ceder & Wilson [25] formulated two sequential mathematical models for solving the bus network design
problem. The first one considers the passenger objective of minimizing excess travel time upon boarding,
expressed as the sum of ”excess” travel time (larger than the shortest travel time with a direct route), plus the
transfer time (if any), and summed across all o-d pairs. This objective is minimized according to constraints
on the maximum o-d travel time (as a percentage above the shortest path), lower and upper bounds on the
route length (expressed in units of running time), and a constraint on the maximum number of routes. The
second model adds the passenger waiting time and vehicle operating and capital costs to the objective func-
tion; it also includes constraints on the minimum frequency for each route and a constraint on the maximum
fleet size.

Reported results are based only on a small-sized network with 5 nodes, 7 arcs and 20 o-d demand pairs;
so it is unknown how the solving approach would perform on a larger network.

1.5.6 van Oudheusden, Ranjithan and Singh’s research work

van Oudheusden et al [176] devised a framework for operators to iteratively solve a bus network design
problem. Initially, operators must provide a set of candidate routes with feasible working frequencies, from
which the framework will select a subset of them and reassign new frequencies.

For the route selection phase, the authors developed two mathematical programming formulations, which
are inspired by the classical Set Covering Problem (SCP ) and the Simple Plant Location Problem (SPLP ),
respectively. The former is used when the whole input od-demand matrix is going to be allocated to the bus
network, whereas the latter is employed in the case where the demand competes with different modes of
transportation. Moreover, each of these formulations have two variants with similar mathematical structures.
They differ from the type of demand pattern considered: one is related to the many-to-one case, whereas the
other is associated with the many-to-many case.

Both formulations and demand pattern cases are conceived as pure binary linear mathematical program-
ming problems, where the objective functions aim to minimize the fixed route costs plus fare costs (in the
case of elastic demand) and subject to full demand coverage requirements. Although, there are no planning
resource limitations and transfers are not allowed, the problems are flexible and can be easily extended to
cope with these restrictions (i.e., by simply adding extra constraints). Additionally, the authors stated that
working lines can be considered by setting to zero their corresponding objective function costs, so that these
lines will be selected in the optimal solution.

These mathematical problems are solved by means of the Erlenkotter algorithm [63] in a repeating fash-
ion, wherethe line frequencies in each resolution are set out by operators using an external procedure. The
formulation related to the SCP was applied to the network of Kanpur, which holds 60 centroids; whereas
the one associated with the SPLP was used in the network of Ranjitahn, which contains 41 centroids.

1.5.7 van Nes, Hamerslag and Immers’ research work

van Nes et al [175] proposed a model in which routes and frequencies are determined simultaneously. The
objective function maximizes the number of direct trips (i.e., trips without transfers) served in the network,
for a given fleet size. A direct demand model is proposed to estimate the origin-destination trips by public
transit; trips are proportional to the attraction of the origin and destinations zones, and are an exponential
function of the cost, similar to that of Hasselström [90].
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A distinct feature of Hasselström’s work is the consideration of different vehicle types and limited re-
sources. Moreover, each working type vehicle incurs a different cost factor. To implement this feature, a
variable indicator is used to know the type of vehicle assigned to a route. Regarding constraints, they include
a vehicle working budget constraint, the vehicle availability and lower and upper bounds on the set of feasi-
ble frequencies. These bounds are set by means of the round-trip time on the routes.

The solution technique adopted is a heuristic in which all frequencies on proposed routes are initially set
to 0. Each route is then evaluated with respect to its potential to improve ”efficiency”, defined as the ratio
of passengers added by the direct service to the additional cost of increasing the frequency, evaluated by the
mentioned constraints. The route with the highest efficiency is selected and the frequency on that route is
increased, until the budget and the available vehicles are consumed.

The reported results are based on Groningen, a Netherlands city whose network contains 182 nodes, from
which 150 are centroids and 8 are candidate routes. The number of links and o-d demand pairs is omitted.
Furthermore, the authors claim that the solving approach is capable of solving instances of up to 250 nodes,
from which 150 are centroids and 750 are candidate routes.

1.5.8 Israeli & Ceder’s research work

Israeli [97] and related works (Israeli & Ceder [96], [98]; Ceder & Israeli [28]) formulated the bus network
design problem as a multiobjective programming problem with two objectives: the total passenger cost (Z1)
and the operator fleet size (Z2). Z1 includes the in-vehicle passenger hours spent between the origin and
destination, the waiting and transfer time spent traveling from the origin to the destination, and the empty
seat-hours on a route. Constraints in the formulation include the passenger assignment from a fixed demand
matrix and minimum frequencies on each route. This problem is solved with a 7-step heuristic, where dif-
ferent sets of routes and frequencies are determined in pairs of sequential steps.

Reported results are based only on a small-sized network with 8 nodes and 14 links, so it is unknown
how the solving approach would perform on a larger network.

1.5.9 Baaj & Mahmassani’s research work

Baaj & Mahmassani [5], [6] and [7] decomposed the network design problem into three elements: a route
generation step, in which routes and frequencies are constructed; a network analysis procedure, defining
measures of effectiveness at the network-, route-, and stop-level; and a route improvement algorithm to im-
prove the route design. These procedures are applied to different sets of weights, which examine the total
travel time (including walk time, wait time, in-vehicle travel time and transfer-related time), total demand
satisfied, and the required fleet size to operate the system.

The case study consists of a reduced network representing Austin, a city in the state of Texas. Authors
do not mention all the network elements and, so far, we found that they use 106 nodes and 952 o-d demand
pairs.

1.5.10 Pattanaik, Tom and Mohan’s research work

Pattanaik et al [150] is the first work which uses a genetic algorithm-based approach in the context of network
design and frequency setting. Their model’s goal is to minimize total user travel time, including in-vehicle,
waiting and transfer times, as well as vehicle operation costs. As constraints, they impose bounds on line
frequency and length as well as a maximum load factor.
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The solving scheme consists of two main blocks: a candidate route generation algorithm and a genetic
algorithm (GA), which choose the optimal set of routes. The former takes into account the line length bounds
and two additional constraints. One is related to the overlap factor and the other one is associated with the
maximum detour factor. Both factors are measured with respect to the shortest path for a given o-d demand
pair. In the second phase, the GA considers two different coding schemes: the typical fixed string length
and a new variable string length. In the former, routes are considered as variables and the number of routes
remains fixed; whereas in the latter, both elements are optimized simultaneously. The latter scheme is im-
proved in the authors’ later work [172].

Reported results are based on a case study of an urban area of Madras, a metropolitan city in the South
of India. The network contains 25 nodes, 39 links and 600 o-d demand pairs.

1.5.11 Soehodho & Koshi’s research work

Soehodho & Koshi [165] formulated a bilevel programming problem in which the upper level controls the
passenger and user costs, whereas the lower level performs the user equilibrium. The user costs include
the use of a car (for those who prefer the private mode) and in-vehicle travel time as well as transfers and
crowding costs (for the public mode users). Crowding costs are evaluated as the number of standees that
travel in-vehicle. Regarding operators, only bus operations are taken into account as costs. The lower level
costs are comprised of the bimodal travel times and the entropy function, which allows establishing in the
optimum a logit demand modal distribution. All these costs are subject to modal equilibrium constraints as
well as minimal route frequency and maximal vehicle fleet size requirements.

The solving approach consists of a heuristic methodology made up of five modules. Three of them are
related to the route construction and its improvements, whereas the two remaining ones perform the fre-
quency and bimodal assignment and the fleet size determination.

Results are based on Sioux Falls City, whose network consists of 24 nodes, 76 links and 540 o-d demand
pairs.

1.5.12 Chien, Yang and Hou’s research work

Chien et al [48] proposed a model which determined an optimal feeder bus route and its headway. This route
aims to feed a major intermodal transfer station or a central business district in the service area under consid-
eration. The objective function minimizes user travel costs by including access, waiting and in-vehicle travel
times. It also minimizes supplier costs in the form of vehicle working costs. As constraints, they imposed
bounds on the route headways so that the planning budget is not exceeded (minimum headway) and so that
all the demand is satisfied (maximum headway).

Their solving approach consisted of a two-phase genetic algorithm in which the first (initial) phase de-
termines a feasible set of candidate routes, which are used in the second phase to generate new (nest) routes
while keeping headways feasible. This scheme is applied to a service area of 4 × 10km2, which holds 28
nodes, 160 links and 128 o-d demand pairs. The authors prove that their algorithm is capable of solving
instances of that network to optimality by carrying out an exhaustive search procedure.

1.5.13 Carrese & Gori’s research work

Carrese & Gori [22] developed a model in which constructed lines are categorized as main and feeder lines,
in the same way as stated by Fernández et al [71], where main lines are called trunk lines.
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The main lines are used for minimizing: 1) the increase in time spent by in-vehicle travelers along the
constructed route, in terms of their shortest route; 2) the total waiting time on each route; and 3) the unused
vehicle capacity, expressed as the number of free seats on each route. The constraints include the satisfaction
of the whole demand, minimum level of service, maximum route length, winding path of the route, maximum
number of transfers, door to door travel time, maximum link flow, and fleet size limitation. Complementary
feeder lines are used for improving the level of service in order to cover the demand which is not directly
served by the main lines.

The solving approach consists of three steps: 1) defining the skeleton of the main lines, 2) identifying the
optimal main lines, and 3) defining the feeder lines. Reported results were based on a large zone of Rome,
the capital city of Italy. Its network representation holds around 1.400 nodes, 7.700 links and 560 centroids,
with 550.000 trips/h during the peak hour.

1.5.14 Wan & Lo’s research work

Wan & Lo [180] are one of the few authors who formulated and solved a mixed integer lineal programming
problem (MILP ) that integrated the network design and line frequency setting problems. However, the
modeling approach has many drawbacks. To cite just a few of them: a) routes can be only acyclic, b) each
o-d demand pair must be assigned to a single route (in other words, transfers are not allowed and all the de-
mand must be covered by the transit network), c) no budgetary limitations are imposed, and d) only operator
frequencies are taken as costs in the objective function.

This MILP is delivered directly to the CPLEX commercial solver for computing only a small-sized
network of 10 nodes, 19 links and 9 o-d demand pairs, with three lines under construction. Furthermore, the
authors do not report any performance measures.

1.5.15 Ngamchai & Lovell’s research work

Ngamchai & Lovell [140] proposed a model focused mainly on determining the transfer locations in the
network and the coordination of headways between the chosen routes. Its objective function seeks the mini-
mization of vehicle operation costs and user travel times, including in-vehicle and waiting times.

The solving approach consists of three major components: 1) the route generation algorithm, which
builds an initial set of TSP-like-routes; 2) the route evaluation algorithm, which designs the service fre-
quency and applies headway coordination; and 3) the route improvement algorithm, which modifies the
existing route configuration.

The latter phase is carried out by a genetic algorithm (GA), which implements a variety of genetic oper-
ators based on different problem elements. Each of them is applied according to some discrete distribution
related to the efficacy of the operators. This way of handling the genetic operators, together with the variety
of them, gives their work more innovation than previous works associated with GA.

Reported results were based on the same study case of Pattanaik et al [150]. Moreover, some perfor-
mance features of the author’s approach were compared with those of Pattanaik et al [150] algorithm.

1.5.16 Lee & Vuchic’s research work

Lee and Vuchic [116] stated that transit demand should depend on the network configuration and associated
route frequencies. Therefore, they presented an iterative approach to tackle the dynamic characteristics of
the transit route network design problem. The objective of this approach was to minimize only the total
user travel time (including in-vehicle, transfer and waiting times), subject to frequency constraints on each
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route. To simultaneously estimate the transit demand and generate the optimal transit network, a modal split
modeling procedure was proposed. Furthermore, an AI-based heuristic method was adapted from the solu-
tion approach used by Rea [154] to solve the transit network design problem as well as to consider variable
transit demand under a fixed total travel demand. Sensitivity analysis examined the relationship between the
optimal transit network and the design inputs.

Reported results are based on a small-sized network taken from Rea [154], so it is unknown how the
solving approach would perform on a larger network.

1.5.17 Hu, Shi, Song and Xu’s research work

Hu et al [93] proposed two optimization models: one to tackle the transit network problem (TNP ), and
the other to determine the optimal headways (THP ). The former seeks the maximization of direct demand
coverage, subject to bounds on: route length, link capacities, maximum route detour factor (with respect to
the shortest route), and maximum allowable transfer time constraints. The latter is formulated as a mini-
mization problem, where the objective costs include passenger costs (waiting, in-vehicle and transfer times)
as well as vehicle working costs. As constraints, they imposed bounds on the service time at stops, transfers
coordination, maximum transfer time and maximum allowable headway.

These models are solved sequentially and use different metaheuristics approaches. The TNP faces an
ant colony algorithm, whereas the THP is optimized by means of an improved genetic algorithm. Two case
studies are proposed, one for each optimization model. The one related to the TNP is based on Changchun,
the capital city of Jilin Province of China, whose working network holds 273 nodes, 504 links, 115 transit
routes, 904 buses and 1180 mini-buses. The other case study, which is associated with the THP , consists of
the underground network of Hong Kong. It has six working lines, which contain 63 nodes and 114 links.

1.5.18 Zhao’s research work

Zhao presented in [191] and [192] a model for finding network structures and headways, where the objective
function minimizes user travel times, including in-vehicle, waiting and transfer times. As for constraints, he
imposed bounds on route length and headway, maximum load route factor, limited vehicle fleet size, max-
imum number of transfers, and minimum route directness (expressed as the ratio between the current user
travel cost from a path linking a pair of nodes and its shortest path cost).

The solving approach is based on an iterative methodology which combines two algorithms: a simulated
annealing search, which looks for a set of feasible routes; and a fast descent search, which finds their corre-
sponding headways.

Reported results were based on two case studies. One is based on the Mandl network [127] and the other
is related to the service area of Miami-Dade, a southern city in the USA. Its network holds 2804 nodes, 4300
links and 120000 o-d demand pairs, with a total of 161944 trips/day.

1.5.19 Chakroborty’s research work

Chakroborty [46] showed the effectiveness of the genetic algorithms (GA) in solving the urban transit net-
work design problem (UTNDP ). Firstly, he pointed out the features of the UTNDP that make it a difficult
problem for traditional techniques, and then he suggested directions through his presentation of GA-based
methodologies for the UTNDP .

Its modeling approach consisted of defining two sequential problems: the transit routing problem (TrRP )
and the transit scheduling problem (TrSP ). Both approaches are solved by different GA’s. The TrRP was
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not formally described, whereas the TrSP was formulated as a non-linear mixed-integer problem (MIP ).
This MIP minimizes transfer and user waiting times and is subject to bounds on the service time at stops
as well as the route headways. Furthermore, it coordinates transfer and arrival times, allows only one trans-
fer per person, and limits the maximum waiting time per person. Reported results are based on the Mandl
small-sized network [127].

1.5.20 Agrawai & Mathew’s research work

Agrawai & Mathew [2] exploited the parallel features of the genetic algorithms (GA) to apply them more
efficiently to a model which minimizes global user travel times, including walking, waiting, in-vehicle and
transfer times, as well as vehicle working costs. As constraints, they impose bounds on the line frequencies,
a maximum allowable load factor, and demand coverage satisfaction.

The solving scheme is similar to the vast majority of GA-based approaches. Initially, a generation of a
large set of potential routes is carried out, and then a subset of them is chosen. In this second phase, the
authors applied two different parallel GA’s: one consists of a global parallel processing environment, which
uses parallel virtual machine (PVM ) libraries; the other one is a global message passing interface, which
substitutes the PVM libraries. Both GA algorithms are driven by means of a route evaluation module, which
evaluates the computed route set. Reported results are based on Delhi, the capital city of India. Its network
representation contains 1332 nodes, 4076 links and 6000 o-d demand pairs.

1.5.21 Fan & Machemehl, Barra, Carvalho, Teypaz, Cung and Balassiano’s research work

Fan & Machemehl [68] solve the network design problem by examining some metaheuristic techniques such
as: simulated annealing, tabu search, genetic algorithms, local search, and random search. As with other
previous methods, all these metaheuristics begin with a set of skeleton routes and they generate additional
routes. The output is run through a network evaluation tool, which is used to improve the quality of the
solution at subsequent iterations.

Their objective is to minimize the sum costs of user, operator and unsatisfied demand. User costs include
walking, waiting, transfer and in-vehicle times, whereas operator costs refer to the costs of operating the
required vehicles. The last cost is computed by means of the difference between the total satisfied demand
and the demand going through the transfer paths. Regarding constraints, they formulate five sets related
to headway feasibility, maximum load factor, maximum fleet size, bounds on trip length, and a maximum
number of constructed routes.

Reported results include three experimental networks labeled as small, medium and large. The small one
has 35 nodes, 82 links, 42 o-d demand pairs and 286 skeleton routes, whereas the medium one consists of
72 nodes, 180 links and 182 o-d demand pairs. Finally, the large network has 160 nodes, 418 links and 756
o-d demand pairs. For the medium and large networks, the size of the skeleton routes are not specified.

The later works of Fan & Machemehl [69] and [70] are part of the mentioned work with no apparent
differences. In contrast, the work of Barra et al [10] try to solve the Fan & Machemehl’s model by means of
constraint programming techniques. However, they do not report results on medium- or large-sized networks.
Their analysis focused on a modified Mandl’s network [127] consisting of 15 nodes, 42 links and 210 o-d
demand pairs.

1.5.22 Borndörfer, Grotschel and Pfetsch’s research work

Borndörfer et al [15] proposed a multicommodity flow model for line planning, in which line segments are
predefined a priori. The model is formulated as a mixed-integer linear programming problem (MILP ),
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where decision variables include the selection of lines (discrete variables), the determination of their fre-
quencies and the passengers assigned to them (both are continuous non-negative variables).

The objective function minimizes passenger travel times (only in-vehicle times) and some operator costs,
both of which are related to line frequency setting and fixed operating costs, respectively. It has constraints
on flow conservation, link capacity, line capacity, line frequencies, and edges. It also has some linking con-
straints, which associate frequencies with lines.

The solving approach consists of a column-generation-based algorithm with length-restricted lines. The
algorithm solves first an LP relaxation of the MILP , and then a heuristic procedure constructs a good inte-
ger solution from a line pool consisting of lines with nonzero frequencies in the optimal LP solution.

The authors report some experiments carried out in the 1998 line system of Potsdam, which then had
951 nodes, 1321 edges and 110 o-d demand pairs.

1.5.23 Fernández, de Cea and Malbran’s research work

Fernández et al [72] developed a bilevel problem in which the upper level performs the physical design of the
transport system, whereas the lower level carries out the operational design and determines the user behavior.

The objective function of the upper level is not specified, whereas that of the lower level minimizes user
travel times, including access, in-vehicle, waiting at stops and transfer times, and the production costs of the
services. As constraints, they impose topology on the network, flow balance, some user behavior rules and
link capacities.

The upper level is solved by means of the heuristic procedures proposed by Fernández et al 2003, whereas
the lower level is formulated as a continuous non-linear programming problem, which tackles three different
algorithms: the Hooke and Jeeves’ algorithm; simulated annealing; and augmented Lagrangian. The first
one was reported as the best.

Reported results were based on the Bus and underground networks of Santiago de Chile, the capital city
of Chile. The whole system has 2042 nodes, 8267 links and 409 centroids with 584.833 trips/h for the peak
hour (from 7.30 a.m. to 8.30 a.m.).

1.5.24 Pacheco, Alvarez, Casado and González-Velarde’s research work

Pacheco et al [146] studied an urban transport problem applied to Burgos, a northern Spanish city. The prob-
lem consists of designing n routes and assigning the available buses to them. The objective is to minimize
the waiting times of users of stops and their overall in-vehicle travel time. Routes are subject to a pair of
pre-defined nodes, where they must begin, end, and pass through twice in the same service. Moreover, each
vehicle assigned to the same line is assumed to carry out the same number of services.

The solving approach consists of a specific procedure that constructs an initial solution, plus two alter-
native methods: a local search and a tabu search strategy. Both methods work in two alternating phases:
modifying first the route designs, and then assigning buses to them. The initial procedure is based on a
heuristic insertion which incorporates techniques related to TSP, such as Or-exchanges and cross-exchanges.

Reported results are based on Burgos, a northern Spanish city. The largest tested instance has 382 stops,
of which 48 are pairs of terminal nodes and an overall of 24 routes are constructed. No data was available
on the number of links and o-d demand pairs.
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1.5.25 Mauttone’s research work

Mauttone [135] reviews some state-of-the-art mathematical programming problems and presents some new
ones, including a bilevel programming problem. However, only one problem is used to solve two small-sized
networks. It consists of an extension of the Spiess model, where frequencies are integer decision variables
subject to a given set of possible values. Additionally, a constraint on vehicle fleet size is imposed. The set of
eligible routes are given as inputs. They have been previously computed by means of a construction heuristic
procedure, called PIA, which takes into account additional objective costs and constraints. The line cycle is
considered as the operator costs, and some bounds related to the route duration are imposed: maximum time
duration and maximum circuit factor. The latter is measured by means of a ratio between the line cycle and
the shortest path of a given o-d demand pair.

The PIA procedure is later incorporated into a metaheuristic technique called Greedy Randomized Adap-
tive Search procedure (GRASP). It consists of a repeated execution of a greedy randomized variant of the
PIA, such that different sets of routes are constructed, followed by a local search in which new frequencies
are determined.

The GRASP metaheuristic is used for solving a medium-sized network representing the bus system of
Rivera, a city of Uruguay. This network consists of 84 nodes, 143 links and 370 o-d demand pairs.

1.5.26 Szeto & Wu’s research work

Szeto & Wu [171] formulated a non-linear mixed integer programming problem (MIP), where the objective
function minimizes the number of transfers as well as the total passenger travel time, including access, in-
vehicle and waiting times. Regarding constraints, the routes are imposed to start and end at a pre-defined set
of nodes and the number of intermediate nodes visited is limited. Moreover, the number of assigned vehicles
is also limited to a given fleet size; the line frequencies must have a minimum value; and the access time is
bounded by a maximum allowable time.

The MIP is solved by means of an integrated method in which a genetic algorithm tackles the route
design problem and a neighborhood search heuristic faces the frequency setting problem. Reported results
are based on Tin Shui Wai, a suburban residential area in Hong Kong. The network has 28 nodes, 45 links
and 115 o-d demand pairs.

1.5.27 Cipriani, Gori and Petrelli’s research work

The most recent works on GA are those of Cipriani et al [30], [31] and [32]. The authors proposed an ob-
jective function which considers total distance and travel times as operator costs. It also takes into account
user disutility, which is measured by in-vehicle travel times, waiting times and transfer penalties.

The solving approach gives as outputs the bus lines as well as the working frequencies and suitable ve-
hicle sizes. It consists of two phases. In the first one, three different sets of complementary feasible routes
are generated. They are called A-type routes, B-type routes and C-type routes. The first type is composed
of the shortest paths between node pairs with demand trips longer than a given minimum value. The second
type is related to general routes, which aim to generate trunk and feeder lines. The last type accounts for the
working transit network’s routes. The second phase uses the GA for choosing a sub-set of feasible routes
from among the three mentioned sets, as well as for planning their configuration. The GA uses a fitness
function, which is made up of three terms: the objective function, one term associated with the unsatisfied
demand, and another one related to the line-level coordination of conflicting transfer points. The second term
explicitly considers the minimum percentage of demand to be satisfied, whereas the third term coordinates
the lines by assigning additional penalties related to the number of transfer points and the number of lines
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going through these transfer points. During this phase a modal splitting is also performed by means of the
evaluation of a binomial logit function.

Reported results are based on the central area of Rome, the capital city of Italy. Its network representation
contains 1300 nodes, 7000 undirected links, 450 centroids with an amount of 565000 trips/h corresponding
to the peak hour.

Year Author Scheme Method Op. Costs Us. Costs E.D.
1967 Lampkin & Saalmans Sequential Heuristic Yes No No
1974 Silman et al Sequential Heuristic Yes No No
1979 Dubois et al Sequential Heuristic No Yes No
1981 Hasselström Simultaneous Heuristic No Yes No
1884 Marwah et al Simultaneous Heur. + Exact Yes Yes No
1986 Ceder & Wilson Sequential Heuristic Yes Yes No
1987 Van Oudheusden et al Simultaneuous Heur. + Exact Yes No Yes
1988 van Nes et al Simultaneous Heuristic No Yes No
1989 Israeli & Ceder Sequential Heuristic Yes Yes No
1990 Baaj & Mahmassani Simultaneous Heuristic Yes Yes No
1992 Baaj & Mahmassani Simultaneous Heuristic Yes Yes No
1992 Israeli Sequential Heuristic Yes Yes No
1995 Baaj & Mahmassani Simultaneous Heuristic Yes Yes No
1995 Israeli & Ceder Sequential Heuristic Yes Yes No
1998 Ceder & Israeli Sequential Heuristic Yes Yes No
1998 Pattnaik et al Simultaneous Metaheuristic Yes Yes No
1999 Soehodho & Koshi Sequential Heuristic Yes Yes Yes
2001 Chien et al Simultaneous Metaheuristic Yes Yes No
2003 Tom & Mohan Simultaneous Metaheuristic Yes Yes No
2003 Wan & Lo Simultaneous Exact Yes No No
2003 Ngamchai & Lovell Simultaneous Metaheuristic Yes Yes No
2003 Zhao Simultaneous Metaheuristic No Yes No
2003 Chakroborty Sequential Metaheuristic No Yes No
2004 Carrese & Gori Sequential Heuristic No Yes No
2004 Fan & Machemehl Simultaneous Metaheuristic Yes Yes Yes
2004 Agrawal & Mathew Simultaneous Metaheuristic Yes Yes No
2005 Lee & Vuchic Simultaneous Metaheuristic No Yes Yes
2005 Cipriani et al Simultaneous Metaheuristic Yes Yes Yes
2005 Hu et al Sequential Metaheuristic Yes Yes No
2006 Fan & Machemehl Simultaneous Metaheuristic Yes Yes Yes
2006 Zhao Simultaneous Metaheuristic No Yes No
2007 Borndörfer et al Simultaneous Exact Yes Yes No
2008 Fan & Machemehl Simultaneous Metaheuristic Yes Yes Yes
2008 Fernández et al Simultaneous Heuristic Yes Yes No
2009 Pacheco et al Simultaneous Metaheuristic No Yes No
2011 Mauttone Simultaneous Metaheuristic Yes Yes No
2011 Szeto & Wub Simultaneous Metaheuristic No Yes No
2012 Cipriani et al Simultaneous Metaheuristic Yes Yes Yes

Table 1.2: Summary of the main features for Integrated Global Planning and Line Frequency Setting models.
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1.6 Summary

This chapter has shown several state-of-the-art works which are related either to the network design problem
(NDP ), line frequency setting problem (LFSP ), or both. We have also studied some emerging works on
LFSP , where express service design and elastic demand features are taken into account. Almost all of them
are solved by means of heuristics, metaheuristics or a combination of both techniques. Only the works of
Marı́n [128], Marı́n & Jaramillo [129] and [131], Escudero & Marı́n [64], Wan & Lo [180] and Borndörfel
et al [15] solve them by means of exact approaches. However, their models are rather simplistic.

Regarding modeling issues, there is no work on the state of the art which integrates NDP and LSFP
problems by simultaneously taking into account express service design and elastic demand features. More-
over, the passenger assignment models do not consider or only partially consider passenger time costs at
stations related to boarding, alighting, and waiting in-vehicle. These costs are very important when demand
levels are not so low. Finally, the inclusion of a working network has been only slightly considered by van
Oudheusden et al [176]. Thus, more modeling effort is needed.

Finally, it is worth-mentioning that the size of the networks which these methods are capable of solving
is rather limited, even when using approximated methods. Not many authors report any results on real-sized
networks (see the works of Marwah et al [133], Carrese & Gori [22], Zhao [192], Agrawai & Mathew [2],
Fan & Machemehl [68], Borndörfer et al [15], Fernández et al [72] and Cipriani et al [32]). Moreover,
computational times are seldom encountered in these works.

In the following chapters, we will show that a mathematical programming approach can integrate the
mentioned modeling aspects, and that it is capable of solving medium- and large-sized networks to (near-)
optimality. It solves these networks through the following simplifications:

• Line corridors are given as inputs to the optimization model.

• Lines are constructed sequentially.

The line corridors will be obtained by means of a constrained k-shortest path algorithm, which is ex-
ternal to the optimization model. These simplifications are rather reasonable, as shown in the preliminary
results subsections 4.2 and 5. The optimum or a near-optimum can be reached as long as the generated set
of feasible line corridors is rich enough and the networks do not exhibit a high connectivity.

Complementary to these simplifications, we will apply some decomposition techniques, which allow
splitting the original model into small problems so that they are easier to solve without losing optimality.



Chapter 2

Modeling Approach

This chapter presents the mathematical formulation for the inelastic version of the rapid transit network
design and planning model (RTNPD), which integrates the network layout design (NLD) and the line
frequency setting (LFS) for urban public networks (UPN) in underground and railway systems. The NLD
phase extends the working UPN, taking as inputs the locations of the candidate stretches and stations of the
new lines, as well as the construction costs, which cannot exceed the infrastructure budget. Regarding the
LFS phase, frequencies and vehicles are assigned to the working and newly built lines, providing that the link
frequency capacities, the vehicle acquisition budget, and the planning horizon are not exceeded. NLD and
LFS phases are solved at the same time by means of a passenger assignment model under a system global
optimum. The structure of the chapter is as follows. Firstly, we introduce the problem statement. Then, we
show the data structure in which the mathematical formulation of the model lies. It includes two graphs: 1)
an undirected graph for routing and frequency assignment purposes, and 2) a network flow for the passenger
assignment phase. The next section is devoted to the mathematical formulations. It comprises the objective
function as well as the set of constraints sorted by functionality. Finally, we present some preliminary results
in order to justify which formulation is the best.

2.1 Problem statement

The problem under consideration concerns the design and planning of rapid transit network extensions,
where a set of lines may be already in operation. The resulting system must satisfy a known demand of
trips for this public transportation mode (PT). The extension of the network can be considered subject to
budgetary constraints, which apply both to the line construction costs and the possible enlargement of the
fleet of vehicles, which may be required for it to operate. The maximum number of new lines to be added to
the rapid transit system is fixed a priori, and the layout of these new lines must comprise a predetermined set
of segments or line stretches, some of them already built and being part of the itinerary of an already existing
line. Ending points of these segments may be chosen optionally as stops for some or all of the new lines, or
simply as points where vehicles pass through but do not halt.

The approach integrates into a single model both the determination of the layout of the new lines (under
construction) and the frequency setting of the whole system. This allows us to take into account the effect
that the new lines have on the rest of the transportation system. The assignment of vehicles is performed
globally, taking into account the existing vehicles already in operation on the lines plus the (possibly) newly
purchased vehicles on the whole set of lines of the system (existing + added). In the following, we will refer
to the existing vehicles operating on the lines as simply the working vehicles, and the currently operating
lines as simply the working lines. Also, we will refer to the segments as line stretches. By stop, we refer to
a rapid transit platform where passengers can board or alight from a public transportation vehicle. Physical
characteristics or parameters of a stretch may differ, according to the direction of movement.

30
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We refer to line frequency as the number of vehicles per time unit that can perform at least one service
on a line. A service is a complete line cycle carried out by a vehicle assigned to that line. According to the
line’s layout, the vehicle stops at or just visits the line stops. Lines under consideration in the model can
be of the express service type, i.e., point-to-point lines or also lines whose vehicles halt only at some of the
stops along their route. It is assumed that a fleet of existing vehicles can be assigned to the set of all lines
and that there exists the possibility of renting/purchasing a specified number of additional ones if so required.

A complementary transit mode (COM) will be considered in order to allow transfers among lines so that
passengers can reach their destination or nearest boarding stop.

The problem described above will be modeled and solved by means of mathematical programming tech-
niques under the following additional hypothesis:

• The line topology could be rectilinear or circular. Additionally, whatever the topology is, lines must
be also symmetrical, i.e., the line trace starts and ends at the same stop node and all links and nodes
are visited twice, one in each direction.

• The fleets of vehicles are homogenous, i.e., all vehicles have the same capacity. Also, the average
speed on a link is a characteristic common to all vehicles.

• Passengers travel following a system optimum assignment model so that the global user times will
be minimized. These times will include not only the in-vehicle travel times but also boarding and
alighting from vehicle times and waiting in-vehicle times during service at service nodes. To obtain
these times, an extended flow network will be modeled (see section 2.2 for further information).

• The number of vehicles allocated on a line will be treated as discrete variables.

• The maximum line frequency depends on the stretch capacity, measured as the maximum number of
vehicles going through per time unit.

• The passenger demand for the urban area under study is known in advance for every origin and des-
tination stop. However, when we refer to elastic demand, the whole OD demand pair should not be
necessarily assigned to the rapid transit system. Some of them can go through the private transportation
mode.

• The average passenger service time at stops as well as the public vehicles average speed per link are
also known in advance.

2.2 Network structure

The passenger flow goes through a directed graph G = {N,A}, which is split into three subgraphs: the
public transport network GTP = {NTP , ATP }, the complementary network GCOM = {NCOM , ACOM},
and the private network GPRI = {NPRI , NPRI}. The GTP topology represents a simplification of a rapid
transit system under the following hypothesis:

• The nodes i ∈ NTP work as origin or destination nodes of the demand as well as stop nodes. Conse-
quently, there can be a passenger flow exchange at any node. Moreover, these nodes turn into network
flow extensions in order to represent the passenger flow exchanges (see Figures 2.2 and 2.3).

• The links (i, j) ∈ ATP are directed. However, for routing purposes, we work with a non-directed
subgraph GNTP = {NN

TP , A
N
TP }, where NN

TP ⊂ NTP and ANTP ⊂ ATP in which ∀(i, j) ∈ ANTP :
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i < j (see Figure 2.1). In that manner, we build symmetrical lines, where each node i is visited twice,
once in each direction. Despite that simplification, the traveling costs tTP : {tTPij } are not necessarily
symmetrical, so that, tTPij ̸= tTPji .

As a consequence of the second hypothesis, the degree of a node i ∈ NTP satisfies that |ITP (i)| =
|ETP (i)| ≤ 2, where ITP (i) and ETP (i) stand for the sets of incoming and outgoing nodes. As a result, a
line l is defined as a set of K 2-connected links, which form subtours in GTP so that link (i, j) ∈ ATP has
its opposite (j, i) ∈ ATP .

RegardingGCOM topology, the links (i, j) ∈ ACOM represent the facilities where passengers may trans-
fer, whereas the nodes i ∈ NCOM can work as nodes i ∈ NTP or as street intersection nodes. The traveling
costs tCOM : {tCOMij } may not be symmetrical, so that: tCOMij ̸= tCOMji .

Finally, the GPRI network represents a simplification of the road network used by the users who are
willing to travel by car. The nodes i ∈ NPRI stand for all the origin and destination nodes where the PT
stops are located. Regarding the links (i, j) ∈ APRI , they play the role of the shortest paths linking the
origin demand node i to the destination demand node j.

Figure 2.1 depicts the type of network used for routing purposes. It contains 9 nodes which can work as
stations, excluding node 2, which is a street intersection. Moreover, it has two types of link traces: the thicker
ones, which represent the links that may share all the subgraphs; and the thinner ones, which symbolize the
links that belong only to the GCOM and GPRI subgraphs.
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Figure 2.1: A routing network example.

Notice that it is possible to set a rectilinear line linking, for example, nodes 1 to 9. A possible line
containing these nodes may be 1 − 4 − 5 − 6 − 9. However, this network representation is not enough to
deal with the passenger flow assignment because of the following reasons:

1. It has no way of circulation and thus the itinerary of a pair of o-d demand (i, j) cannot be directly
distinguished from its reverse (j, i).

2. It has no flow exchange representation at a stop node. When a vehicle halts at a node, some passengers
remain in-vehicle, whereas others alight from or board this vehicle, coming from or going out through
a walking link.

3. As an extended consequence of the two aforementioned reasons, passenger transfers among lines
cannot be well represented. Times for alighting from a vehicle at line l and boarding another line l′

will be missed.
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To correctly represent the demand assignment in the public transportation network, we have extended
the routing graph, such that the aforementioned requirements can be satisfied. Taking as example the one
depicted in Figure 2.1, the network flow representation will be like the one shown in Figure 2.2.
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Figure 2.2: Extension of the Routing graph example to carry out the passenger flow assignment.

For the sake of clarification, we have deleted the ACOM and APRI links. Additionally, we have only
drawn the network extension for a single candidate line l. The reader can see that two new types of nodes
and three types of directed links have come into play. The links come in the ”positive” nodes and in the
black ones; and go out through the negative nodes and through the black ones. The latter are shared by
all the network extension nodes and represent the passenger flow exchange between the GPT and GCOM
subgraphs. So, these black nodes represent the origin and destination of the passenger flow . The ”positive”
and ”negative” nodes are fictitious and represent the in-vehicle passenger flows coming in and going out of
the station. They are tagged as follows. In the first place, the ”positive” nodes take the black node identifier,
where the alighting link (i, j) ∈ Aly and some waiting-in-vehicle links (i, j) ∈ Alx are connected. In the
second place, we add the black node identifier related to the ”negative” node, which is linked by means of
an in-vehicle traveling link (i, j) ∈ Alinv. Finally, we append to them the line identifier to which the node is
related and the positive sign ”+”. For instance, if we want to represent the ”positive” node of station 5 (black
node 5), which is linked to the negative node of station 4, its tag will be 54l+. To tag the ”negative” node,
the procedure is quite similar, the only difference is the replacement of the positive sign with the minus one.
Moreover, the first black node to be identified is linked by means of a boarding link (i, j) ∈ Ala and some
waiting-in-vehicle links.

To see the details of the passenger flow exchange in these extended station nodes, the reader is directed
to the following Figure 2.3. It shows the network extension for a given (black) node i ∈ N l

TP , which has six
adjacent black nodes: three of these are incoming nodes (h, s, j ∈ N l

TP ) and the other three are outgoing
ones (g, r, k ∈ N l

TP ). To simplify, we have limited node i to be located on a new single line l. Moreover, we
have only taken into account flows which originate at a unique node p. Observe that we have used an abstract
notation, where the letters stand for the black node identifiers. The nodes ending with a ”+” sign represent the
positive nodes, whereas the ones ending with a ”-” sign are related to the ”negative” nodes. Regarding flow
notation, the in-vehicle passenger flows coming in to and going out of the station are represented by vp,l

v+(i)

and vp,l
v−(i)

, respectively. The former are split into three types of flows: the passenger flow alighting from the

vehicle (vp,ly(i)), the passengers remaining in-vehicle (vp,lx(i)) and the ones remaining in a vehicle which does
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not halt at a stop (ṽp,lx(i)). The latter are also split into three types of flows: the passenger flow boarding the

vehicle, vp,la(i) and the already mentioned vp,lx(i) and ṽp,lx(i).

Flows vp,ly(i) and vp,la(i) are also used, in collaboration with walking passenger flows coming in to and going
out of the station up

i− and up
i+

, respectively. This makes the passenger flow exchange possible between the
GPT and GCOM subgraphs at node i.

i є N 

ui ui

vy(i)

p,l

vy(i)

p,l

vy(i)

p,lvy(i)

p,l

va(i)

p,l

va(i)

p,l

TP

p p

vv (i)

p,l
-

vv (i)

p,l
-

vv (i)

p,l
-

vv (i)

p,l
+

vv (i)

p,l
+

vv (i)

p,l
+

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

v
x  (i)

p,l
 +       v

x  (i)

p,l
+

~

l

ijl+

isl+

ikl-

irl-

ihl+ igl-

i
 +       -

,

,

,

,

,

,

,

,

Figure 2.3: Network flow representation for a candidate node i on a new line l.

Passenger flows vp,ly(i), v
p,l
a(i) and vp,lx(i) have time unit costs ty, ta and tx, respectively, whereas flows ṽp,lx(i)

have no extra cost. Thus, this representation allows us to distinguish a twofold role of a node. Notice that
if a node is treated as a passing point for some line l, some ṽp,lx(i) > 0 and all vp,lx(i) = vp,ly(i) = vp,la(i) = 0 so

vp,l
inv+(i)

= vp,l
inv−(i)

. In contrast, if the node works as a service stop, every ṽp,lx(i) = 0 and all vp,lx(i) + vp,ly(i) =

vp,lx(i) + vp,la(i) > 0. It is worth-noticing that tx < ta + ty, so that it prevents pax flows coming from the same
p ∈ O from alighting and boarding a vehicle at the same stop.

The reader is referred to the illustrative example 1 of the appendix for a complete understanding of the
need for including these in-station movements.

2.3 Model formulation

This section presents the mathematical formulation for the RTNPD model under inelastic demand, where
the passenger flows are expressed for each origin of demand. They can be easily accommodated to work
with destinations; however, this step will be omitted for the sake of simplification. The objective of the
model is twofold: it designs the infrastructure of the new lines to be constructed as well as the services to be
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performed. The following subsections introduce the mathematical notation as well as the objective function
and constraints of the model.

2.3.1 Objective Function

z = minα · zpax + (1− α) · zop (2.1)

The objective function (2.1) represents a tradeoff between the passenger costs (zpax) and operator costs
(zop). The former includes the traveling costs throughout the GCOM and GTP subgraphs (2.2), whereas the
latter comprises the planning costs related to the line frequencies and vehicles, as well as the construction
and maintenance costs of the network infrastructure (2.3).

zpax = θ
∑
p∈O

gp
∑

(i,j)∈A

∑
l∈Lij

tTPij · v
p,l
ij + tCOMij · upij

 (2.2)

zop =
∑
i∈NN

TP

cci · yi + cmi
∑
l∈LN

ỹli

+
∑

(i,j)∈AN
TP

ccij · xij + cmij
∑
l∈LN

xlij

+ (2.3)

+
∑

(i,j)∈ATP

∑
l∈Lij

cfij · f̃
l
ij + csb ·

∑
l∈L

bl + cab ·∆b

The tTPij costs include the times associated with the in-vehicle links as well as the times for boarding,
remaining in, and alighting from a vehicle. On the other hand, the tCOMij costs represent the shortest walking
times between nodes.

The weighting of each cost is carried out as follows. On the one hand, the costs related to passenger
times (2.2) are weighted by parameter θ, defined as the value of time for any OD-demand pair. On the other
hand, the costs related to operators (2.3) are comprised of the following terms. Firstly, the line construction
costs take into account the amount of money required to build the stops and stretches (cci and ccij). Secondly,
the cost for resource maintenance includes the amount of money spent to maintain the stops and stretches
in good condition (cmi , cmij ). Thirdly, the costs related to the planning phase, which include the frequency

weights cfij , defined as the amount of money spent per unit of time utilization through stretch (i, j) and the
cost of allocating and obtaining additional vehicles (csb, c

a
b ), respectively. Finally, the global costs zpax and

zop are weighted by means of non-negative constant α.

2.3.2 Infrastructure Budgetary constraint

∑
i∈NN

TP

cci · yi +
∑

(i,j)∈AN
TP

ccij · xij ≤ cnet (2.4)

Constraint (2.4) sets the maximum number of infrastructure resources to be constructed according to the
available infrastructure budget (c̄net) and the number of constructed resources. The latter is captured by
decisional variables yi and xij , which stand for the number of constructed stations and stretches, respectively.

2.3.3 Network design constraints

This subsection presents three different formulations for the network design submodel. The first two describe
exact formulations whereas the latter is an approximation, but it is the only one that seems capable of solving
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medium-sized networks according to the preliminary results shown in section 2.4. All these formulations are
subject to the following common constraints:

ỹli ≤ yi, ∀i ∈ NN
TP , l ∈ LN (2.5)

xlij ≤ xij , ∀(i, j) ∈ ANTP , l ∈ LN (2.6)

ỹli ≤ yli, ∀i ∈ NN
TP , l ∈ LN (2.7)

Constraints (2.5)-(2.6) capture which stretches and stops have been built in the public transport network.
Additionally, (2.7) sets the correct role of the stop according to their allocation to the lines.

2.3.3.1 Routing Model M1

This first formulation stands for the routing of lines without fixing in advance their layouts. Consequently,
we take into account the possible line topologies (rectilinear or circular) as well as the symmetric property
(i.e., all stretches and stops will be visited twice, one in each direction). Given these requirements, the
routing model (M1) can be formulated by means of the following constraints:

∑
j∈NN

TP (i),i<j

xlij +
∑

j∈NN
TP (i),i>j

xlji ≥ yli, ∀i ∈ NN
TP , ∀l ∈ LN (2.8)

∑
j∈NN

TP (i),i<j

xlij +
∑

j∈NN
TP (i),i>j

xlji ≤ 2 · yli, ∀i ∈ NN
TP , ∀l ∈ LN (2.9)

∑
(i,j)∈AN

TP ,i<j

xlij ≤Ml · xl, ∀l ∈ LN (2.10)

∑
(i,j)∈AN

TP ,i<j

xlij ≥
∑
i∈NN

TP

yli − xl, ∀l ∈ LN (2.11)

∑
(i,j)∈AN

TP ,i<j

xlij ≤
∑
i∈NN

TP

yli, ∀l ∈ LN (2.12)

∑
(r,s)∈δS

xlrs ≥ yli + ylj − 1, ∀i ∈ S, ∀j ∈ Sc, S ⊂ NN
TP , ∀l ∈ LN (2.13)

where constraints (2.8) - (2.9) set the grade of the node and link the line stretches to their stops. In both equa-
tions, the set NN

TP (i) denotes the number of nodes which are adjacent to node i, and expressions i < j and
i > j indicate that the cardinality of the adjacent nodes under consideration must be less than and greater
than node i, respectively. The next constraint (2.10) limits the maximum number of stretches that can be
assigned to a line by means of the binary variable xl, which denotes if line l is constructed, and the weight
Ml, whose value can be set as 0.5 · |ANTP |+ 1.

On the other hand, constraints (2.11) - (2.12) establish the line topology. Notice that when constraint
(2.11) has a strict equality and constraint (2.12) has a strict inequality, the line topology is rectilinear (i.e.,
the number of stretches is one unit greater than the number of stops). On the other hand, when the line
topology is circular (i.e., the number of nodes and links are equal), constraint (2.12) has a strict equality and
constraint (2.11) has a strict inequality.

Constraints (2.8) - (2.12) are not enough to carry out the routing correctly since they do not prevent dis-
connections among selected stretches. To overcome these situations, we add constraints (2.13) dynamically
as long as sublines emerge. In equation (2.13), δS stands for the set of edges that are incident to a group of
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interconnected nodes (captured by set S), which are disconnected from the remaining selected nodes (held
in set Sc). Formally, δS =

{
∀(i, j) ∈ ANTP | i ∈ S, j ∈ Sc

}
To illustrate the workings of constraint (2.13), let us consider a solution consisting of two groups of

interconnected edges called Subline A and Subline B for a complete 6-node railway network with only one
line under construction (see Figure 2.4). Observe that we must consider the possibility of allowing subline
A, which alone forms a circular layout, to be a valid line topology solution. To eliminate this disconnection,
it suffices to choose a single pair of disconnected nodes and set its corresponding constraint (2.13). If we
take, for instance, the pair (1, 3), we yield the following constraint:

x12 + x13 + x16 + x24 + x34 + x46 + x25 + x35 + x56 ≥ y1 + y3 − 1 (2.14)

which states that if we include nodes 1 and 3 on the line (y1 = 1 and y3 = 1), at least one edge with an
extreme node in the group of interconnected nodes S = {1, 4, 5} must have the other extreme node in the
set of selected and disconnected edges Sc = {2, 3, 6}.

1

4

5 6

23

Subline A Subline B

Figure 2.4: Example of a non-valid line trace generated from the 6-node network.

2.3.3.2 Routing Model M2

This second formulation stands for the routing of lines without fixing the layout in advance; but unlike the
routing model M1, it explicitly includes the elimination of sublines within a line under construction by means
of a one-commodity network flow formulation. It is inspired by Gavish & Graves 1979 [84], who discovered
a valid compact formulation for the symmetrical traveling salesman problem (STSP ). Its mathematical
representation is as follows:

min
xij

∑
(i,j)∈A

cij · xij (2.15)

s.t. ∑
j∈EN

TP (i)

xij +
∑

j∈INTP (i)

xji = 2, ∀i ∈ N (2.16)

∑
j∈EN

TP (i)

yij −
∑

j∈INTP (i)

yji = bi, ∀i ∈ N (2.17)

yij ≤ (|N | − 1) · x̃ij , ∀(i, j) ∈ A
′

(2.18)

where bi and x̃ij stand for the following expressions:

bi =

{
|N | − 1 if i = 1
−1 if i ̸= 1

x̃ij =

{
xij if i < j
xji if i > j
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Unlike the classical traveling salesman problem (TSP ) formulation, two types of variables are taken into
account: the original discrete variables xij representing whether or not a link is selected (i, j) ∈ A and the
new non-negative continuous variables yij representing the flow through the link (i, j) ∈ A′

. Set A refers to
the undirected graph links, whereas set A

′
is related to the directed version. Regarding the constraints set,

equations (2.16) state that the grade of a node must be equal to one, whereas equations (2.17) perform the
flow balance at each node. This balance consists of injecting |N − 1| units of flow into the source node,
which is set arbitrarily to any node (for instance, node 1). In the remaining nodes, one unit of that flow
must be consumed. Finally, equations (2.18) link the flows to the network configuration. They are called the
”forcing” constraints because they prevent the emergence of subtours.

We have developed an adaptation of the constraints set (2.16) - (2.18) for routing model M2 as follows.
Firstly, we have replaced the node grade constraints (2.16) with the constraints (2.8) and (2.9) of model M1,
since we want to construct both circular and rectilinear lines. Secondly, we have directly incorporated the
forcing constraints (2.18). Finally, we have constructed a valid flow balance left term bi to adapt the flow
balance constraints (2.17). It includes the definition of two additional variables ϕli and Γli. The former defines
which node will be the source, whereas the latter determines which node will be considered as source and
sink at the same time, providing that the constructed line is circular. Otherwise, that variable is meaningless.
So, by taking into account the yli variables, which define which nodes are allocated on the line, we formulate
the remaining constraints of routing model M2 as follows:

∑
j∈EN

TP (i)

zlij −
∑

j∈INTP (i)

zlji = nli + ϕli − Γli − yli, ∀i ∈ NN
TP , l ∈ LN (2.19)

∑
i∈NN

TP

ϕli = xl, ∀l ∈ LN (2.20)

ϕli ≤ yli, ∀i ∈ NN
TP , l ∈ LN (2.21)

Γli ≤ ϕli, ∀i ∈ NN
TP , l ∈ LN (2.22)

nli =
∑

k∈NN
TP

ylk · ϕli, ∀i ∈ NN
TP , l ∈ LN (2.23)

zlij ≤ (|NN
TP | − 1) · x̃lij , ∀(i, j) ∈ ANTP , l ∈ LN (2.24)

where we have labeled the flow variables ylij as zlij for the sake of clarification. Observe that constraints
(2.19) are analogous to the flow balance constraints (2.17), except that the right term bi of the equality is
replaced with an expression in which several decision variables appear. The nli variable is associated with
the linearization of constraint (2.23). It simply states that the node i will have an injection of

∑
k∈NN

TP
ylk

units of flow, provided that it is the source. Otherwise it will have no injection. That linearization is carried
out by means of the simplified Grover’s equations (9)-(10) (shown in the appendix section 9.3), since there
is one binary variable ϕli alone in the product. Having applied them, we yield the following constraints:

0 ≤ nli ≤ ϕli · |NN
TP |, ∀i ∈ NN

TP , l ∈ LN (2.25)∑
k∈NN

TP

ylk − |NN
TP | · (1− ϕli) ≤ nli ≤

∑
k∈NN

TP

ylk, ∀i ∈ NN
TP , l ∈ LN (2.26)

To understand the workings of constraints (2.19) - (2.24), we refer the reader to the following scenarios:

1. A single line l is constructed as rectilinear and not circular.

2. A single line l is constructed as rectilinear and circular.
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The first scenario implies that no node can work as source and sink at the same time. Consequently, all
Γli = 0. However, there must be one node working as the source, i.e., one ϕli = 1. This is carried out by
means of constraints (2.20) and (2.22). Notice that constraints (2.22) do not force any ϕli to be non-zero. They
just simply force the node that is considered a sink to work also as a source. However, adding constraints
(2.21) assures that the node considered as the source will be assigned to the line. Consequently, if node i is
the source, the right side expression of balance flow constraint (2.19) will take the value

∑
k∈NN

TP
ylk − 1. In

contrast, if the node i is not the source but is part of the line, the expression will take the -1 value. Finally,
if the node i is neither the source nor a node of the line, the expression will take the 0 value. Thus, it allows
creation of a fictitious flow throughout the line trace.

Regarding the second scenario, the reasoning is quite similar. Now when a node i is considered to be the
source, it works also as the sink. So ϕli = Γli = 1. In that case, the right side expression of flow balance
constraint (2.19) will take the value

∑
k∈NN

TP
ylk−2, which implies that only

∑
k∈NN

TP
ylk−1 links will carry

flow and are thus allocated to the line. The remaining possible situations are equivalent to the rectilinear case.

Notice that the adapted flow balance constraints (2.19) also assure that every node will be connected;
and since constraints (2.24) prevent the emergence of sublines, the connectivity constraints (2.11) - (2.12) as
well as the subline elimination constraints (2.13) of routing model M1 are not needed.

2.3.3.3 Model with fixed corridors (M3)

This third formulation stands for the routing of lines with fixed line segments (corridors), which are computed
off-line by means of the algorithm shown in chapter 4. As a result, we yield the following constraints set:

xlij =
∑
c∈Λ

Dc
ij · δlc, ∀i ∈ ANTP , l ∈ LN (2.27)

yli =
∑
c∈Λ

Eci · δlc, ∀i ∈ NN
TP , l ∈ LN (2.28)∑

c∈Λ
δlc ≤ 1, ∀l ∈ LN (2.29)

where (2.27)-(2.28) map the chosen corridor setup to the stretches and nodes to be included in a given line l,
whereas constraint (2.29) establishes that only one corridor can be selected per line. The matrices D and E
hold all the 0-1 combinations of xlij and yli variables, respectively. So, the matrix column vector Dc stands
for the xlij values for corridor c, whereas Ec relates to the yli values for corridor c. The binary variable δlc
denotes whether or not corridor c takes part of the line l.

2.3.4 Line Frequency setting constraints

The line frequency setting is based on the following law:

bl · ĥ ≥ zl · cl (2.30)

where variables bl, zl and cl represent the number of vehicles, services and cycles of line l, respectively. Ad-
ditionally, parameter ĥ stands for the planning horizon. From this law, one can see that the optimal planning
solution is to strictly set the number of vehicles needed to carry out the zl services on the line while not ex-
ceeding ĥ. Despite its simplicity, this rule has a cumbersome implementation. Notice that the cl associated
to lines under construction is not known beforehand, so a non-linearity given by the product of zl and cl

emerges. Moreover, variables zl are integer, and thus this product cannot be easily linearized.
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To work with a tractable planning model, we have reformulated the zl variables as the number of vehicles
per time unit (f l). This variable is continuous and its relationship with zl is given by the following equation:

zl = ĥ · f l (2.31)

Consequently, the aforementioned law (2.30) turns into the following:

bl ≥ f l · cl (2.32)

where the non linearity f l · cl can now be linearized in a straightforward manner by means of the Grover
approach stated in the Appendix section 9.3.

The following constraints sets (2.33) - (2.38) implement the linearized version of (2.32) as well as some
additional planning requirements related to the fleet size (B) and the planning budget (cveh).

∑
l∈L

bl −B ≤ ∆b ≤
⌊
cveh
cb

⌋
(2.33)

bl ≥ σl, ∀l ∈ L (2.34)∑
l∈Lij

f̃ lij ≤ f ij , ∀(i, j) ∈ ATP (2.35)

cl ≤ ĥ, ∀l ∈ LN (2.36)

f llay = ∆l
yx · f l, ∀l ∈ LN (2.37)

f li = ỹli · f l, ∀i ∈ NN
TP , l ∈ LN (2.38)

f lij = xlij · f l, ∀(i, j) ∈ ANTP , l ∈ LN (2.39)

Firstly, (2.33) sets the lower and upper bounds on the number of new vehicles to be acquired (∆b), given
the available planning budget, the current size of the fleet of vehicles and the number of vehicles assigned
to the lines. Secondly, (2.34) establishes a lower bound on bl by means of σl, which is equivalent to the
following expression:

σl =



∑
(i,j)∈AN

TP

tTPij · f lij + 2 ·

ts∑
i∈NN

TP

f li + tl · f llay

 if l ∈ LN

f l ·
∑

(i,j)∈AE
TP (l)

tTPij + 2 · f l ·
(
ts · |NS

TP (l)|+ tl ·∆l
yx

)
if l ∈ LE

(2.40)

Equation (2.40) consists of the product f l · cl, which is directly implemented for the working lines because
the travel times of the stretches (tTPij ), the average service stop times (ts) and the layover time (tl) are known
in advance. The latter is active if the topology of the line is rectilinear. This effect is carried out by means of
∆l
yx, whose mathematical expression is as follows:

∆l
yx =


∑
i∈NN

TP

yli −
∑

(i,j)∈AN
TP ,i<j

xlij if l ∈ LN

|NTP (l)| −A
′
TP (l) if l ∈ LE

(2.41)

According to this formula, ∆l
yx −→ 1 when the line is rectilinear (i.e., |NTP (l)| = A

′
TP (l)+1), whereas

∆l
yx −→ 0 when the line is circular (i.e., |NTP (l)| = A

′
TP (l)). Set A

′
TP (l) = {(i, j) ∈ ATP (l) | i < j}.
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Other values for ∆l
yx are not allowed since they would not satisfy some of the line’s topology requirements

(see sections 2.1 and 2.2 for further details).

Regarding the lines under construction, the product f l ·cl is reformulated as the weighted sum of selected
stretches and service stops, plus the frequencies of vehicles changing ways (f lij , f

l
i and f llay respectively).

These frequencies are linked to the those of the line (f l) by means of constraints (2.37) - (2.39), which
are non-linear. However, since in both right side expressions one of the variables or expressions are made
of binary variables (ỹli, y

l
i, x

l
ij) and line frequencies f l are continuous non-negative variables, they can be

linearized in a straightforward manner by means of the simplified Grover equations (9)-(10), shown in the
appendix section 9.3, as follows:

f i · ỹli ≥ f li ≥ 0, ∀i ∈ NN
TP , l ∈ LN (2.42)

f l ≥ f li ≥ f l − f
l · (1− ỹli), ∀i ∈ NN

TP , l ∈ LN (2.43)

f ij · xlij ≥ f lij ≥ 0, ∀(i, j) ∈ ANTP , l ∈ LN (2.44)

f l ≥ f lij ≥ f l − f
l · (1− xlij), ∀(i, j) ∈ ANTP , l ∈ LN (2.45)

f
l ·∆l

yx ≥ f llay ≥ 0, ∀l ∈ LN (2.46)

f l ≥ f llay ≥ f l − f
l · (1−∆l

yx), ∀l ∈ LN (2.47)

where upper bounds f i, f ij and f
l

establish the maximum number of vehicles per time unit at the node
station i, the stretch (i, j) and the line l, respectively. ∆l

yx denotes the line topology and its expression is
shown above in (2.41).
Thirdly, (2.35) limits the maximum number of vehicles which can go through the stretches according to
their capacities (f ij) and the whole frequency assigned to the link (i, j). The latter is obtained by means of
function f̃ lij whose mathematical expression is as follows:

f̃ lij =


f l if l ∈ LE
f lij if l ∈ LN and i < j

f lji if l ∈ LN and i > j
(2.48)

Finally, (2.36) prevents the line cycle of the lines under construction to exceed the planning horizon. The
expression of this line cycle is as follows:

cl =
∑

(i,j)∈AN
TP

xlij ·
(
tTPij + tTPji

)
+ 2 ·

ts∑
i∈NN

TP

ỹli + tl ·∆l
yx

 (2.49)
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2.3.5 Passenger flow balance constraints

∑
l∈Li

 ∑
j∈la(i)

vp,lij −
∑
j∈ly(i)

vp,lji

+
∑

j∈ACOM (i)

upij −
∑

j∈ACOM (i)

upji = tpi , ∀i ∈ N, p ∈ O (2.50)

vp,l
inv+(i)

= vp,ly(i) +
∑

j∈Al
x+(i)

(
vp,lij +Ψp,l

ij

)
, ∀l ∈ L, i ∈ NS+

TP (l), p ∈ O (2.51)

vp,l
inv−(i)

= vp,la(i) +
∑

j∈Al
x−(i)

(
vp,lji +Ψp,l

ji

)
, ∀l ∈ L, i ∈ NS−

TP (l), p ∈ O (2.52)

vp,l
inv+(i)

= vp,l
inv−(i)

, ∀ l ∈ LE , i ∈ NP
TP (l), p ∈ O (2.53)∑

(r,s)∈AN
xya(i)

vp,lrs ≤ ỹli, ∀l ∈ LN , i ∈ NN
TP , p ∈ O (2.54)

∑
(r,s)∈AN

x (i)

ṽp,lrs ≤ (yli − ỹli), ∀l ∈ LN , i ∈ NN
TP , p ∈ O (2.55)

∑
p∈O

gp · vp,linv(i,j) ≤ q · f̃
l
ij , ∀(i, j) ∈ ATP , l ∈ Lij (2.56)

Firstly, (2.50) represents the passenger flow exchange at stops between the GPT and GCOM graphs. The
constraint’s right side is set by means of parameter tpi , whose mathematical expression is as follows:

tpi =


1 if i = p(w)
−gpi
gp

if i ̸= p(w), i ∈ Dp

0 if i /∈ Dp

(2.57)

where parameter Dp stands for the set of demand OD-pairs which originate from p, whereas gp and gp,i,
respectively, are related to the demands of all OD-pairs with origin in p and the demand of OD-pair (p, i).
Secondly, (2.51)-(2.55) perform the passenger flow balance at stops. Constraint (2.51) balances the in-
vehicle passenger flow coming in the station by means of stop extension node i ∈ N s,l+

TP (l), whereas (2.52)
balances the in-vehicle passenger flow going out of the station by means of stop extension node i ∈ N s,l−

TP (l).
As we don’t know in advance whether or not the stop will carry out service to passengers, we introduce the
function Ψp,l

ij , whose mathematical form is as follows:

Ψp,l
ij =

{
ṽp,lij if l ∈ LN

0 if l ∈ LE
(2.58)

Constraints (2.54)-(2.55) enable the proper type of balance by means of the binary variable ỹli, which
represents the role of the stop. In that manner, if the stop carries out service (ỹli = 1), passenger flows will
exchange (all ṽp,lrs = 0, (r, s) ∈ ANx (i)). In contrast, if the stops work as a passing point (ỹli = 0), no
passenger flows will exchange (vp,lrs = 0, ∀(r, s) ∈ ANxya(i)). For further details see Figure 2.3. Constraint
(2.53) represents the balance continuity between those already allocated stops which do not perform any
service. Finally, (2.56) establishes the maximum passenger flow traveling through an in-vehicle link, which
is obtained from the directed and not extended link (i, j) ∈ ATP with the help of the mapping function
v(i, j). That maximum is reached when it equals the so-called line link capacity (q · f̃ lij), defined as the
vehicle’s capacity q times the link line frequency f̃ lij .
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2.3.6 Improving the problem’s performance

In this section, we present some changes we have made to the model in order to speed-up its performance,
especially when applying a Branch and Bound scheme (B&B). It includes changing the definition of some
decision variables as well as the inclusion of new constraints. In the following, we are going to explain each
of them in separate subsections according to their original idea.

2.3.6.1 Breaking symmetries

When applying a Branch and Bound scheme (B&B) such as the one used by the CPLEX solver, the integral-
ity of some discrete variables is relaxed at each node of the B&B tree; whereas others are fixed to an integer
value. This process does not detect symmetries, i.e., combinations of decisional variables that lead to the
same optimal solution. Thus, it entails exploring many combinations which do not improve the optimality
gap but increase the computational time. In this model, the process can be sped up by adding the following
set of constraints:

cl ≤ cl−1, ∀l ∈ LN\{1} (2.59)

which give an enumeration of the lines, such that line 1 must have a line cycle, c1, less than or equal to the
cycle of line 2, c2, and so on. The line cycle expression cl is given by (2.49).

2.3.6.2 Relaxing the integrality of some variables

By studying in more detail the mathematical structure of the model constraints, we have found that the
integrality of some discrete variables can be either directly relaxed or relaxed with some extra constraints.
For instance, the binary variables xij and yi can be stated as continuous in the [0, 1] interval if we add the
following constraints:

yi ≤
∑
l∈LN

ỹli, ∀i ∈ NN
TP (2.60)

xij ≤
∑
l∈LN

xlij , ∀(i, j) ∈ ANTP (2.61)

These additional constraints prevent fractional values from being obtained when the solution is not opti-
mal. In contrast, when we reach optimality, (2.5)-(2.6) suffice to force them to be a 0-1 integer.

Variables yli can be relaxed as well. If we work with the routing model M3, which is characterized by
constraints set (2.27)-(2.29), we do not need to add extra constraints. Observe that all the matrix cells Eci
have 0-1 integer values, the corridor selection variables δlc are binary, and only one of them can be active
per line according to constraint (2.29). Thus, the result of the linear convex transformation (2.28) will be a
0-1 integer as well. In contrast, if we work with routing models M1 or M2, we must include the following
constraints:

xlij ≤ yli, ∀(i, j) ∈ ANTP , l ∈ LN (2.62)

xlij ≤ ylj , ∀(i, j) ∈ ANTP , l ∈ LN (2.63)

which, in collaboration with the node grade constraints (2.8) and (2.9), force the yli variables to be a 0 − 1
integer value even if the solution is feasible non-optimal.
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Finally, we also notice that variables xlij can also be relaxed providing that we work with the routing
model M3. The reasoning is exactly the same as the case with the relaxation of variables yli. In that case, we
refer to the matrix cells Dc

i , which are used to carry out the linear convex transformation (2.27)that results
in 0-1 integer values for variables xlij .

2.3.7 Summary of the model formulation

To sum up, we finally have four groups of discrete variables: bl, ỹli, x
l
ij and xl, if we work with routing mod-

els M1 and M2; or only three groups of discrete variables: bl, ỹli and δlc, if we work with routing model M3.
Additionally, variable ∆b should be discrete as well, although we could relax its integrality, given constraint
(2.33), if we solve the model to optimality.

The RTNPD model with inelastic demand is given by the objective function (2.1) - (2.3) and the
following groups of constraints:

• The infrastructure budgetary constraint (2.4)

• The network design constraints (2.5)-(2.7).

• The routing constraints:

– (2.8)-(2.12) if the routing models M1 is chosen.

– (2.8)-(2.9), (2.19)-(2.22) and (2.24)-(2.26) if the routing model M2 is chosen.

– (2.27)-(2.29) if the routing model M3 is chosen.

• The line frequency setting constraints (2.33)-(2.36) and (2.42)-(2.45).

• The passenger flow balance constraints (2.50)-(2.56).

• The breaking symmetry constraints (2.59).

• The relaxing integrality constraints:

– (2.60)-(2.63) if the routing models M1 or M2 are chosen.

– (2.60)-(2.61) if the routing model M3 is chosen.

2.4 Preliminary Results

In order to show the efficiency of each mathematical programming formulation, i.e., the type of routing
model selected from sections 2.3.3.1 - 2.3.3.3 and applied to the network layout design, two test networks
have been used. The first one is a complete 6-node railway network shown in Figure 8.1, whereas the other
one is a 9-node and 26-link railway network depicted in Figure 8.2. We refer the reader to section 8.1.1 for
further details regarding the input parameters associated with both networks.

The following table 2.1 shows the main results. All mathematical programming formulations have been
coded in AMPL, using CPLEX v.12.4.0 solver. The tests have been carried out on a working station R5500
with processor Intel(R) Xeon(R) CPU E5645 2.40 GHz and 48 Gbytes of RAM.

In the table, the column Network denotes the test network used. The label N1 refers to the 6-node
network, whereas the label N2 is related to the 9-node network. Column Exp. stands for the experiment
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Network Exp. |L| R.M. |Λ| F.Obj F. Users TCPU NSEC

M1 - 1 0
1 2 M2 - 184034 183225 2 -

M3 1967 5 -
M1 - 42 0

N1 2 3 M2 - 157036 155962 48 -
M3 1967 82 -
M1 - 1586 0

3 4 M2 - 147612 146471 2543 -
M3 1967 4392 -
M1 - 8 3

1 2 M2 - 782332 781481 3 -
M3 295 5 -
M1 - 7386 19

N2 2 3 M2 - 758634 757608 1125 -
M3 295 42 -
M1 - > 86400 ≥ 11

3 4 M2 - 742175 741038 5001 -
M3 295 1963 -

Table 2.1: General results for the experiments performed in the test networks.

identifier. The next column, |L|, is the maximum number of lines to be constructed, whereas column, R.M.
shows which routing model has been used by denoting one of the following tags: M1,M2 andM3. TheM1
and M2 tags stand for the models with non-fixed corridors. The difference lies in the way they treat the sub-
lines. The former does not include them in the formulation from the very beginning. Instead, they are added
dynamically as needed, whereas the latter treat them in a static fashion. For details of their formulations, see
sections 2.3.3.1 and 2.3.3.2, respectively. The M3 tag refers to the model with fixed corridors (see section
2.3.3.3 for further details). The next column |Λ| reports the number of corridors fixed in the routing model
M3. Columns F.Obj and F.Users show the total objective function (2.1) and the user costs (2.2) weighted
by β, respectively. Column T.CPU reports the total number of elapsed seconds for the method used in the
experiment. Finally, column N.SECs shows the number of subline elimination constraints (2.13) added to
the model M1 in order to obtain a valid line trace.

To compute the number of fixed corridors in set Λ, we used the Corridor Generation Algorithm (CGA).
We adapted Yen’s k-shortest path algorithm [189] for the possible line topologies and added some constraint
satisfaction (see chapter 4 for further information). The inputs are set according to the values shown in row
three of Table 4.8 in section 4.2. The number of computed corridors allows us to obtain optimal line routing
configurations that are the same as those obtained by M1 and M2 models, so that we could correctly com-
pare the performance of model M3 with models M1 and M2.

Results show that as the number of lines increases, the computational times have an exponential growth.
Observe that each increase of one line under construction entails consuming one extra order of magnitude in
CPU time. Regarding model comparison, Model M1 outperforms models M2 and M3 when sublines do
not appear (see the first 9 rows of columns T.CPU and N.SECs in Table 2.1). However, when sublines
emerge, models M2 and M3 have lower computational times (see the following 9 rows of columns T.CPU
and N.SECs in Table 2.1). Moreover, model M3 clearly outperforms model M2 for the instances where
|LN | > 2. It then seems more suitable to use this model rather than models M1 and M2 to cope with bigger
networks.
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Now, let’s move on to the analysis of the solution. Figures 2.5 and 2.6 show the network layout for the 6-
and 9-node networks, respectively. Notice that we have used different colors to identify each link and node
belonging to the same line. Furthermore, when links and nodes are used by more than one line, different
non-overlapping traces with the same width are drawn.

Let us begin by explaining the layout solution of the 6-node network (shown in Figure 2.5). In that pic-
ture, we can see that circular lines L1 and L2 coincide in experiments 1 and 2 (i.e., L1: 2− 3− 6− 4− 5− 2
and L2: 1 − 3 − 5 − 2 − 6 − 4 − 1); whereas in experiment 3, all lines are different (i.e., three rectilinear
lines, L1: 1− 2− 5− 6− 3, L2: 1− 3− 2− 5− 4− 6, L3: 1− 4− 6− 2− 3− 5 and one circular line,
L4: 1 − 5 − 2 − 4 − 3 − 6 − 1). Moreover, whatever the experiment and topology of the line is, all nodes
perform services (i.e., their corresponding ỹli = 1).

Regarding the 9-node network layout solution (shown in Figure 2.6), we observe that rectilinear line
L1 coincides in all experiments (i.e., L1: 4 − 6 − 9). Furthermore, rectilinear line L2 is also identical in
experiments 1 and 2 (i.e., L2: 1− 2− 3− 5− 4− 7− 6− 8). The remaining lines are different: rectilinear
line L3 in experiment 2 is made up of 6 − 5 − 3 − 2 − 4 − 7; whereas rectilinear lines L2, L3 and L4 in
experiment 4 consist of 2− 3− 5− 4, 1− 3− 2− 4− 7 and 2− 1− 3− 4− 7− 6− 8, respectively. Like
in the 6-node network, all nodes carry out service no matter the experiment and the topology of the line is.

Finally, Table 2.2 includes some details of the experiments regarding the behavioral aspects of the model.
In the table, columns NL and NLC report the number of built lines and the ones that have a circular topol-
ogy. The next two columns, NV andNZ, stand for the number of assigned vehicles and their corresponding
services per horizon time carried out. The following four columns report some measures regarding the level
of line utilization. The first two columns (Ua and Ûa) show the average and maximum used capacity of the
links. This capacity corresponds to input parameter qij , which stands for the maximum number of vehicles
per time unit allowed through the link (i, j). The other two columns (U l and Ûl) refer to the average and
maximum capacity used on the line, computed as the total number of vehicles per time unit carrying out f l

times the maximum vehicle capacity, ql. The two final columns (T.TP and T.COM ) report the time spent
by passengers that travel through the public transportation network and its complementary, respectively.

Network Exp. NL NLC NV NZ U ij Ûij U l Ûl TTP TCOM

1 2 2 5 36 77 % 100 % 100 % 100 % 5025 198558
N1 2 3 2 6 45 81 % 100 % 100 % 100 % 6096 167195

3 4 1 6 54 70 % 100 % 100 % 100 % 6459 156287
1 2 0 4 45 69 % 100 % 100 % 100 % 3232 865080

N2 2 3 0 5 54 66 % 100 % 100 % 100 % 4150 837637
3 4 0 6 72 75 % 100 % 100 % 100 % 4956 818419

Table 2.2: Detailed results for the experiments performed in the test networks.

Results show that the model tends to reach maximum vehicle capacity since the objective function (2.1)
does not take into account any term related to passenger comfort. Regarding the link capacity utilization, its
level of congestion is very high because of the demand intensity (corresponding to the peak hour period),
but it goes down as long as the number of constructed lines grows. On the other hand, the number of
used vehicles and cycles carried out increases, while the whole time spent in the complementary network
decreases (since the objective function weight α is set to 0.9, and thus much more importance is attached
to passenger cost than operator costs). As a consequence, users are encouraged more and more to use the
public transportation network. Observe also that T.TP is always much less than T.COM because the
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average vehicle speed is 80 km/h, whereas the average walking passenger speed is 4.5 km/h. Thus, the
complementary traveling times are 20 times greater than the public transportation times.

1 6

2 4

53

L1

L2

1 6

2 4

53

L1

L2

L3

1 6

2 4

53

L1

L2

L3

L4

Figure 2.5: Layout configuration for the 6-node network. At the top, the layout for the experiment with two
lines under construction. In the middle, the layout for the experiment with three lines under construction. At
the bottom, the layout for the experiment with four lines under construction.
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Figure 2.6: Layout configuration for the 9-node network. At the top, the layout for the experiment with two
lines under construction. In the middle, the layout for the experiment with three lines under construction. At
the bottom, the layout for the experiment with four lines under construction.



Chapter 3

Solution methodology

This chapter is devoted to providing an overview of the main solving blocks applied to the inelastic and
elastic demand versions of the rapid transit network design and planning model (RTNPD), which was
introduced in the previous chapter. They are a mixture of exact and heuristic techniques that allow us to
obtain good near optimal solutions when coping with medium- and large-sized networks. The structure of
the chapter is as follows. Firstly, we show the solution framework in which these modules are embedded,
as well as their interconnections. They include the corridor generation algorithm (CGA), the line splitting
algorithm (LSA) and the specialized Benders decomposition (SBD) for the RTNPD model. Secondly, we
lay out the skeleton of each module in the same order as they appear in the following chapters, which go into
greater detail. Finally, we review the state-of-the-art techniques employed in these modules.

3.1 Solution Framework

The solution framework employed in this research is presented in Figure 3.1. It consists of three solving
blocks: the corridor generation algorithm (CGA), the line splitting algorithm (LSA) and the specialized
Benders decomposition (SBD) for the RTNPD model. The LSA and CGA methods are heuristic tech-
niques that allow us to skip the non-polynomial properties, which are hard properties of the mathematical
programming problem. They are related to the number of lines under construction and the number of feasible
corridors (line segments) that can be generated. Regarding the SBD decomposition, it is an exact method
that splits the original mathematical programming problem into a series of resolutions for two mathematical
problems which are easier to solve. Thus, the combination of these three techniques allows us to obtain good
near optimal solutions when coping with medium- and large-sized networks.

The iteration and basic workings of these methods are as follows. TheCGA is used as long as the routing
model M3 is chosen (see section 2.3.3.3 for further details). It then determines the set of candidate corridors
(line segments) from which the SBD will seek the LN corridors that take part in the public transportation
network layout. The SBD can be driven by the LSA, which splits the resolution of the RTNPD model
with or without a predefined set of corridors into a series of small RTNPD models, where only a single
new line can be constructed.

The use of CGA and LSA algorithms are optional and depend on user preferences. However for
medium- and large-sized networks, we have found that obtaining good solutions within a reasonable time is
only possible by using CGA and LSA algorithms (see Chapter 8 for further details). The following sections
present an overview of these solving blocks.

49
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 Corridors Generator Algorithm (CGA)
· generate all candidate corridors by taking into 

  account infrastructure and planning horizon 

  requirements as well as some users rules

 Line Splitting Algorithm (LSA)
· split the RTNPD into series where only 

  one new line is under construction

· update proposing line layout based on 

  EBD results

   

 Enhanced Benders Decompostion (EBD)
 If  line splitting is chosen then

 · Apply the EBS scheme to the single new line 

   under construction instance given by the LSA

 · Send back to the LSA the line layout as well as 

   the provisionary line’s frequency setting

 else

  · Apply the EBS scheme to the whole set of 

    new lines under construction of the RTNPD 

                                    STOP
· Output the (near-)optimal line’s layout, its frequency 

  setting and related performance measures

User Input

RM

Split 

Lines?

M3

M1, M2

Yes

No

Figure 3.1: Framework of the main procedures developed.

3.2 The corridor generation algorithm

Figure 3.2 shows an overview of the CGA algorithm. It computes the number of corridors which can be
assigned to the lines under construction. Thus, the routing part of the model is performed before the math-
ematical programming problem is solved. However, the decision of the node’s role (whether it works as
a service node or just as a passing point), is still computed in the optimization phase. The skeleton of the
algorithm is as follows. It is split into two procedures: the rectilinear corridor generation algorithm (RCGA)
and the circular corridor generation algorithm (CCGA). Both algorithms implement an ad hoc version of
Yen’s k-shortest path algorithm [189], which includes the verification of some requirements. They are also
divided into two groups: the common corridor requirements and the specific corridor requirements. The
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former constrains the corridors to infrastructure budgetary and planning horizon limitations, in a similar way
as stated by equations (2.4) and (2.36); whereas the latter forces the corridors to meet some user behavior
rules which establish lower and upper bounds on the length of the detours held in the k-shortest paths, for
k > 1. These rules are set up by some parameters which depend on the type of corridor.

Rectilinear Corridors Generator Algorithm
· Find at most Kr shortest rectilinear paths for each pair  

   of nodes in        satisfying all the corridors requirements

 Circular Corridors Generator Algorithm 
· Find at most Kc shortest rectilinear paths for each pair  

   of nodes in        satisfying all the corridors requirements

                                    STOP
· Output the set of rectilinear and circular candidate corridors

 Common Requirements
· Infrastructure budget

· Horizon planning 

 Specific Requirements
· Max number of rectilinear 

  paths to seek (Kr)

· Min detour length factor

· Max detour length factor

 Specific Requirements
· Max number of circular 

  paths to seek (Kc)

· Min detour length factor

· Max detour length factor

TP
N

N TP
N

N

Figure 3.2: Overview of the Corridor Generation Algorithm.

In the state of the art, there are many authors that use constraint satisfaction when computing k-shortest
paths. To cite just a few of them, Androutsopoulos & Zografos [4] and the references herein limit the time
length of each path according to a given time window. Jim et al [99] do not allow building paths whose node
departure times are not within a predefined list of times. More recently, and in the context of Public Trans-
portation systems, Van der Zijpp & Catalano [174] and their earlier works referenced herein apply some user
behavior rules to eliminate unwanted corridors.

The difference between the RCGA and CCGA algorithms lies in the way they find the shortest path
for a given pair of nodes in each subphase. The RCGA uses the Floyd & Warshall algorithm [75] in the
first subphase and the Dijkstra algorithm [58] in the second subphase. The CGCA, however, employs a
specialized algorithm which drives the Dijkstra algorithm [58] in the first subphase. It is also used in the
second subphase in some cases. In other cases, the Dijkstra algorithm is directly employed.

The reader is referred to Chapter 4 to see the details of these algorithms and to subsections 3.5.1, 3.5.2
3.5.3 for a brief introduction of the solving techniques applied.

3.3 The line splitting algorithm

Figure 3.3 shows an overview of the LSA algorithm. It consists of the resolution of a series of small mathe-
matical programming problems with the same mathematical structure as the original mathematical program-
ming problem presented in Chapter 2, but with only one line under construction. Moreover, it includes two
variants called incremental and non-incremental modes, which differ in the way they update the OD-pair
demand data and the stopping criterion. The incremental mode assigns a portion of the OD-demand to each
OD-pair each time a new line is added to the set of new lines, whereas the non-incremental mode assigns
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the whole OD-demand to each OD-pair. If we use the non-incremental variant, the algorithm can be stopped
early provided that the current solution of the reduced model does not build a new line and that we are not
in the last iteration. To see this, let us consider that we are in a given iteration k < |LN | where we assigned
the whole demand to n working lines (some of them are fictitious since the come from previous constructed
lines) plus one extra possible line under construction. If the optimal solution indicates that all n working
lines can satisfy the demand without constructing the new line, it then makes no sense to continue the LSA
algorithm in the following iterations with the same demand level. Thus, the mathematical programming
problem will give the same solution.

Data Storage
· Save the layout of the built line

· Delete the layouts of previous 

   built lines which carry out no

   service  

Solution Construction
· Pick up all the layouts of the built lines

· Compute their infrastructure costs

· Add to them the frequency and pax. 

  flow assignment of the last RTNPD

              STOP
· Output the built solution

Solve RTNPD
with |L  | = 1

Layout Data Transformation
· Turn the built line into a working one

· Reduce infrastructure budget

· Eliminate cost associated with the 

   used infrastructure resources and add 

   the ones related to the deleted lines 

1

N

Solve RTNPD
with |L  | = 1

2

N

Solve RTNPD
with |L  | = 1

N

NNetwork data

Working mode

Demand Setup
· Update the OD-Demand 

   according to working mode 

   and RTNPD resolutions number 

Figure 3.3: Overview of the line splitting algorithm.

The resolution of each reduced mathematical programming problem takes into account the working lines
as well as the infrastructure and planning resources, which are updated according to the solution found in
the last resolution. The main operations carried out in this updated are the transformation of the currently
built line into a fictitious working line, the reduction of the infrastructure budget according to the new infras-
tructure resources used in this new line, and the elimination of the costs associated with these infrastructure
resources.

The reader is refer to Chapter 5 to see the details of the algorithm and its variants. It also includes an
illustrative example to understand the working of the algorithm.

3.4 The specialized Benders decomposition

The resolution of the RTNPD model with a single line under construction has been done by means of
a specialized version of the Benders decomposition. It includes the seminar work of J. Benders [14], the
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enhancements of Wong & Magnanti [125], Papadakos N. [147], and McDaniel & Devine [136], as well as
some ad hoc techniques. Figure 3.4 shows the big picture of the outer Benders scheme (OBS), whereas
picture 3.5 presents the inner Benders scheme (IBS), which is embedded into the former.

Relax Integrality

on discrete variables

Apply Papadakos

Benders scheme

Phase
Impose Integrality

on discrete variables

END

Integrality

Relaxation

Figure 3.4: Overview of the final version of the Benders Decomposition used.

The OBS implements the McDaniel & Devine [136] scheme, which consists of two phases. They differ
from the way they solve the master problem (MP ). In the first phase, the integrality of the discrete variables
of the MP are relaxed, whereas in the second phase, the integrality of these variables are imposed.

Regarding the IBS, it is an adaptation of the Papadakos N. [147] scheme, which enhances the Benders
convergence when the subproblem is degenerated. At each iteration, three problems called the Independent
Magnanti & Wong problem (IMWP ), the master problem (MP ), and the subproblem (SP ) are solved.
The MP is related to the network design and the line frequency setting, whereas the SP corresponds to
the passenger flow assignment. The SP assumes that the multicommodity network topology and the line
frequencies are known. Both are found by previously solving the MP . The IMWP is quite similar to the
SP except for the fact that the configuration of the network topology and the line frequencies come from
computing a core point instead of the current MP solution. The notion of core point was first introduced by
Wong & Magnanti [125], and it allows stronger or tighter Benders cuts to be obtained.

During the initialization phase of the IBS, some steps are different. If the relaxation phase is working
(the one where the discrete variables are relaxed), the optimality Benders cut (OBC) is set to NULL and an
initial core point must be computed. In contrast, if the integrality phase is active (the one where the integral-
ity of the discrete variables is imposed), the OBCs coming from the relaxation phase are kept and the core
point is updated according to the last one obtained from the relaxation phase.

There is one additional step in the relaxation phase. Having solved the relaxed MP , its solution is
rounded off in order to obtain a feasible multicommodity network topology and line frequency setting. This
operation is straightforward as long as we apply routing model 3 (see section 2.3.3.3 for further details). It
suffices to determine which corridor is best suited for the set of corridors assigned to each line. As a first
attempt, we directly solve a subversion of the integral MP with a subset of Λ, keeping only the corridors
assigned to some lines.
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Phase

Phase

GAP >

Generate an initial 

Core Point

Solve the Independent 

Magnati & Wong Problem

Generate a new

Optimality Benders Cut

Update the Core Point

Solve the Master problem

Round off 

the Master problem solution

Initialize to NULL

the Optimality Benders Cut set

Keep the Optimality Benders Cuts

obtained from the relaxation phase

Update the last Core Point 

obtained from the relaxation phase

Solve the Subproblem

END

Yes

No

Integrality

Integrality

Relaxation

Relaxation

>

Figure 3.5: Overview of the adaptation of Papadakos Scheme used.
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The reader is referred to Chapter 6 for the details of the algorithm, and to subsections 3.5.4 and 3.5.5 for
a brief introduction to the solving techniques applied.

3.5 Solving techniques

This section holds all the state-of-the-art algorithms that have been used to develop the aforementioned build-
ing blocks, which conform to the framework in which the RTNPD model is solved. They basically include
three types of shortest path algorithms: the Floyd & Warshall all shortest path algorithm, the Dijkstra shortest
path algorithm and Yen’s k-shortest paths algorithm, all of which take part in the CGA algorithm. Three
types of techniques are also included: the classical Benders decomposition, an enhanced Magnanti & Wong
acceleration technique, and a type of bilevel programming, all of which are integrated into a specialized
Benders decomposition. The latter is only used to solve the RTNPD model under elastic demand.

3.5.1 Floyd & Warshall all shortest paths algorithm

The Floyd & Warshall algorithm (FWA) [75], [181] is a very efficient, simple program, and it is widely
used method for finding the shortest paths between all pair of nodes in a directed graph, all at the same time.
Furthermore, it has an important advantage over Dijkstra’s algorithm (see section 3.5.2), in that it works
when the arc weights are allowed to be negative, which means it will in fact allow us to detect negative-cost
cycles.

The FWA is written down in pseudo-code in table 3.1. It basically works with an NxN matrix repre-
senting a directed graph G = (N,A), where each cell element holds the shortest cost between its related
pair of nodes, except for the diagonal elements, which are set to infinity to denote no connection (observe
that the corresponding row-column identifiers represent the same nodes). To obtain the shortest paths in each
cell, each triad of nodes (k, i, j) ∈ N is verified whether cij > cik + ckj . If so, the temporary cost of the
shortest path from i to j is replaced with the sum of the costs of the two interconnected links. Otherwise it
remains unchanged. Initially, the values of each cellCT (i, j) are set to the cost of its corresponding edge ci,j .

procedure FloydWarshall-AllSP (in C out CT )

CT (i, j)← C(i, j) ∀(i, j) ∈ A, CT (i, j)←∞ ∀(i, j) ̸∈ A

for each k, i, j ∈ [1..|N |] such that i ̸= j, k ̸= i, k ̸= j do

c
′
ij ← CT (i, k) + CT (k, j)

if c′ij < CT (i, j) then

CT (i, j)← c
′
ij

end if

end for

return CT

end FloydWarshall-AllSP

Table 3.1: Pseudo-code of the Floyd & Warshall all shortest paths algorithm.

This is the general working of the algorithm. However, some modifications and/or additions are needed
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for detecting negative cycles, for coping with some satisfaction path constraints, or for recovering the path
itinerary. The former is not needed in our research since we work with time networks, whereas the two latter
are implemented in the modified Floyd & Warshall algorithm, which is written down in table 4.2. So, for the
sake of simplification, we do not give here further details.

3.5.2 Dijkstra’s shortest path algorithm

According to the literature on network flow, the algorithmic approaches for solving the shortest path prob-
lem can be classified into two groups: label setting and label correcting. Both are iterative and both employ
the labeling method in computing one-to-all (all-to-all) shortest paths. However, they differ in the way they
update the estimate (i.e., the upper bound) of the shortest path associated with each node, in the step to
step, and in how they converge to the optimal shortest path. In label setting algorithms, one label will be
designated as permanent (optimal) at each iteration. However, in label-correcting algorithms, all labels will
be considered as temporary until they all become permanent in the final step. Moreover, they require that the
costs associated with the links be positive. According to Ahuja, Magnanti and Orlin [3], the label-correcting
algorithms are more efficient than label setting algorithms. Also, since transport networks do not contain
negative cycles, this group of shortest path algorithms has been chosen.

The most basic label-setting algorithm is Dijkstra’s algorithm, which finds the shortest path from a given
source node s to all other nodes in a directed network G = (N,A) with non-negative arc costs. Dijkstra’s
algorithm creates labels associated with nodes representing the cost from the source node to each particular
node. Within G, there exist two kinds of labels: temporary and permanent. Temporary labels are given
to nodes that have not been reached. Their values can vary. The main idea of Dijkstra’s algorithm is to
change the temporary labels into permanent ones as the shortest path tree adds them to the model. A node’s
permanent label denotes identifies its nearest neighborhood node. Thus, for any given node, there must be a
permanent label or a temporary label, but not both at the same time.

For a mathematical description of the algorithm, some notations are introduced. For node i, let Ai
represent the arc adjacency list of node i. Let N denote the set containing all the nodes with permanent
labels and N̄ be the set containing all the nodes with temporary labels. As shown in table 3.2, every node
initially has a temporary label and the cost from the source node s to all other nodes are initialized to∞. At
each step, the algorithm chooses the node i ∈ N̄ with the least temporary label cost and makes it permanent.
Then, it records its predecessor index and updates the temporary values of all nodes j ∈ Ai. This process
is repeated until all nodes become permanent. Finally it outputs the list Pred, which holds the node labels
starting at the destination node d and ending at the source node s.

3.5.3 Yen’s k-shortest paths algorithm

The first step in analyzing a transport problem such as the RTNPD is the explicit enumeration of the paths
to be considered. In realistically sized networks the number of paths that can be constructed is virtually
infinite. We will therefore define the path enumeration problem as a problem of generating a path-set of
manageable size that contains the most relevant paths for a specific transport problem.

Different approaches for dealing with the path enumeration problem are known. Assuming that the issue
of path relevance can be expressed by a number of constraints that refer to, for example, path overlap or
path detour, the path enumeration problem can be objectively and efficiently solved by finding the K-shortest
paths that satisfy these types of constraints.

Existing K-shortest path algorithms may be subdivided into algorithms that allow paths to have repeated
links (cycles) (see Hoffman and Pavley [92], Bellman and Kalaba [13], Shier [162], [163], Eppstein [65],
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procedure Dijkstra-SP (in C, s, out Pred)

P ← ∅, P̄ ← N

ds ← 0, di ←∞ ∀i ∈ N\s

pred(s)← 0, pred(i)← −1 ∀i ∈ N\s

while |P | < N do

Select i ∈ P̄ such that di = min
{
dj | ∀j ∈ P̄

}
P ← P ∪ i, P̄ ← P̄ − i

for each (i, j) ∈ Ai do

if dj > di + C(i, j) then

dj ← di + C(i, j), pred(j)← i

end if

end for

end while

return Pred

end Dijkstra-SP

Table 3.2: Pseudo-code of the Dijsktra’s shortest path algorithm.

[66]) and algorithms that only consider acyclic paths (see Yen [189], Lawler [113], Katoh et al [101], Had-
jiconstantinou and Christofides [88]). The last two algorithms require the network to be undirected.

In the context of transport applications, cyclic paths are not of interest. Moreover, in our research the
routing graph is undirected; thus the algorithm of Hadjiconstantinou and Christofides [88] (which is an en-
hancement of Katoh et al [101]) seems to be the most appropriate. However, the algorithm of Yen [189] has
been chosen both because it is simple to implement and because it solves the network in a reasonable time.

Yen’s k-shortest path algorithm is given by routine Yen-KSP, shown in table 4.3. To adapt this algorithm
for our proposes, we have changed the original mathematical notation as follows. The link costs are denoted
by means of matrix T ; the computed feasible paths are stored in list B; and the subset of computed feasible
paths not yet assigned to any k-shortest path (Pk) are saved in Q ⊂ B.

The algorithm begins by initializing list B to the first shortest path for the given pair (i, j) ∈ N (P 1)
and list Q to null. Then, the iterative part of the algorithm starts. Every k-iteration seeks all the existing new
paths, such that they contain a common subpath (P k−1

1−i ) coming from the k − 1 shortest path P k−1, which
starts at the source node P k−1

1 and ends at an intermediate node P k−1
i . However, they differ from a detour

subpath which starts at P k−1
i and ends at the terminal node P k−1

t .

To compute these new subpaths, the method works with a copy of the link cost matrix (T
′
). This copy

may be modified according to the position of the intermediate node P k−1
i (under process) in the path P k−1

and the links held in the common subpath P k−1
1−i . This modification is carried out as follows. It eliminates all

the links adjacent to P k−1
i , which are contained in the paths j of B and whose initial subpath from its first
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procedure Yen-KSP (in K, T, P 1, out P 1−K)

Q← ∅, B ← P 1

for each k ∈ [2...K] do

for each i ∈ [1...|P k−1| − 1] do

T
′ ← T

for each j ∈ [1...|B|] such that |Bj | ≥ |P k−1
1−i | and Bj

1−i = P k−1
1−i do

T
′
(P k−1

i , Bj
i+1)←∞

end for

S ← Shortest rectilinear path from P k−1
i to P k−1

t by calling DSP(T
′
, P k−1

i , P k−1
t , S)

if S ̸= ∅ then

R← P k−1
1−(i−1) ∪ S, Q← Q ∪ {R}, B ← B ∪ {R}

end if

end for

P k ← Select R with minimum t(R) from Q, Q← Q− {R}

end for

return P 1−K

end Yen-KSP

Table 3.3: Pseudo-code of Yen’s k-shortest path algorithm.

node B1
j to the intermediate node Bi

j overlaps with the initial subpath of path k− 1 from its first node P k−1
1

to the intermediate P k−1
i . This elimination is carried out virtually by setting to infinity the costs associated

with the links, so it prevents them from being selected.

Having updated the matrix T
′

properly, it computes the shortest path from P k−1
i to P k−1

t by using a
shortest path algorithm. Dijkstra’s algorithm [58] is usually chosen, as it gives the lowest worst case time
scenario. We do not provide here the description of the Dijkstra algorithm since section 3.5.2 is devoted to
explaining it in detail. If Dijkstra’s algorithm gives a new subpath (S) by linking the intermediate node P k−1

i

to the final node P k−1
t , it is appended to the initial subpath P k−1

1−(i−1).

To complete the kth-iteration, it chooses from the list of candidate paths Q the one with the shortest cost
and sets it to the k-shortest feasible rectilinear path. Additionally, it deletes this chosen path from Q. The
process is repeated at most K−1 times, providing that the list Q is not empty when it tries to set a k-shortest
path with k < K. If so, Yen’s algorithm finishes earlier.

3.5.4 Benders Decomposition

Benders decomposition [14] is an algorithm for mixed integer linear programming that has been applied
successfully to a variety of applications. To cite just a few of them, Florian et al [74] have used the algorithm
to schedule the movement of railway engines; Richardson [155] has applied the algorithm to airline routing;
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and Geoffrion & Graves [84] have had great success in applying the algorithm to the design of industrial
distribution systems. More recently, Cordeau et al [44] have employed the algorithm to simultaneously as-
sign locomotives and cars in the context of passenger transportation. These contributions demonstrate the
potential for using Benders decomposition to solve specially structured mixed integer programs.

A mixed integer linear programming problem can be stated as follows:

z = min
x,y

ctx+ dty (3.1)

s.t.

x ∈ X
Ax+By ≥ h
y ≥ 0

where x ∈ ℜn and y ∈ ℜr+ are decision variables of the problem, and supra-indexes n and r correspond
to the dimension of their sets. The x variables are mainly discrete variables, although a subset of them can
be continuous. In contrast, the set y must hold only continuous non-negative variables. The x variables are
called the complicating or binding variables because fixing them to a specific value makes it much easier to
solve the rest of the optimization problem.

J.F. Benders devised a clever approach for exploiting this type of structure. Firstly, he defined the fol-
lowing ordinary linear problem:

α(x) = min
y

dty (3.2)

s.t.

By ≥ h−Ax
y ≥ 0

where the variable set x is fixed. Then, he proposed an algorithm for finding the optimal variable vectors
x, y by employing a cutting-plane approach for building up proper representations of the extremal value of
(3.2) as a function of the parameterized vector x and the set of values of x, for which (3.2) is feasible.

Linear Programming duality theory was employed to derive the natural families of cuts that characterize
these representations, which were called Benders cuts due to the author’s surname, and the dual of program
(3.2) was used to generate them. Then, the optimal x variable vector was sought in the y-projection space
instead of the x-y space by solving a series in the following reduced version of problem (3.1):

z̃ = min
x,ω

ctx+ ω (3.3)

s.t.

x ∈ X (3.4)

ω ≥ (h−Ax)t π̂j , ∀π̂j ∈ P (3.5)

(h−Ax)t−→π j ≤ 0, ∀−→π j ∈ Q (3.6)

where π̂j and −→π j stand for the extreme points and extreme directions, respectively, of the dual of (3.2) and
are held in its respective sets P and Q. Problem (3.2) is characterized as follows:
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α(x) = max
π

(h−Ax)t π (3.7)

s.t.

Btπ = d

π ≥ 0

Benders cuts are classified into two groups: the Benders optimality cuts (3.5) and the Benders feasibility
cuts (3.6). The former is employed when, for a given parametrization of x, there exists at least one optimal
solution to (3.7); whereas the latter is applied when (3.7) is unbounded for a given parameterization of x. In
the latter case, to obtain the dual variables one can use the Theorem 2.6.6 of Bazaraa et al [11]. In our case,
feasibility Benders cuts do not arise since whatever the parametrization of x is, the program (3.7) always
renders a feasible solution.

Problems (3.3) and (3.7) are called the master problem (MP ) and subproblem (SP ), respectively. As
shown in table 3.4, they are iteratively solved in that order until the following criterion is met:

GAP =
UBk − LBk

LBk
≤ ϵ (3.8)

where UBk and LBk stand for the upper and lower bounds of the Benders algorithm at the current k-
iteration. Their values are computed by means of the following expressions:

UBk = min{UBk−1, ctx∗,k + α(x∗,k)} (3.9)

LBk = z̃(x∗,k, ω∗,k) (3.10)

Equation (3.10) implies that, at each iteration, the solution of the MP gives a lower bound; whereas
equation (3.9) states that the upper bound is computed as the minimum between the upper bound of the next
to last iteration and the current optimal value of the independent objective term of the MP (ctx∗,k), with the
addition of the optimal value of the SP ’s objective function (α(x∗,k)).

1. Set P ← Q← ∅, iteration k ← 0 and allowable error ϵ

2. Solve the MP k.

3. Solve the dual of SP k with xk.

4. if dual of SP k is unbounded then Q← Q ∪ {−→π k} and go to Step 7, otherwise continue.

5. if GAP < ϵ then STOP, otherwise continue.

6. P ← P ∪ {π̂k}.

7. k ← k + 1 and go to Step 2.

Table 3.4: Pseudo-code of Benders’ Scheme.

3.5.5 Magnanti & Wong’s acceleration technique and enhancements

The Magnanti & Wong acceleration technique [125] is used when applying a Benders decomposition [14] for
a special type of mixed integer linear programming problem, where the resulting subproblem is degenerated.
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This means that the dual of problem (3.2) has alternative optima and that the resulting Benders cuts may be
weak, in the sense that they do not constrain the master problem (MP ) as much as they can. Consequently,
the number of Benders iterations increases dramatically and it becomes possible to obtain the (near-)optimal
solution to problem (3.1). This difficulty arises in network optimization applications such us shortest route
and transshipment problems.

Magnanti & Wong devise a clever idea for selecting good cuts from (3.7) based on pareto-optimality.
They invented a new Benders scheme in which the optimality Benders cuts are obtained from the resolution
of an extra problem, called the Magnanti & Wong problem (MWP ), which is parameterized by the MP
variable vector x, a core point, and the optimal objective function value of the SP .

Before going into the details, let’s formalize some definitions. Let’s say that the cut (3.11) dominates
or is stronger than the cut (3.12) if (3.13) is met for all x ∈ X and with a strict inequality for at least one
point x′ ∈ X . The set X is made up of points satisfying the MP constraints (3.4). Then, a cut is called
pareto-optimal if no cut dominates it.

ω ≥ (h−Ax)t π̂1 (3.11)

ω ≥ (h−Ax)t π̂2 (3.12)

(h−Ax)t π̂1 ≥ (h−Ax)t π̂2 (3.13)

To generate a pareto-optimal cut, we need to find a core point. It is a point x0 ∈ ri(Xc), where ri(Xc)
stands for the relative interior of the convex hull set of X . Then, a core point can be formally expressed as
follows:

x0 =
∑
j∈1..s

λj · xj ,
∑
j∈1..s

λj = 1, 1 > λj ≥ 0 (3.14)

where x1, x2, ..., xs ∈ X . Observe that it is a convex combination of non-negative weights whose values
are strictly less than 1, such that it ensures that the point x0 is strictly in the interior of X . The finding of a
core point is not trivial, so ad hoc procedures must be developed.

The core point is then used in collaboration with theMP variables and the optimal SP objective function
value to solve the MWP , which generates the pareto-optimal cuts. Its dual form is as follows:

α(x, x0, α(x
∗)) = max

π
(h−Ax0)t π (3.15)

s.t.

(h−Ax)t π = α(x∗) (3.16)

Btπ = d

π ≥ 0

where the linking constraint (3.16) ensures that an extreme point from (3.7) will be chosen. Moreover, the
objective function (3.15) compares all possible cuts at a point x0 ∈ X .

The Magnanti & Wong scheme shown in table 3.5 is then applied as follows. At every k-iteration, first
the MP k and SP k problems are solved and then SP k unboundedness is checked. If these parameters are
fulfilled, a feasible Benders cut is generated and the MP k+1 is solved. This process is repeated as long as
the SP k+1 does not give a feasible solution. In contrast, a valid core point is determined and convergence
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is checked by means of equation (3.8). If the criterion is met, the algorithm stops. Otherwise, the core point
as well as the MP k solution xk and SP k optimal objective function are applied to the resolution of the
MWP k. Finally, the Benders optimality cut is generated and the algorithm loops to the next iteration.

1. Set P ← Q← ∅, iteration k ← 0 and allowable error ϵ

2. Solve the MP k.

3. Solve the dual of SP k with xk.

4. if dual of SP k is unbounded then Q← Q ∪ {−→π k} and go to Step 9, otherwise continue.

5. if GAP < ϵ then STOP, otherwise continue.

6. Find a core point x0.

7. Solve the dual of MWP k with xk, xk0, α(x
∗,k).

8. P ← P ∪ {π̂k}.

9. k ← k + 1 and go to Step 2.

Table 3.5: Pseudo-code of Magnanti & Wong Scheme.

This scheme allows decreasing dramatically the number of Benders iterations. However, N. Papadakos
[147] demonstrated that the primal form of (3.15) is numerically unbounded when it is provided with a
suboptimal subproblem solution. The primal form of (3.15) is as follows:

β(x, x0, α(x
∗)) = min

y,ξ
dty + α(x∗)ξ (3.17)

s.t.

By + (h−Ax) ξ ≥ h−Ax0
ξ free

where ξ is the dual variable associated with linking constraint (3.16). This variable takes a large negative
value when the optimal SP objective function α(x∗) is replaced with a suboptimal one. To see the complete
proof, the reader is referred to section 2 - Limitations of the Magnanti & Wong’s method of Papadakos’ work
[147]. To overcome that limitation, the author proposed the following alternative problem to (3.15):

α(x0) = max
π

(h−Ax0)t π (3.18)

s.t.

Btπ ≤ d
π ≥ 0

This problem was called the independent Magnanti & Wong problem (IMWP ), since it is not depen-
dent on the subproblem. The reader is referred to theorem 6 of [147] to see the proof that this problem also
gives a valid pareto-optimal cut. N. Papadakos also devised a new Benders scheme which outperforms the
Magnanti & Wong scheme and works as follows. As shown in table 3.6, at every k-iteration, a valid core
point is first determined and then the IMWP k problem is solved. Thirdly, an optimality Benders cut is
generated from this resolution and applied to the MP k. The next step is the SP k resolution. If its solution
is unfeasible, a feasible Benders cut is generated and the algorithm loops to the next iteration. Otherwise,
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convergence is checked by means of equation (3.8). If the criterion is met, the algorithm stops. Otherwise, it
jumps to the next iteration.

This scheme has two advantages compared with Magnanti & Wong’s scheme. It allows a feasible solution
to be obtained with only one iteration, and the resolution of IMWP is much easier than the resolution of
MWP , because of linking constraint (3.16). Moreover, the core point can be updated at every k-iteration
with k > 1 by applying the following equation:

xk0 = xk−1
0 · λ+ xk−1 · (1− λ), 1 > λ > 0 (3.19)

which is a convex linear combination of the last core point found and MP k−1 variable values. The weight
λ must be strictly positive, otherwise the operation will give the same core point. Additionally, λ must be
strictly less than 1, otherwise we obtain the MP k−1 solution as a new core point, which is not a valid core
point since it is not in the interior region of X . As stated by the author, a good choice is to set λ = 0.5.

1. Set P ← Q← ∅, iteration k ← 0 and allowable error ϵ

2. Find a core point xk0 .

3. Solve the dual of MWP k with xk0 .

4. P ← P ∪ {π̂k}.

5. Solve the MP k.

6. Solve the dual of SP k with xk

7. if dual of SP k is unbounded then Q← Q ∪ {−→π k} and go to Step 9, otherwise continue.

8. if GAP < ϵ then STOP, otherwise continue.

9. k ← k + 1 and go to Step 2.

Table 3.6: Pseudo-code of Papadakos’ Scheme.

3.5.6 Bilevel programming and its solving techniques

This section is devoted to presenting a class of bilevel programming (BP ) where the objective and constraints
of both levels are linear. However, in the upper level there may be some discrete variables. The need for
this kind of BP arises for a design model such as the one incorporating modal choice formulated in Chapter
7. In this model, the terms used in the objective function for passenger assignment and modal choice are
different from those in the objective function indexing the quality of the design. This creates a need to
formulate a bilevel programming problem. In the following, a brief introduction to mixed-integer linear
bilevel programming (MILBP ) is presented. The works on MILBP that are most related to the problem
formulated in Chapter 7 are discussed in particular. Then, in section 3.5.6.2, a solving technique suggested
in [40] is developed. This technique is based on an adaptation of the Benders decomposition suited to the
kind of MILBP formulated in Chapter 7.

3.5.6.1 Introduction

The most fundamental form of two-level mathematical programming is the Stackelberg basic problem [177],
where decision makers 1 (leader) and 2 (follower) correspond to the upper- and lower-level problems, re-
spectively. The former has the following form:
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min
x∈X

F (x,y∗) (3.20)

subject to G(x,y∗) ≤ 0 (3.21)

y∗ ∈ P (x) (3.22)

where y∗ denotes the response of the lower level, which must be held in its optimal solution set P (x). This
set is also called the rational reaction set and has the following form:

P (x) =

{
y∗ solves

f(x,y∗) = min
y∈Y

f(x,y)

subject to g(x,y) ≤ 0

}
(3.23)

where x ∈ ℜp is the parameter (the leader’s p-dimensional decision variable vector). A related set is the
inducible region IR= {(x,y∗) | G(x,y) ≤ 0, y∗ ∈ P (x)}. It is assumed that for each decision taken by
the leader, the follower has some room to respond. The rational set P (x) defines this response, whereas the
inducible region IR represents the set which the leader may optimize.

The solution of problem (3.20) - (3.22) is in general not well-defined since P (x) is often multi-valued
and discontinuous. In order to deal with that issue, there exist two approaches: the optimistic approach and
the conservative one. In that work, we have considered the former, which establishes that the follower coop-
erates with the leader to minimize F (x,y) for a given set of rational reactions. This assumption is reasonable
in our application since the objective function costs associated with the variables controlled by the follower
are also considered in the leader, although in a different manner. The leader and the follower consider the
passenger time costs in their objective functions. Additionally, the follower incorporates other costs which
are related to the preferred mode of transportation and which are not contained in the objective function of
the leader. However, the leader also takes into account the decision variables related to the preferred mode
of transportation and sets them to the same values as the ones obtained by the follower. This is carried out by
means of a constraint which links the optimal objective function values of the follower and the leader. The
reader is referred to Chapter 7 for further details.

Assuming the cooperation of the follower, problem (3.20) - (3.22) is redefined as follows:

min
x∈X

F (x,y∗) (3.24)

subject to G(x,y∗) ≤ 0 (3.25)

y∗ ∈ P (x) =

{
y∗ solves

f(x,y∗) = min
y∈Y

f(x,y)

subject to g(x,y) ≤ 0

}
(3.26)

This problem conforms to the general case where the objective functions and constraint sets of both lev-
els can be linear or non-linear. Moreover, decisional variables can be integer, continuous, or a mixture of
both. In the mixed case, one subset of them is integerand the other one is continuous. The vast majority of
works on the state of the art incorporate the linear and continuous case. A good review of the techniques
used for the continuous linear and non-linear cases can be found in Colson et al [41]. As for the practical
applications, we recommend the survey carried out by Saharidis et al [158].

In this research, we do not intend to carry out a general survey of BP , neither for solving techniques nor
for applications. Instead, we focus on the nearest techniques which can be applied to the problem stated in
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Chapter 7. They include those solutions for the mixed-integer linear bilevel problem (MILBP ) with integer
variables either on both levels or only on the upper level. The former is also included because the existing
solving techniques can be easily adapted to the latter. It suffices to drop from their associated algorithms
some steps which are related to the integrality of the lower level. The resulting method is faster to compute
and thus remains a good candidate for our use.

In the rest of the subsection, we will review in detail the solving techniques for these two classes of
MILBPs in order to explain the motivation of developing a new methodology. This review is based par-
tially on the surveys taken by Saharidis & Ierapetritou [156] and Saharidis et al [158], but without much
detail; so the majority of the following references can also be found therein.

Solution approaches for MILBP can be classified into the following four categories:

• Branch & bound (B & B) based approaches.

• Branch & cut (B & C) based techniques.

• Parametric programming.

• Mixed reformulation techniques, which convert KKT conditions to mathematical decompositions in
order to split the initial MILBP into two single-level problems.

Works related to exact and heuristic solution procedures based on the B & B technique include Bard and
Moore [8], Wen & Yang [182] and Xu & Wang [188]. All of them are based on adaptations of the B & B
techniques applied to mixed integer linear problems, but they differ in the way they compute the bounds and
in the kind of subproblems they solve to obtain a bilevel feasible solution at a given node of the B & B tree.

Bard & Moore [8] solve up to three subproblems in a node. The first one is a continuous single level
problem, which contains the leader and the follower constraint sets and evaluates only the leader objective
function. The integrality of the integer variables is relaxed, but it includes some associated bounds com-
puted in previous nodes. If this subproblem has a solution and its objective function value is greater than
the best bilevel feasible solution found so far, the algorithm proceeds to solve the second subproblem. This
one entails the resolution of the continuous version of the original MILBP , which is carried out in two
steps. Firstly, it is reformulated as one discrete single-level problem by applying the KKT conditions in the
same way as stated in [76]. Then, the resulting mixed integer linear problem is solved using a standard B
& B procedure. If it has a solution and the relaxed discrete variables of the leader have integer values, the
algorithm continues to solve the final subproblem. This one entails solving only the follower problem with
the variables controlled by the leader and which are fixed to the values obtained by the second subproblem.
The authors tried to develop some heuristics in order to reduce the size of the B & B tree by incorporating
different policies in the branching. Despite their efforts, the resulting algorithm is extremely time consum-
ing, even if we apply it to our case, where the resolution of the last subproblem can be skipped since the
follower variables are all continuous. This drawback is due to the resolution of subproblem 2, which is not
continuous, and demands a lot of time for larger instances.

Another Branch & Bound technique has been developed by Wen & Yang [182]. They focused on a
particular version of an MILBP where the lower level has no discrete variables and the upper one has
only binary variable. Despite this simplification, its proposed algorithm can be easily adapted for tackling
general integer variables. Unlike the work of Bard and Moore, they only solve one continuous single level
problem at each node, except for the initial one, in which they solve two continuous single level problems.
Whatever the case is, they employ only the continuous variables of the follower to solve the problems. To
compute upper and lower bounds of the original MILBP , they combine duality theory with a right-hand
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side perturbation of constraint sets and an explicit enumeration of the leader’s integer values. The authors
also developed a heuristic version of its B & B based on a judgment index, which is used to evaluate which
variable is more suitable for branching. This index is calculated from the weighted estimated optimal solu-
tions of the leader’s decision variables, which are obtained by neglecting 1) the follower’s objective function
and 2) the leader’s objective function. The weights depend on the estimated optimal solution obtained and
the number of variables controlled by each of them; the higher the judgment index value of the upper level
decision variable, the higher the priority for checking that variable. This algorithm seems more effective
than that of Bard and Moore, since only one continuous single problem is solved at each node. However, if
a subset of continuous variables can be included in the leader, the algorithm is not valid and its adaptation is
not clear at all. Consequently, it does not seem to be useful for our case.

Quite recently, Xu & Wang [188] have developed more effective branch & bound rules, which seem to
considerably reduce the search space by skipping solutions of the relaxed versions of the original MILBP ,
which are bilevel infeasible. Despite this promising feature, we cannot be sure whether or not the algorithm
is useful since we were unable to view the details – the article is not yet available online and we could read
only the abstract.

Regarding B & C techniques, we have found the work of DeNegre & Ralphs [54]. The authors were
inspired by the work of Bard & Moore and developed a simpler solving schema to obtain bilevel feasible
solutions for the MILBP . In this schema, the first and third subproblems of Bard & Moore are solved
at each node, possibly more than once, and the resolution of the second subproblem is replaced with valid
inequalities which obtain integer values of the discrete variables from the first subproblem. In that manner,
the algorithm of Bard & Moore is less time consuming. Moreover, the authors also built valid inequalities
using the solution of the third problem in order to obtain, if suitable, a different bilevel feasible solution in
the same node. These inequalities are added to the first subproblem, which is solved again. This algorithm
promises to be the most interesting one regarding B & B and B & C techniques. However, it is still immature.
For instance, it is not clear when it is more suitable to branch or find another feasible solution (if it exists) in
a given node.

Moving on to parametric programming techniques, Faisca et al [67] developed an iterative algorithm for
separate resolution of one mixed integer linear problem and a multi-parametric continuous linear problem
(MPCLP ). The former uses the total set of constraints contained in the leader and the follower. However,
the objective function includes only that of the leader. The MPCLP is formed also by using the total set
of constraints, but fixing the variables controlled by the leader to the values obtained in the first problem.
This time, the objective function of the follower is evaluated and the problem is solved using the algorithm
developed by the same authors in a previous work [59]. The resolution of this problem gives a set of feasi-
ble solutions for the follower and best one is chosen from among them. The performance of this algorithm
depends heavily on the number of different continuous problems that must be solved at each iteration. This
number, in turn, depends on the problem instance. Thus we cannot infer to what extent this algorithm is
useful.

The last class of methods includes the works of Saharidis & Ierapetritou [156] and Gabriel et al [81].
Both combine reformulation techniques with mathematical decomposition techniques in order to split the
initial MILBP into two single-level problems. The differences rely mainly on the type of reformulation
technique used and the way they split the initial MILBP .

Saharidis & Ierapetritou [156] used the classical Benders Decomposition [14] to split the MILBP into
a master problem and a subproblem. The former holds all the discrete variables and consists of relaxing
the original MILBP , whereas the latter is a continuous bilevel problem whose solution gives a constraint
(which may be a feasible, an optimal or an exclusive cut) to the master problem in order to drive it to the
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optimal bilevel solution. The resolution of this subproblem is carried out in three steps. Firstly, the inner
problem is substituted with its KKT optimality conditions applying [161]. Secondly, the resulting mixed in-
teger linear subproblem is solved by means of the active set strategy of [86]. Its resolution gives information
on the active constraints which are used to build the corresponding linear problem. The resolution of this
problem (third step) is used to build the associated cut. This approach is the closest to ours and will be used
to explain its development in the following subsection.

Gabriel et al [81] devise a similar approach to Saharidis & Ierapetritou, although it is heuristic, more
complicated and less effective. Their algorithm also splits the original MILBP into a master problem and
a subproblem with identical structure. However, the way they solve the subproblem and the type of Benders
cuts they employ is different. The subproblem is first reformulated as a mixed integer programming problem
by means of the KKT conditions applying [76], and it is then solved with the B & B technique. The discrete
variables are then fixed to the ones obtained and the resulting continuous problem is then solved. From this
problem, the Benders cuts are inferred and added to the master problem. This algorithm has two drawbacks:
1) the resolution of the subproblem entails solving another integer problem (apart from the master problem)
and 2) the values of the master problem variables (which are inputs to the subproblem) can render subproblem
variables related to the values of the follower, which are not contained in the reaction set (3.23). The latter is
due to explicit consideration of the subproblem’s binary variables, which emerge when the KKT conditions
are applied to turn the continuous bilevel problem into a single level problem. To overcome that limitation,
the authors developed a set of heuristics based on decomposition of the master variables into regions where
the subproblem’s solutions are contained in (3.23). However, it entails solving several subproblems per
iteration and adding an enormous set of constraints (including disjunctive) to the master problem in order to
activate only those cuts related to the master variables under consideration. Consequently, this algorithm has
also been discarded.

3.5.6.2 Benders Decomposition for a subclass of Mixed Integer Bilevel Problems

The approach used to solve the elastic demand version of the model is based on an adaptation of the Benders
decomposition. This adaptation can tackle any linearMILBP with only integer variables that are controlled
by either the leader or outer problem. Moreover, the leader cannot have linking constraints (i.e., constraints
involving variables of both outer and inner levels). On the other hand, it is necessary to assume that the
subproblem has at least one feasible solution, whatever the master problem input is. Thus, only optimality
cuts are generated. These three assumptions hold in our application since the leader is the only decision
maker that controls the operator variables, of which some are discrete. Additionally, linking constraints only
appear in the follower (in the form of link capacity and binding constraints). Moreover, the follower only
contains the variables related to passengers, which are all continuous non-negative. The reader is referred to
Chapter 7 for further details.

Our solving approach has some similarities to the work of Saharidis & Ierapetritou [156]. However, it
differs in the way it solves the resulting subproblem and how the Benders cuts are generated. In the rest of
the subsection, all the basic steps of the algorithm will be described and an illustrative example will be given
as well.

Applying the aforementioned assumptions, the general form of the Stackelberg problem (3.24) - (3.26)
can be turned into the following one:
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min
x1,x2,y

c11x1 + c12x2 + c13y (3.27)

s.t. y ∈ P (x1,x2)

x1,x2 ∈X ∩ {x1,x2 | P (x1,x2) ̸= ∅} , Y 0

x1 ∈ Zm1 , x2 ∈ ℜm2

y ∈ ℜ+,n

where x1 is a m1 - dimensional vector of discrete variables, x2 is a m2 - dimensional vector of continuous
variables, and y is a n - dimensional vector of continuous variables as well. The follower’s reaction set
P (x1, x2) corresponds to the following mathematical programming problem:

min
y

c21x1 + c22x2 + c23y (3.28)

s.t. g(x1,x2,y) , A1x1 +A2x2 +A3y ≤ b

y ∈ ℜ+,n

Saharidis & Ierapetritou show that the problem (3.27) can be approached by considering in Y 0 the con-
straint’s subset, which is active in one of the optimal solutions. This constraint’s subset is built iteratively
by means of dual data inferred from the resolution of a subproblem (SP ). This SP consists of a hierar-
chical problem, which is constructed by fixing the variables controlled by the outer problem (x1 x2) to a
resolution value provided by relaxing the original MILBP This is called the Master Problem (MP ). The
MP and SP problems interact in a similar way as in the Classical Benders Decomposition. The only dif-
ference is that an additional type of cut, called the exclusive cut, can appear when the subproblem in a given
iteration gives a new cut which does not improve the objective function of the last master problem resolution.

The proposed algorithm follows the same framework as in that of Saharidis & Ierapetritou: the MP
approximates the original MILBP and the SP represents the hierarchical problem parameterized by the
MP variables coming from the current resolution. However, it differs from the way the SP is solved and in
the form of the Benders cuts inferred from this SP . Thus, these features render an innovative algorithm for
solving such a class of MILBP . In the rest of the subsection, this framework the distinct features will be
formally stated.

According to Saharidis & Ierapetritou, problem (3.27) can be approximated by the following (MP ):

min
x1,x2,w

c11x1 + c12x2 + w (3.29)

s.t. w ∈ Ω(x1,x2)

x1,x2 ∈X

x1 ∈ Zm1 , x2 ∈ ℜm2

w free
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where the constraint set Ω(x1, x2) is built by Benders cuts, which are obtained by means of the resolution
of the following SP :

min
y

c13 y (3.30)

min
y

c23 y

s.t. g(x̄1, x̄2,y) , A3y ≤ b−A1x̄1 −A2x̄2

y ∈ ℜ+,n

where x̄1 and x̄2 are parameters denoting the values of the previous resolution of the master problem (3.29).

This algorithm differs from that of Saharidis & Ierapetritou in the way we solve the subproblem (3.30)
(which in our view is much simpler) and in the mathematical structure of Ω(x1, x2). Let us rewrite (3.30)
as follows:

min
y

(c̃13 + c23) y (3.31)

min
y

c23 y

s.t. g(x̄1, x̄2,y) , A3y ≤ b−A1x̄1 −A2x̄2

y ∈ ℜ+,n

where c̃13 + c23 = c13. This assumption is valid since any linear equation can be expressed as a linear
combination of other linear equations. Now, the goal is to prove that the problem (3.31) can be solved in two
steps with the help of duality theory.

Theorem. Problem (3.31) can be solved in two steps by means of the resolutions of two continuous
problems called SP1 and SP2.

Proof. With the aid of duality theory, the inner problem of (3.31) (from now on called SP2) has the
following equivalent dual form:

max
π2

(b−A1x̄1 −A2x̄2) π2 (3.32)

s.t. AT
3 π2 ≤ c23

π2 ≥ 0

where π2 is the q - dimensional vector holding the dual variables and where q represents the number of
rows of the matrix A3. This matrix holds the constraint’s coefficients related to variables y. Notice that the
constraints region of this SP2 is independent from the value of the original variables y. Thus, the optimal
solution of this problem is also independent of the optimal solution of the outer problem in (3.31). The
optimal solution of the dual of SP2 can be linked to the primal version by means of the strong duality
theorem. It establishes that, in the optimum, the objective function values of both problems must coincide.
Thus, the inner problem in (3.31) can be replaced with a linking constraint which relates the dual and primal
variables. If we take advantage of this feature, problem (3.31) can be reformulated as follows:
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min
y

(c̃13 + c23) y (3.33)

s.t. c3 y = (b−A1x̄1 −A2x̄2) π2 (ψ)

g(x̄1, x̄2,y) , A3y ≤ b2 −A1x̄1 −A2x̄2 (π1)

y ∈ ℜ+,n

where c23 y = ( b−A1x̄1 −A2x̄2) π2 is the linking constraint. This problem, which will be called SP1
from now on, can be solved afterwards by using the dual variables of the SP2 as input. Thus, this method can
be stated as reformulation technique that is alternative to those found in the state of the art (see [76], [161]). �

Having shown how to solve problem (3.30), it only remains to explain how the Benders cuts are obtained
and how they are added to the master problem. In the original Benders decomposition, the cuts are related
to one optimal solution of the dual form of the subproblem, and they are added by means of an inequality
constraint, which establishes a bound to a free variable. In the following resolutions of the master problem,
this variable takes the value of the highest bound from among the set of computed inequalities. In our case,
we have to solve two subproblems: the SP1 and the SP2. Thus, we need to add two different types of
inequality constraints, which will be denoted as h1k and h2k, where k stands for the algorithm iteration. h1k
will establish a bound to the master’s variable w1 (w1 ≥ h1k), whereas h2k will give a bound to the master’s
variable w2 (w2 ≥ h2k). The expressions of h1k and h2k are computed as follows:

hnk =

{
(b−A1x̄1 −A2x̄2) π

k
2 if n = 2

w2 ψ
k + (b2 −A1x̄1 −A2x̄2) π

k
1 if n = 1

(3.34)

where πk
2 are the variables coming from the resolution of (3.32) at iteration k, and πk

1 , ψk are taken from the
resolution of the dual form (3.33) at iteration k, whose mathematical programming problem is as follows:

max
π1,ψ

(b−A1x̄1 −A2x̄2) π1 + [(b−A1x̄1 −A2x̄2) π2] ψ (3.35)

s.t. Ã3[ψ π2]
T ≤ c̃13

π2 ≥ 0

ψ free

where Ã3 = [[c23 1]T [A3 0]T ], ψ and π2 are related to the constraints of the primal (3.33) (shown
in parenthesis), and the weight c13 (which takes part of the primal objective function in (3.33)) has been
removed. The latter has been done because the original weight c13 = c̃13 + c23 is achieved through the
contribution of w1 in the master’s objective function, as well as the constraints set h1k, ∀ k ∈ K. The
preliminary version of the master problem is formulated as follows:
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min
x1,x2,w1,w2

c11x1 + c12x2 + w1 + w2 (3.36)

s.t. wn ≥ hnk , ∀n ∈ {1, 2}, k ∈ K

x1,x2 ∈X

x1 ∈ Zm1 , x2 ∈ ℜm2

w1, w2 free

where K stands for the number of Benders iterations carried out so far. This preliminary version of the
master problem cannot be used since it is unbounded. Observe that for n = 1, the subset of constraints
w2 ≥ h2k can be inactive, i.e., allowing w2 −→ −∞. Thus, for n = 2, the other subset of constraints
w1 ≥ h1k is also unbounded since it depends on the value of w1. To overcome that problem, we need to
impose that at least one constraint of the type w2 ≥ h2k is active. It is done by means of the following extra
set of constraints:

δk ≤ 1− 1

Mk

(
w2 − h2k

)
, ∀k ∈ K (3.37)

∑
k∈K

δk ≥ 1 (3.38)

where δk is a binary variable denoting whether the cut n = 2, computed at iteration k, is active and Mk is
a large enough parameter to prevent the cut n = 2, k from being active when δk = 0. The last constraint
(3.38) assures that at least one cut is active. Then, adding constraints (3.37) - (3.38) to the preliminary master
problem (3.36) yields the following final master problem:

min
x1,x2,δ,w1,w2

c11x1 + c12x2 + w1 + w2 (3.39)

s.t. wn ≥ hnk , ∀n ∈ {1, 2}, k ∈ K

δk ≤ 1− 1

Mk

(
w2 − h2k

)
, ∀k ∈ K

∑
k∈K

δk ≥ 1

x1,x2 ∈X

x1 ∈ Zm1 , x2 ∈ ℜm2

w1, w2 free

δ ∈ {0, 1}|K|

To sum up, table 3.7 gives all the aforementioned steps of the algorithm plus the convergence check
criterion (done in step 5).
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1. Set Iteration k ← 0 and allowable error ϵ

2. Solve the final version of MP k (3.39).

3. Solve the dual of SP2k (3.32) with xk
1 , xk

2 fixed.

4. Solve the dual of SP1k (3.33) with xk
1 , xk

2 , π2 fixed.

5. if GAP k < ϵ then STOP, otherwise continue.

6. Construct hnk ∀n ∈ {1, 2} (3.34) by means of πk
n, ψk.

7. k ← k + 1 and go to Step 2.

Table 3.7: Pseudo-code of the Benders Scheme applied to mixed integer linear bilevel problems with only
discrete variables in the outer level.

where the gap expression GAP k is computed as follows:

GAP k =
(b−A1x̄1 −A2x̄2)(π

k
1ψ

k + πk
2)− (wk1 + wk2)

wk1 + wk2
(3.40)

In bi-level optimization, the leader examines the reactions of the follower for each feasible choice of
its variables. Thus, restricting a variable which is controlled by the leader results in a restriction of the
constraints region (Ψ = {(x1, x2, y): x1, x2 ∈X , g(x1,x2,y)}). Consequently in the new bi-level prob-
lem, the leader looks for the reaction of the follower in a region which is a restriction of Ψ(x1, x2) = {y:
g(x1,x2,y)} or otherwise the resulted projection of the new constraint region on the leader’s decision space
is a restriction of the initial region (Ψ

′
(x1, x2) ⊆Ψ(x1, x2)). A direct result of this observation is that the

follower’s rational reaction set is a restriction of the initial one (P
′
(x1, x2) ⊆ P (x1, x2)), and thus the new

inducible region is a sub-set of the original inducible region IR = { (x1, x2, y): x1, x2 ∈Ψ(x1, x2), y ∈
P (x1, x2) }. Thus, the SP provides a valid cut and a valid upper bound.

To conclude the subsection, we give an illustrative example based on a modified example of Wen &
Yang, which was used earlier by Saharidis & Ierapetritou [156]. It consists of the following MILBP :

min
x2,y2,y3

F1(x2, y2, y3) = −60x2 − 10y2 − 7y3 (3.41)

s.t. min
y2,y3

F2(y2, y3) = −60y2 − 8y3

s.t. g1 : 10x2 + 2y2 + 3y3 ≤ 225

g2 : 5x2 + 3y2 ≤ 230

g3 : 5x2 + y3 ≤ 85

x2 ∈ {0, 1}, y2, y3 ≥ 0

Before applying the algorithm shown in table 3.7, problem (3.41) needs to be decomposed. The initial
master problem is built by dropping from (3.41) all data related to the follower (variables y2, y3, constraints
g1, g2, g3 and objective function F2(y2, y3)). Moreover, variables w1, w2 related to the Benders cuts are
added and constrained initially to a weight M = 1200 in order to bypass the unboundedness problem
without constraining them so much that the optimal value is removed. As a result, we obtain the following:
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min
x2,w1,w2

−60x2 + w1 + w2 (3.42)

s.t. w1, w2 ∈ [−M,M ]

x2 ∈ {0, 1}

The subproblem is constructed by fixing variable x2 in (3.41) to a given value and by dropping the
weights associated with this variable in the objective functions, resulting in the following hierarchical prob-
lem:

min
y2,y3
−10y2 − 7y3 (3.43)

s.t. min
y2,y3
−60y2 − 8y3

s.t. 2y2 + 3y3 ≤ 225− 10x̄2

3y2 ≤ 230− 5x̄2

y3 ≤ 85− 5x̄2

y2, y3 ≥ 0

Now, taking c23 = −60y2 − 8y3, the primal of the SP2 can be written as follows:

min
y2,y3
−60y2 − 8y3 (3.44)

s.t. 2y2 + 3y3 ≤ 225− 10x̄2 (π21)

3y2 ≤ 230− 5x̄2 (π22)

y3 ≤ 85− 5x̄2 (π23)

y2, y3 ≥ 0

whose dual form is as follows:

max
π21,π22,π23

(225− 10x̄2)π21 + (230− 5x̄2)π22 + (85− 5x̄2)π23 (3.45)

s.t. 2π21 + 3π22 ≤ −60

3π21 + π23 ≤ −8

π21, π22, π23 ≤ 0

Moving on to the formulation of the SP2, taking c̃13+ c23 = −10y2− 7y3, the weight c̃13 = 50y2+ y3,
so SP1 can be written as follows:
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min
y2,y3

50y2 + y3 (3.46)

s.t.− 60y2 − 8y3 = (225− 10x̄2)π21 + (230− 5x̄2)π22 + (85− 5x̄2)π23 (ψ)

2y2 + 3y3 ≤ 225− 10x̄2 (π11)

3y2 ≤ 230− 5x̄2 (π12)

3y2 ≤ 230− 5x̄2 (π12)

y3 ≤ 85− 5x̄2 (π13)

y2, y3 ≥ 0

whose dual form is as follows:

max
π11,π12,π13,ψ

(225− 10x̄2)π11 + (230− 5x̄2)π12 + (85− 5x̄2)π13+ (3.47)

+ [(225− 10x̄2)π21 + (230− 5x̄2)π22 + (85− 5x̄2)π23]ψ

s.t. 2π11 + 3π12 − 60ψ ≤ 50

3π11 + π13 − 8ψ ≤ 1

π11, π12, π13 ≥ 0

Having formulated all the problems involved in the algorithm, the iterative part begins. In the first iter-
ation, the master problem (3.42) does not have any constraint which controls variables x2 and, as it has an
associated cost in the objective function, its optimal value for minimization is x2 = 0. Moreover, variable
cuts are set to the lower bounds w1 = −M , w2 = −M . Then, fixing x̄2 = 0, the SP2(1 (3.45) is first
solved. Its solution is given by (π21, π22, π23) = (−2.66667,−18.2222, 0), which is then incorporated into
the linking constraint to solve the SP11 (3.47). Its solution is given by (π11, π12, π13) = (−2.07317, 0, 0)
and ψ1 = −0.902439 whose primal variables are y(1 = (76.6667, 23.8889). The last step of this first it-
eration is the gap evaluation by means of formula (3.40). It gives a value of 138, 91%, which is larger than
ϵ = 1e−6. Then, using the dual variables π2, π1, ψ of SP2 and SP1, respectively, we build the cuts h11 and
h21 according to (3.34). Since it is the only cut, we do not include the additional constraints (3.37) - (3.38).
Instead, we turn h21 into an equality. Thus imposing that w2 will take the value of h21 parameterized by x2.
Now, we jump to the second iteration.

In the second iteration, the Master Problem faces this mathematical problem:

min
x2,w1,w2

−60x2 + w1 + w2 (3.48)

s.t. w1 ≤ 20.7317x2 − 0.902439w2 − 466.463

w2 = 117.778x2 − 4791.11

w1, w2 ∈ [−M,M ]

x2 ∈ {0, 1}
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which gives x2 = 1, w1 = 3771.67 and w2 = −4673.33. Then, fixing x̄2 = 2, the SP22 is first solved.
Its solution gives the same values (π21, π22, π23) = (−2.66667,−18.2222, 0), which are then incorporated
into the linking constraint to solve the SP12. Its solution also provides the same values (π11, π12, π13) =
(−2.07317, 0, 0) and ψ2 = −0.902439 whose primal variables are, however, different, y(2 = (75, 21.6667).
The evaluated gap is less than 1e−06, and thus the algorithm finishes by reporting the solution x∗2 = 1 and
y∗ = (75, 21.6667) with objective function values F1 = −961.667 and F2 = 4673.33. This solution is the
same as that reported by Saharidis & Ierapetritou in [156], although they report erroneously F2 = −1011.69
in the final results table. We think it is a mistake, since their description of the example gives the same value
as ours.



Chapter 4

The corridor generation algorithm

This chapter presents the procedures devised for generating the pool of candidate corridors under the rout-
ing model M3 (see section 2.3.3.3 for further information). They include two main building blocks which
compute at most Kr rectilinear shortest paths and Kc circular shortest paths, constrained to infrastruc-
ture budgetary and planning horizon limitations in a similar way as stated by equations (2.4) and (2.36).
These building blocks consist of ad hoc implementations of Yen’s k-shortest path algorithm [189], which
uses as sub algorithms Dijkstra’s shortest path algorithm [58] and/or Floyd & Warshall’s all shortest paths
algorithm [75], [181]. The structure of the chapter is as follows. Firstly, an overview of the whole set of
procedures is given. Then, the two main building blocks for constructing the two types of corridor topologies
are presented. Thirdly, the user’s input rules are discussed. Finally, some computational results are included
to demonstrate the need for using this routing approximation.

4.1 Overview of the algorithm

The methodology which generates the corridor pool, from which stretches and nodes are assigned to the
lines, comprises two main building blocks: the rectilinear corridor generation procedure (RCGP ) and the
circular corridor generation procedure (CCGP ). After having discarded some peculiarities, they rely on
the interaction of the Dijkstra’s shortest path algorithm [58] and a modification of Yen’s k-shortest path al-
gorithm [189]. The former is embedded into the latter in order to generate, at most, Kr and Kc feasible
rectilinear and circular corridors, respectively, for every pair of nodes i, j ∈ NN

TP , such that i < j, satisfying
some constraints.

In the state of the art, there are many authors that use constraint satisfaction in computing k-shortest
paths. To cite just a few of them, Androutsopoulos & Zografos [4] and the references herein limit the time
length of each path according to a given time window. Jim et al [99] do not allow building paths whose node
departure times are not within a predefined list of times. More recently, and in the context of Public Trans-
portation systems, Van der Zijpp & Catalano [174] and their earlier works referenced herein apply some user
behavioral rules to eliminate unwanted corridors.

In our work, we apply the following constraints:

• Corridors must accomplish a minimum service frequency.

• Their total construction costs do not exceed the infrastructure budget.

These constraints are quite similar to the mathematical programming constraints (2.4) and (2.36). How-
ever, they are established and/or interpreted slightly differently, due to the lack of some data which is only
known during the optimization phase. As we cannot determine the amount of demand that the corridor will

76
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carry, we only limit the maximum duration of one service in the corridor. As for the construction cost lim-
itations, we take only into account those associated with the stretches and terminal nodes of the corridors.
Furthermore, for the k-shortest corridors whose kr > 1 and kc > 1, we add the construction cost of the
initial node from which the kr − 1 or kc − 1 shortest path is extended. The remaining node costs are not
considered since we do not know a priori the role of the intermediate nodes of the corridor.

Apart from these model constraints, two additional ones called “user behavior rules” are verified. They
have already been applied to the k-shortest path algorithms by Zijpp & Catalano [174]. As the authors say,
they are based on practical observation of passenger choice preferences and may allow shortening the size
of the corridor pool (Λ).

The first rule is related to the maximum allowable deviation cost that a subpath can have with respect
to the shortest path cost of a given pair of nodes. From now on, we will refer to the deviated subpath as a
detour, like in the authors’ work [174]. For the sake of coherence, we will also introduce the same notation to
explain this rule. Given the following subsequence of links of a certain subpath P ki−j : {ai,k, ai+1,k, ..., aj,k},
which forms a detour between nodes i and j, it is said that P ki−j is not feasible if the following conditions
hold:

j∑
h=i

L(ah,k) > ϕmaxD [N s(ai,k), N
e(ai,k)] (4.1)

where L(ah,k) stands for a function which maps the link ah,k to its length and N s(ai,k) and N e(ai,k) are
also mapping functions related to the start and end node of link ah,k, respectively. D[., .] denotes the shortest
path cost between nodes i and j. This rule is then parameterized by the weight ϕmax, whose value must be
positive and higher than 1. Schnabel and Lohse [159] recommend a value of ϕmax = 1.4 for urban networks
and ϕmax = 1.25 for motorways.

The second rule is associated with the minimum allowable deviation cost that a subpath can have with
respect to the shortest path cost of a given pair of nodes. This rule is complementary to the aforementioned
one and works in a similar manner. Given subsequent links of a certain subpath P ki−j : {ai,k, ai+1,k, ..., aj,k},
which forms a detour between nodes i and j, it is said that P ki−j overlaps P 1

i−j (it is not feasible) if the
following two conditions hold:

j∑
h=i

L(ah,k) > D [N s(ai,k), N
e(ai,k)] (4.2)

j∑
h=i

L(ah,k) < ∆min (4.3)

Condition (4.2) simply states that P ki−j is in fact a detour, whereas condition (4.3) establishes that the
cost of this detour is under a threshold value (∆min), relative to the whole cost of path k (P k). This value is
expressed here in terms of the path cost units for respecting the original authors’ definition in [174]. How-
ever, for practical implementation, it can be defined as a portion of the P k cost, like parameter ϕmax. So, it
should be multiplied by the P k cost like in equation (4.1). Schnabel and Lohse [159] recommend a value of
∆min = 0.5, so that the resulting detours cannot overlap more than 50%.

Observe that in both rule definitions we have used the word ”cost” instead of ”time” for the sake of
generality.
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4.1.1 The rectilinear corridor generation procedure

The outline of the RCGP procedure is depicted in Figure 4.1 and written in pseudo-code in table 4.1. Its
implementation details can be followed throughout tables 4.2 - 4.3. The procedure consists of two main
steps: the computing all shortest rectilinear paths between every pair of nodes i, j ∈ NN

TP , and obtaining
their following Kr − 1 shortest rectilinear paths. The former is done by means of an adaptation of the Floyd
& Warshall algorithm (FWA) ([75], [181]), whereas the latter uses an adaptation of Yen’s k-shortest path
algorithm [189] for rectilinear corridors in collaboration with Dijkstra’s shortest path algorithm [58]. In both
phases, the aforementioned planning and construction constraints are verified. Additionally, in the second
phase, the aforementioned user behavior rules are also taken into account.

 Yen’s k-shortest path for Rectilinear Corridors
· Find at most Kr-1 rectilinear shortest paths for each pair 

   of nodes in        satisfying all the corridors requirements

 Floyd & Warshall all shortest path algorithm
· Find the rectilinear shortest paths for each pair of 

   nodes in        at the same time while satisfying the 

   corridors common requirements

                                   STOP
· Output the set of kept rectilinear candidate corridors

Common Requirements
· Infrastructure budget

· Horizon planning portion 

Specific Requirements
· Maximum number of shortest 

   rectilinear paths to seek (Kr)

· Min rectilinear detour length

· Max rectilinear detour length

TP
N

N

TP
N

N

Figure 4.1: Overview of the rectilinear corridor generation procedure.

procedure RCGP (in Kr, T, H, c̄net, ∆
r
min, ϕ

r
max, out P )

T̃ (i, j)← T (i, j) + T (j, i) ∀(i, j) ∈ ANTP
P 1 ← Shortest Rectilinear Path for all pairs i, j ∈ NN

TP : i < j by calling

FWAllSP(T̃ , c̄net, H, P 1)

T̃ (i, j)←∞ ∀(i, j) ∈ ANTP such that T (i, j) > ϕmaxt(P
1
ij)

for each i, j ∈ NN
TP such that j > i and P 1

i,j ̸= ∅ do

Pij ← K-Shortest Rectilinear Path from i to j by calling

YSP4RC(Kr, T̃ , P
1
ij ,H, c̄net,∆

r
min, ϕ

r
max, Pij)

end for

return P

end RCGP

Table 4.1: Pseudo-code of the rectilinear corridor generation procedure.
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Observe that theRCGP procedure properly initializes the transformed in-vehicle travel times matrix (T̃ )
before calling on subroutine FWAllSP, which implements the Floyd & Warshall algorithm. This initializa-
tion consists of merging the cell values of the upper and lower triangular matrices of the original in-vehicle
travel times matrix (T ). As a result, T̃ has duplicate values in the positions T̃ (i, j) and T̃ (j, i). Moreover,
there is an update of this transformed matrix before going into the for loop. In this update, it applies the first
user behavior rule and therefore eliminates those edges whose in-vehicle travel time costs exceed the upper
rectilinear detour factor (ϕrmax). In the following subsections, the workings of each subroutine as well as its
implementation details will be presented.

4.1.1.1 All shortest rectilinear paths procedure

The first phase of the RCGP procedure computes all the shortest rectilinear paths for every pair of nodes
i, j ∈ NN

TP , such that i < j immediately, due to an adaptation of the FWA algorithm [75], [181]. This
algorithm works with an N ×N matrix representing a directed graph G = (N,A), where each cell element
contains the shortest cost between its related pair of nodes, excluding the diagonal elements which are set
to infinity to denote no connection. The algorithm uses mainly a triangular operation among two cell ele-
ments, which require two updates for their resolution: the pair of cell values involved, and the associated
predecessor matrix cells. This complementary matrix stores all the trip data between each pair of nodes in
G = (V,E). For further details, the reader is referred to section 3.5.1 of chapter 3. In the following, we are
going to explain the details of how the FWA was implemented for our proposes.

The subroutine FWAllSP in table 4.2 describes the FWA in pseudo-code form. Its adaptation includes a
path recovery feature as well as the satisfaction of the aforementioned planning and construction constraints.
Including the latter feature makes the algorithm somewhat innovative, although many other researchers em-
ploy constraint satisfaction in computing a preliminary set of paths. To mention some of them, Wei Fan &
Machemehl [68] develop a pseudo-constrained k-shortest path algorithm in which they check minimal and
maximal path distance constraints when computing a preliminary set of k-shortest paths in a similar way as
the RCGP . Cipriani et al [30] carried out the same constraint checking in their sophisticated heuristic route
generation algorithm (HRGA), which seeks to find two sets of paths: one satisfying the highest OD-demand
pairs and other for carrying out the transfers among feeder lines.

The algorithm begins by initializing the matrix ST , which contains the minimum travel times traversing
each i, j ∈ NN

TP in both directions. This is done in the following manner. Each cell ST (i, j), such that
(i, j) ∈ ANTP , is set to the travel time of the edge (i, j) and to its inverse (j, i), which are already held in
the input matrix T . In contrast, if the cell position (i, j) ̸∈ ANTP , we set it to infinity. To implement the path
recovery feature, we also work with the predecessor matrix Pred, where each cell Pred(i, j) will contain the
immediate predecessor of j in the shortest path from i to j. Consequently, we need also to initialize matrix
Pred as follows. Each cell Pred(i, j) such that (i, j) ∈ ANTP will set to i, whereas the cells Pred(i, j) such
that (i, j) ̸∈ ANTP will be zero.

Having finished the initialization phase, the existence of intermediate nodes k (each origin i to each des-
tination j) is verified in order to minimize the initial travel time from i to j. During that phase, we update
the ST and Pred matrices according to the changes.

Finally, we recover all the feasible paths in list P 1. To do that, we first construct the temporary shortest
path P

′
for each pair i, j ∈ NN

TP : i < j. It is carried out as follows. We begin with the first predecessor
node of the destination j, which is contained in Pred(i, j), and then we go backward until we reach the
origin i. Secondly, the extreme nodes of P

′
are set as working nodes by means of mapping function NS.

The planning and construction constraints, stated in section 4.1, are then verified in collaboration with the
mapping functions t(P k) and C(P k), respectively. If they are verified successfully, we save the inverse as
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procedure FWAllSP (in T, c̄net, H, out P )

ST (i, j)← T (i, j), ∀(i, j) ∈ ANTP , ST (i, j)←∞, ∀(i, j) ̸∈ ANTP
Pred(i, j)← i, ∀(i, j) ∈ ANTP , P red(i, j)← 0, ∀(i, j) ̸∈ ANTP

for each k, i, j ∈ [1..|NN
TP |] such that i ̸= j, k ̸= i, k ̸= j do

t
′
ij ← ST (i, k) + ST (k, j)

if t′ij < ST (i, j) then

ST (i, j)← t
′
ij , P red(i, j)← Pred(k,j)

end if

end for

for each i, j ∈ [1..|NN
TP |] such that i < j do

P 1
ij ← ∅

if ST (i, j) ≤ H then

P
′ ← {j}, k ← j

while pred(i, k) ̸= i do

k ← pred(i, k), P
′ ← P

′ ∪ {k}

end while

P
′ ← P

′ ∪ {i}, NS(R,P ′
1, P

′
t )

if C(P ′
) ≤ c̄net then P 1

i,j ← reverse(P
′
);

end if

end for

return P 1

end FWAllSP

Table 4.2: Pseudo-code of the adaption of the Floyd & Warshall all shortest paths algorithm.

the permanent shortest path for pair i, j ∈ NN
TP in sublist P 1

i,j .

4.1.1.2 Yen’s k-shortest path algorithm for rectilinear corridors

The second phase of the RCGP procedure computes the Kr − 1 (following) shortest rectilinear corridors
for each feasible shortest rectilinear corridor found in the previous phase. It adapts Yen’s k-shortest path
algorithm [189] to cope with undirected graphs and to satisfy some constraints.

Subroutine YSP4RC of table 4.3 shows the details of this phase in pseudo-code. It employs: the in-
vehicle travel times matrix T̃ ; list B, which contains all the computed feasible paths; and the sublist Q ⊂ B,
which contains all the computed feasible not chosen as some k-shortest paths in P kij .
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The subroutine begins by initializing list Q to null and list B to the first shortest rectilinear path for a
given pair (i, j) ∈ NN

TP . Then, the iterative part of the algorithm starts. Every k-iteration seeks all the exist-
ing feasible new paths, such that they contain a common subpath (P k−1

1−i ) coming from the k−1 shortest path
P k−1, which itself starts at the source node P k−1

1 and ends at an intermediate node P k−1
i . However, they

differ from a detour subpath which starts at P k−1
i and ends at terminal node P k−1

t . Feasibility is checked by
verifying if every new path satisfies the aforementioned planning and construction constraints, as well as the
user input rules.

To compute these new subpaths, the method works with a copy of the in-vehicle travel times matrix (T
′
).

This copy may be modified according to the position of the intermediate node P k−1
i (under process) in path

P k−1 and the links held in the common subpath P k−1
1−i . This modification is carried out in two steps:

1. The links adjacent to P k−1
i are eliminated. These links are contained in the paths of list B. Their

initial subpath from the first node B1
j to the intermediate node Bi

j overlaps with the initial subpath of
k − 1, from its first node P k−1

1 to the intermediate P k−1
i .

2. The links adjacent to the nodes in the initial subpath of path k − 1 are eliminated, from its first node
P k−1
1 to the antecessor node of the intermediate node P k−1

i .

These eliminations are carried out virtually by setting to infinity the costs associated with the links. Thus,
it prevents them from being selected. The second step mentioned above is not specified in the original Yen
algorithm [189], but it is required to deal with undirected graphs since it prevents more than one visit to any
node already contained in the initial subpath P k−1.

Having updated T
′

properly, it computes the shortest rectilinear path from P k−1
i to P k−1

t by calling on
the subroutine DSP of table 4.4. It is an implementation of Dijkstra’s algorithm [58] with path recovery. For
a mathematical description of the subroutine, some notations are introduced. For node i, let Ai represent the
arc adjacency list of node i. Let N denote the set containing all the nodes with permanent labels and N̄ be
the set containing all the nodes with temporary labels. Initially, every node has a temporary label and the
time costs from the source node s to all other nodes are initialized to∞. At each step, the algorithm chooses
the node i ∈ N̄ with the least temporary label time and makes it permanent. Then, it records its predecessor
index and updates the temporary values of all nodes j ∈ Ai. This process is repeated until all nodes become
permanent ones. Finally it outputs the shortest path P , from the source node s to the destination d by revers-
ing the chain of the predecessor nodes, beginning with d and finishing in s.

If a new subpath (S) linking the intermediate node P k−1
i to the final node P k−1

t is found, the algorithm
verifies whether S satisfies the user behavior rules (stated in section 4.1). Firstly, it checks the second rule,
since this rule only needs one evaluation, as follows. It compares the travel time cost of the rectilinear detour
(t(S)) with the travel time cost of the k − 1 shortest path (t(P k−1)). If the t(S) is equal to or higher than a
given portion (∆r

min) of t(P k−1), then it creates a new pathR by appending S to the initial subpath P k−1
1−(i−1)

and proceeds to verify the first rule as follows. For every pair of nodes r, s, such that r is held in the common
subpath (r ∈ P k−1

1−(i−1)) and s is contained in the detour subpath (s ∈ S2−t), it compares the travel time cost
from r to s in the new subpath (t(Rr−s)) with the travel time cost of the shortest path from r to s (t(P 1

rs)). If
t(Rr−s) is equal to or lower than a given multiple (ϕrmax) of t(P 1

rs), the rule is satisfied. If any of these two
rules are satisfied, path R is rejected and a new k-iteration is evaluated.

Having verified these rules, P k−1
i is set as a working node by means of mapping function NS, and R is

verified for whether or not it satisfies the planning and construction constraints, as stated in section 4.1. This
is done by means of the mapping functions t(R) and C(R), respectively. If so, it is appended to lists Q and
B. Otherwise, it is rejected.
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procedure YSP4RC (in Kr, T, P, h̄, c̄net, ∆
r
min, ϕ

r
max, out P )

Q← ∅, B ← P

for each k ∈ [2...Kr] do

for each i ∈ [1...|P k−1| − 1] do

T
′ ← T

for each j ∈ [1...|B|] such that |Bj | ≥ |P k−1
1−i | and Bj

1−i = P k−1
1−i do

T
′
(P k−1

i , Bj
i+1)←∞, T

′
(Bj

i+1, P
k−1
i )←∞

end for

T
′
(r, s)←∞, ∀(r, s) ∈ ANTP , r < s : r o s ∈ P k−1

1−(i−1)

S ← Shortest rectilinear path from P k−1
i to P k−1

t by calling DSP(T
′
, P k−1

i , P k−1
t , S)

if S ̸= ∅ then

if t(S) < ∆r
mint(P

k−1) then go to next i ∈ [1...|P k−1| − 1]

R← P k−1
1−(i−1) ∪ S, NS(R,Ri)

for each r ∈ P k−1
1−(i−1) and s ∈ S2−t do

if t(Rr−s) > ϕrmaxt(P
1
rs) then go to next i ∈ [1...|P k−1| − 1]

end for

if C(R) ≤ c̄net and t(R) ≤ h̄ then Q← Q ∪ {R}, B ← B ∪ {R}

end if

end for

P k ← Select R with minimum t(R) from Q, Q← Q− {R}

end for

return P

end YSP4RC

Table 4.3: Pseudo-code of the adapted Yen’s k-shortest path procedure for rectilinear corridors.

To complete the kth-iteration, the shortest travel time is chosen from the list of candidate paths Q and it
is then set to the k-shortest feasible rectilinear path. Finally, this chosen path is deleted from Q. The process
is repeated at most K − 1 times, providing that the list Q is not empty when it tries to set a k-shortest path,
with k < K. If so, the procedure YSP4RC is finished earlier.

4.1.2 The circular corridor generation procedure

The outline of the CCGP procedure is depicted in Figure 4.2 and written down in pseudo-code in table 4.5.
Its implementation details can be followed throughout tables 4.6 - 4.7 and 4.4. The procedure consists of
two main steps: computing all shortest circular paths for every node i ∈ NN

TP , and obtaining their following
Kc− 1 shortest circular paths. The former is done by means of subroutine CSC, which drives the aforemen-
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procedure DSP (in T, s, d, out P )

N ← ∅, N̄ ← NN
TP

ts ← 0, ti ←∞ ∀i ∈ NN
TP \s

pred(s)← 0, pred(i)← −1 ∀i ∈ NN
TP \s

while |N | < NN
TP do

Select i ∈ N̄ such that ti = min
{
tj | ∀j ∈ N̄

}
N ← N ∪ i, N̄ ← N̄ − i

for each (i, j) ∈ Ai do

if tj > ti + T (i, j) then

tj ← ti + T (i, j), pred(j)← i

end if

end for

end while

P ← ∅, P ′ ← {d}

i← d

while tpred(i) <∞ and pred(i) ̸= s do

i← pred(i), P
′ ← P

′ ∪ {i}
end while

if tpred(i) <∞ then
P

′ ← P
′ ∪ {s}, P ← reverse(P

′
)

end if

return P

end DSP

Table 4.4: Pseudo-code of the adaptation of Dijkstra’s shortest path algorithm.

tioned adaptation of Dijkstra’s algorithm [58]; the latter uses an adaptation of Yen’s k-shortest path algorithm
[189] for circular corridors in collaboration with an adaptation of Dijkstra’s algorithm. The subroutine CSC
is used as well. In both phases, the planning and construction constraints (stated in section 4.1) are verified.
Regarding the user behavior rules (also stated in section 4.1), the first one is also taken into account in both
phases whereas the second is checked only in the second phase.

Observe that the CCGP procedure properly initializes the transformed in-vehicle travel times matrix
T̃ in two steps. Firstly, the cell values of the upper and lower triangular matrices of the original in-vehicle
travel times matrix (T ) are merged. As a result, the matrix T̃ has duplicate values in positions T̃ (i, j) and
T̃ (j, i). Secondly, the first user behavior rule is verified, i.e., those edges whose in-vehicle travel time costs
exceed the upper circular detour factor (ϕcmax) are eliminated. In the following subsections, the workings of
each subroutine as well as its implementation details are presented.
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 Yen’s k-shortest path for Circular Corridors
· Find at most Kc -1 circular shortest paths for each 

  node in        satisfying all the corridors requirements

 Circular shortest path algorithm
· Find the circular shortest path for each

  node in        while satisfying the common 

  corridors requirements

                                STOP
· Output the set of kept circular candidate corridors

Common Requirements
· Infrastructure budget

· Horizon planning portion

· Max circular detour length 

Specific Requirements
· Maximum number of shortest 

   circular paths to seek (Kc)

· Min circular detour length
TP
N

N

TP
N

N

Figure 4.2: Overview of the circular corridor generation procedure.

procedure (in Kc, T, P
1, c̄net, h̄, ∆

c
min, ϕ

c
max, out P )

T̃ (i, j)← T (i, j) + T (j, i) ∀(i, j) ∈ ANTP
T̃ (i, j)←∞ ∀(i, j) ∈ ANTP such that T (i, j) > ϕcmaxt(P

1
ij)

for each i ∈ NN
TP do

P 1
i ← Shortest Circular Path from i to i by calling SCPath(T̃ , i, c̄net, h̄, ϕcmax, P 1

i )

if P 1
i ̸= ∅ then

Pi ← Shortest K-Circular Paths from i to i by calling

YSP4CC(Kc, T̃ , P
1
i , h̄, c̄net,∆

c
min, ϕ

c
max, Pi)

end if

end for

return P

end

Table 4.5: Pseudo-code of the circular corridor generation procedure.

4.1.2.1 Circular shortest path algorithm

The first phase of the CCGP procedure computes all the shortest circular paths for every node i ∈ NN
TP by

means of subroutine CSC (shown in table 4.6), which drives the aforementioned subroutine DSP. It works
as follows. Firstly, it initializes the list of candidate shortest circular paths Q to null, and stores all the nodes
which are adjacent to node n in δn. We refer to n as the node from which the shortest circular path will start
and end. Secondly, the iterative part of the procedure starts. It basically performs the following steps for
every i ∈ δn:

1. It duplicates the travel times matrix T into T′ and deletes from it the direct link (if it exists) that
connects the pair i, n and its inverse.
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2. It computes the temporary shortest rectilinear path from i to n by means of the subroutine DSP (shown
in table 4.4) ,which is an adaptation of Dijkstra’s shortest path algorithm, and stores it in S.

3. If S exists, it is verified that S meets the first user behavior rule (stated in section 4.1). If so, the
new circular path given by R = {n} ∪ S is created and it is verified that R meets the planning
and construction constraints (stated also in section 4.1). If all these requirements are satisfied, R is
appended to the list Q. Otherwise, R is rejected.

Having finished that iterative part, we set the path held in Q with the minimum travel time to the shortest
circular path P .

4.1.2.2 Yen’s k-shortest path algorithm for circular corridors

The second phase of the CCGP procedure computes the Kc − 1 (following) shortest circular corridors for
each feasible shortest circular corridor found in the previous phase. This procedure adapts Yen’s k-shortest
path algorithm [189] to cope with undirected graphs and satisfy some constraints.

procedure CSC (in T, n, c̄net, h̄, ϕcmax, out P )

P ← ∅, Q← ∅, k ← 1

δn ←
{
i ∈ NN

TP \n : ∃(i, n) o (n, i) ∈ ANTP
}

for each i ∈ δn do

T
′ ← T, T

′
(i, n)←∞, T ′

(n, i)←∞

S ← Shortest Rectilinear Path from i to n by calling DSP(T ′
, i, n, S)

if S ̸= ∅ then

for each s ∈ S do

if t(R1−s) > ϕcmaxt(SPn,s) then go to next i ∈ δn

end for

R← {n} ∪ S, NS(R,n)

if C(R) ≤ c̄net and t(R) ≤ h̄ then Qk ← R, k ← k + 1

end if

end for

if Q ̸= ∅ then P ← Select R with the minimum t(R) in Q

return P

end CSC

Table 4.6: Pseudo-code of the shortest circular path procedure.

Subroutine YSP4CC (written down in table 4.7) shows the pseudo-code details of this phase. The core
of this method is quite similar to the procedure YSP4RC of table 4.3, i.e., it works with a transformed travel
times matrix T̃ , a list B containing all the computed feasible paths, and a sublist Q ⊂ B containing all the
computed feasible paths which have not been chosen as some k-shortest paths in P kij . However, it differs
from the way it changes the matrix T

′
and how it obtains the new subpath at each k-iteration.
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procedure YSP4CC (in Kc, T, P, h̄, c̄net, ∆
c
min, ϕ

c
max, out P )

Q← ∅, B ← P

for each k ∈ [2...Kc] do

for each i ∈ [1...|P k−1| − 1] do

T
′ ← T

for each j ∈ [1...|B|] such that |Bj | ≥ |P k−1
1−i | and Bj

1−i = P k−1
1−i do

T
′
(Bk−1

i , Bj
i+1)←∞ T

′
(Bj

i+1, P
k−1
i )←∞

end for

T
′
(r, s)←∞ ∀(r, s) ∈ ANTP , r < s : r o s ∈ P k−1

2−(i−1)

if P k−1
i = P k−1

t then

S ← Shortest circular path from P k−1
i to t by calling CSC(T

′
, P k−1

i , S)

else

S ← Shortest rectilinear path from P k−1
i to t by calling DSP(T

′
, P k−1

i , P k−1
t , S)

end if

if S ̸= ∅ then

if t(S) < ∆c
mint(P

k−1) then go to next i ∈ [1...|P k−1| − 1]

R← P k−1
1−(i−1) ∪ S, NS(R,Ri)

for each r ∈ P k−1
1−(i−1) and s ∈ S2−t do

if t(Rr−s) > ϕcmaxt(P
1
rs) then go to next i ∈ [1...|P k−1| − 1]

end for

if C(R) ≤ c̄net and t(R) ≤ h̄ then Q← Q ∪ {R}, B ← B ∪ {R}

end if

end for

P k ← Select R with minimum t(R) from Q, Q← Q− {R}

end for

return P

end YSP4CC

Table 4.7: Pseudo-code of the adapted Yen’s k-shortest path procedure for circular corridors.

Recall from section 4.1.1.2 that the modification of the matrix T
′

involved two operations. On the one
hand, we eliminated the links adjacent to the intermediate node P k−1

i , belonging to the initial subpaths held
in the list B which overlapped with the initial subpath P k−1. On the other hand, we also eliminated every
link adjacent to the nodes held in the initial subpath of Pk−1, except the last one. The latter is slightly modi-
fied in the following way. The links to be eliminated must be adjacent to the nodes of the subpath of P k−1,
beginning at P k−1

2 and ending at P k−1
i−1 . In that manner, it can find a subpath S with the last link connecting
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the intermediate node P k−1
i to its terminal node St.

The way it obtains the new subpath depends on the relationship of the intermediate node with the termi-
nal node of path Pk−1. If they are the same node, which occurs when it looks for a subpath starting at the first
node P k−1

1 , it uses the aforementioned procedure CSC, since the searched subpath is circular. Otherwise, if
they are different, it calls the procedure DSP since the searched subpath is rectilinear.

We refer the reader to the explanation of the RCGP procedure in section 4.1.1.2 to understand the rest
of the steps that we have skipped for the sake of simplification. Notice that, some nomenclature should be
changed. For instance, when referring to ∆r

min, one should change it to ∆c
min. Analogously, Φrmax should

be replaced with Φcmax.

In the appendix, we present an illustrative example where the circular shortest path algorithm and the
Yen’s k-shortest path algorithm for circular corridors are applied to a small network.

4.2 Preliminary computational results

This section is devoted to demonstrating how efficient the algorithm is in finding a very reduced set of can-
didate corridors, so long as the user behavior rules (stated in section 4.1) are well parameterized. This study
is carried out by applying different configurations of these rules to two test networks. The first one is a
complete 6-node railway network, shown in Figure 8.1; whereas the other is the 9-node and 26-link railway
network depicted in Figure 8.2. We refer the reader to section 8.1.1 for further details regarding the input
parameters associated with both networks.

Table 4.8 shows the resulting sizes of the corridor pools. The first column denotes the network used.
Label N1 stands for the 6-node network, whereas label N2 is related to the 9-node network. The second
column indicates the parameterizations of the user behavior rules. We have chosen three types of scenarios:
the first consists of disabling the effect of these rules, whereas the second and third scenarios enable the effect
of the user behavior rules. The second scenario applies the configuration suggested by Schnabel and Lohse
[159], whereas the third one uses an accurate setup. The following two columns contain the resulting values
of the K parameter for the rectilinear and circular types of corridors, respectively. The next two columns
stand for the total number of corridors found for each topology. The last column denotes the whole number
of corridors found (circular + rectilinear). Observe that we haven’t mentioned the setup of the infrastructure
budgetary and planning horizon constraints, since they aren’t active.

Results show that the corridor pool size decreases because the applied configuration is more accurate.
Moreover, as the network size increases, the accurate setup reduces the pool more and more. Furthermore,
the suggested configuration of Schnabel and Lohse [159] approaches this pool. The latter happens partially
because of the connectivity grade of the network. Observe that the 6-node network is complete, whereas the
9-node network is quite sparse.

Regarding the search for theK parameter, we have proceeded as follows. For the first and third scenarios
of each network, the RCGP and CCGP procedures are repeated as long as the whole set of optimal recti-
linear and circular corridors remain unfound. These corridors are provided by the resolution of theRTNPD
model under the routing formulations M1 or M2 applied to the instances shown in table 2.1. Consequently,
several calls are made on these procedures. Initially, we begin with low values of K, which are iteratively
incremented by one unit. On the other hand, in the second scenario, we proceed slightly differently. We
also made several calls to these procedures but relaxed the stopping condition. Thus, the final set of corri-
dors does not necessarily contain all the optimal corridors. This situation arises in both networks, since the
Schnabel and Lohse configuration is so constrained that no feasible corridors (corridors satisfying the user
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Network Scenarios Kr Kc |Λr| |Λc| |Λ|
∆r
min = ∆c

min = 0 45 256 675 1536 2211
ϕrmax = ϕcmax =∞

N1 ∆r
min = ∆c

min = 0.5 8 6 89 17 106
ϕrmax = ϕcmax = 1.4
∆r
min = 0.19, ∆c

min = 0.24 45 237 675 1292 1967
ϕrmax = 13, ϕcmax = 14

∆r
min = 0 18 - 355 - 355

ϕrmax =∞
N2 ∆r

min = 0.5 7 - 136 - 136
ϕrmax = 1.4
∆r
min = 0.55 17 - 295 - 295

ϕrmax = 5.8

Table 4.8: Corridor pool sizes obtained by applying different configurations of the user behavior rules.

behavior rules) exist, neither forKr > 8 andKc > 6 in the 6-node network nor forKr > 7 in the 9-node one.

To conclude this section, table 4.9 shows the influence of the corridor pool size in the quality of the so-
lution, as well as in the performance. The first column stands for the network identifier. The second column
denotes the experiment identifier, whereas the third column denotes the modified parameter of each exper-
iment, i.e., the number of lines under consideration. The fourth column indicates the routing model. The
fifth column contains the size of the corridor pool, which is associated with a configuration of the user be-
havior rules. The next two columns contain the values of the global objective function and the user objective
function. The seventh column shows the computing time. Finally, the last column gives the gap between the
routing model solutions M1-2 and M3 under the different configurations of the user behavior rules. Observe
that, for the first and reference row of the gap computation for each experiment and network, we have chosen
the optimal solution given by the routing model with non-fixed corridors and with the lowest computing time
(see table 2.1).

Results show that, in general, the more we reduce the size of the corridor pool, the less time we need to
reach optimality. Moreover, the time gaps become wider as the network size increases. On the other hand,
we observe that for the scenarios of type 2, whose corridor pools do not include the whole set of optimal line
corridors stated by routing models M1-M2, their solutions are not so far from the optimum. However, the
reduction in computing time is much higher. Consequently, it seems quite reasonable to apply the proposed
configuration of Schnabel and Lohse for the user behavior rules.
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Network Exp. |L| R.M. Λ F.Obj F. Users TCPU Gap
1 2 M1 - 184034 183225 1 -

2211 184034 183225 5 0 %
M3 106 216749 216206 1 18 %

1967 184034 183225 4 0 %
2 3 M1 - 157036 155962 42 -

N1 2211 157036 155962 93 0 %
M3 106 188964 188232 3 20%

1967 157036 155962 133 0 %
3 4 M1 - 147612 146471 1586 -

2211 147612 146471 7234 0 %
M3 106 174004 173131 33 18%

1967 147612 146471 5557 0 %
1 2 M2 - 782332 781481 3 -

355 782332 781481 5 0 %
M3 136 784851 784156 2 < 1%

295 782332 781481 4 0 %
2 3 M2 - 758634 757608 1125 -

N2 355 758634 757608 173 0 %
M3 136 764078 763161 10 < 1%

295 758634 757608 104 0 %
3 4 M2 - 742175 741038 5001 -

355 742175 741038 6710 0 %
M3 136 750325 749317 105 1 %

295 742175 741038 3208 0 %

Table 4.9: Influence of the corridor pool size for the experiments performed in the test networks.



Chapter 5

The line splitting algorithm

This chapter presents the line splitting algorithm (LSA), which is a heuristic framework for dealing with the
resolution of multiple lines. It basically consists of the resolution of a series of RTNPD instances, where
only a single line can be constructed. The structure of the chapter is as follows. Firstly, a formal description
of the LSA algorithm is given. Then, we conduct a test in which the two LSA variants are compared with
the direct resolution of the model using all the routing model formulations. In this way, we demonstrate why
this algorithm is worth using.

5.1 Motivation

The motivation for developing the line splitting algorithm (LSA) comes from the excessive amount of time
taken to solve an instance where more than one line can be constructed, even if the network size is small (see
the preliminary results section 2.4 in the Modeling Approach chapter). Furthermore, we have found that the
increased time is not linear as the number of lines under construction grows.

Roughly speaking, the LSA works as follows. It splits the RTNPD problem resolution into Lmax
subproblems, where Lmax stands for the maximum number of lines under construction. Each subproblem
considers only one single line under construction and a full/partial assignment of the total OD-demand ac-
cording to the iteration number and the value of Lmax. The remaining previously constructed lines play
the role of fictitious working lines. Having solved that subproblem, some sets and parameters related to the
infrastructure resources are updated according to the subproblem solution. In that update, a new line can also
be transformed if it is constructed as a working line for the next subproblem’s resolutions. The last solved
subproblem contains a heuristic solution of the model.

The goal of the LSA is to solve the RTNPD model efficiently, keeping a good tradeoff between the
solution quality and the solving time. The main idea of the heuristic is based on previous computational
experiences, as we have found relatively slow times in reaching the optimal solution in cases where only one
line was constructed at low demand.

5.1.1 The working of the algorithm

The big picture of the LSA is depicted in Figure 5.1, where a detailed description of its implementation is
shown in Tables 5.1 and 5.2. The main routine of the algorithm is the LSA procedure, described in Table
5.1. It takes as inputs all data sets and parameters which conform to the public transportation graph (GTP ),
the OD-demand (g), and the maximum number of lines which can be constructed (Lmax). An additional
parameter δp is included to establish how the demand will be assigned.

90



5 The line splitting algorithm 91
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END
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Figure 5.1: Overview of the line splitting algorithm.
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The LSA procedure can be split into two phases. The first phase consists of initializing the data sets and
parameters related to the network layout, which will be modified at each iteration of the algorithm, as well as
initializing the incremental load portion ∆gp, which will be used later to update the passengers demand. The
second phase is an iterative process where a series of subproblems are solved. Each subproblem consists of a
mathematical model like the one presented in section 2.3, where only a new line can be constructed accord-
ing to the nodes and stretches given by sets NN

TP and ANTP . The rest of the lines included in the resolution
are treated as working lines, having arisen from the heuristic input or from the lines constructed in previous
subproblem resolutions (fictitious working lines).

Having solved each subproblem, a check is performed on whether or not there are any fictitious working
lines with no services. If so, the construction costs of the infrastructure resources and the infrastructure
budget are updated according to the stretches and stops held exclusively in these lines. Finally, the data sets
related to these lines are dropped. These steps are carried out by means of the procedureDelNoServLines,
shown in table 5.2.

Having finished that step, it is verified whether or not a new line has been constructed. If so, we make
a backup of the current routing decision variables and update some network infrastructure data according to
the current subproblem resolution. This update includes the transformation of the new constructed line into
a working one, as well as the reduction of the infrastructure budget –provided that the cost is positive for
some used stretch or bus stop, as established by sets NN

TP and ANTP . Finally, the costs of the infrastructure
resources used exclusively in this line are set to zero. In that manner, their construction costs are not taken
into account in the next subproblem resolutions.

That second phase is repeated until the maximum number of iterations (Lmax) is reached. Additionally,
if δp = 1, it is also verified whether a new line has been constructed. If some of these requirements are not
met, the LSA finishes and the current solution of the kth resolution of the subproblem becomes the final
solution.

Notice that at each subproblem resolution the number of vehicles and its services performed at every line
are recomputed so that the previous vehicles and services assigned to it will not be taken into account.

5.1.2 LSA Variants

To date, two variants of the LSA have been implemented. The difference between them lies in the amount
of demand to be satisfied in each subproblem resolution. That amount is set by means of the δp parameter.
For δp = 1, the full origin-destination passenger demand is assigned, whereas for δp = 0, only a portion
of that demand is assigned, according to Lmax and the current kth iteration. For instance, suppose that a
maximum of 10 lines can be constructed (Lmax = 10). If we are at the first iteration, 10% of the demand
will be assigned to the lines; whereas, if we are at the fifth one, 50% of the demand will be satisfied. Clearly,
these variants modify the heuristic’s behavior. However, they only take effect when we set Lmax > 1.
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procedure LSA (in GTP , g, Lmax, δp, out GTP )

LE(1 ← LE , LN(1 ← {|LE(1|+ 1}, L(1 ← {LN(1 ∪ LE(1}

c
c(1
i ← cci ∀i ∈ NN

TP , c
c(1
ij ← ccij ∀(i, j) ∈ ANTP , c̄

(1
net ← c̄net

N
S(1
TP ← NS

TP , N
P (1
TP ← NP

TP , A
(1
TP ← ATP

∆gp ← gp
Lmax

, g
(0
p ← δp · gp ∀p ∈ O

For k := 1 to Lmax do

g
(k
p ← g

(k−1
p + (1− δp) ·∆gp ∀p ∈ O

Solve RTNPD(k

If δp = 0 then G
(k
TP ← DelNoServLines(G(k

TP , LE(0)

If ”A new line is constructed” then

Backup xij , yi, xl, xlij , ỹli, yli

c̄
(k+1
net ← c̄

(k
net −

∑
(i,j)∈AN

TP

c
c(k
ij · xij −

∑
i∈NN

TP

c
c(k
i · yi

LE(k+1 ← LE(k
∪{

l ∈ LN(k
}

N
S(k+1
TP ← N

S(k
TP

∪ {
i ∈ NN

TP | yi = 1
}

N
P (k+1
TP ← N

P (k
TP

∪ {
i ∈ NN

TP | yli = 1, ỹli = 0, l ∈ LN(k
}

A
(k+1
TP ← A

(k
TP

∪ {
(i, j) ∈ ANTP | xij = 1

}
c
c(k+1
i ←

{
c
c(k
i if yi = 0
0 if yi = 1

∀i ∈ NN
TP

c
c(k+1
ij ←

{
c
c(k
ij if xij = 0

0 if xij = 1
∀(i, j) ∈ ANTP

End If

LN(k+1 ← {|LE(k+1|+ 1}, L(k+1 ← {LN(k+1 ∪ LE(k+1}

If δp = 1 and ”No new line is constructed” then Exit for loop

end for

GFTP ← Get the Final Public Network
(
G

(k
TP ,Routing variables

)
Return GFTP

end LSA

Table 5.1: Pseudo-code of the main procedure of the line splitting algorithm.
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procedure DelNoServLines (in GTP , LE(0, out GTP )

L̃E0 ←
{
l ∈ LE\LE(0 such that f l ≤ ϵ

}
L̃E1 ←

{
l ∈ LE\LE(0 such that f l > ϵ

}
ÑS
TP ←

i ∈ ∪
l∈L̃E

0

NS
TP (l) such that i ̸∈

∪
l∈L̃E

1

NS
TP (l)


ÃTP ←

(i, j) ∈
∪
l∈L̃E

0

ATP (l) such that (i, j) ̸∈
∪
l∈L̃E

1

ATP (l)


cci ← c

c(0
i ∀i ∈ ÑS

TP , ccij ← c
c(0
ij ∀(i, j) ∈ ÃTP

c̄net ← c̄net +
∑

(i,j)∈ÃTP

ccij +
∑
i∈ÑS

TP

cci

NS
TP (l)← ∅, NP

TP (l)← ∅, ATP (l)← ∅, LE ← LE\{l} ∀l ∈ L̃E0
Return GTP

end DelNoServLines

Table 5.2: Pseudo-code of the procedure DelNoServLines.

5.2 Performance Test

In order to show the efficiency of the LSA algorithm compared to the resolution of the RTNPD model
without line splitting, two test networks have been used. The first one is a complete 6-node railway network,
shown in Figure 8.1, whereas the other one is a 9-node and 26-link railway network, as depicted in Figure
8.2. We refer the reader to section 8.1.1 for further details regarding the input parameters associated with
both networks.

Tables 5.3 - 5.4 show the main results from applying the three routing models (see sections 2.3.3.1 -
2.3.3.3 for further details). The model has been formulated in AMPL, using directly the CPLEX v.12.4.0
solver. So the SBD decomposition has not been used. Regarding the LSA algorithm, it has been coded
in MATLAB R2012b, and successive calls on AMPL were made in order to solve each RTNPD iteration.
The used machine was an R5500 work station with Intel(R) Xeon(R) processor, CPU E5645 2.40 GHz and
48 Gbits of RAM.

In both tables, the column Exp. stands for the experiment range. The next column, |LN |, is the max-
imum number of lines which can be constructed, whereas column R.M shows which routing model has
been used by denoting one of the following tags: M1, M2 and M3. The M1 and M2 tags stand for the
models with non-fixed corridors. The difference lies in the way they treat the sublines. The former do not
include them in the formulation from the very beginning. Instead, they are added dynamically as needed.
The latter treat them in a static fashion. To see the details of their formulations, see sections 2.3.3.1 and
2.3.3.2, respectively. The M3 tag refers to the model with fixed corridors (see section 2.3.3.3 for further
details). The next column, Method, shows which technique has been used by denoting one of the following
tags: Heu1, Heu2 and Exact. The two first tags stand for the incremental and fixed demand variants of the
LSA algorithm, respectively; whereas the latter refers to the direct resolution of the model. Columns F.Obj
and F.Users show the total objective function and the user costs (2.2) weighted by β, respectively. Column
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Exp. |LN | R.M. Method F.Obj F.Users TCPU Gap NSEC

Exact 184034 183225 1 - 0
M1 Heu1 193177 192354 2 5% 0

Heu2 193177 192354 2 5% 0
Exact 184034 183225 2 - -

1 2 M2 Heu1 193177 192354 1 5% -
Heu2 193177 192354 1 5% -
Exact 184034 183225 5 - -

M3 Heu1 193177 192354 2 5% -
Heu2 193177 192354 2 5% -
Exact 157036 155962 42 - 0

M1 Heu1 171305 170340 2 9% 0
Heu2 169361 168370 2 8% 1
Exact 157036 155962 48 - -

2 3 M2 Heu1 171305 170340 2 9% -
Heu2 169361 168370 2 8% -
Exact 157036 155962 129 - -

M3 Heu1 171305 170340 3 9% -
Heu2 172368 171358 3 10% -
Exact 147612 146471 1586 - 0

M1 Heu1 158104 156999 3 7% 1
Heu2 153275 152135 3 4% 0
Exact 147612 146471 2543 - -

3 4 M2 Heu1 158104 156999 2 7% -
Heu2 153275 152135 2 4% -
Exact 147612 146471 3847 - -

M3 Heu1 158337 157318 5 7% -
Heu2 155648 154516 4 5% -

Table 5.3: Results for the experiments performed in the 6-node network using all the routing models.

TCPU reports the total number of elapsed seconds for the method used in the experiment. The next column,
Gap, reports the difference between the heuristic variant and the exact objective functions, respectively. Fi-
nally, column NSEC shows the number of subline elimination constraints (2.13) added to the model M1 in
order to obtain a valid line trace.

Results show that in both networks, the exact method can reach the optimum within a short time with
|L| = 2, for |L| ≥ 2. The LSA allows us to obtain quickly feasible solutions within acceptable gaps. We
do not report experiments with values of |L| > 4, since the direct resolution did not reach optimality within
the one-day time limit; thus, comparing the exact non-optimal solutions with the LSA variants would be
incorrect. On the the hand, determining which variant performs better is unclear, since their gaps are very
close and the averages are quite similar. Moreover, these gaps seem to be 0 for the 9-node network, whereas
for the 6-node network they are worse. We hope that the gaps will be very small for bigger networks, such as
those with 9 nodes. Regarding the SECs, it seems that they tend to emerge more and more as the size of the
network grows. Although, they seldom emerge when applying the LSA variants. Finally, the use of fixed
corridors also does not seem to affect the quality of the LSA solution.
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Exp. |LN | R.M. Method F.Obj F.Users TCPU Gap NSEC

Exact 782332 781481 8 - 3
M1 Heu1 784616 783653 1 0.3% 0

Heu2 784598 783635 4 0.3% 0
Exact 782332 781481 3 - -

1 2 M2 Heu1 784616 783653 1 0.3% -
Heu2 784598 783635 1 0.3% -
Exact 782332 781481 5 - -

M3 Heu1 784616 783653 2 0.3% -
Heu2 784598 783635 2 0.3% -
Exact 758634 757608 7386 - 19

M1 Heu1 760084 759061 2 0.2% 0
Heu2 760067 759043 4 0.2% 3
Exact 758634 757608 1125 - -

2 3 M2 Heu1 760084 759061 2 0.2% -
Heu2 760067 759043 2 0.2% -
Exact 758634 757608 488 - -

M3 Heu1 760084 759061 3 0.2% -
Heu2 760067 759043 3 0.2% -
Exact - - > 86400 - ≥ 11

M1 Heu1 745527 744396 3 0.5% 0
Heu2 742181 741038 5 0.0008% 3
Exact 742175 741038 5001 - -

3 4 M2 Heu1 745527 744396 3 0.5% -
Heu2 742181 741038 3 0.0008% -
Exact 742175 741038 3440 - -

M3 Heu1 745527 744396 4 0.5% -
Heu2 742181 741038 3 0.0008% -

Table 5.4: Results for the experiments performed in the 9-node network using all the routing models.



Chapter 6

Application of the Benders decomposition

This chapter presents the Specialized Benders decomposition (SBD) applied to the inelastic version of the
RTNPD model. The SBD includes the enhancements of J. Benders [14], Wong & Magnanti [125], N.
Papadakos [147] and McDaniel & Devine [136]. These are explained in detail in sections 3.5.4 and 3.5.5
of chapter 3. Moreover, some ad hoc techniques are also developed. The model has two decision levels:
first, the system operator builds the network layout and determines the line frequencies; second, passengers
choose their itineraries. To apply the SBD, we split the mathematical programming problem associated
with the RTNPD model into two problems: a master problem (MP ), which defines a feasible network
and assigns frequencies to the constructed lines; and a subproblem (SP ), which assigns the demand to this
network. The SBD iterates between the MP and SP problems to find the optimal solution. At each k-
iteration, the dual variables of the SP define the optimality of the Benders cuts (OBC), which are added
as new constraints to the MP . The process continues until it converges under convex assumptions verified
by the model. The structure of the chapter is as follows. Firstly, the SP and MP problems are presented
as well as the classical Benders scheme (CBS) (J. Benders [14]), in which they interact. Secondly, the
enhancements [125], [147], [136] are introduced, along with some ad hoc techniques applied to the CBS.
Finally, we report some computational results which justify including these enhancements.

6.1 Master Problem

The decisional variables related to the network design and determination of line frequencies are difficult
variables in the problem. Thus, once they are fixed, the problem is easy to solve. In this way, the MP arises
as:

zMP = min (1− α) zop + ω (6.1)

subject to

Network design constraints (2.4)-(2.7)

Line frequency setting constraints (2.33)-(2.36) and (2.42)-(2.45)

Breaking symmetry constraints (2.59)

(2.60)-(2.63) if routing model M1 is chosen or,
Relaxing integrality constraints (2.60)-(2.63) if routing model M2 is chosen or,

(2.60)-(2.61) otherwise

(2.8)-(2.12) if routing model M1 is chosen or,
Routing constraints (2.8)-(2.9), (2.19)-(2.22), (2.24)-(2.26) if routing model M2 is chosen or,

(2.27)-(2.29) otherwise

and the following optimality Benders cut (OBC):

97
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where k stands for the Benders iteration; ω is the Benders variable associated with the OBC cuts and dual
variables βki,p, γ

l,k
i,p , πl,ki,p ; and τ l,kij are related to the passenger flow balance constraints (2.50) and (2.54)-

(2.56), respectively.

6.2 Benders Subproblem

The Benders subproblem (SP ) assumes that the multicommodity network topology and the line frequencies
are known. Both are found by previously solving the master problem (MP ). The SP is always feasible for
every MP solution since the GCOM network connects every pair of nodes i, j ∈ NTP . Consequently, no
feasibility Benders cut (FBC) will be needed in the MP . The primal form of the SP is then defined by the
non-negative passenger flows vp,lij , ṽp,lij and upij throughout the global network G as follows:

zSP = min α · zpax (6.3)
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(
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)
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where the SP objective function (6.3) consists of the passenger travel times contained in zpax (defined by
equation (2.3)) and equations (6.4) - (6.10) correspond to the passenger flow balance constraints (2.50) -
(2.56). Moreover, to the right of them, we show their corresponding dual variables.

Applying dual theory, we obtain the dual form of the SP as follows:
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s.t.

βki,p − βkj,p ≤ α θ gp tCOMij , ∀(i, j) ∈ ACOM , p ∈ O (6.12)
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where dual variables βki,p, ρ
l+,k
i,p , ρl−,ki,p , χl,kj,p, γ

l,k
i,p , πl,ks,p and τ l,kij are associated with the aforementioned passen-

ger flow balance constraints (6.4) - (6.10), respectively, and constraint sets Π1, Π2 and Π3 hold the following
elements:
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{
(l, i, j, s, p) | l ∈ LN , i ∈ NS+
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N
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}
(6.26)

6.3 Classical Benders scheme

The classical Benders decomposition scheme (CBS) (J. Benders [14]) is the widest used scheme for apply-
ing Benders’ decomposition. At each k-iteration, the MP problem is solved first, and then the SP problem.
Initially, the MP has no Benders cuts (BC), and each time, the SP is solved, a new BC is added to the
MP . Since our SP is always feasible no matter what the MP solution is, only the OBC type of BC cuts
are included. It can be checked easily by verifying that the ACOM set holds all the possible links from a pair
of nodes (i, j) ∈ A, so that every o-d pair w ∈ W can find a path even if no lines are constructed. Solving
both problems verifies whether or not the Benders gap is less or equal to an allowable error ϵ. If so, we
finish the algorithm and report the current MP and SP solutions as optimal. Otherwise, it jumps to the next
iteration until the desired gap is reached.

The CBS scheme converges to optimality in a finite number of iterations, provided that the original
problem has an optimal solution and that the convergence gap is small enough. Table 6.1 shows that this
scheme for our model proposes where k stands for the iteration’s counter; whileβk, πk, γk and τk are the
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dual variable vectors associated with the primal SP constraints (2.50) and (2.54)-(2.56), respectively, at
iteration k. They are used to construct a new OBC cut given by equation (6.2).

1. Set Ω← ∅, UB ←∞, iteration k ← 0; and allowable error ϵ

2. Solve MP k.

3. Update LB ← (1− α) · zkop + ωk .

4. Solve DSP k with (yk, ỹk, f̃k).

5. Update UB ← min
{
UB, (1− α) · zkop + zkSP

}
.

6. if
UB − LB

LB
< ϵ then STOP, otherwise continue.

7. Generate OBCk with (βk, πk, γk, τk).

8. k ← k + 1 and go to Step 2.

Table 6.1: Pseudo-code of the Classic Benders Scheme.

The CBS scheme is not suitable to our model, since the duality of the SP suffers from degeneration.
Thus, it entails a high number of iterations to reach optimality or pseudo-optimality. In the next two sections,
we will discuss this topic in more detail and give alternative schemes for speeding up its resolution.

6.4 Accelerating Benders’ convergence

In this section, two alternative Benders schemes will be introduced. The former is based on the Magnanti
and Wong scheme (MWS) in [125], whereas the latter is related to a practical enhancement of this scheme
[147]. Both are quite similar, but the difference lies on the order in which the MP , SP , and the Magnanti &
Wong problem (MWP ) are solved, as well as the mathematical structure of the MWP being considered.

6.4.1 The Magnanti & Wong scheme

Magnanti & Wong [125] studied the problem of degeneration in the dual form of the SP and proposed a
modification of the aforementioned CBD scheme to overcome that problem. The idea is based on Pareto-
optimality applied to the OBC cuts. A pareto-optimal cut renders the tightest cut to the MP (see proof of
section 2 in page 470 of [125]), and thus it reduces the number of Benders iterations.

To explain what a pareto-optimal cut is, some basic notation and definitions need to be introduced. Let’s
say that cut (6.27) dominates or is stronger than cut (6.28) if (6.29) is met for all (y, ỹ, f̃) ∈ Y and with a
strict inequality for at least one point (y, ỹ, f̃) ∈ Y . Set Y is made up of points satisfying the master problem
constraints, except for the OBC cuts. Then, a cut is called pareto-optimal if no cut dominates it.
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l
i − π

l,1
i,p y

l
i

]
+ tpi β

1
i,p

− q ∑
(i,j)∈ATP

∑
l∈Lij

f̃ lij τ
l,1
ij ≥ (6.29)

∑
p∈O

∑
i∈N

∑
l∈LN

i

[
(πl,2i,p − γ

l,2
i,p) ỹ
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To generate pareto-optimality cuts, Magnanti & Wong [125] define the notion of core points. A point
(y0, ỹ0, f̃0) ∈ Y is a core point if (y0, ỹ0, f̃0) ∈ ri(Y c), where ri(Y c) and Y c are, respectively, the relative
interior and the convex hull of set Y . This core point is then used in association with the master deci-
sional variables and the optimal objective function value of the SP to solve the Magnanti & Wong Problem
(MWP ), which generates the pareto-optimal cut. TheMWP problem structure for our model is as follows:
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and subproblem dual constraints (6.12)− (6.22)

where parameters yl,0i , ỹl,0i and f̃ l,0i,j conform to the core point. Observe that the mathematical structure of
the MWP is quite similar to the dual form of the subproblem, except that the additional constraint (6.31)
is included to ensure that an extreme point from the set of optimal solutions to the DSP k will be chosen.
Moreover, the objective function (6.30) compares all possible cuts at a point (y0, ỹ0, f̃0) in the feasible re-
gion of the master problem.

The resulting iterative scheme among the MP , SP and MWP problems is shown in table 6.2. Unlike
the CBS, this scheme includes steps 7 and 8, which are needed to determine the dual variables that will form
part of the next pareto-optimal Benders cut. The supra-index 0 is used to distinguish the core-point variables
from those pertaining to resolution of the current master problem.

Despite the good convergence properties of this schema, two important pitfalls arise: finding a core point
and resolution of the MWP problem. To overcome the first issue, we have to develop a problem-specific
method to determine a core point, which is in general non-trivial. Regarding the second issue, the amount of
time needed to solve the MWP to optimality can considerably increase the time per iteration, such that the
overall time to reach optimality could not be decreased significantly when compared to the CBS scheme. In
the next section, we will present a variation of the Magnanti & Wong scheme, which overcomes the second
issue.

6.4.2 Papadakos’ scheme

Papadakos [147] revised the method of finding core points and discovered an easier way to determine them.
His main idea is inspired by the Magnanti & Wong proof of a pareto-optimality cut [125] and demonstrates
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1. Set Ω← ∅, UB ←∞, iteration k ← 0; and allowable error ϵ

2. Solve MP k.

3. Update LB ← (1− α) · zkop + ωk .

4. Solve DSP k with (yk, ỹk, f̃k).

5. Update UB ← min
{
UB, (1− α) · zkop + zkSP

}
.

6. if
UB − LB

LB
< ϵ then STOP, otherwise continue.

7. Find a new Magnanti Wong Point (y0, ỹ0, f̃0).

8. Solve MWP k with (y0, ỹ0, f̃0).

9. Generate OBCk with (βk, πk, γk, τk).

10. k ← k + 1 and go to Step 2.

Table 6.2: Pseudo-code of the Magnanti & Wong scheme.

that the MWP problem can be reduced to the same mathematical structure of the SP , but by replacing
the MP variables with those coming from the core point. He called this resulting problem the independent
Magnanti & Wong problem (IMWP ), since it does not depend on the SP solution. The author also showed
that it is more convenient to solve this IMWP problem before the SP , since it gives a valid Benders cut
to the MP from the first iteration and, thus, it reduces more and more the number of iterations to reach
convergence.

As a result, he developed a new Benders scheme which we will call from now on the Papadakos scheme
(PS). Table 6.3 shows an adaptation of the PS for our proposes, where we have basically dropped con-
sideration of feasibility Benders cuts. Observe that this scheme also includes a fast way to find core points,
provided that we have an initial one. The author proves that by means of a convex combination of the core
point and the decisional variables of the MP at the current iteration (see step 10), one can find a new valid
core point for the next iteration. The parameter λ is a weight whose value must be within the interval (0, 1),
where 0 and 1 values are not within the parameter dominion. Notice that, for λ = 1, we obtain the same core
point, whereas for λ = 0, we obtain an invalid core point, since it is not in the ri(Y c). Thus, if the initial
core point is far away from the facets of Y c, a good choice is to set λ = 0.5. In the next section, we will
present a straightforward method to find initial core points.

6.4.3 Finding an initial core point

The contributions of Magnanti & Wong and Papadakos ([125], [147]) to the Benders decomposition depend
heavily on determining an appropriate initial core point. As stated by the authors, it is not always possible
to find an exact core point. However, in those cases approximations can be used. Fortunately, in our model
it is possible to find an initial exact core point by means of the procedure FindICP, shown in table 6.4. It
basically seeks two opposed feasible solutions (ỹ, f̃) ∈ Y c and then applies a convex combination, like in
the core point update. To find each point, we call the subroutine BuiltLines, which is driven by the Routing-
Model, ConstCriterion and FreqCriterion input parameters. The former indicates the type of routing model
used, whereas the rest contain the selected criteria for the routing of lines under construction as well as the
frequency assignment of the whole set of lines.

The subroutine BuiltLines is then split into two phases which are carried out in a sequential manner. The
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1. Set Ω← ∅; UB ←∞; iteration k ← 0; and allowable error ϵ

2. Find an Initial Core Point (y0, ỹ0, f̃0).

3. Solve IMWP k with (y0, ỹ0, f̃0).

4. Generate OBCk with (βk, πk, γk, τk).

5. Solve MP k.

6. Update LB ← (1− α) · zkop + ωk.

7. Solve DSP k with (yk, ỹk, f̃k).

8. Update UB ← min
{
UB, (1− α) · zkop + zkSP

}
.

9. if
UB − LB

LB
< ϵ then STOP, otherwise continue.

10. Update (y0, ỹ0, f̃0)← λ · (y0, ỹ0, f̃0) + (1− λ) · (yk, ỹk, f̃k)

11. k ← k + 1 and go to Step 3.

Table 6.3: Pseudo-code of the Papadakos’ Scheme.

first phase corresponds to either line routing or selecting the line corridors, depending on the RoutingModel
parameter; whereas the second phase is associated with the line frequency setting. The details of these
procedures as well as the related subroutines can be found in appendix section 9.3.

6.5 Decreasing the number of integral Master Problem resolutions

In this section, we present other extensions of the CBS scheme, which allow us to decrease consumption
time in solving the integralMP problem. The first one is inspired by the work of McDaniel & Devine [136],
whereas the rest are ad hoc techniques which were presented earlier in [124]. These additional extensions
are absolutely compatible with the MWS and PS schemes presented so far. Mixing all these enhancements
have provided the specialized Benders scheme (SBD), which have been applied successfully to versions of
the model, both with and without elastic demand.

6.5.1 The McDaniel and Devine scheme

McDaniel & Devine [136] developed a two-phase Benders scheme. In the first phase, the integer variables
corresponding to the MP problem are relaxed, and thus the resulting problem is much easier to solve. The
BC cuts coming from the resolution of the SP in this phase are called the relaxed Benders cuts (RBC),
which are also valid cuts for the integral MP . Once the relaxed Benders gap is reached, the first phase
finishes and the second phase starts. Initially, integrality is imposed on the MP integer variables, and at
every iteration of this phase theMP is solved using all theRBC computed in the previous phase in addition
to those obtained in this one. As a result, the authors [136] demonstrated that the number of integral MP
resolutions decreased considerably by solving several known difficult problems in the state of the art.

Table 6.5 shows the specialized integration of the McDaniel & Devine scheme (DDS), with the PS
scheme added for our proposes. The main differences regarding the PS scheme lie in the operations carried
out in steps 6 and 11. In the former, the integrality of the MP integer variables are activated or relaxed
according to the parameter phase, which denotes the phase in which the algorithm is working. The latter
checks if the convergence criterion is met according to the parameter phase as well. This parameter is up-
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procedure FindICP
(
in RoutingModel, λ, Ā, out y0, ỹ0, f0

)
f l,0 ← 0, ∀l ∈ LE

f l,0ij ← 0, ∀(i, j) ∈ ANTP , l ∈ LN

yl,0i ← 0, ∀(i, j) ∈ ANTP , l ∈ LN

ỹl,0i ← 0, ∀(i, j) ∈ ANTP , l ∈ LN

ConstCriterion←Minimize construction & maintenance costs

FreqCriterion← Assign maximum frequency

(N, A, f)← Get a line configuration following the set criterion by calling

BuiltLines
(
RoutingModel, ConstCriterion, FreqCriterion, Ā, N, A, f

)
f l,0 ← λ · f l, ∀l ∈ LE

f l,0ij ← λ · f l, ∀l ∈ LN , (i, j) ∈ Al

yl,0i ← λ, ∀l ∈ LN , i ∈ N l

ỹl,0i ← λ, ∀l ∈ LN , i ∈ N l

ConstCriterion←Maximize construction & maintenance costs

FreqCriterion← Assign minimum frequency

(N, A, f)← Get a line configuration following the set criterion by calling

BuiltLines
(
RoutingModel, ConstCriterion, FreqCriterion, Ā, N, A, f

)
f l,0 ← f l,0 + (1− λ) · f l, ∀l ∈ LE

f l,0ij ← f l,0ij + (1− λ) · f l, ∀l ∈ LN , (i, j) ∈ Al

yl,0i ← yl,0i + (1− λ), ∀l ∈ LN , i ∈ N l

ỹl,0i ← ỹl,0i + (1− λ), ∀l ∈ LN , i ∈ N l

return y0, ỹ0, f0

end FindICP

Table 6.4: Pseudo-code of the procedure FindICP.

dated after having met the convergence criterion of the first phase. Notice also that the computation of the
initial core point is performed only once, at the first iteration of phase 1.

6.5.2 Ad hoc techniques

The aforementioned scheme renders the best convergence performance and the least consuming time, as far
as we know. However, some additional problem-dependent enhancements can be made. If we work with
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1. Set Ω← ∅; UB ←∞; iteration k ← 0; allowable error ϵ; and phase← 1

2. Find an Initial Core Point (y0, ỹ0, f̃0).

3. Solve IMWP k with (y0, ỹ0, f̃0).

4. Generate Ωk with (βk, πk, γk, τk).

5. If phase = 1 then continue, otherwise goto Step 6b.

6a. Remove integrality for variables ỹli, b
l and

xlij if routing models M1 or M2 are used

δlc otherwise

Go to step 7

6b. Activate integrality for variables ỹli, b
l and

xlij if routing models M1 or M2 are used

δlc otherwise

7. Solve MP k

8. LB ← (1− α) · zkop + ωk.

9. Solve DSP k with (yk, ỹk, f̃k).

10. UB ← min
{
UB, (1− α) · zkop + zkSP

}
.

11. if phase = 2 and
UB − LB

LB
< ϵ then STOP

if phase = 1 and
UB − LB

LB
< ϵ then phase← 2.

12. Update (y0, ỹ0, f̃0)← λ · (y0, ỹ0, f̃0) + (1− λ) · (yk, ỹk, f̃k)

13. k ← k + 1 and goto Step 3.

Table 6.5: Pseudo-code denoting integration of the McDaniel & Devine and Papadakos schemes.

the routing model M3 (see section 2.3.3.3 for further details), having solved the relaxed version of the MP
allows us to easily obtain a rounded feasible solution. It is sufficient to drop from the corridor pool Λ all cor-
ridors whose δlc is less than a given ξ, yielding to a very reduced Λ̃ set, which is then applied to the resolution
of an integral version of the MP . As a result, the RBD cuts turn into OBC cuts, which will tighten more
and more the integral MP of phase 2. Moreover, the optimal solution obtained in phase 1 is also feasible for
the second phase.

Table 6.6 shows the specialized Benders Scheme (SBS), which has been used to solve the medium-sized
network presented in chapter 8. The only difference in the fusion of DDS and PS schemes (see Table 6.5)
lies in the Macro step 6a, which represents the set of operations that allows us to obtain a rounded solution
when solving the relaxed version of the MP in phase 1.

Like in the CBS, the convergence of the SBS scheme is also guaranteed. Notice that if the integral
version of the MP has a solution (which it does, since the set of feasible solutions is not null), its LP
relaxation must exhibit some solution as well.
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1. Set Ω← ∅; UB ←∞; iteration k ← 0; allowable error ϵ; and phase← 1

2. Find an Initial Core Point (y0, ỹ0, f̃0).

3. Solve IMWP k with (y0, ỹ0, f̃0).

4. Generate Ωk with (βk, πk, γk, τk).

5. If phase = 1 then continue, otherwise goto Step 6b.

6a. Remove integrality for variables ỹli, δ
l
c, b

l.

Solve MP k with all c ∈ Λ.

Activate integrality for variables ỹli, δ
l
c, b

l.

Solve MP k with all c ∈ Λ such that δlc ≥ ξ, goto Step 7.

6b. Solve MP k with all c ∈ Λ.

7. LB ← (1− α) · zkop + ωk.

8. Solve DSP k with (yk, ỹk, f̃k).

9. UB ← min
{
UB, (1− α) · zkop + zkSP

}
.

10. if phase = 2 and
UB − LB

LB
< ϵ then STOP

if phase = 1 and
UB − LB

LB
< ϵ then phase← 2.

11. Update (y0, ỹ0, f̃0)← λ · (y0, ỹ0, f̃0) + (1− λ) · (yk, ỹk, f̃k)

12. k ← k + 1 and goto Step 3.

Table 6.6: Pseudo-code of the Specialized Benders Scheme.

6.6 Preliminary computational results

In this section, we show some preliminary computational results to justify inclusion of the enhancements
to the classical Benders decomposition. To do that, two test networks have been used. The first one is a
complete 6 node railway network, shown in Figure 8.1 and tagged as N1; whereas the other is a 9 node and
26 link railway network, depicted in Figure 8.2 and tagged as N2. Since the SBS scheme needs to use the
routing model M3, this one has been chosen for carrying out these experiments. Moreover, we include only
one instance for each network with |LN | = 2, since the CBS and/or the MWS schemes converge neither
to zero nor to small gaps for LN > 2 within a reasonable horizon time. We refer the reader to section 8.1.1
for further details regarding the input parameters associated with both networks.

Table 6.7 shows the general results of applying each scheme. The contents of each column are as follows.
Column 1 denotes the network used. Column 2 indicates the Benders scheme applied. Column 3 shows the
global objective function value. Column 4 shows the overall CPU time in seconds. Column 5 represents the
Benders gap if the optimum is not reach. Finally, column 6 indicates the total number of Benders iterations.

The general results justify to some extent the gain CPU time from applying each enhancement. Clearly,
the CBS and MWS schemes have a much slower convergence than the others. What’s more, the CBS
scheme is not capable of reaching optimality or near-optimality within a reasonable time. What’s more,
the Benders gaps are huge (44.65 % and 118,14 %). However, having applied the other enhancements,
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Network BD. Scheme F.Obj. Time Gap Iter.
CBS 230196 1498 44.65 % 356
MWS 503 0 132

N1 PS 184034 152 0.0 % 53
DDS 157 0.0 % 99
SBS 99 0.0 % 67
CBS 836156 143 118.14 % 100
MWS 787938 933 0.06 % 144

N2 PS 123 0.0 % 42
DDS 782332 83 0.0 % 99
SBS 43 0.0 % 68

Table 6.7: General results for the test networks applying each Benders scheme.

convergence improves greatly. On the other hand, introducing the two-phase schemes do not significantly
improve N1. However, in N2, they are worth using. In chapter 8 we will show that applying these schemes
to medium- and large-sized-networks yields better improvements.

For the sake of completion, we give more detailed results in the following tables. In 6.8, we show the
time spent on each type of problem in the CBS scheme. The second and third columns, labeled TMP and
TSP , stand for the whole time spent on the MP and SP problems. It clearly indicates that the vast majority
of time is spent on the MP problem, which contains complicated integer variables.

Network TMP TSP Ttotal

N1 1467 31 1498
N2 139 5 143

Table 6.8: Detailed results for the Classical Benders scheme.

Table 6.9 is similar to the previously mentioned table, but for the MWS and PS schemes. The extra
column, labeled as TIMWP / TMWP , denotes the whole time spent on the IMWP or MWP problems,
depending on the applied scheme. As stated before, the MP problem consumes the vast majority of time
used by the Benders decomposition. However, we can also observe that the portion of time spent on the
MWP problem in the MWS scheme is considerably higher than the time consumed by the IWMP prob-
lem in the PS scheme. The convergence is also much better in the PS scheme.

Network BD. Scheme TMP T(I)MWP TSP Ttotal

N1 MWS 499 15 4 503
PS 145 5 2 152

N2 MWS 915 18 12 933
PS 117 2 4 123

Table 6.9: Detailed results for the Magnanti & Wong and Papadakos schemes.

Table 6.10 splits the general results of DDS and SBS schemes into each phase. The meaning of each
column label is the same as those already mentioned. Its results show that the vast majority of time is spent
in the integrality phase (phase 2), despite the lower number of Benders iterations. Moreover, rounding off
the relaxed MP solution does not seem to greatly increase the time spent in the relaxation phase (phase 0).
Furthermore, it provides a better start to the integrality phase. Consequently, its time decreases considerably.
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What’s more, for the N2 with only one iteration in phase 2, it reaches optimality.

Phase 1 Phase 2
Network BD. Scheme F.Obj. Time Gap Iter. F.Obj. Time Gap Iter. TTotal

N1 DDS 159091 32 0.0 % 65 184034 125 0.0 % 34 157
SBS 193411 38 0.0 % 65 184034 63 0.0 % 14 99

N2 DDS 738188 17 0.0 % 70 782332 66 0.0 % 28 83
SBS 802678 40 0.0 % 67 782332 3 0.0 % 1 43

Table 6.10: General results of the Mc Daniel & Devine and Specialized Benders schemes per phase.

Finally, table 6.11 shows the resolution details for the whole MP problem in the SBS scheme. The
column labeled TM̃P stands for the whole time spent by the reduced integral master problem, whereas
columns Λ̃ and Λ represent, respectively, the average size of the reduced pool of corridors used per line in
the reduced integral master problem, and the size of the total pool of corridors.

Networks TM̃P TMP Ttotal Λ̃ Λ

N1 26 56 82 15 2235
N2 27 3 29 17 355

Table 6.11: Detailed results for resolving the master problem in phase 1 of the Specialized Benders Scheme.

Results show that most of the increase in computational time is due to applying the rounding-off opera-
tion to the relaxed MP solution. However, as pointed out in the discussion results of the previous table, that
increase is permissible, since the amount of time taken by the integrality phase decreases considerably. On
the other hand, the size of the pool of corridors used per line in this rounding-off step is quite small. In the
N1 instance, only 7 out of 2235 corridors are used; whereas in the N2 instance, only 6 out of 355 corridors
are.

We conclude this section by showing the evolution of the Benders gap and the global objective function
2.1 per scheme and network in Figures 6.1 and 6.2, respectively. Focusing on the gap evolution, the traces
show that, whatever the scheme used, the gap is not monotonous decreasing. However, it converges (near-
)zero for all the schemes, except for the CBS, where it gets stuck on thelog gap ≈ 0 and log gap ≈ 1.2
values, respectively. On the other hand, the convergence rates are pretty good for the PS, DDS and SBS
schemes, although the MWS convergence rate is very slow. Moving on to the objective evolution, the
scenario is quite similar: it also converges, but the irregularity of the trace is bigger. For the cases of the
DDS and SBS schemes, there is a sudden slope due to the transition of phase 1 to phase 2.



6 Application of the Benders’ decomposition 109

20 40 60 80 100 120 140

−6

−5

−4

−3

−2

−1

0

1

12

Gap evolution

iteration

lo
g
1
0
(g
a
p
)

 

 

CBS

DDS

EBS

MWS

PS

10 20 30 40 50 60 70 80 90 100

−6

−5

−4

−3

−2

−1

0

1

12

Gap evolution

iteration

lo
g
1
0
(g
a
p
)

 

 

CBS

DDS

EBS

MWS

PS

Figure 6.1: Evolution of the Benders gap for the different Benders schemes. At the top, the evolution traces
for the 6NMAR network. At the bottom, the evolution traces for the 9NMAR network.
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Figure 6.2: Evolution of the global objective function for the different Benders schemes. At the top, the
evolution traces for the 6NMAR network. At the bottom, the evolution traces for the 9NMAR network.



Chapter 7

Modeling Approach with Elastic Demand

This chapter presents a combined modal splitting assignment model, as described by Oppenheim [145]. This
model substitutes the assignment demand submodel shown in section 2.3.5 of chapter 2, and allows incorpo-
ration of elasticity in the demand of the model. Combined modal splitting-assignment models are non-linear
in nature. To circumvent this difficulty, and to formulate the model into a linear integer programming frame-
work, piecewise linearization has been carried out on the entropy terms that appear in these kinds of models.
Moreover, including this submodel into the global model entails solving a subclass of mixed integer bilevel
problems where discrete variables are present only in the upper level. Very few related and well developed
works have been found on the state of the art and, thus, we were motivated to develop a new innovative
technique for solving BLP problems whose structure adjusts to the elastic demand model developed in this
chapter. The details of this algorithm, as well as a review of the related state of the art, can be found in
chapter 3. For the sake of simplicity, here we have devoted ourselves only to showing the application of this
algorithm. The structure of the chapter is as follows. Firstly, some mathematical notation will be introduced.
Secondly we will demonstrate how to turn the inelastic demand model into an elastic one by means of the
KKT optimality conditions. Thirdly, we will show how to efficiently solve the resulting model by adapting the
algorithm shown in section 3.5.6.2, in order to take advantage of Magnanti & Wong and Papadakos’ ideas
[125], [147]. Finally, we include some preliminary results in order to show the validity of the algorithm.

7.1 Notation

In this subsection, we define all the mathematical elements that are specific to this chapter:

M Set of modes under consideration (i.e., M = {TP, PRI}).
m Identifier of a mode (i.e., m ∈ {TP, PRI}).
Rw Set of intervals in which the entropy function for the o-d pair w has been discretized.
r Identifier of an interval.
Umw Value of the utility function of a user belonging to the o-d pair w that wants to use the mode m.
ϕmw Value of the entropy function of a user belonging to the o-d pair w that wants to use the mode m.
dPRIw Average distance traveled by a user belonging to the o-d pair w that uses the private mode.
tmw Average time of a user belonging to the o-d pair w that wants to use the mode m.
βPRIw Parking cost at origin p(w) and destination q(w) of a user belonging to the o-d pair w that uses

the private mode.
βTPw Fare cost of a user belonging to the o-d pair w that uses the public transportation mode.
θw A factor that weighs the average times of the modes m ∈M .
γw A factor that weighs the average traveled distance for a user belonging to the o-d pair w that uses

the private mode.
gmw Number of trips of the OD-pair w assigned to the mode m.

111
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7.2 Modal Utilities

Up to now the whole amount of demand, given by the OD trip matrix, has been assigned to the public trans-
portation network. This is not realistic since in practice there are other modes of transportation which are in
competition. For instance, in a city like Barcelona there are bus and underground networks which can move
people from its origin to its destination. Moreover, there is also a roadway network for those travelers who
prefer to use their private car or taxi. The choice among these modes depends on several parameters, like
fares, travel time and comfort.

To start, we have chosen only two modes which will be in competition. Let’s say the public transportation
mode (TP ) and the private one (PRI). The choice between them will be based on the so-called utility
functions given by equations (7.1) - (7.2), which capture the passenger parameters used for making their
decision.

UPRIw = −βPRIw − θw · tPRIw − γPRIw · dPRIw (7.1)

UTPw = −βTPw − θw · tTPw (7.2)

Both utilities take into account two aspects: the monetary costs and the travel times of a given OD-pair
w. For the private utility function (7.1), the monetary costs are characterized by βPriw and γw · dPriw , which
denote the parking fares in the origin and destination of the od-pair w and the cost of the consumed fuel, re-
spectively. The latter is proportional to the travel distance (dPriw ); thus it is weighted by parameter γw which
stands for the cost of the fuel per unit of distance. The travel time is captured by tPriw and it is weighted by
θw in order to render an economical sense.

Regarding the public transportation utility function (7.2), the monetary cost is characterized by βTPw ,
which denotes the public transportation fare, whereas travel time is defined by tTPw . Again, to render an
economical sense for time, we weight it with the same θw parameter, since we consider that a user of the
same od-pair gives the same value of time no matter what mode is used.

All the aforementioned parameters are considered as inputs to the model except for public transportation
times tTPw , which depend on decisional variables related to the line topology and the passenger assignment.
In the next section, we will discuss how to incorporate them into the model by considering that the demand
is split into these models by the logit distribution functions given by equations (7.3) - (7.4), which are
characterized by the aforementioned utilities.

gPRIw = gw ·
1

1 + exp(UTP
w −UPRI

w )
(7.3)

gTPw = gw ·
1

1 + exp(UPRI
w −UTP

w )
(7.4)

7.3 KKT Conditions for the Passenger Assignment Model

In this section we present the modifications that the passenger assignment model (PAM ) (or, in other words,
the primal version of the SP (6.3) - (6.10)) requires for splitting passenger demands in the same way as equa-
tions (7.3)-(7.4) do. Our deductions will be based on a reduced version of the SP , in which we will obtain
the lagrangian function and then apply the KKT conditions.
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First of all, we notice that since theMP problem determines which nodes are assigned to the constructed
lines as well as their role (variables yli and ỹli, respectively), the flow blinding constraints (6.8) - (6.9) simply
give us the in-station exchange flows (variables vw,lrs and ṽw,lrs ) which are active. Observe that, when in (6.9)
yli − ỹli = 0, the vw,lrs flows that are adjacent to node i ((r, s) ∈ ANxya(i)) are set automatically to zero, since
they are defined as non-negative. Additionally, when in (6.8) ỹli = 1, the ṽw,lrs flows that are adjacent to node
i ((r, s) ∈ ANx (i)) are set to zero by definition as well. Finally, the non-zero variables are simply bound to
1, which is trivial since that value cannot be exceeded by any flow variable satisfying constraints (6.4)-(6.7).
Consequently, we can drop these non-active flow variables and the flow blinding constraints (6.8) - (6.9) from
the model without loss of generality. In that manner, it allows us to work with a more compact formulation.

Having applied that variable and constraint reduction to the PAM (6.3) - (6.10), we arrive at the mathe-
matical formulation of a Min Cost Capacitated Network flow problem (MCCNFP ):

min
x

cT x (7.5)

s.t.

A xp = bp, ∀p ∈ O (λp) (7.6)

xp ≥ 0, ∀p ∈ O (µp) (7.7)∑
p∈O

xp ≤ x̄ (ν) (7.8)

where x is a vector holding the flow variables expressed by origins p ∈ O: upij , v
p,l
ij and ṽp,lij . Their dominion

will be expressed from now on in the interval (0, gp). Constraints (7.6) are related to (6.4)-(6.7), whereas
constraints (7.8) are equivalent to (6.10). The right hand side vector bp = {bpi | ∀i ∈ NTP} captures the
result of the flow balance for a given origin p ∈ O and its expression is as follows:

bpi =


∑
q∈Dp

gpq if i = p(w)

−gpi if i ̸= p(w), i ∈ Dp

0 if i /∈ Dp

, ∀p ∈ O (7.9)

The lagrangian function of problem (7.5)-(7.8) is obtained by appending to the objective function (7.5)
the constraints (7.6)-(7.8) which are weighted by the lagrangian multipliers (the dual variables which are
written next to the constraints). Having applied this step, we obtain the following (using vectorial notation):

L(x,λ,µ,ν) = cTx− λT (A x− b)− µTx− νT

x̄−∑
p∈O

xp

 (7.10)

Now, applying optimality conditions to (7.10), we deduce the relationship of the primal and dual vari-
ables with the time utility parameter tPRIw . Regarding the stationary condition, it establishes that ∇xL(x,λ,µ,ν)
= 0. Therefore, we obtain the following equation:

c = ATλ+ µ− ν (7.11)

which shows a relationship between the travel time costs c and dual variables λp, µp and ν, where the
following complementarities (7.12) - (7.15) must hold between primal variables x and dual variables (λ, µ,
ν):



7 Modeling Approach with Elastic Demand 114

µp > 0 −→ xp = 0, ∀p ∈ O (7.12)

xp > 0 −→ µp = 0, ∀p ∈ O (7.13)

νij > 0 −→ xij = x̄, ∀(i, j) ∈ A (7.14)

xij > x̄ −→ νij = 0, ∀(i, j) ∈ A (7.15)

The incident matrix A = {aj | j ∈ J}, where J is the total number of columns, has a well known
structure. Each column vector aj is made of zeros, except for two positions where there are 1 and -1
coefficients. Thus, the product (λp)T ap can be rewritten as λpj − λ

p
i , (i, j) ∈ A. Let us neglect ν from

(7.11) for the moment and consider a single link (i, j), where some positive flow goes through without
reaching the link’s capacity. Under this situation, the following holds:

cij = λpj − λ
p
i (7.16)

where cij is related to the cost of traveling throughout the link (i, j).

Using formulas (7.16) and (7.11) in collaboration with relationships (7.12) - (7.15), it is possible to infer
a close formula which associates link costs with dual variables. To demonstrate that, we will present two
illustrative examples.

Let us consider the path solution for a given pair (1, 4) ∈ W , as depicted in Figure 7.1. In this case, the
total travel unit cost (C1,4) for the pair (1, 4) is given by the sum of the costs associated with each traversed
link (drawn in continuous trace) within the path K(1,4) with origin at node 1 and destination at node 4:

C1,4 =
∑

(i,j)∈K(1,4)

cij = c1,12− + c12−,21+ + c21+,24− + c24−,42+ + c42+,4 (7.17)

and, if we substitute each cij with its corresponding expression in (7.16), we have:

C1,4 = λ112− − λ11 + λ121+ − λ112− + λ124− − λ121+ + λ142+ − λ124− + λ14 − λ142+ = λ14 − λ11 (7.18)

1 2 4

12- 21+ 42+24-
c12-,21+

c1,12-

K

K U K (1,4)

c42+,4

c24-,42+c21+,24-

(1,4)

Figure 7.1: Example of a single path traversed by the OD-pair (1, 4).

Consequently, the total travel time cost (cp,q) for an od-pair (p, q) ∈ W which uses a single path can be
computed by:

cp,q = λpq − λpp (7.19)

Let us now consider a more general example. Figure 7.2 depicts three different paths which are traversed
by the same od-pair (1, 4) ∈W whose layout is as follows:
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K1
(1,4) = {(1, 14−), (14−, 41+), (41+, 4)} (7.20)

K2
(1,4) = {(1, 12−), (12−, 21+), (21+, 24−), (24−, 42+), (42+, 4)} (7.21)

K3
(1,4) = {(1, 12−), (12−, 21+), (21+, 2), (2, 4)} (7.22)

Clearly, condition (7.14) happens in some links of paths K1
(1,4) and K2

(1,4). Otherwise, the pair (1, 4)
would be assigned to a single path (the shortest travel time cost one). Then, equation (7.19) must include
dual variables νi,j for each in-vehicle link held in any path (i.e., ∀(i, j) ∈ KIN(1,4)), which play the role of
added costs. Carrying out this change, we have:

C1
1,4 = λ14 − λ11 − ν14−,41+ (7.23)

C2
1,4 = λ14 − λ11 − (ν12−,21+ + ν24−,42+) (7.24)

C3
1,4 = λ14 − λ11 − ν12−,21+ (7.25)

Suppose that, the travel time cost of paths (ci1,4, ∀i ∈ {1, 2, 3}) verify that c11,4 < c21,4 < c31,4. Thus,
since the objective function has a minimization criterion, the passenger assignment will be carried out as
follows. Paths K1

(1,4) and K2
(1,4) will carry as many passengers as follows, thus νi,j > 0 for some or all

(i, j) ∈ K1
(1,4)

∪
K2

(1,4)), whereas path K3
(1,4) will carry a low number of passengers, so νi,j = 0, ∀(i, j) ∈

K1
(1,4). This simplifies equations (7.23) - (7.25) as follows:

C1
1,4 = λ14 − λ11 − ν14−,41+ (7.26)

C2
1,4 = λ14 − λ11 − ν24−,42+ (7.27)

C3
1,4 = λ14 − λ11 (7.28)

Consequently, equation (7.19) is also useful for assigning multiple path demands, since it denotes the
travel time cost of the longest path. Therefore, it will be used as the unit travel time cost in the public
transportation mode (tTPw ) for evaluating its utility according to (7.2).

1 2 4

12-

14-

21+ 42+

41+

24-
c12-,21+

c14-,41+

c21+,2
c1,12-

c2,4

c42+,4

c24-,42+c21+,24-

K

K U K (1,4)

(1,4)

Figure 7.2: Example of multiple paths traversed by the OD-pair (1, 4).

7.3.1 Accommodating elastic demand

The passenger objective function (2.2) evaluates only the passenger’s travel time costs in the public trans-
portation network. However, we now want to generalize it for splitting bimodal demand, where the modes
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under consideration include the public transportation mode (TP ) and the private mode (PRI). The amount
of demand each mode uses will be computed indirectly through evaluation of the modal utilities (7.1) and
(7.2) in the logit functions (7.3) and (7.4), respectively. This mechanism can be implemented by using an
entropy function, which has a strong relationship with the modal distribution function and which also mod-
els it without explicit knowledge of the involved modal costs. Extra modal flows provide additional help.
Following this subsection, we will describe the changes required by the static passenger assignment model
for including these features.

The right hand side vector of the public transportation generalized flow balance (bp) is constant as long
as we know beforehand the total demand flow originating at node p (gp =

∑
q∈Dp

gp,q), which covers the
entire public transportation network. However, we now only know that the total od-pair demand gw, ∀ ∈W
will be split into two components: the demand flow traveling in private mode (gPRIw ) and the demand flow
going through the public transportation network (gTPw ). To overcome that indetermination, we first define
gTPw and gPRIw as modal demand flow variables, whose values must be within the interval (0, gw). Then we
add the following constraints:

gTPw + gPRIw = gw (ξw) , ∀w ∈W (7.29)

gTPw , gPRIw ≥ 0, ∀w ∈W (7.30)

which balance the modal demand flow for each OD demand pair. Finally, the expression of the right hand
side vector bp is replaced with the following:

bpi =


∑
q∈Dp

gTPp,q if i = p(w)

−gTPpi if i ̸= p(w), i ∈ Dp

0 if i /∈ Dp

, ∀p ∈ O (7.31)

Observe that this right side term is no longer constant, since it depends on decision variables gTPw . Now,
let’s move on to the changes in the passenger objective function. The entropy functions (EPRIw and ETPw )
have the following form:

EPRIw = gPRIw ·
(
ln gPRIw − 1

)
(7.32)

ETPw = gTPw ·
(
ln gTPw − 1

)
(7.33)

which were introduced by Wilson [184]. The objective function ϕ can be built using these entropy functions
in collaboration with the modal utilities (UPRIw and UTPw ) as follows:

ϕ =
∑
w∈W

∑
m∈M

(Umw · gmw + Emw ) (7.34)

Then, substituting functions Em
w with (7.32) - (7.33) and Umw with (7.1) - (7.2), then arranging each term

properly, we arrive at the following expression for ϕ:

ϕ =
∑
w∈W

[
gPRIw ·

(
ln gPRIw − βPRIw − θw · tPRIw − γPRIw · dPRIw − 1

)
+ (7.35)

+gTPw ·
(
ln gTPw − βTPw − θw · tTPw − 1

)]
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This equation cannot be directly used as the passenger objective function for the elastic demand, since
the unit travel time tTPw depends on the dual variables λpq , λ

p
p, according to equation (7.19). However, this

inconvenience can be easily overcome by replacing the term θw · tTPw · gTPw with the passenger traveling time
costs (2.2). Let us continue to consider the passenger flows throughout the public transportation network,
expressed in terms of origins by the vector xp. Then:

ϕ =
∑
w∈W

[
gPRIw ·

(
ln gPRIw − βPRIw − θw · tPRIw − γPRIw · dPRIw − 1

)
+ (7.36)

+gTPw ·
(
ln gTPw − βTPw − 1

)]
+
∑
p∈O

cTxp

where c is a vector of the link traveling time costs, which includes properly arranged weights θw. Finally, let

us divide (7.36) by
1

θw
, arriving at the final passenger objective function for the elastic demand:

zpax =
∑
w∈W

1

θw

[
gPRIw ·

(
ln gPRIw − βPRIw − θw · tPRIw − γPRIw · dPRIw − 1

)
+ (7.37)

+gTPw ·
(
ln gTPw − βTPw − 1

)]
+
∑
p∈O

c̃Txp

where c̃ stands for the vector of the modified link travel time costs. The combined modal splitting assign-
ment model will be then stated as a minimized objective function (7.37) subject to (6.3) - (6.10), (7.29) and
(7.30). The following proposition proves that a logit modal split is attained by the optimal solutions of this
model:

Proposition (validity of objective function (7.37)). Equations (7.3) and (7.4) provide a logit modal split
that can be reproduced by the minimized objective function (7.37) with decision variables x, gPRI and
gTP ; subject to the link-flow balance constraints (7.6), (7.7), capacity constraints (7.8), modal split con-
straints (7.29), (7.30).

Proof: Consider the following lagrangian function 7.38 for the minimization problem of the statement:

L(x, g,λ,µ,ν, ξ) = zpax − λT (A x− b)− µTx− νT

x̄−
∑
p∈O

xp

− (7.38)

− ξT
(
gTP + gPRI − g

)
where the dual variable vector ξ is associated with the demand flow balance constraints (7.29). If we now
apply the stationary condition to the demand mode flow variables gTPw and gPRIw , i.e., ∇gTP L(x, g, λ, µ,
ν) = 0 and ∇gPRI L(x, g, λ, µ, ν) = 0, we obtain the following equations:

1

θw
·
[
ln gTPw + βTPw

]
− ξw + tTPp(w),q(w) = 0 (7.39)

1

θw
·
[
ln gPRIw − ŨPRIw

]
− ξw = 0 (7.40)

where ŨPRIw is a slight modification of the private utility function (7.1) in which all terms have been di-
vided by the weight θw. Rearranging the terms of equations (7.39) - (7.40), we can obtain the following
relationships between the utility functions and variables gmw , ξw:
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ŨTPw =
1

θw
ln gTPw − ξw (7.41)

UPRIw =
1

θw
ln gPRIw − ξw (7.42)

where ŨTPw is similar to the public transportation utility function (7.2) in which all terms have been divided
by the weight θw. Isolating the gTPw and gPRIw variables from equations (7.41)-(7.42), we obtain:

gTPw = expθ
w·(ξw+ŨTP

w ) (7.43)

gPRIw = exp(θ
w·ξw+UPRI

w ) (7.44)

and if we undo the parenthesis in (7.43) and multiply all the elements by θw, we arrive at the following
expression, which depends on the standard form of the utility functions:

gTPw = exp(θ
w·ξw+UTP

w ) (7.45)

gPRIw = exp(θ
w·ξw+UPRI

w ) (7.46)

Finally, if we compute the ratio expressions
gTPw
gw

and
gPRIw

gw
by using (7.45)-(7.46) in collaboration with

(7.29) - (7.30), we arrive at the following equations:

gPRIw = gw ·
1

1 + exp(UTP
w −UPRI

w )
(7.47)

gTPw = gw ·
1

1 + exp(UPRI
w −UTP

w )
(7.48)

which are in fact the logit distributions functions (7.3)-(7.4). Thus, we have proved that the objective func-
tion (7.37) is valid. �

For computational implementation, we do not work directly with (7.37), since the modal entropy func-
tions (7.32) - (7.33) are non-linear. However, as they are convex, we can linearize them with piecewise linear
functions as follows. Let us denote ϕPRIw and ϕTPw as continuous free variables which approximate the real
values of (7.32) - (7.33). Then the linear approximation can be implemented by means of the following set
of constraints:

ϕPRIw − bwr · gPRIw ≥ awr , ∀ r ∈ Rw, w ∈W (7.49)

ϕTPw − bwr · gTPw ≥ awr , ∀ r ∈ Rw, w ∈W (7.50)

where bwr and awr are the coefficients of the piecewise linear functions that linearize (7.32) - (7.33) at interval
r ∈ Rw. Now, if we replace the terms in (7.37) (which are related to (7.32) - (7.33)) with variables ϕPRIw

and ϕTPw , we arrive at the following passenger objective function, which has been implemented:
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zpax =
∑
w∈W

1

θw

[
ϕPRIw − gPRIw ·

(
βPRIw + θw · tPRIw + γPRIw · dPRIw

)
+ (7.51)

+ϕTPw − gTPw · βTPw
]
+
∑
p∈O

c̃T xp

For the sake of simplicity, we have skipped over the details for obtaining the coefficients related to
piecewise linear equations (bwr and awr ). The interested reader is referred to appendix section 9.3.

7.4 Formulating the bimodal splitting of demand flow

The model with elastic demand cannot be formulated by directly incorporating the aforementioned changes
into the mathematical programming problem shown in section 2.3. Notice that the modal entropy functions
(7.32) - (7.33) do not give any currency units, and thus they cannot be integrated into the global objective
function (2.1). Moreover, it expresses a tradeoff between two agents: operators and users, whereas the
entropy function provides a way of choosing the transportation mode, which has nothing to do with the ob-
jective function’s goal.

This conflict can be overcome by formulating the network design model with elastic demand as a sub-
class of a mixed-integer linear bilevel problem (MILBP ), where only the upper level controls discrete
variables. Following this subsection, we will provide: its mathematical formulation, a summary of its solv-
ing algorithm (shown in detail in section 3.5.6.2), and an enhanced version based on the ideas of Magnanti
& Wong [125] and Papadakos [147].

A subclass of MILBP , where only the upper level controls discrete variables, can be formulated as
follows:

min
x1,x2∈X,y

c11x1 + c12x2 + c13y (7.52)

s.t. min
y

c21x1 + c22x2 + c23y

s.t. g(x1,x2,y) , A1x1 +A2x2 +A3y ≤ b

x1 ∈ Zm1 , x2 ∈ ℜm2

y ∈ ℜ+,n

Regarding the elastic demand model, the m1 - dimensional vector x1 is related to the network layout
variables δ, ỹ and planning variables b, whereas the m2 - dimensional vector x2 is associated with the re-
maining layout variables x, y and remaining planning variables f , ∆b. Finally, the n - dimensional vector
y holds all the variables related to passenger flows and modal choices: u, v, ṽ, gTP , gPRI , ϕTP , ϕPRI .
Thus, the upper level objective function optimizes the global function (2.1), whereas the lower level func-
tion optimizes the modal demand splitting function (7.51). Regarding constraint sets, X symbolizes the
independent operator constraint set, whereas g(x1,x2, y) contain the interdependent constraint set between
operators and passengers.

In section 3.5.6.2, it is demonstrated that the MILBP (7.52) can be solved by means of an algorithm
which splits this problem into two simpler problems. One of them is called the master problem, which
relaxes the original MILBP . Its mathematical structure is as follows:
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min
x1,x2,δ,w1,w2

c11x1 + c12x2 + w1 + w2 (7.53)

s.t. w1 ≥ ψ w2 + h1k, ∀k ∈ K

w2 ≥ h2k, ∀k ∈ K

δk ≤ 1− 1

Mk

(
w2 − h2k

)
, ∀k ∈ K

∑
k∈K

δk ≥ 1

x1,x2 ∈X

x1 ∈ Zm1 , x2 ∈ Rem2

w1, w2 free

δ ∈ {0, 1}|K|

which controls the operator variables as well as variables w1, w2, δ. These are related to the Benders cuts
hnk as well as an extra set, which is used to assure that at least one h2k is active. The Benders cuts are used
to iteratively build the active interdependencies in the upper and lower level problems by means of resolving
the second subproblem. It consists of a hierarchical problem with the following mathematical structure:

min
y

(c̃13 + c23) y (7.54)

min
y

c23 y

s.t. g(x̄1, x̄2,y) , A3y ≤ b−A1x̄1 −A2x̄2

y ∈ ℜ+,n

where both objective functions are related to passenger costs. The difference relies on the inclusion of costs
c̃13 in the upper level objective function. Regarding the elastic demand model, c23 are related to the pas-
senger travel time costs, whereas c̃13 are associated to the remaining utility function costs and the entropy
function costs.

Problem (7.54) can be solved in two steps by resolving two subproblems called SP1 and SP2. The
latter is related to the inner problem, and thus its mathematical structure is as follows:

min
y

c23 y (7.55)

s.t. g(x̄1, x̄2,y) , A3y ≤ b−A1x̄1 −A2x̄2 (π2)

y ∈ ℜ+,n

The optimal dual variables of this problem (π2) are used to build a linking constraint which takes the
place of the inner problem in (7.54) and allows the formulation of the SP1 problem as follows:
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min
y

c̃13y (7.56)

s.t. c23y = (b−A1x̄1 −A2x̄2)π2 (ψ)

g(x̄1, x̄2,y) , A3y ≤ b−A1x̄1 −A2x̄2 (π1)

y ∈ ℜ+,n

where cost c23 has been removed. This operation is valid since the master objective function includes vari-
able w1, which approaches the expression of c̃13 + c23y by means of cut constraints h1k, ∀ k ∈ K. The
derivation of these two subproblems is based on duality theory, and the proof can be found in section 3.5.6.2.

Now, if we incorporate the changes mentioned in the previous subsection into the elastic passenger as-
signment model, problems SP1 and SP2 can be explicitly formulated by (7.73) - (7.83) and (7.63) - (7.72),
respectively. Notice that in parenthesis on the right hand side of the constraints, we have written its dual
variables. Moreover the linking constraint (7.74) in SP1 has been expressed by using the optimal primal
value of SP2 (z∗SP2), which is equivalent to the dual one, according to the strong duality theorem.

Problems (7.73) - (7.83) and (7.63) - (7.72) have been expressed in their primal form instead of in dual.
This is because of formulation issues, since it is easier to state them in the primal version and pass them
to a commercial optimization software like CPLEX, which provides both the primal and dual variables as a
solution.

Given the dual variables associated with the independent right side constraint terms (7.74) - (7.83) and
(7.64) - (7.72) of the SP1 and SP2 problems, respectively, the optimality Benders cuts can be explicitly
formulated as follows:

hnk =
∑
p∈O

∑
i∈N

∑
l∈LN

i

[
(c
πk,n
i,p,l
− c

γk,ni,p,l
)ỹli − cπk,n

i,p,l
yli

]
+
∑
w∈W

(
c
ξk,nw

+ c
νk,nw

)
−
∑

(i,j)∈ATP

∑
l∈Lij

c
τk,nij,l

f̃ lij (7.57)

where n and k are indexes denoting the subproblem and iteration of the algorithm, respectively, and c
πk,n
i,p,l

,

c
γk,ni,p,l

, c
ξk,nw

, c
νk,nw

and c
τk,nij,l

are coefficient functions of the master variables involved in the bender’s cut

associated with the problem’s dual variables. Their mathematical expressions are as follows:

c
πk,n
i,p,l

= gp · πl,k,ni,p (7.58)

c
γk,ni,p,l

= gp · γk,ni,p,l (7.59)

cξkw = gw · ξk,nw (7.60)

cνkw =
∑
r∈Rw

awr
∑
m∈M

νk,nr,w,m (7.61)

c
τk,nij,l

= q · τk,nij,l (7.62)



7 Modeling Approach with Elastic Demand 122

zSP2 = min
v,ṽ,u,g,ϕ

∑
w∈W

1

θw

(∑
m∈M

ϕmw − ŨPRIw gPRIw + βTPw gTPw

)
+ (7.63)

+
∑
p∈O

∑
(i,j)∈A

∑
l∈Lij

tTPij vp,lij + tCOMij upij


s.t.

∑
l∈Li

 ∑
j∈la(i)

vp,lij −
∑
j∈ly(i)

vp,lji

+
∑

j∈ACOM (i)

upij −
∑

j∈ACOM (i)

upji − b
p
i = 0

(
βk,2i,p

)
, ∀i ∈ N, p ∈ O (7.64)

vp,l
inv+(i)

− vp,ly(i) −
∑

j∈Al
x+(i)

(
vp,lij +Ψp,l

ij

)
= 0

(
ρl+,k,2i,p

)
, ∀l ∈ L, i ∈ NS+

TP (l), p ∈ O (7.65)

vp,l
inv−(i)

− vp,la(i) −
∑

j∈Al
x−(i)

(
vp,lji +Ψp,l

ji

)
= 0

(
ρl−,k,2i,p

)
, ∀l ∈ L, i ∈ NS−

TP (l), p ∈ O (7.66)

vp,l
inv+(i)

− vp,l
inv−(i)

= 0
(
χl,k,2j,p

)
, ∀l ∈ LE , i ∈ NP

TP (l), p ∈ O (7.67)∑
(r,s)∈AN

xya(i)

vp,lrs ≤ ỹli
(
γ2i,p,l

)
, ∀l ∈ LN , i ∈ NN

TP , p ∈ O (7.68)

∑
(r,s)∈AN

x (i)

ṽp,lrs ≤ yli − ỹli
(
π2i,p,l

)
, ∀l ∈ LN , i ∈ NN

TP , p ∈ O (7.69)

∑
p∈O

vp,linv(i,j) ≤ q · f̃
l
ij

(
τ2ij,l
)
, ∀(i, j) ∈ ATP , l ∈ Lij (7.70)

gTPw + gPRIw = gw (ξw2 ) , ∀w ∈W (7.71)

ϕmw − bwr · gmw ≥ awr
(
ν2r,w,m

)
, ∀w ∈W, r ∈ Rw, m ∈M (7.72)
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zSP1 = min
v,ṽ,u,g,ϕ

−
∑
w∈W

1

θw

∑
m∈M

ϕmw (7.73)

s.t.

∑
w∈W

1

θw

(∑
m∈M

ϕmw − ŨPRIw gPRIw + βTPw gTPw

)
+ (7.74)

+
∑
p∈O

∑
(i,j)∈A

∑
l∈Lij

tTPij vp,lij + tCOMij upij

 = z∗SP2 (η)

∑
l∈Li

 ∑
j∈la(i)

vp,lij −
∑
j∈ly(i)

vp,lji

+
∑

j∈ACOM (i)

upij −
∑

j∈ACOM (i)

upji − b
p
i = 0

(
βk,1i,p

)
, ∀i ∈ N, p ∈ O (7.75)

vp,l
inv+(i)

− vp,ly(i) −
∑

j∈Al
x+(i)

(
vp,lij +Ψp,l

ij

)
= 0

(
ρl+,k,1i,p

)
, ∀l ∈ L, i ∈ NS+

TP (l), p ∈ O (7.76)

vp,l
inv−(i)

− vp,la(i) −
∑

j∈Al
x−(i)

(
vp,lji +Ψp,l

ji

)
= 0

(
ρl−,k,1i,p

)
, ∀l ∈ L, i ∈ NS−

TP (l), p ∈ O (7.77)

vp,l
inv+(i)

− vp,l
inv−(i)

= 0
(
χk,1j,p,l

)
, ∀l ∈ LE , i ∈ NP

TP (l), p ∈ O (7.78)∑
(r,s)∈AN

xya(i)

vp,lrs ≤ ỹli
(
γ1i,p,l

)
, ∀l ∈ LN , i ∈ NN

TP , p ∈ O (7.79)

∑
(r,s)∈AN

x (i)

ṽp,lrs ≤ yli − ỹli
(
π1i,p,l

)
, ∀l ∈ LN , i ∈ NN

TP , p ∈ O (7.80)

∑
p∈O

vp,linv(i,j) ≤ q · f̃
l
ij

(
τ1ij,l
)
, ∀(i, j) ∈ ATP , l ∈ Lij (7.81)

gTPw + gPRIw = gw (ξw1 ) , ∀w ∈W (7.82)

ϕmw − bwr · gmw ≥ awr
(
ν1r,w,m

)
, ∀w ∈W, r ∈ Rw, m ∈M (7.83)

Finally, using the cut expression (7.57), we can explicitly formulate the relaxed MIBLP (master prob-
lem) as follows:

zMP = min (1− α) zop + α (ω1 + ω2) (7.84)
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subject to

Network design constraints (2.4)-(2.7)

Line frequency setting constraints (2.33)-(2.36) and (2.42)-(2.45)

Breaking symmetry constraints (2.59)

(2.60)-(2.63) if routing model M1 is chosen or,
Relaxing integrality constraints (2.60)-(2.63) if routing model M2 is chosen or,

(2.60)-(2.61) otherwise

(2.8)-(2.12) if routing model M1 is chosen or,
Routing constraints (2.8)-(2.9), (2.19)-(2.22), (2.24)-(2.26) if routing model M2 is chosen or,

(2.27)-(2.29) otherwise

and the following optimality Benders cuts:

ω1 ≥ η ω2 + h1k, ∀k ∈ Ω (7.85)

ω2 ≥ h2k, ∀k ∈ Ω (7.86)

δk ≤ 1− 1

Mk

(
ω2 − h2k

)
, ∀k ∈ Ω (7.87)

∑
k∈Ω

δk ≥ 1 (7.88)

where constraints (7.85) - (7.86) are related to Benders cuts coming from SP1 and SP2 problems, respec-
tively. Moreover, constraints (7.87) - (7.88) assure that, at least one Benders cut (7.86) is active. δk is a
binary variable denoting whether the cut (7.86) computed at iteration k is active, and Mk is a parameter big
enough to prevent the cut (7.86) from being active when δk = 0. This mechanism is required because of
the unbounded nature of (7.86), as stated in section 3.5.6.2. Finally, zop is related to the operator objective
function (2.3).

The master problem (7.84) and subproblems (7.73) - (7.83) and (7.63) - (7.72) interact according to the
scheme shown in table 3.7 of section 3.5.6.2. This scheme, which is a direct adaptation of the classical
Benders decomposition [14], is not suitable for efficiently solving the elastic demand model. The reasons
are related to the degeneration of the dual forms of (7.63), (7.73), from which the inferred Benders cuts
are weak, in the sense that they do not constrain very much the variables w1 and w2. Thus, it requires an
exorbitant number of Benders iterations to reach (near-) optimality.

This limitation can be overcome by applying pareto-optimality to the Benders cuts (7.85) - (7.86). The
development of this theory was carried out by Magnanti & Wong [125], and practical improvements were
performed by Papadakos [147]. A detailed explanation of both can be found in section 3.5.5 of chapter
3. Here, we will give only the final result for the sake of simplification. Let us denote (y0, ỹ0, f̃0) as a
point in the relative interior of the convex hull of set Y (ri(Y c)), where Y is made of points satisfying all
master problem constraints except (7.85) - (7.88). Then the pareto-optimal Benders cuts can be formulated
by changing function (7.57) as follows:

hnk =
∑
p∈O

∑
i∈N

∑
l∈LN

i

[
(c
πk,n,0
i,p,l
− c

γk,n,0
i,p,l

)ỹl,0i − cπk,n,0
i,p,l

yl,0i

]
+
∑
w∈W

(
c
ξk,n,0
w

+ c
νk,n,0
w

)
−
∑

(i,j)∈ATP

∑
l∈Lij

c
τk,n,0
ij,l

f̃ l,0ij

(7.89)

The dual variables πk,n,0i,p,l , γk,n,0i,p,l , ξk,n,0w , νk,n,0w and τk,n,0ij,l , which are used to compute the coefficients,
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come from the resolution of the independent Magnanti & Wong Problem. This problem has the same math-
ematical structure of (7.54), and thus it can be solved by means of (7.73) - (7.83) and (7.63) - (7.72), but
replacing (y, ỹ, f) with (y0, ỹ0, f̃0).

Table 7.1 shows the interaction of these problems, where in steps 3 and 7 the independent Magnanti &
Wong Problem and subproblem are solved in two phases. The point (y0, ỹ0, f̃0) ∈ ri(Y c) is updated by
means of a linear convex combination of the current point and the variables obtained from resolving the last
master problem(see step 11). Furthermore, we also include the McDaniel & Devine [136] enhancement and
the ad hoc techniques presented in subsections 6.5.1 and 6.5.2, respectively, of chapter 6. The former allows
us to quickly obtain valid Benders cuts by solving a relaxed master problem in order to decrease the number
of integral master problem resolutions. Relaxation is done by dropping the integrality requirements in the
discrete variables. The latter allows us to obtain a feasible solution (of the integral master problem) from
the optimal solution found in that relaxed master problem, such that a feasible and possibly near optimal
solution can be found after having finished phase 0.

1. Set UB ←∞; iteration k ← 0; allowable error ϵ; and phase← 1

2. Find an Initial Core Point (y0, ỹ0, f̃0).

3. Solve SP2k (7.63)− (7.72) with (y0, ỹ0, f̃0).

Solve SP1k (7.73)− (7.83) with (y0, ỹ0, f̃0), z∗,kIMWP2.

4. Generate hnk with (πk,0n , γk,0n , τk,0n , ξk,0n , νk,0n ), ∀ n ∈ {1, 2} .

5. If phase = 1 then continue, otherwise goto Step 6b.

6a. Remove integrality for variables ỹli, δ
l
c, b

l, δk.

Solve MP k (7.84) with all c ∈ Λ.

Activate integrality for variables ỹli, δ
l
c, b

l, δk.

Solve MP k (7.84) with all c ∈ Λ such that δlc ≥ ξ, goto Step 7.

6b. Solve MP k (7.84) with all c ∈ Λ.

7. LB ← (1− α) · zkop + α · (ωk1 + ωk2 ).

8. Solve SP2k (7.63)− (7.72) with (yk, ỹk, f̃k).

Solve SP1k (7.73)− (7.83) with (yk, ỹk, f̃k), z∗,kSP2.

9. UB ← min
{
UB, (1− α) · zkop + zkSP1 + zkSP2

}
.

10. if phase = 2 and
UB − LB

LB
< ϵ then STOP

if phase = 1 and
UB − LB

LB
< ϵ then phase← 2.

11. Update (y0, ỹ0, f̃0)← λ · (y0, ỹ0, f̃0) + (1− λ) · (yk, ỹk, f̃k)

12. k ← k + 1 and goto Step 3.

Table 7.1: Pseudo-code of the Specialized Benders Scheme under elastic demand.
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7.5 Preliminary computational results

In this section, we show some preliminary computational results to verify the model under elastic demand
by means of the solving scheme shown in table 7.1 using λ = 0.5. Two test networks have been used. The
first one is a complete 6-node railway network shown in Figure 8.1, whereas the other one is a 9-node and
26-link railway network depicted in Figure 8.2. Since the ad hoc techniques explained in subsection 6.5.2
need to use the routing submodel M3 (see section 2.3.3.3), this submodel has been chosen for carrying out
these experiments. We refer the reader to section 8.1.1 for further details regarding the input parameters
associated with both networks.

The first table 7.2 shows the general results . All mathematical programming formulations have been
coded in AMPL and solved using a CPLEX v.12.4.0 solver in an R5500 working station with Intel(R) pro-
cessor Xeon(R), CPU E5645 2.40 GHz and 48 Gbytes of RAM. In the table, the column Network denotes
the test network used. Label N1 refers to the 6-node network and label N2 to the 9-node network. The next
column, |L|, stands for the maximum number of lines to be constructed, whereas column |Λ| reports the
number of fixed corridors in the routing submodel M3. Column Method denotes the solving scheme used
where BD refers to the Benders Decomposition scheme 7.1 without line splitting; BD + LSA1 relates to
the Benders Decomposition driven by the Line Splitting Algorithm under the non-incremental load variant,
and BD + LSA2 stands for the Benders Decomposition driven by the Line Splitting Algorithm under the
incremental load variant. Column F.Obj. shows the best global objective function value found in each Ben-
ders phase. Column TCPU reports the total number of elapsed seconds in each Benders phase for the LSA
scheme used in the experiment. Column Gap % denotes the final relative gap percentage in each Benders
phase, and the last column, Iter, shows the total number of iterations in each Benders phase. In those cells
with two values separated by a hyphen, the left one refers to phase 0 of the Benders scheme 7.1 and the right
one to phase 1.

Network |L| |Λ| Method F.Obj. TCPU Gap % Iter
BD 32463 - 30456 955 - 64569 0.15 - 0.55 198 - 108

2 1967 BD + LSA1 31062 - 31073 16 - 164 0.66 - 0.11 50 - 48
BD + LSA2 31062 - 31073 23 - 85 0.68 - 0.31 66 - 34

N1 BD 28934 - 28020 1897 - 85308 0.09 - 7.57 247 - 119
3 1967 BD + LSA1 30019 - 29357 15 - 24 0.73 - 0.27 68 - 52

BD + LSA2 30507 - 29130 28811 - 33 0.72 - 0.27 3475 - 20
BD 34231 -∞ 86900 - 0 11 -∞ 292 - 0

4 1967 BD + LSA1 27500 - 27578 31 - 187 0.6 - 0.3 84 - 62
BD + LSA2 27040 - 26258 21635 - 118 0.8 -∞ 3198 - 55
BD 173373 - 173216 87 - 87157 0.8 - 2 64 - 381

2 295 BD + LSA1 171723 - 170254 9 - 22 0.4 - 0.6 31 - 24
BD + LSA2 171696 - 170671 61 - 391 0.7 - 0.07 124 - 124
BD 172125 - 169741 35726 - 51413 1.9 - 6.8 314 - 99

N2 3 295 BD + LSA1 168754 - 168477 15 - 24 0.3 - 0.5 50 - 28
BD + LSA2 171091 - 168863 16 - 327 0.6 - 0.6 53 - 106
BD 173782 -∞ 87208 - 0 1.3 -∞ 488 - 0

4 295 BD + LSA1 167805 - 167671 16 - 61 0.3 - 0.6 52 - 47
BD + LSA2 167680 - 167293 19 - 410 0.5 - 0.6 66 - 155

Table 7.2: General results for the experiments performed in the test networks.

Results show that only instances with two lines under construction can be solved to optimality without
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using the Line Splitting Algorithm (LSA). However, it takes 18.2 hours to solve the 6-node network instance,
whereas the 9-node network instance reaches the time limit of 24 hours with a relative gap of 2 % in phase
1. As for the BD driven by the LSA, it seems more appropriate to use the non-incremental variant since its
solving time is much lower than the incremental variant while maintaining practically the same good solu-
tion. The gap reported by the LSA for these instances is the average sum of the final Benders gap at each
LSA iteration. Focusing now on the Benders phases, phase 0 gives a solution which is close to the one found
in phase 2, no matter what the solving scheme is. Furthermore, the elapsed time is clearly much lower than
the one of the phase 1.

The following table 7.3 holds the time distribution among the three problems involved in the Benders
Decomposition, where new columns TMP , TSP and TIMWP stand for the time consumed in solving the
master problem (MP ), the subproblem (SP ) and the Independent Magnanti & Wong (IMWP ), respec-
tively. We can see that practically all the CPU time is spent on the MP resolution for both Benders phases.

Network |L| Method TMP TSP TIMWP TCPU

BD 930 - 64552 8 - 4 17 - 13 955 - 64569
2 BD + LSA1 11 - 159 2 - 2 4 - 3 16 - 164

BD + LSA2 16 - 82 2 - 1 5 - 2 23 - 85
BD 1867 - 85280 10 - 4 21 - 24 1897 - 85308

N1 3 BD + LSA1 6 - 19 3 -2 6 - 3 15 - 24
BD + LSA2 28565 - 30 121 - 1 125 - 2 28811 - 33
BD 86856 - 0 10 - 0 34 - 0 86900 - 0

4 BD + LSA1 19 - 179 4 -3 7 - 5 31 - 187
BD + LSA2 21363 - 110 133 - 3 139 - 5 21635 - 118
BD 74 - 87103 3 - 15 10 - 39 87 - 87157

2 BD + LSA1 4 - 18 1 - 1 4 - 3 9 - 22
BD + LSA2 43 - 370 6 - 8 12 - 13 61 - 391
BD 35654 - 51385 15 - 4 57 - 23 35726 - 51413

N2 3 BD + LSA1 6 - 19 3 - 2 6 - 3 15 - 24
BD + LSA2 6 - 306 3 - 7 7 - 15 16 - 327
BD 87092 - 0 22 - 0 93 - 0 87208 - 0

4 BD + LSA1 6 - 50 3 - 4 7 - 7 16 - 61
BD + LSA2 9 - 380 3 - 9 7 - 21 19 - 410

Table 7.3: Details of the time distribution for elastic demand in the test networks.

Next table 7.4 shows the time distribution within the MP resolution for phase 0 where new columns
TMP1 and TMP2 stand for the time spent in solving the relaxed and the reduced master problems, respec-
tively. Results show that in all instances where the total MP solving time is significantly high (see last
column), the reduced MP takes much more time to solve than the relaxed MP .

To conclude the performance analysis, we include tables 7.5 and 7.6 to see the time distribution in the SP
and the IMWP problems. On table 7.5, new columns TSP1, TSP2, denote the computing times in seconds
of the subproblems (7.73) - (7.83) and (7.63) - (7.72), respectively. Analogously, in table 7.6, new columns
TIMWP1 and TIMWP2 refer to (7.73) - (7.83) and (7.63) - (7.72), respectively, but they are parameterized
by the core point (y0, ỹ0, f̃0).

Results of table 7.5 show that the SP solving time is higher in phase 0 and that both subproblems
consume a similar amount of time in both phases. Regarding the results in table 7.6, they do not clarify in
which phase the IWMP solving time is higher, but the IWMP1 seems to take more time to be solved.
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Network |L| Method TMP1 TMP2 TMP

BD 59.4 860.6 930
2 BD + LSA1 5.5 5.5 11

BD + LSA2 6 10 16
BD 153 1714 1867

N1 3 BD + LSA1 5 1 6
BD + LSA2 3094 25471 28565
BD 292 86564 86856

4 BD + LSA1 9 10 19
BD + LSA2 4503 16860 21363
BD 4.5 69.5 74

2 BD + LSA1 1 3 4
BD + LSA2 5 38 43
BD 107 35547 35654

N2 3 BD + LSA1 1 5 6
BD + LSA2 1 5 6
BD 273 86819 87092

4 BD + LSA1 1.1 4.9 6
BD + LSA2 1.7 7.3 9

Table 7.4: Master problem time distribution for the first phase under elastic demand for the test networks.

Network |L| Method TSP1 TSP2 TSP

BD 4.3 - 0.75 3.7 - 3.25 8 - 4
2 BD + LSA1 1 - 1 1 - 1 2 - 2

BD + LSA2 1 - 0.5 1 - 0.5 2 - 1
BD 5 - 2 5 - 2 10 - 4

N1 3 BD + LSA1 1 - 0.5 2 - 1.5 3 - 2
BD + LSA2 70 - 0.5 51 - 0.5 121 - 1
BD 6 - 0 4 - 0 10 - 0

4 BD + LSA1 2 - 1.5 2 - 1.5 4 - 3
BD + LSA2 64 - 1.6 69 - 1.4 133 - 3
BD 1.3 - 7.6 2.7 - 7.4 3 - 15

2 BD + LSA1 0.5 - 0.5 0.5 - 0.5 1 - 1
BD + LSA2 3.6 - 4.1 2.4 - 3.9 6 - 8
BD 8 - 2.5 7 - 1.5 15 - 4

N2 3 BD + LSA1 1.5 - 1 1.5 - 1 3 - 2
BD + LSA2 1.3 - 3.3 1.7 - 3.7 3 - 7
BD 10 - 0 12 - 0 22 - 0

4 BD + LSA1 1.4 - 1.9 1.6 - 2.1 3 - 4
BD + LSA2 1.7 - 5 1.3 - 4 3 - 9

Table 7.5: Subproblem time distribution under elastic demand for the test networks.
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Network |L| Method TIMWP1 TIMWP2 TIMWP

BD 11.5 - 4 5.5 - 9 17 - 13
2 BD + LSA1 2.5 - 2 1.5 - 1 4 - 3

BD + LSA2 3 - 1 2 - 1 5 - 2
BD 15 - 5 6 - 19 21 - 24

N1 3 BD + LSA1 2 - 1 4 - 2 6 - 3
BD + LSA2 70 - 1.1 55 - 0.9 125 - 2
BD 23 - 0 11 - 0 34 - 0

4 BD + LSA1 4 - 3 3 - 2 7 - 5
BD + LSA2 66 - 73 3.1 - 1.9 139 - 5
BD 7 - 23 3 - 16 10 - 39

2 BD + LSA1 2.2 - 1.5 1.7 - 1.5 4 - 3
BD + LSA2 6.7 - 7.5 5.3 - 5.5 12 - 13
BD 37 - 15 20 - 8 57 - 23

N2 3 BD + LSA1 3.5 - 1.7 2.5 - 1.3 6 - 3
BD + LSA2 4.1 - 8.5 2.9 - 6.5 7 - 15
BD 58.5 - 0 34.5 - 0 93 - 0

4 BD + LSA1 4 - 3.5 3 - 3.5 7 - 7
BD + LSA2 5.1 - 13 1.9 - 8 7 - 21

Table 7.6: Independent Magnanti & Wong problem time distribution under elastic demand for the test net-
works.

Moving on to an analysis of the solution, Figures 7.3 - 7.5 show the routing configuration for all instances
performed with the 6-node and 9-node networks with the inelastic and elastic demand variants of the model.
In this way, we can carry out a comparison of both demand variants. First, Figure 7.3 depicts those solutions
related to the 6-node network with two and three lines under construction. We can see that the line segment
configurations are the same for the two demand variants, and that lines L1 and L2 coincide in all instances
(i.e., L1 : 2 − 5 − 6 − 4 − 5 − 2 and L2 : 1 − 3 − 5 − 2 − 6 − 4 − 1). However, regarding the role of
the nodes, some differences appear. For instance, line L2 of the instance with two lines under construction
using elastic demand has nodes 3 and 4, which do not provide service. The same line in the instance with
three lines under construction using elastic demand has nodes 5 and 4, which do not perform service as well.

Next, Figure 7.4 shows those solutions related to the 6-node network with four lines under construction
and to the 9-node network with two lines under construction. Focusing first on the instances associated with
the 6-node network, we can see that there is no coincidence among the line’s segment configurations in the
demand variants, although the number of topological combinations is the same: three rectilinear lines and
one circular (line L4 in the inelastic variant and line L2 in the elastic one). Furthermore, all nodes performed
service no matter what the demand variant is. Moving on to the instance related to the 9-node network, we
can see that line segments coincide partially in both demand variants: line L1 is the same (i.e., 4 − 6 − 9)
whereas L2 is completely different (1 − 2 − 3 − 5 − 4 − 7 − 6 − 8 in the inelastic demand variant and
1 − 3 − 5 − 4 − 7 for the elastic one). Moreover, in the elastic demand variant, node 6 does not perform
service on line L1, and nodes 3 and 4 do not carry out service on line L2.

Last, Figure 7.5 depicts those solutions related to the 9-node network with three and four lines under con-
struction. We can see that in instances with three lines under construction, lines L1 and L2 have the same line
segments and the nodes play the same role as in lines L1 and L2 in instances with two lines under construc-
tion (see previous Figure 7.4). However line L3 is completely different (i.e., L3 : 1−2−3−5−4−7−6−8
in the elastic demand variant and L3 : 7−4−2−1−3−5−6−8 in the inelastic demand one). Moreover, in
the elastic demand variant, half of the involved nodes do not perform service (2, 4, 5, 6). As for the instances



7 Modeling Approach with Elastic Demand 130

with four lines under construction, there is no coincidence regarding the line segment configurations as well
as the node’s role (i.e., L1 : 4−6−9, L2 : 2−3−5−4, L3 : 1−3−2−4−7 and L4 : 2−1−3−4−7−6−8
with the inelastic demand variant, whereas L1 : 1− 3− 5− 4− 6− 9, L2 : 7− 4− 6− 9, L3 : 5− 6− 8
and L4 : 9 − 6 − 7 − 4 − 3 − 2 − 1 with the inelastic demand variant). Moreover, in the elastic demand
variant, node 6 on line L1 does not perform service, nor do nodes 3 and 4 on line L4.

Regarding the analysis of the planning solution, table 7.7 gives the details of using the planning resources
for the inelastic and elastic demand models, allowing a comparison of their solutions for the same instances.
The solution data is taken from the best solution found among the various solving schemes performed. In the
table, the column Demand specifies the demand model used, whereas the columns NL and NLC report
the number of built lines and the ones that have a circular topology. The next two columns, NV and NZ,
stand for the number of assigned vehicles and their corresponding services per horizon time carried out. The
remaining columns report some measures regarding the level of line utilization. The first two columns (Ua

and Ûa) show the average and maximum used capacity of the links. This capacity corresponds to input pa-
rameter qij , which stands for the maximum number of vehicles per time unit allowed through the link (i, j).
The other two columns (U l and Ûl) refer to the capacity of the average and maximum lines used, computed
as the total number of vehicles per time unit carried out, f l, times the maximum vehicle capacity, ql.

Results show that the elastic demand variant uses one less vehicle than the inelastic demand variant.
However, the number of services carried out is quite similar, excluding the instance with four lines under
construction for both networks. In the variant related to the 6-node network, vehicles perform more services
under elastic demand. With the 9-node network, vehicles perform more services under inelastic demand. As
for the utilization indicators, they are both rather similar under elastic demand, except for the Ua measure,
which differs significantly in some instances.

Next, Table 7.8 contains the modal demand splitting solutions for the inelastic and elastic demand vari-
ants. New columns GTP , GCOM and GPRI report the portions of demand assigned to the modes of public
transportation, complementary and private, respectively; whereas column G contains the total amount of de-
mand in absolute values (i.e., GTP + GCOM + GPRI ). Results show that in the elastic demand variant,
passengers do not use the complementary networks at all and instead prefer to go by private mode. Further-
more, the number of users going through the public transportation network drops dramatically, although it
increases with the number of lines under construction.

Complementary to this table, we provide the following table 7.9, which shows the details of the demand
assignment throughout the public transportation network for the inelastic and elastic demand variants. The
new column GTP

0 stands for the total amount of demand that does not use any complementary links (no
walking), whereas column GTP

n shows the demand throughout the complementary links. The last column
GTP denotes the total demand assigned to the public transportation network in absolute values. Results
show that, in both demand variants, complementary links are seldom used. Thus, the demand is served di-
rectly by the public transportation lines.
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Network |L| Demand NL NLC NV NZ U ij Ûij U l Ûl

2 Inelastic 2 2 5 36 77 % 100 % 100 % 100 %
Elastic 2 2 4 36 77 % 100 % 100 % 100 %

N1 3 Inelastic 3 2 6 45 81 % 100 % 100 % 100 %
Elastic 3 2 5 45 81 % 100 % 100 % 100 %

4 Inelastic 4 1 6 54 70 % 100 % 100 % 100 %
Elastic 4 1 6 63 79 % 100 % 100 % 100 %

2 Inelastic 2 0 4 45 69 % 100 % 100 % 100 %
Elastic 2 2 4 54 100 % 100 % 100 % 100 %

N2 3 Inelastic 3 0 5 54 66 % 100 % 100 % 100 %
Elastic 3 3 4 54 67 % 100 % 100 % 100 %

4 Inelastic 4 0 6 72 75 % 100 % 100 % 100 %
Elastic 4 4 5 48 67 % 100 % 93 % 100 %

Table 7.7: Details of resources used for inelastic and elastic demand in the test networks.

Network |L| Demand NL GTP GCOM GPRI G

2 Inelastic 2 80 % 20 % 0 %
Elastic 2 30 % 0 % 70 %

N1 3 Inelastic 3 81 % 19 % 0 % 177000
Elastic 3 40 % 0 % 60 %

4 Inelastic 4 80 % 20 % 0 %
Elastic 4 52 % 0 % 48 %

2 Inelastic 2 91 % 9 % 0 %
Elastic 2 7 % 0 % 93 %

N2 3 Inelastic 3 91 % 9 % 0 % 373000
Elastic 3 8 % 0 % 92 %

4 Inelastic 4 91 % 9 % 0 %
Elastic 4 12 % 0 % 88 %

Table 7.8: Details of modal demand splitting for inelastic and elastic demand in the test networks.
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Network |L| Demand NL GTP
0 GTP

n GTP

2 Inelastic 2 78 % 2 % 80 %
Elastic 2 30 % 0 % 30 %

N1 3 Inelastic 3 79 % 2 % 81 %
Elastic 3 40 % 0 % 40 %

4 Inelastic 4 79.7 % 0.3 % 80 %
Elastic 4 52 % 0 % 52 %

2 Inelastic 2 88 % 2 % 91 %
Elastic 2 6.98 % 0.02 % 7 %

N2 3 Inelastic 3 90 % 1 % 91 %
Elastic 3 7.95 % 0.05 % 8 %

4 Inelastic 4 90 % 1 % 91 %
Elastic 4 11.83 % 0.17 % 12 %

Table 7.9: Details of the demand assignment throughout the public transportation network for inelastic and
elastic demand in the test networks.

We conclude this section by showing the evolution of the Benders relative gap and the global objective
function (GOF) under the different solving schemes and for all the experiments carried out in the 6-node
and 9-node networks throughout figures 7.6 - 7.43. Roughly speaking, we can observe that the GOF evolves
rather hesitantly in all situations, whereas the gap evolution has many plateaus in the centered regions. De-
spite these irregularities, the Benders gap, as well as the GOF, converge to a value as long as the time horizon
is wide enough. This condition does not hold, for instance, in the experiments with three and four lines un-
der construction on both networks, which are solved by means of the BD without LSA. Furthermore, in the
first iteration of the LSA incremental load variant, this also happens in the same experiments for the 6-node
network. This is due to its non-polinomial time performance. It seems that the LSA with a non-incremental
variant shows a certain regularity: the convergence rate is similar in every LSA iteration, unlike the non-
incremental variant where the first LSA iteration takes a lot of time to converge.
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Figure 7.16: Graphs for evolution of the Benders scheme applied to the model under elastic demand with
the 6-node network and four lines under construction. At the top, evolution of the Benders gap for the first
phase. On the bottom, evolution of the global objective function for the first phase.
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Figure 7.35: Graphs for evolution of the Benders scheme applied to the model under elastic demand with
the 9-node network and four lines under construction. At the top, evolution of the Benders gap for the first
phase. On the bottom, evolution of the global objective function for the first phase.
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Chapter 8

Experimentation

This chapter presents the description of the two test networks which have been used throughout the previous
chapters. It also includes two case study networks from which comprehensive experiments have been carried
out using the routing model M3 and the inelastic demand version of the model. They demonstrate that the
model is capable of solving to (near-)optimality real sized-networks in a reasonable computational time.
The structure of the chapter is as follows. Firstly, we describe the test networks, including all the input data;
secondly, we introduce the two case studies together with comprehensive results. Finally, we give general
conclusions and recommendations on when and how to efficiently use each solving technique, base on the
results analysis.

8.1 Experimental networks

This section is devoted to describing the whole set of networks applied to the RTNPD model. They in-
clude two small test networks: a complete 6-node network and a sparse 9-node network, and two case study
networks: a medium-sized network which represents the urban area of Seville (a not so small Spanish city
located on the very south of the country), and a large-sized network which represents the urban area of
Santiago de Chile (the capital city of Chile). In the following subsections, we will introduce each group of
networks.

The results shown in the Seville and Santiago de Chile networks are not intended to be used in the current
working transportation systems for the following reasons. Firstly, the input tuning data does not correspond
to the one used by the operators and, secondly, the models employed are academic, and thus they lack certain
practical and important considerations. We have simply developed approximate models whose accuracy is
limited to the authors’ knowledge and the available horizon time of this work. By using similar data, we are
able to analyze hypothetical scenarios which have the same computational difficulty as real scenarios. The
authors do not advise applying these models to the actual networks.

8.1.1 Test networks

In order to evaluate the model using the solving techniques explained throughout the previous chapters, two
test networks have been proposed. The first one is a complete 6-node railway network shown in Figure 8.1
whereas the other one is a 9-node and 26-link railway network depicted in Figure 8.2. The latter has also
been used in Laporte et al 2010 [109], but with some of the inputs changed and/or not considered. For that
reason, we also report the whole set of parameters for this network. In both figures, there is a four com-
ponent vector (cmij , d

TP
ij , cfij , f̄ij) attached to each link. The meaning of each vector component, from left

to right, is as follows: the stretch allocation cost, the traveling distance for both ways, the service cost, and
the link capacity (maximum number of vehicles per hour). Additionally, we find a number next to the node
representing the station allocation cost (cmi ). Infrastructure construction costs (ccij and cci ) are not included

174



8 Experimentation 175

since they are considered to be 10 times the associated allocation costs.

The amount of demand is 177 and 373 thousand passengers per hour, respectively, and they are split into
each possible node pair combination as follows:

G(W )6N =



- 3 9 7 5 4
4 - 7 9 3 6
18 5 - 10 8 3
7 3 4 - 8 6
7 5 3 3 - 7
9 1 8 8 5 -

 ,

G(W )9N =



- 3 9 7 5 4 2 2 2
4 - 4 9 3 6 1 3 3
10 7 - 10 8 3 3 3 4
7 3 4 - 8 6 7 6 6
5 5 3 3 - 7 4 6 3
9 1 8 8 5 - 4 10 7
3 2 8 7 5 5 - 6 5
2 3 4 6 7 9 6 - 7
2 3 4 6 4 7 5 7 -



(18,1,1.7,4)
(38,1.6,2.8,6)

(28,1.2,2.1,12)
(14,1.8,18,12)

(52,2.2,3,3)

(44,1.8,16,6)

(26,2.2,22,3)

(48,1,6,6)

(24,4,40,2)

(60,2.2,26,3)

(40,1,10,4)

(32,1.4,20,12)(36,3.8,38,6)

(52,1.4,2.7,6)

1 6

2 4

53

(28)

(27) (30)

(42)

(32) (26)

(16,2.8,28,6)

Figure 8.1: 6-node Railway Network.

The walking costs from node to node have been computed as the minimum road street distance divided
by an average passenger’s speed. The resulting matrices are as follows:
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Figure 8.2: 9-node Railway Network.

T 6N
COM =



- 1.6 0.8 2 1.6 2.5
2 - 0.9 1.2 1.5 2.5
1.5 1.4 - 1.3 0.9 2
1.9 2 1.9 - 1.8 2
3 1.5 2 2 - 1.5
2.1 2.7 2.2 1 1.5 -

 ,

T 9N
COM =



- 1.6 0.8 2 1.6 2.5 4 3.6 4.6
2 - 0.9 1.2 1.5 2.5 3.2 3.5 4.5
1.5 1.4 - 1.3 0.9 2 3.3 2.9 3.9
1.9 2 1.9 - 1.8 2 2 3.8 4.1
3 1.5 2 2 - 1.5 3 2 3
2.1 2.7 2.2 1 1.5 - 2.5 3 2.5
3.9 3.9 3.9 2 3 2.5 - 2.5 2.5
5 3.5 4 4 2 3 2.5 - 2.5
4.6 4.5 4 3.5 3 2.5 2.5 2.5 -


The remaining parameters are the same for both networks. The planning features are as follows. The

planning horizon (h̄) is set to 3 hours, the total vehicle’s capacity (q) to 550 passengers, and its average
working speed (without considering service time at stops) rises to 80 km/h. The available vehicle fleet (B)
is set to 20 vehicles and all of them have the same capacities. Moreover, each one has a setting cost (csb) of
80 currency units and their average service time per station (ts) is considered to be 1 minute.

Regarding the passenger features, the boarding and waiting-in-vehicle times per passenger unit (ta and
tx, respectively) have been established at 9 seconds, whereas the alighting time per passenger unit (ty) has
been set to 2 seconds.

Focusing now on the objective function weights, the monetary time parameter θ = 4.86 monetary units/hour
and the tradeoff factor β = 0.9, so that we attach more importance to the users’ costs.

Finally, the infrastructure and planning budgets are set as follows: c̄net = 4000 monetary units and c̄veh
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= 800 monetary units, respectively. The cost of a new vehicle acquisition (cab ) is 20 currency units. Thus, up
to 40 new vehicles can be acquired. No working lines have been considered.

All the aforementioned data has been used as input for the results reported in subsections 2.4, 4.2, 5.2,
6.6 and 7.5. We have not described in detail these networks in the subsections mentioned, since they would
be repetitive.

8.1.2 Case study networks

In this section, we present two case study networks: a medium-sized network, which represents the urban
area of Seville (a small Spanish city located on the very south of the country); and a large-sized network,
which represents the urban area of Santiago de Chile (the capital city of Chile).

8.1.2.1 Seville Network

Seville Network is a medium-sized network consisting of 24 nodes, 264 links and 552 od-demand pairs.
Figure 8.3 shows the layout of the network, where for the sake of clarification we have omitted all the data
costs associated with the links and the nodes. Instead, we present them in the following pages 202 - 205.

The first page holds the link maintenance costs in a lower-triangular matrix, such that each i-j cell indi-
cates the construction cost of the link (i, j) plus its inverse. They are expressed as multiples of the currency
unit. The next page includes the traveling distance costs in a lower-triangular matrix as well. So each i − j
cell denotes the distance of the link (i, j) plus its inverse. They are expressed in kilometers. The third page
contains the shortest walking time costs for each od-pair in a full matrix. They are expressed in hours. Fi-
nally, the fourth page contains the od-demand matrix expressed in thousand trips per hour.

Regarding the node costs, the following vector gives the maintenance costs of the 24 nodes, which can
work as stations:

Cmi = {21.7, 21.7, 24.1, 17.9, 21.7, 17.9, 22.2, 22, 22, 24.3, 17.6, 21.9, 19.5, 22.9, 22, 24.4, 22.2 . . .
. . . , 22.4, 32.7, 37.4, 33.7, 29.1, 32.8, 31.9}

Its construction costs as well as the link construction costs are 10 times its corresponding maintenance
costs. The number of nodes and links which can be constructed are limited to an infrastructure budget of
15000 currency units.

Moving on to the planning data, the link capacities and service planning costs are set to f̄ij = 12 and
cfij = 20, ∀(i, j) ∈ ATP , respectively. The 17-vehicle fleet is heterogeneous and its features are as follows.
Each vehicle has an average speed of 30 km/h and a whole capacity of 275 passengers. The whole amount
of service they carry out cannot exceed the planning horizon of 12 hours. If these 17 vehicles are not enough
to satisfy the demand assigned to the public transportation network, some new vehicles can be acquired, but
without surpassing the 800 currency units of the planning budget.

The remaining unmentioned input parameters are the same ones used in the test networks. They include
the absence of working lines as well as the possibility that every node can work as a station, as shown above
in the Figure 8.3.
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Traveling distance cost matrix

- 0 0 0 0 0 0 0 0 0 0 0
0.44 - 0 0 0 0 0 0 0 0 0 0
0.88 0.64 - 0 0 0 0 0 0 0 0 0
1.02 0.98 0 - 0 0 0 0 0 0 0 0
0 0 1.02 0 - 0 0 0 0 0 0 0
0 0 0 0 0 - 0 0 0 0 0 0
0 0 1.12 0 0.98 0 - 0 0 0 0 0
0.92 0.92 0.28 0 0.74 0 0.88 - 0 0 0 0
0.92 0.92 0.28 0 0.74 0 0.84 0.12 - 0 0 0
1.04 1.04 0.04 0 0.62 0 0.88 0.12 0.12 - 0 0
0 0 0 0 0 1.06 0 0 0 0 - 0
0 0 0 0 0.08 0 0.34 0 0 1.06 0 -
0 0 0 0 0.18 0 1.08 0.92 0.92 0.08 0 0.9
0 1.06 0.62 0 0.88 0 0.86 0.78 0.66 0.78 0 0
0 0 0.76 0 0 0 0 0.92 0.08 0.92 1.12 0
0 0.94 0.5 0 0.1 0 1.1 0.66 0.54 0.66 0 0
0 0 0.94 0 0.12 0 0.86 0.66 0.66 0.54 0 0.68
0.94 0.5 0.14 0 1.16 0 0 0.42 0.42 0.54 0 0
0 0 0.867 0 0.653 0 0.327 0.587 0.587 0.553 0 0.593
0 0 0 0 0 0 0.708 0 0 0 1.08 0.888
0 0.916 0.308 0 0.744 0 0.844 0.468 0.348 0.468 0 0
0 0 0 0 0 0.795 0 0 0 0 0.265 0
1.02 0.585 0.885 0.735 0 0 0 1.17 1.17 0 0 0
0 0 0.72 0 0.46 0 0 0.56 0.68 0.56 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0
0.98 - 0 0 0 0 0 0 0 0 0 0
0 0.54 - 0 0 0 0 0 0 0 0 0
0 0.24 0.3 - 0 0 0 0 0 0 0 0
0.26 0.76 0 0.92 - 0 0 0 0 0 0 0
0 0.56 0.7 0.44 1.08 - 0 0 0 0 0 0
0.753 0.607 1.15 0.847 0.533 1.01 - 0 0 0 0 0
0 0.808 1.08 0.928 0 0 1.03 - 0 0 0 0
0.924 0.312 0.556 0.256 0.664 0.416 0.591 1.12 - 0 0 0
0 0 0 0 0 0 0 0 0 - 0 0
0 1.15 0.615 0.905 0 0.745 0 0 1.16 0 - 0
0.48 0 0 0 0.58 0.86 1.11 0 1.03 0 0 -
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Walking time cost Matrix

- 0.22 0.44 0.51 0.83 1.91 0.88 0.46 0.46 0.52 1.38 1.05
0.22 - 0.32 0.49 0.83 1.69 0.88 0.46 0.46 0.52 1.16 1.05
0.44 0.32 - 0.81 0.51 1.47 0.56 0.14 0.14 0.02 0.94 0.73
0.51 0.49 0.81 - 1.32 1.04 1.37 0.95 0.95 1.01 0.87 1.54
0.83 0.83 0.51 1.32 - 1.06 0.49 0.37 0.37 0.31 1.07 0.04
1.91 1.69 1.47 1.04 1.06 - 1.11 1.55 1.49 1.55 0.53 1.02
0.88 0.88 0.56 1.37 0.49 1.11 - 0.44 0.42 0.44 0.07 0.17
0.46 0.46 0.14 0.95 0.37 1.55 0.44 - 0.06 0.06 1.02 0.59
0.46 0.46 0.14 0.95 0.37 1.49 0.42 0.06 - 0.06 0.96 0.59
0.52 0.52 0.02 1.01 0.31 1.55 0.44 0.06 0.06 - 1.02 0.53
1.38 1.16 0.94 0.87 1.07 0.53 0.07 1.02 0.96 1.02 - 0.87
1.05 1.05 0.73 1.54 0.04 1.02 0.17 0.59 0.59 0.53 0.87 -
0.92 0.92 0.06 1.41 0.09 1.65 0.54 0.46 0.46 0.04 1.12 0.45
0.75 0.53 0.31 0.94 0.44 1.16 0.43 0.39 0.33 0.39 0.63 0.06
0.82 0.06 0.38 0.67 0.65 1.09 0.07 0.46 0.04 0.46 0.56 0.87
0.69 0.47 0.25 0.82 0.05 1.22 0.55 0.33 0.27 0.33 0.69 0.72
0.79 0.79 0.47 1.28 0.06 1.54 0.43 0.33 0.33 0.27 1.01 0.34
0.47 0.25 0.07 0.74 0.58 1.44 0.63 0.21 0.21 0.27 0.91 0.08
0.753 0.753 0.433 1.24 0.327 1.27 0.163 0.293 0.293 0.277 0.743 0.297
1.15 0.934 0.714 1.21 0.844 0.756 0.354 0.794 0.734 0.794 0.538 0.444
0.594 0.458 0.154 0.948 0.372 1.32 0.422 0.234 0.174 0.234 0.786 0.592
1.51 1.29 1.07 1 1.2 0.398 0.757 1.15 1.09 1.15 0.133 0.927
0.512 0.292 0.443 0.367 0.953 1.4 1 0.583 0.583 0.642 0.868 1.17
0.68 0.68 0.36 1.17 0.23 1.83 0.72 0.28 0.34 0.28 1.03 0.63

0.92 0.75 0.82 0.69 0.79 0.47 0.753 1.15 0.594 1.51 0.512 0.68
0.92 0.53 0.06 0.47 0.79 0.25 0.753 0.934 0.458 1.29 0.292 0.68
0.06 0.31 0.38 0.25 0.47 0.07 0.433 0.714 0.154 1.07 0.443 0.36
1.41 0.94 0.67 0.82 1.28 0.74 1.24 1.21 0.948 1 0.367 1.17
0.09 0.44 0.65 0.05 0.06 0.58 0.327 0.844 0.372 1.2 0.953 0.23
1.65 1.16 1.09 1.22 1.54 1.44 1.27 0.756 1.32 0.398 1.4 1.83
0.54 0.43 0.07 0.55 0.43 0.63 0.163 0.354 0.422 0.757 1 0.72
0.46 0.39 0.46 0.33 0.33 0.21 0.293 0.794 0.234 1.15 0.583 0.28
0.46 0.33 0.04 0.27 0.33 0.21 0.293 0.734 0.174 1.09 0.583 0.34
0.04 0.39 0.46 0.33 0.27 0.27 0.277 0.794 0.234 1.15 0.642 0.28
1.12 0.63 0.56 0.69 1.01 0.91 0.743 0.538 0.786 0.133 0.868 1.03
0.45 0.06 0.87 0.72 0.34 0.08 0.297 0.444 0.592 0.927 1.17 0.63
- 0.49 0.74 0.59 0.13 0.67 0.377 0.894 0.462 1.25 1.04 0.24
0.49 - 0.27 0.12 0.38 0.28 0.303 0.404 0.156 0.762 0.573 0.67
0.74 0.27 - 0.15 0.61 0.35 0.573 0.538 0.278 0.693 0.308 0.74
0.59 0.12 0.15 - 0.46 0.22 0.423 0.464 0.128 0.823 0.453 0.61
0.13 0.38 0.61 0.46 - 0.54 0.267 0.784 0.332 1.14 0.912 0.29
0.67 0.28 0.35 0.22 0.54 - 0.503 0.684 0.208 1.04 0.373 0.43
0.377 0.303 0.573 0.423 0.267 0.503 - 0.517 0.295 0.876 0.876 0.557
0.894 0.404 0.538 0.464 0.784 0.684 0.517 - 0.56 0.596 0.841 1.07
0.462 0.156 0.278 0.128 0.332 0.208 0.295 0.56 - 0.918 0.581 0.514
1.25 0.762 0.693 0.823 1.14 1.04 0.876 0.596 0.918 - 1 1.43
1.04 0.573 0.308 0.453 0.912 0.373 0.876 0.841 0.581 1 - 0.802
0.24 0.67 0.74 0.61 0.29 0.43 0.557 1.07 0.514 1.43 0.802 -
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Links maintenance cost matrix

- 0 0 0 0 0 0 0 0 0 0 0
44 - 0 0 0 0 0 0 0 0 0 0
88 64 - 0 0 0 0 0 0 0 0 0
102 98 0 - 0 0 0 0 0 0 0 0
0 0 102 0 - 0 0 0 0 0 0 0
0 0 0 0 0 - 0 0 0 0 0 0
0 0 112 0 98 0 - 0 0 0 0 0
92 92 28 0 74 0 88 - 0 0 0 0
92 92 28 0 74 0 84 12 - 0 0 0
104 104 40 0 62 0 88 12 12 - 0 0
0 0 0 0 0 106 0 0 0 0 - 0
0 0 0 0 80 0 34 0 0 106 0 -
0 0 0 0 18 0 108 92 92 80 0 90
0 106 62 0 88 0 86 78 66 78 0 0
0 0 76 0 0 0 0 92 80 92 112 0
0 94 50 0 100 0 110 66 54 66 0 0
0 0 94 0 12 0 86 66 66 54 0 68
94 50 14 0 116 0 0 42 42 54 0 0
0 0 86.6 0 65.4 0 32.6 58.6 58.6 55.4 0 59.4
0 0 0 0 0 0 70.8 0 0 0 107.6 88.8
0 91.6 30.8 0 74.4 0 84.4 46.8 34.8 46.8 0 0
0 0 0 0 0 79.6 0 0 0 0 26.6 0
102.6 58.6 88.6 73.6 0 0 0 116.6 116.6 0 0 0
0 0 72 0 46 0 0 56 68 56 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0
98 - 0 0 0 0 0 0 0 0 0 0
0 54 - 0 0 0 0 0 0 0 0 0
0 24 30 - 0 0 0 0 0 0 0 0
26 76 0 92 - 0 0 0 0 0 0 0
0 56 70 44 108 - 0 0 0 0 0 0
75.4 60.6 114.6 84.6 53.4 100.6 - 0 0 0 0 0
0 80.8 107.6 92.8 0 0 103.4 - 0 0 0 0
92.4 31.2 55.6 25.6 66.4 41.6 59 112 - 0 0 0
0 0 0 0 0 0 0 0 0 - 0 0
0 114.6 61.6 90.6 0 74.6 0 0 116.2 0 - 0
48 0 0 0 58 86 111.4 0 102.8 0 0 -
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Figure 8.3: Seville Network.

8.1.2.2 Results

This subsection presents the results obtained from the Seville network by means of routing model 3, where
a predefined set of candidate line corridors (Λ) are given as inputs to the inelastic demand version of the
model. Regarding resources, we have used an R5500 working station with Intel(R) processor Xeon(R) CPU
E5645 2.40 GHz and 48 Gbytes of RAM. The model has been coded in AMPL, using a CPLEX v.12.4.0
solver with a time limit of 24 hours.

This Λ set can be generated by taking into account all-to-all routing nodes i ∈ NN
TP , as stated in chapter

4. However, this involves generating an extremely large Λ, especially for the corridors with rectilinear topol-
ogy. For instance, taking only Kr = 2 entails Λr = 552 × 2 = 1104 rectilinear corridors; thus some node
reduction needs to be performed. At the top of figure 8.4, we show two histograms related to the demand
distribution expressed by o-d pairs and by attraction nodes, respectively. From both graphs, it seems that the
demand distribution is quite homogeneous, and we can therefore remove some od-pairs and attraction nodes
which are not significant. To do this, we on the boxplots of both distributions at the bottom of the same
figure. Moreover, we show the values of its corresponding third quartiles (Q3 = 56 and Q3 = 2335 thousand
of trips/hour, respectively). These values are used to drop od-pairs from the demand and from the demand
attraction node sets, those elements whose associated demand is lower. If we carried out this operation, we
yield the reduced amounts of 160 od-demand pairs and 6 demand nodes, respectively.
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Finally, we take the associated routing nodes from the two reduced sets. The routing nodes are the
extreme candidate nodes for the corridor generation algorithm (CGA). As for the user behavioral rules,
parameters ϕmax and ∆min have been set to the values recommended by Zijpp & Catalano [174]. Having
performed several runs on the CGA, we found that the best tradeoff between the size and homogeneity of Λ
was using Kr = 3 and Kc = 5, resulting in a total of 493 corridors from which 478 are rectilinear and 15
circular.

The computed Λ set has been used under three different scenarios in which one, two and three new lines,
respectively, were under construction. Moreover, each scenario was solved six times (except for the first
scenario, which was only solved twice) using the following combinations: the branch & bound of CPLEX
without the line splitting algorithm (LSA), the Benders decomposition without LSA, the branch & bound
of CPLEX with the two variants of the LSA, and the Benders decomposition with the two variants of the
LSA. The next figures show features of the main solution, as well as the performance of each algorithmic
combination.

Figure 8.5 contains the optimal network layout solution for the three scenarios where the line segments
are thicker and in different colors. The black color is associated with line 1, whereas the blue and red col-
ors represent lines 2 and 3, respectively. Additionally, the common links and nodes have been depicted in
green. The graph at the top shows the solution corresponding to scenario 1, whereas the graph in the middle
contains the one related to scenario 2. Finally, the graph at the bottom depicts the solution associated with
scenario 3. We can see from this that the chosen corridors for the common lines (L1 in scenarios 1 and 2, L1
and L2 in scenarios 2 and 3) are the same and have a rectilinear topology. Regarding the role of the nodes,
all those belonging to line 1 are stations in operation, whatever the scenario is; whereas in lines 2 and 3,
common nodes 9 and 11 are just passing points.

Moving on to planning features, figure 8.6 analyzes the main line planning features. The graph at the top
shows the total line capacities expressed as the number of vehicles per hour, whereas the graphs at the bottom
depict their average occupancies. From left to right, we have the line capacity occupancies of scenarios 1, 2
and 3, respectively. According to them, line capacities vary as the number of lines increases, except for line
1 in scenarios 2 and 3, which remains constant. This line also has the highest capacity and in fact doubles
the capacity of line 2 in scenario 2. Moreover, the capacities of lines 2 and 3 are quite moderate. As for the
capacity utilities, their occupancy levels are high in scenarios 1 and 3 (around 80 %), whereas in scenario 2
they are moderate (around 60%). Furthermore, the capacity utility of line 1 goes down in scenarios 2 and 3
(to around 14%), due to the construction of additional lines. Thus, in scenarios 2 and 3 the demand is more
balanced among the lines.

Figure 8.7 describes the demand coverage. It consists of two graphs. The one at the top shows the
demand modal splitting between the public transportation network and the pedestrian network. The one at
the bottom depicts the splitting between the demand directly served and the one performing some transfers.
From them, we can see that demand using the public transportation network is high in all scenarios (≥ 75%).
However, the number of transfers decreases as the number of constructed lines increases (scenario 1 - 63.5%,
scenario 2 - 57.5%, scenario 3 - 56.1%). Complementary to these figures, the following figure 8.8 shows the
histograms of the total demand time distribution. From top to bottom, we have the ones related to scenarios
1, 2 and 3, respectively. Notice that more portion of the demand concentrates on the lowest time intervals as
the number of constructed lines increases. However, there is a tiny portion of demand which still remains in
high time intervals.
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Figure 8.5: Network layout solution for the different scenarios tested on the Seville Network. At the top, the
solution for scenario 1 with only one line under construction. In the middle, the solution for scenario two
with two lines. At the bottom, the solution for scenario 3 with three lines.
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Let’s now move on to the general results. Figure 8.9 describes the general results for the tests performed
on Seville’s network. It consists of six graphs. The two on the left depict the optimal or best global objective
function value (2.1) found so far. The two in the middle depict the total amount of CPU time consumed
and the two on the right contain the distribution of CPU time among the Benders subproblems for the direct
resolution of the model (without line splitting algorithms). The bars on the graphs showing the objective
function and CPU times are grouped by solving techniques and sorted by scenario. From left to right, we
have the values for scenarios 1, 2 and 3, respectively. Additionally, the graphs at the top are related to all
methods where the Branch & Bound of CPLEX was used to solve each MILP , whereas the ones at the
bottom are associated with those methods which employed the Benders decomposition as the MILP solver.
From them, we can see that best results are obtained from the combination technique of using a line splitting
algorithm with non-incremental demand plus the CPLEX as an MILP solver. Furthermore, whatever the
MILP solver is, the two LSA variants provide a good tradeoff between solution quality and CPU time.
From the two LSA variants, it seems that non-incremental is slightly better than incremental since it gives
the same objective function value but in less CPU time. Regarding the MILP technique analysis, the Ben-
ders decomposition provides the worst CPU times. When it is used with no line splitting in scenarios 2 and
3, it does not convergence. Notice that it reaches the time limit horizon. This bad performance is due mainly
to the resolution of the master problem, which consumes almost the total time (around the 97%, according
to the graph at the bottom-right).

To conclude, we include figures 8.10 - 8.20, which show the Benders gap and global objective func-
tion convergence for the different scenarios and LSA variants. From them, we can see that the algorithm
converges to a small gap (< 1%), although quite slowly. The evolution of the global objective function is
quite erratic since the first iterations deliver values either near to the optimal or to the best one found, then
it moves to the worst values before going back to the initial values towards the end. At this point, the ob-
jective function improves faster and reaches the (nearly-) optimal solution. This evolution is typical of the
Benders algorithm, although some authors have been working on that drawback. For instance, Saharidis et
al [157] generate a set of Benders cuts (apart from the traditional ones), such that more master’s variables are
constrained. Sherali & Lunday [160] define the notion of maximal non-dominated cuts and allow obtaining
tighter cuts. This field of research deserves more attention, and will be the subject of further research.
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Figure 8.7: Demand Coverage details for the different scenarios tested on the Seville Network. At the top,
the modal demand splitting. At the bottom, the quality of service for the demand going through public
transportation.
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Figure 8.11: Benders convergence details in the second scenario for the Seville Network. At the top, gap
evolution for the phase 0. At the bottom, gap evolution for the phase 0.
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8.1.2.3 Santiago de Chile’s Network

Santiago de Chile’s Network is a large-sized network consisting of 146 nodes, 520 links and 21316 od-
demand pairs. Figure 8.21 shows the working network, which includes five lines, labeled: L1 (red), L2
(yellow), L4 (dark blue), L4A (light blue) and L5 (green). The working network contains 100 nodes, from
which 8 nodes are transfer nodes (nodes where passengers can move from one line to another), and 206
links. The transfer nodes are filled in with white to distinguish them from ordinary nodes (nodes which
simply carry out service in a single line). Finally, their corresponding names are written in black color.

Figure 8.22 depicts the routing graph, the one from which the new lines can be built. It includes 53 nodes
and 318 links, and allows reduction of the number of transfers for those od-pairs with origin and/or destina-
tion in some extreme or near-extreme nodes of lines L4, L2, L5 and L4A. Notice that the routing subgraph
at the bottom-center allows linking of the L5 terminal node, Plaza de Maip, to the L2 terminal node, La
Cisterna, whereas the routing subgraph at the top-left connects the L2 terminal node, Vespucio Norte, to the
L1 terminal node, San Pablo. Finally, the routing subgraph at the top-right links the L1 terminal node, San
Pablo, to the L2 terminal node, Vespucio Norte. From now on, we will refer to each routing subgraph as the
sector or routing sector.

The input data settings have been carried out as follows. Regarding the extended infrastructure parame-
ters, the construction costs of the stretches have been computed by means of equation (33) in the appendix,
taking a monetary cost of one length unit of stretch cc,1ij = 189 millions of euros, an amortization horizon
Ha = 25 years, and the stretch length dTPij according to the values in column 3 of Tables (19) - (21) in
the appendix. The value of cc,1ij has been taken indirectly from Ocaa [143]. Since this paper is quite old,
we have multiplied the corresponding average value for the case of underground stretches by a factor of 3
to emulate the effect of inflation. Column 6 of tables (19) - (21) in the appendix contains the resulting values.

As for the construction costs of the stations, we have not applied formulas (34) and (35) in the appendix
since we cannot determine a priori the absorbed demand set Wi. Instead of this, we have set all costs to an
average value of 3.25 million euros, taken indirectly from Ocaa [143]. Again, since this paper is quite old,
we have multiplied the corresponding average value of the underground station by a factor of 3 to emulate the
effect of inflation. Moreover, we have divided the resulting value of the amortization horizonHa = 25 years.

The maintenance costs of stretches and stations have been taken as 0.1 times their corresponding con-
struction costs. Finally, the infrastructure budget has been set to the sum of all construction costs, thus
allowing construction of as many resources as possible.

Now, focusing on planning parameters, the service costs of the stretches have been obtained by means
of equations (36) - (38) in the appendix, taking a vehicle’s power consumption cost ctue = 0.1555 euros/h, a
nominal power of the vehicle’s engine ηe · P̄e = 1680 kWh, an average base salary cs = 979 euros/month
and a working horizon Hw = 9 h/day. These estimated values have been taken from different Chilean web
sites. Column 4 of tables (14) - (21) in the appendix contains the resulting values.

As for the stretch capacities, we have employed equation (39) in the appendix to compute them with a
safety coefficient Ks = 0.25 and an average service time tsj = 1 min for all the station nodes. The travel
times (tTPij ) have been computed as the quotient of the travel distance (dTPij ) and the underground’s average
speed of 60 km/h. Column 5 of tables (14) - (21) in the appendix contains the resulting capacities.
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Figure 8.21: Working network of Santiago de Chile underground.
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Figure 8.22: Routing Sectors.

Moving on to vehicles features costs, the acquisition cost of new vehicles have been computed according
to equation (40) in the appendix, taking an average number of carriages ncar = 6 and the cost of each one
ccar = 0.8015 millions of euros. The latter is closely related to the one obtained from Ocaa [143]. However,
to take into account the inflation effect, we have weighted the corresponding value by 3. The number of
acquired vehicles is subject to a planning budget of 47 euros/min. As for the setting cost of vehicles, this
cost has been set to zero, since its contribution was meaningless compared to the acquisition cost of new
vehicles. Finally, the vehicle capacity (the total number of passengers which can be held) is set according to
equation (42) in the appendix, taking an average carriage capacity qcar = 189 passengers.

Finally, we present the passenger assignment settings. The unit times related to the in-station passen-
ger flow are set at 2/30 minutes for alighting and waiting-in-vehicle movements (tx and ty, respectively),
whereas 1/30 minutes are spent on boarding (ta). Regarding walking times, they have been obtained as the
quotient of the Manhattan distance (weighted by a correction factor of 24.6) and the passengers’ average
speed of vcom = 4.5km/h. To compute the Manhattan distance, the grid coordinates of Figures 8.21 -
8.22 have been used. All these times, as well as in-vehicle travel times, have been weighted by a factor of
θ = 0.081 euros/min.
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In order to obtain a likely o-d trip matrix for the test network, a trip distribution model (TDM ) of the
general gravity type has been used. This class of TDM aims to obtain the od-demand trips, such that they
verify the following:

gw = Ap(w) ·Bq(w) · f(uw), ∀w ∈W (8.1)∑
q(w)∈Dp

gw = Gp, ∀p ∈ O (8.2)

∑
p(w)∈Oq

gw = Gq, ∀q ∈ D (8.3)

gw ≥ 0 (8.4)

Equation (8.1) establishes a relationship between the passenger travel costs, which are provided by means
of a deterrence function (f(uw)), and the amount of trips carried out for each given pair of origins p(w) and
destinations q(w). Ap(w) and Bq(w) are the origin and destination balancing coefficients, respectively. The
next equations (8.2)-(8.3) link the number of generations and attractions for each origin and destination (Gp
and Gq, respectively) to the od-demand trips which they are related to. Finally, equation (8.4) imposes non-
negativity on the number of trips per od-pair.

The GCM model is solved by means of a modification of the Furness Algorithm [79], which is im-
plemented in several transit planning software packages such us EMME [95]. This algorithm determines
Ap(w) and Bq(w), taking as inputs Gp, Gq and f(uw). The computation of f(uw) is carried out in two steps.
Firstly, we compute the approximated travel times for each od-pair uw as the travel times of the shortest paths
throughout the in-vehicle links of the working and routing network without considering capacity. The link
travel times have been calculated as the quotient of their travel distances (dTPij ) and a working speed of 30
km/h (half of the vehicles speed, considering that in the model solution this value will approach the average
commercial speed of the service lines). Secondly, we choose the most suitable deterrence function (f(uw))
in the histogram of the computed uw times. Without any further analysis, its parameters have been evaluated
by a wild (although reasonable) guess. According to the graph at the top of Figure 8.23, we approximated
the deterrence function f(uw) with the following:

f(uw) = unw · exp−λ·uw (8.5)

which is the gamma function parameterized by n and λ. For urban trip distribution, it is recommended to set
λ as the inverse of the average trip, which is 9.29 minutes. n has been set to 2. Having computed coefficients
Ap(w) and Bq(w), we obtain the estimated passenger trips (gw) by using equation (8.1). The graph at the
bottom of Figure 8.23 shows the histogram of the o-d flows. Complementarily, Table 8.1 contains the basic
statistics.

The formulas for the input data setting and the tables can be found in the appendix.

Non Zero Values Min. value Max. value Av. value Total Trips
GW 21.460 0.001586 pax/min 1.8799 pax/min 1.0070 pax/min 3194.44 pax/min

Table 8.1: Estimated demand features.
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8.1.2.4 Results

This section presents the results obtained for extending the Santiago de Chile underground network with
different numbers of lines under construction. Their traces have been computed by means of the routing
model M3 (see subsection 2.3.3.3 in chapter 2). Regarding computational resources, we have used a R5500
working station with Intel(R) processor Xeon(R) CPU E5645 2.40 GHz and 48 Gbytes of RAM. The model
has been coded in AMPL, using the CPLEX v.12.4.0 solver with a time limit of 24 hours.

To determine the pool of corridors (Λ) under consideration, we have employed a variant of the RCGP
procedure (see section 4.1.1). It differs from the original in the following. It takes only as inputs a subset
of node pairs i, j ∈ NN

TP for computing the K-Shortest rectilinear paths. We have proceeded in that way
because the routing topology of the graph is circular (see Figure 8.21), thus it makes no sense to compute all-
to-all K-shortest rectilinear and circular paths. The chosen pairs of nodes i, j ∈ NTP are the extreme nodes
of the routing subgraphs depicted in Figure 8.22 and shown in the first column of table 8.2. Furthermore,
parameters ϕmax and ∆min, associated with the user behavioral rules, are set to the values recommended
by Zijpp & Catalano [174], resulting in a total of 100 corridors distributed among each routing subgraph, as
shown in the third column of table 8.2.

Sector Description Λs

1 Tobalaba - Vespucio Norte 36
2 Vespucio Norte - San Pablo 35
3 Plaza de Maip - La Cisterna 26

Table 8.2: Number of corridors generated for each sector of the Santiago de Chile routing graph.

This pool of corridors has been applied to the resolution of three different scenarios set with 1, 2 and 3
lines under construction. Each scenario has a working fleet of 188 vehicles and a planning horizon of 18
hours. The remaining parameters are set as explained in the previous section.

Regarding solving techniques, we have applied to each aforementioned scenario six different algorithms.
The first triad uses CPLEX as the MILP under different line splitting algorithms, whereas the other triad
applies the Papadakos schema (see table 6.3) under the same line splitting algorithms. The first one consists
of the direct resolution of the complete MILP , whereas the other two use the LSA algorithm (see chapter
5) under non-incremental and incremental demand load variants, respectively.

In the rest of the section, we analyze the best solution found by the aforementioned algorithms. Any
other solution discussed will be specified. Moreover, we will present the time performance for all six algo-
rithms, with special attention to those involving the Benders decomposition. Finally, we will compare all
of them, showing that the Benders decomposition under the LSA is the best option in terms of the ratio of
solution quality and solving time.

Figures 8.24 - 8.25 depict the network extension solution for scenario 3, where three new lines labeled
L6, L7 and L8 have been constructed. In scenario 1, only L6 is constructed, whereas in scenario 2, L6 and
L7 are constructed. Notice that lines L6, L7 and L8 correspond to routing sectors 2, 3 and 1, respectively,
according to column 1 of table 8.2. Moreover, the corridors assigned to them are the same; therefore we have
drawn only on figure 8.25 for their routing in accordance with the scenario 3 solution, where all line nodes
perform service.
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Figure 8.24: Proposed extension of the Santiago de Chile underground network.
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Figure 8.25: Details of the proposed extension layout of the Santiago de Chile underground.

The next Figure 8.26 contains four bar graphs which describe the main planning features of the solution.
The one at the top depicts the line capacities (ql) expressed in pax./min for all scenarios. Each one is con-
tained in bar clusters and they are sorted from left to right, with the left corresponding to the first scenario
and the right to the third scenario. The three graphs below show the average line occupancies (O(ql)). The
two in the middle correspond to scenarios 1 and 2 and the one at the bottom to scenario 3. In a general view,
we can see that line capacities related to working lines remain constant in all scenarios except for line L4A,
which has a sudden increase in the second scenario. As for new lines, L6 also remains constant in all scenar-
ios, whereas line L7 decreases by almost 100 units in scenario 3. This decrease is due to the emergence of
line L8, which attracts part of the demand going through line L7.

Focusing now on average line occupancies, we can split them into three categories according to their
congestion levels: moderate (70 - 80 %), high (81 - 90 %) and very high (91 - 100 %). Observe that lines L1,
L4A, L6 and L7 fall in the first category, lines L4 and L8 in the second, and Lines L2 and L5 in the third.
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Figure 8.26: Overview of the main planning features of the solution. At the top, line capacities grouped in
close bars for each scenario. In the middle, average line occupancies for scenarios 1 and 2. At the bottom,
average line occupancies for scenario 3.

Moving on to demand issues, figure 8.27 analyzes the demand coverage. The graph at the top side, shows
the demand balance between the public transportation and walking modes, whereas the graph at the bottom
indicates only the demand going by public transportation. TP1 and TP2 stand for the demand in public trans-
portation with and without walking transfers, respectively. From these graphs, we can see that the level of
demand covered by the public transportation mode is quite high for all scenarios and that it increases a slight
4% from scenario 1 to scenario 3. However, the percentage of demand with no walking during transfers
improves significantly in scenario 3. Complementary to these figures, the following figure 8.28 shows the
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histograms of the o-d times expressed in seconds. From top to bottom, we have the ones related to scenarios
1, 2 and 3, respectively. Notice that a greater portion of the demand concentrates in the lowest time intervals
as the number of constructed lines increases. However, there is a significant portion of demand that fails to
remain at low time intervals.
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Figure 8.27: Demand Coverage.

Regarding computational time requirements, figure 8.29 contains two graphs related to the performance
of the Benders decomposition without line splitting. The one at the top shows the total amount of time as
well as the contribution of each Benders problem, whereas the one at the bottom depicts the percentage of
each problem. From these graphs, we observe two different situations. One in which the total solving time is
relatively low (1.5 hours, approximately), and the master problem (MP ) contributes very little to time when
compared to the subproblem (SP ) and the independent Magnanti & Wong problem (IMWP ) (see scenario
1). In contrast, another situation arises when the total solving time reaches the time limit (24 hours) and the
MP contributes the most (see scenarios 2 and 3). Consequently, as the number of lines under construction
increases, the MP becomes more difficult to solve, and thus the total computational time of the algorithm
increases exponentially.
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Figure 8.28: Histograms of the o-d times for the Santiago de Chile network expressed in seconds. At the
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At the bottom, the demand time distribution for scenario 3.
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The next Figures 8.30 - 8.31 show a comparison of all algorithms. The first figure contains two graphs.
The left one depicts the (near-) optimal value of the global objective function (2.1) for each scenario and
algorithm, where the Branch & Bound of CPLEX has been used as the MILP solving technique. On the
right, we can see the same graph, but for the case where the Benders decomposition has been employed as
the MILP solving technique. Regarding the second figure, the left graph shows the CPU time consumed by
the same triad as the one in the left graph of the first figure. Analogously, the right graph depicts the CPU
times of the same triad in the right graph of the first figure. From both figures, we can clearly see that the
Papadakos schema under the LSA variants (PBD+LSA1 and PBD+LSA2) outperforms the rest in every
scenario. Furthermore, the non-incremental variant of the line splitting algorithm (LSA1) is preferable to
the incremental version (LSA2), since it gives the lowest CPU times while maintaining a good solution qual-
ity in all scenarios. Excluding the direct resolution of the complete MILP using CPLEX in scenario 2, the
solution obtained by all algorithms is very similar, although the solving time in algorithms PBD + LSA1
and PBD + LSA2 is much better. It ranges only from 1.5h to 6.4 hours (worst case). Compared to the
nearly worst solving times (i.e., those associated with algorithms using also the LSA), they take from 3 to
5 times longer. The worst CPU times arise in the direct resolution of the complete MILP , whatever the
MILP solving technique is used. However, the PBD gives a better objective function value within the time
horizon of 24h.

To conclude the results section, we also show the gap and the global objective function evolutions for all
scenarios. Figure 8.32 depicts these evolutions for the first scenario, whereas figures 8.33 - 8.35 and 8.36
- 8.38 depict those related to the second and third scenarios, respectively. From the gap evolution graphs,
we observe that the gap converges to a value of less than 1%, similarly to all scenarios. Moreover, it has
a plateau in the first iterations. Regarding the objective function, its evolution is completely different. It
also converges, but in a zigzag fashion. This is due to the fact that in the standard Benders decomposition,
the global objective function does not necessarily decrease when the gap does. However, as pointed out in
the end of Seville’s results subsection, this drawback can be overcome by adapting some recently developed
Benders convergence enhancements (see Saharidis et al [157] and Sherali & Lunday [160]). This field of
research deserves more attention and will be the subject of further research.
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Figure 8.32: Gap and Objective function evolution for the first scenario under the Benders decomposition
without line splitting algorithm.
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Figure 8.33: Gap and Objective function evolution for the second scenario under the Benders decomposition
without line splitting algorithm.
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8.1.3 Study of the Effect of Express Service Design

This section is devoted to study how the inclusion of express service design affects the performance of the
inelastic demand version of the model (IDM ), as well as its solving time. To do that, we repeated all
the experiments carried out in the two real study cases, i.e., the Seville network and the Santiago de Chile
network, disallowing the model generating express services. This can be achieved by doing the following
changes in the mathematical programming problem:

• Replacing variable yli variable with yli wherever yli appears.

• Dropping off network design constraint (2.5).

• Adding the constraint
∑
c∈Λ

δlc ≤ 1, ∀l ∈ LN so that a corridor cannot be assigned to more than one

line.

• Dropping off the passenger flow balance constraints (2.53) - (2.55) and expression Ψp,l
ij from (2.51) -

(2.52).

Figures (8.39) - (8.44) show the optimal global objective function (GOF ) and the total CPU time
(TCPU ) spent on solving the inelastic demand version of the model, allowing and disallowing express
service design (ESD). On the graphs, the continuous line represents the GOF and TCPU values related
to the IDM allowing ESD, whereas the discontinuous line shows the GOF and TCPU values associ-
ated with the IDM disallowing ESD. In the remaining of the section, the IDM disallowing ESD will
be referred to as the IDM with local service design (LSD), as written down in the legend box of the pictures.

Let us analyse, first, the results corresponding to the Seville Network. From Figures (8.39)-(8.41), we
can see that the GOF coincides in scenarios where only one line can be constructed, no matter the solving
methodology is. However, in the other scenarios theGOF is always higher in the IDM withLSD, although
not much. The average relative gap is around 3%. As for the TCPU , it is almost always lower in the IDM
with LSD and the time savings are higher as the number of lines under construction increases. However,
there are two exception cases, which are included in the right side graphs of Figure 8.39, where some or
both of these two observations do not hold. They correspond to the resolution of the instances where two
and three lines are under construction, respectively, and where the Benders Decomposition without using
any line splitting procedure is applied. The reason of this change in the performance is that the required time
to solve these instances to optimality is higher than the time limit (24 hours), and thus, the actual total CPU
times as well as the optimal objective functions are unknown.

Regarding the results of the Santiago de Chile Network, the picture is quite similar. One difference is
that the GOF is almost identical in all experiments. Consequently, the lines representing the IDM with
ESD and LSD overlap. The other difference is that the reduction in TCPU of the IDM with LSD, with
respect to the IDM with ESD, remains constant in the majority of the experiments. However, there are
some exception cases, which are included in Figure 8.42, where both differences do not hold. The main
reason is the same as the one stated in the analysis of the Seville results.
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8.1.4 Conclusions

As shown in the results subsections of the study cases, the use of Benders Decomposition depends on the
size of the problem in the inelastic demand version of the model. For moderate-sized networks, it is more
suitable to employ the Branch & Bound of CPLEX, whereas for larger networks, Benders Decomposition
gives (near-) optimal solutions with much less computational time and within a gap of less than 1%.

The inelastic demand version of the model can be solved to (near-) optimality within a reasonable amount
of time by carrying out just a few approximation methods. For instance, in cases where more than one line is
under construction, it is more appropriate to employ the line splitting algorithm under the non-incremental
variant, since it provides solutions no worse than 1% of relative gap at one less order of magnitude of CPU
time.

Focusing now on the Benders scheme, the use of the Papadakos schema (shown in Table 6.3 of chapter
6) is more appropriate for cases where the number of corridors is low (let’s say around 100), whereas our
specialized Benders scheme (shown in Table 6.6 of chapter 6) gives the best results for a larger number of
corridors.

Finally, the solution provided by the model seems quite reasonable in terms of line layout and planning
configurations. Also, the types of scenarios which can be emulated are varied and may include some working
lines. Therefore, the model can be used as an aid for operators to make important and timely decisions,
especially in relation to railway and underground networks.



Chapter 9

Summary and Conclusions

This chapter presents a summary of the reported research, highlighting the relevant results and proposing
some lines for further research. Its structure is as follows. Firstly, an outline of the relevant work done in this
research is explained; then the general conclusions are made, based mainly on the experimentation chapter
results; and finally, some lines for further research are pointed out. These lines are not intended to embrace
all the possibilities, and thus further proposals will be welcome.

9.1 Summary

We have presented a network design and line frequency setting model which allows us to construct a rapid
transit network. On the one hand, the network design uses a set of candidate stations to determine the exten-
sion of the current set of working lines without exceeding the available network infrastructure budget. On
the other hand, the line frequency setting assigns vehicles and services to the constructed lines, taking into
account link and vehicle capacity restrictions and adjusting to the vehicle fleet size and planning horizon
requirements.

A mix-integer linear mathematical programming problem (MILP ), presented in chapter 2, implements
these features. The routing part is stated by means of three different formulations. The first two are exact
formulations, which come from state-of-the-art works related to vehicle routing problems, whereas the last
one consists of an explicit enumeration of the line’s routing.

The solving approach is based on a quasi-exact methodology, which simultaneously determines the two
intertwined problems (the network design and the line frequency setting). The first part of the work accounts
for some reasonable simplifications we have made in order to solve real-sized networks. The first of these
simplifications is the use of the third routing formulation, which gives as inputs to the optimization problem
a reduced set of candidate sequences of chained line segments (corridors). However, it does not provide
the service nodes (stops), which are determined in the optimization phase. The second and last one is the
development of a heuristic to solve more than one line. The method carries out a line splitting in which a
sequential series of small instances with the same mathematical structure as the MILP are solved.

The sequence of chained line segments is computed by means of a K-shortest path algorithm, which
includes some constraint satisfaction. The main building blocks consist of a rectilinear corridor generator
and a circular corridor generator. Both generators are based on different adaptations of the Yen algorithm
[189] to cope with the type of topology and some constraint verification. The last mentioned feature gives a
novelty to the approach since related works [68], [30], [174] do not take into account constraint satisfaction
within the generation process and/or they focus only on directed graphs (last reference).

232
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The line splitting algorithm is an ad hoc heuristic that takes advantage of one of the model’s features that
is already in operation: the option of working with a subnetwork. Therefore, we can determine each line
separately and add it to the model in subsequent resolutions as a fictitious working line. The last resolution
provides the global solution.

In collaboration with these two techniques, we have also proposed a decomposition method, presented
in chapter 6, which is based on the Benders Decomposition (BD) [14] and some ad hoc techniques, as well
as the enhancements made by Magnanti & Wong [125], Papadakos [147], and McDaniel & Devine [136].
These additional methods have significantly improved the BD convergence and reduced the number of in-
tegral master problem resolutions, these being two key aspects that have proven to be time consuming. The
enhanced version of the BD has been used to solve each small MILP to (near-) optimality.

As a final contribution, a preliminary mathematical programming problem has been introduced that takes
into account public transport demand elasticities that originate with the modal choice between private car or
public transport. Users face this choice when changes in the public transportation system are made, such as
the inclusion of new lines and/or the involved frequency changes in lines already in operation. This model
has been formulated as a mixed-integer linear bilevel programming problem whose upper level function
is conceptually the same as that of the inelastic case developed in chapter 2. The lower level, however,
combines a modal choice model with a passenger assignment model, which is solved by a specific technique
suggested in [40]. This technique exploits the fact that integer variables appear only in the upper level and, in
this case, an adaptation of the Benders decomposition algorithm can be devised in order to solve this specific
class of mixed-integer bilevel programming problems.

9.2 Conclusions

As shown in the computational tests of chapter 8, the inelastic demand version of the model can be solved
to near-optimality within a reasonable amount of time while doing the aforementioned simplifications. For
instance, in cases where more than one line is under construction, it is more appropriate to employ the line
splitting algorithm under the non-incremental variant, since it provides solutions no worse than 1% of rela-
tive gap within one less order of magnitude in CPU time.

Regarding the MILP solving technique, the use of Benders Decomposition depends on the problem
size. For moderate-sized networks, it is more suitable to employ the Branch & Bound of CPLEX, whereas
for larger networks, Benders Decomposition gives the (near-) optimal solutions with much less computa-
tional time, within a gap of less than 1%.

Focusing now on the Benders decomposition scheme, the use of the Papadakos schema (see Table 6.3 of
chapter 6) is more appropriate for cases where the number of corridors is low (let’s say around 100); whereas
for a larger number of corridors, our specialized Benders scheme (see Table 6.6 of chapter 6) gives the best
results.

Finally, in terms of line layout and planning configurations, the solution provided by the model seems
quite reasonable (see figures 8.5 - 8.7 in the Seville results section and figures 8.24 - 8.27 in the Santiago de
Chile results section) and the type of scenarios which can be emulated are varied. They may also include
some working lines. Therefore, the model can be used as an aid to operators who need to make important
decisions within a reasonable time horizon, especially those related to railway and underground networks.

As for the elastic demand version, the model has been tested only on small-sized networks because it is
in early development. However, it seems to provide reasonable solutions. According to the results subsection
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7.5, we have seen that many of the od-demand pairs, which perform too many transfers and/or long walking
distances in the inelastic mode, prefer to take the private mode in this elastic version. The changes are not
very significant in the public transportation network layout, but they are in the number of planning resources
used (vehicles and number of services). Thus, it allows savings in the planning budget while keeping good
levels of service quality.

9.3 Directions for further research

This work opens several lines for further research. Roughly speaking, they can be split into two groups:

a) Model extensions

b) Algorithmic improvements.

Group a) also implies development of new methodologies, which could consider the following issues:

a1) The inclusion of passenger waiting times at stops.

a2) The consideration of variable dwell times at stops.

a3) The consideration of stop capacity.

a4) The consideration of passenger comfort.

a5) The extension of the network flow model to deal with bus systems.

a6) Explicit modeling of the entropy function in the model with elastic demand.

In our view, the first issue should be tackled first. It entails discarding the current Benders decomposition
scheme and moving on to the generalized Benders decomposition (GBD) of Geoffrion [83], which is capa-
ble of solving non-linear convex problems. According to a preliminary study on the work of de Camargo &
de Miranda Jr. [52], all the methods embedded into the Benders scheme (i.e., the enhancements of [125],
[147] and [136], as well as the ad hoc techniques applied to both inelastic and elastic demand versions) can
be easily incorporated into the GBD. As a first attempt, passenger waiting times under non-congested sce-
narios will need to be dealt with. That means that passengers can board the first vehicle halting at the stop.
In other words, we suppose that vehicles have enough capacity to hold passengers, whatever the demand
level is. In this situation the passenger assignment model of Spiess & Florian [167] seems appropriate, and
incorporating it into theGBD entails solving two extra problems, apart from the ones stated in this research.
Both consist of resolving two shortest path problems which have no link capacities. Thus, through the use
of an efficient algorithm like Dijkstra [58], they can be solved independently for each group of commodities
with the same origin or destination (depending on the formulation choice). The difference lies in the fixed
layout network being considered, and its link costs. One is related to the solution of the current master
problem, whereas the other is associated with the current corepoint, which is an interior point of the master
problem’s feasible solution.

The second issue is also quite important and needs to be incorporated into the GBD as well. We have
also carried out a preliminary study and it does not entail extending the GBD proposed for the first point.
Moreover, the two extra problems, mentioned above, maintain the same mathematical structure. However,
more extra variables and constraints are added to all of the Benders subproblems.

The third issue plays an important role as well, since the stop platform must be well-dimensioned un-
der allowable density levels to hold the maximum number of passengers (which occurs during peak hours).



9 Summary and Conclusions 235

This dimensional aspect entails consideration of a tradeoff between passenger waiting times and the cost per
square meter of the platform area. Conceptually speaking, it is not easy to model, and thus we do not have
any preliminary study.

The fourth point has no high priority but can be interesting to implement as well. We are thinking of
adapting the approach of Cadarso & Marı́n [17] to our model. The authors use the notion of excess in-vehicle
demand, where the word “excess” accounts for the number of standees under a given density level. In that
work, two density levels are used for semi-congested and congested scenarios, respectively, and each excess
of demand is penalized in the objective function by means of two different weights.

The fifth point does not entail any change in solving the scheme. However, it requires some effort in
order to avoid an excessive increase in the number of new decision variables and constraints in the new
passenger assignment model. Roughly speaking, we will need to consider the following:

• Several candidate service nodes associated with every origin and destination demand node.

• Distinction of the way in which the demand is served in the routing model.

The first issue entails adding some walking links between the centroid node (origin or destination de-
mand node) and the nearest alighting/boarding nodes. Consequently, the corridor generation algorithm needs
to take into account all these combinations, which means that more corridors will be generated. On the other
hand, the second point will require a reformulation of all the variables and constraints related to the role of
the node. As a first attempt, we are thinking of using two binary variables, one for each way of circulation.
Each variable will denote whether or not vehicles halt at the node for the given way of circulation.

Finally, the sixth issue deals directly with the entropy function. Currently, a piecewise linear function
approximates the entropy function by means of lines which are active at certain intervals of the original func-
tion. This approach adds too many constraints to subproblems SP1, SP2, IWMP1 and IWMP2, and thus
it entails a significant increase in solving time. Moreover, an approximation error, whose magnitude depends
on the number of computed lines, is also produced. However, dealing with an explicit representation of the
entropy function entails formulation of the abovementioned subproblems as non-linear continuous subprob-
lems, due to the entropy term in the objective function. This non-linearity issue can be overcome by means
of the GBD as well, since the entropy function is convex.

Regarding algorithmic improvements, we have in mind the following points:

b1) Benders convergence improvements.

b2) Efficient resolution of the reduced integral master problem in phase 0.

b3) Development of a preprocessing technique in order to reduce the number of Benders cuts used in the
Master Problem with elastic demand.

b4) Implementation of the whole methodology in a low level language environment.

The first point can be achieved by implementing two methods which can also be combined with the
GBD to continuously enhance convergence of the decomposition. One of them is based on the work of
Saharidis et al [157], who generate a constraint bundle for each Benders iteration. It includes the traditional
Benders cuts, plus some additional cuts which aim to constrain more the master variables. The other method
relies on the idea of Sherali & Lunday [160], who define the notion of maximal non-dominated cuts. This
idea allows obtaining tighter cuts by computing the corepoint. This is situated in the most interior of the poli-
tope region, whose vertices are defined by the master problem solutions computed so far. Both approaches
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require computation of extra Benders subproblems, and thus we do not know beforehand how much the
whole computational time will decrease. However, these techniques appear promising, since the authors
report good results for several instances of the fixed charge network flow problem.

The second point seems to be a good direction for successful improvement. Currently, the reduced inte-
gral master problem obtains a rounded (feasible) solution from the relaxed master problem, but it takes a lot
of time for medium- and large-sized networks. To address this point, we are thinking of first analyzing which
are the key factors involved in choosing the best line corridor from those which are active in each line under
construction. Then, this knowledge will be used to develop a procedure for approximating them without any
optimization.

The third point is mandatory for solving medium- to large-sized networks with the mixed-integer lin-
ear bilevel programming problem for elastic demand. Currently, it is only capable of solving small-sized
networks to (near-) optimality, because of the large amount of time needed to solve the master problem to
optimality. This increment in time stems from the presence of the δ variables, which ensure that the master
problem is bounded. A good preprocessing routine that reduces the number of Bender’s cuts may signifi-
cantly reduce its solving time. This would also reduce the number of variables that the master problem must
face.

The last point seems to be a very promising improvement, since the Benders decomposition performance
decreases significantly when using a high level language like AMPL. To mention some of the causes: each
time the master problem is solved, only a new active constraint is added, thus it would be desirable to re-
optimize it not only by taking into account the last solution, but also by using the calculated branch & bound
tree. However, this is not possible since AMPL tells CPLEX to erase the current branch & bound tree so that a
new one is created from scratch. Another drawback is that there is no control of memory allocation. Because
of this, no temporary files are created to save information needed for AMPL and CPLEX to communicate
with each other; and this slows down the resolution of each Benders problem.
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[120] Löbel, A. Solving large scale multiple-depot vehicle scheduling problems. (N. H. M. Wilson,
ed).Computer-Aided Transit Scheduling. Notes in Economics and Mathematical Systems 471,
Springer-Verlag 192-220, Berlin, 1999.

[121] Lohatepanont, M., Barnhart, C., Airline Schedule Planning: Integrated Models and Algorithms for
Schedule Design and Fleet Assignment. Transportation Science 38(1): 19-32, 2004.
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Appendix

This appendix provides complementary information for some of the research report chapters.

A quick note about linearizing the product of one binary and one continuous
variable

This section presents a summary of section 2 of Glover’s paper [87]. In that section, the author shows an
improved technique for linearizing the product of two decision variables where one of them is binary and the
other one continuous. That linearization technique is an improvement on Petersen’s work [151].

The problem is stated as follows. Given the two decision variables x ∈ {0, 1} and w ∈ R+ with the
following relationship:

x = 0→ L0 ≤ w ≤ U0 (1)

x = 1→ L1 ≤ w ≤ U1 (2)

where L0, U0, L1, U1, are not constant and whose values depend on other decision variables and model
constraints. Nonetheless, its respective upper and lower bounds U0, U1, L0, L1, U0, U1, L0, L1 are known.
Therefore:

L0 ≤ L0 ≤ L0 (3)

U0 ≤ U0 ≤ U0 (4)

L1 ≤ L1 ≤ L1 (5)

U1 ≤ U1 ≤ U1 (6)

Grover proves that it is possible to obtain a set of linear constraints which satisfies the logical conditions
stated in (1)-(2) and the bounds shown in (3) - (6) . These constraints are set by applying the following
equations:

U0 + (U1 − U0) · x ≥ w ≥ L0 + (L1 − L0) · x (7)

U1 + (U0 − U1) · (1− x) ≥ w ≥ L1 + (L0 − L1) · (1− x) (8)

A particular interesting case concerning our research arises when L0 = U0 = L0 = L0 = U0 = U0 =
U1 = L1 = 0 and L1 = U1. In that situation, the set of constraints presented is simplified as follows:
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LU1 · x ≥ w ≥ 0 (9)

LU1 ≥ w ≥ LU1 − LU1 · (1− x) (10)

where LU1 stands for the mathematical expression that decision variable w will take when x = 1 and
constraint (9) defines the lower and upper bounds of w, LU1 and LU1, respectively.

Building network flow

This section explains how the routing graph GTP must be manipulated in order to obtain the network flow
GfTP , on which the passenger flow balance constraints (2.50)-(2.56) are based.

The GrTP consists of public transportation nodes and stretches (NTP and ATP sets, respectively). The
former is split into the nodes in which some service is performed (NS

TP ) and into the ones which are simply
passing points (NP

TP ). All of the mentioned sets are compound sets since they are defined for each line l ∈ L,
except set NP

TP which is only defined for l ∈ LE .

Knowing beforehand the contents of these sets, theGfTP can be obtained as follows. Firstly, the incoming
and outgoing passenger flow nodes (NS+

TP and NS−
TP , respectively) are computed in two steps according to

equations (11)-(12) and (14)-(15) where Γli stands for the set of nodes adjacent to i. Moreover, if there is any
i ∈ NP

TP , we also compute the in-outgoing flow nodes (NP+−
TP ) in two steps by means of equations (13) and

(16).

NS+
TP (i, l) =

{
ij+, ∀j ∈ Γli

}
, ∀l ∈ L, i ∈ NS

TP (l) (11)

NS−
TP (i, l) =

{
ij−, ∀j ∈ Γli

}
, ∀l ∈ L, i ∈ NS

TP (l) (12)

NP+−
TP (i, l) = {kij, ∀(i, k), (k, j) ∈ ArTP (l) | i ̸= j} , ∀l ∈ LE , k ∈ NP

TP (l) (13)

NS+
TP (l) =

∪
i∈NS

TP (l)

NS+
TP (i, l), ∀l ∈ L (14)

NS−
TP (l) =

∪
i∈NS

TP (l)

NS−
TP (i, l), ∀l ∈ L (15)

NP+−
TP (l) =

∪
i∈NP

TP (l)

NP+−
TP (i, l), ∀l ∈ LE (16)

Having computed the network flow nodes, we proceed to obtain the links. Firstly, we compute the
boarding and alighting links (Aa and Ay sets, respectively) by means of equations (17) - (18). Secondly, we
obtain the waiting in-vehicle links (Ax) by using these computed links and applying equation (19).

Aa(l) =
{
(i, j), ∀i ∈ NS

TP (l), j ∈ NS−
TP (i, l)

}
, ∀l ∈ L (17)

Ay(l) =
{
(j, i), ∀i ∈ NS

TP (l), j ∈ NS+
TP (i, l)

}
, ∀l ∈ L (18)

Ax(l) =
{
(m,n), ∀i ∈ NS

TP (l), m ∈ NS−
TP (i, l), n ∈ N

S+
TP (i, l) | i,m, n ∈ Πlx

}
, ∀l ∈ L (19)

Πlx is defined in (20) and denotes the set of the threesome i,m, n, which is valid.
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Πlx = {(m, i) ∈ Ay(l), (i, n) ∈ Aa(l), ord(m) ̸= ord(n)} (20)

The set of in-station exchange flows (Axya) is then computed by means of equation (21) as the union of
each exchange flow link type.

Axya(l) = Ay(l) ∪Aa(l) ∪Ax(l), ∀l ∈ L (21)

Finally, the in-vehicle links Ainv are computed according to equations (22) - (26).

Ainv(l) = A1
inv(l) ∪A2

inv(l) ∪A3
inv(l) ∪A4

inv(l), ∀l ∈ L (22)

Each in-vehicle link subset (Aiinv) denotes a partition of Ainv in which the extreme nodes of the links
correspond to one of these situations: nodes i, j are service nodes (A1

inv); nodes i, j are passing points
(A2

inv); node i is a service node; node j is a passing point (A3
inv); node j is a service node; and finally, node

i is a passing point (A4
inv).

A1
inv(l) =

{
(ij−, ji+), ∀(i, j) ∈ ArTP (l) | i, j ∈ NS

TP (l)
}
, ∀l ∈ L (23)

A2
inv(l) =

{
(imj, jin), ∀(i, j) ∈ ArTP (l), m ∈ Γl+i , n ∈ Γl−i | i, j ∈ N

P
TP (l)

}
, ∀l ∈ LE (24)

A3
inv(l) =

{
(ij−, jin), ∀(i, j) ∈ ArTP (l), n ∈ Γl−i | i ∈ N

S
TP (l), j ∈ NP

TP (l)
}
, ∀l ∈ LE (25)

A4
inv(l) =

{
(imj, ji+), ∀(i, j) ∈ ArTP (l), m ∈ Γl+i | i ∈ N

P
TP (l), j ∈ NS

TP (l)
}
, ∀l ∈ LE (26)

Γl−i and Γl+i denote the set of nodes which emerges from and are incident to i, respectively.

The network flow size, i.e, the total number of nodes and links in GfTP , are also given by equations (27)
- (28). Moreover, their breakdown by role and line type can be obtained by applying the formulas shown in
Tables 1 and 2.

Type LN LER LEC

in-vehicle |ANTP |
∑
l∈LE

|ATP (l)|

waiting 2 ·
∑
i∈NN

TP

(
|Γi|
2

)
2 ·
∑
l∈LE

(
|NE,S

TP (l)| − 2
)

2 ·
∑
l∈LE

|NE,S
TP (l)|

not waiting -

alighting
∑
i∈NN

TP

|Γi| 2 ·
∑
l∈LE

(
|NE,S

TP (l)| − 1
)

2 ·
∑
l∈LE

|NE,S
TP (l)|

boarding

Table 1: Number of links according to their type

|A| = 2 ·

2 · ∑
i∈NN

TP

(
|Γi|
2

)
+ |Γi|

+ |ANTP |+ |ATP (l)|+ 4 ·

∑
l∈LE

1.5 · |NE,S
TP (l)| − 2 · |LER|

 (27)
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Type LN LER LEC

Ground |NN
TP |

∑
l∈LE

|NE,S
TP (l)|

Incoming
∑
i∈NN

TP

|δi| 2 ·
∑
l∈LE

(
|NE,S

TP (l)| − 1
)

2 ·
∑
l∈LE

|NE,S
TP (l)|

Outgoing

In-Outgoing - 2 ·
∑
l∈LE

|NE,P
TP (l)|

Table 2: Number of nodes according to their type

|N | = |NN
TP |+

∑
i∈NN

TP

|δi|+ 4

∑
l∈LE

(
|NE,S

TP (l)|+ 0.5 · |NE,P
TP (l)|

)
− |LER|

 (28)

Column labels LRE and LCE stand for the set of working lines whose topology is rectilinear and circular,
respectively. Additionally, parameter |Γi| denotes the number of nodes adjacent to i.
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Illustrative Example 1

The extended network flow increases substantially the size of the model. However, it is required in order to
deal with different service patterns: express services, where vehicles halt at a subset of nodes contained in
the line; or local services, in which vehicles halt at every node. In this appendix, we will give an illustrative
example which shows the drawbacks of neglecting the in-station movements from the network flow model.

Let us consider the two o-d demand pairs depicted in figure 1, where the pair (1, 9) holds 10000 pas-
sengers and the pair (4, 6) contains 100. Notice also that, links in thicker line have two costs denoting the
in-vehicle traveling times and walking times, respectively; whereas the ones in thinner line are related to
walking times, only. For the sake of simplicity but without loss of generality, let us also neglect infrastruc-
ture costs, exploitation costs, resource capacities, and suppose that the time horizon is wide enough so that
no line cycle is constraint. Under these assumptions, we allow the model to construct up to two new lines in
order to satisfy the o-d demand pairs (1, 9) and (4, 6).

1 4 7

8

9

5

6

2

3

ATP

A
TP

N

N

N
COM

N
TP

N

ACOM

ACOM

U

U

N
COM

N
TP

N

10000

(5,15) 15

15

1515

15

(5,15) (5,15)

(5,15)

(5,15)

(5,15) (5,15)

10000100

100

Figure 1: A routing network example.

If we neglect by now the in-station movements, the network flow can be directly obtained from the
routing graph of figure 1, where the thicker links are considered as directed in-vehicle links. Notice that, the
shortest path of o-d pair (1, 9) isK(1,9) = 1−4−5−6−9 and the one of o-d pair (4, 6) isK(4,6) = 4−5−6.
SinceK(4,6) ⊆ K(1,9), the optimal solution is to construct a single line L1 : 1−4−5−6−9 where assigned
vehicles perform service in all nodes excepting node 5. Thus, the users objective function takes the following
value:

z1pax = (5 + 5 + 5 + 5)× 10000 + (5 + 5)× 100 = 201000 (29)

where the term θ, which weights the value of time, is taken as the unity for the sake of simplicity.
Now let us consider the same example but incorporating the in-station movements as depicted in figure

2.2 in chapter 2, where boarding and in-vehicle waiting unit times (ta and tx, respectively) are set to 9 seconds
and alighting unit time (ty) takes the value of 2 seconds. If we include these times in the aforementioned
solution, the value of the users objective function (z1

′
pax) will be incremented as follows:

z1
′
pax = (20 + 0.15+ 0.33+ 0.15+ 0.15)× 10000+ (30)

(10 + 0.15+ 0.33)× 100 = 201000 + 7848 = 208848

where the highlighted numbers denote the times associated with the in-station movements. This value does
not longer correspond to the optimal one since now the optimal network design solution is to construct two
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express lines: L1 : 1− 4− 5− 6− 9, where vehicles only halt at nodes 1 and 9, and L2 : 4− 5− 6, in which
vehicles only performed service in nodes 4 and 6. Its corresponding optimal users objective function (z2pax)
takes the following value:

z2pax = (20 + 0.15+ 0.33)× 10000 + (10 + 0.15+ 0.33)× 100 = (31)

= 201000 + 4848 = 205848

which is lower than the value of z1
′
pax = 208848. Therefore, we have demonstrated the usefulness of includ-

ing in-station movements.
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Illustrative Example 2

This appendix is devoted to presenting an application example of the circular shortest path algorithm and
the Yen’s k-shortest path algorithm for circular corridors, explained in chapter 4. To do this, we use the
9-node network depicted in Figure 8.2. For the sake of clarification, we provide here the data needed by the
algorithms. Firstly, the used travel times and link construction cost matrices are as follows:

T =



− 0.375 0.525 0.000 0.000 0.000 0.000 0.000 0.000
0.375 − 0.450 0.825 0.000 0.000 0.000 0.000 0.000
0.525 0.450 − 0.825 0.375 0.000 0.000 0.000 0.000
0.000 0.825 0.825 − 0.600 0.525 0.675 0.000 0.000
0.000 0.000 0.375 0.600 − 0.375 0.000 0.000 0.000
0.000 0.000 0.000 0.525 0.375 − 0.900 0.675 0.975
0.000 0.000 0.000 0.675 0.000 0.900 − 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.675 0.000 − 0.000
0.000 0.000 0.000 0.000 0.000 0.975 0.000 0.000 −



Ca =



- 90 260 0 0 0 0 0 0
90 - 300 240 0 0 0 0 0
260 300 - 220 240 0 0 0 0
0 240 220 - 220 160 210 0 0
0 0 240 220 - 200 0 0 0
0 0 0 160 200 - 110 280 210
0 0 0 210 0 110 - 0 0
0 0 0 0 0 280 0 - 0
0 0 0 0 0 210 0 0 -


where travel times in T are given in minutes, and construction costs in Ca are multiples of a certain currency
unit. Moving on, the node construction cost vector is set toCn = [280, 320, 270, 260, 300, 420, 440, 330, 250].
These construction costs are also expressed as multiples of a given currency unit. Finally, the infrastructure
budgets are both established to c̄net = 8000 and the planning horizons to h̄ = 3 hours.

Application of the Circular shortest Path Algorithm

The circular shortest path algorithm (CSPA) is applied to the 9-node network (mentioned at the beginning
of this section) by using a modified version of the in-vehicle travel time matrix (T

′
), where each cell contains

the value of tij plus its inverse cost tji.

This example is based on finding the shortest circular corridor starting and ending at node 4. As depicted
in the first figure, the CSPA begins by finding the neighborhood of this node. Put another way, it picks up
all the nodes adjacent to 4 and saves them in list δ4.
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1

(0.75, 180)

(1.05, 520)

(0.75, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(1.2, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

3 5

6 9

8

4 7

260

Initialization phase

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {}

Having obtained δ4, the iterative part of the CSPA starts. As depicted in the following figure, the
first step consists of picking up the first node in δ4, which is node 2, and disabling its associated links
(2, 4), (2, 4), which are adjacent to node 4.

2

1

(0.75, 180)

(1.05, 520)

(0.75, 480)

(inf, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(1.2, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

3 5

6 9

8

4 7

260

Step 1.1

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {}

The second step involves finding the shortest path from node 4 to node 2. This operation is carried out
through an adaptation of Dijkstra’s algorithm (its pseudo-code is written down in table 4.4). Having obtained
the shortest path, it stores the temporary path S and verifies if it satisfies the first user behavior rule, using
ϕcmax = 1.5. To show this evaluation, we include a table containing a list of links which are adjacent to
node 4 and candidates for the shortest path from 4 to the processing node of δ4. However, we focus only on
the active links, i.e., the links contained in S. In that case, they are (2, 4) and (3, 4). Since link (3, 4) does
not meet the rule, the path S is rejected and the CSPA jumps to evaluating the next node in δ4. All these
operations are included in what we call step (Iteration).2. See The following figure.
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(0.75, 480)

(inf, 480) (1.35, 420)
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260

Step 1.2

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {2,3,4}
R = {}
Q = {}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) 2.55 1.65 - - -
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? No Yes - - -
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The aforementioned steps 1 and 2 are repeated for node 3. So, the adjacent links (3, 4) and (4, 3) are
disabled and the shortest path from node 3 to 4 is computed and stored in S (See the next two figures).
However, this time, S is not rejected since all the path links (3, 4) and (4, 5), which are also adjacent to node
4, fulfill the first user behavior rule. Consequently, the third step is carried out (see next figure). In that step, a
temporary shortest circular path R linking node 4 to the path in S is created, and the infrastructure budgetary
and time horizon constraints are evaluated. To show these operations, we include two tables below the first
user behavior rule evaluation table. The one on the left is related to satisfying the time horizon, whereas the
one at the center is associated with verifying the infrastructure budgetary. The latter is computed by taking
into account the construction costs of the links (depicted above each link in the figures) and the construction
costs of the starting/terminal node of path R. Since both requirements are met, path R becomes a candidate
circular path for node 4 and it is therefore transferred to list Q (see next figure).
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Step 2.1

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {}
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Step 2.2

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {3,5,4} R = {}
Q = {}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) - 1.95 1.2 - -
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? - Yes Yes - -

The following figures show the evaluations of the remaining nodes in δ4. Since all of them pertain
to one of the chain of steps already explained, and the figures are self-contained, we will skip an explicit
explanation. Having evaluated all the nodes in δ4, list Q contains only two candidate circular paths (See last
figure). Between them, the CSPA chooses the second path: {4, 5, 6, 4}, since it has the lowest travel time
cost.
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Step 2.3

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {3, 5, 4}
R = {4,3,5,4}
Q = {}

t(R) 3.6
ĥ 180
t(R) ≤ ĥ ? Yes

C(R) 1430
c̄net 8000
C(R) ≤ c̄net ? Yes
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(1.65, 480) (1.35, 420)
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(1.05, 320)
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3 5

6 9

8

4 7

Step 2.4
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Step 2.4

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {3, 5, 4}
R = {}
Q = {{4,3,5,4}, 3.6}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) - 1.95 1.2 - -
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? - Yes Yes - -
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Step 3.1

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {{4, 3, 5, 4}, 3.6}
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Step 3.2

Ns = { 4 }
δ4 = {2, 3, 5, 6, 7}
S = {5,6,4}
R = {}
Q = {{4, 3, 5, 4}, 3.6}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) - - 1.8 1.05 -
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? - - Yes Yes -
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Step 3.3

Ns = { 4 }
δ4 = {2, 3, 5, 6, 7}
S = {}, R = {4,5,6,4}
Q = {{4, 3, 5, 4}, 3.6}

t(R) 3
ĥ 180
t(R) ≤ ĥ ? Yes

C(R) 1430
c̄net 8000
C(R) ≤ c̄net ? Yes
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Step 3.4

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {{4, 3, 5, 4}, 3.6

{4,5,6,4}, 3}
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Step 4.1

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {{4, 3, 5, 4}, 3.6

{4, 5, 6, 4}, 3}
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Step 4.2

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {6,5,4}
R = {}
Q = {{4, 3, 5, 4}, 3.6

{4, 5, 6, 4}, 3}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) - - - 1.95 1.2
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? - - - No Yes
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Step 5.1

Ns = {4}
δ4 = {2, 3, 5, 6, 7}
S = {}
R = {}
Q = {{4, 3, 5, 4}, 3.6

{4, 5, 6, 4}, 3}
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Step 5.2

Ns = { 4 }
δ4 = {2, 3, 5, 6, 7}
S = {7,6,4}
R = {}
Q = {{4, 3, 5, 4}, 3.6

{4, 5, 6, 4}, 3}

(2,4) (3,4) (4,5) (4,6) (4,7)
A : t(Si−4) - - - 1.05 2.85
B : ϕcmaxt(P

1
i−4) 2.475 2.475 1.8 1.575 2.025

A ≤ B ? - - - Yes No

Application of Yen’s Algorithm for circular corridors

In line with the above illustrative example, we proceed to show how we apply Yen’s k-shortest path for circu-
lar corridors (Y KSP4CC) to the 9-node network by using a modified version of the in-vehicle travel time
matrix (T

′
), where each cell contains the value of tij plus its inverse cost tji. Notice that we have skipped the

practical presentation of Yen’s algorithm for rectilinear corridors since the circular version is more general
and, thus, it includes all the operations performed in the former.

Before continuing with this section, we encourage the reader to carefully study the preceding example,
which introduce an illustrative application of the circular shortest path algorithm (CSPA). This algorithm is
used during the execution of the Y KSP4CC and, for the sake of simplicity, we will not provide the details
of its application here.

This example is based on finding Kc = 2 shortest circular corridors for node 4. The next figure shows
the initialization phase of the Y KSP4CC algorithm. It basically consists of the setup of lists Q and B.
Remember that the former stands for the set of candidate paths to take part in any kth shortest path, whereas
the latter is related to all the paths obtained up to the current iteration. Thus, list B is initialized to the
shortest circular path of node 4 (P 1).
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(0.75, 180)

(1.05, 520)

(0.75, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(1.2, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

Initialization phase

P 1 = {4,5,6,4}
B = {{4,5,6,4}}
i = −
S = {}
R = {}
Q = {}

Now, the iterative part of the algorithm starts. As depicted in the following diagram, the algorithm picks
up the first node in P 1 as the initial node where the detour under construction must start (i = 4). Furthermore,
in order to select a different subpath from P 1, link (4, 5) is disabled.
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(0.75, 180)

(1.05, 520)

(0.75, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(inf, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

Step 1.1

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}}
i = 4
S = {}
R = {}
Q = {}

The following step, depicted in the figure below, consists of finding a circular detour not going through
link (4, 5) (since it is disabled). Consequently, a call to the aforementioned CSPA algorithm is carried out.
Its resolution gives us the circular subpath {4, 2, 3, 4} with a total time cost of 4.2 minutes.
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Step 1.2

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}}
i = 4
S = {4,2,3,4}
R = {}
Q = {}

In the next step, the algorithm checks if this subpath verifies the second user behavior rule (see the
immediately following figure) by comparing its total time cost with a portion (∆c

min = 0.5) of the total time
cost of P 1. Since this verification holds, the Y KSP4CC proceeds to the next step.
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Step 1.3

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}}
i = 4
S = {4, 2, 3, 4}
R = {}
Q = {}

t(S) 4.2
∆c
min · t(P 1) 1.5

t(R) ≥ ∆c
min · t(P 1) ? Yes

At this time, the algorithm creates a new temporary circular path (R), from which it validates the first
behavioral rule. This operation is carried out by comparing the time costs of a subset of node pairs (r, s) ∈ R
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who hold node r ∈ S and node s ∈ P 1 − S to a multiple (Φcmax = 1.6) of their shortest path. Because node
4 (the first one) provides no pairs meeting these requirements, the Y KSP4CC jumps directly to the next
step, in which the infrastructure budgetary and time horizon constraints are verified. Since both constraints
hold, R is transferred to lists Q and B and the Y KSP4CC finishes the first iteration (see the figure below).
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Step 1.5

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4,2,3,4}}
i = 4
S = {4, 2, 3, 4}
R = {4,2,3,4}
Q = {{4,2,3,4}, 4.2}

t(R) 4.2
ĥ 180
t(R) ≤ ĥ ? Yes

C(R) 1780
c̄net 8000
C(R) ≤ c̄net ? Yes

The second iteration begins by picking up the second node in P 1 (i = 5). This time, link (5, 6), which
connects the ”common” part of the new path ({4, 5}) to the new detour S to be found, is disabled so that it
prevents the same path P 1 from being chosen. Moreover, link (4, 5) is also removed. Otherwise, since it
links both nodes, 4 and 5, it might possibly be included in the new S (see the figure below).
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Step 2.1

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}}
i = 5
S = {}
R = {}
Q = {{4, 2, 3, 4}, 4.2}

The next step consists of using the adaptation of Dijsktra’s algorithm (the DSP procedure), since S
must be rectilinear this time. The DSP gives S = {5, 3, 4}, which has a total time cost of 2.4 (see the figure
below).
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Step 2.2

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}}
i = 5
S = {5,3,4}
R = {}
Q = {{4, 2, 3, 4}, 4.2}

Now the algorithm verifies the second user behavior rule by comparing t(S) to ∆c
min · t(P 1). Since this

validation is correct, the Y KSP4CC creates a new temporary shortest circular path R = {4, 5, 3, 4} (see
the figure below).
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Step 2.3

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}}
i = 5
S = {5, 3, 4}
R = {4,5,3,4}
Q = {{4, 2, 3, 4}, 4.2}

t(S) 2.4
∆c
min · t(P 1) 1.5

t(R) ≥ ∆c
min · t(P 1) ? Yes

R is used to validate the first user behavior rule as described in the penultimate step of the first iteration.
Since this rule is also confirmed, the Y KSP4CC goes to the final verification (see the figure below).
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Step 2.4

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}}
i = 5
S = {5, 3, 4}
R = {4, 5, 3, 4}
Q = {{4, 2, 3, 4}, 4.2}

(3,4) (4,5)
A : t(Si−j) 1.65 1.2
B : ϕcmaxt(P

1
i−j) 1.92 2.64

A ≤ B ? Yes Yes
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The construction cost of the path (C(R)) now includes the construction cost of the intermediate node 5,
from which detour S emanates. Despite this extra cost, C(R) is still feasible and its total time cost (t(R))
does not exceed the planning horizon ĥ. Consequently, R is transferred to lists Q and B (see the figure
below).
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Step 2.5

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4,5,3,4}}
i = 5
S = {5, 3, 4}
R = {4, 5, 3, 4}
Q = {{4, 2, 3, 4}, 4.2

{4,5,3,4 }, 3.6}

t(R) 3.6
ĥ 180
t(R) ≤ ĥ ? Yes

C(R) 1920
c̄net 8000
C(R) ≤ c̄net ? Yes

The remaining iterative steps are skipped since they are quite repetitive. The reader can follow them
throughout the remaining figures of the section, with the exception of the last figure, which shows the choice
of the second shortest circular path (P 2). Since the third and last iteration do not provide a feasible circular
path, the Y KSP4CC selects the second path in Q (which has the least time cost) and transfers it to P 2.

2

1

3

9

8

7

260

270 300

420

440

330

250
280

320

(0.75, 180)

(1.05, 520)

(inf, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(inf, 400)

(inf, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

5

6

4
Step 3.1

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4, 5, 3, 4}}
i = 6
S = {}
R = {}
Q = {{4, 2, 3, 4}, 4.2

{4, 5, 3, 4}, 3.6}
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4 Step 3.2

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4, 5, 3, 4}}
i = 6
S = {6,7,4}
R = {}
Q = {{4, 2, 3, 4}, 4.2

{4, 5, 3, 4}, 3.6}
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Step 3.3

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4, 5, 3, 4}}
i = 6
S = {6, 7, 4}
R = {}
Q = {{4, 2, 3, 4}, 4.2

{4, 5, 3, 4}, 3.6}

t(S) 3.15
∆c
min · t(P 1) 1.5

t(R) ≥ ∆c
min · t(P 1) ? Yes
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9

8

7

260

270 300

420

440

330

250
280

320

(0.75, 180)

(1.05, 520)

(0.75, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(1.2, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

5

6

4
Step 3.4

P 1 = {4, 5, 6, 4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4, 5, 3, 4}}
i = 6
S = {6, 7, 4}
R = {4,5,6,7,4}
Q = {{4, 2, 3, 4}, 4.2

{4, 5, 3, 4}, 3.6}

(4,6) (4,7) (5,6) (5,7)
A : t(Si−j) 1.95 3.75 0.75 1.35
B : ϕcmaxt(P

1
i−j) 1.68 2.16 1.2 4.08

A ≤ B ? No No Yes Yes

2

1

3

9

8

7

260

270 300

420

440

330

250
280

320

(0.75, 180)

(1.05, 520)

(0.75, 480)

(1.65, 480) (1.35, 420)

(1.95, 420)

(1.35, 560)
(0.75, 400)

(1.2, 440)

(0.9, 600)

(1.65, 440)

(1.05, 320)
(1.8, 220)

5

6

4

Step 4

P 1 = {4, 5, 6, 4}
P 2 = {4,5,3,4}
B = {{4, 5, 6, 4}, {4, 2, 3, 4}

{4, 5, 3, 4}}
i = −
S = {}
R = {}
Q = {{4, 2, 3, 4}, 4.2

{4,5,3,4}, 3.6}
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Illustrative example 3

This appendix aims to exemplify an application of the line splitting algorithm, presented in chapter 5. For
the sake of simplification and without losing generality, we have chosen the non-incremental variant. The
network under study is depicted in the left-center position of the figures below and consists of 6 nodes and
9 links. Next to the nodes, we have written their construction costs. Next to the links, we have included a
two-component vector, which lists from left to right the link construction cost and the total travel time for
going through the link in both directions. Above the network, we have depicted a table which denotes the
constructed lines and their main features, i.e., their visited nodes and line cycles. On its right side and from
top to bottom, we can see the following tables. The first one shows the handling of infrastructure and plan-
ning resources, i.e., it indicates the nodes and stretches (from sets NN

TP and ANTP ) which have or have not
been constructed, as well as the number of assigned and acquired vehicles (parameters B and ∆b). The next
table shows the layout setup of the currently built line, i.e., the nodes and stretches assigned as well as the
role of the nodes (sets NS

TP , NP
TP and ATP ). The last Table denotes the budget statuses, i.e., the utilization

and availability of infrastructure and planning budgets (parameters ĉnet and ĉveh).

The input parameters not included in the figures are as follows. The number of maximum allowable lines
to be constructed is set to Lmax = 3, so the heuristic will carry out three iterations at most. The planning
horizon is up to H = 300 time units (u.t.) and each link has a capacity of 90 vehicles per H . Additionally,
each acquired vehicle has a cost of 500 currency units (c.u.) and can hold up to 100 passengers. This capacity
is the same for the available vehicles.

The first figure shows the initial scenario, where no working line exists and the first candidate line to con-
structed faces three o-d demand pairs depicted below the network. Having solved the first RTNPD instance
(see next figure), the o-d demand pair (1, 6) is assigned to the shortest path linking the origin node 1 to the
destination node 6, since it is much higher than the other two o-d demand pairs. As a result, the infrastructure
budget goes down 2020 c.u. but the vehicle’s acquisition budget remains exactly the same, since the number
of available vehicles, B = 10, is sufficient for strictly satisfying all the demand and entirely filling their
capacity. Observe also that the capacity of the links used is not strictly exceeded. The third figure depicts
the data update before solving the second RTNPD instance. Consequently, the constructed nodes {1, 2} and
stretches {(1, 2), (2, 4), (4, 6)} are labeled as used resources and the infrastructure budget is decreased to
5980 c.u.s, according to the construction costs of these resources. Finally, these construction costs are set to
zero. Notice that, the planning budget as well as the number of available vehicles are not updated, since they
can be reallocated to other lines in the next RTNPD resolutions.

The next figure shows the resolution of the second RTNPD instance, where the remaining o-d pairs are
assigned to a new line in which the number of vehicles and demand assigned to the previously determined
line remain the same. As a result, the remaining infrastructure budget decreases 1270 c.u. and the planning
budget falls to 0 c.u., because 10 new vehicles are assigned to satisfy the whole passenger demand. Observe
again that the capacity of the links used is not strictly exceeded. Finally, the last figure shows the data update
before solving the third RTNPD instance. Consequently, the new constructed nodes {3, 5} and stretches
{(1, 3), (3, 5), (5, 6)} are labeled as used resources and the infrastructure budget is set to 4710 c.u., accord-
ing to the construction costs of these resources. Finally, these construction costs are set to zero. Again, the
vehicle acquisition budget and the number of available vehicles are not updated, since they can be reallocated
to other lines in the next RTNPD resolution.

The details of the third iteration of the heuristic are not shown, since no new line is constructed. Conse-
quently, no changes are made to the current line configuration.
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l N l cl

- - -

(900, 8)

(140, 10)
(220, 10)

(260, 12)

(30, 14)

(240, 12)

(200, 9)

(160, 8)

(260, 9)

1
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2 4

53

(280)

(270) (300)

(420)

(320) (260)

Resources

Unused Used
NN
TP 1, 2, 3, 4, 5, 6 -

ANTP (1,2), (1,3), (2,3) -
(2,4), (3,4), (3,5)
(4,5), (4,6), (5,6)

B 10 0
∆b 10 0

New line layout

NS
TP -

NP
TP -

ATP -

Demand Budgets

w gw lw
(1, 6) 9000 -
(1, 5) 4500 -
(3, 6) 4500 -

Available Used
c̄net 8000 c.u. 0 c.u.
c̄veh 5000 c.u. 0 c.u.

l N l cl

1 1,2,4,6 28 m.u.
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(140, 10)
(220, 10)
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(280)

(270) (300)

(420)

(320) (260)
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Unused Used
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ANTP (1,3), (2,3), (3,4) (1,2), (2,4)
(3,5), (4,5), (5,6) (4,6)

B 0 10
∆b 10 0

New line layout
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TP 1, 6

NP
TP 2, 4

ATP (1,2), (2,4), (4,6)

Demand Budgets

w gw lw
(1,6) 9000 1
(1, 5) 4500 -
(3, 6) 4500 -

Available Used
c̄net 8000 c.u. 2020 c.u.
c̄veh 5000 c.u. 0 c.u.
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c̄veh 5000 c.u. 0 c.u.
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w gw lw
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(3,6) 4500 2

Available Used
c̄net 5980 c.u. 1270 c.u.
c̄veh 5000 c.u. 4500 c.u.
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Available Used
c̄net 4710 0
c̄veh 5000 0

269



Obtaining a feasible point in the master problem set Y c

This appendix is devoted to a comprehensive explanation of the procedure BuiltLines presented earlier
in section 6.4.3, whose pseudo-code is shown in table 3. It contains a set of subroutines that allow us
to either carry out the line routing or sequentially select the line corridors (depending on the parameter
RoutingModel), as well as their frequency setting.

procedure BuiltLines (in RoutingModel, ConstCriterion, FreqCriterion, Ā, out N, A, f)

if |LN | > 0 then

if RoutingModel is M1 or M2 then

Get |LN | 1-stretch lines by calling SetIniLines (ConstCriterion, ĉnet, N,A, δ, ĉnet)

Extend the |LN | 1-stretch lines by calling ExtendLines (ConstCriterion, Ā, N,A)

else

Select |LN | corridors by calling ChoseCorridor (ConstCriterion, Ā, Λ, N, A)

end if

end if

Assign frequency to the extended lines by calling SetFrequency (FreqCriterion, N, A, f)

return N, A, f

end BuiltLines

Table 3: Pseudo-code of the procedure BuiltLines.

Firstly, let’s focus on the case that parameter RoutingModel is set to M1 or M2. It entails that the line
routing will be carried out by means of a greedy constructive heuristic implemented by subroutines SetIni-
Lines and ExtendLines. The former determines an initial unique stretch for all the lines under construction,
whereas the latter extends these one-stretch lines up to Â − 1 stretches. Both subroutines are called on,
provided that there are some lines under construction available (|LN | > 0). Otherwise, only the frequency
assignment for working lines is carried out. If one or more lines under construction are available, parameter
ConstCriterion establishes the way subroutines SetIniLines and ExtendLines work, so that different line
segments are obtained. ConstCriterion can take two criteria: minimization of infrastructure costs or maxi-
mization of infrastructure costs. We refer to infrastructure costs as those costs related to the construction and
maintenance of stretches and stations.

The subroutine SetIniLines is shown in table 4. The choice of a single stretch depends on the mentioned
ConstCriterion parameter and its infrastructure cost cij , which includes the construction and maintenance
costs of the stretch (i, j). In that subroutine, as well as in ExtendLines, we have imposed that every node
attached to a new line will work as service node. Thus, we also include the construction and maintenance
costs of its extreme node-stations. Having selected the most suitable stretch (u, v) per new line, we set its
extreme nodes as the temporary extremes of the new line (δl = {u, v}). Finally, we drop the selected stretch
(u, v) from the list of eligible ones (Ã) and update the infrastructure budget according to all infrastructure
costs.

The subroutine ExtendLines is shown in table 5. Part of its inputs includes the ConstCriterion param-
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procedure SetIniLines (in ConstCriterion, in ĉnet, out N,A, δ, ĉnet)

Ã←
{
(i, j) ∈ ANTP

}
cij ← cci + cmi + ccj + cmj + ccij + cmij , ∀(i, j) ∈ Ã

for each l ∈ LN do

if ConstCriterion is Minimization then

(u, v)← Select (i, j) with the minimum cij in Ã

else

(u, v)← Select (i, j) with the maximum cij in Ã

end if

N l ← {u, v}

Al ← {(u, v)}

δl ← {u, v}

ĉnet ← ĉnet − (ccu + ccv + ccuv)

Ã← Ã− {(u, v)}

end for

return N,A, δ, ĉnet

end SetIniLines

Table 4: Pseudo-code of the procedure SetIniLines.

eter, which establishes a criterion for selecting stretches and an upper bound on the maximum number of
stretches that a line can hold (Ā). This means that, after having finished that subroutine, each line can hold
up to Ā stretches, provided that we have enough infrastructure budget and that the line cycle (cl) does not
exceed the planning horizon H . The extension of each line includes an additional inherent criterion which
consists of the following. Whatever the construction criterion is, the new stretches are appended to the line
at its temporally extreme nodes u, v ∈ δl.

The inclusion of a new stretch is carried out in three steps. Firstly, the eligible stretches for a given line
l ((i, j) ∈ Ãl) are computed according to the three requirements contained in Rij . The first one is related
to connectivity issues and establishes that all eligible stretches must share, at least, one extreme node with
the terminal nodes of the line, which are held in set δl. Moreover, the cardinality of δl must be equal to two;
otherwise, there is no terminal node in the line. In other words, the line is circular and, thus, it cannot be
extended any longer.

The second requirement assures that the increment of the line cycle, due to the inclusion of the new
link, does not exceed the planning horizon. To compute this increment, we take into account not only the
in-vehicle time but also the node service time (ts) and layover time (tl), so long as some of the extreme nodes
of the eligible link do not correspond to the terminal nodes of the line (|δl ∪ {i, j}| − |δl|).
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procedure ExtendLines(in ConstCriterion, Ā, N, A, ∆ĉnet, H out N,A)

for each i ∈
[
2..Ā

]
do

for each l ∈ LN do

cl ←
∑

(u,v)∈Al

(tuv + tvu) + 2 · ts · |N l|

Ãl ←
{
(i, j) ∈ Ã satisfying Rij

}

Rij ←


i ∈ δl or j ∈ δl and δl = 2

cl + tij + tji + 2 ·
[
(ts + tl) ·

(
|δl ∪ {i, j}| − |δl|

)]
≤ H

cc,lij ≤ ∆ĉnet

if Ãl ̸= ∅ then

(u, v, ccuv)← Select (i, j) with the set criterion on clij in Ãl

by calling BestSuitableLink(ConstCriterion, Ãl)

∆ĉnet ← ∆ĉnet − ccuv
Al ← Al ∪ {(u, v)}

Ã← Ã− {(u, v)}

δl ← δl ∪ {u, v} − δl ∩ {u, v}

end if

end for

end for

return N,A

end ExtendLines

Table 5: Pseudo-code of the procedure ExtendLines.

The last requirement establishes that the infrastructure cost of the stretch in line l (cc,lij ) does not surpass
the remaining infrastructure budget (∆ĉnet). This cost is computed by means of the following equation:

cc,lij =

{
ccij + ccj If i ∈ δl
ccij + cci Otherwise

(32)

Observe that its computation depends on the extreme node of the stretch which is already connected to
the line.

The second step consists of finding the best stretch to be included in the line, according to the ConstCri-
terion parameter and the clij measure. This operation is performed by calling on the procedure BestSuit-
ableLink, shown in table 6. Firstly, it computes for a given (i, j) ∈ Ãl the clij measure by verifying which
extreme node is connected to the line, and then it compares the clij cost to the one belonging to the temporary

best suitable stretch (c̃c,lij ). If the criterion is met, it updates the best suitable link data. These two operations
are repeated for every (i, j) ∈ Ãl.
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procedure BestSuitableLink(in ConstCriterion, in Ãl, in ĉnet,H, out u, v, c̃lij , c̃
c,l
ij )

c̃lij ←
{
∞ If ConstCriterion is Minimization
0 Otherwise

for each (i, j) ∈ Ãl do

clij ←

{
cc,lij + cmij + ccj + cmj If i ∈ δl

cc,lij + cmij + cci + cmi Otherwise

if ConstCriterion is Minimization and clij < c̃lij or
ConstCriterion is Maximization and clij > c̃lij then

c̃lij ← clij

c̃c,lij ← cc,lij

u← i

v ← j

end if

end for

return u, v, c̃c,lij
end BestSuitableLink

Table 6: Pseudo-code of the procedure BestSuitableLink.

The last step of subroutine ExtendLines consists of a parameter update related to the extension of the
line. It includes the setting of its new extreme nodes and its grade, as well as the computation of the remain-
ing infrastructure budget. Additionally, we record the link and node identifiers in setsAl andN l, respectively.

Before explaining the assignment, let’s focus on the case that the parameter RoutingModel is set to M3.
That means the line segments are going to be selected from the pool Λ. This is done by means of subroutine
ChoseCorridor, shown in table 7. This subroutine chooses a set of |LN | corridors according to their γc costs
and the established criterion in the ConstCriterion parameter. As stated above, this parameter can be set to
the minimization or maximization of infrastructure costs. In the case of minimization, the |LN | corridors
with at most Ā links and with minimum γc costs will be selected. In contrast, if it is maximization, then
the |LN | corridors with at most Ā links, and with maximum γc costs will be chosen. The γc cost takes into
account the construction and maintenance costs of all stretches and nodes used by the corridor, which are
stated in the column vector c of matrices D and E, respectively.

Notice that, the initial Ā parameter can be modified by the procedure in the case of no Ā link corridors.
In these situations, it looks for the nearest Ā link corridors towards minus infinity.

After choosing the appropriate corridors or carrying out the routing of the |LN | lines, we proceed to
assign them frequency by means of the subroutine SetFrequency, shown in table 8. As inputs, it needs the
topology of the line (captured in setsAl andN l) and a criterion to establish how vehicles and frequencies are
assigned to them (captured in the FreqCriterion parameter). The available criteria are maximum or minimum
line frequency assignments.
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procedure ChoseCorridor (in ConstCriterion, Ā,Λ out N,A)

ΛĀ ←

c ∈ Λ :
∑

(i,j)∈AN
TP : i<j

Dc
ij = Ā


while ΛĀ = ∅ do

Ā← Ā− 1

ΛĀ ←

c ∈ Λ :
∑

(i,j)∈AN
TP : i<j

Dc
ij = Ā


end while

γc ←
∑

(i,j)∈AN
TP : i<j

Dc
ij ·
(
ccij + cmij

)
+
∑
i∈NN

TP

Ec
i · (cci + cmi ), ∀c ∈ ΛĀ

ΛĀ ← sort ΛĀ with the ConstCriterion on γĀ

For each l ∈ LN do

c← Select the first element in ΛĀ

ΛĀ ← ΛĀ − {c}

Al ←
{
(i, j) ∈ ANTP : i < j, Dc

ij = 1
}

N l ←
{
i ∈ NN

TP : Eci = 1
}

end for

return N,A

end ChoseCorridor

Table 7: Pseudo-code of the procedure ChoseCorridor.

For the maximization case, we proceed as follows. Firstly, we compute the number of lines that use each
link (i, j) ∈ ATP (|Lij |). Secondly, we determine the maximum number of vehicles that can be assigned
to each line (B̄), assuming homogenous assignment. This measure takes into account the available planning
budget, so we first find out the maximum number of vehicles which can be acquired (∆̄fc). Having done
these two calculations, we go into the for-loop where we carry out the frequency assignment. To do that, we
first get the maximum line capacity (f l0) according to the capacity of the stretches (f̄ij), and the number of
lines that use them (|Lij |). Secondly, we compute an upper bound of the line frequency (f l1) by means of the
line cycle (cl) and the number of assigned vehicles (B̄). Finally, we select from these two bounds the one
that has the least value.

Regarding the minimization case, we simply assign the inverse of the planning horizon, since we con-
sider that only one service per line will be carried out. Notice that the number of services per line zl = H ·f l,

so f l =
zl

H
.
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procedure SetFrequency ( in FreqCriterion, in N, A, out f )

if FreqCriterion is Maximization then

Lij ← {l ∈ L : (r, s) ∈ Al}, ∀(i, j) ∈ ATP

∆̄fc ←
c̄veh
cab

B̃ =

⌊
fc +∆fc
|L|

⌋
for each l ∈ L do

f l0 ← min

{
f̄ij
|Lij |

, ∀(i, j) ∈ Al
}

cl ←
∑

(i,j)∈Al

(tij + tji) + 2 ·
[
ts · |N l|+ tl ·

(
|N l| − |Al|

)]
f l1 ←

B̃

cl

f l ← min{f l0, f l1}

end for

else

f l ← 1

H
end if

return f

end SetFrequency

Table 8: Pseudo-code of the procedure SetFrequency.

For the sake of clarification, we include the following table, which lists the specific parameters and sets
that are used by the aforementioned procedures:

Ā Maximum number of allowed stretches per line.

Ã Set of stretches which are not still used by any line at the current line’s extension iteration.

Ãl Set of candidate stretches to be used by line l at the current line’s extension iteration.

Al Set of stretches assigned to line l at the current line’s extension iteration.

B̃ Number of vehicles to be assigned to each line.

cij Total cost of the required network infrastructure to link node i directly to node j.

ccij Construction cost of the required network infrastructure to link node i directly to node j.

clij Total cost of the required extended network infrastructure to link node i directly to node j at line l.

cc,lij Construction cost of the required extended network infrastructure to link node i directly to node j at line
l.
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cl Line cycle.

ConstCriterion Parameter denoting the criterion to be used to construct the line segments.

Dc
ij A 0-1 valued cell in a column of matrix D denoting whether or not stretch (i, j) is held in corridor c.

Eci A 0-1 valued cell in a column of matrix E denoting whether or not node i is held in corridor c.

f l Frequency of line l.

f l0 Maximum allowable frequency assignment to line l according to link capacities.

f l1 Maximum allowable frequency assignment to line l according to vehicle availability.

FreqCriterion Parameter denoting the criterion to be used to assign frequency to the lines.

Lij Number of lines which share link (i, j).

N l Set of nodes assigned to line l at the current line’s extension iteration.

RoutingModel Parameter denoting the routing model in use.

ts Node Service time.

tl Layover time of line l.

δl Terminal nodes of line l.

Λ Set of candidate corridors to be assigned to any of the lines under construction.

ΛĀ Set of candidate corridors with Ā stretches.

∆̄fc Maximum number of vehicles which can be acquired with the current planning budget.

∆ĉnet Remaining infrastructure budget.

Guidelines for the input data setting

This appendix aims to provide basic guidelines for setting some input model data. They are split into two
groups: the infrastructure input data and the planning input data. The former comprises the setting of the
construction and maintenance costs of the infrastructure resources, whereas the latter consists of determining
the service costs as well as the main features of the planning resources.

Infrastructure input data

The infrastructure input data includes the construction and maintenance costs of the infrastructure resources,
i.e., the stretches and station nodes which are candidates to be used by some new constructed line.

The setting of the construction costs of the stretches (ccij) depends mainly on three elements: the monetary
cost of one unit length of stretch (cc,1ij ), the amortization horizon (Ha), and the total length of the stretch
(dTPij ). Having determined the three parameters, one needs to apply the following formula:

ccij = dTPij ·
cc,1ij
Ha

(33)
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Construction costs related to stations (cci ) depends on three elements: station capacity (qi), the maximum
allowable passenger density (ρpax), and the cost of one square meter of platform (cc,1i ). The qi is expressed
in amounts of passengers, and an estimated average value can be obtained from the following formula:

qi = H ·

∑
w∈Wi

gw

t̄w
(34)

where Wi stands for the subset of od-demand pairs which have origins or destinations in station i, t̄w is
the average passenger waiting time and H is the planning horizon. Having obtained qi, the following final
formula determines the station cost:

cci = qi · ρpax · cc,1i (35)

Finally, the maintenance costs of stretches and stations are obtained simply by multiplying the construc-
tion costs by 0.1. We take this approximation since maintenance costs depend on several parameters which
are difficult to estimate.

Planning input data

The planning input data comprises the service costs as well as the main features of the planning resources.
We refer to planning resources as the stretches and public transport vehicles which go through them.

Service costs related to stretches (cfij) include mainly the power consumption costs (ceb) of public trans-
portation vehicles (PTV ), as well as the cost of private vehicles (cd). They are expressed as monetary
units/time units, so that they are weighted by the average traveling time through the link (i, j) to compute
cfij as follows:

cfij = tTPij · (ceb + cd) (36)

Cost ceb can be determined by means of the energy cost per time unit (ctue ) and the nominal power of the
PTV engine (ηe · P̄e) as follows:

ceb = ctue · ηe · P̄e (37)

Finally, cd cost is computed taking into account the average base salary (cs) and total number of working
time units per month (Hw), as follows:

cd =
cs
Hw

(38)

Regarding stretch features, capacity (qij) has been set by means of the following formula:

qij =
1

tsij(1 +Ks)
(39)

where parameter tsij stands for the minimum time between two consecutive arrivals at node j departing from
node i, and Ks denotes a safety coefficient. This time includes the in-vehicle travel time through the stretch

277



(tTPij ) as well as the average service time at the destination node (tsj)

Vehicle service costs are split into two categories: acquisition and setting costs (cab and csb, respectively).
The former takes into account the iff for those vehicles which are not available, i.e., those vehicles which are
not in the current working fleet.

cab cost is computed by means of the following formula:

cab =
ncar · ccar

Ha
(40)

where parameters ncar, ccar and Ha stand for the average number of carriages contained in the PTV, the
acquisition cost of a carriage and the amortization horizon, respectively.

csb consists of the cost to move a PTV from its depot location to the starting node of the line where it is
assigned. So, its value can only be obtained if we know a priori the location of the PTV depot (d), the initial
station of the given line (s), and the shortest or candidate path through which the vehicle will move (P ls), as
follows:

csb =
∑

(i,j)∈P l
s

cTPij (41)

where parameter cTPij denotes the total cost in monetary units of going through stretch (i, j). P ls contains the
path from d to s in both directions, since the PTV must move back to the depot when the working day finishes.

Finally, the PTV features, i.e., the capacity (q), have been set according to the following formula:

q = ncar · qcar (42)

where qcar stands for the average carriage capacity. It includes the number of seated and standing passengers.

278



Basic input data for the Santiago de Chile Network

This appendix is devoted to providing some input data for the Santiago de Chile underground network. This
data is needed for carrying out the experiments shown in section 8.1.2.4 of chapter 8. Tables 9 - 13 give the
relationship between each node identifier and its label, so that the reader can find out which links are referred
to by the following Tables 14 - 18. The last tables 19 - 21 refer to the data related to the links of the routing
graph shown in Figure 8.22.

Id Label Id Label
001 San Pablo 015 Universidad Catlica
002 Neptuno 016 Baquedano
003 Pajaritos 017 Salvador
004 Las Rejas 018 Manuel Montt
005 Ecuador 019 Pedro de Valdivia
006 San Alberto Hurtado 020 Los Leones
007 Universidad de Santiago 021 Tobalaba
008 Estacin Central 022 El Golf
009 Unin Latinoamericana 023 Alcntara
010 Repblica 024 Escuela Militar
011 Los Hroes 025 Manquehue
012 La Moneda 026 Hernando de Magallanes
013 Universidad de Chile 027 Los Dominicos
014 Santa Lucı́a

Table 9: Relationship between the node identifiers and the label names of the L1 stops.

Id Label Id Label
028 Vespucio Norte 038 Parque O’Higgins
029 Zapadores 039 Rondizzoni
030 Dorsal 040 Franklin
031 Einstein 041 El Llano
032 Cementerios 042 San Miguel
033 Cerro Blanco 043 Lo Vial
034 Patronato 044 Departamental
035 Puente Cal y Canto 045 Ciudad del Nio
036 Santa Ana 046 Lo Ovalle
011 Los Hroes 047 El Parrn
037 Toesca 048 La Cisterna

Table 10: Relationship between the node identifiers and the label names of the L2 stops.
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Id Label Id Label
021 Tobalaba 060 Vicua Mackenna
049 Cristbal Coln 061 Vicente Valds
050 Francisco Bilbao 062 Rojas Magallanes
051 Prı́ncipe de Gales 063 Trinidad
052 Simn Bolı́var 064 San Jos de la Estrella
053 Plaza Egaa 065 Los Quillayes
054 Los Orientales 066 Elisa Correa
055 Grecia 067 Hospital Stero del Rio
056 Los Presidentes 068 Protectora de la Infancia
057 Quilı́n 069 Las Mercedes
058 Las Torres 070 Plaza de Puente Alto
059 Macul

Table 11: Relationship between the node identifiers and the label names of the L4 stops.

Id Label Id Label
060 Vicua Mackenna 073 Santa Rosa
071 Santa Julia 074 San Ramn
072 La Granja 048 La Cisterna

Table 12: Relationship between the node identifiers and the label names of the L4A stops.

Id Label Id Label
075 Plaza de Maip 088 Plaza de Armas
076 Santiago Bueras 089 Bellas Artes
077 Del Sol 016 Baquedano
078 Monte Tabor 090 Parque Bustamante
079 Las Parcelas 091 Santa Isabel
080 Laguna Sur 092 Irarrzabal
081 Barrancas 093 uble
082 Pudahuel 094 Rodrigo de Araya
001 San Pablo 095 Carlos Valdovinos
083 Lo Prado 096 Camino Agricola
084 Blanquedano 097 San Joaquı́n
085 Gruta de Lourdes 098 Pedrero
086 Quinta Normal 099 Mirador
087 Cumming 100 Bellavista de la Florida
036 Santa Ana 061 Vicente Valds

Table 13: Relationship between the node identifiers and the label names of the L5 stops.
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i-node j-node dTP
ij (km) cfij (e × min/veh) qij (veh/min)

001 002 0.7 4.31571 0.470588
002 003 1 6.1653 0.4
003 004 0.9 5.54877 0.421053
004 005 0.7 4.31571 0.470588
005 006 0.7 4.31571 0.470588
006 007 0.6 3.69918 0.5
007 008 0.7 4.31571 0.470588
008 009 0.5 3.08265 0.533333
009 010 0.7 4.31571 0.470588
010 011 0.5 3.08265 0.533333
011 012 0.5 3.08265 0.533333
012 013 0.5 3.08265 0.533333
013 014 0.5 3.08265 0.533333
014 015 0.6 3.69918 0.5
015 016 0.6 3.69918 0.5
016 017 0.9 5.54877 0.421053
017 018 0.7 4.31571 0.470588
018 019 0.7 4.31571 0.470588
019 020 0.6 3.69918 0.5
020 021 0.7 4.31571 0.470588
021 022 0.6 3.69918 0.5
022 023 0.6 3.69918 0.5
023 024 0.6 3.69918 0.5
024 025 1.4 8.63142 0.333333
025 026 1.3 8.01489 0.347826
026 027 1 6.1653 0.4

Table 14: Stretch features for working line L1.

281



i-node j-node dTP
ij (km) cfij (e × min/veh) qij (veh/min)

028 029 1.4 8.63142 0.333333
029 030 0.7 4.31571 0.470588
030 031 1 6.1653 0.4
031 032 0.9 5.54877 0.421053
032 033 2.8 17.2628 0.210526
033 034 2.3 14.1802 0.242424
034 035 0.7 4.31571 0.470588
035 036 1.4 8.63142 0.333333
036 011 0.9 5.54877 0.421053
011 037 0.7 4.31571 0.470588
037 038 2.6 16.0298 0.222222
038 039 0.9 5.54877 0.421053
039 040 1.1 6.78183 0.380952
040 041 2.9 17.8794 0.205128
041 042 4.3 26.5108 0.150943
042 043 5.6 34.5257 0.121212
043 044 4 24.6612 0.16
044 045 2.5 15.4133 0.228571
045 046 0.8 4.93224 0.444444
046 047 1.1 6.78183 0.380952
047 048 1.4 8.63142 0.333333

Table 15: Stretch features for working line L2.
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i-node j-node dTP
ij (km) cfij (e × min/veh) qij (veh/min)

021 049 1.3 8.01489 0.347826
049 050 0.8 4.93224 0.444444
050 051 1.4 8.63142 0.333333
051 052 2.3 14.1802 0.242424
052 053 0.8 4.93224 0.444444
053 054 1.1 6.78183 0.380952
054 055 3.1 19.1124 0.195122
055 056 5.1 31.443 0.131148
056 057 6 36.9918 0.114286
057 058 3.8 23.4281 0.166667
058 059 1.2 7.39836 0.363636
059 060 1.3 8.01489 0.347826
060 061 0.7 4.31571 0.470588
061 062 1.2 7.39836 0.363636
062 063 3.6 22.1951 0.173913
063 064 4.4 27.1273 0.148148
064 065 2.7 16.6463 0.216216
065 066 0.9 5.54877 0.421053
066 067 0.8 4.93224 0.444444
067 068 2.7 16.6463 0.216216
068 069 1.9 11.7141 0.275862
069 070 0.9 5.54877 0.421053

Table 16: Stretch features for working line L4.

i-node j-node dTP
ij (km) cfij (e × min/veh) qij (veh/min)

060 071 1.5 9.24795 0.32
071 072 1.6 9.86448 0.307692
072 073 1.7 10.481 0.296296
073 074 0.9 5.54877 0.421053
074 048 2 12.3306 0.266667

Table 17: Stretch features for working line L4A.
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i-node j-node dTP
ij (km) cfij (e × min/veh) qij (veh/min)

075 076 1.6 9.86448 0.307692
076 077 0.9 5.54877 0.421053
077 078 1.2 7.39836 0.363636
078 079 0.9 5.54877 0.421053
079 080 1.6 9.86448 0.307692
080 081 1.1 6.78183 0.380952
081 082 1.2 7.39836 0.363636
082 001 1.7 10.481 0.296296
001 083 0.6 3.69918 0.5
083 084 0.9 5.54877 0.421053
084 085 1.5 9.24795 0.32
085 086 1.1 6.78183 0.380952
086 087 1.1 6.78183 0.380952
087 036 0.9 5.54877 0.421053
036 088 0.8 4.93224 0.444444
088 089 0.6 3.69918 0.5
089 016 1.2 7.39836 0.363636
016 090 0.5 3.08265 0.533333
090 091 1.6 9.86448 0.307692
091 092 0.7 4.31571 0.470588
092 093 1.5 9.24795 0.32
093 094 4.2 25.8943 0.153846
094 095 6.4 39.4579 0.108108
095 096 8.1 49.9389 0.087912
096 097 6.4 39.4579 0.108108
097 098 4.6 28.3604 0.142857
098 099 2.7 16.6463 0.216216
099 100 0.9 5.54877 0.421053
100 061 0.7 4.31571 0.470588

Table 18: Stretch features for working line L5.
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i-node j-node dTP
ij (km) cfij (e-min/veh) qij (veh/min) ccij (euros)

021 233 1.2 7.39836 2.75 23.0137
021 234 1 6.1653 2.5 19.1781
028 225 0.7 4.31571 2.125 13.4247
028 029 1.4 8.63142 3 26.8493
029 030 0.7 4.31571 2.125 13.4247
029 225 0.9 5.54877 2.375 17.2603
029 226 1.5 9.24795 3.125 28.7671
029 230 1.4 8.63142 3 26.8493
030 226 1.6 9.86448 3.25 30.6849
030 230 1.2 7.39836 2.75 23.0137
225 226 1.5 9.24795 3.125 28.7671
226 227 0.9 5.54877 2.375 17.2603
226 228 0.8 4.93224 2.25 15.3425
226 230 1.1 6.78183 2.625 21.0959
227 229 0.9 5.54877 2.375 17.2603
228 229 1.4 8.63142 3 26.8493
228 230 0.6 3.69918 2 11.5069
228 232 1 6.1653 2.5 19.1781
229 232 1 6.1653 2.5 19.1781
229 233 1.2 7.39836 2.75 23.0137
229 234 1.6 9.86448 3.25 30.6849
230 231 1.4 8.63142 3 26.8493
230 232 0.8 4.93224 2.25 15.3425
231 232 1 6.1653 2.5 19.1781
231 234 1 6.1653 2.5 19.1781
232 234 1.7 10.481 3.375 32.6027
233 234 1.2 7.39836 2.75 23.0137

Table 19: Stretch features for routing sector Tobalaba - Vespucio Norte.
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i-node j-node dTP
ij (km) cfij (e-min/veh) qij (veh/min) ccij (euros)

028 216 1.8 11.0975 3.5 34.5205
028 218 1.5 9.24795 3.125 28.7671
082 209 1.1 6.78183 2.625 21.0959
082 210 0.9 5.54877 2.375 17.2603
209 210 0.9 5.54877 2.375 17.2603
209 211 1.1 6.78183 2.625 21.0959
210 212 1.7 10.481 3.375 32.6027
211 212 1.3 8.01489 2.875 24.9315
211 223 1.9 11.7141 3.625 36.4384
212 213 1.6 9.86448 3.25 30.6849
212 223 1.4 8.63142 3 26.8493
213 214 1.1 6.78183 2.625 21.0959
213 223 1.2 7.39836 2.75 23.0137
214 215 2.1 12.9471 3.875 40.274
214 221 2.5 15.4133 4.375 47.9452
214 222 2 12.3306 3.75 38.3562
214 223 2.9 17.8794 4.875 55.6164
214 224 1.6 9.86448 3.25 30.6849
215 216 1.3 8.01489 2.875 24.9315
215 218 2 12.3306 3.75 38.3562
215 219 1.8 11.0975 3.5 34.5205
215 224 1.5 9.24795 3.125 28.7671
216 218 1 6.1653 2.5 19.1781
218 219 0.9 5.54877 2.375 17.2603
219 220 1.8 11.0975 3.5 34.5205
219 224 2.4 14.7967 4.25 46.0274
220 221 2.4 14.7967 4.25 46.0274
220 224 1.5 9.24795 3.125 28.7671
221 222 2.7 16.6463 4.625 51.7808
222 223 1.6 9.86448 3.25 30.6849
222 224 3.2 19.729 5.25 61.3699

Table 20: Stretch features for routing sector Vespucio Norte - San Pablo.
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i-node j-node dTP
ij (km) cfij (e-min/veh) qij (veh/min) ccij (euros)

048 207 1.5 9.24795 3.125 28.7671
048 208 1.3 8.01489 2.875 24.9315
075 199 1.6 9.86448 3.25 30.6849
075 200 1.8 11.0975 3.5 34.5205
199 200 1 6.1653 2.5 19.1781
199 201 1.6 9.86448 3.25 30.6849
200 201 1.9 11.7141 3.625 36.4384
200 202 1.4 8.63142 3 26.8493
201 202 1.6 9.86448 3.25 30.6849
201 203 1.3 8.01489 2.875 24.9315
202 203 1.6 9.86448 3.25 30.6849
202 204 2 12.3306 3.75 38.3562
203 204 1.7 10.481 3.375 32.6027
203 205 1.6 9.86448 3.25 30.6849
204 205 1.1 6.78183 2.625 21.0959
204 206 1.5 9.24795 3.125 28.7671
205 206 1.5 9.24795 3.125 28.7671
205 207 1.8 11.0975 3.5 34.5205
206 207 1.2 7.39836 2.75 23.0137
206 208 1.4 8.63142 3 26.8493
207 208 1.1 6.78183 2.625 21.0959

Table 21: Stretch features for routing sector Plaza de Maip - La Cisterna.

287



Objective function

This section shows the breakdown of the optimal objective function of the inelastic demand version of the
model for the experiment performed on the Seville network where only two lines can be constructed. On
the list, the column Term shows the part of the objective to which the remaining columns refer. The next
column, Factor denotes the value which weighs the term. Column Cost reports the value of the term without
weighting. Column Weighted Cost shows the value of the term with weighting. Finally, the column Portion
denotes the portion of the objective function which represents this term.

Term Factor Cost(/h) Weighted Cost Portion(%)
--------------------------------------------------------------------
Operators 0.10 12955.01 1295.50 4.74 %
Frequencies 0.10 3319.41 331.94 1.22 %
Vehicles Setting 0.10 400.00 40.00 0.15 %
Vehicles Acq. 0.10 0.00 0.00 0.00 %
Stations Const. 0.10 2134.00 213.40 0.78 %
Stations Maint. 0.10 235.40 23.54 0.09 %
Stretches Const. 0.10 6242.00 624.20 2.29 %
Stretches Maint. 0.10 624.20 62.42 0.23 %
Passengers 0.90 28899.16 26009.24 95.26 %

Time 0.90 28899.16 26009.24 95.26 %
In-Vehicle 0.90 1278.71 1150.84 4.21 %
Walking 0.90 18328.45 16495.60 60.41 %
Boarding 0.90 4861.95 4375.75 16.03 %
Alighting 0.90 2430.97 2187.87 8.01 %
Waiting 0.90 1999.08 1799.17 6.59 %

--------------------------------------------------------------------
Total 41854.17 27304.74
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Demand Utility tuning

Demand modal splitting is based on the logit probabilistic functions (7.3) - (7.4), which are incorporated into
a mathematical program, as shown in chapter 7. However, they need to be calibrated, i.e., logit parameters
βPRIw , θw, γPRIw and βTPw need to be fixed. One approach is to carry out a survey on passenger preferences
and infer the parameter values from the collected data. However, this process entails spending a great amount
of time and money. Moreover, the obtained results would be valid only for a specific region or, at most, for
the country’s inhabitants, since passenger preferences are affected by the country’s culture.

Instead of this approach, we employ the following. We develop a likely logit probalistic modal function,
which behaves in a similar manner as if the parameter values were inferred from a survey. It is based on the
type of model results we want to obtain when elastic demand is applied. We consider the following principle:
the higher the travel time throughout the public transportation network, the less the demand there is from
people willing to use it.

The travel time throughout the public transportation network for a given od-pair is not known in advance,
since it is part of the model results. However, we can infer the lower and upper bounds in a straightforward
manner. The lower bound corresponds to the determination of the shortest path throughout the extended
network depicted in figure 2.2. Its mathematical form is as follows:

min
v

∑
w∈W

gw ·
∑

(i,j)∈ATP \Ax

tTPij ·
∑
l∈Lij

vw,lij (43)

s.t. :

∑
l∈Li

 ∑
j∈la(i)

vw,lij −
∑
j∈ly(i)

vw,lji

 = twi , ∀i ∈ N, w ∈W (44)

vw,l
inv+(i)

= vw,ly(i) +
∑

j∈Al
x+(i)

vw,lij , ∀l ∈ L, i ∈ N
S+
TP (l), w ∈W (45)

vw,l
inv−(i)

= vw,la(i) +
∑

j∈Al
x−(i)

vw,lji , ∀l ∈ L, i ∈ N
S−
TP (l), w ∈W (46)

Fortunately, this problem does not need to be solved by a linear optimization solver. Instead, we can em-
ploy Diskstra’s algorithm [58] or the Floyd & Warshall procedure [58], [181] if we compute all the shortest
paths at the same time. The latter obtains lower bounds faster if we consider a complete OD-demand matrix.

Regarding the upper bound. It can be obtained through solving a largest path problem throughout the
extended network. However, this value could be too far from reality. Furthermore, the resolution of this
problem is time consuming. Instead, we employ a practical rule. We consider that a given OD-pair is not
willing to use the public transportation network if its whole travel time exceeds K times the shortest one.

Having determined the lower and upper bounds, we associate to them its probabilities (the demand por-
tion which will be assigned to the public transportation mode). As depicted in figure 2, the lower travel time
bound twmin is related to the upper probability bound Pu. Its value is set to 0.95, thus we encourage the model
to assign 95% of the demand to the public transportation mode when the travel time of the OD-demand pair
tends toward the minimum. In contrast, when it approaches the maximum travel time, the demand portion
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Figure 2: Logit probability function for a given o-d demand pair w.

goes rapidly down to 0. Its lower probability bound Pi is set to 0.05.

Now, we use the points (twmin, Pu) and (twmax, Pi) in collaboration with the logit probabilistic functions
(7.3) - (7.4) to establish the following relationships:

UPRIw − UTPw (twmin) = ln

(
1− Pu
Pu

)
(47)

UPRIw − UTPw (twmax) = ln

(
1− Pi
Pi

)
(48)

where UPRIw and UTPw are the utility modal functions (7.1) - (7.2). By combining (47) with (48) and rear-
ranging terms, we obtain the following close expression which gives the value of θw:

θw =
1

twmax − twmin
· ln
[
(1− Pi) · Pu
(1− Pu) · Pi

]
(49)

Now using the value of θw, we can determine a close expression with respect to a weighted sum of the
utility parameters βPRIw , βTPw and γPRIw by means of relationship (47) or (48). Consequently, we have two
degrees of freedom which can be overcome by applying common sense rules. For instance, we can add a
new equation relating the values of βPRIw and βTPw as follows:
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βPRIw = Kw · βTPw (50)

where input parameter Kw ≥ 1 establishes that the public transportation fare is Kw times cheaper than the
parking cost at origin p(w) and/or destination q(w). To break the remaining degree of freedom, we look for
the fuel cost per time unit, γPRI , supposing that the features of the type of vehicle used for any OD demand
pair are quite similar in terms of fuel consumption. Then, to obtain its corresponding cost for a specific
OD-demand pair, we simply weight that unitary cost γPRI by the average private distance traveled by the
OD-demand pair dPRIw , which is given as an input parameter.

To sum up, we first compute θw by means of (49) and γPRIw = γPRI · dPRIw and then βTPw and βPRIw

by means of (50) and (47) or (48). If we decide on first computing βTPw with the point equation (47) and θw
expression (49), we obtain the following equation:

βTPw =
1

(1−Kw)
· ln
[
(1− Pu)σ+1 · P σi
(1− Pi)σ · P σ+1

i

]
(51)

where σ stands for the following expression:

σ =
twmin − tPRIw

twmax − twmin
(52)
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Entropy discretization

Parameters awr and bwr stand for the coefficients of the piecewise linear first order approximations of the
entropy modal functions (7.32) - (7.33). Their calibration depends on the method used to fit them and the
maximum allowable error. There are many fitting-methods in the literature. For instance, the first order
approximation of Taylor’s polinomium. However, this type of method uses a constant step to establish the
intervals where the line equations are active. It usually entails construction of a high number of line equa-
tions and, thus, it yields to a large number of constraints (7.49) - (7.50).

Instead of using this method, we employ a numerical method which works with a variable step. The
big picture is shown in table 23. It begins by computing a unique line equation linking the extreme values
of a given OD-demand pair gwmin and gwmax and then looking for the demand value gr, where there is the
maximum approximation error. This step is carried out by calling on the subroutine FindMaxError, shown
in table 22. Observe that the maximum error is computed as the relative difference between the value of the
exact entropy function f(gwi ) and its approximation function f̃(gwi ).

procedure FindMaxError (in aw, bw, gw, out ϵ, r, gr)

ϵ← 0

For each i ∈ [1..|gw| − 1] do

f̃(gwi )← awr(i) + bwr(i) · g
w
i

f(gwi )← gwi · (ln gwi − 1)

ϵ̃← |f̃(g
w
i )− f(gwi )|
f(gwi )

If ϵ < ϵ̃ then
r ← Interval where gwr is held in
gr ← gwr
ϵ← ϵ̃

end if

end for

return ϵ, r, gr

end FindMaxError

Table 22: Pseudo-code of the procedure FindMaxError.

Having computed the maximum error, the line coefficients awr , bwr and awr+1, bwr+1 related to the interval
r, where the error is located, are updated according to the discrete demand points g̃w, which are assigned to
these intervals. Demand point gr is associated with the maximum error.

These steps are repeated as long as the maximum error ϵ̃ exceeds the pre-specified error ϵ. Having
finished the Fitting procedure, the whole set of line coefficients aw and bw are returned, as well as intervals
nw, to which they are related.
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procedure Fitting (in ϵ, gwmax, gwmin, out aw, bw, nw)

aw1 ←
gwmin · f(gwmax)− gwmax · f(gwmin)

gwmin − gwmax

bw1 ←
f(gwmax)− f(gwmin)

gwmax − gwmin
gw ← {gwmin .. gwmax}

g̃w ← {gwmin, gwmax}

nw ← {1}

do
(ϵ̃, r, gr)← Get the maximum approximation error and

its interval by calling FindMaxError( aw, bw, gw, nw, ϵ̃, r, gr)

For each i ∈ [|nw|..r + 1] do
awi+1 ← awi

bwi+1 ← bwi
end for

awr ←
g̃wr · f(gr)− gr · f(g̃wr )

g̃wr − gr

bwr ←
f(gr)− f(g̃wr )

gr − g̃wr

awr+1 ←
gr · f(g̃wr+1)− g̃wr+1 · f(gr)

gr − g̃wr+1

bwr+1 ←
f(g̃wr+1)− f(gr)

g̃wr+1 − gr

g̃w ← g̃w1−r ∪ {gr} ∪ g̃wr+1−|nw|+1

nw ← nw ∪ {|nw|+ 1}

while (ϵ̃ < ϵ)

return aw, bw, nw

end Fitting

Table 23: Pseudo-code of the procedure Fitting.
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