
CPU ACCOUNTING IN

MULTI-THREADED PROCESSORS

José Carlos Ruiz Luque
(Carlos Luque)

Barcelona, 2014

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Department of Computer Architecture
Universitat Politècnica de Catalunya

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/33345468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CPU ACCOUNTING IN

MULTI-THREADED PROCESSORS

José Carlos Ruiz Luque
(Carlos Luque)

Barcelona, 2014

Thesis director: Francisco J. Cazorla Almeida
Barcelona Supercomputing Center

Spanish National Research Council
Universitat Politècnica de Catalunya

Thesis co-directors: Miquel Moretó Planas
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

Mateo Valero Cortés
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Department of Computer Architecture
Universitat Politècnica de Catalunya

A mi hermano Roberto y
mi madre Dori

Abstract

In recent years, multi-threaded processors popularity has raised in industry in order to
increase the system aggregated performance and per-application performance, over-
coming the limitations imposed by the limited instruction-level parallelism, and by
power and thermal constraints.

However, multi-threaded processors introduce complexities when accounting
CPU (computation) capacity (CPU accounting), since the CPU capacity accounted
to an application not only depends upon the time that the application is scheduled
onto a CPU, but also on the amount of hardware resources it receives during that
period. And given that in a multi-threaded processor hardware resources are dynam-
ically shared between applications, the CPU capacity accounted to an application in
these processors depends upon the workload in which it executes. This is inconveni-
ent because the CPU accounting of the same application with the same input data
set may be accounted significantly different depending upon the workload in which
it executes. Deploying systems with accurate CPU accounting mechanisms is neces-
sary to increase fairness among running applications. Moreover, it will allow users
to be fairly charged on a shared data center, facilitating server consolidation in future
systems.

This Thesis analyses the concepts of CPU capacity and CPU accounting for multi-
threaded processors. This study demonstrates that current CPU accounting mechan-
isms are not as accurate as they should be in multi-threaded processors. For this
reason, we present two novel CPU accounting mechanisms that improve the accuracy
in measuring the CPU capacity for multi-threaded processors with low hardware over-
head. We focus our attention on several current multi-threaded processors, including
chip multiprocessors and simultaneous multithreading processors. Finally, we analyse
the impact of shared resources in multi-threaded processors in operating system CPU
scheduler and we propose several schedulers that improve the knowledge of shared
hardware resources at the software level.

i

ii Abstract

Acknowledgements

It is a great pleasure to find oneself at this stage of research life when the real adventure
with science just begins, yet already with a clear taste of it. It is even a greater pleasure
to be able to thank to all those that have contributed in some way to the completion of
this Thesis.

In the first place, I would like to express my sincere gratitude to my advisor Fran-
cisco Javier Cazorla and my co-advisors Miquel Moretó and Mateo Valero for their
dedication, encouragement and guidance throughout my Ph.D. adventure. Also, their
criticism and encouragement has been a great inspiration for me. I have enjoyed every
single discussion with them and I believe it will continue in the future. I will always be
thankful for their valuable comments and remarkable patience. It has been an honour
to be their Ph.D. student. Thanks to them I have learnt what research truly means!

I am also greatly indebted to Enriquez Fernández for his excellent guidance at the
early stage of my career. He introduced me to the computer architecture. I would also
like to thank my collaborators, Roberto Gioiosa, Alper Buyuktosunoglu and Alexan-
dra Fedorova for great interactions and endless discussions.

Special thanks go to my colleagues from the group ‘CAOS’ in Barcelona Super-
computing Center for an overwhelming support and a great encouragement at the very
last stage of this Thesis.

This work would not have been possible without the financial support of Bar-
celona Supercomputing Center, Universitat Politècnica de Catalunya, Generalitat de
Catalunya and the Spanish Ministry of Education and Science.

Last but not least, I wish to thank my Family for their love, for patience, and for
their understanding and gigantic encouragement through difficult moments. If it had
not been them, this Thesis would not come into existence.

iii

iv Acknowledgements

Contents

Abstract i

Acknowledgements iii

Index viii

1 Introduction 1
1.1 Challenges for Accurate CPU Accounting in Multi-Threaded Processors 2
1.2 Thesis Contributions . 6

1.2.1 Concept of CPU Capacity and CPU Accounting for Multi-
Threaded Processors . 7

1.2.2 CPU Accounting for Multi-Core Processors 8
1.2.3 CPU Accounting for CMP+SMT Processors 8
1.2.4 CPU Capacity-Aware Scheduling in Multi-Core Processors . . 9

1.3 Thesis Structure . 10

2 Platform, Tools, and Benchmarks 13
2.1 Introduction . 13
2.2 MPsim Simulator . 14
2.3 Benchmarks . 16

2.3.1 Simulation Time Reduction 18
2.3.2 Workload Selection . 22

2.4 Comparison Metrics . 22

3 Concept of CPU Capacity and CPU Accounting for Multi-Threaded Pro-
cessors 25
3.1 Defining CPU Capacity . 25

3.1.1 Abstracting CPU Capacity in MT processor 26

v

vi Contents

3.1.2 CPU Capacity . 27

3.1.3 Fair Share of CPU Capacity 28

3.1.3.1 Putting It All Together 29

3.2 Defining CPU Accounting . 30

3.3 Summary . 31

4 CPU Accounting for Multi-Core Processors 33
4.1 Introduction . 33

4.2 Background . 34

4.2.1 The Classical Approach . 35

4.3 InterTask Conflict-Aware Accounting 37

4.3.1 Hardware Implementation 38

4.3.2 CPU Accounting in ITCA 39

4.4 Evaluation Results . 41

4.4.1 Accuracy Results . 42

4.4.2 Reducing the ATD’s Overhead 43

4.4.3 Memory Bandwidth Sensitivity 45

4.4.4 ITCA and Cache Partitioning Algorithms 45

4.5 Improved ITCA Accounting . 48

4.6 Even-Share Accounting . 52

4.6.1 Hardware requirements . 54

4.6.2 Accuracy Results . 56

4.7 Other Considerations . 56

4.7.1 Performance Counters . 56

4.7.1.1 Results . 57

4.7.2 Other Proposals Providing Fairness 58

4.7.3 Parallel Tasks . 59

4.8 Summary . 60

5 CPU Accounting for CMP+SMT Processors 61
5.1 Introduction . 61

5.2 Background . 62

5.2.1 Processor Utilization of Resources Register 62

5.2.2 Processor Utilization Recording Register 66

5.2.3 Cycle Accounting Architecture 66

5.3 Micro-Isolation Based Time Accounting 68

Contents vii

5.3.1 MIBTA for SMT Processors 69

5.3.1.1 Hardware Implementation 71

5.3.2 MIBTA for CMP processors 72

5.3.3 CPU Accounting in MIBTA 74

5.4 Evaluation Results . 74

5.4.1 Sensitivity Analysis for Single-Core Architectures 75

5.4.2 MIBTA Storage Overhead 78

5.4.3 Shared Register File . 79

5.4.4 MIBTA on CMP+SMT Architectures 80

5.4.5 Memory Bandwidth Sensitivity 82

5.4.6 Comparison with Other Accounting Mechanisms 83

5.5 Other Considerations . 85

5.5.1 System-level Considerations 85

5.5.2 Virtualized Environments 87

5.5.3 Dynamic Voltage and Frequency Scaling 87

5.5.4 Parallel Tasks . 87

5.5.5 Scalability . 89

5.6 Summary . 89

6 CPU Capacity-Aware Scheduling in Multi-Core Processors 91
6.1 Introduction . 91

6.2 Background . 93

6.2.1 Completely Fair Scheduler 93

6.2.2 Functioning and Implementation Aspects of CFS 94

6.3 Effective CPU Capacity Share in CMP Processors 96

6.4 CPU Capacity-Aware CFS . 97

6.4.1 Balanced CPU Capacity Scheduler (BCCS) 98

6.4.2 Equal CPU Capacity Scheduler (ECCS) 100

6.4.3 Integrating BCCS and ECCS in CFS 101

6.5 Evaluation Results . 101

6.5.1 Experimental Setup . 102

6.5.2 CPU Capacity-based Schedulers Self-Evaluation 104

6.5.3 Time-based vs. CPU Capacity-based Schedulers 106

6.5.4 Scalability Analysis to Large Core Counts 108

6.5.5 Case Studies . 109

6.5.5.1 Dynamic Behaviour 109

viii Contents

6.5.5.2 Different Priorities 110
6.5.6 Discussion . 111

6.6 Related Work . 112
6.7 Summary . 114

7 Conclusions 117
7.1 Thesis Contributions . 118

7.1.1 Concept of CPU Capacity and CPU Accounting for Multi-
Threaded Processors . 118

7.1.2 CPU Accounting for Multi-Core Processors 118
7.1.3 CPU Accounting for CMP+SMT Processors 119
7.1.4 CPU Capacity-Aware Scheduling in Multi-Core Processors . . 119

7.2 Future Work . 120
7.3 Publications . 121

7.3.1 Conferences . 121
7.3.2 Journals . 122
7.3.3 Posters . 122
7.3.4 Video . 123

Bibliography 125

List of Figures 133

List of Tables 137

Acronyms 139

Chapter 1
Introduction

Over the last 20 years, the performance of Single-Threaded (ST) processors has in-
creased due to two factors: advances in the integrated circuit technology and microar-
chitectural techniques such as deeper pipeline, dynamic scheduler, speculative execu-
tion through branch predictor, cache hierarchy and non-blocking caches. Advances
in the integrated circuit technology have provided both faster and smaller transist-
ors. Smaller transistors increase integration while faster transistors allow increasing
clock rates, and hence, processors can run at higher clock rate, in other words, high
frequency. Microarchitectural techniques allow exploiting Instruction-Level Parallel-
ism (ILP) inherent in tasks1. Although microarchitectural techniques help improving
performance, a large portion of this performance comes from advances in integrated
circuits. On the whole, processors run instructions very fast due to high frequency
and the number of instructions running concurrently is high due to microarchitectural
techniques.

Due to power and thermal constraints [20] and the limited amounts of ILP inherent
in tasks [66], new techniques have been developed to improve performance with low
energy requirements. One such technique is Thread-Level Parallelism (TLP). Current
processors implement at least one form of TLP, which allows executing several tasks
onto the processor simultaneously.

TLP can be implemented across multiple chips. For instance, Symmetric Mul-
tiProcessing (SMP) consists of two or more processors that are connected to shared
hardware resources such as main memory. TLP can also be implemented at the chip
level. In this level, a wide variety of processors supports TLP. On one extreme of
the spectrum, we find Simultaneous Multithreading (SMT) processors [52, 64], in
which tasks share most of the processor resources. On the other end of the spectrum,

1In this Thesis, we use the term task to refer to an application running in a computing system.

1

2 Chapter 1. Introduction

Chip MultiProcessors (CMP) [42] or multi-core processors, in which tasks share only
some levels of the cache hierarchy and the memory bandwidth. In between, there
are other TLP paradigms like Coarse-Grain MultiThreading (CGMT) [2, 62] or Fine-
Grain MultiThreading (FGMT) [19, 57]. Each of these designs offers different be-
nefits as they exploit TLP in different ways, which motivates processor vendors to
combine different TLP paradigms in their latest processors. Some notorious examples
are the Intel core i7 [51] and IBM POWER7 [56], which are CMP+SMT processors,
and the ORACLE UltraSPARC T4 [43] that is CMP+FGMT. This trend in integrat-
ing different TLP paradigms will keep growing in importance according to the ITRS
roadmap for the future years [24]. In this Thesis, we make use of the term Multi-
Threaded (MT) processor to refer to a processor implementing any TLP paradigm or
combination of TLP paradigms at chip level.

Both SMP systems and MT processors permit to execute several tasks simultan-
eously. In this way, the utilization of the hardware resources is improved because
several tasks can use different parts of hardware resources, and hence, the system
throughput is increased.

On the other hand, the communication latency in SMPs is higher than in MT
processors because on-chip communications are faster than outside the chips used in
SMPs. For instance, if two or more threads of a parallel task want to share data, the
communication latency will be lower in a MT processor as data will be cached on-
chip (in the cache hierarchy), and not in main memory as in a SMP. The SMP can
have a cache hierarchy with a Last level Cache (LLC) shared among processors, but
this LLC is outside the chip. Consequently, increased communication latencies are
obtained on those systems.

Other benefits of MT processors are the design costs and power efficiency. The
design costs are reduced because the design complexity of a MT processor is fairly
less than a processor with a larger monolithic core. Due to the described benefits of
MT processors, processor vendors prefer this microarchitecture to improve the pro-
cessor performance with low energy requirements.

1.1 Challenges for Accurate CPU Accounting in Multi-
Threaded Processors

An Operating System (OS) is a software application that manages computer hardware
resources and provides common services for computer systems. It also acts as an

1.1. Challenges for Accurate CPU Accounting in Multi-Threaded Processors 3

interface between user and the computer hardware and supplies an environment within
which user applications can do useful work [55]. Its major responsibility is to manage
and ensure proper operation of the hardware resources. Moreover, an OS provides
the user with an abstraction of the hardware resources. The user application perceives
this abstraction as if it was using the complete hardware while, in fact, the OS shares
hardware resources among the user applications. For example, several tasks demand
service from the Central Processing Unit (CPU). Hardware resources can be shared
temporally and spatially. Hardware resources are time shared between users when
each task can make use of a resource for a limited amount of time (for example, the
exclusive use of a CPU). Orthogonally, hardware resources can be shared spatially
when each task makes use of a limited amount of resources, such as cache memory or
I/O bandwidth.

In traditional, ST uniprocessor systems, the execution time of a task is influenced
by the amount of hardware resources shared with the other running tasks. It is also
affected by how long the task runs with other tasks. However, the time accounted to
that task is roughly the same regardless of the workload2 in which it is executed, in
other words, regardless of how many tasks are sharing the hardware resources at any
given time. We call this principle, the Principle of Accounting.

To illustrate this principle of accounting, we use an Unix-like system that differ-
entiates the real execution time and the time a task actually is running onto a CPU.
Commands such as time or top provide three values: real, user and sys. Real is the
elapsed wall clock time between the invocation and termination of the task; user is the
time spent by the task in the user mode; and sys is the time spent in the kernel mode
on behalf of the task. In these systems, sys+user time is the execution time accounted
to a task.

Figure 1.1 shows the total (real) and the accounted execution time (sys+user)
of the 171.swim (or simply swim) SPEC CPU 2000 benchmark [60] when it runs in
different workloads. In this figure, the time results are normalized to the real execution
time of swim when it runs in isolation3, meaning that, once swim is scheduled on a
CPU it does not share the CPU resources with any other task. For this experiment, we
use an Intel Xeon Quad-Core processor at 2.5 GHz (though the general trends drawn
from Figure 1 apply to other current MT processor). There are four cores in the chip,

2In this Thesis, we use the term workload to refer to a set of tasks running onto a processor simultan-
eously.

3In this Thesis, we use the term execution in isolation to refer to when a task runs alone onto a
processor.

4 Chapter 1. Introduction

1.0

1.5

2.0

2.5

3.0

3.5

4.0

swim swim, equake swim, equake,

wupwise

swim, equake,

wupwise, lucas

N
o
r
m
a
li
z
e
d
 e
x
e
c
u
ti
o
n
 t
im
e

real (ST)

sys+user (ST)

real (CMP)

sys+user (CMP)

Figure 1.1: Total (real) and accounted (sys+user) time of swim in different workloads running
on an Intel Xeon Quad-Core CPU

on which we run Linux 2.6.18. We move most of the OS activity to the first core,
leaving the other cores as isolated as possible from OS noise. When swim runs alone
in one of the isolated cores, it completes its execution in 117 seconds. However, when
swim runs together with other tasks in the same core, its real execution time increases
up to 4x due to context switches forced by the OS (black triangles in Figure 1.1).
Nevertheless, swim is accounted roughly the same time (grey triangles), which is the
time the task actually uses the CPU. Tasks may suffer some delay because of cache
data eviction and the loss of TLB contents caused by a context switch, but this effect
is small in this case. Hence, even if total execution time of swim increases depending
upon the other tasks it is co-scheduled with, the time accounted to swim is always the
same.

In ST uniprocessor systems, each running task uses 100% of the processor’s re-
sources and its progress can be generally measured in terms of the time spent running
onto the CPU. We call this CPU accounting mechanism the Classical Approach. The
classical approach has been proved to work well for ST uniprocessor and SMP sys-
tems, as the amount of hardware resources spatially shared is limited.

However, MT processors make more complex to measure CPU utilization because
the progress of a task depends upon the activity of the other tasks running at the same
time. Current CPU accounting mechanisms may lead to inaccuracy for the time ac-
counted to each task. In order to show this inaccuracy, in a second experiment, we
use all the cores in the Intel Xeon Quad-Core processor. We execute swim concur-
rently with other tasks, as shown by the x-axis in Figure 1.1. In this case, swim suffers
no time sharing and real time is roughly the same as sys+user because the number
of tasks that are running is equal or lower than the number of virtual CPUs (see Fig-
ure 3.1) in the system. In Figure 1.1, the grey circles show a variance up of to 2x in the

1.1. Challenges for Accurate CPU Accounting in Multi-Threaded Processors 5

time swim is accounted for depending upon the workload in which it runs. This means
that a task running onto a MT processor may be accounted different CPU utilization
depending upon the other tasks running on the same chip at the same time. From the
user point of view this is an undesirable situation, as the same task with the same input
data set is accounted differently depending upon the tasks it is co-scheduled with.

In short, the principle of accounting is not guaranteed in MT processors due to
the fact that the performance of a task depends on both the time the task runs onto
the processor and the amount of resources it receives during that time. The latter is
in general not under the control of the user or the OS. To make things worse, there is
a non-linear relation between the percentage of resources assigned to a task and the
slowdown it suffers with respect to running in isolation.

The inaccuracy measuring per-task CPU utilization may affect several key com-
ponents of a computing system, such as performance monitoring tools, the CPU
scheduler, or billing mechanisms in data centers:

• Performance tools generate statistics of various parameters of a task such as
CPU utilization and I/O activities in order to know the behaviour of the task
in a computing system. For example, in Unix-like systems the command vm-
stat reports statistics regarding virtual memory, disks, and CPU activity. These
tools may not properly account the CPU utilization of task in a MT processor
and hence, the tools generate wrong profile of tasks. This is undesirable. For
instance, in a queue system, a task may exceed the threshold for the particular
queue where it runs because its execution time changes depending upon who
are its co-runners.

• In modern time-sharing OSes, the CPU scheduling algorithm multiplexes the
CPU time for different tasks in the system and maintains fairness between tasks.
In this scenario, the task schedulers assume that the time a task is scheduled
onto CPU is a good metric in order to measure the CPU utilization of each task
in ST uniprocessor system. However, in MT processors, this metric is flawed
because each task may make a different progress in different workloads. For
this reason, even if the CPU scheduler can balance time among tasks in the
system achieving fairness, the scheduling algorithms cannot guarantee that a
task progresses according to its software-assigned priority.

• Selection of appropriate co-runners. Task interaction in hardware shared re-
sources may negatively affect tasks, hurting performance and increasing energy

6 Chapter 1. Introduction

requirements. Per-task CPU accounting can help the OS scheduler or a runtime-
based scheduler to decide which tasks must be run and when, thus increasing
the total system performance.

• Billing in data centers. Data centers charge users for the use of their resources.
The fact that CPU utilization in MT processors is not accurately measured,
makes current billing systems unfair when several users are consolidated onto
the same processor. Measuring the CPU utilization each task performs, would
allow charging each user more fairly. Traditionally, data centers offer services
of compute capacity and storage to execution and store of its customers’ tasks
and data. In order to charge compute capacity to a customer, the data center may
utilize the CPU utilization as measurement of the CPU activity. The payment
of these services depends upon the utilized resources such as used amount of
memory, disk space, I/O and CPUs activity, etc. For example, Amazon Elastic
Compute Cloud (Amazon EC2) [3] is a virtual computing environment that
leverages Amazon’s own infrastructure to provide computing capacity to ex-
ternal users. The user sets up an image with all the required applications, lib-
raries and data, and uploads them to Amazon’s facilities. After this preliminary
step, the user instructs Amazon EC2 to start executing an instance bound to
previously uploaded image. At this point, Amazon starts billing the user for the
number of hours the instance executes, for data transfers (network usage) and
for disk space usage. In conclusion, having accurate per-task CPU utilization
will facilitate server consolidation, allowing an efficient usage of the servers
and a fair charging to users.

1.2 Thesis Contributions

This Thesis presents several proposals that effectively track the CPU capacity to ac-
count each task running onto MT processors. The contributions are divided into three
groups. First, we formally define the CPU capacity and CPU accounting for MT pro-
cessors. Second, at the hardware level, we propose two novel CPU accounting mech-
anisms that improve the accuracy in measuring the CPU accounting in MT processors.
To start with, we study CPU accounting mechanisms for CMP processors. Next, CPU
accounting mechanisms are studied for CMP+SMT processors, where each core sup-
ports SMT. Finally, at the software level, we study how the CPU scheduler should be
adapted to take advantage of the proposed CPU accounting hardware mechanisms to

1.2. Thesis Contributions 7

increase system fairness. The following sections briefly summarize each one of the
contributions.

1.2.1 Concept of CPU Capacity and CPU Accounting for Multi-
Threaded Processors

The first problem that is addressed in the Thesis is the definition of CPU capacity
and CPU accounting for MT processors. Although these concepts are clearly defined
in ST processors, they are vague in MT processors. For this reason, we provide two
definitions of CPU capacity (resource utilization and CPU progress) and we also in-
troduce the fair share of CPU capacity which represents the hardware resources that
a task should get access when the task runs alone onto a MT processor. The fair
share of CPU capacity can be defined with two different approaches: full-share and
even-share.

In this Thesis, we focus on CPU capacity as CPU progress. The full-share ap-
proach assumes that a task running in isolation accesses all processor hardware re-
sources during a given period of time. Consequently, the task execution progress of a
task in a MT processor is equivalent to its execution progress when runs in isolation.
Meanwhile, the even-share approach assumes that a task accesses even part of the pro-
cessor resources. In our cases, even part of the processor resources is defined as 1/N
of the processor resources, where N is the number of tasks supported by processors.
In this way, the task execution progress of a task is equivalent to its execution progress
when runs in isolation with an even part of the processor resources.

The CPU accounting is the process of measuring the CPU capacity utilized by task
in a MT processor. In other words, the CPU accounting measures the CPU capacity
of a task would have if the task run alone onto a MT processor. For instance, if a task
A executes 5 milliseconds in a MT processor and the CPU accounting measures 4.5
milliseconds, it means that the task would run for 4.5 milliseconds if it is alone on the
processor. The task progressed 90 percent of the time, and in the remaining time, the
task was stalled due to interferences with other tasks. In contrast, in a ST processor,
the task A would have progressed 100 percent of the time as it would run alone in
the processor. We name full-share accounting when using CPU capacity based on
CPU progress and full-share approach and even-share accounting when using CPU
capacity based on CPU progress and even-share approach.

8 Chapter 1. Introduction

1.2.2 CPU Accounting for Multi-Core Processors

The second problem that we address in this Thesis is how the CPU accounting is ob-
tained in CMP processors. CMP processors consist of simple processor cores and
share only some levels of the cache hierarchy and the memory bandwidth (see Fig-
ure 2.1). We firstly focus on CMP processors because they have less shared hardware
resource among tasks than SMT processors and we can easily identify the sources that
generate inaccuracies when measuring CPU capacity in CMP processors with current
CPU accounting mechanisms.

We propose a new CPU accounting mechanism for CMP processors, called In-
terTask Conflict-Aware (ITCA) accounting [33, 34]. The main goal of ITCA is to
estimate accurately the CPU accounting to a task by keeping track of the interference
in shared hardware resources, mainly in the on-chip shared cache. Moreover, we show
that our understanding of the processor architecture in developing ITCA is correct by
making a complete design space exploration of the possible combinations of hardware
resource status indicator states. This exploration confirms that ITCA provides reason-
ably accurate results at moderate hardware cost. It also shows that with small changes
we can implement an improved ITCA accounting mechanism, denoted I2TCA, that
further improves the accuracy of ITCA.

In addition, we show that ITCA works well with cache partitioning algorithms
and that both full-share and even-share accounting approaches can be used with our
proposed mechanisms.

1.2.3 CPU Accounting for CMP+SMT Processors

The third problem that is addressed in the Thesis is how the CPU capacity is measured
in processors combining different TLP paradigms such as CMP+SMT processors. In
these processors, more hardware resources are shared than CMP processors, since
both on-core and off-core hardware resources are shared among running tasks. It is
important to note that, in general, on-core shared resources in the SMT processor are
more heavily shared than off-core resources shared among different cores.

ITCA does not adapt correctly to processors with multiple TLP paradigms be-
cause it cannot track interferences of shared on-core resources such as register files,
issue queues, execution units, the reorder buffer, etc. In addition, the current CPU ac-
counting mechanisms or combination of them either incurs an unaffordable hardware
cost to track CPU capacity in processors with multiple TLP paradigms, or leads to
inaccuracies in its measurement. Consequently, we introduce Micro-Isolation Based

1.2. Thesis Contributions 9

Time Accounting (MIBTA) [35], a new CPU accounting mechanism to compute CPU
capacity in CMP+SMT processors. Instead of adding hardware support in each shared
hardware resource to track tasks’ slowdown, MIBTA makes use of a time sampling
technique in which tasks run in isolation for short periods of time, with negligible ef-
fect on the system throughput and with high accuracy in CPU accounting of tasks. In
particular, our CPU accounting mechanism combines the following two mechanisms:

• At SMT level, where tracking how tasks interact in each core resource would
introduce significant hardware overhead, our technique periodically runs each
task in isolation to measure its CPU capacity. The execution of each task in a
workload is divided into two phases that are executed in alternate fashion. In
the first, isolation phase, all tasks but one are stopped so that the Instruction Per
Cycle (IPC) in isolation of the task is measured. In a second, multi-threaded
phase, all tasks run together. The ratio IPCMT /IPCisol times the total execu-
tion time gives the CPU accounting for each task. Since the number of available
threads in each SMT processor is restricted (only 2-8 threads), this solution can
be implemented with minimal performance degradation.

• At CMP level, our technique makes use of dedicated hardware monitoring sup-
port to track the interferences between tasks running in different cores. This
hardware support is based on ITCA accounting mechanism [33, 34], which
tracks the conflicts in the last level of cache, shared among all different cores,
and estimates with high accuracy the CPU accounting in CMP processors. In
addition, we propose a new monitoring hardware that significantly reduces the
storage overhead of ITCA without affecting its high accuracy. The Randomized
Sampled Auxiliary tag directory, denoted RSA, combines sampling techniques
with randomized algorithms to predict inter-task misses to the entire LLC.

MIBTA combines both proposals to provide tight CPU accounting in CMP+SMT
processors with reduced hardware overhead.

1.2.4 CPU Capacity-Aware Scheduling in Multi-Core Processors

Finally, we address how the software can be adapted to the proposed CPU accounting
mechanisms in this Thesis with the aim of improving fairness. We focus on the CPU
scheduler, which is a key component of the OS and has a significant impact in the
system throughput and fairness.

10 Chapter 1. Introduction

The CPU scheduler focuses on efficiently sharing CPU resources among tasks.
In ST uniprocessors, the CPU resources are shared temporarily, in other words, they
are time-shared. The CPU scheduler selects the task that should be run next, and for
how long this task should use the CPU resources. Time-based schedulers assume that
the progress of a task is measured in terms of the time spent onto a CPU. On the
other hand, for MT processors, which dynamically share a large amount of processor
resources, this assumption is invalid because the task’s progress depends upon the
activity of other tasks in the same processor as illustrated in Figure 1.1.

In this Thesis, we define a new concept of effective CPU capacity share for MT
processors, which is aware of the amount of actual CPU capacity used by a task dur-
ing its execution. Moreover, we propose two novel task schedulers, Balanced CPU
Capacity Scheduler and Equal CPU Capacity Scheduler, that are aware of the CPU
capacity received by each running task, and make use of this information to share the
CPU more effectively.

1.3 Thesis Structure

This Thesis is structured as follows:

• Chapter 2 focuses on explaining our experimental environment. This includes
both the simulation tools and the benchmarks used in this Thesis.

• Chapter 3 defines the concepts of CPU Capacity and CPU Accounting for MT
processors, identifying the main sources of inaccuracy in current CPU account-
ing mechanisms. Also, it introduces the fair share of CPU capacity which
represents the hardware resources that a task should get access when the task
runs alone onto a MT processor.

• Chapter 4 presents a novel CPU accounting mechanism, ITCA, for CMP pro-
cessors that is aware of interference in shared hardware resources.

• Chapter 5 describes a novel CPU accounting mechanism for CMP+SMT pro-
cessors, MIBTA, that extends the concepts of ITCA to SMT processors.

• Chapter 6 describes our concept of effective CPU capacity share for MT pro-
cessor and proposes two OS CPU scheduling algorithms that are aware of the
actual CPU capacity enjoyed by each scheduled task.

1.3. Thesis Structure 11

• Chapter 7 summarizes the main conclusions of this Thesis, presents our future
work, and lists the relevant publications related to this Thesis.

12 Chapter 1. Introduction

Chapter 2

Platform, Tools, and Benchmarks

In this Chapter, we explain the tools and benchmarks we use to evaluate the current
CPU accounting mechanisms and the CPU accounting mechanisms proposed in this
Thesis.

2.1 Introduction

Researchers in this field propose and test novel techniques that could be included in
the actual processor designs. In order to evaluate new techniques, computer architec-
ture researchers usually use both simulation tools and benchmark suites. The simula-
tion tools are used at different levels of detail, form circuit to system level, depending
on the particular target system are studied. The benchmarks suites are representative
of current and future applications that will be executed by the designed processor.

In this Thesis, several microarchitecture proposals are evaluated in term of both
performance and accuracy for different workloads and processor configurations. For
this reason, cycle-level microarchitecture simulators are used to model in detail the ar-
chitecture of the processor and estimate the performance of a benchmark with differ-
ent configurations. This simulator can be execution driven or trace driven. Execution-
driven simulators usually have higher accuracy, but are time-consuming. Trace-driven
simulators are less accurate, but are faster. As a result, we decided to choose a trace-
driven simulator in order to get a trade-off between speed and accuracy in our experi-
ments.

13

14 Chapter 2. Platform, Tools, and Benchmarks

shared BUS

core 1core 0

Memory Controller

DRAM Memory Device

core N

I$ D$ I$ D$ I$ D$

Shared Cache

chip

...

Figure 2.1: Modeled baseline microarchitecture

2.2 MPsim Simulator

To evaluate the performance of the different mechanisms shown in this Thesis and cal-
culate the IPC, we use MPSim [1] (Multiple Purpose Simulator). This simulation tool
includes a trace driven SMT simulator derived from SMTsim [64]. MPsim supports
CMP processors and SMT processors and simulates the impact of executing along
wrong paths on the branch predictor and the Instruction Cache. Also, MPsim models
an in-order processor and an out-of-order processor.

In this Thesis, we model both CMP and CMP+SMT processors. Figure 2.1 shows
our baseline CMP microarchitecture which consists of two or more cores which are
connected to a shared L1-L2 bus, a shared last level cache, a shared memory control-
ler, and a shared memory bandwidth. In our baseline CMP+SMT, each core supports
SMT in which most on-core hardware resources are shared among all tasks running
in the core. In both processor microarchitectures, the modelled pipeline each core is
out-of-order as shown in Figure 2.2.

The fetch logic fetches instructions from the instruction cache in program order.
Next, instructions are decoded and renamed in order to track data dependences. When
an instruction is renamed, it is allocated an entry in the issue queues (Integer queue
(IQ), Floating point queue (FPQ), and load/store queue (LSQ)) until all its operands
are ready. Each instruction also allocates one entry in the Re-Order Buffer (ROB) and
a physical register, if required. ROB entries are assigned in program order. When

2.2. MPsim Simulator 15

Figure 2.2: Block diagram of pipeline of a core

an instruction has all its operands ready, it is issued1: it reads its operands, executes,
writes its results, and finally commits.

The data and the instruction caches are accessed with physical addresses. The
data cache uses write back as write hit policy and write allocate as write miss policy.
Caches are tagged with the identifier of tasks so that tasks do not share data and/or
instructions.

The instruction fetch policy has an important role in SMT core because it determ-
ines which of the available tasks can fetch instructions each cycles. In our baseline
SMT core, the modelled instruction fetch policy is ICOUNT [30] policy. The con-
figuration of ICOUNT policy is 1.N : up to N instructions can be fetched each cycle
from a task.

The main shared resources in our baseline SMT core are the following. (1) The
front-end bandwidth, which is assigned to tasks according to the instruction fetch
policy. (2) The issue queues are shared between all tasks running on a core. (3) The is-
sue bandwidth: we use is first in first out (oldest first) as issue policy. (4) The physical
register files (Integer register file (IReg), and Floating point register file (FReg)) are

1 In this Thesis, the term dispatch indicates the action of moving instructions to the issue queues.
The term issue is applied to the action of submitting instructions from the issue queues to the backend
of the processor.

16 Chapter 2. Platform, Tools, and Benchmarks

Fetch Decode Rename
Queue/

Issue
RRead Execute RWrite Commit

Figure 2.3: Pipeline stages in a core

common to all tasks. (5) Instruction and Data caches are shared between tasks. (6) In-
struction and data Translation Lookaside Buffer (TLB) are also shared and tagged
with task identifier, and (7) the ROB is shared among all tasks in a core.

The pipeline of our baseline core is composed of eight stages as shown in Fig-
ure 2.3. In our experiments, the decode stage takes up to four cycles and, in this way,
the final number of stages in our pipeline is eleven.

2.3 Benchmarks

In the experiments performed during this research, we used the SPEC CPU 2000
benchmark suite [60] to evaluate our proposals in Chapter 4, and the SPEC CPU 2006
benchmark suite [61] in remaining Chapters. These benchmark suites are released by
the Standard Performance Evaluation Corp. (SPEC), and are a worldwide standard for
measuring and comparing computer performance across different hardware platforms.

SPEC CPU 2000 and SPEC CPU 2006 comprise two suites of benchmarks: SPEC
CPU INT 2000 and SPEC CPU INT 2006 for compute-intensive integer performance
and SPEC CPU FP 2000 and SPEC CPU FP 2006 for compute-intensive floating point
performance. These benchmarks are selected from existing applications, represent-
ing high performance computing applications that stress the microarchitecture of the
processor. Benchmark source codes run in different platforms so that performance
comparisons can be made between different systems.

In our case, we run all benchmarks on an Alpha machine: an AlphaServer DS25
with two processors Alpha 21264C running at 1 GHz with the operating system
Tru64 5.1b. Each program is compiled with the -O2 -non_shared options us-
ing DEC Alpha AXP-21264 C/C++ compiler and executed using the reference input
set. Fortran programs are compiled with the DIGITAL Fortran 90/Fortran 77 com-
pilers. We succeeded in compiling all the SPEC CPU 2000 benchmark suite and the
SPEC CPU 2006 benchmark suite. We only had problems with the integer benchmark
483.xalancbmk from SPEC CPU 2006 since its execution produced a known stack
overflow problem.

In Tables 2.1, 2.2, 2.3 and 2.4, we give a short description of each benchmark in

2.3. Benchmarks 17

Table 2.1: SPEC CPU INT 2000 benchmark description and simulation starting point (in
millions of instructions) using the SimPoint methodology [54]

Benchmark Description Input Language Fast
forward

164.gzip Data compression utility graphic C 68.100
175.vpr FPGA circuit placement and routing place C 2.100
176.gcc C compiler 166.i C 14.000
181.mcf Minimum cost network flow solver inp.in C 43.500
186.crafty Chess program crafty.in C 74.700
191.parser Natural language processing ref.in C 83.100
252.eon Ray tracing cook C++ 57.600
253.perlbmk Perl splitmail.535 C 45.300
254.gap Computational group theory ref.in C 79.800
255.vortex Object Oriented Database lendian1.raw C 58.200
256.bzip2 Data compression utility inp.program C 13.500
300.twolf Place and route simulator ref C 324.300

these suites together with the language in which the source codes were written. In
the case of integer benchmarks, all the applications are written in C or C++, while in
the case of floating point benchmarks, some of them are written in Fortran, C, C++,
or a combination of C and Fortran codes. For example, in 435.gromacs the only
Fortran code is the inner loops (innerf.f) which typically account for more than
95% of the runtime.

Some benchmarks in the SPEC CPU 2006 suite are executed multiple times with
different inputs for the reference test. We execute all benchmarks with the input sets
suggested by Phansalkar et al. [46]. In this paper, the authors analyze all the ref-
erence input sets of each benchmark to find redundant input sets, and they choose
the representative input set of the benchmarks that have multiple input sets. To ob-
tain this representative input set, the authors find the input set that is the closest to
the whole benchmark run (with all the input sets). In the SPEC CPU INT 2006
suite, the benchmarks with multiple input sets are 400.perlbench, 401.bzip2,
403.gcc, 445.gobmk, 456.hmmer, 464.h264.ref and 473.astar. In the
SPEC CPU FP 2006 suite, they are 416.games and 450.soplex. For each bench-
mark, we list the most representative input set in Tables 2.5 and 2.6 for the all the
integer and floating point benchmarks, respectively.

18 Chapter 2. Platform, Tools, and Benchmarks

Table 2.2: SPEC CPU INT 2006 benchmark description

Benchmark Description Language
400.perlbench Devired from Perl V5.8.7 C
401.bzip2 Julian Seward’s bzip2 version 1.0.3, modified to do most work in

memory, rather than doing I/O
C

403.gcc Based on gcc Version 3.2, generates code for Opteron C
429.mcf Vehicle scheduling. Uses a network simplex algorithm (which is

also used in commercial products) to schedule public transport
C

445.gobmk Plays the game of Go, a simply described but deeply complex game C
456.hmmer Protein sequence analysis using profile hidden Markov models C
458.sjeng A highly-ranked chess program that also plays several chess vari-

ants
C

462.libquantum Simulates a quantum computer, running Shor’s polynomial-time
factorization algorithm

C

464.h264ref A reference implementation of H.264/AVC, encodes a videostream
using 2 parameter sets. The H.264/AVC standard is expected to
replace MPEG2

C

471.omnetpp Uses the OMNet++ discrete event simulator to model a large Ether-
net campus network

C++

473.astar Pathfinding library for 2D maps, including the well known A* al-
gorithm

C++

483.xalancbmk Transforms XML documents to other docs using a modified Xalan-
C++

C++

2.3.1 Simulation Time Reduction

The simulation of a whole benchmark takes a great amount of time which makes un-
affordable to evaluate new techniques. To reduce simulation time, the most common
approach is to select a smaller segment of every benchmark that is representative of the
whole execution. Selecting these representative samples is an important issue [54, 67].
Random samples appear to be inadequate, while just choosing the beginning of a pro-
gram could be incorrect due to initialization code. However, we know that a program
execution consists of many different phases, where statistics such as cache or branch
misses significantly change among them. Thus, representative segment (throughout
this work we will call it trace) should represent major program phases. As a con-
sequence, the traces allow reducing simulation time to analyse new techniques in this
Thesis.

Another advantage of working with traces is that researches must only perform
time consuming functional simulation of the whole application once, whereas they
perform many times detailed timing simulations of the reduced trace. Therefore, the
time of detailed simulation is significantly reduced.

2.3. Benchmarks 19

Table 2.3: SPEC CPU FP 2000 benchmark description and simulation starting point (in mil-
lions of instructions) using the SimPoint methodology [54]

Benchmark Description Input Language Fast
forward

168.wupwise Quantum chromodynamics wupwise.in Fortran77 263.100
171.swim Shallow water modeling swim.in Fortran77 47.100
172.mgrid Multi-grid solver in mgrid.in Fortran77 187.800

3D potential field
173.applu Parabolic/elliptic applu.in Fortran77 10.200

partial differential
equations

177.mesa 3D Graphics library frames100 + msea.in C 294.600
178.galgel Fluid dynamics: analysis galgel.in Fortran90 175.800

of oscillatory instability
179.art Neural network simulation; -scanfile c756hel.in C 13.200

adaptive resonance theory -trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx 110
-starty 200 -endx 160
-endy 240 -objects 10

183.equake Finite element simulation; inp.in C 27.000
earthquake modeling

187.facerec Image processing facerec.in Fortran90
188.ammp Computer vision: ammp.in C 13.200

recognizes faces
189.lucas Computational chemistry lucas2.in Fortran90 30.000
191.fma3d Finite element crash simulation fma3d.in Fortran90 10.500
200.sixtrack Particle accelerator model sixtrack.in Fortran77 173.500
301.apsi Solves problems regarding apsi.in Fortran77 192.600

temperature, wind, velocity
and distribution of pollutants

This idea drives the SimPoint methodology [54]. Sherwood et al. [54] explain how
to detect a program’s phases by using the Basic Block Vector (BBV) which counts
how many times each basic block appears. Two phases are considered the same if
Mannheim’s distance between their BBVs is small. At the beginning, the execution
of the program is split into a set of intervals of fixed size (10 million instructions). Us-
ing clustering algorithms, such as random linear projection or k-means, the samples
are joined. The first algorithm is used to reduce the dimension of the BBV and, in
that way, accelerate the k-means algorithm. This last algorithm is run for values of k
between 1 and M (M is the maximum number of phases to use) and the intervals are
grouped into phases. Using the Bayesian Information Criterion (BIC), which meas-
ures the goodness of fit of a clustering within a dataset, the smallest value of k with

20 Chapter 2. Platform, Tools, and Benchmarks

Table 2.4: SPEC CPU FP 2006 benchmark description

Benchmark Description Language
410.bwaves Computes 3D transonic transient laminar viscous flow Fortran
416.gamess Implements a wide range of quantum chemical computations. Test

case does self-consistent field calculations using several methods
Fortran

433.milc A gauge filed program: lattice gauge theory with dynamical
quarks

C

434.zeusmp a computational fluid dynamics code developed at NCSA for the
simulation of astrophysical phenomena

Fortran

435.gromacs Molecular dynamics: simulate Newtonian equations of motion for
hundreds to millions of particles. The test case simulates protein
Lysozyme in a solution

C, Fortran

436.cactusADM Solves the Einstein evolution equations using a staggered-leapfrog
numerical method

C, Fortran

437.leslie3d Computational Fluid Dynamics (CFD) using Large-Eddy Simu-
lations with Linear-Eddy Model in 3D. Uses the MacCormack
Predictor-Corrector time integration scheme

Fortran

444.namd Simulates large biomolecular systems. The test case has 92,224
atoms of apolipoprotein A-I

C++

447.dealII C++ program library targeted at adaptive finite elements and error
estimation. The testcase solves a Helmholtz-type equation with
non-constant coefficients

C++

450.soplex Solves a linear program using a simplex algorithm and sparse lin-
ear algebra. Test cases include railroad planning and military air-
lift models

C++

453.povray Image rendering. The testcase is a 1280x1024 anti-aliased image
of a landscape with some abstract objects with textures using a
Perlin noise function

C++

454.calculix Finite element code for linear and nonlinear 3D structural applic-
ations. Uses the SPOOLES solver library

C, Fortran

459.GemsFDTD Solves the Maxwell equations in 3D using the finite-difference
time-domain (FDTD) method

Fortran

465.tonto An open source quantum chemistry package, using an object-
oriented design in Fortran 95. The test case places a constraint
on a molecular Hartree-Fock wavefunction calculation to better
match experimental X-ray diffraction data

Fortran

470.lbm Implements the "Lattice-Boltzmann Method" to simulate incom-
pressible fluids in 3D

C

481.wrf Weather modeling. The test case is from a 30km area over 2 days C, Fortran
482.sphinx3 A widely-known speech recognition system from Carnegie Mel-

lon University
C

a minimum BIC score is chosen. SimPoint chooses the representative of each phase
that is closest to its centroid. Finally, these representatives are accurately simulated
and the results are weighted by the size of each phase.

In the experiments performed in this Thesis, we made use of sampled simulation
techniques in order to reduce simulation time without losing accuracy. In particu-

2.3. Benchmarks 21

Table 2.5: The input sets for each benchmark in SPEC CPU INT 2006 and simulation starting
point (in millions of instructions) using the SimPoint methodology [54]

Benchmark Input Fast Forward
400.perlbench -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 1 1439900
401.bzip2 input.program 280 107000
403.gcc 166.i -o 166.s 25500
429.mcf inp.in 90700
445.gobmk –quiet –mode gtp -i trevord.tst 50300
456.hmmer –fixed 0 –mean 500 –num 500000 –sd 350 –seed 0 retro.hmm 14900
458.sjeng ref.txt 822100
462.libquantum 1397 8 237000
464.h264ref -d foreman_ref_encoder_main.cfg 382800
471.omnetpp omnetpp.ini 683400
473.astar rivers.cfg 220700
483.xalancbmk − −

Table 2.6: The input sets for each benchmark in SPEC CPU FP 2006 and simulation starting
point (in Millions of instructions) using the SimPoint methodology [54]

Benchmark Input Fast Forward
410.bwaves − 1668800
416.gamess -i triazolium.config 2980700
433.milc − 897600
434.zeusmp − 17939
435.gromacs -silent -deffnm gromacs -nice 0 588700
436.cactusADM − 18497
437.leslie3d -i leslie3d.in 637200
444.namd –input namd.input –iterations 38 –output namd.out 1200
447.dealII 23 41900
450.soplex -m3500 ref.mps 67400
453.povray SPEC-benchmark-ref.ini 168600
454.calculix -i hyperviscoplastic 1099500
459.GemsFDTD − 31713
465.tonto − 11500
470.lbm 3000 reference.dat 0 0 100_100_130_ldc.of 17900
481.wrf 2749700
482.sphinx3 ctlfile . args.an4 1740400

lar, we collected traces of the most representative 300 million instruction segment
of each benchmark in SPEC CPU 2000 and 100 million instruction segment of each
benchmark in SPEC CPU 2006, following the SimPoint methodology [54], as this
methodology is widely accepted in the literature.

The fast forwards to apply to each benchmark in both SPEC CPU 2000 and SPEC
CPU 2006 are shown in Table 2.1, 2.3, 2.5, 2.6, respectively. Finally, we are not able
to create the traces from three benchmarks: 459.GermsFTDT, 483.xalancbmk,
and 481.wrf from SPEC CPU 2006.

22 Chapter 2. Platform, Tools, and Benchmarks

time

PTk

STk

PTk ends its

execution

Workload execution

ends here

STk re-executes

Figure 2.4: Execution mode of a workload

2.3.2 Workload Selection

In order to compute the accuracy of CPU accounting mechanisms, we generate work-
loads which consists of number of tasks. In each workload the first task in the tuple
is the Principal Task (PTk) and the remaining tasks are considered as Secondary Task
(STk). In every workload, we execute the PTk until completion. The other tasks are
re-executed until the PTk completes as showed in Figure 2.4. This allows us to char-
acterize the accuracy of proposals based on the type of the PTk and STks. It also
allows to compare the execution time of the PTk when it runs in isolation with the
time predicted by a CPU accounting mechanism once the workload simulation ends.

2.4 Comparison Metrics

The CPU accounting mechanisms presented in this Thesis are evaluated with two
main metrics: throughput and accuracy. As the throughput metric, we measure
weighted speedup [32], which is the sum of related IPC of each task in a workload.
The related IPC of a task X is defined as IPCMT

X

IPCisolX

where the IPCMT
X is the IPC of the

task X in a given workload in a multi-threaded processor, and the IPCisolX is the IPC
of the task X when it runs in isolation in a system. The weighted speedup is calculated
as shown in Equation 2.1

Weighted Speedup =
N∑
i=1

IPCMT
i

IPCisoli

(2.1)

where N number of tasks in a given workload.

As the accuracy metric, we use the Off estimation which the relative error of the
approximation time accounted to a task, TA, from a given CPU accounting mechan-
ism, and the execution time of a task is running in isolation in a system, ET isol. The
off estimation is defined in Equation 2.2.

2.4. Comparison Metrics 23

Off estimation =
∣∣∣∣1− TA

ET isol

∣∣∣∣ (2.2)

When a task is running in isolation in a system, ET isol can be defined with two
approaches that will be studied in Chapter 3: full-share and even-share. The former
is the execution of a task that uses all hardware resources, ET isolfull, and the latter is
the execution time of a task that runs with an even part of the hardware resources,
ET isoleven.

Also, we report the average values of the five workloads with the worst off estim-
ation, denoted Avg5WOE.

24 Chapter 2. Platform, Tools, and Benchmarks

Chapter 3

Concept of CPU Capacity and
CPU Accounting for

Multi-Threaded Processors

In this Chapter, we discuss the definition of CPU capacity and CPU accounting for
MT processors because these concepts are vague in these processors, whereas they
are clearly defined in ST processors. To our knowledge, this Thesis represents the
first effort in that direction.

3.1 Defining CPU Capacity

We define CPU capacity as the amount of ‘CPU computing power’ assigned to a
task per time unit when the task is scheduled onto the CPU. In other words, the CPU
capacity is the percentage of CPU assigned to a task running onto a processor.

We define CPU capacity accounting or simply CPU accounting to the process
of measuring the CPU capacity assigned to a task. As shown in this section, CPU
capacity can be easily defined for a ST architecture: in ST processors, a task gets
access to 100 percent of the processor resources when it runs, since it has exclusive
access to the processor. Under this scenario, CPU capacity can be measured simply
using the CPU time of a task. CPU capacity is, however, more complex to define in
MT processors, which is, in fact, the focus on this Chapter.

25

26 Chapter 3. Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors

VCPU 3 VCPU 4VCPU 1 VCPU 2

Processor

O
S

Thread1 Thread2

Core 1

Thread3 Thread4

Core 2

H
ar

d
w

ar
e

Figure 3.1: View point of a system for a MT processor

3.1.1 Abstracting CPU Capacity in MT processor

Many current OSes stick to the SMP model for MT processors [7]. In this model,
the OSes equally perceive each core in a CMP or each hardware thread in an SMT as
a virtual CPU (VCPU), which is assumed to deliver the same performance as a real
processor (i.e. it suffers no slowdown when tasks run onto other VPCUs), and do not
have any bias toward one VCPU with respect to others as illustrated in Figure 3.1.
However, this model assumes that all processor resources are available for a task
running onto a VCPU without considering the interference between tasks caused by
shared hardware resources. This assumption is not accurate, because VCPUs from a
MT processor share processor resources. Therefore, CPU capacity is shared among
VCPU from a processor. This breaks the principle of accounting in MT processors as
shown in Section 1.1.

Figure 3.2 shows a synthetic example with three tasks running on a system with
a two-core processor. Tasks A, C, and D have the same priority. Task A, which is
assigned a core (VCPU 0), runs concurrently with task C and D that are assigned to a
different core (VCPU 1). The processor resources are shared between tasks running
simultaneously onto the processor. We note that a task can receive different CPU
capacity depending upon the hardware requirements of other tasks running onto the
processor. For example, task A gets more CPU capacity when running with task C
than with task D. This may be because task D needs more hardware resources than
task C.

The main problem to provide the principle of accounting in MT processors is
that the execution time of tasks is highly influenced by the on-chip shared resources,
which tasks compete for. As a result, the execution time of a task, and hence, the CPU
capacity assigned to the task does not only depend upon the time it runs onto the pro-
cessor, as it is the case in ST uniprocessor systems, but also on the other tasks it runs
with (the workload). The workload in which a task runs determines the interference

3.1. Defining CPU Capacity 27

Time

A A AA

C D C D
C

P
U

 C
a

p
a

c
it
y

C

Figure 3.2: Synthetic example with three tasks that are scheduling onto two VCPUs and
receive different CPU capacities

when accessing shared resources it suffers. Moreover, the non-linear relation between
the resources a task receives and the progress it does, makes the computation of CPU
capacity hard [33, 13, 16].

3.1.2 CPU Capacity

Finding an appropriate definition of CPU capacity is challenging, since (1) CPU ca-
pacity has not been defined in the literature (it is an abstract concept), and (2) it is
hard to estimate the CPU capacity a task receives as it shares the CPU with other
tasks. Next, we provide two novel definitions of CPU capacity, and also provide a
qualitative evaluation of each CPU capacity definition.

CPU capacity as time. This approach is an extension of ST processor systems. It
assumes that all the CPU capacity is available when a task is running onto a VCPU. As
a consequence, the approach makes use of time as a proxy to measure CPU capacity.
As we have shown, this definition is fundamentally flawed in MT processors.

CPU capacity as resource utilization. Intuitively, CPU capacity can be under-
stood as resource utilization, meaning that tasks with the same priority should be given
access to the same percentage of shared resources. Note that this approach does not
imply physically partitioning the shared resources to ensure that each task receives
the assigned amount of resources. This could be done, but it is not mandatory. As an
alternative, tasks could be allowed to run with no resource utilization constraints, but
with the proper hardware support to track the actual resource utilization (occupancy).

This interpretation of CPU capacity requires hardware support to track the re-
source utilization per task and requires adequate control policies for these resources.
Let’s assume a multi-core processor with N cores, in which each core has its private
first level instruction and data cache, with a shared second level cache. The CPU
capacity a task i receives is a function of the utilization of the shared resources (e.g.

28 Chapter 3. Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors

cache and memory bandwidth):

CPU_Capacityi = f
(
RU cachei , RUmemBWi

)
(3.1)

Deriving a formula that computes overall CPU resource utilization based on the
per-resource utilization is complex. This is specially the case in processors with high
degree of resource sharing such as SMT processors. Moreover, some tasks are more
sensitive to sharing a given resource than others, so two tasks receiving the same
percentage of each shared resource may make different forward progress.

It is also the case that current processors do not provide such per-task resource
utilization support. So, specific hardware support is required for that purpose. The
overhead of that hardware is high when shared resources are accessed on a cycle-
basis, for instance the core resources in an SMT.

CPU capacity as the CPU progress. The limitations of the previous definition
of CPU capacity motivates us to propose an alternative definition. In this case, CPU
capacity is mapped into task execution progress that the task would do with a ‘fair
share’ of resources.

Let’s assume that a task X runs for a period of time in a MT processor, TRMT
X,IX

,
in which it executes IX instructions. The relative fair progress that task X has in this
interval of time (PMT

X,IX
) is expressed as

PMT
X,IX

=
TRfair−shareX,IX

TRMT
X,IX

(3.2)

The relative progress can also be expressed with the equation

PMT
X,IX

=
IPCMT

X,IX

IPCfair−shareX,IX

(3.3)

in which IPCMT
X,IX

and IPCfair−shareX,IX
are the IPC of the task X when executing

the same IX instructions in the MT processor (likely shared with other tasks) and with
a fair share of CPU capacity, respectively.

3.1.3 Fair Share of CPU Capacity

Several definitions of the actual fair share of CPU capacity are possible. In this Thesis,
we have advocated for the following:

• Full-Share Approach. Under each CPU capacity definition, this definition of

3.1. Defining CPU Capacity 29

fair share incarnates as follows

– Taking CPU progress as CPU capacity, a task is considered to progress
adequately (in a fair manner) when its execution progress is the same as
it would be when the task runs in isolation onto the CPU. This account-
ing approach establishes that a task can access all processor hardware re-
sources when it runs onto the CPU.

– Taking resource utilization as CPU capacity. Under this definition of fair
share of CPU capacity, a task should have access to all processor resources
during its execution. That is, a task accesses a fair share of the CPU
capacity when it has access to all processor resources.

• Even-Share Approach: Under each CPU capacity definition, this definition of
fair share incarnates as follows

– Taking CPU progress as CPU capacity, the even-share approach considers
that the progress that a task should do is equivalent to the progress that the
task would do with an even share of the processor resources.

– Taking resource utilization as CPU capacity, a fair share is mapped into
an even part of shared resources. That is, for each shared resources ri,
the CPU capacity a task should receive would be 1/Ni of the resource
capacity and bandwidth, where Ni is the number of tasks that can simul-
taneously access ri.

3.1.3.1 Putting It All Together

When using CPU capacity based on progress with full-share approach (denoted full-
share accounting) or with even-share approach (denoted even-share accounting), the
main challenge is determining dynamically, while a task X is simultaneously running
with other tasks onto a processor, the speed (or IPC) it would have taken X to execute
the same instructions if it had run with a fair share of the resources. This challenge is
studied in Chapters 4 and 5. In Chapter 4, we provide novel CPU accounting hardware
mechanisms, one for full-share accounting and one for even-share accounting respect-
ively. In Chapter 5, we provides a novel CPU accounting mechanism for full-share
accounting.

When using CPU capacity based on resource utilization with both definitions of
fair share, to the best of our knowledge, no hardware support has been provided to

30 Chapter 3. Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors

measure the resource utilization of tasks with the required level of detail (per cycle
information), and no methods exist to derive the resource utilization of running tasks
for chip resources.

3.2 Defining CPU Accounting

The CPU accounting of a task measures the CPU capacity utilized by the task during
its execution in a MT processor. The CPU accounting serves as a bridge between the
hardware and software, for instance the OS which works with the notion of time. So
under our reference (i.e. full-share and even-share accounting) the CPU accounting
mechanism measures the time that a task would need to execute the same instructions
that have been executed onto MT processor in a given period when running in isolation
with access to either all processor resources or even part of the processor resources.

The CPU accounting of a task X, TAMT
X,IX

, is the time it would take this task to
execute in isolation IX instructions (either with all processor resources or an even
part of the processor resources), denoted TRisolX,IX

, that have been run onto MT pro-
cessor, TRMT

X,IX
, and the relative progress of task X is PMT

X,IX
. The CPU accounting is

expressed as
TAMT

X,IX
= TRMT

X,IX
· PMT

X,IX
(3.4)

from which we conclude
TAMT

X,IX
= TRISOLX,IX

(3.5)

This makes the CPU accounting of a task independent from the rest of the workload,
regaining the principle of accounting for MT processors.

For instance, if a task A executes 5 milliseconds in a MT processor and the CPU
accounting measures 4.5 milliseconds, it means that the task would run for 4.5 milli-
seconds if it run in isolation on the processor. The task progressed 90 percent of the
time, and in the remaining time, the task was stalled due to interferences with other
tasks. In contrast, in a ST processor, the task A would have progressed 100 percent of
the time as it would run alone in the processor.

Under full-share accounting, a CPU accounting mechanism should take into ac-
count the interference due to activities of other tasks in order to obtain the CPU ac-
counting of tasks accurately. For instance, assuming that for a task A, its working set
fits in the LLC when running in isolation, and for other task B its working set does not
fit in the LLC. If both tasks run onto a two-core CMP processor with shared LLC, the
CPU capacity of task A will be different from in isolation because the task B mono-

3.3. Summary 31

polizes the LLC. However, the CPU accounting of the task A should be similar to or
the same as in isolation.

Under even-share accounting, CPU accounting mechanisms should measure the
CPU accounting of a task in its even-share of resources without split hardware re-
source physically, but logically. For example, in a CMP processor, a task can progress
more than in isolation (even-share of resources) because the task can utilize more
hardware resources than its even-share of resources. This scenario should be taken
into account by CPU accounting mechanisms.

In conclusion, both accounting approaches can be utilized as reference in order
to measure the CPU accounting of tasks in MT processors. Choosing one of the
approaches depends upon the objectives of CPU accounting mechanisms and the sys-
tems.

3.3 Summary

This Chapter has introduced the concept of CPU capacity in MT processors as well
as suitable definitions of CPU capacity and of fair share of CPU capacity for MT
processors. Moreover, we have introduced the concept of CPU accounting, which
measures the CPU capacity of a task that is scheduled onto a MT processor as if the
task is alone running onto the processor.

32 Chapter 3. Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors

Chapter 4
CPU Accounting for Multi-Core

Processors

In this Chapter, we firstly analyse the classical approach for CMP processors, and pro-
pose a novel CPU accounting hardware mechanism, InterTask Conflict-Aware (ITCA)
accounting, which improves the accuracy in measuring CPU capacity of the Classical
Approach (CA) for CMPs. On a modelled 2-, 4-, and 8-core CMP, ITCA reduces
the inaccuracy of the classical approach from 7.0%, 13%, and 16%, to 2.4%, 3.7%,
and 2.8%, respectively. Second, we evaluate the accuracy of ITCA in conjunction
with dynamic cache partitioning algorithms [49]. Third, we show that we can imple-
ment an improvement of ITCA with small changes, denoted I2TCA, and that I2TCA
reduces the average off estimation of ITCA. Finally, we show that under even-share
accounting, I2TCA works well with small changes.

4.1 Introduction

Chip MultiProcessors (CMP) or multi-core processors have emerged as the dominant
architecture choice for modern computing systems. The benefits of multi-core pro-
cessors are high power efficiency and less design costs, due to multiplex simpler cores
in a processor (chip). In addition, cores have less power-hungry hardware structures,
and as a result, average power consumption is reasonable.

Due to gap between the processor and the memory speed, the performance of a
task may be degraded. In order to face this scenario, the cache hierarchy is included
in most currently processor. The cache hierarchy store data recently used by a task in
order take advantage of the temporal and spatial locality of the task.

In CMP processors, the cache hierarchy is normally organized in a first level of in-

33

34 Chapter 4. CPU Accounting for Multi-Core Processors

struction and data cache private to each core. The last level cache is generally shared
among different cores in the processor. Shared caches increase resource utilization
and system performance. Large caches improve performance and efficiency by in-
creasing the probability that each task can access data from closer level of the cache
hierarchy. Moreover, they allow a task to make use of the entire cache.

Since tasks share the same address space in LLC, they compete for space in the
LLC. As a consequence, the contention in the LLC may degrade tasks’ performance
and may affect CPU accounting as shown in Section 1.1. In current CPU account-
ing mechanisms, the contention in LLC does not take into account CPU accounting
and hence, their accuracy is poor. In this Chapter, we present a new CPU accounting
mechanism, named ITCA (Intertask Conflict-Aware) and ITCA maintains the prin-
ciple of accounting in CMP processors.

ITCA [33] has been developed based on our understanding of the processor archi-
tecture. In this Chapter, we show that our intuition in developing ITCA is correct by
making a complete design space exploration of the possible combinations of Hard-
ware Resource Status Indicator (HRSI) states. This exploration confirms that ITCA
provides reasonable accurate results. It also shows that we can implement an im-
provement of ITCA with small changes, denoted I2TCA, and that I2TCA reduces the
average off estimation of ITCA mainly in the five worst workloads: from 32% to
13% in the 2-core configuration, from 35% and 17% in the 4-core configuration and
from 20% to 14% in the 8-core configuration. Furthermore, I2TCA can work well in
even-share accounting in order to maintain the principle of accounting.

The rest of the Chapter is organized as follows. Section 4.2 provides a compre-
hensive analysis of the CPU accounting accuracy of the CA. Section 4.3 describes our
proposal of CPU accounting with improved accuracy in computing the CPU capacity
in CMP processors. The experimental methodology and the results of our simulations
are presented in Section 4.4. Section 4.5 evaluates the effects of considering different
HRSIs in the CPU accounting done by ITCA. Next, we evaluate the accuracy of the
CA and ITCA under even-share accounting to compute CPU capacity in Section 4.6.
Section 4.7 studies other issues regarding CPU accounting such as performance coun-
ters and accounting for multi-threaded tasks. Finally, Section 4.8 concludes the study.

4.2 Background

In this section, we study the accuracy of the CA for CMP processors. To the best of
our knowledge, the CA is the only accounting mechanism for CMP processors for

4.2. Background 35

open source OSes such as Linux.

4.2.1 The Classical Approach

The classical approach accounts tasks based on the time they run onto a CPU, instead
of the progress each task performs. Therefore, the CA implicitly assumes that running
tasks have full access to the processor resources. However, each task shares resources
with other tasks when running in a MT processor, which leads to intertask conflicts1.
As a consequence, a task takes longer to finish its execution than when it runs in
isolation, resulting in longer accounting time. For this reason for a task X, the CA
leads to over-estimation

TACAX,IX = TRCMP
X,IX

> TRISOLX,IX
(4.1)

A task has no over-estimation only if it executes with no slowdown in the CMP pro-
cessor with respect to its execution in isolation, in which case

TACAX,IX = TRCMP
X,IX

= TRISOLX,IX
(4.2)

In order to illustrate the concept of over-estimation and without loss of generality,
we assume a dual-core in-order processor. The two cores share the L2 cache, whereas
the first level data and instruction caches are private to each core. We further assume
an L2 miss latency of ten cycles and an L2 hit latency of one cycle. Even if these
latencies are not representative of any current processor, they are perfectly valid for
the purpose of illustrating the problem of CPU accounting. Finally, we assume that
the execution time of a task X when running in isolation (TRISOLX,IX

) is known. In
remaining Chapter, all these assumptions are removed.

In Figure 4.1, each square represents a processor cycle. The progress row shows
whether a task progresses in each cycle or not. If the task executes any instruction
in that cycle, it is marked as one. Otherwise, it is marked as zero. The values in
the CA row show the CPU time accounted to each task. Figure 4.1 (a) shows the
situation in which a task X runs in isolation and executes a memory access that hits in
the L2 cache. Under this scenario, the memory access resolves in one cycle, so X is

1Throughout this Thesis, we refer to intertask resource conflicts to those resource conflicts that a task
suffers due to the interference of the other tasks running at the same time. For example, a given task X
suffers an intertask L2 cache miss when it accesses a line that was evicted by another task, but would
have been in cache, had X run in isolation. Likewise, intratask resource conflicts denote those resource
conflicts that a task suffers even if it runs in isolation. These are conflicts inherent to the task.

36 Chapter 4. CPU Accounting for Multi-Core Processors

L2 miss

issued

L2 miss

resolved

1111 1111 111 11111 1111 111 1

Progress X 1 11 1

1111 1111 111 11111 1111 111 1

CA X 1111 1111 111 = 101111 1111 111 1

Progress Y

CA Y

0 0 0 0 0 0 0 00 0
L2 hit

issued resolvedissued

111Progress X

CA X 111 = 1

L2 hit

Intertask L2 miss delay

(b) Tasks X and Y run on a 2-core CMP(a) Task X runs in isolation

Figure 4.1: Synthetic example to illustrate over-estimation with the CA. The example high-
lights the effect of an intertask L2 miss on a 2-core CMP processor

accounted for one cycle for processing the memory access.

Figure 4.1 (b) shows another situation in which X runs in one core and a task Y
runs in a second core. In this case, we assume that task Y evicts the data belonging to
X from the L2 cache, causing the previous L2 hit of X to become an intertask L2 miss.
This intertask miss causes X to stall its execution (dark squares) until it is resolved
ten cycles later. Under this scenario, X takes longer to serve the memory access
and is accounted for ten cycles. In this particular example, the intertask resource
conflict causes an over-estimation of the accounted time to task X. In this example, it
is assumed that task Y does not suffer any intertask miss, doing the same progress as
in isolation.

The main source of over-estimation in on-chip CMP processors is the delay caused
by intertask conflicts and, in particular, intertask L2 misses.

In order to show this phenomenon, we derive an empirical relationship between
over-estimation in CPU capacity and intertask L2 misses in the CA in CMP pro-
cessors. We run all possible 2-task workloads from SPEC CPU 2000 benchmarks.
For each workload, we compute the CPU capacity for PTk according to the CA, that
is the execution time in CMP. For each task, we obtain the average percentage of
stalled cycles due to intratrask and intertask L2 misses. Next, we sort the tasks in
decreasing order according to the off estimation introduced by the CA, as shown in
Figure 4.2. We observe that the 9 tasks with more than 5% stalled cycles due to inter-
task L2 misses are the 9 tasks with the highest off estimation. Benchmarks that suffer
more intratask misses can overlap these misses with intertask misses, consequently
suffering less off estimation. This is the case for art. Finally, the 9 tasks with less than
1% stalled cycles due to intertask L2 misses present less than 1.1% off estimation.
Overall, we observe a clear influence of intertask L2 misses on the accuracy of the
CA.

4.3. InterTask Conflict-Aware Accounting 37

��

��

���

���

���

���

���

���

���

���

��

���

���

���

���

���

���

	��

��

���

�
�
��

�
�
�

�
��

�
�
��
�
�

�
�
�
�

�
�
��
�
�

�
�
��
�
�

��
�
��
�
��

�
��
�
�

��
��
��
�

�
��

��
�
��
�

�
�
��
�
�
�

�
�
��

�
��
�

�
!
"
�
�
�

�
��

��
�
�

�
��

�
�
��

�
�
#

"
�

��
�

�
�
�
�"

�
�
��

�"
��
�

�
�
�

�
��
��
��
��

	
��

�

�
�	

�
�
��
�
�
�
��
��

�
$%#�������$&�$������ %#�������$&�$������ '��$���������#

Figure 4.2: Correlation between over-estimation and stalled cycles due to intratask and inter-
task L2 misses in the CA in a CMP processor

4.3 InterTask Conflict-Aware Accounting

The target of our proposal, InterTask Conflict-Aware (ITCA) accounting, is to ac-
curately estimate the CPU capacity accounted to a task in CMPs. The basic idea of
ITCA is to account to a task only those cycles in which the task is not stalled due to
an intertask L2 cache miss. In other words, a task is accounted CPU cycles when it
is progressing or when it is stalled due to an intratask L2 miss. The next paragraphs
provide a detailed discussion of when the accounting of a task is stopped and resumed.

L2 data misses: We consider a task is in one of the following states: (s1) It has no
L2 data (cache) misses or it has only intratask L2 data misses in flight; (s2) It has only
intertask L2 misses in flight; and (s3) It has both intertask and intratask L2 misses in
flight simultaneously.

In the state (s1) we do normal accounting because there is no intertask L2 miss in
flight. We consider a task is not progressing, and hence, it should not be accounted
in state (s2). This means that accounting is stopped when the task experiences an
intertask L2 miss and it cannot overlap its stall with any other intratask L2 miss. We
resume accounting for the task when the intertask L2 miss is resolved or the task
experiences an intratask L2 miss, in which case the task overlaps the memory latency
of the intertask L2 miss with at least one intratask L2 miss.

In state (s3), intertask L2 misses overlap with intratask L2 misses. As a con-
sequence, in general we do a normal accounting to the task in that state. However,
when an intertask L2 miss becomes the oldest instruction in the ROB and the register
renaming stage is stalled, the task loses an opportunity to extract more Memory Level

38 Chapter 4. CPU Accounting for Multi-Core Processors

Count

Do not count

Figure 4.3: Accounting decision for all possible states

Parallelism (MLP). For instance, let us assume that there are S instructions between
the intertask L2 miss in the top of the ROB and the next intratask L2 miss in the ROB.
In this situation, if the task had not experienced the intertask L2 miss it would have
executed the S instructions after the last instruction currently in the ROB. Any L2
miss in those S instructions could have been sent to memory, increasing the MLP. We
take care of this lost opportunity of extracting MLP by stopping the accounting of a
task if the instruction in the top of the ROB is an intertask L2 miss and the register
renaming stage is stalled. We call this condition state (s4). It can be the case that such
stalls end up having no impact in the accounting because those instructions could not
have been executed anyway if an intratask miss is oldest instruction in the ROB. In
this case, it is included in state (s3), and hence, we do normal accounting.

L2 instruction misses: ITCA also stops accounting to a task when the ROB is
empty because of an intertask L2 instruction cache miss (s5). In our processor setup
instruction cache misses do not overlap with other instruction cache misses. That is,
at every instant, there is at most one in flight instruction miss per task. Hence, on an
intertask L2 instruction miss we consider that the task is not progressing because of
an intertask conflict, and hence, we stop its accounting.

In short, the accounting decision in the defined five states is illustrated in Fig-
ure 4.3. Note that state (s5) is part of state (s1), since when the ROB is empty, no
L2 data cache miss can be in flight. Finally, state (s4) can only occur when there are
some intertask L2 data misses in flight and, consequently, is contained in states (s2)
and (s3).

4.3.1 Hardware Implementation

Figure 4.4 shows a sketch of the hardware implementation of our proposal, which
makes use of several HRSIs. Next, we explain in depth the different parts of our
approach.

Detecting intertask misses: We keep an Auxiliary Tag Directory (ATD) [49] for
each core (see Figure 4.4 (a)). The ATD has the same associativity and size as the

4.3. InterTask Conflict-Aware Accounting 39

ITCA

logic

L1

MSHR

Shared

L2 cache

L1

MSHRData cache

miss

...Core 1

I$ D$

AR 1

AR N
…

ATD

ITCA

logic

…

…

…

Intertask

L2 miss

Core N

I$ D$

ITinstruction

RobEmpty

InterTopRob

RenameStalled
Stop

Accounting

EmptyMSHR

1

2

3.1

4

s5

s4

s2
mshr_entry_empty1

ITdata1 3.2

mshr_entry_emptyn

ITdatan
3.2

..

..

ITdata_mshrn

AllInter

(a) Baseline processor architecture (b) Logic to stop accounting

Figure 4.4: Hardware required for ITCA

tag directory of the shared L2 cache and uses the same replacement policy. It stores
the behaviour of memory accesses per task in isolation. While the tag directory of
the L2 cache is accessed by all tasks, the ATD of a given task is only accessed by the
memory operations of that particular task. If the task misses in the L2 cache and hits
in its ATD, we know that this memory access would have hit in cache if the task had
run in isolation [37]. Thus, it is identified as an intertask L2 miss.

Tracking intertask misses: We add one bit called ITdatai bit in each entry i of
the Miss Status Hold Register (MSHR). The ITdata bit is set to one when we detect
an intertask data miss. Each entry of the MSHR keeps track of an in flight memory
access from the moment it misses in the data L1 cache until it is resolved.

On a data L1 cache miss, we access the L2 tag directory and the ATD of the task
in parallel. If we have a hit in the ATD and a miss in the L2 tag directory, we know
that this is an intertask L2 cache miss. Then, the ITdata bit of the corresponding entry
in the MSHR is set to 1. Once the memory access is resolved, we free its entry in the
MSHR.

When the ROB is empty due to an intertask L2 cache instruction miss, we stop
accounting cycles to this task. For that purpose, we use a bit called ITinstruction that
indicates whether the task has an intertask L2 cache instruction miss or not.

4.3.2 CPU Accounting in ITCA

We stop the accounting of a given task when:

40 Chapter 4. CPU Accounting for Multi-Core Processors

1 The ROB is empty because of an intertask L2 instruction cache miss (gate (1)
in Figure 4.4 (b) that implements condition (s5)). RobEmpty is a signal that
is already present in most processor architectures, while ITinstruction indicates
whether or not a task has an intertask L2 cache instruction miss.

2 The oldest instruction in the ROB is an intertask L2 data cache miss and we have
a stall in the register renaming stage (gate (2) in Figure 4.4 (b) that implements
condition (s4)). The HRSI denoted InterTopRob tracks the first condition, while
RenameStalled monitors the second one. Storing a bit to track intertask L2
misses might require one bit per ROB entry.

3 All the occupied MSHR entries belong to intertask L2 data misses (gates
(3.1) and (3.2) in Figure 4.4 (b) implement condition (s2)). To determine
this condition, we check whether every entry i of the MSHR is not empty
(mshr_entry_emptyi = 0) and contains an intertask L2 data miss (ITdatai =
1). By making an AND operation of ITdata_mshri and a signal showing
whether the entire MSHR is empty (tracked with the HRSI EmptyMSHR), we
determine if we have to stop the accounting for the task.

Finally, if any of the gates (1), (2) or (3.1) returns 1, we stop the accounting.
Otherwise, we account the cycle normally to the task as occurs in states (s1) and (s3).

In a 2-core CMP, ITCA accounts for every spent cycle in three possible ways: (1)
Each task is accounted for the cycle when both tasks progress (the cycle is accounted
twice, one for each task). (2) Only one task is progressing and the cycle is accounted
only to it. (3) The cycle is not accounted to any task when none of them is progressing.

The cycles accounted to each task in each core are saved into a special purpose
register per core, denoted Accounting Register (AR) (see Figure 4.4 (a)), which can
be communicated to the OS. This register is a read-only register and can be managed
by the OS similarly to the Time Stamp Register in Intel architectures. From the OS
point of view working with ITCA is similar to working with the CA. On every task
switch, the OS reads the Accounting Register of each taski (ARi), whereARi reports
the time to account this task. With this information, the OS updates system’s metrics.
The OS can alternatively be changed to use the information provided by ITCA similar
to [16]. On a task migration, both the ATD and the cache require some time to warm
up but we expect this overhead to be low.

4.4. Evaluation Results 41

Table 4.1: Simulator baseline configuration

Number of cores 2, 4 & 8
Fetch bandwidth 8 inst. per cycles
Issue queues sizes 64 int, 64 fp, 64 ld/st
Execution units 6 int, 3 fp, 4 ld/st
Back end 196 int/fp phys. registers, 512-entry ROB
Branch predictor Perceptron 256 global-entry, 40 global-H, 4K

local-entry, 14 local-H, 100-entry RAS
Target frequency 2.0GHz
Icache (per core) 64KB, 2 ways, 1 bank, 128B line, 1-cycle access
Dcache (per core) 32KB, 4 ways, 1 bank, 128B line, 1-cycle access
L2 cache (Shared) 2MB, 4MB, and 8MB, 16 ways, 4 banks,

128B line, 15-cycle access
MSHR 32 entries
Memory latency/Bandwidth 300-cycle access, 12.1 GB/s

4.4 Evaluation Results

In this section, we show the accuracy results of CPU accounting mechanisms: CA and
ITCA, the hardware overhead for ITCA, the accuracy of ITCA in conjunction with
dynamic cache partitioning algorithms, and study the memory bandwidth sensitivity
for ITCA.

In order to evaluate different sections, we use three processor setups are shown in
Table 4.1: a 2-core CMP with a 2MB L2 cache, a 4-core CMP with a 4MB L2 cache,
and an 8-core CMP with an 8MB L2 cache.

We feed our simulator with traces collected from the whole SPEC CPU 2000
benchmark suite (see Chapter 2 for more details). From these benchmarks, we gen-
erate 2-task, 4-task and 8-task workloads. We classify benchmarks into two groups
depending upon their cache behaviour. Benchmarks in the memory group (denoted
M) are those presenting a high L2 cache miss rate in isolation (MPKIISOL > 1),
while benchmarks in the ILP group (denoted I) have low L2 cache miss rate as shown
in Table 4.2. From these two groups, we generate different workload types denoted
V_W, where V is the type of the PTk and W is the type of the STk. We distinguish
three combinations of STk: ILP, MEM and MIX. ILP combinations contain only ILP
benchmarks, MEM combinations contain only memory-bound benchmarks and MIX
combinations contain a mixture of both. For example, in the group M_ILP with 4
tasks, the PTk is memory bound and the 3 STks are ILP bound. Note that for the
2-core configuration there is only one STk and, consequently, we can only evaluate
STks belonging to groups ILP or MEM. In total, we use 576 2-task workloads, 192
4-task workloads and 96 8-task workloads, randomly generated.

42 Chapter 4. CPU Accounting for Multi-Core Processors

Table 4.2: Benchmarks’ cache behaviour (2MB L2 cache)

(a) Memory-group benchmarks (b) ILP-group benchmarks

Type Benchmark MPKI
mcf 85.64

INTEGER gzip 1.81
gap 1.01
fma3d 73.93
swim 14.73
equake 10.40
lucas 10.10

FP art 7.39
applu 6.13
mgrid 2.99
facerec 2.64
wupwise 1.26

Type Benchmark MPKI
parser 0.56
gcc 0.55
vortex 0.43
perlbmk 0.14

INTEGER bzip2 0.08
twolf 0.04
vpr 0.04
crafty 0.04
eon 0.00
apsi 0.54
ammp 0.50

FP galgel 0.24
mesa 0.20
sixtrack 0.04

4.4.1 Accuracy Results

Figure 4.5 shows the off estimation of ITCA and the CA for our 3 processor setups.
We show the average results of each group. The bars labelled AVG represent the
average of each CMP configuration for all the groups. While on average the CA has
an off estimation of 7.0% (2 cores), 13% (4 cores) and 16% (8 cores), ITCA reduces it
to less then 2.4% (2 cores), 3.7% (4 cores) and 2.8% (8 cores). These results indicate
that ITCA provides a good measure of the progress each task makes with respect to its
execution in isolation, since ITCA takes into account intertask L2 misses. Moreover,
ITCA reduces the inaccuracy in the worst five cases: the Avg5WOE metric is 117%
(2 cores), 91% (4 cores) and 94% (8 cores) for the CA and only 32% (2 cores), 35%
(4 cores) and 20% (8 cores) for ITCA.

Next, we observe that the accuracy of the CA is worse when the PTk is in the ILP
group and all the STks are in the MEM group (group I_MEM). This is due to the fact
that some of the ILP tasks experience a lot of hits in the L2 cache when they run in
isolation. When they run simultaneously with MEM tasks, which make an intensive
use of the L2 cache, the ILP tasks suffer a lot of intertask misses. As a consequence,
the ILP task suffers an increase in its execution time, which affects the accuracy of
the CA. When the PTk is in the MEM group, it already suffers a lot of L2 misses
in isolation, so that the increase in the number of L2 misses when it runs with other
MEM tasks is relatively lower.

Next, we observe that the inaccuracy of the CA for a given group increases with

4.4. Evaluation Results 43

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%
26%
28%
30%

I_
M

E
M

I_
IL

P

M
_
M

E
M

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

2
 c

o
re

s

4
 c

o
re

s

8
 c

o
re

s

2 cores 4 cores 8 cores AVG

O
ff

 e
s
ti

m
a
ti

o
n

CA

ITCA

Figure 4.5: Off estimation of the CA and ITCA for 2-, 4- and 8-core CMPs with a shared
2MB, 4MB and 8MB L2 cache, respectively

the number of cores. Even if in our processor setups for 2, 4, and 8 cores the average
cache space per task is kept the same (1MB per core), the average off estimation of
the CA increases from 7.0% (2 cores) to 16% (8 cores). The main reason for that
behaviour is that having more tasks sharing the cache increases the probability that
one of them thrashes the other tasks, which will lead to higher off estimations in the
CA. The capacity of the L2 cache is not enough to store all the data of the tasks
running simultaneously and for example, the off estimation of the group I_MEM in 2
cores is 15%, but reaches 29% in 8 cores.

4.4.2 Reducing the ATD’s Overhead

The overhead of our baseline ATD (Auxiliary Tag Directory) is 30KB per core (15-bit
tag, 1024 sets, 16 ways per set). This is still a substantial area in a chip. In order to
reduce the area requirements, we implement two simplified versions of the ATD.

First, we save only a subset of the address’ tag bits of each memory access in each
entry of the ATD. On an access to the L2 cache, we only compare this subset of bits
of the tag between the ATD and the L2 directory. This scheme introduces false hits
when the subset of bits compared are equal in the ATD and in the L2 tag directory, but

44 Chapter 4. CPU Accounting for Multi-Core Processors

0%

10%

20%

30%

40%

50%

60%

70%

80%

8bitsTAG-SD2 6bitsTAG-SD2 8bitsTAG-SD4 6bitsTAG-SD4

E
r
r
o

r
 i
n

 e
s

ti
m

a
ti

o
n Off estimation

avg5WOE

 (8 KB) (6KB) (4KB) (3KB)

Figure 4.6: Effect of reducing ATD overhead on accuracy

the other bits of the tag are not. As a consequence, this scheme confuses some actual
intertask L2 misses with intratask L2 misses, and vice versa.

Second, we use a sampled version of the ATD, denoted sATD [49]. This scheme
monitors only a subset of the cache sets (sampled sets), providing similar results to
the ATD in terms of performance [49]. When using sATDs with ITCA, for accesses to
non-sampled sets we cannot determine whether they are intertask or intratask misses.
In this situation, ITCA does not consider these misses in the accounting task. In
Chapter 5, we will study a new version of sATD that consider this situation.

Figure 4.6 shows the area reduction and accuracy degradation of the simplified
versions of the ATD, with respect to our baseline ATD. We use addresses of 32 bits,
so the tags have 15 bits in the L2 cache. A good trade-off is when we sample every 2
sets and the ATD has tags of 6 bits (denoted 6bitsTag-SD2). In this case, we reduce
the size of the ATD to 6KB, and increase the average off estimation and Avg5WOE
to 5.2% and 40%, respectively. Recall that in this configuration, the CA leads to an
average off estimation and Avg5WOE of 7.0% and 117%, respectively. Depending
upon the hardware budget available, different trade-offs are possible. For example, if
8KB of area can be afforded, we can reduce the average off estimation and Avg5WOE
to 2.9% and 40%, respectively.

In our view, power consumption, rather than area, is the main problem in future
processor’s design. The ATD is accessed only when a task misses in the data or
instruction L1 cache and moreover, only one entry is active at a time, thus its power
consumption is low. We evaluate the area and power per access for the tag and data
arrays of the three L2 cache configurations used in this Chapter as shown in Table 4.3.

4.4. Evaluation Results 45

Table 4.3: The power and area requirements of an ATD array in three L2 cache configurations.
The power is measured in nanojoule, and the area is measured in square millimetre

2MB 4MB 8MB
Power Area Power Area Power Area

L2 Data Array 0.122 3.921 0.176 7.692 0.266 17.632
L2 Tag Array 0.005 0.118 0.006 0.233 0.007 0.464

Total L2 Array 0.127 4.04 0.181 7.926 0.272 18.095
ATD 3.98% 2.93% 3.15% 2.94% 2.56% 2.56%

To that end we use CACTI 6.5 [39] and assume a 32nm technology and sequential
access to tags and data for power efficiency as it is common practice in L2 caches. We
observe that the power and area requirements of the ATD array are always less than
4% in all configurations.

4.4.3 Memory Bandwidth Sensitivity

In our processor setups, the memory bandwidth is not identified as a main source
of interaction between tasks. In order to show this point, we measure the memory
bandwidth requirements of the evaluated workloads in all processor setups as shown
in Figure 4.7.

We observe that 90% of the workloads require less than 8 GB/s bandwidth and
that all of them require less than 12 GB/s. This is in line with latest DDR3 dual-
channel memory that supports more than 15GB/s. In our processor setup and with the
set of benchmarks we use the memory bandwidth is not an issue. In other setups with
less cache or less memory bandwidth, the issue can be a problem. We leave this as
part of our future work.

4.4.4 ITCA and Cache Partitioning Algorithms

Cache Partitioning Algorithms dynamically partition a shared cache among running
tasks. Cache partitioning algorithms significantly improve metrics such as through-
put [25, 49, 63], fairness [28, 38] and Quality of Service [25, 38].

An CPU accounting mechanism is also required in the presence of a cache par-
titioning algorithm, since tasks suffer slowdowns in their progress because they can
only make use of a portion of the L2 cache. The cache partition changes dynamically,
so the progress of the task (and hence the CPU time to account to it) also changes. Our

46 Chapter 4. CPU Accounting for Multi-Core Processors

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 10 12

p
e

rc
e

n
t

o
f

w
o

rk
lo

a
d

s

Memory Bandwidth (GB/s)

2 cores 4 cores 8 cores

Figure 4.7: Memory bandwidth requirements for three CMP configurations

ITCA proposal can be applied to systems with cache partitioning algorithm without
changes. The only conceptual difference is that the tasks do not suffer intertask con-
flicts as each task has a separate partition of the cache. However, we consider that a
task is not progressing due to the cache partitioning algorithm when it suffers a miss
in the L2 cache and a hit in its ATD. The ATD is already present in designs with cache
partitioning algorithms and our CPU accounting mechanism can make use of it. In
such a design, the only hardware cost of ITCA is the logic shown in Figure 4.4 (b).

In the previous sections, ITCA was evaluated on a CMP with a shared L2 cache
with Least Recently Used (LRU) as replacement policy. The LRU scheme tends
to give more space to the tasks that access more frequently to the cache hierarchy.
Next, we evaluate the accuracy of ITCA when using a dynamically partitioned cache.
Dynamic cache partitioning algorithms change the partition to adapt to the varying
demands of competing tasks. We have chosen MinMisses algorithm [49], which at-
tempts to minimize the total number of misses among all tasks sharing the cache and
increase system performance.

For this study we compare the off estimations of the CA and ITCA on 2-, 4- and
8-core configurations. We use the same workload groups explained in beginning of
Section 4.4.

Figure 4.8 shows the off estimation of the CA and ITCA with LRU and MinMisses

4.4. Evaluation Results 47

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%

30%

I_
M

E
M

I_
IL

P

M
_
M

E
M

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

2
 c

o
re

s

4
 c

o
re

s

8
 c

o
re

s

2 cores 4 cores 8 cores AVG

O
ff

 e
s
ti

m
a
ti

o
n

CA-LRU CA-MinMisses

ITCA-LRU ITCA-MinMisses

Figure 4.8: Off estimation of the CA and ITCA with LRU and dynamic cache partitioning
algorithms, MinMisses

replacement policies. We observe that with LRU, the results are the same as the ones
obtained in Section 4.4.1. The CA with LRU (denoted CA-LRU) obtains the worst
results when the PTk task has high ILP and any of the STks is memory bound. ITCA
combined with LRU (denoted ITCA-LRU) performs better than CA-LRU, reducing
the off estimation to 2.4% (2 cores), 3.7% (4 cores) and 2.8% (8 cores) on average, as
we observed in Section 4.4.1.

The CA presents a high variability in the off estimation when used in conjunction
with MinMisses. MinMisses reduces the number of L2 misses and, consequently, the
interaction between tasks. MinMisses assumes that all misses are equally important
and tends to give more space to the tasks with higher L2 cache necessities, while
harming the less demanding tasks. In some workloads, MinMisses cannot satisfy the
cache necessities of the PTk, causing the PTk to suffer a lot of intertask misses, and
increasing the off estimation. As a consequence, in some groups, the off estimation is
high, reaching 24% and 16% off estimation in the group I_MEM in 4 and 8 cores.

ITCA-MinMisses provides much more stable results than CA-MinMisses. ITCA-
MinMisses reduces the average off estimation of the CA-MinMisses from 6.0% (2
cores), 12% (4 cores) and 14% (8 cores) to 2.2% (2 cores), 3.5% (4 cores) and 2.4%
(8 cores). In comparison with CA-MinMisses, ITCA-MinMisses consistently reduces
the off estimation to less than 6.0% in all groups and all configurations.

48 Chapter 4. CPU Accounting for Multi-Core Processors

To sum up, the combination of ITCA with dynamic cache partitioning algorithms
significantly reduces the off estimation of the CA. Furthermore, ITCA leverages the
ATDs already present in the MinMisses scheme with nearly no extra hardware addi-
tion motivating the use of both schemes simultaneously.

4.5 Improved ITCA Accounting

ITCA abstracts processor’s architecture and takes into account only a few HRSIs as
shown in Figure 4.4 (b). In particular, ITCA considers five different HRSIs: RobE-
mpty, ITinstruction, RenameStalled, InterTopRob and AllInter that work as follows:

1) RobEmpty indicates whether the ROB is empty and ITinstruction indicates
whether a task has an intertask L2 instruction cache miss. If both are active (gate
1 in Figure 4.4 (b)), we stop accounting because there is an intertask L2 instruction
miss and the machine is not utilized due to that.

2) RenameStalled detects if the register renaming stage is stalled and the signal
InterTopRob indicates if there is an intertask L2 data cache miss at the top of ROB.
If both are active, we know that the core is stalled due to an intertask L2 data cache
miss, so we stop accounting.

3) AllInter determines if all the active entries in the MSHR contain an intertask
L2 data miss, that is whether there are only intertask L2 data cache misses in flight
(which corresponds to state (s2)), in which case ITCA stops accounting.

The way these signals are combined in order to determine whether or not to ac-
count to a task has been deduced from processor inspection: our basic premise was
not to account cycles to a task when it suffers an intertask L2 miss that cannot be
overlapped with any intratask L2 miss.

While ITCA mechanism is simple and intuitive, there might be hidden optimiz-
ations that may improve CPU accounting. In order to check whether our intuition
is correct, we explore the complete design space with brute force. We analyze the
accuracy results of all ITCA variants in which we combine the same HRSI in differ-
ent ways. The best accounting scheme, denoted Improved ITCA (I2TCA), will be the
accounting scheme with the best accuracy among all possible combinations.

We start by identifying the percentage of time each HRSI determines the account-
ing decision. Our results show that the percentage of time that the ROB is empty due
to an intertask L2 instruction miss is very low (0.05% on average and always less than
0.5%). Therefore, those cycles do not significantly affect the final accuracy of ITCA
and the corresponding HRSIs (RobEmpty and ITinstruction) are not considered in

4.5. Improved ITCA Accounting 49

Table 4.4: Defined states of a task and accounting decision

HRSI states Accounting decision
No. RenameStalled InterTopRob AllInter ITCA I2TCA
7 1 1 1 0 0
6 1 1 0 0 0
5 1 0 1 0 1
4 1 0 0 1 1
3 0 1 1 0 1
2 0 1 0 1 1
1 0 0 1 0 1
0 0 0 0 1 1

our brute force approach. Hence, we have only three HRSIs affecting the accuracy of
ITCA: RenameStalled, InterTopRob and AllInter.

Each row in Table 4.4 represents an HRSI state. A HRSI state is composed of
three HRSIs: [RenameStalled, InterTopRob, AllInter]. Each HRSI can be 0 or 1, in-
dicating whether this signal is active or not. For example, the state [RenameStalled,
InterTopRob, AllInter] corresponds to the HRSI state number 6, in which the sig-
nals RenameStalled and InterTopRob are active, while AllInter is not. In our explora-
tion, we collect the amount of cycles a task spends in each of the eight HRSI states. An
CPU accounting mechanism can either account that cycle to a task or not. This leads
to a total of 28 = 256 possible accounting schemes. For example, ITCA only accounts
cycles: in HRSI state 0 [RenameStalled, InterTopRob, AllInter], HRSI state 2
[RenameStalled, InterTopRob, AllInter] and HRSI state 4 [RenameStalled,
InterTopRob, AllInter].

In order to evaluate the accuracy of all possible accounting schemes, we explore
several processor setups: we vary the size of the L2 cache (2MB, 4MB and 8MB),
keeping a constant associativity of 16 ways. We also study various CMP architectures
with 2, 4 and 8 cores, which means that nine different processor configurations have
been analysed.

We measure the sensitivity to each particular HRSI state decision. In three states,
there is a significant difference in off estimation depending on the accounting de-
cision: in HRSI state 4 [RenameStalled, InterTopRob, AllInter], and HRSI state
0 [RenameStalled, InterTopRob, AllInter] we have to account always since the
task is progressing. In contrast in HRSI state 7 [RenameStalled, InterTopRob,
AllInter] we have to stop accounting. For the remaining five HRSI states (1, 2, 3, 5
and 6 in Table 4.4), the accounting decision is not so clear. Figure 4.9 shows the aver-
age off estimation for the remaining 25 = 32 combinations in the 4-core configuration

50 Chapter 4. CPU Accounting for Multi-Core Processors

����

����

����

����

����

����

����

����

����
� �

	

�
� � � � � � �

�
�

�
�

�
�

�
�

�
�

	�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��
��
�
�
��

	
�
�

�

�����

Figure 4.9: Average off estimation of all the combinations for 4 cores and a 16-way 4MB L2
cache

together with the CA. The same conclusions are derived for 2- and 8-core configura-
tions. Accounting schemes are labelled according to the accounting decision taken in
each of the five HRSI states. Thus, bar 0 shows the off estimation when in the remain-
ing five HRSI states (1, 2, 3, 5 and 6) we stop counting. Bar 1 shows the off estimation
when we count only in state 1, bar 2 when we count in state 2, bar 3 when we count in
states 1 and 2, and so on and so forth. The CA has an average off estimation of 12.5%,
while the 32 accounting schemes are under 4.0% off estimation. ITCA corresponds
to the third accounting scheme in Figure 4.9. We observe that our original ITCA is
quite close to the best observed combination, denoted Improved ITCA (I2TCA). The
average off estimation for ITCA is 3.7%, while for I2TCA it is 1.96%.

The HRSI states in which ITCA and I2TCA account cycles are shown in
Table 4.4. We observe that both mechanisms account the cycles: in HRSI states
0 [RenameStalled, HRSI state 4 InterTopRob, AllInter], [RenameStalled,
InterTopRob, AllInter], and HRSI state 2 [RenameStalled, InterTopRob,
AllInter]. In all these states, there are always intratask L2 misses overlapping with
intertask L2 misses in the MSHR because the signal AllInter is not active (this was
the base of our original intuition for ITCA). Hence, a task is accounted for those
cycles. Moreover, ITCA and I2TCA do not count the cycles in the HRSI state 7
[RenameStalled, InterTopRob, AllInter] and HRSI state 6 [RenameStalled,
InterTopRob, AllInter] because those states are not possible when a task runs
in isolation. In other configurations, we conclude the same behaviour, and for this
reason, we do not present all the results of the design space exploration.

The main difference between ITCA and I2TCA is the accounting decision for state

4.5. Improved ITCA Accounting 51

Count

Do not count

Figure 4.10: I2TCA accounting decision for all possible states

(s2) explained in Section 4.3, in which there are only intertask L2 data misses in flight
and the register renaming stage is not stopped. I2TCA accounts cycles in this state,
as shown in Figure 4.10, while ITCA does not, as shown in Figure 4.3. Though the
task is not progressing at full speed, actual work is being done (register renaming is
not stalled yet). Consequently, these cycles should be accounted to the task.

Regarding the logic to control the HRSI signals for I2TCA, we observe that the
signal AllInter is not needed to make a decision in the accounting and, hence, this
signal can be removed from the logic. As a result, the I2TCA logic is implemented
with gates 1, 2 and 4 from Figure 4.4 (b) as shown in Figure 4.11.

ITinstruction

RobEmpty

InterTopRob

RenameStalled

Stop

Accounting

1

2

3

Figure 4.11: Logic to stop accounting required for I2TCA

Next, we compare the average off estimation of the CA, ITCA, and I2TCA in
nine different processor configurations, as shown in Figure 4.12. We observe that
the accuracy of the CA, ITCA and I2TCA improve when we increase the size of the
L2 cache with the same number of cores, since the number of intertask L2 misses
diminishes. For instance, the off estimation of the CA in 4 cores with a 2MB L2
cache is 21%, but it is 6.2% with an 8MB L2 cache. The CA has higher off estimation
than ITCA, and ITCA has worse accuracy than I2TCA in all configurations. For
example, in the configuration with 8 cores and a 2MB L2 cache, I2TCA reduces the
off estimation down to 4.5%, while the CA and ITCA present a 31% and 8.6% off
estimation, respectively. Also, we observe that the off estimation of the CA increases
when we vary from 2 to 8 cores with the same cache size per core. This is due to the
fact that a task suffers more intertask L2 misses when the number of tasks running

52 Chapter 4. CPU Accounting for Multi-Core Processors

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%

30%

32%

2 MB 4 MB 8 MB 2 MB 4 MB 8 MB 2 MB 4 MB 8 MB

2 cores 4 cores 8 cores

O
ff

 e
s

ti
m

a
ti

o
n

CA

ITCA

I²TCA

Figure 4.12: Average off estimation for 2, 4, and 8 cores and a 16-way 2MB, 4MB, and 8MB
L2 cache

simultaneously increases. This behaviour is similar in I2TCA, but the off estimation
is always under 1.2% (2 cores), 3.3% (4 cores), and 4.5% (8 cores) on average.

I2TCA reduces the average off estimation of ITCA, mainly in the five worst work-
loads (not shown in Figure 4.12): from 32% to 13% in the 2-core configuration, from
35% to 17% in the 4-core configuration, and from 20% to 14% in the 8-core config-
uration.

The design space exploration performed in this section confirms that ITCA
provides reasonably accurate results. It also shows that with small changes we can
implement an improved version of ITCA, denoted I2TCA, which requires slightly
less hardware support than the original ITCA, while clearly improving accuracy on a
wide variety of experimental setups.

4.6 Even-Share Accounting

So far, we have assumed the full-share accounting in order to obtain the CPU ac-
counting of tasks. In other words, the CPU time accounted to a task should be equal
to the execution time of the task when it runs in isolation in the system with access to
all the resources, and the task should be always accounted the same regardless of the
workload in which it runs.

4.6. Even-Share Accounting 53

L2 miss

issued

L2 miss

resolved

Progress X

CA X

Intratask L2 miss delay

1 11 1

1111 1111 111 = 101111 1111 111 1

1 1 1 1 1 1 1 11 1

11 11

11Progress X

CA X

11 11

11 11Progress Y

CA Y

L2 miss

issued

L2 miss

resolved

= 1

1

(a) Task X runs in isolation with half of the cache (b) Tasks X and Y

run on a 2-core CMP

Figure 4.13: Synthetic example for explaining under-estimation with the CA and I2TCA

In this section, we explore a different accounting approach, even-share account-
ing, which also accomplishes with the principle of accounting. We consider that
a task should be accounted the CPU capacity it would require to run with its even
part of processor resources, in other words, 1/Ntk of the shared processor resources,
where Ntk is the number of tasks supported by processor. In the case of a CMP with
a shared cache, a task should access to a 1/Ntk of the cache space. For example,
assuming a two-core processor with 2 MB L2 cache, a task should only get access
to 1 MB from L2 cache. This baseline accounting can be used together with recent
cache management techniques developed for private last level caches [48]. We also
show that few changes to I2TCA are enough to adapt it to the even-share accounting
without losing accuracy.

With full-share accounting, ITCA corrects the case in which the CA approach
leads to over-estimation. In fact, this is always the case as the execution time of a task
can only increase when it runs in CMP due to intertask conflicts.

With even-share reference accounting, the CA not only suffers from over-
estimation, but it can also suffer from under-estimation. For example, assuming a
given load misses in the L2 cache when a task X runs with 1/Ntk of the processor
resources, the task might not have missed in the cache if it had shared the entire cache
with another task in CMP mode. Consequently, task X might run faster in CMP than in
the even-share processor setup, leading to under-estimation with the CA. To illustrate
this situation in Figure 4.13, we use parameters of the synthetic example explained in
Section 4.2.1, where let us 2-core in-order CMP processor and an L2 miss penalty of
10 cycles is assumed.

We refer to an intertask L2 hit to an access to the L2 cache that is a miss in the
even-share configuration (with 1/Ntk of the L2 cache), and becomes a hit in the L2
cache when the task runs in CMP mode. This happens when the task runs in CMP

54 Chapter 4. CPU Accounting for Multi-Core Processors

mode and it makes use of more than 1/Ntk of the L2 cache. In this case, the task can
progress faster than when it runs in the even-share case, since the instructions after
the intertask L2 hits are executed sooner in CMP mode. In other words, if an intertask
L2 hit happens, a task would be able to execute more instructions than with 1/Ntk of
the shared resource. In order to take into account this scenario, I2TCA is adapted

The new decision of accounting 0, 1 or 2 cycles to a task in a given cycle depends
upon whether or not the task makes the same progress it would do when running in its
even-share processor setup. When a task goes slower than its execution with an even-
share of the processor resources, the task is accounted 0 cycles; when the task is doing
the same progress as its execution with an even-share of the processor resources, we
account 1 cycle as usual; finally, when the task goes faster than its execution with an
even-share of the processor resources, we account 2 cycles. This latter case happens
when a task suffers an intertask L2 hit.

4.6.1 Hardware requirements

We add two new HRSIs to I2TCA logic to cover the new cases in this scenario. The
first HRSI, denoted InterHit, detects if there is an intertask L2 hit. We split the ATD
among all cores in a CMP, assigning 1/Ntk to each core (remind that in the full-share
accounting scheme, we assign an entire ATD to each core, while now we require only
one ATD for all the N cores). An access that hits in the L2 cache and misses in the
ATD is identified as an intertask L2 hit. Once an intertask L2 hit is detected, Inter-
Hit HRSI becomes active for the average latency of the misses in the L2 cache. This
latency corresponds to the average time the miss would block the processor in single-
threaded mode and is estimated in runtime. The second HRSI, denoted IntraTopRob,
indicates if the oldest instruction in the ROB is an intratask L2 data cache miss. This
signal is not useful with previous schemes, since in that state in the full-share account-
ing, the task progresses as in isolation (using all the processor resources).

Combining these signals with the ones defined for the original I2TCA, we have
the HRSI states shown in Table 4.5 in bold. In these new states in CMP, I2TCA can
account 0 cycles to a task if it progresses less than in isolation, 1 cycle if it progresses
as in isolation, and 2 cycles if it progresses more than in isolation (during the average
latency to memory of an L2 miss). Consequently, the accounting decision depends on
the state of a task and its progress done.

The I2TCA maintains the same accounting decision in the states explained in Sec-
tion 4.5. The signal IntraTopRob cannot be active when signals AllInter or InterTo-

4.6. Even-Share Accounting 55

Table 4.5: States of a task and accounting decision

RenameStalled InterTopRob AllInter InterHit IntraTopRob I2TCA
1 1 1 0 0 0

1 0 1
1 1 0 0 0 0

1 0 1
1 0 1 0 0 1

1 0 2
1 0 0 0 0 1

0 1 1
1 0 2
1 1 1

0 1 1 0 0 1
1 0 2

0 1 0 0 0 1
1 0 2

0 0 1 0 0 1
1 0 2

0 0 0 0 0 1
0 1 1
1 0 2
1 1 2

pRob are active. In fact, AllInter indicates that there are no intratask L2 data misses in
the pipeline while InterTopRob shows that there is an intertask L2 data miss at the top
of the ROB. Therefore, IntraTopRob can only be active in the states [RenameStalled,
InterTopRob, AllInter] and [RenameStalled, InterTopRob, AllInter].

When the signal InterHit is active, a task is running faster than when it receives
1/N-th of the cache, and hence, I2TCA accounts two cycles in all states except
[RenameStalled, InterTopRob, AllInter], [RenameStalled, InterTopRob,
AllInter] and [RenameStalled, InterTopRob, AllInter]. In the former two
states, a task is progressing slower than when receiving its even-share of the cache
as RenameStalled and InterTopRob are active but, at the same time, it is going faster
as InterHit is also active. Thus, we assume that both effects compensate each other
and that the task progresses as fast as in the even-share case. Consequently, we ac-
count one cycle to the task. In the state [RenameStalled, InterTopRob, AllInter],
the signal IntraTopRob is important to decide the accounting. In this state, if InterHit
is active and IntraTopRob is not active, a task can execute instructions faster than in
the even-share case and, consequently, I2TCA accounts two cycles to it. In other situ-
ations in the same state [RenameStalled, InterTopRob, AllInter], the progress of
a task in CMP mode is equal as in the even-share case and I2TCA accounts one cycle
to the task.

56 Chapter 4. CPU Accounting for Multi-Core Processors

0%

2%

4%

6%

8%

10%

12%
I_

M
E

M

I_
IL

P

M
_
M

E
M

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

I_
M

E
M

I_
M

IX

I_
IL

P

M
_
M

E
M

M
_
M

IX

M
_
IL

P

2
 c

o
re

s

4
 c

o
re

s

8
 c

o
re

s

2 cores 4 cores 8 cores AVG

O
ff
 e

s
ti
m

a
ti
o
n

CA

I²TCA

Figure 4.14: Off estimation of the CA and I2TCA with the even-share accounting for 2, 4, and
8 cores and 16-way 2MB, 4MB, and 8MB L2 caches

4.6.2 Accuracy Results

Figure 4.14 shows the off estimation of I2TCA and the CA for our three processor
setups. We show the average results of each group as we described in beginning of
Section 4.4. The bars labelled AVG represent the average of each CMP configuration
for all the groups. We can see that the off estimation of the CA increases with the
number of cores sharing the L2 cache, from 5.4% (2 cores) to 9.7% (8 cores). We also
observe that the accuracy of I2TCA is better than the accuracy of the CA in all groups.
This is due to the fact that a task suffers both intertask L2 misses and intertask L2 hits
during its execution. I2TCA takes into account this situation and hence, on average
I2TCA reduces the off estimation down to 1.3% (2 cores), 2.5% (4 cores) and 3.9%
(8 cores).

4.7 Other Considerations

4.7.1 Performance Counters

Intuitively, one could think that with the performance counters that are present in
current processors we can accurately approximate the CPU capacity of each task in
a MT processor. However, the main disadvantage of performance counters is that
they do not measure the effect that one task can have on the other running tasks. For
example, current performance counters report the number of L2 cache misses for a

4.7. Other Considerations 57

given task when it runs together with other tasks. However, there is no information
about the value of the same counters if the task had run in isolation, making it hard to
derive the relative progress the progress did.

In our view, with the performance counters in current processors, we cannot
provide an accurate estimation of the CPU capacity. In order to support this claim,
we try to provide an accurate measure of the CPU capacity based on the events we
can measure in our infrastructure. After studying several approaches, we use an ap-
proach that accounts each task X the time the workload executes in the MT processors,
TRMT , weighted by the percentage of instructions this task X executes, IX , with re-
spect to all the instructions executed in the workload. We denote this approach Per-
formance Counter Instruction-Based (PCIB) accounting. For example, let’s assume
that we execute a workload composed of two tasks X and Y in a multi-core processor
that executes IX and IY instructions, respectively. In this model, we assume a linear
relation between the number of executed instructions and the percentage of resources
received. So, if with 100% of resources the processor executes IX + IY instructions,
the processor uses IX/(IX + IY) percentage of resources to execute IX instructions.

Scaled Classical Approach (sCA): Another intuitive solution consists in account-
ing to each task X, 1/N of the time it is running in an MT processor with N is number
of tasks supported by a processor. That is, TAMT

X = (1/N)·TRMT
X . In this approach,

we assume that each task receives an even part of the processor resources and that it
makes 1/N of the progress it would do if run in isolation.

4.7.1.1 Results

Our results show that PCIB and sCA report an average off estimation of 48% and 47%,
respectively for the 2-core configuration. For the same configuration, the Avg5WOE
is 97% and 50%, respectively. For the 4-core configuration, both PCIB and sCA
approaches report an average off estimation of 72%. The Avg5WOE is 98% and 75%
respectively. For the 8-core configuration, both PCIB and sCA approaches report an
average off estimation of 86%. The Avg5WOE is 99% and 87% respectively.

The sCA approach results in higher off estimations than the CA because CPU
bound tasks can make a significant progress in CMPs (much more than 1/N) as they
only share the L2 cache with other tasks.

Regarding the PCIB approach, let us assume that we run a memory bound task
as PTk and an ILP task as STk. In this situation, the STk executes many more in-
structions than the PTk, so the PTk is accounted a very small fraction of the time it is

58 Chapter 4. CPU Accounting for Multi-Core Processors

running. However, in reality the PTk is making almost the same progress as in isola-
tion since it is not suffering intertask cache misses. This introduces a significant error
in the CPU accounting of the PCIB scheme.

4.7.2 Other Proposals Providing Fairness

Several hardware approaches deal with the problem of providing fairness in CMP
processors. Although, fairness is a desirable characteristic of a system, it cannot be
used to provide an accurate CPU accounting. There are two main flavours of fairness.

Several proposals approach fairness in MT processors by providing the same
amount of resources to each running task. However, ensuring a fixed amount of re-
sources to a task does not translate into a direct CPU capacity that can be accounted
to that task [9, 25, 41, 50]. This is mainly due to the fact that the relation between
the amount of resources assigned to a task and its performance can be different for
each task. Hence, although all N tasks running in a MT processor receive 1/N of the
resources, their relative progress is different, and so it should be their accounted CPU
capacity.

Another set of proposals consider that an architecture is fair when all tasks running
on that architecture make the same progress. For example, let’s assume a 2-core CMP
with running tasks X and Y. The system is said to be fair if the progress made by
X and Y is the same in a given period of time: PX = PY . However, the fact that
PX = PY does not provide a quantitative value of the progress. Thus, the OS cannot
account CPU capacity to each task according to their progress. In other words, having
PX = PY does not provide any information about CPU accounting since PX can be
any value lower than 1. Hence, even if an architecture is known to be fair, it is not
enough properly to account CPU capacity to each task.

In other approaches [12, 40], the goal is to provide fairness in the shared memory
system through the control of the number of memory requests from each different
task. These proposals achieve the same interference for each task in the memory
hierarchy. It is not enough properly to account CPU capacity to each task.

For instance, in Figure 4.15 shows the progress of the PTk and the fairness of
four different pairs of tasks measured as fairness = 1 − (|PX−PAVG|+|PY −PAVG|)

2 ,
where PAV G is the average progress made by tasks X and Y. The fairness reaches its
maximum value, 1, when the progress of both tasks is the same: PX = PY . We ob-
serve that, for the two workloads on the left (art+twolf and vpr+vpr), the PTk
(task in italics) does the same progress while the fairness is different in the two work-

4.7. Other Considerations 59

0.82

0.94

0.79 0.79

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

art (PTk) vpr (PTk) - vpr (PTk) facerec (PTk)

twolf (STk) vpr (STk) - applu (STk) swim (STk)

F
a
ir
n
es
s

P
ro
g
re
ss
 P
T
k

Progress PTk Fairness

Figure 4.15: Fairness and progress of the PTk for four different workloads

loads. For the two workloads on the right (vpr+applu and facerec+swim), both
workloads present the same fairness while the progress done by the PTk is different.

In short, multi-core systems that provide fairness do not necessarily provide ac-
curate CPU accounting. Therefore, these systems require an accurate CPU accounting
mechanism as well.

4.7.3 Parallel Tasks

In this Chapter, we have evaluated ITCA with multiprogrammed workloads (work-
loads composed of single-threaded tasks). ITCA also works, with minimal changes,
for multi-threaded workloads. The interaction between threads in a parallel task can
be positive when, for example, one thread prefetches data for another thread. This
behaviour is intrinsic to the task, and hence it also occurs when running in isolation.
When one multi-threaded task runs with other tasks it may suffer negative interaction,
i.e. it may suffer intertask misses. ITCA already accounts for this situation, the only
difference is that we have to track which threads belong to the same task, and do not
consider a miss as an intertask miss when one thread evicts data from another thread
of the same task. Only when two threads from different tasks evict each other’s data,
we report an intertask miss and stop the accounting if necessary. Consequently, a task
identifier field has to be added to entries in the MSHR to detect intertask misses. This
identifier has to be assigned to tasks by the OS, and provides to the architecture when
scheduling is decided. Common OSs, such as Linux, already use an identifier for

60 Chapter 4. CPU Accounting for Multi-Core Processors

the task (PID) and for the threads within the same task (TID). No other changes are
required in the ITCA implementation.

With ITCA, the CMP processor reports a different accounting for each thread
of a multi-threaded task through the Accounting Registers (AR) of each core. The
OS will then combine the values of each AR into a single task figure, similarly to
what currently happens for the TimeStamp Register for Intel architecture. The exact
combination strategy is out of the scope of this study.

Notice that ITCA does not have to be aware of the synchronization among threads
of a multi-threaded task. For example, if a thread is spinning on a lock and even if
the multi-threaded task is not progressing during that time, the thread is using the
processor, so it is accounted processor time.

4.8 Summary

CMP architectures introduce complexities when measuring CPU capacity utilized by
tasks because the progress done by a task varies depending upon the activity of the
other tasks running at the same time. The current accounting mechanism, the classical
approach (CA), introduces inaccuracies when applied in CMP processors. In this
Chapter, we have presented hardware support for a new CPU accounting mechanism
called InterTask Conflict-Aware (ITCA) accounting with improved accuracy in CMPs.
In 2-, 4- and 8-core CMP architectures, ITCA reduces the off estimation down to 2.4%
(2 cores), 3.7% (4 cores) and 2.8% (8 cores) while the CA presents a 7.0%, 13% and
16% off estimation, respectively.

The combination of ITCA with dynamic cache partitioning algorithms signific-
antly reduces the off estimation with respect to the CA. Furthermore, ITCA leverages
the ATDs already present in many cache partitioning algorithms (such as the Min-
Misses scheme [49]) with nearly no extra hardware addition, motivating the use of
ITCA and cache partitioning algorithms simultaneously.

We have further improved the accuracy of the ITCA accounting mechanism
without increasing its implementation complexity. We have seen that the account-
ing should be stopped when the register renaming is stalled due to an intertask miss
that is at the top of the ROB. This Improved ITCA (I2TCA) accounting nearly halves
the off estimation of ITCA in all configurations. In an 8-core configuration, the off
estimation is reduced from 6.0% to 3.5%. Finally, we showed the effects of a change
in the accounting approach (even-share accounting) on the accuracy of different CPU
accounting mechanisms.

Chapter 5
CPU Accounting for CMP+SMT

Processors

In this Chapter, we analyse the accuracy of current CPU accounting mechanisms
for SMT processors, and we show that they are not adequate for CMP+SMT pro-
cessors. Consequently, we propose a novel CPU accounting hardware mechanism for
CMP+SMT processors, denoted Micro-Isolation Based Time Accounting (MIBTA)
which (1) increases the accuracy of accounted CPU accounting; (2) provides much
more stable results over a wide range of processor setups; and (3) does not require
tracking all hardware shared resources, significantly reducing its implementation cost.
In particular, previous proposals lead to inaccuracies between 21% and 79% when
measuring CPU capacity in an 8-core 2-way SMT processor, while our proposal re-
duces this inaccuracy to less than 5.0%.

5.1 Introduction

In processor microarchitecture designs, the general tendency [24] is the integration
several TLP paradigms in a single chip to offer different benefits in exploiting TLP.
As a result, these processor microarchitectures yield increasingly throughput with
reduced cost and improved energy efficiency. For example, the Intel core i7 [51] and
IBM POWER7 [56], are CMP+SMT processors which each core implements SMT.

An important aspect of CMP+SMT processors is improved hardware resource
utilization. On a CMP+SMT processor, concurrently executing tasks can share costly
hardware resources that would otherwise be underutilized such as on-core and on-chip
resources. Higher resource utilization improves aggregate performance and enables
lower-cost design. However, it also it also introduces complexities in the accounting

61

62 Chapter 5. CPU Accounting for CMP+SMT Processors

of CPU capacity of running tasks.

In CMP+SMT processors, the relation between the percentage of resources as-
signed to a task and the CPU accounting of the task is nonlinear. So as to over-
come this situation, hardware support has been proposed to improve the way in which
CPU capacity is measured in CMP [33, 34] as explained in Chapter 4 and SMT pro-
cessors [13, 36] that will be analysed in Section 5.2. In both cases, the focus is on
measuring the CPU capacity of a task taking account to interference of other tasks.
However, these CPU accounting mechanisms are not accurate in CMP+SMT pro-
cessors because they are not aware the interference either on-core or off-core together.
For this reason, we present a new CPU accounting mechanism for CMP+SMT pro-
cessor, called Micro-Isolation Based Time Accounting (MIBTA).

The rest of this Chapter is structured as follows. Section 5.2 analyses current
CPU accounting mechanisms for SMT processors. Section 5.3 introduces our CPU
accounting mechanism for CMP+SMT processors. Section 5.4 provides the experi-
mental results, and Section 5.5 discusses other considerations regarding CPU account-
ing. Finally, Section 5.6 concludes this work.

5.2 Background

In the state of art, some CPU accounting mechanisms have been proposed for SMT
processors. These mechanisms take into account hardware resource conflict in order
to estimate dynamically the CPU accounting of each task. In addition, these mechan-
isms are implemented in our simulator and are evaluated for CMP+SMT processors
in Section 5.4.6.

5.2.1 Processor Utilization of Resources Register

The Processor Utilization of Resources Register (PURR) [36, 18, 21, 22, 8] is a per-
task CPU accounting mechanism designed by IBM and uses in the IBM POWERTM

processor family. The PURR mechanism is aware of the resource sharing and tries to
approximate CPU accounting using the rate of cycles of decode given to each task.
In other words, the PURR mechanism estimates the CPU capacity of a task based
on the number of cycles the task can decode instructions. For instance, in a N-way
SMT processor which can decode instructions from up to one task each cycle, the
PURR accounts a given cycle to the task that decodes instructions that cycle. If no
task decodes instructions on a given cycle, all tasks running on the same core are

5.2. Background 63

0001 0000 000Decode X 00001 0000 000 0

0000 0000 000Decode Y 10000 0000 000 1

PURR Y .5.5.50 .5.5.5.5 .5.5.5 10 1

PURR X .5.5.51 .5.5.5.5 .5.5.5 = 501 0

Intratask L2 miss delayL2 miss

issued

L2 miss

resolved

L2 miss

issued

L2 miss

resolved

Decode X 1 11 1

PURR X 1111 1111 111 = 101111 1111 111 1

0 0 0 0 0 0 0 00 0

Intratask L2 miss delay

(a) Task X runs in isolation

(b) Task X and Y run on 2-way SMT

L2 miss

issued

L2 miss

resolved

Decode X 1 11 1

PURR X 1111 1111 111 = 101111 1111 111 1

0 0 0 0 0 0 0 00 0

Intratask L2 miss delay

Decode Y 1111 1111 1111111 1111 111 1

PURR Y 1111 1111 1111111 1111 111 1

(c) Task X and Y run on 2-core CMP

L2 miss

issued

L2 miss

resolved

Decode X 1 11 1

PURR X 1111 1111 111 = 101111 1111 111 1

0 0 0 0 0 0 0 00 0

Intertask L2 miss delay

Decode Y 1111 1111 1111111 1111 111 1

PURR Y 1111 1111 1111111 1111 111 1

(g) Task X and Y run on 2-core CMP

0001 0000 000Decode X 00001 0000 000 0

0000 0000 000Decode Y 10000 0000 000 1

PURR Y .5.5.50 .5.5.5.5 .5.5.5 10 1

PURR X .5.5.51 .5.5.5.5 .5.5.5 = 501 0

Intertask L2 miss delayL2 miss

issued

L2 miss

resolved

(f) Task X and Y run on 2-way SMT

(e) Task X runs in isolation

L2 hit

issued resolvedissued

111Decode X

PURR X 111 = 1

L2 hit

Effect of an intratask L2 miss Effect of an intertask L2 miss

Figure 5.1: Synthetic example illustrates under-estimation and over-estimation with the PURR
mechanism

accounted 1/N of the cycle, where N is the number of running tasks in the SMT.

In order to understand the PURR mechanism, we use parameters of the synthetic
example explained in Section 4.2.1, but assuming each core supports 2-way SMT.
The processor has different executing modes. In the example, we use the SMT mode
to refer to the processor has an active core and other core is not utilized and two tasks
executing onto the active core concurrently, whereas we use the CMP mode to refer to
the processor has two active cores and a task executing in each core concurrently. In
Figure 5.1, each square represents a processor cycle. The Decode row shows whether
a task decodes instructions in each cycle or not. The values in the PURR row show
the CPU accounting of each task.

Figure 5.1 (a) shows the situation when a given task, X, runs in isolation on the
reference architecture and it experiences a (intratask) L2 cache miss. In this case, the
processor is stalled just after the load miss is detected until the load resolves. Given
that the task is alone running onto the processor, all decode cycles are accounted. The
key point is that the task is accounted every cycle regardless of whether the processor
is stalled or not. This accounting is correct as this L2 cache miss is intrinsic to the
task X when running onto the architecture under consideration. In this situation, the
task X is accounted ten cycles in order to execute this L2 cache miss.

64 Chapter 5. CPU Accounting for CMP+SMT Processors

Figure 5.1 (b) shows the same situation as in Figure 5.1 (a) but this time the task
X runs with another task, Y, in the same core (SMT mode). The time the task X is ac-
counted for processing an isolated intratask L2 miss is different in this case. While the
L2 miss of the task X is blocking the processor, the task Y cannot decode instructions
and, hence, the decode cycles are evenly accounted to both tasks1. Hence, the task
X ‘shares’ its waiting cycles with the task Y, so the task X is charged only 5 cycles,
which it is less what the task X should be accounted for a miss (ten cycles). Hence,
when running in SMT mode, the cycles in which the processor is stalled are evenly
charged to all tasks running onto the processor. When tasks that continuously stall
the processor in isolation, their CPU accounting are under-estimation in SMT mode
as their waiting cycles are charged to tasks running onto the processor. Normally,
tasks with very low IPC are most of the time stalled for some resource conflict, hence,
they are expected to have under-estimation when running in SMT mode. On the other
hand, high-IPC tasks suffer from over-estimation as they are charged cycles that they
would not have been charged, if they had run in isolation (the waiting cycles of the
low-IPC tasks).

Figure 5.1 (c) shows the same situation that in Figure 5.1 (b) but this time the task
Y runs in the second core (CMP mode). As the PURR mechanism was thought for
SMT processors, we observe that the PURR and Decode behaviour of the task X is
the same as in isolation, regardless whether or not the task Y is running on the second
core. Hence, the under-estimation case does not arise in this processor configuration.
In both cases, the task X is accounted ten cycles to process the L2 cache miss.

In Figures 5.1 (e)(f)(g), we show the situation where a task X suffers an intertask
L2 miss due to the execution of another task Y in the processor. Figure 5.1 (e) shows
the situation in which a task X runs in isolation and executes a memory access that
hits in the L2 cache. In this situation, the memory access resolves in one cycle, so the
task X is accounted only one cycle for processing the memory access.

Figure 5.1 (g) shows the situation in which a task Y executes in the second core
(CMP mode). In this case, we assume that the task Y evicts the data of the task X
from the L2 cache, causing the previous L2 hit of the task X to become an intertask
L2 miss. This intertask miss causes the task X to stall its execution until it is resolved,
ten cycles later, so in this case, the task X takes ten cycles to process the memory

1In an out-of-order processor before the processors stops, it experiences a transient state in which the
hardware resources are progressively filled with instructions of task X [27] and both task X and task Y
can continue running. However, the steady state in which the processor is stalled is still the longest, so
at some point the tasks X and Y eventually stop.

5.2. Background 65

��
���
���
���
���
���
���
	��

��

�������� ��������

������ �������

�
��
��
�
��
�
	
��

� �� ����

Figure 5.2: Measured CPU accounting accuracy for the CA and PURR mechanisms on a
POWER5 processor. The lower the better

access.

Figure 5.1 (f) shows the case in which a task Y runs onto the same core with the
task X (SMT mode). This case is similar to the case shown in Figure 5.1 (g), the
only difference is that the time the task X is waiting the miss to be solved is shared
between both tasks. Hence, with the PURR mechanism, the over-estimation of the
task X is less in an SMT processor than in the case of a CMP processor because the
cycles in which the processor is stalled are evenly charged to all tasks running onto
the processor.

To illustrate the accuracy of the CA and PURR mechanisms, we use run several
2- and 4-task workloads from SPEC CPU 200 benchmarks on a POWER5 processor.
We measure the CPU accounting of each workload and we the average in Figure 5.2.
We observe that PURR significantly improves the accuracy provided by the CA, re-
ducing its inaccuracy from 55% to 26% in the single core configuration. In the 2-core
configuration, the CA shows even higher inaccuracies (reaching 71%) while PURR
results are more stable (close to 24%). Even if the results of PURR are more accurate
than the CA, there is still room for improvement to narrow down CPU accounting
inaccuracies.

In conclusion, PURR mechanism represents a better solution in SMT processor
than CA because it takes account the on-core intertask conflicts in its estimation.
However, the PURR mechanism has the same results as CA mechanism in CMP
processor due to off-core intertask conflicts. As a consequence, the PURR and CA
mechanisms account over cycles per task in CMP processor as shown in Figure 4.2.

PURR mechanism has been adapted for the techniques pipeline throttling and
Dynamic Voltage and Frequency Scaling (DVFS). This improved PURR mechanism

66 Chapter 5. CPU Accounting for CMP+SMT Processors

is denoted scaled PURR (SPURR) [17, 21, 22, 8]. SPURR provides a scaled count that
compensates the impact of throttling and DVFS, and whose count is mathematically
equivalent to

SPURR = PURR ∗ (feffective
fnominal

) ∗ (1− cyclesthrottled
cyclestotal

) (5.1)

where feffective is the effective frequency during the count-accumulation interval,
fnominal is the nominal frequency of the processor that is adhered to in the absence
of power management actions, cyclesthrottled is the number of processor cycles that
the pipeline was halted during the count-accumulation interval, and cyclestotal is the
total number of processor cycles during that interval.

5.2.2 Processor Utilization Recording Register

The Processor Utilization Recording Register [4] is a similar mechanism to PURR.
The main difference with PURR is that the target SMT processor in [4] is able to
decode instructions from up to two tasks per cycle, while the target of PURR is SMT
processor can only decode instructions from one task per cycle.

This mechanism measures the portion of useful capacity allocated to each task,
based on sampling dispatch information. In other words, the focus is put on the num-
ber of instructions a task dispatches. For example, if in a given cycle the first task
dispatches 5 instructions and the second 2, the first task will be charged 5/7 and the
second 2/7.

In short, the processor utilization recording register has the same behaviour as
PURR and CA mechanisms in CMP processors.

5.2.3 Cycle Accounting Architecture

The Cycle Accounting Architecture (CAA) was proposed by Eyerman and Eeck-
hout [13], and is based on estimating the CPI stack [15] per task.

The CAA tracks fifteen different components of the CPI stack with dedicated
hardware (front-end miss event table (FMT)), and also, estimates the increase in the
number of per-task miss events due to sharing in SMT execution (cache and TLB
misses, and branch mispredictions) as shown in Figure 5.3. This solution provides
detailed information of the execution of each task at the cost of more complex struc-
tures (to track all possible events), logic and dedicated floating-point ALUs. Further-
more, the authors report 7.2% and 11.7% average prediction errors for 2- and 4-task

5.2. Background 67

V-ROB

BMT

FMT

DecodeFetch

Instruction

Cache

PCs LSQ

IQ

FPQ

IREG

Write

FREG

Write

Execution

Data

Cache

ROB

L2 Cache

Rename

ITLB
DTLB

IREG

Read

FREG

Read

mshr

Logic

BMT

V-ROB

Branch

Predicor

sATD
IDD

sATD
sATD

miss

FMT
FMT

s
h

a
ri
n

g
 m

is
s

miss

Global Counters

sATD
FATD

miss

Figure 5.3: Logic and hardware required by CAA

workloads, respectively.
The CAA classifies the execution cycles of each task into three possible groups:

• base cycle: the task dispatches instructions in the right path. The task is making
progress.

• miss event cycle: it consists of cache misses cycles, TLB misses cycles, branch
misprediction cycles, and others event cycles. In these cycles, the task cannot
dispatch instructions or dispatches in the wrong path, due to miss events (cache
misses, TLB misses, and branch mispredictions). The task is not progressing.

• waiting cycle: the task cannot dispatch due to another task and hence, the task
is waiting to dispatch new instructions because of SMT execution.

The CAA quantifies the reduction in per-task memory-level parallelism (MLP),
estimating the MLP in isolation using a back-end miss event table (BMT) per task.
Furthermore, the CAA calculates on correction factor per task in each interference
of branch predictor, caches and TLBs with dedicated hardware. These hardware re-
sources are a Sampled Auxiliary Tag Directory (sATD) [49] for set-associative caches,
a Fully-Associative Tag Directory (FATD) for fully-associative caches and an ID Dir-
ectory (IDD) for branch predictor as shown in Figure 5.3. In addition, in order to
detect a long-latency data miss, the CAA estimates when ROB per task would be full
in isolation using a Virtual ROB (V-ROB). In conclusion, the CAA estimates per-task

68 Chapter 5. CPU Accounting for CMP+SMT Processors

ST execution as the sum of the base cycles and miss event cycles with corresponding
correction factors.

To calculate the different cycles, the CAA is based on the notion of a dispatch
slot (in other words, a 4 wide dispatch processor has 4 dispatch slots per cycle). The
CAA counts the number of dispatch slots per task in each cycle, classifying each slot
in base, waiting and miss event. For instance, the base cycles are calculated dividing
the number of base slots to wide dispatch processor.

Cycle Accounting Logic: When a task can dispatch an instruction in some slot,
if the instruction is in the correct path, the base counter is increased. If the task
dispatches an instruction from the wrong path, the slot has to be assigned to a branch
misprediction counter. Since branch mispredictions are detected after some cycles, the
authors propose to store the slot counters per branch and update the global counters
when the branch is committed. In the case the branch was mispredicted, all the slots
are assigned to the branch misprediction counter until instructions from the correct
path are dispatched.

When a task cannot dispatch an instruction in some slot, this is due to two cases:
(1) other tasks are using all dispatch slots, the waiting counter of the task is increased.
(2) if the task suffers a miss, the corresponding miss counter is increased. The cycle
accounting keeps track of several possible miss sources: instruction L1 cache, L2 or
L3 instruction cache, instruction TLB miss, full ROB (due to L2 or L3 data misses,
data TLB misses, long latency units, dependencies, etc.). When several back-end
misses arise, the CAA gives priority to the miss associated to the first instruction in
the ROB. When several front-end misses arise, a branch misprediction and an instruc-
tion L1, L2, L3 or TLB miss, the branch misprediction has more priority (only the
branch misprediction counter is increased). If front-end and back-end misses occur
in the same time, the front-end miss has more priority unless the ROB is full. In this
situation, the back-end miss counter is increased.

5.3 Micro-Isolation Based Time Accounting

In this section, we introduce the Micro-Isolation Based Time Accounting (MIBTA)
for CMP+SMT processors. To begin with, we focus on MIBTA for SMT processors
where we study the on-core interference. Next, we analyse the off-core interference
for CMP processors.

5.3. Micro-Isolation Based Time Accounting 69

TUS 0

Isolation phase

Multi-threaded phase

Warmup

phase

Actual-Isolation

phase

TUS 1

Isolation phase

Time

Figure 5.4: The isolation and multi-threaded phases in MIBTA mechanism

5.3.1 MIBTA for SMT Processors

Tracking each resource utilization in an SMT processor introduces high hardware
cost, complicates its design and is architecture dependent. Moreover, accounting
mechanisms do not directly contribute to improve system performance, which mo-
tivates the use of an accounting mechanism as simple as possible. In order to estim-
ate the CPU capacity in SMT, we introduce Micro-Isolation Based Time Accounting
(MIBTA) mechanism. Unlike previous proposals, MIBTA does not track task inter-
action in each shared resource in an SMT processor. MIBTA divides the execution
of running tasks into two phases that are executed in alternate fashion, as shown in
Figure 5.4.

• Isolation (isol) phase: During this phase, a task running on the core, denoted
Task Under Study (TUS), is given access to all shared resources, and the other
tasks are temporarily stalled. As a result, we obtain an estimate of the current
full speed of that TUS during this phase which we call the isolation IPC. Note
that the isol phase has to be kept as short as possible to reduce system perform-
ance degradation.

• Multi-threaded (MT) phase: During this phase, all tasks are allowed to run and
their IPCs are also measured.

In subsequent isol phases, a task on a core become the TUS, and hence, its IPC is
measured in isolation. In other words, the isolation phase of tasks is not consecutive
and is active in different time in order to measure isolation IPC of tasks. For instance,
assuming that two tasks X and Y are running onto a two-way SMT processor, both
tasks start to execute in MT phase. In the first isolation phase, the task X becomes the
TUS and its isolation IPC is measured. After the isolation phase finished, both tasks
are running in MT phase again. In the second isolation phase, the TUS is the task Y,

70 Chapter 5. CPU Accounting for CMP+SMT Processors

and its isolation IPC is measured. Next, both tasks are running in MT phase again.
In the third isolation phase, the task X becomes the TUS again, and this sequence is
repeated during the execution of both tasks.

Even if the TUS is run in isolation, it may still suffer intertask conflicts in shared
resources as in the precedent MT phase all tasks used those shared resources. In
our simulated architecture, as described in Chapter 2, there are the following shared
core resources2: fetch and issue slots, issue queue entries, physical registers, caches,
TLBs, and the branch predictor. Private per-core first level instruction and data caches,
TLBs, and the branch predictor can suffer destructive interference because an entry
given to a task can be evicted by another task before it is accessed again. In order
to get more insight into this interference, we have measured the average intertask
conflicts the TUS suffers during the isol phase. We have observed that, as the isol
phase progresses, the TUS evicts all data from other tasks. Consequently, the number
of conflicts goes toward zero for the instruction cache, data cache, TLBs, and the
Branch Target Buffer (BTB). We observed that 50,000 cycles after the beginning of
the isol phase, most interference in these shared resources is removed. The branch
predictor, Pattern History Table (PHT), takes much longer to clear: We have measured
that it takes more than 5 million cycles before misses due to the interaction with
other tasks (intertask misses) have disappeared. However, this interference is mostly
neutral, giving a negligible loss in the branch predictor hit rate of less than 1%. Hence,
we ignore the interference in the branch predictor.

To remove intertask conflicts in all core shared resources, we propose to split each
isol sample into two subphases. During the first subphase, the warmup phase, that
consists of 50,000 cycles, the TUS is given all resources, but its IPC is not measured.
In the second subphase, the actual-isolation phase, the TUS keeps all resources, and
its IPC is measured. The duration of this subphase is 50,000 cycles. In Section 5.4,
we study the accuracy of MIBTA with different warmup and actual-isolation phase
lengths.

During each actual-isolation phase, we count the number of instructions executed
by the task X under study, Iisol,X . Dividing Iisol,X by the number of cycles of
the actual-isolation phase, we obtain a sample of the IPC in isolation of the TUS,
IPCisol,X = Iisol,X

cycles_actual−isolation_phase .

2Inter-core resource conflicts such as LLC or memory bandwidth contention are considered in the
next section for CMP processors.

5.3. Micro-Isolation Based Time Accounting 71

5.3.1.1 Hardware Implementation

The implementation of MIBTA requires reduced hardware support. In fact, many
current processors already incorporate similar support that could be used to provide
MIBTA’s required functionality. MIBTA needs a countdown timer that is programmed
to trigger at the end of each phase: warmup, actual-isolation and MT phases. The three
registers that save these values, wuReg, aiReg, and mtReg, can be made visible and
writable from the operating system.

MIBTA also requires that only one task runs during each isol phase. This can be
done in a straightforward way by stopping the fetch of instructions of the other tasks in
the core. Processors such as the IBM POWER7 already incorporate hardware thread
priority mechanism [56]: When a hardware thread is assigned the lowest priority it is
allowed to fetch instructions only once every dozen of cycles. MIBTA would simply
require another priority level in which a task is not allowed to fetch further instructions
until its priority is changed back to its previous value.

After MIBTA has stopped the fetch of instructions for a given task, task’s in-flight
instructions will eventually commit before the end of the warmup phase. The only
information that the task would have in the core is its program counter and the archi-
tectural state registers. In processor architectures where the architectural registers are
kept in a different register file than the physical registers, MIBTA can be implemented
just with the small change in the fetch stage mentioned above. In processors in which
the architectural and physical registers share the same register file (the most common
case), it is necessary to deallocate from the register file the architectural registers of
the non-running tasks in the isolation phase so that the TUS enjoys as many resources
as when actually running in isolation. We do this, with small changes in the pipeline.
In particular, we propose a mechanism that releases architectural registers of non-
running tasks and locks them into the LLC cache. We denote this solution Register
File Release (RFR) mechanism. A similar approach is implemented in the Intel Sandy
Bridge processor [51], where the state of the machine in a given core can be flushed
to the LLC cache to turn off the core and reduce system energy. This operation takes
in the order of hundreds of cycles, and deploys the data path already implemented in
the processor, not requiring extra wires for data. Overall, MIBTA works as follows:

• Just after the MT phase ends (and the warmup phase starts), we stop fetching
instructions from all the tasks except the TUS. When there are no instructions
from the other tasks in the ROB, we store the information from the architectural
registers of the other tasks in the LLC cache, locking the corresponding cache

72 Chapter 5. CPU Accounting for CMP+SMT Processors

lines. The time at which the other tasks have no in-flight instructions can be
determined by deploying performance counters present in many current archi-
tectures that are able to measure it. Afterwards, the architectural registers from
other tasks are released, increasing the number of renaming registers available
to the TUS.

• At the end of the warmup phase, the number of instructions executed is saved
into the register wuInstr.

• When the actual-isolation phase ends, the instructions executed are saved into
another register, aiInstr. The number of instructions executed during the actual-
isolation phase is Iisol,X = aiInstr − wuInstr. All architectural registers are
loaded from the LLC cache back into the register file, and the normal MT phase
begins.

The information to store is 64 architectural registers per task (32 integer and 32
floating point registers). Every register is 64 bits, and hence we need to store 4096 bits
per task (512B). In a 2- and 4-way SMT processor, the total storage required is 0.5KB
and 1.5KB, respectively. Since in our processor configuration the LLC cache line size
is 128B, we only need 4 cache lines per task. In all configurations, we have measured
that less than 1,000 cycles are required to release all the architectural registers and lock
them in the LLC cache. In our simulation infrastructure, we simulate this process in
detail.

5.3.2 MIBTA for CMP processors

In addition to the conflicts on on-core resources, the main source of interference in
a CMP+SMT processor is the shared off-core as such LLC cache. When measuring
the intertask conflicts the TUS suffers once it enters in an isol phase, we observed
that the interference in the LLC cache extends for several million cycles. These in-
tertask misses give rise to a significant performance degradation (more than 30% for
some benchmarks), leading to a bad estimation of the IPC of the task in isolation and,
consequently, of its CPU accounting. The long duration of LLC conflicts makes the
solution of extending the warmup phase infeasible, as it would introduce significant
performance loss.

In order to overcome this problem, MIBTA has to detect every time the TUS
suffers an intertask LLC miss and take into account this information in the final CPU
accounting of the task. MIBTA uses the hardware provided by ITCA mechanism

5.3. Micro-Isolation Based Time Accounting 73

explained in Chapter 4. MIBTA detects an intertask LLC miss by using an ATD and
tracks the intertask LLC miss by utilizing the MSHR.

The ATD is a large structure, and consequently, reducing its overhead without
decreasing the accuracy of the proposed CPU accounting mechanism is a crucial ob-
jective. A first possibility consists on eliminating the ATDs, relying on the warmup
phase to bring to the LLC cache a significant part of the task’s data. However, as
mentioned earlier, several million cycles are required to eliminate all intertask LLC
cache misses. Thus, these misses will be accounted as intratask misses during the
actual-isolation phase and the accuracy of the CPU accounting mechanism will be
affected.

A second option consists on considering a sampled version of the ATD, denoted
sATD [33, 49], which only monitors some sets of the LLC cache and obtains the
miss rate in isolation. Under this approach, we track intertask misses to the sampled
sets. However, when the number of sampled sets is reduced, accuracy significantly
decreases since we are not detecting intertask misses to non-monitored sets.

Based on the fact that sampled ATDs are very accurate predicting LLC miss
rates [49], we propose to track the probability of having an intertask miss in the
sampled sets, i.e. the ratio between intertask misses and total misses to the sATD
of the task. During MT phase, the number of intertask and total misses per task are
tracked and accumulated in two registers per task. When the isol phase begins, the
ratio between these values is computed and stored as a 10 bit integer that is multiple of

1
1024 (0 represents 0, 512 represents 0.5, 1023 represents 0.99, and so on and so forth).
This threshold is always computed during warmup phase. During actual-isolation
phase, the same intertask miss probability is assumed for accesses to non-monitored
sets. When missing on a non-monitored set, a 10-bit random number is generated
with a Linear Feedback Shift Register (LFSR) [6]. If this number is less than the pre-
viously obtained threshold, this LLC miss is predicted to be an intertask miss. Other-
wise, LLC miss is an intratask miss. This Randomized version of the Sampled ATD,
denoted RSA, predicts intertask misses to these non-sampled sets. In Section 5.4, we
present a detailed study of the accuracy of all these possible implementations, con-
cluding that RSA provides nearly the same accuracy as the entire ATD with the same
hardware cost as a sampled ATD.

74 Chapter 5. CPU Accounting for CMP+SMT Processors

5.3.3 CPU Accounting in MIBTA

To determine whether the task is progressing in a given cycle of an actual-isolation
phase, we make use of the decision provided by I2TCA mechanism explained in
Chapter 4. This mechanism is specifically developed for accounting in CMP archi-
tectures with shared caches. I2TCA stops accounting to a task in two situations: (1)
when the ROB is empty because of an intertask LLC cache instruction miss, and (2)
when the instruction in the top of the ROB is an intertask LLC miss and the register
renaming stage is stalled. In other situations without intertask LLC misses or when
intertask misses overlap with intratask misses, the accounting is not stopped since the
task is performing similar progress it would make in isolation.

The cycles accounted to each task, and the instructions it executes during the
actual-isolation phase are accumulated into special purpose registers per task, denoted
Isolation phase Cycles Register (ICR) and Isolation phase Instructions Register (IIR),
respectively. We also accumulate the instructions and cycles tasks are running in the
MT phase into the MT phase Instruction Register (MTIR) and the MT phase cycle
Register (MTCR), respectively.

These registers are read-only like the time stamp register in Intel architectures,
and can be communicated to the OS. On every context switch, the OS reads for each
task X the ICRX , IIRX , MTIRX and MTCRX registers. With this information,
the OS estimates the time to account to each task as: TAX,IX = ICRX + IPCMT,X

IPCisol,X
·

MTCRX , where IX = IIRX + MTIRX is the total number of executed instruc-
tions, the IPC in isolation IPCisol,X = IIRX

ICRX
and the IPC as part of the workload

IPCMT,X = MTIRX
MTCRX

. At the context switch boundary, in fact on every clock tick,
the OS also updates metrics of the system and carries out the scheduling tasks. Thus,
the OS could potentially use the information provided by MIBTA to find better co-
schedulers, similarly to [16]. When a task is swapped out, its associated ICRX ,
IIRX , MTIRX , MTCRX can be updated in the task struct and are reset before the
next task starts.

5.4 Evaluation Results

We perform several studies to evaluate the accuracy of MIBTA. First, we focus on a
single core processor to determine the best design parameters for MIBTA accounting
mechanism. Afterwards, we evaluate different implementations of our proposal that
minimize the storage overhead of MIBTA without decreasing its accuracy. Finally,

5.4. Evaluation Results 75

Table 5.1: Simulation Configuration

Core configuration
2-way SMT 4-way SMT

Number of core 1,2,4,8 1,2,4
Issue Queue entries 48 int, 48 fp, 48 ld/st 64 int, 64 fp, 64 ld/st
Physical Registers 164 int, 164 fp 256 int, 256 fp

ROB size 256 352
Execution Units 4 int, 2 fp, 2 ld/st

Fetch Policy ICOUNT 1.8
Branch predictor 2K entries, gshare

Branch Target Buffer 256 entries and 4 ways
Clock Frequency 2.0GHz

Cache/Memory Configuration
Core/s 1 2 4 8

LLC (shared) 2MB 4MB 8MB 16MB
16 ways, 8 banks, 128 Bytes

Instruction (per core) 64 KB, 4 ways, 1 bank, 128 Bytes
Data (per core) 64 KB, 8 ways, 1 bank, 128 Bytes
ITLB (per core) 128 entries, 8 KB page
DTLB (per core) 256 entries, 8 KB page

Latencies LLC (15), Memory (300)

we evaluate MIBTA in a CMP+SMT configuration with two, four and eight cores,
and compare its results with previously proposed CPU accounting mechanisms.

To evaluate the accuracy of MIBTA, we make use of several processor setups
shown in Table 5.1: four different core counts (one, two, four, and eight), and 2-
and 4-way SMT cores, for a total of seven different configurations3. We feed our
simulator with traces collected from the whole SPEC CPU 2006 benchmark suites
(see Chapter 2 for more details). Running all N-task combinations is infeasible as the
number of combinations is too high. Hence, we randomly choose a workload for each
benchmark in the SPEC CPU 2006 suite, generating a total of 26 workloads for each
evaluated configuration.

5.4.1 Sensitivity Analysis for Single-Core Architectures

We determine the design parameters that provide the best trade-off in terms of ac-
curacy and throughput in a single core processor. When moving to a CMP+SMT
scenario, similar results will be obtained, as we show in Section 5.4.4.

Figure 5.5 shows the off estimation and throughput degradation results for a 2-
and 4-way SMT processor under different sampling intervals, ranging from 1.3 to 20.8
million cycles. The sampling interval is the number of cycles between two isol phases

3We do not simulate the 8-core 4-way SMT configuration due to simulation time constraints

76 Chapter 5. CPU Accounting for CMP+SMT Processors

��
��
��
��
��
��
��
	�

�
��
���
���
���
���
���
���

������������ ����������

�����������

������������ ����������

�����������

�� �!�"#� �� �!�"#�

�
��
��
�
�
��

	
�
�

�

�$�# �$�# �$�# �$�# ��$�# ��$
%&

�
�
�
$�
�

�
�
$�
�

Figure 5.5: MIBTA off estimation and throughput degradation on an SMT processor under
different sampling intervals

of a given task. In both configurations, the off estimation increases with the sampling
interval, since MIBTA cannot capture some phase changes of the task. In contrast, the
throughput degradation decreases with the sampling interval, since there are less isol
phases that degrade total throughput. With all sampling intervals, the off estimation of
MIBTA clearly improves over CA. With the shortest sampling interval, off estimation
reaches just 2.8% and 6.4% in 2- and 4-way SMT processors, respectively.

Throughput degradation is significant for a sampling interval of 1.3 million cycles,
but decreases with higher sampling intervals, at the cost of worse off estimations.
When choosing a sampling interval of 5.2 and 10.4 million cycles for 2- and 4-way
SMT, an interesting trade-off between off estimation and throughput degradation is
obtained: 3.6% and 6.2% off estimation, and 1.0% and 1.8% throughput degradation,
respectively. This corresponds to a period between any two isol phases of 2.6 million
cycles. For the remaining experiments, we maintain this value, as it represents a good
balance between accuracy and performance.

Figure 5.6 shows the average of MIBTA off estimation for length of the isola-
tion phase from 60 to 100 thousand cycles with different lengths of warmup phase
(WP) and actual-isolation phase (AIP). In general, the best results are obtained with

5.4. Evaluation Results 77

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

5.5%

6.0%

6.5%

AIP 50 40 30 20 10 60 40 30 20 10 70 50 40 30 10 80 60 40 20 10 90 70 50 30 10

WP 10 20 30 40 50 10 30 40 50 60 10 30 40 50 70 10 30 50 70 80 10 30 50 70 90

60 70 80 90 100

O
ff

 e
s
t
im

a
t
io

n

Figure 5.6: Average off estimation of MIBTA for isolation phase lengths from 60 to 100
thousand cycles with different lengths of warmup phase (WP) and of actual-isolation phase
(AIP)

balanced warmup and actual-isolation phases. In contrast, the worst results are ob-
tained with extreme values, when either the warmup or the actual-isolation phase is
only 10 thousand cycles. On average for 2- and 4-way SMT processors, the optimal
results are obtained with warmup and actual-isolation phases of length 50 thousand
cycles with an average 4.9% off estimation. Several configurations are close to this
optimal value, with the worst results (6.4% off estimation) obtained with warmup and
actual-isolation phases of 80 and 10 thousand cycles, respectively. In the remaining
experiments, we maintain 50 thousand cycles for both warmup and actual-isolation
phases.

Next, we explore which resource conflicts lead to the off estimation obtained
with MIBTA on the SMT processor. When comparing the execution of each task
in isolation (the task runs alone in the system) and in the actual-isolation phase in our
scenario, we detect that LLC conflicts are the key contributor to the off estimation of
MIBTA. Under an SMT configuration with a perfect LLC cache (without any intertask
LLC cache conflicts), the average off estimation is reduced to 4.0%. The remaining
off estimation is explained by the sampling interval, since MIBTA can not capture all
task phases.

Finally, we discover that the architectural state of all stopped tasks that is stored in
the register file affects the accuracy of the estimated IPC for each TUS in the isolation

78 Chapter 5. CPU Accounting for CMP+SMT Processors

�
�
��
�

�
�
�
��
�

��

��

��

	�

�

��

��

��

��

��

���

���

���

�	�

�
�

��������
�������

�
��
��
�
�
��

	
�
�

�

����������

���

����

� ����

!�

Figure 5.7: MIBTA off estimation in 2- and 4-way SMT processors using different storage
overheads

phase. In the isolation phase, the task under study can not make use of the registers
that store the architectural state of all stopped tasks. In the 4-way SMT configuration
(where four tasks run simultaneously), this effect is high, and hence, this finding mo-
tivates the use of the register file release mechanism that we evaluate in Section 5.4.3.

In conclusion, MIBTA accurately works with a period of 2.6 million cycles and
an isolation phase of 100 thousand cycles. In this configuration, MIBTA does not
significantly degrade the system throughput.

5.4.2 MIBTA Storage Overhead

Next, we evaluate different implementations of MIBTA with different storage over-
heads devoted to tracking intertask LLC misses. Figure 5.7 shows the off estimation
results of the four possible implementations in 2- and 4-way SMT processors. Without
using any storage (no ATD configuration in Figure 5.7), MIBTA reduces off estima-
tion from 113% to just 9.0% on average. The warmup phase effectively eliminates the
majority of intertask conflicts and, even if some intertask LLC misses are not detected,
the off estimation is heavily reduced.

When considering 32 sampled sets out of the 1024 sets of the LLC cache (sATD
configuration), the storage overhead supposes just 960 bytes per task. However, very
few intertask misses are detected and, consequently, off estimation is very close to the

5.4. Evaluation Results 79

configuration without ATDs. In contrast, when tracking the intertask ratio with the
randomized sampled ATD (RSA configuration), the off estimation is reduced to 5.3%
on average, very close to the 4.9% average off estimation with the entire ATD. Imple-
menting RSA requires a sampled ATD with 32 sampled sets, two 64 bits registers, two
shifter registers, an LFSR, and four 64 bits special purpose registers. In our current
configuration, the total storage overhead per task is 1KB. At core level, one bit per
entry in the ROB and the MSHR are required, as well as three 20-bit registers. This
supposes an extra 0.04KB and 0.05KB in 2- and 4-way SMT cores, respectively.

Since characteristics of tasks dynamically change, intertask miss rate should re-
flect these changes. However, we also wish to maintain some history of the past MT
phases. Thus, after the isol phase ends, we multiply all the values of the intratask and
intertask misses times ρ ∈ [0, 1] in all tracking mechanisms. During the MT phase,
we keep accumulating these values for all tasks. Large values of ρ have larger reaction
times to phase changes, while small values of ρ quickly adapt to phase changes but
tend to forget the behaviour of the task. Small off estimation variations are obtained
for different values of ρ ranging from 0 to 1 (less than 0.5% on average for the worst
case), with the best results for ρ = 0.5. Furthermore, this value is very convenient as
we can use a shifter to update the values. For all the experiments, we maintain this
value.

5.4.3 Shared Register File

As mentioned previously, to further improve the accuracy of MIBTA in SMT pro-
cessors, we need to take into account the contention in the shared register file. Each
task has 32 architectural registers stored in each shared register file, which impacts
the performance of the task under study in the actual-isolation phase, even if the other
tasks are not running. Since there are 256 shared registers per register file in a 4-way
SMT configuration, the task under study will get at most 160 registers (256− 3 · 32).
As a result, it will suffer more contention in the register file than in isolation.

Figure 5.8 shows the results in a 2- and 4-way SMT processor setup when us-
ing the MIBTA mechanism with and without the register file release mechanism. In
this experiment, MIBTA is combined with the RSA. The average error in these con-
figurations is reduced to 3.2% and 5.2%, respectively. The off estimation reduction
is significant in the 4-way SMT configuration, since the contention in the shared re-
gister file is much higher than in the 2-way SMT configuration (132 and 160 available
register out of 164 and 256, respectively). In fact, the accuracy in the 4-way SMT con-

80 Chapter 5. CPU Accounting for CMP+SMT Processors

��

��

��

��

��

��

��

	�

�
������ �
������

�
��
��
�
��
�
	
��

�

��������

�����������

Figure 5.8: Accuracy with/without the register file release (RFR) mechanism

figuration is 23.5% better than without the RFR mechanism (5.2% instead of 6.8%).
In all configurations, the extra throughput degradation due to this mechanism is insig-
nificant (less than 0.05%).

5.4.4 MIBTA on CMP+SMT Architectures

Next, we move to a CMP+SMT scenario, with up to 8 cores sharing the LLC cache
and memory hierarchy. In this case, during each isolation phase only one task is
running on each core, removing on-core intertask conflicts after the warmup phase.
However, there will be still some intertask conflicts when accessing the LLC and the
memory hierarchy. Figure 5.9 shows the off estimation results for the seven different
configurations. MIBTA has an off estimation under 5.0% in all 2-way SMT pro-
cessors, while for 4-way SMT processors, the off estimation is always between 5.2%
and 7.5%. MIBTA obtains better results than using the entire ATD due to the RFR
mechanism and with a much lower hardware overhead. When using a sampled ATD,
a solution with similar hardware overhead, the off estimation quickly raises to 18.5%
and 15.6% in 4-core 4-way SMT and 8-core 2-way SMT configurations, respectively.
In contrast, MIBTA has a more stable accuracy, suggesting that the LLC contention is
correctly addressed by MIBTA.

Note that MIBTA takes into account bus, bank and memory controller conflicts
indirectly when intertask misses are in-flight. However, bus, bank and memory con-
troller conflicts are not considered by MIBTA when there are only intratask conflicts.
In other words, the time in order to resolve an intertask miss may be increased due
to the interference in bus, bank and memory controller. As MIBTA does not account

5.4. Evaluation Results 81

�
�

��
�

�
�

�
��

�

�
�

��
�

�
�

	
�

�

�
�

��
�

�
�

��

�

�
�

�

�

��
��

�
��
	�
��
��
��
��
��

���
���
�
�
���
�	�
���
���
���
���
���

��

���

���

	���

���

���

���

	���

���

���

���

	���

���

���

���

������
������ 	������ �������

�
��
��
�
�
��

	
�
�

�

����� ��� �����! ���! "�

Figure 5.9: MIBTA off estimation for 7 different CMP+SMT configurations

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2-way

SMT

4-way

SMT

2-way

SMT

4-way

SMT

2-way

SMT

4-way

SMT

2-way

SMT

1 core 2 cores 4 cores 8 cores

T
h

ro
u

g
h

p
u

t
d

e
g

ra
d

a
ti

o
n

Figure 5.10: MIBTA system performance degradation for 7 different CMP+SMT configura-
tions

the extra time due to intertask misses for CPU accounting of a task, the interference
in these resources is considered in CPU accounting. In contrast, if the time to resolve
an intratask miss is increased due to the interference in these resources, MIBTA does

82 Chapter 5. CPU Accounting for CMP+SMT Processors

not consider this situation, and hence, bus, bank and memory controller conflicts are
not considered in this situation. Our results confirm that the effect of those conflicts
is small on CPU accounting accuracy, making it not worthy to devote extra hardware
to track them. We elaborate more on this point on Section 5.4.5.

As mentioned before, the throughput degradation of MIBTA basically depends
upon the number of tasks that are stopped in each core during isolation phases. This
behaviour is shown in Figure 5.10. We observe that the throughput degradation is
1.0% in 2-way processor and 1.8% in 4-way processor. The increase of off estimation
from 1.0% to 1.8% is due to the number of stopped tasks during isolation phases. We
also observe that the throughput degradation is nearly constant when we vary from
1 to 8 cores with the same number of SMT threads per core. In short, all values are
below 1.8% and do not increase with the number of cores in the system.

5.4.5 Memory Bandwidth Sensitivity

As mentioned earlier in this section, the memory bandwidth has not been identified
as a main source of interaction between tasks in our different processor setups. To
illustrate this point, we measure the memory bandwidth requirements of the evaluated
workloads in all processor configurations. Figure 5.11 shows the percentage of work-
loads that require a given memory bandwidth to reach their maximum performance.
Note that in all our processor setups, we keep the same ratio of LLC cache per core:
2MB/core.

We observe that the memory bandwidth requirements increase with the number
of tasks simultaneously running on the system. For example, workloads in a 1-core
2-way processor only require 2GB/s to reach maximum performance, whereas the re-
quired memory bandwidth is almost 12GB/s in a 4-core 4-way processor. On average,
we have measured that 90% of the workloads have a bandwidth requirement of less
than 10GB/s in our setup. More importantly, all of them require less than 16GB/s
to reach their maximum performance. This is in line with latest DDR3 dual-channel
memories that support more than 15GB/s.

To sum up, we conclude that the memory bandwidth is not a problem in our pro-
cessor setups and with the set of benchmarks we have used. In other setups with less
cache or less memory bandwidth, memory bandwidth can be an issue. Consequently,
we leave dealing with memory bandwidth contention in MIBTA as future work.

5.4. Evaluation Results 83

��

���

���

���

���

���

���

	��

��

���

����

�������� �������� �������� �������� �������� �������� ��������

������ ������� �������
������

�
�
��
�
�
��
�
	�

�
��
��

�
�

��
������������������������������������

������ ������ ������
����� ������� �������

Figure 5.11: Memory bandwidth requirements for 7 different CMP+SMT configurations

5.4.6 Comparison with Other Accounting Mechanisms

Next, we compare the accuracy of MIBTA with previously proposed CPU accounting
mechanisms. These mechanisms, described both in Chapter 4 and in Section 5.2,
are also implemented in our simulator. Figure 5.12 evaluates the accuracy of the
CA, ITCA, PURR, CAA and MIBTA across multiple processor configurations. The
CA shows the worst results 112% average off estimation, since it is not aware of
any intertask conflict. ITCA also has similar results since it was designed for CMP
systems and does not take into account intertask core conflicts, with an average off
estimation of 102%.

In the case of PURR, off estimation is always between 25% and 38%. PURR
estimates CPU capacity based on the decode cycles of each task. When decode stage
is stalled, the decode cycle is evenly split among tasks. This mechanism presents two
sources of inaccuracy. First, when a task decodes, the other tasks are also progressing
(this is one of the main motivations for SMT processors), but only the first task is
accounted. And second, when a particular task stalls the processor due to a long
latency miss, waiting cycles are accounted to all tasks.

CAA obtains more accurate results than PURR, specially for one core processors
since it was originally designed for SMT processors. The off estimation ranges from

84 Chapter 5. CPU Accounting for CMP+SMT Processors

1
6

0
.1

%

1
6

4
.2

%

1
7

2
.3

%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%
160%

2-way

SMT

4-way

SMT

2-way

SMT

4-way

SMT

2-way

SMT

4-way

SMT

2-way

SMT

1 core 2 cores 4 cores 8 cores

O
ff

 e
s
ti

m
a

ti
o

n

CA ITCA PURR CAA MIBTA

Figure 5.12: Off estimation with different accounting mechanisms across several processor
configurations

16% in the single core configuration, to 21% in the 8-core configuration. This pro-
posal assumes that the ROB is the main bottleneck for performance of an out-of-order
architecture. For that reason, authors track the ROB occupancy in isolation and de-
tect when the ROB would be full in that situation. However, authors do not consider
the contention in other important resources such as the issue queues, the register file
(authors assume that architecture registers are separate from rename registers), cache
banks and memory bandwidth contention. When the number of cores increases, bank
and memory bandwidth congestion become more significant and, as a result, the off
estimation values get worse.

In contrast, MIBTA shows much more accurate and consistent results across all
configurations, with average errors between 3.2% and 7.5%. The results shown in
Figure 5.12 indicate that it is important to consider other shared resources such as the
issue queues or the register files. Thus, a CPU accounting mechanism such as MIBTA
leads to more accurate results independently of the processor configuration in which
it is run.

Even if previous CPU accounting mechanisms do not suffer any performance de-
gradation (or negligible), the experiments in Section 5.4.4 show that the performance
degradation introduced by MIBTA is very low: less than 1.8% in all configurations.
In terms of implementation cost, the CA and PURR require negligible hardware sup-

5.5. Other Considerations 85

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�	
����� �	
����� �	
����� �	
�����

����� ������

�
�
��
�
��
�
�	

�
�
�
�

����� ������ ���� �����	�����

Figure 5.13: Weighted speedup of different symbiotic schedulers for four CMP+SMT config-
urations

port. ITCA and MIBTA require slightly more hardware support (basically the sampled
ATD and the RSA, respectively), while CAA presents a nonnegligible hardware cost
and complexity as the required hardware blocks are spread throughout all the pipeline
of the processor. In contrast, MIBTA relies on isolation phases to predict performance
in isolation without introducing expensive hardware support.

5.5 Other Considerations

5.5.1 System-level Considerations

The proposed CPU accounting mechanism for CMP+SMT processors can be applied
to several scenarios. First, MIBTA can report the execution time of a task when
running alone in the system. This metric reports more accurately the progress of a
task than the actual execution time in the CMP+SMT processor. This information
can be used by the scheduler to provide fairness, per-task QoS, task prioritization and
performance isolation.

To exemplify the potential benefits of MIBTA for the software stack, we perform
the following experiment: We combine the feedback provided by MIBTA with the

86 Chapter 5. CPU Accounting for CMP+SMT Processors

symbiotic scheduling techniques introduced by Snavely et al. [58, 59]. The SOS
scheduler (for Sample, Optimize, Symbios) combines a sample phase which col-
lects information about various possible schedules, and a symbiosis phase which uses
that information to predict which schedule will provide the best performance. The
sampling phase of the SOS scheduler is very different from the isolation phases of
MIBTA: SOS samples some random schedules from the huge amount of possible
schedules in a workload. After the sampling phase, SOS predicts the best candidate
schedule based on different performance counters measurements. Finally, it runs the
candidate optimal schedule for the remaining time.

The original SOS scheduler sought to optimize the weighted speedup of the work-
load. To that aim, SOS makes use of different heuristics to predict this optimal sched-
ule. Making use of MIBTA, we can actually measure the weighted speedup of each
random schedule without running each task in isolation in the whole system. MIBTA
executes tasks in isolation in each core, and this process is transparent to the OS sched-
uler. Based on MIBTA’s measurements, SOS can select the schedule that reported the
best performance in the sampling phase.

Figure 5.13 shows the weighted speedup results with different schedules in four
processor configurations with different number of cores (1 and 2), and 2- and 4-way
SMT cores. In each configuration, we randomly select a workload with more tasks
than available hardware threads. The number of total tasks in the workload is 16 for
the 2-core 4-way SMT configuration, and 8 for the remaining ones. SOS generates
20 random schedules (this number is significantly smaller than the total number of
available schedules) and decides the candidate optimal schedule for the remaining
time. We evaluate the heuristic based on the information provided by MIBTA, and
we also report the performance of the worst, median, and best schedule out of the 20
random schedules. We can see that the range of values of the weighted speedup is
wide: the best schedule obtains between 7.0% and 14.6% higher weighted speedup
than the worst schedule. SOS decisions based on MIBTA’s feedback always selects
the best performing schedule. This experiment proves that the accurate estimation of
MIBTA can be used to improve system-level performance.

Finally, thread-progress aware fetch policies such as the ones presented by Eyer-
man and Eeckhout [13] could be applied. In this paper, the authors introduce a fetch
policy that continuously monitors the progress of each thread in the SMT processor
and gives more priority to the threads that are falling behind. Having a more accur-
ate accounting mechanism such as MIBTA would increase the effectiveness of such a
proposal.

5.5. Other Considerations 87

5.5.2 Virtualized Environments

In data centers, customers are charged according to the use of resources they do. Users
are provided with one or several Virtual Machines (VM) in which they can run their
tasks. In this case, the CPU capacity is not measured per thread or per task, but per
virtual machine: the data center owner charges the user on VM resource-utilization
bases.

MIBTA perfectly fits in this type of virtualized environments. The only additional
consideration is that, when several virtual machines share the same MT processor,
MIBTA has to track the virtual machine to which each task/thread belongs to. Inter-
task interferences are no longer considered, but inter-VM interferences. In this case,
it would be the hypervisor (virtual machine manager) filling out the thread-task map-
ping table, setting the same value for all tasks/threads belonging to the same virtual
machine.

5.5.3 Dynamic Voltage and Frequency Scaling

Usually DVFS varies the frequency at which cores work keeping the frequency of
shared cache and memory unchanged. Consequently, the IPC of a given task may
vary with different frequencies. For instance, if a task is memory bound and we
decrease core frequency, the IPC of the task will increase since the number of cycles
waiting for memory are reduced (measured in the decreased processor frequency).
The only change MIBTA requires in the presence of DVFS is a synchronization of the
isolation periods of MIBTA with the points in time in which DVFS is changed. Given
that changing from one given voltage and frequency operating point to a different one
takes in the order of microseconds [23], the overhead of the extra isolation periods of
MIBTA will be very low. If required, per-DVFS operating point IPC values of each
task in isolation can be maintained either at the hardware level or at the software level.

5.5.4 Parallel Tasks

MIBTA also works for multi-threaded workloads with minimal changes with respect
to its implementation shown in previous sections. The interaction between threads in a
parallel task can be positive when, for example, one thread prefetches data for another
thread. This behaviour is intrinsic to the task, and hence it also occurs when running
in isolation. Consequently, MIBTA does not need to track it. When a parallel task
runs with other tasks, it may suffer negative interaction, i.e. it may suffer intertask

88 Chapter 5. CPU Accounting for CMP+SMT Processors

contention.

In most of the cases, tasks are bound to some cores: in order to benefit from
data sharing, all the threads of a task are usually located onto the same cores. So, a
parallel task does not usually share its cores with other tasks. Under this scenario,
the parallel task is already running in isolation in the core (not in the LLC), which
means that the isolation phases will not degrade the system performance. In the less
common case in which several parallel tasks share different cores, MIBTA would
have to stop temporally the threads of different tasks and only run threads of the same
task in the core during the isolation phase. Given that there are several threads of the
same task per core this would reduce the number of isolation phases per core: one
per task rather than one per hardware thread as it was the case for multiprogrammed
workloads. Consequently, throughput degradation is also reduced. As threads of the
parallel task are spread among different cores, MIBTA has to synchronize the different
isolation phases in all cores used by the parallel task.

To track intertask LLC conflicts, MIBTA would require an identifier of the parallel
task instead of the physical hardware thread. Conflicts between threads of the same
task are intrinsic intratask conflicts, and do not have to be tracked by MIBTA. This can
easily be done with a hardware table that we denote thread-task mapping table. This
table has one entry per hardware thread. Each entry contains an integer that ranges
from 0 to N-1, where N is the total number of hardware threads in the processor
(i.e. number of cores times number of hardware threads per core). All threads of the
same task have to be assigned the same value in this table. In the case we have one
independent task per hardware thread, each entry in the thread-task mapping table will
store a different value.

For instance, if we have a 4-core processor in which each core is 4-way SMT,
the thread-task mapping table will have 16 entries. If two parallel tasks run at
the same time on the chip such that the first uses the first two cores and the
second the last two cores, the contents of the thread-task mapping table would be:
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1. On the event of an interaction between two
threads in the LLC, MIBTA has to obtain their corresponding task identifiers to de-
termine whether the conflict is an intratask or intertask interference. If conflicting
threads have different values in the thread-task mapping table, they belong to differ-
ent tasks, and consequently, they suffer an intertask interference. If the values in the
thread-task mapping table are the same, the interference is regarded as an intratask
interference. The thread-task mapping table is made writable to the OS so that it
specifies which threads belong to the same task.

5.6. Summary 89

At hardware level, MIBTA provides the slowdown that each thread of a parallel
task suffers due to intertask interferences. Note that the interaction between threads
of the same parallel task is considered intrinsic to the task. Whether the slowdown
in a thread translates into a slowdown of the task is something to be determined by
the OS or the run-time system. Intuitively, in many tasks there are some threads
that are the performance bottlenecks. For example, on a synchronization barrier, the
threads getting the latest to the barrier are the bottleneck threads. Any slowdown
on those threads due to intertask interferences translates into a task slowdown. It
is a responsibility of the OS or run-time system to identify tasks and use per-thread
slowdown feedback provided by MIBTA to properly compute tasks’ slowdowns.

5.5.5 Scalability

In terms of performance degradation and hardware cost, the worst situation for
MIBTA is when all tasks that run in each hardware thread are independent. Under
this scenario we have shown that with performance degradations between 1.0% and
1.8%, and reduced hardware budget, MIBTA provides better accounting accuracy than
previous CPU accounting mechanisms.

The hardware overhead of MIBTA only depends upon the number of hardware
threads per core. This overhead is independent on the number of cores. Consequently,
MIBTA scales better with the number of cores, rather than with the number of hard-
ware threads per core. However, current architectures do not implement more than
eight hardware threads per core due to its significant hardware cost. Since this trend
is predicted to hold for the foreseeable future, MIBTA will scale with upcoming multi-
threaded systems.

Finally, we have seen that the number of isolation periods reduces with the num-
ber of threads per task, and hence the system performance degradation. The rise of
parallelism in the last years and its increasing importance will facilitate the use of an
CPU accounting mechanism such as MIBTA in the near future.

5.6 Summary

This Chapter has demonstrated that the current CPU accounting mechanisms are not
as accurate as they should be in CMP+SMT processors. Though these mechanisms
enhance the accuracy of CPU accounting in one of the existing TLP paradigms, they
do not consider the interaction of several TLP paradigms at the same time; hence they

90 Chapter 5. CPU Accounting for CMP+SMT Processors

introduce inaccuracies in the CPU accounting. To solve this problem, we introduce
a novel CPU accounting mechanism denoted Micro-Isolation Based Time Accounting
(MIBTA). MIBTA reduces the off estimation under 5.0% in average on an 8-core 2-
way SMT processor, while previous proposals present average off estimations over
21%. In addition, we have developed a new intertask misses tracking mechanism
called randomized sampled ATD (RSA). RSA decreases the ATD overhead to 960
bytes in a 2 MB LLC cache, while preserving its high accuracy. At the core level,
MIBTA does not track every hardware shared resource, reducing its implementation
cost to the minimum.

Chapter 6
CPU Capacity-Aware Scheduling

in Multi-Core Processors

In this Chapter, we analyse how the software level can utilize the CPU accounting.
We focus on operating system CPU scheduling algorithm due to impact in computing
system performance. We propose for the first time the definition of effective CPU
capacity share and show how time-based scheduler can be made CPU capacity-aware.

Our results show that by making completely Completely Fair Scheduler (CFS)
aware of the CPU capacity enjoyed by each task, we manage to make effective CPU
share proportional to the priority of tasks. While performance is roughly unaffected,
with an observed difference of less than 0.71% between the time-based and the CPU
capacity-based CFS schedulers, CPU capacity-aware CFS improves fairness with re-
spect to time-based CFS by more than 18% in a 4-core configuration.

6.1 Introduction

Tasks running simultaneously on multi-core processors compete for shared resources,
such as last-level caches and system resource queues. As a result, in a given amount of
running time the actual forward progress accomplished by a process can vary widely
depending upon whether the CPU computation capacity is shared and who it is shared
with. CPU schedulers, whose goal is to enforce some form of fair CPU sharing, have
been relying on the running time as the measure of forward progress. While this
metric served as a good proxy for progress on single-threaded processors, on multi-
core1 processors it becomes very inaccurate. As a result, the design of schedulers

1In fact, the same problem arises in any MT processor. For simplicity in this Chapter, we talk about
multi-core processors.

91

92 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

Time (ms)

A
cc

u
m

u
la

te
d
 I
n
st

ru
ct

io
n
s

(%
)

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220

astar_1 astar_2 astar_3 astar_4

(a) Accumulated executed instructions per each astar copy over time

T
im

e
 (

m
s)

5

10

15

20

25

30

a
st

a
r_

1

a
st

a
r_

2

a
st

a
r_

3

a
st

a
r_

4

(b) CPU time assigned to
each astar copy after 120ms

Figure 6.1: Executed instructions and CPU time enjoyed by each astar copy under CFS in a
4-core processor setup

relying on this metric is fundamentally flawed.
Consider Figure 6.1, which shows the results of an experiment running four copies

of the same benchmark (astar, SPEC CPU 2006) on a quad-core processor. The
four tasks are bound to the same core. On the other cores, we run 12 other tasks
(four per core), so that no process balancing is needed. The tasks are managed by
Linux CFS, whose goal is to ensure equal progress for processes of equal priority.
Figure 6.1 shows the normalized accumulated number of executed instructions over
time of the different copies of astar (Figure 6.1(a)), and the amount of CPU time each
instance of astar has received (Figure 6.1(b)). We observe that despite running for
the same amount of time on the CPU each copy of astar executes a different amount
of instructions each time it is scheduled. Consequently, they finish in different times
and achieve unequal amount of forward progress, and hence received CPU capacity.
In this experiment, the slowest copy of astar runs 70% slower than the fastest one.
Hence, this example clearly shows that despite CFS managing to balance the CPU
time (as shown in Figure 6.1(b)), the amount of forward progress made by identical
tasks is different. Thus, CFS is unfair in this scenario. Although we used CFS as an
example, other time-based CPU schedulers would suffer from the same problem.

Other researchers have characterized the effects of intertask conflicts in the ac-
cess to shared resources, proposing solutions to alleviate these effects via smarter
co-scheduling decisions or modifying the assigned running time to tasks. However,
it is still not well understood how to design schedulers that fairly share the multi-

6.2. Background 93

core processor, regardless of how one might want to define fairness. In this work we
attempt to close this gap.

In this Chapter, we introduce the concept of effective CPU capacity share, which
represents the amount of actual CPU capacity used by a task when executing. We
note that there is more than one way to define effective CPU capacity share, and so we
explored two definitions that seemed most intuitive to us. Overall, the contributions
of our work can be summarized as follows:

• We quantitatively provide evidence that setting CPU time per task proportional
to its priority is not enough to provide fairness in current and future multi-core
processors.

• We propose two definitions of effective CPU capacity share applicable to multi-
core processors. One definition is based on the notion of task forward progress
and another is based on the task utilization of hardware resources which have
been covered in Chapter 3.

• Taking CFS as reference time-based CPU scheduler, we make it CPU capacity-
aware. We implement our CFS-capacity aware taking into account both defin-
itions of CPU capacity. The followed methodology is not specific for the CFS
scheduler, and can be applied to other state-of-the-art time-based schedulers.

The rest of this Chapter is organized as follows. Section 6.2 provides background
on CFS, while Section 6.3 introduces our proposed ideal multi-threaded processor
and how to map CPU capacity to this baseline. Section 6.4 introduces our novel CPU
capacity-aware scheduling algorithms. Section 6.5 evaluates the advantages of these
algorithms, and Section 6.6 presents the related work. Finally, Section 6.7 draws the
main conclusions of this work.

6.2 Background

In this section, we describe the main aspects of Completely Fair Scheduler (CFS),
implemented in recent Linux distributions. We use the CFS as a representative of
time-based CPU scheduler.

6.2.1 Completely Fair Scheduler

Linux CFS was introduced in kernel version 2.6.23 to substitute the old O(1) sched-
uler. The main idea of CFS is to achieve the fairness of an ideal, precise multi-

94 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

threaded CPU or ipmCPU on real hardware. In such a system, all tasks execute
simultaneously in parallel receiving an amount of CPU capacity in exact proportion
to their weights [31, 45]. If the set of runnable tasks, φ, and their weights remain
unchanged throughout the interval [t1, t2], then each task i will receive wi∑

j∈φ wj
of

the total CPU capacity. If all tasks have the same weight, they should receive exactly
1/n of the CPU capacity, where n is the number of tasks.

In reality, such a model is impractical, because it is not possible to literally run
multiple tasks in parallel on single-threaded processor. Since the number of tasks that
can run simultaneously is limited and tasks cannot be scheduled with infinitesimally
small quanta, all practical schedulers try to emulate the ipmCPU approximately. To
evaluate the fairness of such an approximation, lag is the commonly used metric [5],
which measures in any given time the difference between the CPU capacity assigned
in an ipmCPU and the CPU capacity assigned with the current scheduling algorithm.
On an ipmCPU, unfairness will always be zero, but in a real scene, unfairness will
be different to zero. When a task is scheduled on a CPU, it gets 100% of the CPU
capacity and decreases its unfairness. In the meantime, all other tasks get 0% of the
CPU capacity and increase their unfairness. To model this ipmCPU, CFS tracks how
fairly each task has been treated relative to the others. Tasks are ordered based on the
unfairness and CFS schedules the task with the largest unfairness onto the CPU.

6.2.2 Functioning and Implementation Aspects of CFS

In Linux, a task can be either runnable or blocked waiting for an event to complete,
such as an I/O operation or the results of a system call. If a task is runnable, that
means that it is competing for the CPU time with the other runnable tasks. Each task
belongs to an scheduling class: Real Time (RT), fair and idle class. The RT class has
always priority over other classes and it makes use of an O(1) priority array to manage
tasks. The idle class is very special as it is concerned with a task being started when
there are no more ready tasks in the system. The fair class implements the CFS and
the runnable tasks are stored in the runqueue. Under CFS, it uses a red-black tree2 for
task management, keeping a virtual time line of tasks to schedule: The task with the
longest wait time in the red black tree is selected next. With this structure, scheduling
decisions are O(1), but task reinsertions are O(log(N)), where N is the number of
runnable tasks.

2A red-black tree is a data structure representing as a type of self-balancing binary search tree and its
operations occur in O(log N) time, where N is the number of nodes in the tree.

6.2. Background 95

To approximate an ipmCPU, CFS divides CPU time into epochs and tries to be
fair among runnable tasks. At the beginning of the epoch, every task gets a specified
time quantum or timeslice proportional to its weight. The epoch will finish when all
tasks have exhausted their quantum. If the set of runnable tasks and their weights
remain unchanged, CFS will be perfectly fair (in terms of time) at the end of each
epoch.

To specify the task’s priority, CFS makes use of the user-defined nice value,
similarly to older Linux schedulers. The nice value is converted into a task weight
that determines the proportion of CPU capacity each task receives. The nice value is
an integer in the range [−20, 19]. A higher nice value corresponds to a smaller priority.
Nice values are multiplicative and are translated into weights using an approximation
of the following formula: w = 1024 · 2−nice/3.1067. Increasing the nice value by 1
implies an increase of 25% in the weight of the task.

As we commented, the CFS assigns CPU time in an epoch proportionally to the
weight of each task. Consequently, the CPU time assigned to a task depends upon the
load of the system. Equation 6.1 shows the computation of the timeslice assigned to
task A in a set of runnable tasks, φ.

TSA = wA∑
j∈φwj

· E (6.1)

where wj is the weight of a task j and E is the epoch length. The denominator is
denoted load of the system. With this approach, CFS ensures that all runnable tasks
receive an execution slot in a given epoch. The epoch length is constant (defined by
sched.latency), but will be increased if the number of runnable tasks exceeds a
threshold.

To track the unfairness evolution of a runnable task, CFS assigns a virtual runtime
per task, denoted vruntime. This value should be equal for all tasks to ensure fairness.
The virtual runtime is a normalized value of the real runtime of a given task with its
weight taken into account. Equation 6.2 shows the computation of the virtual runtime
of a task A in the instant t.

vruntimeA(t) = w0
wA
· phys_runtimeA(t) (6.2)

where phys_runtimeA(t) is the cumulative physical runtime of a task A at time t,
w0 is the weight of nice value 0, and wA is the weight of task A.

CFS sorts tasks in the red-black tree according to the individual virtual runtime

96 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

value, and selects the task with the smallest value (the leftmost task) to reduce the
differences in the virtual runtimes between tasks. As the system progresses forward,
executed tasks are put into the tree more and more to the right, slowly but surely
giving a chance for every task to become the leftmost task, and thus get on the CPU
within a deterministic amount of time.

If the set of runnable tasks and their weights remain constant, the value of the
virtual runtimes at the end of the epoch will be exactly the same. For example, if
there are three runnable tasks A, B, and C, with nice values -2, 0, and 1, respectively,
then the corresponding weights are 1586, 1024, and 820. If the epoch length is 20ms,
the timeslices will be 9.2ms, 6.0ms, and 4.8ms, respectively. In contrast, the virtual
runtime of all tasks will be increased by 6.0ms at the end of the epoch.

To summarize, the virtual runtime only affects the execution order of runnable
tasks, while the niceness and the load of the system determine the length of the
timeslice of each task in an epoch. If a new task is added to the runqueue, then
CFS starts immediately the new one in the current epoch. When a task is no longer
runnable, it releases the CPU and is not considered for scheduling until it is runnable
again.

6.3 Effective CPU Capacity Share in CMP Processors

So far, we focused our attention on single-threaded processors. Next, we describe
the challenges that time-based schedulers encounter in multi-core systems. Then we
proceed with the advantages of CPU capacity-aware schedulers.

Figure 6.2 shows a synthetic example with six runnable tasks in the same runqueue
in a 4-core processor. Tasks TA, TB , TC , and TF have the same priority, while tasks
TD and TE have more priority than the others. CFS assigns TA, TB , TC , and TF the
same timeslice (1 OS tick in this example), while TD and TE have longer timeslices
(2 and 3 OS ticks, respectively). In this example, the first task to run in the epoch is
TA, and tasks are sorted according to their virtual runtime (see Section 6.2 for details).

Once a task starts running onto a core, it dynamically shares the hardware resource
of the multi-core processor with the other tasks running on the other cores, which are
selected by the respective scheduler. Hence, each task receives a percentage of the
CPU capacity that varies from 0 to 100%. During the timeslice of a task, the co-
running tasks in the other cores might change. In Figure 6.2 we show the evolution
of the CPU capacity received by each task. Different tasks in the same runqueue can
receive significantly different CPU capacity, and this circumstance is out of the control

6.4. CPU Capacity-Aware CFS 97

Task
preemption

Time

OS tick

100

75

50

25

0

C
P

U
 C

ap
ac

it
y

(%
)

Epoch
begins

Epoch
ends

TA TB TC TD TD TE TE TE TF

Figure 6.2: Synthetic example with 6 runnable tasks that are scheduled during an epoch and
receive different CPU capacity

of the scheduler, directly impacting on the provided fairness. For instance, we observe
that once TA starts its execution temporarily receives 100% of the CPU capacity and
after some time, TA only enjoys 75% of the CPU capacity. This could be because
the resource needs of the TA’s co-runners may have changed. We also observe that
despite TA and TB have the same priority, the former receives higher CPU capacity
than the latter on average. Hence, even if the scheduler makes CPU time proportional
to task priority, not being aware of the CPU capacity received per task defies its effort
in providing fairness.

Our ultimate goal is to design CPU schedulers that provide a fair share of the CPU
capacity to each task. This means that all tasks with the same priority must have the
same forward progress (TA, TB , TC , and TF in Figure 6.2). We identify two factors
that affect the behavior of CPU capacity-aware schedulers: (1) The definition of CPU
capacity itself, and (2) the meaning of a fair share of the effective CPU capacity. Both
factors have been covered in Chapter 3. In short, the CPU capacity can be defined as
time, resources utilization and CPU progress, while fair share of the effective capacity
can be defined as full-share or even-share approaches.

6.4 CPU Capacity-Aware CFS

In this section, we focus on CFS since it is a clear representative of time-based sched-
ulers and it is deployed in real systems. We introduce two variants to CFS to make
it CPU capacity-aware, which we call Balanced CPU Capacity scheduler (BCCS)
and Equal CPU Capacity scheduler (ECCS). Our algorithms are compatible with any
definition of CPU capacity and fair share of CPU capacity.

Under CFS, each hardware thread (i.e. core in a multi-core processor, and hard-

98 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

ware context in an SMT processor) is perceived as a VCPU. There is a local scheduler
per vCPU that works fairly independent from the schedulers in the other vCPUs3.
Without loss of generality, we follow such an approach, but the same principles apply
to systems where CPUs are gang-scheduled [44]. Section 6.5.6 discusses how this
approach can be integrated with other schedulers.

6.4.1 Balanced CPU Capacity Scheduler (BCCS)

Similarly to the original CFS, with BCCS each runnable task runs only once in a
given epoch and tasks are scheduled based on their virtual runtime. At the beginning
of an epoch, BCCS modulates the timeslice of each task based on the CPU capacity
received in the past, making it proportional to each task priority.

BCCS involves two main steps to determine the timeslice of each task: First,
BCCS checks the CPU capacity that the task received in the past N epochs (N is a
parameter that can be defined by the user), and compares this value with the one that
it would have obtained in an ipmCPU.

In a second step, BCCS modulates the timeslice of each task to match the CPU
capacity in an ipmCPU. BCCS derives whether a task has received more or less CPU
capacity it should, and compensates this situation by adapting the timeslice of each
task accordingly.

When a taskX starts executing, BCCS uses the timeslice calculated with standard
CFS for X . At each epoch boundary, BCCS collects the CPU capacity received in
the processor and estimates the CPU capacity of X would have received under the
ipmCPU. Based on those pieces of information BCCS modifies X’s timeslice for the
next epoch. At the end of each timeslice, BCCS computes the ratio between these
CPU capacities: CCratioX = CCact

CCipmCPU
. If CCratioX < 1, X runs slower than in an

ipmCPU and vice-versa.

Depending on the chosen definition, the CPU capacity received by each task will
be:

CCratioX =

1, for time-based schedulers

RUactX

RU ipmCPUX

, for resource-based schedulers
AEIactX

AEIipmCPUX

, for progress-based schedulers

where RU ipmCPUX and RUactX correspond to the resource usage on an ipmCPU and

3A load balancing procedure might occur if the total load per VCPU is unbalanced, but this is out of
the scope of this Thesis.

6.4. CPU Capacity-Aware CFS 99

the current machine, respectively.

Similarly AEIipmCPUX and AEIactX correspond to the accumulate number of ex-
ecuted instructions on an ipmCPU and the current machine, respectively. AEIactX can
be obtained by reading performance monitoring counters. To compute AEIipmCPUX ,
BCCS computes the IPC that task X would have had with a fair share of the CPU
capacity as IPCipmCPUX = IactX

CipmCPUX

. Hence, the number of instructions that task X
would have executed in the ipmCPU is given by the following formula:

IipmCPUX = IPCipmCPUX · CactX (6.3)

Hence, BCCS can compute the accumulated executed instructions in an ipmCPU by
simply adding the number of instructions obtained with Equation 6.3.

BCCS changes the timeslice to compensate this difference. In particular for task
i, ∆TSi = TSacti · (1−CCratioi), where TSacti is the current timeslice in the current
epoch. BCCS computes the timeslice for the next epoch of a task i as:

TSnexti = TSacti + ∆TSi (6.4)

Each task requests a given timeslice to reach a fair CPU capacity. Consequently,
the requested length of the next epoch is Enext =

∑
i∈φ TS

next
i , and in general,

E 6= Enext.

In order to maintain responsiveness, we decide not to change the default epoch
size given by CFS, which in turn may have other side effects in the CFS behavior.
Hence, we normalize the timeslice of each task so that Enext equals E:

TSnextnorm,i = TSnexti · E

Enext
(6.5)

BCCS balances the CPU capacity of all the tasks. When some tasks go faster than
in the ipmCPU, while others go slower, BCCS gives more CPU capacity to the slower
ones. When all tasks go slower than in the ipmCPU, BCCS balances the slowdown
each task suffers, meaning that CCX converges to a value smaller than 1. Analog-
ously, if all tasks go faster than in the ipmCPU, BCCS balances the speedup each task
experiences, obtaining a CCratio greater than 1 for all tasks. Note that in an ipmCPU
or when using the time-based definition of CCratio, all tasks are receiving a fair share
of the CPU capacity and, consequently, BCCS simplifies to CFS (∆TSi = 0 in these
cases).

100 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

6.4.2 Equal CPU Capacity Scheduler (ECCS)

ECCS follows exactly the same steps as BCCS, but follows a different approach to
measure the CPU capacity received by each task and the modulation of the timeslice.
Again, each runnable task runs only once in a given epoch and tasks are scheduled
based on their virtual runtime.

Similarly to BCCS, we first measure the CPU capacity received by each task in the
last epoch. Instead of accumulating the values read in the past epochs in the ipmCPU
and the current machine, ECCS only checks the CPU capacity received in the last
epoch by task X:

CCratioX =

1, for time-based schedulers

RUactX

RU ipmCPUX

, for resource-based schedulers

CipmCPUX /CactX , for progress-based schedulers

Then, the CPU capacity received by the task equals CCratioX · TSactX . In the next
epoch, ECCS seeks to assign a CPU capacity proportional to the priority of each
runnable task. ECCS assumes that the interaction among tasks will remain constant.
This means that all tasks have to satisfy the following equality:

CCratioi

wi
· TSnexti =

CCratioj

wj
· TSnextj (6.6)

for all i, j ∈ φ, where φ is the set of runnable tasks and wi the weight of task i.
Equation 6.6 implies that the ratio of CPU capacity assigned to two tasks will be the
same as the ratio of their weights: CCi·TSnexti

CCj ·TSnextj
= wi

wj
.

Since we want to keep constant the epoch length, we have to impose this restric-
tion:

∑
i∈φ

TSnexti = E (6.7)

Combining this restriction (Equation 6.7) with Equation 6.6, we obtain:

E =
∑
j∈φ

wj
CCj

· CCi
wi
· TSnexti ⇒

TSnexti = wi
CCi

· E∑
j∈φ

wj
CCj

(6.8)

6.5. Evaluation Results 101

ECCS makes use of Equation 6.8 to decide the timeslice of each runnable task.
When a task executes for the first time, ECCS assumes a CPU capacity of 1. Note that
ECCS using a time-based definition of CPU capacity matches CFS. In fact, ECCS
assigns the same timeslices as CFS if tasks are running in an ipmCPU, since in this
case all execution progresses are equal to 1.

6.4.3 Integrating BCCS and ECCS in CFS

BCCS and ECCS can be easily integrated into CFS since both maintain the same red
black tree to sort runnable tasks, the epoch length will be the same as in CFS, and all
runnable tasks will execute once in an epoch (check Section 6.4.1 and 6.4.2 for more
details). The main changes are focused on the computation of the timeslice and the
update of the virtual runtime per task.

BCCS and ECCS also consider the CPU capacity received by each task to mod-
ulate the timeslices. Thus, they make use of a different equation to compute the
timeslice (Equation 6.5 and 6.8 for BCCS and ECCS, respectively) CFS decides the
order in which runnable tasks are executed based on their virtual runtime. To avoid
undesired side effects (such as executing a particular task twice in an epoch), we de-
couple the virtual runtime from the physical runtime:

vruntimeA(t) = TSCFSA

TSactA

· w0
wA
· phys_runtimeA(t)

In the case that the actual timeslice (TSactA) matches the timeslice with CFS
(TSCFSA), this equation is the same as in the case of CFS (Equation 6.2). In the case
that these values differ, the virtual runtime will be updated with the physical runtime
that it would have enjoyed with CFS, giving the illusion to the scheduling algorithm
that the timeslice duration is the same as with CFS.

6.5 Evaluation Results

In this section, we perform several studies to evaluate the scheduling algorithms:
BCCS, ECCS, and CFS. First, we present the experimental setup used in the case
study. Second, we explore the trade-offs in the definitions of CPU capacity and of fair
share of CPU capacity for scheduling algorithms. Next, we compare the scheduling
algorithms based on time, and ones based on CPU capacity and study the scalabil-
ity of our CPU capacity-based scheduling algorithms. Finally, we analyse our CPU

102 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

capacity-based scheduling algorithms in dynamic behaviour and different priorities.

6.5.1 Experimental Setup

We implement the functionalities of CFS, BCCS, and ECCS in a modified version of
the AKULA toolset [69]. AKULA is a scheduler simulator that allows developers to
implement and debug scheduling algorithms easily and quickly. In order to generate
the data required by AKULA (IPC, execution progress and resource utilization of
tasks), we make use of the MPsim simulator studied in Chapter 2 in two processor
setups shown in Table 6.1: a 4-core processor with a 4MB L2 cache, and a 16-core
processor with a 16MB L2 cache.

Workloads: We feed the MPsim simulator with traces collected from the SPEC
CPU 2006 benchmarks (see Chapter 2 for more details). Running all N-task combina-
tions is infeasible as the number of combinations is too high. We select 15 benchmarks
to generate 4-task and 16-task workloads and a total 1635 simulations in MPsim are
carried out.

We feed our modified AKULA toolset with data obtained by MPsim simulator.
In this version of AKULA toolset, associated to each core there is a runqueue, which
may have different number of tasks. For instance, in a 4-core processor, we refer to
a runqueue setup as X1.X2.X2.X4., where Xi is the number of tasks in runqueue
i. For each runqueue setup, we build a total of 54 workloads in 4-core configuration
and a total of 24 workloads in the 16-core configuration. Simulations end when all
tasks in the runqueue under study have executed at least one time. Tasks are selected
randomly and assigned to each one of the available runqueues so that the number
of tasks per runqueue remains balanced. We configure the scheduling algorithms
with the following parameters: the initial length of an epoch is 6ms, the minimum
granularity is 1ms and hence, the maximum number of tasks per epoch is 6 (with this
epoch size). The frequency of an OS tick is 1MHz.

Metrics: In all the experiments, we evaluate the scheduling algorithms based on
their throughput (IPC meani), which we measure as the average IPC of all tasks
in the runqueue i across all epochs; the execution progress min-max ratio (min −
max ratioEPi); and the execution progress standard deviation (std deviationEPi).
The last two metrics are crucial to report the fairness results of these algorithms. The
execution progress min-max ratio reports the relative lag between runnable tasks in a
runqueue, while std deviationEPi measures the standard deviation in the execution

6.5. Evaluation Results 103

Table 6.1: MPsim simulator configuration

Number of cores 4 & 16
Fetch bandwidth 8 inst. per cycles
Issue queues sizes 48 int, 48 fp, 48 ld/st
Execution units 4 int, 2 fp, 2 ld/st
Back end 132 int/fp physical registers, 160-entry ROB
Branch predictor Perceptron 256 global-entry, 40 global-H, 4K

local-entry, 14 local-H, 100-entry RAS
Target frequency 2.0GHz
Icache (per core) 64KB, 4 ways, 1 bank, 128B line, 1-cycle access
Dcache (per core) 64KB, 8 ways, 1 bank, 128B line, 1-cycle access
L2 cache (Shared) 4MB, and 16MB, 16 ways, 8 banks,

128B line, 15-cycle access
MSHR 32 entries
Memory latency 300-cycle access

progress of runnable tasks in a runqueue i. The different metrics are defined as follows

IPC meani =
∑
j∈φAEI

act
j∑

j∈φC
act
j

min−max ratioEPi = minj∈φEPj
maxj∈φEPj

std deviationEPi =

√√√√ 1
N − 1

N∑
j=1

(EPj − EP)2

where φ is the set of runnable tasks in a runqueue i, EPj the execution progress of

tasks j and is calculated as
AEIactj

AEIipmCPUj

, N is the number of runnable tasks in the

runqueue, and EP is the average execution progress in the runqueue.

To measure resource utilization per task, we choose a possible implementation of
Equation 3.1: RUactX = RULLCX = LLCoccup,X , where LLCoccup,X is the percentage
of LLC cache blocks owned by task X4. This formula considers as an appropriate
metric of resource utilization, how many shared resources are being used (LLC cache
is the most important one in our configuration) and for how long. In the case of the
ipmCPU, RU ipmCPUX = LLCipmCPUoccup,X , where LLCipmCPUoccup,X might be the entire LLC
or simply 1/N-th.

4We are assuming single-threaded tasks, in Section 6.5.6 we show that multi-threaded tasks can also
be easily managed with our approach.

104 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

6.5.2 CPU Capacity-based Schedulers Self-Evaluation

As explained in Chapter 3, we introduced two novel definitions of CPU capacity
(based on resource utilization and execution progress) and two possible definitions
of the fair share of the CPU capacity (even-share or full-share of the resources). Con-
sequently, four possible flavours of each algorithm can be evaluated. In this section,
we focus on a single algorithm (ECCS) to explore the different trade-offs in these four
baselines. The same conclusions apply to BCCS, but we omitted the figures for the
sake of clarity. In order to avoid uncontrolled side-effects, we assume for all setups
that the required hardware support to track execution progress or resource utilization
already exists, and that it has a perfect accuracy. In the next section, we will explore
the effect of using non-ideal, but implementable hardware support.

Figure 6.3 shows the IPC mean, min-max ratio and standard deviation of the pro-
gress, and the LLC occupancy of the tasks running in the first runqueue for a 4-core
setup when using progress and resource utilization as CPU capacity (P or R in the
caption); and an even-share or full-share as the fair share of CPU capacity (even
or full in the caption). For example, ECCS_P_even stands for ECCS based on
progress with an even share of the resources.

Let us start comparing the effect of using progress-based CPU capacity versus
resource-based CPU capacity. In terms of IPC mean the results are similar, with
resource-based schedulers obtaining slightly better results (8.4% average improve-
ments). However, this improvement in IPC mean comes at a significant cost in fair-
ness. In terms of progress min-max ratio, progress-based schedulers significantly im-
prove over resource-based ones, nearly reaching the optimal value of 1. In contrast,
resource-based schedulers have values ranging from 0.25 to 0.54 (56.3% average re-
duction in fairness). The same trend is observed in terms of standard deviation of
execution progress, which is reduced from 0.39 for resource-based schedulers to less
than 0.01 for progress-based schedulers on average.

Resource-based schedulers increase the timeslices of tasks with low LLC occu-
pancy. In general, these tasks have higher IPC values, increasing average IPC. In
contrast, LLC cache hungry tasks are penalized for their usage of the LLC, inde-
pendently of whether they are using this space or thrashing other tasks in the sys-
tem. This means that resource-based schedulers increase the progress of CPU-bound
tasks, but reduce the progress of cache-sensitive and cache-thrashing tasks. This is
the reason why resource-based schedulers obtain better IPC mean than progress-based
schedulers. Next, we observe that resource utilization per task is more balanced for

6.5. Evaluation Results 105
1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

IPC mean

0
.2

0
.4

0
.6

0
.8

1
.0

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

Progress min-max ratio

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

Progress std deviation

1
.0

0
1
.0

2
1
.0

4
1
.0

6
1
.0

8
1
.1

0
1
.1

2

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

LLC Occupancy

ECCS_P_even ECCS_P_full ECCS_R_even ECCS_R_full

Figure 6.3: IPC mean, fairness, and LLC occupancy (measured in MB) results with a 4-core
multi-core processor for the tasks running in the first runqueue. Configuration X.Y.Z.W
indicates the number of tasks running on each runqueue (with a total of 13, 16 and 17 tasks
in the system). Two definitions of CPU capacity and fair share of CPU capacity under ECCS
algorithm are used

resource-based schedulers (which is the objective of the algorithm), but LLC occu-
pancy per task does not significantly increase (less than 1% variations). LLC occu-
pancy mainly depends on the co-scheduled tasks on the multi-core processor for the
evaluated timeslice lengths. Note that more sophisticated formulas to compute RUactX

can be developed, and that they might consider the time and the amount of resources
enjoyed by the task, but also the utility of these resources for the task. Designing more
appropriate formulas for Equation 3.1 is part of our future work.

When we consider using an even-share or a full-share of the CPU capacity, we
appreciate no noticeable difference among them under all the evaluated metrics. Note
that in general, tasks running on a multi-core processor will go faster than running
with only an even share of the hardware resources and, consequently, the execution
progress will be larger than one. In contrast, tasks usually run slower than with the
full share of the hardware resources. ECCS covers both situations with similar results:
ECCS_even obtains slightly better results in IPC mean, but slightly worse in fairness
results.

To conclude, progress-based schedulers clearly outperform resource-based sched-
ulers in terms of fairness without significantly affecting IPC mean. The best fairness
results are obtained with the full-share approach to measure the fair share of CPU
capacity (although very close to results with the even-share approach). For these reas-
ons and since there are several hardware proposals in the literature that provide the

106 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

Epoch

E
x
e

cu
tio

n
 P

ro
g

re
ss

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35

ECCS+ITCA

0.6

0.7

0.8

0.9

1.0
BCCS+ITCA

0.6

0.7

0.8

0.9

1.0
CFS

astar_1 astar_2 astar_3 astar_4

Figure 6.4: Progress evolution of each astar copy running on the same runqueue in a 4-
core multi-core processor. The same experiment is performed using CFS, BCCS+ITCA, and
ECCS+ITCA algorithms

functionality required by full-share approach studied in Chapters 4 and 5 [33, 13, 35],
we make use of our algorithms with the progress and the full-share approach in the
remaining sections of this Chapter.

6.5.3 Time-based vs. CPU Capacity-based Schedulers

Our next experiment seeks to prove the ability of our proposed CPU capacity-based
scheduling algorithms to balance execution progress among runnable tasks. Figure 6.4
shows the execution progress of four copies of the benchmark astar running in the
same runqueue. In this experiment, we have four cores, with four tasks running on
each core (the tasks in the other runqueues are randomly selected, and are not shown
for the sake of clarity), all with the same priority and with implementable hardware
support (ITCA [33]). As illustrated in the introduction (see Figure 6.1), CFS is not
aware of the CPU capacity each astar copy receives, which in this case ranges from
0.58 to 0.98 depending upon the co-runners in the chip. As a result, each copy of
astar ends executing in very different times (up to 70% difference).

In contrast, BCCS+ITCA and ECCS+ITCA take into account the execution pro-
gress of each copy of astar to modulate the timeslice of each task. As a result, both

6.5. Evaluation Results 107

1
.3

0
1
.3

5
1
.4

0
1
.4

5
1
.5

0

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

IPC mean

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

 Progress min-max ratio

0
.0

0
0
.0

2
0
.0

4
0

.0
6

0
.0

8
0

.1
0

4.
3.

3.
3

4.
4.

4.
4

5.
4.

4.
4

Progress std deviation

CFS BCCS BCCS+ITCA ECCS ECCS+ITCA

Figure 6.5: IPC mean and fairness results with a 4-core multi-core processor for the tasks
running in the first runqueue. Configuration X.Y.Z.W indicates the number of tasks running
on each runqueue (with a total of 13, 16 and 17 tasks in the system)

approaches manage to make all copies of astar finish in the same epoch (number
26). Since BCCS+ITCA takes into account the CPU capacity received in all previous
epochs, it tends to overreact to really unbalanced situations (as at the end of the first
epoch), and the execution progress of astar_1 oscillates around the final value of 0.85.
In contrast, ECCS+ITCA converges faster to this value as it only takes into account
the execution progress in the last epoch.

Next, we evaluate the IPC mean and fairness results of these three schedulers with
a whole set of experiments. We evaluate a 4-core setup, with a balanced number of
tasks per runqueue (three, four or five). Figure 6.5 summarizes the results for the
tasks running in the first runqueue. We observe that all schedulers obtain the same
IPC mean (less than 0.71% average differences). CFS presents much worse fairness
results than BCCS+ITCA and ECCS+ITCA. On average, the min-max ratio for CFS
is 0.83, while BCCS+ITCA and ECCS+ITCA reach 0.975 and 0.972, respectively
(up to 18% increase in fairness). The same happens with the standard deviation of
the execution progress, which is reduced from 0.077 with CFS, to only 0.011 with
BCCS+ITCA and 0.012 with ECCS+ITCA.

We also evaluate our algorithms with an ideal hardware support, neglecting the ef-

108 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors
1
.1

1
.2

1
.3

1
.4

1
.5

64 65

IPC mean

0
.7

0
0
.7

5
0

.8
0

0
.8

5
0
.9

0
0
.9

5
1
.0

0

64 65

 Progress min-max ratio

0
.0

0
0

.0
5

0
.1

0
0
.1

5
64 65

Progress std deviation

CFS BCCS BCCS+ITCA ECCS ECCS+ITCA

Figure 6.6: IPC mean and fairness results with a 16-core multi-core processor for the tasks
running in the first runqueue. In the first runqueue a total of four or five tasks are executing,
while four tasks are in the remaining 15 runqueues (with a total of 64 and 65 tasks in the
system)

fects introduced by ITCA inaccuracies (BCCS and ECCS in Figure 6.5). In this case,
the IPC mean results are basically the same as with the version based on ITCA, while
the fairness results slightly improve: 0.99 for the min-max ratio and less than 0.01
for the standard deviation of execution progress. These results indicate that (1) our
algorithms are fair in terms of CPU capacity and (2) current hardware support (ITCA)
provides accurate CPU capacity estimations, since near optimal fairness results are
obtained when ITCA is deployed. Finally, BCCS obtains slightly better fairness res-
ults than ECCS in the long term in stable scenarios, but converges more slowly to the
optimal solution.

6.5.4 Scalability Analysis to Large Core Counts

In this section, we perform a similar experiment with a multi-core processor with a
larger number of cores. Figure 6.6 shows the IPC mean and fairness results obtained
in a configuration with 16 cores for the tasks running in the first runqueue. In this
experiment, four or five tasks are running in the first runqueue, while four tasks are
running in the remaining 15 runqueues (64 and 65 tasks in total).

6.5. Evaluation Results 109

The results presented in Figure 6.6 show a similar trend to the ones presented in
the previous section (check Figure 6.5). We observe that all the evaluated algorithms
achieve a very similar IPC mean (CFS obtains 2.8% higher IPC mean), and that the
ideal hardware support for CPU capacity accounting does not improve this metric.
In contrast, BCCS+ITCA and ECCS+ITCA attain much better results than CFS in
progres min-max ratio. On average, the min-max ratio for CFS is 0.76, while our
scheduling proposals obtain 0.95 (an average 25% improvement).

In terms of the execution progress standard deviation, our scheduling proposals
obtain similar results to the ones presented in the previous section. However, the
difference between CFS, and BCCS+ITCA and ECCS+ITCA is larger in the 16-core
system (an average reduction from 0.11 to 0.026). Since the number of running tasks
in the system increases, a more heterogeneous resource usage occurs, harming the
fairness results of CFS.

In contrast, the schedulers BCCS and ECCS obtain the same IPC mean results
than BCCS+ITCA and ECCS+ITCA, while they reach better results in both fairness
metrics, nearly reaching the ideal results. The accuracy of ITCA degrades with the
number of cores in the system, since network-on-chip and memory bandwidth con-
tention is partially taken into account in ITCA, and these resources become more
contended in larger systems. Thus, we conclude that our scheduling proposals can ad-
apt to systems with a large number of cores and distribute a fair share of CPU capacity
to all runnable tasks without affecting the performance in the system.

6.5.5 Case Studies

6.5.5.1 Dynamic Behaviour

In the previous experiments, the execution progress of each task depends only on
the co-runners on-chip. To model a more dynamic scenario, we perform an exper-
iment in which the execution progress of a task degrades by 10% after two execu-
tions. This experiment is intended to illustrate the adaptation capacity of the different
algorithms. We finalize the simulation when all tasks in the first runqueue have ex-
ecuted four times. In this section we focus on ECCS+ITCA only because the results
with BCCS+ITCA present similar trends.

Figure 6.7 shows the evolution of the execution progress of four copies of astar
running in the same runqueue in a 4-core processor setup. The execution progress
of a task X is calculated as IactX

IipmCPUX

in the case study. In the case of CFS, astar_1
progresses much slower than the other tasks, lagging behind them. When astar_1

110 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

Epoch

E
x
e

cu
tio

n
 P

ro
g

re
ss

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160

ECCS+ITCA

0.5

0.6

0.7

0.8

0.9

1.0
CFS

astar_1 astar_2 astar_3 astar_4

Figure 6.7: Progress evolution of each astar copy running on the same runqueue in a 4-
core multi-core processor. After two executions, the execution progress of the astar copy
degrades by 10%. The same experiment is performed using CFS and ECCS+ITCA algorithms

finalizes executing for the fourth time (epoch 156), astar_2 and astar_4 already ex-
ecuted 6 times. In contrast, ECCS+ITCA manages to balance the execution progress
of all tasks even when this progress degrades after 2 executions (all tasks have ex-
ecuted four times after 108 epochs). Furthermore, ECCS+ITCA algorithm quickly
converges to a balanced progress for all tasks.

6.5.5.2 Different Priorities

Next, we perform a case study that illustrates the effectiveness of ECCS+ITCA in
a scenario with tasks with different priorities. As explained in Section 6.4, this al-
gorithm considers the user-defined priorities when computing the timeslice of each
runnable task.

Figure 6.8 shows the number of executed instructions of four copies of astar
with different priorities. The first two copies (astar_1 and astar_2) have a nice
value of 2, while the last two copies (astar_3 and astar_4) have a nice value of
0. In this scenario, the ratio between the weights of the first two copies and the last two
is 1.56. In an ideal, precise multi-threaded CPU, the second pair should execute 56%
more instructions than the first one. However, we observe that under CFS, astar_4

6.5. Evaluation Results 111

Epoch

E
x
e

c
u

te
d

 I
n

st
ru

ct
io

n
s

2e+06

3e+06

4e+06

5e+06

0 20 40 60 80 100 120 140 160 180 200

ECCS+ITCA

2e+06

3e+06

4e+06

5e+06
CFS

astar_1 astar_2 astar_3 astar_4

Figure 6.8: Executed instructions evolution of each astar copy running on the same run-
queue in a 4-core multi-core processor with different priorities. The same experiment is per-
formed using CFS and ECCS+ITCA algorithms

is executing 2.7 times more instructions than astar_1. As shown in Figure 6.1, each
copy of astar has a significantly different execution progress in this workload, but
CFS is unaware of this situation.

In contrast, ECCS+ITCA manages to balance the number of executed instructions
of each copy with the same nice value, while the ratio of executed instructions of
copies with different weights is 1.58, very close to the goal of 1.56 determined by the
weights of the tasks. Note, that ECCS+ITCA reaches the right timeslice values after
just 2 epochs of exploration.

6.5.6 Discussion

Our focus in this Chapter has been on multi-core processors. However, we note that
the same problems detected for time-based schedulers in multi-core processors ap-
ply to other architectures with on-chip shared resources such as SMT processors,
fine-grain multi-threaded processors, or any combination of them and multi-core pro-
cessors. Our scheduling algorithms are orthogonal to the underlying processor archi-
tecture as long as the appropriate CPU accounting mechanism (hardware support) is
in place to measure CPU capacity. Such hardware support has been proposed in the

112 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

literature for SMT [13], multi-core [33], and hybrid CMP+SMT processors [35] (i.e.
each core is an SMT processor) studied in Chapters 4 and 5. In fact the latter is the
design followed by several major chip vendors such as the IBM POWER7 [56] or the
Intel Core i7 [51].

While the current Chapter presented the application of CPU capacity-aware sched-
uler to CFS, the technique is general and can be applied to other schedulers as well,
since most of them use CPU time as the proxy for progress. For instance, Solaris time-
sharing scheduler adjusts the timeslices of tasks based on floating priority values. A
priority value depends on whether the task has used up its previous timeslice or gave
up the CPU before its expiration. To integrate capacity-aware scheduling into Sol-
aris, we could redefine its algorithm for adjusting priorities. For example, the priority
value would depend not only on whether the task has used up its previous timeslice,
but also on how much effective CPU capacity it received while it ran. The same prin-
ciples apply to other schedulers based on multilevel feedback queues [10] that many
commodity OS’s implement and rely on CPU time to measure progress.

Although not shown in the evaluation of this Chapter, parallel tasks are treated
similarly to single-threaded tasks under these schedulers. The only difference is that
the CPU capacity used by a parallel task corresponds to the total CPU capacity used
by each of its threads. The hardware proposals to measure CPU capacity already deal
with multi-threaded tasks identifying the CPU capacity consumed by each threads [33,
35, 13]. Thus, BCCS and ECCS can work with parallel tasks.

6.6 Related Work

Improving scheduling algorithms for current and future multi-core systems has been
extensively studied both at software and hardware level. In this section, we briefly
describe recent work that is relevant to our proposal.

To avoid resource contention, several approaches propose models that predict the
impact of interferences among co-running tasks to system performance. Snavely et
al. [58, 59] present the scheduler Sample, Optimize, Symbios (SOS), which combines a
sample phase to collect information about a reduced set of schedules, and a symbiosis
phase that makes use of this information to predict the best performing schedule. This
proposal has two drawbacks: in the sampling phase, the workload is not scheduled
optimally and the sampling phase increases both number of threads and of cores. Ey-
erman and Eeckhout [14] propose a probabilistic job symbiosis model that enhances
the SOS scheduler. Based on the cycle accounting architecture [13], the model es-

6.6. Related Work 113

timates the single-threaded progress for each job in a multiprogrammed workload,
improving the accuracy of the prediction mechanism. Finally, Settle et al. [53] pre-
dict cache contention in an SMT processor based on off-line profiles of applications’
cache activity, and select schedules with tasks that are predicted to have less cache
conflicts. All these proposals seek to find a good schedule, but once the schedule
is decided, they rely on time-based metrics to decide timeslices and no tracking of
forward progress is performed, resulting in less fair systems.

Fedorova et al. [16] propose a software solution which is based on the concept
of compensation. Whenever the OS detects that a task does not make the progress
it is supposed to make, the OS increases the time quantum of the task, giving more
temporal resources to the task and, thus, allowing the task to reach its expected per-
formance. While Fedorova’s solution has similar underlying principles, its key short-
comings are as follows. It implies only a single definition of CPU capacity, one based
on equal resource distribution. Our current solution, on the other hand, can work
with different definitions of CPU capacity. Further, Fedorova’s solution relies on an
analytical processor model, which was tractable for the simple Niagara processor that
Fedorova’s work targeted, but would be unsuitable for more complex super-scalar
processors addressed in this work.

Other approaches [11, 29, 68, 26] propose to classify tasks in term of their cache
miss rates. These approaches determine whether there is contention by examining
tasks’ miss rates and scheduling decisions that lead to high miss rates are avoided.
However, relying on miss rates is imprecise, because they are not the most appropriate
predictors of contention, specially in SMT processors.

Ebrahimi et al [12] propose a hardware mechanism (Fairness via Source Throt-
tling (FST)) to enable fairness in the entire memory system. FST estimates the un-
fairness per task in each interval and dynamically adjusts the memory request rate per
task, based on a user-defined unfairness threshold. FST can be used in conjunction
with the scheduler to provide different fairness metrics such as minimum slowdown
per task.

Solaris recently extended its load-balancing mechanism so that a task’s notion
of utilization (or required resources) is proportional to its scheduling priority [47].
This allows the scheduler to load-balance lower-priority tasks away from where high-
priority tasks are running, automatically reducing contention for resources. Although
Solaris has some notion of the resource usage, it is not aware of the execution progress
of tasks, and does not differentiate between tasks with the same priority. Finally, this
optimization requires that there are some spare logical CPUs so that high priority tasks

114 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

receive more resources.
More recently, Van Craeynest et al. [65] present fairness-aware scheduling tech-

niques for single-ISA heterogeneous multi-core processors with big and small cores.
The proposed technique determines for how long each task has to run in each core
type, so that all of them suffer the same slowdown with respect to execution in isola-
tion on the big core. Since the performance of each task reacts differently to having
more or less resources, the scheduled time of each task on the two core types will be
different to equalize its slowdown.

Although we share the same objective of increasing system fairness, there are fun-
damental differences with our approach. First, we focus on homogeneous architec-
tures with a single core type, where it is infeasible to balance task progress by pinning
them to different cores. Thus, the proposals of Van Craeynest et al. [65] would not
report any benefit over current time-based schedulers in homogeneous architectures.
Second, they seek to be fair among the tasks simultaneously running for a period
of time, while we want to be fair among all the tasks that are time-sharing a given
core. Third, they work with a simplified scheduler that would be difficult to combine
with advanced scheduling techniques such as task priorities or load balancing mech-
anisms. In contrast, we focus on a world-wide commercially used scheduler such as
the Linux CFS, showing how it can be adapted to make it CPU capacity aware. Fi-
nally, Van Craeynest et al. [65] do not consider conflicts in shared hardware resources
for scheduling decisions. Nevertheless, combining both approaches could be very
interesting to be fair among all the tasks running in future heterogeneous systems.

6.7 Summary

In this Chapter, we have provided evidences that time-based CPU schedulers manage
to balance CPU time among running tasks in multi-core processors, but they do not
balance tasks’ forward progress. Schedulers relying on this metric are fundament-
ally flawed and, as a consequence, are not providing fairness in multi-core systems.
We have introduced the concept of effective CPU capacity share in multi-core pro-
cessors and can be mapped in several suitable definitions studied in Chapter 3. We
have developed several CPU scheduling algorithms that consider CPU capacity in
their scheduling decisions. Our results show that using tasks execution progress as a
measure of CPU capacity is better than using the resource utilization incurred by each
task. We appreciate no difference in assuming as fair share of CPU capacity either an
even-share or a full-share approach.

6.7. Summary 115

Taking Linux CFS as a representative of current time-based schedulers, we have
shown that our schedulers provide very similar performance to CFS while achieving
much more fairness for all tasks (an average 25% improvement in a 16-core configur-
ation). Finally, this approach can be integrated with other state-of-the-art schedulers,
not just CFS, since most of them make use of time as the proxy for execution progress.

116 Chapter 6. CPU Capacity-Aware Scheduling in Multi-Core Processors

Chapter 7
Conclusions

In recent years, multi-threaded processors have become widely used in academia and
industry in order to increase the system aggregated performance and per-task per-
formance. Multi-threaded architectures increase hardware resource utilization, while
reducing design costs and average power consumption by exploiting design re-use
and simpler processor cores. Currently, multi-threaded processors are the mainstream
in the processor design and are widely used in servers, desktop computers, lap-tops,
and mobile devices.

On the other hand, in multi-threaded processors, the performance of a task de-
pends upon both the time the task runs on to the processor and the amount of resources
it receives during that time. The latter is in general not under the control of the user or
the operating system. To make things worse, there is a non-linear relation between the
percentage of resources assigned to a task and the slowdown it suffers with respect to
running in isolation with all resources. This situation introduces complexities in the
accounting of CPU capacity.

This Thesis presents several proposals that effectively track the CPU capacity to
account each task running onto MT processors. The contributions are divided into
three groups. First, we formally define the CPU capacity and CPU accounting for MT
processors. Second, at the hardware level, we propose two novel CPU accounting
mechanisms that improve the accuracy in measuring the CPU capacity in MT pro-
cessors. To start with, we study CPU accounting mechanisms for CMP processors.
Next, CPU accounting mechanisms are studied for CMP+SMT processors, where
each core supports SMT. Finally, at the software level, we study how the OS CPU
scheduler should be adapted to take advantage of the proposed CPU accounting hard-
ware mechanisms to increase system fairness. The following sections briefly sum-
marize each one of the contributions.

117

118 Chapter 7. Conclusions

7.1 Thesis Contributions

7.1.1 Concept of CPU Capacity and CPU Accounting for Multi-
Threaded Processors

ST uniprocessor systems use the time a task is scheduled on a VCPU as proxy metric
for measuring CPU capacity of tasks. This metric is not valid in a MT processor due to
shared hardware resources. In other words, the CPU capacity of a task can be different
depending upon co-runner tasks in the processor. For this reason, we have provided
two definitions of CPU capacity for MT processors: (resource utilization and CPU
progress) that cover a wide range of potentially interesting scenarios. We have also
defined the concept of CPU accounting in order measure the CPU capacity of a task
running onto a VCPU as if the task is alone running onto a processor. Moreover, we
have introduced the Principle of Accounting, which specifies that the CPU capacity
of a task is roughly the same regardless of the workload in which it is executed.

We have also studied two definitions of fair share of CPU capacity: full-share and
even-share approach. As we focus on CPU capacity as CPU progress, the full-share
approach (full-share accounting) considers that the progress it should be accounted is
this progress it would take this task to run in isolation. In even-share approach (even-
share accounting), it considers that a task should be accounted for the progress it takes
the task to finish its execution with an even part of the processor resources.

7.1.2 CPU Accounting for Multi-Core Processors

The off-core hardware resources in a CMP processor are shared among cores. As a
result, the utilization of these resources are improved because the resources a task does
not require, can be utilized by other tasks running simultaneously onto the processor.
For this reason, the system throughput is improved as a result.

In this Thesis, we have shown that the contention of off-core hardware resources
affects the accuracy of current CPU accounting mechanisms. Moreover, we have
proposed the first CPU accounting mechanism for CMP processors that is aware of
interference in shared hardware resources, denoted InterTask Conflict-Aware (ITCA)
accounting. ITCA recovers the Principle of Accounting in CMP processors. We have
evaluated ITCA in several CMP configurations with two, four, and eight cores. The
presented results show that the ITCA mechanism significantly improves the accuracy
of current CPU accounting mechanisms. In addition, we have improved the accuracy
of the ITCA mechanism, denoted I2TCA, without increasing its implementation com-

7.1. Thesis Contributions 119

plexity. Our CPU accounting mechanism works in different accounting reference:
full-share and even-share approaches.

Finally, we have shown that an accurate CPU accounting mechanism is still
needed in processors that implement dynamic cache partitioning schemes. Our CPU
accounting mechanism adapts to these processors without increasing the hardware
overhead, since they can reuse the hardware support required for the cache partition-
ing schemes.

7.1.3 CPU Accounting for CMP+SMT Processors

The combination of different TLP paradigms is used by processor vendors in order to
combine the benefits of each TLP paradigm. As a result, throughput can be improved
without increasing the power consumption.

In this Thesis, we have proved that the current CPU accounting mechanisms en-
hanced the accuracy of CPU accounting in one of the existing TLP paradigms. How-
ever, these mechanisms introduce inaccuracies in the CPU accounting for CMP+SMT
processors because they do not consider the interference of several TLP paradigms at
the same time. For this reason, we have proposed a new CPU accounting mechanism,
called Micro-Isolation Based Time Accounting (MIBTA), that covers this gap.

MIBTA makes use of a time sampling technique in which tasks run in isolation
for short periods of time, with negligible effect on the system throughput and with
minimal hardware overhead. We have evaluated our proposal in several CMP+SMT
processor configurations and the results show that MIBTA provides an accurate CPU
accounting without degrading overall system performance.

7.1.4 CPU Capacity-Aware Scheduling in Multi-Core Processors

Modern time-sharing CPU schedulers multiplex the CPU time for the different tasks.
The CPU scheduler is in charge of this operation and selects the best task to run. The
CPU scheduler does not directly use the CPU accounting for this decision, but uses
it indirectly, considering that the progress of a task is measured in terms of the time
spent on the CPU. The CPU scheduler is assuming that the task makes use of the
100% of the processor’s hardware resources. With this, the CPU scheduler tries to
be fair sharing the CPU time between the tasks in the system. For MT processors,
which share a large amount of the processor resources, the task’s progress cannot be
directly measured as the CPU time the task runs onto a CPU because the progress

120 Chapter 7. Conclusions

also depends upon the activity of the other tasks simultaneously running on the same
processor.

In this Thesis, we have shown that current time-based CPU schedulers are not fair
for CMP processors due to shared hardware resources. For instance, it may occur that
a higher-priority task has less chance to use some processor resources than a lower-
priority task. For this reason, we introduce the concept of effective CPU capacity
share in order to represent the actual CPU capacity used by a task in its execution.

We have also proposed two models that allow time-based CPU schedulers to take
into account the CPU capacity enjoyed by each task when deciding future task sched-
ules. Our results show that these models obtain similar performance to time-based
CPU schedulers, while significantly improving fairness.

7.2 Future Work

The work done in this Thesis opens several research lines from which we highlight
the following:

• Energy accounting in multi-threaded processors: The increasing number of
shared hardware resources in MT processors introduces complexity in order to
derive the per-task energy metering and accounting. It is an important challenge
because the energy is an expensive resource in computing systems such as data
centers and mobile devices.

• CPU accounting in parallel task: In the last years, parallel tasks have been
more and more common in systems. In this Thesis, we have described how our
CPU accounting mechanisms can be implemented in order to work in multi-
threaded workloads, but they have not been evaluated in these workloads. One
challenge is to evaluate our CPU accounting mechanisms in these workloads.
An other interesting challenge can be how the operating system can combine
the different CPU accounting of all threads of a same parallel task in order to
obtain the CPU accounting of the parallel task.

• Even-share accounting for SMT processors: In this Thesis, a CPU account-
ing mechanism has been studied for CMP processors in even-share accounting.
In SMT processors, the number of shared hardware resources is higher, which
makes defining an even-share accounting and a CPU accounting mechanism
more challenging in these processors.

7.3. Publications 121

• Off-chip resources: In this Thesis, we focus on on-chip hardware resources
as a source of interference between tasks, which affects measuring the CPU
capacity in MT processors. Also, off-chip resources such as network-on-chip
or memory bus bandwidth can contribute to this interference. A good challenge
is extending our CPU accounting mechanisms in order to take into account
these resources as possible sources of interference.

• The Principle of Accounting for future manycore systems: Nowadays, het-
erogeneous processors are growing in the market. They consist of either sev-
eral cores with different computation capacities or several cores and various
accelerators such as graphics processing units, with different instructions set
architectures. In these processors, it is interesting to study if the Principle of
Accounting is guaranteed.

• Load balancing: The OS scheduling algorithm distributes the number of tasks
in the systems in the different runqueues (or virtual CPUs) in order to have all
runqueues with the same or similar number of tasks. In this Thesis, our sched-
ulers balance the CPU capacity in each runqueue in order to achieve fairness.
An important challenge is how the CPU capacity is distributed among virtual
CPUs. In other words, the distribution of the tasks in a system depends upon
the total CPU capacity of each runqueue.

Some of these topics are already being developed. We hope to deal with the
remaining topics in the near future.

7.3 Publications

In this section, we present a list of our research articles that are accepted for publica-
tions at conferences and journals. We also list the titles of the posters that are used to
present our work at conferences and forums.

7.3.1 Conferences

• Carlos Luque, Miquel Moreto, Alexandra Fedorova, and Francisco J. Cazorla.
CPU Capacity-Aware Scheduling in Multicore Processors. Submitted for pub-
lication to the International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), 2014.

122 Chapter 7. Conclusions

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa and
Mateo Valero. ITCA: Inter-Task Conflict-Aware CPU Accounting for CMPs.
In XXI Jornadas de Paralelismo. Valencia, Spain, September 2010.

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa, Alper
Buyuktosunoglu and Mateo Valero. ITCA: Inter-Task Conflict-Aware CPU Ac-
counting for CMPs. In International Conference on Parallel Architectures and
Compilation Techniques (PACT). Raleigh, North Carolina. September 2009.

7.3.2 Journals

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla and Mateo Valero. Fair
CPU Time Accounting in CMP+SMT Processors. In Transactions on Architec-
ture and Code Optimization (TACO) - Special Issue on High-Performance Em-
bedded Architectures and Compilers. Volume 9 Issue 4, January 2013, Article
No. 5. This publication was selected to be presented at the HiPEAC conference
held in Berlin, Germany, in January 2013.

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa, Alper
Buyuktosunoglu and Mateo Valero. CPU Accounting for Multicore Processors.
IEEE Transactions on Computers. Volume 61 Issue 2, February 2012.

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa, Alper
Buyuktosunoglu and Mateo Valero. CPU accounting in CMP Processors. In
IEEE Computer Architecture Letters. Volume 9 (1), April, 2009.

7.3.3 Posters

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla and Mateo Valero. CPU
Accounting in the Multi-core and Multi-threaded Era. In International Con-
ference on High Performance and Embedded Architectures and Compilers
(HiPEAC), Berlin, Germany, January 2013

• Carlos Luque, Miquel Moreto, Francisco J. Cazorla and Mateo Valero. CPU
Accounting in the Multi-core and Multi-threaded Era. In Proceedings of 3rd
Barcelona Forum on Ph.D. Research in Information and Communication Tech-
nologies. Barcelona. Spain. October 2012.

7.3. Publications 123

7.3.4 Video

• Computer Now journal

– http://www.computer.org/portal/web/computingnow/0212/whatsnew/tc

124 Chapter 7. Conclusions

Bibliography

[1] C. Acosta et al. The MPsim Simulation Tool. Technical Report UPC-DAC-RR-
CAP-2009-15, Computer Architecture Dept., UPC, 2009.

[2] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A processor ar-
chitecture for multiprocessing. Technical Report MIT/LCS/TM-450, MIT, 1991.

[3] Amazon. Amazon Elastic Compute Cloud (EC2) Website. http://aws.

amazon.com/ec2/.

[4] R. Arndt, B. Sinharoy, S. Swaney, and K. Ward. Method and apparatus for fre-
quency independent processor utilization recording register in a simultaneously
multi-threaded processor, January 2011. US Patent 7,870,406.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate
progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–
625, 1996.

[6] H. Beker and F. Piper. Cipher systems: the protection of communications. Wiley-
Interscience, 1982.

[7] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly & Associates
Inc, 2005.

[8] M. Broyles. IBM EnergyScale for POWER7 Processor-Based Systems. Tech-
nical report, IBM, 2011.

[9] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramirez,
and M. Valero. Architectural Support for Real-time Task Scheduling in SMT
Processors. In Proceedings of the 2005 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES, 2005.

125

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

126 Bibliography

[10] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley. An Experimental Time-
sharing System. In Proceedings of the May 1-3, 1962, Spring Joint Computer
Conference, AIEE-IRE, 1962.

[11] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: A System for Energy Efficient
Computing in Virtualized Environments. In Proceedings of the 14th ACM/IEEE
International Symposium on Low Power Electronics and Design, ISLPED, 2009.

[12] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throt-
tling: A Configurable and High-performance Fairness Substrate for Multi-core
Memory Systems. In Proceedings of the 15th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, AS-
PLOS, 2010.

[13] S. Eyerman and L. Eeckhout. Per-thread Cycle Accounting in SMT Processors.
In Proceedings of the 14th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2009.

[14] S. Eyerman and L. Eeckhout. Probabilistic Job Symbiosis Modeling for SMT
Processor Scheduling. In Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating Systems, AS-
PLOS, 2010.

[15] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Performance Counter
Architecture for Computing Accurate CPI Components. In Proceedings of the
12th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2006.

[16] A. Fedorova, M. Seltzer, and M. D. Smith. Improving Performance Isolation
on Chip Multiprocessors via an Operating System Scheduler. In Proceedings
of the 16th International Conference on Parallel Architecture and Compilation
Techniques, PACT, 2007.

[17] M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L. Rawson, J. C. Rubio,
and M. S. Ware. System Power Management Support in the IBM POWER6
Microprocessor. IBM J. Res. Dev., 51(6):733–746, November 2007.

[18] B. Gibbs, B. Atyam, F. Berres, B. Blanchard, L. Castillo, P. Coelho, N. Guerin,
L. Liu, C. D. Maciel, and C. Thirumalai. Advanced POWER Virtualization on

Bibliography 127

IBM eServer p5 Servers: Architecture and Performance Considerations. IBM
Redbook, 2005.

[19] R. H. Halstead, Jr. and T. Fujita. MASA: A Multithreaded Processor Archi-
tecture for Parallel Symbolic Computing. In Proceedings of the 15th Annual
International Symposium on Computer Architecture, ISCA, 1988.

[20] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan-Kaufmann, 5th edition, 2011.

[21] IBM. Understanding CPU Utilization on AIX. https://www.ibm.com/

developerworks/community/wikis/home, 2012.

[22] IBM. CPU frequency monitoring using lparstat. https://www.ibm.com/
developerworks/community/wikis/home, 2013.

[23] Intel. Intel Atom Processor Z5xx Series. http://download.intel.com/
design/processor/datashts/319535.pdf, June 2011. Datasheet.

[24] ITRS. International Technology Roadmap for Semiconductors. http://www.
itrs.net, 2011.

[25] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin, L. Hsu,
and S. Reinhardt. QoS Policies and Architecture for Cache/Memory in CMP
Platforms. In Proceedings of the 2007 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, SIGMETRICS,
2007.

[26] A. Jaleel, H. H. Najaf-abadi, S. Subramaniam, S. C. Steely, and J. Emer.
CRUISE: Cache Replacement and Utility-aware Scheduling. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2012.

[27] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model. In
Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture, ISCA, 2004.

[28] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partitioning in
a Chip Multiprocessor Architecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques, PACT, 2004.

https://www.ibm.com/developerworks/community/wikis/home
https://www.ibm.com/developerworks/community/wikis/home
https://www.ibm.com/developerworks/community/wikis/home
https://www.ibm.com/developerworks/community/wikis/home
http://download.intel.com/design/processor/datashts/319535.pdf
http://download.intel.com/design/processor/datashts/319535.pdf
http://www.itrs.net
http://www.itrs.net

128 Bibliography

[29] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations
to improve performance in multicore systems. IEEE Micro, 28(3):54–66, May
2008.

[30] H. Levy, J. Lo, J. Emer, R. Stamm, S. Eggers, and D. Tullsen. Exploiting Choice:
Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor. In Proceedings of the 23rd Annual International Symposium on Com-
puter Architecture, ISCA, 1996.

[31] T. Li, D. Baumberger, and S. Hahn. Efficient and Scalable Multiprocessor Fair
Scheduling Using Distributed Weighted Round-robin. In Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP, 2009.

[32] K. Luo, J. Gummaraju, and M. Franklin. Balancing Thoughput and Fairness in
SMT Processors. In IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS, 2001.

[33] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and
M. Valero. ITCA: Inter-task Conflict-Aware CPU Accounting for CMPs. In
Proceedings of the 2009 18th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT, 2009.

[34] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and
M. Valero. CPU Accounting for Multicore Processors. IEEE Trans. Comput.,
61(2):251–264, February 2012.

[35] C. Luque, M. Moreto, F. J. Cazorla, and M. Valero. Fair CPU Time Accounting
in CMP+SMT Processors. ACM Trans. Archit. Code Optim., 9(4):50:1–50:25,
January 2013.

[36] P. Mackerras, T. S. Mathews, and R. C. Swanberg. Operating System Exploita-
tion of the POWER5 System. IBM J. Res. Dev., 49(4/5):533–539, July 2005.

[37] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Syst. J., 9(2):78–117, June 1970.

[38] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero. FlexDCP:
A QoS Framework for CMP Architectures. SIGOPS Oper. Syst. Rev., 43(2):86–
96, April 2009.

Bibliography 129

[39] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. CACTI 6.0: A tool to
understand large caches. Technical Report HPL-2009-85, HP, 2009.

[40] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO, 2007.

[41] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual Private Caches. In Proceedings
of the 34th Annual International Symposium on Computer Architecture, ISCA,
2007.

[42] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case
for a Single-chip Multiprocessor. SIGPLAN Not., 31(9):2–11, September 1996.

[43] Oracle. White Paper. Oracle’s SPARC T4-1, SPARC T4-2, SPARC T4-4, and
SPARC T4-1B Server Architecture, February 2012.

[44] J. K. Ousterhout. Scheduling techniques for concurrent systems. ICDCS, pages
22–30, 1982.

[45] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM
Trans. Netw., 1(3):344–357, 1993.

[46] A. Phansalkar, A. Joshi, and L. K. John. Analysis of Redundancy and Applic-
ation Balance in the SPEC CPU2006 Benchmark Suite. In Proceedings of the
34th Annual International Symposium on Computer Architecture, ISCA, 2007.

[47] R. V. Polanczyk. Extending the Semantics of Scheduling Priorities. Commun.
ACM, 55(8):48–52, August 2012.

[48] M. Qureshi. Adaptive Spill-Receive for robust high-performance caching in
CMPs. In IEEE 15th International Symposium on High Performance Computer
Architecture, HPCA, 2009.

[49] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared Caches.
In Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2006.

130 Bibliography

[50] S. E. Raasch and S. K. Reinhardt. The Impact of Resource Partitioning on SMT
Processors. In Proceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques, PACT, 2003.

[51] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. Power
Management Architecture of the 2nd Generation Intel Core microarchitecture,
formerly codenamed Sandy Bridge. Hot Chips, August 2011.

[52] M. J. Serrano, R. Wood, and M. Nemirovsky. A study on multistreamed su-
perscalar processors. Technical Report 93-05, University of California Santa
Barbara, 1993.

[53] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural Support for
Enhanced SMT Job Scheduling. In Proceedings of the 13th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT, 2004.

[54] L. A. Seznec, A. Seznec, and T. Lafage. Choosing Representative Slices of Pro-
gram Execution for Microarchitecture Simulations: A Preliminary Application
to the Data Stream. In Workload Characterization of Emerging Applications,
2000.

[55] A. Silberschats, P. Gailvin, and G. Gagne. Operating System Concepts, 7th
edition.

[56] B. Sinharoy et al. IBM POWER7 multicore server processor. IBM J. Res. Dev.,
55:191–219, May 2011.

[57] B. Smith. Architecture And Applications Of The HEP Multiprocessor Computer
System. Fourth Symposium on Real Time Signal Processing, 1981.

[58] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Multithreaded Processor. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS, 2000.

[59] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobscheduling with Pri-
orities for a Simultaneous Multithreading Processor. In Proceedings of the 2002
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS, 2002.

Bibliography 131

[60] Standard Performance Evaluation Corporation. SPEC CPU 2000 benchmark
suite. http://www.spec.org.

[61] Standard Performance Evaluation Corporation. SPEC CPU 2006 benchmark
suite. http://www.spec.org.

[62] S. Storino, A. Aipperspach, J. B. R. Eickemeyer, S. Kunkel, S. Levenstein, and
G. Uhlmann. A commercial multithreaded RISC processor. In 45th International
Solid-State Circuits Conference, 1998.

[63] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme for
Memory-Aware Scheduling and Partitioning. In Proceedings of the 8th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA, 2002.

[64] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading: Maximiz-
ing on-chip parallelism. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, ISCA, 1995.

[65] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout. Fairness-
aware Scheduling on single-ISA Heterogeneous Multi-cores. In Proceedings of
the 22nd International Conference on Parallel Architectures and Compilation
Techniques, PACT, 2013.

[66] D. W. Wall. Limits of Instruction-level Parallelism. In Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS, 1991.

[67] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Ac-
celerating Microarchitecture Simulation via Rigorous Statistical Sampling. In
Proceedings of the 30th Annual International Symposium on Computer Archi-
tecture, ISCA, 2003.

[68] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-
tention in multicore processors via scheduling. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2010.

[69] S. Zhuravlev, S. Blagodurov, and A. Fedorova. AKULA: a toolset for experi-
menting and developing thread placement algorithms on multicore systems. In
PACT, pages 249–260, 2010.

http://www.spec.org
http://www.spec.org

132 Bibliography

List of Figures

1.1 Total (real) and accounted (sys+user) time of swim in different work-
loads running on an Intel Xeon Quad-Core CPU 4

2.1 Modeled baseline microarchitecture 14

2.2 Block diagram of pipeline of a core 15

2.3 Pipeline stages in a core . 16

2.4 Execution mode of a workload . 22

3.1 View point of a system for a MT processor 26

3.2 Synthetic example with three tasks that are scheduling onto two
VCPUs and receive different CPU capacities 27

4.1 Synthetic example to illustrate over-estimation with the CA. The ex-
ample highlights the effect of an intertask L2 miss on a 2-core CMP
processor . 36

4.2 Correlation between over-estimation and stalled cycles due to in-
tratask and intertask L2 misses in the CA in a CMP processor 37

4.3 Accounting decision for all possible states 38

4.4 Hardware required for ITCA . 39

4.5 Off estimation of the CA and ITCA for 2-, 4- and 8-core CMPs with
a shared 2MB, 4MB and 8MB L2 cache, respectively 43

4.6 Effect of reducing ATD overhead on accuracy 44

4.7 Memory bandwidth requirements for three CMP configurations 46

4.8 Off estimation of the CA and ITCA with LRU and dynamic cache
partitioning algorithms, MinMisses 47

4.9 Average off estimation of all the combinations for 4 cores and a 16-
way 4MB L2 cache . 50

133

134 List of Figures

4.10 I2TCA accounting decision for all possible states 51

4.11 Logic to stop accounting required for I2TCA 51

4.12 Average off estimation for 2, 4, and 8 cores and a 16-way 2MB, 4MB,
and 8MB L2 cache . 52

4.13 Synthetic example for explaining under-estimation with the CA and
I2TCA . 53

4.14 Off estimation of the CA and I2TCA with the even-share accounting
for 2, 4, and 8 cores and 16-way 2MB, 4MB, and 8MB L2 caches . . 56

4.15 Fairness and progress of the PTk for four different workloads 59

5.1 Synthetic example illustrates under-estimation and over-estimation
with the PURR mechanism . 63

5.2 Measured CPU accounting accuracy for the CA and PURR mechan-
isms on a POWER5 processor. The lower the better 65

5.3 Logic and hardware required by CAA 67

5.4 The isolation and multi-threaded phases in MIBTA mechanism 69

5.5 MIBTA off estimation and throughput degradation on an SMT pro-
cessor under different sampling intervals 76

5.6 Average off estimation of MIBTA for isolation phase lengths from 60
to 100 thousand cycles with different lengths of warmup phase (WP)
and of actual-isolation phase (AIP) 77

5.7 MIBTA off estimation in 2- and 4-way SMT processors using differ-
ent storage overheads . 78

5.8 Accuracy with/without the register file release (RFR) mechanism . . . 80

5.9 MIBTA off estimation for 7 different CMP+SMT configurations . . . 81

5.10 MIBTA system performance degradation for 7 different CMP+SMT
configurations . 81

5.11 Memory bandwidth requirements for 7 different CMP+SMT config-
urations . 83

5.12 Off estimation with different accounting mechanisms across several
processor configurations . 84

5.13 Weighted speedup of different symbiotic schedulers for four
CMP+SMT configurations . 85

6.1 Executed instructions and CPU time enjoyed by each astar copy un-
der CFS in a 4-core processor setup 92

List of Figures 135

6.2 Synthetic example with 6 runnable tasks that are scheduled during an
epoch and receive different CPU capacity 97

6.3 IPC mean, fairness, and LLC occupancy (measured in MB) results
with a 4-core multi-core processor for the tasks running in the first
runqueue. ConfigurationX.Y.Z.W indicates the number of tasks run-
ning on each runqueue (with a total of 13, 16 and 17 tasks in the sys-
tem). Two definitions of CPU capacity and fair share of CPU capacity
under ECCS algorithm are used . 105

6.4 Progress evolution of each astar copy running on the same run-
queue in a 4-core multi-core processor. The same experiment is per-
formed using CFS, BCCS+ITCA, and ECCS+ITCA algorithms 106

6.5 IPC mean and fairness results with a 4-core multi-core processor for
the tasks running in the first runqueue. Configuration X.Y.Z.W in-
dicates the number of tasks running on each runqueue (with a total of
13, 16 and 17 tasks in the system) 107

6.6 IPC mean and fairness results with a 16-core multi-core processor for
the tasks running in the first runqueue. In the first runqueue a total of
four or five tasks are executing, while four tasks are in the remaining
15 runqueues (with a total of 64 and 65 tasks in the system) 108

6.7 Progress evolution of each astar copy running on the same run-
queue in a 4-core multi-core processor. After two executions, the ex-
ecution progress of the astar copy degrades by 10%. The same
experiment is performed using CFS and ECCS+ITCA algorithms . . . 110

6.8 Executed instructions evolution of each astar copy running on the
same runqueue in a 4-core multi-core processor with different priorit-
ies. The same experiment is performed using CFS and ECCS+ITCA
algorithms . 111

136 List of Figures

List of Tables

2.1 SPEC CPU INT 2000 benchmark description and simulation starting
point (in millions of instructions) using the SimPoint methodology [54] 17

2.2 SPEC CPU INT 2006 benchmark description 18
2.3 SPEC CPU FP 2000 benchmark description and simulation starting

point (in millions of instructions) using the SimPoint methodology [54] 19
2.4 SPEC CPU FP 2006 benchmark description 20
2.5 The input sets for each benchmark in SPEC CPU INT 2006 and sim-

ulation starting point (in millions of instructions) using the SimPoint
methodology [54] . 21

2.6 The input sets for each benchmark in SPEC CPU FP 2006 and sim-
ulation starting point (in Millions of instructions) using the SimPoint
methodology [54] . 21

4.1 Simulator baseline configuration . 41
4.2 Benchmarks’ cache behaviour (2MB L2 cache) 42
4.3 The power and area requirements of an ATD array in three L2 cache

configurations. The power is measured in nanojoule, and the area is
measured in square millimetre . 45

4.4 Defined states of a task and accounting decision 49
4.5 States of a task and accounting decision 55

5.1 Simulation Configuration . 75

6.1 MPsim simulator configuration . 103

137

138 List of Tables

Acronyms

AR Accounting Register. 40

ATD Auxiliary Tag Directory. 38

BBV Basic Block Vector. 19

BCCS Balanced CPU Capacity scheduler. 97

BIC Bayesian Information Criterion. 19

BTB Branch Target Buffer. 70

CA Classical Approach. 33

CAA Cycle Accounting Architecture. 66

CFS Completely Fair Scheduler. 91

CGMT Coarse-Grain MultiThreading. 2

CMP Chip MultiProcessors. 2

CPU Central Processing Unit. 3

DVFS Dynamic Voltage and Frequency Scaling. 65

ECCS Equal CPU Capacity scheduler. 97

FGMT Fine-Grain MultiThreading. 2

HRSI Hardware Resource Status Indicator. 34

139

140 Acronyms

I2TCA Improved InterTask Conflict-Aware. 8

ILP Instruction-Level Parallelism. 1

IPC Instruction Per Cycle. 9

isol Isolation. 69

ITCA InterTask Conflict-Aware. 8

LFSR Linear Feedback Shift Register. 73

LLC Last level Cache. 2

LRU Least Recently Used. 46

MIBTA Micro-Isolation Based Time Accounting. 8

MLP Memory Level Parallelism. 37

MSHR Miss Status Hold Register. 39

MT Multi-Threaded. 2

OS Operating System. 2

PHT Pattern History Table. 70

PTk Principal Task. 22

PURR Processor Utilization of Resources Register. 62

RFR Register File Release. 71

ROB Re-Order Buffer. 14

RSA Randomized Sampled Auxiliary Tag Directory. 9

RT Real Time. 94

sATD Sampled Auxiliary Tag Directory. 44

SMP Symmetric MultiProcessing. 1

Acronyms 141

SMT Simultaneous Multithreading. 1

SPEC Standard Performance Evaluation Corp.. 16

SPURR Scaled Processor Utilization of Resources Register. 66

ST Single-Threaded. 1

STk Secondary Task. 22

TLB Translation Lookaside Buffer. 16

TLP Thread-Level Parallelism. 1

TUS Task Under Study. 69

VM Virtual Machines. 87

	Abstract
	Acknowledgements
	Index
	Introduction
	Challenges for Accurate CPU Accounting in Multi-Threaded Processors
	Thesis Contributions
	Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors
	CPU Accounting for Multi-Core Processors
	CPU Accounting for CMP+SMT Processors
	CPU Capacity-Aware Scheduling in Multi-Core Processors

	Thesis Structure

	Platform, Tools, and Benchmarks
	Introduction
	MPsim Simulator
	Benchmarks
	Simulation Time Reduction
	Workload Selection

	Comparison Metrics

	Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors
	Defining CPU Capacity
	Abstracting CPU Capacity in MT processor
	CPU Capacity
	Fair Share of CPU Capacity
	Putting It All Together

	Defining CPU Accounting
	Summary

	CPU Accounting for Multi-Core Processors
	Introduction
	Background
	The Classical Approach

	InterTask Conflict-Aware Accounting
	Hardware Implementation
	CPU Accounting in ITCA

	Evaluation Results
	Accuracy Results
	Reducing the ATD's Overhead
	Memory Bandwidth Sensitivity
	ITCA and Cache Partitioning Algorithms

	Improved ITCA Accounting
	Even-Share Accounting
	Hardware requirements
	Accuracy Results

	Other Considerations
	Performance Counters
	Results

	Other Proposals Providing Fairness
	Parallel Tasks

	Summary

	CPU Accounting for CMP+SMT Processors
	Introduction
	Background
	Processor Utilization of Resources Register
	Processor Utilization Recording Register
	Cycle Accounting Architecture

	Micro-Isolation Based Time Accounting
	MIBTA for SMT Processors
	Hardware Implementation

	MIBTA for CMP processors
	CPU Accounting in MIBTA

	Evaluation Results
	Sensitivity Analysis for Single-Core Architectures
	MIBTA Storage Overhead
	Shared Register File
	MIBTA on CMP+SMT Architectures
	Memory Bandwidth Sensitivity
	Comparison with Other Accounting Mechanisms

	Other Considerations
	System-level Considerations
	Virtualized Environments
	Dynamic Voltage and Frequency Scaling
	Parallel Tasks
	Scalability

	Summary

	CPU Capacity-Aware Scheduling in Multi-Core Processors
	Introduction
	Background
	Completely Fair Scheduler
	Functioning and Implementation Aspects of CFS

	Effective CPU Capacity Share in CMP Processors
	CPU Capacity-Aware CFS
	Balanced CPU Capacity Scheduler (BCCS)
	Equal CPU Capacity Scheduler (ECCS)
	Integrating BCCS and ECCS in CFS

	Evaluation Results
	Experimental Setup
	CPU Capacity-based Schedulers Self-Evaluation
	Time-based vs. CPU Capacity-based Schedulers
	Scalability Analysis to Large Core Counts
	Case Studies
	Dynamic Behaviour
	Different Priorities

	Discussion

	Related Work
	Summary

	Conclusions
	Thesis Contributions
	Concept of CPU Capacity and CPU Accounting for Multi-Threaded Processors
	CPU Accounting for Multi-Core Processors
	CPU Accounting for CMP+SMT Processors
	CPU Capacity-Aware Scheduling in Multi-Core Processors

	Future Work
	Publications
	Conferences
	Journals
	Posters
	Video

	Bibliography
	List of Figures
	List of Tables
	Acronyms

