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Edu, mi primer compañero de piso y desde entonces gran amigo. Gracias por
ser vos.
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Abstract

In the past century, with the advances of technology, experimental discoveries
have witnessed phenomena in Nature which challenge our everyday classical
intuition. In order to explain these facts, quantum theory was developed, which
so far has been able to reproduce the observed results. However, I believe that
our understanding of quantum mechanics can be significantly improved by the
search for an operational meaning behind its mathematical formulation, and
that a better understanding of quantum physics is essential for identifying the
limitations and possibilities of the theory for information processing.

An intriguing property of quantum theory is its intrinsic randomness. Indeed,
Einstein, Podolsky and Rosen in their seminal paper of 1935 questioned the
completeness of quantum theory. They argued the possibility of the existence
of a broader complete theory where variables to which we have not access
determine the behaviour of physical systems, and the randomness we observe
in quantum mechanics is then due to our ignorance of these variables. These
hidden variable theories, however, were proved not to be enough for explaining
the predictions of quantum theory, as shown in the no-go theorems by Bell on
quantum-nonlocality and by Kochen and Specker on quantum-contextuality.

In the past decades, many experiments have corroborated the nonlocal and
contextual character of Nature. However, no intuition behind these phenomena
has been found, in particular about what limits their strength. In fact, special
relativity alone would allow for phenomena which are more nonlocal than what
quantum theory allows. Hence, much effort has been devoted to finding physical
properties that restrict these phenomena as predicted by quantum theory.

In this thesis, we study the constraints that arise on nonlocal and contextual
phenomena when a certain exclusiveness structure compatible with quantum
theory is imposed in the space of events. Here, an event denotes the situation
where an outcome is obtained given that a specific measurement is performed
on the physical system. Regarding nonlocality, we introduce a notion of or-
thogonality that states that events involving different outcomes of the same
local measurement must be exclusive, and further construct constraints that
the correlations among observers should satisfy. We denote this by Local Or-
thogonality principle, which is the first intrinsically multipartite principle for
bounding quantum correlations. We prove that our principle helps identifying
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the supra-quantum character of some bipartite and multipartite correlations,
and gets close to the quantum boundary. Regarding contextuality, the events
that correspond to different outcomes of the same measurement are considered
(naturally) exclusive. However, the same abstract event may correspond to
outcomes of different measurements, which introduces a non-trivial structure
in the space of events. In order to study this, we develop a general formalism for
contextuality scenarios in the spirit of the recent approach by Cabello, Severini
and Winter. In our framework, quantum nonlocality arises as a particular case
of quantum contextuality, which allows us to study the Consistent Exclusivity
principle as a generalization of Local Orthogonality. Both in nonlocality and
contextuality, we find close connections to problems in combinatorics, which
allow us to use graph-theoretical tools for studying correlations.

The last part of this thesis is concerned with the problem of nonlocality
detection in quantum systems. Most results on quantum nonlocality focus on
few particles’ experiments, while much less is known about the detection of
quantum nonlocality in many-body systems. Standard many-body observables
involve correlations among few particles, while there is still no multipartite
Bell inequality to test nonlocality merely from these data. In this thesis, we
provide the first proposal for nonlocality detection in many-body systems using
two-body correlations. We construct families of Bell inequalities only from one
and two-body correlators, which can detect nonlocality for systems with large
number of constituents. In addition, we prove violations by systems which are
relevant in nuclear and atomic physics, and show how some of these inequalities
can be tested by measuring global spin components, hence opening the problem
to experimental proposals and realizations.
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1. Introduction

It is a well accepted fact that the predictions of quantum theory are incom-
patible with those of classical physics. Nonlocality and Contextuality are phe-
nomena which cannot be explained in the classical world, although they arise
naturally in quantum mechanics. In the past decades, nonlocality and con-
textuality have become a fruitful topic of research, where new discoveries have
revealed their intrinsic interdisciplinarity and striking applications in a wide
range of topics far from the setting in which they were originally discovered.

In spite of the new insights on these phenomena, little is known about the
structure of quantum nonlocality and contextuality, which is still a fundamental
open problem. Indeed, no concise operational characterization of these quantum
predictions has been found so far, and it is unclear whether such a characteri-
zation even exists. From the physical perspective, such a question has its root
in Bell’s theorem (Bel64) and the Kochen-Specker theorem (KS67), which are
arguably some of the most fundamental lessons we have learned about Nature
in the past decades.

Another interesting question focuses on the detection of these nonlocal prop-
erties. Even though the nonlocal nature of physical systems has already been
observed in the lab, these experiments so far consist only of few-particles,
whether a nonlocal test for quantum many-body systems is still missing. Such
a test would provide insight on the role of nonlocality in systems with a large
number of constituents, something that has hardly been studied.

Quantum Information Theory studies how to combine information theoretic
concepts with quantum theory, in order to exploit these non-intuitive quantum
phenomena to perform information tasks that are classically impossible. In this
thesis, I will further combine notions of information theory to tackle the above
mentioned fundamental problems, namely the characterization and detection
of quantum nonlocality and contextuality.

In what follows, I present the different questions this thesis focuses on, and
summarize the achieved contributions.
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1. Introduction

1.1. Motivation

Characterization of the Quantum Boundary for correlations

In the seminal paper of 1935, Einstein, Podolsky and Rosen (EPR35) noticed
for the first time the phenomenon of quantum entanglement, which ultimately
lead to the formal definition of Nonlocality by J. Bell in 1964 (Bel64). This
phenomenon of nonlocality tells that correlations observed among the outcomes
of spacelike separated measurements on a quantum system may be stronger
than those predicted by classical mechanics. Since then, and up to loopholes,
nonlocality has been observed many times in Nature (FC72; AGR82; RKM+01;
MMM+08).

Bell’s theorem relies on natural assumptions on the causal structure of exper-
iments. These assumptions are that: far-apart observers cannot influence each
other instantaneously (locality, also known as no-signaling), they can choose
their respective measurements independently (free-will), and physical quantities
have well-established values previous to any measurement (reality, also known
as determinism). Based on these natural assumptions, Bell imposes restrictions
on the correlations that the distant parties may obtain, and finds quantum
states and measurements that do not satisfy them. Hence, quantum mechanics
violates at least some of the assumptions behind Bell’s construction. Surpris-
ingly, quantum mechanics is not the only theory that exhibits these nonlocal
features. Indeed, if the only assumption over the correlations is the well-founded
principle of No Signaling (that it, that the parties cannot communicate instan-
taneously), these no-signaling correlations (NS) prove to be not only nonlocal,
but also more nonlocal than quantum theory allows (PR94; Tsi80).

Pioneering work by Popescu and Rohrlich showed that the no-signaling prin-
ciple alone does not suffice to recover the set of quantum correlations (PR94),
as commented before. Indeed, they provided paradigmatic examples of correla-
tions between two parties compatible with the no-signaling principle but with-
out any quantum realization. Since then, several principles based on informa-
tion theory have been proposed with the hope of characterizing the set of quan-
tum correlations, e.g. non-trivial communication complexity (vD00; BBL+06),
Information Causality (PPK+09), and Macroscopic Locality (NW10). Unfortu-
nately, while being more restrictive than no-signaling, none of these principles
seems to be sufficient to recover the quantum set exactly. One of the reasons
behind it lies in the fact that intrinsically multipartite principles are essential to
characterize the set of quantum correlations (GWAN11). It was indeed proven
that there exist supra-quantum correlations for three parties that cannot be
detected by any bipartite principle through the following protocol: the parties
are split into two groups and the principle is applied to each such bipartition.
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1.1. Motivation

Unfortunately, most of the existing principles for quantum correlations are for-
mulated in a bipartite setting and it is unclear whether they have more powerful
multipartite generalizations.

Characterization of quantum contextuality
Similar to nonlocality, contextuality is another phenomenon inconsistent with

the predictions of classical physics. The original ideas in this topic focused on
the property of classical systems that when a set of observables is measured over
them, then there is always possible to associate deterministic outcomes to each
of them. In 1967, Kochen and Specker (KS67) proved that there exist quantum
systems and measurement settings where the previous noncontextual property is
no longer satisfied, that is, every possible assignment of deterministic outcomes
to the observables is not consistent with the functional relations between these
observables implied by quantum mechanics. Moreover, even if the assumption
of determinism is relaxed and convex combinations of deterministic assignments
are considered, the theoretical predictions cannot be explained. Hence, when
performing measurements over a quantum system, the allowed conditional prob-
ability distributions over the outcomes form a set of probabilistic models which
is larger than that allowed by classical mechanics.

The contextual character of quantum mechanics, however, is not as strong
as general probabilistic theories allow. Indeed, if the only assumption over
the probabilistic models is that they satisfy the No-Disturbance principle (gen-
eralization of No Signaling to contextuality scenarios, sometimes referred to
as sheaf-condition (AB11)), the allowed models may be more contextual than
quantum theory allows. Hence, similar to the case of quantum correlations, the
search for principles that bound the set of quantum probabilistic models is a
current interesting problem.

Until now, the study of contextuality seems to have been concerned with
“small” proofs of the Kochen-Specker theorem (LBPC13) and particular ex-
amples of contextuality. However, a general theory has hardly been devel-
oped, apart from the study of test spaces in quantum logic (CMW00; Wil09),
Spekkens’ work on measurement and preparation contextuality (Spe05; LSW11),
the graph-theoretic approach of Cabello, Severini and Winter (CSW10), and the
sheaf-theoretic approach pioneered by Abramsky and Brandenburger (AB11).

Detection of nonlocality in many-body systems.
The nonlocal character of Nature has already been observed (up to loop-

holes) in different experiments. These usually consist of few particles (parties),
whereas many-body systems have hardly been studied. The reason for this
are the technical difficulties that such a problem encompasses, both theoreti-
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1. Introduction

cally and experimentally. On the one hand, finding all the Bell inequalities that
characterize classical correlations for an arbitrary number of parties is a difficult
task, since the complexity of the problem increases exponentially with the num-
ber of parties. On the other hand, in experiments involving many-body systems
one has access only to few-body correlations, often two-body, and sometimes in-
dividual particles may not be addressed. This complicates the use of the known
multipartite Bell inequalities (Ś03; BGP10; WW01; ZB02; LPZB04; AGCA12),
since they usually involve products of observables of all parties.

Recently, Bell inequalities involving all-but-one parties have proven useful for
detecting nonlocality in quantum systems (BSV12; WNZ12; WBA+12), thus
showing that all-partite correlations are sometimes not necessary. However,
this improvement is still not enough for tackling many-body systems. In order
to study these systems with current technology, one needs to ask a more de-
manding question: whether nonlocality detection is possible for systems of an
arbitrary number of parties from the minimal information achievable in a Bell
test, i.e. two–body correlations.

1.2. Main results and contributions

Local Orthogonality: a multipartite principle for quantum correla-
tions.

We propose the first intrinsically multipartite principle to characterize quan-
tum correlations. This is called Local Orthogonality (LO), and is presented in
chapter 3. This principle is based on a definition of orthogonality (or exclu-
siveness) between events involving measurement choices and results by distant
parties: we define some pairs of events to be orthogonal, or exclusive, whenever
they involve different outcomes of the same local measurement by at least one
of the parties. Imposing that the sum of the probabilities of mutually exclusive
events is less than or equal to one implies a restriction on the possible correla-
tions. These are Bell inequalities which we call LO inequalities, and one of our
basic observations is that they are satisfied by quantum correlations. Violations
of LO inequalities hence witness supra-quantum correlations.

The LO principle has a nice information-theoretical interpretation in terms
of Distributed Guessing Problems and implies a highly non-trivial structure in
the space of correlations. We show how to use the multipartite constraints to
detect the nonquantumness of some supra-quantum bipartite NS correlations,
and prove that the intrinsically multipartite formulation of the principle allows
one to detect supra-quantum correlations for which any bipartite principle fails.

An important property of LO is its connection with Graph Theory, which
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1.2. Main results and contributions

proves very useful when computing the constraints that LO imposes on the
space of correlations. Indeed, this problem is equivalent to computing some
graph-theoretical invariants of what we call the orthogonality graph of the sce-
nario.

A new framework for the study of contextuality.
We develop a graph-theoretical framework for Contextuality, similar to that

of Cabello, Severini and Winter (CSW10), but which allows the study of both
nonlocality and contextuality in a unified manner. Our approach, presented in
chapter 4, demands the probabilistic models to be normalized and defines the
notion of “product scenario”, which allows Bell scenarios to arise as a particular
case of general Contextuality scenarios.

Our framework is well suited to study probabilistic models under the Con-
sistent Exclusivity principle (CE) (Hen12; FLS12; Cab13). In particular, we
prove that within our definition of Contextuality scenarios, the Local Orthog-
onality principle and CE are equivalent. Similarly to the LO case, the CE
principle imposes a highly non-trivial structure on the probability space, which
until now had been unnoticed. Here we stress this structure by defining a hier-
archy of sets of probabilistic models, each level satisfying stronger constraints
formulated from CE.

In addition, our framework is also well suited to define a hierarchy of semidef-
inite programs (SDP) for probabilistic models on contextuality scenarios, sim-
ilar to that of Navascués, Pironio and Aćın (NPA07; NPA08; PNA10). This
SDP hierarchy converges into the quantum set, and each level satisfies the CE
principle.

Finally, being a graph-theoretically based framework, our approach profits
from graph theory. Indeed, we are able to characterize in terms of graph the-
oretical invariants some sets of probabilistic models, such as the no-signaling
set, all the sets in the CE hierarchy, the first level in the SPD hierarchy, and
the classical set.

Bell inequalities from two-body correlations.
We propose in chapter 5 a solution for the problem of detecting nonlocality

in many-body systems. First, we focus the study on Bell inequalities that
contain only one and two-body correlators, simplifying the complexity of both
the theoretical and the experimental problems. In principle one could argue
the relevance of such inequalities, since in general the correlators that involve
a large number of parties are those which carry detailed information about
the correlations. Nevertheless, we find that one and two-body correlators are
already useful for detecting nonlocality in physically relevant systems. These

5



1. Introduction

systems are the Dicke states, which arise as the ground state of the Lipkin-
Meshkov-Glick Hamiltonian (LMG65). Moreover, these inequalities are strong
enough to detect nonlocality in many-body systems. Finally, we show that
in some cases the derived inequalities are experimentally friendly, as they can
be tested through measurements of global observables such as the components
of the total spin, which are routinely measured in atomic physics with great
precision (HSP10; ERIR+08). In particular, this makes our nonlocality criteria
applicable in systems where individual particles cannot be addressed.
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2. Preliminaries

In this chapter I present the key concepts needed to understand the topic of
this thesis and its scope. I start with the notion of Nonlocality, including the
definition of a Bell experiment and the relevant sets of correlations. Then,
I move on to Contextuality, where I introduce the phenomenon and review
relevant frameworks for its study. Finally, I briefly present the concepts from
Graph Theory that will be of use throughout the thesis.

2.1. Nonlocality

Nonlocality is one feature of quantum mechanics that is not present in the
classical world. It tells that the correlations observed among the outcomes
of spacelike separated measurements on a quantum system may be stronger
than those predicted by classical mechanics. This fact was first noticed by
Einstein, Podolsky and Rosen in their seminal paper in 1935 (EPR35), but it
was not until 1964 that J. Bell proved (Bel64) that the predictions of quantum
theory are incompatible with those of classical physics. The idea behind Bell’s
theorem goes as follows. Consider, for simplicity, two distant parties, Alice
and Bob, each of them having access to a physical system. Alice (Bob) is
allowed to freely choose local measurements to perform on her (his) system.
Let x and y denote the measurement choices of Alice and Bob, and a and b
the corresponding outcomes. The actions one party performs are assumed to
be space-like separated from those of the other party. We are interested in
the joint conditional probability distribution P (ab|xy), i.e. the probability that
Alice and Bob obtain the outcomes a and b given they have measured x and y
(in this thesis, I will also use the word correlations to refer to P (ab|xy)). The
main point addressed by Bell is that there exist correlations which arise from
measurements on quantum systems and that can not be explained by classical
mechanics. In fact, imagine the case where the state that the parties share
is entangled. Then, the correlations they achieve may be stronger than those
attainable by any possible local strategy the parties could perform on classical
systems, even when deciding in advance which strategy to use and sharing a
source of randomness. These correlations incompatible with classical theory
are called nonlocal. In this section, I present the notion of Bell-type experiment
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2. Preliminaries

(or Bell scenario), and the relevant sets of conditional probability distributions
that arise from it.

A general Bell Scenario involves n distant parties, each of them having access
to a physical system (see Fig. 2.1). In principle, the number of measurements
the parties have access to may differ from party to party, and so the number
of outcomes that each party observes. We focus however on the case where
the number of measurement choices is the same for all the parties, and more-
over, that all the measurements have the same number of outcomes. In the
scope of this thesis then, each party can perform m different measurements on
his system, getting one out of d possible outcomes. This scenario is denoted
by (n,m, d). The measurement applied by party i is denoted by xi, and the
corresponding outcome by ai, with i ∈ {1, . . . , n}, xi ∈ {0, . . . ,m− 1}, and
ai ∈ {0, . . . , d − 1}. The correlations among the parties are described by the
joint conditional probability distribution P (a1 . . . an|x1 . . . xn), representing the
probability for the parties to get outcomes a1, . . . , an when making measure-
ments x1, . . . , xn. In order for P to be well defined, it should satisfy two basic
constraints:

P (a1 . . . an|x1 . . . xn) ≥ 0, ∀ {a1 . . . an|x1 . . . xn} (positivity) (2.1)

and ∑
a1...an

P (a1 . . . an|x1 . . . xn) = 1, ∀ {x1 . . . xn} (normalization) (2.2)

In the particular case of two parties, i.e. (2,m, d), we denote for simplicity the
correlations by P (ab|xy) instead of P (a1a2|x1x2).

2.1.1. Box World Scenarios

In this section I present the case where no assumptions are made on the
systems the parties have or the specific way the measurements are imple-
mented. This framework is usually called Box World, and used for the study
of device independent tasks, such as device-independent quantum key distri-
bution (ABG+07; VV12b) and device-independent random number genera-
tors (PAM+10; VV12a). Here, each party is thought of as having a device
(box) in which by pressing a button produces an outcome. In order for these
devices to be well defined objects, there should exist a conditional probability
distribution P (ai|xi) for each box, that represents its observed behavior. This
constrains the correlations P (a1 . . . an|x1 . . . xn) allowed in the framework, like
follows: ∑

ai+1 ... an

P (a1 . . . an|x1 . . . xn) = P (a1 . . . ai|x1 . . . xi) (2.3)
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· · · · · ·

xk

ak

x1

a1

xn

an

P (a1 . . . an|x1 . . . xn)

Figure 2.1.: Bell scenario: n distant parties each having access to a device
(box). Each party performs a measurement xk on his device, obtaining an
outcome ak. The correlations among the devices are studied through the con-
ditional probability distribution P (a1 . . . an|x1 . . . xn).

for any splitting of the n parties into two groups. This assures that all the mar-
ginals of P are well defined, i.e. do not depend on the inputs of the parties that
are traced out. Condition (2.3) is the so-called No Signaling principle (NS),
and defines the set NS of no-signaling correlations. Besides this operational
formulation, NS is often stated as the “impossibility of instantaneous commu-
nication among the parties”, which originally relates it to special relativity or
any other theory where the speed of communication is bounded.

In what follows, different sets of correlations that arise in the box world
scenario are presented.

2.1.2. Classical Correlations

Classical correlations are those that arise when the parties have access each
to a classical system, on which to perform measurements. In the spirit of
(EPR35), these correlations can be explained in terms of local hidden variables
as follows. In a local classical theory, the correlations are fully attributed to a
common cause λ in the past of the measurements instances (BCP+13). Hence,
the statistics of each device reads Pj(aj |xj , λ), and the conditional probability
distribution factorizes as P (a1 . . . an|x1 . . . xn) = Πn

j=1Pj(aj |xj , λ). However,
when actually performing a Bell test, the parties go through many runs of
performing measurement and obtaining outcomes, in order to produce the data
from which to compute the statistics. Hence, in principle the common cause λ

9
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may change between runs. The correlations may then be expressed as

P (a1 . . . an|x1 . . . xn) =

∫
q(λ) Πn

j=1Pj(aj |xj , λ)dλ, (2.4)

where q(λ) denotes the probability distribution for the hidden variable λ.

Local correlations are equivalently defined in terms of deterministic local
hidden variable models. First, consider a deterministic strategy for one party,
i.e. a conditional probability distribution that assigns a deterministic output
to each measurement. For this case, the behaviour of the devices is completely
determined, and the observed statistics satisfy Dj(a|x) := Pj(a|x) = δa,ax ,
where ax is the fixed output of measurement x for the device j. By Dj(a|x) we
denote such a deterministic conditional probability distribution for one party.
A joint deterministic strategy is then given by a deterministic assignment for
each party, i.e. D (a1 . . . an|x1 . . . xn) = Πn

j=1Dj(aj |xj). If we consider now local
hidden variables, the deterministic conditional probability distributions read
D(a|x) = D(a|x, λ), and hence the outcome of measurement x is completely
determined by the information carried within the hidden variable λ and the
measurement choice itself. In this sense, the correlations are expressed by means
of the deterministic strategies as follows:

P (a1 . . . an|x1 . . . xn) =
∑
λ

qλ Πn
j=1Dj(aj |xj , λ), (2.5)

where now λ labels the possible joint deterministic strategies, and qλ ≥ 0 their
corresponding weights in the decomposition. It is easy to see that correlations
in eq. (2.4) can always be written as in eq. (2.5), without loss of generality.

Given the product structure of D (a1 . . . an|x1 . . . xn), it is easy to see that
local correlations satisfy the No Signaling principle. In fact, consider a local
correlation defined by eq. (2.5). By tracing out one party, say n, normalization
of Dj implies

P (a1 . . . an−1|x1 . . . xn−1) =
∑
an

P (a1 . . . an|x1 . . . xn)

=
∑
λ

qλ Πn−1
j=1Dj(aj |xj , λ)

∑
an

Dn(an|xn, λ)

=
∑
λ

qλ Πn−1
j=1Dj(aj |xj , λ).

The same reasoning may be applied when tracing out more than one party.

10



2.1. Nonlocality

2.1.3. Quantum Correlations

In the previous section, the devices that the parties have access to in a Bell-type
experiment were assumed to be classical, which gave rise to the set of classical
correlations. However, that assumption can be relaxed. This section presents
the correlations that arise when considering devices of quantum nature.

In quantum theory, the state of a system is an element of a Hilbert space H,
represented by a positive semidefinite matrix ρ, usually called density matrix.
A special class of states is that of pure quantum states, which correspond to
vectors |Ψ〉 over the Hilbert space. In this case, the density matrix is given
by ρ = |Ψ〉 〈Ψ|. The observables, moreover, are self-adjoint operators A on H,
whose expectation values are given by the Born’s rule 〈A〉 = tr(A ρ). The most
general class of measurements over quantum systems is called positive operator-
valued measure (POVM) (NC03). There, a measurement x is described by a set
of nonnegative operators {Mx

a } with the following properties:
∑

aM
x
a = 1H,

and each operator Mx
a is associated to a possible outcome of the measurement,

so that the probability of obtaining a when measuring x is given by P (a|x) =
tr(ρMx

a ). The nonnegativity of {Mx
a } assures that the P (a|x) are positive

numbers, and the condition that {Mx
a } sum up to the identity guarantees the

probabilities P (a|x) to be normalized. Note that these operators Mx
a need not

be projectors over H. When they are, the measurement belongs to a smaller
family called projective or von Neumann measurements.

An interesting property is that, given a general state ρ and POVM {Mx
a } in

a Hilbert space H, it is always possible to find a Hilbert space H′ of larger di-
mension, a state ρ′ and a projective measurement {Πx

a}, with identical statistics
for the measurement outputs, i.e. P (a|x) = tr(ρMx

a ) = tr(ρ′Πx
a) (NC03). In-

deed, suppose that we want to perform a measurement {Mx
a } on the system ρ.

Consider an ancillary system belonging to a Hilbert space Hb, such that there
exists a basis of orthonormal states {|a〉} in Hb in one-to-one correspondence
with the measurement outcomes of {Mx

a } over ρ. This ancillary system can be
thought of as a purely mathematical device appearing in the construction, or
as an actual quantum physical system that helps in the measurement process.
Operationally, the main idea then is to perform an entangling operation be-
tween the system ρ and the ancilla, which contains the information about the
original POVM, and then perform a projective measurement {1H⊗|a〉 〈a|} over
the state of the ancilla. Formally, the construction of {Πx

a} from {Mx
a } goes

as follows. Since {Mx
a } are positive semidefinite operators, they may be ex-

pressed as1 Mx
a = Kx†

a Kx
a . Consider now the initial joint state ρ′ = ρ⊗ |0〉 〈0|,

1The operators Kx
a are usually called Kraus operators. The decomposition of the elements

of a POVM into its Kraus operators is not unique, since any unitaries acting on {Kx
a}

11
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where |0〉 〈0| is the state of the ancilla, and define the unitary U which per-

forms the entangling operation Uρ′U † =
∑

a,a′ K
x
aρK

x†
a′ |a〉 〈a

′|. Finally, the

operators Πx
a = U †(1H ⊗ |a〉 〈a|)U indeed form a projective measurement over

H′ = H⊗Hb, with tr(Πx
aρ
′) = P (a|x).

Quantum correlations then arise via Born’s rule P (a|x) = tr(Mx
a ρ) when

performing measurements on a quantum device. In a Bell scenario, the situation
of n parties measuring in their respective devices corresponds to performing
each a POVM {Mxj

a }. Hence, denoting by ρ the joint state of the n systems,
the statistics read:

P (a1 . . . an|x1 . . . xn) = tr(Mx1
a1 ⊗ . . .⊗M

xn
an ρ). (2.6)

We say that a conditional probability distribution P (a1 . . . an|x1 . . . xn) is quan-
tum2 whenever there exists a Hilbert spaceH, a state ρ inH, and a measurement
{Mxj

a } for each party, such that correlations are recovered by eq. (2.6). Note
that by the previous comments, if the dimension of the Hilbert space is not
bounded, we can assume the {Mxj

a } to be projective measurements.

Quantum correlations do satisfy the No Signaling principle. Indeed, if we
sum over the outcomes of one party, say n, the normalization of the POVM’s
imply ∑

an

P (a1 . . . an|x1 . . . xn) = tr(Mx1
a1 ⊗ . . .⊗M

xn−1
an−1

(
∑
an

Mxn
an ) ρ)

= tr(Mx1
a1 ⊗ . . .⊗M

xn−1
an−1

⊗ 1Hn ρ),

i.e. the result is independent of the measurement choice of party n. The same
reasoning may be applied when tracing out more than one party.

2.1.4. Geometry of Correlations

In this section, we will introduce some basic concepts regarding the geometry of
the space of probability distributions. First, note that a conditional probability
distribution P arising from a Bell scenario (n,m, d) may be viewed as a vector
P ∈ R(md)n . Indeed, every component of the vector corresponds to a choice of
measurements and outcomes, and viceversa.

The set of No Signaling correlations then is the subset NS ⊂ R(md)n of
vectors P which satisfy the positivity and normalization conditions as well
as the No Signaling principle (2.3). Since these are a finite number of linear

preserves the form of {Mx
a }.

2Equivalently, that it has a quantum realization.

12
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constraints, the set NS is a convex set with a finite number of extreme points,
i.e. a polytope.

The set of quantum correlations is the subset Q ⊂ R(md)n of vectors P that
have a quantum realization. Since quantum correlations satisfy No Signaling,
Q ⊂ NS, and moreover Q is a convex set. Indeed, consider two quantum con-
ditional probability distributions P1 and P2, and denote by Hk, ρk and {Πxj

aj}k
the corresponding Hilbert spaces, states and measurements for party j = 1 . . . n.
The conditional probability distribution given by a convex combination of P1

and P2, say P = qP1 + (1 − q)P2 with q > 0, also has a quantum realization,
given by the Hilbert space H = H1 ⊕ H2, the state ρ = qρ1 ⊕ (1 − q)ρ2, and
measurements {Πxj

aj} of the form Π
xj
aj = (Π

xj
aj )1 ⊕ (Π

xj
aj )2. However, the set Q

is not itself a polytope and the inclusion Q ⊂ NS is strict. Already for the
simplest scenario (2, 2, 2), there exist NS correlations that do not belong to
the quantum set. One such example are PR correlations (PR94), that read
PR(ab|xy) = 1

2δa⊕b=xy, where the sum is taken mod 2. Popescu and Rohrlich
noticed, using the result by Tsirelson (Tsi80) (see also (Tsi93)), that a hy-
pothetical device behaving with such correlations may not have a quantum
realization, although it would satisfy the NS princple. These PR correlations,
also refered to as PR-box, are the unique3 nonquantum extreme point of the
(2, 2, 2) no-signaling polytope.

Finally, the set of classical correlations, also refered to as local correlations,
is the subset C ⊂ R(md)n of vectors P which are obtained as a convex combina-
tion of deterministic points PD. These deterministic points correspond to the
deterministic strategies mentioned in section (2.1.2). The set C is convex by
definition, with a finite number of extreme points PD, and hence is a polytope.
Moreover, C ⊂ Q. To see this, it suffices to prove that every deterministic point
has a quantum realization. Consider then a vector PD, and as Hilbert space
H = C. For every choice of measurement settings (x1 . . . xn), consider the pro-
jective measurement given by Πx1...xn

a1...an = 1H if (a1 . . . an) is the deterministic
output of PD (hence 0 otherwise). By setting the state ρ = 1H, the desired
deterministic conditional probability distribution arises via Born’s rule.

Figure 2.2 shows schematically the chain of inclusions C ⊂ Q ⊂ NS. The set
of correlations that belong toNS\C, i.e. toNS but not to C, are called nonlocal,
while the ones belonging to C are also called local. Since C is a polytope, there
are a finite number of inequalities which define the set. Indeed, each inequality
divides the probability space into two semispaces, and the intersection of all
the semispaces allowed by the inequalities defines the classical set.

3By unique, I mean that every other nonquantum extreme point may be obtained by a PR
box by relabeling the inputs and/or outputs of the device.
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NS

Q

C

B1

B2

Figure 2.2.: Schematic representation of the sets of no-signaling (NS – pen-
tagon), quantum (Q – gray area) and classical correlations (C – striped area).
The lines B1 and B2 separating the set of classical correlations from the nonlocal
ones are examples of tight Bell inequalities. While B1 is violated by some quan-
tum correlations, B2 is only violated by supra-quantum nonlocal conditional
probability distributions.
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2.1.5. Bell Inequalities

The existence of quantum correlations violating Bell inequalities (BI) has been
known since Bell’s paper in 1964. Since then, much effort has been devoted
to deriving various BI for different scenarios. Examples of such are the CHSH
inequality for (2, 2, 2) (CHSH69), the I3322 inequality for (2, 3, 2) (CG04; Ś03),
the chained inequality for (2,m, d) (BKP06) and the CGLMP inequality for
(2, 2, d) (CGL+02). The most famous BI for the (2, 2, 2) scenario is the CHSH
inequality

P (00|00)− P (01|00)− P (10|00) + P (11|00)

+P (00|01)− P (01|01)− P (10|01) + P (11|01)

+P (00|10)− P (01|10)− P (10|10) + P (11|10)

−P (00|11) + P (01|11) + P (10|11)− P (11|11) ≤ 2,

(2.7)

which is usually presented in correlator form

E00 + E01 + E10 − E11 ≤ 2, (2.8)

where the correlators are defined as Eij = P (a = b|ij) − P (a 6= b|ij). While
classical correlations achieve a maximum value for CHSH of 2, quantum corre-
lations achieve a value up to 2

√
2, usually known as Tsirelson’s bound (Tsi80).

For NS correlations, the maximum value for CHSH is 4, which is the algebraic
maximum of the inequality, and is achieved by PR boxes (PR94). It is worth
noticing that the CHSH inequality (CHSH69) actually bounds the absolute
value of the sums in (2.7) and (2.8), hence imposing two different constraints

−2 ≤ E00 + E01 + E10 − E11 ≤ 2.

However, the inequalities “−2 ≤” and “≤ 2” are equivalent under the relabelling
of the measurements’ outcomes of a single party.

In general, any inequality of the form
∑
cjPj ≥ −βC (with real numbers

c1 . . . c(md)n and βC) which is satisfied by classical correlations is called “Bell
inequality”. However, only some of them are interesting, in the sense that
are useful for detecting nonlocality in quantum correlations. βC is a constant
usually called “classical bound”, and sets the limit that quantum correlations
sometimes violate. Moreover, when the Bell inequality coincides with a facet of
the local polytope, it is called tight Bell inequality, and the local bound βC is
achieved by a certain number of deterministic points. Some examples of tight
Bell inequalities are the CHSH inequality, I3322 and the CGLMP inequality.

There are many equivalent ways of writing down a Bell inequality. In fact, I
previously presented CHSH in two different formulations. In what follows, I will
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comment on the no signaling form and the correlators form of a Bell inequality,
and introduce the notion of Bell operator.

No signaling form: As mentioned in the previous section, from the geo-
metrical picture of the probability space, finding all the BI inequalities for a
given scenario may be seen as a convex hull problem. Even though this prob-
lem has been solved for simple scenarios, its complexity increases exponentially
with the number of parties, becoming a computationally hard task. One way
to simplify the problem is to reduce the dimension of the probability space
under study. As shown in (CG04), the NS principle implies that a conditional
probability distribution P of scenario (n,m, d) is completely specified by the
values of P (a1 . . . an|x1 . . . xn), for aj = 0 . . . (d − 2), together with the values
of all the k-partite marginals (k = 1 . . . n − 1) where the outcome d − 1 is not
involved. For example, consider the (2, 2, 2) case. In principle, the probability
space has dimension (md)n = 16. However, the following elements fully specify
the complete conditional probability distribution P ∈ R16:

P′ = [P1(0|0), P1(0|1), P2(0|0), P2(0|1),

P (00|00), P (00|01), P (00|10), P (00|11)].
(2.9)

where Pj denotes the marginal of P for party j. Hence, studying no-signaling
conditional probabilities distributions in the space R16, where positivity, nor-
malization and no-signaling constraints are imposed, is equivalent to studying
the objects P′ ∈ R8, with constraints being P′(j) ∈ [0, 1] ∀ j = 1 . . . 8 and the
positivity conditions P1(0|x) ≥ P (00|xy) and P2(0|y) ≥ P (00|xy) ∀x, y.

Hence, a Bell inequality can also be written as a function of the components
of P′ rather that those of P. For instance, the CHSH inequality (2.7) has an
equivalent form given by

−1 ≤ P (00|00) + P (00|01) + P (00|10)− P (00|11)− P1(0|0)− P2(0|0) ≤ 0,

which is called CH inequality (CH74).

Correlator form: In scenarios with binary measurements, Bell inequalities
may also appear in correlator form: as commented before, the CHSH inequality
(2.7) is usually written as (2.8). For binary measurements, correlators are
generally defined as

Ex1...xk =
∑
a1...ak

(−1)a1+...+akP (a1 . . . ak|x1 . . . xk), (2.10)

where the sum a1+. . .+ak is taken mod 2. These correlators tell the probability
of obtaining an even number of outcomes 1 minus the probability of obtaining
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an odd number of outcomes 1, given that the k parties have measured x1 . . . xk.
Then, given a conditional probability distribution P (a1 . . . an|x1 . . . xn) in a
scenario (n,m, 2), one can define a set of correlators, whose elements are listed
below:

• Ex1...xn : mn elements, corresponding to all the possible measurement
choices.

• Exi1 . . . xin−1 : n ∗m(n−1) elements. They correspond to the m(n−1) mea-
surement options of the n possible choices of n− 1 parties i1 . . . in−1. In
order to compute these correlators, eq. (2.10) is used, where the con-
ditional probability distribution considered in the sum is actually the
marginal of the n-partite P over the one party which is not in the list
i1 . . . in−1.

• Exi1 . . . xin−2 :
(
n
n−2

)
∗ m(n−2) elements. They correspond to the m(n−2)

measurement options of the
(
n
n−2

)
possible choices of n−2 parties i1 . . . in−2.

In order to compute them, eq. (2.10) is used, where the conditional prob-
ability distribution considered in the sum is actually the marginal of the
n-partite P over the two parties which are not in the list i1 . . . in−2.

• Similarly, for all other k ∈ 3 . . . n− 1, the
(
n

n−k
)
∗m(n−k) elements of the

form Exi1 . . . xin−k
, computed for the n− k parties i1 . . . in−k.

Finally, these correlators are arranged in a vector E of (m+1)n−1 components,
starting from Ei1 to Ex1...xn .

It is worth noticing that P can be also reconstructed from the correlators E.
For instance, in the scenario (3, 2, 2) such an expression reads:

P (abc|xyz) =
1

23

{
1 + (−1)aEx + (−1)bEy + (−1)cEz+

(−1)a+bExy + (−1)a+cExz + (−1)b+cEyz + (−1)a+b+cExyz

}
Hence, for binary measurements, studying the objects P′ in probability space
is equivalent to studying the vector of correlators E in correlator space. Note
however that the dimension of the problem remains the same.

Bell operator: this operator is useful when searching for (theoretical) quan-
tum violations of a Bell inequality. As I mentioned in section 2.1.3, quantum
correlations are of the form

P (a1 . . . an|x1 . . . xn) = tr(Mx1
a1 ⊗ . . .⊗M

xn
an ρ),
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where {Mxj
aj }j=1...n are the measurement operators of the n parties. Hence, a

Bell inequality of the form∑
c(a1...an,x1...xn)P (a1 . . . an|x1 . . . xn) + βC ≥ 0

can be written as
tr(B ρ) ≥ 0,

where B is the so called Bell operator:

B =
∑

c(a1...an,x1...xn)M
x1
a1 ⊗ . . .⊗M

xn
an + βC 1H.

This form is useful when we search for the existence of a quantum violation.
Indeed, if the operator B has negative eigenvalues, the corresponding eigenvec-
tors |λ〉 provide violations of tr(B ρ) ≥ 0 when ρ = |λ〉〈λ|.

Bell operators can be constructed for Bell inequalities also in no signaling or
correlators form. In what follows I will comment on the later, since it will be
useful in chapter 5.

In quantum mechanics, correlators are related to the expectation value of cer-
tain operators called observables. Indeed, Ex1...xk = 〈Mx1...xk〉 = tr(Mx1...xk ρ),
where the operator Mx1...xk is defined as

Mx1...xk =
∑
a1...ak

(−1)a1+...+akMx1
a1 ⊗ . . .⊗M

xk
ak
.

Hence, any Bell inequality in correlators form
∑

j cjEj + βC ≥ 0 can be written
as tr(B ρ) ≥ 0, where the Bell operator reads B =

∑
j cjMj + βC 1H.

2.1.6. Quantum boundary

Bell inequalities define the boundary between classical and nonlocal correla-
tions. On the other hand, no-signaling correlations with no quantum realization
are known to exist. A natural question then arises: is there a nice characteriza-
tion of the boundary between quantum and general no-signaling supra-quantum
correlations? Even though the answer is still currently unknown, much effort
has been devoted to try to characterize the quantum set. In this subsection, I
briefly comment on the state of the art relevant for this thesis.

An important contribution to the search of principles that bound the set
of quantum correlations is due to van Dam (vD00). He introduced the idea
that the existence of supra-quantum correlations, while not violating the no-
signaling principle, could have implausible consequences from an information
processing point of view. Particularly, he showed that distant parties having
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access to PR-boxes can render communication complexity trivial and argued
that this could be a reason for the non-existence of these correlations in Nature.
This principle is known as “non-trivial Communication Complexity” (CC) (see
(vD00; BBL+06)).

Another proposed principle is “Information Causality” (IC) (PPK+09), which
is formulated in terms of the following protocol. Alice is given a bit string x
of length n, chosen uniformly at random, and Bob receives a random (integer)
number k ∈ [1, n]. Alice then may send a bit string a, of length m, which
Bob may use to guess the k’th bit of Alice’s original bit string, i.e. xk. The
parties may also share some no-signaling correlations, which can assist Bob’s
guessing. IC imposes that

∑n
k=1 I(xk : βk) ≤ m, where βk is Bob’s guess of

xk, and I(x : y) is the classical mutual information4. The intuition behind
this bound is that the total information that Bob can access about Alice’s bits
cannot exceed the size of the message she sends. The main result of IC is that,
if the no-signaling correlations the parties share violate CHSH by a value larger
than Tsirelson’s bound, then the IC condition is not satisfied. In particular, if
the parties share a PR box, then the IC condition is maximally violated, and
Bob can always guess with certainty Alice’s bit. However, quantum correlations
do satisfy IC. Although the initial formulation of IC is indeed based on a par-
ticular information-theoretic protocol between Alice and Bob, there have been
reformulations of the principle where the figure of merit is expressed in terms
of entropies (BBOC+10; ASS11), and other types of games are considered.

Information Causality is an information principle which has a bipartite for-
mulation. Indeed, when applying the principle, a protocol involving two parties
should be performed. Hence, if we consider a general scenario (n,m, d), a natu-
ral way to extend IC is to divide the n parties into two groups, and perform the
protocol considering each group of parties as one new party. The IC principle
will then be satisfied for the n parties if it is satisfied for every partition of the
parties into two groups. This way of generalizing IC to a multipartite scenario
applies for any principle with a bipartite formulation. However, this generaliza-
tion of bipartite principles for multipartite scenarios proves not to be enough
for characterizing multipartite quantum correlations. Indeed, in (GWAN11) it
was proven that there exist supra-quantum correlations for three parties which
behave classically under any bipartition. Hence, intrinsically multipartite prin-
ciples are essential to characterize the set of quantum correlations.

A different approach to the problem of characterizing quantum correlations is
given by Navascués, Pironio and Aćın (NPA) (see (NPA07; NPA08)). They in-

4I(x : y) = H(x) +H(y)−H(x, y), where H(x) is the classical Shannon entropy H({qi}) =∑
i qi log2(qi)
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troduced a hierarchy of semidefinite programming (SDP) tests to check whether
a given P has a quantum representation. Their method applies to any Bell sce-
nario and is independent of the dimension of the quantum systems. Instead
of directly searching for a quantum state and measurements that reproduce
the statistics of P, they consider a family of weaker conditions. Each of these
conditions amounts to verify the existence of a positive semidefinite matrix
partially constructed from the elements of P, whose structure depends on the
algebraic properties satisfied by quantum states and measurements. The family
of conditions forms in fact a hierarchy of increasingly stronger constraints, in
the sense that if a conditional probability distribution P fails one of its levels,
the immediate conclusion is that P does not have a quantum realization, and
there is no need to test the following levels. If a conditional probability distri-
bution P satisfies all the levels of the hierarchy, then it belongs to the quantum
set. Even though the NPA hierarchy recovers the quantum boundary in the
asymptotic limit, it may not seem operationally useful, since there is evidence
that the hierarchy may not always converge in a finite number of steps. Indeed,
the fact that a conditional probability distribution P satisfies one level does
not imply that it is quantum. Hence, one would expect that the hierarchy is
most useful when trying to detect correlations of supra-quantum nature, since
one would just look for a failed test. However, this hierarchy proves also to
be handy when computing the quantum bounds of Bell inequalities (PV09).
Indeed, given an inequality, each level of the hierarchy can be used to estimate
an upper bound on the value that quantum correlations can achieve. For a sig-
nificantly large number of inequalities, this approach turns out to be very useful
since the corresponding upper bounds converge to the real quantum bound in
a finite number of steps.

It is worth mentioning that, even though tight Bell inequalities define the
boundary between the classical and nonlocal set, sometimes they also define
part of the quantum boundary. This unknown feature for bipartite scenarios
was first noticed in (ABB+10) for the multipartite case. There, the authors
define a game called guess your neighbour’s input (GYNI), in which each player
receives a bit xj , and assisted by some shared correlations he should guess the
input bit of its neighbour. One further rule of the game is the promise that
the input bits satisfy the condition

∑
i xi = 0, where the sum is taken mod 2.

This game has the following interesting property: players sharing classical cor-
relations perform equally well than when sharing quantum correlations, that
is, the overall probability of guessing correctly does not increase when upgrad-
ing the shared correlated devices from classical to quantum. However, when
the players share supra-quantum no-signaling correlations, their guessing prob-
ability increases. In the (3, 2, 2) scenario, for instance, the figure of merit is
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Pguess = 1
4 (P (000|000) + P (110|011) + P (011|101) + P (101|110)). For quan-

tum or classical resources Pguess ≤ 1
4 , while general no-signaling correlations

can achieve Pguess = 1
3 . Condition Pguess ≤ 1

4 is usually referred to as GYNI’s
inequality for the tripartite scenario, and may be rewritten as

P (000|000) + P (110|011) + P (011|101) + P (101|110) ≤ 1. (2.11)

Since GYNI inequalities bound the set of classical correlations, they are also
Bell inequalities, and since they are not violated by quantum correlations they
also bound the quantum boundary. Moreover, for the case of odd number of
parties GYNI inequalities prove to be tight Bell inequalities, i.e. they define
facets of the local polytope.

2.2. Contextuality

Much effort has been devoted to understanding the peculiarities of quantum
theory. In particular, this applies to the phenomenon known as contextuality.
Formulated as the Kochen-Specker theorem (KS67), but also previously studied
by Von Neumann (vN55), it states that quantum theory is at variance with any
attempt to assign deterministic values to all observables in a way which would
be consistent with the functional relationships between these observables.

Similarly to nonlocality, contextuality tests usually deal with the statistics
of measurement outcomes and expectations values of observables. However,
in this case there are no space-like separated parties but just a single system
under study. The idea then is, given a set of measurements/observables, check
the compatibility of the observed outcome’s statistics with classical, quantum
and no-signaling models. The definitions of section 2.1 naturally apply here, by
considering the case of just a single party.

The original idea of Kochen and Specker (KS67) can be rephrased as follows.
Consider, without loss of generality, a set of projective measurements and the
following promises: (a) when measuring over a system the outcome associated
to each projector can have either probability 0 or 1, independently of the mea-
surement the projector belongs to, and hence every projector can be labelled
by 0 or 1, (b) for each set of orthogonal projectors that sum up to the identity
on the corresponding Hilbert space (i.e. for each complete measurement) only
one vector can have the label 1 whereas the others should have the label 0. The
question is, are these promises satisfied by any set of projective measurements?
The seminal paper by Kochen and Specker (KS67) answered this as negative,
and since then many works have been done to find the smallest set of projec-
tors that violate the promises (CEGA96). The key point in this argument is to
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consider a set of projective measurements such that every measurement shares
one projector with another one. Then, a logical contradiction is achieved when
trying to assign the values 0 or 1 to these common projectors.

The study of contextuality so far often seems to have been concerned with
particular examples of contextuality and “small” proofs of the Kochen-Specker
theorem, while a general theory has hardly been developed. Some notable
exceptions are the study of test spaces in quantum logic (CMW00; Wil09),
Spekkens’ work on measurement and preparation contextuality (Spe05; LSW11),
the sheaf-theoretic approach pioneered by Abramsky and Brandenburger (AB11),
and the graph-theoretic approach of Cabello, Severini and Winter (CSW10). In
this section, I will comment on the last two.

2.2.1. Observable-based approach

The observable-based approach to quantum contextuality and nonlocality was
first explicitly studied by Abramsky and Brandenburger (AB11). They use the
mathematical language of sheaf-theory to provide a unified framework where
nonlocality arises as a particular form of contextuality.

In this framework, a contextuality scenario is defined by a set of observables
X together with a finite set O of outcomes and a measurement cover M. A
measurement cover M is defined as a family of subsets of X: M ⊆ 2X , such
that every observable occurs in some subset C ∈M and the following property
is satisfied: for any choice of two elements C,C ′ ∈ M (recall that both C and
C ′ are sets of observables), if one is contained in the other, say C ⊆ C ′, then
the two elements are the same C = C ′. The latter property guarantees a notion
of “maximality” for the elements ofM. The C ∈M are called measurement
contexts, and specify the sets of jointly measurable observables.

Abramsky and Brandenburger further define the concepts of no-signaling,
quantum and non-contextual (or local) empirical models, in the sense of section
2.1, but whose formulation I will skip since the sheaf-theoretic formalism is
beyond the scope of this thesis.

This new insight into the problem of contextuality lead into novel results,
such as the distinction among different degrees of strength of contextuality,
and provided a wide variety of tools to tackle the problems of nonlocality and
contextuality in a unified manner.

2.2.2. Graph-theoretical approach: CSW

Cabello, Severini and Winter (CSW10) studied contextuality scenarios from a
graph-theoretical scope. They consider a contextuality scenario to be described
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as a collection of measurements which states how many outcomes each mea-
surement has, and which measurements have which outcomes in common: here,
different measurements may share outcomes, in the sense that outcomes of dif-
ferent measurements may define the same event. For instance, consider the case
of projective measurements in quantum mechanics. It may happen that two
measurements {Πx

a}a and {Πy
b}b have (at least) one common projector between

their sets, say {Π′xa } = {Π′yb }. The outcomes associated to these two projec-
tors then corresponds to the same physical property of the system, and hence
are represented by the same vertex in the characterization of the contextuality
scenario. This vertex will then appear in both the hyperedge corresponding
to {Πx

a} and the one of {Πy
a}. An important note on the CSW approach, is

that they do not mind whether the measurements that describe the scenario are
complete, i.e.

∑
a p(a|x) ≤ 1. Hence, there might be measurement outcomes

that are not considered when defining the scenario.

Formally, CSW defines a contextuality scenario as a hypergraph H = (V,E).
The set of vertices V encompasses all the considered outcomes of all the con-
sidered measurements, in the sense that every vertex v ∈ V maps to a mea-
surement outcome and vice-versa. I will usually refer to a vertex as event. The
hyperedges e = {v1, · · · , vk} ∈ E are subsets of V , and each of them should be
thought of as a measurement, where its vertices are the allowed measurement
outcomes. Here, a natural notion of orthogonality (or exclusiveness) among
events comes with the very definition of the scenario. Two events which are
outcomes of the same measurement are naturally exclusive. Then, in the lan-
guage of graph theory, two vertices u and v are orthogonal (denoted by u ⊥ v)
if there exists a hyperedge e ∈ E such that u ∈ e and v ∈ e. By means of
this notion of exclusiveness, CSW further defines the orthogonality graph5 G
of contextuality scenario H = (V,E) as follows: the vertex set of G is that of
H, and two vertices share an edge in G if there exists a hyperedge in H that
contains both of them.

Their aim is to analyze the maximum value of the expression β =
∑

v∈V p(v),
for different families E of assignments p : V → [0, 1]. The value p(v) is thought
of as the probability that the outcome v is obtained when a measurement it
belongs to is performed. The results they find are expressed in terms of graph
theoretical invariants presented in next section.

The first case of study is classical assignments. These are the ones obtained
as convex combinations of the deterministic assignments p defined as follows:

5In the original CSW paper, it is called adjacency graph. Since it coincides with our definition
of orthogonality graph of section 3.4, we will keep our notation, not to introduce redundant
information.
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p(v) = {0, 1} and p(u) p(v) = 0 for all u ⊥ v. The set of classical assignments is
denoted by EC. The maximum of β over the elements of EC is βC = α(G) – the
independence number of the orthogonality graph (see section 2.3 for definitions).

The second case of study is that of quantum assignments. In this formalism,
an assignment p is quantum if there exists a Hilbert space H, a state ρ ∈ H,
and projectors Pv ∈ H for every vertex v ∈ V , such that (a) if u ⊥ v then
Pu ⊥ Pv, (b) for every set C of mutually orthogonal events

∑
v∈C Pv ≤ 1H, (c)

and p(v) = tr(ρPv). The set of quantum assignments is denoted by EQM. The
maximum value of β for such a class of assignments is given by βQM = ϑ(G) –
the Lovász function of G (see section 2.3 for definitions). The intuition behind
it comes from the very definition of ϑ. There, a unit vector |Ψ〉 for graph G
together with one unit vector |φv〉 for each vertex v ∈ V are found such that
orthogonal vectors are assigned to exclusive events, i.e. adjacent vertices, and
ϑ(G) = max|Ψ〉, {|φv〉}

∑
v∈V |〈Ψ|φv〉|2.

The third case of study is a general probabilistic theory class (GPT), defined
as the assignments p satisfying

∑
v∈C p(v) ≤ 1, for every set C of mutually

orthogonal events. This requirement was later taken as a principle to bound
the set of quantum models for contextuality scenarios, usually referred to as
Consistent Exclusivity (Hen12; FLS12) or Global Exclusivity (Cab13). Hence,
the use of GPT to denote this family of models does not relate to general
No Signaling models. In any case, for this set, CSW shows βGPT = α∗(G) –
the fractional packing number of the orthogonality graph (see section 2.3 for
definitions).

CSW also extends the problem to arbitrary linear functions of p, namely
~λ ~p =

∑
v∈V λv p(v), with λv ≥ 0 for all v ∈ V . They show that finding the

maximum of ~λ ~p for quantum assignments p ∈ EQM is equivalent to solving a
semidefinite program.

The question now is how do Bell Scenarios fit in this formalism. In this case,
there are some extra constraints on the assignments p given by the normal-
ization of the conditional probability distributions, which are not taken into
account in this subnormalized approach. Hence, when studying Bell Scenarios,
CSW includes normalization as an extra constraint in the previously mentioned
convex optimization of ~λ ~p. When doing so, they define for every class of as-
signments X = C,QM,GPT the new sets E1

X, as the restriction of EX to those
assignments that satisfy normalization. First, they prove that in bipartite sce-
narios this new set E1

GPT is the set of no-signaling correlations defined in section
2.1.1. Then, they analyze the maximal violations obtained for the Bell inequal-
ities CHSH and I3322. For CHSH they find βQM = 2 =

√
2, i.e. they recover

Tsirelson’s bound. However, for I3322 they obtain βQM ∼ 0.25147 while the best
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know upper bound to I3322 is smaller: 0.25087 (see (CSW10) for details). The
reason for this discrepancy is attributed to the bipartite structure of the Bell
Scenario. When optimizing βQM, one finds a state ρ and projectors Πv such
that p(v) = tr(ρΠv). However, for a Bell Scenario, as the vertices v = (vA, vB)
refer to one local event for Alice and one for Bob, the projectors should also
satisfy that locality condition Πv = ΠvA ΠvB , with [ΠvA ,ΠvB ] = 0 ∀ vA, vB,
as well as the no-signaling principle. These extra constraints are not taken into
account in the SDP, which may lead to a larger value for βQM than the one
attainable for Bell Scenarios. The following paragraph may also be considered
as a possible cause of this discrepancy.

It is worth mentioning that the set of normalized quantum assignments E1
QM is

not the set of quantum correlationsQ defined in section 2.1.3. Even though both
cases are normalized at the level of p, they require different constraints at the
level of the projectors Pv. On the one hand, CSW imposes

∑
v∈C Pv ≤ 1H for

every set C of mutually orthogonal events, even for those C which correspond
to the normalized measurements. Note that this is still consistent with the
normalization of p, since the projectors may sum up to the identity in the
subspace ofH where ρ has support. On the other hand, quantum correlations on
a Bell scenario require

∑
v∈C Pv = 1H for those C that correspond to complete

measurements. Hence, the orthogonality relations among the projectors must
be satisfied in the the subspace of H where ρ has support. It naturally follows
that Q ⊆ E1

QM.

All in all, the CSW formalism is a powerful tool when studying general con-
textuality scenarios, and its connection to graph theory has proven very useful
for testing the contextual character of quantum mechanics, both theoretically
and experimentally.

2.3. Introduction to Graph Theory

In this section, I will introduce some concepts of graph theory that will be of
use throughout the thesis. Formal mathematical definitions are presented in
appendix A.

In this thesis, we consider a graph to be a collection of points, called vertices,
some of them joined by edges. A graph is usually denoted by G = (V,E),
where V and E are the sets of vertices and edges, respectively. In addition,
two vertices are called adjacent if they share an edge in E. For example,
the pentagon graph of Fig. 2.3(a) is defined as V = {1, 2, 3, 4, 5} and E ={
{1, 2}, {(2, 3}, {3, 4}, {4, 5}, {1, 5}

}
. In what follows, I will present some useful

concepts of graph theory, and use as example the pentagon graph of Fig. 2.3(a).
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(a) Pentagon Graph
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(b) Complement

Figure 2.3.: Example: (a) pentagon graph and (b) its complement. Since (a)
and (b) are isomorphic, the graph-theoretic invariants have the same values for
both of them. These values are the following: independence number α = 2,
clique number w = 2, Shannon capacity Θ =

√
5, Lovász number ϑ =

√
5, and

fractional packing number α∗ = 5
2 .

Empty graph: A graph G = (V,E) is called empty if the edge set is empty,
i.e. all the vertices are disconnected.

Subgraph: A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) whose
vertex set V ′ is a subset of V , and whose adjacency relations E′ are those of E
restricted to the subset V ′. Example: the graph G′ constructed from the vertex
set V ′ = {1, 2, 3} with edges {1, 2} and {2, 3} is a subgraph of the pentagon.

Complement graph: The complement of a graph G, denoted by G, has the
same vertex set as G, but complementary adjacency relations: two vertices in
G are connected if and only if they do not share an edge in G. Example: the
graph of Fig. 2.3(b) is the complement of the pentagon.

Independent set: is a set I of vertices of G such that no pair of elements of
I share an edge on G. An independent set is maximal if it cannot be extended
to a larger independent set.

Clique: is a set C of vertices of G such that every pair of elements of I
share an edge on G. Note that a clique on G is an independent set on G, and
vice-versa. Similarly, a clique is maximal if it cannot be extended to a larger
clique.

Cycle: is a sequence of vertices starting and ending at the same vertex,
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where two consecutive vertices in the sequence are adjacent to each other in
the graph. The length of a cycle tells the number of vertices the sequence has,
where the initial/final vertex is counted only once. Example: in the pentagon,
the sequence “1, 2, 3, 4, 5, 1” is a cycle of length 5.

Weighted graphs: A weighted graph is a graph where each vertex is
equipped with a “weight”, i.e. a real number.

Isomorphic graphs: Two graphs G and G′ are called isomorphic, if there
exists a one-to-one correspondence between the vertex sets V and V ′ such that:
two vertices in V are adjacent in G if and only if the corresponding vertices
in V ′ are adjacent in G′. Example: the complement graph of the pentagon
(Fig. 2.3(b)) is isomorphic to the pentagon (Fig. 2.3(a)) via the assignment:
(1, 2, 3, 4, 5) ← (1, 3, 5, 2, 4).

Orthonormal labelling: A set of unit vectors {ψv}, indexed by the vertices
v ∈ V of a graph G, is an orthonormal labelling of G if they follow the adjacency
relations of G in this sense: whenever two vertices u and v do not share an edge
in G, the corresponding vectors ψu and ψv are orthogonal.

Among the operations defined over graphs, there are many related to the
notion of product. I will present the two which are used in this thesis.

Conormal product: Given two graphs G1 and G2, their conormal product
is a graph G = G1 · G2 with the following properties. The vertex set V is the
cartesian product between the two sets V1 and V2, i.e. every vertex in V is
indexed by a vertex in V1 and one in V2 – v = (v1, v2). Then, two vertices
(v1, v2) and (u1, u2) share an edge in G whenever v1 and u1 are connected in
G1 or v2 and u2 are connected in G2.

Strong product: Given two graphs G1 and G2, their strong product is a
graph G = G1�G2 where the vertex set V is the cartesian product between the
two sets V1 and V2. The adjacency relations go as follows: two vertices (v1, v2)
and (u1, u2) share an edge in G basically if both v1 and u1 are connected in
G1 and v2 and u2 are connected in G2. In the case where v1 = u1 or v2 = u2,
we only demand that the other two vertices be adjacent in the corresponding
graph. Note thus that the edge set E(G1 �G2) is a subset of E(G1 ·G2), since
the constraints for adjacency are stronger.

There are other properties of graphs, sometimes referred to as graph-theoretical
invariants, which play an important role in my thesis. These are explained in
the following.

Independence Number: usually denoted by α, the independence number
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of a graph G is the size of the largest independent set on G. In the case of
weighted graphs, it corresponds to the largest weight of an independent set on
G, where the weight of I is the sum of the individual weights of the vertices
that belong to I. Example: for the pentagon, α = 2.

Clique Number: it denotes the size of the largest clique on G. In the case of
weighted graphs, it corresponds to the largest weight of a clique on G. Example:
for the pentagon, the clique number is w = 2. This is not surprising, since the
clique number of a graph equals the independence number of its complement,
and in the case of the pentagon its complement is isomorphic to itself.

Shannon Capacity: intuitively, the Shannon capacity can be thought of as
a limit case of the independence number. The idea is to take the strong product
of G with itself k times, compute the independence number αk of the resulting
graph, and by this construct the series k

√
αk. The limit of this series when the

number of copies goes to infinite is the Shannon Capacity of G, and is denoted
by Θ. Example: for the pentagon, Lovász proved in (Lov79) that its Shannon
capacity is Θ =

√
5.

Lovász Number: this quantity, first introduced by Lovász (Lov79), is re-
lated to the orthonormal labellings of the graph under consideration. Originally
formulated as a bound for the Shannon capacity, it has nowadays many equiva-
lent formulations (see (Knu94)), each of them with its own motivation. The one
I find more intuitive to mention here is formalized in eq. (A.16) of appendix A.
Consider an orthonormal representation {ψv} of the complement of G, a unit
vector Ψ, and compute the sum S =

∑
v∈V (Ψ ·ψv)2. Then, the Lovász number

ϑ is the maximum of S when optimizing over the choices of unit vectors Ψ and
orthonormal representations {ψv} of G. Example: in the case of the pentagon,
the Lovász number is ϑ =

√
5 (Lov79). An orthonormal representation {ψv}

and unit vector Ψ which achieve the value can be constructed as follows: con-
sider an “umbrella” with five “ribs”, and associate its handle to the vector Ψ.
Then, open the umbrella until the angle between the ribs is π

2 : the ribs can now
be associated with the five vectors {ψv}, since they satisfy the orthogonality re-
lations. Note that, since the pentagon and its complement ase isomorphic, any
orthonormal representation of the former is also an orthonormal representation
of the latter after relabelling the vertices accordingly.

Fractional packing number: usually denoted by α∗, it tells which is the
maximum possible total weight of the graph G, when the weights of the in-
dividual vertices are asked to satisfy some constraints, namely that no clique
on G has a weight larger than 1. In the case when G is already a weighted
graph equipped with vertex weights pv, the fractional packing number max-
imizes the quantity

∑
v∈V pvqv over all possible assignments qv which satisfy

that the sum of the values of qv for any clique is upper bounded by one. Note
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that the unweighted version of α∗ can be computed by its weighted counterpart
by setting all the original weights pv equal to one. Example: for the pentagon,
the fractional packing number is α∗ = 5/2.

In this section I presented a summary of the main concepts I use throughout
this thesis. Appendix A provides formal mathematical definitions and proper-
ties.
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How to characterize the boundary of the set of quantum correlations is an
interesting and still open problem. Even though there are some proposals for
information-theoretic based principles to bound the quantum set (see chapter
2), all of them have a bipartite formulation, while truly multipartite principles,
yet to be discovered, are necessary for characterizing quantum correlations in
a multipartite Bell scenario (GWAN11).

In this chapter I present the first proposal of an intrinsic multipartite princi-
ple to bound the set of quantum correlations: Local Orthogonality (LO). The
principle is based on a definition of orthogonality (or exclusiveness) between
events involving measurement choices and results by distant parties, and has
a natural interpretation in terms of Distributed Guessing Problems. LO also
implies a highly non-trivial structure in the space of correlations, specially for
multipartite settings. In addition, LO can be used to detect the non-quantumn
nature of some bipartite correlations, such as PR-boxes, and to get very close
to the boundary of quantum correlations. Finally, I prove that the intrinsically
multipartite formulation of the principle allows one to detect supra-quantum
correlations for which any bipartite principle fails.

It is worth mentioning that although LO is useful for many tasks, Miguel
Navascués proved that it does not recover the set of quantum correlations
(NGHA13). In the next chapter I will provide a proof of this statement based
on his original one, but also considering contextuality scenarios.

3.1. The Local Orthogonality principle

In this section, I present the formal definition of the LO principle.
A general Bell Scenario, in the device independent formalism, is defined in

terms of few parameters: the number of parties, of measurements they have
access to, and of outputs those may produce. Hence, little is assumed on
the collective events (a1 . . . an|x1 . . . xn), which refer to the situation where the
parties measure (x1 . . . xn) and obtain (a1 . . . an). Then, is there any relation
we can tell among the events of a Bell scenario (n,m, d) ? In this thesis, a
notion of exclusiveness, or orthogonality, in introduced in this space of events.
The idea is the following. Consider two different events e and e′ given by
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e = (a1 . . . an|x1 . . . xn) and e′ = (a′1 . . . a
′
n|x′1 . . . x′n). We call these two events

locally orthogonal or simply orthogonal, if they involve different outputs of the
same measurement by (at least) one party. That is, if for some i we have ai 6= a′i
while xi = x′i. We then call a collection of events {ei} orthogonal, or exclusive,
if the events are pairwise orthogonal.

The motivation behind these definitions is twofold. First, the inputs and
outputs in a device independent framework are thought of classical commands
with classical results. Hence, it is natural to think that two situations where
the same command is given by at least one party but different responses are
obtained, are exclusive. Second, the notion of orthogonality is rather natural
in the case of two events. In fact, consider two locally orthogonal events e, e′

with ai 6= a′i and xi = x′i as before. These two events can be seen as different
outcomes of a correlated measurement in which: (i) party i first measures
xi and announces the outcome to the other parties and (ii) the other parties
apply measurements depending on this outcome, in particular they measure
x1 . . . xn, if the outcome is ai, and x′1 . . . x

′
n otherwise. Note that, as e and

e′ are outcomes of the same (correlated) measurement, normalization of the
conditional probability distribution implies that P (e) + P (e′) ≤ 1. The No
Signaling principle is essential for this correlated measurement to be meaningful,
as it is is possible to define the marginal probability for party i in the first step
of the correlated measurement independently of the successive actions by the
other parties.

The final ingredient of LO is to impose that for any set of orthogonal events,
the sum of their probabilities must not be larger than one,∑

i

P (ei) ≤ 1. (3.1)

To summarize: the LO principle (i) introduces a notion of orthogonality between
two events, (ii) imposes that any number of events are jointly exclusive when-
ever they are pairwise orthogonal, and (iii) requires that the inequality (3.1) is
satisfied for any set of orthogonal events:

Definition 3.1 (Local Orthogonality). Consider a Bell scenario defined by
(n,m, d). The Local Orthogonality principle states that:

1. Given two events e = (a1 . . . an|x1 . . . xn) and e′ = (a′1 . . . a
′
n|x′1 . . . x′n), e

is locally orthogonal to e′ is there exists a party i such that xi = x′i but
ai 6= a′i.

2. Given a set of events, these are jointly exclusive whenever they are pair-
wise orthogonal.
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3. For every set S of exclusive events, the following holds:
∑

e∈S P (e) ≤ 1.

In the previous paragraphs we showed that any two orthogonal events satisfy
the inequality (3.1). The principle however becomes more restrictive when con-
sidering more events, where the previous reasoning does not apply any longer.
As mentioned above, we extend the initial definition of orthogonality for two
events to more events by demanding pairwise orthogonality. In addition, the
formulation of the principle is independent of the number of parties, hence it is
not a bipartite principle generalized to multipartite scenarios by testing every
bipartition (see section 2.1.6). It is precisely this extended and intrinsically mul-
tipartite formulation that makes the principle non-trivial, because it involves
summing probabilities conditioned on different measurements.

It is worth mentioning that in general probabilistic theories, Boole’s axiom
only demands that the sum of the probabilities of jointly exclusive events does
not exceed 1 (Boo62), while pairwise exclusive events are not necessary jointly
exclusive. A nice example of this is given by Henson (Hen12), and consists of
the complete graph of 5 vertices, where all the events are orthogonal among each
other (see Fig. (3.1)). This orthogonality, by Boole’s axiom, implies that the
sum of the probabilities of any two events is upper bounded by 1. Thus, a model
that assigns a probability 1

2 to each event satisfies the condition. However, if
we now demand pairwise exclusive events to be jointly exclusive, the previous
model is not allowed any more, since the sum over all vertices gives a value of
5
2 in contradiction to Boole’s axiom. We see then how the definition of joint
orthogonality stated by LO imposes extra non-trivial constraints.

Moreover, it should be stressed that Boole’s axiom applies only to probability
distributions, whereas the LO principle bounds conditional probability distri-
butions. The latter are probabilities conditioned on the given measurements,
and this condition is usually different for each term in the inequality (3.1).
Hence, in order to correctly apply Boole’s axiom, one should make the proba-
bilities P (a1 . . . an|x1 . . . xn) unconditional by considering the probabilities for
the measurements P (x1 . . . xn) and constructing

P (a1 . . . an, x1 . . . xn) = P (a1 . . . an|x1 . . . xn)P (x1 . . . xn).

Now, even if the original box P (a1 . . . an|x1 . . . xn) violates the inequality (3.1),
the joint distribution P (a1 . . . an, x1 . . . xn) is a well-defined probability distri-
bution and hence satisfies Boole’s axiom.

Every (maximal) set of pairwise orthogonal events then gives rise to an in-
equality via eq. (3.1), which we denote by “LO inequality”. All the restrictions
on the conditional probability distributions implied by LO come from all the LO
inequalities for the given (n,m, d) scenario. The set of LO correlations is then
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(a) Pairwise exclusive (b) Jointly exclusive

Figure 3.1.: Example of exclusive events when demanding (a) pairwise exclu-
sivity or (b) general joint exclusivity. In the first case, an assignment of a
probability 1

2 to each event is allowed, since for every pair of exclusive events,
the sum of their probabilities is 1. For the second case, this assignment is no
longer allowed, since the total sum over all events equals 5

2 , which contradicts
Boole’s axiom. Hence, the LO principle imposes that a set like (a) behaves
like (b) regarding exclusivity properties, which as commented translates into
non-trivial constraints.
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3.2. LO as an information task

the set of conditional probability distributions P (a1 . . . an|x1 . . . xn) satisfying
all the LO inequalities, and is denoted by LO1.

3.2. LO as an information task

Before moving on to the characterization of LO correlations, I provide an in-
terpretation of the principle from an information processing viewpoint. To this
end, the notion of a Distributed Guessing Problem (DGP) is introduced.

Guessing problems are ubiquitous in science. In the standard formulation
(see Fig. 3.2(a)) an observer has access to some data x which depends on some
initial parameter ã, that is x = f(ã). From the observed data, the observer
should make a guess, a, of the initial parameter. His goal is to maximize the
probability of guessing correctly.

Guessing problems can be easily adapted to distributed scenarios. It is conve-
nient to present the distributed guessing problem as a game and to phrase it in
terms of vectors of symbols. Consider then a non-local game in which a referee
has access to a set of vectors of n symbols with values in {0, . . . , d−1}. Denote
this set by S and by |S| its size, which can be less than dn in general. Now, the
referee chooses a vector (ã1, . . . , ãn) uniformly at random from S, and encodes
it into a new vector of, again, n symbols using a function f . However, the new
symbols can now take m values and, thus, f : S −→ {0, . . . ,m − 1}n. The re-
sulting vector is (x1, . . . , xn) = f(ã1, . . . , ãn). These n symbols are distributed
among n distant players who cannot communicate and must produce individual
guesses a1, . . . , an. Their goal is to guess the initial input to the function, that
is, they win whenever aj = ãj for all j. Note that the encoding function f and
the set S are known in advance to all the players, who in addition may share
some device that correlates them.

For some f , e.g. for xj = ãj , this task is very simple. However, there exist
functions for which the task becomes extremely difficult. For a fixed size |S|,
the most difficult functions are those for which the maximum guessing proba-
bility is equal to 1/|S|. The players can always achieve this guessing probability
by agreeing beforehand on one of the |S| possible outputs, which they output
regardless of the xj . Since the input is uniform on S, their guess is correct with
probability 1/|S|. A DGP is thus maximally difficult whenever this strategy is
optimal, that is, whenever it is impossible to provide a better estimate of the
input than random guessing. For such an f , having access to the symbols xj
does not provide any useful information to the parties. Note that non-trivial
maximally difficult functions are possible only in distributed scenarios. In stan-
dard single-observer guessing problems, the only maximally difficult function is
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f

ã

x

Guess

a

(a) Standard Guessing Problem

f

ã1, · · · , ãn

x1 xn

Guess Guess· · ·

a1 an

(b) Distributed Guessing Problem

Figure 3.2.: Guessing problems in the (a) standard and (b) distributed scenar-
ios. In the standard scenario, an observer has to guess the value of a parameter
ã given only some function of it, x = f(ã). In the distributed scenario, the
input parameter is a vector of n symbols, (ã1, . . . , ãn) and so is the data given
to the players (x1, . . . , xn). Each of player has access to just one of the symbols
xj and has to guess the corresponding initial parameter ãj . The game is won
when all players guess correctly.

the one defined by a constant function f , which trivially erases any information
about the input. An example of a difficult function in the (n, 2, 2) scenario
for odd n and classically correlated players is f(a1, . . . , an) = (an, a1, . . . , an−1)
defined on the set S of inputs satisfying a1 ⊕ . . . ⊕ an = 0. This is the Guess-
Your-Neighbour’s-Input task considered in (ABB+10).

Next, we prove that a DGP is maximally difficult for players sharing classical
correlations (classical players) if, and only if, it corresponds to an LO inequality.
Hence, in order to win the game with a probability larger than 1/|S|, they need
to share correlations violating LO. In particular, quantum correlations provide
no advantage over the trivial strategy of randomly guessing the solution since
they satisfy LO (see section 3.5.2).

Our goal then is to prove that imposing that correlations do not provide
any advantage for DGP involving maximally difficult functions f is equivalent
to LO. For such an f and any correlations P (a1 . . . an|x1 . . . xn), providing no
advantage for the DGP defined by f means that

1

|S|
∑

(a1,...,an)∈S

P (a1 . . . an|f1(a1, . . . , an) . . . fn(a1, . . . , an)) ≤ 1

|S|
, (3.2)

where f1, . . . , fn refer to the components of the vector f , and xj = fj(a1, . . . , an)
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3.3. LO in networks: a hierarchy of sets

is the input that party j receives. Note that, for simplicity, and since the goal
of the parties is to provide a correct guess of the initial parameters, we slightly
abuse notation and replace all ãj by aj . In order to prove the correspondence, we
now show that functions f that are maximally difficult for classical players are
precisely those which have the property that if f(a1, . . . , an) and f(a′1, . . . , a

′
n)

are both defined (that is, both (a1, . . . , an) and (a′1, . . . , a
′
n) belong to S), then

there exists some j for which aj 6= a′j , but fj(a1, . . . , an) = fj(a
′
1, . . . , a

′
n).

Given that f varies over all those partial functions having this property, the
DGP inequalities (3.2) define all LO inequalities in the (n,m, d) scenario.

We first prove the ’only if’ direction by contradiction. Assume there exist
a1, . . . , an and a′1, . . . , a

′
n, both on which f is defined, such that for every party j,

either aj = a′j or fj(a1, . . . , an) 6= fj(a
′
1, . . . , a

′
n) holds true. Then the following

classical strategy performs better than random guessing: for those j with aj =
a′j , let them output this particular value independently of their input; for those
with aj 6= a′j and fj(a1, . . . , an) 6= fj(a

′
1, . . . , a

′
n), choose some function gj such

that aj = gj(fj(a1, . . . , an)) and a′j = gj(fj(a
′
1, . . . , a

′
n)), and let them output

gj(xj). This strategy recovers all correct values both for the a1, . . . , an as well
as for the a′1, . . . , a

′
n and therefore performs better than random guessing.

Conversely, we need to show that if f has this property, then using local
operations only cannot be more successful than random guessing. Thanks to
convexity, it is enough to consider deterministic local strategies. If a deter-
ministic strategy is better than random guessing, there needs to exist at least
a1, . . . , an and a′1, . . . , a

′
n such that the strategy works on both of these. In par-

ticular, this means that, for each party j, either aj = a′j , or party j needs to be
able to tell the two cases apart via xj , so that fj(a1, . . . , an) 6= fj(a

′
1, . . . , an).

This implies that f cannot have the property described above.

3.3. LO in networks: a hierarchy of sets

In a device independent formalism, the parties operate over devices (boxes)
by pressing buttons and obtaining outcomes. These devices can moreover
be distributed among a larger number of parties, forming a network. As an
example, consider a “bipartite” box, i.e. a device that is accessed by two
parties (namely one that accepts two inputs) and produces two outputs, one
for each party. The statistics of such a device is given by the conditional
probability distribution P (ab|xy). In addition, two copies of this box could
be distributed among four parties as shown in Fig. 3.3. These two bipar-
tite devices may now be used by the four parties to produce four outputs
when provided by four inputs, and hence the conditional probability distribu-
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x1
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x2

a2

y1

b1
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A
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D

Figure 3.3.: Two copies of a bipartite device characterized by the conditional
probability distribution P distributed among four parties: Alice, Bob, Charlie
and Dani.

tion P ′ (a1b1a2b2|x1y1x2y2) = P (a1b1|x1y1)P (a2b2|x2y2) on scenario (4, 2, 2) is
studied. It is natural to assume that if a bipartite device characterized by P
exists in nature, so should a fourpartite device constructed in this way charac-
terized by P ′. In this section I will formalize the problem of how to restrict the
possible conditional probability distributions P by imposing LO constraints on
P ′ in the larger scenario.

First, we define the sets of correlations that obey LO for a certain number of
copies in the following sense. A given conditional probability distribution for the
(n,m, d) scenario can be thought of as provided by some device shared between
the n parties each having access to one input and output of the device. If the
correlations provided by the device are compatible with LO, a natural question
is whether a larger conditional probability distribution coming from several
copies of such a device distributed among more parties necessarily satisfies LO.
As we will show in section 3.5.3, the answer to this question is negative. That
is, LO displays activation effects and, hence, we have a hierarchy of sets.

The largest set in this hierarchy, denoted LO1, is the set of all correlations
in the (n,m, d) scenario which obey the LO inequalities for this scenario. We
have referred to this as “LO set” in the previous section, but when emphasizing
its place in the hierarchy we will refer to it as LO1.

Now consider k copies of a device characterized by a conditional probability
distribution P , distributed among kn parties, each of which has access to one
input of only one device. See for instance Fig. (3.5), where 2k parties share k
copies of the bipartite box PR. If the conditional probability distribution P k

of the kn-partite global device obeys all the LO inequalities for the scenario
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(kn,m, d), we say that P satisfies LOk, and belongs to LOk. These sets satisfy
a chain of inclusions:

LO∞ ⊂ . . . ⊂ LOk ⊂ LOk−1 ⊂ . . . ⊂ LO1

We denote by LO∞ the set of correlations for (n,m, d) which obey the LO
inequalities for any number of copies.

It is worth mentioning that when defining this hierarchy of LO sets, inde-
pendent copies of the same device are considered, where no subset of boxes are
combined to produce outputs. This latter case will be partially addressed at
the end of the chapter.

3.4. LO and Graph Theory

Having stated the LO principle, our main goal is the study of the sets LOk
of LO correlations. As we shall see, the LO principle turns out to be very
powerful for ruling out non-quantum correlations. As in the case of contextual-
ity (CSW10), graph theory is perfectly suited for our purposes. We consider the
(md)n possible events in the (n,m, d) scenario and map them onto a graph with
(md)n vertices. The edges of the graph arise from the orthogonality relations
among the corresponding events, in the following way.

First, we define the orthogonality graph of scenario (n,m, d), which we denote
by G. It consists of (md)n vertices, where two vertices are connected by an edge
if and only if the corresponding events are locally orthogonal. For instance, Fig.
3.4 shows the orthogonality graph of the (2, 2, 2) scenario. In graph theory, a
clique in a graph G = (V,E) is a subset of vertices C ⊆ V (G) such that
the subgraph induced by C is complete, i.e. such that all pairs of vertices
in C are connected by an edge in G. A clique is maximal if it cannot be
extended to another clique by including a new vertex. Clearly, any clique in the
orthogonality graph of events gives rise to an LO inequality (and vice versa),
as all events in the clique are connected and, thus, are pairwise orthogonal.
Therefore, the problem “find all the optimal LO inequalities” is equivalent
to “find all maximal cliques of the associated orthogonality graph”. While
the problem of finding all maximal cliques of a graph is known to be NP-
hard (Kar72), there exist software packages (Uno05; NO10) that provide the
solution for small graphs. We have used these packages to derive and partly
classify LO inequalities for various Bell scenarios (see section 3.5.1 and appendix
C). Note however that in principle, while the problem of finding the maximal
cliques is NP-hard for general graphs, this may no longer be the case for graphs
associated to correlations among distant parties. Indeed, these graphs may
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3. Local Orthogonality

represent a subset of all possible graphs that does not include the hard instances
of the problem.

Consider now a Bell scenario (kn,m, d), motivated by the hierarchy of LO sets
defined in section 3.3. A natural question is how to relate the orthogonality
graph of (kn,m, d) (Gk) with that of (n,m, d) (G1). The answer is simple,
and is given by the conormal product of graphs, formally defined in section
2.3, denoted by “ · ”: given G1 = (V1, E1), the orthogonality graph Gk is the
conormal product of G1 with itself k times, Gk = G ·k1 . The intuition behind
the conormal product is the following: given two vertices (u1, u2) and (v1, v2)
of the product graph, they share and edge if either u1 and v1 are connected
in G1 or u2 and v2 are connected in G2. This is consistent with our notion of
orthogonality, where two events are orthogonal if at least for one local part of
the event the corresponding situations are orthogonal.

Another graph of interest is the complement of the orthogonality graph,
which we call non-orthogonality graph of Bell Scenario (n,m, d) and denote
by NO(Bn,m,d)

1. The preferred use of NO(Bn,m,d) over G began with the
study of LO correlations in contextuality scenarios (see chapter 4). The non-
orthogonality graph is thus defined as the graph NO(Bn,m,d) = (V,E), where
the vertices V correspond to the (md)n events of the Bell Scenario, and two
vertices share and edge if the corresponding events are not orthogonal. In graph
theory, an independent set of a graph is a subset I of vertices such that none of
them are connected by and edge, i.e. the sugbraph induced by I is empty. An
independent set is maximal if it cannot be extended to another independent set
by including a new vertex. Similar to the case of the orthogonality graph, any
independent set in the non-orthogonality graph defines an LO inequality, and
vice-versa. Hence, the problem “find all the optimal LO inequalities” is equiv-
alent to “find all maximal independent sets of the associated non-orthogonality
graph”. While the problem of finding maximal independent sets in NO(Bn,m,d)
is as difficult as finding maximal cliques in G, the advantage in the use of
NO(Bn,m,d) appears in the relation of its graph invariants with the hierarchy
of LO sets for contextuality scenarios, as explained in sections 4.6 4.8.

We now ask how to relate the non-orthogonality graph of (kn,m, d) with
that of (n,m, d). The answer is given by the strong product of graphs defined
in section 2.3, denoted by “ � ”: given NO(Bn,m,d), the non-orthogonality
graph NO(Bkn,m,d) is the strong product of NO(Bn,m,d) with itself k times,
NO(Bkn,m,d) = NO(Bn,m,d)

�k. The intuition behind the strong product is the
following: two vertices (u1, u2) and (v1, v2) of the product graph share and edge
if both u1 and v1 are connected in G1 and u2 and v2 are connected in G2, which

1This in principle complicated notation proves useful in chapter 4
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(00|00) (01|00) (00|01) (01|01)

(10|10) (11|10) (10|11) (11|11)

(10|00) (10|01)(11|00) (11|01)

(00|10) (00|11)(01|10) (01|11)

Figure 3.4.: Orthogonality graph of the (2, 2, 2) scenario. As mentioned in the
text, each possible event corresponds to a node, while the edges connect locally
orthogonal events.

is also similar to our notion of orthogonality.

In this work, we will relate graph invariants of the orthogonality and non-
orthogonality graphs to some problems regarding correlations, and we refer the
reader to section 2.3 and appendix A for their formal definitions.

3.5. LO and Correlations

In this section, I study how the LO principle imposes constraints over correla-
tions. I first investigate the connection between LO and the NS principle. Then,
I show that the LO principle is naturally satisfied by quantum correlations, and
hence classical correlations as well. I then investigate the use of LO as a tool
to detect post-quantum no-signaling correlations. Clearly, those correlations
violating GYNI are in contradiction with LO as well. However, the situation
turns out to be much richer already for two parties. In principle, one might
think that LO would be useless for the detection of supra-quantum bipartite
correlations because of the equivalence of LO1 with NS. However, this intuition
is not correct. I show that postulating LO also on the many-party level leads
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to detection of non-quantumness of bipartite correlations. The idea is similar
in spirit to the network approach to non-locality presented in Ref. (CASA11).

3.5.1. No-signaling correlations

The first question we ask when characterizing LO correlations is how they relate
to the set of no-signaling correlations.

For the case of bipartite scenarios, the answer is surprising since the No
Signaling principle defines the same set of correlations as LO. This was first
noticed by Cabello, Severini and Winter (CSW10), and an alternative proof in
given in appendix B.

However, this equivalence between LO1 and NS breaks down when moving
on to the multipartite scenario. In fact, consider the scenario (3, 2, 2). Exploit-
ing the graph-theoretical approach presented in section 3.4, we derive all the
LO inequalities for this scenario. These inequalities are then organized into
equivalence classes under the symmetries of relabelling of inputs/outputs, per-
muting the parties and imposing no-signaling constrains (see appendix C). We
find one (and only one) class of non-trivial LO inequalities, where non-trivial
means that the inequalities are violated by some NS correlations. This inequal-
ity turns out to be the GYNI inequality (ABB+10), which in the tripartite case
reads P (000|000) +P (110|011) +P (011|101) +P (101|110) ≤ 1. It is easy to see
by simple inspection that GYNI is an LO inequality. As shown in (ABB+10),
the maximum of the GYNI inequality over NS is equal to 4/3, which proves
the existence of NS correlations violating LO1.

Our numerical data suggest that the gap between LO1 andNS increases with
the number of parties: in the (4, 2, 2) scenario, we find already 35 equivalence
classes, which are presented in appendix C. Unfortunately, for more parties (n >
4), even the simplest scenario (n, 2, 2) becomes computationally intractable due
to the large size of the orthogonality graph. Nevertheless, examples of such
inequalities for larger n as well as m and d are known and can be constructed
from unextendible product bases (BDM+99) by using the method discussed in
(SFA+13).

3.5.2. Quantum correlations

Quantum correlations, presented in section 2.1.3, arise via Born’s rule

P (a1 . . . an|x1 . . . xn) = tr
(
ρΠx1

a1 ⊗ · · · ⊗Πxn
an

)
,

where Π
xj
aj are the projectors associated to the measurements outputs. In this

section we move on to prove that LO inequalities are satisfied by the set of
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3.5. LO and Correlations

quantum correlations, that is, Q ⊆ LO∞. First, we analyze an inequality
involving two exclusive events, where the statement is straightforward, and
then generalize the proof to an arbitrary LO inequality, which also means any
number of copies.

Consider two locally orthogonal events e1 = (a1
1 . . . a

1
n|x1

1 . . . x
1
n) and e2 =

(a2
1 . . . a

2
n|x2

1 . . . x
2
n) with a1

i 6= a2
i while x1

i = x2
i for some party i, and the

corresponding inequality p (e1) + p (e2) ≤ 1. The maximization of the sum of
these two probabilities over quantum correlations reads

max

|Ψ〉,{Π
x1
j

a1
j

}

〈Ψ| (Πx11
a11
⊗. . .⊗Π

x1i
a1i
⊗. . .⊗Π

x1n
a1n

+Π
x21
a21
⊗. . .⊗Πxi

a2i
⊗. . .⊗Π

x2n
a2n

) |Ψ〉 , (3.3)

where the maximization runs over all possible states |Ψ〉 and projectors {Π
xij
aij
}

acting on an arbitrary Hilbert space. Indeed, the maximization should act on

tr
(
ρ(Π

x11
a11
⊗ . . .⊗Π

x1i
a1i
⊗ . . .⊗Π

x1n
a1n

+ Π
x21
a21
⊗ . . .⊗Πxi

a2i
⊗ . . .⊗Π

x2n
a2n

)
)
,

but since the Hilbert space is of arbitrary dimension, we may consider ρ to be
a pure state |Ψ〉 〈Ψ|. The term in the parenthesis of eq. (3.3) is equal to the
sum of two orthogonal projectors, since Πxi

a1i
Πxi
a2i

= 0. Thus, this sum is upper

bounded by the identity operator, and the LO inequality follows.
Now we move on to k > 2 exclusive events. By a similar argument, we want

to maximize the quantity:

max
|Ψ〉,{Πxl

al
}
〈Ψ|

 k∑
j=1

Π
xj1
aj1
⊗ . . .⊗Π

xji
aji
⊗ . . .⊗Πxjn

ajn

 |Ψ〉
= max
|Ψ〉,{Πxl

al
}
〈Ψ|

 n∑
j=1

Πj

 |Ψ〉 , (3.4)

where Πj = Π
xj1
aj1
⊗ . . .⊗Π

xji
aji
⊗ . . .⊗Πxjn

ajn
is the projector associated to event ej .

Since the events in the LO inequality are pairwise orthogonal, the projectors Πj

that appear in the sum are pairwise orthogonal as well. Hence
∑k

j=1 Πj ≤ 1,
and the LO inequality follows.

Note that the simplicity of the above argument may mislead the strength of
the constraints imposed by LO, since it is a non-trivial property of quantum
mechanics that pairwise orthogonality (of projectors) implies orthogonality of
all the projectors, i.e. that pairwise orthogonal events are naturally jointly
exclusive.
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Figure 3.5.: k copies of a PR-box shared among 2k parties. Each party has
access to one part of a box.

3.5.3. Supra-quantum bipartite correlations

We now move on to show that postulating LO also on the many-party level
leads to detection of non-quantumness of bipartite correlations. Given some
bipartite correlations, as explained in section 3.3, the main idea consists in
distributing k copies of these among 2k parties, such that one party has access
to one part (input and output) of only one bipartite box. In the resulting 2k-
partite scenario, the LO principle is stronger than the NS principle. Thus, it
may happen that the initial bipartite correlations violate LO when distributed
among different parties in a network. In what follows, we will show that the
supra quantum devices called PR boxes violate LO2, and hence are ruled out
by the Local Orthogonality principle.

A PR-box is a hypothetical device taking binary inputs and giving binary
outputs which obey PR(ab|xy) = 1/2 if a ⊕ b = xy and PR(ab|xy) = 0
otherwise (PR94). These boxes are known to be more non-local than what
quantum theory allows. For instance, they provide a violation of the Clauser-
Horne-Shimony-Holt Bell inequality (CHSH69) larger than Tsirelson’s bound
for quantum correlations (Tsi80). PR-boxes are bipartite no-signaling devices,
and therefore might näıvely be expected to satisfy LO due to the equivalence
between LO1 and NS. However, we now prove that when distributed in net-
works they violate LO. Consider k copies of a PR-box, distributed among 2k
parties as shown in Fig. 3.5. The conditional probability distribution is:

P (a1b1 · · · akbk|x1y1 · · ·xkyk) =

k∏
j=1

PR(ajbj |xjyj) , (3.5)
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where j labels the k boxes. Already for k = 2, we find LO inequalities violated
by these two copies of the PR-box, and hence PR boxes do not satisfy LO2. One
example of such an inequality is P (0000|0000)+P (1110|0011)+P (0011|0110)+
P (1101|1011) + P (0111|1101) ≤ 1. For a PR-box, the left-hand side is equal to
5/4. One way to search for such a violation (or LO inequality) is the following.
We first classify events as either “possible” or “not possible” for this many-copy
box: an event (ab|xy) for one PR-box is possible if a⊕ b = xy. Hence, PR-box
correlations may be written as

PR(ab|xy) =

{
1
2 if the event is possible,

0 otherwise.
(3.6)

In the case of k boxes, an event (a1b1 · · · akbk|x1y1 · · ·xkyk) is possible iff aj ⊕
bj = xjyj for all j ∈ {1, . . . , k}. Then, the general form for the k-box probability
(3.5) is

P (a1b1 · · · akbk|x1y1 · · ·xkyk) =

{
2−k if the event is possible,

0 otherwise.
(3.7)

Consider a clique C ⊆ V in the orthogonality graph G = (V,E) of scenario
(2k, 2, 2) and the corresponding LO inequality LO(C)2. Define the set Cp ⊆ C
to be the subset of possible events in C. Then, the multipartite box (3.7)
violates LO(C) if, and only if, it violates LO(Cp). In particular, in order to
exclude the PR-box, it is sufficient to find a clique of size larger than 2k in
the orthogonality graph Gposs = (Vp, Ep) of possible events for box (3.7). This
problem becomes significantly easier, since |Vp| = 8k, compared to |V | = 16k

for the initial graph (compare figs. 3.4 and 3.6(a)). Already for k = 2, there
exist cliques of size larger that 4. We found that all of them have size 5, and
one example is given by:

{(0000|0000), (1110|0011), (0011|0110), (1101|1011), (0111|1101)},

which corresponds to the LO inequality previously mentioned.

We can also analyze noisy versions of the PR-box given by Pq = q PR +
(1− q)PI, where PI(ab|xy) = 1/4 for all a, b, x, y. Since we search for violations
of LO, we focus first on the two copy case. Now all events become possible
and one should consider the full list of LO inequalities for (4, 2, 2). However,
the five-term inequalities found for the noiseless case are non-maximal cliques

2We denote by LO(C) the LO inequality that arises from the LO principle by the set of
exclusive events C imposing condition (3.1).
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(11|00)

(11|10)

(a) Orthogonality Graph

(10|11)
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(00|00)

(00|10)
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(11|00)

(11|10)

(b) Non-Orthogonality Graph

Figure 3.6.: Possible events for the PR box. (a) 4-antiprism graph correspond-
ing to the orthogonality graph of possible events for a single PR-box. It coin-
cides with Fig. 2 in (SBBC11), where the authors study the CHSH inequality.
(b) Circulant graph Ci4(1, 2) corresponding to the non-orthogonality graph of
possible events for a PR-box. It is the complement of the graph in (a).

in the orthogonality graph of the (4, 2, 2) scenario, which can be completed to
maximal cliques. By doing so, we obtain inequalities with additional terms
corresponding to events that are impossible for the PR-box, but which are
possible for a noisy PR-box. We have found that the conditional probability
distribution

P (a1b1a2b2|x1y1x2y2) =(
q · PR(a1b1|x1y1) + (1−q)

4

)
·
(
q · PR(a2b2|x2y2) + (1−q)

4

) (3.8)

violates LO down to q ≈ 0.72, which is close to Tsirelson’s bound q = 1/
√

2 ≈
0.707 (meaning that noisy boxes with q ≤ 1/

√
2 can be simulated with quantum

states and measurements). An example of such an LO inequality is given by
the following set of ten LO events:

{(1111|0000), (1100|1010), (0100|1100), (0011|0001), (0010|0111), (1011|0000),

(0101|1100), (1101|1100), (1010|0110), (1001|0100)}.

It appears plausible to conjecture that the generalization of the previous ap-
proach to an arbitrary number of parties converges to Tsirelson’s bound q =
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1/
√

2 ≈ 0.707 in the limit of an infinite number of parties, although we did
not yet find any proof. A study of noisy PR-boxes for more than two copies is
presented in appendix D, together with a discussion for more general boxes.

An immediate consequence of these results is that LO indeed rules out all
extremal boxes in the (2, 2, d) and the (2,m, 2) scenarios. For the first case, it
follows from the fact that using such d-outcome extremal boxes, one can always
simulate correlations of the PR-box arbitrarily well (BLM+05). More precisely,
in the case of even d, a single copy of such a box is enough (one only needs to
relabel the outcomes of the box), and in the case of odd d, by using enough
copies of a d-outcome extremal box it is possible to simulate the PR-box with
arbitrarily small error. For the second case, we use the characterization given
in (JM05) (see also (BP05)). There, any extremal bipartite binary box is a PR
box when restricting the measurement settings for each party only to the first
two out of the m possible choices. Hence, any LO inequality violated by a PR
box, is also violated by these extremal bipartite binary boxes.

As a final remark, it is also interesting to compare LO with Information
Causality (IC) (PPK+09), another proposal for a physical principle to single
out quantum correlations. A natural question then is if and when LO can
do better than IC in ruling out supra-quantum correlations. Following All-
cock et al. (ABPS09), we study LO predictions for different families of no-
signaling correlations in the (2, 2, 2) scenario, by mixing PR-box correlations
with different types of noise. We search for violations of the 10-term LO in-
equalities for scenario (4, 2, 2) by two copies of the bipartite box defined by
P (ab|xy) = ξPR(ab|xy)+γPL(ab|xy)+(1−ξ−γ)PI, where PL(ab|xy) = δa,0δb,0.
In some situations LO provides a bound to the set of quantum correlations which
is tighter than the known bounds obtained from applications of IC, as can be
seen in Fig. 3.7. Hence, LO rules out correlations that were not excluded before
by IC. However, along the isotropic line (ξ = 1) IC recovers Tsirelson’s bound,
a feat which LO cannot achieve at the two-copy level.

3.5.4. Supra-quantum tripartite correlations

In the previous sections, we prove that not only all extremal bipartite corre-
lations in the (2, 2, d) and (2,m, 2) scenarios but also other bipartite supra-
quantum correlations are ruled out by LO. Nevertheless, due to its intrinsically
multipartite formulation, we expect the LO principle to be of particular rele-
vance for the study of genuine multipartite correlations among more than two
parties. In what follows, we study the case of three parties having access to two
binary measurements.

We focus on the question of how well LO performs for extremal no-signaling
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Figure 3.7.: Comparison of IC and LO2 for detecting supra-quantum correla-
tions in the (2,2,2) scenario. We consider the family of correlations parametrized
as P (ab|xy) = ξPR(ab|xy) + γPL(ab|xy) + (1 − ξ − γ)PI, where PL(ab|xy) =
δa,0δb,0. The curves show the bounds provided by the 1+AB level of the NPA
hierarchy (NPA07; NPA08) (black), LO2 (blue dashed), IC (red dotted), and
the edge of the crossed-out region corresponds to NS correlations and bounds
the allowed parameter space. Note that when γ → 0 (see inset), IC approxi-
mates the quantum set better than LO2, which is consistent with the fact that
IC recovers Tsirelson’s bound for γ = 0, while LO reaches ≈ 0.72 for two copies
of the device. However, LO beats the known IC bound for other parameter
values, ruling out correlations that were not excluded before by applications of
IC.
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nonlocal correlations. All these extremal NS boxes for the (3, 2, 2) scenario were
computed in Ref. (PBS11) and any NS correlations in this scenario can be
obtained by mixing them. These extremal boxes can be grouped into 46 equiv-
alence classes under symmetries, the first class corresponding to deterministic
local points, while the other 45 are non-local. The latter can be interpreted as
the maximally non-local correlations in the (3, 2, 2) scenario compatible with
the NS principle. We will prove that LO rules out all these nonlocal extremal
boxes.

In the spirit of the previous section, consider the orthogonality graph of
possible events Gposs for each of the 45 boxes. The conditional probability
distribution of some of them satisfy Pj(e) = cj if e is a possible event for box
j (and 0 otherwise), where the constant cj depends only on the box and not
on the event. Hence, we search for cliques of size larger than c−1

j on Gposs,j .
In the cases where no such clique is found, we move on to two copies of the
corresponding boxes in the (6, 2, 2) scenario. There, we search for cliques of size
larger than c−2

j on G·2poss,j .

However, some boxes within the 45 require a slightly different approach.
These are the ones whose conditional probability distribution does not assign
the same value to all the vertices of the orthogonality graph of possible events.
In this case, we construct the weighted orthogonality graph of possible events
Gposs,j(w), where each vertex v has a weight given by the probability of the
corresponding event w(v) = Pj(ev). The weight of a clique is given by the sum
of the individual weights over all the vertices of the clique. Hence, we search
for cliques of weight larger than one, which guarantees the violation of LO by
the given box j. In the cases where no such clique is found, we move on to
two copies of the corresponding boxes in the (6, 2, 2) scenario. Now, the weight
of vertex (v1, v2) ∈ V (G·2poss,j) in the two-copy orthogonality graph is given by
w(v1, v2) = Pj(ev1)Pj(ev2). Similarly, we search for cliques of weight larger than
one.

We find that every maximally nonlocal box in (3, 2, 2) violates either LO1

or LO2, and hence cannot have a quantum realization. Table 3.1 displays
the results for the 45 nonlocal boxes in the numbering scheme of (PBS11).
The columns show the number of copies needed for finding the violation, the
number of terms in the violated inequality and the value given by the box for
that inequality (which is always larger than 1, thereby proving violation).

We remark that this is an example of how the intrinsically multipartite for-
mulation of LO allows detecting correlations for which any bipartite principle
fails. Box number 4 in (PBS11) is a tripartite no-signaling box which cannot
be ruled out by any bipartite principle (YCA+12) but which violates LO.
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box copies terms value

2 2 5 5/4
3 2 17 17/16
4 2 17 17/16
5 1 4 5/4
6 2 17 17/16
7 2 17 17/16
8 2 9 9/8
9 1 4 9/8
10 1 4 9/8
11 1 4 5/4
12 2 17 9/8
13 1 4 7/6
14 1 4 7/6
15 1 4 9/8
16 1 4 7/6
17 1 4 7/6
18 1 4 9/8
19 2 17 17/16
20 1 4 6/5
21 2 17 17/16
22 2 19 37/36
23 1 4 7/6
24 1 4 7/6

box copies terms value

25 1 4 4/3
26 2 22 37/36
27 2 17 17/16
28 1 4 7/6
29 1 4 4/3
30 2 14 26/25
31 2 13 26/25
32 1 4 6/5
33 1 4 6/5
34 2 13 37/36
35 1 4 7/6
36 2 13 66/64
37 1 4 9/8
38 1 4 7/6
39 2 22 37/36
40 2 17 17/16
41 2 17 17/16
42 2 17 17/16
43 2 14 50/49
44 2 17 17/16
45 2 17 17/16
46 2 17 17/16

Table 3.1.: Table of LO violations for the extremal tripartite NS boxes in the
numbering scheme of (PBS11). The columns show the number of copies needed
for finding the violation, the number of terms in the violated inequality and the
value given by the box for that inequality. Note that since it is always larger
than 1, they violate either LO1 or LO2, and hence LO.
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3.6. LO and wirings

3.6. LO and wirings

Wirings (ABL+09) are operations that can be applied to one or more no-
signaling boxes in order to produce a new no-signaling box. For example, a
wiring may consist of party 1 communicating his/her outcome a1 to party 2,
who uses this outcome as his/her measurement setting and obtains an outcome
a2. This defines a new no-signaling box upon identifying parties 1 and 2 with
a new joint party with measurement setting x1 and joint outcome g(a1, a2),
where g can be any function of a1 and a2.

In this section, we first define wirings. Then we show that if a no-signaling
box P satisfies LO∞, then so does any other box which can be obtained from P
by applying wirings to copies of P distributed among many parties. In fact, we
show that if M copies of a box violate LO1 when wired together, then the same
M copies violate LO1 as independent copies without any wiring, meaning that
the original single-copy box violates LOM . Hence, in order to find violations
of LO∞, it is enough to consider only distributed copies of P . In this sense,
wirings are useless for detecting violations of LO∞. Since our wirings are more
general than those of (ABL+09), this implies also that LO∞ is a set of NS-boxes
which is closed in the sense of (ABL+09).

We start by considering a restricted, but especially instructive, class of wirings
and will generalize later. We call these wirings static since the “wires” are fixed
throughout the protocol rather than dynamically determined. A static wiring
protocol for an n-partite box P is obtained as follows: first, we distribute M
copies of P among Mn parties, where M is arbitrary. This results in the box
P⊗M . These Mn parties may now assemble into s groups; these groups will
become the parties of the “wired” box

Pwired(b1 . . . bs|y1 . . . ys),

which they are about to construct. Here, yi denotes the input which all parties
in group i receive jointly, while bi stands for the joint output that they are
going to obtain/produce. We may intuitively think of the parties composing a
group as physically meeting up at the same location, where each party brings
with them his/her part of the box to which they have access; see Figure 3.8 for
an example situation. In this way, a particular group of l parties has access to
l input-output devices.

Second, there is a subprotocol for each group which specifies how the parties
within that group communicate and coordinate the use of their boxes. For the
sake of concreteness, let us assume that the first group is formed by parties
1, . . . , l. For these l parties, we now need to specify an ordering among them,
corresponding to the temporal order in which the parties use their devices. For
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y1

b1

b2

y2

b3

y3

y

b = g(y, a1, a2)

x1 = f1(y)

a1

x2 = f2(y, a1)

a2

Figure 3.8.: Three copies of a bipartite box wired between three groups of
two parties each. The resulting wired box is 3-partite, where each new party
has access to one end of two boxes. To provide an example, consider a party
receives input y, and chooses to use first the box on his right hand side. He
inputs f1(y) to this box and obtains outcome a1. Then, he uses the box in
the left hand side. He inputs f2(y, a1) and obtains an outcome a2. Finally, he
outputs b = g(y, a1, a2) as a result of the protocol.
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notational convenience, we relabel the parties in the group such that this total
ordering is precisely given by the enumeration 1, . . . , l. Party 1 starts by choos-
ing a measurement setting f1(y1) on his/her device, where f1 is any function
which is part of the specification of the protocol, and obtains an outcome a1.
Afterwards, party 2 continues by inputting f2(y1, a1) into his/her device where
f2 is likewise some fixed function, and gets an outcome a2. In general, party
j + 1 operates after party j and uses the setting fj+1(y1, a1, . . . , aj) on his/her
device getting an outcome aj+1. After all parties have used their devices in this
way, the group announces the total outcome g(y1, a1, . . . , al), where g is again a
fixed function. In general, such a subprotocol exists for the parties within each
group separately.

A trivial example of such a static wiring protocol consists in taking M = 1,
having each party form their own group, and letting each such party apply
certain functions to their inputs and outputs. This type of wiring corresponds
to the special case in which Pwired is obtained from P via deterministic local
operations.

We now proceed to show that if P satisfies LO∞, then so does any Pwired

obtained from such a P via static wirings. In other words, the set LO∞ is
closed under wirings.

First of all, it is sufficient to show that the wired box satisfies LO1, for the
following reason: if a box Pwired can be constructed from P via wirings, then
so can any of its powers P⊗kwired. Indeed, if Pwired can be constructed from M

copies of P via wirings, then so can any P⊗kwired, even if the number of copies
of P increases k-fold. We will show that all boxes constructed from P via
wirings satisfy LO1, which in particular applies to all the P⊗kwired. Therefore,

P⊗kwired ∈ LO
1 for all k, which means by definition that Pwired ∈ LO∞.

In order to show that Pwired satisfies LO1, it is enough to consider the case
where only the first l parties form a non-trivial group applying a non-trivial
wiring. The reason is that the same argument can be applied to the resulting
box, and another non-trivial group can be formed, and this argument can be
repeated until all the desired groups have formed. Assuming this and using the
notation from above, the resulting wired box is r-partite with r = Mn− l + 1.
We enumerate the parties in such a way that the non-trivial group contains the
parties 1, . . . , l. We make this whole assumption to keep things conceptually
simple and not to clutter our notation.

As explained above, the conditional probability distribution Pwired of such a

53



3. Local Orthogonality

wiring of M boxes has the form

Pwired(b1 . . . br|y1 . . . yr)

=
∑
a1,...al

s.t. g(a1,...,al)=b1

P⊗M (a1 . . . al b2 . . . br|f1(y1) . . . fl(y1, a1, . . . , al) y2 . . . yr).

(3.9)

For fixed b1 and y1, all events occurring in this sum are orthogonal: for any
two different terms in the sum represented by indices a1, . . . , al and a′1, . . . , a

′
l,

respectively, let i be the smallest party index for which ai 6= a′i. Then the two
settings of party i are both equal to f(y1, a1, . . . , ai−1), while the outcomes are
different. This witnesses orthogonality.

Now consider a given set of mutually orthogonal events (b1 . . . br|y1 . . . yr)
which represents an LO inequality for Pwired. We claim that upon substituting
eq. (3.9) into this inequality, we obtain an LO inequality for P⊗M . Checking
this means that we need to consider a pair of events that may occur in such an
inequality, say

(a1 . . . alb2 . . . br|f1(y1)f2(y1, a1) . . . fl(y1, a1, . . . , al) y2 . . . yr),

(a′1 . . . a
′
lb
′
2 . . . b

′
r|f1(y′1)f2(y′1, a

′
1) . . . fl(y

′
1, a
′
1, . . . , a

′
l) y
′
2 . . . y

′
r).

(3.10)

The case where bj = b′j and yj = y′j for all j, i.e. where the two events occur in
the same sum (3.9), was already considered above, where we found them to be
orthogonal. Otherwise, there exists some j for which yj = y′j and bj 6= b′j , due
to the assumption that the original inequality for Pwired is a LO inequality. If
j ∈ {2, . . . , r}, then the two events (3.10) are clearly orthogonal as well. If j = 1,
then there has to exist some index i for which ai 6= a′i; upon considering the
smallest i with this property, we again find the events (3.10) to be orthogonal in
the same manner as above. Now due to the assumption that P⊗M satisfies all
LO inequalities, we conclude that also Pwired satisfies the given LO inequality.

This shows that the set LO∞ is closed under static wirings. In other words,
if a wired box violates LO∞, then so does the original box from which it was
constructed.

We now generalize to “dynamic” wirings in which the temporal ordering of the
parties within a group is itself determined during the execution of the protocol.
Again we take parties 1, . . . , l to form the only non-trivial group. After receiving
their input y1, the party which measures his/her box first is given by a function
i1(y1). This party i1(y1) performs the measurement xi1 = f1(y1) and obtains
an outcome ai1 . This outcome, together with the initial input, determines the
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second party in the protocol to be the party i2(y1, ai1). Similarly, this party
then chooses the setting xi2 = f2(y1, ai1) and obtains an outcome ai2 . The
third party in the protocol then is i3(y1, ai1 , ai2), and so on. When all parties
have finished, the group announces their joint outcome g(y1, ai1 , . . . , ail).

In the case of such a dynamic wiring, the explicit form of the sum in eq. (3.9)
is considerably messier to write down explicitly and we refrain from doing so.
Nevertheless, all events occurring in the corresponding sum for fixed bj and yj
also satisfy the property of being orthogonal. Indeed, consider two events e and
e′ in this sum. Both events originated by party i1(y1) applying a measurement.
Now consider the temporally first step t of the wiring protocol at which the
protocol realizations of e and e′ differ. Since the protocols are deterministic
except for the randomness in the boxes, this difference of the realizations must
originate from the previous step t − 1 by one box having produced different
outcomes, ait−1 6= a′i′t−1

, although the parties were the same, i′t−1 = it−1, and

the settings were the same, xit−1 = x′i′t−1
. Hence, the two events e and e′

are orthogonal. All other statements which we made for static wirings apply
directly to dynamic wirings as well, and LO∞ is in particular also closed under
dynamic wirings.

In this section, all the wirings that we have considered have been determin-
istic: no randomness is allowed in the protocols in the sense that the functions
fj , ij and g are required to be deterministic. The case were shared and/or local
randomness is provided for the protocol is discussed in (SFA+13), where we
conclude that if P satisfies LO∞ then the same applies to any box constructed
from P via stochastic wirings.
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Contextuality is another feature of quantum mechanics that is not observed in
the classical world. So far, the study of this phenomenon has mainly focused on
particular examples of contextuality or “small” proofs of the Kochen-Specker
theorem, although a general theory has not frequently been studied nor devel-
oped (see chapter 2).

In this chapter, I present a framework that allows the study of both non-
locality and contextuality in a unified manner. Our approach, similar in spirit
to that of Cabello, Severini and Winter (CSW10), studies measurements and
events from a graph-theoretic angle. However, our framework somehow refines
that of (CSW10), since from its very definition it focuses on complete measure-
ments, i.e. normalized probabilistic models.

The relation between our framework and the observable-based approach of
Abramsky and Brandenburger (AB11) (see section 2.2.1) will be discussed in
appendix E.

4.1. Contextuality scenarios and Probabilistic models

In our formalism, a contextuality scenario is completely described by a hyper-
graph like follows.

Definition 4.1. A contextuality scenario is a hypergraph H such that no
hyperedge contains another one:

e1, e2 ∈ E(H), e1 ⊆ e2 ⇒ e1 = e2, (4.1)

and
⋃
e∈E(H) e = V (H).

The reason for postulating (4.1) is related to the normalization of probabil-
ity: if all outcomes of a measurement e1 are also outcomes of a measurement
e2, then the additional outcomes of e2 necessarily have probability 0 and can
therefore be disregarded. On the other hand, condition

⋃
e∈E(H) e = V (H)

simply states that each outcome should occur in at least one measurement, i.e.
the hypergraph does not have isolated vertices.
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Throughout the thesis, when speaking of vertices and hyperedges I will some-
times be referring to their physical interpretation, meaning outcomes and mea-
surements, hence both notations will be commonly used. Moreover, for sim-
plicity I will sometimes refer to the hyperedges by “edges”.

It is worth mentioning that definition 4.1 differs from the formalisms pro-
posed in (AB11) and (CF12; FC13). These works also provide a formalization
of contextuality phenomena in terms of hypergraphs, but the vertices of the
hypergraph represent observables rather than outcomes, while the hyperedges
stand for (maximal) jointly measurable sets of observables. In appendix E I
present a more detailed discussion on the connection between both approaches.

In a concrete physical situation, every outcome happens with some proba-
bility. Moreover, our formalism deals with complete measurements, hence the
sum of these outcome probabilities over all outcomes in a measurement is 1.
This motivates the following definition:

Definition 4.2. Let H be a contextuality scenario. A probabilistic model
on H is an assignment p : V (H) → [0, 1] of a probability p(v) to each vertex
v ∈ V (H) such that ∑

v∈e
p(v) = 1 ∀e ∈ E(H). (4.2)

It is important to keep in mind that each p(v) is actually a conditional prob-
ability: it stands for the probability of getting the outcome v given that a mea-
surement e 3 v is conducted. We denote by G(H) ⊆ [0, 1]|V | the set of proba-
bilistic models for the scenario H, which by construction is a polytope (and may
be empty). This notation is supposed to suggest the reading “general probabilis-
tic” in the sense of general probabilistic theories (Mac63; Lud85; Bar07).
Note that in section 2 we do not denote p by “probabilistic model” but rather
by “assignment”, since we want to stress that a probabilistic model is properly
normalized.

Some basic examples of contextuality scenarios and their probabilistic models
are the following.

Example 4.3. Figure 4.1 displays the triangle scenario ∆. Its only probabilistic
model is p(v1) = p(v2) = p(v3) = 1

2 , since this is the only solution to the system
of normalization equations

p(v1) + p(v2) = 1, p(v2) + p(v3) = 1, p(v1) + p(v3) = 1.

Contextuality scenarios having a unique probabilistic model, like ∆ does, will
be of particular importance in Theorem 4.8.

From the ∆ scenario, another one can be constructed, such that it admits no
probabilistic model:
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v1

v3 v2

Figure 4.1.: The triangle scenario ∆.

Example 4.4. Figure 4.2 displays a contextuality scenario H0 with G(H0) = ∅.
Indeed, each of the outer triangles corresponds to a copy of the scenario ∆ of
Figure 4.1 and admits a unique probabilistic model where each vertex is assigned
a probability 1/2. This is incompatible with the three-outcome measurement
depicted in a dashed line which imposes that the probabilities associated with
the three corresponding vertices should sum to 1.

In section 4.2, we will introduce the concept of product scenario and relate
it to Bell scenarios. There, the notion of contextuality scenario for one single
party in a Bell-type experiment plays an important role. Such a scenario is
described as follows.

Example 4.5. Figure 4.3 displays the contextuality scenario defined by m
measurements with d outcomes each, such that no two measurements share
any outcome. Note that no assumption is made on the type or nature of the
measurements, only that no outcome of any measurement defines the same event
as any outcome of the others. Hence, such scenarios are particularly relevant
for describing “box” experiments where an observer can press one of m buttons
and record the corresponding measurement outcome.

Finally, as I mentioned in section 2.2, the study of contextuality begun with
the Kochen-Specker theorem, whose “smallest” proof is given by 18 projectors.
This scenario is depicted in our formalism like shown in Fig. 4.4 , where the 18
vertices map to the 18 projectors of the proof.

We now move on to the characterization of G(H). For fixed H, the set
G(H) ⊆ RV (H) is defined in terms of finitely many linear inequalities with
rational coefficients. Therefore, it is a convex polytope. A natural question
then is: what are its extreme points? For example, for the CHSH scenario
B2,2,2 that we will discuss in Section 4.2, G(B2,2,2) is the no-signaling polytope,
and hence its extreme points are the 16 deterministic boxes together with the 8
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Figure 4.2.: Example of a scenario H0 without any probabilistic model:
G(H0) = ∅.

· · ·

· · ·

d

m ...

Figure 4.3.: The contextuality scenario B1,m,d: a “Bell scenario” with only one
party. It describes m measurements with d outcomes each, where no assumption
is made on the type or nature of the measurements.
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Figure 4.4.: The contextuality scenario HKS proving the Kochen-Specker the-
orem (CEGA96; Cab08).

variants of the PR-box. In what follows, I present an abstract characterization
of these extremal models which applies to every contextuality scenario. In order
to do so, I will first introduce the notion of induced subscenario, which basically
describes a family of subhypergraphs of the original scenario.

Definition 4.6. Let H be a contextuality scenario. We say that a non-empty
set W ⊆ V (H) induces a subscenario if e1∩W ⊆ e2∩W implies that e1 = e2

for all e1, e2 ∈ E(H). In this case, HW with

V (HW ) = W ; E(HW ) = {e ∩W : e ∈ E(H)}

is the subscenario induced by W .

The assumption on W guarantees that HW is also a contextuality scenario.
In particular, it implies that e ∩W 6= ∅ for all e ∈ E(H), meaning that W is a
transversal of the hypergraph H. The intuition behind the subscenario HW is
the following: it is constructed by dropping all vertices which do not belong to
W and restricting all edges accordingly. In doing this, the subset W ⊆ V (H)
is assumed to guarantee that no two different edges have equal restrictions or
one restriction containing the other.

Example 4.7. The Triangle scenario 4.1 is as induced subscenario of the sce-
nario H = (V,E) depicted in Fig. 4.5. Indeed, if we take W = {v1, v2, v3},
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v1

v3 v2

v4

Figure 4.5.: Contextuality scenario of example 4.7. It has as an induced sub-
scenario HW the Triangle, depicted in Fig. 4.1, defined by VW = {v1, v2, v3}
and EW =

{
{v1, v2}, {v2, v3}, {v3, v1}

}
.

the restrictions of the hyperedge set E =
{
{v1, v2}, {v2, v3}, {v3, v4, v1}

}
to

the vertices of W gives EW =
{
{v1, v2}, {v2, v3}, {v3, v1}

}
, which satisfies the

properties of def. 4.6.

HW may be interpreted as the same scenario H when all outcomes not in
W have been forbidden. Indeed, we have already made implicit use of these
concepts in section 3.5.3, where we restricted the study of the complete Bell
scenario (2, 2, 2) to only the “possible events” for the PR-box. The set of these
events corresponds to W , and the orthogonality graph of possible events relates
to the hypergraph HW .

In addition, every probabilistic model pW on HW extends to H by setting

p(v) :=

{
pW (v) if v ∈W
0 if v 6∈W

.

When this happens, we say that p is the extension of pW to H.
The extreme points of the polytope of probabilistic models on a contextuality

scenario H can then be characterized as follows.

Theorem 4.8. p ∈ G(H) is extremal if and only if it is the extension of
pW ∈ G(HW ) from some induced subscenario HW which has pW as its unique
probabilistic model.

Proof. If H has a unique probabilistic model, i.e. if G(H) = {p}, then there is
nothing to prove.
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4.2. Products of contextuality scenarios

Otherwise, the extreme points of G(H) are precisely the extreme points of
the facets of G(H). Since G(H) is defined by

p(v) ≥ 0 ∀v ∈ V (H),
∑
v∈e

p(v) = 1 ∀e ∈ E(H),

for every facet of G(H) there exists some v ∈ V such that the facet contains
exactly those p ∈ G(H) with p(v) = 0. We fix such a v and set

W = {w ∈ V (H) | ∃ p ∈ G(H) s.t. p(v) = 0 ∧ p(w) 6= 0}.

In particular, v ∈ W , and W induces a subscenario HW . By construction,
G(HW ) is the facet of G(H) defined by p(v) = 0.

The assertion then follows by repeatedly applying this process to the induced
subscenarios constructed in this way. At each step one obtains an induced
subscenario of the original H, since if HW,W ′ is an induced subscenario of HW ,
and HW one of H, then HW,W ′ is an induced subscenario of H. This recursion
necessarily ends with a scenario which admits a unique probabilistic model,
since the dimension of G(HW ) decreases by 1 in each step.

As the proof shows, a similar statement also holds for all faces of G(H): they
all are of the form G(HW ) for some induced subscenario HW .

We conclude that an extreme point p ∈ G(H) is uniquely determined by the
set of vertices W = {v ∈ V (H) | p(v) 6= 0}, which induces a subscenario HW

with a unique probabilistic model corresponding to forgetting the zeros of p.
The deterministic models of Definition 4.19 are a special case of this. Clearly,

every deterministic model is an extreme point of G(H). In terms of Theorem 4.8,
p is deterministic if and only if each measurement in the associated HW has
only one outcome. Those extreme points which are not deterministic are the
maximally contextual models in the scenario H.

4.2. Products of contextuality scenarios

As explained in section 2.1.1, a general scenario for non-locality (Bell Scenario)
is defined as a set of distant parties, each of which has access to a device, and
by pressing a button obtains an outcome. However, one may think that each
party in fact operates on a contextuality scenario. Then, the natural question is:
can the global (multi-party) situation be described as a contextuality scenario,
and how? The affirmative answer to this question is based on the product of
contextuality scenarios. The appropriate way to describe the joint scenario for
two parties is given by the product of the two individual scenarios as follows:
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4. Contextuality: a new framework

Definition 4.9 ((FR81)). Consider two hypergraphs HA = (VA, EA) and HB =
(VB, EB). The Foulis-Randall product (FR-product) is the scenario HA ⊗
HB with

V (HA ⊗HB) = VA × VB, E(HA ⊗HB) = EA→B ∪ EA←B
where

EA→B :=

{ ⋃
vA∈eA

{vA} × f(vA) : eA ∈ EA, f : eA → EB

}
,

EA←B :=

{ ⋃
vB∈eB

f(vB)× {vB} : eB ∈ EB, f : eB → EA

}
.

(4.3)

Intuitively, an element of EA→B is the following: first, an edge eA ∈ E(HA)
representing a measurement conducted by Alice; second, a function f : eA →
E(HB) which determines the subsequent measurement of Bob as a function
of Alice’s outcome. This function f maps each vertex a ∈ eA to an edge
f(a) ∈ EB. Similarly for EA←B, where we think of Bob measuring first and
communicating his outcome to Alice, who then chooses her measurement as a
function of Bob’s outcome. Both possibilities are feasible ways to operate on the
joint system and therefore should be considered as measurements conductible
on the joint system. Indeed, this specific form of the hyperedges encompasses
the notion of correlated measurements defined in section 3.1. In this way, an
edge in HA⊗HB is an element of EA→B, EA←B, or of both sets. For example,
Figure 4.6(f) displays the FR-product of 4.6(a) with 4.6(b), which is another
copy of 4.6(a). EA→B contains the edges of Figure 4.6(c) and 4.6(d), while
EB→A consists of 4.6(c) and 4.6(e) (see example 4.14 below).

In the terminology of this chapter, the No Signaling principle is equivalently
stated as follows.

Definition 4.10. A probabilistic model p ∈ G(HA ×HB) is no-signaling if

1. For every w ∈ V (HB), ∑
v∈e

p(v, w) =
∑
v∈e′

p(v, w)

for all e, e′ ∈ E(HA);

2. For every v ∈ V (HA), ∑
w∈e

p(v, w) =
∑
w∈e′

p(v, w)

for all e, e′ ∈ E(HB).
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0|0

1|0

0|1

1|1

(a) Alice’s two binary measurements
B1,2,2.

0|0 1|0 0|1 1|1

(b) Bob’s two binary measurements
B1,2,2.

00|00 01|00

10|00 11|00

00|01 01|01

10|01 11|01

00|10 01|10

10|10 11|10

00|11 01|11

10|11 11|11

(c) Simultaneous measurements.

00|00 01|00

10|00 11|00

00|01 01|01

10|01 11|01

00|10 01|10

10|10 11|10

00|11 01|11

10|11 11|11

(d) Bob’s measurement choice depends on
Alice’s outcome.

00|00 01|00

10|00 11|00

00|01 01|01

10|01 11|01

00|10 01|10

10|10 11|10

00|11 01|11

10|11 11|11

(e) Alice’s measurement choice depends on
Bob’s outcome.

00|00 01|00

10|00 11|00

00|01 01|01

10|01 11|01

00|10 01|10

10|10 11|10

00|11 01|11

10|11 11|11

(f) Foulis-Randall product: the
CHSH scenario B2,2,2 = B1,2,2 ⊗
B1,2,2.

Figure 4.6.: Construction of the CHSH scenario B2,2,2 as a Foulis-Randall prod-
uct B2,2,2 = B1,2,2 ⊗B1,2,2.
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4. Contextuality: a new framework

Hence, a natural question is, do the allowed probabilistic models on G(HA ×
HB) satisfy the No Signaling principle? A stronger answer to this question is
due to Barnum, Fuchs, Renes and Wilce:

Proposition 4.11 ((BFRW05, Cor. 3.5)). G(HA ⊗ HB) is exactly the set of
no-signaling models.

It is in this sense that HA ⊗HB automatically incorporates the no-signaling
requirement of special relativity, and hence we regard it as the “right” product
of contextuality scenarios.

One can also do all this for the case of unidirectional no-signaling: defining
a product of HA and HB by only using the EA→B of (4.3) gives probabilistic
models which are no-signaling from Bob to Alice (see (BFRW05) for details).
The resulting product contextuality scenario may be interpreted as describing
a temporal succession of operating on HB after having operated on HA.

Given two contextuality scenarios HA and HB together with probabilistic
models pA ∈ G(HA) and pB ∈ G(HB), there should exist a probabilistic model
pA ⊗ pB on HA ⊗ HB having the interpretation of placing physical systems
behaving as pA and pB “side by side” so that measurements can be conducted
on both in parallel, revealing no correlations between the two systems, but
independent statistics. To this end, we define

pA ⊗ pB : V (HA)× V (HB) −→ [0, 1]

as a function which assigns to vertex (vA, vB) ∈ V (HA ⊗ HB) a probability
given by p(vA, vB) = pA(vA)pB(vB).

Proposition 4.12. This pA ⊗ pB is a probabilistic model on HA ⊗HB.

Proof. We need to prove that
∑

v∈e pA ⊗ pB(v) = 1 for each edge e ∈ E(HA ⊗
HB). Without loss of generality, we can assume e ∈ EA→B, i.e. e =

⋃
a∈eA{a}×

f(a) for some eA ∈ EA and some f : eA 7→ EB, which maps each vertex in eA
to an edge in HB. Therefore,∑

v∈e
pA ⊗ pB(v) =

∑
a∈eA

∑
b∈f(a)

pA(a)pB(b)

=
∑
a∈eA

pA(a)
∑
b∈f(a)

pB(b) =
∑
a∈eA

pA(a) · 1 = 1,

since pB and pA are probabilistic models on HB and HA, respectively.
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4.2. Products of contextuality scenarios

We write G(HA) ⊗ G(HB) for the set of all probabilistic models of the form
pA ⊗ pB. Note however that for arbitrary contextuality scenarios HA and HB

not every element of G(HA ⊗HB) is necessarily in the product form pA ⊗ pB,
i.e. G(HA) ⊗ G(HB) ⊆ G(HA ⊗ HB). Indeed, for the Bell scenario B2,2,2 =
B1,2,2 ⊗ B1,2,2 discussed below, the PR-box is an element of G(B1,2,2 ⊗ B1,2,2),
but does not lie in the convex hull of G(B1,2,2)⊗ G(B1,2,2).

It is easy to check that the Foulis-Randall product “⊗” is a commutative
binary operation on contextuality scenarios. However, when we move on to
products of more than two scenarios, the Foulis-Randall product is not asso-
ciative. Indeed, given three scenarios HA, HB, HC , one possibility is to form
the product HA ⊗ HB and then the product of this with HC , which gives
(HA ⊗HB)⊗HC . In this case, a hyperedge belongs to one of the four sets

E(A→B)→C , E(A←B)→C , E(A→B)←C , E(A←B)←C (4.4)

where E(A→B)→C is defined to be the collection of all sets of the form{
(a, b, c) ∈ V (HA)× V (HB)× V (HC) | a ∈ eA, b ∈ f(a), c ∈ g(a, b)

}
(4.5)

where eA ∈ E(HA) is fixed and f : V (HA)→ E(HB) and g : V (HA)×V (HB)→
E(HC) are any functions (and similarly for the other three sets). In this way,
every one of the four sets (4.4) contains all those measurements associated to
a certain ordering of the three parties; these four orderings are

A
�; B

�; C, B
�; A

�; C, C
�; A

�; B, C
�; B

�; A. (4.6)

On the other hand, the bracketing HA ⊗ (HB ⊗HC) is based in a similar way
on four sets of edges

EA→(B→C), EA←(B→C), EA→(B←C), EA←(B←C) (4.7)

which represent the time orderings

A
�; B

�; C, B
�; C

�; A, A
�; C

�; B, C
�; B

�; A. (4.8)

These four time orderings are different from (4.6); therefore, in general, HA ⊗
(HB ⊗HC) contains different edges than (HA ⊗HB) ⊗HC . This proves that
the Foulis-Randall product is not associative.

Since we are interested on working with products of more than two contex-
tuality scenarios, one way around this non-associativity issue is to define the
n−fold product of hypergraphs as follows:
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4. Contextuality: a new framework

Definition 4.13. Consider n hypergraphs Hj = (Vj , Ej), j ∈ {1, n}. The n-fold
product is the hypergraph H1 ⊗ · · · ⊗Hn with vertex set

V (H1 ⊗ · · · ⊗Hn) = V1 × · · · × Vn,

and edge set

E(H1 ⊗ · · · ⊗Hn) =
⋃
σ, f

{
(a1, . . . , an) | aσ−1(i) ∈fσ−1(i)(aσ(1), . . . , aσ(σ−1(i)−1)) ,

for 1 ≤ i ≤ n
}
.

(4.9)
where σ runs over all possible permutations of the parties. The i-th outcome
(ai) belongs to a measurement defined by the σ(i)− 1 outcomes

(aσ−1(1), · · · , aσ−1(σ(i)−1))

via the function fσ−1(i), and f varies over all possible choices of the functions
{fσ−1(i)}i.

The intuition behind this definition comes from constructing each edge in
H1 ⊗ · · · ⊗ Hn from an n−partite correlated measurement. Given a certain
order of the parties, we think of the first one performing a measurement e1 and
sending the outcome a1 to the the other parties. Then, party 2 performs a
measurement e2 that depends on outcome a1, and obtains an output a2. Party
3 then receives the outputs a1 and a2, and decides a measurement e3. He
sends his outcome to all the remaining parties. Then, the total output of the
protocol is given by (a1, · · · , an), where the measurement that party j performs
may depend on the outputs he receives from the j − 1 previous parties. In
the bipartite case, we decomposed the vertex set as EA→B ∪ EA←B, since we
had only two sequential orders for the correlated measurements, namely A,B
and B,A. For n parties, we need to consider all their possible orderings in
order to encompass all possible correlated measurements. Hence, the need of
the permutations σ in the definition of n−fold product.

We now explain how Bell scenarios are examples of contextuality scenarios.
The Bell scenario Bn,m,d consists of n parties having access to m measurements
each, each of which has d possible outcomes. At the single-party level, the
outcomes form a contextuality scenario B1,m,d as depicted in Figure 4.3. As
contextuality scenarios, we define

Bn,m,d := B1,m,d ⊗ · · · ⊗B1,m,d︸ ︷︷ ︸
n

, (4.10)
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4.2. Products of contextuality scenarios

and we will see in the following how this leads to the usual concepts studied
as “nonlocality”. It is straightforward to generalize this definition and all our
upcoming results to scenarios where the parties have access to different numbers
of measurements and outcomes per measurement, but we will not consider this
explicitly.

Example 4.14 (The CHSH scenario). Figure 4.6 illustrate how B2,2,2 arises
as B1,2,2 ⊗ B1,2,2. A vertex ab|xy represents the event where Alice (resp. Bob)
chooses measurement x (resp. y) and obtains output a (resp. b). In this scenario,
the edges are as follows:

• For simultaneous measurements, the f of (4.3) are constant, and the mea-
surements are as in Figure 4.6(c):

{00|00, 01|00, 10|00, 11|00},
{00|01, 01|01, 10|01, 11|01},
{00|10, 01|10, 10|10, 11|10},
{00|11, 01|11, 10|11, 11|11}.

• If Alice measures first and Bob’s choice of setting depends on her outcome,
then the events are of the form ab|xf(a), where f is not a constant. Thus
we have two possibilities: f(a) = a or f(a) = 1 − a. In the first case we
obtain the edges

{00|00, 01|00, 10|01, 11|01},
{00|10, 01|10, 10|11, 11|11},

and in the second case,

{00|01, 01|01, 10|00, 11|00},
{00|11, 01|11, 10|10, 11|10}.

These are the dashed blue edges in figures 4.6(d) and 4.6(f).

• Similarly, Bob measuring first with Alice’s subsequent choice of setting
depending on his outcome gives rise to the edges

{00|00, 01|10, 10|00, 11|10},
{00|01, 01|11, 10|01, 11|11},
{00|10, 01|00, 10|10, 11|00},
{00|11, 01|01, 10|11, 11|01}.

These are the solid green edges in Figures 4.6(e) and 4.6(f).
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4. Contextuality: a new framework

In what follows, we will see that the allowed probabilistic models on Bn,m,d
are exactly those no-signaling correlations on (n,m, d) in the framework of Non
Locality.

Proposition 4.15. Let Bn,k,m be a Bell scenario. Then G(Bn,k,m) is the stan-
dard no-signaling polytope containing all no-signaling boxes of type (n,m, d).

Proof. While this follows from an application of the multipartite version of
Proposition 4.11, we believe that an independent proof is more instructive.

We identify the vertices of Bn,k,m with the events

a1 . . . an|x1 . . . xn, ai ∈ {1, . . . ,m}, xi ∈ {1, . . . , k}

in the usual Bell scenario notation.
We show first that a non-signaling box of type (n, k,m) is indeed a proba-

bilistic model on Bn,k,m. Such a box is an assignment of a probability p(~a|~x)
to each event ~a|~x such that the no-signaling equations∑

ai

p(a1 . . . an|x1 . . . xn) =
∑
ai

p(a1 . . . an|x1 . . . x
′
i . . . xn) (4.11)

hold (where the right-hand side is the same except that the setting xi has been
replaced by some other setting x′i), as well as the normalization condition∑

a1,...,an

p(a1 . . . an|x1 . . . xn) = 1. (4.12)

Now we consider any edge in the scenario Bn,k,m. Without loss of generality, we
take the underlying total order of the parties to be the numerical one, so that
the temporal order of the parties’ measurements is simply 1, . . . , n. The settings
used by the parties are then determined by functions xi = fi(a1, . . . , ai−1), and
we need to consider∑

a1,...,an

p(a1 . . . an|f1() . . . fn(a1, . . . an−1)),

where x1 = f1() is a function without arguments, i.e. a constant. Since the vec-
tor of settings does not depend on an, the no-signaling equations imply that the
last function fn(a1, . . . , an−1) can be replaced by an arbitrary constant setting
xn without changing the value of the sum. After applying this modification,
the vector of settings does not depend on an−1, and then the setting of party
n− 1 can be taken to be some fixed xn−1. Applying this procedure repeatedly
eventually replaces all functions fi(a1, . . . , ai−1) by constant settings xi. Then
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the normalization equation implies that the sum has the value 1, as has been
claimed.

Conversely, suppose that p is a probabilistic model on Bn,k,m. Then p satisfies
the normalization equation since taking all functions fi to be constants xi gives
precisely (4.12). In order to prove the no-signaling equation, we fix arbitrary
outputs bj and choose all functions to be constants fj = xj , except for

fn(a1, . . . , an−1) =

{
xn if aj = bj for all j < n,
x′n otherwise,

which gives the equation∑
an

p(b1 . . . bn−1an|x1 . . . xn)+
∑
an

∑
(a1,...,an−1)6=(b1,...,bn−1)

p(a1 . . . an|x1 . . . x
′
n) = 1.

Upon combining this with the already proven normalization equation∑
an

p(b1 . . . bn−1an|x1 . . . x
′
n)+

∑
an

∑
(a1,...,an−1)6=(b1,...,bn−1)

p(a1 . . . an|x1 . . . x
′
n) = 1.

we obtain (4.11) with i = n and b1 . . . bn−1 in place of a1 . . . an−1. The other no-
signaling equations can be obtained in the same way, choosing different orders
of the parties.

In particular, this proof shows explicitly how the non-trivial edges occurring
in the definition of “⊗” give rise to the no-signaling property.

4.3. Non-orthogonality graphs

An important feature of our formalism is that it allows to relate different classes
of probabilistic models with concepts of graph theory. In chapter 3 we stud-
ied correlations using graph invariants of both the orthogonality and the non-
orthogonality graph. In this section, we will extend the definition of the latter
to general contextuality scenarios.

Definition 4.16 (Non-orthogonality graph). Let H be a contextuality scenario.
The non-orthogonality graph NO(H) is the undirected graph with the same
vertices as H and adjacency relation

u ∼ v ⇐⇒ 6 ∃e ∈ E(H) with {u, v} ⊆ e.
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We say that two different vertices u and v of H are orthogonal, which we
denote by u ⊥ v, if they are not adjacent in NO(H), i.e. if they do belong to a
common edge in H.

In the case of Bell scenarios, this definition of non-orthogonality graph coin-
cides with that of chapter 3. Indeed, as explained in section 4.2 every hyperedge
in Bn,m,d is associated to a correlated measurement among the n parties, and
vice-versa. This feature of the hyperedge set E(Bn,m,d) guarantees that the
orthogonality relations which arise in the definition of Bn,m,d are exactly those
determined by the LO principle. The formal proof is presented below.

Lemma 4.17. The events u, v ∈ V (Bn,k,m) are locally orthogonal if and only
if u ⊥ v. In words, the orthogonality between two events in the sense of setion
3.1 naturally arises from the FR product.

Proof. Suppose that u = a1 . . . an|x1 . . . xn and v = a′1 . . . a
′
n|x′1 . . . x′n are locally

orthogonal. By relabelling the parties, we can arrange for a1 6= a′1 and x1 = x′1.
Now choose any functions f2, . . . , fn with fi(a1) = xi and fi(a

′
1) = x′i. Then

the set of events of the form

b1 . . . bn|x1f2(b1) . . . fn(b1)

defines an edge in Bn,k,m containing both u and v. Intuitively, Alice commu-
nicates her outcome to the other parties who then choose their measurement
settings as a function of that outcome.

Conversely, u ⊥ v means that there is an edge e ∈ E(Bn,k,m) with u, v ∈ e.
More concretely, this states that there is an ordering of the parties σ(1), . . . , σ(n)
and functions fσ(i)(bσ(1), . . . , bσ(i−1)) such that e contains exactly those events
which have the form

bσ(1) . . . bσ(n)|fσ(1)() . . . fσ(n)(bσ(1), . . . , bσ(n−1))

where we have now written the parties in the order given by the permutation
σ. Since both given events u = a1 . . . an|x1 . . . xn and v = a′1 . . . a

′
n|x′1 . . . x′n

are assumed to be of this form, we know that xσ(i) = fσ(i)(aσ(1), . . . , aσ(i−1))
and x′σ(i) = fσ(i)(a

′
σ(1), . . . , a

′
σ(i−1)). Now let σ(j) be the smallest index with

aσ(j) 6= a′σ(j). Then, since xσ(j) and x′σ(j) only depend on aσ(i) and a′σ(i) with

i < j, we conclude that xσ(j) = x′σ(j), which proves the claim.

For general product scenarios, a relation between the non-orthogonality graphs
of the involved scenarios holds similarly to the one presented in section 3.4 for
Bell scenarios.
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Lemma 4.18. Let HA and HB be contextuality scenarios. Then,

NO(HA ⊗HB) = NO(HA) � NO(HB).

Proof. Clearly both sides are graphs having V (HA) × V (HB) as their set of
vertices, so what needs to be shown is that the adjacency relations coincide.

We first prove that if (uA, uB) ⊥ (vA, vB) in NO(HA ⊗HB), then these two
vertices are also not adjacent in NO(HA) � NO(HB). The assumption means
that there is an edge e ∈ E(HA ⊗ HB) which contains both (uA, uB) and
(vA, vB); this edge has one of the two forms of (4.3). If it is in EA→B, then
uA, vA ∈ eA, meaning that uA ⊥ vA. Similarly, if the edge is in EA←B, then
uB ⊥ vB. The conclusion follows from either case.

For proving the opposite implication, we show that (uA, uB) ⊥ (vA, vB) in
NO(HA)�NO(HB) implies the same in NO(HA⊗HB). The assumption means
that uA ⊥ vA or uB ⊥ vB; by symmetry, it is enough to consider the case
uA ⊥ vA. Then, there exists some eA ∈ E(HA) with uA, vA ∈ eA. Now choose
eB, e

′
B ∈ EB such that uB ∈ eB and vB ∈ e′B, and some function f : eA → EB

with f(uA) = eB and f(vA) = e′B. Then⋃
a∈eA

{a} × f(a)

is an edge in HA ⊗ HB containing (uA, uB) and (vA, vB), which proves the
claim.

In next sections, I will present relevant sets of probabilistic models, and relate
most of them with graph-theoretical invariants of the non-orthogonality graphs.

4.4. Classical models

For each scenario H, one can define several relevant subsets of the set of G(H).
In the following, we will define these and study some of their properties in some
detail, starting with set of classical models C(H).

Definition 4.19. Let H be a contextuality scenario.

1. A probabilistic model p ∈ G(H) is deterministic if p(v) ∈ {0, 1} for all
v ∈ V (H).

2. A probabilistic model p ∈ G(H) is classical if it is a convex combination
of deterministic ones.
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This definition of “classical” encompasses the idea of hidden variables like in
the works by Bell (Bel64), Fine (Fin82) and Kochen-Specker (KS67).

For finite H there are only finitely many deterministic models, hence the set
of classical models is a polytope. We denote this polytope by C(H).

Example 4.20 ((CEGA96)). Let H be the contextuality scenario of Figure 4.4.
We will show that C(H) = ∅. To see this, let V1 be the set of vertices to which a
given deterministic model assigns a 1. The set V1 is required to intersect every
edge in one and only one vertex. Since every vertex appears in precisely two
edges, 2|V1| should be equal to the number of edges. Since the latter is odd, it
implies that no deterministic model exists, which means that C(H) = ∅.

A concept that plays an important role for classical models, as we will see
below, is that of exact transversal:

Definition 4.21 ((Eit94)). An exact transversal of a hypergraph H = (V,E)
is a subset of vertices V ′ ⊆ V such that each hyperedge e ∈ E intersects V ′ at
exactly one element.

As we just exemplified, a deterministic model p is determined by the set of
vertices V1 = {v ∈ V | p(v) = 1}. By definition of deterministic model, V1 has
the property that it intersects every edge in exactly one vertex, hence V1 is an
exact transversal. Conversely, every exact transversal V1 defines a deterministic
model in this way. Therefore, C(H) 6= ∅ if and only ifH has an exact transversal.

In the case of Bell scenarios, the set of classical models C(Bn,m,d) coincides
with the standard Bell polytope. Indeed, one way to define the Bell polytope
is as the convex hull of deterministic models, and a deterministic model in the
contextuality scenario Bn,m,d is the same as a local deterministic model in the
Bell sense.

More generally, given two arbitrary contextuality scenarios HA and HB, the
classical models on their product are characterized as follows.

Proposition 4.22.

C(HA ⊗HB) = conv (C(HA)⊗ C(HB)) ,

where conv(S) denotes the convex hull of the elements in S.

This is supposed to be seen in contrast to the case of general no-signaling
models, where we saw that G(HA)⊗ G(HB) ⊆ G(HA ⊗HB).

Proof. Let pA ∈ C(HA) and pB ∈ C(HB) be deterministic models. Then also
pA ⊗ pB is a deterministic model on HA ⊗ HB, which proves C(HA ⊗ HB) ⊇
conv (C(HA)⊗ C(HB)) by convexity of C(HA ⊗HB).
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Conversely, consider a deterministic model pAB on HA ⊗HB. Let V1 be the
set of vertices in HA ⊗HB for which pAB(v) = 1, and define pA ∈ C(HA) and
pB ∈ C(HB) as follows: for each vA ∈ VA, set pA(vA) = 1 if and only if there
exists vB ∈ VB such that (vA, vB) ∈ V1, and pA(vA) = 0 otherwise. Similarly,
define pB. We want to check that these are indeed probabilistic models, i.e. show
that

∑
vA∈eA pA(vA) = 1 and

∑
vB∈eB pB(vB) = 1 for every edge eA of HA and

eB of HB. As V1 is an exact transversal of HA ⊗ HB, no two elements of V1

belong to the same edge. This implies that if both (uA, uB), (u′A, u
′
B) ∈ V1,

then there is no eA ∈ E(HA) with {uA, u′A} ⊆ eA: for if there where, then we
could construct an edge as in the proof of Lemma 4.18 which contains both
(uA, uB) and (u′A, u

′
B). It follows for each edge eA ∈ EA, there is at most one

vertex vA ∈ eA with pA(vA) = 1. In fact, there is exactly one such vertex,
since eA × eB is an edge on HA ⊗ HB for any eB ∈ E(HB), and this edge
intersects with V1. Hence, pA is a probabilistic model on HA. Similarly, pB is
a probabilistic model. Since pAB = pA ⊗ pB by construction, the claim follows
by convexity.

Finally, I will show how to detect classicality using a graph-theoretic invariant
from section 2.3. Indeed, since the classical deterministic models are charac-
terized by exact transversals on H, which in turn form cliques in NO(H), we
expect these graph-theoretical objects to be relevant in the characterization of
C(H). In what follows we will see that the graph invariant defined in terms of
cliques that plays the role is the fractional packing number.

Proposition 4.23. A probabilistic model p ∈ G(H) is in C(H) if and only if
α∗(NO(H), p) ≤ 1.

Note that the normalization
∑

v∈e p(v) = 1 for every e ∈ E(H) implies
that α∗(NO(H), p) ≥ 1, so that the condition α∗(NO(H), p) ≤ 1 is actually
equivalent to α∗(NO(H), p) = 1.

Proof. By definition, α∗(NO(H), p) ≤ 1 means that if q : V (H) → [0, 1] are
vertex weights satisfying

∑
v∈C qv ≤ 1 for all cliques C ⊆ NO(H), then also∑

v∈V (H)

qvp(v) ≤ 1. (4.13)

In order to prove the claim for all classical p, it is sufficient to consider deter-
ministic p. In this case, the associated set V1 = {v ∈ V (H) | p(v) = 1} is itself
a clique in NO(H), while all other p(v) vanish, and hence (4.13) follows from
the assumption on q.
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For the other direction, we use the dual formulation (A.8) of the weighted
fractional packing number: there exists a number xC ≥ 0 associated to every
clique C ⊆ NO(H) such that p(v) ≤

∑
C3v xC and

∑
C xC = 1. We claim

that every C for which xC 6= 0 corresponds to a deterministic model via its
characterization as the set of vertices V1 = {v ∈ V | p(v) = 1}. In other words,
we will see that if xC 6= 0, then |e∩C| = 1 for every e ∈ E(H). First, |e∩C| ≤ 1,
since e is an independent set in NO(H) while C is a clique. Second, the chain
of inequalities

1 =
∑
v∈e

p(v) ≤
∑
v∈e

∑
C3v

xC =
∑

C with C∩e 6=∅

xC ≤
∑
C

xC = 1

actually needs to be a chain of equalities.
∑

C with C∩e6=∅ xC =
∑

C xC implies
that if xC 6= 0, then |e ∩ C| = 1 for every e ∈ E(H), i.e. every clique C with
xC 6= 0 is an exact transversal (hence deterministic model) on H. In addition,
we also conclude that p(v) =

∑
C3v xC , i.e. p =

∑
C xC1C , which is an explicit

decomposition of p as a convex combination of deterministic models.

4.5. Quantum models

In this section I will present the probabilistic models that arise when the con-
textuality scenario represents measurements on a quantum system.

Let H be the Hilbert space under consideration. We denote by B(H) the set
of all bounded operators on H, and B+(H) the subset of positive semi-definite
operators. A quantum state ρ is given by a normalized density operator, i.e. by
some ρ ∈ B+,1(H), where B+,1(H) := {ρ ∈ B+(H) | tr ρ = 1}. We define a
quantum probabilistic model as follows.

Definition 4.24. Let H be a contextuality scenario. A probabilistic model
p ∈ G(H) is a quantum model if there exists a Hilbert space H, a quantum
state ρ ∈ B+,1(H) and a projection operator Pv ∈ B(H) associated to every
v ∈ V which constitute projective measurements in the sense that∑

v∈e
Pv = 1H ∀e ∈ E(H), (4.14)

and reproduce the given probabilities,

p(v) = tr (ρPv) ∀v ∈ V (H). (4.15)

We denote by Q(H) the set of quantum models, which is convex. Indeed,
let p1, p2 ∈ Q(H) be quantum models implemented by Hilbert spaces H1, H2,

76
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projection operators P1,v, P2,v and states ρ1, ρ2 on the respective Hilbert space.
Then, for any coefficient λ ∈ [0, 1] we can construct a quantum representation of
λp1+(1−λ)p2 by settingH := H1⊕H2, Pv := P1,v⊕P2,v, and ρ := λρ1⊕(1−
λ)ρ2. It is immediate to verify that this is indeed a quantum representation of
λp1 + (1− λ)p2. Moreover, every classical model is a quantum model: C(H) ⊆
Q(H). This follows from the convexity of Q(H), upon showing that every
deterministic model is quantum: a deterministic model p can be seen to be
quantum by setting H = C, Pv = p(v) · 1 and ρ = 1.

In the case of product scenarios, the set of quantum models Q(HA ⊗ HB)
satisfies the following property.

Proposition 4.25. Let HA and HB be two contextuality scenarios. Then p ∈
Q(HA ⊗ HB) if and only if there is a Hilbert space H, a quantum state ρ ∈
B+,1(H) and projection operators PA,u ∈ B(H), PB,v ∈ B(H) assigned to every
u ∈ V (HA), v ∈ V (HB) such that∑

u∈eA

PA,u = 1H =
∑
v∈eB

PB,v ∀eA ∈ E(HA), eB ∈ E(HB),

[PA,u, PB,v] = 0 ∀u ∈ V (HA), v ∈ V (HB),

and the given probabilistic model is reproduced,

p(u, v) = tr (ρPA,uPB,v) ∀u ∈ V (HA), v ∈ V (HB). (4.16)

Proof. We start from (4.16) and assign to every vertex (u, v) ∈ V (HA ⊗ HB)
the projection

P(u,v) := PA,uPB,v,

so that (4.15) holds by (4.16). By symmetry, it is sufficient to show (4.14) for
an edge e ∈ EA→B given by

e :=
⋃
a∈eA

{a} × f(a) with eA ∈ EA, f : eA → EB.

In this case, ∑
w∈e

Pw =
∑
u∈eA

PA,u
∑
v∈f(u)

PB,v =
∑
u∈eA

PA,u · 1H = 1H,

which is analogous to the computation in the proof of Proposition 4.12.
Conversely, one can construct the “local” observables PA,u and PB,v from a

quantum model on Q(HA ⊗HB) by noting that the operators

PA,u :=
∑
v∈eB

P(u,v), Pv :=
∑
u∈eA

P(u,v) (4.17)
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do not depend on the choice of eB ∈ E(HB) or eA ∈ E(HA), respectively. To
see this, it is enough to prove that∑

v∈eB

P(u,v) =
∑
v∈e′B

P(u,v) (4.18)

for any u ∈ V (HA) and eB, e
′
B ∈ E(HB), which is analogous to the proof of

Proposition 4.15. Choose some eA 3 u and consider the function f : eA →
E(HB) with

f(u′) =

{
eB if u′ = u,

e′B otherwise.

An application of (4.14) to the edge defined by f as well as the edge eA × e′B
gives ∑

v∈eB

P(u,v) +
∑

u′∈eA\{u}

∑
v∈e′B

P(u′,v) = 1H =
∑
u′∈eA

∑
v∈e′B

P(u′,v),

which reduces to (4.18) after cancelling terms. This shows that the “local”
operators (4.17) are well-defined.

The normalization condition
∑

u PA,u = 1H =
∑

v PB,v now is an immediate
consequence of (4.14). Finally, the commutativity [PA,u, PB,v] = 0 follows again
from the normalization ∑

u′∈eA

∑
v′∈eB

P(u′,v′) = 1H,

taken for some eA 3 u and eB 3 v: the terms in this sum are necessarily
mutually orthogonal, and hence commute pairwise; but now both PA,u and
PB,v are partial sums of this big sum, and therefore these commute as well.
Also, mutual orthogonality implies P(u,v) = PA,uPB,v, which yields the desired
probabilities (4.16).

This characterization of quantum models on product scenarios somehow gen-
eralizes the commutativity paradigm of quantum correlations in Bell scenar-
ios (JNP+11; Fri12). A straightforward generalization of this result for quan-
tum models on n-fold products proves that Q(Bn,m,d) is the set of quantum
correlations in the Bell sense in the commutativity paradigm.

Another immediate consequence of proposition 4.25 is thatQ(HA)⊗Q(HB) ⊆
Q(HA ⊗ HB). Again, the CHSH scenario B2,2,2 = B1,2,2 ⊗ B1,2,2 exemplifies
that this is not an equality in general.
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4.6. A hierarchy of relaxations

For Bell scenarios, quantum correlations with the commutativity paradigm
are characterized by a sequence (“hierarchy”) of semidefinite programs, due
to Navascués, Pironio and Aćın (NPA07; NPA08). In this section, I will extend
this hierarchy to one that suits general contextuality scenarios in our framework.
Our hierarchy may be considered as a special case of the general hierarchy for
noncommutative polynomial optimization (PNA10).

A moment matrix of order n associated with a contextuality scenario H =
(V,E) is a symmetric matrix Mn whose rows and columns are indexed by words
of size at most n written in the alphabet formed by V . More explicitly, the
indices of Mn belong to the set V ∗n =

⋃
k≤n V

k. ∅ ∈ V ∗n is the empty string of

length 0, and by V ∗ =
⋃
k∈N V

k we denote the set of all (arbitrary large) strings
over V . Moreover, we choose the normalization Mk(∅, ∅) = 1. In what follows, I
denote the strings by vectors, i.e. v = v1 . . . vn and its reverse by v† = vn . . . v1.
Given two strings v ∈ V ∗ and w ∈ V ∗, I write their concatenation simply as
vw ∈ V ∗, and I also use v1 . . . v̂i . . . vn as a shorthand for v1 . . . vi−1vi+1 . . . vn.

Definition 4.26. A matrix Mn is a certificate of order n for the probabilistic
model p ∈ G(H) if

1. it is positive semidefinite: Mn � 0,

2. for every v ∈ V ,

Mn(v, ∅) = p(v) (4.19)

In addition, we can define some other conditions for the matrices Mn to
satisfy.

Definition 4.27. Let Mn be a moment matrix.

1. Mn is normalized with respect to the contextuality scenario H = (V,E)
if for every two strings v ∈ V ∗(n−1) and w ∈ V ∗n, and every hyperedge
e ∈ E, the following condition holds:∑

u∈e
M(vu,w) = M(v,w). (4.20)

2. Mn is orthogonal with respect to H = (V,E) if for every e ∈ E, and
every v,w ∈ V ∗(n−1), if v, w ∈ e then

M(vv,ww) = 0. (4.21)
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Our hierarchy of relaxation is then defined as follows.

Definition 4.28. Let H be a contextuality scenario. We say that p ∈ G(H) is
a Qn-model if there exists a certificate of order n for p which satisfies Normal-
ization (4.20) and Orthogonality (4.21).

By definition, testing whether a given probabilistic model lies in Qn is a

semidefinite programming problem of size |V |
n+1−1
|V |−1 × |V |

n+1−1
|V |−1 , that is, of order

|V (H)|n × |V (H)|n. By making judicious use of the equations (4.20) and the
upcoming (4.25), this size can be significantly reduced if H has many edges; any
practical computation should take this into account. Furthermore, it can be
assumed that all matrix entries are actually in R, i.e. no imaginary components
are needed.

It is straightforward to see that the sets Qn form a sequence or hierarchy.
Indeed, every matrix M showing that p is a Qn+1-model can be restricted to
a matrix showing that p is a Qn-model, hence Qn+1(H) ⊆ Qn(H). Since each
Qn(H) is defined in terms of a semidefinite program, we say that this represents
a hierarchy of semidefinite programs.

Moment matrices which are positive semidefinite and satisfy Normalization
(4.20) and Orthogonality (4.21), also satisfy other useful properties, which I list
below (for simplicity, I will omit the subscript n when writing Mn).

Remark 4.29. Let v,w,v′,w′ be strings, and further denote the elements of
v by v1 . . . vm. Then,

1. If vw† = v′w′†, then
M(v,w) = M(v′,w′). (4.22)

This follows by induction from M(v1 . . . vm,w) = M(v1 . . . vm−1,wvm),
which in turn is a consequence of (4.20) and (4.21) upon choosing some
e 3 vm,

M(v1 . . . vm,w)
(4.20)

=
∑
x∈e

M(v1 . . . vm,wx)
(4.21)

= M(v1 . . . vm,wvm)

(4.21)
=

∑
x∈e

M(v1 . . . vm−1x,wvm)

(4.20)
= M(v1 . . . vm−1,wvm).

Equation (4.22) implies in particular that all matrix entries M(v,w) are
determined by those of the “first row”, i.e. those of the form M(∅,v),
although this requires v ∈ V (H)∗2n.
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2. Repeating one letter in the index string gives the same matrix entry,

M(v1 . . . vi . . . vm,w) = M(v1 . . . vivi . . . vm,w). (4.23)

Upon using (4.22), this follows from a very similar argument.

3. For every e ∈ E(H),∑
vi∈e

M(v,w) = M(v1 . . . v̂i . . . vm,w). (4.24)

This is a consequence of (4.20) and (4.22).

4. Having subsequent orthogonal indices makes the matrix entry vanish,

vi ⊥ vi+1 =⇒ M(v1 . . . vivi+1 . . . vm,w) = 0. (4.25)

This follows from (4.24) together with (4.23).

5. Choosing some e 3 v and applying (4.20) and (4.21) also shows that

M(v, ∅) = M(v, v). (4.26)

In particular, if M is a certificate for a probabilistic model p, p(v) =
M(v, v) follows from (4.19).

It worth mentioning that in the case of infinite matrices M with entries
M(v,w) indexed by strings of arbitrary length v,w ∈ V (H)∗, the definition of
a moment matrix still holds if we take positive semidefiniteness to mean that∑

v,w∈V (H)∗

x∗vM(v,w)xw ≥ 0

for all finitely supported (xv)v∈V (H)∗ .

Proposition 4.30. Let H be a contextuality scenario, and consider p ∈ G(H).
If there exists such an infinite matrix as a certificate for p which satisfies Nor-
malization (4.20) and Orthogonality (4.21), then p ∈ Q.

Proof. Such an infinite matrix M can be understood to be a (∗-algebraic) state
φ on the ∗-algebra with generators {Pv, v ∈ V (H)} and relations

Pv = P 2
v = P ∗v ,

∑
v∈e

Pv = 1 ∀e ∈ E(H) (4.27)
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via the assignment

φ (Pv1 . . . Pvn) := M(v1 . . . vn, ∅).

and extending by linearity. Then, the GNS construction (see e.g. (KR83))
turns this into a quantum representation satisfying (4.19). For this reason, a
probabilistic model is quantum if and only if there exists such an infinite matrix
M which is a certificate for p having the properties of def. 4.27.

More concretely, this works as follows. First, we claim that∑
v,w∈V (H)∗

x∗vM(vu,wu)xw ≤
∑

v,w∈V (H)∗

x∗vM(v,w)xw. (4.28)

To see this, choose any e 3 u and write∑
v,w∈V (H)∗

x∗v
(
M(v,w)−M(vu,wu)

)
xw

4.29
=

∑
v,w∈V (H)∗

x∗v

 ∑
u′∈e, u′ 6=u

M(vu′,wu′)

xw

=
∑

u′∈e, u′ 6=u

∑
v,w∈V (H)∗

x∗vM(vu′,wu′)xw ≥ 0,

where the last inequality is due to positive semidefiniteness ofM . This proves (4.28).

Now we start the construction with the infinite-dimensional vector space
spanned by all strings, H0 := linC (V (H)∗). The formula〈 ∑

v∈V (H)∗

xvv,
∑

w∈V (H)∗

yww

〉
:=

∑
v,w∈V (H)∗

x∗vM(v,w)yw.

defines a positive semidefinite inner product on H0 in terms of the matrix M .
The Cauchy-Schwarz inequality shows that

N :=

 ∑
v∈V (H)∗

xvv ∈ H0

∣∣∣∣∣
〈∑

v

xvv,
∑
v

xvv

〉
= 0


is a linear subspace of H0. The inner product on the quotient H0/N then is
positive definite by definition. We take H to be the completion of H0/N with
respect to the norm coming from this inner product.
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Now for u ∈ V (H), the operator Pu is defined to act on H0 as

Pu

 ∑
v∈V (H)∗

xvv

 :=
∑

v∈V (H)∗

xvvu.

Thanks to (4.28), this descends to a well-defined operator in B(H), which we
also denote by Pu. The equation M(vu,w) = M(v,wu) guarantees that Pu is
self-adjoint, while M(vuu,w) = M(vu,w) shows that P 2

u = Pu since∑
v∈V (H)∗

xv (vuu− vu) ∈ N .

The equation
∑

u∈e Pu = 1H holds since

∑
v∈V (H)∗

xv

(
v −

∑
u∈e

vu

)
∈ N

thanks to (4.20). Finally, the rank-one density operator associated to the empty
string ∅ ∈ H is the desired quantum state, since

〈∅, Pu∅〉 = M(∅, u) = p(u).

This ends the GNS construction.

From this reasoning, we find that the sequence of sets (Qn)n∈N converges in
the following sense:

Theorem 4.31.
Q =

⋂
n∈N
Qn.

Proof ((NPA08)). It needs to be shown that if p ∈ Qn for all n ∈ N, then
p ∈ Q. To this end, we show that if a matrix (Mn

v,w)v,w∈V (H)∗n exists with the
required properties for every n, then there also exists a corresponding infinite
matrix (M∞v,w)v,w∈V (H)∗ .

For v ∈ V (H)∗n, positive semidefiniteness gives the estimate(
M2n

v,v

)2 (4.22)
=

(
M2n

vv†,∅

)2
≤M2n

vv†,∅ ·M
2n
∅,∅ = M2n

v,v,

which implies M2n
v,v ≤ 1, and hence

|M2n
v,w|2 ≤M2n

v,vM
2n
w,w ≤ 1
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again thanks to positive semidefiniteness. We obtain Mk
v,w ∈ [−1,+1] for all

v,w ∈ V (H)∗n with n ≤ 2k.
Now consider the truncation of any M2n to a matrix indexed by v,w ∈

V (H)∗n. Upon filling this truncation up with 0’s, we obtain an infinite matrix
indexed by v,w ∈ V (H)∗ with all elements in [−1,+1]. In this way, every
matrix Mn becomes an element of the space [−1,+1]V (H)∗×V (H)∗ . This space,
equipped with the product topology, is second countable, and also compact
thanks to Tychonoff’s theorem. Hence, the sequence (Mn)n∈N has a convergent
subsequence, and we write M∞ for its limit. By construction, this M∞ is an
infinite matrix indexed by v,w ∈ V (H)∗ having all the desired properties. The
claim now follows from Proposition 4.30.

By means of the previous convergence theorem, we see that the hierarchy
Qn(H) of semidefinite programs characterizes Q(H).

One relevant set in this hierarchy is actually the first level Q1. In particular,
in appendix F we prove that our set Q1(B2,m,d) coincides with the set Q1+AB

of (NPA08). Moreover, as I will prove in section 4.7, Q1 also coincides with the
set E1

QM defined in the CSW approach (CSW10). In the following proposition, I
present other equivalent characterizations ofQ1 which provide a better intuition
on the properties of the set.

Proposition 4.32. Let H be a contextuality scenario. For p ∈ G(H), the
following are equivalent:

1. p ∈ Q1(H);

2. There exists a Hilbert space H, a unit vector |Ψ〉 ∈ H and a vector |φv〉
for every v ∈ V (H) such that

a) u ⊥ v =⇒ 〈φu|φv〉 = 0,

b)
∑

v∈e |φv〉 = |Ψ〉 ∀e ∈ E(H),

c) p(v) = 〈φv|φv〉;

3. There exists a Hilbert space H, a unit vector |Ψ〉 ∈ H and a unit vector
|ψv〉 for every v ∈ V (H) such that

a) u ⊥ v =⇒ 〈ψu|ψv〉 = 0,

b) p(v) = |〈ψv|Ψ〉|2;

4. There exists a Hilbert space H, a unit vector |Ψ〉 ∈ H and a projection Pv
for every v ∈ V (H) such that

a) u ⊥ v =⇒ Pu ⊥ Pv,
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b) p(v) = 〈Ψ|Pv|Ψ〉 ∀v ∈ V (H);

5. There exists a Hilbert space H, a unit vector |Ψ〉 ∈ H and a projection Pv
for every v ∈ V (H) such that

a)
∑

v∈e Pv ≤ 1H ∀e ∈ E(H),

b) p(v) = 〈Ψ|Pv|Ψ〉 ∀v ∈ V (H);

In all cases, H can also be taken to be the real Hilbert space R|V (H)|.

Proof. 1⇒2: By positive semidefiniteness, we can write M as a Gram matrix,
so that there exist vectors |Ψ〉, |φv〉 in H = R|V (H)| such that

M(∅, ∅) = 〈Ψ|Ψ〉, M(∅, v) = 〈Ψ|φv〉, M(u, v) = 〈φu|φv〉,

from which 2a and 2c follow.

Now we fix e ∈ E(H) and show 2b. We decompose |Ψ〉 into orthogonal
components |Ψ〉 = |Ψ‖〉 + |Ψ⊥〉, where |Ψ‖〉 ∈ linC{|φv〉 : v ∈ e}. Due
to (4.20) and (4.21), the vectors satisfy:

〈φv|Ψ〉 = M(v, ∅) =
∑
u∈e

M(v, u) = M(v, v) = 〈φv|φv〉.

Then the equations

〈φv|Ψ〉 = 〈φv|φv〉

imply that |Ψ‖〉 =
∑

v∈e |φv〉. On the other hand,

〈Ψ‖|Ψ‖〉+ 〈Ψ⊥|Ψ⊥〉 = M(∅, ∅) =
∑
v∈e

M(∅, v)

=
∑
v,u∈e

M(u, v) =
∑
v,u∈e
〈φu|φv〉 = 〈Ψ‖|Ψ‖〉

shows that |Ψ⊥〉 = 0, so that
∑

v∈e |φv〉 = |Ψ〉, as desired.

2⇒3: Normalizing the |φv〉 to |ψv〉 := 1√
〈φv |φv〉

|φv〉 guarantees the orthogonality

relations, and choosing some edge e ∈ E(H) with v ∈ e gives

|〈ψv|Ψ〉|2 =
1

〈φv|φv〉

∣∣∣∣∣
〈
φv

∣∣∣∣∣∑
u∈e

φu

〉∣∣∣∣∣
2

=
1

〈φv|φv〉
〈φv|φv〉2 = 〈φv|φv〉,

due to the orthogonality relations.
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3⇒4: Define Pv = |ψv〉〈ψv|.

4⇒5: This is clear since for fixed e ∈ E(H), all projections Pv for v ∈ e are
mutually orthogonal, which implies

∑
v∈e Pv ≤ 1H.

5⇒1: DefineM(v, w) = 〈Ψ|PvP †w|Ψ〉. We check thatM satisfies conditions (4.20)
and (4.21), M(∅, ∅) = 1, and is positive semidefinite:

M(∅, ∅) = 1: M(∅, ∅) = 〈Ψ|Ψ〉 = 1, since |Ψ〉 is a unit vector.

(4.20) Consider an edge e ∈ E. Since p(v) is a probabilistic model,

〈Ψ|Ψ〉 = 1 =
∑
v∈e

p(v) = 〈Ψ|
∑
v∈e

Pv|Ψ〉,

which implies
∑

v∈e Pv|Ψ〉 = |Ψ〉. Then,∑
v∈e

M(v, w) = 〈Ψ|
∑
v∈e

PvPw|Ψ〉 = 〈Ψ|Pw|Ψ〉 = M(∅, w).

(4.21) If v ⊥ w, then there is an edge e ∈ E(H) with v, w ∈ e. Hence,
Pv ⊥ Pw, so that M(v, w) = 〈Ψ|PvPw|Ψ〉 = 0.

� 0: It needs to be shown that for any vector x ∈ CV (H)∗n with components
xv ∈ C, v ∈ V (H)∗n, the expression∑

v,w

x∗vM(v,w)xw.

is nonnegative. By the definition, this is equal to∑
v,w

〈Ψ| x∗vPvP
†
wxw |Ψ〉.

With Q =
∑

v xvP
†
v, this is of the form 〈Ψ|Q†Q |Ψ〉, and therefore indeed

nonnegative.

Finally, I present a necessary and sufficient condition for a model to belong
to Q1, in terms of a graph-theoretic invariant from section 2.3. Prop. 4.32
proposes a characterization (2) of Q1 in terms of unit vectors {|φv〉}v∈V , which
satisfy orthogonality relations similar to those of an orthonormal representation
of NO(H). In what follows, we will see that the weighted Lovász number ϑ
succeeds in picking up the characteristic properties of the probabilistic models
in Q1.
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Proposition 4.33. A probabilistic model p ∈ G(H) is in Q1 if and only if
ϑ(NO(H), p) ≤ 1.

Proof. We use the characterization of Q1(H) given in Proposition 4.32-3. As-
suming p ∈ Q1(H), we choose corresponding vectors |ψv〉, |Ψ〉 ∈ R|V (H)|; then,
by Definition A.15,

ϑ(NO(H), p) ≤ max
v∈V

p(v)

|〈Ψ|ψv〉|2
=
p(v)

p(v)
= 1.

Conversely, if ϑ(NO(H), p) ≤ 1, then there is an orthonormal labelling (|ψv〉)v∈V
and a vector |Ψ〉 ∈ R|V | such that |〈Ψ|ψv〉|2 ≥ p(v) ∀v. By choosing H =
R|V (H)| ⊕ R|V (H)| and setting

|ψ′v〉 :=

√
p(v)

|〈Ψ|ψv〉|
|ψv〉 ⊕

√
1− p(v)

|〈Ψ|ψv〉|2
|ev〉 ∈ H

where the |ev〉 form the standard basis of R|V (H)|, one obtains |〈Ψ|ψ′v〉|2 = p(v)
with unit vectors |ψ′v〉, as desired.

This relation to graph theory has a simple first application:

Proposition 4.34.

Q1(HA)⊗Q1(HB) ⊆ Q1(HA ⊗HB) (4.29)

Proof. Combine Proposition 4.33 with
If pA ∈ Q1(HA) and pB ∈ Q1(HB) then both ϑ(NO(HA), pA) ≤ 1 and

ϑ(NO(HB), pB) ≤ 1. Hence, multiplicativity of ϑ (corollary A.25) implies that
ϑ(G1�G2, p1⊗p2) = ϑ(G1, p1)ϑ(G2, p2) ≤ 1. It follows that p1⊗p2 ∈ Q1(HA⊗
HB).

4.7. Relation to the CSW approach

The Cabello, Severini and Winter approach to contextuality (CSW10) also has
it basis in a graph-theoretic formulation, and has in part inspired the formalism
presented in this chapter. In this section, I will elaborate on the connection
between the two approaches.

The main difference between the approaches lies in the normalization of the
probabilistic models: while we demand that

∑
v∈e p(v) = 1 for every measure-

ment e ∈ E, CSW rather asks
∑

v∈e p(v) ≤ 1, i.e. their measurements may not
be complete. In their approach this is not an issue, due the kind of problems
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4. Contextuality: a new framework

they focus on. The question then is how to compare these two approaches which
differ in such a basic property. In what follows, I present two connections.

First, consider the set E1
QM defined in (CSW10). This set contains all the

quantum assignments (in the CSW sense) that further satisfy normalization.
Rephrasing (CSW10) and section 2.2,

Definition 4.35. Let H = (V,E) be a contextuality scenario. An assignment
p : V → [0, 1] belongs to the set E1

QM if there exists a Hilbert space H, a state
ρ ∈ B+,1(H), and projectors Pv ∈ H for every vertex v ∈ V , such that

1. if u, v ∈ e for some hyperedge e ∈ E, then Pu ⊥ Pv.

2.
∑

v∈e Pv ≤ 1H for every hyperedge e ∈ E.

3. p(v) = tr(ρPv) for every vertex v ∈ V .

4.
∑

v∈e p(v) = 1 for every hyperedge e ∈ E.

Note that the requirement that the assignment is normalized is not in con-
tradiction with the subnormalized character of the projectors, since they may
still be normalized in the subspace where the state ρ has support on.

By comparing the previous definition with proposition 4.32, it follows that
def. 4.35 is another characterization of the set Q1. Hence, we see that the set of
normalized quantum assignments E1

QM(H) in the CSW formalism is equivalent
to the first level in our hierarchy Q1(H). In particular, this applies to Bell sce-
narios, which were introduced in CSW by defining the sets E1

X. Hence quantum
models on a Bell scenario in CSW satisfy E1

QM((Bn,m,d)) ≡ Q1(Bn,m,d).
The CSW formalism however focuses on contextuality scenarios, where there

is no need a priori to demand normalization of the assignments p. The set of
not normalized quantum models EQM is then defined as in def. 4.35 without
the last requirement, and hence cannot be directly studied in our formalism. In
what follows we show, given a CSW scenario H together with a CSW-quantum
assignment p, how to construct a scenario H ′ where p extends to H ′ as a
quantum model. The sketch of the construction is the following. The main
idea is to add to each hyperedge a new vertex, referred to as “no-detection
event”. Given an assignment p ∈ EQM, there are many ways to consistently
assign projectors to these no-detection events, such that the extended model
p′ is normalized, and all of them correspond to models in Q1. However, there
is one that corresponds to a model in Q. Note that this construction does
not apply to Bell scenarios, since in that case the possible events are uniquely
determined by the number of parties, measurements and outcomes, and no no-
detection events can be added to the hyperedges. This idea is formalized in the
following proposition.
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4.7. Relation to the CSW approach

Proposition 4.36. Let H be a contextuality scenario and p ∈ EQM(H). Then,
there exists a contextuality scenario H ′ such that the extension p′ of p to H ′

belongs to Q(H ′).

Proof. Construct a contextuality scenario H ′ from H by adding for each e ∈
E(H) one no-detection event we,

V (H ′) := V (H) ∪ {we : e ∈ E(H)}, E(H ′) := {e ∪ {we} : e ∈ E(H)} .

The assignment p is extended to p′ like follows,

p′(v) := p(v) if v ∈ V, p′(we) := 1−
∑
v∈e

p(v).

In the particular case where p is normalized, i.e. when p ∈ E1
QM(H) ⊂ EQM(H),

the no-detection events have probability 0, which justifies the name. Moreover,
in this case the notion of “extension” of p to H ′ coincides with the definition
of extension of section 4.1.

Now we will see that p′ is a quantum model on H ′. Consider the Hilbert
space H, the state ρ and projectors Pv, v ∈ V , in the definition of p. Define:

P ′v := Pv if v ∈ V, P ′we
:= 1−

∑
v∈e

Pv.

First, since
∑

v∈e Pv ≤ 1H, the projectors P ′we
are well defined and satisfy

P ′we
⊥ P ′v for all v ∈ V . Second, the completeness relation for the hyperedges

in E(H ′) holds for definition. Third,

tr(ρP ′we
) = tr(ρ)−

∑
v∈e

tr(ρPv) = 1−
∑
v∈e

p(v) = p′(we).

Hence, p′ ∈ Q(H ′)

To summarize, given a CSW-quantum assignment p ∈ EQM,

1. if it is normalized, i.e. p ∈ E1
QM, it is a Q1 model. This is the case for

CSW-Bell scenarios. Note that these p are thus not necessary quantum.

2. if it does not correspond to a model on a Bell scenario, it can be extended
to a model p′ on a larger hypergraph such that p′ is quantum.

This construction of a quantum model from a CSW-quantum model will play
a key role in the next section. Further properties of hypergraphs equipped with
no-detection events are presented in section 4.11.
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4. Contextuality: a new framework

4.8. Consistent Exclusivity and Local Orthogonality

The search for principles to bound the set of quantum models Q also extends to
contextuality scenarios. One such a candidate is the “Consistent Exclusivity”
principle (CE), defined as follows:

Definition 4.37 ((Hen12)). A probabilistic model p ∈ G(H) satisfies Consis-
tent Exclusivity if ∑

v∈I
p(v) ≤ 1 (4.30)

holds for any independent set I ⊆ V (NO(H)). We write CE 1(H) ⊆ G(H) for
the set of probabilistic models satisfying CE.

We also write CE1 for this version of CE in order to distinguish it from
the upcoming refinement termed CEn. Intuitively, CE is saying that the total
probability of any collection of pairwise exclusive outcomes is upper-bounded
by 1. In this formulation, CE may almost sound like a trivial consequence
of the laws of probability. However, this is not the case, since the probabili-
ties p(v) of a probabilistic model are conditional probabilities representing the
probability that outcome v occurs given that a measurement e with v ∈ e has
been performed: in general such a collection of pairwise orthogonal events is
not necessarily jointly exclusive (see section 3.1 for a similar argument).

This principle considers general contextuality scenarios, hence in our for-
malism it also applies to Bell scenarios. In chapter 3 I presented the “Local
Orthogonality” principle for quantum correlations, which after introducing a
notion of orthogonality in Bell scenarios, imposes the same constraint of eq.
4.30 as in CE. The natural question then is how do this two principles relate.
As proved in Lemma 4.17, the orthogonality relations that arise in our definition
of a Bell scenario are exactly those imposed by the LO principle, hence in our
framework the Consistent Exclusivity principle and the Local Orthogonality
principle are equivalent.

Note that the set of quantum models satisfy CE1. Indeed, if p ∈ Q(H),
the projectors in {Pv}v∈I are pairwise orthogonal for every independent set
I ⊆ V (NO(H)). This implies that

∑
v∈I Pv ≤ 1H, hence condition (4.30) is

automatically satisfied.
The triangle scenario ∆ of Fig. 4.1 is an example of how non trivial the

CE principle is. Indeed, V (∆) is itself an independent set in NO(∆), hence its
unique probabilistic model p = 1

2 violates CE:
∑

v∈V (∆) p(v) = 3
2 . We see that

CE 1(∆) = ∅, although G(∆) = {p}.
Similar to the case of Local Orthogonality (see section 3.3), we define a

hierarchy of CE sets as follows.

90



4.8. Consistent Exclusivity and Local Orthogonality

Definition 4.38 (CE hierarchy of sets). Let H be a contextuality scenario and
p ∈ G(H). We write p ∈ CE n(H) if and only if p⊗n ∈ CE 1(H⊗n). Furthermore,

CE∞(H) :=
⋂
n∈N

CE n(H).

If p ∈ CE k(H), then we also say that p satisfies CEk. In particular, p ∈
CE∞(H) if and only if p ∈ CE n(H) for all n ∈ N, in which case we say that p
satisfies CE∞. From the observation above, it also follows that CE k(Bn,m,d) =
LOk(n,m, d).

We now relate the CE ∗ family of sets to the graph-theoretical invariants of
section 2.3. First, note that CE 1 imposes constraints on the total weight of
any independent set in NO(H), hence it is natural to relate it to the weighted
independence number α. The other sets CE k then impose constraints on the
total weight of the independent sets of NO(H⊗k), thus we will relate them
to the independence number of the orthogonality graph for the corresponding
product scenarios. Finally, since the Shannon capacity is a limit instance of the
independence number, it is natural to relate it to the limit set CE∞.

Lemma 4.39. 1. p ∈ CE n(H) if and only if α(NO(H)�n, p⊗n) ≤ 1.

2. p ∈ CE∞(H) if and only if Θ(NO(H), p) ≤ 1, or, equivalently,

if α(NO(H), p) = Θ(NO(H), p) = 1.

Proof. 1. By definition, p ∈ CE n(H) if and only if p⊗n ∈ CE 1(H⊗n), i.e.∑
v∈I p

⊗n(v) ≤ 1, where I is an independent set on H⊗n. This implies
that α(NO(H⊗n), p⊗n) ≤ 1. The claim now follows from Lemma 4.18,
which states that NO(H⊗n) = NO(H)�n.

2. If p ∈ CE∞(H), then p ∈ CE n(H) for all n. Hence, α(NO(H)�n, p⊗n) ≤ 1
for all n, which by the definition of Θ (A.6) implies that Θ(NO(H), p) ≤ 1.

For the converse, start from Θ(NO(H), p) ≤ 1 and assume there exists
a k such that α(NO(H)�k, p⊗k) > 1. From corollary A.26 follows that
α(NO(H)�k∗m, p⊗k∗m) ≥ α(NO(H)�k, p⊗k)m, hence

km

√
α(NO(H)�k∗m, p⊗k∗m) ≥ k

√
α(NO(H)�k, p⊗k) > 1

for all m. This implies that the limit of the sequence is larger than one,
i.e. Θ(NO(H), p) > 1, which contradicts the original assumption.

From corollary A.24 we know that α(NO(H), p) ≤ Θ(NO(H), p). Since p
is normalized, α(NO(H), p) ≥ 1, and since p satisfies CE∞, Θ(NO(H), p) ≤
1. This implies 1 = α(NO(H), p) = Θ(NO(H), p) = 1.
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These sets of CE models and the quantum quantum models are related as
follows.

Lemma 4.40. For every k, n ∈ N, the following inclusions hold:

CE∞(H) ⊆ . . . ⊆ . . .CE n(H) ⊆ . . . ⊆ CE 1(H).

Moreover, Q(H) ⊆ CE∞(H).

Proof. We choose any p ∈ CE 1(H). Thanks to Corollary A.26, we know

α(NO(H)�n, p⊗n) ≥ α(NO(H)�(n−1), p⊗(n−1)) · α(NO(H), p).

In addition, α(NO(H), p) = 1 since p is normalized, which implies that the se-
quence

(
α(NO(H)�n, p⊗n)

)
n∈N is monotonically nondecreasing. The first claim

now follows from Lemma 4.39.
Consider now p ∈ Q(H). The last remark in section 4.5 implies that p⊗n ∈
Q(H)⊗n ⊂ Q(H⊗n) ⊂ CE 1(H⊗n) for all n. Hence p ∈ CE∞(H).

In chapter 3 I mentioned that Local Orthogonality does not recover the set of
quantum correlations, a fact that was first noticed by Miguel Navascués before
this formalism had been set up. In what follows I show that his statement still
holds for general contextuality scenarios.

Proposition 4.41 (Navascués). For every H,

Q1(H) ⊆ CE∞(H). (4.31)

Proof. Proposition 4.33 states that p ∈ Q1 if and only if ϑ(NO(H), p) ≤ 1, while
by Lemma 4.39 p ∈ CE∞(H) if and only if Θ(NO(H), p) ≤ 1. Corollary A.24
states that Θ(NO(H), p) ≤ ϑ(NO(H), p), hence every Q1 model satisfies CE∞.

In particular, together with Q(H) ⊆ Q1(H), this proves that Q(H) ⊆
CE∞(H). All together, the sets of probabilistic models defined in this chapter
satisfy this chain of inclusions depicted in Fig. 4.7.

In (NPA08), the authors prove that Q(B2,2,2) ( Q1(B2,2,2), which implies
Q(B2,2,2) ( CE∞(B2,2,2). Hence, already in the CHSH scenario, the LO princi-
ple does not characterize quantum models. A natural question is whether this
happens only for Bell scenarios, i.e. if other types of contextuality scenarios
may be characterized by CE. The following theorem proves this is not the case.

Theorem 4.42. There are contextuality scenarios H for which

Q1(H) ( CE∞(H).
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G

α∗ ≥ ϑ ≥ Θ ≥ α

Figure 4.7.: Chain of inclusions between sets of probabilistic models and cor-
responding inequalities between graph invariants.

Proof. Our Proposition 4.33 and Lemma 4.39 suggests that this is related to
the existence of graphs G for which α(G) = Θ(G) < ϑ(G). Indeed, we will turn
Haemers’ example (Hae81) of this phenomenon into an example of a contextu-
ality scenario Jn with a probabilistic model pJ ∈ CE∞(H) with pJ 6∈ Q1(H).

Let n ≥ 12 be an integer divisible by 4. Let Jn have vertices V (Jn) being all
3-element subsets of {1, . . . , n}. An edge of Jn is given in terms of a partition
of {1, . . . , n} into 4-element subsets; a vertex (3-element subset) belongs to the
edge if and only if it is contained in one of the subsets of the partition.

By construction, all e ∈ E(Jn) have cardinality |e| = n, since every partition
consists of n/4 subsets and each subset hosts 4 vertices. Therefore, assigning
a weight of 1

n to each vertex defines a probabilistic model pJ . Now the non-
orthogonality graph NO(HJ) consists of the 3-element subsets of {1, . . . , n} two
of which are adjacent if and only if they have exactly one element in common.
This is the graph that was considered by Haemers (Hae81), who showed that

α(NO(HJ)) = Θ(NO(HJ)) = n < ϑ(NO(HJ)).

Since the probabilistic model pJ has constant weights 1
n , this means that

α(NO(HJ), pJ) = Θ(NO(HJ), pJ) = 1 < ϑ(NO(HJ), pJ),

and hence pJ ∈ CE∞(HJ), but pJ 6∈ Q1(HJ).

We now move on to study under which conditions C(H) coincides with
CE 1(H). This is an interesting case, since it implies that the whole hierar-
chy of sets – but the general probabilistic models G – collapse into the classical
one. This means not only that Consistent Exclusivity recovers the quantum
set for these scenarios, but also that these quantum models do not exhibit con-
textual features. In order to study this phenomenon, I will first present the
concept of perfect graphs, and then relate them to it.
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Proposition 4.43. A graph G is called perfect if the chromatic number1 of
any induced subgraph is equal to the clique number of this subgraph (Ber61).

If NO(H) is perfect, then C(H) = CE 1(H).

Proof. By the weak perfect graph theorem of Lovász (Lov72), we can as well as-
sume the complement NO(H) to be perfect. A probabilistic model p ∈ CE 1(H)
can be interpreted as vertex weights p(v) for v ∈ V (H) with

∑
v∈C p(v) ≤ 1

for every clique C in NO(H). Then, perfection guarantees (Knu94, Thm. 31)
that p is a convex combination of indicator functions of independent sets in
NO(H), i.e. there are cliques U1, . . . , Uk in NO(H) and coefficients λi ∈ [0, 1]
with

∑
i λi = 1 such that

p =
k∑
i=1

λi1Ui . (4.32)

We now claim that every 1Ui is a deterministic model. Since its weights
clearly take values in {0, 1}, it is enough to verify the normalization condi-
tion

∑
v∈e 1Ui(v) = 1 for all e ∈ E(H). But this follows from (4.32) together

with
∑

v∈e p(v) = 1.

In (CRST06) the authors prove that a graph G is perfect if and only if
neither G nor G contains an induced subgraph which is a cycle of odd length
≥ 5. Hence, if neither NO(H) nor NO(H) contains an odd cycle of length ≥ 5
as an induced subgraph, then C(H) = CE 1(H).

On the other hand, the converse to proposition 4.43 is not true:

Proposition 4.44. For the scenario depicted in Figure 4.8, G(H0) = C(H0),
although NO(H0) is not perfect.

Proof. NO(H0) is not perfect since its complement NO(H0) contains the pen-
tagon D as an induced subgraph in the left part.

On the other hand, every probabilistic model p on H0 is guaranteed to satisfy
p(v) = 1 due to the structure on the right. Hence, p(u) = 0 for all u in the
pentagon. Therefore, both G(H0) and C(H0) can be identified with their coun-
terparts for the right part HR of Figure 4.8. Since every maximal independent
set in NO(HR) is itself an edge, we get CE 1(HR) = G(HR), and since NO(HR)
is perfect, we have C(HR) = CE 1(HR).

1The chromatic number of a graph, usually denoted by χ, is the smallest number of colors
required to color the vertices of a graph such that adjacent vertices do not have the same
color.
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v v

Figure 4.8.: A scenario H0 with G(H0) = C(H0), although NO(H0) is not per-
fect. The two nodes labelled v represent the same vertex.

4.9. Non-convexity of CE∞

Since CE 1 is defined in terms of linear inequalities, it is naturally convex. How-
ever, the situation changes for CE n for n ≥ 2 and CE∞. In this section, I will
study some properties regarding the convexity of the CE sets. In particular, I
will prove, by constructing a counter-example, that the set CE∞ is not convex
in general.

Theorem 4.45. For all contextuality scenarios H, HA, HB, the following
statements are equivalent:

1. CE∞(HA)⊗ CE∞(HB) ⊆ CE 1(HA ⊗HB);

2. CE∞(HA)⊗ CE∞(HB) ⊆ CE∞(HA ⊗HB);

In addition, they both imply:

3. CE∞(H) is convex.

Proof. Property 2 clearly implies 1. For the converse, suppose that we have
pA ∈ CE∞(HA) and pB ∈ CE∞(HB) with pA ⊗ pB 6∈ CE∞(HA ⊗HB). Then
there exists some n ∈ N with (pA ⊗ pB)⊗n 6∈ CE 1(H⊗nA ⊗ H⊗nB ). This would
mean that p⊗nA ∈ CE∞(H⊗nA ) and p⊗nB ∈ CE∞(H⊗nB ) was a counterexample
to 1.

Concerning the implication from 1 to3, we consider p1, p2 ∈ CE∞(H) and

deduce p⊗k1 ⊗ p⊗(n−k)
2 ∈ CE 1(H�n) from assumption 1. Due to convexity of
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CE 1(H⊗n), this shows that for any λ ∈ (0, 1),

(λp1 + (1− λ)p2)⊗n =
n∑
k=0

(
n

k

)
λk(1− λ)n−kp⊗k1 ⊗ p

⊗(n−k)
2 ∈ CE 1(H⊗n),

so that (λp1 + (1− λ)p2) ∈ CE n(H). Since n was arbitrary, this means that
(λp1 + (1− λ)p2) ∈ CE∞(H), as was to be shown.

In what follows, we prove that CE∞ is not convex in general, which implies
that the statements in Theorem 4.45 are not always satisfied. Briefly, the sketch
for the construction of an explicit counter-example goes as follows:

1. Consider a contextuality scenario HA together with a probabilistic model
pA such that pA ∈ CE∞ (HA)\Q1 (HA). An explicit construction is given
in Theorem 4.42.

2. Construct a second scenario HB together with a probabilistic model pB ∈
Q1 (HB). Proposition 4.41 implies that pB ∈ CE∞ (HB).

3. Then, show that the probabilistic model pA⊗pB does not satisfy the Con-
sistent Exclusivity principle by exhibiting a set of events C := {v1, · · · , vk}
in HA ⊗HB such that vi ⊥ vj for all i 6= j and

∑
vi∈C pA ⊗ pB(vi) > 1.

The latter implies that pA ⊗ pB /∈ CE 1 (HA ⊗HB).

4. Finally, by means of Theorem 4.45, the existence of pA ∈ CE∞ (HA) and
pB ∈ CE∞ (HB) with pA ⊗ pB /∈ CE 1 (HA ⊗HB) imply that CE∞(HA ⊗
HB) is not convex.

The formal proof is presented below.

Theorem 4.46. There exists a contextuality scenario H for which CE∞ (H)
is not convex.

Proof. Consider first a contextuality scenario HA = (VA, EA) which satisfies
Q1 (HA) ( CE∞ (HA). The existence of such a scenario is guaranteed by
Theorem 4.42. For this scenario, we choose a probabilistic model pA contained
in CE∞ (HA) but not in Q1 (HA). Lemmas (4.39) and (4.33) state respectively
that

Θ (NO (HA) , pA) = 1 and ϑ (NO (HA) , pA) > 1.

The characterization of the Lovász number ϑ of a graph given in def. A.16
states that there exist an orthonormal representation |φv〉 of NO (HA) and a
normalized state |Ψ〉 such that

ϑ (NO (HA) , pA) =
∑
v∈VA

pA(v)|〈Ψ|φv〉|2.
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4.9. Non-convexity of CE∞

Hence, for this choice of orthonormal representation and state |Ψ〉, the following
holds: ∑

v∈VA

pA(v)|〈Ψ|φv〉|2 > 1. (4.33)

We now wish to interpret the numbers |〈Ψ|φv〉|2 as the probabilities of events
in a contextuality scenario HB. Consider the graph GB := NO (HA). We
now follow the construction in Prop. 4.36, and define a contextuality scenario
HB = (VB, EB) from the graph GB i the following way:

• V (HB) := VA ∪
{
we : e ∈ E

(
GB
)}

,

• E (HB) :=
{
e ∪ {we} : e ∈ E

(
GB
)}

.

Here, the event we can be interpreted as the no-detection event associated to
measurement e.

Let us finally introduce the following probabilistic model pB on HB:

pB(v) :=

{
|〈Ψ|φv〉|2 if v ∈ VA,

1−
∑

v∈e |〈Ψ|φv〉|2 if v = we.
(4.34)

As shown in Prop. 4.36, pB ∈ Q (HB).
Consider now the probability model pA ⊗ pB on HA ⊗HB defined as:

pA ⊗ pB(vA, vB) := pA(vA)pB(vB). (4.35)

By construction, it holds that pA⊗pB ∈ CE∞ (HA)⊗CE∞ (HB). We will show,
following Yan’s argument (Yan13), that pA ⊗ pB /∈ CE 1 (HA ⊗HB). Consider
any couple of vertices u 6= v in VA, and the associated events (u, u), (v, v) ∈
V (HA ⊗HB). These events are necessary orthogonal, meaning that there
exists a measurement e ∈ E (HA ⊗HB) containing both (u, u) and (v, v).
In particular, the set C := {(v, v) : v ∈ VA} forms an independent set in
NO (HA ⊗HB) 2. By Lemma 4.39, a necessary condition for pA⊗ pB to belong
to CE 1 (HA ⊗HB) is ∑

v∈C
pA ⊗ pB(v) ≤ 1.

However, it is clear that this sum can be rewritten∑
v∈VA

pA(v)pB(v) =
∑
v∈VA

pA(v)|〈Ψ|φv〉|2 > 1,

2We note that Yan’s idea of looking at the diagonal set of vertices is not new in the context
of the study of the Lovász number. Indeed, it was already present in Lovász’s original
paper on the subject (Lov79).
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thereby proving that pA ⊗ pB /∈ CE 1 (HA ⊗HB). From Theorem 4.45 follows
that CE∞(HA ⊗HB) is not convex.

Failure of convexity leads to a natural way to strengthen the CE principle: the
collection of physically realizable probabilistic models should be both convex
and closed under ⊗. Therefore, if some physically realistic q ∈ CE∞(H) can
be combined with some p ∈ CE∞(H) by using convex combinations and ⊗-
products such that the combination is not in CE∞, then p itself should be
considered to violate the CE principle in a certain extended form. I elaborate
on this ideas in the next section.

4.10. Extended Consistent Exclusivity Principle

In the previous section I showed that the set of probabilistic models CE∞ is
neither convex nor closed under ⊗. However, a natural assumption is that
the collection of physically realizable probabilistic models should satisfy both
properties, since the set Q of quantum models indeed does. This motivates the
following definition:

Definition 4.47. A probabilistic model p on a contextuality scenario H satisfies
the Extended Consistent Exclusivity principle if for all contextuality scenarios
H ′ and q ∈ Q(H ′),

p⊗ q ∈ CE∞(H ⊗H ′).

We write C̃E
∞

(H) for the set of probabilistic models satisfying the extended
consistent exclusivity principle.

One way to interpret this definition is the following: given a set that is
convex and closed under ⊗ and which satisfies CE, we want to see which are
the probabilistic models that do not belong to it, but when combined to any
element of the set they jointly satisfy CE. However, Q is not the only set that
is convex and closed under ⊗ and satisfies CE. For instance, Q1 also satisfies
those properties. An interesting problem is to see how the set C̃E

∞
(H) changes

when considering a set other than Q for its definition. The proposed definition
has the following nice implication:

Corollary 4.48. C̃E
∞

(H) = Q1(H).

Proof. The construction presented in the proof of non-convexity of CE∞ in
section 4.9 shows that C̃E

∞
(H) ⊆ Q1(H). The other inclusion is a consequence

of proposition 4.34: Q1(HA)⊗Q1(HB) ⊆ Q1(HA ⊗HB).
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This means that there are no probabilistic models outside Q1 which, after
combined with one in Q, jointly satisfy CE. Moreover, if we had used the set
Q1 for the definition of ECE, we would have arrived to the same conclusion,
i.e. there are no probabilistic models outside Q1 which, after combined with
one in Q1, jointly satisfy CE. This result was somehow implicit in the one by
Yan (Yan13). There, Yan shows that the maximum violation of a noncontextu-
ality inequality given by models that satisfy ECE is the same as the maximum
“quantum” violation in the CSW formalism. Here we see that a model satisfies
ECE if and only if it is a normalized CSW-quantum assignment (see section
4.7).

4.11. Examples

In the previous sections, I developed the abstract theory of contextuality sce-
narios in some detail, and have also exemplified some of the concepts and results
for the case of Bell scenarios. In particular, this illustrates how our formalism
makes precise the intuition that nonlocality is a special case of contextuality.
Also, I related our approach to the graph-theoretical one of Cabello, Severini
and Winter (CSW10) and the observable-based one of Abramsky and Branden-
burger (AB11). Now I move on to considering other more concrete cases. The
examples that have already been considered in the quantum foundations liter-
ature are too numerous to list, so in this section I focus on a few particularly
appealing classes. First, I will discuss Hypergraphs with no-detection events:
here, the whole hierarchy of Qn sets collapses into the first level, hence the
quantum set is characterized by the Lovász number. Then, I’ll move on to
n-circular hypergraphs and antiprism scenarios, where we find both an infinite
family of hypergraphs for which all the sets of probabilistic models defined in
this chapter collapse into the classical set, and an infinite family of scenarios
for which there exist contextual models.

Hypergraphs with no-detection events
Hypergraphs equipped with no-detection events have been useful through-

out this chapter, when relating our approach to CSW’s or when proving non-
convexity of C E∞. In what follows, I will present another property of this
family of hypergraphs, namely that Q1(Hnd) = Q(Hnd).

Let us begin by recalling the definition of a Hypergraph with no-detection
events.

Definition 4.49. Let H be a contextuality scenario. We say that H is equipped
with no-detection events, and denote it by Hnd, when for every hyperedge e ∈
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4. Contextuality: a new framework

E(Hnd) there exists a vertex we ∈ V (Hnd) which is not contained in any other
hyperedge, i.e. we ∈ e′ if and only if e = e′. These vertices we are called
no-detection events.

Note that a hyperedge in Hnd may contain more than one no-detection event.
However, without loss of generality, we will consider in the following that each
hyperedge on Hnd contains exactly one no-detection event.

Proposition 4.50. Q(Hnd) = Q1(Hnd).

Proof. The inclusion Q(Hnd) ⊆ Q1(Hnd) follows by definition, so we need to
prove that Q(Hnd) ⊇ Q1(Hnd).

Consider a probabilistic model p ∈ Q1(Hnd). The characterization 4.32-4
of Q1(Hnd) implies that there exists a state |Ψ〉 and projections Pv for all
v ∈ V (Hnd) such that u ⊥ v =⇒ Pu ⊥ Pv and p(v) = 〈Ψ|Pv|Ψ〉.

Define the sets Vnd = {we | e ∈ E(Hnd)}, i.e. the set of no-detection events,
and V ′ = V \ Vnd. We now define

P ′we
:= 1H −

∑
v∈e, v 6=we

Pv

and claim that these, together with {Pv | v ∈ V ′} and the state |Ψ〉, form a
quantum model for p. First, due to

∑
v∈e Pv ≤ 1H, the operator P ′we

is also a
projection. Second, the completeness relation for hyperedges in E(Hnd) then
holds by definition. Third,

〈Ψ|P ′we
|Ψ〉 = 〈Ψ|Ψ〉 −

∑
v∈e
〈Ψ|Pv|Ψ〉 = 1−

∑
v∈e, v 6=we

p(v) = p(we).

as claimed. Hence, p ∈ Q(Hnd).

In words, the fact that every hyperedge has a no-detection event, allows us
to define new projectors for these events such that the associated probabilities
remain unchanged but the model becomes normalized at the level of projectors
as well.

The description of the sets Qn for this family of hypergraphs is then par-
ticularly simple: the whole semidefinite hierarchy collapses to the first level.
The advantage of this is that proposition 4.33 on the relation between Q1 and
the Lovász number now also applies to quantum models. Hence, this family of
hypergraphs forms a very special and well-behaved subclass of all contextual-
ity scenarios. The n-circular hypergraphs that we consider next arise in this
way. However, many of the more interesting contextuality scenarios –like Bell
scenarios– are not of this form.
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w2

v3

w3

v1 w1 v2

Figure 4.9.: The 3-circular hypergraph ∆3

.

n-circular hypergraphs
The n-circular hypergraphs generalize the “pentagon” idea of Klyachko-Can-

Binicioǧlu-Shumovsky (KCB08), and are defined as follows.

Definition 4.51. For n ≥ 3, the n-circular hypergraph ∆n is given by

V (∆n) := {v1, . . . , vn, w1, . . . , wn},
E(∆n) := {{v1, w1, v2}, . . . , {vn, wn, v1}} .

In words, ∆n has 2n vertices and n edges such that, if all vertices are evenly
distributed on a circle in the order v1, w1, . . . , vn, wn, v1, then every second triple
of adjacent vertices, namely those of the form {vj , wj , vj+1}, is an edge. We
write vn+1 = v1. Figure 4.9 displays ∆3, and ∆5 is the “pentagon” scenario on
which the KCBS inequality (KCB08) is defined.

We now extend some of these results to arbitrary n.

Proposition 4.52. Let n ≥ 3.

1. dim(C(∆n)) = dim(G(∆n)) = n.

2. If n is even, then C(∆n) = G(∆n).

3. If n is odd, then C(∆n) ( G(∆n) is determined by the inequality∑
i

p(vi) ≤
n− 1

2
. (4.36)

There is one extreme point of G(∆n) which violates this inequality. It is
the probabilistic model px ∈ G(∆n) with

px(vi) = 1
2 ∀i, px(wi) = 0 ∀i. (4.37)

In particular, G(∆n) has one vertex more than C(∆n).
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Proof. We consider all vertex indices modulo n, so that vn+1 = v1, etc.

1 The equations imposed on the probabilities p(vi) and p(wi) by the nor-
malization constraints are just

p(wi) = 1− p(vi)− p(vi+1), (4.38)

which implies dim(G(∆n)) ≤ n. The conclusion follows if we can produce
n + 1 linearly independent deterministic models. This is simple: the set
of models

pj(vi) :=

{
1 if i = j,

0 otherwise,

where the pj(wi) are uniquely determined thanks to (4.38) and with j ∈
{1, . . . , n}, is linearly independent. Furthermore, adding to this set the
model p0 with p0(vi) = 0 for all i preserves linear independence. This is
the desired collection of n+ 1 linearly independent deterministic models.

2 C(∆n) = CE 1(∆n) follows from Prop. 4.43, and CE 1(∆n) = G(∆n) be-
cause the maximal independent sets of NO(∆n) are precisely the edges
on ∆n. In particular, while (4.37) is also a probabilistic model for even
n, in this case it has to be a convex combination of deterministic models.

Note that this argument has not used 1.

3 We apply Theorem 4.8 in combination with Prop. 4.43. Any induced sub-
scenario HW with C(HW ) 6= G(HW ) needs to contain an induced (anti-
)cycle in NO(HW ). This is possible only if W contains all vi. If W also
contains one or more of the wi’s, then HW does not have a unique proba-
bilistic model. Therefore, there can be at most one nonclassical extreme
point of G(H), namely the one associated to the induced subscenario on
W = {v1, . . . , vn}. Now this HW does indeed have a unique probabilis-
tic model given by px(vi) = 1

2 , which yields (4.37) upon extension to
∆n. This proves that G(∆n) has px as its sole nonclassical extreme point
without ever using any inequalities.

We now give an independent proof showing that (4.36) defines C(∆n).
Thanks to (4.38), it is enough to consider the values p(vi) only. Now
the deterministic models correspond to the independent sets in the cycle
graph Cn; upon identifying each vertex with the edge adjacent on its left,
an independent set in Cn gets identified with a set of edges in Cn no two of
which are adjacent at the same vertex, i.e. with a matching on Cn. Now
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it is known (Sch03) that the polytope of all matchings on Cn corresponds
to

p(vi) ≥ 0, p(vi) + p(vi+1) ≤ 1,
n∑
i=1

p(vi) ≤
n− 1

2
.

This is precisely the description of C(∆n) that was to be proven.

For n = 5, the set of classical models is bounded by the inequality
∑5

i=1 p(vi) ≤
2, which is precisely the inequality which has been studied in (KCB08).

Proposition 4.53. C(∆3) = CE 1(∆3) ( G(∆3). For all other n, CE 1(∆n) =
G(∆n).

Proof. Since {v1, v2, v3} is the only independent set in NO(∆3) which is not an
edge of ∆3, we find that CE 1(∆3) as a subset of G(∆3) is given by imposing
the inequality p(v1) + p(v2) + p(v3) ≤ 1. This is precisely the inequality that
determines C(∆3) in 4.52-3. For n ≥ 4, however, every independent set in
NO(∆n) is of the form {vi, wi, vi+1}, i.e. is itself an edge.

Antiprism scenarios
The antiprism scenarios are a variant of the circular hypergraph scenarios

with some additional edges thrown in such that there is a symmetry exchang-
ing the vi with the wi. Again, we consider all vertex indices modulo n. The
antiprism scenarios are supposed to illustrate that an interesting looking hy-
pergraph is not necessarily an interesting contextuality scenario.

Definition 4.54. Let n ≥ 3. The n-antiprism scenario APn is

V (APn) :={v1, . . . , vn, w1, . . . , wn},
E(APn) := {{v1, w1, v2}, . . . , {vn, wn, v1}}

∪ {{w1, v2, w2}, . . . , {wn, v1, w1}} .

Proposition 4.55. If n is divisible by 3, then C(APn) = G(APn) is a 2-
dimensional triangle. Otherwise, APn has a unique probabilistic model which
is not classical.

Proof. We show that p(v1) and p(v2) determine all other probabilities p(vi) and
p(wi) by induction on i:

p(vi+1) = 1− p(vi)− p(wi), p(wi+1) = 1− p(wi)− p(vi+1).
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Figure 4.10.: The contextuality scenario AP4.

In fact, this shows that

p(v3j+1) = p(w3j+2) = p(v1), p(v3j+2) = p(w3j) = p(v2)

p(v3j) = p(w3j+1) = 1− p(v1)− p(v2).

Now if n is divisible by 3, then this is consistent upon “going around the cycle”,
so that G(APn) can be identified with the triangle

p(v1) ≥ 0, p(v2) ≥ 0, p(v1) + p(v2) ≤ 1.

Clearly, the extreme points of this triangle are deterministic.
If n is not divisible by 3, then the above recurrence relations imply that

p(v1) = p(v2) = 1
3 , so that G(APn) degenerates to a single point. C(APn) = ∅

since there is no deterministic model.

We now give another example application of our methods, for the hypergraph
AP4. Note that for this scenario, its non-orthogonality graph NO(AP4) coin-
cides with the orthogonality graph of possible events for a PR box (Fig. 3.6(a))
studied in section 3.5.3, which is itself the complement of the 4-antiprism graph
m4 (Fig. 3.6(b)).

Proposition 4.56. Q1(AP4) = ∅, although CE 1(AP4) = G(AP4).
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Proof. Direct inspection shows that every maximal independent set in NO(AP4)
is an edge, so that the unique probabilistic model given by p(vi) = p(wi) = 1

3
is in CE 1(AP4).

It remains to show that the unique probabilistic model is not in Q1(AP4).
By Proposition 4.33, this boils down to showing that 1

3ϑ(NO(AP4)) > 1. Now
NO(APn) is the complement of the 4-antiprism graph m4. Since m4 is vertex-
symmetric, we deduce (Knu94, Thm. 25) that ϑ(m4)ϑ(NO(AP4)) = 8. Now
ϑ(m4) is known (BPT11) to equal 8− 4

√
2, so that

ϑ(NO(AP4)) =
8

8− 4
√

2
=

2

2−
√

2
= 2 +

√
2 > 3,

as was to be shown.
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5. Bell inequalities from two-body
correlation functions

Detecting the nonlocal character of correlations observed in an experiment is
an interesting problem. In principle, one needs to consider the local polytope of
the corresponding Bell scenario and check whether the conditional probability
distribution lies inside or outside of it. However, from a practical point of view
this approach is inconvenient for large scenarios, since the dimensionality of the
polytope increases exponentially with the number of parties, which makes the
problem computationally intractable.

In this chapter, I aim at simplifying the problem by focusing the study on
Bell inequalities that contain only one and two-body correlators. In principle
one could argue the relevance of such inequalities, since in general the corre-
lators that involve a large number of parties are those which carry detailed
information about the correlations. Contrary to this intuition, we found that
one and two-body correlators are already useful for detecting nonlocality in
physically relevant systems. For this, we have further restricted the two-body
correlators Bell inequalities to those that satisfy certain symmetries regarding
the labelling of the parties: on the one hand permutational invariance, and on
the other translational invariance.

5.1. Bell inequalities from two-body correlators

In the previous chapters, the notion of classical and quantum models was stud-
ied in terms of (conditional) probability distributions. However, as mentioned
in section 2.1.5, Bell inequalities can also be written in terms of correlators, an
equivalent representation in the case of dichotomic measurements that proves
useful in this chapter. Within this representation, the objects that correspond
to the probabilistic models on scenario (n,m, 2) are now vectors E, whose com-
ponents are presented in section 2.1.5. In this chapter, we further interpret
each of the components of these correlators E as expectation values of physical
observables, like mentioned in section 2.1.5. Indeed, given a set of dichotomic

observables {M(i)
k }k for each party i, each component of the vector E can be
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written as Ex1...xk = 〈M(1)
x1 · · ·M

(k)
xk 〉. In this chapter, we will use the notation

M over E, since it stresses the actual observables under consideration.
The components of the vectors M ∈ R(m+1)n−1 are expressed (see section

2.1.5) as follows:

• First, n ∗m components which correspond to the n ∗m single-party cor-

relators 〈M(i)
k 〉 = Pi(0|k)−Pi(1|k). Here, Pi(a|k) denotes the probability

that party i obtains outcome a when measuring k. M(i)
k is usually referred

to as the “observable” k measured by party i.

• Second,
(
n
2

)
m2 components which correspond to the two-party correlators

〈M(i1)
k1
M(i2)

k2
〉 =

∑
a1,a2

(−1)a1⊕a2Pi1i2(a1a2|k1k2).

• Continue, for each j = 3 . . . n, with
(
n
j

)
mj components which correspond

to the j-party correlators

〈M(i1)
k1

. . .M(ij)
kj
〉 =

∑
a1...aj

(−1)a1⊕...⊕ajPi1...ij (a1 . . . aj |k1 . . . kj). (5.1)

It is straightforward to check that
∑n

j=1

(
n
j

)
mj = (m+1)n−1, as the dimen-

sion of the vector M. Similar to the case of the P representation of correlations

(see section 2.1.5), for classical models the correlators 〈M(i1)
k1

. . .M(ij)
kj
〉 take a

product form 〈M(i1)
k1
〉 · . . . · 〈M(ij)

kj
〉. Hence, the set of classical correlations is

characterized by the convex hull of the deterministic correlators MD, defined

as those 〈M(i1)
k1
〉 · . . . · 〈M(ij)

kj
〉 with local mean values being 〈M(il)

kl
〉 = ±1. The

set of classical correlations is again a polytope that we denote by P. As men-
tioned in section 2.1.5, the facets of this polytope correspond to the tight Bell
inequalities of the scenario (n,m, 2).

Most of the known constructions of multipartite Bell inequalities contain
highest-order correlators, i.e., those with j = n in eq. (5.1). However, through-
out this chapter we will see how to design Bell inequalities that witness non-
locality only from one and two body1 expectation values. In addition, we will
focus on the case of two measurements per party. The general form of such a
Bell inequality is

n∑
i=1

(αi〈M(i)
0 〉+ βi〈M(i)

1 〉) +

n∑
i<j

γij〈M(i)
0 M

(j)
0 〉+

+

n∑
i 6=j

δij〈M(i)
0 M

(j)
1 〉+

n∑
i<j

εij〈M(i)
1 M

(j)
1 〉+ βC ≥ 0, (5.2)

1In this chapter, I will use the words n-party and n-body interchangeably.
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where αi, βj , γij , δij , and εij are some real parameters, while βC is the so-called
classical bound. The corresponding polytope P2 of classical correlations is
then constructed from the elements of P by neglecting correlators of order
higher than two. Indeed, we take all elements M of P and simply remove the
components which correspond to j-party correlators with j ≥ 3. Similarly, the

vertices of P2 are those collections of correlators M2 for which 〈M(i)
k M

(j)
l 〉 =

〈M(i)
k 〉 · 〈M

(j)
l 〉, where local mean values are ±1.

Although dimP2 = 2n2 is much smaller than 3n−1 ( the dimension of P), it
still grows with the number of parties, which difficults the task of determining
the facets of P2. One way to overcome this problem is to restrict the study to
Bell inequalities that obey some symmetries. For instance, one could consider
translationally invariant Bell inequalities or, in the spirit of Ref. (BGP10),
those that are invariant under any permutation of the parties. In section 5.4
I will comment on the former, while the latter is presented in sections 5.2 and
5.3.

5.2. Fully-symmetric two-body Bell Inequalities

In this section I study a specific type of Bell inequalities, namely those which
are symmetric under permutation of the parties and further contain only one
and two-body correlators.

Given a Bell inequality, imposing permutational symmetry means that when
we exchange the label (order) of any party the equation remains the same.
Mathematically, for a two-body correlators Bell inequality in the form (5.2)

this implies that the expectation values 〈M(i)
k 〉 and 〈M(i)

k M
(j)
l 〉, with fixed k, l

and different i, j, appear in the Bell inequality (5.2) with the same “weights”,
i.e. αi = α, βi = β, and so on. Hence, the general form of a symmetric Bell
inequality with one- and two-body correlators is

I := αS0 + βS1 +
γ

2
S00 + δS01 +

ε

2
S11 ≥ −βC , (5.3)

where α, β, γ, δ, ε are real parameters, and Sk and Skl (with k, l = 0, 1) denote
the one- and two-body correlators symmetrized over all observers, i.e.,

Sk =
n∑
i=1

〈M(i)
k 〉, Skl =

n∑
i 6=j=1

〈M(i)
k M

(j)
l 〉. (5.4)

Geometrically, the polytope P2 is mapped under permutational symmetry
onto a simpler one PS2 , which independently of the number of parties, is always
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5. Bell inequalities from two-body correlation functions

five-dimensional and it elements are the vectors (S0,S1,S00,S01,S11). Note that
the number of vertices is significantly reduced, from 22n for P2 to 2(n2 + 1) for
PS2 .

The idea now is to find all the tight Bell inequalities of the form (5.3), i.e.
the facets of PS2 . In order to do so, we begin by finding its extremal points.
First, we present a parametrization of the vertices of PS2 in terms of three
natural numbers, and then find a necessary and sufficient condition for those
parameters to define such an extremal point.

Characterization of the extreme points of PS2 .

Denote by V the set of vertices of P2, and by VS that of PS2 . For every
element of V we denote by

xi = 〈M(i)
0 〉, yi = 〈M(i)

1 〉, (5.5)

the pair of local deterministic expectation values for party i (which by defi-
nition have value ±1) and by {xi, yi} the corresponding local strategy. Note
that permutational symmetry guarantees that the values of S0 and S1 do not
depend on the particular local strategies applied by each party, but rather on
the number of parties which have applied each strategy. Hence, we introduce
the following parametrization:

a = #{i ∈ {1, . . . , n} |xi = 1, yi = 1}
b = #{i ∈ {1, . . . , n} |xi = 1, yi = −1},
c = #{i ∈ {1, . . . , n} |xi = −1, yi = 1},
d = #{i ∈ {1, . . . , n} |xi = −1, yi = −1}. (5.6)

In words, given a vertex in P2, the parameters a, b, c, and d represent the
number of parties who apply the local strategy {1, 1}, {1,−1}, {−1, 1}, and
{−1,−1}, respectively. By definition, a+ b+ c+ d = n.

Following these parameters, the symmetrized local expectation values Sk (k =
0, 1) may be expressed as

S0 = a+ b− c− d, S1 = a− b+ c− d. (5.7)

Moreover, since for every element of V

Sxy = SxSy −
n∑
i=1

〈M(i)
x 〉〈M(i)

y 〉 (x, y = 0, 1), (5.8)
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5.2. Fully-symmetric two-body Bell Inequalities

the two-body symmetrized expectation values may be expressed as

S00 = S2
0 − n = (a+ b− c− d)2 − n,

S11 = S2
1 − n = (a− b+ c− d)2 − n,

S01 = S0S1 −
n∑
i=1

〈M(i)
x 〉〈M(i)

y 〉 (5.9)

= (a+ b− c− d)(a− b+ c− d)− (a− b− c+ d).

Hence, all vertices of P2 are mapped under symmetrization onto elements
of PS2 parametrized by the previously defined {a, b, c, d}. Geometrically, these
parameters belong to the set Tn = {(a, b, c, d) ∈ N4 | a+ b+ c+ d = n}, which
is isomorphic to a tetrahedron in N3

Tn = {(a, b, c) ∈ N3 | a+ b+ c ≤ n}. (5.10)

Even though every element in Tn is an extreme point in P2, not every vertex
of P2 is an extreme point of PS2 . In what follows, we show that vertices of
PS2 are uniquely represented by all those 4-tuples from Tn that belong to its
boundary ∂Tn, i.e. those for which the condition abcd = 0 is satisfied.

Theorem 5.1. Let ϕ : Tn 7→ PS2 be the previously defined parametrization

ϕ((a, b, c, d)) = (S0,S1,S00,S01,S11). (5.11)

Then ϕ(p) is a vertex of PS2 iff p ∈ ∂Tn.

Proof. We start from the “only if” part. Assume on the contrary that p =
(a, b, c, d) belongs inside Tn, i.e. that all its components are larger than zero
(a, b, c, d ≥ 1). Consider a vector v = (1,−1,−1, 1) /∈ Tn and notice that the
values of Sk and Skk with k = 0, 1 are constant along the line p + λv for any
λ ∈ R, while S01(p+ λv) = S01(p)− 4λ. Hence, for any α, β > 0,

αϕ(p+ βv) + βϕ(p− αv)

= α(S0(p),S1(p),S00(p),S01(p)− 4β,S11(p))

+β(S0(p),S1(p),S00(p),S01(p) + 4α,S11(p))

= (α+ β)(S0(p),S1(p),S00(p),S01(p),S11(p))

= (α+ β)ϕ(p), (5.12)

which allows us to express ϕ(p) as

ϕ(p) =
α

α+ β
ϕ(p+ βv) +

β

α+ β
ϕ(p− αv). (5.13)
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5. Bell inequalities from two-body correlation functions

Now choose α = min{a, d} and β = min{b, c}. Hence, both p+ βv and p− αv
belong to the boundary of Tn, which implies that ϕ(p) ∈ PS2 may be written
as a convex combination of two other elements ϕ(p + min{a, d}v) and ϕ(p −
min{b, c}v) of PS2 . It follows that ϕ(p) is not extremal.

In order to prove the “if” part, assume that p ∈ ∂Tn and that the vec-
tor ϕ(p) = (S0,S1,S00,S01,S11) is not a vertex of PS2 . Then, ϕ(p) can be
decomposed into a convex combination of vertices of PS2 represented by pi =
(ai, bi, ci, di) ∈ Tn, i.e.

ϕ(p) =

k∑
i=0

λiϕ(pi) (5.14)

with 0 < λi < 1 summing up to unity, and

ϕ(pi) = (S(i)
0 ,S(i)

1 ,S(i)
00 ,S

(i)
01 ,S

(i)
11 ). (5.15)

By combining eqs. (5.11) and (5.15), eq. (5.14) is equivalent to the following
five equations:

Sl =
k∑
i=0

λiS(i)
l , Sll =

k∑
i=0

λiS(i)
ll (5.16)

for l = 0, 1, and

S01 =

k∑
i=0

λiS(i)
01 . (5.17)

Since for all vertices of P2 holds that S(i)
ll = [S(i)

l ]2 − n (see eqs. (5.9)), eqs.

(5.16) imply that S(i)
l must satisfy

∑
i

λi

(
S(i)
l

)2
=

(∑
i

λiS(i)
l

)2

(l = 0, 1). (5.18)

On the one hand, eq. (5.18) can be thought of as being a quadratic equation

for a particular S(m)
l , i.e.

λm(λm − 1)
(
S(m)
l

)2
+ 2λmS(m)

l

∑
i 6=m

λiS(i)
l

+

∑
i 6=m

λiS(i)
l

2

−
∑
i 6=m

λi

(
S(i)
l

)2
= 0 (5.19)
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This equation has real solutions if and only if its discriminant is nonnegative,
which holds iff

− 4λ0

∑
i<j
i,j 6=m

λiλj

(
S(i)
l − S

(j)
l

)2
≥ 0. (5.20)

Since all λ’s are positive, the above condition is fulfilled iff S(i)
l = S(j)

l for all
i, j 6= m and l = 0, 1. Moreover, eq. (5.20) should be obeyed for any m, hence

S(i)
l = S(j)

l = Sl (5.21)

for any i, j = 1, . . . , k and l = 0, 1.
On the other hand, the assumption that ϕ(p) is not a vertex of PS2 , i.e.

that it can be decomposed as in (5.14), means that S(i)
01 cannot be all equal,

since otherwise ϕ(pi) are all the same. Hence, from the expressions S01 =

S0S1 − (a − b − c + d) and S(i)
01 = S(i)

0 S
(i)
1 − (ai − bi − ci + di), combined with

eq. (5.21), follows

a− b− c+ d =
∑
i

λi(ai − bi − ci + di). (5.22)

If we further note that

ai + bi + ci + di = n = a+ b+ c+ d (5.23)

should hold for any i, it follows that each a, b, c, and d is a convex combination
of ai, bi, ci, and di, respectively, hence

p =
k∑
i=1

λipi. (5.24)

In order to reach the contradiction with the original assumption, it is enough to
notice that p ∈ intTn, i.e. not all pi can belong to the same facet of Tn. Indeed,
if all pi belong to the same facet of the tetrahedron, one of their coordinates
(the same one for all i) should be zero (for instance, ai = 0). Then, from eqs.
(5.21) and (5.23) it follows that all pi’s are equal, contradicting the assumption
that (5.14) is a proper convex combination. Hence, p belongs to the interior of
the tetrahedron, which contradicts the assumption that p ∈ ∂Tn and completes
the proof.

One immediate consequence of this theorem relates to the computation of
the classical bound βC . Indeed, since all the symmetric one and two body
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correlators Sk and Skl are parametrized by (a, b, c, d), finding the classical bound
of the Bell inequality (5.3) is equivalent to minimizing I being a function of
a, b, c, and d over the boundary of Tn, i.e. βC = −min∂Tn I.

A class of Bell inequalities.

Using the previous characterization of the symmetric polytope of two-body
local models, we can now search for particular Bell inequalities violated by
multipartite quantum states. For sufficiently low number of parties, all Bell
inequalities corresponding to the facets of PS2 can be listed (see appendix G).
Indeed, the number of parties for which the problem is still computationally
tractable is much larger than for the complete polytope P. In what follows, we
provide a general class of few-parameter symmetric Bell inequalities and show
that they reveal nonlocality in quantum states for any n.

We start from the general form of a symmetric two-body Bell inequality (5.3),
and consider a particular parametrization of the coefficients:

γ = x2

ε = y2

δ = σxy

α± = x[σµ± (x+ y)]

(5.25)

where x, y are positive natural numbers, and σ = ±1 defines the sign of δ. We
assume that µ ≡ β/y is an integer with opposite parity to ε for odd n and to γ
for even n. In what follows, we will find an expression for the classical bound
βC in terms of these parameters x, y, σ, µ and the number of parties n.

First, note that for all local deterministic models, the left-hand side of (5.3)
equals to

I = αS0 + βS1 +
γ

2
(S2

0 − n) + δ(S0S1 − z) +
ε

2
(S2

1 − n), (5.26)

where z = a− b−c+d. In terms of the parameters (5.25), I can be rewritten
as

I =
x2

2
S2

0 + σxyS0S1 +
y2

2
S2

1 −
n

2
(x+ y)− σxyz

+x[σµ± (x+ y)]S0 + βS1 , (5.27)
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which in turn is equivalent to

I =
1

2
(xS0 + σyS1 + σµ± x)2 − 1

2
(σµ± x)2

+xy(±S0 ∓ σS1 − σz)−
1

2
n(x+ y). (5.28)

Moreover, the single body mean values Sj may also be parametrized in terms
of a, b, c and d, as we did when studying the vertices of PS2 . Hence, combining
parametrizations (5.7) and (5.25) we find that ±S0∓σS1−σz = 4r−n, where
r depends on α and the sign of δ (i.e., σ) as follows:

r =


b, for α+, σ = 1
a, for α+, σ = −1
c, for α−, σ = 1
d, for α−, σ = −1

. (5.29)

All together, for deterministic models the left-hand side of (5.3) equals

I =
1

2
(xS0 + σyS1 + σµ± x)2 + 4xyr

−1

2

[
(σµ± x)2 + n(x+ y)2

]
. (5.30)

The goal is to prove that the classical bound in (5.3) is

βC =
1

2

[
n(x+ y)2 + (σµ± x)2

]
− 1

2
. (5.31)

Hence, it is enough to show that

(xS0 + σyS1 + σµ± x)2 + 8xyr ≥ 1. (5.32)

Since both x and y are positive integers, the above inequality is trivially satisfied
if r 6= 0. For r = 0 (i.e., when optimizing over the facets of Tn), the expression
inside the parentheses is integer, and in what follows we will prove that the
above assumptions guarantee that its parity is always odd. Let us consider the
cases of odd and even n separately. For odd n, both S0 and S1 are odd. Hence,
xS0 + σyS1 + σµ ± x has the same parity as y + µ. By assumption, µ has
opposite parity to ε. Since ε = y2, and both y2 and y have the same parity, it
follows that y + µ is odd. Therefore, the expression inside the parentheses is
odd. For even n, S0 as well as S1 are even, implying that xS0 +yσS1 is even. As
before, the assumptions imply that σµ ± x is odd, hence the expression inside
the parentheses is odd. In particular, this means that for any n, it can never
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5. Bell inequalities from two-body correlation functions

n # Bell inequalities in the class Total # of tight Bell inequalities

5 16 152
10 272 2018
15 1208 7744
20 3592 21274

Table 5.1.: The number of facets (second column) of PS2 that are grasped by
our class of Bell inequalities for various numbers of parties n. The third column
contains the total number of facets of PS2 .

take the value zero, which implies that eq. (5.32) is satisfied. It follows that all
classical correlations satisfy

I : = x[σµ± (x+ y)]S0 + µyS1 +
x2

2
S00 + σxyS01 +

y2

2
S11

≥ 1

2
− 1

2

[
n(x+ y)2 + (σµ± x)2

]
.

(5.33)

where x and y are positive natural number, σ = ±1, and µ is an integer with
opposite parity to y2 for odd n and to x2 for even n.

In order to see that (5.31) is a classical bound, in the sense of βC = −min∂Tn I,
we still need to prove that it is saturated by a particular number of determin-
istic correlations. However, this is not the case in general, hence the inequality
(5.33) is usually not a tight Bell inequality. Table (5.1) summarizes, for few
cases, the number of Bell inequalities in this family that define facets of PS2 .
Even though in general the inequalities in the form of (5.33) may not be op-
timal, they are still useful for detecting quantum nonlocality, as we will see in
the following example.

Quantum violations.

A particular case of a Bell inequality of this class arises from the choice of
parameters x = y = −σ = 1, and α− = −2. From eq. (5.31) the classical
bound is βC = 2n, and the resulting Bell inequality reads

− 2S0 +
1

2
S00 − S01 +

1

2
S11 + 2n ≥ 0. (5.34)

In order to search for quantum violations of ineq. (5.34), we assume that

all parties measure the same pairs of observables, i.e., M(i)
j = Mj for ev-

ery i = 1, . . . , n. Without loss of generality, we take them as M0 = σz and
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Figure 5.1.: (a) The effective (divided by the classical bound) maximal vio-
lation of Ineq. (5.34) (red line) and the corresponding angle θ in M1 (blue
line) as functions of n. (b) Effective violation of Ineq. (5.34) as a function of
θ for n = 10k with k = 1, 2, 3, 4. For large n the violation is robust against
misalignments of the second observable.

M1(θ) = cos θσz + sin θσx for θ ∈ [0, π] (Mas05), and denote by Bn(θ) the Bell
operator constructed from these observables (see section 2.1.5). The inequality
(5.34) is then violated if there exists θ such that Bn(θ) � 0. Fig. 5.1 presents
the lowest negative eigenvalue of Bn(θ) for various values of n. Numerically,
we see that the effective violation (i.e. the violation divided by the classical
bound) grows with n, and becomes more robust against misalignments of θ
for large n. In addition, the corresponding eigenstate of Bn(θ), i.e. the pure
state maximally violating (5.34) is always symmetric2, that is, it belongs to
the symmetric subspace of an n-qubit Hilbert space. Since any (also mixed)
n-qubit symmetric state is entangled if and only if it is genuinely multipartite
entangled (ESBL02; ATSL12), our Bell inequalities detect genuinely multipar-
tite entangled states. Another interesting feature of these quantum violations
is that they are attained by states which are symmetric under any permuta-
tion of the parties. Since for these states all the two-body reduced states are
local in the considered scenario, the corresponding marginals of the probability
distributions are local as well. Hence, our Bell inequalities are able to detect
nonlocal correlations only from their local two-body marginals. However, these
nonlocal correlations need not be truly multipartite.

2Note however that there also exist antisymmetric states violating this inequality.
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5.3. Nonlocality of physically relevant systems

In the previous section we showed how to construct Bell inequalities from one
and two-body correlators, which are symmetric under permutation of the parties
and detect genuinely multipartite entanglement. In this section we will see
that these inequalities are powerful enough to reveal nonlocality in “physically
relevant” states, such as ground states of spin models that naturally appear in
many-body physics.

In what follows, we focus on inequalities violated by a family of states called
Dicke states (Dic54), hence I first briefly comment on the latter. Dicke states
are n-qubit states which remain invariant under any permutation of the qubits.
They span the (n+ 1)-dimensional symmetric subspace of (C2)⊗n and read∣∣∣Dk

n

〉
= S(|{0, n− k}, {1, k}〉) (k = 0, . . . , n), (5.35)

where |{0, n− k}, {1, k}〉 is any pure product vector with n − k qubits in the
state |0〉 and k in the state |1〉, while S denotes symmetrization over all parties.
It is worth mentioning that

∣∣Dk
n

〉
are genuinely multipartite entangled for any

k 6= 0, n. Moreover, their entanglement properties have been extensively studied
in the literature (see (LORV05; BG13) and references therein), and the state∣∣D3

6

〉
was recently generated experimentally (HHR+05; KST+07).

In many-body physics, the Dicke states arise naturally as the lowest-energy
eigenstates of the isotropic Lipkin-Meshkov-Glick Hamiltonian (LMG65):

H = −λ
n

n∑
i,j=1
i<j

(
σ(i)
x σ(j)

x + σ(i)
y σ(j)

y

)
− h

n∑
i=1

σ(i)
z , (5.36)

which describes n spins interacting through the two-body ferromagnetic cou-
pling (λ > 0), embedded into the magnetic field acting along the z direction of

strength h ≥ 0. Again, σ
(i)
a (a = x, y, z) are the Pauli matrices acting at site

i. In what follows we consider the case of weak magnetic field applied to the
system, precisely h ≤ λ/n. Hence, the ground state of H is

∣∣Dn/2
〉

for even n

and
∣∣Ddn/2e〉 for odd n, except for the case of h = 0 and odd n, for which the

lowest energy is two-fold degenerate and the corresponding subspace is spanned
by
∣∣Dk

n

〉
, with k = bn/2c and k = dn/2e.

In what follows, we present a new class of tight two-body symmetric Bell
inequalities that we will use to detect nonlocality of the above mentioned Dicke
states. This family is obtained by setting in eq. (5.3), for each n, the following
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coefficients:
αn = n(n− 1)(dn/2e − n/2)

βn = αn/n

γn = n(n− 1)/2

δn = n/2

εn = −1

. (5.37)

We will see that, for any number of parties, this choice of parameters is consis-
tent with the classical bound

βnC =
1

2
n(n− 1)

⌈
n+ 2

2

⌉
. (5.38)

These Bell inequalities are independent of the class presented in section 5.2,
and for n = 2 they reproduce the CHSH Bell inequality (CHSH69).

Proposition 5.2. The classical bound of a two-body symmetric Bell inequality

I := αS0 + βS1 +
γ

2
S00 + δS01 +

ε

2
S11 ≥ −βC ,

with coefficients given by

αn = n(n− 1)(dn/2e − n/2)

βn = αn/n

γn = n(n− 1)/2

δn = n/2

εn = −1

is βnC = 1
2n(n− 1)

⌈
n+2

2

⌉
. This family of Bell inequalities defines facets of PS2 ,

i.e. the inequalities are tight for every n.

Proof. The explicit form of the inequality with coefficients given by (5.37) is,
for even and odd n,

Ien =
n(n− 1)

4
S00 +

n

2
S01 −

1

2
S11 ≥ −βC , (5.39)

Ion =
1

2

(
n

2

)
S00 +

n

2
S01 −

1

2
S11

+
n(n− 1)

2
S0 +

n− 1

2
S1 ≥ −βC . (5.40)
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We aim to minimize the left hand size of these inequalities, over all possible
deterministic strategies. First, note that for classical correlations

− n ≤ S00,S11 ≤ n(n− 1),

|S01| ≤ n(n− 1),

|Sk| ≤ n, fork = 0, 1.

(5.41)

Hence, the first term in eqs. (5.39) and (5.40) is the dominant one: it is of
order four in n, while the remaining ones are of second or third order in n. This

suggests to make the term containing S00 small in order to minimize I
e/o
n . Since

S00 = S2
0 − n, we will consider S0 as a parameter, and among all the solutions

parametrized by S0 we will choose the smallest one.
For reasons that will soon become clear, recall the parametrization of the

vertices of PS2 in terms of a, b, c and d defined in (5.6). Since S0 = a+ b− c−d
and a+ b+ c+ d = n, it follows

a =
1

2
(n+ S0)− b, c =

1

2
(n− S0)− d, (5.42)

Hence, the two-body expectation values are rewritten as

S00 = S2
0 − n, S11 = [n− 2(b+ d)]2 − n, (5.43)

S01 = S0[n− 1− 2(b+ d)] + 2(b− d), (5.44)

where we now consider b and d as free variables that are nonnegative integers
constrained as

0 ≤ b ≤ 1

2
(n+ S0), 0 ≤ d ≤ 1

2
(n− S0). (5.45)

From theorem 5.1 it follows that, in order to find βC , it suffices to minimize

I
e/o
n over the 4-tuples (a, b, c, d) belonging to the boundary of the tetrahedron,

i.e., those for which abcd = 0. Eqs. (5.42) imply that the cases of a = 0
and d = 0 are now equivalent to b = (1/2)(n + S0) and d = (1/2)(n − S0),
respectively. Within this framework, treating S0 as a parameter means that
we intersect the three-dimensional tetrahedron with hyperplanes of constant S0

and look for the minimal value of I
e/o
n for points lying on the boundary of the

resulting two-dimensional object. Then, we choose the optimal solution among
those parametrized by S0.

In what follows we will compute min∂Tn I
e/o
n separately for the cases of even

and odd n, and in each one we consider all the facets of the tetrahedron sepa-
rately. We will prove that

min
∂Tn

Ie/on = −1

4

{
n(n− 1)(n+ 2), n even

n(n− 1)(n+ 3), n odd,
(5.46)
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Even n.– First, we express Ien as a function of b, d and S0, from equations
(5.43), (5.44) and (5.39):

Ien(b, d;S0) =
1

2

{n(n− 1)

2
(S2

0 − n)− [n− 2(b+ d)]2

+ n [S0(n− 2(b+ d)− 1) + 2(b− d)] + n
}
.

(5.47)

Case a=0. This case is equivalent to b = (n+S0)/2. Direct evaluation of eq.
(5.47) gives

Ien(n+S0
2 , d;S0) =

1

4
(n2 − 3n− 2)(S2

0 − n)

−d[2d+ S0(n+ 2) + n].

This is a quadratic function in d which, since its second derivative with respect
to d is negative, has a local maximum. Hence, it attains its minimal value either
at d = 0 or d = (n− S0)/2.

In the first case, Ien(n+S0
2 , 0;S0) = (1/4)(S2

0−n)(n2−3n−2), which is minimal

for S0 = 0. The value for this minimum is Ien(n+S0
2 , 0; 0) = −(1/4)n(n2−3n−2),

which is larger that that presented in eq. (5.46).
In the second case d = (n− S0)/2, i.e.

Ien(n+S0
2 , n−S02 ;S0) = −n(n− 1)

4
[n+ 2− S0(S0 − 2)]. (5.48)

This expression attains its minimum value at either S0 = 0 or S0 = 2, which
corresponds to Ien(n+S0

2 , n−S02 ;S0) = −1
4n(n − 1)(n + 2) (S0 = 0, 2), i.e. the

value in eq. (5.46).
Therefore, two different 4-tuples(

0,
n

2
, 0,

n

2

)
,

(
0,
n

2
+ 1, 0,

n

2
− 1
)
, (5.49)

attain the value of Ien given in eq. (5.46).
Case b=0. Direct evaluation of eq. (5.47) gives

Ien(0, d;S0) =
1

2

{n(n− 1)

2
(S2

0 − n)− (n− 2d)2 + n

+ n[S0(n− 2d− 1)− 2d]
}
.

(5.50)

The second derivative of Ien(0, d;S0) with respect to d is negative, and therefore
we look for its minimal value at the boundary of the range of d. For d = 0
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the expression reduces to the right-hand side of eq. (5.48), which as previously
mentioned, has minima for S0 = 0 and S0 = 2. Hence, there are two additional
elements of T4 for which Ien attains the value in eq. (5.46):(n

2
− 1, 0,

n

2
+ 1, 0

)
,

(n
2
, 0,

n

2
, 0
)

(5.51)

For d = (n − S0)/2, direct evaluation of eq. (5.50) gives Ien(0, n−S02 ;S0) =
1
4(S2

0 − n)(n2 + n− 2), which attains a minimum at S0 = 0. The value of this
minimum is that of eq. (5.46), hence we found the fifth point saturating the
Bell inequality (5.47): (n

2
, 0, 0,

n

2

)
. (5.52)

Cases c=0 or d=0. The case c = 0 is equivalent to d = (n − S0)/2. Hence,
a similar argument as before implies that, for both d = (n − S0)/2 or d = 0,
the minimum value of Ien is −(1/4)n(n− 1)(n+ 2), i.e that of eq. (5.46). This
value is attained at the five vectors (5.49), (5.51), and (5.52).

Odd n.– First, we express Ion as a function of b, d and S0, from equations
(5.43), (5.44) and (5.40):

Ion(b, d;S0) =
1

4
n(n− 1)[S0(S0 + 4)− n]− 2(b2 + d2)

− b[4d− 1 + n(S0 − 2)]− d(nS0 − 1)
(5.53)

Notice that since n is odd, S0 is also odd.
Case a=0. This case is equivalent to b = (n+S0)/2. Direct evaluation of eq.

(5.53) gives

Ion(n+S0
2 , d;S0) = −d[2d+ S0(n+ 2) + 2n− 1]

+
1

4
(n2 − 3n− 2)(S2

0 − n)

+
1

2
(n− 1)2S0

= Ien(n+S0
2 , d;S0) + d+

1

2
(n− 1)2S0.

Since the second derivative of IoN (n+S0
2 , d;S0) with respect to d is negative for

any S0, it attains its minimum value either at d = 0 or d = (n− S0)/2.
For the first case Ion(n+S0

2 , 0;S0) = 1
4(S2

0 − n)(n2 − 3n − 2) + 1
2(n − 1)2S0,

which is minimal at S0 = 0. The value for this minimum is Ion(n+S0
2 , 0; 0) =

−(1/4)n(n2 − 3n− 2), which is larger that that of eq. (5.46).
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For d = (n− S0)/2,

Ion(n+S0
2 , n−S02 ;S0) = −1

4
n(n− 1)(n+ 4− S2

0 ). (5.54)

This expression is minimal for S0 = 0, but since S0 must be odd, we obtain
the lowest value for S0 = ±1. As a result, Ion attains as minimum value that of
eq.(5.46), at the following two elements of Tn(

0,
n± 1

2
, 0,

n∓ 1

2

)
. (5.55)

Case b=0. Direct evaluation of eq. (5.53) gives

Ion(0, d;S0) =
1

4
n(n− 1)[S0(S0 + 4)− n]− 2d2

−d(nS0 − 1). (5.56)

This is a quadratic function in d that has a local maximum. Hence, Ion(0, d;S0)
attains its minimal value at the boundary of the range of d, i.e. either at d = 0
or d = (n− S0)/2.

For d = 0, Ion(0, 0;S0) = 1
4n(n− 1)[S0(S0 + 4)− n], which, since S0 must be

odd, is minimal at S0 = −3 or S0 = −1. The corresponding minimum value is
−(1/4)n(n − 1)(n + 3), which coincides with eq.(5.46). This value is attained
at the following two vertices:(

n− 1

2
, 0,

n+ 1

2
, 0

)
,

(
n− 3

2
, 0,

n+ 3

2
, 0

)
(5.57)

For d = (n − S0)/2, direct evaluation of eq. (5.56) gives Ion(0, n−S02 ;S0) =
−n−1

4 [(n + 2)(n − S2
0 ) − 2(n + 1)S0]. Since S0 is odd, Ion is minimal at S0 =

−1. The corresponding minimum value is −(1/4)n(n − 1)(n + 3), i.e. that of
eq.(5.46), and is attained by(

n− 1

2
, 0, 0,

n+ 1

2

)
. (5.58)

Cases c=0 or d=0. Similarly, for either c = 0 or d = 0, the minimal value of
Ion is −(1/4)n(n− 1)(n + 3), which coincides with eq.(5.46). This minimum is
attained by the five vertices (5.55), (5.57), and (5.58).

We have proved that the lowest value of I
e/o
n for both even and odd n is the

one given in eq. (5.46) and is realized by five elements of Tn: (5.49), (5.51),
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and (5.52) for even n, and (5.55), (5.57), and (5.58) for odd n. Hence, for any

n the Bell inequality I
e/o
n is tangent to PS2 on five vertices. Since these are

linearly independent, I
e/o
n indeed represents a facet of PS2 , which completes the

proof.

We now move on to proving that this class of tight two-body symmetric Bell
inequalities is indeed violated by Dicke states. Similar to section 5.2, we assume

that each observer has the same pair of qubit observables, that is, M(i)
0 =M0

and M(i)
1 = M1 for every i = 1, . . . , n. Hence, the resulting Bell operator

Bn (see section 2.1.5) is permutationally invariant, which together with the
fact that the Dicke states are also fully symmetric, significantly simplifies the
problem. Indeed, an immediate consequence is

〈Dk
n|Bn|Dk

n〉 = tr(ρknB̃n), (5.59)

where B̃n stands for the two-qubit “reduced Bell operator”

B̃n = βnC14 + n
2αn(M0 ⊗ 12 + 12 ⊗M0)

+n(n−1)
2 [γnM0 ⊗M0 + εnM1 ⊗M1

+δn (M0 ⊗M1 +M1 ⊗M0)]

+n
2βn(M1 ⊗ 12 + 12 ⊗M1), (5.60)

with 1d being a d× d identity matrix, and ρkn denotes the reduced state of any
two–qubit subsystem of

∣∣Dk
n

〉
. The state ρkn can be computed analytically (see

(WM02)), and for k = dn/2e has the following form

ρdn/2en =
1

n(n− 1)


pn 0 0 0
0 qn qn 0
0 qn qn 0
0 0 0 rn

 , (5.61)

where pn = (bn/2c − 1)bn/2c, qn = bn/2cdn/2e, and rn = (dn/2e − 1)dn/2e.
Without loss of generality, we set the observables as M0 = σz and M1 =

cos θσz + sin θσx with θ ∈ [0, π]. Hence,

〈Ddn/2en |Bn|Ddn/2en 〉 = 4bn/2c sin2(θ/2)[(dn/2e+ 1) sin2(θ/2)− 1], (5.62)

which attains its minimum at

θnmin = ± arccos

(
dn/2e
dn/2e+ 1

)
. (5.63)
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Figure 5.2.: (a) Effective violation of Ineq. (5.34) by the Dicke states
∣∣∣Ddn/2en

〉
as a function of the number of parties n. The violation decays with n as 1/n3.
(b) Effective violation as a function of θ for various values of n.

The value at this minimum is

〈Ddn/2eN |BN (θ)|Ddn/2eN 〉 = − bn/2c
dn/2e+ 1

. (5.64)

which proves quantum violation.

The same quantum violation can be achieved for k = bn/2c. Indeed,
∣∣∣Dbn/2cN

〉
is obtained from

∣∣∣Ddn/2en

〉
by swapping the elements of the computational basis

{|0〉 , |1〉}. Hence, it suffices to modify the observablesM0 andM1 accordingly.

We see then that this class of Bell inequalities is violated by Dicke states
for any n, although the effective violation decays with n as 1/n3 (see Fig.
5.2). It should be stressed that, even though the previous analysis may suggest
that this violation is purely bipartite, this is certainly not the case. Dicke
states are symmetric, and therefore any marginal bipartite correlations obtained
from them in a Bell experiment with the same two dichotomic observables per
site are local; otherwise all bipartite marginal correlations would be nonlocal,
contradicting the fact that in this case quantum correlations are monogamous
(TV06). Hence, our results provide further examples of local marginal bipartite
correlations that are only compatible with global nonlocal correlations, like
those obtained in the previous section.

One final comment before moving on to translational invariance. Both in this
and the previous section we have focused on Bell inequalities that are invariant

125



5. Bell inequalities from two-body correlation functions

under any permutation of the parties, in particular on violations attained when
all the parties measure the same pair of observables. In this case, the one and
two-body correlators which appear in the Bell inequalities can be expressed in

terms of total spin operators Sα = (1/2)
∑n

i=1 σ
(i)
α with α = x, y, z and their

combinations m · S in any direction m, where S = [Sx, Sy, Sz]. To be precise,
in the previous examples we studied the observablesM0 = σz andM1 = m ·σ,
with m = [sin θ, 0, cos θ] and σ = [σx, σy, σz]. Direct evaluation leads to:

S0 = 2〈Sz〉,
S1 = 2〈m · S〉,
S00 = 4〈S2

z 〉 − n,
S11 = 4〈(m · S)2〉 − n,
S01 = (1/4)[〈(Sz +m · S)2〉 − 〈(Sz −m · S)2〉.

Hence, the violations of our Bell inequalities can be computed from quantities
that can be measured experimentally with current technologies (see the case
of spin polarization spectroscopy (HSP10; ERIR+08)). This reveals another
advantage of our approach, that is of great experimental convenience.

5.4. Translationally invariant two-body Bell inequalities

In sections 5.2 and 5.3 I studied two-body correlators Bell inequalities which
satisfy the additional assumption of permutational symmetry. In this section, I
move on to study another type of two-body correlators Bell inequalities, namely
those that are translationally invariant.

Translational invariance imposes that the Bell inequalities remain the same
if the following transformations are simultaneously applied:

M(i)
j →M

(i+1)
j (j = 0, 1), (5.65)

where the convention that M(n+k)
j =M(k)

j for any k = 1, . . . , n and j = 0, 1 is
assumed. This translates into certain conditions on the parameters appearing
in ineq. (5.2):

αi = αi+1, βi = βi+1 (i = 1, . . . , n− 1). (5.66)

These imply that all αi and βi are equal. Hence, γij , δij , and εij satisfy the
following cycles of equalities:

γ1,1+k = γ2,2+k = . . . = γn−k,n

= γ1,n−k+1 = γ2,n−k+2 = . . . = γk,n (5.67)
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and

ε1,1+k = ε2,2+k = . . . = εn−k,n

= ε1,n−k+1 = ε2,n−k+2 = . . . = εk,n (5.68)

with k = 1, . . . , bn/2c, and also

δ1,1+k = δ2,2+k = . . . = δn−k,n

= δn−k+1,1 = δn−k+2,2 = . . . = δn,k (5.69)

with k = 1, . . . , n− 1.
In order to find the general form of a translationally invariant Bell inequality,

denote α := αi and β := βi for any i = 1, . . . , n, and by γk, εk (k = 1, . . . , bn/2c),
and δk (k = 1, . . . , n − 1) those parameters that form cycles in Eqs. (5.67),
(5.68), and (5.69) enumerated by k. Then, any translationally invariant Bell
inequality can be written as

αS0 + βS1 +

bn/2c∑
k=1

(
γkT

(k)
00 + εkT

(k)
11

)
+
n−1∑
k=1

δkT
(k)

01 ≥ −βC , (5.70)

with Sj being symmetrized local expectation values:

Sj =

n∑
m=1

〈M(m)
j 〉 (j = 0, 1), (5.71)

and T (k)
ij all translationally invariant two-body correlators:

T (k)
ij =

n∑
m=1

〈M (m)
i M

(m+k)
j 〉 (i ≤ j = 0, 1), (5.72)

with k = 1, . . . , bn/2c for i = j and k = 1, . . . , n − 1 for i < j. We have used

the convention that for any i, j = 0, 1, 〈M (m)
i M

(k)
j 〉 ≡ 〈M

(k)
j M

(m)
i 〉 if m > k.

The polytope P2 is mapped under the translational symmetry onto the
“translationally invariant” polytope PT2,n whose elements are vectors

(S0,S1, T (1)
00 , . . . , T (bn

2
c)

00 , T (1)
01 , . . . , T (n−1)

01 , T (1)
11 , . . . , T (bn

2
c)

11 ) (5.73)

computed for all elements of P2. Note that, contrary to the fully symmetric
case PS2 , here we make explicit use of the number of parties n when denoting the
polytope PT2,n, since its dimension is n+ 1 + 2bn/2c, i.e. it grows linearly with
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the number of parties n. In what follows, I present the complete description
of PT2,n for n = 3, 4, and one class of translationally invariant two-body Bell
inequalities for all n.

For the case n = 3, the general formula (5.70) reduces to

αS0 + βS1 + γT00 + εT11 + δ1T (1)
01 + δ2T (2)

01 + βC ≥ 0, (5.74)

where we denote γ1 and ε1 by γ and ε, respectively, and also skip the superscripts

in T (1)
00 and T (1)

11 . The latter, as well as T (1)
01 +T (2)

01 , is permutationally invariant,
hence for δ1 = δ2, one obtains a symmetric Bell inequality (see section 5.2). The
dimension of PT2,3 is 6 and there are 22·3 = 64 local deterministic strategies.

However, modulo translational invariance, this number is reduced to 1
3(1 · 43 +

2 · 4) = 24 different strategies. By using cdd (Fuk97), we found the 38 facets of
PT2,3 and also its 24 vertices, which implies that every local strategy corresponds

to a vertex in PT2,3. These facets are grouped into 6 equivalence classes (see
appendix G). Interestingly, only class #6 is violated by quantum states, and
its no-signaling bound is βNS = 13. The other classes satisfy βC = βNS .

For the case n = 4, the general form of a translationally invariant two-body
Bell inequality (5.70) is

αS0 + βS1 + γ1T (1)
00 + γ2T (2)

00 + ε1T (1)
11 + ε2T (2)

11

δ1T (1)
01 + δ2 + T (2)

01 + δ3T (3)
01 + βC ≥ 0. (5.75)

Here, dimPT2,4 = 9, while the number of different local deterministic strate-

gies is 22·4 = 256. Modulo translational invariance, this number is reduced to
(1 · 44 + 1 · 42 + 2 · 4)/4 = 70. By using cdd (Fuk97), we find that there are
1038 tight Bell inequalities, which we group in 103 classes (see appendix G).
Similarly, we find that 68 out of the 70 local strategies correspond to extremal
vertices of PT2,4. The reason for this is that the deterministic local strategies
{A = (+,+), B = (−,+), C = (+,−), D = (−,−)} and {A = (+,+), B =
(−,−), C = (+,−), D = (−,+)} give exactly the same 1 and 2-body trans-
lationally invariant correlators, as well as {A = (+,+), B = (+,−), C =
(−,+), D = (−,−)} and {A = (+,+), B = (−,−), C = (−,+), D = (+,−)}
do. Hence, they correspond to the same vertex of PT2,4. We computed the
maximal quantum bound βQ by optimizing measurements over qubits, since
this proves sufficient in a scenario with 2 dichotomic observables (TV06). It is
worth noticing the existence of 4 classes of inequalities which have no-signaling
violation but for which quantum physics does not provide an advantage: These
are classes #28, 63, 74, 76. Hence, we seem to have found an example of an in-
formation task with no quantum advantage that is not in LO form (see section
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3.5.1). However, these inequalities are not tight Bell inequalities when trans-
lated into the larger space of P4, hence they do not disprove our conjecture of
section 3.5.1.

For the case of 5 parties, dimPT2,5 = 10, with 1024 different local strategies,

which modulo translational invariance become (1 · 45 + 4 · 4)/5 = 208 . This
corresponds to a polytope with 34484 facets, which can be grouped into 4198
different classes.

Since the complexity of the problem increases with n, a fact that we already
notice in this case of 5 parties, we further simplify the problem by considering
Bell inequalities that contain only correlators between nearest neighbours. This
assumption is justified from an experimental point of view, since in many-body
experiments one generally has access to statistic between nearest neighbours.

In this class of inequalities γ2 = ε2 = δ2 = δ3 = 0, and the dimension of
P
T,NN
2,5 is constraint to be 6. In such scenario, the Bell inequality

35− 2S0 − 6S1 − 2T (1)
00 + 2T (1)

01 + 4T (4)
01 + 5T (1)

11 ≥ 0 (5.76)

is violated by a translationally invariant qubit state, setting all pairs of observ-
ables to be the same for all parties. However, maximal quantum violation is
achieved by breaking this symmetry.

Equation (5.76) can be generalized for any odd n = 2k + 1 to:

8k2 + 2k−1−kS0−3kS1−kT (1)
00 +kT (1)

01 + 2kT (2k)
01 + (2k+ 1)T (1)

11 ≥ 0. (5.77)

In what follows, we will see that 5.77 is indeed a Bell inequality and search for
quantum violations.

Classical bound.
We start by proving that the classical bound of the inequality

Ik := −kS0 − 3kS1 − kT (1)
00 + kT (1)

01 + 2kT (2k)
01 + (2k + 1)T (1)

11 ≥ −βC , (5.78)

is indeed given by
βC = 8k2 + 2k − 1. (5.79)

Since the minimization of Ik is performed over deterministic classical correla-
tors, we will introduce a new notation and rewrite Ik for deterministic points in
a more convenient way. Similar to equation (5.5) in the fully symmetric case,
here we denote by

xi = 〈M(i)
0 〉, yi = 〈M(i)

1 〉, (5.80)
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the pair of local deterministic expectation values for party i, which by definition
take values ±1. Hence, Ik can be written as

Ik =
n∑
i=1

f({xi, yi}, {xi+1, yi+1}),

where the function f reads:

f({xi, yi}, {xi+1, yi+1}) := −k
2

(xi + xi+1)− 3k

2
(yi + yi+1)

− k xi xi+1 + k xi yi+1

+ 2k yi xi+1 + (2k + 1) yi yi+1.

One may näıvely think that, in order to minimize Ik it suffices to take the
minimum of f and multiply it by n. However, this is not the case, since the
solution should satisfy the boundary conditions xn+1 = x1 and yn+1 = y1. In
what follows, we present a method to compute such a constrained optimization.

First, note that each party i has four possible deterministic strategies {xi, yi},
given by {+,+}, {+,−}, {−,+} and {−,−}. We will denote them by {xi, yi}j
for j = 1, 2, 3, 4 respectively. Then, a global deterministic strategy for the
n parties is given by a sequence {x1, y1}j1 . . . {xn, yn}jn . The idea now is to
construct such a sequence that minimizes Ik.

The possible values of the function f in terms of the strategies {xi, yi} and
{xi+1, yi+1} are

{xi, yi}\{xi+1, yi+1} ++ +− −+ −−
++ 1 −3k − 1 −k + 1 −4k − 1

+− −5k − 1 1 2k − 1 7k + 1

−+ k + 1 2k − 1 −4k + 1 −3k − 1

−− −4k − 1 5k + 1 −k − 1 8k + 1

The important step now is to notice that every global deterministic strategy
corresponds to a cycle of length n (see section 2.3) in the following graph:
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{x, y}1 {x, y}2

{x, y}4{x, y}3

1

−3k − 1

−4k − 1

−k + 1

1

7k + 1

2k − 1

−5k − 1

8k + 1

5k + 1

−k − 1

−4k + 1

k + 1

−3k − 1

Indeed, the first vertex in the cycle corresponds to the strategy chosen by party
1, the second vertex to the one of party 2, and so on. Since the cycle has
length n, the boundary condition {xn+1, yn+1} = {x1, y1} is satisfied. Note
that every edge in the graph has a “weight” given by the value of the function
f . In the cases where f is not symmetric, the corresponding edge was divided
into two “directed edges”, one weighted by f({x, y}i, {x, y}j) and the other by
f({x, y}j , {x, y}i).

The next step is to notice that, for every deterministic global strategy, the
value of Ik is given by the “weight” of the corresponding cycle. Indeed, for
a global strategy {x1, y1}j1 . . . {xn, yn}jn the cycle’s weight is the sum of the
weights of the edges of consecutive vertices, i.e.

∑n
i=1 f({xi, yi}ji , {xi+1, yi+1}ji+1),

which coincides with Ik. Hence, constructing a global deterministic strategy
that minimizes Ik is equivalent to finding a cycle of length n with minimum
weight in the previous graph. Such a cycle has weight −8k2 − 2k + 1, which
proves the classical bound of the Bell inequality (5.78) is βC = 8k2 + 2k − 1.
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Quantum violations.
Now that we have a family of translationally invariant two-body correla-

tors Bell inequality, with nearest-neighbours interactions, we move on to find-
ing quantum violations. Similar to the fully symmetric case, we consider the

one-qubit dichotomic observables at site i given by M(i)
0 = σ

(i)
z and M(i)

1 =

cos(θi)σ
(i)
x +sin(θi)σ

(i)
z . Numerical optimization over the angles θi suggest that

for n ≥ 5 the maximal quantum violation is achieved by n − 2 consecutive
parties applying θi = 0. Hence, consider the state

ρ = |01010 · · · 10〉 〈01010 · · · 10| ⊗ ρn−1,n,

i.e. a fixed pure state for the first n − 2 parties, and an arbitrary mixed state
for the last two parties. Assume further that the first n − 2 parties have θi =
0. Let B be the Bell operator associated to the Bell inequality (5.78) (see
section 2.1.5). Finding a negative eigenvalue of B (i.e. a quantum violation) is
equivalent to finding a negative eigenvalue of the reduced Bell operator Bn−1,n =
〈01010 · · · 10| B |01010 · · · 10〉. Its Characteristic Polynomial is

QM (λ) = λ4 − 4(2n− 1)λ3 − 2(n− 1)(n(cos θn − 9) + cos θn−1(1− cos θn))λ2 +

−8(n− 1)2(1 + 2n− cos θn−1) sin2 θn
2
λ− 4(n− 1)3n sin2 θn−1 sin2 θn,

and has the property that forN > 1 and ∀θN−1 6= nπ, ∀θN 6= nπ, the signs of its
coefficients are +λ4,−λ3,+λ2,−λ1,−λ0. Hence, by Descartes’ rule of signs, the
polynomial has a negative root, assuring quantum violation. In the limit of large
number of parties, the minimum eigenvalue of B is λmin ≈ −0.309343(n − 1),
hence the quantum violation grows linearly with the number of parties.
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In this thesis we have addressed different problems on foundations of quan-
tum mechanics. First, we have studied correlations in Bell-type experiments,
focusing on the reasons for nature to forbid them to be as nonlocal as the
No Signaling principle allows. We have proposed an intrinsically multipartite
principle, called Local Orthogonality, to characterize the set of quantum cor-
relations, and profit from its multipartite formulation to study both bipartite
and multipartite nonlocality. Second, we have developed a framework for the
study of contextuality, where Bell scenarios emerge as a special case of general
scenarios. This approach allowed us to define a hierarchy of semidefinite pro-
grams (SDP) for probabilistic models on contextuality scenarios and study the
constraints imposed by the Consistent Exclusivity principle (CE), as well as to
take advantage of graph-theoretical tools to characterize sets of probabilistic
models. Finally, we moved on to the more practical problem of how to detect
and study nonlocality in many-body systems. We have proposed families of
Bell inequalities that detect nonlocality for an arbitrary number of particles,
with the advantageous property that they are formulated in terms of one and
two-body correlators only. These Bell inequalities proved relevant for the study
of nonlocality in interesting physical systems while also being experimentally
friendly, in the sense that they could be evaluated in experiments where indi-
vidual particles cannot be addressed.

The results achieved during the development of this thesis not only provided
new insight into the topics of Nonlocality and Contextuality, but also arose
several new questions. In what follows, I comment on some directions for future
work.

Characterization of the Quantum Boundary.–

Throughout the study of the constraints that Local Orthogonality imposes on
the space of correlations, we have worked not only with multipartite probability
distributions, but also with independent copies of them. This approach, from
which we defined our hierarchy of LO sets, is based on the existence of a large
family of wirings for which any possible operational combination of a set of
devices is equivalent to a tensor product model over networks when studying
LO properties. However, it is not entirely clear whether any operation over a set
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of devices (rather than wirings) satisfies this property. Whether it is possible
to define other hierarchies of LO sets, in terms of more general operations, that
recover the set of quantum correlations, is still an open question.

Even though LO proves not to single out the set of quantum correlations in
its current formulation, it captures some of its special properties, hence other
natural ways to strengthen it could be explored. From the results on contex-
tuality, one could argue a generalization similar to the Extended Consistent
Exclusivity principle. However, the construction presented in this thesis does
not directly apply to Nonlocality, since the auxiliary contextuality scenario may
fail to be a Bell scenario. Hence, it remains as an open question how to find
the corresponding extension to Nonlocality.

It is worth mentioning that, although information-based principles are useful
for studying quantum correlations, it is not known whether they are sufficient
to capture all the properties of quantum mechanics that make their set so
particular. Hence, an open problem is whether a characterization merely from
this approach is even possible. One recent approach that could shed light on
the problem is that of characterizing quantum mechanics from principles that
are influenced by quantum information theory (Har01; CDP11; DB11; MM11;
Har11). However, this task studies the most-demanding question of deriving
the whole structure of quantum theory, and not just its possible correlations.

Finally, interesting questions also arise from possible operational interpreta-
tions of LO. Indeed, all the known examples of non-trivial (i.e. defining a Bell
inequality which is violated by some no-signaling correlations), tight (in the
sense of defining a tight Bell inequality) information tasks with no quantum
advantage, given in Refs. (ABB+10; ASH+11; AFK+12; AAAB12), are exam-
ples of LO inequalities. In fact, these are the only known examples of non-trivial
tasks with that property which also define tight Bell inequalities. It is an inter-
esting working conjecture to prove that any non-trivial and tight information
task with no quantum advantage defines an LO inequality. In particular, this
would imply that any non-trivial tight Bell inequality in a bipartite scenario
has quantum violations.

A framework for Contextuality.–
There are many directions for future work, since this framework is still under

development. First, other possible definitions of contextuality scenarios could
also be explored. Indeed, we have considered one way of extending the bipar-
tite Foulis-Randall product into more factors, which preserves the No Signaling
property of probabilistic models and recovers the traditional sets of correlations
when restricted to Bell scenarios. However, it is not clear whether other gen-
eralizations with these properties also exist. This could give new insights into
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the characterization of the sets of probabilistic models.
Regarding the connection between Nonlocality and Contextuality in this

framework, by further studying the CE principle we could revisit the previous
question of whether information-based principles can capture all the charac-
teristic properties of quantum correlations. The first level in our SDP hierar-
chy has a very similar formulation to that of quantum models, hence whether
information-based principles are able to tell this subtle difference is still a non-
trivial open problem.

Finally, during this thesis we have shown how to use graph theoretical tools
to solve problems in quantum physics. Hence, another line of future work
consists in doing the opposite: explore problems in combinatorics that would
profit from known results on contextuality, in particular, how to relate some
graph-theoretical invariants with examples of probabilistic models on already
studied contextuality scenarios.

Detection of Nonlocality in many-body systems.–
As commented before, our Bell inequalities have the advantage of being

formulated in terms of one and two-body correlators, which are easily acces-
sible in a many-body setup. In addition, these are violated by the ground
states of experimentally realizable models, such as Lipkin-Meshkov-Glick–like
models with long-range interactions (for ionic spin 1/2 and spin 1 realiza-
tions see (PC04; GJDKL13) and for cold atoms in nanophotonic waveguides
see (CCK13)), or degenerated ground states of the ferromagnetic Heisenberg
model (Sac11). In addition, when all observers measure the same pair of ob-
servables, the Bell violation can be estimated via collective measurements of
total spin operators and their projection into some direction, which enables the
study on setups where individual particles cannot be addressed. Nowadays, it
is possible to measure these quantities in atomic systems with current experi-
mental technologies, such as spin polarization spectroscopy (HSP10; ERIR+08).
Hence, a future line of work would be to study particular experimental setups
and the optimal Bell inequalities for testing the systems. This could provide
a broad set of possibilities to study both theoretically and experimentally the
nonlocal nature of many-body entangled states.

In some experimental setups, however, the exact number of particles in the
system is not known with certainty. Our Bell inequalities, in turn, are well
defined for a fixed n, since the classical bound (and in some cases also the
coefficients) is always a function of the number of particles. An interesting line
of work hence is to study whether there exist Bell inequalities formulated from
two-body correlators which are valid for any n, i.e. where both the coefficients
and the classical bound do not scale with n. This would allow the study of the
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nonlocal properties of systems where the number of constituents is subjected
to experimental errors.

Finally, our fully-symmetric two-body Bell inequalities prove to detect non-
locality from correlations with local bipartite marginals. Even though in some
cases the corresponding quantum states are genuinely mulipartite entangled, it
is still an open question whether the correlations are truly multipartite nonlocal
in the sense of (WBA+12). In order to study if this is the case, one would need
to include time-ordered-bilocal (TOBL) models in the study of these inequal-
ities and their corresponding TOBL bounds. More generally, it would be also
interesting to study the power of two-body correlators for witnessing multipar-
tite nonlocality and to what extent such a task is possible with the minimal
resources available. In addition, one could argue the inclusion of higher-order
correlators into new classes of Bell inequalities, and study the their capability
for detecting nonlocal and truly multipartite nonlocal correlations, as well as the
trade-off between theoretical improvements and experimental disadvantages.
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A. Background on Graph Theory

This section reviews standard material on the invariants of graphs which are of
relevance to the main text, first for unweighted and then for weighted graphs.
In this thesis, a graph is an undirected simple graph without isolated vertices.
When G is a graph, we denote its set of vertices by V (G). For u, v ∈ V (G), we
write u ∼ v whenever u and v share an edge (are adjacent) in G.

There are many ways to take products of graphs (IK00). For us, the relevant
ones are the following:

Definition A.1. Let G1 and G2 be graphs. Their strong product is the graph
G1 �G2 with

V (G1 �G2) := V (G1)× V (G2)

and (u1, u2) ∼ (v1, v2) whenever

(u1 ∼ v1 ∧ u2 ∼ v2) ∨ (u1 ∼ v1 ∧ u2 = v2) ∨ (u1 = v1 ∧ u2 ∼ v2) .

For n ∈ N, we write G�n for the n-fold strong product of G with itself.

Definition A.2. Let G1 and G2 be graphs. Their conormal product is the
graph G1 ·G2 with

V (G1 ·G2) := V (G1)× V (G2)

and (u1, u2) ∼ (v1, v2) whenever

(u1 ∼ v1) ∨ (u2 ∼ v2) .

For n ∈ N, we write G·n for the n-fold conormal product of G with itself.

A.1. Relevant invariants of unweighted graphs

Since later in this chapter I consider graphs equipped with vertex weights, I
also use the term “unweighted graph” when working with plain graphs in order
to emphasize the distinction.

Recall that an independent set in a graph G is a subset I ⊆ V (G) such
that no two vertices in I share an edge. I is an independent set in G if and only
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if it is a clique in the complement graph G. An independent set I is maximal
if there is no other independent set I ′ ⊆ V (G) with I ( I ′. The independence
number α(G) is the size of the largest any independent set in G.

Lemma A.3. Let I1 ⊆ G1 and I2 ⊆ G2 be maximal independent sets. Then
I1 × I2 ⊆ G1 �G2 is also a maximal independent set.

Proof. The definition of adjacency in G1 �G2 implies immediately that I1× I2

is also an independent set in G1 �G2.
We now show maximality of I = I1�I2. For any v = (v1, v2) ∈ V (G1�G2)\I,

the following cases are possible:

1. Case v1 /∈ I1 and v2 /∈ I2: by maximality of I1 and I2, there are u1 ∈ I1

with u1 ∼ v1 and u2 ∈ I2 with u2 ∼ v2. Hence (u1, u2) ∼ (v1, v2).

2. Case v1 /∈ I1 and v2 ∈ I2: by maximality of I1, there is u1 ∈ I1 with
u1 ∼ v1. Hence (u1, v2) ∈ I and (u1, v2) ∼ (v1, v2).

3. Case v1 ∈ I1 and v2 /∈ I2: Similar to the previous case.

In either case, the conclusion is that v is adjacent to some vertex in I, and
hence I is a maximal independent set.

Corollary A.4.
α(G1 �G2) ≥ α(G1)α(G2)

In particular, this implies

α(G�(n+m)) ≥ α(G�n)α(G�m) ∀m,n ∈ N. (A.1)

Remark A.5. Despite this inequality, the sequence
(

n
√
α(G�n)

)
n∈N

is not

monotonically increasing in general; this happens, for example, for the pentagon
graph (or 5-cycle) D, for which

α(D) = 2, α(D�2) = 5, α(D�3) = 10.

See (AL06) for more results on the behaviour of
(

n
√
α(G�n)

)
n∈N

.

In combination with Fekete’s Lemma (Fek23), (A.1) guarantees the existence
of the following limit:

Definition A.6 (Shannon capacity). The (unweighted) Shannon capacity
Θ(G) is

Θ(G) := lim
n→∞

n

√
α(G�n). (A.2)
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Intuitively, Θ(G) is an asymptotic version of the independence number α(G).
This number can be interpreted in terms of information theory as follows. Con-
sider the problem of two parties, Alice and Bob, where Alice wants to send a
message to Bob through a noisy channel. Here, some symbols in the alphabet
that Alice uses may be confused when reaching Bob’s side. The problem is
which is the size of the largest message she can successfully send to Bob with
no error. To answer this question, the normal approach is to define the con-
fusability graph G of the channel, where the vertices V (G) are given by the
letters of Alice’s alphabet, and u ∼ v if and only if u and v have non-trivial
probability to produce the same channel output. Then this channel can asymp-
totically transfer log2 Θ(G) bits of perfect information per channel use. This is
the context in which Θ was originally introduced by Shannon (Sha56). The use
of the logarithm here differs from the standard information-theoretic definitions
of capacities, which usually already include it in their definition.

Not much is known about the values of Θ for particular graphs, not even
Θ(C7), where C7 is the 7-cycle (CGR03).

Definition A.7. Let G1 and G2 be graphs. Their disjoint union is the graph
G1 +G2 with

V (G1 +G2) = V (G1)
⋃
V (G2)

and

E(G1 +G2) = E(G1)
⋃
E(G2)

The Shannon capacity of the product and disjoint union of graphs has the
following properties:

Lemma A.8 ((Sha56)). 1.

Θ(G1 +G2) ≥ Θ(G1) + Θ(G2). (A.3)

2.

Θ(G1 �G2) ≥ Θ(G1)Θ(G2). (A.4)

Finding examples in which these inequalities are not tight is surprisingly
difficult. The following results are due to Haemers and Alon.

Theorem A.9 ((Hae79; Alo98)). There exist graphs G1 and G2 such that

1. Θ(G1 �G2) > Θ(G1)Θ(G2) .

2. Θ(G1 +G2) > Θ(G1) + Θ(G2) ,
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Of particular relevance for our considerations in the main text are graphs
whose independence number coincides with their Shannon capacity:

Definition A.10. A graph G is single-shot if α(G) = Θ(G).

G is single-shot precisely when the sequence
(

n
√
α(G�n)

)
n∈N

is constant. Our

terminology is motivated by the information-theoretic interpretation alluded to
above: if a communication channel has a confusability graph which is single-
shot, then there exists a zero-error code for this channel which operates on the
single-shot level.

Due to standard results (Knu94), every perfect graph is single-shot. The Pe-
tersen graph is not perfect, but nevertheless single-shot since its Lovász number
(see below) coincides with its independence number (Knu94, p. 31).

Another relevant graph invariant is the so called Lovász number (Lov79).
It has many equivalent definitions (Knu94), and I use the following:

Definition A.11 (Lovász number (Lov79)). 1. An orthonormal labelling
of G is an assignment v 7→ |ψv〉 of a unit vector |ψv〉 ∈ R|V (G)| to every
v ∈ V (G) such that u 6∼ v and u 6= v implies |ψu〉 ⊥ |ψv〉.

2. The Lovász number ϑ(G) is

ϑ(G) := min
|Ψ〉, |ψv〉

max
v∈V

1

|〈Ψ|ψv〉|2

where |Ψ〉 ∈ R|V (G)| ranges over all unit vectors and (|ψv〉)v∈V (G) over all
orthonormal labellings.

Multiplicativity of ϑ is one of its many useful properties:

Proposition A.12 ((Lov79)).

ϑ(G1 �G2) = ϑ(G1)ϑ(G2).

Finally, another graph invariant is the fractional packing number, defined
as follows:

Definition A.13. The fractional packing number α∗(G) is

α∗(G) := max
q

∑
v

qv

where q : V (G)→ [0, 1] ranges over all vertex weightings satisfying
∑

v∈C qv ≤ 1
for all cliques C ⊆ V (G).
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The fractional packing number can be regarded as the linear relaxation of the
independence number. For this reason, it is sometimes also called fractional
independence number.

The previously mentioned graph invariants relate to each other in the follow-
ing way.

Proposition A.14 ((Lov79)).

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ α∗(G).

In general, none of these inequalities is an equality. This is most difficult to
see for Θ(G) ≤ ϑ(G), for which it was shown by Haemers (Hae79) after having
been posed as an open problem by Lovász (Lov79).

A.2. Relevant invariants of weighted graphs

This section generalizes the definitions to graphs equipped with vertex weights,
i.e. to graphs G equipped with a weight function p : V (G)→ R+.

Given two graphs G1 and G2, together with their weight functions p1 :
V (G1) → R+ and p2 : V (G2) → R+, the strong product of the graphs has
an associated weight function in product form:

p1 ⊗ p2 : V (G1 �G2)→ R+, (v1, v2) 7→ p1(v1)p2(v2).

In this way, p⊗n is a weight function on G�n. The same holds for conormal
product of graphs. Similarly, there is an obvious weight function p1 +p2 defined
on the disjoint union G1 +G2. In the particular case when p1 and p2 are defined
on the same graph, we use the same notation p1 + p2 for the pointwise sum;
despite this ambiguous notation, the meaning will always be clear from the
context.

The relevant graph invariants may then be generalized to the weighted case:

Definition A.15. Let G be a graph equipped with vertex weights p.

1. The weighted independence number α(G, p) is the largest total weight
of an independent set in G.

2. The weighted Lovász number ϑ(G, p) is

ϑ(G, p) := min
|Ψ〉, |ψv〉

max
v∈V

p(v)

|〈Ψ|ψv〉|2
(A.5)

where |Ψ〉 ∈ R|V (G)| ranges over all unit vectors and (|ψv〉)v∈V (G) over all
orthonormal labellings.
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3. The weighted Shannon capacity Θ(G, p) is

Θ(G, p) = lim
n→∞

n

√
α(G�n, p⊗n). (A.6)

4. The weighted fractional packing number α∗(G, p) is

α∗(G, p) := max
q

∑
v∈V

p(v)q(v).

where q : V (G)→ R+ ranges over all vertex weights satisfying∑
v∈C

q(v) ≤ 1

for all cliques C ⊆ V (G).

The fraction in (A.5) uses the convention 0
0 = 0. Note that of these quantities

specialize to their unweighted counterparts by choosing unit weights p = 1.
As mentioned in the previous section, (Knu94) presents several equivalent

definitions of ϑ(G, p). One of relevant importance in this thesis is the forth
characterization of ϑ given in Section 10 of (Knu94):

Definition A.16. The weighted Lovász number ϑ(G, p) is

ϑ(G, p) := max
|Ψ〉,|φv〉

∑
v∈V

p(v)|〈Ψ|φv〉|2 (A.7)

where |Ψ〉 ∈ R|V (G)| ranges over all unit vectors and (|φv〉)v∈V (G) over all or-

thonormal labellings of G, i.e. the complement of G.

The weighted fractional packing number can also be characterized by the
dual of the linear program that appears on its definition, which leads to the
equivalent formulation:

Proposition A.17. Let Cl(G) denote the set of all cliques on G.

α∗(G, p) = min
x

∑
C∈Cl(G)

x(C) (A.8)

where x ranges over all functions x : Cl(G)→ R+ with p(v) ≤
∑

C3v x(C) ∀v.

Similar to the unweighted case, the Shannon capacity has the following prop-
erties:
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Lemma A.18. 1.

Θ(G1 +G2, p1 + p2) ≥ Θ(G1, p1) + Θ(G2, p2). (A.9)

2.

Θ(G1 �G2, p1 ⊗ p2) ≥ Θ(G1, p1)Θ(G2, p2). (A.10)

Proof. As in the unweighted case (Sha56).

Since these inequalities are not tight in general in the unweighted case (Hae79;
Alo98), neither can they be tight in the weighted case. One might expect
simpler counterexamples to exist in the weighted case, but we have still not
been successful in finding any.

When p1, p2 are weight functions on the same graph G, superadditivity no
longer holds for trivial reasons: e.g. for G = K2, the graph on two adjacent
vertices {u, v} with p1 = 1u and p2 = 1v, we have

1 = Θ(G, p1 + p2) < Θ(G, p1) + Θ(G, p2) = 2.

A.3. Relation between invariants of unweighted and
weighted graphs

Many statements about the invariants of weighted graphs can be reduced to
statements about their unweighted counterparts using a technique we call blow-
up. Applying this technique requires the vertex weights to be rational. There-
fore, we begin by proving a continuity result which allows us to reduce many
problems to the case of rational weights.

Lemma A.19. Let (G, p) be a weighted graph and Km the empty graph on m
vertices with weights q. Then,

X(G+Km, p+ q) = X(G, p) +
∑

v∈V (Km)

q(v) (A.11)

for all four invariants X ∈ {α,Θ, ϑ, α∗}.

Proof. This is trivial for X = α. For X = ϑ, it is a special case of (Knu94,
eq. (18.2)). For X = α∗, it follows from an application of Proposition A.17. It
remains to treat the case X = Θ.
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Since Θ(Km, q) =
∑

v qv, the inequality “≥” is an instance of superaddi-
tivity (A.9) of Θ. To also show “≤”, we choose any independent set I in
(G+Km)�n and partition it into a disjoint union

I =
⋃

~s∈{0,1}n
I~s

where each I~s contains only vertices (v1, . . . , vn) with vi ∈ V (G) if si = 0 and
vi ∈ V (Km) if si = 1. Then upon dropping all components i with si = 1,
such an I~s becomes an independent set in some G�k. In this way, we get the
estimate

α
(
(G+Km)�n, (p+ q)⊗n

)
≤

n∑
k=0

(
n

k

)
α(G�k, p⊗k)

(∑
i

qi

)n−k

≤
n∑
k=0

(
n

k

)
Θ(G, p)k

(∑
i

qi

)n−k

=

(
Θ(G, p) +

∑
i

qi

)n
,

which implies the desired inequality upon taking the n-th root and then n →
∞.

Another interesting question is what happens to the graph invariants when
the weight of a single vertex is increased. In this case, we see that the following
inequalities hold.

Lemma A.20. Let (G, p) be a weighted graph, v ∈ G a vertex, q ∈ R+ and
X ∈ {α,Θ, ϑ, α∗}. Then

X(G, p) ≤ X(G, p+ q1v) ≤ X(G, p) + q. (A.12)

Proof. The first inequality is clear since X(G, p) is a non-decreasing function
of p.

Since adding additional edges cannot increase the value of X and two vertices
with exactly the same neighbours can be identified to one vertex by adding
the weights (for X = ϑ, see (Knu94, Lemma 16)), we have X(G, p + q1v) ≤
X(G+K1, p+ q). Now the second inequality follows from the previous Lemma
with m = 1.

This Lemma directly gives the desired continuity result:
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Corollary A.21. For any graph G and any X ∈ {α,Θ, ϑ, α∗}, the function
p 7→ X(G, p) is continuous.

We can now introduce the blow-up technique which can be used to translate
problems from the weighted case to the unweighted setting.

Definition A.22. Let (G, p) be a weighted graph with p(v) ∈ N ∀v. Then the
blow-up Blup(G, p) is the unweighted graph with vertex set{

(v, k) : v ∈ G, k ∈ {1, . . . , p(v)}
}
,

where we take (v, k) and (v′, k′) to be adjacent if and only if v ∼ v′ in G.

Intuitively speaking, Blup(G, p) is constructed by replacing every vertex v in
G by p(v) many non-adjacent vertices. In particular, if p(v) = 0, the vertex
v simply gets removed from the graph. Blow-ups have also been considered
in (Knu94, Sec. 16), although not under that name.

The Blup relates to the product, union and invariants like follows.

Lemma A.23. For vertex weights in N,

1. Blup(G1 +G2, p1 + p2) = Blup(G1, p1) + Blup(G2, p2).

2. Blup(G1 �G2, p1 ⊗ p2) = Blup(G1, p1) � Blup(G2, p2);

3. X(Blup(G, p)) = X(G, p) for every X ∈ {α,Θ, ϑ, α∗}.

Hence, by using the properties of the blow-up technique, the following state-
ments have clear proofs:

Corollary A.24.

α(G, p) ≤ Θ(G, p) ≤ ϑ(G, p) ≤ α∗(G, p).

Proof. Combine Lemma A.23 with Proposition A.14.

Corollary A.25 ((Knu94, (20.5))).

ϑ(G1 �G2, p1 ⊗ p2) = ϑ(G1, p1)ϑ(G2, p2)

Proof. Combine Lemma A.23 with Proposition A.12.

Corollary A.26.

α(G1 �G2, p1 ⊗ p2) ≥ α(G1, p1)α(G2, p2)

Proof. Combine Lemma A.23 with Lemma A.4.
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B. Bipartite scenarios: LO1 ≡ NS

In this appendix, I will show that LO1 ≡ NS for bipartite scenarios. Although
this was already noticed in (CSW10), here I give a slightly different proof which
emphasizes the connection to LO.

In what follows, measurements and results by the two parties are labelled by
x, y and a, b, so that correlations read P (ab|xy). The no signaling conditions
are:

d−1∑
b=0

P (ab|xy) =
d−1∑
b=0

P (ab|xy′) ,
d−1∑
a=0

P (ab|xy) =
d−1∑
a=0

P (ab|x′y), (B.1)

Let us start by characterizing the possible sets of locally orthogonal events.
Recall that two events are locally orthogonal if for at least one party the settings
are identical but the outcomes are different. Consider a set of locally orthogonal
events which contains (ab|xy) and (a′b′|x′y) with x′ 6= x. Then, this set cannot
contain any event of the form (a′′b′′|x′′y′) with y′ 6= y, because it could not be
locally orthogonal to both other events. From this intuition, we find that the
sets of pairwise orthogonal events are either

{(ab|xωA(a)) : a, b = 0, . . . , d− 1}

for fixed x, or
{(ab|ωB(b)y) : a, b = 0, . . . , d− 1}

for fixed y, with ωW : {0, . . . , d−1} −→ {0, . . . ,m−1} (W = A,B) being some
map.

We start by showing that sets of the first kind have the desired property;
the proof for sets of the second kind is analogous. Take two such events
(ab|xωA(a)) 6= (a′b′|xωA(a′)). Then either a 6= a′ and orthogonality holds
on Alice’s side, or b 6= b′ and orthogonality follows from Bob. This proves that
we have a set of exclusive events. To see that the set is maximal, consider an
arbitrary event (ãb̃|x̃ỹ). If x̃ = x and ỹ = ωA(ã), then this event is already
in the set. Otherwise, LO fails between (ãb̃|x̃ỹ) and (ãb̃|xωA(ã)). Hence it is
impossible to add any event to the set, i.e. the set is maximal.

Now we prove that every maximal LO1 set is of one of these two forms. It
is enough to show that every LO1 set is contained in a set of this form. As
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noted above, for events in an LO set, one of the parties is restricted to using
a single input. Hence, without loss of generality, we can take x to be fixed.
Since every two orthogonal events differ on at least one outcome, there exists a
function ω(a, b) such that every element in the set is of the form (ab|xω(a, b)).
We complete the proof by showing that ω(a, b) does not depend on b. The
existence of a and b, b′ with ω(a, b) 6= ω(a, b′) would imply that (ab|xω(a, b))
and (ab′|xω(a, b′)) are not orthogonal, contradicting the assumption.

We now prove that LO1 = NS, in the present bipartite setting.
LO1 ⊆ NS: all optimal LO1 inequalities are of the form

d−1∑
a,b=0

P (ab|xωA(a)) ≤ 1,

modulo exchanging the parties. We fix any a0, y and y′ and consider the
function ωA(a) = y if a = a0 and ωA(a) = y′ if a 6= a0. The LO inequality
yields

d−1∑
a6=a0,b=0

P (ab|xy′) +
d−1∑
b=0

P (a0b|xy) ≤ 1.

Together with the normalization equation
∑d−1

a,b=0 P (ab|xy′) = 1, this implies

d−1∑
b=0

P (a0b|xy) ≤
d−1∑
b=0

P (a0b|xy′).

Since the same inequality can be derived with y and y′ interchanged, we find
that it actually needs to be an equality, which is (B.1).
NS ⊆ LO1: start from the normalization condition

∑d−1
a,b=0 P (ab|xy) = 1.

Using the no-signaling equations (B.1), we can transform it into an equality
of the form

∑d−1
a,b=0 P (ab|xωA(y)) = 1 for any given x and ωA. It follows that

NS ⊆ LO1, and thus LO1 = NS in the bipartite scenario.
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C. Families of LO inequalities

In this appendix, I explain how to sort LO inequalities into classes and present
the list all LO inequalities for the (3, 2, 2), (3, 2, 3) and (4, 2, 2) scenarios.

C.1. Defining and computing equivalence classes

Starting from the orthogonality graph for a given scenario (n,m, d), as explained
in section 3.4, we can generate a list of all the corresponding LO inequalities by
employing standard methods from graph theory. For sufficiently small scenar-
ios, this computation is feasible with the existing software packages for clique
enumeration (Uno05; NO10), and here we describe the results of our computa-
tions along these lines. We write a := a1 . . . an and x := x1 . . . xn as shorthands.

Each LO inequality is of the form∑
a,x

ca,xP (a|x) ≤ 1, (C.1)

with ca,x ∈ {0, 1}, that is, each LO inequality corresponds simply to a list of
the terms which are present, i.e. the terms for which ca,x = 1. However, for
the purpose of understanding the structural aspects of the LO principle, many
of these inequalities can be considered equivalent. More concretely, if two in-
equalities with respective coefficients ca,x and c′a,x can be transformed into each
other by relabelling the parties or the measurement choices and outcomes, or
by making use of the normalization and no-signaling equations, or by combin-
ing such transformations, then they really represent different instances of the
same basic inequality. So we consider two LO inequalities to be equivalent if
one can be transformed into the other under a combination of the following
transformations:

(i) Permutation of parties. For some permutation σ of n objects, the c′a,x of
the second inequality can be obtained from the ca,x of the first inequality
as c′a,x = ca′,x′ , where a′i = aσ(i) and x′i = xσ(i).

(ii) Relabelling of measurement choices. For some set of permutations σ1, . . . , σn
of m objects, the coefficients of the second inequality can be obtained as
c′a,x = ca,x′ , where x′i = σi(xi).
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C. Families of LO inequalities

(iii) Relabelling of outcomes. For some set of permutations σ1,1, . . . , σn,m of
d objects indexed by parties and measurement choices, the coefficients of
the second inequality can be obtained as c′a,x = ca′,x, where a′i = σi,xi(ai).

(iv) No-signaling and normalization. The second inequality can be obtained
from the first one by adding a linear combination of the no-signaling
equations (2.3) and the normalization condition

∑
a P (a|x) = 1.

Since the clique enumeration software enumerated all cliques in the respec-
tive orthogonality graphs, the corresponding sets of LO inequalities had large
redundancy in the sense that many inequalities were equivalent to each other
under these symmetry transformations. In the following, we describe how we
eliminated this redundancy by computing one unique representative of each
symmetry class.

First, we considered each inequality for n parties with r terms as an (r×2n)-
matrix. Each row in the matrix corresponds to a term of the inequality by listing
the corresponding outcomes and measurement choices a1 . . . anx1 . . . xn. Two
such matrices which differ only by the order of their rows trivially represent the
same inequality, and hence we will choose the lexicographically smallest order-
ing as a normal form with respect to this equivalence: two matrices represent
the same inequality if and only if they have the same normal form. In all sub-
sequent steps, an inequality was always represented as a matrix whose rows are
lexicographically ordered. More generally, we always reduced the elimination
of equivalences to the computation of normal forms.

Next we eliminated the equivalences under transformations of types (i)–(iii),
again by computing a normal form with respect to these transformations for
each inequality. For each party, the measurement choices were ordered accord-
ing to their multiplicity, i.e. according to the number of terms in which they
appear. They were then relabelled such that the measurement choice which
occurred most often was assigned the lowest label, and so on for the following
measurement choices. Similarly, for each party and each measurement choice,
the outputs were relabelled according to their multiplicity. Whenever multi-
ple measurement choices or outcomes occurred with the same multiplicity, all
possible relabellings were applied, resulting in a list of equivalent inequalities.
Next, all possible permutations of the parties were applied, resulting in an
even longer list of inequalities. Then again, for each matrix representing an
inequality in the list, the rows were ordered lexicographically—corresponding
to a permutation of the terms in the inequality—and then the matrices them-
selves were ordered lexicographically. The first matrix in this reordered list was
taken to be the normal form representating the whole equivalence class. The
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C.2. All LO inequalities for the (3, 2, 2), (3, 2, 3) and (4, 2, 2) scenarios

relabellings of measurement choices and outcomes defined in this way are invari-
ant under permutation of parties and terms, since such permutations cannot
change the multiplicity of a given measurement choice or outcome. This ensures
that the representative is unique. This defines a normal form with respect to
the equivalences (i)–(iii), as well as an algorithm to compute it. In this way,
we eliminated these equivalences using a piece of Mathematica code. This
produced a smaller list of inequalities given in the form (C.1).

Finally, we had to eliminate equivalences under transformations which also
include those of type (iv). To this end, a normal form for general Bell in-
equalities and a method for computing this normal form had previously been
described in (BGP10). This normal form expresses the inequalities in terms
of generalized correlators (see Appendix A of (BGP10) and also (PBS11)). A
Matlab package for computing this normal form has been developed by Bancal
and was kindly provided to us. Although this software is capable of eliminating
equivalences of all types (i)–(iv), our strategy of first eliminating (i)–(iii) has
turned out to be advantageous: in contrast to general Bell inequalities, our
LO inequalities are very sparse and all of their coefficients are 0 or 1. This is
a feature that we have exploited in our Mathematica code, which does not
store the inequalities as large arrays of coefficients, but as (r × 2n)-matrices
as explained above, which led to a significant speed-up. We applied Bancal’s
Matlab software to the list of inequalities obtained in the previous step, which
resulted in further elimination of equivalences, this time finally under all of (i)–
(iv). In the end, the representative of each equivalence class in its matrix
representation was taken to be the first inequality of the class in the sorted
output from Mathematica.

C.2. All LO inequalities for the (3, 2, 2), (3, 2, 3) and
(4, 2, 2) scenarios

Using the method of the previous section, we were able to completely classify
all LO inequalities for the scenarios (3,2,3) and (4,2,2). In the tables below we
list the normal form representative of each of the non-trivial equivalence classes.
Here, an inequality is non-trivial if it can be violated by some no-signaling box.
All the other inequalities are trivial, i.e. represent the normalization of proba-
bilities or the no-signaling condition, and thereby are equivalent under (iv) to
the tautological inequality 0 ≤ 0.
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C. Families of LO inequalities

The (3,2,2) scenario. The GYNI inequality (2.11) represents the only class
in this scenario.

The (3,2,3) scenario. In what follows, I list the 4 equivalence classes found
for the scenario (3, 2, 3). As explained in the main text these four inequalities
correspond, respectively, to maximal cliques of 12, 13, 14, and 15 vertices.

{
(000|000), (001|000), (002|110), (010|000), (C.2)

(011|000), (012|110), (102|110), (112|110),

(120|011), (220|011), (221|101), (222|101)
}

{
(000|001), (001|001), (002|111), (010|001), (C.3)

(011|001), (110|010), (120|010), (121|100),

(122|100), (210|010), (220|010), (221|100), (222|100)
}
,

{
(000|000), (001|000), (002|110), (010|000), (C.4)

(011|000), (012|110), (100|000), (101|000), (110|000),

(111|000), (120|101), (220|101), (221|011), (222|011)
}
,

{
(000|000), (001|000), (002|110), (010|000), (C.5)

(011|000), (012|110), (100|000), (101|000), (102|110),

(110|000), (111|000), (112|110), (220|011), (221|011), (222|101)
}
.

The (4,2,2) scenario. In what follows, I list all 35 equivalence classes found
for the scenario (4, 2, 2). First, 30 inequivalent inequalities with 8 terms each,
second two with 9 terms each, then two with 10 terms each, and finally one
inequality with 12 terms.

{
(0000|0000), (0001|0000), (0010|1100), (0101|1010), (C.6)

(1010|1101), (1100|0110), (1110|0111), (1111|1011)
}
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{
(0000|0000), (0001|0010), (0010|1100), (0011|1110), (C.7)

(1100|0101), (1101|0111), (1110|1001), (1111|1011)
}

{
(0000|0000), (0001|0010), (0010|1100), (0011|1110), (C.8)

(1100|0101), (1101|1011), (1110|1001), (1111|0111)
}

{
(0000|0000), (0001|0010), (0010|1100), (0100|1001), (C.9)

(1001|0101), (1100|1011), (1101|0111), (1111|1110)
}

{
(0000|0000), (0001|0010), (0010|1100), (0100|1001), (C.10)

(1011|0100), (1101|0111), (1110|1010), (1111|1110)
}

{
(0000|0000), (0001|0010), (0010|1100), (0100|1001), (C.11)

(1011|1110), (1101|1011), (1110|0101), (1111|0111)
}

{
(0000|0000), (0001|0010), (0010|1100), (0101|1000), (C.12)

(1011|0100), (1100|0110), (1110|1010), (1111|1110)
}

{
(0000|0000), (0001|0010), (0010|1100), (0101|1000), (C.13)

(1011|0100), (1100|1010), (1110|0110), (1111|1110)
}

{
(0000|0000), (0001|0010), (0010|1100), (0101|1000), (C.14)

(1011|1110), (1100|1010), (1110|0110), (1111|0100)
}

{
(0000|0000), (0001|0010), (0100|1010), (0101|1000), (C.15)

(1010|0110), (1011|0100), (1110|1100), (1111|1110)
}

{
(0000|0000), (0001|0010), (0100|1010), (0101|1000), (C.16)

(1010|1100), (1011|0100), (1110|0110), (1111|1110)
}

{
(0000|0000), (0001|0010), (0100|1010), (0111|1000), (C.17)

(1001|0100), (1010|0110), (1110|1100), (1111|1110)
}

{
(0000|0000), (0001|0110), (0010|1100), (0011|1010), (C.18)

(1100|0001), (1101|0111), (1110|1101), (1111|1011)
}
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{
(0000|0000), (0001|0110), (0010|1100), (0011|1010), (C.19)

(1100|0110), (1101|0000), (1110|1010), (1111|1100)
}

{
(0000|0000), (0001|0110), (0010|1100), (0011|1010), (C.20)

(1100|1010), (1101|0000), (1110|0110), (1111|1100)
}

{
(0000|0000), (0001|0110), (0010|1100), (0011|1010), (C.21)

(1100|1010), (1101|1100), (1110|0110), (1111|0000)
}

{
(0000|0000), (0001|0110), (0010|1100), (0110|0101), (C.22)

(1011|0010), (1100|0001), (1101|0111), (1111|1011)
}

{
(0000|0000), (0001|0110), (0010|1100), (0111|1010), (C.23)

(1001|0000), (1100|0110), (1110|1010), (1111|1100)
}

{
(0000|0000), (0001|0110), (0010|1100), (0111|1010), (C.24)

(1001|0000), (1100|1010), (1110|0110), (1111|1100)
}

{
(0000|0000), (0001|0110), (0010|1100), (0111|1100), (C.25)

(1001|0000), (1100|1010), (1110|0110), (1111|1010)
}

{
(0000|0000), (0001|0110), (0110|0011), (0111|0101), (C.26)

(1000|0110), (1001|0000), (1110|0101), (1111|0011)
}

{
(0000|0000), (0001|0110), (0110|0011), (0111|1011), (C.27)

(1000|0110), (1001|0000), (1110|0101), (1111|1101)
}

{
(0000|0000), (0001|0110), (0110|1011), (0111|1101), (C.28)

(1000|0110), (1001|0000), (1110|1101), (1111|1011)
}

{
(0000|0000), (0011|0100), (0101|1000), (0110|1100), (C.29)

(1001|0010), (1010|0110), (1100|1010), (1111|1110)
}

{
(0000|0000), (0001|0000), (0010|0000), (0100|1011), (C.30)

(0111|1011), (1001|0111), (1010|0111), (1111|1100)
}
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{
(0000|0000), (0001|0000), (0010|1100), (0011|1100), (C.31)

(1100|0110), (1101|1010), (1110|0111), (1111|1011)
}

{
(0000|0000), (0001|0000), (0010|1100), (0101|1010), (C.32)

(1011|0110), (1100|0110), (1110|1010), (1111|1100)
}

{
(0000|0000), (0001|0000), (0010|1100), (0101|1010), (C.33)

(1011|0110), (1100|1010), (1110|0110), (1111|1100)
}

{
(0000|0000), (0001|0000), (0010|1100), (0011|1100), (C.34)

(1100|0110), (1101|0110), (1110|1010), (1111|1010)
}

{
(0000|0000), (0001|0000), (0010|1100), (0011|1100), (C.35)

(1100|0110), (1101|1010), (1110|1010), (1111|0110)
}

{
(0000|0001), (0010|0100), (0011|1000), (0100|1000), (C.36)

(0101|0010), (1000|0010), (1001|0100), (1110|0001), (1111|1111)
}

{
(0000|0000), (0001|0000), (0010|0000), (0011|1100), (C.37)

(0100|0001), (1000|0110), (1001|0000), (1110|0101), (1111|1011)
}

{
(0000|0000), (0001|0000), (0010|0000), (0011|1100), (C.38)

(0100|0001), (0110|1000), (1000|0101), (1010|0000),

(1101|0110), (1111|1011)
}

{
(0000|0000), (0001|0000), (0010|0000), (0011|0000), (C.39)

(0100|0000), (0101|1010), (1000|0100), (1001|0010),

(1110|1001), (1111|0111)
}

{
(0000|0000), (0001|0000), (0010|0000), (0011|0000), (C.40)

(0100|0000), (0101|0000), (0110|0000), (0111|0000),

(1000|0000), (1001|0110), (1110|0011), (1111|0101)
}
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D. LO and Noisy boxes

In this section, I study further the connection between noisy multipartite boxes
and graph-theoretical invariants. First, I elaborate on the example of noisy PR-
boxes presented in section 3.5.3, and then briefly discuss more general cases.

In the spirit of section 3.5.3, consider k copies of a noisy PR-box distributed
among 2k parties as in Fig. D.1. The joint conditional probability distribution
is:

Pq(a1b1 · · · akbk|x1y1 · · ·xkyk) =

k∏
j=1

Pq(ajbj |xjyj)

=

k∏
j=1

[
q · PR(ajbj |xjyj) + (1− q) I

4

]
.

(D.1)

Denote by qk the maximum value of q for which Pq satisfies LOk. In what
follows, we focus on bounding the values of qk by means of graph invariants
(namely, the Shannon Capacity), and work with the non-orthogonality graph
defined in section 3.4. To simplify the notation, here we denote only by NO the
non-orthogonal graph, and leave implicit the scenario which it refers to.

Similar to section 3.5.3, we focus on the possible events of the (noiseless) box
P k1 (a1b1 · · · akbk|x1y1 · · ·xkyk), and study then the non-orthogonality graph of
possible events, NOposs. In the one-copy case (k = 1), NO1

poss corresponds to
the graph of Fig. 3.6(b) (which is the complement of the graph of Fig. 3.6(a)),
and in the many-copy case (k > 1), NOk

poss = (NO1
poss)

�k (see section 3.4

and appendix A). A maximal independent set in NOk
poss corresponds to an LO

inequality in the complete scenario (kn,m, d), though it may not be maximal.
Therefore, the maximum value of q for which P kq satisfies all LO inequalities

generated from NOk
poss, denoted by q∗k, only gives an upper bound for qk.

The conditional probability distribution defined in eq. (D.1) assigns to each
vertex of the graph NOk

poss a weight w(q) = [(1+q)/4]k. If we denote by αk the

unweighted independence number (see section 2.3 and appendix A) of NOk
poss,

direct evaluation of the maximal LO inequality by P kq gives αk w(q) ≤ 1, which
implies that q∗k = (4/ k

√
αk)− 1.
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qPR + (1− q)P1

qPR + (1− q)P1

...
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Figure D.1.: k copies of a noisy PR-box shared among 2k parties. Each party
has access to one part of a box.

E.g. for k = 2, we have α2 = 5, so q∗2 ≈ 0.79. In section 3.5.3, we focused
on the 2 copy case, and analyzed the non-orthogonality graph of all events, not
only the possible. There we find the value q2 ≈ 0.72, which is consistent with
q2 ≤ q∗2, and is significantly closer to Tsirelson’s bound q = 1/

√
2 ≈ 0.707.

In the limit of infinite number of copies of the noisy PR-box, the critical noise
is related to the unweighted Shannon capacity of NO1

poss:

q∗∞ :=
4

Θ(NO1
poss)

− 1 . (D.2)

and this upper bounds all q∗k.
The graph of interest NO1

poss (depicted in Fig. 3.6(b)) is the Cayley graph of
the cyclic group Z8 with respect to the generating set {1, 2, 6, 7}. Alternatively,
it can be regarded as the circulant graph Ci4(1, 2), or more specifically, as the
4-antiprism graph (GL04). Unfortunately, to the best of our knowledge, its
Shannon capacity is not known.

Consider now the case of a multipartite box in a general scenario (n,m, d)
having the property that each probability P (e) has a constant value c if the
event e is possible, and 0 otherwise. Then, the method described above for the
PR-box can be applied here as well, and a similar relation between the critical
noise level q∗∞ and a Shannon capacity Θ(NO1

poss) is found, where NO1
poss is

the non-orthogonality graph associated to the possible events of the box. This
result may be understood from two different perspectives. On the one hand, if
the Shannon capacity Θ(NO1

poss) happens to be known, then an upper bound
on the critical noise level is found. On the other hand, lower bounds on q∗

follow from finding quantum representations of the box at a certain noise level,
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and these bounds translate into upper bounds on Θ(NO1
poss). These bounds,

however, may be dominated by the Lovász number ϑ(NO1
poss) (see appendix A).

For instance, in the case of the noisy PR-box, the existence of a quantum
representation at q = 1/

√
2 implies that q∗∞ ≥ 1/

√
2, which eq. (D.2) turns

into Θ(NO1
poss) ≤ 4(2 −

√
2), a bound which coincides with the Lovász num-

ber ϑ(NO1
poss). If one could prove this bound to be the exact value, then

eq. (D.2) would recover Tsirelson’s bound. Similar considerations can be found
in (Cab13).

Computing the boundary of LO∞ is difficult, and even approximating it is
computationally costly. We have seen that it can be related to a purely com-
binatorial problem, namely the evaluation of the Shannon capacity of certain
graphs. In fact, the Shannon capacity gives a bound on the amount of noise
required to make a conditional probability distribution quantum, and in turn,
this could lead to bounds on the Shannon capacity of graphs. This is an inter-
esting connection to graph theory, similar to those already found in (CSW10)
and chapter 4.
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E. Relation to the observable-based
approach

The observable-based approach to quantum contextuality and nonlocality has
first been studied explicitly by Abramsky and Brandenburger (AB11). In this
appendix, our goal is to show how the observable-based approach can be embed-
ded into our formalism. A converse construction should be possible upon aug-
menting the observable-based approach by additional constraints as in (AB11,
Sec. 7). In this sense, the two formalisms are essentially equivalent. We believe
that both approaches have their merits; for example, in both cases the relation
to sophisticated mathematical methods can be exploited. In the observable-
based approach, this has been done in (AMSB11); for the hypergraph-based
approach, this has been started in (CSW10) and further developed in this the-
sis.

The following definition blends the terminology of (AB11) with the one
of (FC13).

Definition E.1. A marginal scenario (X,O,M) is defined by a finite set
X = {A1, . . . , An}, the elements of which we call observables, together with a
finite set O of outcomes and a measurement cover M, which is a family of
subsets M⊆ 2X such that

(i) every element of X occurs in some C:
⋃
C∈MC = X.

(ii) M is an anti-chain: C,C ′ ∈M, C ⊆ C ′ =⇒ C = C ′.

The C ∈M are called measurement contexts.

We denote a marginal scenario (X,O,M) simply by X, at least when O and
M are clear from the context.

From the mathematical point of view, the maximal sets of compatible observ-
ables form also a hypergraph, but the physical interpretation is quite different.
The subsets in M represent the maximal sets of jointly measurable observ-
ables. Figure E.1 displays the hypergraph corresponding to the CHSH scenario
(CHSH69), in which the four pairs {A1, B1}, {A1, B2}, {A2, B1}, {A2, B2}
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(X,M) =A1

B1 A2

B2

O = {0, 1}

Figure E.1.: The CHSH scenario as a marginal scenario. We now draw the
vertices as squares in order to indicate that the interpretation differs from the
one of all other illustrations of hypergraphs in this paper.

are jointly measurable, but no other pairs or triples of observables are jointly
measurable.

As noted in (AB11), it is not a substantial restriction to assume that all
observables take values in the same set of outcomes O. We assume this mainly
for convenience of notation and note that all of our considerations and results
can easily be extended to the general case in which each measurement A ∈ X
takes values in an associated finite set of outcomes OA depending on A.

In the following, we want to consider measurements of compatible observables
which are conducted in a certain temporal order. The situation where we have
already measured some observable A ∈ X, defines a marginal scenario which
encodes all the possibilities for subsequent measurements in the following sense.

Definition E.2. Given an observable A ∈ X, the induced marginal scena-
rio X{A} is the marginal scenario having observables

X{A} =
{
A′ ∈ X

∣∣A′ 6= A, ∃C ∈M s.t. {A,A′} ⊆ C
}

and measurement contexts defined to be the restrictions of those C ∈ M with
A ∈ C down to X{A}.

By definition, any X{A} has a smaller number of observables than the origi-
nal X. In particular, iterating this construction by taking an induced marginal
scenario of an induced marginal scenario, one eventually ends up with an empty
scenario and the process terminates.

This idea motivates the following recursive definition of measurement proto-
col:

Definition E.3. A measurement protocol T on a marginal scenario X is
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(i) T = ∅ if X = ∅;

(ii) otherwise, T = (A, f), where A ∈ X is an observable and f : O →
MP(X{A}) is a function, where MP(X{A}) is the set of all measurement
protocols on the scenario X{A}.

Intuitively, a measurement protocol consists of a choice of observable and an
assignment of a new measurement protocol to each outcome of the observable,
where the new measurement protocol lives on the induced marginal scenario.

Upon unravelling the recursive structure of this definition, one finds that a
measurement protocol specifies sequences of measurements which can be applied
to the system, where the choices of subsequent measurements f are allowed to
depend on the outcomes of the earlier ones. These measurement sequences have
the additional property that all measurements in a sequence are compatible and
that no measurement can occur twice in the same sequence. We use the letter
“T” to indicate the tree-like appearance of this structure. Note that every
measurement sequence is automatically maximal in the sense that it contains
all observables of a certain measurement context.

The set of outcomes Out(T ) of a measurement protocol T is also defined
recursively: if T = ∅, then there is only a single outcome which we denote by
“∗”, so that Out(∅) = {∗}. Otherwise, we have T = (A, f) and put

Out(T ) := { (a, α) : a ∈ O, α ∈ Out(f(a)) } .

In this way, an element of Out(T ) corresponds to a measurement sequence in
T together with an associated sequence of outcomes for these measurements
such that applying the protocol to any outcome in the sequence results in the
following measurement, except if the outcome is the last one in the sequence.

In terms of this concepts, we define a contextuality scenario H associated to
a marginal scenario X as follows.

Definition E.4. The contextuality scenario H[X] associated to a marginal sce-
nario X has vertices

V (H[X]) :=
{
s ∈ OC : C ∈M

}
and edges

E(H[X]) := {Out(T ) : T ∈ MP(X)} .

We write P for an empirical model on X (AB11). This means that for
each C ∈ M, PC is a probability distribution over OC , such that the sheaf
condition holds:

PC|C∩C′ = PC′|C∩C′ ∀C,C ′ ∈M, (E.1)
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E. Relation to the observable-based approach

where PC|C∩C′ stands for the marginal distribution of PC associated to the

observables in C ∩ C ′. For an assignment of outcomes s ∈ OC , PC(s) is to
be thought of as the probability of obtaining the joint outcome s when jointly
measuring all observables in C. The sheaf condition is a generalization of the
no-signaling condition in this observable-based approach.

To see the equivalence with our framework, we further need to prove that
every empirical model P is associated to a well defined probabilistic model
p, and vice-versa. The idea then is to associate to an empirical model P a
probabilistic model on H[X] by setting, for each C ∈M and each s ∈ OC ,

p(s : C → O) := PC(s). (E.2)

It will need to be verified that this actually is a probabilistic model, i.e. that
these probabilities are suitably normalized for every edge in E[X]. Conversely,
given a probabilistic model p on H[X], we claim that (E.2) defines an empirical
model P on X.

Theorem E.5. This defines a linear bijection between empirical models on X
and probabilistic models on H[X].

Proof. We first verify that (E.2) turns an empirical model P into a probabilistic
model p. It needs to be shown that∑

s∈Out(T )

PC(s) = 1 (E.3)

for any measurement protocol T . In order to prove this, we introduce the notion
of post-measurement empirical model. Suppose that a measurement has
resulted in an outcome a ∈ O for an observable A ∈ X. Then for the subsequent
measurements in the scenario X{A}, we expect the posterior probabilities

P
post(a)
C (s) =

PC(s)

P{A}(a)
.

We now use induction on the size of X in order to prove (E.3). The base
case is X = ∅, in which there is nothing to prove. For the induction step, we
decompose T = (A, f) and use the induction assumption on each P post(a) for
those a ∈ O with P{A}(a) 6= 0. Then∑

s∈Out(T )

PC(s) =
∑
a

∑
α∈Out(f(a))

P{A}(a)P
post(a)
C (α) =

∑
a

P{A}(a) = 1,

as was to be shown.
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Conversely, we need to prove that if p is a probabilistic model on H[X],
then the associated P is an empirical model, i.e. that it satisfies (E.1). It is
sufficient to consider the case C ∩ C ′ 6= ∅, for otherwise (E.1) is vacuous. Let
s0 ∈ OC∩C

′
be an arbitrary joint outcome of the observables C ∩ C ′. Then

we consider a measurement protocol T given by conducting the measurements
C ∩C ′, and then conducting the measurements C \C ′ if the joint outcome was
s0, and conducting the measurements C ′\C otherwise. Then the normalization
equation associated to this measurement protocol reads∑

t∈OC\C′

p(s0 ∪ t) +
∑

s0 6=s∈OC∩C′

∑
t′∈OC′\C

p(s ∪ t′) = 1.

Comparing this with the normalization equation associated to the measurement
protocol which simply measures all observables in C ′ and outputs their joint
outcome, ∑

s∈OC∩C′

∑
t′∈OC′\C

p(s′ ∪ t′) = 1,

gives, upon splitting the latter equation into the s = s0 part and the s 6= s0

part, ∑
t∈OC\C′

p(s0 ∪ t) =
∑

t′∈OC′\C

p(s0 ∪ t′),

as was to be shown.

There are analogous correspondence theorems for quantum models and clas-
sical models.
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F. Hierarchies of SDPs: Q1(Bn,m,d) ≡ Q̃

In this section, I present the connection between the hierarchy of probabilistic
models introduced in section 4.6 and the NPA hierarchy (NPA08; NPA07). In
particular, I will introduce another characterization of the Q1 set, and prove
that it is equivalent to the extension of the original “1+AB” level of NPA to
multipartite scenarios (NGHA13).

Definition F.1. Let H = (V,E) be a contextuality scenario. Consider A to be
the *-algebra with generators {Pv, v ∈ V } and relations

Pv = P 2
v = P ∗v ; Pu Pv = Pv Pu = 0 if u ∼ v;

∑
u∈e

Pu = 1 ∀ e ∈ E;

Let Ak ⊂ A be the set of elements of A which are written as polynomials of
order at most k over the generators of A.

We define Lk(H) to be the subspace of linear functionals L : A2k → R with
the following properties:

(i) L(1) = 1.

(ii) L(q∗q) ≥ 0 ∀ q ∈ Ak.

It is immediate that a probabilistic model p : V (H)→ [0, 1] is a Qk-model in
the sense of def. 4.28 if and only if there exists an linear functional Lp ∈ Lk(H)
such that Lp(v) = p(v). Indeed, the positive semidefinite matrix M of def. 4.28

is linked to Lp through: Mq1,q2 = L(q1q
†
2).

For Bell scenarios Bn,m,d, the set Q̃(Bn,m,d) of “almost quantum” correlations
(NGHA13), corresponding to the level “1 + AB” of the NPA hierarchy, can be
alternatively defined as follows:

Definition F.2 ((Nav13)). Consider the multipartite Bell scenario Bn,m,d. For
each party j, let Aj be the abstract unital *-algebra with hermitian generators
{Ex,aj } a=0...d−1

x=0...m−1
subject to the identities

Ex,aj Ex,ãj = δa,ãE
x,a
j ,

d−1∑
a=0

Ex,aj = 1. (F.1)
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F. Hierarchies of SDPs: Q1(Bn,m,d) ≡ Q̃

Construct then the extended algebra A = A1 ⊗ . . . ⊗ An, with generators
{Exj ,ajj , j = 1 . . . n} aj=0...d−1

xj=0...m−1j=1...n
satisfying conditions (F.1) for every j, to-

gether with the commutation relations

[Ex,ai , Ex̃,ãj ] = 0 for i 6= j. (F.2)

Define A k, with k ∈ N, as the set of elements of A which are expressed as a
polynomial P over the generators of A , such that each term in P is of degree
at most k in the generators of Aj for every j = 1 . . . n.

Define the subspace L k of linear functionals L : A 2k → R such that

(i) L(1) = 1.

(ii) L(q∗q) ≥ 0 ∀ q ∈ A k.

Then, a probabilistic model p : V (H) → [0, 1] is a Q̃-model in the sense of
(NGHA13), i.e. it corresponds to the 1+AB level of the NPA hierarchy, if and
only if there exists an linear functional Lp ∈ L 1(H) such that Lp(v) = p(v).

Theorem F.3 (Equivalence between the two hierarchies). For Bell scenarios,

L k(Bn,m,d) = Lk(Bn,m,d).

Proof. Consider a Bell scenario Bn,m,d, we will show that the two algebras Ak
and A k are isomorphic. Indeed, consider a vertex v = (a1 . . . an|x1 . . . xn) of
the scenario. Starting with generators E

xj ,aj
j of Aj , define:

Pv =
m∏
j=1

E
xj ,aj
j .

One easily checks that the relations of the algebra A are satisfied, namely:

(i) Pv = P 2
v = P ∗v since the elements E

xj ,aj
j are Hermitian projectors;

(ii) if v ∼ v′, it means that one party, say party 1, is such that x1 = x′1, but
a1 6= a′1. In particular,

PvPu = Ex1,a11 E
x1,a′1
1

n∏
j=2

E
xj ,aj
j E

x′j ,a
′
j

1 = 0 = PuPv;
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(iii) Consider an edge e and assume without loss of generality that party (j +
1) measures after party j and that their measurement choice is xj+1 =
fj+1(a1 . . . aj , x1 . . . xj), then:∑

v∈e
Pv =

∑
a1

Ex1,a11

∑
a2

E
f2(a1,x1),a2
2

∑
a2

· · · = 1,

by noticing that
∑

aj
E
f(a1...aj−1,x1...xj−1)),aj
j = 1.

Conversely, start with generators Pv of the algebra A, then one can define
generators of Aj as:

E
xj ,aj
j =

∑
i 6=j

d∑
ai=0

P(a1···an|x1···xn),

where the choice of xi for i 6= j is arbitrary, as can be shown thanks to the
relation

∑
v∈e Pv = 1. The relations given by F.1, as well as the commutativity

of the elements on different algebras Ai and Aj are easily seen to hold.
With these constructions, we also notice that the degrees of equivalent poly-

nomials coincide in both hierarchies, showing that Ak is isomorphic to A k. We
conclude that the sets of linear functionals Lk and L k also coincide, which in
particular proves that the first level Q1 in our hierarchy is equivalent to the
“almost quantum” set Q̃.
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G. Facets of PS2 and PT2,n

G.1. Fully symmetric two-body polytope

In the case of fully symmetric two-body Bell Inequalities, the polytope PS2 is
already by construction invariant under any permutation of the parties. Hence,
when classifying its facets info equivalence classes, we focus on the following
symmetries:

• Renaming of observables by applying the transformationM(i)
0 ↔M

(i)
1 ∀i.

This operation interchanges both α↔ β and γ ↔ ε in (5.3).

• Renaming of outcomes by applying the transformationM(i)
x ↔ −M(i)

x ∀i
for a particular x ∈ {0, 1}. For x = 0 it implies α ↔ −α and δ ↔ −δ in
(5.3), while for x = 1, β ↔ −β and δ ↔ −δ.

From Table G.1 to Table G.5, I present the equivalence classes for the facets of
PS2 for n = 3 to n = 6.

Table G.1.: Equivalence classes for the facets of PS2 for n = 3.

# βC α β γ δ ε

1 1 0 0 0 0 1
2 18 -2 6 -2 -3 6
3 3 0 0 1 1 0
4 6 2 2 0 1 0
5 3 2 0 1 0 0
6 3 0 0 0 0 -1

G.2. Translationally invariant two-body polytope

In the case of tranlationally invariant two-body Bell Inequalities, the facets of
PT2,n obey the following symmetries:
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G. Facets of PS2 and PT2,n

Table G.2.: Equivalence classes for the facets of PS2 for n = 4.

# βC α β γ δ ε

1 2 0 -1 0 0 1
2 42 -9 12 1 -6 6
3 30 -3 -12 -1 2 6
4 54 -6 12 -1 -8 12
5 20 -3 5 0 -3 4
6 18 0 0 -1 -2 6
7 12 -3 -3 1 2 1
8 6 0 3 0 0 1
9 8 1 3 0 1 2
10 6 0 0 0 1 1
11 8 -2 0 1 1 1
12 12 3 3 0 1 0
13 6 0 0 0 0 -1

• Renaming of parties in a cyclical way A
(i)
j → A

(i+1)
j ∀i, j. This symmetry

leaves PT2,n−invariant, by construction.

• Renaming of observables for all parties A
(i)
0 ↔ A

(i)
1 ∀i. This symmetry

changes α↔ β, γk ↔ εk and δk ↔ δn−k in (5.70).

• Renaming of j-th observable outcomes for all parties: A
(i)
j ↔ −A

(i)
j ∀i.

This symmetry changes in (5.70) δk ↔ −δk and α ↔ −α if j = 0 or
δk ↔ −δk and β ↔ −β if j = 1.

• Renaming of parties by applying the symmetry A
(i)
j ↔ A

(n−i+1)
j ∀i, j.

This symmetry changes in (5.70) δk ↔ δn−k.

The above symmetries are valid in the most general case, when the coefficients
of the Bell inequality are unconstrained. However, if some of them are 0, then
translational invariance needs not be preserved for the corresponding correlator
and further symmetries can be exploited. For example, if α = β = 0 and n is

even, then applying A
(i)
j ↔ −A

(i)
j ∀i even , ∀j, leads to the symmetry changes

in (5.70) γk ↔ −γk, δk ↔ −δk, εk ↔ −εk for all odd k. This was taken into
account when classifying the Bell Inequalities for n = 3, 4 into the families of
Tables G.6 to G.9.
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G.2. Translationally invariant two-body polytope

Table G.3.: Equivalence classes for the facets of PS2 for n = 5.

# βC α β γ δ ε

1 4 0 -2 0 0 1
2 8 0 0 0 -1 2
3 24 -6 6 1 -2 1
4 14 -4 2 1 -1 1
5 400 -36 60 2 -45 60
6 160 -12 -60 -2 5 20
7 90 -20 22 3 -8 5
8 80 4 -20 -2 -5 20
9 20 -2 8 0 -1 3
10 130 -28 -36 3 10 8
11 110 -24 -30 3 9 7
12 10 0 2 1 1 1
13 20 0 0 3 3 1
14 20 4 4 0 1 0
15 70 -20 -14 5 5 1
16 20 -4 0 3 2 1
17 20 4 4 1 2 1
18 200 -60 -24 30 15 -2
19 40 8 12 1 3 3
20 30 4 10 1 2 3
21 40 6 12 0 3 5
22 10 4 0 1 0 0
23 2 0 0 1 0 0
24 10 0 0 0 0 -1
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G. Facets of PS2 and PT2,n

Table G.4.: Equivalence classes for the facets of PS2 for n = 6.

# βC α β γ δ ε

1 7 0 -3 0 0 1
2 16 -4 2 1 -1 1
3 15 1 -4 0 -1 3
4 240 15 -45 -1 -18 45
5 132 -25 27 4 -9 6
6 180 -10 -60 -1 3 15
7 70 -18 12 3 -3 1
8 52 -15 7 3 -2 1
9 156 -35 31 5 -8 3
10 375 -30 45 8 -36 45
11 90 5 -30 -1 -3 15
12 300 0 0 1 -27 45
13 34 -7 7 1 -2 1
14 24 -3 1 1 -2 3
15 114 -15 19 4 -11 12
16 129 -20 24 5 -12 12
17 225 -54 41 8 -10 3
18 192 -46 36 7 -9 3
19 39 3 -8 0 -3 7
20 112 12 -26 1 -9 17
21 156 17 -37 1 -12 23
22 42 -9 -9 1 2 1
23 3 0 1 0 0 1
24 120 -20 30 1 -5 5
25 240 -45 -55 4 13 10
26 165 -20 -40 1 12 20
27 24 -6 -4 1 1 1
28 195 -20 60 -1 -8 20
29 24 -3 7 0 -1 2
30 60 0 0 -1 3 15
31 87 -15 -22 1 4 4
32 12 -2 0 1 1 1
33 30 -5 -5 2 3 2
34 15 0 5 0 0 1
35 42 3 15 0 1 4
36 24 1 5 1 2 3
37 45 5 10 1 4 6
38 51 4 15 1 3 6
39 99 11 20 2 9 13
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G.2. Translationally invariant two-body polytope

Table G.5.: Equivalence classes for the facets of PS2 for n = 6 – cont.

# βC α β γ δ ε

40 273 32 60 5 24 36
41 105 -30 -15 6 4 1
42 87 -27 -10 6 3 1
43 51 -16 -5 4 2 1
44 48 -13 -5 4 3 2
45 30 0 0 1 3 3
46 39 12 -3 4 -2 1
47 30 5 5 0 1 0
48 15 0 0 0 0 -1

Table G.6.: Equivalence classes for the facets of PT2,3.

# βC α β γ1 δ1 δ2 ε1
1 1 0 0 0 0 0 1
2 3 0 0 0 1 -1 -1
3 3 0 0 1 1 1 0
4 3 1 1 0 1 0 0
5 3 2 0 1 0 0 0
6 9 -1 -3 -1 1 2 3
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G. Facets of PS2 and PT2,n

Table G.7.: Equivalence classes for the facets of PT2,4.

# βNS βQ βC α β γ1 δ1 δ3 ε1 γ2 δ2 ε2
1 4 4.0000 4 0 -2 0 0 0 2 0 0 1
2 4 4.0000 4 0 0 0 0 0 -2 0 0 1
3 4 4.0000 4 0 0 0 0 1 1 0 1 0
4 4 4.0000 4 0 0 0 1 1 0 0 0 1
5 4 4.0000 4 0 2 0 0 0 0 0 0 1
6 4 4.0000 4 0 2 0 0 0 1 0 0 0
7 4 4.0000 4 1 1 0 0 0 0 0 1 0
8 4 4.0000 4 1 1 0 0 1 0 0 0 0
9 8 8.0000 8 -2 -2 0 2 2 0 1 0 1
10 48/5 8.4230 8 -2 -2 1 0 1 1 0 1 0
11 8 8.0000 8 -2 -2 1 1 1 1 0 2 0
12 10 8.8284 8 -2 0 1 1 -1 1 0 0 0
13 8 8.0000 8 -1 -1 -1 1 1 1 1 1 0
14 8 8.0000 8 -1 1 1 1 1 1 0 1 1
15 8 8.0000 8 -1 3 0 -1 -1 2 0 -1 1
16 12 9.2665 8 0 0 -2 -1 -1 2 1 0 1
17 16 11.3137 8 0 0 0 0 0 0 -1 2 1
18 8 8.0000 8 0 2 -1 -1 1 1 0 0 0
19 8 8.0000 8 1 1 0 1 1 -2 0 -1 1
20 16 13.6569 12 -2 -2 1 1 1 0 -1 2 1
21 44/3 12.5951 12 -1 -1 -3 1 2 1 2 0 0
22 44/3 12.5155 12 -1 3 -2 -1 -2 2 1 0 1
23 52/3 13.6021 12 0 0 -1 -1 -2 4 0 -1 2
24 20 14.7703 12 0 0 0 -1 -1 4 -1 -2 2
25 20 14.4234 12 0 0 1 1 2 2 -1 3 1
26 76/5 12.9645 12 0 2 -3 -1 -1 1 1 2 0
27 76/5 12.2591 12 0 2 -2 0 0 2 1 2 0
28 44/3 12.0000 12 0 2 -2 0 2 2 1 0 0
29 16 13.6569 12 0 2 -2 2 2 2 2 0 1
30 16 13.6569 12 0 2 -1 0 2 0 -1 -2 1
31 16 13.6569 12 0 2 1 0 2 2 -1 2 1
32 96/5 16.7214 16 -4 -4 1 2 2 0 0 2 1
33 96/5 16.5951 16 -4 -2 2 -1 3 1 0 2 -1
34 16 16.0000 16 -4 0 2 2 2 2 1 2 1
35 18 16.5549 16 -3 -1 1 -2 3 1 0 2 -1
36 96/5 16.4461 16 -2 -2 1 -2 4 1 -1 2 -1
37 96/5 16.5968 16 -2 -2 1 2 2 -4 0 0 3
38 24 18.3698 16 -2 -2 2 2 2 2 -1 4 1
39 20 17.6569 16 -1 -5 0 -1 2 3 -1 2 1
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G.2. Translationally invariant two-body polytope

Table G.8.: Equivalence classes for the facets of PT2,4 – cont.

# βNS βQ βC α β γ1 δ1 δ3 ε1 γ2 δ2 ε2
40 64/3 17.2516 16 -1 -1 -5 2 2 1 3 -1 0
41 24 18.0188 16 0 0 -2 -3 -3 4 1 0 3
42 20 17.6569 16 0 4 -2 2 2 2 1 -2 1
43 20 17.6569 16 0 4 0 -2 2 2 -1 2 1
44 16 16.0000 16 0 4 0 2 2 4 1 2 1
45 24 17.5024 16 1 3 1 2 2 3 -1 3 2
46 56/3 16.5849 16 2 2 -2 1 -1 -2 1 2 1
47 16 16.0000 16 2 2 -2 3 1 -2 1 -2 1
48 24 21.4272 20 -4 2 2 -4 2 2 0 -2 -1
49 20 20.0000 20 -3 5 0 -3 -3 4 0 -3 2
50 24 21.4272 20 -2 -8 -2 2 2 4 1 0 2
51 24 20.8420 20 -2 -8 -1 1 1 4 0 2 2
52 24 20.7714 20 -2 -8 -1 2 2 4 0 0 2
53 24 21.4272 20 -2 -8 0 0 2 4 -1 2 2
54 116/5 20.3609 20 -2 -4 0 2 2 4 1 4 0
55 24 21.2376 20 -2 4 -2 -2 -4 4 1 -2 2
56 68/3 20.4573 20 -2 4 -1 -2 -4 4 0 -2 2
57 28 21.1792 20 -2 4 0 -2 -2 4 -1 -4 2
58 32 23.3137 20 -2 4 1 -2 -2 4 -2 -4 2
59 24 21.3099 20 -2 6 1 -3 0 4 -1 -3 1
60 20 20.0000 20 -1 5 -1 -2 -2 5 1 -3 1
61 28 21.8851 20 0 2 -6 2 2 2 3 -2 0
62 28 21.9339 20 0 2 -4 -2 -2 0 2 4 -1
63 116/5 20.0000 20 0 4 -1 -3 3 3 -1 2 0
64 28 25.3099 24 -8 -4 3 3 0 1 1 3 -1
65 28 24.4670 24 -4 8 1 -2 -2 4 -1 -4 2
66 32 25.3003 24 -2 -2 -6 4 4 2 5 0 1
67 32 27.3137 24 -2 6 -4 -4 -4 4 3 0 3
68 32 25.0090 24 0 4 -2 2 4 0 -1 -4 3
69 32 24.9956 24 0 4 2 2 4 4 -1 4 3
70 156/5 28.4819 28 -6 8 0 -4 -4 4 1 -4 2
71 156/5 28.4107 28 -6 8 1 -4 -4 4 0 -4 2
72 36 29.2933 28 -4 -4 0 3 3 4 2 6 -1
73 32 28.4038 28 -2 -8 -4 0 0 4 1 4 2
74 32 28.0000 28 -2 -8 -4 0 4 4 1 0 2
75 36 31.3137 28 -2 -8 -4 4 4 4 2 -2 3
76 32 28.0000 28 -2 -8 -2 -2 4 4 -1 2 2
77 36 31.3137 28 -2 -8 -1 -2 2 4 -2 4 2
78 40 30.8543 28 -2 4 -8 -4 -4 4 5 0 2
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G. Facets of PS2 and PT2,n

Table G.9.: Equivalence classes for the facets of PT2,4 – cont.

# βNS βQ βC α β γ1 δ1 δ3 ε1 γ2 δ2 ε2
79 40 30.6198 28 -2 4 -4 -6 -6 4 3 0 4
80 36 29.2538 28 -2 4 -2 -6 -4 6 1 -2 4
81 100/3 29.1453 28 -2 4 -2 -2 -6 6 0 -2 3
82 44 31.8400 28 -2 4 0 -2 -2 6 -2 -6 3
83 44 31.7274 28 -2 4 1 -3 -3 7 -2 -6 3
84 36 31.3137 28 -2 8 1 -4 0 6 -2 -4 2
85 36 29.2004 28 -1 -7 -2 4 4 2 0 -3 4
86 40 33.6435 32 -4 0 0 4 4 -4 -1 -6 3
87 192/5 32.6923 32 -1 -7 -1 -4 5 5 -2 4 1
88 44 39.3137 36 -6 -12 -4 4 4 4 3 0 2
89 44 39.3137 36 -6 -12 1 0 4 4 -2 4 2
90 124/3 36.5739 36 -4 8 -1 -5 -6 8 0 -5 4
91 44 36.8908 36 -4 8 0 -5 -5 8 -1 -6 4
92 44 38.6969 36 -2 -8 -8 4 4 4 3 -4 2
93 52 39.1060 36 -2 4 -4 -8 -8 6 3 0 6
94 60 42.8189 36 2 -4 2 -4 -4 8 -3 -8 4
95 48 40.9178 40 -4 8 -2 -8 -6 8 1 -4 5
96 56 42.3181 40 -4 8 1 -5 -5 9 -2 -8 4
97 268/5 46.3398 44 -10 12 3 -4 -4 4 -2 -8 2
98 64 50.4924 48 -4 8 -4 -10 -10 8 3 -2 7
99 500/7 62.8908 60 -14 16 -4 -8 -8 4 5 -4 2
100 500/7 61.8324 60 -10 12 -12 -8 -8 4 9 0 2
101 80 69.7517 64 -4 -16 -8 10 10 8 3 -6 7
102 88 68.9090 64 -4 8 -8 -14 -14 8 5 2 9
103 104 74.4957 64 -4 8 4 -8 -8 12 -5 -14 7
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ungerade kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-
Wittenberg Math.-Natur. Reihe, 10(114), 1961.

[BFRW05] Howard Barnum, Christopher A. Fuchs, Joseph M. Renes, and
Alexander Wilce. Influence-free states on compound quantum sys-
tems. 2005. Preprint at http://arxiv.org/abs/quant-ph/0507108.

[BG13] Marcel Bergmann and Otfried Gühne. Entanglement criteria for
Dicke states. 2013. Preprint at http://arxiv.org/abs/1305.2818.

[BGP10] J. D. Bancal, N. Gisin, and S. Pironio. Looking for sym-
metric Bell inequalities. Journal of Physics A: Mathemati-
cal and Theoretical, 43(38):385303, 2010. Data available at
http://www.gapoptic.unige.ch/Publications/bellinequalities.

[BKP06] Jonathan Barrett, Adrian Kent, and Stefano Pironio. Maximally
nonlocal and monogamous quantum correlations. Phys. Rev. Lett.,
97:170409, Oct 2006.

[BLM+05] J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and
D. Roberts. Nonlocal correlations as an information-theoretic re-
source. Phys. Rev. A, 71:022101, 2005.

[Boo62] G. Boole. On the theory of probabilities. Phil. Trans. R. Soc.
Lond., 152:225, 1862.

[BP05] Jonathan Barrett and Stefano Pironio. Popescu-Rohrlich correla-
tions as a unit of nonlocality. Phys. Rev. Lett, 95:140401, 2005.

181



Bibliography

[BPT11] Christine Bachoc, Arnaud Pécher, and Alain Thiéry. On the
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Experimental Observation of Four-Photon Entangled Dicke State
with High Fidelity. Phys. Rev. Lett., 98:063604, 2007.

[LBPC13] Petr Lisonek, Piotr Badziag, Jose R. Portillo, and Adan Ca-
bello. The simplest Kochen-Specker set. 2013. Preprint at
http://arxiv.org/abs/1308.6012.

[LMG65] H. J. Lipkin, N. Meshkov, and A. J. Glick. Validity of many-body
approximation methods for a solvable model: (I). Exact solutions
and perturbation theory. Nuclear Physics, 62:188 – 198, 1965.
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