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I. Abstract 

 

There is a growing concern about the combined effect of climate change and 

groundwater overexploitation on the availability of water resources in the Upper Guadiana 

basin (UppGb) in central Spain. General Circulation Models (GCMs) are used to evaluate the 

possible impact of climate change based on future scenarios of greenhouse gas emissions. 

However, the output of these models cannot be applied directly to hydrological models 

because their spatial resolution is coarse and because their simulated precipitation is highly 

biased. A stochastic downscaling method for generating daily spatial rainfall fields was 

developed.  The model termed Stochastic Rainfall Generating Process (SRGP) incorporates 

two major non-stationarities – changes in the frequencies of different precipitation generating 

mechanisms (frontal and convective), and spatial non-stationarities caused by the interactions 

of meso-scale atmospheric circulation patterns (ACP) with topography (orographic effects). 

SRGP was developed to incorporate good climate outputs simulated by GCMs (i.e. ACP), 

and actual observations. These capabilities enabled us to (1) use SRGP as a downscaling 

method for climate change impact study, and (2) generate stochastic rainfall fields 

conditioning to the information of rain gauges. The latter capability was used to investigate 

the effect of rainfall spatial variability (RSV) on the hydrological response in the UppGb. 

RSV exerted a major influence on the response of the system especially on the groundwater 

recharge and the aquifer related responses. 

GCMs considered in the fifth assessment report of the Intergovernmental Panel on 

Climate Change were used to evaluate the impact of climate change. The RCP8.5 future 

emission scenario (GCM-RCP8.5) and the GCM historical control (GCMH) were selected. 

The climate change was assumed to be the accumulated effects of increases in Temperature, 

changes in annual and climatological ACP frequency, and changes in probability and volume 

of rain. Transformations were applied to correct the bias in the temperature, probability and 

volume of rain, whereas the ACP sequences were used directly. The SRGP method was 

employed as a rainfall downscaling method for the GCMs. GCMH was used to evaluate the 

hydrological response obtained with GCMs as driving climate variables, introducing the 

concept of stochastic equivalence. This evaluation was based on the comparison of the 

hydrological response obtained with actual observations and transformed (bias correction and 

SRGP) GCMH. Although an exact stochastic equivalence response was not totally achieved, 
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the seasonal variations were well captured and some response reported very good 

agreements.  

The combined effect of climate change and groundwater overexploitation in the 

UppGb was evaluated in two stages:  (1) comparing the hydrological response of the system 

simulated under natural conditions (absence of pumping), using GCMH and GCM-RCP8.5 as 

climate driving variables. (2) Groundwater pumping was applied using the same GCM 

climate driving variables and again the responses were compared. Climate change led to 

reductions of 14% and 25% in the number of rainy days and volume of rain respectively and 

an increase of 20% in potential evapotranspiration. Under natural conditions because of 

climate change, soil moisture and the actual evapotranspiration were reduced by 20% and 

groundwater recharge, runoff generation, groundwater-river exchange and river discharge 

were reduced by 40%. As a result of the combined effects of pumping and climate change, all 

variables were reduced; soil moisture and actual evapotranspiration were reduced by 20% and 

recharge was reduced by 50%. Moreover, the aquifer related responses yielded annual 

average reductions of approximately 60%. In general, the results showed an increase in the 

dry season from April to October. 
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II. Resumen 

 

El efecto conjunto del cambio climático y la sobreexplotación de las aguas 

subterráneas podría llegar a ser crítico para la disponibilidad de recursos hídricos en la cuenca 

del Alto Guadiana (CAG) en el centro de España. Los modelos de circulación general del 

clima (GCM) son utilizados para evaluar el posible impacto del cambio climático en base a 

futuros escenarios de emisión de gases de efecto invernadero. No obstante, la salida de estos 

modelos no puede aplicarse directamente  en modelos hidrológicos porque: (1) la resolución 

espacial es demasiado grande, y (2) el gran sesgo con que simulan la precipitación. Por tanto, 

se desarrolló un modelo para el downscaling diario de campos espaciales de precipitaciones. 

El modelo denominado Stochastic Rainfall Generating Process (SRGP) incorpora dos 

importantes no-estacionaridades: (1) cambios en la frecuencia de los mecanismos de 

generación de precipitación (frontal y convectivo), y (2) no estacionaridades espaciales 

causadas por la interacción de patrones de circulación atmosférica (ACP) con la topografía 

(efecto orográfico). El SRGP se diseñó para que incorpore variables simuladas por los GCMs 

con sesgo reducido (ACP),  así como también observaciones. Estas prestaciones permiten: (1) 

utilizar el SRGP  como un método de downscaling para el estudio del cambio climático, (2) 

poder generar múltiples realizaciones de campos de precipitación condicionando a la 

información de estaciones meteorológicas. Esta última función fue utilizada para investigar el 

efecto de la variabilidad espacial de la precipitación (RSV) en la respuesta hidrogeológica en 

la CAG. Se constató que la RSV afecta fuertemente la respuesta hidrológica especialmente 

para la recarga de agua subterránea y las respuestas asociadas al acuífero.  

GCMs utilizados en el quinto informe de evaluación del Panel Intergubernamental del 

Cambio Climático fueron empleados para evaluar el efecto del cambio climático. En todos 

los casos se consideraron las simulaciones correspondientes al periodo histórico (GCMH) 

(escenario de control) y el escenario futuro de emisiones RCP8.5 (GCM-RCP8.5). El cambio 

climático se evaluó como el efecto acumulado en el incremento de las temperaturas, cambios 

en la frecuencia climatológica anual de los ACP y cambios en la probabilidad y volumen de 

precipitación. Se aplicaron transformaciones para corregir el sesgo en la temperatura, 

probabilidad y volumen de precipitación, mientras que se utilizó de forma directa los ACP. 

Se aplicó el SRGP como método de downscaling de precipitaciones. El GCMH se utilizó 

para evaluar la respuesta hidrológica obtenida, introduciendo el concepto de equivalencia 
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estocástica.  Esta evaluación se basó en comparar la respuesta hidrológica obtenida al aplicar 

como forzantes  la salida transformada (corrección del sesgo y SRGP) de los GCMH, en 

relación a la obtenida con observaciones. Se comprobó que no se alcanza una respuesta 

estocástica equivalente exacta para todas las respuestas, pero sí, reproducir variaciones 

estacionales.   

El efecto conjunto del cambio climático y la sobreexplotación por bombeo en la CAG 

se realizó en dos etapas: (1) Se simuló en condiciones naturales (sin bombeo) comparando la 

respuesta hidrológica obtenida de aplicar como forzantes la salida de GCMH y GCM-

RCP8.5. (2) con los mismos forzantes se incorporó los bombeos y nuevamente se 

compararon las respuestas. Se determinó que el efecto del cambio climático produce una 

reducción de 14% y 25% en el número de días de lluvia y en el volumen de precipitación 

respectivamente. Mientras que un incremento del 20% en la evapotranspiración potencial. En 

condiciones naturales esto se tradujo en una reducción relativa del 20% para la humedad de 

suelo y la evapotranspiración real. En tanto que, para la recarga de agua subterránea, 

generación de escurrimiento, intercambio río-acuífero y caudal en el río la reducción fue del 

40%. Finalmente, el efecto conjunto de los bombeos y cambio climático, resultó en una 

reducción para todas las variables, siendo la reducción relativa de un 20% tanto para la 

humedad del suelo y al evapotranspiración real y del  50% para la recarga. Para las respuestas 

asociadas al acuífero, la reducción fue del 60 %. Los resultados mostraron un incremento de 

la estación seca, extendiéndose de Abril a Octubre. 
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III. Resum 

 

L'efecte conjunt del canvi climàtic i la sobreexplotació de les aigües subterrànies 

podria arribar a ser crític per a la disponibilitat de recursos hídrics en la conca de l'Alt 

Guadiana (CAG) en el centre d'Espanya. Els models de circulació general del clima (GCM) 

són utilitzats per avaluar el possible impacte del canvi climàtic sobre la base de futurs 

escenaris d'emissió de gasos d'efecte hivernacle. No obstant això, la sortida d'aquests models 

no pot aplicar-se directament en models hidrològics perquè: (1) la resolució espacial és massa 

gran, i (2) el gran biaix amb què simulen la precipitació. Per tant, es va desenvolupar un 

model pel downscaling diari de camps espacials de precipitacions. El model denominat 

Stochastic Rainfall Generating Process (SRGP) incorpora dos importants no-estacionaritats: 

(1) canvis en la freqüència dels diferents mecanismes de generació de precipitació (frontal i 

convectivo), i (2) no estacionaritats espacials causades per la interacció de patrons de 

circulació atmosfèrica (ACP) amb la topografia (efecte orogràfic). El SRGP es va dissenyar 

perquè pugui incorporar variables simulades pels GCMs amb biaix reduït (ACP), així com 

també observacions. Aquestes prestacions permeten: (1) utilitzar el SRGP com un mètode de 

downscaling per a l'estudi del canvi climàtic, (2) poder generar múltiples realitzacions de 

camps de precipitació condicionant a la informació d'estacions meteorològiques. Aquesta 

última funció va ser utilitzada per investigar l'efecte de la variabilitat espacial de la 

precipitació (RSV) en la resposta hidrogeologic en la CAG. Es va constatar que la RSV 

afecta fortament la resposta hidrològica especialment para la recarrega d'aigua subterrània i 

les respostes associades a l'aqüífer.  

GCMs utilitzats en el cinquè informe d'avaluació del Panell Intergovernamental del 

Canvi Climàtic van ser emprats per avaluar l'efecte del canvi climàtic. En tots els casos es 

van considerar les simulacions corresponents al període històric (GCMH) (escenari de 

control) i l'escenari futur d'emissions RCP8.5 (GCM-RCP8.5). El canvi climàtic es va avaluar 

com l'efecte acumulat en l'increment de les temperatures, canvis en la freqüència 

climatològica anual dels ACP i canvis en la probabilitat i volum de precipitació. Es van 

aplicar transformacions per corregir el biaix en la temperatura, probabilitat de pluja i volum 

de precipitació, mentre que es va utilitzar de forma directa els ACP. Es va aplicar el SRGP 

com a mètode de downscaling de precipitacions. El GCMH es va utilitzar per avaluar la 

resposta hidrològica obtinguda amb els GCMs, introduint el concepte d'equivalència 
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estocàstica. Aquesta avaluació es va basar a comparar la resposta hidrològica obtinguda en 

aplicar com forçants la sortida transformada (correcció del biaix i SRGP) dels GCMH, en 

relació a l'obtinguda amb observacions. Es va comprovar que no s'aconsegueix una resposta 

estocàstica equivalent exacta per a totes les respostes, però sí, reproduir variacions 

estacionals.  

L'efecte conjunt del canvi climàtic i la sobreexplotació per bombament en la CAG es 

va realitzar en dues etapes: (1) Es va simular en condicions naturals (sense bombament) 

comparant la resposta hidrològica obtinguda d'aplicar com forçants la sortida de GCMH i 

GCM-RCP8.5. (2) amb els mateixos forçants es va incorporar els bombaments i novament es 

van comparar les respostes. Es va determinar que l'efecte del canvi climàtic produeix una 

reducció de 14% i 25% en el nombre de dies de pluja i en el volum de precipitació 

respectivament. Mentre que un increment del 20% en la evapotranspiració potencial. En 

condicions naturals això es tradueix en una reducció relativa del 20% per a la humitat de sòl i 

la evapotranspiració real. Mentre que, per la recarrega d'aigua subterrània, generació de 

escolament, intercanvio riu-aqüífer i cabal en el riu la reducció va ser del 40%. Finalment, 

l'efecte conjunt dels bombaments i canvi climàtic, va resultar en una reducció per a totes les 

variables, sent la reducció relativa d'un 20% tant per a la humitat del sòl i al 

evapotranspiració real i del 50% para la recarrega. Pel les respostes associades a l'aqüífer, la 

reducció arriba fins al 60 %. Els resultats van mostrar un increment de l'estació seca estenent-

se d'Abril a Octubre. 
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1 Introduction 

1.1 Motivation and Aims 

The last assessment report (IPCC, 2013) of the Intergovernmental Panel on Climate 

Change (IPCC) confirms earlier projections (IPCC, 2007). Spain will be drier in the future.  

Rainfall reduction is especially critical for semi-arid zones whose water resources are 

sensitive to overexploitation (Llamas and Martínez-Santos, 2005). This is the case of the 

Upper Guadiana basin (UppGb) in central Spain. Special attention should be focused on the 

management of water resources concerning the combined effect of climate change and 

overexploitation in a non-stationary framework, and an appropriate assessment of all the 

uncertainties should be carried out (Milly et al., 2008, Beven, 2011). 

General Circulation Models (GCMs) simulate the climate dynamics of the earth. Their 

outputs can be used to study the impact of climate change for different future projected 

scenarios (Moss et al. 2010). In particular, they provide acceptable results of the synoptic 

atmospheric circulation patterns (Gupta et al., 2013). However, their spatial scale resolution 

is too coarse for hydrological basin scale modeling and their simulated precipitations are 

clearly biased (Dai, 2006). Statistical downscaling methods (SDM) have been developed to 

overcome this limitation (Maraun et al., 2010, Fowler et al., 2007). Such models seek to 

simulate the most important non-stationarities of rainfall while incorporating relevant 

information provided by GCMs (Hay et al., 1991; Bardossy and Plate, 1992; Goodess and 

Palutikof, 1998; Corte Real et al., 1999; Bellone, 2000; Fowler et al., 2000, 2005; Yang et 

al., 2010).  Furthermore, there is a need to simulate spatially distributed rainfall fields at any 

spatiotemporal scale (Maraun et al. 2010). 

The interest in high resolution rainfall fields is largely motivated by the little known 

role of rainfall spatial variability (RSV) in the hydrological basin scale and in the propagation 

of rainfall uncertainty through the hydrological system, especially in overexploited 

hydrogeological systems. Most authors have focused on river discharge and hydrograph peak 

properties for event responses (Wilson et al., 1979; Krajewski et al., 1991; Obled et al., 1994; 

Nicotina et al., 2008; Younger et al., 2009). Moreover, they only agree on the role of the 

total volume of water per event in the river discharge (Obled et al. 1994). Few studies have 

analyzed the impact of RSV on aquifer response. Schuurmans and Bierkens, (2007) 
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investigated the effect of RSV on the hydrogeological response of a flat shallow groundwater 

basin with a rapid time of response, demonstrating that RSV affects the internal spatial 

distribution of hydrological state variables but not the overall system response. Thus, it is not 

easy to generalize earlier results. Moreover, although it may be assumed that RSV filtered 

into a hydrogeological system response, spatial intermittence and orographic effects on the 

rainfall fields (important source of spatial variability) can lead to significant differences in the 

hydrogeological response. It is therefore essential to account for the two effects in the context 

of climate change impact studies where a fine space scale detail SDM is necessary (Maraun 

et al., 2010; Wilby et al., 2004). 

Apart from the adopted SDM used and regardless of whether the hydrological 

response is sensitive to RSV, another problem stems from the manner in which the impacts of 

climate change are evaluated using GCMs. The simulated GCMs projected scenarios are 

incorporated into SDM to generate future climate driving variables to run hydrological 

models that were previously calibrated with observation. Both responses (past and future) are 

then compared to assess the impact of climate change (Chiew et al., 2009; Fowler et al., 

2007). This approach assumes that SDM based on GCM projection can produce a 

hydrological response equivalent to those obtained with actual observations. This underlying 

assumption is however rarely verified (Wood et al., 2004) and only very few studies compare 

the performance of SDM for the historical control period (Frost et al., 2011; Vrac et al., 

2007). 

Accordingly, the aims of this thesis are as follows: 

1. To develop a non-stationary stochastic rainfall generator that evaluates the 

impacts of climate change on water resources and that takes full advantage of 

the fact that GCMs are able to simulate other hydrometeorological variables 

(e.g. ACP). This model includes two major non-stationarities – changes in the 

frequency of different precipitation generating mechanisms (frontal and 

convective) and spatial non-stationarities caused by interactions of meso-scale 

atmospheric patterns with topography (orographic effects).  

2. To investigate the effect of RSV on the hydrogeological response in the 

UppGb and the manner in which this variability Tois propagated though the 

system. 

3. To evaluate the combined impact of – future projected climate change and 

groundwater overexploitation in the UppGb. This includes defining a 
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consistent evaluation procedure for the interpretation of the information 

generated by GCMs.  

1.2 Thesis Outline 

This thesis consists of five chapters including the introduction. The remaining four 

chapters are organized as follows.  

Chapter 2 presents the model for generating daily spatial correlated rainfall fields 

suitable for evaluating the impacts of climate change on water resources. The model, termed 

Stochastic Rainfall Generating Process (SRGP), is designed to incorporate temporal non-

stationarities – i.e. changes in the frequency of different precipitation generating mechanisms 

(frontal and convective) – and spatial non-stationarities, caused by interactions of meso-scale 

atmospheric patterns with topography (orographic effects).  These non-stationarities are 

approximated as discrete sets of time-stationary SRGPs, each of which represents the 

different spatial patterns of rainfall (including its variation with topography) associated with 

different Atmospheric Circulation Patterns (ACP) and times of the year (seasons). Each 

discrete SRGP generates daily correlated rainfall fields as the product of two random fields. 

First, the amount of rainfall is generated by a transformed Gaussian process applying 

sequential Gaussian simulation. Secondly, the delimitation of rain and no-rain areas 

(intermittence process) is defined by a binary random function simulated by sequential 

indicator simulations. To explore its applicability, the model was tested in the UppGb in 

Spain. Results suggest that the model provides an accurate reproduction of the major spatio-

temporal features of rainfall for hydrological modeling and water resource evaluations. The 

results were significantly improved by incorporating spatial drift related to orographic 

precipitation into the model. 

Chapter 3 is concerned with the effect of RSV on the hydrogeological response at 

long term time scales and on an overexploited system. In particular, we show how uncertainty 

in the spatial distribution of rainfall is propagated through the hydrological system, and how 

it is affected by local differences in dominant hydrological processes (such as wetlands) 

and/or by the degree of exploitation (pumping).Further, the amount of information lost (i.e. 

how the assessed impacts are affected) owing to the use of up-scaled rainfall fields is 

discussed. To this end, the SRGP was applied to generate stochastic rainfall fields at a daily 

time scale. The rainfall fields were used to drive a spatially distributed hydrogeological 

model for the UppGb. The results show that RSV has a considerable impact on the response 
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of the system especially in the case of groundwater recharge and the aquifer related 

responses. 

Chapter 4 discusses the evaluation procedures for the assessment of the combined 

effect of climate change and groundwater overexploitation. Traditionally, climate change 

impact studies rely on scenario projections provided by General Circulation Models (GCMs). 

Such projections are transformed (e.g., downscaling, bias correction) and used as inputs to 

hydrological models, which were previously calibrated against historical observations. The 

impacts of climate change can be assessed by comparing the historical and projected 

hydrological responses. Therefore, it is assumed that the downscaled GCM simulations can 

function as surrogates for the corresponding actual values (represented by observations or 

reanalysis fields), which implies a stochastic equivalence. This chapter formalizes the 

Stochastic Equivalence concept used to evaluate the validity of the hydrological response 

driven by downscaled GCM simulations. In addition, an evaluation procedure to assess the 

combined effect of climate change and groundwater pumping in a basin is presented. The 

evaluation procedure and the impact assessments were applied to the UppGb in Spain. As a 

result of the combined effect of pumping and climate change, all the variables were reduced; 

soil moisture and actual evapotranspiration were reduced by 20% and recharge was reduced 

by 50%. Similarly, the aquifer related responses show annual average reductions of 

approximately 60%. 

Chapter 5 lists the main conclusions of this thesis. 

The contents of chapters 2 to 4 are based on papers that have already been published 

or submitted to peer-reviewed international journals. 
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2 Stochastic Simulation of Non-Stationary 

Rainfall Fields, Accounting for 

Seasonality and Atmospheric Circulation 

Pattern Evolution 1 

2.1 Introduction  

Climate Change Impact Studies (CCIS) rely upon simulations of past, present, and 

potential future climate scenarios provided by General Circulation Models (GCMs) (Randall 

et al., 2007; CCSP, 2008). However, these simulations do not provide rainfall fields at the 

high spatial resolution generally required for hydrological impact assessments (Maraun et 

al., 2010). GCMs currently have a spatial discretization of around 250 km, whereas the 

resolution of hydrological models typically ranges from 2 km to 50 m. Moreover, simulated 

rainfall intensities are often significantly biased and fail to reproduce patterns of long-term 

variability (Dai, 2006; Gleckler et al., 2008; CCSP, 2008; Ehret et al., 2012; Johnson and 

Sharma, 2011).  

To overcome these limitations, Stochastic Rainfall Models (SRMs), also known as 

Statistical Downscaling Models, have been recently developed (Fowler et al., 2007; Maraun 

et al., 2010). Such models seek to simulate the most important non-stationarities of rainfall 

while incorporating relevant information provided by GCMs (Hay et al., 1991; Bardossy and 

Plate, 1992; Goodess and Palutikof, 1998; Corte Real et al., 1999; Bellone, 2000; Fowler et 

al., 2000, 2005; Yang et al., 2010).  Furthermore, there is a growing interest in being able to 

simulate spatially distributed rainfall fields at any spatio-temporal scale required (Maraun et 

al. 2010).  

1This chapter is based on the paper:  Sapriza Azuri, G., Jódar, J., Carrera, J., & Gupta, H. (2013). 
Stochastic Simulation of Nonstationary Rainfall Fields, Accounting for Seasonality and 
Atmospheric Circulation Pattern Evolution. Math. Geosci., 45(5), 621-645. 
doi:10.1007/s11004-013-9467-0 
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Four main types of SRM are discussed in the literature: (1) Multivariate Stochastic 

Rainfall Models (MSRMs), (2) Point Process Models (PPMs), (3) Random Cascade Models 

(RCMs), and (4) Transformed Gaussian Process Models (TGPMs). Each of these approaches 

has strengths and weaknesses. MSRMs provide the ability to simulate precipitation at a fixed 

set of locations by interpolating values across the domain; examples include autoregressive 

models (Bardossy and Plate, 1992), generalized linear models (Chandler and Wheater, 

2002; Yang et al., 2005), multi-site Markov models (Wilks, 1998), nonparametric multi-site 

models (Buishand and Brandsma, 2001), and reshuffling approach models (Methrotra and 

Sharma, 2009). PPMs have the ability to simulate rainfall at a very high temporal resolution 

(Waymire et al., 1984, Rodríguez-Iturbe et al., 1986; Cowpertwait, 1995, 2010; Northrop et 

al., 1998, Wheater et al., 2005; Zhang and Switzer, 2007; Burton et al., 2010) but need large 

amounts of high quality data for model calibration.   

RCMs arise from the study of scale-invariance of rainfall (Schertzer and Lovejoy, 

1987; Gupta and Waymire, 1993) and apply multiplicative random cascade models in space 

and time (Jothiyangkoon et al. 2000; Kang and Ramírez, 2010). They can incorporate both 

climate information and the orographic effects on rainfall (Perica and Foufoula-Georgiou, 

1996; Ebtehaj and Foufoula-Georgiou, 2010). Although such models are parsimonious and 

can reproduce characteristics such as spatio-temporal intermittence and clustering, they 

require long sequences of radar images that may not always be available. Finally, the TGPM 

approach assumes that rainfall can be represented as a transformed multi-Gaussian stochastic 

process (Mejía and Rodríguez-Iturbe, 1974; Bell, 1987; Shah et al., 1996; Guilliot, 1999; 

Lanza, 2000; De Oliveira, 2004; Kyriakidis et al., 2004; Teo and Grimes, 2007), conditioned 

on the knowledge of spatial average rainfall (Onibon et al., 2004) within a generalized linear 

model framework (Kleiber et al., 2012). One advantage of this approach is its ability to 

exploit information from either rain gauges or radar images. Models within this group differ 

in terms of the transformation used to generate a multi-dimensional stationary Gaussian 

process, the type of algorithm used to generate spatial realizations of rainfall, and the way in 

which rainfall intermittence is represented. Nevertheless, none of these models incorporate 

the major sources of non-stationarity in rainfall processes within a common framework. 

While consideration of spatial non-stationarity including climate information (only specific 

humidity) was incorporated by Kyriakidis et al. (2004), they did not explicitly represent the 

spatial intermittence of rainfall and focused only on conditional simulations. Meanwhile, 

Bell, (1987), Guilliot, (1999), Lanza, (2000), De Oliveira, (2004) and Teo and Grimes 
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(2007) explicitly included spatial intermittence of rainfall via threshold transformation or 

Sequential Indicator Simulation, but did not incorporate other sources of non-stationarity 

(i.e.: orographic effect, climate).   

To generate non-stationary stochastic rainfall fields suitable for evaluating the impacts 

of climate change on water resources, it is necessary to represent two major non-stationarities 

– changes in the frequencies of different precipitation generating mechanisms (frontal and 

convective) and spatial non-stationarities caused by interactions of meso-scale atmospheric 

patterns with topography (orographic effects) (Barros and Lettenmaier, 1994). This paper 

introduces a new TGP termed Stochastic Rainfall Generating Process (SRGP) designed to 

simulate such non-stationarity in daily rainfall fields in the context of downscaling relevant 

climate information from GCMs. Instead of being based on GCM simulations of rainfall 

which are typically poor, SRGP takes advantage of the fact that GCMs are able to generate 

good simulations of other hydrometeorological variables (Gleckler et al., 2008) and, in 

particular, of atmospheric circulation patterns (ACP) at the synoptic scale (Randall et al., 

2007). The methodology was developed using data from the Upper Guadiana basin in central 

Spain. 

2.2 Methodology  

In general, SRGP is a two-part model (Stern and Coe, 1984). The first part decides 

whether a day is rainy or not, over the entire area of interest, while the second part deals with 

the manner in which the spatio-temporal pattern of rainfall is generated. The rain/no-rain 

decision can be made in the context of climate impact studies, on the basis of information 

GCM outputs or stochastic simulation using, for example, a first or second order Markov 

Chain Model or any of its variants (see Sharma and Mehrotra, 2010). The spatio-temporal 

rainfall pattern can be generated using a stochastic model designed to reproduce the observed 

spatial correlation structure of rainfall. 

However, it is well known that the spatio-temporal patterns of rainfall intensity vary 

with changes in temperature, and with changes in the velocity and direction of winds (and 

their interactions with local topography and landscape), all of which vary throughout the year 

with changes in the regional atmospheric circulation patterns over the area. Our approach, 

therefore, is to assume that the overall non-stationary SRGP can be approximated by a time 

sequence of draws from a discrete set of time-stationary SRGPs, each of which represents the 

spatial patterns of rainfall (including its variation with topography) associated with different 

7 



Chapter 2 

ACPs and seasons of the year. More specifically, the discrete set is constructed by classifying 

days according to a) the ACP type for that day, and b) the time of year (either month or 

season).  

This results in a three-part SRGP model: (1) select the prevalent ACP, (2) decide 

whether the day is rainy or not and (3) simulate the spatial rainfall field. Again, each of these 

decisions can be made via stochastic simulation, provided that the probability of rain in the 

second stage depends on the selected ACP and time of year. Although conditional probability 

Markov Chain models of this type can be easily constructed from observed data, including 

long term variability in their construction (Mehrotra and Sharma 2007, 2010), our attention 

here is focused on climate impact studies, in which case both the regional ACP type and 

rain/no-rain information for a day can be provided by a GCM with proper post processing to 

handle the rain no-rain transition (Johnson and Sharma 2011, 2012). Therefore, in this paper 

to further explore the rainfall field generation processes, we assume that the daily sequence of 

ACP types and whether a day is rainy or not are given. Based on this information, an 

appropriate SRGP model for the particular time of year (month or season) is selected from 

the discrete set.  

Consequently, the overall SRGP model is based on climatological information from 

three spatial scales – the synoptic scale (embodied through atmospheric circulation patterns), 

the basin scale (embodied through orographic effects and the spatial correlation structure of 

observed rainfall), and the point scale (embodied through rain-gauge measurements). 

Meanwhile, the model assumes that the temporal day-to-day persistence and the correlation 

structure of (catchment-scale) mean areal rainfall are largely determined by the (externally 

determined) ACP and rain-no-rain sequence with the result that daily persistence effects 

within and across ACP types can be ignored. While such effects could certainly also be 

modeled and reproduced, we leave such investigation for future studies. 

2.2.1 The problem of simulating stochastic rainfall fields 

Our main aim here is to simulate daily precipitation fields that reproduce the observed 

rainfall multidimensional cumulative distribution function (mcdf) at any desired spatial 

resolution. Of course, characterization of this mcdf is not trivial since it is (in general) non-

stationary in space and time, has an unknown covariance structure, and depends on an 

unknown number of parameters. 
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Let z(u,t) denote a random value indicating the intensity of rain at a specific location 

in space (u) and time (t). This variable can be interpreted as a realization of a random variable 

Z(u,t) which is characterized by the cumulative distribution function (cdf):  

}),(Pr{);,( ztuZztuF ≤=  (1) 

The set of all the dependent random variables define a spatio-temporal random 

function Z(u,t) that is totally characterized by its mcdf (Goovaerts, 1997) given by: 
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where N and T are the total number of points in the spatial and temporal domain respectively. 

This function has an arbitrary mathematical form (Kyriakidis and Journel, 1999). For 

rainfall, the random function (RF) can be regarded as composed of two terms (1) a 

continuous random function R(u,t) representing its intensity and (2) a categorical random 

function I(u,t) representing its space-time intermittence.  

)),(),,(()),(( tuItuRFtuZF AA =  (3) 

To model this random function it is necessary to make assumptions about (a) the main 

causes of temporal non-stationarity in the rainfall generating process, (b) the spatial rainfall 

mean and variance, (c) the probability distribution function of rainfall intensity, (d) the causes 

of spatial non-stationarity in rainfall intensity, and (e) the structure of spatial intermittence. 

2.2.1.1  Main causes of temporal non-stationarity 

As stated above, we assume here that the major causes of temporal non-stationarity in 

the rainfall generating process are its dependence on (1) seasonal variations in the 

climatological variables, (2) synoptic scale atmospheric factors (circulation patterns; see 

Bardossy and Plate, 1992; Hay et. al., 1991; Corte Real et al., 1998; Bellone, 2000; Fowler 

et al.,2000, 2005; Yang et al., 2010), and (3) interactions between atmospheric conditions 

and local factors such as topographic slope and aspect (Barros and Lettenmaier, 1994). 

Accordingly, we assume that )),(( tuZFA  can be approximated by a discrete set of N SRGPs 

))},(()),...,,(({
1

tuZFtuZF
NAA  in such a way that each day corresponds only to one SGPR and 
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where each member )),(( tuZF
jA  is assumed to be stationary in time but may be non-

stationary in space.  

Consequently, temporal changes in the rainfall regime (the spatial distribution of 

rainfall intensities) are due primarily to changes in the sequence of SRGPs with the result that 

the functional form of each SRGP is conditionally independent. This means that the temporal 

correlation in the rainfall regime arises primarily from the correlation in the daily sequence of 

SRGP occurrences, and the daily spatial distributions are assumed (for simplicity) to be 

temporally independent. Hence, the rainfall field on any day is assumed to be conditionally 

independent of the rainfall field on any previous day. This does not mean, however, that the 

daily sequence of rainfall fields has no temporal dependence since a temporal relationship 

exists in the sequence of the different SRGPs because of the temporal evolution in synoptic 

scale atmospheric circulation patterns. 

2.2.1.2 Spatial rainfall mean and variance  

For a given SRGP, the strength of the link between the synoptic and the basin scales 

can be quantified by characterizing the daily spatial rainfall mean (Eq.4) and variance 

(Eq.(5)) with respect to the predominant atmospheric synoptic scenario: 

∑
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where Nj is the number of rain gauge stations for a day belonging to the jth SRGP. Here, we 

assume temporal disaggregation of rainfall intensities (the sequence of rainy days is time 

independent and controlled by the daily transition of ACPs), which allows us to estimate the 

spatial daily average and variance of rainfall by obtaining their respective Probability 

Distribution Functions (pdfs) for each SRGP. However, as might be expected )(ˆ 2 t
jZσ  and 

)(ˆ t
jZµ  are not independent. In our case study (see section 6) we observed a strong linear 

dependence between the log transformed values (Figure 2-1) and so that we can express 

)(ˆ 2 t
jZσ  as a function of )(ˆ t

jZµ  by fitting a linear regression model: 
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jjjj ZZZZ ctmt += )(ˆlog)(ˆlog 2 µσ  (6)  

 
Figure 2-1 Example of empirical relationship between spatial average and variance of rainfall for 
rainy days of April and May that belong to the HYC ACP type. Red dots denote observations. 

Several possibilities for the pdf of )(ˆ t
jZµ have been proposed in the literature 

including the lognormal distribution (Kedem and Chiu, 1987), gamma distribution (Cho et 

al., 2004), GLM (Stern and Coe, 1984), and more recently a class termed the infinitely 

divisible distribution (Kundu and Siddani, 2007). Here, we assume a gamma distribution 

(Eq. (7)) because of its parsimony in the number of parameters:  
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(7)  

where α and β are the shape and the scale parameters, respectively. To estimate them 

a maximum likelihood approach was applied, obtaining the relatively good fit shown in 

Figure 2-2. 
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Figure 2-2 Quantile-Quantile plots illustrating Gamma distribution fits to spatial average rainfall. 
There are for days associated with the rainiest season–ACP combination in the Upper Guadiana 
Basin. A) Directional W-NW-SW-N in January February and March B) Hybrid Cyclonic in April and 
May and C) Cyclonic in April and May 

2.2.1.3 Probability distribution function of rainfall intensity  

The rainfall intensity )},({ tuR j  random function for each SRGP has an unknown 

multidimensional distribution shape
jRF , which is clearly not multi-Gaussian. To take 

advantage of the theory of Gaussian random processes, we therefore transform each rainfall 

intensity mcdf into a multi-Gaussian distribution by applying a normal score transformation 

(also known as quantile-quantile mapping or anamorphosis transformation) (Goovaerts, 

1997).  

In practice, we first compute the standardized daily rainfall amount ),( tuY j  as 

follows: 

)(ˆ

)(ˆ),(
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t
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tuY
j

j

Z

Zj
j σ

µ−
=  (8)  

and then perform the normal score transformation by establishing a quantile-quantile 

mapping between the cdf of all the standardized rainfall intensity measurements ),( tuY j  for 

the SRGP and the cdf of a standardized Gaussian distribution to obtain: 
 

))),(((),( 1 tuYFGtu jYj jj

−= ψψ  (9)  

where ),( tujψ is the new normal scored variable, 1−
j

Gψ  
is the inverse Gaussian cdf of ),( tujψ , 

and 
jYF  is the cdf of ),( tuY j . 
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2.2.1.4 Spatial non-stationarity in rainfall intensity 

Rainfall intensity can be spatially non-stationary due to local factors such as 

topography, agricultural irrigation, and urbanization, etc. To represent such spatial non-

stationarities, we consider ),( tujψ  to be an intrinsic stationary function composed of a trend 

and a residual:  

),()(),( tuutu jjj ξψψ +=  (10)  

where )(ujψ   represents the deterministic dependence of rainfall intensity on external 

factors (known as the trend term), and a  residual ),( tujξ , which is a zero-mean Gaussian 

random function whose spatial correlation structure is described by a semi-variogram )(u
jξ

γ  

(termed variogram hereafter). In this study, we assume that rainfall intensity varies only with 

topographic elevation and estimate the trend term by linear regression. After removing the 

trend from ),( tujψ , the variogram was experimentally inferred for each SRGP (Figure 2-3). 

Given this model, spatial random fields at any desired resolution can be generated using 

Sequential Gaussian Simulation (SGS) (Gómez-Hernández and Cassiraga, 1994; Deutsch 

and Journel, 1998). 

 
Figure 2-3 Experimental and model semivariograms for Summer (A) and Spring (B) for the rainiest 
and most frequent ACPs (W-NW-SW-N, C, HYC and A-HYA). The model semivariograms are 
isotropic and in most cases have two structural components, exponential and spherical. 

2.2.1.5 Structure of spatial intermittence 

The rainfall intensity model described above will generate non-zero rainfall intensity 

values at all spatial locations where values are desired. However, the observed rainfall tends 

to be spatially intermittent (contiguous regions of zero and non-zero rainfall). To be realistic, 

the rainfall generation process must emulate the patterns of spatial intermittence, and in 
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particular should reproduce the daily variation in the fraction of rain-covered area (Doneaud 

et al., 1984; Kedem and Pavlopoulos, 1991; Eltahir and Bras, 1993; Kursinski and Zeng 

2006). Figure 2-4 shows an example of the dependence between spatial mean rainfall )(ˆ t
jZµ

and the fraction of rain-covered area )(tjθ  in our study area, to which an exponential curve 

of the following form can be fitted: 

))(ˆexp(1()( tbat Zjj µθ −−=  (11)  

where a and b are the fitted parameters.  

 
Figure 2-4 Example of empirical relationship between spatial average rainfall and fraction of rain-
covered area for the rainy days of January February and March that belong to the HYC ACP type. 
Green dots denote observations. 

To delimit the spatial extension of non-zero rainfall intensity, we assume that the 

simulated rainfall field ),( tuPj  (Eq. 12) is the combination of two independent random 

variables (Barancourt et al., 1992): (1) the intensity of rainfall ),( tuR j  and (2) a binary RF 

),( tuI j  representing spatial intermittence (Eq. 13).  

The binary random field ),( tuI j  is assumed to be stationary with a marginal 

probability equal to the fractional area covered by rain (Eq.14) and with a spatial correlation 

structure that is different for every j={1,…,N}. To simulate rainfall intermittence, a 

Sequential Indicator Simulation (SIS) approach with simple kriging is applied (Gómez-

Hernández and Srivastava, 1990; Deutsch and Journel, 1998) in such a way that 
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),(),()(),( tuItuRtKtuP jjjj =  (12)  
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 (14)  

The multiplying factor )(tK j  in equation 12 is necessary to preserve the spatial mean 

intensity of rainfall )(ˆ t
jZµ , which is altered by the removal of areas assumed to have zero 

rain ( ),( tuI j ). 

2.2.2 Definition of the Atmospheric Circulation Patterns 

One major characteristic of our method is its decomposition of the mcdf into N 

conditionally independent and temporally stationary SRGPs. This decomposition seeks to 

account for the dependence of the rainfall generating process on climatological and other 

(earth system process) factors. 

There are several ways to construct the mapping from t  j depending on the 

hypothesis made in regard to the dominant causes of temporal non-stationarity in )),(( tuZFA .  

In general, the dominant causes of this non-stationarity are: (1) mesoscale and regional 

climatological processes such as ACPs and moisture convergence (Trenberth et al., 2003) 

and (2) earth system processes such as the interactions of the local atmospheric conditions 

with the topography and the direction of the prevailing winds (Jódar et al., 2010), etc.  

One relatively simple way to incorporate climate information is to relate synoptic 

general circulation patterns to local scale precipitation ( )),(( tuZFA ).Such assumptions have 

been postulated and tested by (Hay et. al., 1991; Bardossy and Plate, 1992; Perica and 

Foufoula 1996; Goodess and Palutikof, 1998; Corte Real et al., 1999; Bellone, 2000; 

Fowler et al., 2000, 2005; Yang et al., 2010) with some success. In our study, we implement 

a decomposition approach where the frequency of rainy days, the daily mean intensity of rain 

and the patterns of spatial rainfall are controlled by the frequency and seasonality of the 

ACPs over the study area. 
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This requires a method for classifying atmospheric circulation patterns into a discrete 

set of consistent ACP types. For this study we use an automated version of the Lamb Weather 

Type classification scheme (Jenkinson and Collinson, 1977; Jones et al., 1993) in 

accordance with Goodess and Palutikof (1998), which is based on the direction of surface 

wind and on its vorticity in geostrophic units. For our study area, we use gridded values of 

mean sea level pressure at 16 points distributed over Spain, obtained from the gridded NCEP-

NCAR re-analysis data set (Kalnay et al., 1996); the result is 8 ACP types (Table 2-1).  

ACP Type Description 
C Cyclonic 

HYC Hybrid cyclonic 
UC Unclassified/light flow cyclonic 

A/HYA Anticyclonic/ hybrid-anticyclonic 
UA Unclassified/light flow-anticyclonic 

W/NW/SW/N Westerly/ northwesterly /southwesterly/northerly directional types 
E/NE Easterly/northeasterly directional types 
S/SE Southerly/southeasterly directional types 

 
Table 2-1 Atmospheric Circulation Pattern classification. 

2.3 Model Identification Procedure  

The steps used to calibrate the stochastic rainfall generation model are as follows. 

1) Define the SRGP classification scheme. For example, classify ACPs using the 

modified Lamb Weather Type classification and group days by ACP and time 

of year (season or month). 

Then, for each SRGP type: 

2) Compute the daily spatial mean )(ˆ t
jZµ  and variance )(ˆ 2 t

jZσ  (Eq. 4 and 5) of 

rainfall intensity by using all available weather stations (including the 

locations with zero values) for each rainy day (a day is considered to be rainy 

if there is at least one meteorological station in the study area with non-zero 

precipitation).  

3) Estimate the parameters of equation (6) relating )(ˆ t
jZµ  

and )(ˆ 2 t
jZσ . 

4) Estimate )(ˆ t
jZµ  by fitting the gamma distribution function ),(ˆ jjjZ

βαµΓ  

(Eq.7). 
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5) Estimate the exponential regression parameters a and b of the functional 

relationship between the daily spatial mean intensity )(ˆ t
jZµ  and the daily 

fraction of rain-covered area )(tjθ (Eq.11). 

6) Standardize the daily rainfall intensities (Eq.8). 

7) Apply the normal score transformation to the standardized rainfall (Eq.9). 

8) Estimate the trend between the standardized variable ),( tujψ  and the 

elevation topography. 

9) Obtain the residuals ),( tujξ  (Eq.10).  

10) Estimate the experimental daily variogram of the residuals )(u
jξ

γ for each 

day, compute the average and then fit the model variogram. 

11) Estimate the daily experimental variogram of the binary rainfall occurrence 

variable )(u
jIγ  for each day, compute the average and then fit the model 

variogram. 

2.4 Stochastic Simulation Procedure 

The daily sequence of rainfall fields is simulated by applying the following steps:  

1) Obtain the daily sequence of SRGPs according to the classifying scheme 

chosen.  

2) Determine whether a day is rainy or not.  

3) For each rainy day tn belonging to each SRGPj , use SGS to generate ),( nj tuξ  

fields with the appropriate variogram )(u
jξ

γ . 

4) Add the trend component )(ujψ  (Eq.(10)) to obtain ),( nj tuψ . 

5) Obtain the ),( nj tuY  fields by applying the inverse normal score function 

(Eq.(9)) to ),( nj tuψ . 

6) Sample )(ˆ nZ t
j

µ  from the gamma distribution and obtain the corresponding 

variance )(ˆ 2
nZ t

j
σ by applying equation (6). 

7) Obtain the rainfall intensity field ),( nj tuR  by adding )(ˆ nZ t
j

µ  and multiplying 

by )(ˆ 2
nZ t

j
σ  (Eq. 8). 
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8) Obtain the fraction of rain-covered area )( nj tθ for the given )(ˆ nZ t
j

µ  by using 

equation (11). 

9) Simulate the spatial intermittence binary field ),( nj tuI  applying SIS and using 

the appropriate variogram )(u
jIγ  and the corresponding fraction of rain-

covered area )( nj tθ . 

10) Use (Eq. 12) to compute the final rainfall field ),( nj tuP , where the 

multiplying factor )( nj tK  is computed so as to preserve the spatial mean of 

rainfall intensity selected in step 6. 

2.5 Test Case Application 

In the following section, the rainfall field simulation method is applied to the Upper 

Guadiana basin (UppGb) in Spain for the period 1959 to 2007. The SRGPj parameters were 

estimated using daily rainfall data from meteorological stations located in the study area. The 

ACP classification was obtained by applying the Lamb Weather Type classification scheme 

to the NCEP-NCAR re-analysis data set (Kalnay et al., 1996).  

2.5.1 Study Area 

The UppGb forms part of the central Spanish Plateau, and covers an area of 

approximately 16000 km2 (Figure 2-5). The basin is located between latitudes 38º37’N and 

40º08’N, and longitudes between 2º25’W and 3º51’W. Morphologically, the main part of the 

basin is characterized by a smooth topography with altitudes ranging from 550 to 700 m a.s.l. 

(above sea level). Nevertheless, the northern and southern boundaries (Sierra Altomira and 

Campos de Montiel, respectively) show a mountainous landscape with an altitude exceeding 

1000 m a.s.l.  
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Figure 2-5 Location of study area. The black line is the administrative limit of the Upper Guadiana 
Basin, and the red dots indicate locations of the meteorological stations. 

The UppGb has a mixed continental, semi-arid, Mediterranean climate. Precipitation 

has notable space-time variability because of Atlantic and Mediterranean influences and 

because of orographic effects. The mean areal annual precipitation in the basin is 

approximately 450 mm/y, but varies both spatially (recorded  minimum and maximum 

gauges display means of 173 and 824 mm/, at the valley and mountains, respectively) and 

temporally (the standard deviation of the total yearly rainfall at the same stations are 121 and 

233 mm/y respectively). 

Its main characteristics are seasonal variability (Figure 2-6) with a dry season in 

summer (especially in July and August accounting for 5 % of the annual precipitation). This 

precipitation is dominated by small convective rain cells of short duration. The wettest 

seasons, autumn and spring, are characterized by stratiform frontal rain with large spatial 

continuity and duration. At point (rain gauge) scale, the number of dry days can be as high as 

80% on average (varying with the seasons), but this percentage drops to 50 % if we consider 

areal average rainfall, which suggests a high degree of spatial variability in the occurrence of 
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precipitation. Orographic effects also contribute to spatial variability in rainfall intensities, 

with an average increase in precipitation with an elevation of around 0.0075 mm/ m. 

 
Figure 2-6 Climatology plots for the Upper Guadiana Basin. A) Spatial average rainfall, B) Number 
of rainy days per month. A day is defined as rainy if at least one meteorological station reports daily 
measured rainfall exceeding zero. 

Application of the ACP scheme indicates that higher rainfall amounts are associated 

with (1) the directional type ACP (W/NW/SW/N), which brings moisture from the Atlantic 

ocean, (2) the cyclonic C and hybrid-cyclonic types HYC, which are associated with low 

pressure systems, and (3) the anti-cyclonic A and hybrid-anticyclonic types A-HYA, which 

are associated with high pressure systems (Figure 2-7). Figure 2-7b shows the mean annual 

volume of rainfall associated with the study area for each ACP type. One very important 

feature is the climatological pattern of rainfall for each ACP. This pattern must be properly 

reproduced by the selected hypothesis regarding the classification of the non-stationary 

rainfall process. 

 
Figure 2-7 Rainfall characteristics in the Upper Guadiana Basin for the different Atmospheric 
Circulation Patterns: A) Average annual frequency of occurrence for each ACP type. B) Climatology 
of spatial average rainfall for each ACP type (wetter ACPs are highlighted using thicker lines). 
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2.6 Results 

Our evaluation of the performance of the proposed method is made from two 

perspectives: (1) Reproduction of Climatology and (2) Reproduction of the spatial 

distribution of rainfall. In addition, we present an example of how well the intermittence 

process is reproduced.  

Eleven conceptual models regarding the non-stationary structure of the SGRP with 

different levels of clustering were explored (see Table 2-2) to evaluate the hypothesis of 

rainfall (non)stationarity in time (Figure 2-7b) and to explore the dominant factors controlling 

the rainfall process in our test case. These include NoCluster and NoCluster-Rand (no 

classification), ACP (classification into 8 ACP types), Season (classification into 4 seasons), 

Season6 and Season6-Rand (classification into 6 seasons), Monthly (classification into 12 

months), Season-ACP (classification into 8x4=32 classes), Season6-ACP (classification into 

8x6 classes), Season6-ACP-ND (same as Season6-ACP but without inclusion of 

topographic drift), and Season6-ACP-GC (same as Season6-ACP but conditioned on the 

gauge data). Here the dominant control processes of interest are (1) ACPs, (2) seasonality, 

and (3) sequencing of rainy days. Accordingly, the season, season6 and monthly models 

incorporate only seasonality, the ACP, season-ACP, season6-ACP models incorporate 

ACPs (with and without seasonality) and the NoCluster-Rand and season6-Rand models 

use randomization of the rainy day sequences. 

The model parameters were calibrated using the available data (without a validation 

period) so as to minimize the possibility of biasing the model towards a specific climate 

persistence condition (long wet or dry cycles).  

For each conceptual SRGP model structure, we generated one hundred rainfall field 

simulations (replicates) with a spatial resolution of 2.5 km for each of the rainy days from 

1959-2007 (11735 days x 100 realizations). These simulations were “unconditioned” (not 

conditioned on the rain gauge data), with the exception of those for the season6-ACP-GC 

case, for which the simulations were conditioned on the rainfall measurements. This model 

case should be very close to reality and was used as a benchmark case to compare the spatial 

distributions of rainfall obtained with all other models.  
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Model 
Name 

ACP 
Clustering 

Conditioned 
Simulation 

Topography 
External 

Drift 

Rainy 
days  

Sequence  
Description 

NoCluster No No Yes Observed No classification 
NoCluster-Rand No No Yes Synthetic No classification 

ACP Yes No Yes Observed W/NW/SW/N, E-NE, S-SE, A-
HYA, C, HYC, UC, UA 

Season No No Yes Observed JanFebMar, AprMayJun, 
JulAguSep, OctNovDec 

Season6 No No Yes Observed JanFebMar, AprMay, Jun, JulAug, 
Sep, OctNovDec 

Season6-Rand No No Yes Synthetic JanFebMar, AprMay, Jun, JulAug, 
Sep, OctNovDec 

Monthly No No Yes Observed Jan, Feb, Mar, Apr, May, Jun, Jul, 
Aug, Sep, Oct, Nov, Dec 

Season-ACP Yes No Yes Observed Each ACP is classification by 
seasons 

Season6-ACP Yes No Yes Observed Each ACP is classification by 
season6 

Season6-ACP-
ND Yes No No Observed Each ACP is classification by 

season6 
Season6-ACP-

GC Yes Yes Yes Synthetic Each ACP is classification by 
season6 

 
Table 2-2 Description of the several SRGP model classification levels implemented.  

2.6.1 Reproduction of Climatology 

2.6.1.1 Climatological Pattern of Mean Areal Rainfall 

Here we compare the areal-average climatological rainfall (ACR) plot for the 

different SGRP models (Table 2-2) with the observed ACR data (Figure 2-8).  

Figure 8a compares the ACR plots for the season-ACP and season6-ACP cases. Both 

cases involve ACP clustering of the rainy days, but each uses a different time-resolution for 

seasonal classification: season-ACP cluster into four seasons, and season6-ACP into six 

periods of different time lengths (Table 2-2). Note that Season6 better represents the seasonal 

transitions from spring to summer and from autumn to winter and the driest months (July and 

August) in the UppGb. Clearly, season6-ACP provides a better fit to the observed ACR data. 

To further explore the hypothesis regarding role of the ACPs, we examine the ACR 

plots obtained using the season, season6 and monthly classification models. None of these 

models include classification by ACP, but differ in the seasonal classification of rainy days 

(Table 2-2). Figure 2-8b shows that the higher the number of classification levels, the better 

the fit to the climatological pattern. Moreover, the fit for season6 is very similar to that 

obtained for season6-ACP (Figure 2-8a). Given that the only difference between season6 

and season6-ACP is the ACP clustering of rainy days, this seems to suggest that ACPs 

22 



Stochastic Simulation of Non-Stationary Rainfall Fields 

provide only a weak control in the reproduction of average climatological rainfall. This is an 

expected result due to the seasonality of the rainfall by ACP as shown in Figure 2-7b. To 

shed more light on this, we remove the seasonal classification of the rainy days (Figure 2-8c) 

and show the computed ACR series for NoCluster and ACP (only clustering by ACPs) 

models (both of which used the same sequence of rainy days). The result shows that the last 

two models are biased, even though they partly reproduce the climatological pattern. This 

tends to support the finding regarding the role played by the ACP information in climatology 

of areal average rainfall, and illustrates the importance of (1) using the correct sequence of 

rainy days, and (2) the clustering by seasons in the simulation procedure.  

 
Figure 2-8 Climatology plots of spatial average precipitation for different conceptual SRGPs 
classification models. Observed climatology is shown using a bold grey line. A) Comparison between 
season-ACP and season6-ACP; both models have the same ACP aggregation model but season6-
ACP has a higher number of seasonal divisions for classifying the rainy days. B) Model response 
when the ACP classification is removed to leave only classification by season, season6 and monthly. 
C) Effect of removing the seasonality (leaving only ACP) and no classification (NoCluster). D) 
Comparison between season6-Rand and NoCluster-Rand to demonstrate the effect of randomizing 
the sequence of rainy days for a given ACP sequence. 
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To gain a better understanding of this point, we develop two new SRGP models 

termed NoCluster-Rand and season6-Rand, each of which uses a synthetic sequence of 

rainy days for parameter calibration, obtained by randomly ordering the rainy days for the 

whole time period. Neither of these models includes ACP clustering, and only in season6-

rand is a seasonal classification of the rainy days considered. Figure 2-8d shows that only 

season6-Rand, which accounts for seasonal clustering, displays some seasonal behavior, 

whereas the ACR plot for the NoCluster-Rand case only reproduces the mean precipitation 

value with no climatological pattern. Clearly, seasonal classification of the number of rainy 

days plays a key role in the climatology of rainfall. 

2.6.1.2 Inter-annual Variability in the Climatological Pattern 

Although the results above indicate that ACPs play a weak role in controlling mean 

annual climatology, it is also important to reproduce the inter-annual variability in the 

climatological pattern. The observed climatological rainfall variability (Figure 2-9) is shown 

as a modified box plot (instead of inter-quartile range we show the 5th, 10th, 90th, 95th 

quantiles) for every month. The plot also shows the simulated climatological rainfall 

variability for the season6 and season6-ACP models. It is clear that the ACP-based model 

reproduces the inter-annual variability much better, revealing the importance of ACP-based 

clustering of rainy days. 

 
Figure 2-9 Plots showing extent of inter-annual variability of the climatology of spatial average 
precipitation. Observed variability is represented by modified box plots showing has two upper 
percentile limits (95th and 90th represented by the upper diamond and triangle, respectively) and two 
lower percentile limits (5th and 10th represented by the lower diamond and triangle, respectively). 
The observed mean climatology is represented by the bold grey line.  Simulated variability (averaged 
over 100 realizations) is shown by different quantile intervals (5, 10, 25, 50, 75, 90, 95). The two plots 
represent different conceptual SRGP models: A) season6, and B) season6-ACP.  Red and blue lines 
represent the respective simulated ensemble mean climatologies.  
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2.6.1.3 Climatological Pattern of Rainfall at the Gauges 

The results presented in Section 2.6.1.1 allow us to determine whether basin average 

rainfall value is reproduced, and to investigate dominant processes at the catchment scale. To 

evaluate the ability to simulate spatial non-stationarity of rainfall, we select, from the 

simulated field, the pixels coinciding with the locations of meteorological stations in the 

basin. We examine the performance of the season6-ACP and season6-ACP-ND models, both 

of which include ACP clustering and seasonal classification (Table 3), but which differ in 

that the topographic external drift is only included in season6-ACP.  

Figure 10 displays the observed average annual climatology of rainfall for 

meteorological stations located at different points in the UppGb, with elevations of 625, 740, 

810 and 984 m a.s.l., respectively. The plot also shows the results for the 100 simulation 

ensembles, along with their confidence intervals (5% to 95%). The inclusion of the 

orographic effect on rainfall improves the results in areas with high and low elevations. In 

average elevation zones, both models (i.e., Drift and No Drift) yield the same results. The 

confidence intervals for the No Drift (pink shaded areas in Figure 2-10) are similar regardless 

of the rain gauge elevation. The observed rainfall that increases with elevation is captured by 

the Drift model. 

 
Figure 2-10 Climatology of rainfall at three different locations for a model that includes the spatial 
drift (season6-ACP) and for one that does not (season6-ACP-ND). Elevation increases from left to 
right. Shaded areas represent variability over the100 simulation ensembles, along with their confident 
intervals (5% to 95%). The dark green shaded area corresponds to the intersection zone between the 
two models. 

2.6.1.4 Climatology of Spatial Rainfall Distribution  

Here, we compare the climatological spatial patterns of rainfall for the season6-ACP 

and season6-ACP-ND models with the results obtained using the season6-ACP-GC model, 

in which the simulations are conditioned on the observed rain gauge data (and hence provide 

the best possible estimate of the spatial distribution of rain at the desired resolution).  
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Figure 2-11 compares the normalized error fields for the wettest (May) and driest 

(August) months (Figure 2-11 middle and lower panels), along with the digital terrain model 

(DTM) for the UppGb. In the wettest case, the mean rainfall field for season6-ACP bears a 

greater resemblance to the DTM than do the models that do not include the rainfall 

orographic effect. In contrast, the driest case shows no significant difference between 

season6-ACP and season6-ACP-ND. This contrasting behavior may be explained in terms 

of the spatial correlation structure of rain during May and August; rainfall in May is 

characterized by large-scale stratiform precipitation fronts slowly crossing the whole UppGb, 

whereas rainfall in August is mainly due to small/local convective cells of short duration. 

Figure 2-11 Plots of the mean ensemble spatial rainfall fields for A) May, the wettest month, and B) 
August, the driest month. Each panel presents the digital terrain model (upper left panel) of the Upper 
Guadiana Basin and the comparison between three different conceptual SGRP models with the same 
classification level (season6-ACP) but with different conditional information.  The season6-ACP-
Drift-Cond results (upper right panel) are conditioned to the historical time series observations and 
incorporates topographic spatial drift. The season6-ACP-Drift results are unconditional simulations 
and include spatial topographic drift. The season6-ACP-NoDrift results are unconditional 
simulations and do not include spatial drift.  In the middle and bottom panels are the normed error 
difference field and histograms between season6-ACP-Drif-Cond and season6-ACP-Drift (left 
middle and bottom panel) and season6-ACP-NoDrift (right middle and bottom panel). 

2.6.2 Spatial Distribution of Rainfall 

Next, we determine whether the simulated spatial distribution of rainfall matches the 

observations. To this end, we use the quantile-quantile (Q-Q) plot to compare the observed 
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and the simulated rainfall for (1) the selected rain gauge sites, and (2) the basin averaged 

rainfall. Here, we only use the season6-ACP model.  

2.6.2.1 Rainfall distributions at the gauges 

Figure 2-12 shows the Q-Q plots corresponding to several meteorological stations 

distributed throughout the UppGb. In general, the rainfall distributions appear to be well 

reproduced regardless of the elevation of the rain gauge.  This is especially true for values of 

precipitation below 30 mm. Higher values show increased dispersion (the shaded area ranges 

from 5% to 95% of the confident interval) and a tendency to overestimate large rainfall 

values. Since the model uses empirical rainfall distributions with a finite sample size, the 

above problems could be resolved (1) by increasing the sample size using any interpolation 

technique or (2) by modifying the limits of the normal score distribution. In other words, the 

amount of (observed) data used to define the normal score transformation, and the amount of 

simulated data values must be large enough to correspond to the recurrence time of the 

extreme values that we wish to simulate.  

 
Figure 2-12 Quantile-Quantile plots comparing distributions of observed and simulated daily rainfall 
intensities at four different rain gauge locations.  
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2.6.2.2 Distribution of areal-average rainfall  

We evaluate the Q-Q plots for areal-average rainfall for three different time scales: (1) 

daily, (2) monthly accumulated (3) yearly accumulated. The results (Figure 2-13) are fairly 

good for daily rainfall, but not so good for the two other cases. Nevertheless, the yearly Q-Q 

plot shows that the model overestimates the minimum values (driest years) and 

underestimates the maximum values (wettest years). This is mainly due to the choice of the 

gamma function (Eq. (7)) to represent the pdf of the spatial average rainfall. The gamma 

function fits the mean and the mode values fairly well but is not so good for the tails of the 

distribution (Figure 2-2). This effect could be resolved by other distributions that better 

represent the extreme values (e.g. Vrac and Naveau, 2007; Furrer and Katz, 2008; Solari 

and Losada, 2012), an issue we intend to explore further in an on-going work. 

 
Figure 2-13 Quantile–Quantile plots comparing distributions of observed and the simulated daily 
(left), monthly accumulated (center) and yearly accumulated (right) spatially averaged precipitation. 

2.6.3 Intermittence of Rainfall 

Figure 2-14, shows an example of the final rainfall fields obtained by applying the 

methodology for different percentage of fractional area covered by rain: 5, 25, 50 and 80. 

Results are shown for the season6-ACP model including the representation of external drift 

with elevation.  The plots show that the SIS method realistically reproduces the intermittence 

process in terms of the clustering of regions with rainfall. However, the fields tend to show 

sharp transitions between rain and no rain areas because of the assumption of independence 

between the intensity and intermittence processes.  

ˆ z jµΓ
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Figure 2-14 Examples of daily rainfall fields generated for different days with variable fraction of 
rain-covered area: A) 0.05, B) 0.25, C) 0.5 and D) 0.8. 

2.7 Discussion and Conclusions 

We present a method to simulate daily rainfall fields with sufficient spatial resolution 

to be used in spatially distributed hydrological modeling. The approach incorporates several 

sources of information, and simulates major non-stationarity features of the rainfall fields. 

By exploiting information regarding the sequence of ACPs we are able to obtain time 

stationary sequences of SRGPs. This allows the model to exploit invaluable information 

regarding climate variability/change provided by GCMs. Consequently, the approach can be 

used for developing multiple stochastic ensembles of downscaled rainfall fields for use in 

CCIS assessments (including uncertainty analysis). 

Further, the approach has the ability to generate both conditional and unconditional 

rainfall field simulations. As a result, the model can be used to fill observation data gaps in 

the historical rainfall data sets. 
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We tested the model for the Upper Guadiana Basin in Spain and found that it provides 

an accurate reproduction of the major spatio-temporal features of rainfall needed for 

hydrological modeling and water resource evaluations. The incorporation of spatial drift 

related to orographic precipitation significantly improved the results. The incorporation of 

seasons enabled the reproduction of the observed climatology of spatial averaged rainfall. 

ACP clustering improved the reproduction of the inter-annual climatological variability. 

Nevertheless, certain aspects of the model need to be improved. First of all, the 

assumption of independence between rainfall amount and the rainfall intermittence fields 

produces sharp transitions between the areas of rain and no rain in the daily rainfall fields 

obtained. This is an important issue that should be addressed in the future.  Some authors 

(Bell 1987; Guilliot, 1999; Kleiber et al., 2012) use a threshold-based method to simulate 

rainfall occurrence, which employs the same latent Gaussian process that simulates rainfall 

amounts. Comparing both methods, De Oliveira (2004) suggests that the application of one 

of the two models depends mainly on the precipitation patterns of the specific region under 

study. From the hydrological point of view, the correlation between rainfall intensity and 

intermittence should be better represented. Second, the Q-Q plot analysis indicates that 

extreme rainfall values and their frequency of occurrence are overestimated.  

In an on-going work, we are evaluating the usefulness of the approach for 

downscaling rainfall fields in the context of climate change. Such analysis is supported by the 

expectation that climate change will affect the frequency of the ACPs and hence the 

precipitation regimes (Trenberth, 2011). To establish the robustness of such applications, it is 

necessary to ascertain whether the SRGP model parameters can be assumed as stationary for 

the future. Naturally, for climate impact analysis some assumptions should be made. 

However, it is important to evaluate the degree to which the results could be affected by these 

assumptions. Moreover, when the approach is used in the context of distributed catchment 

modeling, we can expect the spatio-temporal variability of the precipitation to affect the 

response of the hydrological processes in different ways. It is therefore necessary to 

determine the degree of sensitivity of these responses to uncertainties in the SRGP model 

parameters.   
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3 Impacts of Rainfall Spatial Variability on 

Hydrogeological Response 2 

3.1 Introduction 

3.1.1  Background 

Rainfall Spatial Variability (RSV) exerts a considerable influence on the space-time 

distribution of state variables of a hydrological system. Its impact depends on factors, such as 

basin scale related to rainfall variability (Wood et al., 1988; Gabellani et al., 2007), 

precipitation type (convective or stratiform) (Bell and Moore, 2000) and predominant 

hydrological partitioning processes (Shah et al., 1996; Brath and Montanari, 2003; 

Gabellani et al., 2007). These factors in addition to the influence of the model structure and 

measurement errors in input fluxes (Younger et al., 2009), etc. have prevented a consensus of 

the effects of RSV on the hydrological response (Nicotina et al., 2008) from being reached. 

Furthermore, studies  have tended to focus on the characteristics of river discharge 

(such as peaks), during an event response (Wilson et al., 1979; Krajewski et al., 1991; Obled 

et al., 1994; Nicotina et. al. 2008). Moreover, these studies generally agree on the effect of 

the total volume of water during an event with respect to the river discharge (Obled et al. 

1994) and on which runoff generation processes that are most sensitive to RSV (infiltration 

saturation processes)(Nicotina et al., 2008). In general, these studies have paid little attention 

to the spatial distributions or the long term effects on other important hydrological responses 

(e.g.: soil moisture, recharge, groundwater levels, groundwater storage variations etc.). One 

exception is the work of Schuurmans and Bierkens (2007), who studied the effect of the 

RSV on soil moisture, groundwater level and river discharge at daily time scale in a flat 

shallow groundwater basin with a rapid response. These authors found that the RSV has an 

effect on the internal spatial distribution of the state variable analyzed and that the general 

behavior was largely determined by the areal average rainfall (uniform case). 

2 This chapter is based on paper: Sapriza Azuri, G., Jodar, J., Carrera, J., and Gupta, H. (2013). 
Impacts of rainfall spatial variability on hydrogeological response . Submited 
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Earlier studies are not easily generalized. Moreover, although RSV may be assumed   

to have be strongly damped in the hydrogeological response of the system, spatial 

intermittence and orographic effects on the rainfall fields (important source of spatial 

variability), can lead to significance differences in the hydrogeological response. At short 

time scales (less than a year), these differences may be difficult to assess, particularly when 

looking at an integrated response such as river discharge. However, at long time scales, such 

differences can give rise to completely different hydrogeological responses. Moreover, the 

majority of studies have focused on the system response only under “nearly natural” 

conditions - with some exceptions involving small basins in urban areas (Smith et al. 2005). 

Thus, what the effects of RSV might be on the dynamics of systems that are overexploited, 

e.g. by groundwater pumping are not yet fully understood. 

3.1.2 Objectives and Scope 

The primary objective of this work is to investigate the impact of the RSV on the 

hydrogeological response at “long term time scales” and on an “overexploited system”. In 

particular, we investigate how uncertainty in the spatial distribution of rainfall is propagated 

through the hydrological system, and how it is affected by local differences in dominant 

hydrological processes (such as wetlands) and/or by the degree of exploitation (pumping). 

Further, we discuss the amount of information that is lost (i.e. how the assessed impacts are 

affected) owing to the use of up-scaled rainfall fields (e.g. information provided by coarse 

spatial resolution of remotely sensed estimates or regional model simulations, or simply by 

the use of spatially uniform fields given the lack of spatial variability information – e.g. very 

few available rain gauges). 

With that purpose, we generate stochastic rainfall fields at daily time scale using a 

Stochastic Rainfall Generation Process (SRGP) that is conditioned to (a) preserve the rainfall 

values observed at the gauges, (b) reproduce the spatial intermittence of rainfall, (c) account 

for orographic effects, and (d) reproduce the different local rainfall generation properties 

associated with different regional-scale atmospheric circulation patterns (for details see 

Sapriza et al. 2013a). 

The stochastically generated rainfall fields are used to drive a spatially distributed 

hydro-geological model of 16,000 km2 in the Upper Guadiana basin (UppG) in the center of 

Spain. Since the 1970s, several areas of the basin have been subjected to significant amounts 

of groundwater pumping, which have affected the dynamics of the system. The model was 
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calibrated to match the historical input-state-output spatio-temporal response (including 

pumping and groundwater level history) of the system for the 43 year period between 1959 

and 2001. The spatio-temporal hydrogeological response of the system (including Soil 

Moisture, Actual Evapotranspiration, wetland occurrence, Groundwater Recharge, Runoff 

Generation, Groundwater Heads levels, Groundwater Storage variations, and River 

Discharge) was then analyzed. 

3.2 Methods 

3.2.1 Study Area 

The Upper Guadiana basin forms part of the central Spanish Meseta, and covers an 

area of approximately 16000 km2 (Figure 3-1). The basin is located between latitudes 

38º37’N and 40º08’N, and between longitudes 2º25’W and 3º51’W. Morphologically, the 

main part of the basin is characterized by a smooth topography with altitudes ranging from 

550 to700 m.a.s.l. Nevertheless, the northern and southern boundary (Sierra Altomira and 

Campos de Montiel, respectively) displays a mountainous landscape with an altitude 

exceeding 1,000m.a.s.l. The combination of a smooth topography with a lack of a well-

defined drainage network and an abundance of large karstic aquifer formations give rise to 

complex relationships between surface and subsurface waters.  These interconnections enable 

wetlands to flourish (around 250 km2), which is ecologically significant. 

The UppGb has a mixed continental, semi-arid Mediterranean climate. The spatial-

time variability of precipitation is very wide because of the orography and the influence of 

the Atlantic and the Mediterranean. The annual precipitation is approximately 450 mm/year. 

Its main characteristics are seasonal variability with a dry season in summer (especially in 

July and August accounting for 5 % of the annual precipitation). This precipitation is 

dominated by small convective rain cells of short duration. The wettest seasons, autumn and 

spring are characterized by stratiform frontal rain with large spatial continuity and duration. 
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Figure 3-1 Area of study. Principal features are represented: Aquifer delimitations, principal rivers, 
piezometric and river gauges location with their calibration, rainfall grids (SRGP, WCH), and 
locations used to evaluate the effect of RSV. 

3.2.1.1 Aquifers  

The Upper Guadiana aquifer system is divided into four sub-units: “Sierra de 

Altomira”, “Mancha de Toledo”, “Campos de Montiel” and “Mancha Occidental”, Figure 

3-1. The last two units enjoy the dubious reputation of being the first two aquifers in Spain to 

have been declared overexploited because of pumping drawdown (more than 50 meters of 

decline in the groundwater levels at some locations).  

Figure 3-2 shows the time series evolution for the groundwater extractions integrated 

over the domain, showing a clear seasonal pattern with a maximum in 1990. The spatial 

pumping distribution (Figure 3-2c) shows that the larger extractions are concentrated in the 

central zones of the Mancha Occidental aquifer. 

Based on the works of Martínez-Cortina (2000) and the references therein, the main 
hydrogeological characteristics for every sub-unit can be briefly summarized as follow: 

• Sierra de Altomira aquifer is composed of aquifer units. The deepest is a 

Jurassic semi-confined aquifer formed by sandy and dolomitized limestone, 
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25-90 m thick, with the transmissivity of 1000-5000 m2/day and a storage 

coefficient of around 10-4. The upper unit is a Cretaceous free aquifer formed 

by dolomite and limestone, 60-80m thick with a transmissivity of 100-250 

m2/day. 

• Mancha Toledo is a Triassic-Miocene-Plioquaternary aquifer formed by 

detrital sediments.  It functions as a free aquifer with a mean thickness 

between 500 and 600 m.  

• Campos de Montiel is a Jurassic limestone karst free aquifer with an average 

thickness of 160 m and a transmissivity of 50-2500 m2/day. 

• Mancha Occidental is a two layer aquifer with a detrital semi-confined layer 

that functions as an aquitard. The deepest unit is a Jurassic-Cretaceous aquifer 

that is confined and made up of limestone. It has an average thickness of 160 

m, a transmissivity of 200-6000m2/day and a storage coefficient of 10-3- 10-4.  

The upper unit is a Tertiary-Quaternary free aquifer. The Tertiary materials are 

composed of Miocene limestone with a thickness of 200 m and a 

transmissivity close to 20000 m2/day.  The Plioquaternary is made up of 

detrital sediments with a thickness of 60 m and a transmissivity of 500 

m2/day.  

 
Figure 3-2 Time series of the yearly spatial accumulated of rainfall (panel a) and gw pumping (panel 
b). Panel c shows the total period spatial distributions of pumping 

3.2.2 Hydrogeological Model  

The basic conceptualization of the Upper Guadiana aquifer system is represented by 

one large reservoir where the limit boundary conditions are prescribed as no flow. The 

system is simulated by using a two layer finite element model: (1) an upper layer that covers 

the entire domain for simulating the free and semi-confined parts of the aquifer system, and 
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(2) a lower layer that simulates the confined part of the sub-unit Mancha Occidental and 

Sierra de Altomira. The two layers are hydraulically connected by 1D element. 

This conceptual model follows the work of Martínez-Cortina (2000), who 

implemented the numerical model in MODFLOW.  This model was used as a pre-calibrated 

base model to build a new one, migrating from finite differences to a finite element scheme, 

and from a monthly time scale to a daily one. The migration included an atmospheric 

boundary condition (soil balance component) and the development of a groundwater-surface 

water (GW-SW) interaction module. The aim of these changes is threefold: (1) to enhance the 

GW-SW interaction associated with the marked change in the dynamics of the system (e.g. as 

a result of the inversion of the GW-SW interaction, the river becomes a source of localized 

recharge to the aquifer) owing to anthropogenic pressure; (2) providing a better 

representation of the spatial variability of the recharge process because of spatial variability 

of the rainfall fields; and (3) to improve the wetlands simulation. 

These new boundary conditions define a coupled distributed hydrogeological model 

that combines a physically based groundwater component (GW) with a conceptual soil-water 

balance component and water routing component for the runoff propagation.   

From the soil-water balance we estimated the soil moisture, AET, runoff generation 

and the GW recharge. The model estimates two types of GW recharge: (1) the GW recharge 

that is generated by the soil-water balance, which is considered to be instantaneous and (2) 

the GW that reaches the GW level. For the latter, we incorporated a transit through the non-

saturated zone (composed of a series of linear storage) by the application of a gamma transfer 

function (Besbes and de Marsily, 1984). We only refer to the former in the present analysis.  

Routing of the surface and subsurface runoff generation accomplished using the 

CEQUEAU model (Girad et al., 1972, Korkmaz et al., 2009). 

The model was implemented into the PROOST (Process Oriented Optimization and 

Simulation Tool), which is a hydrogeological modeling platform, developed using an object-

oriented architecture (Slooten, 2009). The code includes the simulation of solute, reactive, 

multicomponent, multiphase flow and transport process in aquifers, and enables the 

automatic estimation of parameters via optimization. PROOST is open source and under 

development by the Hydrogeology Group IDAEA (CSIC) and the technical University of 

Catalonia.A finite difference scheme was applied to temporal discretization while a finite 

element scheme is adopted for spatial discretization. The latter uses triangle elements that are 
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combined to generate regular square zones that occupy an area of 2.5x2.5 km2. The model 

has two hydraulically connected layers with a total of 861 one-dimensional elements.  The 

lower layer contains   864 nodes and 1556 elements whereas the upper layer contains 2035 

nodes and 3764 elements. 

The starting point of for calibration of the model is the the pre-calibrated model of 

Martínez-Cortina (2000). Nevertheless, the model architecture has been somewhat changed 

as described above, and the new model was therefore re-calibrated via a manual process to 

improve reproduction of the observed piezometric and river discharge data. The model is 

used to simulate the hydrogeological response of the system between 1959 and 2001. 

3.2.3 Data:  Rainfall Inputs 

To evaluate the impact of RSV on the hydrogeological response simulated by the 

model we used rainfall gridded data at three different levels of spatial support (Figure 3-1); in 

each case we obtain a set of 100 daily rainfall field time series for every RSV scheme (i.e. 

SRGP, WCH and LMP) which are used to drive the UppGb hydrological model.  

Fine scale: The SRGP model is used to simulate a total of 100 stochastic time series 

realizations of daily rainfall fields at the same spatial resolution as the UppGd 

hydrogeological model (cells with an area of 2.5x2.5 km2).  This model accounts for two 

major rainfall non-stationary process that affect rainfall generation: temporal non-

stationarities caused by changes in the frequencies of different precipitation generating 

mechanisms (i.e. frontal and convective rainfall regimes), and spatial non-stationarities 

caused by interactions of meso-scale atmospheric patterns with topography (i.e. orographic 

effects).  The overall non-stationary process is approximated as a discrete set of time-

stationary stochastic rainfall generating processes, each of which represents the a 

characteristics spatial patterns of rainfall (including its variation with topography) associated 

with a different atmospheric circulation patterns (ACP) and seasons. The SRGP model uses 

the daily rainfall data available from meteorological weather stations and the mean sea level 

pressure from the NCEP-NCAR re-analysis data set (Kalnay et al., 1996) to generate the 

rainfall field time series that can be conditioned or unconditioned upon rainfall data 

observations. For further details of the setup of the SRGP model see Sapriza et al. (2013a). 

Medium Scale: The fine scale rainfall fields generated by the SRGP are aggregated up 

a cell area of 0.5º x 0.5º (called WCH), having, which is the typical support size used by 

Regional Climate Models (RCM). This scale also matches the spatial resolution of 
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meteorological forcing data generated in the context of the WATCH Project (Weedon et al., 

2011) which this work is a part of.  

Large Scale: Finally, the fields are then aggregated up to a large scale grid (called 

LMP), having only one irregular cell of the same size and shape of the whole basin/model 

domain. In both the medium and large scale cases, upscaling is by arithmetic averaging.  

The daily rainfall fields of the coarser grids were obtained by upscaling (arithmetic 

averaging) the SGRP rainfall fields onto the WCH and LMP grids. As a result, we obtained a 

set of 100 daily rainfall field time series for every RSV scheme (i.e. SRGP, WCH and LPM) 

to drive the Upper Guadiana hydrogeological model. 

3.2.4 Investigative Approach 

The methodology implemented to explore the effect of RSV upon the hydrogeological 

response is as follows:  

a. Calibration of the UppG model using one realization of the rainfall fields 

generated in (1) above. This is a simplified approach – instead of using all the 

100 fields to generate the hydrogeological response and then calibrating to the 

mean response. We are not interested here in a “perfect” calibration -- an 

approximate one is sufficient. 

b. Simulation of the hydrological model response by driving the calibrated UppG 

model with the 100 SRGP, WCH and LMP time series ensembles. This 

generates three ensembles of hydrological model responses, which we will 

refer to as the SRGP, WCH and LMP ensemble responses. 

The analysis of the hydrological response of the model was performed for the whole 

simulated period (i.e. 1959-2001). This allowed us to evaluate the long term effects of using 

different forcing rainfall time series with different spatial resolutions. Moreover, the 

uncertainty propagation through the hydrological system was investigated, elucidating the 

effect of observation, wetlands, pumping and location on the uncertainty. 

The hydrological responses studied are as follow: soil moisture (SM), actual 

evapotranspiration (AET), fractional area cover by wetlands (WFA), spatial runoff generation 

(QESC), groundwater recharge (RCH), groundwater surface water exchange (eGSW), river 

runoff discharge (QRV), net groundwater storage aquifer (STG) and groundwater heads 

(GWH). 
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The WFA was estimated as the number of soil cells that are at saturated state (SM=1) 

divided by the total number of cell of the upper layer in the UppGd model. The STG was 

computed as the sum of all the input and output fluxes to the aquifers.  

Uncertainty was expressed in all cases as the 5-95 % confident interval limit from the 

ensembles over 100 realizations. For the spatial distribution we expressed the uncertainty as 

the difference between the 95% and 5% percentiles. 

3.3 Results 

3.3.1 Overall response: Spatial Cumulative Sum Time Series 

Figure 3-3 presents the overall hydrogeological response to different RSV’s in terms 

of (1) the cumulative time series of Rainfall and Withdrawals, AET, QESC, RCH, eGWS and 

STG, and (2) the spatial averaged time series of SM and WFA. 

The cumulative sum allowed us to visualize the overall evolution response integrated 

for the whole area. The variations in the slope also provided information about changes in the 

behavior of the system, helping to identify, drier and wetter periods and initiation of 

exploitation.  

Figure 3-3a shows the time evolution of the cumulative volume of precipitation and 

withdrawals registered in the Upper Guadiana Basin. As can be seen, the slope of cumulative 

rainfall does not change over the entire period. However, withdrawals are very small before 

1980 and subsequently increase at a constant rate. Meanwhile, AET (Figure 3-3b) shows their 

cumulative time variation. There is no significant difference between the three cases (i.e. 

SRGP, WCH and LMP).   For the total response during the whole period, we obtained only a 

slightly higher AET for LMP, followed by WCH and then by SRGP. The uncertainty 

remained narrow in the three cases. 

For the QESC response (Runoff Generation; Figure 3-3c), SRGP produces a larger 

amount of runoff, highlighted by the steep slope. All the models show a marked reduction in 

the 1980s owing to changes in the regional groundwater pumping scheme, shifting from 

small to large withdrawals throughout the basin. The slopes of the cumulated evolution are 

closer to zero for SRGP, WCH and LMP, which reflects the scarcity of runoff generation. 

Note that the width of the uncertainty intervals increase with increased SRV. 

Figure 3-3d shows the evolution of the cumulative groundwater recharge (RCH). This 

variable is clearly very sensitive to the degree of spatial rainfall variability, with the SRGP 
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case resulting in almost twice the cumulative recharge than in the cases of WCH and LMP.  

The mean slope of the evolution for SRGP is larger than those of the two other cases, 

especially in the driest periods during which the slopes of LMP and WCH attain zero.  In all 

three cases the uncertainty is similar. 

The cumulative evolution of of GW-SW exchange (Figure 3-3e) shows similar pattern 

to that of QESC (Figure 3-3c) but with value of the opposite sign (negative) indicating fluxes 

out of the aquifer. The three cases show the same evolution pattern despite the fact that SRGP 

produces a higher discharge from the aquifer. Meanwhile, the cumulative time evolution of 

groundwater storage   (STG, Figure 3-3f) shows that the system is clearly less affected by 

pumping when the detailed spatial variability of rainfall (SRGP) rainfall is properly 

represented. It is interesting to note that (1) the starting time at which the system can be 

considered to be overexploited (i.e. when STG becomes negative) is 1965 for LMP, 1973 for 

WCH and 1980 for SRGP, and (2) the system response at the end of the simulation period is 

approximately 91% less affected for the case of SRGP in comparison with LMP. 

Interestingly, the trajectory of annual average soil moisture volume (SM; Figure 3-3g) 

is quite similar for all three cases, being slightly larger for LMP followed in decreasing order 

by WCH and SRGP. However, the monthly average wetland fractional area (WFA; Figure 

3-3h) clearly shows the impacts of long term withdrawals caused by pumping. As the 

groundwater heads started to decline the wetlands began to dry up, and almost completely 

disappeared by the beginning of the 1980s. Note that the simulation of wetlands dynamics is 

sensitive to the degree of spatial rainfall variability represented in the model; the greater the 

spatial variability of rainfall the larger the surface area of wetlands. In terms of re-flourishing 

an already dried wetland, the greater the degree of spatial rainfall variability the larger 

frequency/probability of re-flourishing. Regardless of the RSV scheme, the width of the 

uncertainty interval grows during the wet period (i.e. before 1979) owing the increase in the 

area covered by wetlands 
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Figure 3-3 Overall responses obtained with the three spatial rainfall resolutions (blue SRGP, red 
WCH and green LMP). They are presented the spatial cumulative sum time series for : rainfall (a), 
groundwater pumping (a), AET (b), runoff generation (c), recharge (d), groundwater-surface water 
exchange (e) and groundwater net storage (f). The spatial average of the soil moisture (g) and 
fractional area cover by wetlands (h) are also presented. 

3.3.2 River Runoff and Groundwater-Surface water exchange 

The RSV scheme exerts a significant influence on the evolution of simulated river 

runoff. Figure 3-4a and b show the yearly-cumulative river runoff computed at two points in 

the basin: the Guadiana and the Penyarola river gauges (see purple triangles in Figure 3-1). In 

both cases, the smaller the spatial resolution of rainfall the higher the runoff and the larger the 

associated uncertainty bound.  

Nevertheless, these river gauges differ (1) in the degree of the response between the 

RSV schemes and (2) to what extent the impact of pumping affected the system. At the 

Penyarola river gauge (Figure 3-4a), there is a larger difference between WCH and LMP. The 

response is less affected by pumping and the river never dries up.  WCH and LMP show little 

41 



Chapter 3 

difference at the Guadiana river gauge (Figure 3-4b). The uncertainty bound is narrower in the 

three cases, SRGP being a little larger. The rivers almost dry up in response to the 

groundwater extractions in 1985 for LMP and WCH and in 1988 for SRGP. In both cases, the 

greater the degree of spatial rainfall variability the higher the runoff and larger the associated 

uncertainty bound 

 
Figure 3-4 River runoff at two locations and the gw-sw exchange for the whole Upper Guadiana 
Basin.  

The degree of RSV also clearly affects the hydrological response in terms of the 

groundwater and surface water exchange dynamics. Figure 3-4c shows the evolution of the 

yearly-cumulative GW-SW exchange time series. This figure is complementary to Figure 

3-3e but shows more clearly the change in the hydrological dynamics of the system. Massive 

withdrawals generate a widespread decline in the phreatic level of the aquifer. As a result of 

the groundwater level drawdown, the exchange of water between the surface and the aquifer 

is reduced, the rivers being disconnected from the groundwater system. At this point (see in 

Figure 3-4c the exchange dynamics after 1989) the water flowing in the river infiltrates the 

river bed towards the aquifer. The values greater and lower than zero represent aquifer 
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recharge and discharge, respectively. Rivers vary from receiving a base flow from the aquifer 

to directly recharging the aquifer.  

3.3.3 Spatial Distribution of Total  

The foregoing findings refer to the spatially aggregated responses of the basin. Here 

we examine the structure of the spatial distribution and its uncertainty. Figure 3-5 illustrates 

the differences in spatial distribution due to differences in representation of spatial rainfall 

variability. Figure 3-6 shows the differences in spatial structure of the associated uncertainty 

and how that uncertainty is propagated through the hydrological system. From the previous 

analysis, we can identify recharge (RCH) as being the main driver of the hydrogeological 

response. Further, the storage (STG) provides a good overall summary of system response. 

Therefore, we discuss here only these two responses. 

3.3.3.1 Magnitudes 

The cumulative spatial patterns of rainfall imposed on the system are illustrated in 

Figure 3-5a-c. SRGP clearly displays the orographic effects caused by topography, the patch 

pattern in WCH and the uniform distribution shape for LMP.   

As should be expected, the three RSV schemes show clearly different response for 

RCH (Figure 3-5d-f). SRGP clearly shows a wide range with a higher recharge in zones of 

high altitude, reflecting the orographic signal in the precipitation. For WCH and LMP, 

however, the spatial distribution displays is more indicative of the pattern of the soil type, 

superimposed on the patchy pattern imposed by data grid.  

STG (Figure 3-5g-i) shows large zones with negative values, indicating the extent an 

severity of overexploitation as a result of pumping in the basin. Nevertheless, the affected 

area depends on the RSV scheme. For SRGP, the overexploited zone is mainly confined to 

the central part of the basin i.e. in the “la Mancha Occidental” sub-unit aquifer, which is the 

zone most affected by the large withdrawals (Figure 3-2c).The two other RSV schemes the 

area of overexploitation appears to be more extensive, especially toward the south-eastern 

and north-eastern parts of the basin.  
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Figure 3-5 Spatial distribution of the total period accumulation for the three RSV schemes.  

3.3.3.2 Uncertainty 

Figure 3-6 shows the uncertainty as the difference between the 95th and 5th percentiles 

over the 100 realizations for the rainfall, RCH and STG. The spatial pattern of the uncertainty 

displays much less information when we upscale the rainfall resolution from SRGP to WCH 

and then to LMP. Therefore, in the upscaling process we reduce the uncertainty width at the 

expense of losing information of the real spatial uncertainty. 

In SRGP, the uncertainty maps for the rainfall and RCH display dots of low 

uncertainty (red colors). These dots indicate that rain gauges are available at these locations 

and are used as information to condition the rainfall stochastic model.   

RCH (Figure 3-6d-f) shows that the uncertainty for SRGP and WCH is greater in the 

zones where the amount of RCH is larger (associated with higher elevations) and that reduced 

uncertainty is associated with lower amounts of RCH and with a greater density of rain 

gauges in the central zone. 
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The uncertainty maps for STG (Figure 3-6g-i) show (1) that SRGP presents the widest 

range and the greatest spatial variation of the uncertainty, (2) the zones where the inputs and 

outputs are most and least variable (red zones fewest variations, blue zones most variations) 

and (3) that the reduction of the uncertainty observed in other responses due to the 

measurements in the rain gauges is filtered 

 
Figure 3-6 Uncertainty spatial distribution of the total period accumulation for the three RSV 
schemes, expressed as the difference between the 95th and 5th percentiles.  

3.3.4 Climatological and Probability Distribution of GW Recharge  

To understand why recharge RCH is the hydrologic variable most sensitive to RSV 

scheme, we compute the basin spatial integrated monthly cumulated RCH, and then examine 

pattern of climatologic variation (Figure 3-7). The results are shown using a modified 

boxplot, where the interquartile range is substituted by 10-90 and 5-95 percentiles levels 

computed from the ensemble of 100 realizations. This allows comparison of the shape 

distributions and mean seasonal values obtained with the three RSV schemes.  
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Figure 3-7 Climatologic variability for the GW Recharge spatial accumulation for the three RSV 
schemes. 

Figure 3-7 indicates first that the recharge is mainly produced between November and 

March and secondly that SRGP produces RCH for about five months (May to October) 

unlike WCH and LMP. The distributions are positively skewed for all cases. Further, the 

empirical cumulative distribution function (cdf) shows the most significant differences in 

rainfall regarding RCH (we only show January, August and December in Figure 3-8).For 

example, in January (the wettest month), SRGP has a probability of occurrence of 90%, 

whereas this is 64% for WCH and 50% for LMP.  In the driest month, August, the probability 

of occurrence drops to 52.5% for SRGP, 3.5% for WCH and 1.1% for LMP.  From the tails 

of the distributions for the wet months (Figure 3-8a and c) we see there is some probability of 

occurrence of high RCH events, and these are similar for the three rainfall cases as might be 

expected due to less dissimilarity in representation of spatial distribution for larger events.  

 
Figure 3-8 Empirical cumulative distribution functions for the GW Recharge Spatial accumulation. 
a)January, b) August and c) December 
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3.3.5 Spatial Distribution of Yearly Cumulative Recharge  

The spatial distribution of the yearly cumulative RCH also highlights the role played 

by RSV in the hydrological response, especially for RCH. Figure 3-9 shows a four year 

transition period (1993-1996) from dry to wet conditions. The spatial RCH pattern for the last 

year (i.e. 1996) resembles the spatial distribution of cumulative RCH for the whole 

simulation period 1950-2001 (Fig.5c). The largest differences obtained in the RCH arise in 

the driest years (1993 and 1994), during which SRGP produced a patchy and discontinuous 

RCH field with small annual recharge values, whereas the recharge obtained is practically 

zero for LMP and WCH. These differences in the annual RCH fields are observed in all the 

dry years analyzed. 

 
Figure 3-9 The yearly accumulation of the spatial distribution for the of GW Recharge for the three 
RSV schemes. The years selected are a transition between a dry period (1993-1994) to a wet period 
(1995-1996). 

3.3.6  Time Series at Selected Locations 

To explore the dynamic of the system in more detail, we selected five locations 

distributed over the domain (indicated by green dots Figure 3-1) to illustrate the time series 
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response and uncertainty regarding (1) the effect of the pumping wells, (2) the occurrence of 

wetlands, (3) the effect of elevation, and (4) gaps in the data set in rain gauge records (Figure 

3-10 and Figure 3-11). 

The combined effect of pumping and RSV (using a complete measurement record of 

rainfall time series) is shown in Figure 3-10a. The uncertainty in rainfall, SM and RCH drop 

to zero when using the SRGP scheme in which rainfall data conditioned on the data, whereas 

the uncertainty is not zero for the WCH and LMP schemes because of the averaging that 

includes variability of the surrounding points. Groundwater level and STG both clearly show 

the impact of RSV on pumping. Even though the hydrological variables show a similar trend, 

the effect of pumping varies depending on the RSV scheme. This was especially true in the 

dynamics of the groundwater level. The higher the spatial resolution of the driving rainfall 

fields the larger the simulated decline in groundwater levels.  

As regards the groundwater levels, the fact that the groundwater pumping filters the 

uncertainty is noteworthy; the larger the pumping rate the lower the uncertainty, regardless of 

the RSV scheme. Now, it might be argued that the small uncertainty in the groundwater level 

is mainly due to the propagation of the small rainfall uncertainty signal. However, Figure 

3-10b shows similar results for a place affected by pumping where rainfall estimate are not 

conditioned on nearby observations (showing a larger rainfall uncertainty bound). While, 

rainfall, SM and RCH now show wider uncertainty bounds wider uncertainty bounds, the 

uncertainty in groundwater level and STG remains relatively small. This is, of course, 

because the dynamics of the system at these locations is dominated by the dynamics of 

pumping rather than those of rainfall. 

The effects of wetlands on the uncertainty are similarly illustrated in Figure 3-10c. 

When the state of the system is close to “natural” conditions the wetlands remain active and 

the uncertainty is zero. This is because under natural conditions, the RSV scheme has no 

effect on (1) local SM because the soil is always saturated, (2) on local AET which is 

occurring at the potential rate, and (3) on RCH which is nonexistent. These effects are 

propagated into GWH and STG. However, as the effects of pumping grow and the wetlands 

disappear, RCH begins to increase with a non-negligible uncertainty bound, especially for the 

SRGP scheme. As shown in the figure, the RCH uncertainty is not propagated to the 

groundwater level or to STG. Again, the effect of pumping damped the propagation of 

uncertainty propagation. 
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Figure 3-10 Time series at selected locations. Effect of pumping and wetlands on the uncertainty 

To contrast with the above, we show the hydrological variable response at two points 

without groundwater extraction (Figure 3-11). The first is in an elevated zone but has not rain 

gauge station nearby. The second is located in a mid-elevation zone, where a rain gauge is 

situated. However, there are some gaps in the rainfall record. This exerts a considerable 

influence on the simulated rainfall time series (and hence on the corresponding rainfall 

uncertainty bound) since the SRGP model performs unconditioned rainfall simulation when 

conditioning data is not available (Figure 3-11b). As shown in Figure 3-11, the smaller the 

spatial resolution of rainfall the larger the uncertainty of rainfall, RCH, GWH and STG. 

Moreover, if we compare the uncertainty bounds of GWH and STG with those obtained using 

high pumping rates (Figure 3-10) we can see that uncertainty is smaller when pumping rates 

are higher.  
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Figure 3-11 Time series at location without groundwater extractions 

Due to gaps in the rainfall data, the widths of the simulated uncertainty bounds for the 

hydrological variables vary depending on whether the conditioning data are available or not. 

The resulting rainfall uncertainty pattern is propagated into the hydrological system through 

SM and RCH. However, the abrupt changes in uncertainty of rainfall are damped out and so 

not observed in GWH and STG. This suggests that the propagation of rainfall uncertainty into 

the groundwater system is damped in the RCH signal and thereby into the rest of system. 

3.3.7 Natural conditions – absence of pumping –  

While the UppGb is an overexploited aquifer system, it is instructive to examine the 

behavior of the system under natural conditions, by turning off groundwater extraction.  
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Figure 3-12 compares result under the pumped and not-pumped scenarios. Under 

natural conditions, the fractional area covered by wetlands WFA never attains zero value, 

indicating that a portion of wetlands will always remain active (Figure 3-12a) Moreover, the 

groundwater and surface water exchange eGWS is always negative; indicating that aquifer 

always contributes to surface water supplies.  

Figure 3-12b shows that during 1997 (an exceptionally wet year) and in a context of 

massive exploitation conditions, the increase in the availability of water is directly transferred  

into aquifer recharge, whereas for natural conditions the increase in the availability of water 

is transmitted into increased groundwater discharge to the rivers.  

Figure 3-12c (STG) illustrates the effect of overexploitation on the aquifer. Under natural 

conditions, the aquifer largely maintains a positive balance and the system is only affected 

during periods of hydrological droughts; see also WFA and eGWS (Figure 3-12a and b).  

 
Figure 3-12 Comparison of responses (wetlands, gw-sw exchange, gw storage) under natural 
conditions and with groundwater extractions for the SRGP rainfall case.  
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3.4 Discussion  

3.4.1 Cause and effect of Hydrogeological Response 

Our results indicate that RSV exerts a considerable influence on overall response of 

the hydrogeological system in the UppGb. The primary variables driving the hydrologic 

response are RCH and groundwater extraction. Because, the pumping well rates and the total 

rainfall volume applied were the same, variations in the behavior of the system are mainly the 

resulted of different amounts and patterns of recharge associated with different degree of 

RSV. 

These differences are explained by the fact that SRGP produces rainfall fields 

containing considerably larger local scale rainfall values than in the lumped products. These 

differences affected the spatial pattern distribution of the RCH, resulting in high frequency of 

spatially intermittence RCH fields (Figure 3-8a), especially, during the driest period and the 

months with low recharge (July and August) (climatological, Figure 3-7 and empirical cdf, 

Figure 3-8). These patterns in the spatial response show up in the cumulative spatial RCH 

fields, shown in Figure 3-3c. So while LMP and WCH are characterized by periods of no 

recharge, whereas the SRGP scheme tends to always result in recharge somewhere in the 

basin. 

These variations in RCH translate into differences in the simulated response of the 

hydrogeological system (GWH levels). Variations in the recharge imply different ground 

water level spatial distributions and therefore different groundwater fluxes. This affects the 

response of all of the other hydrological variables (i.e. runoff generation, gw-sw exchange, 

river runoff, gw Storage). Since QESC is principally dominated by subsurface runoff, its 

dynamics are similar to RCH and depend on how shallow the GWH levels are. As SRGP 

produces a combination of higher GWH levels and RCH, the runoff generated is higher in 

this case. This response also shows how strongly the drawdown in GWH levels is affected by 

pumping. Similarly, eGWS depends mainly on GWH levels and QRV, especially when the 

dynamic of the system are inverted because of groundwater extraction. When that happens, 

the rivers begin to recharge the aquifer causing a loss of almost all of the river runoff. As the 

GW heads levels are higher for the case of SRGP, they produce higher levels of discharge 

from the aquifer, and also higher Qrv (since it is the combination of eGWS with spatial 

QESC).  
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Finally, the overall response of the hydrogeological system is reflected inSTG. This 

amount expresses the total net fluxes and ascertains whether the aquifer is overexploited 

(negative and positive values, respectively). The use of high resolution rainfall fields strongly 

suggests that the system response is less affected by pumping (Figure 3-3f and Figure 3-5g-i). 

The absolute cumulative values are as follows: (1) recharge for the SRGP scheme is 

92.3% and 55.2% larger than those obtained for the LMP and WCH schemes, respectively, 

and (2) storage for the SRGP scheme is 136% and 91% less affected than the LMP and 

WCH schemes, respectively. The “naturalized-system” experiment shows that the 

groundwater extractions do have a significant impact on the hydrogeological response of the 

system.  

3.4.2 Uncertainty 

The analysis of uncertainty demonstrated the advantage of using Stochastic Rainfall 

Generation (Sapriza et al., 2013a) when examining the response of a hydrological system. A 

major source of uncertainty in the estimation of rainfall uncertainty stem from the lack of 

rainfall information at every location within the basin. The SRGP method enables us to create 

plausible rainfall fields that retain important characteristics features of the rainfall fields 

observed (spatial correlation structure, time rainfall intermittence, and variations due to 

different rainfall generating process), while incorporating rainfall observations from available 

meteorological stations. In each of the stochastically generated ensembles of rainfall field 

time series the simulated rainfall uncertainty is set to zero where rainfall data is available (red 

dot in Figure 3-6 a and b and narrow width uncertainty Figure 3-10b); note that the scheme 

also allows us to assign a finite uncertainty at each gage location to reflect gauge error, but 

this error was assumed to be negligible for purposes of this study. 

Propagation of the uncertainty in knowledge of spatial rainfall uncertainty through the 

hydrogeological response showed that: 

a. In term of totals (Figure 3-3), uncertainty remains low for soil moisture and 

AET, increases for the RCH, QESC and eGWS, and becomes low again for 

STG. 

b. At point locations, rainfall uncertainty is transmitted into SM, RCH but not so 

strongly into the GWH levels and STG.  This shows the effects of the filtering 

of the RCH signal. 
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c. Simulations in the pumped regions and wetland areas are largely not affected 

by rainfall uncertainty.  

d. The spatial distribution of uncertainty is reduced (SRGP case) in places where 

raingage data is available (rainfall and RCH). 

3.5 Conclusions 

We have investigated the impacts of rainfall spatial variability (RSV) on the simulated 

hydrogeological response of the Upper Guadiana Basin, using representations of rainfall 

having different spatial resolution but identical volumes. Overall, we find that spatial 

variability in rainfall affects the response of the hydrogeological system in two different 

ways: (1) The fast responding soil moisture and actual evapotranspiration fields are largely 

insensitive to degree of rainfall spatial variability, while (2) the more slowly responding 

groundwater recharge and the spatial runoff generation processes are significantly affected. 

These differences directly affect the evolution of groundwater head levels and thereby the 

groundwater surface water exchanges, river runoff discharge, and sensitivity of the system to 

groundwater pumping. Further, the spatio-temporal intermittence in the aquifer recharge 

associated with higher spatial variability of rainfall plays a key role in the dynamics of the 

system.  

To further generalize the findings of this work, it will be necessary to study other test 

basins, with different parameterization and boundary conditions. However, our results clearly 

demonstrate the importance of using adequate representation of spatial rainfall distributions 

when assessing the response of a hydrogeological system. This can be of paramount 

importance when conducting climate change impact studies, as the results can have 

dramatically different implications on the evaluation of water resource management 

strategies. 
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4 A Circulation Pattern-Based Approach to 

Evaluate the Combined Impacts of 

Climate Change and Groundwater 

Pumping on Catchment Dynamics 3 

4.1 Introduction 

The most recent Intergovernmental Panel on Climate Change (IPCC) assessment 

report (IPCC, 2013) confirms once again their previous projections (IPCC, 2007) .Many 

parts of the world can be expected to be drier in the future. Such changes in hydroclimatology 

will likely have severe impacts on the water budgets of highly connected (groundwater-

surface water interactions, wetlands, etc.). Many of these are already under considerable 

pressure, and even overexploited, due to anthropogenic demands (agriculture, energy, 

industry, cities, ecologic flows, and more) (Custodio 2002). To better manage the water 

resources in such basins will require evaluations of the combined effects of both climate 

change and human activity, conducted within a non-stationary framework if possible, and 

including adequate assessment of all of the uncertainties involved (Milly et al., 2008; Beven 

2011). 

Traditionally, climate change impacts studies rely on scenario projections provided by 

General Circulation Models (GCMs). The hydrometeorological consequences of such 

projections are transformed (e.g., downscaled) and used as inputs to hydrological models, 

which were previously calibrated against historical observations. By comparing the historical 

and projected hydrological responses, the impacts of climate change can be assessed (Chiew 

et al., 2009; Fowler et al., 2007). Transformation of the GCM projections is necessary, 

because GCMs are (as of yet) unable to simulate the amount and spatial resolution of 

precipitation (a key input climate variable) sufficiently well. The most commonly used such 

transformations are known as statistical downscaling methods (SDMs) (Maraun et al., 2011; 

3This chapter is based on the paper: Sapriza Azuri, G., Jodar, J., Carrera, J., and Gupta, H. (2013).A 
Circulation Pattern-Based Approach to Evaluate the Combined Impacts of Climate Change and Groundwater 
Pumping on Catchment Dynamics .To be Submited  
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Fowler et al., 2007).  SDMs can be defined by developing relationships between the 

observed and GCM simulated values (typically of precipitation and temperature) for some 

historical period, and then using such relationships to develop relatively simple bias 

correction (BC) strategies (Johnson and Sharma 2011; Piani et al., 2010;Wood et al., 

2004). More sophisticated stochastic approaches have also been proposed, based on the use 

of gridded reanalysis climate data (Kalnay et al., 1996) to calibrate the parameters of the 

SDM (Sapriza et al., 2013a; Fowler et al., 2005; Hundecha and Bardossy 2008).  

Impact assessment studies of this kind typically treat both the hydrological system and 

the SDM as remaining stationary with time. While such assumptions are difficult to relax, it 

is increasingly clear that ways to evaluate the validity of such results need to be developed.  

Further, such studies also typically assume that the downscaled GCM simulations (e.g., of 

precipitation and temperature) can function as surrogates for the corresponding actual values 

(represented by observations or reanalysis fields), which implies an assumption of stochastic 

equivalence; i.e., that even though the downscaled GCM simulations do not match the actual 

values exactly, the relevant stochastic properties of the actual variables are well enough 

represented that the impacts of such differences on the estimated hydrological impacts are 

insignificant. However, this critical assumption is very rarely verified (Wood et al., 2004) and 

only a few studies have rigorously evaluated the SDM assumptions for the control historical 

period (Frost et al., 2011; Vrac et al., 2007).   

In this paper we formalize the Stochastic Equivalence concept used to evaluate the 

validity of hydrological response obtained with the hydrological model driven by downscaled 

GCM simulations. With that purpose, for the historical period, we evaluate whether the 

GCM-based simulation produces catchment hydrological responses stochastically equivalent 

to those actually observed, or to those generated by the Catchment Model by using actually 

observed forcing data. 

In addition, we present an evaluation procedure to assess the combined effect of 

climate change and groundwater pumping in a basin. To that end, the evaluation was 

performed in three stages, based on comparing the catchment responses. First, the projected 

climate change and historical control GCM under naturalized conditions (no groundwater 

extraction) were evaluated.  In a second instance both periods were evaluated separately, 

comparing the hydrological response with and without pumping, each case by itself.  Finally, 

the combined effect of pumping and climate change was evaluated, comparing the catchment 
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responses for the historical GCM with the future projection.  The proposed analysis   took 

place in the Upper Guadiana Basin (UppGb), located in central Spain.  

4.2 Methods 

4.2.1 Study Area 

The 16000 km2 Upper Guadiana basin (UppGb) is situated in the central Spanish 

Plateau, and is located between latitudes 38º37’N and 40º08’N, and longitudes between 

2º25’W and 3º51’W. Morphologically, the main part of the basin is characterized by a 

smooth topography, with altitudes ranging from 550 to700 m.a.s.l. Nevertheless, the northern 

and southern boundaries (Sierra Altomira and Campos de Montiel, respectively) are 

mountainous with altitudes exceeding 1000 m.a.s.l. The combination of smooth topography 

explains the lack of a well-defined drainage network and the abundance of large karstic 

aquifer formations gives rise to complex relationships between surface and subsurface water. 

These interconnections enable wetlands to flourish (around 250 km2), which is of 

considerable ecological significance.   

The UppGb has a mixed continental, semi-arid, Mediterranean climate. Precipitation 

has considerable space-time variability because of Atlantic and Mediterranean influences and 

orographic effects. Average annual precipitation is ~450 mm/year and characterized by 

strong seasonal variability, with dry summers during which precipitation is dominated by 

small convective rain cells of short duration. Conversely, the wet Autumn and Spring seasons 

are characterized by stratiform frontal rain with large spatial continuity and duration.   

The groundwater system of the UppGb consists of four aquifer systems, known as the 

Sierra Altomira, Mancha Toledo, Campos de Montiel and Mancha Occidental (Figure 4-1). 

In 1989, the latter two of these units were the first Spanish aquifers to be declared 

overexploited due to the combined effects of groundwater pumping (with drawdowns 

exceeding 50 meter at some locations) and the occurrence of several droughts. Briefly, the 

main hydrogeological characteristics of these aquifer system can be summarized as: (1) the 

Sierra Altomira aquifer consists of two layers, the deeper being a Jurassic semi-confined unit 

made up of sandy and dolomitized limestone and the upper being a Cretaceous free aquifer 

formed by dolomite and limestone; (2) the Mancha Toledo is a Triassic-Miocene-

Plioquaternary free aquifer made up of detrital sediments; (3) the Campos de Montiel is a 

Jurassic limestone karst free aquifer; and (4) the Mancha Occidental is a two-layer aquifer 
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with a detrital semi-confining layer that works as an aquitard between the deeper Jurassic-

Cretaceous confined aquifer composed by limestone, and the upper tertiary-quaternary free 

aquifer composed of  Miocene limestone.  

 
Figure 4-1 Area of study. Principal features are represented: Aquifer delimitations, principal rivers, 
piezometric location with their calibration. 

4.2.2 Hydrogeological Model  

In this work, the hydrogeological response of the UppGb was simulated using a 

distributed hydrogeological model that simulate the soil water balance, groundwater flow, the 

propagation of runoff into the rivers, and the coupling of surface and groundwater 

components. Details of the model and its calibration are discussed by Sapriza et al., (2013b); 

here we use the same set of model parameters. Note that we used the Hargreaves-Samani 

equation to estimate potential evapotranspiration (PETo) since the variables required by more 

complex equations are not readily available for the future scenario periods. Further, surface 

temperatures were adjusted to account for elevation by estimating the lapse rate from 

historical ground-based observations at multiple locations within the basin. For cases where 

the hydrogeological model includes groundwater extractions, the pumped water was 

incorporated as irrigation inputs to the soil balance. 
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4.2.3 Climate forcing 

The primary climate drivers used to force the UppGb model are Temperature (used to 

estimate the PETo) and Precipitation. A series of transformations were applied to the mean 

basin-scale GCM simulations of these variables, first to correct for bias in the GCMs outputs, 

and second to generate high-resolution spatially distributed rainfall fields via a stochastic 

rainfall generation process (SRGP) model.  For the latter, separate SRGP models were 

developed for each of 8 different Atmospheric Circulation Patterns (ACPs) and 6 seasons 

(SSNs) during the year, as discussed briefly below; see Sapriza et al. (2013a) for more 

details. This allows us to track the non-stationarity of the rainfall generation process through 

the year, and as the patterns of atmospheric circulation change in response to variations in 

climate. 

4.2.3.1 Classification of Seasonal Atmospheric Circulation Patterns 

A discrete classification of 8 ACPs (Table 4-1) over the Iberian Peninsula was 

determined by using an automated version of the Lamb Weather classification scheme 

(Jenkinson and Collinson, 1977; Jones et al., 1993), in accordance with the 

recommendations of Goodess and Palutikof (1998). The Lamb classification scheme is based 

on the direction and vorticity of surface wind in geostrophic units. To obtain ‘observed’ ACP 

values for each day we used gridded values, at 16 points covering the Iberian Peninsula, of 

historical mean sea level pressure provided by the NCEP-NCAR re-analysis data set (Kalnay 

et al., 1996). To obtain the GCM simulated ACPs (for historical and future projection) we 

used the sea level pressure estimated by the model, without correction, at the same 16 points. 

ACP was then analyzed by seasons SSN = {JanFebMa, AprMay, Jun, JulAug, Sep, 

OctNovDec} to properly track the climatology of the study area, as discussed in Sapriza et al. 

(2013a). This resulted in 8x6=48 ACP-SSN types and hence 48 different stochastic models 

for the generation of high-resolution spatially distributed rainfall fields. 

ACP Type Description 
C Cyclonic 

HYC Hybrid cyclonic 
UC Unclassified/light flow cyclonic 

A/HYA Anticyclonic/ hybrid-anticyclonic 
UA Unclassified/light flow-anticyclonic 

W/NW/SW/N Westerly/ northwesterly /southwesterly/northerly directional types 
E/NE Easterly/northeasterly directional types 
S/SE Southerly/southeasterly directional types 

 
Table 4-1 Atmospheric Circulation Pattern classification. 
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4.2.3.2 Selection of GCMs and Projected Future Scenario  

The quality of the climate simulations provided by different GCMs can be highly 

variable particularly when evaluated at the local (study region) scale (Brekke et al., 2008; 

Pierce et al., 2009; Dominguez et al., 2010). Therefore, to maximize confidence in our 

results, we selected a subset of 5 GCMs (Table 4-2) from a set of 20 models participating in 

Phase 5 of the Coupled Model Intercomparison Project (CMIP5 http://cmip-

pcmdi.llnl.gov/cmip5/) (Taylor et al., 2011). The methodology and criteria for this selection 

are reported by Gupta et al. (2013); briefly, these 5 were the only ones (of the 20 examined) 

found to provide reasonable reproduction of historical annual frequency of ACPs over the 

Iberian Peninsula, and of the overall climatology and ACP-climatology (climatology by ACP 

type) of key hydrometeorological variables over the UppGB. 

ID GCM Historical RCP8.5 
gcm1 CanESM2   
gcm2 CsiroMk36   
gcm3 GissE2R   
gcm4 MPI-ESM-LR   
gcm5 MPI-ESM-MR   

 
Table 4-2 List of good GCM selected. 

For this analysis we considered two 40 year periods: (1) a historical period from 1960 

to 1999; and (2) a future scenario period from 2060 to 2099. For the future period we selected 

the RCP85 scenario, which is the most severe of the 4 ‘Representative Concentration 

Pathway’ greenhouse gas (GHG) emission projections developed for the 5th IPCC 

Assessment Report (Moss et al., 2010). Briefly, RCP85 is characterized by GHG emissions 

that cause an increase in radiative forcing to 8.5 W/m2 by the end of the century. This 

scenario was selected so as to obtain a plausible upper bound on the hydrometeorological 

impacts that might be expected due to climate change, so as to provide sufficient contrast 

with the historical response of the basin. 

4.2.3.3 Bias Correction of GCM Outputs 

The GCM evaluation performed by Gupta et al. (2013) shows that the 5 selected 

GCMs do an excellent job of simulating the annual and seasonal frequencies of atmospheric 

circulation patterns over the Iberian Peninsula. Further, these models also provided good 

simulations of the climatology of basin-scale temperatures (min, max and average), although 

with a small positive additive bias. Similarly, the models are able to track the climatological 
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patterns of precipitation intensity and frequency of rainy days, but with severe (largely 

positive) biases in mean wet-day precipitation amount.  

Based on these findings and assuming that the impact of climate will be associated to 

the cumulative effects of increases in Temperature, changes in annual and climatological 

ACP frequency, changes in PoR (significant reductions), and changes in WDA (minor 

reductions) as reported by Gupta et al. (2013), we applied the following bias corrections 

(BC) to the daily data provided by each of the 5 selected GCMs. In each case, for each of the 

48 ACP-SSNs, the mean daily wet day amount (WDA) of precipitation, probability of rain 

(PoR), and temperature were adjusted as indicated below. Interestingly, we found that simply 

adjusting the means also caused the corresponding entire distributions to conform; in the case 

of precipitation wet day amounts this is because the daily data are approximately lognormal. 

Accordingly, a primary assumption of this approach is that the GCMs are able to provide 

relatively good simulations of the daily time-step time-evolution of the ACPs over the Iberian 

Peninsula, and how these can be expected to change into the future.  

First we discuss bias-correction for the historical period. For each ACP-SSN, the PoR 

represents the fraction of corresponding days that can be expected to be rainy (having non-

zero precipitation). In some cases the GCM’s have a tendency to rain more often (less often), 

in which case the PoR is too high (too low).  We therefore adjusted the PoR for each model 

for each ACP-SSN as follows: 

a) Compute RH_PoRk
i,j = µObsHistPoRi,j/µGcmHistPoRk

i,j for the ith season, jth ACP and 

kth GCM, where µObsHistPoR represents the historically observed PoR (1960-1999) 

and µGcmHistPoRi,j represents the GCM-based PoR over the same period.  

b) If RH_PoR < 1 the number of rainy days produced by the GCMs for that ACP-SSN 

needs to be reduced. For each corresponding rainy day, generate a random value Z 

from a uniform distribution Z=U[0,1]. If Z >RH_PoR set the day to be non-rainy and 

wet-day amount to zero.  

c) If RH_PoR>1 the number of rainy days produced by the GCM for that ACP-SSN 

needs to be increased. For each corresponding non-rainy day, generate a uniform 

random variable Z=U[0,1]. If Z< RH_PoR-1 set the day is set to be rainy, and 

randomly generate a spatial-mean wet-day amount from a Gamma distribution, where 

the scale and shape parameters have previously been estimated for that ACP-SSN 

from the observed data (see Sapriza et al., 2013a).  
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Having corrected the PoR, we next bias-correct the GCM simulated WDA by 

applying a simple multiplicative correction to the daily GCM-based WDA for each ACP-

SSN. The correction coefficient was computed as follows: BCWDAk
i,j  = 

µObsHistWDAi,j/µGcmHistWDAk
i,j where µObsHistWDA is the corresponding historically 

observed mean WDA and  µGcmHistWDA is the GCM-based mean WDA. 

Finally, the GCM simulated temperature was adjusted by applying a monthly additive 

correction defined as ΔTHp = µObsHistTempp – µGcmHistTempp, for p={Jan,Feb,…,Dec}, 

where µObsHistTemp is the historical mean observed temperature, and µGcmHistTemp is the 

corresponding GCM-based value. 

Of course, for the future period we have no available observations. Therefore, lacking 

any rational basis for thinking otherwise, and as is common in bias-correction strategies, we 

assume that the nature of the biases in PoR, WDA and temperature remain the same 

(stationary) for each GCM.  We therefore apply the same bias correction factors to the future 

period as discussed above. This amounts to an assumption that each GCM is able to provide 

internally consistent simulations of the hydrometeorological changes we can expect under the 

presumed scenario conditions. Of course, it is quite possible that these corrections would 

need to be different, but this seems a reasonable way to proceed. Note however, that any 

changes in annual and climatological frequency of the regional ACP’s due to global GHG 

induced warming, as projected by the GCM’s, will act to change the hydrometeorological 

response over the basin in a non-stationary manner. 

4.2.4 Stochastic Generation of High-Resolution Spatially-Distributed Rainfall 

Fields 

Sapriza et al. (2013b) have reported on the importance of rainfall spatial variability 

(RSV) to both the overall and spatially distributed water balance response of the UppGb 

hydrogeological system. In that work, we showed that spatial variability in the amount of 

rainfall significantly affects the amount of groundwater recharge, and thereby the overall 

response of the system. Here, we adopt the same Stochastic Rainfall Generation Process 

(SRGP) model developed by Sapriza et al. (2013a,b) for spatially downscaling the GCM-

based bias-corrected simulations of daily catchment-mean wet day precipitation amount. The 

main difference from the aforementioned work, where the SRGP simulations were explicitly 

conditioned on historical observations from several rain gauges throughout the watershed, is 

that these stochastic simulations cannot be directly conditioned on gauge data; they do 
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however reflect information regarding spatial covariance structures and elevation-based drift 

obtained from the historical gauge record. Therefore, the SRGP does approximately account 

for two major non-stationarities; a) changes in the frequencies of different precipitation 

generating mechanisms (frontal and convective), and b) spatial non-stationarities caused by 

interactions of meso-scale atmospheric patterns with topography (primarily orographic 

effects).  

In summary, our approach uses 48 separate SRGP models (one for each ACP-SSN) to 

spatially downscale bias-corrected basin-scale mean wet day precipitation amounts simulated 

by each GCM. In doing so, we take as given the daily sequence of ACPs specified by each 

GCM, the daily sequence of rainy / non-rainy days (bias-corrected as indicated above), and 

the corresponding spatial mean wet day amount for that day (bias-corrected as indicated 

above).  Since Gupta et al (2013) conclude that the GCM’s do a remarkably good job of 

representing the annual and climatological frequencies of ACP arrivals over the Iberian 

Peninsula, we assume that the time evolution sequence of ACPs provided by the GCMs can 

be trusted and used without any correction. As shown further in Gupta et al (2013) these 

annual and climatological frequencies do change under scenario RCP85 projections, lending 

support to our approach for climate impact analysis. 

4.3 Evaluation Strategy 

4.3.1 Testing for Stochastic Equivalence 

For the purposes of hydrological modeling in support of Water Resources 

Management (WRM), it seems reasonable to assume that knowledge of the exact daily 

sequences of precipitation and temperature is not critical, but that what is required is accurate 

reproduction of monthly values, longer-term trends, and associated stochastic (distributional) 

properties. This assumption (if valid) permits us to conduct catchment impact analysis using 

(properly) bias-corrected GCM simulations (from properly selected models). Hence, validity 

is established assessing that, for the historical period, the GCM-based simulation strategy 

produces stochastically equivalent catchment hydrological responses to those actually 

observed, or to those generated by the Catchment Model by using actually observed forcing 

data. We note that such tests are not commonly performed (exceptions include Wood et al., 

2004). 
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In this work we examine the assumption of stochastic equivalence for the 40-year 

historical period 1960-1999 between the hydrogeological responses simulated by the spatially 

distributed hydrogeological catchment model when driven by a) observed (SRGP models 

conditioned by catchment gage data; case OBS) precipitation and temperature data, and b) 

corresponding GCM-based bias-corrected and downscaled data (SRGP models driven by 

GCMs; case GCMH). In both cases, we simulate the daily catchment response for the 

historical 1960-1999 period under naturalized conditions (without groundwater pumping), 

and initialized using average initial conditions from previous naturalized case runs. Note that 

since we are examining the ‘naturalized’ situation, comparisons to observations are not 

possible. However, since this comparison eliminates the confounding effects of model 

structural and parameter estimation errors, it allows us to isolate the effects of differences due 

to the source of the climatic forcing used. In each case, we generate 50 realizations of the 

rainfall fields for each day and use these in conjunction with temperature based estimates of 

PETo to drive the UppGb model. As explained above, for the GCMH case, the sequence of 

ACP provided by each GCM was not corrected.  

4.3.2 Evaluation of GCM-based Projections of Climate Impacts under 

Naturalized Conditions 

To evaluate the potential effects of projected Climate Change under RCP85, we first 

examined the differences in catchment responses between the 40-year historical period 1960-

1999 and the 40-year future period 2060-2099 under naturalized conditions (no groundwater 

pumping). These impacts can therefore be assumed to be the accumulated effects of increases 

in Temperature, changes in annual and climatological ACP frequency, changes in PoR, and 

changes in WDA as reported by Gupta et al. (2013).  

One small difference from the procedure used for the evaluating stochastic 

equivalence was that daily RCP85 simulations for one of the 5 selected GCMs (the GISS 

model) were not available. Therefore our assessment is based on the 4 remaining models. As 

discussed before, we assumed stationarity in the bias-corrections for daily PoR, WDA and 

temperature for each ACP-SSN, and used the GCM specified ACP sequences to generate 

spatially distributed rainfall fields via the SRGP stochastic downscaling approach. 
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4.3.3 Examining the Additional Effects of Groundwater Pumping 

Having examined projected changes in the UppGb under naturalized conditions, we 

next explored the potential additional impacts that might be expected due to groundwater 

pumping. For this, we assumed that the future space-time pumping pattern will follow that of 

2006 (Figure 4-2), selected as a representative year from the historical pumping record. We 

applied the same seasonal pattern for each year, for both the historical and future periods. 

Therefore, the cyclical pattern of pumping is assumed to be the same. However, for the future 

period we applied a small increase (from 549 hm3/year to 553 hm3/year) in pumping to 

correspond to the changes in estimated demand associated with agriculture assessed in the 

Hydrological Plan for the Guadiana Basin (HPGB) for the UppGb. These assumptions about 

predicted demand are consistent with the fact that the HPGB predicts almost no increase in 

agricultural demand for water (provided almost entirely by groundwater pumping) over the 

next 20 years. 

 
Figure 4-2 Groundwater Pumping for the year 2006 used to generate the space-time series of pumping 
for the historical and future period. 

To investigate the additional effect of groundwater pumping, three cases were 

examined. In the first (called Historical), we look at the differences during the historical 

period under naturalized (GCMH) and assumed pumping conditions (GCMH+PMP). In the 

second (called Future), we look at the differences during the future period under naturalized 

(GCM-RCP85) and assumed pumping conditions (GCM-RCP8.5+PMP). Finally in the third 

(called Change), we look at the change from historical assumed pumped conditions (GCM-

RCP85) to future assumed pumped conditions (GCM-RCP85+PMP). In all three cases the 

UppGb model was initialized to identical conditions as mentioned earlier. However, for 

purposes of response analysis, we discarded the first 5 years of each simulation to minimize 

potential impacts of the initialization assumption.  
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4.3.4 Overall Evaluation Strategy 

In each of the study cases described in Section 3, we followed a general evaluation 

strategy of comparing the envelopes of the ensemble of hydrogeological responses provided 

by the UppGb model for the 50 stochastically generated realizations. In each case, the 

stochastic uncertainty was expressed as 5-95 % confident interval limits. To account for 

future uncertainty due to GCM model differences, the GCM-based ensembles were obtained 

by grouping together all of the individual GCM-based realizations. 

The UppGb hydrological responses examined in this analysis are Soil Moisture (SM), 

Actual Evapotranspiration (AET), fractional area covered by Wetlands (WFA), Spatial 

Runoff Generation (QESC), Groundwater Recharge (RCH), Groundwater Surface water 

exchange (eGSW), River Runoff discharge (QRV) at the outlet of the basin, and Net 

Groundwater Storage aquifer (STG). Note that the WFA is defined as the number of soil cells 

that are at saturated state (SM=1) divided by the total number of cell of the upper layer in the 

UppGb model. The STG is computed as the sum of all the inputs and outputs fluxes to the 

aquifers.  

4.4 Results 

4.4.1 Stochastic Equivalence 

A comparison of the catchment scale drivers is shown in Figure 4-3. The OBS and 

GCMH simulations of PETo (Figure 4-3c) agree very well in climatological pattern and 

amount. Precipitation volume (Figure 4-3a) indicates a very good agreement from April to 

November including February. However for January, March and December GCMH tends to 

provide larger amounts. Since general good agreement in historical ACP frequency has been 

observed (Gupta et al., 2013), and the PoR and WDA have been bias-corrected, these 

differences are due to differences in the number of ACPs (which differ between the 

observations and the GCMs). These variations are caused by the directional ACP 

W/NW/SW/N for winter, which is one of the wettest ACP for that season. For this ACP, all 

the GCM produce larger number of ACPs. This results in the differences in numbers of rainy 

days seen in Figure 4-3b. 
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Figure 4-3 Climatologic climate driving forcing for the stochastic equivalence evaluation. They are 
compared the Observed and the GCM historical for the same period of time (1960-1999). Panel a) 
shows the wet day amount precipitation simulated on both cases with the SRGP model with the 5-
95% percentile over the ensembles. Panel b) shows the number of rainy days per month for the 
observation (blue line) and the bias corrected probability of rain for the 5 GCMs. Panel c) shows the 
potential evapotranspiration comparing the observed with the estimated with the bias corrected GCM 
temperatures. 

Next, the climatology of the mean areal basin scale hydrogeological response is 

compared in Figure 4-4. Overall, the match is very good, and differs primarily due to the 

propagation through the hydrogeological system of the difference reported in precipitation for 

the winter months. Note that while SM (Figure 4-4a) and AET (Figure 4-4b) show 

remarkably good agreement, the difference for the winter months in the precipitation leads to 

larger amounts of runoff generation and streamflow (Figure 4-4 c and g), recharge (Figure 

4-4d), WFA (Figure 4-4e), and groundwater recharge (Figure 4-4h), and smaller amounts of 

groundwater-surface water exchange, particularly during the wettest and coldest winter 

months. These results highlight the strong sensitive of the hydrological system to the rainfall 

input variable. It is also interesting to note that the reduced uncertainty in precipitation during 

the summer months translates into quite narrow uncertainty intervals for the hydrogeological 

responses.  

 
Figure 4-4 Climatologic hydrogeological response for the stochastic equivalence evaluation. They are 
compared the Observed (Blue)and the GCM historical (Green) Hydrological response  for the same 
period of time (1960-1999)under naturalized conditions (no groundwater pumping) In each case is 
showed the 5-95% percentile over the ensembles. 
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4.4.2 GCM Projection of Climate Impacts under Naturalized Conditions 

Figure 4-5 presents the climatological comparison of climate forcing between the 

historical (GCMH) and future (GCM-RCP85) periods. Note, that projected future PETo 

increases in a predictable fashion by a 20 %, especially during the summer months (April to 

September) with a peak in July (30 %) in response to increases in temperature. Meanwhile, 

the projected number of rainy days and overall rainfall amount are reduced by an annual 

average decrease of 14% and 25% respectively. In each case the width of the uncertainty 

bounds increases as should be expected due to GCM differences. Note however, that while 

the increase in rainfall uncertainty is greater for the cold and wet winter months, the large 

increase in summer uncertainty of number of rainy days (i.e. probability of rain) indicates 

greater unpredictability in regards to expected weather during the summer.  

 
Figure 4-5 Climatologic climate driving forcing for the GCM Projections of Climate Impacts. They 
are compared the GCM historical (1960-1999) and the GCM-RCP8.5 (2060-2099).Panel a) shows the 
wet day amount precipitation simulated on both cases with the SRGP model with the 5-95% 
percentile over the ensembles. In panel (b) and (c) bold line are the GCM-RCP8.5 and the dotted lines 
the GCM-Historical.  Panel b) shows the number of rainy days per month for the bias corrected 
probability of rain for the 4 GCMs on both periods. Panel c) shows the potential evapotranspiration 
bias corrected GCM temperatures. 

The corresponding naturalized condition hydrogeological responses (Figure 4-6) show 

that a clear reduction can be expected in the quick responses of the system, represented by 

SM and AET (Figure 4-6 a and b), due to these climatological changes. In both cases the 

reductions are more significant from May to September, with a quite similar 20% percentage 

change (Figure 4-7 a and b). Meanwhile the results indicate an increase in the number of 

months having very low recharge (Figure 4-6d), resulting in an extended dry season from 

April to September. This corresponds to an annual decrease of ~40% (Figure 4-7d). The other 

variables (Qesc, eGSW, WFA and QRV; Figure 4-6 c,e,f,g and Figure 4-7c,e,f,g) show 

approximately the same patterns of change. Further, there are large increases in uncertainty, 

particularly from December to April. Interestingly the simulations indicate no significant 

change in groundwater storage (Figure 4-6h); however the percent difference plots (Figure 

4-7h) indicate lower general inputs of water (reflecting the reduction in recharge) from 
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November to January and from May to October, and a reduction in the output of water 

(eGSW) from the aquifer. 

 
Figure 4-6 Climatologic hydrogeological response for the GCM Projections of Climate Impacts. They 
are compared the GCM historical (Green) and GCM-RCP85 (Red) Hydrological response for the 
periods 1960-1999 to 2060-2099 under naturalized conditions (no groundwater pumping).  In each 
case is showed the 5-95% percentile over the ensembles. 

 
Figure 4-7 Relative Changes of the mean difference between the mean climatologic hydrogeological 
responses for the GCM Projections of Climate Impacts. The shadow black line represents the annual 
mean relative change. 

4.4.3 Additional Effects of Groundwater Pumping 

4.4.3.1 Historical 

First we examine the additional impacts of pumping on naturalized conditions during 

the historical period (Figure 4-8). The SM and AET responses (Figure 4-8 a and b) show only 

small increases from May to September due to pumping, caused by the fact that the pumped 

water is incorporated as irrigation inputs to the soil balance. As a consequence, recharge is 

largely unaffected (Figure 4-8d); although on a percentage basis there appear to be large 

increases during the summer months (Figure 4-8d), these correspond to periods where 
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recharge is almost zero. Meanwhile, the other variables (Qesc, eGSW, WFA and QRV; 

Figure 4-8 c,e,f,g) generally decrease by ~50% during throughout the year. In terms of 

absolute values, the differences are more notable from December to March while the relative 

changes (Figure 4-9 c,e,f,g) are bigger during June to October. Pumping appears to have little 

impact of the climatological uncertainty. Note however that pumping has a clear and 

profound impact on the groundwater storage (Figure 4-8h) with significant decreases from 

May to August, and an interesting and non-negligible increase from September to April. 

These changes are in response to the reductions in eGWS (Figure 4-8e and Figure 4-9e), the 

constancy of recharge, and the reduced levels of pumping during the latter months.  

 
Figure 4-8 Effects of groundwater pumping in the Climatologic hydrogeological responses for the 
GCM Historical case (1960-1999). They are compared the GCM historical (Green) and GCM-
historical+Pumping (Maroon). In each case is showed the 5-95% percentile over the ensembles. 

 
Figure 4-9 Relative Changes of the mean difference between the mean climatologic hydrogeological 
responses for the effect of groundwater pumping for GCM Historical cases. The shadow black line 
represents the annual mean relative change. 
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4.4.3.2 Future under Scenario RCP8.5 

Next we examine the impacts of pumping on projected future response (Figure 4-10 

and Figure 4-11). In general the absolute impacts of pumping are seen to be quite similar to 

those observed during the historical case (Figure 4-10). However, due to the combined and 

cumulative effects of both climate change and pumping, some of the responses (Qesc, eGSW, 

WFA and QRV) approach zero levels during some of the months, even resulting in an 

inversion of the groundwater-surface water exchange, absence of river flow, and drying up of 

the wetlands areas during some of the months. On a relative basis, the decreases approach 

~70% (Figure 4-11) in comparison to ~50 % during the historical case. Overall, there is a 

significant increase in the uncertainty bounds when compared with the historical period. 

 
Figure 4-10 Effects of groundwater pumping in the Climatologic hydrogeological responses for the 
GCM future projection RCP8.5 case (2060-2099). They are compared the GCM RCP8.5 (Red) and 
GCM-RCP8.5+Pumping (Purple). In each case is showed the 5-95% percentile over the ensembles. 

 
Figure 4-11 Relative Changes of the mean difference between the mean climatologic hydrogeological 
responses for the effect of groundwater pumping for GCM RCP8.5 cases. The shadow black line 
represents the annual mean relative change. 
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4.4.3.3 Changes from Historical-Pumped to Future-Pumped under RCP8.5 

Finally, we examine the projected changes on pumped response under RCP85 (Figure 

4-12). This represents changes due to the cumulative effects of groundwater pumping and 

projected climate change. The most obvious result of this comparison is to highlight the 

overall and significant increases in uncertainty. In general, SM and AET show annual 

average reductions of about -20% (Figure 4-13), and recharge (Figure 4-12d) shows an 

increase of number of months with very low recharge and relative decreases of ~45% (Figure 

4-13d). However, the variables more directly affected by pumping (Qesc, eGWS, WFA, 

QRV;Figure 4-12 c,e,f,g) show a higher contrast indicating that the combined effects will 

have a strong effect on the dynamics of the system (reductions of ~60%; Figure 4-13 c,e,f,g). 

Meanwhile, there is relatively little effect on the overall climatology of groundwater storage 

(Figure 4-12h and Figure 4-13h), although relative changes can be seen for specific months. 

 
Figure 4-12 Cumulative effects of climate change and groundwater pumping comparing through the 
climatologic hydrogeological. They are compared the GCM Historical+Pumping (1960-1999) 
(Maroon) and GCM-RCP8.5+Pumping (2060-2099)(Purple). In each case is showed the 5-95% 
percentile over the ensembles. 

 
Figure 4-13 Relative Changes of the mean difference between the mean climatologic hydrogeological 
responses for cumulative effect of climate change and groundwater pumping. They are compared the 
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GCM Historical+Pumping (1960-1999and GCM-RCP8.5+Pumping (2060-2099) The shadow black 
line represents the annual mean relative change. 

4.5 Discussion and conclusions 

In this study we assumed that the catchment scale climate variables necessary to 

evaluate the hydrogeological responses of a basin could be obtained by interpreting the bias 

corrected downscaled and GCMs outputs as realizations from a hypothetical non-stationary 

stochastic process with an underlying physical process represented by the (physics-based) 

GCM itself. We hypothesized that the stochastic climate variable realizations generated by 

this process could be used to produce hydrogeological responses that are stochastically 

equivalent to those provided when the system is forced using observations. Under these 

assumptions, any non-stationary in the response is interpreted as arising from the ability of 

the GCMs to produce plausible future projections.  Provided that these assumptions can be 

demonstrated to be acceptable, we could conclude that reliance upon GCMs outputs is both 

possible and meaningful, thereby demonstrating the viability and benefit of such studies for 

evaluating the potential impacts of climate change on the water resources of a basin.  

The purpose of testing for Stochastic Equivalence is to lend support to the 

aforementioned hypothesis in the case of the UppGb. However, our results indicate that an 

exactly equivalent stochastic response is not achievable for all the response in all the months 

for this basin using the methods developed for this study. The main differences are 

attributable to differences in the number of ACP between the observed and GCM-simulated 

data.  In particular, the wettest directional ACP (W/NW/SW/N) for winter explained such 

differences. These differences result in larger volumes of rainfall during the winter months, 

thereby producing correspondingly greater amounts of recharge that are dynamically 

propagated and amplify the difference in the response through the hydrogeological system. 

Despite these differences, we found that the GCMH methodology provides reasonable 

patterns of hydrogeological response, thereby providing an uncommon, albeit necessary 

evaluation steps before proceeding with Climate Change impacts studies. It is clear that 

further investigation is needed to come up with ways to compensate for the biases not 

completely resolved by our approach.  

Bearing in mind that the results and differences in hydrogeological response between 

the GCM-based historical and future simulations cases can be compared on an equal basis, 

our results are useful to decision makers seeking to understand what changes in water 

resources management might be necessary. By evaluating the isolated effects of climate 
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change we see that reductions in the probability of rain expressed by drop of 14% in number 

of rainy days can be expected, albeit with a wide range of variation among the selected 

GCMs. This, together with reductions in wet day amount by a 25%, results in less water 

entering the system, and the increases in temperature result in increased potential 

evapotranspiration by 20%, primarily from April to September. These changes cascade 

through the hydrogeological system, causing a general relative reduction of 20% in soil 

moisture and AET, and a 40 % reduction in other responses. The net effect is an increase of 3 

months in the length of the dry season (from June-September to April-October). 

As might be expected, the additional effects of groundwater pumping are primarily on 

variables most closely related to aquifer response (Qesc, eGWS, WFA, and QRV).  We see a 

slight increase in AET and, to a lesser extent, in soil moisture and recharge due to the 

pumped water being used for irrigation. Similarly, pumping has a larger impact in the future 

scenario than in the historical case. System responses to pumping results show annual 

average relative changes of approximately -50% and -70%, for the historical and future 

periods respectively for the aquifer related responses. 

Finally, the combined effects of pumping and climate change result in reductions for 

all of the variables, with soil moisture and AET reduced by 20% and recharge by 50%. 

Meanwhile, the aquifer related responses show annual average reductions of approximately 

60%. 

Overall, our results indicate that the combined effects of climate change and 

groundwater overexploitation can be expected to affects the system response through 

significant decreases in availability of water throughout the year, but most notably during an 

extended hotter and drier summer season. Under naturalized conditions the effects of climate 

change are to reduce the input (less precipitation) and increasing the output (higher PETo) – 

no surprise there. However, these effects propagate through the hydrogeological system and, 

when combined with groundwater pumping, accelerate the process of drying considerably by 

directly affecting groundwater levels and thereby the exchanges with surface water. 

From a scientific point of view, future studies should be also performed to evaluate 

and better understand the individual and cumulative effects of change in each of the driving 

factors (the ACP sequencing, PoR, WDA and temperatures) that affect climatological 

conditions over the basin. This will help us to better understand which factors are dominant, 

and which factors combine in synergistic ways. 
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5 General Conclusions 

 

The main aim of this thesis is to evaluate the combined impact of climate change and 

groundwater overexploitation on the availability of water resources in the UppGb. To this 

end, the methods and evaluation procedures were adopted to analyze the human impact on 

water resources in a non-stationary framework, with an appropriate uncertainty assessment.  

The main contributions of the thesis are: 

• The development of a Stochastic Rainfall Generating Process (SRGP) for 

simulating/downscaling daily rainfall fields with enough spatial resolution for 

use in spatially distributed hydrological modeling. The approach incorporates 

several sources of information, and simulates major non-stationarity features 

of rainfall fields. By exploiting the GCMs information on the sequence of 

ACPs it is possible to obtain time stationary sequences of SRGPs. In essence, 

the method assumes that for each ACP and season the spatial rainfall 

distribution remains stationary. It is assumed therefore that non-stationarity in 

rainfall is represented as the evolution of rainy days and the sequence of 

ACPs, which can be derived from GCM. The approach may be employed to 

develop multiple stochastic ensembles of downscaled rainfall fields for use in 

climate change impact study assessments (including uncertainty analysis) as 

discussed in Chapter 4. Furthermore, the approach can also generate rainfall 

fields conditioned to the rain gauge data as shown in Chapter 3, where the 

effect of RSV was tested. 

• SRGP was tested in the UppGb showing that provides an accurate 

reproduction of the major spatio-temporal features of rainfall needed for 

hydrological modeling and water resource evaluations. The incorporation of 

spatial drift related to orographic precipitation significantly improved the 

results. The incorporation of seasons enabled the reproduction of the observed 

climatology of spatial averaged rainfall. ACP clustering improved the 

reproduction of the inter-annual climatological variability 
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• Spatial variability of rainfall exerts a significant influence on the 

hydrogeological response of the Upper Guadiana basin. RSV was analyzed 

through the application of multiple realizations of stochastic rainfall fields 

with different spatial resolutions as meteorological driving hydrologic 

variables. RSV affected the response of the hydrogeological system in two 

ways: (1) the soil moisture and the actual evapotranspiration are practically 

insensitive to the overall hydrological response; and (2) the overall response is 

significantly higher with greater variability in the rainfall fields for 

groundwater recharge and the spatial runoff generation processes. Larger 

recharges result in greater groundwater head levels and therefore produce 

larger groundwater-surface water exchanges and river runoff discharge. 

Consequently, the system is less affected by groundwater withdrawals. These 

findings reinforce the need to implement high resolution rainfall fields for 

water resource and climate change impact assessments.  

 

• The Stochastic Equivalence concept was introduced to evaluate the validity of 

the outputs of a number of GCM for use in hydrological modeling. This 

concept evaluates how properly bias corrected downscaled climate variables 

derived from GCM outputs can yield hydrogeological responses that are 

indistinguishable from those obtained from actual observations. The results 

indicate that an identical equivalent stochastic response cannot be totally 

achieved in the UppGb for all the responses. The main differences are 

attributable to differences in the number of ACP between the observed and 

GCM-simulated data.  In particular, the wettest directional ACP 

(W/NW/SW/N) for winter accounted for these differences. These variations 

result in larger volumes of rainfall during the winter months, producing 

correspondingly greater amounts of recharge that are dynamically propagated 

through the hydrogeological system. Despite these differences, the 

hydrogeological response patterns obtained are reasonable. The stochastic 

equivalence provides an uncommon albeit necessary evaluation step before 

undertaking Climate Change impact studies. In view of the above results, the 

hydrogeological response between the GCM-based historical and future 

simulation cases is comparable. 
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• The combined impact of climate change and groundwater overexploitation on 

the availability of water resources in the UppGb may be greater than the effect 

of the individual variable. The effect of climate change without groundwater 

pumping was estimated as the cumulative effect of increases in temperature, 

changes in ACP frequency, and in the reduction of probability/volume of 

rainfall. These changes led to reductions of 14% and 25% in the number of 

rainy days and volume of rainfall, respectively, and to an increase of 20% in 

potential evapotranspiration. As a result of the propagation of these changes 

through  hydrogeological system, all the variables were reduced; soil moisture 

and actual evapotranspiration were reduced by 20%, and groundwater recharge 

spatial runoff generation, groundwater-surface water exchange and river 

runoff discharge were reduced by 40 %. The incorporation of pumping to the 

natural simulation case yields the same percentage for soil moisture and actual 

evapotranspiration and 50% for recharge. Likewise, the aquifer related 

responses show annual average reductions of approximately 60%. The net 

effect is an increase of 3 months in the length of the dry season (from June-

September to April-October).  The general evaluation procedure indicates that 

the combined effects of climate change and groundwater overexploitation are 

expected to affect the system response through significant decreases in 

availability of water throughout the year, especially during an extended hotter 

and drier summer season. Under natural conditions, climate change leads to a 

reduction in the aquifer recharge (less precipitation) and increases water loss 

owing to a higher potential evapotranspiration. Consequently, head water 

levels in the aquifer fall and the interaction between groundwater and surface 

water decreases. Moreover, the effect of a massive pumping scheme on the 

hydrogeological system considerably accelerates the impact on the 

groundwater levels, and hence the groundwater and surface water relationship. 
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