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Abstract

Currently, multithreaded architectures are the mainstream in the processor design. They

are widely used in servers, desktop computers, lap-tops, and mobile devices. Multi-

threaded processors are a very good solution for exploiting processor performance beyond

the limitations imposed by limited instruction-level parallelism and power wall. They de-

liver superior performance and higher performance-per-watt ratio than single-threaded

architectures for a given target throughput.

On the other hand, multithreaded architectures introduce several challenges at the soft-

ware level. In order to utilize the hardware potential optimally and to deliver maximum

performance, state-of-the-art multithreaded architectures have to execute numerous soft-

ware threads simultaneously. At the operating system level, one of the main challenges

becomes how to schedule simultaneously-running software threads. Also, the need for

numerous software threads motivates the development of multithreaded applications and

algorithms. Development of efficient, portable, and correct multithreaded software re-

quires novel programming models and paradigms, and increases the complexity of com-

pilers. In time-critical environments (real-time systems), the timing analysis has to esti-

mate the impact of the collision in shared hardware resources between simultaneously-

running threads on the execution time of each thread.

In this thesis, we present cross-domain approaches that improve the effective use of

multithreaded architectures. First, we demonstrate the importance of scheduling of net-

work applications running in state-of-the-art multithreaded servers, and propose several

methods that improve it. We further analyze optimizations that improve the compilation

of multithreaded applications. In particular, we analyze the problem of graph partitioning

that is a part of the compilation process of multithreaded streaming applications. Finally,

we analyze the impact of shared resources in multithreaded processors in time-critical

environments. Our study provides a systematic method for measurement-based timing

analysis of applications running on multithreaded architectures.
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Chapter 1

Introduction

In the past, at the hardware level, two essential techniques were used to improve the pro-

cessor performance: increasing the operating frequency (frequency scaling) and improv-

ing the processor design (mostly at microarchitecture level). Because of improvements in

the transistor implementation technology, the number of transistors on the die duplicated

in each processor generation [112]. Additional transistors were used mainly to improve

single-threaded processor performance. Each new generation of the processors had deeper

and more complex pipelines, more complex prediction engines, and larger on-chip cache

memories. Although the manufacturing technology continues to improve and to provide

significantly larger number of transistors in each new generation, there are two primary

obstacles for additional development of single-threaded processors:

• Power wall: The power consumption of the processor scales super-linearly with

the working frequency (clock rate) [79]. High power consumption causes several

problems. First, it is becoming complex to supply the die with the required elec-

trical current (required power). Second, cooling-down of the die becomes more

difficult. Power dissipation has reached the limitation of the reliable processor op-

eration. Third, energy consumption is an important portion of the maintenance cost

of IT systems.

• Limited Instruction Level Parallelism (ILP): Data and control dependencies limit

ILP. It is increasingly difficult to find sufficient parallelism in the instructions stream

of a single process to use hardware resources of single-threaded processors effec-

tively [79].
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1.1. CHALLENGES FOR THE EFFECTIVE USE OF MULTITHREADED
PROCESSORS

Limited ILP and the power wall motivated the design of multithreaded1 processors.

In multithreaded architectures, the transistors provided by the technology improvement

are used to build multiple processing engines that can simultaneously execute different

software threads. The main idea behind multithreaded processors is to use simpler pro-

cessing engines working on a lower frequency, to deliver moderate single-threaded, but

superior overall performance. Currently, multithreaded architectures are the mainstream

in the processor design. They are widely used in servers, desktop computers, lap-tops,

and mobile devices.

In addition to ILP, which is still exploited for each software thread independently,

multithreaded processors increase the system throughput by exploiting Thread Level Par-

allelism (TLP). State-of-the-art multithreaded architectures exploit different TLP paradigms.

The most commonly used ones are Simultaneous Multithreading (SMT), Fine-Grain Mul-

tithreading (FGMT), and Chip-Multiprocessing (CMP). Also, most of the high-end mul-

tithreaded processors such as the Sun UltraSPARC T1 [6, 7], T2 [8, 9], and T4 [13], the

IBM POWER5 [142], POWER6 [101], and POWER7 [12] and the Intel core i7 [14],

combine different TLP paradigms on a singe die. This allows better utilization of the

hardware resources and improves the overall system performance.

1.1 Challenges for the effective use of multithreaded

processors

Multithreaded processors are a very good solution for exploiting processor performance

beyond the limitations imposed by limited ILP and power wall. They deliver superior

performance and higher performance-per-watt ratio than single-threaded architectures for

a given target throughput [79]. However, on the other hand, multithreaded architectures

introduce several challenges at the software level. In order to utilize the hardware po-

tential optimally, and to deliver maximum performance, state-of-the-art multithreaded

architectures have to execute numerous software threads simultaneously. At the operating

system level, one of the main challenges becomes how to schedule concurrently-running

1 In this thesis, we will use the term “multithreaded processor” to refer to any processor that can execute
more than one thread simultaneously. Chip-Multiprocessors, Simultaneous Multithreading, Coarse-grain
Multithreading, Fine-Grain Multithreading processors or any combination of them are multithreaded pro-
cessors.

2



CHAPTER 1. INTRODUCTION

software threads [141]. Also, the need for numerous threads2 motivates the development

of multithreaded applications and algorithms. Development of efficient, portable, and

correct multithreaded software requires novel programming models and paradigms, and

increases the complexity of compilers. In time-critical environments (real-time systems),

the timing analysis has to estimate the impact of the collision in shared hardware resources

between simultaneously-running tasks on the execution time of the tasks.

In this thesis, we present cross-domain approaches that improve the effective use of

multithreaded architectures. First, we demonstrate the importance of scheduling of net-

work applications running in state-of-the-art multithreaded servers, and propose several

methods that improve it. We further analyze optimizations that improve the compilation

of multithreaded applications. In particular, we analyze the problem of graph partitioning

that is a part of the compilation process of multithreaded streaming applications. Finally,

we present a method that improves the analysis of the timing behavior or real-time ap-

plications executed in multithreaded architectures. The method quantifies the slowdown

that simultaneously-running tasks may experience due to collision in shared processor

resources.

1.1.1 Process scheduling

In multithreaded processors, concurrently-running (co-running) threads share and com-

pete for hardware resources. The collision of co-running threads in shared processor

hardware resources affects the execution time of the threads and the overall system per-

formance. Moreover, state-of-the-art multithreaded processors have different levels of

resource sharing [154]. For example, in a CMP processor where each core supports the

concurrent execution of several threads through SMT, all simultaneously-running threads

share global resources such as the last level of cache memory or the I/O. In addition to

this, threads running in the same core share resources such as the Instruction Fetch Unit,

or the L1 instruction and data cache. Therefore, the way that threads are assigned to cores

determines which resources they share, which, in turn, may significantly affect the system

performance.

In processors with several levels of resource sharing, thread scheduling is comprised

of two steps (see Figure 1.1). In the first step, usually called workload selection, the

2 In this thesis, we use the term “thread” to refer to a software i.e. application thread. Words “software
thread”, “application thread”, “thread”, and “task” are used interchangeably. When we refer to a hardware
context of the processor, we also use the terms “hardware thread”, “strand”, “logical CPU”, and “virtual
CPU”.

3



1.1. CHALLENGES FOR THE EFFECTIVE USE OF MULTITHREADED
PROCESSORS

Figure 1.1: Process scheduling in multithreaded processors with several levels of resource
sharing: Workload selection and Thread assignment

operating system (OS) selects the set of threads (workload) that will be executed in the

processor in the next time slice, from a set of ready-to-run threads. In the second step,

called thread assignment, each thread in the workload is assigned to a hardware context

(virtual CPU, vCPU) of the processor.

1.1.1.1 Thread assignment of network applications

In this thesis, we address the problem of thread assignment of network applications run-

ning on massive multithreaded processors that can execute tens of software tasks concur-

rently. The importance of network applications constantly increases with the continuous

growth of the Internet traffic and the number and the complexity of the services that these

applications provide. In order to provide high-speed processing and high throughput,

network applications have specific hardware and operating system requirements.

In networking, the traffic is composed of numerous packets from different users that

can be processed at a time. Massively multithreaded processors like UltraSPARC T2

support concurrent execution of multiple threads that can process concurrently the packets

with no data dependencies. This makes massively multithreaded processors particularly

well suited for the networking systems.

At the operating system level, network-oriented systems require runtime environments

that provide high performance, high-speed packet processing, and execution time pre-

dictability. In order to address these requirements, network-oriented systems use low-

overhead runtime environments that minimize the impact of the system management tasks

to the application performance [11]. In networking environments, applications continu-

ously process different packets repeating similar processing algorithm for each packet.

As applications running on network processors provide a constant set of services and pro-

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Performance of the IPFwd benchmark

cess different packets in a similar manner, a dynamic thread scheduling is not required.

In addition to this, the workload running in network processor is usually known before-

hand and does not change at runtime. Therefore, the most promising way to improve the

performance of network applications running on massive multithreaded processors is to

determine a close-to-the-optimal thread assignment, which is the focus of our study.

1.1.1.2 Importance of the thread assignment

In order to illustrate the importance of the thread assignment of network applications, we

execute several workloads composed of multithreaded IP Forwarding (IPFwd) applica-

tion [11] in different thread assignments on the UltraSPARC T2 processor. We executed

experiments with 2, 3, 4, 6, and 8 IPFwd instances. Each IPFwd instance is comprised

of three threads, Receiving, Processing, and Transmitting, that process the packets in a

pipelined manner3. Thus, the workload was composed of 6, 9, 12, 18, and 24 IPFwd

threads. We could not execute more than 24 IPFwd threads (8 IPFwd instances) simulta-

neously because of the limitation in the experimental environment. The on-chip Network

Interface Unit (NIU) of the UltraSPARC T2 processor used in the study can split the in-

coming network traffic into up to eight DMA channels, and we could bind at most one

receiving thread (at most one IPFwd instance) to each DMA channel.

In each set of the experiments, we executed and measured the performance of between

700 and 1500 different thread assignments (see Section 2.4). The results of the experi-

ments are presented in Figure 1.2. The X-axis of the figure shows the number of threads

in the workload, while the Y-axis shows the system performance in processed Millions of

Packets Per Second (MPPS).
3IPFwd application is described in detail in Section 2.3.

5



1.1. CHALLENGES FOR THE EFFECTIVE USE OF MULTITHREADED
PROCESSORS

The figure presents three groups of bars. Bar ‘The best observed thread assignment’

shows the performance of the best observed thread assignment for each number of IPFwd

threads. Bars ‘Naive scheduling-Average’ and ‘Naive scheduling-The worst’ show the av-

erage and the worst performance of the naive thread assignment, the technique that ran-

domly distributes the running threads among the processor cores and hardware pipelines

of the processor. The results presented in Figure 1.2 show that thread assignment has a

significant impact on the system performance. The average performance loss of naive

scheduling with respect to the performance of the detected best-performing thread as-

signment ranges from 290,000 PPS (six IPFwd threads) to 680,000 PPS (18 threads). The

worst detected performance loss of naive tasks assignment ranges up to 1.5 million PPS

(12 threads), which represent the degradation of 35%.

By choosing a given thread assignment, we implicitly decide which hardware re-

sources are shared between concurrently-running (co-running) threads. State-of-the-art

OSs, like Linux and Solaris, use load balancing mechanism [15][149] to distribute the

load of the running processes among all the available logical CPUs (i.e. cores in a CMP

architecture or hardware contexts in a SMT architecture). Also, cache and TLB affinity

algorithms [15][149] try to keep threads in the same logical CPU to reduce cache misses

and page faults as much as possible. Although these characteristics improve performance,

they do not fully exploit the capabilities of the current multithreaded processors with sev-

eral levels of resource sharing. The main drawback of the thread assignment algorithms

used in current OSs is that they do not consider the hardware requirements of each thread;

thus they are not able to provide thread assignments that optimally use processor hard-

ware resources [50]. We analyze real network applications running on state-of-the-art

server comprising UltraSPARC T2 processor and measure significant performance loss

introduced by Linux-like process scheduler.

1.1.1.3 Intractability of the thread assignment problem

Analytical analysis of optimal thread assignment is an NP-complete problem [67]. Also,

in current multithreaded processors comprised of several cores where each core supports

several simultaneously-running threads, the total number of possible thread assignments

is vast [50, 59, 87, 131]. This number will grow rapidly in future massively multithreaded

processors in which the number of cores and number of different levels of resource shar-

ing increase [116]. In order to illustrate this, we study the number of possible assign-

ments when several threads simultaneously execute on the UltraSPARC T2 processor.

6



CHAPTER 1. INTRODUCTION

Table 1.1: Number of different thread assignments for applications running on the
UltraSPARC T2 processor

The UltraSPARC T2 processor comprises eight cores, and each core contains two hard-

ware pipelines. Each (hardware) pipeline can execute up to four threads at a time, mean-

ing that the maximum number of simultaneously running threads is 644. The number of

possible thread assignments for different workload size is shown in Table 1.1. The first

column of the table shows the number of threads in the workload. We present results for

3, 6, 9, 12, 15, 18, and 60 threads. The second column presents the number of different

thread assignments for a given workload size. The third column of the table shows the

time needed to execute all possible thread assignments assuming that each assignment can

be executed in only one second. Finally, in the last column, we present the time needed

to predict the performance of all thread assignments. We make an optimistic assumption

that the performance of a single assignment can be predicted in 1µs that is in the order of

1000 cycles of a processor running at 1GHz frequency.

Overall, we observe that the number of possible threads assignments as well as the

time needed to execute them grows rapidly with the number of threads in the workload.

The point where running all assignments is unfeasible is reached very fast. For 9 threads

in the workload, the time needed to execute all assignments is 7 days, for 12 threads, the

execution time is more than 15 years. For 60-thread workloads that use 94% of hardware

contexts of the processor, the time needed to execute all possible thread assignments is

1.75×1051 years. The results presented in Table 1.1 clearly show that, in general, running

all thread assignments is unfeasible, and that an exhaustive search cannot be used to find

the optimal system performance for a given workload.

Several studies (see Section 3.5) propose methods that can predict the performance

of different thread assignments of a given workload. However, from Table 1.1, we also

see that the prediction of all possible threads assignments is unfeasible. The last column

4For more information about the UltraSPARC T2 processor used in the study, refer to Section 2.1.
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shows that, for example, for the case of 15-thread workloads, the time needed to pre-

dict all assignments is 7 days. For 18 threads, the prediction time is measured in years.

Therefore, performance predictors can be used only to determine the close-to-the-optimal

thread assignment in a limited sample. However, since the number of possible thread

assignments in modern processors is vast, the effectiveness of performance predictors is

questionable [50, 59]; even if we assumed that a performance predictor would be able to

find the best assignment in the sample, it would not be clear what the performance dif-

ference between the best assignment in the sample and the actual global best assignment

(the optimal system performance) would be.

Therefore, the current thread assignment approaches can not guarantee that the per-

formance of the predicted best assignment is either the optimal one, or close to it. As the

performance of the optimal thread assignment for a workload is unknown, the room for

improvement of the current thread assignment techniques cannot be determined. Thus, it

is difficult to determine the effort needed to invest in the thread assignment process. This

may lead to overspending if a good thread assignment algorithm is constantly improved,

or sub-optimal performance if a poor-performing algorithm is not enhanced.

In this thesis, we address the problem of thread assignment of multithreaded network

applications running on processors with several levels of resource sharing. We present

two methods, TSBSched and BlackBox scheduler, that profile the applications running on

a target architecture and predict the performance of different thread assignments. We also

present a statistical method based on Extreme Value Theory that predicts the performance

of the optimal thread assignment. TSBSched, BlackBox scheduler, and the proposed

statistical method are evaluated on a set of multithreaded network applications running

on a network server that comprises UltraSPARC T2 processor.

1.1.2 Compilation of multithreaded streaming applications

In order to exploit the hardware potential and deliver maximum performance, state-of-

the-art multithreaded architectures have to execute numerous software threads simulta-

neously. One way to use multithreaded architectures effectively is to execute numerous

software threads concurrently. For example, Internet, network, and data-center servers

can concurrently execute multiple instances of a single application that process (highly-

)independent traffic from different users. However, in various domains (such as desktop

and mobile applications) it is not trivial to find numerous independent software threads

that can execute concurrently. Actually, one of the greatest challenges in software devel-
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Figure 1.3: A kernel partition example

opment is how to write efficient, portable, and correct software for multithreaded proces-

sors. A promising approach to develop multithreaded applications is to expose parallelism

to the compiler through the use of domain-specific languages. The compiler can then per-

form complex transformations that the programmer would otherwise have had to do.

One of the widely-used domain-specific languages is stream programming. Stream

programming is suitable for applications that process long sequences of data, such as

voice, image, multimedia content, Internet and communication traffic. Stream program-

ming languages [2, 17, 30, 33, 148] represent the program as concurrent kernels, which

communicate only via point-to-point streams. A kernel is a basic computation block with

a user-defined function that processes one or more input data streams into one or more out-

put data streams. Dependencies between different kernels are described explicitly through

the communication data channels. The whole application can be represented as a stream

graph. The nodes of the stream graph correspond to the kernels, while the directed edges

represent the communication data channels. In order to take advantage of multiple proces-

sor cores, the stream program is automatically compiled into a multithreaded executable

by the stream compiler. One of the most important tasks of the stream compiler is to

partition the kernels in the stream graph into software threads. In Figure 1.3, we illustrate

a stream graph of a simple program, which is comprised of five kernels (K1 to K5). The

figure also shows one possible kernel partition of the graph: kernels K1, K2, and K3 are

to be compiled to software thread Th1, while kernels K4 and K5 are to be compiled into

Th2.

Kernel partitioning can affect the overall system performance significantly. For exam-

ple, for the benchmarks included in the StreamIt 2.1.1 suite [3, 138], the relative perfor-

mance difference between good and bad kernel partitions of the same benchmark mapped

into four software threads ranges from 2.4× to 3.9×, and on average it is 3.5×.
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Several studies (see Section 5.6) propose heuristic-based algorithms to address the

kernel partitioning problem. As kernel partitioning is an intractable problem [63, 67], it

is impossible in general to know the performance of the optimal partition, so the room for

improvement is also unknown. It is hard to decide whether to invest additional effort to

try to improve a given algorithm, since it may already be close to optimal.

In this thesis, we propose a statistical approach to the kernel partitioning problem.

We present a method that predicts the performance of the optimal partition based on the

observed performances of a random sample of kernel partitions. We also analyze whether

random sampling on its own is likely to find a kernel partition with good performance.

The proposed method is evaluated on the kernel partitioning of the benchmarks included

in StreamIt 2.1.1 suite.

1.1.3 Multithreaded processors in time-critical environments

Due to good performance-per-watt ratio and high performance opportunities, multithreaded

processors are of special interest for embedded real-time systems [152]. These architec-

tures are particularly well suited for embedded integrated architectures [22, 113, 158] in

which several functions are integrated into the same processor. In this context, multi-

threaded processors can potentially schedule mixed criticality workloads, i.e. workloads

composed of safety-critical, mission-critical, and non-critical applications inside the same

processor, improving the hardware utilization and so reducing cost, size, weight, and en-

ergy consumption [110].

Unfortunately, despite the benefits that multithreaded processors may offer in em-

bedded real-time systems, particularly in integrated architectures, the market has not yet

embraced such a shift. In addition to the functional correctness of operations, in real-time

systems, it is required to guarantee that the execution time of tasks does not exceed the

corresponding deadlines. This requisite of real-time systems is referred to as time cor-

rectness. In order to guarantee time correctness of a given task, it is obligatory to estimate

the maximum execution time that the task could have on a specific hardware platform,

i.e. to determine the Worst Case Execution Time (WCET) of the task. In multithreaded

processors, simultaneously-running tasks share and compete for processor resources, so

the timing analysis has to estimate the possible impact that these inter-task interferences

have on the execution time of the applications. As a result, it is much more difficult to

provide the WCET estimations for applications running on multithreaded processors than

running on single-threaded processors [120].
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Figure 1.4: Collision Avoidance (CA) application: The execution time in different work-
loads and the WCET estimate

In addition to this, in order to reduce the cost of the system verification in the time

domain, it is required to do an incremental timing verification of real-time tasks. Incre-

mental timing verification means that a user does not have to verify the timing behavior of

all concurrently-running applications each time a new component (application) is changed

or added to the system [60]. In that sense, the system is time composable if the WCET

estimate of the tasks do not change if any of the tasks in the workload change.

In the following example, Paolieri et al. [117] demonstrate the execution time varia-

tions of applications running in multithreaded processors, and illustrate the composable

WCET estimate for the application under study. In this experiment, the Collision Avoid-

ance (CA) application developed by Honeywell Corporation is executed with different

sets of co-running applications (different workloads) on a multicore processor. The CA

application is based on 3D path planning algorithm that is used in autonomous-driven

airplanes.

The results of the experiment are presented in Figure 1.4. The X-axis of the figure lists

different workloads (workload 1 to workload 5) that are executed simultaneously with the

CA application. The Y-axis shows the execution time of the CA application in each

configuration. From the results presented in Figure 1.4, we see that the execution time

of the CA application varies significantly (from 250 to 500 million cycles) depending

on the co-running workload. A safe and time-composable WCET estimate for the CA

application running on the architecture under study (dark gray bar in Figure 1.4) must be

computed independently of the co-running workload, and it must exceed the execution
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time of the CA application in any possible workload. In this way, the WCET estimate of

the CA application is computed only once, and it does not have to be recomputed each

time that any of the co-running tasks is replaced or updated.

In this thesis, we present a systematic method for measurement-based timing analy-

sis of applications running on multithreaded architectures, and we demonstrate that the

presented method helps with providing composable WCET estimations. We also show

how the method can be used to determine whether different multithreaded architectures

are suitable for time-critical environments.

1.2 Thesis contributions

This thesis presents cross-domain approaches that improve the effective use of multi-

threaded architectures. The contributions of the thesis can be classified in three groups.

First, we propose several methods for thread assignment of multithreaded network ap-

plications running in multithreaded servers. Second, we analyze the problem of graph

partitioning that is a part of the compilation process of multithreaded streaming applica-

tions. Finally, we present a method that improves the measurement-based timing analysis

of multithreaded architectures used in time-critical environments. The following sections

briefly summarize each of the contributions.

1.2.1 Thread assignment on multithreaded processors

The first problem that we address in the thesis is thread assignment of multithreaded net-

work applications running on network servers that comprise state-of-the-art multithreaded

processors. We propose TSBSched (Thread-to-Strand Binding Scheduler) [131], a sys-

tematic method for thread assignment of multithreaded network application running on

processors with several levels of resource sharing. Based on minimum information about

the target processor architecture, and without any data about the hardware requirements of

the applications under study, the proposed method determines a set of thread assignments

that can be used to model the interference between concurrently running threads (profil-

ing thread assignments). The profiling assignments are executed on the processor under

study, and the performance of each assignment is measured. Finally, the method uses the

measured performance of the profiling thread assignments to estimate the performance of

any assignment composed of applications under study.
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TSBSched is a simple, architecture independent thread assignment approach that de-

termines assignments with a good performance. However, TSBSched has two main lim-

itations: (1) The programmer who profiles the application must have a profound knowl-

edge about the application behavior. (2) Also, TSBSched requires adjustments of the

application source code. If the source code is not available, TSBSched method cannot be

used.

In order to overcome these limitations, we design BlackBox scheduler [132]. Black-

Box scheduler does not require inserting any test points in the application source code nor

the profound understanding of it. Therefore, BlackBox scheduler can be used when the

source code is not available, which is a common limitation.

We also present a statistical approach to the thread assignment problem [130]. We

present a method based on Extreme Value Theory (EVT)[26, 34] that predicts of the per-

formance of the optimal thread assignment. Knowing the optimal system performance

improves the evaluation of any thread assignment technique and it is the most important

piece of information for the system designer when deciding whether any scheduling al-

gorithm should be enhanced. We also show that, in environments in which the workload

infrequently changes, the system designer can simply execute a sample of several hun-

dred or several thousand random thread assignments of a given workload and measure

the performance of each assignment. According to this analysis, there is a high proba-

bility that the performance of the best observed assignment will be close to the optimal

system performance. This removes the need for any application profiling or an under-

standing of the increasingly complex multithreaded architectures. Unlike other thread

assignment proposals that use performance predictors to find the best thread assignment,

the method can be applied directly and without any change to any architecture running

any set of applications.

1.2.2 Kernel partitioning of streaming applications

The second problem that is addressed in the thesis is kernel partitioning of streaming ap-

plications. We present a method based on EVT that statistically estimates the performance

of the optimal kernel partition [128]. To the best of our knowledge, this is the first study

that applies EVT to a graph partitioning problem. We use the estimates of the optimal

performance to evaluate a state-of-the-art heuristic-based kernel partitioning algorithm.

Also, we show that the sampling method used to generate random partitions, has a signif-

icant effect on the applicability of the statistical analysis. We analyze different sampling
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methods, and our results strongly recommend that the samples should be uniformly dis-

tributed. Since a complex heuristic-based algorithm may not always be available, the user

may pick the best from a random sample, and measure its quality using the estimates of

the optimal performance. We analyze whether random sampling is likely to find a good

kernel partition.

1.2.3 Multithreaded processors in time-critical environments

Finally, we analyze the impact of shared resources in multithreaded processors in time-

critical environments. Our study provides a systematic method for measurement-based

timing analysis of applications running on multithreaded architectures [129]. We define

a set of specific resource-stressing benchmarks that introduce a high number of interfer-

ences on each potentially-shared hardware resource. By using these resource-stressing

benchmarks as co-running threads, we obtain a good estimation of the worst-case slow-

down that real applications may experience because of collision in shared processor re-

sources.

We also show how the proposed method can be applied to determine the suitability

of different multithreaded architectures for time-critical systems. When a workload is

composed only of resource-stressing benchmarks, the detected slowdown is unlikely to

be exceeded for any workload composed of real applications. Therefore, the slowdown

detected when using resource-stressing benchmarks may serve as an upper estimate of

the effect of inter-task interference for a given processor. This analysis is important when

companies have to determine which architectures are good candidates to be used in their

future time-critical systems.

1.3 Thesis structure

The rest of the thesis is organized as follows:

• Chapter 2 presents the experimental environment used to analyze the thread as-

signment problem. In this chapter, we describe the hardware platform, operating

system, and benchmarks used in the study.

• In Chapter 3, we propose and evaluate two systematic methods for thread assign-

ment of multithreaded network applications running on processors with several lev-

els of resource sharing, TSBSched and BlackBox scheduler.
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• Chapter 4 presents a statistical method based on Extreme Value Theory that predicts

the performance of the optimal thread assignment in multithreaded processors. We

further show that executing a sample of several hundred or several thousand random

thread assignments is enough to obtain, with very high confidence, an assignment

with a performance that is close to the optimal one.

• Chapter 5 summarizes our work on the problem of kernel partitioning for streaming

applications. In this chapter, we present a method that statistically estimates the

performance of the optimal kernel partition. We further use the presented method

to evaluate a recently-published partitioning algorithm based on a heuristic.

• In Chapter 6, we propose a method that quantifies the slowdown that simultaneously-

running tasks may experience due to collision in shared processor resources. This

information is a base for incremental timing verification of multithreaded architec-

tures that are used in time-critical environments.

• Chapter 7 lists the conclusions of the thesis, briefly summarizes future work, and

lists the relevant publications and awards.
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Chapter 2
Experimental setup

This chapter presents the experimental environment that was used to analyze the problem

of thread assignment on multithreaded processors. The experimental setup in which we

analyzed kernel partitioning for streaming applications is presented in Chapter 5. Chap-

ter 6 includes the description of the environment in which we executed the experiments

related to the study of timing behavior of real-time applications running in multithreaded

architectures.

We evaluated the proposed thread assignment methods for a set of multithreaded net-

work applications running in a real industrial environment. The environment comprised

two Oracle T5220 servers that managed the generation and the processing of network

traffic. Each T5220 server comprised one UltraSPARC T2 processor. One T5220 server

executed the Network Traffic Generator (NTGen) [11]. NTGen is a software tool, devel-

oped by Oracle, that generates IPv4 TCP/UDP packets with configurable options to mod-

ify various packet header fields. In addition to this, we enhanced the NTGen to transmit

network traffic read from trace files, such as anonymized Internet trace files [5]. T5220

server running NTGen transmitted network packets through a 10Gb link to the second

T5220 server in which we executed the thread assignments selected by our method. In

all the experiments presented in the study, NTGen generated enough traffic to saturate the

network processing server. Thus, in all the experiments, the performance bottleneck was

the speed at which the packets were processed, which is determined by the performance

of the selected thread assignment.

In order to avoid interferences between user applications and operating system pro-

cesses, we executed the experiments in Netra DPS, a low-overhead environment used in

network processing systems [10, 11]. We briefly describe Netra DPS being focused on

the difference between this environment and a fully-fledged operating systems, such as

Linux or Solaris. At the end, we present the set of multithreaded network applications
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Figure 2.1: Schematic view of the three resource sharing levels of the UltraSPARC T2
processor

and the methodology we use to evaluate the proposed thread assignment approaches.

2.1 UltraSPARC T2 processor

The UltraSPARC T2 is a multithreaded processor [8][9] that comprises eight cores con-

nected through the crossbar to the shared L2 cache (see Figure 2.1). Each of the cores

supports eight hardware contexts (strands), thus up to 64 threads can be simultaneously

executed on the processor. Strands inside each hardware core are divided into two groups

of four strands, forming two hardware execution pipelines, from now on also referred as

hardware pipelines or hardware pipes.

Processes simultaneously running on the UltraSPARC T2 processor share (and com-

pete for) different resources depending on how they are assignmed to hardware contexts.

As it is shown in Figure 2.1, the resources of the processor are shared on three different

levels: IntraPipe, between threads running in the same hardware pipeline; IntraCore, be-

tween threads running in different hardware pipelines of the same core; and InterCore,

between threads running on different cores [154].

IntraPipe: Resources shared at this level are the Instruction Fetch Unit (IFU) and the

Integer Execution Units (IEU). Even if the IFU is physically shared between all processes

that execute on the same hardware core, the instruction fetch policy prevents any interac-

tion in the IFU between threads running in different hardware pipelines. That is, the IFU

actually behaves as two private IFUs, one for each hardware pipeline.

IntraCore: Threads that execute on the same core share the IntraCore resources: the
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16KB L1 instruction cache, the 8KB L1 data cache (2 cycles access time), the Load Store

Unit (LSU), the Floating Point and Graphic Unit (FPU), and the Cryptographic Processing

Unit.

InterCore: Finally, the main InterCore resources (globally-shared resources) of the

UltraSPARC T2 processor are: the L2 cache, the on-chip interconnection network (cross-

bar), the memory controllers, and the interface to the off-chip resources (such as the I/O).

The 4MB 16-way associative L2 cache is partitioned eight banks that operate indepen-

dently from each other. The L2 cache access time is 22 cycles, and the L2 miss that

accesses the main memory lasts around 185 CPU cycles. The L2 cache connects to four

on-chip DRAM controllers, which directly interface to a pair of fully buffered memory

channels.

In order to fully utilize the performance of a multithreaded processors like the UltraSPARC T2,

it is important to understand which hardware resources are shared on each resource-

sharing level. In the UltraSPARC T2, two threads running in the same hardware pipeline

conflict at all resource-sharing levels: IntraPipe, IntraCore, and InterCore. Threads run-

ning in different hardware pipelines of the same core conflict at the IntraCore and InterCore

levels. Finally, threads in different cores interact only at InterCore level. On the other

hand, threads running in the same processor core communicate through L1 cache shared

at the IntraCore level, while threads from different cores share data and instructions only

at globally shared L2 cache that has significantly higher access time.

2.2 Netra DPS

State-of-the-art operating systems (OSs) provide features like the dynamic process sched-

uler or the virtual memory to enhance the execution of user applications. On the other

hand, user applications experience slowdown and have variable execution time because

of interference with OS processes. Many networking systems use lightweight runtime

environments in order to reduce the overhead introduced by fully-fledged OSs. One of

these environments is Netra DPS [10, 11] developed by Oracle. Netra DPS provides less

functionality than fully-fledged OSs, but also introduces less overhead. In our previous

study [133], we compared the overhead introduced by Linux, Solaris, and Netra DPS in

the execution of benchmarks running on the UltraSPARC T1 processor. Presented results

show that Netra DPS is the environment that clearly exhibits the best and most stable

application execution time.
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Netra DPS does not incorporate virtual memory nor a run-time process scheduler, and

performs no context switching. The assignment of running threads to processor hardware

contexts (virtual CPUs) is performed statically at the compile time. It is the responsibility

of the programmer to define the hardware context in which each particular thread will be

executed. Netra DPS does not provide any interrupt handler nor daemons. A given thread

runs to completion on the assigned hardware context without any interruption.

2.3 Benchmarks

Netra DPS is a specific lightweight runtime environment that does not provide function-

alities of fully-fledged OSs such as system calls, dynamic memory allocation, or file

management. Therefore, benchmarks included in standard benchmark suites have to be

adapted in order to execute in this environment.

2.3.1 Overview

The benchmarks used are described next:

(1) IP Forwarding (IPFwd) is one of the most representative Layer2/Layer3 network

applications. IPFwd application makes the decision to forward a packet to the next hop

based on the destination IP address. Depending on the size of the lookup table, the IPFwd

application may have significantly different memory behavior [82, 95]. In order to cover

different cases of IPFwd memory behavior, we created three variants of the IPFwd appli-

cation that are based on the IPFwd application included in the Netra DPS distribution [10]:

(1) The lookup table fits in the L1 data cache (IPFwd-L1);

(2) The table does not fit in the L1 data cache, but it fits in the L2 cache (IPFwd-L2).

The routing table entries of IPFwd-L2 are configured to cause a lot of data L1 misses in

IPFwd traffic processing.

(3) The table does not fit in the L2 cache and the lookup table entries are initialized to

make IPFwd continuously access the main memory (IPFwd-Mem).

IPFwd-L1 is representative of the best case of IPFwd memory behavior, since it shows

high locality in data cache accesses. On the other hand, IPFwd-Mem represents the worst

case of IPFwd memory behavior used in network processing studies, in which there is no

cache locality between accesses to the lookup table [140].

(2) Complex packet processing: Based on the IP Forwarding application included
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in the Netra DPS distribution, we also designed the benchmarks that emulate more com-

plex packet processing and multiple accesses to the memory. In these benchmarks, the

hash function call and the hash table lookup are repeated N times (three times in our

experiments). We refer to these benchmarks as hashN. Again, we use three different con-

figurations to analyze complementary scenarios that cover from the best to the worst case

studies:

(1) hashN-L1: the lookup table fits in the L1 data cache;

(2) hashN-L2: the table does not fit in the L1 data cache, but it fits in the L2 cache;

(3) hashN-Mem: the table does not fit in the L2 cache.

(3) CPU intensive packet processing: The behavior of CPU-intensive network appli-

cations (such as high layer packet decoding or URL decoding) is emulated by the bench-

marks that have a high rate of resource conflicts in the IntraPipe and IntraCore processor

resources.

In order to stress IntraPipe processor resources, we developed IPFwd-intadd bench-

mark. Benchmark IPFwd-intadd is a modification of the IPFwd application included in

the Netra DPS. We develop IPFwd-intadd by inserting a set of integer addition instruc-

tions at the end of the IPFwd processing stage. These instructions put significant stress to

Instruction Fetch Unit and Integer Execution Unit, both shared between threads running

on the same hardware pipeline.

In order to stress IntraCore processor resources, we developed benchmarks IPFwd-

intmul and IPFwd-intdiv. We develop these benchmarks by inserting insert a set of integer

multiplication and integer division instructions at the end of the IPFwd processing stage.

In the UltraSPARC T2 processor, integer multiplication and integer division instructions

are executed in the Floating Point Unit (FPU) that is shared between threads executing

on the same processor core (IntraCore resource). Benchmarks IPFwd-intmul and IPFwd-

intdiv stress FPU in two different ways [154]: (1) Integer multiplication instructions are

pipelined with throughput of one instruction per cycle. This means that several IPFwd-

intmul benchmarks may execute simultaneously in the same processor core and share the

FPU with almost no overhead. (2) On the other hand, integer division instructions are

non-pipelined. When several integer division instructions are ready to be executed at the

same time, they are serialized – only one instruction is executed at a time, while others

are delayed. This may cause significant overhead when several IPFwd-intdiv processing

threads run on the same processor core.

(4) Packet analyzer is a program that can intercept and log traffic passing over a
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network or part of a network [45]. Packet analyzers are primary tolls for network moni-

toring and management used to troubleshoot network problems, examine security issues,

gather and report network statistics, detect suspect content, and filter it from the network

traffic [4, 145, 163].

The packet analyzer that we used in the experiments captures each packet that passes

through the Network Interface Unit (NIU), inspects the packet, and analyzes its content

according to the appropriate RFC specifications [84]. The packet analyzer can display

the information about different fields of packet headers at Layer 2, Layer 3, and Layer 4,

and about the packet payload. A user can decide to log all traffic that passes through the

NIU, or to define filters based on many criteria. We used the packet analyzer to log MAC

source and destination address, time to live field, Layer 3 protocol, source and destination

IP address, and source and destination port number of all packets passing through the NIU

of the processor under study.

(5) Aho-Corasick is a string matching algorithm. String matching is the basic tech-

nique to analyze the network traffic at the application layer [76]. In networking, string

matching algorithms search for a set of strings (keywords) in the payload of the network

packets. Aho-Corasick is an efficient algorithm that locates all occurrences of a given set

of keywords in a string of text (packet payload in case of packet processing). The algo-

rithm constructs a finite state pattern matching machine from the keywords and then uses

the pattern matching machine (finite automata) to process the string of text in a single

pass [19]. The Aho-Corasick string matching algorithm has proven linear performance,

and it is suitable for searching of a large set of keywords concurrently. This is why the

Aho-Corasick algorithm is used in state-of-the art network intrusion detection systems

such as Snort [114].

In the presented experiments, we used the Aho-Corasick algorithm to search for key-

words from Snort Denial-of-Service set of intrusion detection rules (version 2.9, Novem-

ber 2011) in the payloads of the packets that were processed.

(6) Stateful packet processing is an important component of state-of-the art network

monitoring tools [115, 156] and intrusion prevention and detection system [145]. Unlike

stateless applications that process each packet independently (like the other benchmarks

used in our study), stateful packet processing keeps the information of previous packet

processing.
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The packets that belong to the same flow, i.e. have the same flow-5-tuple 1, share the

common information called the flow-record [56]. The record of a given flow contains

the information as to whether the flow is open (the connection is established), safe, mali-

cious, etc. The information about the active flows is stored in a hash table that is indexed

based on the flow-keys. The common main components of stateful packet processing are:

(1) Read the flow-keys of a packet; (2) Use a hash function to determine the correspond-

ing hash table entry based on the packet flow-keys; (3) Access the hash table. Lock, read,

and update the flow-record of an already-existing flow, or create a flow-record for a new

flow.

The stateful packet processing benchmark that we used in the experiments is com-

prised of these three components. The stateful benchmark uses the same hash function as

the one that is implemented in nProbe network monitor [56, 115]. The hash table contains

216 entries, which is sufficient to store the records of active flows of fully-utilized 10Gb

link [155], and it is the hash table size that was already used to test different network

monitoring tools [56].

2.3.2 Implementation

Each benchmark is divided into three threads that form a software pipeline (see Figure 2.2).

This is a commonly-used approach in the development of the network applications [11,

164]:

• The receiving threads (R) of all benchmarks read the packets from the Network

Interface Unit (NIU) associated with the receiver 10Gb network link, and write the

pointers to the packets into the R→P memory queues.

• The processing threads (P) read the pointer to the packets from the memory queues,

process the packets, and write the pointers to the P→T memory queues. The packet

processing is different for each benchmark, e.g. P threads of the IPFwd-L1 and

IPFwd-Mem benchmarks read the destination IP address, call the hash function,

and access the lookup table; P threads of the Aho-Corasick benchmark search for

the keywords in the packet payload, etc.

• Finally, the transmitting threads (T) of all benchmarks read the pointers from the

1The flow-5-tuple is consisted of the source and destination IP address, the source and destination port,
and the protocol used.
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Figure 2.2: The schematic view of the benchmarks

P→T memory queues, and send the packets to the network through the NIU asso-

ciated to the 10Gb network link.

To summarize, the presented benchmarks represent a good testbed for the analysis of

threads assignment techniques because:

(1) Each benchmark is divided in three different threads, thus the systems deal with

heterogeneous threads even when several instances of the same application are executed

simultaneously.

(2) The benchmarks stress the hardware resources of the UltraSPARC T2 processor at

all three sharing levels [154].

(3) Each instance of the benchmarks comprises interconnected threads that communi-

cate through shared memory queues. The performance of the benchmarks also depend on

the distribution of interconnected threads between processor cores (L1 cache domains).

(4) The impact of thread assignment to the performance is significant. We detect

performance variation of up to 60% between different thread assignments of the same

workload.

2.4 Methodology

In order to assure stable results, we measured the performance of thread assignments when

each application instance processed from three to four million network packets. This

means that each application thread was executed from three to four million times. The

execution time of each experiment was at least 1.5 seconds, and the duration depended on

the benchmark and on the distribution of the simultaneously running threads.
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Chapter 3
Thread assignment of multithreaded

network applications on
multicore/multithreaded processors

In this chapter, we propose two systematic methods for thread assignment of multi-

threaded network applications running on processors with several levels of resource shar-

ing, TSBSched and BlackBox scheduler. We evaluated the proposed methods for a set

of multithreaded network applications running on the UltraSPARC T2 processor. The

proposed thread assignment methods improve the system performance up to 48% with

respect to state-of-the-art scheduling algorithms, and up to 60% with respect to a naive

scheduling.

3.1 Introduction

In processors with several levels of resource sharing, thread scheduling comprises two

steps: workload selection and thread assignment. We propose TSBSched and BlackBox

scheduler, systematic methods for thread assignment of multithreaded network applica-

tion running on processors with several levels of resource sharing. Based on minimum

information about the target processor architecture, and without any data about the hard-

ware requirements of applications under study, TSBSched and BlackBox scheduler de-

termine a set of thread assignments that can be used to model the interference between

concurrently running threads (profiling thread assignments). The profiling assignments

are executed on the processor under study and the performance of each assignment is

measured. Finally, the methods use the measured performance of the profiling thread as-

signments to estimate the performance of any assignment composed of the applications

25



3.2. BACKGROUND

under study.

The proposed thread assignment methods are evaluated with an industrial case study

for a set of multithreaded networking applications running on the UltraSPARC T2 proces-

sor. The results show that the methods provide thread assignments with performance close

to the optimal one. In most of the experiments, the proposed thread assignment meth-

ods detected the best actual (measured) thread assignment in the evaluation sample. The

highest performance difference between the thread assignment provided by TSBSched

and BlackBox scheduler and the actual best thread assignments in the evaluation sample

is only 3%. The proposed methods also provide a significant performance improvement

with respect to the state-of-the-art thread assignment techniques.

The rest of the chapter is organized as follows. Section 3.2 discusses the hardware and

OS requirements of network applications, demonstrates the importance of the thread as-

signment for network applications, and presents the overview of the state-of-the-art thread

assignment approaches. Section 3.3 describes in detail the thread assignment methods

that we propose. The results of the experiments used in the evaluation of TSBSched and

BlackBox scheduler are presented in Section 3.4. Section 3.5 shows the overview of the

related work, while Section 3.6 summarizes the study.

3.2 Background

Optimal thread assignment requires a profound knowledge of the resource requirements

of each running thread, and the understanding of how the threads interact in each of the

shared processor resource. Therefore, it is difficult to determine the optimal thread as-

signment without previous analysis of a large number of experiments that exponentially

increases with the number of processor hardware contexts (virtual CPUs), number of dif-

ferent levels of resource sharing, and number of concurrently running threads. The prob-

lem becomes even more complex for multithreaded applications. When an application is

comprised of several threads, it is not sufficient to understand how sharing of hardware

resources affects the execution time of each of the threads independently. The designer

also has to be aware of the inter-thread communication, and to understand which appli-

cation thread is the bottleneck that determines the application performance. Currently,

thread assignment is done in one of three ways:

(1) Resource-oblivious (naive) thread assignment randomly distributes the workload

among hardware contexts of the processor. Naive thread assignment provides non-optimal
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performance. In our experiments, naive scheduling introduces the performance loss of up

to 60% with respect to the optimal thread assignment.

(2) Manual assignment: A skilled designer attempts to determine a good thread as-

signment based on a detailed analysis of the target architecture and an off-line applica-

tion profiling. This analysis is complex and its complexity increases with the number of

processor hardware contexts, number of levels of resource sharing, and number of con-

currently running threads. In addition to this, any change in the application or in the

hardware platform requires the repetition of the analysis. Manual thread assignment is

not a systematic approach, its performance depends on the programmer skills, and, in

general, does not provide the thread assignment with the optimal performance.

(3) Load balancing and cache affinity: State-of-the-art fully-fledged OSs, like Linux

and Solaris, use load balancing mechanism [15][149] to equally distribute the load of the

running threads among all the available scheduling domains (e.g. cores of the CMP archi-

tecture). In addition to this, cache and TLB affinity algorithms [15][149] keep the threads

assigned to the same logical CPU in order to reduce cache and TLB misses caused by the

thread migration. Although these techniques improve the performance, they are not suffi-

cient to fully exploit the capabilities of the current multithreaded processors with several

levels of resource sharing. De Vuyst et al. [50] demonstrate that the load balancing used

in the state-of-the-art operating systems eliminates the unbalanced schedules that allocate

the proper amount of processor resources for each of the co-running threads, which is

one of the important advantages of the modern multithreaded processors. We analyze real

network applications running on the UltraSPARC T2 processor, and measure the perfor-

mance difference of up to 48% between load-balanced and optimal thread assignments.

3.3 Thread assignment methods

We present TSBSched and BlackBox scheduler, two systematic methods for thread assign-

ment of multithreaded network applications running on processors with several levels of

resource sharing. The purpose of these methods is to estimate the performance of dif-

ferent (many) thread assignments and to determine the assignments that provide a good

performance.

Without any data about the hardware requirements of the applications under study, and

using the minimum information about the processor under study, the methods determine

a set of thread assignments (profiling thread assignments) that are used to model the in-
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terference between co-running threads. Based on the measured performance of profiling

thread assignments, the method estimates the performance of any assignment composed

of the applications under study.

Thread assignment methods are designed to accomplish two main objectives:

(1) Remove the need for detailed knowledge about the hardware requirements
of applications under study: In order to select a good assignment, scheduling methods

have to be aware of the interaction between concurrently running threads. Modeling ap-

plication interference in shared processor resources is a challenging task. Most of the

studies that address this problem (see Section 3.5) profile each thread independently, and

then predict the performance when several threads execute concurrently on a processor.

We measure directly the interaction between concurrently running threads for a limited set

of thread assignments, and use this data to model the interference in hardware resources

between co-running threads in any given assignment. The main benefit of this approach is

that the information about the application hardware requirements is not incorporated into

the thread assignment method, but it is encapsulated into the data passed to the method

(the profiling data).

(2) Architecture independence: The only architectural data that the methods require

is the hierarchy of different levels of resource sharing and the number of hardware con-

texts (virtual CPUs) in each of them. For example, for the UltraSPARC T2 processor,

the architecure description contains the information that: (1) The processor resources are

shared in three different levels (IntraPipe, IntraCore, and InterCore); (2) The processor

contains eight cores, each of them contains two hardware pipelines, and each hardware

pipeline has support for four concurrently running threads. The methods do not require

any information about which hardware resources are shared on each level, nor the mi-

croarchitecture details of the processor resources (e.g. the size of the cache memory,

the number and the characteristics of the execution units, etc.). This is the main reason

why the application of the method to different processor architectures requires minimum

adjustments.

Figure 3.1 presents the schematic view of the proposed thread assignments methods.

The methods are comprised of three phases: (1) Application profiling, (2) Performance

prediction, and (3) Selection phase.

(1) Application profiling phase: We profile the applications under study. The output

of this phase are the Base Time Table and Slowdown Table. These tables contain all the

information that is needed to predict the performance of any thread assignment comprised
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Figure 3.1: Schematic view of TSBSched and BlackBox scheduler

of the applications under study.

(2) Performance prediction phase: The models predicts the performance for differ-

ent thread assignments based on the data stored in the Base Time Table and Slowdown

Table.

(3) Selection phase: This is an optional step of the algorithm. In the Selection phase,

the predicted N best-performing thread assignments (e.g. 5 or 10 assignments) are exe-

cuted on the target processor and the assignment with the highest measured performance

is selected as the final outcome of the method. If the predicted best-performing assign-

ment is not the actual best one, the selection phase can improve the performance of the

thread assignment that is the outcome of the method.

The following sections describe each phase of the TSBSched and BlackBox scheduler

in detail.
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3.3.1 TSBSched

TSBSched (Thread to Strand Binding Scheduler) [131] models the interference between

concurrently running threads, by measuring the execution time of each thread running in

different assignments on a real hardware. The method compares the execution time of a

thread when it runs alone on the processor and when it is co-scheduled with other threads,

and uses this data as the input to the model. The thread execution time encapsulates the

information about the interference in hardware resources, and about the benefits of data

and instructions sharing between simultaneously running threads.

3.3.1.1 Phase 1: Application profiling

Application profiling is the first phase of TSBSched scheduler. In this phase, we mea-

sure the interference between concurrently running threads in the profiling set of thread

assignments. The thread assignment method models two aspects of interferences between

concurrently running threads: (1) Collision in shared hardware resources, and (2) Benefit

of data and instruction sharing.

(1) Collision in shared hardware resources: Interference in shared processor re-

sources between concurrently running threads depends on the hardware resources that

the threads use. We did a detailed characterization of the resource sharing levels of the

UltraSPARC T2 processor [154] as a representative of processors with several levels of

resource sharing. The results of this analysis show that, during the workload selection,

it is very important to consider the interference between threads in all levels of resource

sharing – IntraPipe, IntraCore, and InterCore, in the case of UltraSPARC T2. On the other

hand, once the workload is selected, the execution of threads running on core N is negli-

gibly affected by the assignment of threads that do not run on core N (that run on remote

cores). This fact significantly reduces the complexity of TSBSched scheduler. Instead of

the analysis of all the threads running on the processor, the thread assignment method can

reduce the scope of the analysis only to threads that execute on the same core.

The fact that we can reduce the scope of the analysis to the thread running on a single

processor core, enables us to perform a brute force exploration, i.e. to execute all possible

thread assignments inside the core. We execute each thread under study (the target thread)

with all possible layouts of the workload inside the processor core. We measure the

execution time of the target thread in each experiment, and store this data into the table.

Since this data shows the slowdown that the target threads experience because of the

collision with co-running threads, we refer to this table as the Slowdown Table.
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We illustrate the experiments and the Slowdown Table with an example in which sev-

eral IPFwd instances execute concurrently on the UltraSPARC T2 processor. The IPFwd

is a low-layer network application comprised of three threads: Receiving (R), Process-

ing (P), and Transmitting (T) (see Section 2.3). The UltraSPARC T2 core comprises two

hardware pipelines, and each pipeline supports the concurrent execution of up to four

threads.

In order to model the interference between threads that execute concurrently on the

processor core, we run one target application Rtg-Ptg-Ttg with several instances of stress-

ing applications Rst-Pst-Tst. Target and stressing applications perform the same process-

ing of network packets. The only difference is that we monitor the performance of the

target application, and do not monitor the stressing application instances. The purpose of

the stressing applications is to cause the interference in shared processor resources that

could affect the performance of the target application in a given thread assignment. In

order to quantify the slowdown that Rtg thread experiences when it interferes with co-

running threads, we execute thread assignments in which one target thread Rtg executes

on the same processor core with all possible layouts of stressing threads Rst, Pst, and Tst;

i.e. Rtg runs on the same core with threads: [Rst]; [RstRst]; [RstRstRst]; [Pst]; [PstPst];

[PstPstPst]; [RstPstTst]; etc. The Slowdown Table for Rtg thread has as many entries as

different layouts of stressing threads running on the same core with Rtg, and each entry

contains the execution time of the target thread in a given thread assignment. In the ex-

periments in which we profile Rtg, threads Ptg and Ttg are executed in isolation on remote

cores. The experiments needed to characterize Ptg and Ttg threads are analogous to Rtg

experiments.

(2) Benefit from data and instructions sharing: Threads running on the same core

of the UltraSPARC T2 processor share the L1 instruction and data cache. Therefore, if

several threads share data or instructions, they may benefit from co-scheduling on the

same processor core.

In order to detect whether an application can experience performance improvement

when the threads share L1 instruction and data cache, we execute a single application

instance in all possible thread assignment and measure the execution time of each thread

in each of the assignments. The results of these experiments are stored in the Base Time

Table. The table has as many entries as there are different thread assignments of a single

application, and each entry contains the execution time of each application thread in a

given assignment.
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Figure 3.2: Experiments for the Base Time Table

We illustrate the experiments needed for the Base Time Table using the same example

of 3-stage IPFwd application running on the UltraSPARC T2 processor. When consecu-

tive IPFwd threads (Receiving and Processing, or Processing and Transmitting) execute

on the same processor core, they communicate through L1 data cache. When the threads

execute in different cores, the communication is through L2 cache, what causes additional

L1 cache misses and the overhead in the application execution time.

In order to measure the impact of communication through L1 or L2 cache on appli-

cation performance, we execute all possible thread assignments of a single IPFwd appli-

cation instance (11 assignments in total), and measure the execution time of all IPFwd

threads. The set of experiments is presented in Figure 3.2. For example, in the thread

assignment 11 (TA11), R, P, and T threads execute in different cores. Therefore, in case

that these threads share the data, any update of the values will be proceeded through

globally-shared L2 cache. On the other hand, in TA7, R and T threads execute on the

same core, thus any data update will be proceeded locally in L1 cache and it will not

require invalidation of the cache lines in remote cores.

Application profiling phase vs. run-time: It is very important that the behavior of

an application under study in the profiling phase is representative of its run-time behavior.
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If the application can be configured by using different parameters, the parameters in the

profiling phase have to correspond to the run-time parameters. If the application behavior

depends significantly on the network traffic, the traffic used when the application is pro-

filed should be representative of the run-time traffic. Also, in the profiling phase, the user

could analyze the application behavior for different sets of parameters and different types

of network traffic.

3.3.1.2 Phase 2: Performance prediction

Performance prediction is the second phase of the thread assignment method, see Figure 3.1.

In this phase, based on the profiling data, the Base Time Table and Slowdown Table,

TSBSched predicts the performance for any thread assignment composed of the appli-

cations that are analyzed in the application profiling phase. The output of performance

prediction phase is the list of different thread assignments (thousands of them) with the

predicted performance for each assignment. The performance prediction phase is com-

prised of three steps:

In Step 1, we analyze each application in the workload independently, as it executes

in isolation. Hence, we disregard the interference between different applications that

execute simultaneously on the processor, and model only the interaction between threads

that belong to the same application. In this step, each application thread in the workload

is associated with its base_time, the execution time that the thread would have had as if

the application were executed in isolation.

In Step 2 of the performance prediction, we model the effect of collision in hardware

resources between different applications or different instances of the same application. In

this step, we take into account the interference between all the threads in a given thread

assignment.

Finally, in Step 3, based on the analysis in Step 1 and Step 2, we compute the predicted

performance of a given thread assignment.

We illustrate the application of TSBSched with an example thread assignment that is

presented in Figure 3.3. The assignment is comprised of two IPFwd instances, R1-P1-T1

and R2-P2-T2, that execute on four processor cores, Core N to Core N+3. In this example,

threads R1, R2, and P2 execute in the same hardware pipeline (HWPipe 0) in core N ,

while other threads execute in different processor cores.

Step 1: In Step 1, we analyze application instances R1-P1-T1 and R2-P2-T2 inde-

pendently, as if each of them were executed in isolation. For example, when we analyze
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Figure 3.3: Performance prediction. Step 1: Analysis of each application instance in
isolation.

R1-P1-T1 application we disregard R2, P2, and T2 threads from the original thread as-

signment, and vice versa (see Figure 3.3). In this step, each thread in the workload is

associated with its base_time, the execution time that the thread would have had if a sin-

gle application instance were executed alone on the processor. The base_time is read

directly from the Base Time Table (see Section 3.3.1.1).

In Step 1.1, we analyze R1-P1-T1 application in the example thread assignment pre-

sented in Figure 3.3. We directly read the base_time of R1, P1, and T1 threads from the

fields of the Base Time Table that corresponds to the thread assignment 11 (TA11) pre-

sented in Figure 3.2 (R, P, and T threads assigned to different cores). The base_time of

R2-P2-T2 application is computed analogously. First we observe R2-P2-T2 application

as if it were executed in isolation (Step 1.2 of Figure 3.3). Then we read the corresponding

fields of the Base Time Table – the field that corresponds to TA3 presented in Figure 3.2.

Step 2: In Step 2, we model the collision in hardware resources between threads

that belong to different applications or different application instances. As we explained

in Section 3.3.1.1, we focus on interference between threads that execute on the same

processor core. All the information needed to quantify the slowdown because of the

collision between threads that are co-scheduled on the same processor core is stored in

the Slowdown Table. Figure 3.4 presents the part of the example thread assignment that

we use to illustrate Step 2 of the performance prediction. We analyze the interference

between threads R1, R2, and P2 that execute on the same hardware pipeline of core N .

Figure 3.4 present also the entries of the Slowdown Table that are used in the analysis.

In Step 2.1 presented in Figure 3.4, we compute slowdown(R1), the slowdown that

the thread R1 experiences because of the interference with threads R2 and P2. The most

important part of this analysis is to match the thread assignment under study with corre-

sponding entries of the Slowdown Table. Since the thread R1 is the thread under study,

it corresponds to the Rtg in the Slowdown Table. We want to detect the slowdown that

the threads R2 and P2 cause to the R1 thread. Thus, the threads R2 and P2 correspond
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Figure 3.4: TSBSched performance prediction. Step 2: Modeling the collision in hard-
ware resources.

to Rst and Pst threads in the Slowdown Table. First, from the Slowdown Table, we read

the execution time of the target thread Rtg when it executes alone on the processor core –

exe_time1. This entry corresponds to the thread assignment in which the thread R1 exe-

cutes in isolation on the processor core. Later, we read the execution time of the thread

Rtg when it executes on the same hardware pipeline with one Rst and one Pst thread –

exe_time2. This corresponds to the thread R1 running with the threads R2 and P2 on

the same hardware pipeline in a processor core. Finally, the slowdown that the thread

R1 experiences because of the interference with the threads R2 and P2 is computed as:

slowdown(R1) = exe_time2 - exe_time1. In all the experiments, the threads Ptg and Ttg
are executed in isolation on remote cores.

Step 2.2 determines the slowdown that the thread R2 experiences because of inter-

ference with thread R1 that is running in the same core slowdown(R2). In Step 2.3, we

compute slowdown(P2), the slowdown the thread P2 experiences because it collides in

processor core resources with the thread R1. Since the threads R2 and P2 belong to the

same application instance, the interference between them is modeled entirely in Step 1 of

the analysis. As we show in Figure 3.4, Step 2.2 and Step 2.3 are analogous to Step 2.1.

Threads P1, T1, and T2 of the example thread assignment execute alone on different

processor cores (see Figure 3.3), thus they do not experience any slowdown because of

collision in processor core resources.

Step 3: In Step 3 of the performance prediction, we compute the predicted throughput
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(performance) of the observed thread assignment. First, we compute the time each thread

in the assignment requires to process or transfer a single packet (the execution time of a

thread). The thread’s execution time is the sum of its base_time computed in Step 1 and

the slowdown from Step 2. For example, execution time of thread R1 is computed as:

exe_time(R1) = base_time(R1) + slowdown(R1). Second, we compute the execution time

of each application instance in the workload. As R, P, and T threads process a packet in

a pipeline, the application execution time is determined by the thread that has the longest

execution time. For example, the execution time of the application R1-P1-T1 is computed

as: exe_time(R1-P1-T1) = MAX[exe_time(R1), exe_time(P1), exe_time(T1)].

From the application execution time, we compute the application throughput in pro-

cessed Packets Per Second (PPS) as:

throughput(R1-P1-T1)[PacketsPerSecond]= CPUfreq[CyclesPerSecond]
exe_time(R1−P1−T1)[CyclesPerPacket]

Finally, the performance of a given thread assignment is a sum of throughputs of all

applications it is comprised of. In the Prediction phase, the model predicts the perfor-

mance of thousands of different thread assignments. The output of TSBSched can be the

thread assignment with the highest predicted performance, or, optionally, the prediction

can be improved in the Selection phase.

3.3.1.3 Phase 3: Selection phase

Selection phase is the final phase of TSBSched, see Figure 3.1. Although TSBSched

scheduler predicts the thread assignment performance with a high accuracy (as we show

in Section 3.4), the thread assignment with the predicted highest performance could be

wrongly-predicted. In order to avoid the performance loss in this case, in the Selection

phase, the actual performance of several predicted best-performing thread assignments

is measured on the target processor. The final outcome of TSBSched is the assignment

with the highest measured (actual) performance. If the predicted best-performing thread

assignment exhibits a low performance, the Selection phase will filter out this assign-

ment, and the final outcome will be 2nd, 3rd, or Nth predicted best-performing assignment.

In Section 3.4, we analyze also the impact of the Selection phase to the performance of

TSBSched scheduler. The results show that the performance improvement of the Selec-

tion phase in which only five predicted best-performing thread assignments are executed

on the real processor ranges up to 7.3%, which is significant.
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Figure 3.5: Execution time components of a Processing (P) thread

3.3.1.4 TSBSched limitations

TSBSched is a simple algorithm for thread assignment of multithreaded network applica-

tions running on processors with several levels of resource sharing. TSBSched has very

high accuracy (as we show in Section 3.4), it is architecture independent, and does not

need detailed knowledge about the application hardware requirements. However, there

are two limitations that motive the enhancement of the application profiling and the pre-

diction algorithm. These limitations are: (1) The programmer who profiles the application

must have a profound knowledge about the application behavior; (2) As we will explain

later, TSBSched requires changes in the application source code. If the source code is not

available, TSBSched approach cannot be applied.

Figure 3.5 presents three different stages when a network packet is processed by

IPFwd Processing (P) thread [11]: (1) First, the P thread reads the packet from the in-

put (R→P) memory queue. If the input memory queue is empty, the P thread polls as

long as there are no available packets in the queue. (2) Once the packet is read from the

input queue, the P thread processes the packet. (3) After the processing, the packet is sent

to the output (P→T) memory queue. As memory queues have limited capacity, the output

queue may be full, so the P thread must poll until the following thread (T) processes a

packet and frees an entry in the queue. Figure 3.5 also shows three components of total

execution time of thread P: (1) The time that the P thread is polling in the input queue;

(2) Effective execution time, the time needed for thread P to process a packet; and (3) The

time that the P thread spends polling in the output queue.

The R and T threads may also poll if there are no available packets in input queues,

or if output queues are full. The only difference is that the R thread reads packets from

the network card and writes to the R→P queue, and the T thread reads packets from the

P→T queue and sends them to the network card. The total execution time of the threads

R and T has the same components as the P thread: (1) The time spent polling in the input
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queue; (2) Effective execution time; and (3) The time spent polling in the output queue.

The effective execution time of thread R is the time needed to read the packet from the

network card and transfer the packet to the memory. The effective execution time of the

T thread is the time needed to send the packet to the network over the network card.

When a thread polls, it does no useful work, but only waits for other threads to pro-

cess packets. Therefore, TSBSched does not take into account the time a thread spends

polling, but predict performance of thread assignments based on the effective execution

time of each application thread. Measuring the effective execution time is difficult. The

programmer who profiles the application has to distinguish between packet processing

and polling, and insert test points for measuring effective execution time at the right place

in the code. If the time a thread spends polling cannot be extracted from the total exe-

cution time, the TSBSched is unfeasible. As measuring effective execution time requires

changes in the source code, TSBSched can be used only if the application source code is

available.

In order to apply TSBSched to our study, we analyzed the source code and profiled

all the benchmarks in the suite. Since, in our case, the complete source code of all the

benchmarks was available, we were able to insert the test points for measuring of the

benchmark effective execution time and we could apply TSBSched approach to our case

study.

3.3.2 BlackBox scheduler

In order to overcome the limitations of the TSBSched, we designed BlackBox scheduler.

In the application profiling phase, instead of measuring the effective execution time of

each application thread, BlackBox scheduler observes the application’s throughput. In

the framework we use in our study, we determine the throughput of the application based

on the execution time (total execution time, with polling) of the last thread in the R-P-T

pipeline (the T thread). The throughput (in processed Packets Per Second) is the ratio

between processor frequency (in Cycles Per Second) and the thread execution time (in

Cycles Per Packet):

throughput[PacketsPerSecond] =
CPUfreq[CyclesPerSecond]

exe_time(T thread)[CyclesPerPacket]

There are two main enhancements of BlackBox scheduler with respect to the TSBSched:

(1) BlackBox scheduler does not require profound knowledge about applications that are

to be scheduled. In this approach, the application is seen as a black box, and the only in-
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formation needed for optimal scheduling is the application throughput in different thread

assignments. (2) Since BlackBox scheduler does not require inserting any test points in

the application source code, it can be used when the source code is not available.

BlackBox scheduler comprises the same three phases as the TSBSched: (1) Applica-

tion profiling, (2) Performance prediction, and (3) Selection phase (see Figure 3.1).

3.3.2.1 Phase 1: Application profiling

In the application profiling phase, we measure the interference between concurrently run-

ning threads. As in the TSBSched method, the application profiling phase has two outputs,

Base Time Table and Slowdown Table.

The data stored in the Base Time Table models (quantifies) the interaction between

threads that belong to the same application instance. As in the TSBSched method, the

Base Time Table contains as many entries as there are different thread assignments for a

single application running on a target processor. The only difference with respect to the

TSBSched method is that, instead of effective execution time of each application thread,

each entry of the table contains the application’s throughput in a given thread assignment.

The Slowdown Table quantifies the collision in shared hardware resources between

threads that belong to different application instances. The table contains the same entries

as for the TSBSched thread assignment method. The difference is that, instead of the

execution time of each thread, the table entries contain the application’s throughput. For

example, in order to quantify the collision in hardware resources of an R thread on the

performance of R-P-T application, we executed one target thread Rtg in the same pro-

cessor core with all layouts of stressing threads Rst, Pst, and Tst. The table has as many

entries as different layouts of stressing threads running in the same core withRtg and each

entry of the table contains the throughput of the target application Rtg-Ptg-Ttg in a given

thread assignment. In the experiments in which we profile the Rtg thread, threads Ptg and

Ttg are executed in isolation on remote cores. The experiments for characterization of Ptg
and Ttg threads are analogous to Rtg experiments.

It is very important that the behavior of an application under study in the profiling

phase is representative of its run-time behavior. If the application can be configured by

using different parameters, the parameters in the profiling phase have to correspond to

the run-time parameters. If the application behavior depends significantly on the network

traffic, the traffic used when the application is profiled should be representative of the
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run-time traffic.

3.3.2.2 Phase 2: Performance prediction

In the Performance prediction phase, based on data stored in the Base Time Table and

Slowdown Table, BlackBox scheduler predicts performance of any thread assignment.

Performance prediction, as in TSBSched method, comprises three steps. In Step 1, we

analyze each application instance independently, as it runs in isolation. In Step 2, we

model the interference in hardware resources between simultaneously running threads

that belong to different application instances. Finally, in Step 3, we use results from

Step 1 and Step 2 to compute the predicted performance of the thread assignment under

study.

We explain the performance prediction of BlackBox scheduler with the example thread

assignment presented in Figure 3.3, the same thread assignment that we used to explain

TSBSched method.

In Step 1, we analyze applications R1-P1-T1 and R2-P2-T2 independently. In this

step, each application instance in the thread assignment is associated with its base_throughput,

the throughput the application would have had if it were executed in isolation on the pro-

cessor. The application’s base_throughput is read directly from the Base Time Table. For

the application R1-P1-T1, the base_throughput(R1-P1-T1) is read from the entry of the

Base Time Table that corresponds to TA 11 presented in Figure 3.2. The computation of

the base_throughput(R2-P2-T2) for application R2-P2-T2 is analogous (see Figure 3.3).

In Step 2, we model the impact of collision in hardware resources on the application

performance. As in TSBSched, we focus on interference between threads from differ-

ent application instances that execute on the same processor core. Interference between

threads that belong to the same application instance are modeled (quantified) already in

Step 1 of the analysis. Figure 3.6 presents the part of the example thread assignment that

we use to explain Step 2 of BlackBox scheduler performance prediction algorithm.

In Step 2.1 presented in Figure 3.6, we compute slowdown(R1-P1-T1 | R1), the slow-

down that the application R1-P1-T1 experiences because thread R1 interferes with threads

R2 and P2. First, from the Slowdown Table, we determine the throughput of the tar-

get application Rtg-Ptg-Ttg when threads Rtg, Ptg, and Ttg execute alone on processor

cores – throughput(Rtg-Ptg-Ttg). Later, we read the throughput of the target applica-

tion when thread Rtg executes on the same hardware pipeline with one Rst and one Pst

thread – throughput(Rtg-Ptg-Ttg | Rtg vs. RstPst ). This corresponds to the thread R1 run-
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Figure 3.6: BlackBox scheduler performance prediction. Step 2: Modeling the collision
in hardware resources.

ning with the threads R2 and P2 on the same hardware pipeline of processor core N . The

slowdown(R1-P1-T1 | R1) is computed as:

slowdown(R1-P1-T1 | R1) =
throughput(Rtg−Ptg−Ttg)

throughput(Rtg−Ptg−Ttg | Rtg vs. RstPst)
.

Since threads R1 and T1 execute in isolation on processor cores, slowdown(R1-P1-T1

| P1) and slowdown(R1-P1-T1 | T1) are equal to 1. Also, it is important to notice that

slowdown(R1-P1-T1 | R1) may be equal to 1, even though R1 does not execute alone on

the processor core. For example, assume that thread P1 is the bottleneck of the R1-P1-T1

application. Even if R1 thread experiences a slowdown because of collision with R2 and

P2 running on the same core, P1 thread may still be the application bottleneck. In this

case, throughput(Rtg-Ptg-Ttg) will be equal to throughput(Rtg-Ptg-Ttg | Rtg vs. RstPst), and

slowdown(R1-P1-T1 | R1) will be equal to 1.

Step 2.2 determines the slowdown that the application R2-P2-T2 experiences because

thread R2 interacts with thread R1 – slowdown(R2-P2-T2 | R2). In Step 2.3, we compute

slowdown(R2-P2-T2 | P2), the slowdown that the application instance R2-P2-T2 experi-

ences because thread P2 collides in shared CPU resources with thread R1. Interference

between threads R2 and P2 is already modeled entirely in Step 1 of the analysis. As we

show in Figure 3.6, Step 2.2 and Step 2.3 are analogous to Step 2.1.

Thread T2 executes alone on a processor core, therefore slowdown(R2-P2-T2 | T2)

equals 1.
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In Step 3, we compute the predicted throughput of the thread assignment. First, for

each application instance Ri-Pi-Ti we read the base_throughput(Ri-Pi-Ti), as we describe

in Step 1. Later, we compute slowdown(Ri-Pi-Ti | Ri), slowdown(Ri-Pi-Ti | Pi), and

slowdown(Ri-Pi-Ti | Ti), the slowdown that the application Ri-Pi-Ti experiences because

threads Ri, Pi, and Ti interfere in hardware resources with other application instances, as

we explain in Step 2. Since Ri, Pi, and Ti threads process packets in a software pipeline,

the application performance are determined by the slowest thread in a given thread as-

signment - the bottleneck thread. Therefore, the slowdown that the application Ri-Pi-Ti

experiences because of the collision in hardware resources corresponds to the highest

slowdown computed in Step 2:

slowdown(Ri-Pi-Ti)=MAX[slowdown(Ri-Pi-Ti | Ri), slowdown(Ri-Pi-Ti | Pi), slowdown(Ri-Pi-Ti | Ti)].

The throughput of each application is determined with its base_throughput and slowdown:

throughput(Ri-Pi-Ti) = base_throughput(Ri−Pi−Ti)
slowdown(Ri−Pi−Ti) .

Finally, the performance of a given thread assignment is a sum of throughputs (measured

in processed Packets Per Second) of all application instances it comprises.

After the prediction phase, each thread assignment from the input set is related with

its predicted performance. The output of the BlackBox scheduler may be the input thread

assignment with the highest predicted performance, or, optionally, the prediction of the

model can be improved in the Selection phase.

3.3.2.3 Phase 3: Selection phase

As in the TSBSched method, in the Selection phase, we execute the N best-predicted

thread assignments on the target processor and monitor the actual performance of each

assignment. The thread assignment with the highest measured performance is the final

outcome of the thread assignment method.

3.3.3 Scalability of the thread assignment methods

The data used to predict the performance of thread assignments is stored in the Base Time

Table and the Slowdown Table. In order to collect data for the Base Time Table, we

have to execute all thread assignments of a single application on the target processor. The

Slowdown Table requires running all possible layouts of application threads on a single

processor core.

Since state-of-the-art networking applications comprise few threads [11][155], the
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Table 3.1: Scalability of the proposed thread assignment method

execution of experiments needed to fill the Base Time Table and the Slowdown Table is

feasible, and the proposed thread assignment methods can be applied. Most of the low-

layer network applications are composed of few threads because the packet processing is

short, so splitting it into many threads introduces communication overheads that overcome

the benefits of multithreading.

It is important to notice that the application profiling is one-time effort, and that the

process can be fully automated, thus the execution of the experiments and the data pro-

cessing require no interaction with the programmer. In Table 3.1, we present the number

of profiling experiments needed to characterize workloads comprised of different number

of threads running on the UltraSPARC T2 processor. We use this analysis to understand

whether TSBSched and BlackBox scheduler can be used if the number of application

threads increases. The first column of Table 3.1 lists the number of threads that comprise

a single application instance. The second and the third column show the number of ap-

plication instances and the total number of the threads in the workload (Total threads =

Application threads × Application instances). The following columns show the number

of input experiments needed for the Base Time Table and the Slowdown Table, respec-

tively. Finally, the last two columns of the table show the time required to execute all the

profiling experiments. The experimentation time is calculated using the assumption that

a single experiment can be executed in two seconds, which is correct in our experimental

environment. We present results when the experiments can be executed on a single server,

and when four servers can be used to simultaneously execute the experiments.

We reach several conclusions from the results presented in Table 3.1. For four, six, and

eight application threads, the time needed to execute the profiling experiments on a single

server is 5.5 hours, 2.5 days, and 17 days, respectively. However, as the experiments
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needed for application profiling are independent, they can be executed simultaneously

on N servers which will reduce the experimentation time by N times. For example, when

four servers are used, the profiling experiments for applications that are comprised of four,

six, and eight threads can be executed in 1.3 hours, 15 hours, and 4.2 days, respectively,

which is feasible in most of the industrial environments. Also, it is important to notice

that the number of the profiling experiments does not increase with the total number of

threads in the workload, but with the number of threads that compose a single application

instance. The proposed thread assignment methods can be used to determine good thread

assignments for fully-utilized processor (60 to 64 simultaneously running threads) as long

as the number of threads that compose a single application instance is not high.

For the applications that are comprised of a large number of threads, running all pro-

filing experiments becomes infeasible. For example, for application that comprise 32

threads, running all the profiling experiments would require 9×1023 years. If the workload

is composed of different multithreaded applications, TSBSched and BlackBox scheduler

also have to consider interference between thread that belong to different applications. In

this case, the profiling experiments needed to fill the Base Time Table would not change.

For each application, the Base Time Table would be constructed as the application is to be

executed in isolation (see Section 3.3.1.1). On the other hand, including a new application

in the workload would require new experiments that would extend the existing Slowdown

Table. The experiments needed to fill the Slowdown Table require the execution of all

possible layouts of the workload inside the processor core.

Table 3.1 shows the number of input experiments for UltraSPARC T2 processors that

comprise eight cores and eight hardware contexts per core. The number of profiling ex-

periments is significantly lower for processors with lower number of cores and hardware

contexts per processors core.

3.4 Evaluation

In this section, we present the evaluation of TSBSched and BlackBox scheduler for the

set of benchmarks presented in Section 2.3. In order to evaluate the proposed thread

assignment methods, we execute few application instances at once in different thread

assignments, and measure the performance of each assignment. Then, we compare the

performance of best-predicted thread assignment with the performance of actual best one

observed in the evaluation sample. We also show how the Selection phase additionally

improves the performance delivered by the proposed scheduling methods. Finally, we
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present the improvement that our methods obtains over a naive scheduling and a resource-

oblivious scheduling algorithm used in current OSs.

As a main metric, we use the number of Packets Per Second (PPS) processed by

different applications. This metric is inversely proportional to the packet processing time,

and has the same properties as the execution time for non-packet oriented applications.

3.4.1 Exploration space

We evaluated TSBSched and BlackBox scheduler for 2, 3, 4, 6, and 8 instances of bench-

marks presented in Section 2.3, i.e. for 6, 9, 12, 18, and 24 concurrently running software

threads. We could not execute more than 24 threads (eight benchmark instances) simulta-

neously because of the limitation of the experimental environment. The on-chip Network

Interface Unit (NIU) of the UltraSPARC T2 used in the study can split the incoming net-

work traffic into up to eight DMA channels and Netra DPS may bind at most one receiving

thread (one benchmark instance) to each DMA channel.

The number of different thread assignments composed of six software threads is

around 1500. We generated all thread assignments, executed them on the real hardware

and measured the performance for each of them. Then, we compared the actual best

assignment with the ones predicted by the TSBSched and BlackBox scheduler.

For nine threads running on the UltraSPARC T2 processor, the number of different

assignments exceeds half million, so it is unfeasible to run all of them on the processor

because of the execution time constrains. As an alternative to the brute-force exploration

we used a statistical sampling. Even the sampling does not ensure that the best-performing

thread assignment in the sample is also the best assignment in the whole population (the

set of all possible assignments), this is statistically correct method to determine set of

thread assignments that we used to evaluate TSBSched and BlackBox scheduler.

We used systematic sampling [44], a sampling method where the target population,

all thread assignments in our case, is ordered by some property and then the samples are

generated by selecting elements at regular intervals through the ordered list. The first

element is randomly selected from the first k elements and then every kth element is

selected until the end of the list. The sampling step k is computed as k = population size
sample size .

Because of execution time constraints, we chose a sample size of 700 elements which

gives the sampling step k = 750.

We generated all possible thread assignments and used TSBSched to predict their

performance. Then, we sorted them by predicted performance and did the sampling. Sys-
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Figure 3.7: Comparison of predicted and measured performance for a chosen sample
(nine IPFwd-intadd threads)

tematic sampling is effective if the population is sorted by a property that is related to the

measured value. Ideally, the population should be sorted by the value we want to measure.

In our case, we sorted the population by performance predicted with TSBSched. In order

to prove the validity of our sample, we had to show that the predicted performance are

closely related to the actual ones. Figure 3.7 shows predicted and measured performance

for a sample of nine simultaneously running IPFwd-intadd threads. The X-axis shows

the order of the thread assignment in the sample, while Y-axis presents the performance

of the assignment. Since our benchmark suite is composed of network applications, we

measure the performance in processed Packets Per Second (PPS). The results presented

in the figure show very small difference between predicted and measured performance.

We compared the predicted and measured performance for all benchmarks in the suite,

and detected that the prediction closely followed the measured results in all the cases.

Therefore, we concluded that the obtained samples are valid and that systematic sampling

is effective.

The number of different thread assignments for 12, 18, and 24 software threads ex-

ceeds hundreds of millions. Because of time constrains, it is not feasible to generate

nor predict all of them. Therefore, out of all possible thread assignments, we randomly

sampled 1000 assignments [44], and verified our thread assignment methods for a given

sample. The method we used to generate random thread assignments is described next.

For example, assume that a workload of T threads would be assigned on a processor

comprising V hardware contexts, where T ≤ V . We enumerated the hardware contexts of
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the processor with integers from 1 to V and for each thread in the workload we randomly

selected an integer from this interval using the uniform distribution. The number assigned

to each running thread represented the hardware context to which the thread was mapped

to in a given thread assignment. After mapping all the threads, we checked whether the

generated thread assignment was valid. An assignment is not valid if two or more threads

are mapped to the same hardware context. If this is the case, we simply discarded the

invalid assignment and repeated the whole process until the sample contained the required

number of thread assignments.

The sampling method generated thousands of random assignments in a matter of sec-

onds. However, we are aware that the presented approach may not be effective for gen-

eration of random assignments comprised of a large number of software threads. As the

number of software threads approaches the number of hardware contexts, the probability

that more than one thread are mapped to the same hardware context (the assignment in

not valid) increases. In order to avoid the case when most of the generated assignments

are invalid and discarded, the one could think about more effective approaches to generate

a random sample of thread assignments.

Since the number of input thread assignments may be very large, we pay special atten-

tion to make the performance prediction phase of TSBSched and BlackBox scheduler as

fast as possible. Both approaches predict performance for up to 5000 thread assignments

per second 1. This number is constant for different number of assignments under study,

and it is inversely proportional to the number of threads in the workload.

3.4.2 Six software threads

The results for six software threads (two application instances) are presented in Figure 3.8.

Different benchmarks are listed along X-axis of the figure, while Y-axis shows the slow-

down with respect to the best actual thread assignment (TA). We present few groups of

bars. TSBSched and BlackBox bars shows the performance difference between the actual

best thread assignment and the ones predicted by TSBSched and BlackBox scheduler,

respectively. In these experiments, the Selection phase is not included. Bars balanced-

average and balanced-worst present the average and the worst slowdown of balanced

thread assignment with respect to the actual best one. Balanced assignments have threads

equally distributed between processor hardware domains. Current state-of-the-art schedul-

1The models were executed on Intel Dual Core processor running at the frequency of 1.83GHz and 1GB
of memory.
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Figure 3.8: Slowdown with respect to the best thread assignment (six software threads)

ing algorithms used in Linux and Solaris [28] [134] try to equally distribute co-running

threads between different hardware domains (for UltraSPARC T2 processor, between pro-

cessor cores and hardware pipes). The aim of this approach is to distribute co-running

threads to equally stress hardware resources. Since current Linux and Solaris load balanc-

ing algorithms disregard inter-thread dependencies and different resource requirements of

each thread, the performance of balanced thread assignments may not be the optimal. Fi-

nally, bars naive-average and naive-worst present the average and the worst slowdown of

naive scheduling with respect to the actual best thread assignment.

For six concurrently running software threads running and the set of benchmarks we

used in the study, TSBSched and BlackBox scheduler have precisely the same accuracy.

Both approaches determine thread assignments that have performance very close to the

optimal ones. TSBSched and BlackBox scheduler predict the absolute best thread assign-

ment for four out of nine applications: hashN-L1, hashN-L2, hashN-Mem, and IPFwd-

intdiv. The performance loss of the best predicted assignment with respect to the actual

best one is always below 4%.

The improvement of our assignment methods with respect to other scheduling tech-

niques is significant. The performance gain with respect to Linux-like scheduler is be-

tween 3% and 9% in average, and it ranges up to 45% in the worst case (IPFwd-intadd

benchmark). The performance gain with respect to a naive process scheduling ranges
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between 5% and 15% in average; in the worst case it is between 24% and 55%.

Figure 3.8 presents results for the TSBSched and BlackBox scheduler when the Se-

lection phase is not included, but the output of the scheduler is the best predicted thread

assignment. Figure 3.9 shows performance improvement when the models includes the

Selection phase. The X-axis of the charts shows the number of thread assignments ex-

ecuted on in the Selection phase, while Y-axis shows the slowdown with respect to the

best actual assignment. The results presented on Figure 3.9 show that running only two or

three thread assignments in the Selection phase can additionally improve the prediction of

presented methods. For example, for TSBSched (see Figure 3.9(a)), the Selection phase

with only two best predicted thread assignments improves the prediction for four out of

nine benchmarks. In four out of remaining five benchmarks, the best predicted assignment

is also the best actual one, so the performance cannot be improved because it is already

the highest possible. Performance improvement of the Selection phase for TSBSched ap-

proach ranges from 1.8% (IPFwd-intmul) to 3% (IPFwd-intadd). For BlackBox scheduler

(see Figure 3.9(b)), the improvement of the Selection phase ranges up to 3.9% (IPFwd-L2

benchmark). When BlackBox scheduler includes the Selection phase, running only three

best predicted thread assignments is enough to capture the best actual assignment for eight

out of nine benchmarks.

3.4.3 Nine software threads

The results for three application instances are presented in Figure 3.10. Different bench-

marks are listed along X-axis of the figure, while Y-axis shows slowdown with respect to

the best observed thread assignment. We present few groups of bars. Bars TSBSched-TOP1

and BlackBox-TOP1 show the performance difference between best observed thread as-

signment and the one predicted by TSBSched and BlackBox scheduler without the Selec-

tion phase. These two bars show the performance difference between the best predicted

and the best observed thread assignment. Bars TSBSched-TOP5 and BlackBox-TOP5

show the performance difference between the best observed thread assignment and the one

predicted by TSBSched and BlackBox scheduler, but this time with five best-predicted

assignments executed in the Selection phase. The rest of the bars is the same as in

Figure 3.8: bars balanced-average and balanced-worst present the average and the worst

slowdown incurred by Linux-like scheduler; the values of naive-average and naive-worst

bars present the average and the worst slowdown incurred by naive scheduling.

First, we analyze the results of TSBSched. When the Selection phase is not included
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(a) TSBSched

(b) BlackBox scheduler

Figure 3.9: The improvement of the Selection phase (six software threads)

(bar TSBSched-TOP1), TSBSched method captures the actual best thread assignment for

three out of nine benchmarks (hashN-L1, IPFwd-intmul, and IPFwd-intdiv). The highest

performance loss of TSBSched is only 1.9% (IPFwd-L2). The Selection phase addi-

tionally improves the prediction for IPFwd-Mem, hashN-Mem, and IPFwd-intadd bench-

marks, so the model predicts the actual best assignment for six out of nine benchmarks

(see bar TSBSched-TOP5).

The results for BlackBox scheduler are even better. When the Selection phase is

not included (bar BlackBox-TOP1), the best predicted assignment is also the observed

best one in four cases (IPFwd-Mem, hashN-L1, IPFwd-intmul, and IPFwd-intdiv). The

highest performance of loss is only 0.4% (IPFwd-L2 benchmark). Again, the Selection
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Figure 3.10: Slowdown for nine software threads

phase additionally improves the prediction of the model: BlackBox scheduler predicts the

actual best thread assignment in the evaluation sample for eight out of nine benchmarks,

all except hashN-Mem (see bar BlackBox-TOP5). The only time the model does not

determine the actual observed assignment, the performance loss is only 0.1%.

TSBSched and BlackBox scheduler significantly improve the performance of the state-of-the-art

OS schedulers and a naive scheduler. The performance gain with respect to the Linux-like

scheduler is between 5% and 14% in average, and up to 34% in the worst case (IPFwd-

intadd). The performance gain with respect to naive process scheduling is even higher; it

ranges from 7% to 20% in average, and from 23% to 60% in the worst case.

3.4.4 12, 18, and 24 software threads

The results for 12, 18, and 24 software threads are presented in Figure 3.11. Different

benchmarks are listed along X-axis of figures, and Y-axis shows the slowdown with re-

spect to the best observed thread assignment in the evaluation sample.

We present few groups of bars. Bars TSBSched-TOP1 and BlackBox-TOP1 show the

performance difference between actual observed thread assignment and the one predicted

by TSBSched and BlackBox scheduler without the Selection phase. Bars TSBSched-TOP5

and BlackBox-TOP5 show the same, but this time with the best five predicted thread as-

signments executed in the Selection phase. The values of naive-average and naive-worst

bars present the average and the worst slowdown incurred by naive scheduling. For 12,
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18, and 24 software threads, we evaluate the TSBSched and BlackBox scheduler for a

random sample of 1000 thread assignments (see Section 3.4.1). Out of 1000 random as-

signments, in experiments for 12 software threads only 15 assignments were balanced,

that was insufficient to report statistically significant results. Experiments for 18 and 24

threads did not include a single balanced assignment. Therefore, for these sets of exper-

iments, we did not analyze the performance of balanced thread assignments (Linux-like

scheduler).

Results presented in Figure 3.11(a), (b), and (c) have the same trend as results for six

and nine software threads. Both TSBSched and BlackBox scheduler, show very high ac-

curacy and introduce significant performance improvement with respect to naive schedul-

ing. For 12 threads (see Figure 3.11(a)), the improvement of TSBSched and BlackBox

scheduler with respect to naive scheduler is between 7% and 19% in average, and it

reaches 54% in the worst case. For 18 threads (see Figure 3.11(b)), the performance

gain of the proposed thread assignment algorithms ranges from 8% to 23% in average,

and up to 50% in the worst case. In experiments with 24 simultaneously running threads,

the improvement with respect to naive scheduling is between 6% to 19% in average, and

up to 45% in the worst case (see Figure 3.11(c)).

The results also show the importance of the Selection phase. First, we analyze the

results for 12 threads and TSBSched, see Figure 3.11(a). Bar TSBSched-TOP1 shows that,

even most of the time the best predicted thread assignment is very close to the actual best

one, for benchmarks IPFwd-L1, IPFwd-L2, and IPFwd-intadd, we measure the slowdown

of 4.8%, 4.6%, and 7.0%, respectively. When the Selection phase is included (see bar

TSBSched-TOP5), the slowdown for IPFwd-L1, IPFwd-L2, and IPFwd-intadd decreases

significantly to only 1.7%, 1.7%, and 0.1%. The results for BlackBox scheduler are

similar. BlackBox scheduler without the Selection phase incurs the slowdown of 6.8%,

6.5%, and 7.0% for IPFwd-L1, IPFwd-L2, and IPFwd-intadd benchmarks, respectively

(see bar BlackBox-TOP1). BlackBox scheduler with the Selection phase, detects the best

actual thread assignment in the evaluation sample for all nine benchmarks in the suite

(see bar BlackBox-TOP5).

We detect similar behavior for 18 software threads, see Figure 3.11(b). For example,

for hashN-Mem benchmark, TSBSched and BlackBox scheduler without the Selection

phase introduce the slowdown of 7.2% and 8.1%. When the Selection phase is included,

the slowdown is only 0.8% for both methods.

The results for 24 software threads are presented in Figure 3.11(c). Although TSBSched
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(a) 12 threads

(b) 18 threads

(c) 24 threads

Figure 3.11: Slowdown for 12, 18, and 24 threads
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and BlackBox scheduler without the Selection phase are very precise and the highest

slowdown they introduce is only 2.8%, the Selection phase again improves the predic-

tion. In TSBSched method, the Selection phase improves the prediction for six out of nine

benchmarks, and increases the performance up to 2.5%. The Selection phase in BlackBox

scheduler improves the prediction for IPFwd-intadd and IPFwd-intmul benchmarks for

1% and 1.6%, respectively.

3.5 Related Work

Workload Selection: Studies that address the workload selection problem propose

models that predict the impact of interferences between co-running threads to system

performance. Snavely et al. [144][143] present the SOS scheduler, the approach that

uses hardware performance counters to find schedules that exhibit good performance.

Eyerman and Eeckhout [62] propose probabilistic job symbiosis model that enhances the

SOS scheduler. Based on the cycle accounting architecture [61][107][106], the model

estimates the single-threaded progress for each job in a multithreaded workload.

Other approaches [40, 64, 91] propose techniques to co-schedule threads that exhibit

a good symbiosis in shared caches solving the problems of cache contention. Kihm et

al. [91] explore the design of a hardware monitoring system to produce the least interfer-

ence in shared cache memory in every scheduling interval. Chandra et al. [40] present sev-

eral performance models to predict the impact of cache sharing on co-scheduled threads.

Fedorova et al. [64] implement a cache-fair scheduling algorithm in the OS. The algo-

rithm reduces application performance variabilities because of interference in cache with

co-runners. Cache-fair scheduling algorithm ensures that the application always runs as

fast as it would under fair cache allocation, regardless of how the cache is actually allo-

cated.

Several studies [86][90][108] demonstrate the drawbacks of (pseudo) least-recently-

used (LRU) replacement policy in shared last level caches of multithreaded architec-

tures. The studies also propose alternative replacement policies that consider workloads

composed of (numerous) software threads with diverse cache requirements. Other stud-

ies [127][165] try to optimize the utilization of shared caches by adaptive spatial parti-

tioning of these resources between simultaneously-running threads. Zhan et al. [166][167]

propose cache management techniques that consider both issues – spacial partitioning and

replacement policy. First, these techniques spatially partition cache resources between

simultaneously-running threads to maximize the cache utilization. Then, cache replace-
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ment policy for each running thread is adjusted to optimally utilize the cache resources

that are allocated for that thread.

Doucette and Fedorova classify applications regarding their usage of shared pro-

cessor resources [54]. The authors co-schedule applications with base vectors (micro-

benchmarks that specifically stress a single CPU resource), and measure the slowdown

application and base vector experience. This data is used to predict the performance of

any set of applications concurrently running on the processor.

Kwok and Asmad [99][100] present a survey and an extensive performance study

of different scheduling algorithms for multithreaded applications running on clusters of

interconnected single-threaded processors. Since each thread is executed on a single-

threaded processor, co-running threads do not collide in processor resources. Therefore,

the presented scheduling algorithms do not analyze inter-thread interferences in shared

processor resources, which is the focus of our study.

Several studies analyze the hardware support for control of inter-thread interferences

in high-performance computing [27][38][151] and real-time systems [36][37][39]. These

studies use techniques such as dynamic resource partitioning and thread priorities to im-

prove the performance of a given workload running on the target architecture.

Thread Assignment: Several studies show that the performance of applications run-

ning on multithreaded processors depends on the interference in hardware resources,

which, in turn, depends on thread assignment [16][59]. Acosta et al. [16] propose a

thread assignment algorithm for CMP+SMT processors that takes into account not only

the workload characteristics, but also the underlying instruction fetch policy. El-Moursy

el al. [59] also focus on CMP+SMT processors and propose an algorithm that uses hard-

ware performance counters to profile thread behavior and assign compatible threads on

the same SMT core. Other studies analyze thread scheduling for platforms comprised

of several multithreaded processors [109][147]. McGregor et al. [109] introduce new

scheduling policies that use run-time information from hardware performance counters to

identify the best mix of threads to run across processors and within each processor. The

main limitation of these studies is that the application profiling and thread scheduling is

based on the measurements from numerous hardware performance counters. Since the

set of available performance counters is specific for a given processor, it is very difficult

to modify the proposed approaches to any new processor under study. This is the main

reason why we do not use any of these approaches as a baseline in the evaluation of the

TSBSched and BlackBox scheduler.
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Kumar et al. [98] and Shelepov et al. [139] propose algorithms for scheduling in het-

erogeneous multicore architectures. The focus of these studies is to find an algorithm

that matches the application’s hardware requirements with the processor core character-

istics. Our study explores interferences between threads that are distributed between the

homogeneous hardware domains (processor cores) of a processor.

Other studies propose solutions for optimal assignment of network workloads in net-

work processors. Kokku et al. [96] propose an algorithm that assigns network process-

ing tasks to processor cores with the goal of reducing the power consumption. Wolf et

al. [164] propose run-time support that considers the partitioning of applications across

processor cores. The authors address the problem of dynamic threads re-allocation be-

cause of network traffic variations, and provide thread assignment solutions based on the

application profiling and traffic analysis.

We present TSBSched and BlackBox scheduler, thread assignment methods for net-

work applications running on multithreaded processors with several level of resource shar-

ing. The proposed methods predict the performance of different thread assignments of a

given workload based on minimum information about the target processor architecture,

and without any data about the hardware requirements of the applications under study. To

the best of our knowledge, TSBSched and BlackBox scheduler are the first methods that

address thread assignment problem for multithraded applications.

3.6 Summary
Integration of different TLP models in the same processor increases resource utilization

and improves the overall system performance. This motivates most processor vendors to

combine different TLP paradigms in their latest designs.

On the other hand, this introduces complexities in the process scheduling. In addi-

tional to workload selection, process scheduling for processors with different levels of

resource sharing requires the assignment of threads that compose the workload to the

hardware contexts (virtual CPUs) of the processor. Thread assignment determines which

hardware resources are shared between different threads, what directly affects the inter-

threads interference in shared processor resources.

In this chapter, we demonstrated the importance of thread assignment and possi-

ble performance loss of non-optimal thread distribution. We presented TSBSched and

BlackBox scheduler, simple methods for thread assignment of multithreaded network

applications running on processors with several levels of resource sharing. We evalu-
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ated TSBSched and BlackBox scheduler for a set of network applications running on

the UltraSPARC T2 processor. The presented results show very high accuracy of both

proposed thread assignment methods. In most of the experiments, both methods find the

best observed thread assignment in the evaluation sample. The performance improvement

of TSBSched and BlackBox scheduler ranges up to 48% with respect to the Linux-like

scheduler, and up to 60% with respect to a naive thread assignment.
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Chapter 4

A statistical approach to thread
assignment problem

The introduction of multithreaded processors, comprised of a large number of cores

with many shared resources, has made thread scheduling, in particular thread to hard-

ware thread assignment, one of the most promising ways to improve system performance.

However, finding an optimal thread assignment for a workload running on state-of-the-art

multithreaded processors is an NP-complete problem.

Due to the fact that the performance of the best possible thread assignment is un-

known, the room for improvement of current thread-assignment algorithms cannot be

determined. This is a major problem for the industry because it could lead to: (1) A waste

of resources if excessive effort is devoted to improving a thread assignment algorithm

that already provides a performance that is close to the optimal one, or (2) Significant

performance loss if insufficient effort is devoted to improving poorly-performing thread

assignment algorithms.

In this chapter, we present a method based on Extreme Value Theory that allows the

prediction of the performance of the optimal thread assignment in multithreaded proces-

sors. We further show that executing a sample of several hundred or several thousand

random thread assignments is enough to obtain, with very high confidence, an assign-

ment with a performance that is close to the optimal one. We validate our method with

an industrial case study for a set of multithreaded network applications running on an

UltraSPARC T2 processor.
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4.1 Introduction

In multithreaded processors with large numbers of cores and several levels of resource

sharing that, finding a good thread assignment becomes an intractable problem. As the

number of possible thread assignments is vast (e.g. 1050) [50, 59, 87, 131], it is unfeasible

to do an exhaustive search in order to find the thread assignment with the highest per-

formance. Also, the analytical analysis of optimal thread assignment is an NP-complete

problem [67].

Therefore, current thread assignment approaches can not guarantee that the perfor-

mance of the predicted best assignment is either the optimal one, or close to it. Since the

performance of the optimal thread assignment for a workload is unknown, the room for

improvement of current thread assignment techniques cannot be determined. Thus, it is

difficult to properly determine the effort needed to invest in the thread assignment pro-

cess. This may lead to overspending if a good thread assignment algorithm is constantly

improved, or sub-optimal performance if a poor-performing algorithm is not enhanced.

In this chapter, we present a method based on Extreme Value Theory (EVT) that al-

lows the prediction of the performance of the optimal thread assignment. We also show

that, in environments in which the workload infrequently changes, the system designer

can simply execute a sample of several hundred or several thousand random thread assign-

ments of a given workload and measure the performance of each assignment. According

to this analysis, there is a very high probability that the performance of the best observed

assignment will be close to the optimal system performance. This removes the need for

any application profiling or an understanding of the increasingly complex multithreaded

architectures. Unlike other thread assignment proposals that use performance predictors

to find the best thread assignment, our method is application and architecture independent.

The method can be applied directly and without any change to any architecture running

any set of applications. Our study makes the following contributions:

• We show that running a sample of several hundred or several thousand random

thread assignments will most probably capture an assignment within 1% or 2% of

the best performing ones.

• We present a statistical method that, based on the measured performance of a sam-

ple of random assignments, estimates the performance of the best thread assignment

i.e. the optimal system performance for a given workload.
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• We present an iterative algorithm that, based on the previous analysis, samples ran-

dom thread assignments until it captures an assignment with the acceptable perfor-

mance difference with respect to the estimated optimal system performance.

We applied the presented analysis and the iterative threads-assignment algorithm to an

industrial case study in which we scheduled multithreaded network applications running

on the UltraSPARC T2 processor. For all five applications used in the study, just several

thousand random thread assignments were enough to capture an assignment with a per-

formance loss below 2.5% with respect to the estimated optimal system performance (the

estimated performance of the best thread assignment). When the acceptable performance

loss increased to 10%, for all the benchmarks in the suite, running less than 1300 ran-

dom assignments was enough to provide the required performance. In addition to being

architecture and application independent, our method required, in the worst case, around

two hours of experimentation on the target systems to find the thread assignments with

performance very close to the optimal one.

The rest of the chapter is organized as follows. Section 4.2 quantifies the number of

possible different assignments in modern multithreaded processors and demonstrates the

importance of knowing the optimal system performance. Section 4.3 presents a statistical

analysis that we use to estimate the optimal system performance based on a small sam-

ple of random thread assignments. In Section 4.4, we present the results of experiments

in which we applied the presented analysis to the industrial case study for the assign-

ment of multithreaded network applications. Section 4.5 presents the related work, while

Section 4.6 lists the summary of the study.

4.2 Motivation and background

Importance of knowing the optimal system performance: Numerous studies present

the algorithms for thread assignments on multithreaded processors (see Section 3.5).

Given that, in general, running all possible thread assignments is unfeasible, several au-

thors [16, 59, 131] verify their proposals with respect to a naive thread assignment, in

which threads are randomly assigned to the virtual CPUs of the processor, or Linux-like

assignments, in which the number of threads per core or scheduling domain is balanced.

It is our position that the evaluation of those proposals could significantly improve if they

were also compared to the performance of the optimal thread assignment.
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Figure 4.1: Comparison of a naive, Linux-like, and optimal thread assignment

We use an example to show how the evaluation of thread assignments techniques can

be misleading if the optimal system performance is unknown. Figure 4.1 presents the

performance of two multithreaded network benchmarks running on the UltraSPARC T2

processor. Both benchmarks used in the experiment, IPFwd-intadd and IPFwd-intmul, are

based on a generic 3-thread pipelined IP Forwarding network application [131]. Figure 4.1

shows the results for two instances of the 3-thread benchmark (six threads) simultaneously

running on the processor. As, in this specific case, the total number of possible thread as-

signments is around 1500, we can obtain the performance for all assignments. TheX axis

lists the benchmarks that are used in the experiment and the Y axis shows the performance

measured in processed Packets Per Second (PPS). The chart is divided into two parts. In

the left part, we only plot the results for Naive and the Linux-like thread assignment. In

the right part, we also include the bar that corresponds to the optimal system performance.

Based on the results presented in Figure 4.1, we want to analyze whether the Linux-

like scheduler provides a good performance for IPFwd-intadd and IPFwd-intmul bench-

marks running on the UltraSPARC T2 processor. First, we compare only the Linux-like

and Naive scheduler (see the left part of the chart). The improvement of the Linux-like

scheduler with respect to naive scheduling is around 110,000 PPS (8%) for IPFwd-intadd

benchmark, and around 30,000 PPS (2%) for IPFwd-intmul benchmark. Based on these

results, we could conclude that the Linux-like scheduler provides much better perfor-

mance for IPFwd-intadd than for IPFwd-intmul benchmark.

However, when we also consider the performance of the optimal thread assignment,

the conclusions of the analysis change. From the results presented in the right part of

the chart, we see that the difference between the optimal performance and performance

provided by the naive scheduler is much larger for IPFwd-intadd than for IPFwd-intmul
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benchmark, 305,000 PPS (22%) and 115,000 PPS (7%), respectively. Therefore, we con-

clude that the improvement of the Linux-like scheduler for IPFwd-intadd benchmark is

higher because the room for the improvement is larger, and not because the Linux-like

scheduler fits better with this benchmark. Actually, for the IPFwd-intmul benchmark, the

Linux-like scheduler provides a performance much closer to the optimal one. For IPFwd-

intmul, the performance loss of the Linux-like scheduler with respect to optimal perfor-

mance is only 85,000 PPS (5%). For IPFwd-intadd, the performance loss is 200,000 PPS

(12%).

Overall, knowing the optimal system performance not only improves the evaluation

of different thread assignment techniques, but it also shows the performance difference

between the proposed thread assignments and the optimal one. This performance differ-

ence determines the upper limit for improvement of a given thread assignment algorithm,

which is the most important piece of information for the system designer when deciding

whether the algorithm should be enhanced.

4.3 A statistical approach to the thread assignment

problem

In this section, we present a statistical method that overcomes the limitations of the ap-

proaches currently used for thread assignment in multithreaded processors. The analysis

is comprised of three parts. First, we execute a sample of random thread assignments

on the target processor and measure the performance of each one of them. We analyze

whether the best performing assignment in the random sample exhibits performance close

to the optimal one. In order to do this, we analyze the probability that a sample of ran-

domly selected n thread assignments contains at least one from the P% (e.g., P = 1, 2,

or 5%) of the best-performing assignments. Second, we show how the cumulative distri-

bution function can be used to identify which portion of all thread assignments has good

performance. Thirdly, we use Extreme Value Theory to statistically estimate the perfor-

mance of the best thread assignment, i.e. the optimal system performance for the given

workload. We also use the estimated optimal system performance to determine the possi-

ble room for the performance improvement of the proposed thread assignment method.
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4.3.1 Finding thread assignments with a good performance

The probability that a sample of random assignments selected from a vast population

contains the assignment with the best performance is low. However, it is not clear what the

probability is that a sample of random assignments contains at least one of the assignments

with a good performance.

Assume that event A is the probability that a sample contains at least one thread as-

signment from the P% of best-performing assignment. Event A′ is the opposite of event

A, representing the probability that the random sample contains zero thread assignments

from P% of the best-performing assignments. If the number of possible thread assign-

ments is large (i.e. the population is large), the probability that a single assignment is in

the lower (100− P )% of the population is 100−P
100

. We assume that the sample is selected

from a finite population of all thread assignments using sampling with replacement. Sam-

pling with replacement means that at any draw, all assignments in the population are given

an equal chance of being drawn, no matter how often they have already been drawn [44].

In addition to this, we assume that the selected thread assignments in the sample are mu-

tually independent and uniformly distributed. Taking into account these assumptions, the

probability that all n assignments in the sample are contained in the lower (100 − P )%
of the population is computed as: P (A′) = (100−P

100
)n. As A and A′ are opposite events,

the sum of probabilities that they occur is equal to 1: P (A) + P (A′) = 1. Therefore, the

probability of the event A can be computed as:

P (A) = 1− P (A′) = 1−
(

100-P
100

)n

We observe that the probability that a sample of random thread assignments contains

at least one of the P% of the best-performing assignment is independent of the population

size (i.e. the number of possible thread assignments). However, we have to be aware that

this is valid only for large populations, which is satisfied in the case of thread scheduling

problems in multithreaded processors, as we have shown in Table 1.1.

Figure 4.2 plots the probability P (A) for the samples of different size and for different

percentages of the best-performing thread assignments. The X axis of the figure shows

the number of assignments in the sample (n), while the Y axis presents the probability that

the sample contains at least one from P% of the best-performing thread assignments. The

figure shows data for P = 1, 2, 5, 10, 25. We derive three conclusions from Figure 4.2.

First, that the probability asymptotically approaches 1 as the number of thread assign-
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Figure 4.2: Probability that a sample contains a thread assignment from P% of the
best-performing assignments

ments in the sample increases. Second, as the fraction of the best-performing assignments

decreases (from 25% to 1% in the figure) the probability approaches 1 slower (more thread

assignments are required to reach a high probability). Finally, we observe that small sam-

ples of below 10 elements are unlikely to capture any thread assignment from 1%, 2%,

and 5% of the best-performing ones. However, a sample of several hundred random ob-

servations is sufficient to capture at least one of 1% or 2% of the best-performing thread

assignments with a very high probability. This means that, if we assume that 1% or 2% of

the best-performing assignments have a good performance, simply running several hun-

dred or several thousand randomly selected thread assignments is sufficient to capture at

least one assignment with a good performance.

4.3.2 Cumulative Distribution Function

One way to determine which portion of the population of all thread assignments exhibits

a good performance is by plotting the Cumulative Distribution Function (CDF). We il-

lustrate CDF with the following example. Figure 4.3 shows the CDF of all 1500 thread

assignments for a network processing a workload of six threads. The details of the ex-

perimental framework are described in Chapter 2. The X axis of the figure shows the

measured performance in Millions of Packets processed Per Second (MPPS). The Y axis

shows the portion of all thread assignments (the population) that exhibit a performance

lower or equal to the corresponding value on the X axis.

The presented CDF plot also shows the importance of thread assignment. The per-

formance of the thread assignments ranges from 0.715 MPPS to 1.7 MPPS, meaning that
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Figure 4.3: An example of Cumulative Distribution Function

non-optimal assignment could lead to 1,700,000−715,000
1,700,000

= 58% of performance loss. The

performance difference in P% of the best-performing thread assignments can be directly

determined from the CDF of the population. For the data presented in Figure 4.3, the per-

formance difference in 1% of the best-performing thread assignments 1 is very low, below

10,000 PPS which is only 0.6% of the optimal system performance. However, in general,

since running all thread assignments is not feasible, CDF based on the performance of all

assignments cannot be constructed. In that case, the measured performance of a sample

of thread assignments can be used to construct an Empirical CDF (ECDF) that estimates

the CDF of the whole population [74, 88]. ECDF is a very good method to estimate the

median part of the actual CDF, but it cannot be used to infer the performance of the best

thread assignments in the tails of CDF of vast populations. Therefore, ECDF cannot be

used to estimate (with a hard confidence level) the optimal system performance, nor the

performance difference in P% of the best-performing thread assignments, which are the

main goals of our study.

4.3.3 Estimation of the optimal performance

One way to evaluate any thread assignment approach is to compare the performance of the

thread assignments provided by the approach with the performance of the best assignment,

i.e. with the optimal system performance. This performance difference shows the room

for possible improvement of the proposed scheduling approach. However, as in general

the number of possible thread assignments is vast, the optimal system performance cannot

be determined [87]. In this chapter, we propose using statistical inference methods to

1We refer to the performance difference (in MPPS) between population franction 1.0 and 0.99 respec-
tively for the CDF presented in Figure 4.3.
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Figure 4.4: Exceedances over the threshold u

Figure 4.5: Cumulative distribution function F (x) and and corresponding conditional
excess distribution function Fu(y)

estimate the optimal system performance based on the measured performance of a sample

of random thread assignments.

4.3.3.1 Extreme value theory

We estimate the performance of the best thread assignment using Extreme Value Theory

(EVT). EVT is a branch of statistics that studies extreme deviations from the median of

distributions [26, 34]. One of the EVT approaches is the Peak Over Threshold (POT)

method. The POT method takes into account the distribution of the observations that

exceed a given (high) threshold. For example, in Figure 4.4, the observations x1, x4,

x5, and x7 exceed the threshold u and constitute extreme values that can be used in POT

analysis.

The POT method can also be explained using cumulative distribution function (CDF).

For example, assume that F is the CDF of a random variable X . The POT method can
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be used to estimate the cumulative distribution function Fu of values of x above a certain

threshold u. The function Fu is called the conditional excess distribution function and it

is defined as

Fu(y) = P (X − u ≤ y |X > u), 0 ≤ y ≤ xF − u,

where X is the observed random variable, u is the given threshold, y = x − u are

the exceedances over the threshold, and xF ≤ ∞ is the right endpoint of the cumulative

distribution function F . Figure 4.5 shows a CDF of a random variable X (upper chart)

and the corresponding conditional excess distribution function Fu(y) (bottom chart).

The POT method is based on the Pickands - Balkema - de Haan theorem [25, 123]:

Theorem 1. For a large class of underlying distributions functions F , the conditional

excess distribution function Fu(y), for u large, is well approximated by Fu(y) ≈ Gξ,σ(y)

where

Gξ,σ(y) =

{
1− (1 + ξ

σ
y)−1/ξ for ξ 6= 0

1− e−y/σ for ξ = 0

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ
] if ξ < 0, where Gξ,σ is called Generalized

Pareto Distribution (GPD).

This means that the Fu of numerous distributions that present real-life problems can be

approximated with GPD. For each particular problem, the decision as to whether GPD can

be used to model the problem, is made based on how well the sample of observations can

be fitted to GPD. We describe the goodness of fit of observations to GPD in Section 4.3.3.2

in Step 2 and Step 3 of the presented analysis. GPD is defined with two parameters: shape

parameter ξ and scaling parameter σ. One of the characteristics of GPD is that for ξ < 0

the upper bound of the observed value (in our study, the performance of the best thread

assignment) can be computed as u − σ
ξ
, where σ and ξ are the GPD parameters and u is

the selected threshold [70, 89].

In Theorem 1, the definition ofGξ,σ(y) for parameter ξ = 0 can only be used to model

problems with an infinite upper bound [70, 89]. As in this study we use GPD to estimate

application performance when running in a real computer system, the upper bound of the

observed value is finite and the estimated values of the parameter ξ are always ξ̂ < 0.

Therefore, for the sake of the simplicity of the presented mathematical formulas, in the

rest of the chapter we do not present Gξ,σ(y) formulas for parameter ξ = 0.
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4.3.3.2 Application of Peak Over Threshold method

We use the POT method to estimate the optimal system performance for a given workload

(i.e. the performance of the best thread assignment) based on the measured performance

of the sample of random thread assignments. The application of the POT method involves

the following steps:

Step 1: Generate the sample of random thread assignments, execute the assignments

on the target machine, and measure the performance of each assignment. A requisite of

the presented statistical analysis is that the selected thread assignments in the sample are

independent and identically distributed (i.i.d.). Intuitively, random variables are indepen-

dent if knowing the value of one of them gives no new information about the values of the

others; they are identically distributed if they all have the same probability distribution,

which does not have to be uniform. Uniform distribution would mean that each kernel

partition would be selected with the same probability. The sample assignments have to be

taken from a single population using sampling with replacement [153]. The method we

use to generate i.i.d. thread assignments is described next.

For example, assume that a workload of T threads would be assigned on a processor

comprising V hardware contexts, where T ≤ V . We enumerate the hardware contexts of

the processor with integers from 1 to V and for each thread in the workload we randomly

select an integer from this interval. The number assigned to each running thread represents

the hardware context to which the thread is mapped to in a given thread assignment. After

mapping all threads, we check if the generated thread assignment is valid. An assignment

is not valid if two or more threads are mapped to the same hardware context. If this is

the case, we simply discard the invalid assignment and repeat the whole process until

the sample contains the required number of thread assignments. As assignments in the

sample are independent and they are sampled from a single population using sampling

with replacement, the generated sample is comprised of iid thread assignments.

Step 2: Select the threshold u. The selection of the threshold u is an important step

in POT analysis. Gilli and Këllezi [70, 89] propose using sample mean excess plot, a

graphical tool for threshold selection. This method first sorts all thread assignments in a

sample in non-decreasing performance order: xn1 ≤ xn2 ≤ · · · ≤ xnn. Figure 4.6(a) shows

the sorted performance of 5000 random thread assignments for a workload comprised of

24 threads of the IPFwd-L1 application (see Section 2.3). Then, the possible threshold u

takes the values from xn1 to xnn (xn1 ≤ u ≤ xnn) and for each value we compute the sample
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(a) Ordered sample of thread assignments

(b) Sample mean excess plot

Figure 4.6: Selection of the threshold u

mean excess function en(u):

en(u) =
∑n
i=k(x

n
i −u)

n−k+1
, where k = min{ i | xni > u}.

In this formula, the factor n− k + 1 is the number of observations that exceed the

threshold. Finally, the sample mean excess plot is defined by the points (u, en(u)) for

xn1 ≤ u ≤ xnn. Figure 4.6(b) shows the example of the sample mean excess plot for 24

threads of IPFwd-L1 application.

As we are interested in the upper performance bound estimation, the estimated pa-

rameter ξ of GPD has to be negative (ξ̂ < 0). One of the characteristics of the GPD with
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parameter ξ < 0 is that it has linear mean excess function plot. In order to have a good

fit of the conditional distribution function Fu to GPD, the threshold should be selected so

that the observations that exceed the threshold have a roughly linear sample mean excess

plot. As an example, for the data presented in Figure 4.6, the threshold should be selected

to be around 6.6×106. Sample mean excess plot is also a very good tool to test whether

GPD can be used to model a particular set of observations. If the right portion of the mean

excess plot for the sample of measured thread assignments performance is not (roughly)

linear, that particular problem cannot be modeled using GPD.

Another important tool that can be used to understand if a given sample of observa-

tions can be modeled with a Generalized Pareto Distribution is a quantile plot [26, 89].

In a quantile plot, the sample quantiles xni are plotted against the quantiles of a target

distribution F−1(qi) for i = 1, . . . , n. If the sample data originates from the family of

distributions F , the plot is close to a straight line. For all experiments presented in this

chapter, we plot the quantiles of the samples of observations against the quantiles of GPD.

In all experiments, the form of quantile plots strongly suggest that that samples of obser-

vations follow a Generalized Pareto Distribution.

The linear sample mean excess plot and the quantile plot are not the only constraints

that should be considered when selecting the threshold. If the threshold is too low, the

estimated parameters of GPD may be biased to the median values of the cumulative dis-

tribution function instead of to the maximum values. In order to avoid this bias, when

selecting a threshold we have to ensure that the number of observations that exceed the

selected threshold is not higher than 5% of the thread assignments in the whole sample.

This is a commonly used limit in studies that use POT analysis [70, 89].

Step 3: Fit the GPD function to the observations that exceed the threshold and estimate

parameters ξ and σ.

Once the threshold u is selected, the observations over the threshold can be fitted to

GPD, and the parameters of the distribution can be estimated. For the sake of simplicity,

we assume that observations from xnk to xnn in the sorted sample presented in Figure 4.6(a)

exceed the threshold. We rename the exceedances yi−k+1 = xni − u for k ≤ i ≤ n and

use the set of elements {y1, y2, ..., ym} to estimate the parameters of GPD. The number of

elements in the set, m = n− k + 1, is the number of exceedances over the threshold.

Different methods can be used to estimate the parameters of GPD from a sample of

observations [35, 75, 81, 146]. In our study, we used the estimation based on the likeli-

hood function. The likelihood is a statistical method that estimates distribution parameters
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based on a set of observations [23]. The GPD is defined with parameters ξ and σ. The

likelihood that a set of observations {y1, y2, ..., ym} is the outcome of a GPD with param-

eters ξ = ξ0 and σ = σ0 is equal to the probability that GPD with parameters ξ0 and σ0
has the outcome {y1, y2, ..., ym}.

We will use the likelihood function to compute the probability that different values of

GPD parameters have for a given set of observations {y1, y2, ..., ym}. As the logarithm

is a monotonically increasing function, the logarithm of a positive function achieves the

maximum value at the same point as the function itself. This means that instead of finding

the maximum of a likelihood function, we can determine the maximum of the logarithm

of the likelihood function - the log-likelihood function. In statistics, log-likelihood is

frequently used instead of the likelihood function because it simplifies the computation.

The estimation of parameters ξ and σ of Gξ,σ(y) involves the following steps:

(i) Determine the corresponding probability density function as a partial derivate of

Gξ,σ(y) with respect to y:

gξ,σ(y) =
∂Gξ,σ(y)

∂y
= 1

σ
(1 + ξ

σ
y)−

1
ξ
−1

(ii) Find the logarithm of gξ,σ(y):

log (gξ,σ(y)) = −log σ − (1
ξ
+ 1) log(1 + ξ

σ
y)

(iii) Compute the log-likelihood function L(ξ, σ|y) for the GPD as the logarithm of

the joint density of the observations {y1, y2, ..., ym}:

L(ξ, σ|y) =
m∑
i=1

log gξ,σ(yi)

L(ξ, σ|y) = −m log σ − (1
ξ
+ 1)

m∑
i=1

log(1 +
ξ

σ
yi)

We compute estimated values of parameters ξ̂ and σ̂, to maximize the value of the

log-likelihood function L(ξ, σ|y) for observations {y1, y2, ..., ym}:

L(ξ̂, σ̂|y) = max
ξ,σ

(L(ξ, σ|y))

L(ξ̂, σ̂|y) = max(−m log σ − (
1

ξ
+ 1)

m∑
i=1

log(1 +
ξ

σ
yi))

In order to determine the parameters ξ̂ and σ̂, we find the minimum of the negative

log-likelihood function, min
ξ,σ

(−L(ξ, σ|y)), using the procedure fminsearch() included in

Matlab R© R2007a [41]. The values ξ̂ and σ̂ are called the point estimate of the parameters

ξ and σ, respectively.

Step 4: Estimate the optimal system performance (the upper performance bound of
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Figure 4.7: UPB confidence interval
all thread assignments). The upper bound of the observed value can be determined only

for ξ̂ < 0 which is satisfied for all data sets that are presented in this chapter. The point

estimate of the Upper Performance Bound (UPB) is computed as ÛPB = u− σ̂/ξ̂.

In order to indicate the confidence of the estimate, we compute the confidence inter-

vals of the estimated ÛPB. UPB confidence interval is computed using likelihood ratio

test [23] which consists of the following steps:

(i) Define GPD as a function of ξ and UPB:

Gξ,UPB(y) = 1− (1− 1
UPB−uy)

−1/ξ

(ii) Determine the corresponding probability density function:

gξ,UPB(y) =
∂Gξ,UPB(y)

∂y
= − 1

ξ(UPB−u)(1−
1

UPB−uy)
− 1
ξ
−1

(iii) Compute the joint log-likelihood function for observations {y1, ..., ym}:

L(ξ,UPB|y) =
m∑
i=1

log gξ,UPB(yi)

L(ξ,UPB|y) = −n log(−ξ(UPB− u))− (1 + 1
ξ )

n∑
i=1

log(1− 1

UPB− u
yi)

(iv) Find the UPB confidence interval. We determine the confidence interval for UPB

using likelihood ratio test [23] and Wilks’s theorem [42, 161, 162]. The maximum log-

likelihood function is determined as L(ξ̂, ÛPB|y) = max
ξ,UPB

(L(ξ,UPB)).

The function L(ξ̂, ÛPB|y) has two parameters that are free to vary (ξ and UPB), hence

it has two degrees of freedom, df1 = 2. As UPB is our parameter of interest, the profile

log-likelihood function is defined as L∗(UPB) = max
ξ
L(ξ,UPB).

The function L∗(UPB) has one parameter that is free to vary i.e. one degree of free-

dom, df2 = 1. Wilks’s theorem applied to the problem that we are addressing claims

that, for large number of exceedances over the threshold, distribution of 2(L(ξ̂, ÛPB −
L∗(UPB)) converges to a χ2 distribution with df1 − df2 degrees of freedom. Therefore,
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the confidence interval of UPB includes all values of UPB that satisfy the following con-

dition:

L(ξ̂, ÛPB)− L∗(UPB) <
1

2
χ2
(1−α),1 (4.1)

χ2
(1−α),1 is the (1−α)-level quantile of the χ2 distribution with one degree of freedom

(df1−df2 = 1). α is the confidence level for which we compute UPB confidence intervals.

We illustrate the computation of the UPB confidence interval in Figure 4.7. The figure

plots L∗(UPB) for different values of UPB. For UPB = ÛPB, L∗ reaches its maximum.

The confidence interval of UPB includes all values of UPB that satisfy the condition

L∗(UPB) > L(ξ̂, ÛPB)− 1
2
χ2
(1−α),1 which corresponds to the Equation 4.1. We computed

the UPB confidence interval using an iterative method based on the fminsearch() function

included in Matlab R© R2007a.

The code that generates the sample mean excess plots, infers the parameters of the

GPD distribution, and estimates the optimal system performance was developed in Matlab R© R2007a.

4.3.4 Summary of the statistical analysis

In this section, we have presented two statistical methods. The first method computes

the probability that a sample of n randomly selected thread assignments captures at least

one out of P% (e.g. 1%) best performing assignments. The results of this method show

that running several hundred or several thousand random threads assignments is enough

to capture at least one out of 1% of the best performing assignments with a very high

probability. The second method estimates the performance of the best-performing thread

assignment, i.e. the optimal system performance for a given workload. The method infers

the optimal system performance with the hard statistical confidence based on a measured

performance of the sample of random thread assignments. The presented method is com-

pletely independent of the hardware environment and target applications. The method

scales to any number of cores and hardware contexts per core and it does not require any

profiling of the application nor does it require knowledge of the architecture of the target

hardware.
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4.4 Results

In this section, we apply the presented statistical approach to the thread assignment of

multithreaded network applications running on the UltraSPARC T2 processor. We start

by analyzing whether a sample of random thread assignments can capture an assignment

with a good performance. Next, we estimate the optimal system performance for a given

workload, and compare it with the measured performance of the observed best thread

assignment in the sample. Finally, we show how the presented analysis can be applied in

the industrial case study for thread assignment of network applications.

In all presented experiments, we simultaneously executed eight benchmark instances

(24 threads). We could not execute more than eight benchmark instances because of the

limitation in the experimental environment: the on-chip Network Interface Unit (NIU) of

the UltraSPARC T2 used in the study can split the incoming network traffic into up to

eight DMA channels and Netra DPS binds at most one receiving thread to each DMA

channel. As a part of future work, we plan to apply the presented statistical approach to

applications with several processing threads and to workloads with a higher number of

simultaneously-running threads.

4.4.1 Finding thread assignments with good performance

In Section 4.3.1, we presented a method to compute the probability that a sample of

randomly selected thread assignments contains at least one of P% of best-performing as-

signments. We showed that samples containing more than several hundred random thread

assignments capture at least one in 1% or 2% of the best performing thread assignments

with a probability higher than 99%. We also showed that the probability that a sample

of random assignments contains at least one out of 1% of the best-performing thread ass-

ingments asymptotically approaches 1 as the number of thread assignments in the sample

exceeds 1000 (see Figure 4.2).

In order to analyze if further increasing the number of thread assignments in the sam-

ple increases the performance of the captured best-performing assignment, we executed

experiments for 1000, 2000, and 5000 random thread assignments. The results of the ex-

periment are plotted in Figure 4.8, in which the X axis lists different benchmarks and the

Y axis shows the performance of the best thread assignment in the sample, measured in

processed Packets Per Second (PPS). We observed that increasing the sample size from
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Figure 4.8: Performance of the best thread assignment in the random sample

1000 to 5000 only negligibly improves the performance of the captured best thread assign-

ment. The highest performance improvement we detect is only 0.6% for the IPFwd-Mem

benchmark. For the remaining four benchmarks, the performance improvement when the

sample increases from 1000 to 5000 assignments is below 0.25%.

We repeated the same set of experiments for different workloads each having a dif-

ferent number of simultaneously running threads. The conclusions that we reached are

the same - increasing sample size from 1000 to 5000 insignificantly improves the perfor-

mance of the captured best-performing thread assignment.

In order to analyze how good the performance of the captured best thread assignment

in the sample is, and what its performance loss with respect to the optimal one is, we

used the statistical inference method that estimates the performance of the optimal thread

assignment.

4.4.2 Estimation of the optimal performance

In Section 4.3.3, we described the statistical approach for the estimation of the optimal

system performance for a given workload. The presented statistical method estimates

the performance of the best thread assignment based on the measured performance of a

sample of random assignments. Figure 4.9 shows the estimated optimal system perfor-

mance for all five benchmarks in the suite which are listed along X axis. In order to

understand the impact of sample size to the estimated optimal system performance, we

executed experiments and present data for 1000, 2000, and 5000 random thread assign-

ments in the sample. The height of the solid bar corresponds to the point estimation of

the optimal system performance, while the error bars show the confidence interval for the
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Figure 4.9: Estimated best-performing schedule performance

0.95 confidence level.

From the data presented in Figure 4.9, we can see that the point estimation is roughly

the same for all three sample sizes. On the other hand, we see that for four out of five

benchmarks (all except Aho-Corasick) increasing the sample size significantly narrows

the confidence interval, i.e. it improves the precision of the estimation. As we increase

the number of assignments in the sample, more thread assignments in the right tail of

the cumulative distribution function (see Figure 4.5) are used to estimate the parameters

of the Generalized Pareto Distribution (GPD). As we stated in Section 4.3.3.2, in order

to avoid the bias of the GPD to median values in the cumulative distribution function, no

more than 5% of the best performing assignments should be considered when the right tail

of the cumulative distribution function is fitted to GPD. Therefore, the maximum number

of observations we use to estimate a performance of the optimal system performance is

50, 100, and 250 for the sample of 1000, 2000, and 5000 thread assignments, respectively.

As we increase the number of thread assignments in the sample, more observations can

be used to estimate the optimal system performance, which, in turn, leads to more precise

estimations.

Figure 4.10 shows the performance difference between the best-performing assign-

ment in the sample and the estimated optimal system performance. This chart shows

how good the performance of the captured best assignment in the given sample is. The

benchmarks that are used in the case study are listed along the X axis. Different bars

present results for 1000, 2000, and 5000 random assignments in the sample. The height

of the solid bar corresponds to the point estimation of the optimal system performance,

while the error bars correspond to the confidence interval for the 0.95 confidence level.
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Figure 4.10: Estimated performance improvement

We reach several conclusions from the results that are presented in Figure 4.10. For

1000 thread assignments in the sample, the estimated possible performance improvement

is considerable and significantly different for different benchmarks. For Aho-Corasick

and IPFwd-L1 benchmarks, the detected possible performance improvement ranges up

to 7% and 9%. For IPFwd-Mem, Packet analyzer, and Stateful benchmarks, the possi-

ble performance improvement ranges up to 16%, 19%, and 23%, respectively. For 2000

assignments in the sample, the performance difference between the best assignment in

the sample and the estimated optimal performance is below 5% for all five benchmarks

in the suite. Finally, for the 5000 thread assignments in the sample, the best measured

performance in the random sample is very close to the estimated optimal performance,

for all five benchmarks in the suite. The highest possible performance improvement is

only 2.4% (IPFwd-Mem benchmark).

Overall, in this section, we applied the method presented in Section 4.3 to estimate the

optimal system performance for a given workload. We used the estimated performance to

understand how good the best thread assignments captured in the random samples are. In

our experiments, running only several thousand random thread assignments from a vast

population was enough to detect assignments with performance very close to the optimal

ones. We also showed that increasing the sample size from 1000 to 5000 significantly

improved the precision of the estimation, though it only insignificantly improved the per-

formance of the captured best thread assignment.
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4.4.3 Case study

Next, we show how the presented analysis can be applied to an industrial case study for

the thread assignment of network applications. In the presented scenario, the main ob-

jective is to satisfy the given performance requirement of the best thread assignment that

is captured in the random sample. In this scenario, the customer requires that the per-

formance difference between the captured best thread assignment and the optimal system

performance for the given workload is below X%.

In order to address this problem, we developed an iterative algorithm that converges

to the performance required by the customer by increasing the number of random assign-

ments in the sample. The schematic view of the algorithm is shown in Figure 4.11. The

algorithm is comprised of four steps.

In Step 1, we select the initial sample size Ninit, generate a sample of Ninit random

thread assignments, execute them on the target processor, and measure the performance

of each assignment in the sample. The output of Step 1 is the measured performance of

all thread assignments that are executed on the target processor.

In Step 2, we apply the described statistical method to estimate the optimal system

performance. There are two outputs from Step 2: the performance of the best assignment

in the sample and the estimated optimal system performance, i.e. the performance of the

optimal assignment for a given workload.

In Step 3, we compute the performance difference between the observed best as-

signment in the random sample and the estimated optimal system performance. If this

performance difference is acceptable for the customer (it is below X%), then the iterative

process ends. The final outcome of this process is the observed best assignment in the

sample and the estimated performance difference with respect to the optimal assignment.

On the other hand, if the difference between the performance of the best thread assign-

ment in the sample and the estimated optimal system performance is not acceptable (it is

higher than X%), the iterative process continues.

In Step 4, we generate a sample of Ndelta random assignments, execute the assign-

ments on the target processor, and measure the performance of each of them. The set of

Ndelta measured values is included in the set of measurements that are the input to the

statistical analysis in Step 2 (Ncurrent = Ncurrent + Ndelta) and the statistical analysis is

repeated, this time for a larger input dataset. As the number of thread assignments in

the random sample increases, the performance of the captured best assignment increases
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Figure 4.11: Case study: The schematic view of the algorithm

as well. But, more importantly, the input dataset for statistical analysis increases, which

provides a more precise estimation of optimal system performance.

Step 2, Step 3, and Step 4 of the algorithm are repeated as long the best thread assign-

ment in the sample does not satisfy performance requirements specified by the customer.

We appled the presented algorithm to the set of network benchmarks executing in

Netra DPS low-overhead runtime environment on the UltraSPARC T2 processor. We

started the algorithm with Ninit = 1000 thread assignments and in each iteration we ex-

ecuted Ndelta = 100 assignments more. We analyzed three cases, when the acceptable

performance loss is 2.5%, 5%, and 10%. In Step 2 of the algorithm, the optimal system

performance was estimated for the 0.95 confidence level. The number of thread assign-

ments in the sample needed to capture an assignment with the acceptable performance

loss is presented in Figure 4.12. We present data for all five benchmarks in the suite
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Figure 4.12: Case study: Required number of thread assignments

that are listed along the X axis. From the results presented in the figure we see that:

(1) Running several thousand random thread assignments was enough to capture an as-

signment with a performance loss of below 2.5% with respect to the estimated optimal

performance. The required number of thread assignments range from 2200 for IPFwd-L1

to 4500 for IPFwd-Mem benchmark. (2) As the acceptable performance loss increased,

less assignments in the sample were needed. For example, when the acceptable perfor-

mance loss was 10%, running less then 1300 random thread assignments was sufficient to

provide the required performance for all five benchmarks. (3) Required number of threads

assignments in the sample depends on the concrete benchmark.

One of the main strengths of the presented approach is that it is application and ar-

chitecture independent, and that it can be applied to find thread assignments that satisfy

different performance requirements. The number of assignments in the sample depends

on the characteristics of the benchmarks, characteristics of the target architecture, and

also on the performance requirements.

4.4.4 Other Considerations

There are a couple of aspects to consider regarding the presented approach.

Experimental time: Our method requires execution on the target architecture of all

thread assignments in the sample. In our target networking environment, as described in

Section 2.4, around 1.5 seconds were enough to take a stable measurements of the perfor-

mance of each thread assignment. Hence, the time needed to execute all experiments for

samples of 1000, 2000, and 5000 thread assignments, for which we have obtained close-
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to-the-optimal performance, was approximately 25 minutes, 50 minutes, and 2 hours,

respectively. This experimentation time is reasonable considering that the selected thread

assignment can be used during the lifetime of the system.

However, it may be the case that in some environments the time required to execute

thousands of experiments on the target architecture is large or unfeasible. In that case,

instead or execution of random thread assignments on a target processor, the performance

of each assignment in the sample can be predicted using a performance predictor. For that

matter, the input data to the statistical model is the predicted performance for a sample

of thread assignments. Performance predictors are models that estimate the performance

of thread assignments based on the analysis of the target architecture and resource re-

quirements of each thread in a workload (see Section 3.5). It is important to note that the

accuracy of the integrated approach that combines performance predictors and statistical

analysis depends on the accuracy of the predictor that is used. Design and evaluation of

such an integrated approach is part of our future work.

Application parameters and network traffic: It is very important that the behavior

of an application under study in the sampling phase is representative of its run-time be-

havior. If the application can be configured by using different parameters, the parameters

used to generate random samples have to correspond to the run-time parameters. Some

of the parameters for the benchmarks used in the study are: size of the hash tables for the

IPFwd benchmarks, the type of packet processing for the Packet Analyzer, the set of key-

words that are searched in packet payload by the Aho-Corasick algorithm, or the size of

the flow-record hash table used in the stateful network application. If the application be-

havior depends significantly on the network traffic, the traffic used in the sampling phase

should be representative of the run-time traffic.

Workload selection: As we mentioned in Section 4.1, for processors with one level

of resource sharing, the thread scheduling is done in a single step, called workload se-

lection: out of all ready-to-run threads, the OS selects a set of threads (workload) that

will concurrently execute on the processor [85]. As all threads share the same processor

resources homogeneously, the way they interfere is independent of their distribution. In

processors with several levels of resource sharing, thread scheduling requires an addi-

tional step, called thread assignment. Once the workload is selected, the threads have to

be distributed among different hardware context of the processor.

In the industrial networking environment used in our experimental setup, the workload

is known beforehand and cannot be changed at runtime (see Section 2.2). Hence, in
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this kind of environment, the workload selection is not an issue and the optimal thread

assignment is the only scheduling problem. In this chapter, we have shown how our

statistical approach can be applied to the problem of the optimal thread assignment. In

processors with one level of resource sharing, the presented methodology can be directly

applied to address the workload selection problem. The designer has to generate a sample

of random workloads, run them on the target machine, measure the performance of each

workload, and follow the methodology we presented in Section 4.3.

4.5 Related work

Numerous studies address the problem of thread assignment of applications running on

multithreaded processors, see Section 3.5. However, to the best of our knowledge, the

work of Jiang et al. [87] is the only systematic study devoted to find the optimal thread

assignment of applications running on multithreaded processors. First, the authors ana-

lyze the complexity of the thread assignment for multithreaded processors. Later, they

propose several thread assignment algorithms. The authors use graphs to model inter-

action between simultaneously-running threads and use graph search to find the optimal

solution. The main drawback of this study is that it assumes that the impact of thread in-

teraction to system performance is known beforehand for all possible assignments, which

is not satisfied in general case.

We present a different approach for finding the performance of the optimal thread as-

signment. We do not try to find the best-performing assignment, but to capture a thread

assignment with performance close to the optimal one. In our approach, the optimal sys-

tem performance is estimated using statistical inference based on measured performance

of a sample of random thread assignments.

4.6 Summary

Optimal thread assignment is one of the most promising ways to improve the performance

of applications running on multithreaded processors. However, finding an optimal thread

assignment on modern multithreaded processors is an NP-complete problem.

In this chapter of the thesis, we proposed a statistical approach to the problem of

optimal thread assignment. In particular, we showed that running a sample of several

hundred or several thousand random thread assignments is enough to capture at least
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one out of 1% of the best-performing assignments with a very high probability. We also

described the method that estimates, with a given confidence level, the optimal system

performance for given workload. Knowing the optimal system performance improves

the evaluation of any thread assignment technique and it is the most important piece of

information for the system designer when deciding whether any scheduling algorithm

should be enhanced.

The presented approach is completely independent of the hardware environment and

target applications. The approach scales to any number of cores and hardware contexts per

core and it does not require any profiling of the application nor does it require knowledge

of the architecture of the target hardware.

We successfully applied our proposal to a case study of thread assignment of mul-

tithreaded network applications running on the UltraSPARC T2 processor. Our results

showed that running several thousand random thread assignments provided enough infor-

mation for the precise estimation of the performance of the optimal thread assignment,

and that it was sufficient to capture the assignments with performance very close to the

optimal ones (less than 2.5% of the performance loss), requiring around two hours of

experimentation in the target architecture in the worst case.
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Chapter 5

A statistical approach to kernel
partitioning of streaming applications

One of the greatest challenges in computer architecture is how to write efficient, portable,

and correct software for multicore multithreaded processors. A promising approach is to

expose more parallelism to the compiler, through the use of domain-specific languages.

The compiler can then perform complex transformations that the programmer would oth-

erwise have had to do. Many important applications related to audio and video encoding,

software radio and signal processing have regular behavior that can be represented using

a stream programming language. When written in such a language, a portable stream pro-

gram can be automatically mapped by the stream compiler onto multicore hardware. One

of the most difficult tasks of the stream compiler is partitioning the stream program into

software threads. The choice of partition significantly affects performance, but finding

the optimal partition is an NP-complete problem.

In this chapter, we present a method, based on Extreme Value Theory (EVT), that

statistically estimates the performance of the optimal partition. Knowing the optimal

performance improves the evaluation of any partitioning algorithm, and it is the most

important piece of information when deciding whether an existing algorithm should be

enhanced. We use the method to evaluate a recently-published partitioning algorithm

based on a heuristic. We further analyze how the statistical method is affected by the

choice of sampling method, and we recommend how sampling should be done. Finally,

since a heuristic-based algorithm may not always be available, the user may try to find

a good partition by picking the best from a random sample. We analyze whether this

approach is likely to find a good partition. To the best of our knowledge, this study is the

first application of EVT to a graph partitioning problem.
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5.1 Introduction

Stream programming languages represent the program as concurrent kernels, which com-

municate only via point-to-point streams. A kernel is a basic computation block with

a user-defined function that processes input data streams into output data streams. De-

pendencies between different kernels are described explicitly through the communication

data channels. The whole application can be represented as a stream graph. The nodes of

the stream graph correspond to the kernels, while the directed edges represent the com-

munication data channels.

There are three main advantages of stream programming languages, compared with

traditional languages such as C. First, a stream programming language is a domain-

specific language, which provides a natural way to describe streaming applications. Sec-

ond, when the program is described using a stream language, the compiler may perform

complex optimizations over the stream graph, producing an efficient multithreaded pro-

gram. Some optimizations involve major changes to the program’s structure and data

layout. Third, unlike some other parallel programming models, including multithreading,

a stream program is deterministic, and therefore easier to debug.

In order to optimally exploit the potential of high-end multithreded processors, stream

programs are compiled into multithreaded executables by the stream compiler. One of the

most important tasks of the compiler is to partition the kernels in the stream graph into

software threads.

Kernel partitioning can significantly affect the overall system performance. For ex-

ample, for the benchmarks included in the StreamIt 2.1.1 suite, the relative performance

difference between good and bad kernel partitions of the same benchmark mapped into

four software threads ranges from 2.4× to 3.9×, and on average it is 3.5×.

The optimal kernel partition cannot be determined because the essence of the analysis

is graph partitioning, which is an NP-complete problem [63, 67]. Due to the large explo-

ration space, brute force exploration is impractical: as streaming applications comprise

tens or hundreds of interconnected kernels (54 kernels on average in the StreamIt 2.1.1

suite), the number of possible kernel partitions is vast. For example, the channelvocoder

benchmark has 55 kernels, and it can be distributed into 1022 partitions of exactly four

software threads. The number of possible kernel partitions increases rapidly with the

number of output software threads, so the number of partitions using eight threads is

1034.
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As kernel partitioning is an intractable problem, it is impossible in general to know

the performance of the optimal partition. Therefore, the room for improvement of the

existing heuristic-based kernel partitioning algorithms is also unknown. It is hard to de-

cide whether to invest additional effort to try to improve a given algorithm, since it may

already be close to optimal.

In this chapter of the thesis, we present a statistical approach to the kernel partitioning

problem. The main contributions of our study are:

• We present a method based on EVT that statistically estimates the performance of

the optimal kernel partition. To the best of our knowledge, this is the first study that

applies EVT to a graph partitioning problem.

• We show that the sampling method, used to generate random partitions, has a sig-

nificant effect on the applicability of the statistical method. We analyze different

sampling methods, and our results strongly recommend that the samples should be

uniformly distributed.

• We use the estimates of the optimal performance to evaluate a state-of-the-art heuristic-

based kernel partitioning algorithm.

• Finally, since a complex heuristic-based algorithm may not always be available, the

user may pick the best from a random sample, and measure its quality using the

estimates of the optimal performance. We analyze whether random sampling on its

own is likely to find a good kernel partition.

The presented analysis is evaluated for the benchmarks included in the StreamIt 2.1.1

suite. The method based on EVT successfully estimates the performance of the optimal

kernel partitions for all the benchmarks under study. In all experiments, the two differ-

ent kernel partitioning methods, the heuristics-based algorithm and the method based on

random sampling, detected kernel partitions with practically the same performance.

The rest of the chapter is organized as follows. Section 5.2 describes metrics that

can be used to measure the performance of streaming applications. Section 5.3 discusses

methods to generate random samples of kernel partitions. Section 5.4 presents the sta-

tistical analysis that we use to estimate the performance of the optimal kernel partition.

In Section 5.5, we apply the presented analysis to the StreamIt 2.1.1 benchmark suite,

and evaluate the results. Section 5.6 describes related work, and Section 5.7 presents the

summary of the study.
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5.2 Background

In this section, we describe different metrics that could be of interest when doing kernel

partitioning. We also briefly describe related work with a focus on the conclusions that

directly affect our study.

5.2.1 Target metric

There are several metrics that can describe the performance of streaming applications. In

our study, we analyze the cost of streaming applications. The cost is proportional to the

time needed to process a fixed amount of input data. This metric corresponds to execution

time for non-streaming applications. Other metrics include energy or power, the hardware

utilization of the target architecture, or some weighted sum of them.

The input to the statistical analysis is the cost of each kernel partition in a random

sample. The costs are generated using metrics from the StreamIt 2.1.1 compiler. Instead

of using the streaming compiler, the target metric could alternatively have been measured

using real execution or simulation.

The proposed statistical approach and the general conclusions of this study are inde-

pendent of both the target metric and the way in which the metric is evaluated: program

compilation, execution or simulation. It is important to note, however, that the results

from the statistical analysis are clearly dependent on the quality of the samples provided

to it.

If the application behavior is sensitive to its input data, which is generally not the

case for streaming applications, the user should consider the analysis for different input

datasets that are representative for different application behavior.

If the user wants to use the statistical method for multiple objective functions sepa-

rately, then it is only necessary to do a full set of compilations, executions or simulations

once. After obtaining a complete set of metrics, the statistical analysis can be done mul-

tiple times using different metrics.

5.2.2 Convexity constraint

Carpenter et al. [32] present a partitioning and allocation algorithm for an iterative stream

compiler. The algorithm produces kernel partitions that are easier to compile and that

require short pipelines of software threads. The authors evaluate their proposal on the
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benchmarks included in StreamIt 2.1.1 suite.

One of the conclusions in that study is that the kernel partition should be convex. A

kernel partition is convex if the dependencies between different software threads form an

acyclic graph. This means that every directed path between two kernels in the same soft-

ware thread is internal to that thread. The reason for the convexity constraint is that the

choice of partition affects the length of the pipeline generated by the streaming compiler.

The convexity constraint controls the length of that pipeline. The authors demonstrate

that without the convexity constraint, the compiler may generate long pipelines of soft-

ware threads, which increases memory use and latency of the inter-thread communication,

significantly affecting the overall performance.

We follow these instructions and focus our study on the analysis of convex kernel

partitions. We pay special attention to generating random samples comprised only of

kernel partitions that satisfy the convexity constraint. It is important to notice, however,

that convexity is not a requirement of the proposed statistical approach. The approach can

be also used for the analysis of non-convex kernel partitions.

Although the convexity constraint significantly reduces the number of kernel parti-

tions, their number is still vast, and brute force exploration is impractical. For example,

the fm benchmark can be distributed into 1012 convex kernel partitions of exactly four

software threads, radar into 1014 partitions, filterbank into 1020, and vocoder into 1023.

5.3 Sampling methods

In order to apply Extreme Value Theory (EVT) to the kernel partitioning problem for

streaming applications, we need to generate random convex partitions of the stream graph

that are independent and identically distributed (i.i.d.). Intuitively, random variables are

independent if knowing the value of one of them gives no new information about the

values of the others; they are identically distributed if they all have the same probability

distribution, which does not have to be uniform. Uniform distribution would mean that

each kernel partition would be selected with the same probability.

The different methods we used to select the random i.i.d. kernel partitions are de-

scribed next. For each method, we describe how to select a single random kernel partition.

To generate a sample of N i.i.d. kernel partitions, repeat the sampling method N times.
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5.3.1 Depth-First Search (DFS)

The first sampling method generates a random kernel partition using a depth-first search

(DFS) of the stream graph. The kernels are visited in sequence, each kernel being as-

signed with equal probability to any software thread that would not violate the convexity

constraint. Thus, this method generates random kernel partitions in a single traversal of

the stream graph.

We illustrate the sampling method with the example shown in Figure 5.1. The example

stream graph contains five kernels (K1 to K5) that are to be compiled into two software

threads (Th1 and Th2). For example, assume that kernels K1 and K2 are already assigned

to Th1, and that next kernel to be assigned is K3 (Figure 5.1(a)). K3 can be assigned with

equal probability to Th1 or Th2. If K3 is assigned to Th2, kernel K5 has to be assigned

to Th2 in order to generate a convex partition (see Figure 5.1(b)). Since the number of

candidate threads that do not break the convexity constraint decreases rapidly, the DFS

sampling method often generates kernel partitions with an unbalanced number of kernels

per threads.

5.3.2 Edge Contraction (EC)

The second sampling method generates a random partition using edge contraction of the

stream graph. Initially, each kernel is placed in its own cluster. Then, the edges of the

stream graph are visited in random order. In each step the selected edge of the graph

is contacted by fusing the clusters connected through this edge. If the resulting graph

violates the convexity constraint, the contraction is undone. The process is continued,

by moving to the next edge in random sequence, until the number of clusters equals the

number of software threads. Finally, the clusters are randomly assigned to the threads.

Figure 5.2 illustrates the EC kernel partitioning of a simple stream graph into two

software threads. For example, assume that K1→K2 edge is selected as the first edge to be

contracted. In this case, kernels K1 and K2 are fused into a single cluster while the rest of

the graph is not modified. Afterwards, we illustrate the contraction of edges K3→K5 and

(K1&K2)→K4. Finally, the clusters are randomly distributed among software threads. In

comparison with DFS, the EC sampling method generates random kernel partitions with

a balanced number of kernels.
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(a) Assigning kernel K3 (b) Assigning kernel K5

Figure 5.1: DFS sampling method

Figure 5.2: EC sampling method: Contracting K1→K2, K3→K5, and (K1&K2)→K4
edges, respectively.

5.3.3 Edge Contraction with Filter (EC-F)

The third sampling method is an enhancement of the EC method, designed to bias the

sampling towards kernel partitions with a low cost, which will lead to good application

performance. The EC-F method selects the edges of the stream graph in random order,

fuses the corresponding clusters, and checks whether the convexity constraint is violated,

as for the EC sampling method. The only difference is that EC-F performs an additional

check: if contracting the current edge generates a cluster with a high cost (i.e. a cost that

exceeds a given threshold), the contraction is undone and the process is repeated for a

different edge. In the presented experiments, the threshold was the lowest cost detected

in ten random kernel partitions generated using the EC sampling method.

It may happen that, although the number of clusters is still greater than the number

of threads, none of the edges can be contracted without creating a cluster of cost exceed-

ing the threshold. In this case, the remaining edges are visited in a new random order,

and edges are contracted without checking whether the cost of the final clusters is over

the threshold. Finally, the clusters are then randomly assigned to threads. In contrast

with other presented sampling methods, this method does take into account the cost of
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each particular kernel when generating partitions. The main target of this algorithm is to

generate random partitions with a balanced cost among clusters.

5.3.4 Uniformly Distributed (UD) sampling

The final sampling method generates a uniform sampling distribution of the kernel parti-

tions. This means that each convex kernel partition is selected with the same probability.

It is important to notice that the statistical method used in the study does not require the

kernel partitions to be uniformly distributed, since it only requires their cost to be inde-

pendent and identically distributed (i.i.d.). In general, previous sampling methods do not

provide uniformly distributed kernel partitions.

This sampling method comprises three steps.

Step 1: We analyze different kernel partitions using the partition graph, the graph of

all possible convex partitions of the stream graph under study. Each node of the partition

graph is a different kernel partition, so the number of nodes is equal to the number of

partitions. There is an undirected edge between two nodes of the partition graph if they

differ in the assignment of exactly one kernel partition. Also, each node contains a self-

loop edge, an edge that connects the node to itself. Due to its large size (this is an NP-

complete problem), the partition graph is never actually constructed in its entirety. An

example partition graph, for a small stream program that is to be assigned to two software

threads, is shown in Figure 5.3.

Step 2: We perform a random walk on the partition graph. First, we have to choose an

initial node of the partition graph to start the random walk. This node can be selected by

any method that generates random kernel partitions. In the experiments presented in our

study, the initial kernel partition (initial node of the partition graph) is selected using the

EC sampling method. The random walk starts from the initial node in the partition graph

and calculates all its neighbors. Then it randomly chooses one of the neighbors (using a

uniform distribution) to be the next node that is to be visited. The neighbor selection is

repeated N times, with N large enough to potentially visit all the nodes of the partition

graph of the benchmarks used in the study1. The last node of the partition graph that is

visited is the outcome of the random walk. The probability that a given node is selected

using the random walk is directly proportional to its degree (the number of its neighbors

in the graph) [104]. As we know the probability of each visited node of the partition graph

to be selected, the random walk generates samples with a known distribution.
1In our experiments, N = 100.
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Figure 5.3: UD sampling method: Example partition graph for a small stream program

Step 3: In the final step of this sampling method, we convert the output of the random

walk from a known distribution to a uniform distribution. In order to do so, each kernel

partition selected using the random walk is included in the outcome of this sampling

method with a probability that is inversely proportional to its degree in the partition graph.

This way, every convex partition has the same probability of being selected, i.e. the

method provides uniformly distributed samples.

5.3.5 Statistical i.i.d. tests

The sampling methods described in the previous section are designed to generate random

i.i.d. samples. After generating the samples, we perform statistical tests to confirm that

they are indeed independent and identically distributed.

Wald–Wolfowitz test: The Wald–Wolfowitz test or runs test examines whether the

observations in the sample are mutually independent [29, 48]. The test comprises two

main steps. First, the costs of kernel partitions (non-negative real numbers) have to be

converted into binary values. We converted the cost of a given kernel partition to ‘0’

if its value was below the median cost in the sample, and converted it to ‘1’ otherwise.

This way, the sequence of non-negative real numbers was converted into a sequence of

0s and 1s, e.g. 000110000. In the second step, the test analyzes the sub-sequences of

consecutive identical values (0s or 1s), which are referred to as runs. For example, the

sequence 000110000 is composed of three runs: 000, 11, and 0000. The Wald–Wolfowitz

test validates that the observations in the sample under study are mutually independent

if the lengths of the runs follow a Gaussian distribution [29]. The mutual independence
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hypothesis was tested at the 0.05 significance level. All the samples used in the study

passed the test.

Kolmogorov–Smirnov test: In order to validate that selected kernel partitions in

a given sample are identically distributed, we used a two-sample Kolmogorov–Smirnov

test [48, 65]. The test compares the empirical cumulative distribution functions (ECDF)

of two data sets and, based on the maximum distance between the two ECDFs, it confirms

or rejects the hypothesis that the data sets correspond to the same distribution. The identi-

cally distributed test that we performed contains three steps. First, we generated a random

sample of 20,000 kernel partitions and observed the cost of each partition. The costs of the

kernel partitions in the sample followed the order in which the partitions were generated.

Second, in each experiment, we observed two randomly-selected segments ofm consecu-

tive values from the original sample. Finally, we used a two-sample Kolmogorov–Smirnov

test to check whether the randomly selected segments of the sample have the same prob-

ability distribution. If the kernel partition costs are indeed identically distributed, then all

segments of consecutive values in the sample have the same distribution. For each sample

used the study, we performed the test for segments of m =100, 500, 1,000 and 5,000

observations. All the samples used in the study passed the test at the 0.05 significance

level.

5.4 A statistical approach to kernel partitioning of stream-

ing applications

We estimate the minimal cost of kernel partitions (that lead to optimal performance) using

Extreme Value Theory (EVT). EVT is a branch of statistics that studies extreme devia-

tions from the median [26, 34]. One of the approaches in EVT is the Peak Over Threshold

(POT) method. In its original form, the POT method takes into account only the distri-

bution of the observations that exceed a given (high) threshold to estimate the population

maximum [25, 123]. For example, in Figure 5.4(a), the observations x1, x4, x5, and x7
exceed the threshold and constitute extreme values, which can be used by POT analysis.

The POT method can be used also to estimate the population minimum [70, 89]. Es-

timation of the minimum requires the following five steps explained in detail in the next

section:

• Obtain i.i.d. observations xi of the cost of kernel partitions.
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(a) Estimation of the population maximum

(b) Estimation of the population minimum

Figure 5.4: Exceedances over the threshold

• Invert the sign of the observations: x′i = −xi.

• Determine the threshold u, shown in Figure 5.4(b).

• Use the values x′i over the threshold u to estimate the maximum cost of the inverse

population (Max(CostInv)).

• The minimum cost of the original population (Min(Cost)) corresponds to the nega-

tive value of the maximum of the inverse population: Min(Cost) = −Max(CostInv);

As we explained in Section 4.3.3, the POT method can also be explained using cumu-

lative distribution functions (CDF). For example, assume that F is the CDF of a random

variable X . The POT method can be used to estimate the cumulative distribution function

Fu of values of x above a certain threshold u. The function Fu is called the conditional

excess distribution function and it is defined as

Fu(y) = P (X − u ≤ y |X > u), 0 ≤ y ≤ xF − u,

where X is the observed random variable, u is the given threshold, y = x − u are

the exceedances over the threshold, and xF ≤ ∞ is the right endpoint of the cumulative

distribution function F .

The POT method is based on the Pickands - Balkema - de Haan theorem [25, 123]:
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Theorem 1. For a large class of underlying distributions functions F , the conditional

excess distribution function Fu(y), for large threshold u, is well approximated by Fu(y) ≈
Gξ,σ(y) where

Gξ,σ(y) =

{
1− (1 + ξ

σ
y)−1/ξ for ξ 6= 0

1− e−y/σ for ξ = 0

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ
] if ξ < 0, where Gξ,σ is called

Generalized Pareto Distribution (GPD).

This means that for numerous distributions that present real-life problems, Fu can be

approximated with a GPD. For each particular problem, the decision of whether GPD can

be used to model the problem or not, is based on how well the sample of observations

can be fitted to GPD. We describe the goodness of fit of observations to GPD in Steps 3

and 4 of the analysis presented in Section 5.4.1. GPD is defined with two parameters:

shape parameter ξ and scaling parameter σ. One of the characteristics of GPD is that for

ξ < 0 the upper bound of the observed value equals u − σ
ξ
, where σ and ξ are the GPD

parameters and u is the selected threshold [70, 89].

In Theorem 1, the definition of Gξ,σ(y) for ξ = 0 can only be used to model problems

with an infinite upper bound [70, 89]. In this study we use the GPD to estimate the

minimal cost of kernel partitions for streaming applications. The value of this cost is

always finite, and the estimated values of the parameter ξ are always ξ̂ < 0. Therefore,

for the sake of the simplicity of the presented mathematical formulas, in the rest of the

thesis we do not present Gξ,σ(y) formulas for ξ = 0.

5.4.1 Application of Peak Over Threshold method

We use the POT method to estimate the minimal cost of kernel partitions for streaming

benchmarks based on the cost of a sample of random partitions. Application of the POT

method involves the following six steps:

Step 1: Generate the sample of random kernel partitions, and determine the cost of

each partition in the sample (xi). A requisite of the presented statistical analysis is that

the selected kernel partition must be independent and identically distributed (i.i.d.).The

proposed methods to generate i.i.d. kernel partitions are described in Section 5.3. All of

the samples used in the study passed the described i.i.d. tests.

Step 2: Invert the sign of the values of the observed costs. Originally, the POT method

was used to estimate the maximum of a population based on a set of random i.i.d. obser-
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(a) Ordered costs of the random kernel partitions

(b) Sample mean excess plot

Figure 5.5: Selection of the threshold for mpeg2-subset

vations. In order to estimate the minimum cost of kernel partitions, we invert the sign of

the observed values (x′i = −xi) and estimate the maximum of the inverse population.

Step 3: Select the threshold u. The selection of the threshold u is an important step

in POT analysis. Gilli and Këllezi [70, 89] propose using the sample mean excess plot,

a graphical tool for threshold selection. This method first sorts all kernel partitions in

the sample in non-decreasing cost order: x′1 ≤ x′2 ≤ · · · ≤ x′n. Figure 5.5(a) shows

the sorted cost of 20,000 uniformly distributed random kernel partitions of mpeg2-subset

benchmark.

Then, the possible threshold u takes the values from x′1 to x′n (x′1 ≤ u ≤ x′n), and for

each value we compute the sample mean excess function en(u):

en(u) =
∑n
i=k(x

′
i−u)

n−k+1
, where k = min{ i | x′i > u}.

In this formula, the factor n− k + 1 is the number of observations that exceed the

threshold. Finally, the sample mean excess plot is defined by the points (u, en(u)) for
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x′1 ≤ u ≤ x′n. Figure 5.5(b) shows the example of the sample mean excess plot for the

mpeg2-subset benchmark.

As commented before, the estimated parameter ξ of GPD must be negative (ξ̂ < 0) to

obtain the upper bound of the Max(CostInv). A characteristic of the GPD with param-

eter ξ < 0 is that it has a linear mean excess function plot. In order to have a good fit of

the conditional distribution function Fu to GPD, the threshold should be selected so that

the observations that exceed the threshold have a roughly linear sample mean excess plot.

As an example, for the data presented in Figure 5.5, the threshold should be selected to be

u = −17, 500. The sample mean excess plot is also a good tool to test whether GPD can

be used to model a particular set of observations. If the right portion of the mean excess

plot for the sample of measured kernel partitions performance is not roughly linear, that

particular problem cannot be modeled using GPD.

Another important tool that can be used to understand if a given sample of obser-

vations can be modeled with a GPD is a quantile plot [26, 89]. In a quantile plot, the

sample quantiles x′i are plotted against the quantiles of a target distribution F−1(qi) for

i = 1, . . . , n. If the sample data originates from the family of distributions F , the plot is

close to a straight line.

The linear sample mean excess plot and the quantile plot are not the only constraints

that should be considered when selecting the threshold. If the threshold is too low, the

estimated parameters of GPD may be biased to the median values of the cumulative dis-

tribution function instead of to the maximum values. In order to avoid this bias, when

selecting a threshold we have to ensure that the number of observations that exceed the

selected threshold is not higher than 5% of the kernel partitions in the whole sample. This

is a commonly used limit in studies that use POT analysis [70, 89, 130].

Step 4: Fit the GPD function to the observations that exceed the threshold and estimate

parameters ξ and σ. Once the threshold u is selected, the observations over the threshold

can be fitted to GPD, and the parameters of the distribution can be estimated. For the sake

of simplicity, we assume that observations from x′k to x′n in the sorted sample presented

in Figure 5.5(a) exceed the threshold. We rename the exceedances yi−k+1 = x′i − u for

k ≤ i ≤ n and use the set of elements {y1, y2, ..., ym} to estimate the parameters of GPD.

The number of elements in the set, m = n− k+1, is the number of exceedances over the

threshold.

Different methods can be used to estimate the parameters of GPD from a sample of

observations [35, 75, 81, 146]. In our study, we used estimation based on the likelihood
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function [23]. The GPD has parameters ξ and σ. The likelihood that a set of observations

Y = {y1, y2, ..., ym} is the outcome of a GPD with parameters ξ = ξ0 and σ = σ0 is

defined to be the probability that GPD with parameters ξ0 and σ0 has outcome Y .

We make use of the likelihood function to compute the probability that different values

of GPD parameters have for a given set of observations {y1, y2, ..., ym}. As the logarithm

is a monotonically increasing function, the logarithm of a positive function achieves the

maximum value at the same point as the function itself. This means that instead of finding

the maximum of a likelihood function, we can determine the maximum of the logarithm

of the likelihood function, the log-likelihood function. In statistics, log-likelihood is fre-

quently used instead of the likelihood function because it simplifies computations. The

estimation of parameters ξ and σ of Gξ,σ(y) involves the following steps:

(i) Determine the corresponding probability density function as a partial derivate of

Gξ,σ(y) with respect to y:

gξ,σ(y) =
∂Gξ,σ(y)

∂y
= 1

σ
(1 + ξ

σ
y)−

1
ξ
−1

(ii) Find the logarithm of gξ,σ(y):

log (gξ,σ(y)) = −log σ − (1
ξ
+ 1) log(1 + ξ

σ
y)

(iii) Compute the log-likelihood function L(ξ, σ|y) for the GPD as the logarithm of

the joint density of the observations {y1, y2, ..., ym}:

L(ξ, σ|y) =
m∑
i=1

log gξ,σ(yi)

L(ξ, σ|y) = −m log σ − (1
ξ
+ 1)

m∑
i=1

log(1 +
ξ

σ
yi)

We compute estimated values of parameters ξ̂ and σ̂, to maximize the value of the

log-likelihood function L(ξ, σ|y) for observations {y1, y2, ..., ym}:

L(ξ̂, σ̂|y) = max
ξ,σ

(L(ξ, σ|y))

L(ξ̂, σ̂|y) = max(−m log σ − (
1

ξ
+ 1)

m∑
i=1

log(1 +
ξ

σ
yi))

In order to determine the parameters ξ̂ and σ̂, we find the minimum of the negative

log-likelihood function, min
ξ,σ

(−L(ξ, σ|y)), using the procedure fminsearch() included in

Matlab R© R2007a [41]. The values ξ̂ and σ̂ are called the point estimates of the parameters

ξ and σ, respectively.

Step 5: Estimate the maximum of the inversed costs. The maximum of the inverse

cost can be determined only for ξ̂ < 0. The point estimate of Max(CostInv) is computed
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as ̂Max(CostInv) = u− σ̂/ξ̂.

In order to indicate the confidence of the estimate, we compute the confidence in-

tervals of the estimated ̂Max(CostInv). The confidence intervals is computed using the

likelihood ratio test [23], which consists of the following steps:

(i) Define GPD as a function of ξ and Max(CostInv):

Gξ,Max(CostInv)(y) = 1− (1− 1
Max(CostInv)−u

y)−1/ξ

(ii) Determine the corresponding probability density function:

gξ,Max(CostInv)(y) =
∂Gξ,Max(CostInv)

(y)

∂y
=

= − 1
ξ(Max(CostInv)−u)

(1− 1
Max(CostInv)−u

y)−
1
ξ
−1

(iii) Compute the joint log-likelihood function for observations {y1, ..., ym}:

L(ξ,Max(CostInv)|y) =
m∑
i=1

log gξ,Max(CostInv)(yi)

L(ξ,Max(CostInv)|y) = −n log(−ξ(Max(CostInv)− u))−

−(1 + 1
ξ
)

n∑
i=1

log(1− 1

Max(CostInv)− u
yi)

(iv) Find the Max(CostInv) confidence interval. We determine the confidence inter-

val for Max(CostInv) using the likelihood ratio test [23] and Wilks’s theorem [42, 161,

162]. The maximum log-likelihood function is determined as

L(ξ̂, ̂Max(CostInv)|y) = max
ξ,Max(CostInv)

(L(ξ,Max(CostInv))).

The function L(ξ̂, ̂Max(CostInv)|y) has two parameters that are free to vary (ξ and

Max(CostInv)), hence it has two degrees of freedom (df1 = 2). AsMax(CostInv) is our

parameter of interest, the profile log-likelihood function is defined as

L∗(Max(CostInv)) = max
ξ

L(ξ,Max(CostInv)).

The function L∗(Max(CostInv)) has one parameter that is free to vary, i.e. one de-

gree of freedom (df2 = 1). Wilks’s theorem applied to the problem that we are address-

ing claims that, for large number of exceedances over the threshold, the distribution of

2(L(ξ̂, ̂Max(CostInv)−L∗(Max(CostInv))) converges to a χ2 distribution with df1−df2
degrees of freedom. Therefore, the confidence interval ofMax(CostInv) includes all val-

ues of Max(CostInv) that satisfy the following condition:

L(ξ̂, ̂Max(CostInv))− L∗(Max(CostInv)) <
1

2
χ2
(1−α),1 (5.1)

χ2
(1−α),1 is the (1−α)-level quantile of the χ2 distribution with one degree of freedom

(df1 − df2 = 1). α is the confidence level for which we compute Max(CostInv) confi-
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Figure 5.6: Max(CostInv) confidence interval

dence intervals. We illustrate the computation of the Max(CostInv) confidence interval

in Figure 5.6. The figure plots L∗(Max(CostInv)) for different values of Max(CostInv).

For Max(CostInv) = ̂Max(CostInv), L∗ reaches its maximum. The confidence in-

terval of Max(CostInv) includes all values of Max(CostInv) that satisfy the condition

L∗(Max(CostInv)) > L(ξ̂, ̂Max(CostInv))− 1
2
χ2
(1−α),1, which corresponds to Equation 5.1.

We computed the Max(CostInv) confidence interval using an iterative method based on

the fminsearch() function included in Matlab R© R2007a.

Step 6: Estimate the minimum cost of the kernel partitions. The minimum cost of the

kernel partitions corresponds to the estimated maximum of the inverse cost:

Min(Cost) = − Max(CostInv).

Also, the lower and upper endpoint of the Min(Cost) confidence interval correspond

to the inverse upper and lower endpoint of theMax(CostInv) confidence interval, respec-

tively.

The code that performs statistical i.i.d. test, generates the sample mean excess plots,

infers the parameters of the GPD distribution, and estimates the minimum cost of kernel

partitions was developed in Matlab R© R2007a.

5.5 Results

In this section, we use the POT method to estimate, for each of the StreamIt 2.1.1 bench-

marks, the cost of the optimal kernel partition. We compare the four sampling methods

described in Section 5.3. We also evaluate the number of random kernel partitions that are

required by the presented statistical approach. Finally, we analyze whether a good kernel
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partition would be found using random sampling on its own.

Before using any heuristics-based algorithm for the concrete application under study,

the user should check whether exhaustive search would be impractical. In general, the

number of valid kernel partitions is vast (e.g. 1020). It is possible, however, that a par-

ticular benchmark has a small stream graph, so that exhaustive search would work. For

example, the dct benchmark included in the StreamIt 2.1.1 suite contains only eight ker-

nels, linked in a simple stream graph. The number of partitions of this benchmark, onto

four threads, is just 32. In this case, exhaustive search is the simplest and fastest way to

find the optimal kernel partition.

5.5.1 Estimation of the minimal cost using the POT method

We apply our technique to estimate the performance of the optimal kernel partition on

four threads, for each of the benchmarks in the StreamIt 2.1.1 suite. As discussed in the

previous section, the dct benchmark can be solved using exhaustive search, leaving eleven

benchmarks to be analyzed using the POT statistical method.

For each benchmark, we use the four sampling methods described in Section 5.3 to

generate random samples, and use these samples as the input to the statistical analysis.

Each sample contains 20,000 random kernel partitions. Table 5.1 shows whether or not

the statistical method could produce an estimate of the optimal performance. Each row

in the table corresponds to one of the benchmarks, and each column corresponds to a

different sampling method. A tick sign (4) means that the POT method did generate

an estimate. An NA (Not Applicable) entry means that the statistical method failed to

produce any estimate.

There are two reasons why the POT method is sometimes unable to produce an esti-

mate. First, the lower bound of the estimated minimal cost may diverge to minus infinity.

Second, the iterative method that determines the confidence bounds of the estimated min-

imal cost (see Step 5 in Section 5.4.1) may not converge to a solution. In all experiments

in which the POT method was not applicable, the sample mean excess plot and the quan-

tile plot strongly suggested that the POT method could not be applied to that dataset (see

Step 3 in Section 5.4.1).

We see, from the results in the table, that the POT method, using the Depth First

Search (DFS) sampling method, was successfully applied for only three out of eleven

benchmarks. The results for the Edge Contraction (EC) method are better, but still mod-

erate: the POT method estimated the minimum cost for seven out of eleven benchmarks.
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Table 5.1: Applicability of the POT method

Benchmark Sampling method
DFS EC EC-F UD

bitonic-sort NA 4 NA 4

channelvocoder 4 NA NA 4

des NA 4 4 4

fft NA 4 NA 4

filterbank NA NA NA 4

fm 4 NA NA 4

mpeg2-subset NA 4 NA 4

radar 4 NA NA 4

serpent_full NA 4 NA 4

tde_pp NA 4 NA 4

vocoder NA 4 NA 4

The Edge Contraction with Filter (EC-F) method was an attempt to improve load-balance

over EC. However, the POT analysis could now only be applied to one of the bench-

marks. We compared the costs of the random kernel partitions sampled by the EC and

EC-F methods, and confirmed that the EC-F method did indeed select kernel partitions

with lower cost. This was, however, not sufficient to make the samples appropriate for

POT analysis. In future work, we plan to analyze this phenomenon in detail. Finally, when

the POT method was applied to the uniformly distributed random samples (UD column

of the table), a minimum cost was generated for all eleven benchmarks under study.

From the results presented in Table 5.1, we conclude that the sampling method is

an important step in the analysis. All presented sampling methods select i.i.d. samples

and fulfill the requirements of the POT statistical analysis. However, only the uniformly

distributed samples always led to an estimate of the cost of the optimal kernel partition.

Other sampling method used to address the same problem, for the same benchmarks,

using the same statistical analysis provided moderate (EC method) or low performance

(DFS and EC-F methods).

5.5.2 Precision of the estimation

The results that we use to analyze the precision of the estimated values are presented in

Figure 5.7. The X-axis of the figure lists the benchmarks, while the Y-axis shows the

estimated minimal cost, i.e. the estimated cost of the optimal kernel partition. The results

are presented relative to the cost of the best kernel partition captured in 80,000 random
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Figure 5.7: Estimated minimal cost

kernel partitions from all four sampling methods. Kernel partitions were generated using

four different sampling methods (DFS, EC, EC-F, and UD), and each method generated

20,000 random partitions.

Different bars of the chart correspond to different sampling methods used: DFS, EC,

EC-F, and UD. If the POT method could not be used to estimate the minimal cost for a

given benchmark and a sampling method, the corresponding bar is not plotted. The height

of the solid bars correspond to the point estimation of the minimal cost, while the error

bars correspond to the confidence bounds for 0.95 confidence level.

High precision of the estimated minimal cost is indicated with the tight confidence

bounds. The width of the confidence bounds is below 10% for all except one bar (DFS

sample for the fm benchmark). For 18 out of 22 cases, the confidence bounds width is

below 5%.

Required number of random kernel partitions: UD method is the only sampling

method that provided samples appropriate for the POT statistical analysis for all the

benchmarks under study. Therefore, from this point on, we analyze only the samples

that are generated with this method. In order to understand the impact of the sample

size on the estimated minimal cost, we generated samples that contain between 1,000 and

20,000 random kernel partitions. For each sample, we used the POT method to estimate

the minimal kernel cost. Intuitively, we expect that the POT method provides more precise

estimation as the number of kernel partitions in the sample increases. In general, larger
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(a) channelvocoder benchmark (fastest convergence)

(b) serpent_full benchmark (slowest convergence)

Figure 5.8: The impact of the sample size on the estimation of the minimal cost (UD
sampling method)

samples contain more kernel partitions in the tail that are fitted to the Generalized Pareto

Distribution (GPD), and therefore the estimated GPD parameters and the minimal cost

are more precise. Figure 5.8 shows the results for the channelvocoder and serpent_full

benchmarks. In each figure, X-axis lists the number of random kernel partitions in the

sample, while the Y-axis shows the estimated minimal cost. The cross markers show

the point estimation of the minimal cost, and the error bars correspond to the confidence

bounds for the 0.95 confidence level.

For the channelvocoder benchmark, 1,000 random kernel partitions are sufficient to

estimate the minimal cost with a high precision (see Figure 5.8(a)). We detect similar

results for fft, filterbank, fm, mpeg2-subset, tde-pp, and vocoder. On the other hand, for
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the serpent_full benchmark, estimation based on 1,000 random kernel partitions has wide

confidence bounds (see Figure 5.8(b)). Precise estimation of the minimal cost requires

more than 8,000 random kernel partitions. The width of the confidence bounds reduces

significantly as the sample increases from 1,000 to 8,000 kernel partitions. Further incre-

ment in the sample size only slightly improves the precision of the estimation. From the

results shown in Figure 5.8(b), we also see that, as the sample size increases, the point

estimation remains roughly the same and the confidence bounds converge to this value.

Results for the benchmarks bitonic-sort, des, and radar follow the same trend.

Based on the presented analysis, we see that the sample size required for the precise

estimation of the minimal cost significantly depends on the benchmark under study. If

a user requires a minimal cost to be estimated with a given precision, we propose the

following iterative method. The user can generate a small sample of random kernel parti-

tions and estimate the minimal cost using the POT method. As long as the estimated cost

does not fulfill the user’s requirements, the user can increase the sample size and repeat

the analysis.

5.5.3 Accuracy of the estimation

In general, the kernel partitioning problem is an intractable problem. However, for bitonic-

sort, des, fft, mpeg2-subset, serpent_full, and tde_pp benchmarks partitioned into exactly

four software threads, brute force exploration is time consuming, but feasible. Therefore,

we were able to determine the cost of all the kernel partitions, and to compare the actual

and the estimated best kernel partition costs for these benchmarks. The results for the ser-

pent_full benchmark are shown in Figure 5.9. We also analyze the estimation accuracy for

different numbers of uniformly distributed random kernel partitions in the sample. The

X-axis of the figure lists the size of the sample, while the Y-axis shows the absolute value

of the kernel partition cost. The cross data markers show the point estimation of the min-

imal cost, and the error bars correspond to the confidence bounds for the 0.95 confidence

level. The actual best kernel partition cost is marked with the horizontal dashed line. Fi-

nally, we also plot the minimal kernel cost observed in each random sample (diamond

data markers).

First, we observe that the estimated best kernel partition cost (with confidence bounds

included) is always lower than the minimal kernel cost detected in the corresponding

random sample. Intuitively, this is because the statistical method estimates that the best

kernel partition cost in the population (out of all possible partitions) is not higher than the

106



CHAPTER 5. A STATISTICAL APPROACH TO KERNEL PARTITIONING OF
STREAMING APPLICATIONS

Figure 5.9: Comparison between the actual and the estimated kernel partition costs (ser-
pent_full benchmark, UD sampling method)

minimal cost observed in the sample. We also detected that the upper confidence bound

of the estimated best kernel partition cost asymptotically approaches the minimal kernel

partition cost observed in the sample, as the confidence level of the estimation increases.

The estimation of the best kernel partition cost is accurate if its confidence bounds

include the actual best (minimal) cost, which is satisfied for the samples that contain from

1,000 to 5,000 random kernel partitions in the Figure 5.9. For the samples that contain

more than 6,000 kernel partitions, the presented statistical method slightly underestimates

the minimal cost. This is because these samples capture a kernel partition with the best

actual cost, as we explain in the previous paragraph. The underestimation is very low and

it decreases with the number of kernel partitions in the sample, from 0.9% (6,000 kernel

partitions) to 0.3% (20,000 partitions). The results for bitonic-sort, des, fft, mpeg2-subset,

and tde_pp benchmarks follow the same trend.

Brute force exploration of the kernel partitioning problem for channelvocoder, filter-

bank, fm, radar, and vocoder benchmarks is infeasible. Therefore, for these benchmarks,

we cannot determine the optimal kernel partition and its cost, and we cannot validate that

the estimated values of the POT method were correct. However, from the results presented

in Figure 5.7, we can detect that the estimation is incorrect if:

• The confidence bounds of different bars that correspond to the same benchmark do

not overlap. This means that the POT method applied to different samples of the

same benchmark estimated different minimal cost.
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• The ratio between the estimated minimal cost (with confidence bounds included)

and the minimal cost detected in random samples is higher than 1. This means that

we detected a kernel partition with the cost that is lower than the estimated minimal

cost.

From the results presented in Figure 5.7, we did not detect a single mispredicted cost of

the optimal kernel partition.

5.5.4 Random sampling approach to a kernel partitioning

In Chapter 4 of the thesis, we present a statistical analysis of the problem of thread as-

signment for modern multithreaded processors. The results of that analysis demonstrate

that a random sample of several thousand random thread assignments likely captures an

assignment with a good performance. We analyze the probability that a uniformly dis-

tributed random sample of N observations contains at least one observation from the

best-performing P% of the population (e.g. the best 1% of the population). This proba-

bility can be computed using the following formula: Prob = 1−
(

100-P
100

)N. As P is a small

positive number, the value of the fraction 100-P
100 is always between 0 and 1. Therefore, for

large N , the factor
(

100-P
100

)N converges to 0, and the observed probability converges to 1.

For example, the probability that a uniformly distributed random sample of 1,000 obser-

vations contains at least one element from the best 1% of the population exceeds 99.99%.

In order to analyze whether random sampling can be used to select a good kernel

partition, we compare the cost provided by the fairly-complex heuristics-based kernel

partitioning algorithm proposed by Carpenter et al. [32] with the minimal cost observed

in the random sample. The sample was comprised of 20,000 kernel partitions generated

using the UD sampling method. The results are shown in Figure 5.10. The X-axis of the

figure lists different benchmarks, while the Y-axis shows the possible performance im-

provement of the kernel partitioning approaches. For bitonic-sort, des, fft, mpeg2-subset,

serpent_full, and tde_pp benchmarks, brute force exploration is feasible, so we compare

the kernel partition costs provided by the random sampling and heuristics-based algo-

rithm with the actual minimal costs. For the remaining five benchmarks, channelvocoder,

filterbank, fm, radar, and vocoder, the results are plotted relative to the estimated min-

imal costs. The minimal cost is estimated using the POT method on 20,000 uniformly

distributed random kernel partitions. The markers correspond to the point estimation of

the minimal cost, while the error bars correspond to the estimated confidence bounds for
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Figure 5.10: Comparison of random sampling (UD method) and heuristics-based algo-
rithm

a 0.95 confidence level.

For bitonic-sort, des, fft, mpeg2-subset, serpent_full, and tde_pp benchmarks, the best

costs observed by the random sampling and the heuristics-based algorithm match the ac-

tual best costs of kernel partitions. For the channelvocoder, filterbank, fm, radar, and

vocoder benchmarks, random sampling and heuristics-based algorithm, detect kernel par-

titions with a cost that is close to the estimated optimal one. For four out of five bench-

marks (all except radar), the possible improvement of both approaches is below 3% (con-

fidence bounds included). For radar benchmark, the estimated improvement ranges up

to 4% and 4.2% for random sampling and heuristics-based algorithm, respectively. If we

consider the point estimation, the estimated performance improvement is below 2% for

all the benchmarks, and below 1% for four out of five benchmarks. For channelvocoder,

fm, and vocoder benchmarks, the performance of the best kernel partitions in the random

sample match the performance of the heuristics-based algorithm. For filterbank and radar

benchmarks, the heuristics-based algorithm selected kernel partitions with 0.6% and 0.2%

lower cost, respectively, which is a negligible difference. If a good heuristics-based ap-

proach is available for the applications, hardware, and metric under study, the user can

choose whether to use the heuristics or the random sampling. However, it is common that

heuristics-based approaches are not directly applicable to the exact situation under study.

It is often difficult and time-consuming to adapt a heuristic to a particular target scenario.

On the other hand, the random sampling approach is simple and easy to apply.

Required number of random kernel partitions: The formula Prob = 1−
(

100-P
100

)N

109



5.5. RESULTS

can be used to compute the probability that an uniformly distributed random sample of

N observations captures at least one out of P% of the kernel partitions with the lowest

cost. However, as we do not know the difference in the cost in the best P% of all kernel

partitions, the formula cannot be used to compute the difference between the minimal cost

captured in a random sample and the actual minimal cost.

In order to analyze whether a sample of N randomly selected kernel partitions cap-

tures a good partition, we observe the minimal cost in the random sample and compare it

with the minimal cost determined by the statistical estimation or brute force exploration,

when feasible. We repeat the experiment for different sample size (from 10 to 20,000

kernel partitions) in order to determine a sample size that is likely to provide a good per-

formance. The random samples are generated with the UD sampling method. Figure 5.11

shows the results of the experiments for serpent_full benchmark. The X-axis of the figure

lists the number of random kernel partitions in the sample. Dashed vertical lines separate

the results for tens (from 10 to 90), hundreds (from 100 to 900), and thousands (from

1,000 to 20,000) of random kernel partitions. The Y-axis shows the relative difference

between the minimal cost captured in the random sample and the actual minimal cost de-

termined by brute force exploration. We want to analyze whether a sample ofN randomly

selected kernel partitions captures a good partition in general, i.e. what is average per-

formance loss of random sampling approach. In order to present statistically significant

results, for each sample size N , we repeat the experiment 100 times2 and report the mean

(cross marker) and the standard deviation (error bars) of performance detected in different

runs.

We see that tens of random kernel partitions in the sample are unlikely to capture a

good partition. We also detect a high standard deviation, which means that the cost of the

best-captured kernel partition is significantly different for different samples of the same

size. For hundreds of kernel partitions in the sample, the best captured cost slowly con-

verges to the estimated optimal one. The standard deviation decreases, which means that

different samples of the same size provide similar performance. Finally, several thousand

random kernel partitions capture a cost that is very close to the optimal one. Also, the

detected standard deviation is low (1-2%).

We detect the same trend for all eleven benchmarks under study. Therefore, we con-

clude that uniformly distributed random sampling can be used to find a good kernel par-

tition. However, we recommend this method only when the random sample contains at

2Repeating experiments 100 times is sufficient for statistical analysis of average behavior.
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Figure 5.11: The impact of the sample size on the performance of the random sampling
(serpent_full benchmark, UD sampling method)

least several thousand kernel partitions.

In order to determine the sample size that captures a good kernel partition, a user could

also observe the convergence rate of the best observed kernel partition performance in the

sample as the sample increases. For example, from the Figure 5.11, we could observe

that increasing the random sample over several thousand kernel partitions insignificantly

improves the observed performance, and stop the random sampling at that point without

estimation of the optimal performance. Although this approach may provide good results,

it is not clear how it would avoid convergence to a local minimum of the population (e.g.

see the results for 60, 70, and 80 kernel partitions in Figure 5.11). Also, without estimated

optimal performance, we cannot determine the quality of the delivered kernel partition,

i.e. we cannot provide the confidence bounds of the estimated performance improvement.

5.5.5 Other considerations

There are several additional aspects to consider regarding the presented statistical ap-

proach.

Experimentation time: The presented approach requires thousands of random ker-

nel partitions to be generated and evaluated. The time to generate and evaluate 1,000

uniformly distributed random kernel partitions, for one of the StreamIt 2.1.1 benchmarks,

was on average 28 minutes, using a single core of an Intel Xeon E5649 processor at

2.5GHz with 4GB memory. Running the POT method takes less than a minute. The

program that generates the uniformly distributed samples is not optimized and is imple-
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mented in the Python programming language. An implementation in C would be much

faster. Also, since different kernel partitions can be generated independently, the time to

generate the sample would decrease linearly with the number of cores. The experimenta-

tion time is acceptable considering that the selected kernel partition will be compiled to

the executable that can be used on numerous systems based on the same hardware during

the lifetime of the system.

Scalability: The number of cores and the number of hardware threads increase in each

processor generation [116]. In order to optimally use future multicore processors, kernel

partitioning algorithms will have to generate a significantly larger number of threads. It is

important, therefore, to analyze how these algorithms scale with the number of software

threads. On the other hand, at the application level, it is reasonable to expect that the

complexity of streaming applications increases leading to more complex stream graphs

that comprise a larger number of kernels.

The statistical analysis that estimates the optimal kernel cost is based on the values

of the performance metric, so its cost is independent of the number of threads and the

complexity of the stream graph. The cost of the sampling method that generates the

uniformly distributed random kernel partitions scales linearly with the number of kernels

in the stream graph and with the number of output software threads. It also scales linearly

with the mixing time of the partition graph [102].

Compiler optimizations and system constraints: When the program is described

using a stream language, the compiler may perform complex optimizations over the

stream graph; it can combine adjacent filters, split computationally intensive filters into

multiple parts, or duplicate filters to have more parallel computation [2]. In order to find

the set of optimizations that provides the best performance, it is important to determine

good kernel partitions for different optimization sets. In this case, the proposed kernel par-

titioning approach does not change, but the random sampling and the presented statistical

analysis are simply repeated for different optimization sets, i.e. for different stream graphs

of the same program. Kernel partitioning that satisfies different system constraints, such

as optimizing performance subject to memory limits, is an interesting avenue for future

work.

Evaluation on real hardware: The presented statistical approach was evaluated

based on the estimates of the kernel partitions’ costs provided by the StreamIt compiler.

The approach was not evaluated on real hardware because of limitations in the experi-

mental environment. The back-end of the StreamIt compiler, that we used in the study,
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was not capable of generating working code for different user-defined kernel partitions.

As a part of future work, we plan to evaluate the presented statistical approach on real

hardware. In order to do so, we intend to modify the StreamIt compiler, so it can generate

the executables that correspond to any given kernel partition.

5.6 Related Work

Several projects and studies propose different tools for compiling of streaming-like appli-

cations and their mapping onto multicore architectures.

StreamIt is a project with publicly available compiler and benchmark suite [3] . The

StreamIt source language imposes a structure on the stream program graph to the com-

piler. The StreamIt compiler performs fully automated load balancing, communication

scheduling, routing, and a set of cache optimizations [72, 73, 138]. StreamIt compiler

targets the Raw Microprocessor [157], symmetric multicore architectures, and clusters of

workstations.

The Stream Graph Modulo Scheduling (SGMS) algorithm is part of StreamRoller [97],

a StreamIt compiler for the Cell Architecture. This algorithm splits stateless kernels, par-

titions the graph, and statically schedules the software threads onto the Cell architecture.

The splitting and partitioning problem is translated into an integer linear programming

problem, which is solved using CPLEX Optimization Studio [83], an software package

for mathematical programming.

Gedae Graph Language [105] is a proprietary GUI tool that supports the hierarchical

development of data flow graphs. Gedae allows the user to specify different graph parti-

tions and automatically maintains the data flow and connectivity of the graph. However,

all the graph partition is done under user control, not by the compiler.

The Ptolemy II software environment [58] is designed to model heterogeneous em-

bedded computing systems. Ptolemy views computing systems as a set of basic process-

ing blocks (actors) that are connected using explicitely-defined communication channels.

This view is very similar to the state-of-the-art interpretation of streaming-like applica-

tions. Related work from the Ptolemy project explores the more theoretical aspects of

partitioning and scheduling data flow graphs for multiprocessors [77].

Liao et al. [103] present a parallel compiler for the Brook streaming language [30]

with aggressive data and computation transformations. The compiler models each stream-

ing kernel as an implicit loop nest over stream elements and uses affine partitioning to map
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regular programs onto multicore processors.

Farhad et al. [63] show that state-of-the-art linear programming approaches are im-

practical for transformations of large stream graphs to be executed on a large number

of processor cores. The authors also propose an approximation algorithm for deploying

stream graphs on multicore processors.

Our study shows a different approach to kernel partitioning problem. Instead of using

complex heuristics-based algorithms, we address the problem using random sampling and

statistical inference. We present a statistical method that estimates the performance of the

optimal kernel partition based on measured performance of a sample of random partitions.

We also demonstrate that random sampling can be used to find a kernel partition with

performance close to the optimal one.

Our study improves the compilation of the streaming application source code into

multithreaded executable. In Chapter 4 we used random sampling and statistical inference

to analyze the optimal assignment of existing software threads onto different processor

cores. These two studies address fundamentally different problems that complement each

other. In its essence, kernel partitioning is a graph partitioning problem, and the thread

assignment problem addressed in Chapter 4 is a multiprocessor scheduling problem [67].

5.7 Summary

One of the greatest difficulties in using modern computing systems is how to write ef-

ficient, portable, correct software for multicore processors. A promising approach is to

expose more parallelism to the compiler through domain-specific languages, enabling the

compiler to perform complex high-level transformations. One important application do-

main comprises stream programs. An important step in compiling a stream program to

multiple processors is kernel partitioning, which significantly affects application perfor-

mance. Finding an optimal kernel partition is, however, an intractable problem.

In this chapter of the thesis, we proposed a statistical approach to the kernel partition-

ing problem. We described a method that statistically estimates, with a given confidence

level, the performance of the optimal kernel partition. Knowing the optimal performance

improves the evaluation of any kernel partitioning algorithm, and it is the most important

piece of information for the system designer when deciding whether an existing algorithm

should be enhanced. We demonstrated that the sampling method is an important part of

the analysis, and that not all methods that generate i.i.d. samples provide good results. We
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also showed that random sampling on its own can be used to find a good kernel partition,

and that it could be an alternative to heuristics-based approaches.

The presented statistical method does not depend on the application. It does not re-

quire any application profiling nor does it require the understanding of the application

stream graph. The method can be applied to streaming applications with any number of

kernels, and it can target any number of software threads. The presented method can an-

alyze different metrics such as throughput, maximum hardware utilization, and minimum

energy or power consumption.

We successfully applied the presented statistical analysis to the benchmarks included

in the StreamIt 2.1.1 suite. The method precisely estimated the optimal kernel partition

performance for all the benchmarks under study. Also, in our experiments, several hun-

dred or several thousand random kernel partitions were enough to find a partition with

close to optimal performance. The performance of the kernel partitions that were selected

using random sampling matched the performance provided by the complex heuristic-

based approach.
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Chapter 6

Evaluation of the impact of shared
resources in multithreaded COTS

processors in time-critical environments

Commercial Off-The-Shelf (COTS) processors are now commonly used in real-time em-

bedded systems. The characteristics of these processors fulfill system requirements in

terms of time-to-market, low cost, and high performance-per-watt ratio. However, mul-

tithreaded processors are still not widely used in real-time systems because the timing

analysis is too complex. In multithreaded processors, simultaneously-running tasks share

and compete for processor resources, so the timing analysis has to estimate the possible

impact that the inter-task interferences have on the execution time of the applications.

In this chapter, we propose a method that quantifies the slowdown that simultaneously-

running tasks may experience due to collision in shared processor resources. To that end,

we designed benchmarks that stress specific processor resources and we used them to:

(1) Estimate the upper limit of a slowdown that simultaneously-running tasks may ex-

perience because of collision in different shared processor resources, and (2) Quantify

the sensitivity of time-critical applications to collision in these resources. We used the

presented method to determine if a given multithreaded processor is a good candidate for

systems with timing requirements. We also present a case study in which the method

is used to analyze three multithreaded architectures exhibiting different configurations

of resource sharing. Finally, we show that measuring the slowdown that real applica-

tions experience when simultaneously-running with resource-stressing benchmarks is an

important step in measurement-based timing analysis. This information is a base for in-

cremental verification of multithreaded COTS architectures.
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6.1 Introduction

Commercial Off-The-Shelf (COTS) processors are increasingly being considered in the

design of real-time and mission-critical embedded systems in order to reduce the non-

recurring engineering and time-to-market costs [24]. In such systems, ensuring timing

predictability and meeting deadlines are of prime importance and therefore the analysis

of the system and the target applications are essential before deployment [160]. Time

predictability is, in fact, a requirement not only in the real-time market, but also coming

to be of primary importance in the mainstream market as recognized in the HiPEAC

roadmap [55].

Currently, the COTS processor market is moving toward multithreaded (MT) 1 pro-

cessor architectures. Multithreaded COTS processors are of special interest due to their

good performance-per-watt ratio and high performance opportunities [152]. These ar-

chitectures are particularly well suited for embedded integrated architectures in which

several functions are integrated into the same processor, such as Integrated Modular

Avionics (IMA) [158] in the avionics domain or Automotive Open System Architecture

(AUTOSAR) [22, 113]. In this context, multithreaded processors can potentially schedule

mixed criticality workloads, i.e. workloads composed of safety-critical, mission-critical,

and non-critical applications inside the same processor, improving the hardware utiliza-

tion and so reducing cost, size, weight, and energy consumption [110].

Unfortunately, despite the benefits that MT COTS processors may offer in embedded

real-time systems, particularly in integrated architectures, the time-critical market has not

yet embraced such a shift. The main challenge that MT COTS architectures face is with

predicting the impact that the collision among simultaneously-running tasks has on execu-

tion time of time-critical tasks. The loss of predictability is explained by the fact that co-

running tasks have to share the hardware resources, even if they do not communicate with

each other. When two or more tasks that share a hardware resource try to access it at the

same time, the tasks experience inter-task interference. Inter-task interferences are han-

dled by an arbitration mechanism, which may affect the execution time of running tasks.

As a result, it is much more difficult to provide the worst-case execution time (WCET)

estimations for applications running on MT processors than running on single-threaded

1We will use the term “multithreaded processor” to refer to any processor that has support for more
than one thread running at a time. Multicore, HyperThreading, Simultaneous Multithreading, Coarse-
grain Multithreading, Fine-Grain Multithreading processors, or any combination of them are multithreaded
processors.
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processors. Several studies show that collision in processor resources between co-running

tasks may cause significant impact to application execution time [54, 154] and therefore

on WCET [120].

Static WCET analysis computes WCET bound based on the extensive program analy-

sis and detailed model of the hardware [126]. Static WCET analysis is currently the only

approach that computes safe WCET bounds, i.e. that guarantees that the actual execution

time of the program cannot be longer than the computed WCET bound. However, there

are several reasons that make the use of static WCET analysis difficult on real indus-

trial programs running on MT COTS architectures [92, 94, 111]. Some of these reasons

are: (1) Static WCET analysis of real industrial programs with a vast number of possi-

ble execution paths is a challenging task. (2) The implementation of accurate hardware

models for new architectures requires a significant effort and a detailed description of the

hardware, which is not always available. (3) Possible interference in shared hardware

resources among tasks that simultaneously execute on MT architectures significantly in-

creases the complexity of timing analysis.

This has motivated studies that analyze if changes in hardware can facilitate the ef-

fective timing analysis of real industrial programs running on MT architectures. There

have been several hardware proposals [18, 68, 78, 110, 124, 125] to ease the computation

of composable WCET bounds or WCET estimates 2 of tasks running on multithreaded

architectures. However, these proposals require changes in hardware and additional fea-

tures that the current MT architectures do not have. Therefore, the industry that wants to

use MT architectures in their current real-time system designs cannot benefit from them.

A measurement-based approach for single-threaded architectures computes the WCET

estimate by multiplying the longest observed execution time (LOET) by a safety margin,

usually provided by an expert with understanding of the target hardware architecture and

the reference applications (see Figure 6.1) [111]. This method has been successfully used

in the past to determine WCET estimate of applications running on single-threaded pro-

cessors with a moderate difference between the Average Case Execution Time (ACET),

the LOET, and the WCET estimate. However, the method provides no analytical guar-

antees that the estimated WCET is safe and it may depend significantly on the quality

2The term WCET bound is used to refer to safe upper bound of program execution time that is provided
by static WCET analysis. Static WCET analysis guarantees that the execution time of a given program will
not exceed its WCET bound for all valid input configurations. WCET estimate refers to the upper bound of
program execution time that is unlikely to be exceeded. The techniques that compute WCET estimate do not
provide formal verification that program execution time does not exceed WCET estimate [92, 94].
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Figure 6.1: Measurement-based timing analysis

of the test-cases used as well as the experience of the expert(s) who compute the safety

margin. A direct extension to the measurement-based analysis presented in Figure 6.1

to MT COTS processors would consist of running several reference applications simul-

taneously on the same processor, and monitoring the execution time for each application

in the workload. However, in the case of MT architectures, the design of test-cases and

the choice of the workload has more importance than for single-threaded processors. The

effect of sharing processor hardware resources with simultaneously-running (co-running)

tasks may introduce significant variations in the execution time of applications. This can

make a methodology based on safety margins fail. In addition to this, a change of any

co-running task may affect the way that co-runners interfere, and necessitates repeating

the WCET analysis for all the tasks in the workload. Thus, the measurement-based timing

analysis used for single-threaded processors cannot be directly extended for MT COTS

architectures.

Our study provides to the industry a systematic methodology for measurement-based

timing analysis of applications running on MT COTS architectures. The main contribu-

tions of our study are:

• We show that running workloads composed of real applications may not be suffi-

cient to determine the slowdown that simultaneously-running tasks may experience

because of collision in shared processor resources. Thus, the measurement-based

timing analysis used for ST processors cannot be directly extended to MT architec-

tures.

• We present a method to determine if a given MT processor is a good candidate for

systems with timing requirements.
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• We also show that measuring the slowdown that real applications experience when

co-running with designed resource-stressing benchmarks improves measurement-

based timing analysis for MT architectures. This can be used as a base for incre-

mental verification, a key feature of integrated implementations such as IMA or

AUTOSAR.

In order to reach these objectives, we defined a set of specific resource-stressing

benchmarks that introduce a high number of interferences on each potentially-shared

hardware resource. By using these resource-stressing benchmarks as co-runners, we ob-

tain a good estimation of the worst-case slowdown that real applications may experience

because of collision in shared processor resources. When a workload is composed only of

resource-stressing benchmarks, the detected slowdown is unlikely to be exceeded for any

workload composed of real applications. Therefore, the slowdown detected when using

resource-stressing benchmarks may serve as an upper estimate of the effect of inter-task

interference for a given processor.

We present several case studies in which we analyze three MT COTS architectures

with different degrees of shared resources. We show that, for a given workload com-

posed of several benchmarks, all three architecture types show low interference among

co-running tasks and stable execution times. However, our method shows that the poten-

tial variation in the execution time of applications is different for each architecture under

study.

As our study targets real COTS processors, we do not suggest any hardware change in

the target architecture, but propose a way to improve the measurement-based approach for

MT COTS processors. This is one of the main differences with previous works in the field

that have suggested hardware modifications to improve architecture time predictability.

The rest of the chapter is organized as follows: In Section 6.2, we propose a method

for analysis of potential interference of co-running tasks in shared processor resources.

Section 6.3 shows details of the experimental environment and methodology used in the

study. Section 6.4 presents a case study in which we evaluate the suitability of three

MT COTS architectures for time-critical environments. Related work is presented in

Section 6.5, while Section 6.6 summarizes the study.
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6.2 Analysis of Inter-Task Interferences in current MT

processors

In MT processors, the execution time of a task depends not only on the underlying hard-

ware and the way the task is programmed, but also on the slowdown caused by the inter-

ference between simultaneously-running tasks. In order to provide a meaningful WCET

estimation for tasks running on an MT processor, it is required to take into account the

inter-task interference in shared processor resources. Several studies [49, 118, 119] and

projects [18, 68, 78, 110, 124, 125, 150] address this problem for safety-critical appli-

cations by introducing hardware mechanisms to define the upper bound of the delay a

task can experience due to interferences in cache memory, bus, and access to the main

memory. Unfortunately, these proposals have not yet been accepted by processor man-

ufactures, and it is unclear if the COTS processor market will adopt them. Even if the

hardware proposals were accepted, it would take at least five to ten years to implement

them.

The analysis of the impact of inter-task interferences to application WCET is very

complex. Without the hardware support proposed in the previously mentioned studies and

projects, using static WCET analysis for MT COTS processor running real workloads is

infeasible in practice. As we mentioned in Section 6.1, another solution could be to

directly extend the measurement-based approach used for single-threaded architectures,

and to estimate the application’s WCET based on the longest observed execution time

within all possible workloads.

The problem with this approach is that the number of different workloads in real sys-

tems may be large. For example, assume a task set composed of n tasks is to be executed

on a target processor able to run up to k tasks at a time, in which n > k. Under this

scenario, the number of workloads that have to be analyzed is n!

k!(n− k)!
. Moreover, any

change in the workload, e.g. a shift in time at which each application in the workload

starts, would invalidate the previous analysis for all running tasks, especially when run-

ning mixed-criticality workloads with non real-time applications. Hence, measurement-

based timing analysis considering all possible workloads is not feasible in practice for

time-critical tasks running on MT COTS processors.

We propose a software solution to this problem. In particular, we propose the design of

resource-stressing benchmarks and a methodology for their use to quantify possible slow-

122



CHAPTER 6. EVALUATION OF THE IMPACT OF SHARED RESOURCES IN
MULTITHREADED COTS PROCESSORS IN TIME-CRITICAL
ENVIRONMENTS

down that co-running tasks may experience because of a collision in shared resources of

MT COTS processors. The objective of the resource-stressing benchmarks is to introduce

a high-load onto each of the processor hardware resources that the task which is under the

analysis may use. Thus, the resource-stressing benchmarks can be used to provide good

estimates of the potential slowdown that a set of simultaneously-running real applications

may experience because of the collision in shared resources of a given processor. When

the methodology is used on different MT COTS architectures, it can help to determine

the suitability of each architecture to time-critical environments. The methodology can

also be used for a given architecture to determine the potential variation in execution time

that a particular task in a workload may experience if any of the co-runners change. This

information is a key to providing incremental qualification [60].

6.2.1 Worst-interference benchmark

When designing a resource-stressing benchmark, we would like to have the worst-possible

interference benchmark. This benchmark would cause the highest possible interference

in the shared resources that are used by the application under study. In this scenario,

the slowdown of the application due to collision in processor resources could be used to

compute a safe execution time bound. It is important to note that the worst-interference

benchmark would be specific for the application under study and the target MT processor.

Unfortunately, the design of the worst-interference benchmark is extremely difficult

or even impossible, even for a single hardware shared resource. In order to illustrate this,

we analyze the design of a benchmark that should cause the worst interference to a given

application in the shared instruction fetch unit (IFU) in an SMT processor. In this case,

we assume that the IFU is designed to fetch up to one instruction in each cycle, and im-

plements a least recently fetched policy, i.e. the thread that last fetched an instruction has

the lowest priority. Under this fetch policy, whenever the worst-interference benchmark

fetches an instruction, the application under study becomes the least recently fetched task

with higher priority in the next access to the IFU. In order to design the worst-interference

IFU benchmark for a given application, it is required to: (1) Determine precise cycles in

which application under study will access IFU, (2) Determine the priority of the applica-

tion in each IFU access, and (3) Consider how the interference between the application

under study and the worst-interference benchmark and will delay any future IFU requests

of both tasks.
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In general, in real time systems, the design of worst-interference benchmark requires:

• Full knowledge of the processor implementation, including resource latency, arbi-

tration policy, etc. However, many of these hardware features of COTS processors

are not reported in the public documentation.

• Full knowledge of the application, including input data set, execution flow, resource

usage pattern, etc. However, a common practice is that applications are provided

by different suppliers (Tier 1) [69], making it difficult to have full knowledge about

all applications.

• The worst-interference benchmark should stress all resources used by the applica-

tion under study, needing to be perfectly aligned in the access to each of shared

resources used by the application. Any misalignment between worst-interference

benchmark and application under study can significantly reduce the impact of re-

source sharing.

All these requirements make the design of worst-interference benchmarks infeasible in

practice.

6.2.2 Resource-stressing benchmarks

A key design choice in our resource-stressing benchmarks is how to stress shared proces-

sor resources. (1) We can design benchmarks that specifically stress a single resource by

putting a high load on it. For example, to stress the instruction fetch unit, we could design

a benchmark that fetches an instruction in each cycle. The downside of this solution is that

only one resource can be stressed at a time. (2) Alternatively, we can design benchmarks

that stress several resources at a time. For example, a benchmark can comprise different

instructions that access different resources. The downside of this solution is that the stress

in each resource decreases as several resources are stressed simultaneously.

In architectures with two cores or hardware contexts, in which we can only run the ap-

plication under study and one resource-stressing benchmark at a time, it is unclear which

of the two approaches better show the sensitivity of applications to hardware resource

sharing. However, as the number of cores or contexts increases, the methodology that uses

benchmarks that stress a single hardware resource scales very well. Under that method-

ology, we can reserve 1 out of the N cores (or hardware contexts) to run the application
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under study on, and use the remaining N-1 to run different combinations of stressing

benchmarks, each stressing a given resource. This improves the obtained slowdown as

with several cores or hardware contexts we can observe the execution of the application

under different resource-stressing conditions. In Section 6.4.4, we show a case study in

which we use this feature of the methodology.

We start benchmark design by identifying common levels in the hardware resources

shared in MT COTS processors. This allows the creation of a set of benchmarks that

stress those particular resources. In particular, we identify three resource sharing levels:

(1) Intra-core resources include: (1.1) Front end of the pipeline; (1.2) Back end of

the pipeline: Integer and Floating Point (FP) execution units; (1.3) The L1 data cache;

(1.4) The L1 instruction cache.

(2) Inter-core resources such as the L2 cache memory (the last level of cache mem-

ory).

(3) Interface to off-chip resources such as the bandwidth to the main memory.

Although these levels of shared resources are common in MT COTS processors, the

effect in time (delay) that the interference in each of these resources causes, depends on

the particular processor. To measure that delay, for each level of shared resources, we

designed at least one resource-stressing benchmark as described next:

(1.1) Front end of the pipeline: In order to stress front end of the pipeline, mainly

the instruction fetch unit and the decode unit, we designed a benchmark that executes a

series of nop instructions. The nop instruction is a low latency instruction that puts sig-

nificant stress to the front end of the pipeline and negligibly stresses rest of the processor

resources.

(1.2) Back end of the pipeline (Integer and FP execution units): In state-of-the-art

processors, different integer and FP instruction may execute in different execution units

and may have different behavior (e.g. may be pipelined or non-pipelined). To cover the

different cases of possible interference, we design six benchmarks for stressing integer

and FP execution units. intAdd, intMul, and intDiv benchmarks consist of a sequence of

integer addition, multiplication, and division instruction, respectively. fpAdd, fpMul, and

fpDiv benchmarks execute a serial of floating point addition, multiplication, and division

instructions, respectively.

(1.3) The L1_dcache benchmark consists of a sequence of load instructions that ac-

cess different cache lines of the L1 data cache. The size of the array that the benchmark
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traverses is the same as the size of the L1 data cache. Therefore, when the L1_dcache

benchmark executes in isolation, most of the loads hit in the L1 data cache. However,

when L1_dcache cache is scheduled with a co-runner that uses L1 cache, the data sets of

both benchmarks do not fit in the cache, which causes L1 misses and longer execution

time.

(1.4) The L1_icache benchmark consists of a sequence of jump instructions that ac-

cess different cache lines in the instruction cache. The size of the code is equal to the size

of the instruction cache.

(2) The L2 benchmark is designed using the same principle as L1_dcache bench-

mark. The only difference is that the size of the array that the benchmark traverses is

equal to the L2 cache size.

(3) Interface to off-chip resources (Memory bandwidth): One of the factors which

has a significant impact on the applications performance is access to the off-chip re-

sources. The mem_bw benchmark is a resource-stressing benchmark that has the same

structure as L1_dcache or L2 benchmark (a sequence of load instructions that traverse

the array). Since the purpose of the benchmark is to stress the bandwidth to memory, but

not to cause any collision in the main memory, the size of the array that the benchmark

traverses has to be chosen to cause misses in the last level of cache, but not to cause page

faults in the main memory. For the configurations we test in this study, the size of the

mem_bw array is four times larger than the size of the last level of cache.

The set of resource-stressing benchmarks can be easily extended to stress execution

units and I/O interfaces of different processors. For each architecture under study, the

user should determine the set of shared resources in which co-running tasks may collide

and design resource-stressing benchmarks for each of them.

6.2.3 Implementation

The framework for automatic execution of the experiments and for processing of the re-

sults is implemented in C programming language using POSIX threads [31]. The real-

time and resource stressing benchmark that are used in each experiment are read from the

input file defined by the user.

The core of our framework consists of benchmarks that stress specific processor re-

sources. Each resource-stressing benchmark is defined in the function that is included in

the framework. The benchmark functions are implemented directly in assembly of the
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Table 6.1: Structure of intAdd resource-stressing benchmark
Line Source code Explanation
001 movl %1, %ecx initialize loop counter ecx (%1 is an input parameter)
002 label_intAdd: beginning of the loop
003 add %eax, %ebx target instruction
004 add %ebx, %eax target instruction

... ... ...

... ... ...
252 add %ebx, %eax target instruction
253 decl %ecx decrement loop counter
254 cmp %ecx, $0 compare loop counter with 0
255 jne label_intAdd if (counter != 0) jump to the beginning of the loop

target processor in order to: (1) Provide the programmer with the maximum control over

the instructions that are to be executed, and (2) Prevent a compiler from applying any op-

timization that changes the core of the benchmarks. The assembly functions are inlined

in a C code in order to avoid the overhead of the function call.

All the resource-stressing benchmarks are designed using the same principle that is

presented in Table 6.1. Each benchmark is comprised of three parts: (1) The register used

as a loop iteration counter (ecx) is initialized to the value of the input parameter (line

001). The initial value of ecx determines the number of loop iterations and the duration

of the benchmark. (2) The main part of the benchmark is a sequence of instructions of

target type (lines from 003 to 252). The add instruction is changed by the corresponding

target instruction in each of the resource stressing benchmarks: nop instruction 3 in the

case of the nop benchmark, integer multiplication in the case of the intMul benchmark,

etc. (3) Finally, the sequence of target instructions is followed with the decrement of the

loop counter register (line 253), comparison of the counter value with zero (line 254), and

a conditional branch to the beginning of the loop (line 255). The overhead of the loop

and the calling code is very low - more than 99% of the instructions targets the specific

resource we want to stress.

An overview of the benchmarks that stress the cache memory and the memory band-

3In the current version of the nop resource-stressing benchmark, we use one-byte nop instruction which
is an alias mnemonic for the XCHG (E)AX, (E)AX instruction in Intel architectures. This instruction per-
forms no operation and does not impact machine context, except for the instruction pointer register [1]. The
same effect could be achieved by using multi-byte nop in processors that have a support for this instruc-
tion [1]. An interesting avenue of future work could be to analyze whether using more complex opcodes
would put higher stress to the decode unit and cause higher collision among simultaneously-running tasks
that share this processor resource.
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for(cnt=0; cnt < array_size; cnt+=stride)
{

if(cnt<array_size-stride)
{

// Each array element contains the address of ...
// ... the following array element we want to access.
array[cnt] = (int)&array[cnt+stride];

}
else
{

// The last accessed element in the array points ...
// ... to the first element of the array that we access.
array[cnt] = (int)array;

}
}
(a) Initialization code

(a) Initialization code

Line Source code
001 movl %1 %ecx
002 movl %2, %eax
003 label_mem:
004 mov (%eax), %eax
005 mov (%eax), %eax

... ...

... ...
253 mov (%eax), %eax
254 decl %ecx
255 cmp %ecx, $0
256 jne label_mem

(b) An example of a memory access pattern (c) Assembly stressing code

Figure 6.2: Overview of the memory stressing benchmarks

width is shown in Figure 6.2.3. The benchmarks are implemented using the concept of

pointer chasing. In the benchmark initialization, which is done in the C code, we al-

locate a contiguous section of memory and initialize it in such a way that a given array

element contains the address of the next array element (memory location) that we want

to access, see Figure 6.2.3(a). The benchmarks are initialized to (1) Traverse the whole

array, and (2) Access different cache lines in each memory access. An example of a

benchmark memory access pattern is shown in Figure 6.2.3(b). Finally, Figure 6.2.3(c)
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shows the assembly code that stresses the memory subsystem. First, the register used as

a loop iteration counter (ecx) is initialized to the value of the input parameter (line 001).

The initial address of the array is passed to the assembly code as an input parameter (line

002). The main part of the benchmark (lines from 004 to 253) is a sequence of indirect

load instructions (mov(%eax),%eax) that follow the memory access pattern specified in

the initialization.

In order to design the L1_icache benchmark, we used a sequence of unconditional

jump instructions that point to different labels (jump destinations). The code is designed

in such a way that, at run-time, the benchmark (1) Traverses the whole instruction cache,

and (2) Accesses different cache lines in each jump instruction.

We analyzed not only the functionality of the resource-stressing benchmarks, but also

their portability to different processors with different cache organization or different ISA.

By setting the values of parameters array_size and stride to proper values (see Figure

6.2.3(a)), a user can easily adjust the memory stressing benchmarks to stress different

parts of the memory subsystem of different architectures. The stressing assembly code

of the L1_icache benchmark is automatically generated. In order to adjust the L1_icache

benchmark to stress instruction caches with different size and organization, the user only

has to specify the desired size of the stressing code and the stride between consecutive

jump instructions (i.e. the stride between consecutive accesses to instruction cache). The

resource stressing benchmarks are implemented in x86 ISA. In order to port benchmarks

to architectures with different ISA, e.g. POWER or SPARC, the programmer only needs

to change the x86 instructions in the assembly stressing code with the corresponding

instructions of the target ISA. The assembly stressing code of the benchmarks is very

simple, see Table 6.1 and Figure 6.2.3(c), thus a little effort is required to port this code

to architectures with different ISAs.

6.2.4 Using the resource-stressing benchmarks

We used the resource-stressing benchmarks to: (1) Estimate the upper limit of a slowdown

that co-running tasks may experience because of collision in different shared resources

of a processor. This slowdown can be used to determine if a given MT processor is

suitable for a time-critical environment. (2) Quantify the possible impact of inter-task

interference to the execution time of an application. This improves the WCET estimation
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for applications that execute in MT COTS processors.

6.2.4.1 Worst-case slowdown in shared processor resources

In order to quantify the slowdown that an application may experience due to collision in

the different shared resources of a given MT COTS processor, we deploy our resource-

stressing benchmark in the following way. First, we measure the execution time of each

resource-stressing benchmark when it runs in isolation (ETisolation). Second, we measure

the execution time when several resource-stressing benchmarks run concurrently (ETMT ).

In order to quantify the interference in processor resources, we compute the slowdown or

normalized execution time as the relative difference between the benchmark execution

time when it shares processor resources with other co-running benchmarks and when it

runs in isolation: slowdown =
ETMT

ETisolation
. As resource-stressing benchmarks put high

load on different hardware resources of a processor, the computed slowdown presents a

good estimation of the worst-case slowdown that real applications may experience be-

cause of collision in these resources. Understanding the slowdown that co-runners may

experience because of collision in shared resources can be used to define the suitability of

a processor for a time-critical environment.

• When co-runners experience a significant slowdown due to resource sharing, this

shows a potentially high variation in execution time of applications running on the

processor. This means that the processor is not a good candidate for systems that

have timing requirements.

• When co-runners experience a low slowdown due to resource sharing, it means that

the processor is suitable for running time-critical applications. Low variation in

execution time would allow accurate timing analysis for applications running on

these architectures even if the set of co-runners change.

6.2.4.2 WCET estimation for real applications

In order to provide a meaningful WCET estimate of real applications running on a given

MT COTS processor, it is important to quantify the slowdown that applications may expe-

rience due to collision in shared processor resources. Resource-stressing benchmarks can

be used to measure this slowdown. In order to quantify a slowdown due to inter-task in-

terferences in shared processor resources, we deploy our resource-stressing benchmark in
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the following way. We measure the execution time of a real application when it runs in iso-

lation (ETisolation) and when it simultaneously executes with different resource-stressing

benchmarks (ETRS[i]). The sensitivity of the application to sharing a given resource X

of the processor is computed as sensitivity[X] =
ETRS[X]

ETisolation
, where ETRS[X] is the exe-

cution time of the application when co-running with a resource-stressing benchmark that

targets resource X .

The sensitivity of an application running on a given processor is computed as the

maximum value of sensitivity for all analyzed processor resources. If this sensitivity low,

the application is not sensitive to the resource sharing on a given processor. This may

be because the application does not stress shared processor resources. If the application

experiences a significant slowdown when it executes with a benchmark stressing a given

processor resource, the application will show a high sensitivity to that resource. Collision

in that hardware resource is a potential source of high execution time variation that the

application may experience.

In processors with more than two virtual CPUs (i.e. cores or hardware contexts), we

can run the real application under study and several resource-stressing benchmarks at

a time. These experiments combine the effect of the interferences in different resources,

which may increase a measured slowdown and improve the WCET estimation. We expect

that this methodology will show even better results in future MT COTS processors in

which the number of cores and hardware contexts will increase.

6.3 Experimental Environment

In this section, we present the experimental environment used in the case study. We

describe the different MT COTS processors, real benchmarks, and the methodology used

in the experiments.

6.3.1 Hardware environment

We present a methodology that can be used to analyze how collision in shared processor

resources can impact on the execution time of an application running on MT architec-

tures. Still, in order to determine if a given processor is suitable for embedded real-time

systems, it is important to consider several characteristics such as performance, energy

consumption, dissipation, etc. The processors we used in the case studies are not neces-
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sarily the type of MT COTS processors used in embedded real-time systems because they

do not necessarily meet those requirements. However, the processors used exhibit several

configurations of resource sharing that allow us to show the application of our methodol-

ogy for different types of target architectures. The three MT COTS processors considered

in this study are the following:

(1) Atom Z530 [21] is a HyperThreading processor. The schematic view of the pro-

cessor is shown on in Figure 6.3(a). Atom Z530 has one core that supports the simul-

taneous execution of two tasks (two software threads). Most of the processor resources

are shared among co-running tasks: from the front-end of the pipeline to the memory

bandwidth. The platform based on the Atom processor contains 500MB of main memory.

(2) The Pentium D processor [121] contains two cores, and each of them can exe-

cute only one task at a time, see Figure 6.3(b). The front end of the pipeline, integer

and FP execution units, L1 data, instruction, and L2 caches are private to each core.

Simultaneously-running tasks on this processor can only collide in the bandwidth to the

main memory. Platform based on Pentium D processor contains 2GB of main memory.

(3) The Core2Quad processor [46] that we use in the study (Q9550) contains four

cores, and each of them can execute only one task at a time, see Figure 6.3(c). The front

end of the pipeline, integer and FP execution units, L1 data and instruction caches, are

private to each core. The L2 cache memory has two partitions. Each partition is shared by

tasks running on two cores: Partition 1 is shared by tasks running on Core 0 and Core 1,

while partition 2 is shared among Core 2 and Core 3. This means that the distribution of

simultaneously-running tasks on the processor determines if tasks share the L2 cache.

In order to evaluate all the possible scenarios, we run two sets of experiments for the

Core2Quad processor: (1) Reference and stressing benchmarks are bound to Core 0 and

Core 1, while no benchmarks are running on cores 2 and 3 (RS-nn). In this distribution,

reference and stressing benchmarks share the L2 cache. (2) A reference benchmark is

bound to Core 0, while no benchmark is running on Core 1, and two stressing benchmarks

are running on Core 2 and Core 3 (Rn-SS distribution). In this distribution, reference and

stressing benchmarks do not share L2 cache. Finally, on the Core2Quad processor, the

bandwidth of the main memory is shared among all simultaneously-running tasks. The

platform based on the Core2Quad processor contains 4GB of main memory.

As mentioned in Section 6.2, when a processor contains more than two cores of hard-

ware contexts, we can run several combinations of resource-stressing benchmarks in or-
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(a) Atom Z530 (b) Pentium D

(c) Core2Quad

Figure 6.3: Schematic view of the processors used in the study

der to improve the worst-case slowdown obtained by our methodology. In the case of

the Core2Quad processor, we will bind the benchmark under study to Core 0, and run all

possible combinations of L2 and mem_bw benchmarks in Core 1, Core 2, and Core 3.

6.3.2 Benchmarks

In addition to the set of resource-stressing benchmarks presented in Section 6.2, we used

the following benchmarks to evaluate the proposed methodology.

STAP Radar: Space Time Adaptive Processing (STAP) Radar is a mission-critical

application developed by Thales Research & Technology [43]. The application is a sim-

plified view of a moving target indication application, whose goal is to receive the echo

of a periodic sequence of radar pulses and to detect the objects that are moving on the

ground. The main characteristics of the applications are the following. First, a large part

of the application is data-flow, manipulating multidimensional arrays of data. Second,

data reordering (switching dimensions of arrays) is often needed. Third, the processing

chain uses different operators, with different specific needs in terms of precision and dy-

namic range. And, fourth, real-time performance is one of the key requirements, both in

terms of computation throughput and latency.
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CoreMark [47] is a benchmark developed by the Embedded Microprocessor Bench-

mark Consortium (EEMBC) [57] and is designed specifically to test the functionality of a

processor core. The EEMBC CoreMark suite contains three types of functionality that are

representative of real-time environments: (1) Matrix-related functionality: Matrix multi-

plications, matrix addition, addition of a constant to a matrix; (2) Linked list management

operations: Operations like insert, remove, or find the element in the linked list; (3) Fi-

nite State Machine (automata) operations. In each run, CoreMark benchmark executes all

three sets of functions.

H264_encode is a benchmark included in MediaBench II suite [66]. The benchmark

encodes videos using H.264 compression standard. This compression standard is widely

used for recording, compression, and distribution of high definition video. H264_encode

is a good representative of soft real-time applications. In addition to this, video encoding

using H.264 standard is used for video streaming in high-performance mission-critical

networks [20, 52, 80].

6.3.3 Experimental methodology

The experiments were designed in such a way as to provide reliable results and minimize

the impact of the operating system processes. Each experiment was repeated 50 times

and each time we measured the execution time of the application under study. As our

study addresses timing predictability and timing bounds of applications, we reported and

analyzed the Longest Observed Execution Time (LOET) in 50 repetitions. We measured

the execution time of an experiment by reading the time stamp counter (rdtsc). The time

stamp counter is a 64-bit register that counts the number of ticks since reset on x86 pro-

cessors. We accessed the counter register using the macro written in x86 assembly that

is included in the experimental framework. This way, we avoided any system call for

measuring time.

As the experiments were executed on a full-fledged Linux operating system (OS), we

paid special attention to minimizing the impact of the OS to our measurements [71, 122,

133]. To avoid task migration among different cores (virtual CPUs, hardware contexts,

strands) of a processor, we bound each benchmark to the corresponding core using the

sched_setaffinity system call.

In order to quantify the impact of the OS processes on the platforms used in the study,

we repeated each benchmark in isolation for 10,000 times and measured the impact of
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OS processes to the execution time of the benchmark. Our results show that the impact

of interference with the OS processes to variation of benchmark execution time is below

1%.

6.4 Evaluation

In this section, we show how the proposed methodology can be applied to determine the

suitability of the three MT COTS architectures presented in the previous section for time-

critical environments. This scenario is relevant when companies have to determine which

MT COTS architectures are good candidates to be used in their future time-critical system.

After using our methodology to select a subset of processors with appropriate distribution

and characteristics of shared resources, the company can do a detailed analysis of each

of the selected processors to provide stronger guarantees that it meets the requirements of

the system.

If an architecture under study offers a mechanism that could provide isolation between

simultaneously-running threads (e.g. cache partitioning), the presented methodology can

be used to characterize different configurations of a single architecture. None of the ar-

chitectures under study provides a support for partitioning of shared hardware resources

(thread isolation), thus we were not able to explore this approach. We believe that it is an

interesting avenue of future work.

6.4.1 Potential execution time variation

We start by analyzing the potential slowdown that applications may experience because

of the collision in shared processor resources. To that end, we run all resource-stressing

benchmarks in isolation and in different workloads. By observing the slowdown of the

benchmarks, we can quantify the potential slowdown a real application would experience

due to resource sharing. The results are presented in Table 6.2. Each entry of the table

shows the slowdown that the benchmark under study (listed in the rows of the table)

experiences when it is simultaneously executed with the stressing benchmarks (columns).

Atom processor. When running on the Atom processor, all benchmarks in our resource-

stressing benchmark suite have a co-runner that makes them experience significant slow-

down, see Table 6.2(a). In most of the experiments, the benchmark under study experi-

ences the highest slowdown when it is simultaneously executed with one more instance

135



6.4. EVALUATION

Table 6.2: Possible slowdown because of the collision in processor resources

(a) Atom

(b) Pentium D

(c) Core2Quad: RS-nn distribution

(d) Core2Quad: Rn-SS distribution
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of the same resource-stressing benchmark. We also observe that, in general, the detected

slowdown is quite high (up to 15.3×) and that the variation of the slowdown for different

benchmarks is also very high. The slowdown due to the sharing of pipeline resources is

less than 2×. When co-running tasks collide in the cache memory, the slowdown is higher

and it ranges up to 6.2×, 2.7×, 14.1×, and 15.3× due to collision in the L1 data cache, in-

struction cache, L2 cache, and memory bandwidth, respectively. The mem_bw stressing

benchmark stresses memory bandwidth through shared L2 cache. Hence, the slowdown

that the benchmark under study experiences when it is co-scheduled with mem_bw stress-

ing benchmark is the consequence of cumulative collision in the L2 cache and the memory

bandwidth.

As applications running on the Atom processor may experience a significant slow-

down because of interference in several resources, it is very difficult to estimate WCET

of concurrently running time-critical tasks. Therefore, we conclude that the hyperthread-

ing feature in the Atom processor should be avoided in time-critical environments that

require predictability of application execution time. Disabling hyperthreading would lead

to a more predictable execution time of the applications. However, this would make the

Atom a single-threaded processor that would defy all performance improvements of MT

architectures.

It is important to emphasize that our characterization does not conclude that the Atom

is a poorly designed processor. Our experiments show that it is very difficult to estimate

WCET of time-critical tasks concurrently running this processor, and, therefore, we do

not recommend its use in time-critical environments. However, the Atom processor could

be very suitable for systems that do not necessitate WCET analysis, i.e. the systems in

which average performance, performance per watt, or performance per joule are the most

important requirements.

Pentium D processor. The results for the Pentium D processor are presented in Ta-

ble 6.2(b). We do not detect any slowdown because of the collision in execution pipeline

resources (front-end of the pipeline, integer and FP execution units) or L1 data and in-

struction caches. These resources are private to each core, and, therefore, not shared

among co-running tasks. Simultaneously-running applications only share the memory

bandwidth. The slowdown we detect when the two mem_bw benchmarks simultaneously

execute is very low, only 30%. We also detect interference between L2 and mem_bw

benchmarks (10% slowdown). This is due to the fact that the L2 benchmark traverses an

array whose size is equal to the size of the L2 cache. Although we try to access the whole
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cache equally, the replacement policy may put a higher stress on some sets. This causes

the L2 benchmark to experience some L2 misses. The memory accesses that miss in the

L2 cache collide with mem_bw in the memory bandwidth.

To sum up, the potential slowdown because of inter-task interference on Pentium D

processor is fairly low (around 30%). In addition to this, the co-running tasks do not

interfere in most of the processor resources. Thus, it is much easier to estimate WCET

of co-running time-critical tasks. We conclude that the architectures like Pentium D are

good candidates to be used in time-critical environments that require predictability of

application execution time.

Core2Quad processor. The Core2Quad processor has two levels of resource shar-

ing [154], see Figure 6.3(c). In order to cover all possible scenarios, we analyzed the two

benchmark distributions for the Core2Quad processor: (1) RS-nn, when the benchmark

under study and the stressing benchmark share L2 cache, and (2) Rn-SS when the bench-

mark under study and stressing benchmarks do not share L2 cache, but only the memory

bandwidth.

Results for the RS-nn distribution are presented in Table 6.2(c). We detect a significant

slowdown when the two benchmarks collide in the L2 cache. The L2 resource-stressing

benchmark experiences a slowdown of 14.4× when co-running with one more instance

of L2 or mem_bw benchmark. In addition to this, we detect a 10% slowdown because of

collision in memory bandwidth.

Results for the distribution in which the benchmark under study does not share the L2

cache with stressing co-runners are presented in Table 6.2(d). As for the Pentium D pro-

cessor, we detect only a low interference in the memory bandwidth (30% slowdown). In

addition to interference between mem_bw benchmarks, we also detect a slowdown when

reference mem_bw is co-scheduled with two instances of the L2 benchmark. When two

stressing L2 benchmarks share the L2 cache, they experience a lot of L2 cache misses that

access the main memory and stress memory bandwidth, as the majority of the instructions

miss in L2 cache. Therefore, although the L2 benchmark is not designed to stress band-

width to the main memory, the two benchmark instances that share L2 cache are very bad

co-runners for applications using memory bandwidth.

From the analysis of the Core2Quad processor, we see that the potential slowdown

that the application experiences because of collision in processor resources with the co-

running tasks also depends on the distribution of running benchmarks. When the two

running benchmarks share L2 cache, they can experience a significant slowdown because
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of the collision in this resource. However, if the benchmarks are distributed in such a way

that they share only the memory bandwidth, the slowdown we detect is low, around 30%.

Therefore, architectures similar to Core2Quad processor are good candidates for systems

with timing requirements, as long as time-critical applications do not share the L2 cache

memory with co-running tasks.

6.4.2 Application sensitivity to resource sharing

The results presented in the previous section show that applications simultaneously-running

on a processor may experience high variations in execution time because of collision in

shared processor resources.

Unlike stressing benchmarks, real applications do not use a single resource during

their entire execution, but have different phases in which they use different resources. The

usage patterns determine the actual effect that resource sharing has on the applications’

execution time. In order to understand which resources are stressed by real applications,

we execute them simultaneously with the resource-stressing benchmarks. We define the

sensitivity of an application to a specific processor resource as the slowdown that the

application experiences when it is co-scheduled with corresponding resource-stressing

benchmark.

The results presented in Table 6.3 show the sensitivity of applications to resource

sharing. Each entry of the table shows the slowdown that the real benchmark, whose sen-

sitivity we measure (listed in the rows of the table), experiences when it is simultaneously

executed with different resource-stressing benchmarks (columns).

Atom. The results for the Atom processor are presented in Table 6.3(a). We reach two

conclusions: (1) All real benchmarks presented are sensitive to sharing most of the proces-

sor resources, and (2) The slowdown experienced by real applications when co-running

with resource-stressing benchmarks is up to 22% for STAP Radar, 47% for H264_encode,

and up to 18% for the CoreMark benchmark. This is significantly lower than the slow-

down we detect for resource-stressing benchmarks (see Table 6.2(a)). This means that,

although the underlying architecture has a strong potential to lead to high variation in the

execution time of running applications, the particular real benchmarks that we used do

not experience a significant slowdown.

Pentium D. The results for the Pentium D processor are presented in Table 6.3(b).

Real benchmarks running on the Pentium D are only sensitive to sharing the memory
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Table 6.3: Sensitivity of the real benchmarks to a collision in processor resources

(a) Atom

(b) Pentium D

(c) Core2Quad: RS-nn distribution

(d) Core2Quad: Rn-SS distribution

bandwidth. The slowdown that the real benchmarks experience is still lower than the

slowdown of resource-stressing benchmarks (see Table 6.2(b)), but the difference is low.

Core2Quad. The results for the Core2Quad processor and the task distribution in

which reference and stressing benchmarks share the L2 cache are presented in Table 6.3(c).

We detect no slowdown for the STAP Radar benchmark, and a very low slowdown (below

2%) when H264_encode and CoreMark are executed with L2 and mem_bw co-runners.

This means that the processor has the potential for significant slowdown because of a

collision in the shared L2 cache, but that the given set of benchmarks is insensitive to

this resource. However, if the target applications change, the possible variation in the

execution time due to interference in L2 cache is high.

We repeat the experiments on the Core2Quad processor for the distribution in which

real applications and resource-stressing benchmarks do not share the L2 cache, see Ta-
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ble 6.3(d). We detect a very low slowdown (around 1%) when STAP Radar and H264_encode

simultaneously execute with mem_bw stressing benchmark. Again, the slowdown that the

real benchmarks experience is lower than the slowdown of resource-stressing benchmarks

(see Table 6.2(d)).

One conclusion we reach from the presented results is that the real benchmarks we

use in the study show low sensitivity to resource sharing. The other way to understand

the results is that the applications under study are under-utilizing some of the processor

resources (e.g. the L2 cache), so a less aggressive processor could be used to provide

similar performance. It is important to note that these conclusions apply to the bench-

marks and processors we analyze in the study and not to the proposed methodology. The

same methodology applied to different real benchmarks or processors could reach differ-

ent conclusions.

6.4.3 WCET estimation

In order to reduce costs, current and future real-time systems follow an integrated ap-

proach in which more functionality is executed on the same hardware. This requires

hardware that provides higher performance, and that enables incremental timing verifica-

tion. Incremental timing verification means that a user does not have to verify the timing

behavior of all running applications each time a new component (application) is changed

or added to the system [60]. In that sense, the system is time composable if the WCET

estimate of the tasks do not change if any of the tasks in the workload change. In this

section, we show how our methodology helps with providing composable WCET estima-

tions.

When directly extending the the standard measurement-based approach (used in single-

threaded processors) to MT architectures, the application under study should be executed

with different sets of co-running tasks (in different workloads). The longest observed exe-

cution time of the application in any workload would then be used to estimate the WCET.

We show that this approach does not properly quantify the impact of inter-task interaction

to application execution time, and that can lead to an underestimation of WCET.

In the standard measurement-based analysis (Classical approach) the application un-

der study is executed in different workloads. In our case, as we analyze three real bench-

marks, we can run all possible workloads. In Table 6.4, we present the slowdown that

the benchmarks under study (listed in the rows of the table) experience when they exe-
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Table 6.4: Comparison of classical measurement-based timing analysis and our approach

(a) Atom

(b) Pentium D

(c) Core2Quad: RS-nn distribution

(d) Core2Quad: Rn-SS distribution

cute with different stressing benchmarks (columns). In the last column of the table (Our

approach), we also present the slowdown of the benchmark that is computed by measur-

ing benchmark sensitivity to inter-task interference in shared processor resources. This

is the maximum slowdown that the benchmark experiences when it is co-scheduled with

different resource stressing benchmarks (see Section 6.2.4.2).

Atom. The results for the Atom processor are presented in Table 6.4(a). For all

three benchmarks, STAP Radar, H264 encode, and CoreMark, the maximum slowdown

detected using the classical approach is exceeded in experiments with resource-stressing

benchmarks. The difference between the slowdown measured by the classical approach

and the slowdown measured using our methodology ranges up to 14% (CoreMark bench-

mark).

Pentium D. The results for the Pentium D processor are presented in Table 6.4(b).

In this case, we detected no slowdown when pairs of real benchmarks executed on the
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processor. However, when we execute STAP Radar, H264 encode, and CoreMark with

resource stressing benchmarks, we detected a slowdown of up to 2%, 4%, and 3%, re-

spectively. Again, the maximum slowdown detected when using the classical approach

was exceeded in experiments with resource-stressing benchmarks.

Core2Quad. The results for the Core2Quad processor are presented in Tables 6.4(c)

and (d). In both task distribution, RS-nn and Rn-SS, we detect no slowdown when work-

loads composed of real benchmarks execute on the processor. When H264 encode and

CoreMark share the L2 cache with resource stressing benchmarks (see Table 6.4(c)) we

detect slowdown of 2% and 1%, respectively. When STAP Radar and H264 encode share

memory bandwidth with stressing benchmarks, the detected slowdown is 1%, see Ta-

ble 6.4(d).

Real applications have different phases in which they stress different processor re-

sources. Also, the stress that real applications put on each processor resource is not the

highest possible stress of that resource. Therefore, experiments in which several real

applications simultaneously execute on the processor are unlikely to capture the worst

possible inter-task interference. Resource stressing benchmarks put high stress on spe-

cific processor resources. Running real applications with resource stressing benchmarks

will detect inter-task interference in shared processor resources and properly quantify the

impact of this interference on execution time. To summarize, measuring the interference

between real applications and resource stressing benchmarks can significantly improve

measurement-based methods for estimation of WCET in MT COTS processors.

As we explained in Section 6.2.1, the design of a worst-stressing benchmark is in-

feasible in practice. An interesting avenue of future work could be to analyze how the

sensitivity of real applications to collision in different processor resources independently

can be combined to estimate the worst possible slowdown that the application may expe-

rience because of interference with tasks co-running on the MT COTS processor. This

value could be used to compute a good estimate of the application WCET independently

from the set of co-running tasks.

6.4.4 Mixed stressing workloads

When the analyzed MT COTS processor comprises more than two cores or hardware

contexts, the application under study can be co-scheduled with different sets of resource-

stressing benchmarks. In these experiments, the slowdown that an application experiences
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Table 6.5: The timing analysis of the Core2Quad processor: The improvement of the
mixed stressing workload

is a combination of collision in different processor resources, so this approach improves

the estimation of application worst case slowdown.

In our study, Core2Quad is the only processor that supports simultaneous execution

of more than two tasks. In order to test mixed criticality stressing workloads, we exe-

cute real benchmarks with homogeneous stressing workloads (three instances of L2 or

mem_bw benchmark) and with workloads that combine L2 and mem_bw benchmarks. In

these experiments, we use only L2 and mem_bw because they are the only benchmarks

that stress shared resources of the Core2Quad processor (see Table 6.2). The results of

the experiments with mixed stressing workloads are presented in Table 6.5. Each entry

of the table shows the slowdown that the benchmark under study (listed in the rows of

the table) experiences when it is simultaneously executed with different stressing work-

loads (columns). For two out of three real benchmarks under study, H264 encode and

CoreMark, the slowdown caused by mixed stressing workload exceeds the highest slow-

down of homogeneous workloads.

Overall, we show that running workloads composed of real applications may not be

sufficient to determine which processor is a better candidate to be used in time-critical en-

vironments. In addition to analyzing the measured slowdown experienced by a given set

of applications, it is also important to understand the potential slowdown that simultaneously-

running applications can experience because of collision in shared resources. We show

that the slowdown that applications experience because of collision in shared resources

may be low if the applications are insensitive to these resources, even if the potential

slowdown is very high.
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6.4.5 Additional considerations

System level timing analysis: Once the presented methodology is used to quantify the

slowdown that an application may experience due to inter-task interferences and WCET

of the application is estimated, it is necessary to consider system level issues such as

sharing of OS services, process preemption, context switching cost, or task scheduling,

and to do a response time analysis. The impact of system level issues on an application

WCET, and the response time analysis are out of the scope of the presented study.

Hybrid WCET analysis: Several studies propose hybrid WCET analysis as a method

for the timing analysis of real-time systems. Hybrid WCET analysis is the combination of

static program analysis and the measurement-based techniques [53, 93, 136, 159]. First,

the hybrid WCET analysis statically analyzes the application code. As the analysis of all

possible execution paths of real industrial programs is complex or even infeasible, hy-

brid WCET analysis divides the program into mutually exclusive segments and analyzes

each segment separately. For each program segment, the analysis determines the differ-

ent possible execution paths of the program and generates sets of input data that force

the execution of each path. Later, the program is executed on real hardware for different

input data sets provided by static analysis. For each set of input data, the user measures

the execution time of the corresponding segment of the code. Finally, the WCET of the

whole program is computed based on the measured execution time of different program

segments. In hybrid WCET analysis, the measurements are performed on real hardware,

so a detailed model of the architecture under study is not required. This is its main advan-

tage when compared to the static WCET analysis. To the best of our knowledge, current

hybrid WCET analysis studies are focused on WCET estimation of applications running

on single-threaded processors. As a part of our future work, we plan to use the presented

methodology to detect the possible slowdown of different program segments and to extend

the current hybrid WCET analysis to MT COTS architectures.

In all the experiments, the slowdown that the benchmarks experience is measured

from the entry until the termination of the benchmark execution (end-to-end measure-

ments). However, the presented methodology can be easily adjusted to focus on different

program segments, so it can be used in hybrid WCET analysis or when only some pro-

gram segments have time-critical requirements. In this case, the set of resource-stressing

benchmarks and the set of experiments would remain the same: the application under

study should be executed in isolation and with the resource-stressing co-runners. The

145



6.5. RELATED WORK

only difference is that, in this case, instead of measuring the execution time (slowdown)

of the whole application, the user should instrument only the program segments under

study. Methods for low-overhead instrumentation of different application segments have

already been proposed [135].

6.5 Related Work

Despite the benefits that MT COTS processors may offer in embedded real-time systems

these architectures are still not widely used in real-time systems because the timing anal-

ysis is too complex. To the best of our knowledge, our study presents the first systematic

approach for measurement-based timing analysis of time-critical applications running on

MT COTS architectures. Several studies and projects analyze collision in shared hardware

resources among tasks co-scheduled on MT architectures and the impact of this collision

on WCET analysis.

Schliecker et al. [137] and Pellizzoni et al. [120] analyze the delay of memory ac-

cess in systems where several simultaneously-running tasks share the main memory. The

proposals require a detailed profiling of application memory access pattern and a deep

understanding of the memory arbitration policy. Although both proposals can be applied

only in systems where the main memory is the only shared resource (authors assume

non-shared caches), we believe that these studies are a very good starting point to better

understand the possible use of multithreaded processors in time-critical systems.

Cullmann et al. [49] analyze the design of future multithreaded processors for time-

critical systems. The authors show that some processor designs make the timing analy-

sis infeasible and suggest design principles for making multithreaded architectures pre-

dictable. This analysis is complementary to our study. Based on the theoretical analysis,

the authors give guidelines for the design of predictable architectures, while we present

the measurement-based approach to determine if a given architecture is a good candidate

for time-critical systems.

Several projects propose hardware solutions to deal with the inter-task interferences on

WCET in MT architectures [18, 68, 78, 110, 124, 125, 150]. These projects make a wide

range of proposals. Some suggest preventing inter-task interferences by assigning each

task a subset of resources and not allowing other user tasks to use the resources. This

can be implemented by splitting the hardware resource temporally or spatially. Other

proposals suggest actually allowing tasks to share hardware resources and defining the
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boundaries of this interaction so that the maximum effect of the interaction on the WCET

is known. Although these proposals are different, the common factor is that they all

propose changes in hardware to reach their objectives. The objective of our study is to

show how, without any change, MT COTS processors can assess the challenges and the

requirements imposed in a real-time environment, mainly time predictability.

Several studies focus on Measurement-Based Timing Analysis (MBTA) for single-

threaded architectures. The studies propose an improvement of the accuracy and cov-

erage of MBTA by using static code analysis. Schaefer et al. [136] propose measuring

execution time at basic block level and using this data to estimate WCET of the whole

program. Deverge and Puaut [53] propose using structural testing methods to generate

input data for experiments used in measurement-based WCET analysis. Kirner et al. [93]

use static program analysis to generate test data that cover different execution paths. Au-

thors also propose a decomposition of program paths into smaller parts (subpaths) and

using an independent measurement-based analysis for each subpath. Finally, the WCET

estimate of the whole program is calculated based on the execution time of each sub-

path. Wenzel et al. [159] present a similar approach: they propose a decomposition of

the program into segments and doing a timing analysis for each segment. The authors

also propose an approach for good program segmentation – one that balances the number

of program segments with the average number of paths per segment. Rieder et al. [135]

analyze different approaches for measuring the execution time of program segments. The

authors propose an external Runtime Measurement Device and suggest the integration

of this device into the analysis framework that automatically collects the data needed

for measurement-based WCET analysis. All the above studies propose improvements of

end-to-end measurement-based timing techniques for single-threaded processors. In our

study, we extend measurement based timing analysis for multithreaded processors and

show how it can be used to determine which architecture is more suitable for systems

with timing requirements.

6.6 Summary

COTS processors are increasingly being considered in the design of systems with timing

requirements. MT COTS architectures are of special interest due to good performance-

per-watt ratio, high performance opportunities, and their suitability for embedded archi-

tectures in which several functions are integrated into the same processor.
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Unfortunately, despite the benefits that MT COTS may offer in embedded real-time

systems, the time-critical market has not yet embraced a shift toward these architectures.

The main challenge with MT COTS architectures is the difficulty when predicting the ex-

ecution time for simultaneosly-running time-critical tasks. Providing a timing analysis for

real industrial applications running on MT COTS processors becomes extremely difficult

because the execution time of a task, and hence its WCET depends on the interference

with co-running tasks in shared processor resources.

In this chapter of the document, we have shown that the measurement-based timing

analysis used for single-threaded processors cannot be directly extended for MT COTS

architectures. Running workloads composed of real applications may not be sufficient to

capture the possible slowdown that applications experience due to interferences. This is

due to the fact that the applications used may be insensitive to interference in processor

shared resources. We propose a methodology that quantifies the slowdown that a task

may experience because of collision with co-runners in shared resources of MT COTS

processor. To that end, we developed a set of specific resource-stressing benchmarks

and propose a measurement-based approach to determine the possible slowdown caused

by inter-task interferences. The two main applications of our methodology are: (1) The

methodology helps to determine which architecture among different MT COTS proces-

sors is more suitable to be used in time-critical environments, (2) Our methodology shows

the potential variation in execution time a task in a workload may experience if any of the

co-runner changes.

We also presented several case studies in which we analyze three MT COTS archi-

tectures with different degrees of shared resources. We show that, for a given workload

composed of several real-time benchmarks, all three types of architecture show low inter-

ference among co-running tasks and stable execution time. However, our method shows

that potential variation in the execution time of applications is different for each architec-

ture under study, and that not every one of the three architectures are good candidates to

be used in time-critical systems.
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Conclusions

Multithreaded processors are a very good solution for exploiting processor performance

beyond the limitations imposed by limited instruction-level parallelism and power wall.

Currently, multithreaded architectures are the mainstream in the processor design. They

are widely used in servers, desktop computers, lap-tops, and mobile devices.

However, multithreaded architectures introduce several challenges at the software

level. In order to utilize the hardware potential optimally and to deliver maximum per-

formance, state-of-the-art multithreaded architectures have to execute numerous software

threads simultaneously. At the operating system level, one of the main challenges be-

comes how to schedule simultaneously-running threads. Also, the need for numerous

threads motivates the development of multithreaded applications and algorithms. Devel-

opment of efficient, portable, and correct multithreaded software requires novel program-

ming models and paradigms, and increases the complexity of compilers. In time-critical

environments, the timing analysis has to estimate the impact of the collision in shared

hardware resources between simultaneously-running threads on the execution time of

each thread.

This thesis presented cross-domain approaches that improve the effective use of mul-

tithreaded architectures. The contributions of the thesis can be classified in three groups.

First, we proposed several methods for thread assignment of multithreaded network ap-

plications running in multithreaded servers. Second, we analyzed the problem of graph

partitioning that is a part of the compilation process of multithreaded streaming appli-

cations. Finally, we presented a method that improves the measurement-based timing

analysis of multithreaded architectures used in time-critical environments. The following

sections briefly summarize each of the contributions.

149



7.1. THESIS CONTRIBUTIONS

7.1 Thesis contributions

7.1.1 Thread assignment on multithreaded processors

State-of-the-art multithreaded processors have different level of resource sharing (e.g.

between thread running on the same core and globally shared resources). Therefore, the

way that the threads of a given workload are assigned to processors’ hardware contexts

determines which resources the threads share, which, in turn, may significantly affect the

system performance.

In this thesis, we demonstrated the importance of thread assignment for network ap-

plications running in multithreaded servers. We also presented TSBSched and BlackBox

scheduler, simple methods for thread assignment of multithreaded network applications

running on processors with several levels of resource sharing. We evaluated TSBSched

and BlackBox scheduler for a set of network applications running on the UltraSPARC T2

processor. The presented results show very high accuracy of both proposed thread assign-

ment methods, and significant performance improvement over random and Linux-like

thread assignment approaches.

We also proposed a statistical approach to the thread assignment problem. In partic-

ular, we showed that running a sample of several hundred or several thousand random

thread assignments is enough to capture at least one out of 1% of the best-performing as-

signments with a very high probability. We also described the method that estimates, with

a given confidence level, the optimal system performance for given workload. Know-

ing the optimal system performance improves the evaluation of any thread assignment

technique and it is the most important piece of information for the system designer when

deciding whether any scheduling algorithm should be enhanced. The presented statistical

approach is completely independent of the hardware environment and target applications.

The approach scales to any number of cores and hardware contexts per core, and it does

not require any profiling of the application nor does it require knowledge of the archi-

tecture of the target hardware. We successfully applied our proposal to a case study of

thread assignment of multithreaded network applications running on the UltraSPARC T2

processor. Our results show that running several thousand random thread assignments

provided enough information for the precise estimation of the performance of the optimal

thread assignment. Also, several thousand random thread assignments were sufficient to

capture the assignments with performance very close to the optimal ones (less than 2.5%
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of the performance loss), requiring around two hours of experimentation in the target

architecture in the worst case.

7.1.2 Kernel partitioning of streaming applications

Another difficulty in modern computing systems is how to write efficient, portable, cor-

rect software for multithreaded processors. A promising approach is to expose more par-

allelism to the compiler through domain-specific languages, enabling the compiler to per-

form complex high-level transformations. One important application domain comprises

stream programs. An important step in compiling a stream program to multiple proces-

sors is kernel partitioning, which significantly affects application performance. Finding

an optimal kernel partition is, however, an intractable problem.

We proposed a statistical approach to the kernel partitioning problem. We described

a method that statistically estimates, with a given confidence level, the performance of

the optimal kernel partition. We demonstrated that the sampling method is an important

part of the analysis, and that not all methods that generate i.i.d. samples provide good

results. We also showed that random sampling on its own can be used to find a good

kernel partition, and that it could be an alternative to heuristics-based approaches.

The presented statistical method does not depend on the application. It does not re-

quire any application profiling nor does it require the understanding of the application

stream graph. The method can be applied to streaming applications with any number of

kernels, and it can target any number of software threads. The presented method can an-

alyze different metrics such as throughput, maximum hardware utilization, and minimum

energy or power consumption.

We successfully applied the presented statistical analysis to the benchmarks included

in the StreamIt 2.1.1 suite. The method precisely estimated the optimal kernel partition

performance for all the benchmarks under study. Also, in our experiments, several hun-

dred or several thousand random kernel partitions were enough to find a partition with

close to optimal performance. The performance of the kernel partitions that were selected

using random sampling matched the performance provided by the complex heuristic-

based approach.
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7.1.3 Multithreaded processors in time-critical environments

Commercial-off-the-shelf (COTS) processors are increasingly being considered in the de-

sign of systems with timing requirements. Multithreaded (MT) COTS architectures are of

special interest due to good performance-per-watt ratio, high performance opportunities,

and their suitability for embedded architectures in which several functions are integrated

into the same processor.

Unfortunately, despite the benefits that MT COTS may offer in embedded real-time

systems, the time-critical market has not yet embraced a shift toward these architectures.

The main challenge with MT COTS architectures is the difficulty when predicting the exe-

cution time for simultaneously-running time-critical tasks. Providing a timing analysis for

real industrial applications running on MT COTS processors becomes extremely difficult

because the execution time of a task, and hence its worst-case execution time (WCET)

depends on the interference with co-running tasks in shared processor resources.

We showed that the measurement-based timing analysis used for single-threaded pro-

cessors cannot be directly extended for MT COTS architectures. Running workloads

composed of real applications may not be sufficient to capture the possible slowdown

that applications experience due to interferences. This is due to the fact that the applica-

tions used may be insensitive to interference in processor shared resources. We proposed a

methodology that quantifies the slowdown that a task may experience because of collision

with co-runners in shared resources of MT COTS processor. To that end, we developed a

set of specific resource-stressing benchmarks and propose a measurement-based approach

to determine the possible slowdown caused by inter-task interferences.

We also presented several case studies in which we analyze three MT COTS archi-

tectures with different degrees of shared resources. We show that, for a given workload

composed of several real-time benchmarks, all three types of architecture show low inter-

ference among co-running tasks and stable execution time. However, our method shows

that potential variation in the execution time of applications is different for each architec-

ture under study, and that not all the architectures under study are good candidates to be

used in time-critical systems.
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7.2 Future work

7.2.1 Thread assignment

In this thesis, we addressed the problem of thread assignment on multithreaded network

servers. Thread assignment is an important scheduling problem for state-of-the-art pro-

cessors in general, and one of the most promising ways to increase the performance of

data centers, high performance computing (HPC) clusters, and communication base sta-

tions.

We focused on the thread assignment problem of applications running on a single

processor. However, the proposed thread assignment approaches can be applied to thread

assignment (thread distribution) problem on different levels: between different processors

of the same server, different servers in the rack, or between different racks in a data center.

The presented thread assignment approaches were designed for scheduling of net-

work applications that are executed on multithreaded servers. It would be interesting to

evaluate whether the presented thread assignment approaches could be used in different

domains in which workload changes infrequently. Some of the target environments could

be communication base stations, telecommunication servers, or front-end of data centers.

Although the presented thread assignment approaches are not designed to address the

problem of dynamic process scheduling, random sampling and the statistical thread as-

signment approach can be used to evaluate heuristic-based approaches that target highly

dynamic environments. The estimation of the possible performance improvement of dy-

namic heuristic-based thread assignment approaches can be done before the system de-

ployment. Since this analysis can be done off-line, it is feasible to execute thousands

of random thread assignments of a given workload, and to apply the presented statis-

tical analysis to estimate the performance of the optimal thread assignment. Also, the

heuristic-based thread assignment approaches can be evaluated for numerous application

sets of interest.

In network servers, data centers and HPC clusters, the presented statistical analysis

can be applied to different variations of job scheduling problems such as multiprocessor

scheduling, resource-constrained scheduling, scheduling with individual deadlines, pre-

emptive scheduling, priority scheduling, etc. The presented method is particularly well

suited for systems that require analysis of different metrics such as throughput, fairness,

hardware utilization, energy or power consumption, or any weighted sum of them.
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Application of the presented thread assignment approaches to different scheduling

problems in various domains that use diverse hardware platforms and different target met-

rics is an interesting avenue for future work.

7.2.2 Kernel (graph) partitioning

Several metrics can be used to describe the performance of streaming applications. In this

thesis, we analyzed the cost of streaming applications – the time needed to process a fixed

amount of input data. However, the proposed statistical approach is independent of the

target metric, and it can be used to analyze different metrics of interest such as energy or

power, the hardware utilization of the target architecture, or some weighted sum of them.

When the program is described using a stream language, the compiler may perform

complex optimizations over the stream graph; it can combine adjacent kernels, split com-

putationally intensive kernels into multiple parts, or duplicate kernels to have more par-

allel computation. In order to find the set of optimizations that provides the best per-

formance, it is important to determine good kernel partitions for different optimization

sets. In this case, the proposed kernel partitioning approach does not change, but the

random sampling and the presented statistical analysis are simply repeated for different

optimization sets, i.e. for different stream graphs of the same program.

In computer science, numerous problems are modeled in the form of graphs. For

example, graph theory is highly utilized in mobile, ad-hoc, and computer networks, but

also in data mining, clustering, image capturing and segmentation [51]. Many problems

related to graph theory, such as graph covering, partitioning, coloring, and vertex ordering

are intractable.

As a part of future work, we plan to apply the presented statistical analysis to different

problems that are modeled by using graph theory. We plan to analyze these problems for

different optimization sets and different metrics of interest.

7.2.3 Statistical analysis

Numerous problems in computer science are intractable. It is formally proven that many

problems related to network design, program optimization, data storage and retrieval,

process scheduling, graph and automata theory, are NP-complete [67]. Also, since many

problems have a vast exploration space, it is unfeasible to do an exhaustive search in order

to find a solution with the optimal performance.
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Currently, intractable problems in computer science are usually addressed by using

different heuristics-based approaches. The heuristics-based approaches are designed to

address a specific problem and metric under study. Design of heuristics-based approaches

and their adjustments to different problems or metrics requires significant effort.

The statistical approach that is presented in the thesis is easily applicable to different

intractable problems and different metrics under study. The presented method does not

require a profound understanding of the target system, which significantly reduces the

effort and the time needed for a system deployment. In order to apply the statistical ap-

proach, the user should generate random samples and measure the performance of each of

them. The statistical analysis that infers the population maximum (or minimum) based on

the sample of measurements is independent of the problem that is addressed. Moreover,

as demonstrated in the thesis, random sampling itself can be an effective approach to find

good solutions for different problems. Application of random sampling and the presented

statistical analysis to different problems in computer science is an interesting avenue of

future work.

In order to estimate the optimal system performance, we used statistical analysis that

is based on Extreme Value Theory (EVT). When dealing with the extreme deviations

from the median of the probability distributions, EVT is a fundamental and indispensable

statistical tool. Although EVT provides many theorems and tools that could be of interest

to the community, currently, its application in computer science is marginal. As a part

of future work, we plan to study EVT and to explore new applications of this branch of

statistics in the field of computer science.

7.2.4 Timing analysis of multithreaded processors

The method for timing analysis that is presented in this thesis obtains a good estimation

of the worst-case slowdown that real applications may experience because of collision

in each of shared processor resources independently. As a part of future work, we plan

to understand how the sensitivity of real applications to collision in different processor

resources independently can be combined to estimate the overall worst possible slowdown

that the application may experience because of interference with co-running tasks. This

value could be used to compute a good estimate of the application WCET independently

of the tasks that execute concurrently on multithreaded architectures.

In all the experiments presented in the thesis, the slowdown that the benchmarks ex-

perience is measured from the entry until the termination of the benchmark execution
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(end-to-end measurements). Several studies (see Section 6.4.5) propose hybrid WCET

analysis as a method for the timing analysis of real-time systems. Hybrid WCET analysis

is the combination of static program analysis and the measurement-based techniques. To

the best of our knowledge, current hybrid WCET analysis studies are focused on WCET

estimation of applications running on single-threaded processors. As a part of our future

work, we plan to use the timing analysis method that is presented in the thesis to extend

the existing hybrid WCET approaches to multithreaded architectures.
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• Petar Radojković, Vladimir Čakarević, Javier Verdú, Alex Pajuelo, Roberto Gioiosa,

Francisco J. Cazorla, Mario Nemirovsky and Mateo Valero. Measuring Operating

System Overhead on Sun UltraSPARC T1 Processor. In Fifth International Sum-

mer School on Advanced Computer Architecture and Compilation for Embedded

Systems (ACACES 2009). Terrasa (Barcelona), Spain. July 2009.

157



7.4. AWARDS

7.3.4 Other publications
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• Petar Radojković, Paul M. Carpenter, Miquel Moretó, Alex Ramirez and Francisco

Cazorla. Kernel Partitioning of Streaming Applications: A Statistical Approach to

an NP-complete Problem. In Proceedings of 45th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-45). Vancouver, Canada. December

2012.
1More information about the HiPEAC Paper Award could be found at http://www.hipeac.net/award.
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• Petar Radojković, Vladimir Čakarević, Miquel Moretó, Javier Verdú, Alex Pajuelo,

Francisco J. Cazorla, Mario Nemirovsky and Mateo Valero. Optimal Task Assign-

ment in Multithreaded Processors: A Statistical Approach. In Proceedings of 17th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS-2012). London, UK. March 2012.

• Vladimir Čakarević, Petar Radojković, Javier Verdú, Alex Pajuelo, Francisco J. Ca-

zorla, Mario Nemirovsky and Mateo Valero. Characterizing the Resource Sharing

Levels in the UltraSPARC T2 Processor. In Proceedings of 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-42). New York City, US.

December, 2009.
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