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Abstract

If speech is acquired by a close-talking microphone in a controlled and

noise-free environment, current state-of-the-art recognition systems often

show an acceptable error rate. The use of close-talking microphones, how-

ever, may be too restrictive in many applications. Alternatively, distant-

talking microphones, often placed several meters far from the speaker,

may be used. Such setup is less intrusive, since the speaker does not have

to wear any microphone, but the Automatic Speech Recognition (ASR)

performance is strongly affected by noise and reverberation. The thesis

is focused on ASR applications in a room environment, where reverbera-

tion is the dominant source of distortion, and considers both single- and

multi-microphone setups.

If speech is recorded in parallel by several microphones arbitrarily located

in the room, the degree of distortion may vary from one channel to an-

other. The difference among the signal quality of each recording may

be even more evident if those microphones have different characteristics:

some are hanging on the walls, others standing on the table, or others

build in the personal communication devices of the people present in the

room. In a scenario like that, the ASR system may benefit strongly if the

signal with the highest quality is used for recognition. To find such signal,

what is commonly referred as Channel Selection (CS), several techniques

have been proposed, which are discussed in detail in this thesis.

In fact, CS aims to rank the signals according to their quality from the

ASR perspective. To create such ranking, a measure that either estimates

the intrinsic quality of a given signal, or how well it fits the acoustic

models of the recognition system is needed. In this thesis we provide

an overview of the CS measures presented in the literature so far, and

compare them experimentally. Several new techniques are introduced,

that surpass the former techniques in terms of recognition accuracy and/or

computational efficiency. A combination of different CS measures is also



proposed to further increase the recognition accuracy, or to reduce the

computational load without any significant performance loss. Besides, we

show that CS may be used together with other robust ASR techniques,

like matched condition training or mean and variance normalization, and

that the recognition improvements from both approaches are cumulative

up to some extent. An online real-time version of the channel selection

method based on the variance of the speech sub-band envelopes, which

was developed in this thesis, was designed and implemented in a smart

room environment. When evaluated in experiments with real distant-

talking microphone recordings and with moving speakers, a significant

recognition performance improvement was observed.

Another contribution of this thesis, that does not require multiple mi-

crophones, was developed in cooperation with the colleagues from the

chair of Multimedia Communications and Signal Processing at the Uni-

versity of Erlangen-Nuremberg, Erlangen, Germany. It deals with the

problem of feature extraction within REMOS (REverberation MOdeling

for Speech recognition), which is a generic framework for robust distant-

talking speech recognition. In this framework, the use of conventional

methods to obtain decorrelated feature vector coefficients, like the dis-

crete cosine transform, is constrained by the inner optimization problem

of REMOS, which may become unsolvable in a reasonable time. A new

feature extraction method based on frequency filtering was proposed to

avoid this problem.
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Resum

Els sistemes actuals de reconeixement de la parla mostren sovint una taxa

d’error acceptable si la veu és registrada amb micròfons pròxims a la

boca del parlant, en un entorn controlat i lliure de soroll. No obstant,

l’ús d’aquests micròfons pot ser massa restrictiu en moltes aplicacions.

Alternativament, es poden utilitzar micròfons distants, els quals sovint

són ubicats a diversos metres del parlant. Aquesta configuració és menys

intrusiva, ja que el parlant no ha de portar a sobre cap micròfon, però

el rendiment del reconeixement automàtic de la parla (ASR, de l’anglès

Automatic Speech Recognition) en aquest cas es veu fortament afectat

pel soroll i la reverberació. Aquesta tesi s’enfoca a aplicacions ASR en un

ambient de sala, on la reverberació és la causa predominant de distorsió i

es considera tant el cas d’un sol micròfon com el de múltiples micròfons.

Si la parla és gravada en paral·lel per diversos micròfons distribüıts ar-

bitràriament a la sala, el grau de distorsió pot variar d’un canal a l’altre.

Les diferències en qualitat entre els senyals enregistrats poden ser més ac-

centuades si els micròfons tenen diferents caracteŕıstiques i col·locacions:

uns a les parets, altres sobre la taula, o bé altres integrats en els aparells

de comunicació de les persones presents a la sala. En un escenari com

aquest, el sistema ASR es pot beneficiar enormement de l’utilització del

senyal de més qualitat per al reconeixement. Per a trobar aquest senyal

s’han proposat diverses tècniques, anomenades CS (de l’anglès Channel

Selection), les quals es discuteixen detalladament en aquesta tesi.

De fet, la selecció de canal busca ordenar els senyals conforme a la seva

qualitat des de la perspectiva ASR. Per crear tal rànquing es necessita

una mesura que estimi la qualitat intŕınseca d’un senyal, o bé una que

valori com de bé aquest s’ajusta als models acústics del sistema de re-

coneixement. En aquesta tesi proporcionem un resum de les mesures

CS fins ara presentades en la literatura, comparant-les experimentalment.

A més, es presenten diverses noves tècniques que superen les anteriors



en termes d’exactitud de reconeixement i / o eficiència computacional.

També es proposa una combinació de diferents mesures CS amb l’objectiu

d’incrementar l’exactitud del reconeixement, o per reduir la càrrega com-

putacional sense cap pèrdua significativa de rendiment. A més mostrem

que la CS pot ser utilitzada juntament amb altres tècniques robustes

d’ASR, com ara matched condition training o la normalització de la var-

iança i la mitjana, i que les millores de reconeixement de les dues aprox-

imacions són fins a cert punt acumulatives. Una versió online en temps

real del mètode de selecció de canal basat en la variança de les envolvents

sub-banda de la parla, desenvolupada en aquesta tesi, va ser dissenyada

i implementada en una sala intel·ligent. A l’hora d’avaluar experimental-

ment gravacions reals de micròfons no pròxims a la boca amb parlants

en moviment, es va observar una millora significativa en el rendiment del

reconeixement.

L’altra contribució d’aquesta tesi, que no requereix múltiples micròfons,

va ser desenvolupada en col·laboració amb els col·legues del departament

de Comunicacions Multimedia i Processament de Senyals de la Universi-

tat de Erlangen-Nuremberg, Erlangen, Alemanya. Tracta sobre el prob-

lema d’extracció de caracteŕıstiques a REMOS (de l’anglès REverberation

MOdeling for Speech recognition). REMOS és un marc conceptual genèric

per al reconeixement robust de la parla amb micròfons llunyans. L’ús dels

mètodes convencionals per obtenir els elements decorrelats del vector de

caracteŕıstiques, com ara la transformada cosinus discreta, està limitat pel

problema d’optimització inherent a REMOS. Aquest faria que, utilitzant

les eines convencionals, es tornés un problema irresoluble en un temps

raonable. Per resoldre aquest problema hem desenvolupat un nou mètode

d’extracció de caracteŕıstiques basat en filtrat frecuencial.
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Resumen

Los actuales sistemas de reconocimiento del habla muestran a menudo una

tasa de error aceptable si la voz es registrada por micrófonos próximos a

la boca del hablante, en un entorno controlado y libre de ruido. Sin

embargo, el uso de estos micrófonos puede ser demasiado restrictivo en

muchas aplicaciones. Alternativamente, se pueden emplear micrófonos

distantes, los cuales a menudo se ubican a varios metros del hablante.

Esta configuración es menos intrusiva ya que el hablante no tiene que

llevar encima ningún micrófono, pero el rendimiento del reconocimiento

automático del habla (ASR, del inglés Automatic Speech Recognition)

en dicho caso se ve fuertemente afectado por el ruido y la reverberación.

Esta tesis se enfoca a aplicaciones ASR en el entorno de una sala, donde la

reverberación es la causa predominante de distorsión y se considera tanto

el caso de un solo micrófono como el de múltiples micrófonos.

Si el habla es grabada en paralelo por varios micrófonos distribuidos ar-

bitrariamente en la sala, el grado de distorsión puede variar de un canal

a otro. Las diferencias de calidad entre las señales grabadas pueden ser

más acentuadas si dichos micrófonos muestran diferentes caracteŕısticas y

colocaciones: unos en las paredes, otros sobre la mesa, u otros integrados

en los dispositivos de comunicación de las personas presentes en la sala.

En dicho escenario el sistema ASR se puede beneficiar enormemente de

la utilización de la señal con mayor calidad para el reconocimiento. Para

hallar dicha señal se han propuesto diversas técnicas, denominadas CS

(del inglés Channel Selection), las cuales se discuten detalladament en

esta tesis.

De hecho, la selección de canal busca ranquear las señales conforme a

su calidad desde la perspectiva ASR. Para crear tal ranquin se necesita

una medida que tanto estime la calidad intŕınseca de una señal, como

lo bien que ésta se ajusta a los modelos acústicos del sistema de re-

conocimiento. En esta tesis proporcionamos un resumen de las medidas



CS hasta ahora presentadas en la literatura, comparándolas experimental-

mente. Diversas nuevas técnicas son presentadas que superan las técnicas

iniciales en cuanto a exactitud de reconocimiento y/o eficiencia computa-

cional. También se propone una combinación de diferentes medidas CS

para incrementar la exactitud de reconocimiento, o para reducir la carga

computacional sin ninguna pérdida significativa de rendimiento. Además

mostramos que la CS puede ser empleada junto con otras técnicas robus-

tas de ASR, tales como matched condition training o la normalización

de la varianza y la media, y que las mejoras de reconocimiento de am-

bas aproximaciones son hasta cierto punto acumulativas. Una versión

online en tiempo real del método de selección de canal basado en la var-

ianza del speech sub-band envelopes, que fue desarrolladas en esta tesis,

fue diseñada e implementada en una sala inteligente. Reportamos una

mejora significativa en el rendimiento del reconocimiento al evaluar ex-

perimentalmente grabaciones reales de micrófonos no próximos a la boca

con hablantes en movimiento.

La otra contribución de esta tesis, que no requiere múltiples micrófonos,

fue desarrollada en colaboración con los colegas del departamento de Co-

municaciones Multimedia y Procesamiento de Señales de la Universidad

de Erlangen-Nuremberg, Erlangen, Alemania. Trata sobre el problema de

extracción de caracteŕısticas en REMOS (del inglés REverberation MOd-

eling for Speech recognition). REMOS es un marco conceptual genérico

para el reconocimiento robusto del habla con micrófonos lejanos. El uso

de los métodos convencionales para obtener los elementos decorrelados del

vector de caracteŕısticas, como la transformada coseno discreta, está lim-

itado por el problema de optimización inherente a REMOS, lo que haŕıa

que, utilizando las herramientas convencionales, se volviese un problema

irresoluble en un tiempo razonable. Para resolver este problema hemos

desarrollado un nuevo método de extracción de caracteŕısticas basado en

filtrado frecuencial.
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Chapter 1

Introduction

Computers and computer based devices have become an important part of our world.

There are many tasks in our private and professional life that we can not imagine

without them any more, and many others may be possible in the future. While in

the past we were adapting to the machines and users had to spend significant time

and effort to learn how to operate them, today the trend is to make this interaction

more intuitive. Although we have become very skilled in using a keyboard, mouse or

touch screen, there are many situations where it would be more convenient to use our

voice.

Speech recognition research has been active for more than a half century. Despite

the effort, there are not many widespread applications that people consider really

useful and helpful in their day-to-day life. The main reason why speech recognition

has not succeeded as it could be expected, although speech is the most natural way of

communication for humans, is the complexity of the problem. Computer commands

are simple, clear and unambiguous, and we give them through different specialized

input devices. With speech, however, it is not so simple. Each person not only speaks

differently, but even the same word from the same speaker may sound different the

second time he or she says it. The speech signal contains a lot of information that

is not related to the message, and to further complicate the problem, it may get

distorted by other sounds coming from the environment. To recognize what was said

and transcribe it to text is the aim of Automatic Speech Recognition (ASR).

Human-computer interaction is not the only possible ASR application. There

are dictation and meeting transcription, audio captioning and indexing, voice-based

search, or automatic translation of spoken language. Integration of many technologies

from different fields is required to provide those services, but the correct speech tran-

scription is the key component for all of them. It is therefore important to develop

robust and reliable ASR systems. The fact that in our day-to-day lives we do not use
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as many ASR applications as may be possible suggests we have not achieved this yet.

State-of-the-art recognition systems often deliver satisfactory results in a noise-

free and controlled environment where the recordings are made with a close-talking

microphone. This kind of microphone is held or attached close to the mouth of the

speaker, so the desired speech signal is much stronger than the interfering noises. The

problem is, that such close-talking recording is not often possible or practical.

An alternative is to record the speech signal with a distant-talking microphone,

which may be placed independently of the position and orientation of the speaker,

often several meters far away. When the speech signal leaves the speaker’s mouth it

undergoes several transformations before it reaches the far microphone. First of all,

the sound wave is attenuated as it propagates through the air. If the microphone is

placed behind the speaker, attenuation by the head of the speaker also needs to be

taken into consideration. Further distortion may be caused by different background

noises, speech from overlapping speaker, or reverberation. Consequently, recognition

accuracy (i.e. number of correctly recognized words) of the ASR system decreases.

In this thesis we focus on a speech recognition in a room using distant-talking

microphones. A typical distant speech recognition scenario is shown in Figure 1.1.

Additive (background) noise is any additive sound other than that of interest. It

can be stationary, such as that caused by an air conditioning or a computer fan, or

non-stationary, like door slams, keyboard clicks, interfering speaker or music. Speech

signal and additive noises generated in the environment come from different sources

and are usually uncorrelated. Reverberation, on the other hand, is highly correlated

with speech. It is a phenomenon that occurs in enclosed spaces when the microphone

does not pick up only the direct acoustic wave, but also the waves reflected by the

walls and objects.

Many techniques increasing robustness of the ASR system to the distortion caused

by additive interferences and reverberation using a single microphone have been de-

veloped over the years [1]. But, as illustrated in Figure 1.1, we do not have to

limit ourselves to a single microphone setup. Actually, distant speech recognition

can largely benefit from the use of multiple microphones, either by applying some of

many multi-channel based noise reduction techniques [2–5] or in case of microphone

arrays, by using beamforming [6, 7].

We may also encounter situations, where multi-microphone processing is practi-

cally inevitable if we want to achieve a good result. Imagine a scenario where several

participants in a meeting have a laptop or some personal communication device with

integrated microphone in front of them. Our objective is to transcribe that meeting
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Figure 1.1: A typical distant speech recognition scenario.

using ASR. Assume, we are able to collect signals from all the microphones that are

recording the sound. If we used only one microphone to recognize speech from all

participants, the result would probably not be very good. On the other hand, if we

take the advantage of having several microphones in the room, some possibly located

closer to an active speaker, the recognition performance could be improved.

Of course, the described scenario presents a lot of challenges. Although a sim-

ple selection of the best microphone may provide significant increase in recognition

accuracy, some additional methods will be needed to match the excellent speech recog-

nition capabilities of humans. However, if there are several recordings of the same

utterance available, each of them of different quality, it would be unreasonable not

to use the best one for further processing. The methods that do this selection auto-

matically and optimally from the point of view of the ASR system are investigated

in this thesis. Follows a more detailed list of contributions.

1.1 Contributions of this Thesis

A less complex scenario than the aforementioned case was assumed during the de-

velopment of this thesis. We focused mainly on the reverberation distortion, which

is only one kind of distortion that may be encountered in reality. Nevertheless, re-

verberant environments present one of the biggest challenges for ASR. Contributions

were made for both single and multi-microphone setups.

For setups with multiple microphones we discuss the Channel Selection (CS) prob-
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lem. A detailed overview of the CS methods reported in the literature is provided.

Almost all methods were implemented and compared experimentally on the same

task, what has not been done so far. Several novel approaches were developed, in-

cluding a very simple technique that matches or outperforms other CS methods in

reverberant environments both, in terms of recognition performance of the ASR sys-

tem, and computational complexity. We also show that different CS methods may

be combined to further improve the recognition rate, or to reduce the computational

cost without significant performance lost.

To develop this work a multi-microphone Room Impulse Response (RIR) database

was recorded at the Universitat Politècnica de Catalunya (UPC) in the smart room,

and was made publicly available. It may be used not only for CS experiments, but

also to test other reverberation-related speech recognition problems. For the same

room, a real-time CS client using one of the developed techniques was implemented.

This client may be easily integrated with other speech recognition technologies.

Another topic discussed in this thesis is feature extraction within the REverber-

ation MOdeling for Speech recognition (REMOS) framework [8], which is a generic

framework for robust distant-talking speech recognition usually applied in single-

microphone scenarios. This topic was developed in cooperation with the colleagues

from the chair of Multimedia Communications and Signal Processing at the Uni-

versity of Erlangen-Nuremberg, Erlangen, Germany, where REMOS was designed.

In REMOS the use of conventional methods to obtain decorrelated feature vector

coefficients, like the Discrete Cosine Transform (DCT), is not possible because the

optimization problem, central to REMOS, becomes unsolvable in a reasonable time.

A new feature extraction method based on Frequency Filtering (FF) [9] that fits

well into the framework and partly decorrelates the coefficients was proposed. When

tested in different reverberation scenarios, consistent recognition error reduction was

observed compared to the previous implementation, which was using the highly cor-

related logarithmic mel-spectral features.

1.2 Thesis Structure

This thesis is organized as follows.

Chapter 2 provides an overview of the ASR concepts relevant to this work. We

describe the basic building blocks of the Hidden Markov Model (HMM)-based ASR

system. Then we demonstrate the effects of reverberation on the recognition per-

formance and overview state-of-the-art approaches for reverberation-robust speech
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recognition.

Channel selection is introduced in Chapter 3. We classify and review the CS

measures reported in the literature so far, as well as describe new methods developed

in this thesis. In Chapter 4 the techniques are tested in different reverberant scenarios,

using either signals convolved with measured RIRs, or real distant-talking microphone

recordings. In the same chapter the combination of different CS measures is proposed,

to further increase the recognition accuracy, or to reduce the computational load

without any significant performance loss.

In Chapter 5 the integration of the new feature extraction method into REMOS

is discussed. We briefly describe the REMOS framework to the extent necessary to

understand the optimization-related problem, present the novel solution, and report

the experimental results.

Finally, Chapter 6 summarizes the mayor contributions of this thesis and high-

lights some possible directions for future work.

The multi-microphone RIR database and the implementation of the real-time CS

client in the UPC smart room are described at the end in Appendix A and B.
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Chapter 2

A Review of Reverberation-Robust
ASR

This thesis was developed mainly in the context of the UPC smart room, where

distant-talking microphones are used to record the speech signal. Although both,

additive noise and reverberation, are present in such environment, the latter is usually

more dominant and challenging to cope with. The techniques described in this work

are therefore primarily designed to deal with the reverberation, and the following

discussion is for the most part focused on this problem1.

The objective in this work is to improve the performance of ASR. We limit

our discussion to HMM-based systems and only briefly describe the most important

components for understanding the following chapters. Reader interested in more com-

prehensive introduction may refer to [10–13]. The chapter starts with a formulation

of the speech recognition problem. Then we describe two feature extraction meth-

ods which were used in our work, and outline the very basics of HMM-based acoustic

modeling. Follows a discussion about the reverberation. We explain this phenomenon

and show its influence on the ASR performance. An overview of existing strategies

for reverberation robust ASR is provided at the end.

2.1 HMM-Based ASR

ASR is a pattern classification task. The aim is to process unknown speech signal,

i.e. an utterance, on the input and transcribe it into the sequence of words on the

output. When speaking, we encode the message as a sequence of sounds. Speech

recognition system models these sounds by distinct classes and tries to estimate their

1However, several CS methods (mainly the decoder-based ones) presented in Section 3 do not
assume any specific kind of distortion.
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correct sequence.

Figure 2.1 shows the function blocks and data flow of a typical ASR system. When

building a recognizer, the language and acoustic models are first trained using text and

annotated speech databases. Speech signal contains a lot of redundant information

that is not useful for decoding the message, so the recorded signal is usually not used

directly for classification. In conventional recognition systems, the continuous speech

waveform is first converted into a sequence of overlapped frames, and from each frame

a vector of descriptive parameters, also called features or observations, is extracted.

Speech
databases

Acoustic
models

Language
models

Search & decision
Speech
signal Feature

extraction

Text
databases

Training

Testing (recognition)

Figure 2.1: Block diagram of a speech recognition system with the data flow between
training and recognition.

Let O = o1, · · · ,oT be the sequence of observation vectors, where ot is a vector

observed at time t, and w = w1, . . . , wN be a sequence of words from all possible

word sequencesW which recognition system can hypothesize. The speech recognition

problem may then be expressed as finding the word sequence ŵ, which maximizes

the posterior probability given the sequence of observation vectors O:

ŵ = arg max
w∈W

{P (w | O)} . (2.1)

This probability is not computed directly, but using the Bayes’ rule, Equation (2.1)

is converted into the product of the likelihood p(O | w) and the prior probability

P (w), normalized by the evidence p(O) as

ŵ = arg max
w∈W

{
p(O | w)P (w)

p(O)

}
. (2.2)
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To estimate the probability of the observation vector p(O) in the denominator

may be very costly and it is usually omitted, since the selected sequence of words

does not depend on it, resulting in

ŵ = arg max
w∈W

{p(O | w)P (w)} . (2.3)

2.1.1 Feature Extraction

Apart from the message, speech signal carries a lot of details that are not needed

to decode the content, such as pitch, accent, emotional state, speaking rate, and

also distorting effects from the channel or environment. The motivation for feature

extraction is to remove irrelevant information from the signal and to reduce the

complexity of the classification problem.

Over the years many feature extraction methods have been developed, most of

them using the same underlying principle, where a single feature vector is extracted

from the envelope of the time-frequency pattern in the Short-Time Fourier Transform

(STFT) domain. Although there have been attempts to change this paradigm [14],

STFT-based features extracted in the frame-by-frame fashion remain dominant in

current ASR systems. The systems used is this thesis also employ this kind of features,

namely Mel-Frequency Cepstral Coefficients (MFCC) [15], which are considered a de-

facto standard, and a variant of them, called FF [9, 16], which were used as a basis

for the new feature extraction method for the REMOS concept (see Section 5).

In Figure 2.2 a flow chart showing the generation of MFCC and FF features is

shown. As may be seen, the first steps are the same for both methods. The incoming

speech signal is divided into a sequence of overlapping frames (usually 20-30 ms long

with an overlap 10 ms). Then, each frame is windowed and transformed into the

frequency domain using the Discrete Fourier Transform (DFT). The square of the

magnitude of the DFT coefficients is taken and multiplied by a series of overlapping

triangular weighting functions following the mel scale. These filters are imitating the

human auditory system by having better resolution in the low frequencies than in

the high ones. Mel-spectral (melspec) coefficients are computed as the energy in each

of the mel filters. Human auditory system is further approximated when dynamic

range of melspec energies is compressed by applying the logarithm, resulting into the

so-called log mel-spectral (logmelspec) coefficients.

As discussed later, the acoustic model is based on HMMs, which are probabilistic

finite state machines. The output probability distribution functions in each state

are usually modeled as Gaussian mixtures with diagonal covariance matrices. This
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Figure 2.2: Block diagram of the feature extraction for MFCC and FF.

implies, that the elements of the observation vectors are uncorrelated, which is not

true in case of the logmelspec coefficients. To obtain a set of decorrelated parameters,

a linear transformation is usually applied on the logmelspec features. At this point,

MFCC and FF computation differ.

MFCC

In case of MFCC, the DCT is applied to decorrelate the spectral parameters. Doing

this transformation, we actually perform the frequency analysis of the logmelspec

features for a given frame, convert them to so called cepstral domain, and obtain

cepstral coefficients. Usually only a set of coefficients, ranging from 12 to 20 is taken

for recognition [12]. Low-order coefficients contribute more to the class separability
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than the high-order ones [17] and are less prone to noise. The 0-th MFCC coefficient

represents the sum of logmelspec coefficients (energies) of the analyzed frame and is

often replaced by more robust measures, e.g. the log energy of the frame.

FF

Decorrelation in case of FF is achieved by filtering the sequence of logmelspec energies

in the spectral domain by a simple Finite Impulse Response (FIR) filter. This filter is

designed in such way, that the variance of the cepstral coefficients is equalized. The

usual filter, proposed in the original work [16], has a transfer function

H(z) = z − z−1. (2.4)

The impulse response of this filter is h(k) = {1, 0,−1}, so the filtering operation

consists of a subtraction of the two bands adjacent to the current one. During filtering

zeros are assumed before the first and after the last logmelspec coefficient. Therefore,

after the filtering operation, each endpoint contains the energy of its neighboring

band. Often, full frame energy is added to the feature vector, so these endpoint

coefficients may be removed, since they become redundant. Unlike MFCC the FF

coefficients remain in the frequency domain, so their physical interpretation is more

intuitive.

It has been shown in [18] that information about temporal evolution of the spectral

coefficients increases the discrimination of phonemes. The dynamic features, that

are the first and second time derivatives of the static MFCC or FF coefficients are

therefore usually included into the feature vector.

2.1.2 Acoustic Modeling and Decoding

The exact computation of the joint conditional probability p(O | w) and the prior

probability P (w) is not practicable. In the real world systems they are approximated

by the scores determined by the acoustic and language models respectively, as shown

in Figure 2.1. The language model is an important, often indispensable, part of the

ASR system. However, in this thesis we tackle the acoustic distortion problem, so

language modeling is omitted in further discussion.

In most state-of-the-art ASR systems HMMs are used to represent the acoustic

model. Words (or smaller units, e.g. phonemes) are typically modeled as a sequence

of states s = s1, . . . , sns , where each state represents a small part of a word. The

problem of finding the word sequence that maximizes the posterior probability in
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Equation (2.1) is then equivalent to a problem of finding the best state sequence ŝ

from the set of all possible sequences S as

ŝ = arg max
s∈S
{P (s | O)}

= arg max
s∈S
{P (s1, . . . , sns | o1, . . . , on)} . (2.5)

Applying the Bayes’ rule and omitting the denominator we get

ŝ = arg max
s∈S
{P (o1, . . . , on | s1, . . . , sn)P (s1, . . . , sn)} . (2.6)

The evaluation of this equation may be simplified by making the following assump-

tions:

• A first-order Markov process is assumed, so the probability of the current state

si depends only upon the previous state si−1.

• Assuming the state-conditional independence, the current observation vector oi

depends only on the current state si and does not depend on the previous ones.

Under these assumptions Equation (2.3) becomes

ŝ = arg max
s∈S

{
n∏
i=1

P (oi | si)
n∏
i=1

P (si | si−1)P (si)

}
. (2.7)

Two very effective algorithms are used to implement the modeling in practice.

The first one is the Baum-Welch algorithm [19, 20] which is applied in training to

find the HMM parameters that best fit the models to the annotated speech data in

terms of maximum likelihood. The second one is the Viterbi algorithm [21] used in

testing to find the most likely sequence of states, hence words, by effectively solving

Equation (2.7).

2.2 ASR in Reverberant Environments

The acoustic model represents the training data. The key problem in robust speech

recognition comes from the fact that ASR systems assume to observe similar data in

testing as in training, which is rarely the case in reality. A speech recognition system

trained on clean speech can hardly perform well if the speech signal is distorted, unless

some measures are taken to reduce the mismatch. In enclosed spaces when recording

is made using distant-talking microphones, reverberation is the main source of dis-

tortion. It is created when acoustic waves reflected by the walls and objects arrive
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to the microphone attenuated and with different delays, introducing undesirable and

unpredictable interferences. The reverberation distortion is usually modeled through

the linear convolution between the RIR h(n) and the clean speech signal x(n) as

y(n) = h(n) ∗ x(n). (2.8)

The linear distortion from the acoustic channel can not be easily canceled or atten-

uated in the feature domain as it is routinely done in ASR for the linear distortions

produced in the electric channel (microphone, amplifiers, telephone network, etc.),

since the duration of the RIR is usually much longer than the electrical channel

impulse responses and encompasses several consecutive phones.

An example of the RIR measured in the UPC smart room may be seen in Figure

2.3. It may be split into 3 parts. The first dominant peak corresponds to the direct

wave. This wave arrives to the microphone after the initial delay which can be derived

from the Speaker to Microphone Distance (SMD) and the sound velocity. Follows the

interval up to 50 100 ms of early reflections and the response ends with a dense

reverberation tail (late reflections). Typical acoustic measures used to characterize

the level of reverberation are the reverberation time T60 and the “definition” D50

(“Deutlichkeit“) [22]. The reverberation time is defined as the time needed for the

sound level to decay by 60 dB after the sound source is turned off. ”Deutlichkeit” is

defined as the ratio of the energy of the direct sound and early reflections arriving

within the first 50 ms to the energy of the whole RIR, i.e.,

D50 =

∫ 50ms

0
h2(t)dt∫∞

0
h2(t)dt

. (2.9)

It is primarily used as an objective measure of speech intelligibility, but it has also

been applied to predict the ASR accuracy [23,24].

Reverberation smears the speech signal over time, as phonemes are masked by the

energy from the previous speech segments. Consequently, the phonetic information is

degraded. This degradation is difficult to estimate, because resulting effect depends on

both, the acoustic channel characteristic (which varies with position and orientation

of the speaker, position of the objects, or temperature in the room), as well as on the

uttered speech signal.

In Figure 2.4 we illustrate this on the spectrogram of the utterance “one nine zero

seven“, which was recorded with the close-talking microphone and reverberated using

the RIR from Figure 2.3. The word and phoneme boundaries can be identified more

easily in the close-talking case. Due to reverberation, energy from strong vowels is
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Figure 2.3: The RIR measured in the UPC smart room with reverberation time
around 500 ms and with the SMD 1.4 m.

masking weaker consonants. This may be clearly seen in segments around 0.8 and 1.2

s. These segments correspond to the fricative consonants /z/ and /s/, and are filled

up in the low frequency bands with energy from preceding voiced sounds /ay/ and

/ow/. Also, the formants appear flattened, and their transitions are less pronounced.

Interestingly, not all parts of the RIR harm the ASR performance equally. In [25]

effects of different parts of the RIR on the ASR accuracy were investigated and it was

shown that early reflections and the late tail are not harming the speech recognition.

On the other hand, the middle part between approximately 70 ms and 2/3 of T60 was

identified as the most harming one. Also, the low frequency reverberations approx-

imately between 250 and 2500 Hz disturb speech recognition more than the higher

ones.

2.2.1 The Effects of Reverberation on the ASR Performance

We have defined reverberation and described how it affects the speech signal. In

the following we will demonstrate on a Large Vocabulary Continuous Speech Recog-

nition (LVCSR) task, how these signal distortions influence the ASR performance.

Experiment was made using the RWTH Aachen University open source ASR sys-

tem [26], and Catalan Speecon and FreeSpeech databases. For training, approxi-

mately 121 hours of data from both databases were selected, using only close-talking
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Figure 2.4: The spectrograms for the utterance “one nine zero seven“ for (a) close-
talking recording and (b) reverberated speech.

recordings. In the testing a 1.5 hour long subset of FreeSpeech database was used

and convolved with simulated RIRs as explained later.

Speech signal was framed applying 25 ms long Hamming window with 10 ms over-

lap. The basic feature vector of 16 MFCC was extended by a voicedness feature [27].

The Mean and Variance Normalization (MVN) was applied on the cepstral coefficients

and the speaker adaptation was handled by the fast Vocal Tract Length Normaliza-

tion (VTLN). The temporal context is preserved by concatenating the features of 9

consecutive frames. Prior to the acoustic model training, Linear Discriminant Anal-

ysis (LDA) was applied in order to reduce the dimensionality and increase the class

separability [28]. The acoustic model was using HMMs and emission probabilities

were modeled by continuous Gaussian mixtures using one globally pooled diagonal

covariance matrix.

In the testing, close-talking recordings were convolved with a set of simulated

RIRs. The simulation was made assuming a room with the dimensions 4 m x 5

m x 2.5 m. The reverberation time T60 and SMD were varied. The microphone was
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Figure 2.5: WER as a function of (a) the reverberation time T60 with the fixed
SMD=1.5 m and (b) the SMD with the fixed T60=400 ms.

located in the middle of the shorter wall, 2 m above the ground. The assumed speaker

was 1.7 m tall speaking towards the microphone. To generate the RIRs the image-

source model method implementation from [29, 30] was used, applying the default

absorption-coefficient weights.

The recognition results for different reverberation times and SMDs are shown

in Figure 2.5. The graph on the left shows for the fixed SMD case how the WER

grows with increasing T60. While there is not almost any performance degradation for

reverberation times below 200 ms, the error rate grows steadily for longer times, until

the results of the recognition system become practically useless. Similar behavior

may be observed when the reverberation time is fixed and the distance between the

speaker and the microphone increases. On the left we may see that if the speaker

is close to the microphone WER is rather small. This is because the direct wave is

stronger with respect to the harming reflections and the effect of reverberation is less

significant.

These recognition results clearly demonstrate that speech recognition technology

can be extremely fragile when it is deployed in conditions different from those assumed

in training. Some robust techniques are definitely needed to make the system useful in

reverberant scenarios with distant-talking microphones. Many techniques have been

explored to solve this problem. In the next section we briefly overview some of them.
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2.3 State-of-the-art of Reverberation-Robust ASR

Research on reverberation-robust ASR received significant attention over the past

years and several comprehensive overviews have been published recently in [17,31–33].

Approaches to dealing with the reverberation problem may be broadly classified into

four categories:

• signal-level dereverberation techniques, and

• reverberation-robust feature extraction methods, both operating in the front-

end, or

• robust acoustic modeling and adaptation techniques operating in the back-end,

and

• decoder-based approaches like REMOS which is discussed in Chapter 5.

The first set of techniques aims to increase the robustness of the recognition sys-

tem by removing the reverberation from the speech signal or features. This is done in

the front-end of the ASR system usually by spatial filtering (beamforming), inverse

filtering, spectrum or feature enhancement. Alternatively, the back-end techniques

aim to adjust the parameters of the acoustic model to the distorted speech, or to

increase robustness by modifications in the decoding process to account for the re-

verberation distortion. Naturally, techniques from different categories may also be

combined for additional improvements, as was done for example in [34].

2.3.1 Front-End Methods

The central problem to robust ASR with distant-talking microphones is the mismatch

between training and testing signals due to varying acoustic conditions. With the

increasing SMD increases also the power of distortion captured by the microphone

relative to the power of the desired signal. Recall, that not all parts of RIR harm

the recognition performance equally, and that early reflections may even help the

recognition (Subsection 2.2). Let’s hence rewrite Equation (2.8) to the following

form:

y(n) =

Th∑
τ=0

h(τ)x(n− τ) =
Te∑
τ=0

h(τ)x(n− τ) +

Th∑
τ=Te+1

h(τ)x(n− τ), (2.10)

where Th is the length of the whole RIR and Te is the end of the interval with non-

harming early reflections. Ideally, to obtain a good estimate of the clean speech we
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would like to suppress the second component corresponding to the late reverberation.

However, the separation of these components, or the estimation of the late rever-

beration are very difficult, because of high non-stationarity and correlation of both

terms.

Beamforming

Beamforming [6] is a technique that can be applied in multi-microphone environments

and is a case of spatial filtering. The key idea is to steer the main lobe of the

beamformer towards the desired source (the origin of the speech) and enhance the

energy coming from that direction by suppressing the sounds coming from others. By

doing so, the late reflections (the second term in Equation (2.10)) which take longer

than the direct path are in fact suppressed.

There are several issues in microphone array processing that limit the beamforming

performance when applied in ASR:

• most of the multi-microphone processing techniques require the source position

and speaker orientation to be known [35],

• precise calibration of microphones is required to avoid different amplitudes and

phase responses of the individual microphones in the array [36,37],

• position of the sensors must be known and fixed, and

• narrow band signals and far-field propagation are generally assumed in the array

processing theory, which is usually not true for speech.

Nevertheless, improvements in recognition performance have been reported for

different beamforming strategies, for example using the basic delay-and-sum beam-

former [38,39], maximum kurtosis beamformer [40], likelihood maximizing beamform-

ing [41], as well as with emerging approach in the area of far-field audio and speech

processing based on spherical microphone arrays [7], or with many others [17,42].

Inverse Filtering and Spectrum Enhancement

If h(n) was known and unchanged along the duration of utterance, an inverse filter

could be designed to reverse the reverberation effects. To ensure the existence of

such filter the impulse response is required to be be minimum phase, which is not the

case in most acoustic environments. However, in [43] it was shown that exact inverse

filtering can be achieved with multiple microphones. The problem is that there are
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not many practical applications in ASR where RIRs would be known, so the filter

must be estimated from the speech signal. This process is called blind deconvolution.

Different blind deconvolution methods are discussed in [44–46], or in more recent

publications [47–49].

An interesting dereverberation approach was presented in [50]. As reasoned there,

speech is a non-stationary signal with signal energy varying over a wide dynamic range

both in temporal and spectral domains. The relative degradation of speech due to

reverberation may therefore vary even among segments within the same frame. By

identifying those relatively less distorted segments and enhancing them, overall en-

hancement of reverberated speech may be achieved. In [50] this was done by weight-

ing Linear Prediction (LP) residual signal using the weight function derived from the

characteristics of reverberant speech in differently distorted regions.

In [51] the authors suggest to model the reverberated speech as a convolution of

the clean speech and RIR in the Gammatone spectral domain. Applying the Non-

negative Matrix Factorization (NMF) framework and assuming non-negative spectral

coefficients, reverberated spectra are decomposed into clean and RIR spectra using the

least-squares error criterion. Clean spectra is than used to extract conventional fea-

tures. Remarkable WER reductions were reported for both, matched and unmatched

training.

Reverberation-Robust Feature Extraction

Another strategy that may be used to increase the robustness of the ASR systems

is to use speech representations insensitive to reverberation. Ideally, features ex-

tracted from the clean signal would be similar to those extracted from the rever-

berated speech. Conventional frame-based techniques fail to perform in reverberant

conditions, because the reverberation noise is non-stationary and the effects span

over several consecutive frames. For this reason methods like RelAtive SpecTrAl pro-

cessing (RASTA) [52], that have been successfully applied in cases when speech was

transmitted over the channel with a short impulse response fail.

When dealing with reverberation, it is important to account for the long-term

acoustic context. The first and second time derivatives of the static coefficients are

usually used to capture the temporal changes in the spectra, but often the covered

time-range is not wide enough to capture the reverberation effects. Furthermore, in

reverberated speech the delta coefficients extracted in the usual way tend to keep the

constant value for a long time. A new scheme for calculating the dynamic features

that solves this problem was proposed in [53].
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Studies on the perception of speech by human listeners revealed the importance

of the slow changes in the speech spectrum for speech intelligibility [54, 55]. This

observation suggests that ASR robustness might be improved by focusing on temporal

structure of the speech signal that appears as low-frequency (below 16 Hz). In [56]

this concept was adopted and modulation spectrogram emphasizing the temporal

structure at very low frequencies was used to extract the features.

In [31,57] a feature extraction method called Harmonicity-based Feature Analysis

(HFA) was presented. It is based on the idea that harmonic components of the voiced

speech spectrum are less affected by reverberation. On the other hand, unvoiced

parts are strongly corrupted by the energy spread from the previous segments. The

harmonic components of the voiced spectra are therefore used to synthesize a purely

harmonic signal and corrupted parts are replaced by a noise floor.

As describe before, to compute MFCC coefficients, the DCT is applied to the

logmelspec energies to obtain decorrelated coefficients. The authors in [58] suggest

to replace the DCT by the kernel Principal Component Analysis (PCA). After the

transformation the main speech element is projected into low-order features, while

noise or reverberant elements are projected into the high-order ones.

2.3.2 Back-End Methods

The strategy of front-end methods is to remove the distortion from the speech signal,

so it would be more similar to the undistorted signals that were used to train the

HMMs. An alternative approach is to use the models that reflect the statistical

properties of the reverberated speech. The parameters of those models may be found

in different ways. The most conventional one is to train the HMMs on reverberated

data; alternatively, clean models may be adapted to the new acoustic conditions.

Matched Training

It is a well known fact that training and testing in matched conditions leads to a

better recognition performance. If the parameters of acoustic model are trained on

data which was collected in the target environment, recognition accuracy of such

system increases. But, to record a speech database separately for each environment

is costly and impractical. Alternatively, reverberated training data may be generated

by convolution of the clean speech with the RIRs measured in the target room, as

it was done for example in [59]. This way the data collection effort is significantly

reduced.
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The RIR is a very unstable parameter that depends on many factors, like the

relative position of the speaker and microphone, position of the objects in the room,

or temperature. It is impossible to collect all RIRs and so only a few are measured.

However, this approach may be justified, because even if the training data is synthe-

sized in that way, the recognition performance is only slightly lower compared to the

case when naturally reverberated signals are used [60].

The data collection effort may be further reduced by using artificially generated

RIRs as it was done in [61]. In that work RIRs were designed using only two high-

level acoustic properties of the target reverberant environment, namely the Direct-to-

Reverberant Ratio (DRR) and the reverberation time T60. The approach was further

extended in [62], where a set of acoustic models was trained for different a priori-

defined reverberation conditions. During recognition, the full-band reverberation time

was estimated from a speech utterance and used to select the best acoustic model.

Model Adaptation

Large amount of training data is needed to obtain well-trained HMMs. It is not always

convenient to collect or synthesize it, and to retrain the models from scratch for each

environment. Alternatively, the parameters of well-trained clean-speech models may

be adapted to new conditions, using a relatively small set of annotated data recorded

in the target environment. Well known methods used for speaker and additive noise

adaptation like Maximum-Likelihood Linear Regression (MLLR) [63] and Maximum

A Posteriori (MAP) [64] adaptation, or Parallel Model Combination (PMC) [65, 66]

or Vector Taylor Series (VTS) [67] can be used to adapt the models to reverberant

environments, but the performance improvement is often insufficient for long rever-

beration times. This is mainly because they assume the additive nature of the noise

and intra-frame distortion, which is not the case of reverberation. Furthermore, even

if we make some approximations and consider reverberation as additive noise, there

is still the problem of extreme non-stationarity of the noise, which makes the noise

parameter estimation very difficult.

All adaptation methods tailored to reverberation are using a similar concept. They

estimate the energy contributions from the previous frames or states and use it to

adapt parameters of Gaussian Mixture Model (GMM)s. For example, in [68] the

mean of the energy parameter at each state is adapted by adding the energy of the

state itself and contributions from the proceeding states. If MFCC are used, cepstral

coefficients are first transformed back to the spectral domain where they are adapted

in a similar fashion as the energy coefficient. The weight of the contribution from each
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state is estimated from the reverberation time, assuming an exponentially decaying

shape of RIR. The T60 is estimated iteratively from the previous utterance, searching

for the value that maximizes the likelihood of the already decoded sequence. A forced

alignment is used to reduce the computational cost.

In [69] the means of HMMs are adjusted during the decoding using a state-

dependent estimate of the late reverberation determined by joint use of a feature-

domain reverberation model and an optimum partial state sequence from the clean-

speech model. The reverberation model [8] is room-specific and captures the statis-

tical properties of the measured RIRs. It may be estimated independently of the

speech HMMs, what facilitates the system deployment in different environments.

While the previous two approaches are using measured or approximated RIRs

to estimate the adaptation coefficients, in [70] the energy contribution of proceeding

states is estimated in a maximum-likelihood manner from a few seconds of transcribed

adaptation data. This method, as well as others [71, 72], is capable to compensate

both, additive noise and reverberation.

2.4 Summary

The work in this thesis was developed in the context of the UPC smart room focusing

on ASR in reverberant environments. Therefore, in this chapter we have first briefly

described the basic components of HMM-based speech recognition systems, explained

the reverberation phenomenon, and demonstrated on a LVCSR task its impact on

the ASR performance. While the ASR performance may be satisfactory in clean,

controlled conditions, it decreases significantly when the same acoustic models are

applied to ASR in reverberant environment. It is therefore important to increase

the robustness of the ASR systems, if we want to use them in applications with

distant-talking microphones. Several alternatives proposed in the literature to solve

this problem were listed in the last section of this chapter.

Conventional reverberation-robust techniques, in general, try to remove the dis-

torting effects from the signal, or diminish them by modifications in the acoustic

model. In the following part of this thesis we investigate an alternative concept,

which may be used in parallel with them. It is applicable to scenarios with multiple

microphones and exploits the spatial diversity. The motivation behind this approach

may be illustrated by the following example. In the results of the experiment with

increasing SMD (Figure 2.5b) we observed, that WER grows if the distance between

a speaker and a microphone increases. Imagine a scenario with multiple microphones
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placed around the room recording the speech signal in parallel. If we had to pick up

one microphone for recognition, the results of the experiment suggest that the best

choice would be the closest one to the speaker, which in our experiment recorded the

least distorted signal. If the speaker moves, the best microphone probably changes.

How to do this selection automatically and optimally for ASR is the problem to solve

in CS, which is discussed in the following chapter.
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Chapter 3

Channel Selection

Assume a practical, cost-effective and unconstrained multi-microphone scenario,

where the microphones are arbitrarily located and show a variety of characteristics.

For instance, a reverberant room as the one shown in Figure 3.1, where some micro-

phones are hanging on the walls, others standing on the table, or they may be built in

personal communication devices of the meeting participants. Moreover, some of them

may be omnidirectional, others directional or noise-canceling, etc. In such situation,

where the positions of the microphones are either not known or fixed, the application

of commonly used multi-microphone approaches, like array processing [6], becomes

difficult.

An alternative is provided by CS. Before any processing, the degree of signal dis-

tortion differs among the channels, depending on the speaker position and microphone

characteristics. Even if speech enhancement is applied, the processed speech signals

will not be distorted equally, so some of them may be decoded with less recognition

errors than others. Consequently, the ASR system may benefit if signals of higher

quality are selected for further processing. To do so, a measure of distortion, or a

measure of how well recorded or enhanced signals fit the set of acoustic models of the

ASR system is needed.

Ideally, we would select the channel that leads to the highest recognition accu-

racy. As the WER is unknown during recognition, the main problem is to develop a

measure, that allows to rank the channels in a way as close as possible to the WER

based ranking. In this chapter we classify and describe the CS measures found in the

literature. Then several new techniques developed in this thesis are presented.
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Figure 3.1: An example of unconstrained multi-microphone scenario with several
speakers. Some direct and reflected waves are illustrated by the arrows.

3.1 State-of-the-art of CS

The CS techniques may be classified into two groups as signal-based and decoder-

based, depending on the way how the measure that is used to make the decision is

extracted. Follows the detailed description of the methods from both groups which

were published in literature so far.

3.1.1 Signal-Based CS Methods

The signal-based measures are extracted from the signal or channel characteristics.

The CS methods using these measures operate in the front-end and the decoder of

the ASR system is not involved in the measure extraction. If the clean speech is used

to train the acoustic models, we can hypothesize that the least distorted signal leads

to the highest ASR accuracy and select it for recognition. The advantage of this kind

of methods over the decoder-based ones is their lower computational complexity. The

channel can be selected before the signal enters the classification part of the ASR

system, so recognition is made only once. The disadvantage is that the CS measure

is tailored to a specific kind of distortion and may fail in different conditions. In this

thesis, we primarily assume reverberant environments, but many of developed CS

methods used also in presence of other kind of distortion.

Actually, only two signal-based CS methods were reported in the literature. One

is using Signal to Noise Ratio (SNR), a well known signal quality measure, the other
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one is using the cross-correlation among signals from different microphones in a mi-

crophone array, and is applied to reduce the number of channels that are used for the

beamforming.

Energy and Signal-to-Noise Ratio

A straightforward way to identify the least distorting channel could be the signal

energy. A strong signal indicates that the sound was uttered with the speaker close

and oriented towards the microphone, therefore the direct wave is presumably stronger

relative to the reverberation. This very simple approach may achieve good results,

but one strong assumption must be made. In multi-microphone scenarios, attenuation

in the electrical path among microphones varies for reasons like different wire length,

varying volume set on preamplifier, different microphone type, etc. If we want to use

signal energy as a reliable indicator of the signal quality, a perfect calibration of all

microphones is needed, which is not a trivial task.

The problem of calibration could be avoided if the energy of the speech signal was

normalized, for example, by the energy of the noise in the silent portions (assuming

that some additive noise is present). This leads us to a SNR. CS based on this measure

was evaluated in [73] and [74]. If speech is recorded by distant-talking microphones,

reverberation is often the dominant source of distortion. A problem associated to the

use of the SNR is that it does not properly reflect that kind of distortion. Furthermore,

an accurate SNR measurement can be hardly obtained, since the boundaries between

the speech signal and the silent portions, where the noise power can be estimated, are

less clear after the smearing effect of reverberation. Another disadvantage of energy-

based measures in general is that they do not consider the specific characteristics of

the speech signal (only its energy).

Multichannel Cross-Correlation Coefficient

One of the advantages of CS is that it does not require a spatial structure of the

microphone set, what simplifies the deployment and reduces the cost of the system.

CS may also be combined with beamforming and used to reduce the number of

channels. Although, in theory, a higher number of microphones in the array should

lead to a better beamforming performance, in practice, it was shown that the use of

all possible channels does not always increase the ASR accuracy [39,73–75].

The CS method using Multichannel Cross-Correlation Coefficient (MCCC) [76] as

a measure for identifying reliable channels from the microphone array was proposed

in [75]. The basic idea of this approach is to treat the channel that is uncorrelated
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with the others as unreliable, and select only a subset of microphones with the most

correlated signals. The experiments in [75] show, that for a given configuration the

number of channels could be reduced by half without significant loss in the recognition

performance.

The assumption to treat the channel uncorrelated with others as unreliable can be

justified when applied on a microphone array, where sensors are placed close to each

other, but it may fail in unconstrained scenarios. For example, assume a situation

with three microphones, two placed at a distance and one close to the speaker. Signals

in the distant microphones will probably be more correlated with each other than with

the signal in the close-talking one, which would then get discarded. Also, since at

least one microphone pair is needed to extract this cross-correlation measure, it is not

possible to select only one channel. Note, this is the only CS method we have found

in the literature, that has not been implemented and included in the evaluation.

3.1.2 Decoder-Based CS Methods

The decoder-based approaches do not estimate the degree of signal quality using some

signal-processing measure, but the estimation process includes some kind of classifi-

cation, which may be directly related to the decoding part of the recognition system

(e.g. by using likelihood, or posterior probabilities). As that implies performing a

classification for each channel, CS methods based on these measures are computation-

ally more demanding. With the signal-based measures we want to ascertain which is

the cleanest signal (channel), but our real objective is to minimize WER. Intuitively,

a measure extracted from the decoder can be more correlated with the WER than a

measure extracted from the signal, what can be an advantage of the decoder-based

methods.

Likelihood

The first, straight forward, decoder-based measure based on acoustic likelihood was

presented in [77]. In that implementation, signals from all channels were passed to

the recognizer and the channel giving the maximum acoustic likelihood was selected.

In the following, we will outline a problem related to this measure and explain why

it should not be used for CS.

In conventional ASR systems the Bayes’ rule is applied to compute the posterior

probability as show in Equation (2.2). The probability of the observation vector

p(O) in the denominator is usually omitted since it does not depend on the selected

sequence of words and works only as a scaling factor. Thus, the use of non-normalized
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likelihood scores is not a problem when comparing competing word sequences form a

single channel.

If there are several parallel channels, the probability of the observation vector

p(Om) is different for each stream. The posterior probability for the multi-channel

case is then defined as

P (w | Om) =
p(Om | w)P (w)

p(Om)
, (3.1)

where m = 1, · · · ,M is the channel index. Obviously, the probability of the obser-

vation vector can not be neglected if we want to compare competing word sequences

from different channels. It may happen that in some channels the word sequences

are decoded with less errors, but the corresponding non-normalized likelihood scores

are smaller than in the competing streams. This is the reason why normalization

is needed and non-normalized scores, usually provided by ASR systems, can not be

used as a reliable indicator of channel quality. In this thesis we address this issue

by using a pairwise likelihood normalization across channels, which is discussed in

Section 3.2.4, or by applying a normalization factor derived from the N-best list of

each channel as described in Section 3.2.5.

Feature Normalization

In [39, 73], some feature normalization technique (e.g. mean and variance normal-

ization [78, 79] or histogram equalization [80, 81]) is first applied to each channel as

illustrated in Figure 3.2. Then, both the original and the normalized feature streams

are recognized, and the channel with the smallest difference between the recognized

word sequences from the original and the normalized version is selected. The under-

lying assumption is that the higher the distance between the two recognized word

sequences, the more distorted is the signal. A drawback of this method is again the

computational complexity. To extract the measure, a full decoding has to be run for

both the original and the normalized stream for each channel.

Class Separability

In [82], the CS based on a class separability measure was introduced. Class separabil-

ity is a common concept in pattern recognition, used for example in the well-known

linear discriminant analysis [83] to find the linear projection matrix. In the context

of CS, instead of a projection matrix, we aim at finding the channel where the class

separability measure is maximized, as

Ĉ = arg max
m
{trace(S−1

w (m)Sb(m))}, (3.2)
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Figure 3.2: Block diagram of CS method based using feature normalization. Example
for 2 channels.

where m = 1, · · · ,M is the channel index. For a given microphone the between class

scatter matrix Sb is estimated as

Sb =
Nc∑
i=1

Ni(µi − µ)(µi − µ)T , (3.3)

and the within-class scatter matrix Sw as

Sw =
Nc∑
i=1

Ni∑
j=1

(xij − µij)(xij − µij)T ]. (3.4)

where Nc is the total number of classes and Ni denotes the number of samples (feature

vectors) in class i. The mean vector for the ith class is defined by µi and µ defines

the mean vector over all classes.

As indicated in the original work [82], the choice of the class units for the es-

timation of the matrices in Equations (3.3) and (3.4) is not trivial. These classes

may either correspond to the units used by the recognition system (e.g. phonemes,

tri-phones or words), or they may be different (the so called stand-alone approach),

derived by merge and split training, as it was done in the original work. The stand-

alone approach, surprisingly, let to better results there. The authors reason that this

might be due to the high number of classes (phonemes were used there), and because

the time boundaries to separate the frames into the classes were extracted only from

the alignments of one channel, resulting in a possible mismatch when applied to other

channels.
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3.2 New CS Methods

In this section we present new CS methods developed in this thesis. First, we describe

three signal-based approaches, in particular, we discuss the possibility to use the

information about the position and orientation of the speaker, to extract the CS

measure from the RIR, or from the sub-band energy envelope of the speech signal.

Then, we present two decoder-based methods, one using the pairwise normalization

of the likelihood across channels, and the other one using the N-best lists to extract

the likelihood normalization factor.

3.2.1 Position and Orientation

Speech should be less distorted by reverberation if the microphone is closer to the

speaker. In [84], we discussed the possibility to use information about the relative

position and orientation of speaker and microphone for CS. For instance, the clos-

est microphone may be selected by measuring the time of arrival of the waveform.

However, as was shown in [84], the information about the orientation is even more

important, mainly due to the attenuation of the signal by the head of the speaker,

and the fact that speech used in training is usually recorded by a microphone in

front of the speaker. Both position and orientation may be estimated either from

multi-microphone audio processing, multi-camera video processing, or a combination

of both. In any case, CS would have to rely on the output of another system, that may

not always provide accurate measures and the knowledge about the positions of the

microphones is needed, what puts additional demands on the system deployment. In

Section 4.2.2 we demonstrate how position and orientation estimation errors influence

the performance of the ASR in the UPC smart room.

3.2.2 RIR-Based Measures

Assuming constant conditions in the room, the RIR can be used to describe the

propagation between the acoustic source and a given microphone. In [25], relations

between different parts of RIR and the WER of the ASR system were investigated.

Authors showed that there are certain components of the RIR that harm speech

recognition more than others. Consequently, if there was a feature extracted from

the RIR that is correlated with WER, it could be used to predict the recognition

performance before the speech recognition takes place.

In [85] we presented a methodology to identify relevant measures for CS, assuming

an exact knowledge of the RIR. The process is outlined by a block diagram in Figure
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Figure 3.3: Block diagram of evaluation of the different RIR-based measures.

3.3. Let’s denote by WERi the obtained WER corresponding to the ith RIR. Now

we can choose a particular measure Mj, compute its values Mji from every RIRi and

compare (correlate) those values Mji with the corresponding values of WERi. In this

way, we can see the relation between each of the defined RIR measures Mj and the

speech recognition rate, and choose the most relevant one(s). Then, such measure(s)

can be used for selecting the best microphone before entering the recognition system.

As described in Section 2.2, RIR can be split into 3 parts: direct sound, early

reflections, and late reflections. Using the described methodology, relations among

speech recognition accuracy and different RIR-based measures Mj was investigated,

namely:

• energy of the whole RIR

• energy of direct wave and early reflections normalized by energy of whole RIR

• energy of late reflections normalized by energy of whole RIR

• ratio between energies of early and late reflections

We found out that measure calculated as a ratio between energy of the late reflec-

tions (those harming the recognition most) and energy of the whole RIR showed the

highest correlation index between the parameter and WER. This observation may be

interpreted as lower the energy of late reflections normalized by global energy, lower
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Figure 3.4: Harming and non-harming parts of the RIR.

the WER. It means that the microphone where this quotient of energies is the lowest

will be chosen as the most suitable for recognition. Channel C with the lowest ratio

value may be selected for further processing as:

C = arg min
m

∑190ms
t=50ms h

2
m(t)∑T

t=0ms h
2
m(t)

, (3.5)

where hm(t) is the RIR corresponding to channel m and T is the length of the RIR.

Corresponding intervals of the RIR are highlighted in Figure 3.4.

The main problem of this approach is the RIR estimation, or the direct estimation

of the measures derived from it. As RIR may change while a speech utterance is being

produced, that estimation should be made online or directly from speech. Though

this may be too difficult in quickly changing environments, it has been done, for

instance, in [86] for a similar measure, the well known DRR.

3.2.3 Envelope-Variance Measure

To avoid the aforementioned problems of RIR estimation, we proposed a new CS

method in [84], where the measure of distortion is extracted directly from the speech

signal. It is a well known fact that reverberation smooths the time sequence of speech

energy values, also called speech intensity envelope, so the effect of reverberation may
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be observed as a reduction in the dynamic range of that envelope [54]. Herewith,

we define the sub-band envelopes as the time sequences of non-linearly compressed

Filter-Bank Energies (FBE). Speech signal is first framed and windowed, and then

the energy in mel-scaled sub-bands is calculated for each frame, like is done when

extracting the MFCC.

To remove the short term effects (e.g. different electrical gain and impulse re-

sponse of the microphone) from the signal in each channel, the mean value should be

subtracted in the log domain from each sub-band, i.e.

x̂m(k, l) = elog[xm(k,l)]−µlog[xm(k)] , (3.6)

where xm(k, l) is the sequence of sub-band FBEs in channel m, k is the sub-band index

and l is the time frame index. The mean µxm(k) is estimated by a time average in each

sub-band along the whole speech segment (utterance, in our case). An illustrating

example of the envelope for clean and reverberated speech for a given sub-band is

shown in Figure 3.5. Note the strong reduction in amplitude range of the reverberated

signal in comparison to the clean speech signal.

After the mean normalization, the sequence of FBE is compressed applying a cube

root function, as it was done for example in [87], and a variance measure is calculated

for each sub-band and channel:

Vm(k) = V ar[x̂m(k, l)1/3]. (3.7)

The cube root compression function in Equation (3.7) is preferred to the conven-

tionally used logarithm, because very small values in the silent portions may lead

to extremely large negative values after the log operation, which would distort the

variance estimation. Conceptually, this variance measure is alike the modulation in-

dex in [54]. There are many similarities between the extraction process of this CS

measure and the standard speech feature extraction algorithms, so the additional

computational effort needed by CS may be very low. More importantly, if standard

ASR features are used for CS, the distortion estimation takes place in the same speech

representation domain, what may make it more effective.

Note that from Equation (3.7) results a set of measure vectors. Each vector

corresponds to one channel and consists of the estimates of the variance of compressed

FBE in each sub-band. Using all this information, it is possible to select a different

channel for each sub-band, but the reconstruction of the signals would be a complex

problem, and it is not considered here. Instead, we select the same channel for all

sub-bands which shows the maximum weighted average variance over all sub-bands.
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Figure 3.5: Sequence of sub-band FBE of clean and reverberated speech. Straight
lines mark the mean values.

To do so, the variance is first scaled in each sub-band, to be in the range between 0

and 1, by dividing it by the maximum for that sub-band over all channels, and then

a specific weight ωm(k) is applied to each channel and sub-band i.e.

C = arg max
m

∑
k

ωm(k)
Vm(k)

max
m

(Vm(k))
(3.8)

The channel C whose measure is the highest is selected as the least distorted one.

The degree of distortion (reverberation, noise) may vary from one sub-band to

another, so in principle a non-uniform weighting of the sub-band measures may lead

to a higher ASR accuracy. A development data set may be used to tune the weights,

or, alternatively, they may be related to the amount of sub-band distortion and

estimated directly from the signal.

3.2.4 Pairwise Likelihood Normalization

If the posterior probability of the hypothesized word sequence in Equation (3.1) was

available for each channel, it could be used as a CS measure. However, the estimation

of the observation vector probability p(Om) requires either some assumptions or ap-
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proximations [88], and it is not usually computed by the ASR system. To avoid this

problem, we proposed in [89] an alternative solution based on the ratio of likelihoods.

Let’s first discuss the case with 2 channels. To simplify the explanation, we will

assume equal prior probabilities for all word sequences and neglect them in (3.1).

Assume we know the decoded sequences w1, w2 and their corresponding likelihoods

p(O1 | w1), p(O2 | w2) for both channels as illustrated in Figure 3.6a. If the word

sequences are the same, the channel is selected randomly and no further CS related

processing is needed. If they are different, we may take the sequence w1 from the

first channel and compute the likelihood of the observation from the second channel

p(O2 | w1) and vice versa, p(O1 | w2), as shown in Figure 3.6b. Then, by dividing

the likelihood p(O1 | w1) by the likelihood corresponding to the alternative sequence

p(O1 | w2), we get a measure of confidence about the correctness of the decoded

sequence w1 in that channel 1. After computing the corresponding likelihood ratio

for channel 2, the channel with maximum ratio (confidence) is selected.

For the general multi-channel case, by using addition of likelihood ratios across

channels, the selection criterion can be expressed as

C = arg max
m

∑
i

p(Om | wm)

p(Om | wi)
, (3.9)

where m = 1, · · · ,M and i = 1, · · · ,M are channel indexes, and C is the selected

channel. By doing this, we are selecting the channel which shows in average the max-

imum confidence regarding to its decoded word sequence. A computational drawback

of this method is that in case all the M decoded sequences are different, the likelihood

of the alternative hypothesis has to be calculated M − 1 times.

3.2.5 N-Best Hypothesis

The lack of normalization is also the key problem for confidence measuring, so many

solutions may be found in that area [88,90]. In this CS method, which we published

in [91], the N-best list approach is adapted and applied as follows. It is a well known

fact [92], that p(O) may be computed as

p(O) =
∑
w∈Ω

p(O | w)P (w), (3.10)

where Ω is the set of all possible word sequences for O. Apparently, without any

constraints this enumeration is not feasible, so some approximations are required.
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Figure 3.6: Two steps in the extraction process for pairwise likelihood normalization.

Let wn be the nth hypothesis in the N-best list. The p(O) may then be approximated

by the finite sum

p(O) ≈
N∑
n=1

p(O | wn)P (wn), (3.11)

as it was done for example in [93] or [94].

Finally, based on the above reasoning the CS measure in our N-best approach is

computed as

Cm =
p(Om | w1

m)1/αP (w1
m)∑N

n=1 p(Om | wnm)1/αP (wnm)
, (3.12)

where n is the hypothesis index in the N-best list of channel m. The acoustic model

likelihoods p(Om | wm) usually have a very large dynamic range. An appropriate scal-

ing factor α must be applied to them, otherwise the summations are often dominated

by the largest value. The value of α can be estimated a-priori using a development

corpus. Another option is to set it equal to the number of frames, as we did in this

work. If the acoustic model likelihoods provided by the recognition system are in

the log scale, setting α to this value is equivalent to divide the log likelihoods by the

number of frames, which results in an average log-likelihood per frame.

3.3 Summary

In this chapter we introduced the basic concepts of CS. State-of-the-art methods were

reviewed and categorized. Also, several new CS techniques developed in this thesis

were presented.
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The advantage of the signal-based methods is that the channel can be selected

before the signal enters the classification part of the ASR system, so recognition is

made only once. Contrary, in the extraction process of the decoder-based methods

at least one classification is performed for each channel, so the CS methods based on

these measures are computationally more demanding.

The signal-based techniques discussed here do not require any training phase. In-

stead they make assumptions about the back-end of the ASR system. Presuming

clean speech is used in training, we can hypothesize that the least distorted signal

leads to the highest ASR accuracy and select it for recognition. However, this strategy

may not be optimal if the acoustic model is trained on the distorted data. Further-

more, signal-based measures are extracted practically at the beginning of the speech

recognition process, many steps before the word sequence is hypothesized. Intuitively,

one does not expect a high correlation with WER.

The decoder-based measures, on the other hand, are extracted, or at least use some

information, from the decoder. Hence, in principle, they should be more correlated

with the WER and lead to a better recognition performance than the signal-based

ones. In the next chapter, we will compare the methods experimentally on a digit

string recognition task.
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Chapter 4

Evaluation of Channel Selection
Measures

In this chapter the experimental evaluation of both, the CS measures already reported

in the literature, and the new methods that were developed in this thesis is presented.

We first describe the experimental setup, ASR system, and used databases in Section

4.1. Then in Section 4.2 the results for the first database, where close-talking record-

ings were convolved with measured RIRs to generate the reverberated speech signals,

are presented for the individual CS measures. Some methods are evaluated further in

Section 4.3, where we show how their performance depends on the amount of data that

is used for the measure estimation. In Section 4.4 we demonstrate that the parallel

combination of different CS measures allows further recognition rate improvements.

We also propose a serial combination of signal- and decoder-based measures and show

that it reduces the computational load without any significant loss in the recognition

performance.

The results for the second database, where distant-talking microphone recordings

are used instead of convolved signals to further evaluate some CS methods and their

combinations in real conditions, are presented in Section 4.5. In Section 4.6 we

analyze in more detail the CS method based on the N-best lists and show how its

performance depends on the size and content of the list. Finally, in Section 4.7 we test

the real-time CS client implementation. It is based on the Envelope Variance (EV)

measure developed in this thesis and the tests were performed with the real distant-

talking microphone recordings of several moving speakers in the UPC smart room.

The chapter is summarized in Section 4.8.
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4.1 The Experimental Setup

There are different ways how CS may be integrated into ASR. In our experiments we

use the following strategy. We assume that a given speaker’s utterance is recorded by

several microphones. After the utterance ends, different CS measures are extracted,

and signal from one channel is selected for recognition. The objective is to minimize

WER, so a good CS measure will indicate signals that lead to minimum recognition

error.

4.1.1 Databases

The experiments were conducted with two different setups1. Two databases were used:

TIDigits, a well known database of connected digits in English [95], and the Meeting

Recorder Digit (MRD) corpus [96]. The MRD corpus is a collection of connected

digit strings recorded in a real meeting room at the International Computer Science

Institute (ICSI) as a part of the ICSI Meeting corpus data collection [97].

In the first setup, the original close-talk recordings from TIDigits were downsam-

pled to 16 kHz and convolved with a set of real RIRs, which were measured in the

UPC smart room. The details about the RIR database may be found in Annex A. As

shown in Figure 4.1, in that room there are 6 T-shaped omni-directional microphone

clusters with 4 microphones per cluster installed on the walls. In our experiments we

selected only the microphones in the middle of each cluster. There are 16 positions

in the RIR database. Only a subset of RIRs corresponding to seven different posi-

tions and four orientations of the speaker was used for testing. The original position

number is kept in the figure. Only the utterances from adult speakers (8700 files in

total) were included in the experiments.

The advantage of using convolved signals is the controlled experimental setup,

which simplifies the evaluation of the tested CS measures. The MRD corpus, on the

other hand, was used to test the measures also in real conditions. In this corpus, the

sequences of digits were read by the meeting participants and recorded in parallel

using 4 distant-talking microphones that were placed on the table in the meeting

room. There are 29 speakers who, in summary, read 2790 utterances over 22 sessions

(not all speakers participated in all sessions). Both, native and non-native speakers

were included in the tests.

1Excluding the real-time CS client tests, which are described separately in Section 4.7
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Figure 4.1: The UPC smart room with 6 highlighted microphones used in the exper-
iments, and 7 acoustic source positions and 4 considered orientations of the speaker
used for testing.

4.1.2 The ASR System

A continuous HMM-based system (Hidden Markov Model ToolKit (HTK) [98]) was

used, applying the setup commonly used for TIDigits. The 11 models for words (digits

zero, oh, one, ..., nine) have 16 states, the silence model has 3 states, and a short

pause model 1 state which is shared with the middle state of the silence model. There

are 3 Gaussians per state for the words, and 6 for the silence model. Standard MFCC

features were extracted from 20 mel-frequency bands. The feature vector consisted of

12 cepstral coefficients without the 0th coefficient, frame energy, delta and acceleration

features. The size of the vector was therefore 39. Frame length was 25 ms and frame

shift 10 ms. Optionally, MVN of the baseline features was used.

The acoustic model was trained in two different ways, either using the original

close-talking recordings from the standard training set of TIDigits, or, those record-

ings were convolved with randomly selected RIRs from the UPC smart room2, or

from the room where the MRD corpus was recorded. We will refer to these cases as

clean and matched training respectively. The recognition WERs of the system, when

trained and tested with clean TIDigits, are 0.7% using the baseline features (MFCC

2Only RIRs from positions that were not used in testing (Figure 4.1) were used to generate
reverberated data for training. All positions and assumed orientations of the speaker from the
database are shown in Figure A.1. The microphones used in training and testing were the same.
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+ energy +∆ + ∆∆), and 0.6% when MVN is applied.

4.2 Experiments with Convolved Signals

In the experiments with convolved signals all 8700 utterances from the testing data-

base were used repeatedly to generate reverberated speech for each position and

orientation. The WERs for every microphone for convolved TIDigits are presented in

Table 4.1. As expected in the distant-talking microphone environment, a significant

ASR performance degradation may be observed compared to the clean speech case.

In the UPC smart room the selected microphones are numbered 2, 6, 10, 14, 18 and

22. Each presented WER is calculated over all positions, orientations and speakers.

In other words, it shows the performance of the ASR system as if only that particular

microphone was present in the room. If the average WER over all microphones was

calculated for a given configuration, it would show the recognition performance of the

system as if all microphones were present in the room, but the signals for recognition

were selected randomly. As expected, when MVN is applied to the baseline features,

the WER decreases. Even more significant WER reduction may be observed when

the acoustic model is trained in the matched conditions.

4.2.1 Recognition Results with Signal-Based Measures

The recognition results in terms of WER for TIDigits convolved with the RIRs from

the UPC smart room, are shown in Table 4.2 for CS with the presented signal-based

measures: signal-to-noise ratio (SNR), the measure extracted from the room impulse

response (RIR), envelope variance (EV), distance (D), and orientation (O). The case

of random channel selection (RND) is also included for comparison purposes. Note

that the WER for random CS is equal to the average of WERs from the individual

microphones in Table 4.1. The CS performance was evaluated on the baseline features

(MFCC + energy +∆ + ∆∆), and also applying MVN to them. A single utterance

Table 4.1: WER using a single microphone for convolved TIDigits.

Training Features 2 6 10 14 18 22

Clean
Baseline 30.7 30.9 31.5 28.1 26 27.2

+ MVN 23.5 22.9 24.5 22.1 21.4 21.6

Matched
Baseline 7.2 7 6.7 6.3 6.8 6.1

+ MVN 6.2 6 6.2 5.9 6 5.9
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was used to extract the CS measure when the extraction was made from the speech

signal (i.e. EV, and SNR), so a different channel could be selected for each utterance.

If the measure is independent from the speech (i.e. RIR, distance and orientation)

the same channel was selected for all utterances for a given position and orientation.

We observe that all techniques, except SNR, perform much better than the random

CS, for both, the clean and matched training. The relative improvement with respect

to the random case is shown in parenthesis. The improvement in the matched training

case is consistent, but smaller compared to the clean training. This may be because

the signal-based CS methods in the tests assume that the least distorted speech leads

to the best recognition result, which may not be true if the acoustic model is trained

with the reverberated signals.

As expected, when MVN is applied to the baseline features, the recognition ac-

curacy increases. The relative improvement with respect to the random selection in

the clean training case also increases (for all methods except SNR). This may be due

to the fact that normalization attenuates the short term effects of the microphone

transfer function as well as other stationary noises. Consequently the reverberation

effects become more dominant in the measures and the least distorted channel may

be identified more accurately. The same effect does not appear in the matched train-

ing case. Although, thanks to the normalization, we may select the least distorted

signal more accurately, it is less probable that the cleanest signal will lead the best

recognition result when the acoustic model is trained with reverberated speech.

The performance of CS based on the EV measure is almost the same as the

performance of the RIR-based method (a similar performance was reported on a

large vocabulary continuous speech recognition task in [84]). Note that, whereas the

method based on the RIR assumes knowledge of channel characteristics, the EV-based

measure does not make any strong assumption.

In our implementation, the National Institute of Standards and Technology

(NIST) SPQA tool [99], the same as in [73], was used to estimate the SNR for each

utterance. The channel with the largest SNR was selected for recognition. CS based

on SNR does not work at all. The performance is similar, or worse than the random

CS. Reverberation is the main source of distortion in this setup, and measuring SNR

as if additive noise was present is not very meaningful.

If only the measure of distance between speaker and microphone is used, some

degradation in the recognition performance may be observed in comparison to other

measures in the UPC smart room. When information about orientation of the speaker

is used, and the channel with the most direct orientation of the speaker to the mi-
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Table 4.2: CS performance in terms of WER for convolved TIDigits using signal-based
measures. The relative improvement with respect to RND is shown in parenthesis.

Clean Matched

CS method Baseline + MVN Baseline + MVN

RND 29.1 22.7 6.7 6

RIR 25.4 (12.7%) 19.3 (15%) 6.2 (7.5%) 5.6 (6.7%)

SNR 28.1 (3.4%) 22.7 (0%) 6.7 (0%) 6.1 (-1.7%)

EV 25.5 (12.4%) 19.2 (15.4%) 6.1 (9%) 5.5 (8.3%)

D 27.7 (4.8%) 20.2 (11%) 6.6 (1.5%) 5.8 (3.3%)

O 25.6 (12%) 19.1 (15.9%) 6.2 (7.5%) 5.6 (6.7%)

crophone is selected, the resulting WER is similar to that of RIR- and EV-based

methods. An exact knowledge of the position and orientation was assumed when

calculating the results presented in Table 4.2. In real conditions those measures must

be estimated, so some errors will be introduced and consequently WER will increase.

This problem is discussed in the following section.

4.2.2 Position and Orientation-Based CS

In this section we further evaluate the performance of the position and orientation-

based CS methods assuming that the measures used to select the channel were esti-

mated with some errors. The correct position of the speaker was shifted in an arbi-

trary direction by adding a randomly generated numbers to the known coordinates.

The numbers followed a normal distribution with the zero mean and the standard

deviation varying from 0 to 50 cm. Resulting mean localization estimation error or

such system, calculated as the mean of the Euclidean distances between the correct

and shifted positions, is shown in Figure 4.2. As expected, it linearly grows with the

increasing standard deviation.

The recognition performance in terms of WER of such system in the UPC smart

room may be seen in Figure 4.3. The results are displayed for the clean and matched

training, and using the baseline and normalized features. For example, if we assume a

system with the mean localization estimation error around 33 cm, which corresponds

to the case with the standard deviation 25 cm in Figure 4.2, the resulting WER in the

matched training case using the normalized features is 5.8%. We may also observe

that WER is constant or does not grow very much when increasing the standard

deviation. Actually, even if the position is estimated without any errors (the first
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Figure 4.2: Emulated mean localization estimation error.

point of the graph) the WER is already quite high, close to the random selection

case as shown for the distance measure (D) in Table 4.2. This may be caused by the

fact, that many times the closest microphone is located behind the speaker and so the

signal is attenuated by the speaker’s head. Also, the database used in training was

recorded (as usually) with the front microphones. Therefore, the orientation measure

in this case may be a more reliable indicator of channel quality.
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Figure 4.3: The position-based CS performance in terms of WER varying the position
estimation error for TIDigits convolved with the RIRs from the UPC smart room.
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Figure 4.4: Metrics of the emulated head orientation estimation system.

In the experiments with the orientation-based CS method we emulate the system

where the estimation of an angle has an error, which follows a normal distribution with

the zero mean and the standard deviation varying from 0 to 180 degrees. There are

tree basic metrics, agreed by the Computers in the Human Interaction Loop (CHIL)

consortium, used to evaluate the head orientation estimation systems [35,100]:

• Pan Mean Average Error (PMAE) [degrees]: the precision of the head orienta-

tion angle estimation.

• Pan Correct Classification (PCC) [%]: the ability of the system to correctly

classify the head position within 8 classes spanning 45 degrees each.

• Pan Correct Classification within a Range (PCCR) [%]: the ability of the system

to correctly classify the head position within 8 classes spanning 45 degrees each,

allowing a classification error of ±1 adjacent class.

The metrics computed for the emulated system are shown in Figure 4.4. The

PMAE grows linearly at the beginning until saturates when the standard deviation

reaches 180 degrees. As expected the PCC curve decreases faster that the PCCR one,

since the classification error span is much smaller. These curves also saturate at 180

degrees.

In Figure 4.5 it is shown for the clean and matched training, and using the baseline

and normalized features, how the recognition performance in the UPC smart room
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Figure 4.5: The orientation-based CS performance in terms of WER varying the
orientation estimation error for TIDigits convolved with the RIRs from the UPC
smart room.

changes, if the orientation-based CS is used and the angle estimation is not perfect.

Let’s assume, for example, the head orientation estimation system with the PMAE

equal to 40 degrees, and PCC and PCCR equal to 62% and 99% respectively, which

corresponds to the standard deviation 50 degrees in Figure 4.4. The resulting WER

for the matched training case using the baseline features is 6.4%. If normalized

features are used the WER is 5.8%.

In [100] the head orientation estimation system developed in the same UPC smart

room was presented. In the reported experiments the PMAE of that system was

equal to 11.8 degrees, which is similar to the error of the emulated system with the

standard deviation 15 degrees. The reported PCC metric was lower, equal almost to

76.87% compared to 100% in the emulated case, but the PCCR is almost the same.

This suggests that a very good CS performance may be expected with such system

in the UPC smart room. According to this emulation it could be very close to the

case when the exact speaker’s orientation is known.

4.2.3 Recognition Results with Decoder-Based Measures

In Table 4.3 the recognition results in terms of WER for the CS methods using non-

normalized likelihood (L), normalized likelihood using the pairwise normalization

(NL), feature normalization (FN) class separability (CLS), and N-best lists (NB) are

presented for convolved TIDigits. Results for random selection (RND) are the same

as in the case of signal-based measures (see Table 4.2). The feature extraction and
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normalization scheme used in the CS measure extraction and for ASR were the same.

So, if MVN was applied on the baseline features for recognition, the same normalized

features were used to compute the class separability measure.

The performance of the likelihood related CS methods is every case better than

that of the random selection. Again, the relative improvement with respect to the

random case is shown in parenthesis. When normalized likelihood is used with the

clean training, only a slight, but consistent, reduction in terms of WER may be

observed with respect to the non-normalized one. However, when the acoustic model

is trained in matched conditions, the relative improvement of normalized likelihood

with respect to the random case is 15% or more, while the non-normalized likelihood-

based CS performs almost as if the channel was selected randomly.

As described in Section 3.1.1, in the case of CS based on feature normalization,

some normalization method is applied for each channel, and the speech recognition

hypothesis before and after feature normalization are compared. For that purpose

we used our baseline features and applied MVN3. The normalized streams were used

to obtain the WERs displayed in the table, since they offer a better ASR accuracy

than the non-normalized ones (the baseline). If the minimum distance between two

compared hypothesized word sequences was the same in two or more channels, the

channel was selected randomly. The CS method based on feature normalization

performs the best when the normalized features with matched training are used, but

in the clean training case it is surpassed by other methods, including the signal-based

EV measure (see Table 4.2).

The performance of the class separability-based CS method in this setup is the

worst among all tested methods, and in the matched training case it is even worse

than the random selection. Possible reason for this could be that the selection decision

was made on an utterance basis and, in many cases, the amount of data was not

sufficient to estimate the separability measure reliably. In our implementation for the

consistency we used the same classes as those used by the recognizer, i.e. digits. To

get the time boundaries to separate the frames into the classes, we first applied the

recognition system to signals in each channel, so the alignments are channel specific.

To calculate the between class scatter matrix in Equation (3.3), at least 2 different

digits (classes) have to be present in the utterance. For all utterances which contain

only one kind of word, the channel has to be selected randomly. Even if the stand-

alone approach was used as recommended in the original work [82] (i.e. the separation

measure was calculated from classes different to those used by the recognizer), most

3Cepstral mean subtraction was also tested, but the performance is slightly worse.
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Table 4.3: CS performance in terms of WER for convolved TIDigits using decoder-
based measures.

Clean Matched

CS method Baseline + MVN Baseline + MVN

RND 29.1 22.7 6.7 6

L 26.9 (7.6%) 20.3 (10.6%) 6.5 (3%) 5.9 (1.7%)

NL 26.6 (8.6%) 19.5 (14.1%) 5.5 (17.9%) 5.1 (15%)

FN x 19.6 (13.7%) x 4.6 (23.3%)

CLS 26.7 (8.2%) 22.5 (0.9%) 7.3 (-9%) 7.2 (-20%)

NB 25.4 (12.7%) 17.6 (22.5%) 5.4 (19.4%) 4.9 (18.3%)

of the utterances are so short that it would not be possible to obtain the reliable

estimates anyway. To compensate for this fact, and to keep the comparison with

other CS methods objective, we designed an experiment (presented in Section 4.3),

where a number of utterances are used to estimate the CS measure.

The technique using N-best lists, which was developed in this thesis, is the best

in average. It outperforms all the methods, in all cases, except of the feature nor-

malization-based one, when the acoustic model was trained in matched conditions

and MVN was applied to the baseline features. To extract the measure, N-best lists

with N=40 were generated. The reason why this value was used, and the dependency

of the ASR performance on the size and content of the list are discussed in Section

4.6.

4.2.4 Discussion

If we compare the whole set of results, we see that the CS methods using the signal-

based measures perform better in the clean training case than the decoder-based ones

(for all the methods except the one using N-best lists, which performs very well for

all tested conditions). This is quite a surprising result, since one would expect a

measure extracted from the classifier to be more correlated with the WER than a

measure extracted from the signal. A possible reason for the poor performance of the

class separability measure, the insufficient amount of data used to compute it, has

already been suggested above. In the next section we will analyze this hypothesis for

the class separability measure and also for other techniques by looking what happens

if more data than one utterance is used to extract it. The TIDigits signals convolved

with the UPC smart room RIRs will be used for this purpose.
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4.3 Relation Between the ASR Performance and

Amount of Data Used to Estimate the CS Mea-

sure

The CS measures extracted from the RIR, or related to the position and orientation of

the speaker do not depend on the speech signal. Therefore, unless the room conditions

change, the selected channel is the same for all utterances. The other measures are

extracted directly from the speech signal or from the decoder output, so they change

with each new utterance. The quality of the estimation of these measures may depend

on the amount of available speech data. We have already explained how this affects

the class separability-based CS measure, but the rather low performance of other

decoder-based methods when the acoustic model is trained on clean speech suggests,

they may suffer from a similar problem.

To investigate this further, we designed an experiment where utterances were

joined into groups of increasing size. The CS measure was extracted from all files in

a given group, so using progressively more and more data, and the same channel was

selected for all utterances in that group. We started from one utterance and increased

the group size until there was only one group with all utterances. There were 8700

files in the testing set and the groups were of equal size (factors of 8700). This means

we had 8700 groups containing 1 utterance, 4350 groups with 2 utterances, 2900

groups with 3 utterances, etc. In the following, we will describe the implementation

details for each CS technique in this experiment.

For the likelihood-based technique each utterance was decoded individually and

the log likelihood for a group or utterances was calculated as the sum of acoustic

log likelihoods of the individual utterances. Before summation, the likelihoods were

normalized by the number of frames to compensate for the different utterance lengths.

The channel with the highest accumulated score was selected for that group.

The normalized likelihood for a group or utterances was calculated as the sum of

scores of the individual utterances. Similarly to the case of non-normalized likelihood,

a normalization by the number of frames was applied to compensate for the different

utterance lengths. The N-best measure for a group or utterances was extracted in a

similar way.

In the case of feature normalization-based CS, the measure for a group of ut-

terances was calculated as the sum of the individual distances between the decoded

sequences from the original and the normalized feature streams, accumulating over

all utterances of the group.
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To extract the class separability measure for a group of utterances, the word

alignments were first obtained for each channel and utterance. Then, the feature

vectors from the group of utterances were pooled into their corresponding classes and

the measure was computed.

To compute the EV measure reverberated utterances were first joined on the signal

level, and the measure was extracted from these long files.

The resulting WERs for the different CS measures and clean training may be ob-

served in Figure 4.6. On the x-axis there is the number of utterances in a group in log

scale. Results are presented for the baseline features, and also for the case of applying

MVN to them. When the measure is extracted combining all 8700 utterances, there

is only one group and so only one channel is selected for a given position and orien-

tation. Therefore, the best possible CS performance in such case is when the channel

which gives the lowest WER in average for all utterances is chosen. Horizontal dotted

lines in Figure 4.6 represent those WERs.

We can see that if likelihood is used without normalization, the ASR performance

does not improve even if the number of utterances increases. Although more data are

used to estimate the measure, the WER grows. The pairwise normalization clearly

helps. A consistent WER decrease may be observed when the size of the data set

for the measure computation increases. The same goes for the CS method based on

feature normalization as shown in Figure 4.6b.

Increasing the amount of data to estimate the measure clearly helps also in case

of the class separability measure. The WER decreases rapidly right from the begin-

ning and even falls below the horizontal line for the variant with baseline features

(Figure 4.6a). This fact may be confusing on the first sight, but there is a simple

explanation. In fact, the horizontal dotted line, as explained above, represents the

WER of the channel that gives the best WER in average for all 8700 utterances. If

the best microphone in average is selected for a smaller group of utterances, a better

choice can be made for that group, and consequently overall WER may be lower.

We may further observe in Figure 4.6 that increasing the amount of data for the

estimation of EV measure improves the recognition performance only slightly. This

is because, unlike the most of the decoder-based methods, the EV-based CS already

works very well when the measure is extracted from a single utterance.

The N-best measure works the best from all the methods if only one utterance

is used to extract it. If the number of utterances increases, the WER grows. This

is probably because to extract the measure for a group of utterances we sum the

measures from different utterances without any proper normalization. This may be a
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problem if probability of the observation in the denominator in Equation (3.11) varies

significantly among utterances.
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Figure 4.6: CS performance in terms of WER for convolved TIDigits and the clean
training when the channel is selected per group of utterances.

When the acoustic model is trained in matched conditions, the performance for
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Figure 4.7: CS performance in terms of WER for the convolved TIDigits, baseline
features and matched training when the channel is selected per group of utterances.

the decoder-based CS methods is better than for the signal-based ones, with the

exception of the non-normalized likelihood (L) and class separability measure (CLS).

As we may see in Figure 4.7 for the matched training and baseline features, increasing

the amount of data to estimate the class separability measure clearly helps also in

this case. This confirms the hypothesis we have made above that a sufficient amount

of data to estimate the separation measure is a crucial requirement with this method.

The performance of the non-normalized likelihood does not improve if the number of

utterances increases, nor does the the EV-based method.

The methods based on the normalized likelihood and N-best lists perform well

with the matched training, even if only one utterance is used to extract the measure.

The corresponding performance curves start below the dotted line. Since for the group

of utterances only the best channel in average may be selected, the WER grows.

4.3.1 Discussion

In real environments, the CS measure should be able to track the changes in a room or

in the speaker’s position or orientation. If the changes are slow or not very significant,

the algorithm can wait, collect more speech data, and make the measurement more

robust; but if it waits too much, the recognition delay may become unacceptable. So,

ideally want to have a technique that requires a small amount of data to make an
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estimation of the measure and still leads to a good recognition performance.

Two CS methods, both developed in this thesis, based on the EV and N-best

lists meet this requirement. The measure using N-best lists is computationally more

expensive, but provides the best results for almost all tested ASR configurations. Al-

ternatively, the computational simplicity and a good performance of the EV measure,

even when a small amount of data is used to extract it, make it the best candidate

for applications where a low latency and computational load are required, e.g. in

embedded systems, for command-type applications, or scenarios where we can not

afford to store and recognize speech samples from all streams.

The normalized-likelihood- and feature normalization-based measures perform

better if the acoustic model is trained in matched conditions, but not so well in

the clean training case, unless sufficient data is used to estimate the measure. The

class separability measure may provide significant recognition performance reduction,

like we may observe for example in Figure 4.6a, but it always requires more speech

data to reliably estimate the separability measure. This increases the recognition

delay. However, with some measure estimation tracking mechanism, it could still be

employed in those scenarios which require short recognition delays. In an initial phase

we could accumulate sufficient amount of speech data to get a reliable estimate of

the quality measure and then, in the working phase, this estimate could be updated

with each new utterance to track the changes in the room. Some decaying weighting

function could be applied, to give more importance to the most recent utterances.

This way we could avoid in the working phase the recognition latency problem, since

the CS decision would be updated with each new utterance, we would track up to

some extend the changes in the room conditions.

4.4 Combination of CS Measures

CS may benefit from combination of various methods in two ways. Firstly, since

the CS measures are extracted from different domains, they may be complementary

and their combination could increase the robustness of the CS system. We will refer

to this case as a parallel combination. Secondly, the decoder-based methods are

computationally expensive. This may be a problem if number of channels is high and

fast system response is required. Therefore, to reduce the number of channels, some

computationally cheap signal-based CS method may be first applied in the front-end

and in the next step more precise selection can be made on the reduced channel set

using the decoder-based methods. This case will be referred as a serial combination
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Figure 4.8: Block diagram of the serial combination of signal- and decoder-based
methods.

and its block diagram is shown in Figure 4.8.

4.4.1 Parallel Combination

In the parallel combination all CS measures are extracted for all channels. Usually

the measures are in different scales. In this work we applied a simple combination

strategy, where we first rank the channels separately for each measure, and then select

the channel with the highest ranking in average as

C = arg min
m

∑
i

rm(i), (4.1)

where rm(i) is the ranking position of the channel m according to the measure i.

The performance of CS methods with convolved TIDigits using the parallel com-

bination and normalized features is shown in Table 4.4. We may see that in the clean

training case, combined measures perform better than any one of them alone (see Ta-

bles 4.2 and 4.3), suggesting their complementarity. The performance of the feature

normalization-based method alone in the matched-training case is slightly better than

when used in combination, and it is surpassed only when the class separability-based

measure is excluded.

Training the acoustic models in matched conditions, as expected, improves the

recognition performance. Furthermore, when the parallel combination of CS measures

is used, additional consistent improvement higher than 20% relative to the random

selection case may be observed. Interestingly, very similar relative improvements may

be seen for the clean training case.
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Table 4.4: CS performance in terms of WER using parallel combination for the clean
and matched training, and normalized features.

CS methods Clean Matched

RND 22.7 6

NL + FN + CLS 18.2 (19.8%) 4.8 (20%)

NL + FN + CLS + NB 17.3 (23.8%) 4.7 (21.7%)

NL + FN + CLS + NB + EV 16.7 (26.4%) 4.6 (23.3%)

NL + FN + NB + EV 17 (25.1%) 4.5 (25%)

4.4.2 Serial Combination

The performance of CS methods in serial combination, applying MVN to the baseline

features and using the acoustic models trained in the clean and matched conditions,

is shown in Figure 4.9. Each point corresponds to the number of channels after the

pre-selection step. There are 2 curves for each setup, one for the random pre-selection,

and the other for the case when the channel is pre-selected using the EV method.

A single channel is selected from the subset in the second step using the parallel

combination of several measures (NL + FN + NB + EV).

The first point of the graph (from the left) shows the recognition performance if

only one channel is pre-selected, either randomly, or using the EV-based CS method.

The WERs are the same as in Table 4.2 for the RND and EV case. The last point of

the graph is the variant without pre-selection, when all available channels are passed

to the second step, so the WERs are the same as in the last line of Table 4.4. We can

observe for the clean training case (Figure 4.9a) that if EV is used to pre-select the

channels, the computation load may be reduced almost by half (only 3 channels are

used after pre-selection), and the relative WER increase is only 0.6% compared to

the case when all channels are used. On the other hand, if channels are pre-selected

randomly, the relative WER increase is 10%. When the acoustic model is trained

in the matched conditions (Figure 4.9b) and we pre-select only 2 channels using the

EV measure, the computational load may be lowered by 2/3, and the relative WER

increase would be only 4% while for the random pre-selection it would be 13%.

Similar behavior may be observed for the other configurations as well. For exam-

ple, as shown in Figure 4.10a, when the EV- and N-best lists-based measures are used

in combination, we may observe for the clean training that if half of the channels is

pre-selected using the EV-based measure, the relative WER reduction is only 0.5%

compared to the case when all channels are used. If the pre-selection is random, the
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relative WER reduction is 10%. In the matched training case reducing the number of

channels by 2/3 leads to 4% and 12% relative WER increase for the EV and random

pre-selection case respectively.
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Figure 4.9: The CS performance in terms of WER using serial combination of the
measures for convolved TIDigits. The parallel combination of various CS measures
(NL+FN+NB+EV) was applied to select the channel in the second step. Normalized
features were used to extract the WERs.
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Figure 4.10: The CS performance in terms of WER using serial combination of the
measures for convolved TIDigits. The parallel combination of the N-best list and
EV-based measures was applied to select the channel in the second step. Normalized
features were used to extract the WERs.
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Table 4.5: WER using a single microphone for the MRD corpus.

Training Features 6 7 E F

Clean
Baseline 20.1 29.4 26.6 20.7

+ MVN 15.9 21.5 21.1 17.4

Matched
Baseline 14 20.7 18.6 15.3

+ MVN 14 16.4 17.1 15.6

4.5 Experiments with Real Distant-Talking Micro-

phone Recordings

In this section we evaluate selected CS methods using the real distant-talking mi-

crophone recordings from the MRD corpus. Our knowledge about the recording

conditions of this corpus is limited. We know there are 4 parallel channels, but do

not have any additional information about the exact position or orientation of the

speakers, neither about the characteristic of the acoustic channels in terms of their

RIRs. Notice that the reverberated speech is not obtained by means of convolution,

since it is recorded from distant-talking microphones.

The WERs for every microphone are presented in Table 4.5. Each WER shows

the performance of the ASR system as if only that particular microphone was present

in the room. There are 4 microphones labeled as 6, 7, E, and F in the MRD corpus.

If the average WER was computed over all microphones for a given configuration,

it would show the recognition performance of the system as if all the microphones

were present in the room, but the signals for recognition were selected randomly. As

expected, when the acoustic model trained in matched conditions is used, the WER

decreases. Applying MVN to the baseline features improves significantly the ASR

performance in the clean training case, but not as much in the matched training case.

4.5.1 Recognition Results for Selected CS Measures

The recognition results for a few CS methods using the envelope variance (EV), nor-

malized likelihood (NL), feature normalization (FN), and N-best lists (NB) measures

are presented for the MRD corpus in Table 4.6. Results for random selection (RND)

are also included for reference.

Both, signal- and decoder-based measures are shown together. The encouraging

results from the previous experiments with convolved signals are confirmed. We can

see that the relative improvement with respect to the random selection case is very
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Table 4.6: CS performance in terms of WER for the MRD corpus

Clean Matched

CS method Baseline + MVN Baseline + MVN

RND 24.2 19 17.2 15.8

EV 13.2 (45.5%) 12.4 (34.7%) 10.5 (39%) 12.8 (19%)

NL 16.4 (32.2%) 13.9 (26.8%) 12.1 (29.7%) 12.7 (19.6%)

FN x 12.8 (32.6%) x 11.6 (26.6%)

NB 14.9 (38.4%) 12.4 (34.7%) 10.3 (40.1%) 11.2 (29.1%)

high already for individual measures. Using the EV-based CS method developed

in this thesis, it may be more than 45%. Another method developed here based

on the N-best lists leads to the highest relative improvement in average across all

configurations. Again we may see that even if CS is combined with other robust ASR

methods, matched training and feature normalization in this case, it consistently

brings further recognition performance improvements. Interestingly, the WER after

CS for the matched training and baseline features is lower than when MVN is applied.

4.5.2 Recognition Results for Combined CS Measures

The performance of CS measures in serial and parallel combination for the MRD

corpus is shown in Figure 4.11 using the normalized features and models trained in

the clean and matched conditions. As it was in the similar experiment with convolved

signals, which was presented in Section 4.4.2, each point corresponds to the number

of channels after the pre-selection step. There are 2 curves in each graph, one for

the random pre-selection, and the other for the case when the channel is pre-selected

using the EV method. A single channel is selected from the subset in the second step

using the parallel combination of all CS measures from Table 4.6 (NL + FN + NB +

EV).

The last point of the graph is the variant without pre-selection when all available

channels are passed to the second step, and so only the parallel combination of the

measures is used to select the channel. The performance of combined measures is

better than when they are applied individually.

The first point of the graph shows the recognition performance if only one channel

is pre-selected, either randomly, or using the EV-based CS method. The WERs are

the same as in Table 4.6 for the RND and EV case. We can observe that if EV is

used to pre-select the channels we may reduce the computational load by 25% almost
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without any loss in the recognition performance.
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Figure 4.11: The CS performance in terms of WER using serial combination of
the measures for the MRD corpus. Parallel combination of various CS measures
(NL+FN+NB+EV) was used to select the channel in the second step. Normalized
features were used to extract the WERs.

4.6 The Size and Structure of the N-Best Lists

The number of hypothesis N included in the computation of the CS measure from the

N-best lists in Equation (3.12) is a free parameter. In theory, the more hypothesis are

used, the more precise is the approximation of p(O) in Equation (3.11). However, the

objective in CS is not to estimate the posterior probability with the highest precision,

but rather to minimize WER. Also, from a practical point of view, we do not want

to generate large and computationally costly N-best lists.

An important factor is what kind of hypothesis is included in the CS measure

estimation. The N-best algorithm may generate a lot of hypothesis that have the

same word sequence as the first one, and differ only in the presence and position of

the silence label4. The calculation of the CS measure from such a redundant list is not

very efficient, because it means that we are aiming to maximize a ratio of likelihoods

using almost the same word sequences.

In Figure 4.12 we show how increasing the number of hypothesis in the estimation

of the N-best CS measure influences the recognition performance for the TIDigits

convolved with the RIRs from the UPC smart room. Results are presented for both,

4For example, ’silence one two’ is the same word sequence as ’one silence two’.
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the clean and matched training. Only the results for normalized features are shown.

Similar behavior may be observed for the baseline features. There are two curves

presented in each graph. One curve corresponds to the N-best measure extracted

using all hypothesis in the N-best list, while the other corresponds to the case when

the generation of the N-best list was constrained to give only the unique hypothesis,

i.e. when the redundancy of word sequences is avoided. As we can observe, the latter

variant performs much better. Even if only 2 hypothesis (the first point of the graph)

are used to extract the CS measure, the WER is lower than for any single channel in

Table 4.1.

When the number of hypothesis increases in the clean training case, the WER

decreases even more, until it saturates. Contrarily, the WER for the variant with all

the hypothesis decreases much slower, and even grows at the beginning. The filtering

of word sequences also helps in the matched training case, however, when the number

of filtered hypothesis grows, the WER does not decrease. It actually slightly grows,

until it saturates. In this case, it would be better to use the shorter N-best list, but

to avoid the specific tuning for each setup, the N-best lists of the same size (N=40)

were used in all the experiments where this CS measure was applied.

For the MRD corpus a similar behavior may be observed, as shown in Figure

4.13. Again, only the results for normalized features are shown. Notice, that as

in the previous case with convolved TIDigits, even if only 2 hypothesis are used to

extract the CS measure (the first point of the graph), the WER is lower than for any

single channel in Table 4.5. In this setup, increasing the number of hypothesis leads

to the WER reduction even for the matched training case.

4.7 Evaluation of the Real-Time CS Implementa-

tion in the Scenario with Moving Speakers

To test the real-time CS client implementation, which is described in Appendix B, but

also to evaluate the CS paradigm as close as possible to the real-world conditions, we

designed the following experiment. Five utterances were randomly selected for each

adult speaker from the testing set of the TIDigits database, resulting in a set of 565

utterances. These were concatenated into a single long file, inserting one second of

silence between them. The long file was reproduced from the loudspeaker that was

held by a person moving around the UPC smart room, as if the speech was uttered

by the real speakers. The position or orientation usually changed after 5 utterances

(which corresponded to the same speaker), otherwise the loudspeaker moved only
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Figure 4.12: CS performance in terms of WER for convolved TIDigits, using different
numbers of N-best hypothesis, and all or unique word sequences. Normalized features
were used to extract the WERs.
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(b) Matched training

Figure 4.13: CS performance in terms of WER for the MRD corpus, using different
numbers of N-best hypothesis, and all or unique word sequences. Normalized features
were used to extract the WERs.

slightly.

As in the off-line experiments, only 6 microphones from the middle of each T-

shaped cluster were used. For the convenience the ASR was not performed online,

however, this does not affect the conclusions regarding the CS performance. The

whole session was recorded by each microphone and stored to the hard-drive. In the

same time, the real-time CS client was selecting the microphone and creating the 7th

stream that was also stored on the hard-drive. Finally, the files were sliced using the
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Table 4.7: WER using a single microphone in the experiment with moving speakers.

Features Training 2 6 10 14 18 22

Baseline
Clean 39.8 41.2 40.3 38.5 38.3 36.1

Matched 27 26.1 30.7 31.1 34.4 30

+ MVN
Clean 30.7 27.5 30.5 26.8 31.1 27.8

Matched 31.1 28.9 30.1 27.6 28.9 28.5

known time-stamps of the original utterances and the stream from each channel was

recognized using the same ASR system as in the off-line experiments.

The WERs for each channel, using the baseline features (MFCC + ∆ + ∆∆), or

applying MVN to them, and testing with clean and reverberated acoustic model are

shown in Table 4.7. The MVN improves the recognition performance significantly.

This is probably because it compensates for the stationary noise that is generated by

the cooling fans of the servers in the adjacent room.

The same acoustic models as in the experiments with artificially reverberated sig-

nals were used (see Section 4.1). Matched training improves the recognition perfor-

mance in case of the baseline features, but not as much as in the tests with convolved

speech (see Table 4.1). This is probably because the speaker was not stationary and

the signals in testing were recorded by distant-talking microphones, not reverberated

by convolution with the measured RIR. Actually, when MVN is applied and the

acoustic model trained in matched conditions is used, the recognition performance is

even slightly worse in average.

If we use the same procedure to recognize the speech signal from the real-time CS

client (the 7th stream), we get significant improvements, as shown in Table 4.8. The

improvement relative to the random case (RND), shown in the brackets, is more than

15% when testing with the clean speech models. Even if we use matched training or

apply MVN, we still get almost 10% relative improvement. Note also, that after CS

the WER is lower than if we selected the best single channel, as may be seen in Table

4.7.

When the off-line version of the CS algorithm is applied like in the experiments in

Section 4.2.1, similar WERs are observed. By this experiment we not only tested and

proved that the implementation of the the real-time CS is correct, but also shown that

CS works well if applied in conditions similar to the real meeting scenario. Simple

yet efficient and robust EV-based CS method developed in this thesis may further

improve the recognition performance in this scenario, even when combined with other
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Table 4.8: The performance of real-time CS in terms of WER.

Features Training RND EVRT

Baseline
Clean 39 34.3 (12.1%)

Matched 29.9 25.3 (15.4%)

+ MVN
Clean 29.1 24.6 (15.5%)

Matched 29.2 26.3 (9.9%)

methods for robust ASR, like MVN.

4.8 Summary

In this chapter we compared all signal- and decoder-based CS measures. Both clean

speech data convolved with recorded RIRs as well as real distant-talking microphone

recordings were used in the tests. The experiments show that CS may provide large

recognition improvements, in some cases up to almost 46% relative, compared to the

case when the channel is selected randomly. If it is used in combination with other

robust ASR techniques, like matched training or mean and variance normalization, it

was observed that the recognition improvements from both approaches are cumulative

up to some extent.

We also evaluated the combination of different CS measures and showed that sim-

ple combinations of signal and decoder-based methods lead to further WER reduction.

Also, the combination may help to reduce the computational load by half with just

a slight loss in terms of WER. In fact, the computationally cheap EV signal-based

method is used at the front to reduce the number of input channels, so the more

expensive decoding operation does not have to be made for all channels.

Two CS methods, both developed in this thesis, based on the EV and N-best lists

showed a very good performance for all experimental setups. The N-best lists-based

method is computationally more expensive, but provides the best results in average.

Alternatively, a computationally simple EV measure often performed better than

other complex decoder-based approaches and is a good candidate for the applications

where low recognition delay and computation load are required, as was demonstrated

in the tests of the real-time CS client implementation.

62



Chapter 5

Integration of Partly Decorrelated
Features into REMOS

The main topic discussed in this thesis so far was CS. We have shown that it may

help to improve the ASR performance significantly, but indeed there is room for

further improvements. The contribution of CS depends strongly on the conditions

in the room. There may be situations when all distant microphones record similarly

distorted signals, so the space for improvement by selecting a channel is small. Also,

even if we were always able to select the channel with the minimum WER, we would

hardly reach the performance of the recognition system using clean speech. Additional

techniques are therefore needed to further improve the robustness of the ASR systems.

In this chapter we introduce a new feature extraction method into REMOS [8],

a generic framework for robust distant-talking speech recognition. We start with

brief description of REMOS, and explain the restrictions imposed on the speech fea-

tures due to the complexity of the optimization problem in the decoding. Because of

those restrictions, only highly correlated logmelspec (logarithmic mel-spectral) ener-

gies had been used before in REMOS. This limited the ASR performance because the

assumption of diagonal covariance matrices in the HMMs output probability density

functions was not met. To overcome this, a new set of partly decorrelated features

derived from FF [9,16] was proposed.

This work is a result of collaboration with the colleagues from the chair of Multime-

dia Communications and Signal Processing at the University of Erlangen-Nuremberg,

Erlangen, Germany, where the original REMOS framework was developed. The idea

to integrate FF into REMOS comes from the author of this thesis, but the main

credit belongs to Roland Maas, who derived the mathematical formulations, as well

as conducted and described the experiments. The text in this chapter comes mostly

from the joint publication [101].
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5.1 Introduction to REMOS

The main reason for a low ASR performance in presence of additive noise or rever-

beration is a mismatch between the training and testing conditions. Usually different

single or multi-microphone speech enhancement techniques are used to reduce the

distortion, or the adaptation of the speech features and/or acoustic models of the

ASR system is applied to compensate for the mismatch. REMOS belongs to the

latter group.

A common, straight-forward way to reduce the mismatch is to train the acoustic

models on the matched data [102]. The disadvantage is that different conditions

require a costly retraining. Multi-condition style of training may be used [103], but

the performance will not be as good as in the matched case. Various HMM-based

adaptation methods have been presented, for example in [70] and [68], but they make

the conditional independence assumption, i.e. that the current output vector depends

only on the current state, which holds even less in the presence of reverberation.

REMOS tries to overcome these limitations. It is based on the combination of

two kinds of models, a HMM network describing the clean speech, and a reverbera-

tion model describing the effect of reverberation directly in the feature domain. An

extended version of the Viterbi algorithm is used during the recognition to deter-

mine the most likely contributions of the clean speech HMM and the reverberation

model to the current reverberant observation. Since both models can be estimated

independently, only a re-estimation of the reverberation model is required in case

the reverberation conditions change, which can be done very efficiently. Costly data

collection from the new environment and retraining of the speech acoustic models are

not necessary.

5.1.1 Review of the REMOS Concept

Following notational distinction will be used in this section: Every vector v without

the explicit subscript “mel” or “FF” is meant to be in the logmelspec domain, whereas

the corresponding vectors vmel and vFF denote the melspec and frequency filtered

representation of v, respectively. Furthermore, the operator “exp” applied to vectors

is meant componentwise. The number of mel-channels is denoted by L. Single-

Gaussian probability density functions with mean-vector µ and covariance matrix C

are abbreviated by N (µ,C).

The REMOS framework consists of two major elements: a clean speech HMM and

a Reverberation Model (RVM). The RVM is room specific and captures the following
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information, whose role will be explained later:

• M melspec-feature vectors

µhmel(0), . . . , µhmel(M−1) ∈ RL

being a statistical description of the room impulse response partitioned into M

frames,

• a probability density function fh(0) = N (µh(0),Ch(0)) describing the early part

h(0, k) of the room impulse response in the logmelspec domain,

• and a probability density function fa = N (µa,Ca) capturing the weighting a(k)

of the late reverberation estimation in the logmelspec domain.

A detailed description of RVM estimation techniques can be found in [8].

The combination of both the HMM and the RVM is based on the so-called

“melspec-convolution” which assumes that the reverberant observation vector xmel(k)

is given in the melspec domain by

xmel(k) =
M−1∑
m=0

hmel(m, k)� smel(k −m),

where hmel(m, k) and smel(k−m) denote the melspec representation of the room im-

pulse response and the clean speech frames, respectively, and� denotes the Hadamard

product. During recognition, REMOS estimates both contributions hmel(m, k) and

smel(k−m) based on only the observation xmel(k), the HMM, and the RVM. To this

end, the melspec convolution is first of all simplified in the following way:

xmel(k) = hmel(0, k)� smel(k) + amel(k)� x̂r,mel(k), (5.1)

where

x̂r,mel(k) =
M−1∑
m=1

µhmel(m) � smel(k −m) (5.2)

is an approximation of the late reverberant component

M−1∑
m=1

hmel(m, k)� smel(k −m).

By transforming (5.1) to the logmelspec domain, we obtain a description for the

observed reverberant feature vector sequence x(k):

exp
(
x(k)

)
= exp

(
h(0, k) + s(k)

)
+ exp

(
a(k) + x̂r(k)

)
. (5.3)
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For recognition, an extended version of the Viterbi algorithm is employed to deter-

mine the most likely contributions of the HMM, i.e., s(k), as well as of the RVM, i.e.,

h(0, k) and a(k). At each step of the extended Viterbi algorithm, the Viterbi score

is therefore weighted by the outcome of the following inner optimization problem:

max
s(k),h(0,k),a(k)

fs
(
s(k)

)
· fh(0)

(
h(0, k)

)
· fa
(
a(k)

)
subject to (5.3), (5.4)

where fs is the single-Gaussian output density of the current HMM state and the late

reverberation x̂r(k) is calculated by using estimates of s(k−m), m = 1, ...,M − 1, cf.

(5.2), known from former Viterbi steps [8].

Once the optimization problem (5.4) is solved, the calculated optimal contribu-

tions ŝ(k), ĥ(0, k), and â(k) are inserted into the objective functions of (5.4), i.e., the

pdfs of the HMM and RVM, to obtain the model score

Oj(k) = fs
(
ŝ(k)

)
· fh(0)

(
ĥ(0, k)

)
· fa
(
â(k)

)
,

by which the Viterbi score is weighted.

5.2 Extension to Partly Decorrelated Features

Conventional ASR systems usually employ a set of energies extracted from frequency

bands distributed in a mel-scale at some stage of the feature extraction process. A

non-linear operation (usually logarithm) is applied to compress the large range of

the amplitudes of the spectral measurements, resulting in logmelspec features. As

mentioned before, their decorrelation is needed, which is usually achieved by some

linear transformation. The most common transformation is the DCT leading to the

well known MFCC representation. FF is an alternative way to decorrelate the features

with comparable performance to MFCC. The transformation to the decorrelated

domain is achieved using a simple FIR filter, usually of order 2 (instead of DCT),

which simplifies integration into REMOS. In the following, this transformation will

be denoted by a matrix S ∈ RL×L, i.e.,

vFF = Sv.

However, before explaining the detailed structure of S, we discuss the influence of

this feature transformation on the optimization problem (5.4).
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5.2.1 Global Solution of the Inner Optimization Problem

One of the main issues in the REMOS decoding is the treatment of the inner opti-

mization problem (5.4). In order to obtain reliable clean-speech estimates ŝ(k), one

should aim for determining a global solution to (5.4). State-of-the-art optimization

algorithms cannot assure convergence to a global optimum but only to an arbitrary

local one. In this section, we therefore focus on the mathematical examination of the

inner optimization problem to determine a global solution while pointing out some

restrictions to the form of S.

5.2.1.1 Reformulation

First of all, we repeat the reformulation steps according to [104] and equivalently

decompose (5.4) into two subproblems:

max
x0(k),a(k)

fx0

(
x0(k)

)
· fa(k)

(
a(k)

)
s.t. exp

(
x(k)

)
= exp

(
x0(k)

)
+ exp

(
a(k) + x̂r(k)

)
(5.5)

and

max
s(k),h(0,k)

fs
(
s(k)

)
· fh(0)

(
h(0, k)

)
s.t.x0(k) = s(k) + h(0, k), (5.6)

where x0(k) = s(k)+h(0, k) denotes the direct sound component and fx0 = N (µx0 ,Cx0)

is the corresponding probability density function. As (5.6) is explicitly solvable, we

henceforth focus on the solution of (5.5). For sake of readability, we normalize the

following quantities and drop the vector indices k:

u = x0 − x,

w = a + x̂r − x,

µu = µx0 − x,

µw = µa + x̂r − x. (5.7)

The objective function to be maximized can be reformulated such that we obtain a

quadratic functional to minimize. Hence, (5.5) becomes

min
u,w∈RL

1

2
(u− µu)TC−1

x0
(u− µu)

+
1

2
(w − µw)TC−1

a (w − µw).

s.t. exp(u) + exp(w) = 1. (5.8)
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5.2.1.2 Decomposition

In contrast the previous REMOS implementation, we now allow the logmelspec co-

variance matrices C−1
x0

and C−1
a to be non-diagonal, i.e., we assume diagonality for

the corresponding matrices C−1
x0,FF and C−1

a,FF in the FF domain. These matrices are

related by

C−1
x0

= STC−1
x0,FFS,

C−1
a = STC−1

a,FFS.

In order to determine a global solution of the problem (5.8), all its local solutions

have to be calculated. This is computationally extremely demanding since (5.8) can

have up to 2L local minima [105], i.e., more than 16 million minima for L = 24.

To face this problem, we restrict the form of S in order to split (5.8) into small

subproblems.

Thus, S is considered to be a block matrix under permutation, designed in such

way that if two logmelspec channels are used to calculate a transformed coefficient,

neither of those channels is used again in combination with other logmelspec channel.

This that the pairs are exclusive, i.e.,

SP = S̊ =

S̊1

. . .

S̊L/2

 ∈ RL×L (5.9)

with

S̊i ∈ R2×2, i = 1, · · · , L/2,

and P ∈ RL×L being an appropriate permutation matrix. Hence, the logmelspec

covariance matrices can as well be transformed to a block structure by permutation:

PTC−1
x0

P = C̊−1
x0

=

C̊−1
x0,1

. . .

C̊−1
x0,L/2

 ∈ RL×L

with

C̊−1
x0,i
∈ R2×2, i = 1, · · · , L/2.

We define C̊−1
a in the same way. Analogously, each of the quantities u, µu, and µw

are permuted according to

PTw = ẘ =

 ẘ1
...

ẘL/2

 ∈ RL, ẘi ∈ R2, (5.10)
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which finally allows the decomposition of (5.8) into L/2 subproblems for each pair of

coupled logmelspec channels:

max
ůi,ẘi∈R2

1

2
(ůi − µ̊u,i)

T C̊−1
x0,i

(ůi − µ̊u,i)

+
1

2
(ẘi − µ̊w,i)

T C̊−1
a,i(ẘi − µ̊w,i)

s.t. exp(ůi) + exp(ẘi) = 1. (5.11)

Note that, due to the decomposition of (5.8) into several lower dimensional optimiza-

tion problems (5.11), the number of local minima is reduced to 4 for each i = 1, ..., L/2,

whereas the overall problem (5.8) would have had more than 16 million local minima

for L = 24.

The decomposed problem (5.11) is now numerically solved by piecewise linear

approximation of the non-linear constrained as proposed in [104]. Once this has been

effected for each i = 1, ..., L/2, the permutation (5.10) and the normalization (5.7)

are undone, and hence a numerical global solution x̂0, â of the optimization problem

(5.5) is obtained.

However, the restriction (5.9) we imposed to the form of S influences the way

features are extracted. In the following, we introduce the FF approach and show it

can be easily modified to meet the constraint (5.9). In contrast, a DCT matrix cannot

be adapted to fulfill the condition (5.9). For this reason, implementation of MFCCs

is not feasible.

5.2.2 Frequency Filtering in REMOS

The main goal of FF is to decorrelate the sequence of logmelspec energies. As ex-

plained before in Subsection 2.1.1, decorrelation is achieved by filtering the sequence

of logmelspec energies in the spectral domain with a simple filter (2.4). Recall that the

impulse response of the filter is h(k) = {1, 0,−1}, so the filtering operation consists

of a subtraction of the two bands adjacent to the current one, and during filtering,

zeros are assumed before the first and after the last logmelspec coefficient.
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Thus, the transformation matrix S using filter (2.4) for 8 channels looks as

SFF =



0 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0


. (5.12)

As explained before, S has to be designed in such way, that it meets the con-

straints in (5.9). In particular, A.) the size of the matrix is L× L, i.e., the number

of coefficients is not reduced after the transformation, and B.) when 2 logmelspec

channels are used in the transformation to calculate some coefficient, neither of those

two channels may be used with any other logmelspec channel in the pair again.

The transformation matrix in the original FF implementation (5.12) does not

meet the second constraint, because there are logmelspec channels that appear in

the calculation of transformed coefficients in several pairs. For example, the fourth

channel is used with the second to calculate one FF coefficient and it is used again with

the sixth channel to calculate another FF coefficient. This problem may be solved by

removing lines from the matrix in such way that only exclusive pairs remain, resulting

in

S′FF =


1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

 .

Since the number of features in the transformed domain has to be the same as

in the original one to meet (5.9), the suppressed lines must be replaced. One op-

tion is to simply insert zeros, but preliminary tests showed that the discrimination

among classes would be decreased. Instead, we replace the missing values by the

average of logmelspec coefficients adjacent to the current channel in order to include

the information about the original shape of the spectra. The rows in the resulting

transformation matrix are orthogonal to each other and the matrix for 8 channels has
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the following form:

S =



1 0 −1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 1 0 1


. (5.13)

Averaging may be seen as if the filter with impulse response h(k) = {1, 0, 1} was

applied.

In Fig. 5.1, a graphical interpretation of the transformation above is shown. The

full band is actually split into several independent bands. For each band, which

includes 4 logmelspec features, 4 new FF based features, coupled in a band, are

derived by a regular linear transformation according to (5.13). The FF− coefficients

are calculated using the filter (2.4) and are measuring the slope of the spectra. The

complementary coefficients FF+ are related the spectral amplitude.
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Figure 5.1: Transformation from logmelspec domain into partly decorrelated FF do-
main.
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5.3 Experiments

Experiments with the connected digit recognition task were carried out to analyze

the performance of REMOS using the new feature extraction method. This task is

chosen for evaluation since the probability of the current digit can be assumed to be

independent of the preceding digits so that the recognition rate is solely determined

by the quality of the acoustic model of REMOS.

5.3.1 Experimental Setup

To get the reverberant test data, the clean-speech TIDigits data were convolved with

different RIRs measured at different loudspeaker and microphone positions in five

rooms with the characteristics given in Table 5.1. A strict separation of training

and test data is maintained in all experiments both for speech and RIRs. Each test

utterance is convolved with an RIR selected randomly from a number of measured

RIRs in order to simulate changes of the RIR during the test.

The REMOS-based recognizer is implemented by extending the decoding routines

of HTK [98]. The speech data is sampled at 20 kHz. 16-state word-level HMMs

with single-Gaussian densities serve as clean-speech models. Two different versions

of REMOS are compared: the former REMOS in the logmelspec domain as well as

the new REMOS with the proposed FF based features extracted from the logmelspec

domain using transformation similar to (5.13). Both types have been tested with 16

and 24 mel-bands.

To obtain the baseline results, we employed an HTK recognizer trained on matched

reverberant data with 13 MFCCs as well as 13 delta coefficients and 3 Gaussian output

densities per HMM state. Furthermore, we applied the MLLR technique [98] to two

clean speech recognizers based on A) 13 MFCCs, 13 deltas, 3 Gaussians, and B) 24

MFCCs with single Gaussian densities, respectively. Hereby, only the mean vectors

of the output densities are transformed using 44 matched reverberant utterances and

a regression class tree of 32 base classes.

Further details about experimental setup can be found in [8]. Note that although

the task is the same, connected digits, the setup used here is different to the one used

in the previous chapters to evaluate the CS performance.

5.3.2 Experimental Results

Table 5.2 compares the word accuracy of the different REMOS versions with a state-

of-art recognizer trained on clean and on matched reverberant data, respectively. In
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Room Type T60 d SRR
R1 lab 300 ms 2.0 m 4 dB
R2 conf. room 600 ms 2.0 m 0.5 dB
R3 conf. room 780 ms 2.0 m 0.5 dB
R4 studio 700 ms 4.1 m -4 dB
R5 lecture room 900 ms 4.0 m -4 dB

Table 5.1: Summary of room characteristics: T60 is the reverberation time, d is
the distance between speaker and microphone, and SRR denotes the Signal-to-
Reverberation-Ratio.

all cases, one can observe a performance degradation with increasing reverberation

time. For all rooms the REMOS implementations show a significant improvement

compared to the clean-speech and the MLLR (1G+MFCC) adapted recognizer. In

room R5, they even outperform the MLLR adaptation of the 3G+MFCC+delta sys-

tem.

The 24 and 16 band versions perform quite similar in combination with logmelspec

features. However, stepping towards FF based features and reducing the number of

sub-bands from 24 to 16 brings a remarkable relative decrease in WER of up to 29%.

This clearly underlines the benefit of the proposed modified FF method. Concerning

the additional gain by sub-band reduction, one can think of three possible reasons:

1.) The high-indexed cepstral coefficients, which are intrinsically noisy, are less

weighted by the FF operation [16].

2.) Given the frequency filter (2.4), the correlation of the new features may be lower

since the sub-bands get further apart in frequency.

3.) The number of bands with 4 features decreases from 6 to 4, so there are less

discontinuities (see Fig. 5.1) in the final transformation.

We would like to underline that, although REMOS is only based on static features

and HMMs are trained on clean speech with single-Gaussian densities, it almost

reaches the performance of the state-of-the-art recognizer (3G+MFCC+delta) trained

on the matched reverberant data in the most reverberant room R5.

5.4 Summary

In this chapter, we presented the incorporation of partly decorrelated features based

on FF into the REMOS concept. Modifications were made on both sides, in the

feature extraction, as well as inside the inner optimization problem of REMOS. Con-
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Training Parameters R1 R2 R3 R4 R5
clean 1G+MFCC 85.7 62.5 60.4 52.5 47.7

clean+MLLR 1G+MFCC 88.7 84.1 81.2 83.6 70.4
REMOS 1G+logmel, 24 bands 90.5 90.5 88.9 87.5 88
REMOS 1G+logmel, 16 bands 90.7 89.8 89.1 88.2 87.7
REMOS 1G+proposed FF, 24 bands 91.9 91.8 90.8 89.3 90.2
REMOS 1G+proposed FF, 16 bands 93.4 92.2 91.6 90.5 90

clean+MLLR 3G+MFCC+∆ 96.6 94.8 91.2 92.5 83.4
matched rev. 3G+MFCC+∆ 98.2 96.6 95 95.8 91.7

Table 5.2: Comparison of word accuracies in % for rooms R1 to R5 and different
recognizers.

nected digit recognition experiments confirm that recognition strongly benefits from

new partly decorrelated features and show a significant and consistent improvement

in WER of up to 29% compared to the former logmelspec implementation.

REMOS can efficiently be adapted to changing acoustic conditions by simply

re-estimating the RVM, whereas a matched trained recognizer would have to be re-

trained, which is in general computationally very demanding. Based on the experi-

mental results we can furthermore hypothesize that the HMMs’ conditional indepen-

dence assumption is more inaccurate when the reverberation time increases. Even

matched reverberant training cannot compensate this restriction to an arbitrary ex-

tend.

Those facts indicate the limitations of conventional HMM-based recognizers in

reverberant environments and, at the same time, the need of reverberation modeling

techniques such as REMOS. There are several options for further improvements by

extending REMOS to multi-Gaussian densities and dynamic features.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis addressed the problem of ASR with distant-talking microphones in a

room environment, where reverberation is the dominant source of distortion. Several

solutions for both, single- and multi-microphone setups were described. Two main

research lines were followed: Channel Selection (CS) and feature extraction in the

framework of REMOS.

The CS is based on the idea that in multi-microphone scenarios the degree of

signal distortion differs among the channels, depending on the microphone position

and characteristics. Even if speech enhancement is applied, the processed speech

signals will not be distorted equally, so some of them may be decoded with less

recognition errors than others. Consequently, the ASR system may benefit if signals

of higher quality are selected for further processing. To do so, a measure of distortion,

or a measure of how well recorded or enhanced signals fit the set of acoustic models

of the ASR system is needed.

In this thesis a detailed overview of the CS measures reported in the literature

was made. They were categorized as signal- and decoder-based. The decoder-based

measures work in close cooperation with the decoder, so they should better reflect the

decoder’s preference than the signal-based ones. The advantage of the signal-based

measures is that the channel can be selected before the signal enters the classification

part of the ASR system, so recognition is made only once. Contrary, in the extraction

process of the decoder-based measures at least one classification is performed for

each channel, so the CS methods using these measures are computationally more

demanding.

Almost all existing CS measures were compared experimentally, what has not been

done so far. Several novel techniques from both categories were proposed and tested.

75



In particular, the signal-based measures using the relative position and orientation

of the speaker and microphone [84], measures extracted from the RIR [85], or from

the speech sub-band envelopes (the EV measure) [84, 106]; and two decoder-based

measures, one using the acoustic likelihood normalized across channels [89], and the

other extracted from the N-best lists [91].

The EV measure in many experiments matched or outperformed existing methods

both, in terms of recognition performance of the ASR system and computational

complexity. The decoder-based technique using the N-best lists is computationally

more expensive, but it provided the best results in average from all the techniques.

Very good recognition results were achieved for both methods even if the measure was

extracted only from a short utterance, so they may be applied in scenarios where low

recognition delay is required. Alternative decoder-based approaches usually require

longer speech segments to reach a similar performance.

We also proposed and tested the combination of various CS measures in two ways:

parallel and serial combination. If different measures are combined in parallel, further

ASR performance improvement may be achieved, surpassing the performance of the

individual measures. The serial combination may be used to reduce the computa-

tional load. The CS methods using the decoder-based measures perform well, but the

computational load may be very high if the measure is extracted for a large number

of channels. Therefore, we proposed to use a less complex signal-based measure first

in the front-end to select only few channels, and in the next step make a more precise

selection from the reduced channel set using the decoder-based methods or their com-

binations. When we used a computationally cheap EV method in the pre-selection

and combined methods in the second step, we showed that the computational load

could be reduced almost by half with only a slight loss in the recognition performance.

A real-time CS client using the EV measure was implemented in the UPC smart

room. When tested with the real distant-talking microphone recordings and moving

speakers, a significant recognition improvement was achieved for different ASR sys-

tem configurations. Also, it was observed in all experiments that if CS was applied

jointly with other robust ASR techniques, like matched training or mean and variance

normalization, the recognition improvements from both approaches were cumulative

up to some extend.

The second topic reported in this thesis was developed in the REMOS framework,

which is usually applied in single-microphone scenarios. A new feature extraction

method based on FF was designed, and published in [101], to replace the logarith-

mic mel-spectral features in the former REMOS implementation. The elements of
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logarithmic mel-spectral feature vector are highly correlated, what violates the as-

sumption made in the HMM-based systems, and results in a recognition performance

loss. The use of standard ASR features, like MFCC is restricted due to the complex-

ity of the inner optimization problem inside REMOS. The new feature extraction

method provided consistent recognition error reduction for all tested conditions.

6.2 Future work

In this thesis, the CS measures were applied in the following way. We assumed that

an utterance was acquired by several microphones. Then, different CS measures were

extracted for each channel, and only one signal, that presumably leads to the lowest

WER, was selected for recognition. The concept however can be exploited further

by working separately for each sub-band. In fact, it may happen that particular fre-

quency bands are less distorted for a given microphone than for the others. Therefore,

it would make sense to select and combine signals coming from the least distorted

frequency bands. There are several possibilities to combine them. It may be done at

the signal level, the feature level, or at the level of HMM emission probabilities in a

multi-stream way. Hence, not only the spatial, but also the spectral diversity would

be exploited.

When selecting the best microphone using the signal-based CS methods it was as-

sumed that the least distorted signal is the best one for recognition. This assumption

is reasonable if the acoustic models are trained with the clean speech. But, if models

are trained with noisy data, the use of the least distorted signal may not be optimal,

and a better procedure may be envisaged. To find a more suitable CS criterion, tai-

lored to a particular ASR system, a small amount of transcribed training data could

be used prior to the system deployment. Then, ideas from the feature adaptation

methods could be borrowed. For instance, feature histograms in each channel could

be computed, and, assuming known transcriptions of the training data, the system

could learn the histogram shape corresponding to the lowest average WER. In test-

ing, the channel with the histogram shape most similar to that one would be selected

for recognition. This is just an example of what in general could be called adaptive

signal-based CS methods. The main advantage of the signal-based methods over the

decoder-based ones, i.e its lower computational cost, would remain, since a decoding

for each stream is not necessary, but at the same time, thanks to the training phase,

the CS criterion would be closely coupled to the recognition system.

In previous works it was shown that microphone array processing can benefit from
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CS. The CS methods that were proposed here, however, have not been evaluated when

working jointly with microphone arrays yet. Furthermore, there are many single- and

multi-microphone noise and reverberation reduction methods that could be be used

together with CS and benefit from the combination in two ways. Firstly, the best

of the available signals in the multi-microphone environment would be used by those

methods, what may help to achieve better performance. Secondly, the computational

load would be reduced, if we apply those methods, which can be computationally

expensive, to a reduced channel set.

Additionally, relatively high quality microphones were used in the experiments in

this work. However, CS could be applied in even more difficult scenarios, where the

speech signals are recorded by microphones with different characteristics, like those in

laptops and smart-phones of the meeting participants. Nowadays, there is often more

than one microphone per person available in a meeting, considering almost everybody

owns at least one communication device. Usually those microphones are not used for

the ASR in the room, and CS could be one possibility to take advantage of their

presence and integrate them into the ASR processing chain; for instance, simply by

selecting the microphone that is the closest one to the active speaker. It would be

interesting to study the potential of such approach. The author of this thesis is not

aware of any speech database that could be used for that purpose, so a data collection

would be required first.

Speech is not the only audio signal that has to be recognized. Acoustic event

classification has recently received an increased interest of the research community.

Although classification of signals like door slam, steps, or laughter, in general, is less

susceptible to effects of noise and reverberation than speech, it could still benefit from

CS, for example in scenarios where the acoustic events occur in greater scales (e.g. in

corridors, or halls) or in different rooms, so more microphones are required to capture

the signal.

In summary, CS is a paradigm applicable to many multi-microphone scenarios.

Only a specific case (ASR in a meeting room with distant microphones) was in-

vestigated in this thesis, but it was demonstrated by different experiments that CS

may lead to significant improvements of ASR performance often with very low com-

putational effort. Furthermore, those improvements proved to be cumulative when

combined with other robust ASR methods. In the future, CS could be applied to even

more difficult scenarios and used not only with ASR, but also in classification of other

audio signals. Also, the possibility to rank and combine different sub-band signals in

order to take advantage of space-frequency dependent distortion, is appealing.
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Appendix A

The UPC Smart Room Impulse
Response Database

A.1 The UPC Smart Room description

Presented multi-microphone RIR database was recorded in the UPC smart room [107].

This room was developed by the UPC Speech Processing Group, which has been

involved in several projects with focus on applications related to the meetings and

seminars in the smart rooms, such as CHIL project founded by European Union, or

ACESCA, SAPIRE and SARAI projects founded by the Spanish Government.

The UPC smart room is a multi-modal room with multiple audio and video sen-

sors. This database contains RIRs recorded by 24 microphones, which are installed

in 6 T-shaped clusters and placed on the walls as illustrated in Figure A.1. Exact po-

sitions of the microphones in meters are listed in Table A.1. The order of coordinates

is indicated in the left-up corner of Figure A.1.

A.2 Measurement of RIRs

A RIR describes the wave propagation between the source and microphone. To

estimate it, an excitation signal is emitted from the desired position and recorded by

the microphone. In theory, an ideal signal for this purpose is the Dirac impulse, but

in practice it is technically difficult to generate it. Hence, noises and signal sweeps are

usually used instead. In this work we used the so-called “logarithmic sweep”, which

is a sweep signal with instantaneous frequency varying exponentially with time. The

spectrogram of this signal is shown in Figure A.2.

The original sweep signal s(t) is recorded in the distant talking microphone dis-
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Figure A.1: The UPC smart room with 24 microphones grouped in 6 T-shape clusters.
Approximate positions of RIR measurements and assumed orientations of the speaker
are shown. The drawing is not to scale.

torted by reverberation and additive noise. This may be may be described as

r(t) = s(t) ∗ h(t) + n(t), (A.1)

where h(t) is the RIR we want to estimate and n(t) is the additive noise present in

the room. Transforming Equation (A.1) into the frequency domain, we may write

R(t) = S(f) ·H(f) +N(f). (A.2)

Neglecting the additive noise, the room transfer function can be extracted as

h(t) = =−1{H(f)} = =−1{R(f)

S(f)
}, (A.3)

where =−1{.} denotes the inverse Fourier transform.

The RIRs extracted neglecting the additive noise were used in the experiments

in this thesis. However, the recording in the “silent“ room, which is also part of the

database, may be used to remove the additive noise from the measured RIR if needed.

The measurement equipment consisted of a loudspeaker and a laptop with a sound

card with sound IO. The excitation signal was emitted from the loudspeaker held by

a person on 16 different positions are 4 orientations, and recorded by 24 microphones

as shown in Figure A.1. Coordinates of the positions are listed in Table A.2. There

are 1536 RIRs available in the database. The sampling frequency was 44100 kHz and

the signal was recorded with the precision 16 bits.
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The measuring software and microphones were not perfectly synchronized, so the

exact moment when the excitation signal was emitted is not known. Therefore, the

initial delay before the arrival of the direct wave multiplied by the sound velocity can

not be used to estimate the distance between the speaker and microphone.

Note also, that similar procedure using the “logarithmic sweep” signal to estimate

RIRs was applied in the same room also in other works [31,108].

A.3 Statistics

To show an overall statistics of the collected RIRs, the reverberation time T60 and

DRR have been extracted from the database. The distributions of these parameters

are shown in Figures A.3 and A.4 respectively.

The reverberation time T60 was estimated using the Schroeder integral [109] com-

puted from a full-band RIR as

L(t) = 10 log

∫ ∞
t

h2(τ)dτ . (A.4)

The DRR was computed as a ratio between the energy of direct wave and early

reflections and the energy of the reverberation tail as

DRR = 10 log

∑50ms
t=0 h2(t)∑T
t=50ms h

2(t)
, (A.5)

where h(t) is a RIR of the duration T.
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Figure A.3: Histogram of the full-band reverberation time T60.
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Figure A.4: Histogram of the DRR.
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Table A.1: Coordinates of the microphones in meters.

Microphone x y z

1 3.949 4.115 2.382

2 3.949 3.915 2.382

3 3.949 3.715 2.382

4 3.949 3.915 2.682

5 1.812 5.228 2.387

6 2.012 5.228 2.387

7 2.212 5.228 2.387

8 2.012 5.228 2.687

9 0.017 3.730 2.387

10 0.017 3.930 2.387

11 0.017 4.130 2.387

12 0.017 3.930 2.687

13 0.022 1.875 2.387

14 0.022 2.075 2.387

15 0.026 2.275 2.387

16 0.022 2.075 2.687

17 1.811 0.390 2.380

18 2.011 0.390 2.380

19 2.211 0.390 2.380

20 2.011 0.390 2.680

21 3.945 2.260 2.382

22 3.945 2.060 2.382

23 3.945 1.860 2.382

24 3.945 2.060 2.682
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Table A.2: Coordinates of the measuring points in meters.

Position x y z

1 3.5 4.5 1.4

2 2.4 4.5 1.4

3 1.2 4.5 1.4

4 0.5 3.6 1.4

5 0.5 2.6 1.4

6 0.5 1.6 1.4

7 1.2 1.9 1.4

8 2 1.7 1.1

9 2.6 2.7 1.1

10 2 3.7 1.1

11 1.4 2.7 1.1

12 2 1 1.4

13 3.5 1.6 1.4

14 3.5 2.6 1.4

15 3.5 3.6 1.4

16 2 3.8 1.4
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Appendix B

Implementation of the Real-Time
CS Client in the UPC Smart Room

Algorithms are usually first tested in controlled conditions. If the performance is

satisfactory, the next (often challenging) step is to integrate those ideas into the

practical applications. Here, we describe implementation of the real-time CS client in

the UPC smart room. Our objective was to design it in a way, that it could be easily

combined with existing ASR systems. The off-line experiments showed that the EV-

based CS measure, developed in this thesis and described in Section 3.2.3, performs

very well in reverberant environments, even if the amount of data to estimate the

measure is small. Furthermore, since the CS method using this measure operates

in the front-end and before the feature extraction, it can be easily combined with

any ASR system. For these reasons it was selected for the real-time implementation.

Nevertheless, there are few other practical aspects to be considered.

A typical on-line ASR system assumes a single continuous stream of speech sam-

ples. The ASR system-independent CS client should therefore be able to process

several channels on the input, and output one uninterrupted stream that may be

passed to the feature extraction part of the recognizer, as if only one microphone was

recording the speech signal. In the off-line CS experiments we were working on the

utterance level, so a microphone was selected for the whole file. In the on-line ver-

sion, however, the signal stream is continuous and the utterance boundaries are not

marked. The channel should not change if the speech is present, because this would

introduce distortions into the signal due to different delays and power levels in each

channel. To avoid this, the silence (or speech) detector may be used to indicate the

non-speech intervals where the change is possible without harming the speech signal

quality.

Also, the processing time of the whole recognition chain is an important factor
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to consider in real-time systems. If we simply used the off-line strategy, we would

first have to buffer the signals from all channels between two silences, analyze them,

select the best one, and then pass it to the output. The ASR system needs another

time to extract the features and decode the utterance. The resulting accumulated

delay may be unacceptable in case of long utterances. To avoid this problem we pass

the speech samples from the selected channel immediately upon receiving without

any delay. At the same time, the speech samples from all channels are buffered

and used to extract the CS measure. The channel is selected just when the speech

segment ends and the silence appears. The current channel is therefore selected using

the measures extracted from the previous speech segment. The advantage of this

approach is that no delay is introduced by the CS client. The disadvantage is that

one adaptation speech segment is needed, and if the speaker’s position or orientation

changes significantly after each silence, the decision is not optimal.

The block diagram of CS system implemented in the UPC smart room is depicted

in Figure B.1. There are three main functional blocks, a simple energy-based silence

detector that marks the silence/non-silence intervals, the EV block where the speech

samples from all channels are buffered and the CS measures are calculated for each

segment between two silences, and finally the central part, where the decision is made

about which channel should be passed to the output and when is the right moment

to do the so. After the start, before the first speech that may be used to extract the

CS measure arrives, the system outputs the default channel. The same channel is

also always used by the silence detector.

The output of the CS client may be seen in Figure B.2. Notice the different signal

levels in the silent portions in the upper figure. This is because the signals were

recorded by different microphones. The exact moment when the channel was changed

is also clearly visible in the spectral domain. Since it happens in the silent portion

after the utterance, the speech distortion is minimized and the ASR performance

should not be affected.

The experimental results, testing the real-time CS client implementation in the

UPC smart room, may be found in Section 4.7.
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[7] K. Kumatani, J. McDonough, and B. Raj, “Microphone array processing for

distant speech recognition: From close-talking microphones to far-field sensors,”

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 127–140, 2012.

[8] A. Sehr, R. Maas, and W. Kellermann, “Reverberation model-based decod-

ing in the logmelspec domain for robust distant-talking speech recognition,”

IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 7,

pp. 1676–1691, 2010.

[9] C. Nadeu, J. Hernando, and M. Gorricho, “On the decorrelation of filter-bank

energies in speech recognition,” Proc. of EUROSPEECH, pp. 1381–1384, 1995.

89



[10] L. Rabiner, “A tutorial on hidden Markov models and selected applications in

speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[11] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition. Englewood

Cliffs, NJ, USA: Prentice Hall PTR, 1993.

[12] X. Huang, H.-W. Hon, and R. Reddy, Spoken Language Processing: A Guide

to Theory, Algorithm and System Development. Prentice Hall PTR, 2001.

[13] M. Gales and S. Young, “The application of hidden Markov models in speech

recognition,” Foundations and Trends in Signal Processing, vol. 1, no. 3,

pp. 195–304, 2007.

[14] N. Morgan, Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, M. Os-

tendorf, P. Jain, H. Hermansky, D. Ellis, G. Doddington, B. Chen, O. Cretin,

H. Bourlard, and M. Athineos, “Pushing the envelope - aside [speech recogni-

tion],” IEEE Signal Processing Magazine, vol. 22, no. 5, pp. 81–88, 2005.

[15] S. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE Trans-

actions on Acoustics, Speech and Signal Processing, vol. 28, no. 4, pp. 357–366,

1980.

[16] C. Nadeu, D. Macho, and J. Hernando, “Time and frequency filtering of filter-

bank energies for robust HMM speech recognition,” Speech Communication,

vol. 34, pp. 93–114, Apr. 2001.

[17] M. Wölfel and J. McDonough, Distant Speech Recognition. Hoboken, NJ: Wiley,

June 2009.

[18] S. Furui, “On the role of spectral transition for speech perception,” The Journal

of the Acoustical Society of America, vol. 80, no. 4, pp. 1016–1025, 1986.

[19] L. E. Baum and J. A. Eagon, “An inequality with applications to statistical

estimation for probabilistic functions of Markov processes and to a model for

ecology,” Bulletin of the American Mathematical Society, vol. 73, no. 3, pp. 360–

363, 1967.

[20] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains,”

The Annals of Mathematical Statistics, vol. 41, pp. 164–171, Feb. 1970.

90



[21] A. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-

mum decoding algorithm,” IEEE Transactions on Information Theory, vol. 13,

no. 2, pp. 260–269, 1967.

[22] H. Kuttruff, Acoustics. Taylor & Francis, 2007.

[23] Y. H. Takanobu Nishiura, “Investigations into early and late reflections on

distant-talking speech recognition toward suitable reverberation criteria.,” in

Proc. of INTERSPEECH, pp. 1082–1085, 2007.

[24] T. Fukumori, M. Morise, and T. Nishiura, “Performance estimation of rever-

berant speech recognition based on reverberant criteria RSR-dn with acoustic

parameters.,” in Proc. of INTERSPEECH, pp. 562–565, ISCA, 2010.

[25] R. Petrick, K. Lohde, M. Wolff, and R. Hoffmann, “The harming part of

room acoustics in automatic speech recognition,” in Proc. of INTERSPEECH,

pp. 1094–1097, 2007.

[26] D. Rybach, C. Gollan, G. Heigold, B. Hoffmeister, J. Lööf, R. Schlüter, and
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