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capaz de recorrer sin la ayuda de mi familia, amigos y colegas. Entre ellos, el agradecimiento más

especial es para mis padres Germán e Inés per haberme educado con rectitud y amor. No solo

me han apoyado incondicionalmente estos últimos años de doctorado, sino que lo han hecho desde
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Abstract

This thesis presents a novel and complete fuzzy multi-criteria decision making (MCDM) method-

ology. This methodology is specifically designed for selecting classifications in the framework of

unsupervised learning systems. The main results obtained are twofold. On the one hand, the

definition of fuzzy criteria to be used to assess the suitability of a set of given classifications and,

on the other hand, the design and development of a natural language generation (NLG) system to

qualitatively describe them.

Unsupervised learning systems often produce a large number of possible classifications. In order

to select the most suitable one, a set of criteria is usually defined and applied sequentially to assess

and filter the obtained classifications. This is done, in general, by using a true-false decision in

the application of each criterion. This approach could result in classifications being discarded and

not taken into account when they marginally fail to meet one particular criterion even though they

meet other criteria with a high score. An alternative solution to this sequential approach has been

introduced in this thesis. It consists of evaluating the degree up to which each fuzzy criterion is

met by each classification and, only after this, aggregating for each classification the individual

assessments. This overall value reflects the degree up to which the set of criteria is globally satisfied

by each classification.

Five fuzzy criteria are defined and analysed to be used collectively to evaluate classifications.

The corresponding single evaluations are then proposed to be aggregated into a collective one by

means of an Ordered Weighted Averaging (OWA) operator guided by a fuzzy linguistic quantifier,

which is used to implement the concept of fuzzy majority in the selection process. In addition, a

NLG system to qualitatively describe the most important characteristics of the best classification

is designed and developed in order to fully understand the chosen classification. Finally, this new
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methodology is applied to a real business problem in a marketing context. The main purpose of

this application is to show how the proposed methodology can help marketing experts in the design

of specific-oriented marketing strategies by means of an automatic and interpretable segmentation

system.

x



Resumen

En esta tesis se presenta una novedosa y completa metodoloǵıa difusa y multicriterio (MCDM).

Esta metodoloǵıa está espećıficamente diseñada para la selección de clasificaciones en el marco

de los sistemas de aprendizaje no supervisado. Los principales resultados obtenidos son de dos

tipos. Por un lado, la definición de criterios difusos que se utilizan para evaluar la idoneidad de un

conjunto de clasificaciones dadas y, por otro lado, el diseño y desarrollo de un sistema de generación

de lenguaje natural (NLG) para describirlos cualitativamente.

Los sistemas de aprendizaje no supervisado producen a menudo un gran número de posibles

clasificaciones. Con el fin de seleccionar la más adecuada, se suele definir y aplicar de forma

secuencial un conjunto de criterios para evaluar y filtrar las clasificaciones obtenidas. Esto se hace,

en general, mediante el uso de una decisión de verdadero o falso en la aplicación de cada criterio.

Este enfoque podŕıa dar lugar al descarte de clasificaciones cuando marginalmente no cumplen con

algún criterio particular, a pesar de que cumplen con otros criterios incluso con una puntuación más

alta. En esta tesis se introduce una solución alternativa a este enfoque secuencial. Esta alternativa

consiste en evaluar el grado hasta el cual cada criterio difuso es cumplido por cada clasificación,

y sólo después de esto, agregar para cada clasificación las evaluaciones individuales. Este valor

general refleja el grado hasta el cual el conjunto de criterios es globalmente satisfecho por cada

clasificación.

Se definen y analizan cinco criterios difusos para ser usados de forma colectiva para evaluar clasi-

ficaciones. Se propone a continuación la agregación de las correspondientes evaluaciones individuales

en una colectiva por medio de un operador OWA guiado por un cuantificador lingǘıstico difuso, que

se utiliza para poner en práctica el concepto de mayoŕıa difusa en el proceso de selección. Además,

un sistema NLG es diseñado y desarrollado para describir cualitativamente las caracteŕısticas más
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importantes de la mejor clasificación con el fin de entender plenamente la clasificación elegida. Por

último, esta nueva metodoloǵıa es aplicada a un problema empresarial real en un contexto de mar-

keting. El propósito principal de esta aplicación es mostrar cómo la metodoloǵıa propuesta puede

ayudar a los expertos de marketing en el diseño de estrategias de marketing espećıficas y orientadas

por medio de un sistema de segmentación automática e interpretable.
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Resum

En aquesta tesi es presenta una nova i completa metodologia difusa i multicriteri (MCDM). Aquesta

metodologia està especificament disenyada per a la selecció de classificacions en el marc dels sistemes

d’aprenentatge no supervisat. Els principals resultats obtinguts són de dos tipus. D’una banda, la

definició de criteris difusos que s’utilitzen per avaluar la idonëıtat d’un conjunt de classificacions

donades i, d’altra banda, el disseny i desenvolupament d’un sistema de generació de llenguatge

natural (NLG) per descriure’ls qualitativament.

Els sistemes d’aprenentatge no supervisat produeixen sovint un gran nombre de possibles classi-

ficacions. Amb la finalitat de seleccionar la més adequada, se sol definir i aplicar de forma seqüencial

un conjunt de criteris per avaluar i filtrar les classificacions obtingudes. Això es fa, en general, mit-

jançant l’ús d’una decisió de cert o fals en l’aplicació de cada criteri. Aquest enfocament podria

donar lloc al descartament de classificacions quan marginalment no compleixen amb algun criteri

particular, a pesar que compleixen amb altres criteris fins i tot amb una puntuació més alta. En

aquesta tesi s’introdueix una solució alternativa a aquest enfocament seqüencial. Aquesta alterna-

tiva consisteix en avaluar el grau fins al qual cada criteri difús és complert per cada classificació, i

només després d’això, agregar per a cada classificació les avaluacions individuals. Aquest valor gen-

eral reflecteix el grau fins al qual el conjunt de criteris és globalment satisfet per cada classificació.

Es defineixen i analitzen cinc criteris difusos per ser usats de forma col·lectiva per avaluar

classificacions. Es proposa a continuació l’agregació de les corresponents avaluacions individuals

en una de col·lectiva per mitjà d’un operador OWA guiat per un quantificador lingǘıstic difús, que

s’utilitza per posar en pràctica el concepte de majoria difusa en el procés de selecció. A més, un

sistema de NLG és dissenyat i desenvolupat per descriure qualitativament les caracteŕıstiques més

importants de la millor classificació amb la finalitat d’entendre plenament la classificació triada.
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Finalment, aquesta nova metodologia és aplicada a un problema empresarial real en un context de

màrqueting. El propòsit principal d’aquesta aplicació és mostrar com la metodologia proposada pot

ajudar als experts de màrqueting en el disseny d’estratègies de màrqueting espećıfiques i orientades

per mitjà d’un sistema de segmentació automàtica i interpretable.
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Chapter 1

Introduction

This document corresponds to the doctoral thesis carried out by Germán Sánchez Hernández. This

thesis corresponds to the doctoral program of Automatic Control, Robotics and Computer Vision

(ARV) of the Automatic Control Department (ESAII) and the Institute of Industrial and Control

Engineering (IOC), belonging to the Universitat Politècnica de Catalunya – BarcelonaTech (UPC)1.

This thesis has been developed at ESADE Business School. ESADE is an international academic

institution with over fifty years of history. ESADE head quarters are based in Barcelona and its

main activities are education, research and social debating in the area of management, economy

and business. The research lines of ESADE are mainly focused on entrepreneurship, innovation,

leadership and governance, management, skills and knowledge, business social responsibility, etc.

ESADE is affiliated with the Ramon Llull University (URL), a private, non profit-making university

providing a public service.

The studies conducted in this thesis have been carried out at the Research Group on Knowledge

Engineering2 (GREC). The GREC group was set up in 1994 and is recognised as a consolidated

research group (2005 SGR 00943, 2009 SGR 855) by the Government of Catalonia. It is an inter-

university group bringing together researchers from the BarcelonaTech and ESADE. Right from the

outset, the multidisciplinary facet of the group has allowed it to work on both basic and applied

research. The GREC’s main activity focuses on research and development of techniques in the area

of Artificial Intelligence (AI). The GREC Research Group at ESADE has two broad goals: (1)

1ESAII: http://esaii.upc.edu; IOC: http://ioc.upc.edu; UPC: http://www.upc.edu
2ESADE: http://www.esade.edu; GREC: http://esade.edu/research-webs/grec; URL: http://www.url.edu

1
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development of AI methodologies in non-structured environments (incomplete information, quali-

tative and fuzzy); (2) the application of these methodologies to fields bearing on decision-making,

finances and marketing.

1.1 Motivation and framework

Intelligent systems for decision support making are especially essential for companies or institutions

that adopt strategies based on the use of information and operate in highly complex contexts. These

systems must help in understanding and managing the large amount of information available from

customers, products, competitors, and in assessing and analysing the alternatives in a explanatory

and easily interactive way for the user. The growing interest in the last decades in automatic

decision support systems lies in their ability to both synthesising information and obtaining easily

interpretable results.

The use of unsupervised learning systems allows the behaviour of certain phenomena to be

understood without relying on expert knowledge or information from past situations. Such systems

usually offer several ways of segmenting the considered individuals. The selection of the best

classification can be faced as a multi-criteria decision making (MCDM) approach. The definition of

several criteria to evaluate several alternatives is done in this thesis by aggregating the assessments

of each classification in terms of an Ordered Weighted Averaging (OWA) operator. Finally, some

tools must be designed in order to interpret the chosen classification, as a qualitative description of

the main characteristics of each considered class.

The final scope of this thesis was decided after a three-months visit period to the Centre for

Computational Intelligence (CCI) at De Montfort University (DMU), in Leicester, United Kingdom.

After having developed projects in which the selection of the best classification and its corresponding

description were done in a manual way, the interest of the CCI in the research of operators for

aggregating information led to the application of a MCDM approach for ranking classifications.

Further research induced the development of a natural language generation (NLG) system to better

understand the best classification by qualitatively describing the considered classes.

2
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1.2 Objectives

The main objective of this thesis is to study and develop a complete MCDM system to create, select

an understand the best classification on a set of individuals and according a set of criteria. This

general objective can be divided into the following specific ones:

1. Generation of several classifications of a set of individuals by the application of unsupervised

learning techniques.

2. Evaluation of classifications by analysing and designing a set of fuzzy criteria. Development

of an index measuring the degree up to which each criterion is verified by each considered

classification.

3. Rank of classifications by aggregating the assessments of each classification in terms of an

OWA operator, and selection of the best classification.

4. Interpretation of a classification by designing an developing a NLG system that qualitatively

describes the main characteristic of each class.

5. Application of this complete approach into a real marketing problem.

The main contributions of this thesis are related to the second and fourth objectives: the design

of a set of fuzzy criteria to assess classifications (Chapter 3) and the development of a system to

obtain a natural language-based description of a certain classification (Chapter 4).

1.3 Theoretical background

The use of machine learning (ML) tools within MCDM systems is especially interesting in envi-

ronment where the available large volume of data has become a negative aspect when analysing

alternatives and obtaining useful information. In general, either classification systems (supervised

learning) or clustering systems (unsupervised learning) are used. The former are useful in situations

in which the patterns have a label indicating their class, obtained from the behaviour, opinion or

knowledge of an expert that is tried to be imitated when he is missing. The latter are convenient

in scenarios where that label is not available. Frequently, both types of learning are used in com-

bination. Situations can be found where, even being a classification available, existing classes are

not separable. In these cases it is necessary to obtain a prior partition of initial classes compat-

3
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ible enough with the original classification in order to group together the more similar examples,

increasing the homogeneity of the resulting new classes.

This thesis is situated in the context of unsupervised learning algorithms. The origins of such

learning systems date back to the end of the last century. Seminal studies conducted by Ackley et al.

(1985) and Barlow (1989) were based on Boltzmann machines. These learning systems imported

many of the concepts from multivariate statistics: either those based on the density estimation

methods (Grenander and Miller, 1994) or those based on distances between patterns. For this

reason, it is considered that there are two groups of unsupervised learning models (Barlow, 1989).

On the one hand, models based on the estimation of pattern distribution or density functions and,

on the other hand, models based on distances between patterns or between patterns and classes.

Models based on connectionist approaches can be found in both directions.

From the application point of view, unsupervised learning systems have been considered in

the literature as systems capable to capture knowledge from complex structures (Duda et al., 2001;

Figueiredo and Jain, 2002; Jain, 2010). Such methods have been applied in a wide range of domains,

among which it is worth mentioning: text categorisation, images recognition, telecommunications

fraud detection, stock price forecasting, bioinformatics, fault diagnosis, pollution classification and

clinical or socioeconomic systems (Barrón-Adame et al., 2012; Chen et al., 2005; Constantinos and

Paris, 2008; Elati and Rouveirol, 2011; Ferraretti et al., 2012; Goldsmith, 2001; Hadavandi et al.,

2010; Lee and Yang, 2009; Niebles et al., 2008; Oliver et al., 2011; Yang et al., 2011). In the

marketing field, finding new and creative solutions is valuable because these allow for the definition

of new strategies and innovation. The use of unsupervised learning algorithms allows us to suggest

segmentations that are, in principle, not trivial. In this sense, behavioural patterns of ‘interesting’

profiles could be established by using this type of algorithms and these may reveal new customer

profiles not yet known to experts (Chiu et al., 2009; Hong and Kim, 2012; Mo et al., 2010; Yao

et al., 2010; Lu et al., 2012).

Unsupervised learning systems produce in most cases a large number of possible classifications.

The development of suitable tools or models for selecting classifications is an important topic of

research in such area (Broder et al., 2008; Kukar, 2003; Osei-Bryson, 2010). It is usual to define

a set of criteria in order to select the most suitable classification, and to apply them sequentially

to the considered classifications (Choi et al., 2005; Osei-Bryson, 2010; Sánchez-Hernández et al.,

2007; Sánchez Almeida et al., 2010). This approach discards all those classifications failing to

4
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meet a particular criterion but it is important to note that it could result in classifications being

prematurely discarded because they fail to meet one particular criterion but meet the other with a

high grade.

An alternative to this sequential approach is that of evaluating the degree up to which each

criterion is met by each classification. This can be done by modelling each criterion by means

of a membership function, thus associating an index with each criterion. Once each criterion is

evaluated on a classification, an overall aggregated value must be obtained for reflecting the degree

up to which the set of criteria is satisfied by the classification.

Currently, at least 90 different families of aggregation operators have been studied (Chiclana

et al., 2004, 2007; Dubois and Prade, 1985; Fodor and Roubens, 1994; Herrera et al., 2003; Klir and

Folger, 1988; Torra, 1997; Torra and Narukawa, 2007; Xu and Da, 2003; Yager, 1988; Zhou et al.,

2008). Among them the OWA operator proposed by Yager (1988) is the most widely used. One of

the main reasons to support this extensive use is that the OWA operator allows the implementation

of the concept of fuzzy majority in the aggregation phase by means of a fuzzy linguistic quantifier

(Zadeh, 1983) which indicates the proportion of satisfied criteria ‘necessary for a good solution’

(Yager, 1996). This is done by using the linguistic quantifier in the computation of the weights

associated to the OWA operator. The objective of the aggregation step is to combine a set of

criteria in such a way that the final aggregation output takes all the single criterion into account

(Dubois and Prade, 1985). The final selection of classifications naturally derives from this set of

overall degrees and therefore valuable classifications are not discarded for having failed to meet few

criteria.

Interpreting the classes of the chosen classification requires an amount of technical knowledge

the end user does not usually possess (Oja, 1983). For this reason, it is desirable to rely on an

automated tool for the description of these classes. If this description is done in a qualitative way,

it enables the interpretation and understanding of the results, and improves the transmission of

useful knowledge to experts.

1.4 Structure of the doctoral thesis

This thesis is structured as follows. In Chapter 2 a literature review of the topics of criteria for

assessing and selecting classifications, aggregation functions based on OWA operators and natural
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language systems for translating data to qualitative texts is provided. The next two chapters detail

the main contributions of this thesis: Chapter 3 analyses and defines a set of five fuzzy criteria

for assessing classifications while in Chapter 4 a NLG system to describe qualitatively the most

important features of a classification is detailed. All analysed methodologies are applied in Chapter

5, where a case study is presented to generate, select and describe a segmentation from a real

business situation. Finally, in Chapter 6 conclusions are drawn and suggestions made for further

work. At the end of this document, Appendixes A and B include a brief explanation of LAMDA

algorithm, the unsupervised learning method used in this thesis, and result tables of the case study,

respectively.

Note that although the improvement or study of new aggregation functions is not within the

scope of this thesis, Chapter 2 contains a description and a review of the literature on this topic.

These functions have an important role in this thesis when summarising the information provided

by the indexes associated with the criteria analysed in Chapter 3. Event though Chapter 5 presents

an application of the presented methodology, Chapters 3 and 4 include easy examples with the

aim of making this thesis reading more enjoyable and didactic. The end of each chapter contains a

summary of conclusions related to the chapter, in addition with further research to be done.

1.5 Publications derived from this thesis

Germán Sánchez-Hernández, Francisco Chiclana, Núria Agell, Juan Carlos Aguado (2013). Rank-

ing and selection of unsupervised learning marketing segmentation. Knowledge-Based Sys-

tems, 44:20–33.

Francisco J. Ruiz, Albert Samà, Germán Sánchez, José Antonio Sanabria and Núria Agell (2011).

An interval technical indicator for financial time series forecasting. Proceedings of the 25th

International Workshop on Qualitative Reasoning (QR).

Germán Sánchez, Albert Samà, Francisco J. Ruiz and Núria Agell (2010). Moving intervals for

nonlinear time series forecasting. Proceedings of the 13th International Conference of the

Catalan Association for Artificial Intelligence (CCIA).

José Antonio Sanabria, Germán Sánchez, Núria Agell and Josep Sayeras (2010). An application

of SVMs to predict financial exchange rate by using sentiment indicators. Proceedings of the
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V Simposio de Teoŕıa y Aplicaciones de Mineŕıa de Datos (TAMIDA).

Germán Sánchez, Juan Carlos Aguado, Núria Agell, Mónica Sánchez (2009). Automatic Com-

parison and Selection of Classifications in Unsupervised Learning Processes. XI Jornadas

de ARCA Sistemas Cualitativos, Diagnosis, Robótica, Sistemas Domóticos y Computación

Ubicua (JARCA). Almuñécar (Granada), 24-26 June 2009.

Germán Sánchez, Mònica Casabayó, Albert Samà and Núria Agell (2008). Forecasting Customer’s

Loyalty by Means of an Unsupervised Fuzzy Learning Method. Electronic proceedings of the

28th International Symposium on Forecasting, 43. Nice, 22-25 June 2008.

Germán Sánchez, Juan Carlos Aguado and Núria Agell (2007). Forecasting New Customers’

Behaviour by Means of a Fuzzy Unsupervised Method. Artificial Intelligence Research and

Development, Frontiers in Artificial Intelligence and Applications. Proceedings of the 10th

CCIA., 163:368–375. Andorra, 25-26 October 2007. ISBN: 978-1-58603-798.

Germán Sánchez, Núria Agell, Juan Carlos Aguado, Mónica Sánchez and Francesc Prats (2007).

Selection Criteria for Fuzzy Unsupervised Learning: Applied to Market Segmentation. In

Foundations of Fuzzy Logic and Soft Computing. Lecture Notes in computer Science, 4529:307–

310.

Cati Olmo, Germán Sánchez, Núria Agell, Mónica Sánchez and Francesc Prats (2007). Using

Orders of Magnitude and Nominal Variables to Construct Fuzzy Partitions. Proceedings of

the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–6. London, 23-26 July

2007.
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Chapter 2

Literature review

The application of unsupervised learning techniques enables the user to obtain new ways of segment-

ing a data set that were previously unthinkable. The selection of the most suitable classification

from the obtained (or considered) ones can be faced as a multi-criteria decision making (MCDM)

problem, in which each alternative is assessed according a set of criteria. The application of the

considered criteria can be done in a sequential way in which each criterion is applied by discarding

those classifications whose evaluation does not reach a predefined threshold. An alternative to this

sequential approach is, for each classification, to aggregate each individual assessment and there-

fore to obtain a global ranking of the classification. Finally, in order to complete the system and

fully understand the best classification according to the obtained ranking, a description of the most

important characteristics of its classes must be provided.

In this thesis a contribution to the selection of classifications is provided, in terms of the criteria

used to assess some aspects of the considered classifications, the functions used to aggregate the

assessments and a qualitative description of the chosen classification with the aim of making the

result of the MCDM system easily understandable. That is why this chapter includes a review of

literature on this three topics. More specifically, Section 2.1 reviews criteria and methods for eval-

uating classifications that can be obtained from applying any of the available clustering techniques,

Section 2.2 reviews aggregation functions with a deeper emphasis in Ordered Weighted Averag-

ing (OWA) operators and finally, in Section 2.3 a review of literature in data-to-text systems is

provided.
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2.1 Criteria for selecting classifications

Unsupervised learning or clustering is one of the most useful tools in data mining processes for

discovering groups that were previously unknown. A clustering technique segments a given data

set into groups or clusters such that the individuals in a cluster are more similar to each other than

individuals in different clusters (Barlow, 1989; Jain et al., 1999).

The design of suitable systems for selecting classifications is an important topic of research

in clustering area (Kukar, 2003; Osei-Bryson, 2010) because such systems produce in most cases

different classifications. If the inherent partition of a data set is known, the problem is translated

into a search for the optimal clustering scheme that best fits this inherent partition (Halkidi et al.,

2002). Other approaches do not select directly the best classification, but define the final partition

by grouping the obtained ones in term of voting or averaging (Broder et al., 2008). In general,

it is not usual to have a priori information of the data set, so the selection of the most suitable

classification lies in the application of a single criterion or a set of criteria previously defined.

There are mainly three types of clustering validation criteria: internal, external and relative

(Jain et al., 1999; Theodoridis and Koutroumbas, 2008). An internal criterion tries to determine if

the classification structure is intrinsically appropriate for the considered data (Liu et al., 2010). An

external criterion of validation compares the considered classification with an a priori structure:

either a previously known partition of the analysed dataset typically provided by some domain

experts or an external variable not participating in the clustering process (Wu et al., 2009). Finally,

a relative criterion measures the relative similarity between two classifications, usually by comparing

them by using the same supervised technique (Jain et al., 1999).

Several works reviewing cluster validation indexes have been published. In Halkidi et al. (2001) a

review of clustering algorithms is done. The algorithms are explained by comparing them, including

a review of clustering validity measures. Liu et al. (2010) analyse a set of eleven internal criteria that

measure compactness and separation of the considered clusters, and give the validation properties

of some of these criteria in different scenarios. In Yatskiv and Gusarova (2005) a review of the

computation of indexes related to the most used internal and external criteria is done. Osei-

Bryson (2010) gives an extensive review of cluster validation and provides a methodology in which

the considered classifications are being discarded by applying predefined thresholds on a set of

validation criteria. These considered criteria cover the three types of validation criteria. These

10
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works and other using or defining new criteria are shown in Tables 2.1 and 2.2.

Internal criteria for validating classifications can be classified according to the concept they

are related to. Criteria associated with the compactness concept compute how closely related

the individuals in a cluster are; these criteria are usually based on indexes measuring density or

variance of the clusters (Bittmann and Gelbard, 2009; Cheng et al., 1999; Halkidi et al., 2001;

Liu et al., 2010; Ramze Rezaee et al., 1998; Tibshirani and Walther, 2005; Wang et al., 2009;

Xiong et al., 2009). Separability criteria determine how distinct or well-separated a cluster is from

other clusters (Halkidi et al., 2001; Liu et al., 2010; Ramze Rezaee et al., 1998; Tibshirani and

Walther, 2005; Wang et al., 2009; Xiong et al., 2009). Criteria related to the prediction strength

of the clusters calculate the accuracy rate of a model obtained by applying a supervised learning

technique on them (Kukar, 2003; Osei-Bryson, 2010; Tibshirani and Walther, 2005; Xiong et al.,

2009). Some criteria are based on the number of important features (Osei-Bryson, 2010). Criteria

quantifying the achievement of goals can be very heterogeneous: from analysing desired structure

of the obtained clusters (Cheng et al., 1999), applying economic theories (Choi et al., 2005), being

assessed by graphical visualisations (Bittmann and Gelbard, 2009), or checking the existence of

outliers clusters or pairs of variables (Osei-Bryson, 2010).

External criteria require the existence of an a priori external variable or classification defined

for each of the individuals. The computation of an index associated with external criteria can be

performed by any of the following indexes: Rand statistic, Jaccard coefficient, Fowlkes and Mallows

index, Hubert’s statistic and so on (Halkidi et al., 2001; Wu et al., 2009; Yatskiv and Gusarova,

2005).

Finally, the computation of relative criteria implies the pairwise comparison between clusters.

This comparison is usually performed by some domain experts (Halkidi et al., 2001; Osei-Bryson,

2010; Yatskiv and Gusarova, 2005). Although there are some methods to guide the search of which

comparisons should be made for minimising their number, relative criteria have not been taken into

account in this work due to the usual difficulty in getting this feedback from the experts.

As it can be seen in Tables 2.1 and 2.2, all analysed papers give a review of existing criteria

or make a definition of new criteria, all of them based on some of the concepts used for clustering

evaluation. It is important to note that almost all concepts are covered in the present work.
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2.2 Aggregation functions based on OWA operators

This section reviews the literature in aggregation functions, emphasising in the study of OWA

operators. Although the improvement or study of new aggregation functions is not one of the

contributions of this thesis, a study and review of the literature in this topic is done since these

functions have an important role in this thesis. They are responsible for summarising the informa-

tion provided by the indexes allowing us to select the most suitable classification.

The selection of the most suitable classification among a set of feasible ones and according to

a set of predefined criteria can be faced as a MCDM approach. Each classification (alternative) is

assessed by each of the considered criteria (evaluations). MCDM problems normally consist of two

steps (Fodor and Roubens, 1994): aggregation and exploitation. The aggregation step consists of

combining for each alternative the single evaluations into a collective evaluation in such a way that

it summarises the conditions expressed in all the evaluations. The exploitation phase transforms

the global evaluation of the alternatives into a ranking of the alternatives. This can be done in

different ways, the most common being the use of a ranking method to obtain a score function

(Chiclana et al., 1998; Gramajo and Mart́ınez, 2012; Zhang and Guo, 2012; Zhou and Chen, 2012).

Many different families of aggregation operators have been studied (Chiclana et al., 2004, 2007;

Dubois and Prade, 1985; Fodor and Roubens, 1994; Herrera et al., 2003; Klir and Folger, 1988;

Torra, 1997; Torra and Narukawa, 2007; Xu and Da, 2003; Yager, 1988; Zhou et al., 2008). Among

them the OWA operator proposed by Yager (Yager, 1988) is one of the most widely used. Among

the reasons to support this extensive use of the OWA operator is that it allows the implementation

of the concept of fuzzy majority in the aggregation phase by means of a fuzzy linguistic quantifier

(Zadeh, 1983) representing the proportion of satisfied criteria ‘necessary for a good solution’ (Yager,

1996). This is done by using the linguistic quantifier in the computation of the weights associated

with the OWA operator. In addition, Marichal (1998) investigated the aggregation of dependent

criteria and the fuzzy integral was found to be the appropriate aggregation operator in these cases.

The most representative fuzzy integrals are the Choquet integral and the Sugeno integral. It is well

known that the OWA operator is a particular case of Choquet integral, and consequently it is not

necessary to assume independence of criteria when using the OWA operator.

Generally speaking, the OWA operator based aggregation process consists of three steps:

(i) the first step is to re-order the input arguments in increasing order. In this way, a particular
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element for aggregation is not associated with a particular weight, but rather a weight is

associated with a particular ordered position of an aggregated object;

(ii) the second step is to determine the weights for the operator in a proper way;

(iii) finally, the OWA weights are used to aggregate the re-ordered arguments.

Among the three steps, the first step introduces non-linearity into the aggregation process by

re-ordering the input arguments, which make Yager’s OWA operator significantly different from the

classical linear weighted averaging operator.

Definition 2.1. An OWA operator of dimension n is a mapping φ : Rn → R, which has a set of

weights W = (w1, · · · , wn)T associated with it, so that wi ∈ [0, 1] and
n∑
i=1

wi = 1,

φW (a1, · · · , an) =

n∑
i=1

wiaσ(i) (2.1)

where σ is a permutation function such that aσ(i) is the i-th highest value in the set {a1, · · · , an}.

This OWA operator exhibits the following desirable properties for an aggregation operation:

1. It is commutative:

φW
(
pσ(1), . . . , pσ(n)

)
= φW (p1, . . . , pn) ,

being σ any permutation of the set {1, . . . , n}.

2. It is an or-and operator, i.e., it is located between the minimum and the maximum of the

arguments to be aggregated:

min(ai) ≤ φW (a1, · · · , an) ≤ max(ai).

3. It is idempotent:

φW (a, · · · , a) = a.

4. It is monotonic:

φW (a1, · · · , an) ≥ φW (e1, · · · , en), if ai ≥ ei ∀i.
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An issue in the definition of the OWA operator is how to obtain the associated weighting vector

(Yager, 1988). In Yager (1988) we can find two ways to do this. The first approach is to use a

learning mechanism using some sample data; the second approach is to provide some semantics or

meaning to the weights. The latter approach enables applications in the area of quantifier guided

aggregations (Yager, 1983; Pei et al., 2012).

In the process of quantifier guided aggregation, given a collection of n criteria represented as

fuzzy subsets of the alternatives X, the OWA operator has been used to implement the concept

of fuzzy majority in the aggregation phase by means of a fuzzy linguistic quantifier (Zadeh, 1983)

that indicates the proportion of satisfied criteria ‘necessary for a good solution’ (Yager, 1996). This

implementation is done by using the quantifier to calculate the OWA weights.

Definition 2.2. A fuzzy subset Q is called a Regular Increasing Monotone (RIM) quantifier if

(i) Q(0) = 0; (ii) Q(1) = 1; (iii) Q(x) ≥ Q(y) if x > y.

Definition 2.3. A fuzzy subset Q is called a Regular Decreasing Monotone (RDM) quantifier if

(i) Q(0) = 1; (ii) Q(1) = 0; (iii) Q(y) ≥ Q(x) if x > y.

Definition 2.4. Given a function Q : [0, 1] → [0, 1] such that Q(0) = 0, Q(1) = 1 and if x > y

then Q(x) ≥ Q(y), an OWA aggregation operator guided by Q is given as (Yager, 1988):

φQ(a1, . . . , an) =

n∑
i=1

wi · aσ(i),

being σ : {1, . . . , n} → {1, . . . , n} a permutation such that aσ(i) ≥ aσ(i+1), ∀i = 1, . . . , n − 1, i.e.,

aσ(i) is the i-th largest value in the set {a1, . . . , an}; and

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n. (2.2)

These Q functions are called Basic Unit-interval Monotone (BUM) functions in Yager (2003)

and ‘are particularly useful in situations in which the imperative guiding the OWA aggregation is

expressed linguistically by a quantifier’. Note that in Yager (1996) BUM functions are called RIM

quantifiers.

Examples of RIM quantifiers are all, most, many and at least α, in contrast of RDM quantifiers

like none, few or at most α (Yager, 1996). Example 2.1 defines the quantifiers all and there exists,

both of them RIM quantifiers.
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Example 2.1. The quantifier all is represented by the fuzzy subset Q∗ where

Q∗(1) = 1 and Q∗(x) = 0 for all x 6= 1.

The quantifier there exist, not one is represented by the fuzzy subset Q∗ where

Q∗(0) = 0 and Q∗(x) = 1 for all x 6= 0.

Consider the parameterised fuzzy subset defined [0, . . . , 1] such that

Q(r) = rα, α ≥ 0. (2.3)

It can be seen that this formulation defines a family of RIM quantifiers. The special cases of this

family are worth noting:

• For α = 1 we get Q(r) = r. This is called the unitor quantifier.

• For α→∞ we get Q∗, the universal quantifier.

• For α→ 0 we get Q∗, the existential quantifier.

• For 0 < α < 1 we get a concave function.

• For α > 1 we get a convex function.

Figure 2.1 depicts some examples of RIM functions of Q(r) = rα family on the top, and their

corresponding vector of weights in the bottom. The first subgraph (α = 0) represents the previously

named all quantifier, in which only the higher value do not have a null weight. Second and third

subgraphs correspond to α lower than 1. The concave property of Q provides decreasing weights.

Fourth subgraph (α = 1) stands for the unitor quantifier, obtaining equally-valued weights and

therefore representing the mean operator. Finally, fifth and sixth subgraphs depict functions with

α greater than 1, obtaining convex functions and therefore increasing weights.

Example 2.2 illustrates the use of RIM quantifiers to aggregate a set of values.

Example 2.2. The aggregation of the set of values {0.5, 0.07, 0.228, 0.057, 0.482} using an OWA

operator guided by the fuzzy linguistic quantifier ‘most of ’ represented via the RIM function Q(r) =

r1/2, whose corresponding weighting vector using (2.2) is

(0.447, 0.185, 0.142, 0.120, 0.106), yields

φmost of (0.5, 0.07, 0.228, 0.057, 0.482) = 0.447 · 0.5 + 0.185 · 0.482 + 0.142 · 0.228 + 0.129 · 0.07 + 0.106 · 0.057

= 0.360.

This collective value is interpreted as the value up to which ‘most of ’ the criteria are verified.
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Figure 2.1: Some RIM functions and their corresponding obtained weights

This type of aggregation ‘is very strongly dependent upon the weighting vector used’ (Yager,

1996), and consequently upon the function expression used to represent the fuzzy linguistic quan-

tifier. The RIM function used in this work (with an α between 0 and 1) guarantees that all the

individual valuations contribute to the final aggregated value because it is a strictly increasing

function. Moreover, the higher the ranking of a value, the higher the weighting value associated

with it. This is a consequence of the concavity property – which was proven in Chiclana et al.

(2007) to make a RIM function appropriate for conducting aggregation processes in heterogeneous

decision-making problems.

2.3 Data-to-text systems for generating natural language

A growing number of applications require the translation of perceptual, sensory or statistical data

into natural language descriptions, therefore increasing the interest in the research of data-to-text

systems (Reiter, 2007). These systems summarise qualitative or numeric data into natural language
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texts with the motivation of the belief that textual summaries made large amount of numeric data

more accessible to human users than traditional ways of presenting data (Hüske-Kraus, 2003b;

Reiter et al., 2005). Such systems present not only a practical interest –most of natural language

generation (NLG) systems are considered to be data-to-text systems– but also a scientific interest

in the study of the relation between language and non-linguistic world.

The most frequent area of application of such systems and the one in which their utility has

been proved is the weather forecasting domain. Several systems have been designed to produce

textual weather forecast from weather data. One of the earliest works in such area and a classical

one is FoG (Goldberg et al., 1994), which converts weather maps info forecast text by using rules,

NLG and linguistic models. It is based on an three-stages architecture: data extraction, concep-

tual (metereological) processing and linguistic processing, which involves both text planning and

text realisation. More recently, SumTime-Mousam (Sripada et al., 2003) produces textual marine

weather forecasts for offshore oilrig applications. Its input data are mainly time series. It points out

the importance of the sensitivity of the text to the end user, and the configurability of the system by

the forecasters to easily adjust the output. It uses a three-stages architecture: document planning,

micro-planning and realisation, and it shows the big potential of these technologies. This potential

has been evaluated in Reiter et al. (2005), where it is concluded that people prefers the computer-

generated texts rather than the human-generated ones, mainly due to the best consistency of the

automatic texts, as shown in Table 2.3.

There have been also lots of data-to-text systems applied in the medicine area mainly because of

the large amount of data that human systems have to deal with. In Hüske-Kraus (2003b) a review

of some of the applications of these systems in the medicine area is provided, also identifying

the main functionalities of NLG applications in health care: producing explanations and giving

advice in medical expert systems, generating reports, progress notes and discharge letters, preparing

individualised patient information material and generating descriptions of medical concepts. These

applications generally deal with raw data, in contrast of systems that are based on discrete events.

In this sense, Suregen-2 (Hüske-Kraus, 2003a) helps medical staff in the elaboration of routine

reports by improving the specification and use of the predefined medical ontology, while Narrative

Engine (Harris, 2008), in its commercial version called Component-Based Processing, helps in the

creation of summaries during symptoms, tests and prescriptions.

These systems not only help medical personnel in their work but can also offer help to patients.
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Table 2.3: Preference results in Reiter et al. (2005) where statisticallly significant results are in

bold.

Question Computer/Hybrid Human same p-value

Computer vs. human texts

More appropriate? 43% (77) 27% (49) 30% (53) 0.021

More accurate? 51% (90) 33% (59) 15% (29) 0.011

Easier to read? 41% (74) 36% (65) 23% (41) >0.1

Hybrid vs. human text

More appropriate? 38% (68) 28% (50) 34% (62) >0.1

More accurate? 45% (80) 36% (65) 19% (34) >0.1

Easier to read? 51% (91) 17% (30) 32% (59) <0.0001

For example, Stop (Reiter et al., 2003) tries to help people quit smoking by generating short tailored

smoking cessation letters based on responses to a questionnaire. Unfortunately, this system was not

effective. In the same way of helping patients, Piglit (Cawsey et al., 2000) aids to oncologic patients

by elaborating personalised hypertext pages explaining treatments, diseases and measurements

related to the patients’ condition. As a hybrid system, helping both medical staff and patients, BT-

45 (Portet et al., 2009) builds automatic summaries from data provided by sensors in the Neonatal

Intensive Care Unit, both physiological signals and discrete events. This work is based on Topaz

(Kahn et al., 1991). An example of a system dealing with data as a list of events is described in

Hallett and Scott (2005), which generates two main types of report. On the one hand, a longitudinal

report provides a quick historical overview of the patient’s illness and, on the other hand, a report

focussed on a given type of event in a patient’s history is supplied.

Data-to-text systems have been applied with success in other domains. iGraph (Ferres et al.,

2006) improves the accessibility of graphical data for the visually-impaired by describing graphs

in a simple and repetitive way. This description includes an overview of the axis, maximums

and minimums, trends, evolution and so on. In a similar topic, Atlas.txt (Thomas and Sripada,

2008) describes geo-referenced information as text also for the visually-impaired by covering the

identification of the location of high and low values and trends detected in the data. In financial

area, Ana (Kukich, 1983) generates textual stocks reporting from numeric data of stock market,
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basing this construction in three principles: the use of domain-specific semantic and linguistic

knowledge, the use of macro-level semantic and linguistic constructs and the production system

approach to knowledge representation. One of the standing works in the description of visual

scenes is Vitra (Herzog and Wazinski, 1994), where a knowledge-based system is used to translate

visual information into natural language descriptions, focussing in simultaneous scene description

and image sequence evaluation. In the same area of application, Describer (Roy, 2002), uses machine

learning techniques for acquire linguistic structures generalised from training data in the form of

domain specific rules of language generation, with the objective of describing objects in computer-

generated visual scenes. As a partial data-to-text system in such domain, Ladder (Hammond and

Davis, 2005) is a sketching language for describing sketch-based user interface. There have been

also other areas of application like Sports, in which ScubaText (Sripada and Gao, 2007) stands out

in its helps to scuba divers by making summaries with graphical and textual information oriented

to the security of the diving activity.

Most of these systems analyse raw data, typically data gathered from sensors and collected in

form of time series. As opposite, PLANDoc (McKeown et al., 1994) builds summaries based on

the events outputs generated in simulations trying to avoid repetition of similar information and

similar phrasing. This work is not framed in a specific domain. Other example of a generic system

is focussed on labour force surveys (LFS) (Iordanskaja et al., 1992), where bilingual (english and

french) summaries of Canadian statistical data are supplied.

The work presented in this thesis in Chapter 4 describes in a qualitative way the most important

characteristics of each cluster of a considered data set. It is a based on the analysis and application

of a set of rules in order to avoid repetitive information (as seen in Section 4.2), to merge related

information into the same sentence (as explained in Subsection 4.3.1) and to obtain a more natural

description of the considered classes (as detailed in Subsection 4.3.2). Some of the reviewed papers

describe also rule-based systems. A summary of the use of rules in such systems is provided below.

In Iordanskaja et al. (1992) rules are employed in both text planning and realisation stages;

Kukich (1983) employs rules in the message generator stage, the discourse organiser and the text

generator. In this last stage, for example, rules are used for grouping messages according to a

clause-combining grammar; in Goldberg et al. (1994) rules are included in the data extraction stage

to adapt the text to the desired type of output, in the linguistic processing stage provided by

weather forecasters and for performing the use of the grammar; in Cawsey et al. (2000) rules are
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attached to the hierarchy used in the medical knowledge base of the system; the system designed

in Roy (2002) differs from the majority because domain-specific rules of language generation are

learned from examples produced directly by domain experts. In Portet et al. (2009) expert rules are

used to compute the importance of the events collected in the data extraction stage. Also, expert

rules helps in finding associations between events while the document planning stage also uses some

special-case rules and the microplanning and realisation stages employ rules for matching events

against templates. Note that this work is based on the one carried out by Kahn et al. (1991), also

based on rules. In Reiter et al. (2003) rules are used for deciding whether to include some content,

while Sripada et al. (2003) employ rules in the micro-planning stage between the different parts of

the sentence, according to previous or related sentences; in Hallett and Scott (2005) rules are used

both in the content selection stage to pick the events to be included in the text, and in the document

planning stage to group messages: in Hammond and Davis (2005) the domain shape recognition

is performed by a rule-based system while in Ferres et al. (2006) rules are used for describing and

querying the input graph.

The NLG system proposed in this thesis tries to make up for two main lacks affecting data-

to-text systems. On the one hand, most of the reviewed systems are domain dependent. They

have been designed to analyse input data with a known structure and to provide a specific natural

language text according to the framework in which they are developed. The proposed NLG system

is a generic one. It is able to produce generic natural text by only analysing the provided input

clustered data set, without needing the definition of any domain knowledge. But it is important to

note that the specification of some optional and short domain information enables the system to

produce context-based text and therefore a more attractive description of involved classes. On the

other hand, all reviewed works are designed to build summaries or descriptions of an specific data

set, without differentiating among any existing subsets. The designed system highlights the most

important features of each class by comparing them in terms of conditional and joint distributions

of modalities of each considered variable on each class.
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Chapter 3

Fuzzy criteria for selecting

classifications

The use of unsupervised learning systems allows the behaviour of certain phenomena to be iden-

tified without relying on expert knowledge or information from past situations. Indeed, the main

characteristic of this type of learning systems is that they work with patterns without explicitly

knowing their output. Because of this, unsupervised learning systems have been considered in the

literature as systems capable to capture knowledge from complex structures (Duda et al., 2001;

Figueiredo and Jain, 2002; Jain, 2010).

Choosing the most appropriate classification from a given set of classifications of a set of patterns

is an important topic on unsupervised systems and, in particular, on clustering analysis. In most

cases, the use of these unsupervised techniques leads to several classifications as outputs, i.e. various

classifications are compatible with the set of given patterns. For this reason, research in this area

aims to develop suitable tools and models for selecting classifications (Broder et al., 2008; Kukar,

2003; Osei-Bryson, 2010).

This chapter presents a set of fuzzy criteria to be integrated into a classification selection method-

ology. Each fuzzy criterion is modelled via a membership function measuring the degree up to which

it is is verified by all considered classifications. With that aim, an index associated with each cri-

terion is designed. This chapter analyses and demonstrates properties and usability of each fuzzy

criterion.
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The proposed criteria cover most of the concepts historically used to assess classifications, as

the ones introduced in Section 2.1. Internal criteria like assessing the achievement of desired goals

in terms of obtaining a classification with a useful number of classes or a proper distribution

of the considered individuals along the classes are included. Also internal criteria quantifying

compactness and separability of the classes, and the potential accuracy of the models associated with

the classifications are considered in this chapter. External criteria are also covered in this chapter,

by defining an index that evaluates the compatibility or dependency between each classification and

an external variable provided by the experts.

In order to select the most suitable classification, all the defined criteria must be taken into

account. Previous research use selection criteria as filters: they are applied sequentially to the

considered classifications (Choi et al., 2005; Osei-Bryson, 2010; Sánchez-Hernández et al., 2007;

Sánchez Almeida et al., 2010). All those failing to meet a particular criterion are discarded and not

taken into account in the application of the subsequent criterion. The following drawback can be

associated with this type of methodology: because a true-false decision is applied in the application

of each of the criterion, this could result in classifications being discarded and not taken into account

when they marginally fail to meet one particular criterion but meet other criteria with a high score.

Therefore, a classification might be discarded prematurely when its ‘overall’ score, with respect to

the set of criteria, would have been high. In an extreme case, this methodology could produce no

result because none of the classifications meet a particular criterion, which could indicate that the

criterion in particular might not have been the most adequate or taken into account.

An alternative to the sequential approach described above, which has been successfully applied

in multi-criteria decision making (MCDM), is that of evaluating the degree up to which each

criterion is met by all classifications and, only after this, obtaining an overall aggregated value for

each classification reflecting the degree to which the set of criteria is satisfied by each classification.

Note that the objective of the aggregation step is to combine a set of criteria in such a way

that the final aggregation output takes all the single criteria into account (Dubois and Prade,

1985). The final selection of classifications naturally derives from this set of overall degrees, and

the drawback mentioned above does not apply. Although the improvement or study of further

aggregation functions is not within the scope of this thesis, a review of the literature in this area

has been included in section 2.1 as it has an important role for defining a complete MCDM approach

to select and understand the best classification.
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This chapter is structured as follows: Sections 3.1 to 3.5 analyse the usability of a set of five fuzzy

criteria for assessing classifications, demonstrating their properties when required, while Section 3.6

details conclusions of this chapter as well as further research to be done in this area.

3.1 First criterion: useful number of classes

The usability of a classification is based on its informativeness and manageability: it is worthwhile

examining classifications that have a sufficient number of classes to generate new knowledge, but are

small enough to produce an easy and manageable model. For instance, in marketing environments

in which these classifications are used to extract behavioural patterns to design market strategies,

the number of classes distinguished is usually taken to be between three and five (Casabayó, 2005).

This is because marketing campaigns with less than three segments may not be informative; while

those with more than five segments may not be manageable.

The assumption of a classification with a number of classes M between K1 and K2 to be

considered useful for a given problem does not imply that a classification with a number of classes

lower than K1 or higher than K2 should be automatically discarded. This is specially true in those

cases when there is enough evidence to suggest that such classifications perform well with respect

to the rest of criteria. A natural approach in these cases would be that of associating a value to

each classification to indicate how well they fit with the criterion ‘useful number of classes’. By

doing this, we move from a crisp to a fuzzy interpretation of the criterion ‘useful number of classes’,

i.e. we move from the use of a characteristic function to the use of a membership function.

Note that a classification with a single class is trivial and therefore not useful, while a classi-

fication with a number of classes between K1 and K2 is considered totally useful. The minimum

number of classes in any classification is 1 (contains all the individuals), while the maximum is

N (each class contains just 1 individual). These two classifications are not informative and there-

fore these classification associated usefulness degree should be 0. A classification usefulness degree

therefore should increase as the number of classes increases from 1 to K1 and should decrease when

the number of classes increases from K2 to N . These restrictions are summarised in Property 3.1.

Property 3.1. Given a set of N individuals classified into M classes, a classification usefulness

degree has the following properties:

• It must be 0 for classifications with M = 1 or M = N classes.
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• It must be 1 for classifications with M between K1 and K2.

• It must increase as the number of classes M increases from 1 to K1.

• It must decrease as M decreases from K2 to N .

Therefore the general expression of the membership function associated with the criterion ‘useful

number of classes’ is the following:

Definition 3.1. Given a classification C, the index of usefulness is characterised by the following

membership function:

IU,K1,K2(C) =


f1(M), if 1 ≤M < K1;

1, if K1 ≤M ≤ K2;

f2(M), if K2 < M ≤ N,

(3.1)

where M ∈ N is the number of classes of C; K1,K2 ∈ N such that K1 < K2 are two prefixed

parameters; and f1 is a strict increasing function and f2 is a strict decreasing function verifying

f1(1) = f2(N) = 0 and f1(K1) = f2(K2) = 1.

Figure 3.1 shows some examples of extensions to real numbers of membership functions satisfying

the desired properties, with K1 = 4 and K2 = 7. Specifically, from top to bottom and left to right,

it is shown a function being linear on its left tail and exponential on the right (3.2), a crisp function

with maximum value on the interval (K1, . . . ,K2) (3.3) and null on the rest, a function with an

exponential left tail and a linear right tile (3.4) and a function with both logarithmic tails (3.5).

Functions used in this example are the following:

IU1,4,7(C) =


M−1
4−1 , if 1 ≤M < 4;

1, if 4 ≤M ≤ 7;

e(N−M)−1
e(N−7)−1 , if 7 < M ≤ N.

(3.2)

IU2,4,7(C) =


0, if 1 ≤M < 4;

1, if 4 ≤M ≤ 7;

0, if 7 < M ≤ N.

(3.3)

IU3,4,7(C) =


e−(4−M), if 1 ≤M < 4;

1, if 4 ≤M ≤ 7;

12−M
12−7 , if 7 < M ≤ N.

(3.4)
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IU4,4,7(C) =


log(M)
log(4) , if 1 ≤M < 4;

1, if 4 ≤M ≤ 7;

log(M−7+1)
log(7) , if 7 < M ≤ N.

(3.5)

Figure 3.1: Examples of usefulness degree functions with K1 = 4 and K2 = 7

This fuzzy interpretation of the criterion ‘useful number of classes’ covers a larger number of

classifications than the classical approach. In the case study presented in Chapter 5, a left-linear

function has been chosen as the simplest example of a strictly increasing function; while a right-

exponential function has been selected because the usefulness of a classification should decrease

asymptotically when the number of classes increases. Such function is shown in (3.6). Note that

the selection of different strict monotonic functions to the ones proposed here would not produce

any change in the final ordering, because any two strict monotonic functions are mathematically

equivalent in preserving an ordering.
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IU,K1,K2
(C) =


M−1
K1−1 , if 1 ≤M < K1;

1, if K1 ≤M ≤ K2;

e(N−M)−1
e(N−K2)−1 , if K2 < M ≤ N.

(3.6)

Figure 3.2 illustrates such a type of membership function with K1 = 3 and K2 = 5. Obviously,

different increasing or decreasing functions could be used depending on the specific problem to solve

and the preferences of the user: symmetric behaviour on both tails, linear or curve falls, concave

or convex functions, etc.

Figure 3.2: Fuzzy concept ‘Useful number of classes’ with K1 = 3 and K2 = 5

3.2 Second criterion: balanced classes

The second criterion is based on the distribution of individuals within the obtained classes. For this

reason, the variable Y = ‘number of elements of each class in a given classification’ is considered

and its associated dispersion will be used to define the fuzzy concept of ‘balanced classification’.

Note that in some situations, classifications in which one class encompasses most of the individ-

uals (unbalanced) are worth avoiding because they do not contribute to creating new or relevant

knowledge. Nevertheless, in other contexts, unbalanced classifications could be desirable.

Let N ∈ N be the number of individuals to be classified, and M ∈ {1, . . . , N} be the number of

classes obtained by the classification Y . Given that different classifications can produce a different

number of classes, the coefficient of variation, CVY , is considered to be a fairer indicator than the

30



CHAPTER 3. FUZZY CRITERIA FOR SELECTING CLASSIFICATIONS

standard deviation, σY , in measuring the concept of ‘balanced classification’:

CVY =
σY

Y
, (3.7)

with

σY =

√√√√ 1

M

M∑
i=1

(Yi − Y )2 and Y =
1

M

M∑
i=1

Yi =
N

M
,

where Yi is the number of individuals within the class i. Note that CVY ≥ 0. There are known

similarities between coefficient of variation and Gini coefficient (González Abril et al., 2010), usually

applied to measure wealth inequalty. Its value is 0 when all individuals have the same wealth, while

it is 1 when almost all individuals don’t have nothing and one of them concentrates all the wealth.

In order to define a normal membership function (Wu et al., 2009), the index of balanced classes,

IB , is proposed as based on coefficient of variation and the minimum and maximum values of CVY

need to be computed. In the following, the minimum and maximum values of CVY are computed

by considering all the possible classifications for a given set of elements. Specifically, Lemma 3.1

states some restrictions between the values of variable Y and M and N , Proposition 3.1 uses this

lemma to determine the minimum value for CVY excluding the trivial classifications, i.e. those

with M = 1 or M = N , Lemma 3.2 gives the values Yi for which its squared sum is maximum,

Proposition 3.2 translates the problem defined in previous lemma to classifications, and Corollary

3.1 computes the maximum value of CVY fixed M while Proposition 3.3 establishes the maximum

value of CVY for any possible classification.

Lemma 3.1. Let N be a prime number of elements to classify. A classification Y producing M

classes such that 1 < M < N verifies:

M∑
i=1

Y 2
i ≥

1 +N2

M
, (3.8)

where Yi ∈ N and
∑M
i=1 Yi = N .

Proof. Given that N
M /∈ N, we can consider

Yi =
N

M
+ ki,

with
∑
ki = 0 for i ∈ {1 . . .M} and |ki| ≥ 1

M . Then, given that
∑M
i=1 k

2
i ≥M · 1

M2 = 1
M :
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M∑
i=1

Y 2
i =

M∑
i=1

(
N

M
+ ki)

2 =

M∑
i=1

(
N2

M2
+ 2

N

M
· ki + k2i )

=
N2

M
+ 2N

M∑
i=1

ki +

M∑
i=1

k2i =
N2

M
+

M∑
i=1

k2i

≥ 1 +N2

M
.

Proposition 3.1. Let N be the number of elements to classify. The minimum value of the coeffi-

cient of variation function when applied to the set of all classifications Y producing M classes such

that 1 < M < N is:

minY (CVY ) =

 1
N , if N is a prime number;

0, otherwise.
(3.9)

Proof. If N is not a prime number, we can consider the classification that produces M classes with

M being one of the factors of N , such that all the classes consist of N
M individuals. In this case, we

have Yi − Y = 0 ∀i ∈ {1, . . . ,M} and therefore the value of CVY is zero.

If N is a prime number, then we have that

CVY =

√∑M
i=1(Yi−

N
M )2

M
N
M

=

√
M
∑M
i=1 Yi

2

N2
− 1 .

From Lemma 3.1, we get that:

M
∑M
i=1 Yi

2

N2
− 1 ≥ 1

N2
,

thus,

CVY ≥
1

N
.

In addition, note that the classification with M = 2 classes of cardinal bN2 c and dN2 e respectively,

has a coefficient of variation of

CVY =

√
(bN2 c−

N
2 )2+(dN2 e−

N
2 )2

2
N
2

=

√
( 1

2 )
2+( 1

2 )
2

2
N
2

=
1

N
,

and therefore we can conclude that

minY (CVY ) =
1

N
.
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As it can be seen, when N (the number of individuals) is a prime number, this minimum depends

on the value of N , and it decreases when N increases. Thus, this minimum value of CVY can be

very small (and therefore negligible) for data sets with many individuals. But in the case of a

moderate N , this minimum can be important, as seen in Example 3.1.

Example 3.1. Let N = 30 be the number of individuals within a certain data set. According to

Proposition 3.1, the minimum value of the coefficient of variation of any possible distribution of

these N individuals is 1
N = 1

30 = 0.033. Let’s imagine that a certain classification of M individuals

has a CVY of 0.5. If this value is standardised by knowing the theoretical minimum, it will be

obtained a value of 0.52, which is significantly different from the original 0.5 and can affect the

decision process.

Lemma 3.2. Let F : RM → R+ be the following function F (Y1, . . . , YM ) =
∑M
i=1 Y

2
i . The solution

to the following problem

Max : F (Y1, . . . , YM )

s.t. :
∑M
i=1 Yi = N ∈ N

Yi ≥ 1 ∀i

N > M

is (Y1∗, . . . , YM∗) = (1, . . . , 1, N − (M − 1)).

Proof. Let (Y1, . . . , YM ) be such that

M∑
i=1

Yi = N > M

and

1 ≤ Y1 ≤ Y2 ≤ · · · ≤ YM < N −M + 1.

We need to prove:

F (Y1∗, . . . , YM∗) > F (Y1, . . . , YM ),

or equivalently:
M∑
i=1

[Y 2
i∗ − Y 2

i ] > 0.
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Denoting di = Yi∗ − Yi, we have

M∑
i=1

[
Y 2
i∗ − Y 2

i

]
=

M∑
i=1

(Yi∗ − Yi) · (Yi∗ + Yi) =

M∑
i=1

di · (Yi∗ + Yi).

It is clear that
∑M
i=1 di = 0, di ≤ 0 ∀i ∈ {1, . . . ,M − 1} and dM > 0. Also because Yi∗ + Yi <

YM∗ + Yi ≤ YM∗ + YM , we have that di · (Yi∗ + Yi) > di · (YM∗ + YM ) ∀i ∈ {1, . . . ,M − 1}. Thus,

we conclude:

M∑
i=1

di · (Yi∗ + Yi) >

M∑
i=1

di · (YM∗ + YM ) = (YM∗ + YM ) ·
M∑
i=1

di = 0.

Proposition 3.2. Let N be the number of individuals to classify. Considering all the classifications

with M classes, those that result in one class with cardinality N −M + 1 and the rest of classes

with cardinality 1 have the greatest coefficient of variation.

Proof. Let be Y∗ the variable ‘number of elements of each class’ associated with a classification

with one class with cardinality N −M + 1 and the rest of classes with cardinality 1. Without lost

of generality we can consider:

1 = Y1∗ = Y2∗ = · · · = YM−1∗ < YM∗ = N −M + 1.

For any other classification C with M classes, the range of the variable Y associated with C can be

considered as follows:

1 ≤ Y1 ≤ Y2 ≤ · · · ≤ YM < N −M + 1.

Note that
∑M
i=1 Yi∗ =

∑M
i=1 Yi = N , Yi∗ ≤ Yi ∀i ∈ {1, . . . ,M − 1}, YM∗ ≥ YM and Y∗ = Y = N

M .

Therefore, proving CVY∗ ≥ CVY reduces to prove σY∗ ≥ σY , which in turn reduces to prove∑M
i=1 Y

2
i∗ ≥

∑M
i=1 Y

2
i , which is true according to Lemma 3.2.

Example 3.2. Given a data set with N = 97 individuals, according to Proposition 3.2 the most

unbalanced classification with M = 5 classes is that with Y = {1, 1, 1, 1, 93}. If we compute the

value of CVY , we get CVY = 1.897. If one of the individuals moves from the bigger class to another

one (for example, Y2 = {1, 1, 1, 2, 92}), CVY2
decreases (CVY2

= 1.871).
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Corollary 3.1. Let M ∈ N be the number of classes used to classify N individuals. The maximum

value of CVY is:
1

N
(N −M)

√
M − 1 . (3.10)

Proof. From Proposition 3.2, we have that maximum value of CVY is achieved when the M classes

cardinalities are 1 = Y1∗ = Y2∗ = · · · = YM−1∗ < YM∗ = N−M+1. A simple algebraic manipulation

over Equation (3.2) yields:

σY∗ =

√√√√∑M
i=1 Y

2
i∗

M
−

(∑M
i=1 Yi∗
M

)2

=

√
N2 − 2MN +M2 + 2N −M

M
− N2

M2
=

=

√√√√((N
M

)2

− 2
N

M
+ 1

)
(M − 1) =

√
(Y

2 − 2Y + 1)(M − 1) =

=

√
(Y − 1)2(M − 1) = (Y − 1)

√
M − 1 =

1

M
(N −M)

√
M − 1

and therefore the maximum value for the coefficient of variation is:

σY∗
Y

=
1

N
(N −M)

√
M − 1 .

Example 3.3. Given the same data set considered in Example 3.2 and according to Corollary 3.1,

the maximum value of CVY is 1
N (N −M)

√
M − 1 = 1

97 (97− 5)
√

5− 1 = 1.897, whose value agrees

with the previously obtained one.

Proposition 3.3. Given a number of individuals N , the maximum value of the coefficient of

variation for all classifications is:

maxY (CVY ) =


2N−3
3N

√
N
3 , if N ≡ 0(mod 3);

2N−2
3N

√
N−1
3 , if N ≡ 1(mod 3);

2N−1
3N

√
N−1
3 , if N ≡ 2(mod 3).

(3.11)

Proof. Note that the minimum number of classes in any classification is 1 (contains all the individ-

uals), while the maximum is N (each class contains just 1 individual). These two cases produce

a value of zero for CVY as they are totally balanced classifications. Therefore, from now on, we

assume M ∈ {2, . . . , N − 1}.
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Let’s consider the real function f : [2, N − 1]→ R:

f(x) =
1

N
(N − x)

√
x− 1,

defined as a real extension of (3.10). Figure 3.3 depicts function f with N = 260.

Figure 3.3: Function f and its maximum coefficients of variation when N = 260

The derivate of f is:

f ′(x) =
N + 2− 3x

2N
√
x− 1

,

which is positive in (2, N+2
3 ) and negative in (N+2

3 , N − 1). Thus, f then reaches its absolute

maximum in N+2
3 .

Nevertheless, the maximum value in the set {f(1), f(2), ..., f(N)} depends on whether N+2
3 is

integer or not. Let a be the integer part of N+2
3 . Since a ≤ N+2

3 < a+ 1 and given that f increases

in (1, N+2
3 ) and decreases in (N+2

3 , N), the maximum is f(a) if f(a) ≥ f(a + 1) and f(a + 1) if

f(a) < f(a+ 1). Simple algebraic manipulations yields:

maxY (CVY ) =


f(N+3

3 ) = 2N−3
3N

√
N
3 , if N ≡ 0(mod 3);

f(N+2
3 ) = 2N−2

3N

√
N−1
3 , if N ≡ 1(mod 3);

f(N+1
3 ) = 2N−1

3N

√
N−1
3 , if N ≡ 2(mod 3).
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Example 3.4. Given the same data set considered in Example 3.2 and according to Proposition

3.3, the maximum value of CVY for any possible classification is 3.73, due to N ≡ 1(mod 3). This

maximum is reached with M = 33 classes and therefore with the classification Y = {1, 1, . . . , 1, 65}.

Indeed, if we compute the coefficient of variation of Y , we get CVY = 3.73.

The minimum and maximum values of CVY are finally used to normalise and define the following

index of balanced classes:

Definition 3.2. Given a classification C, the index of balanced classes of C is defined as:

IB(C) =
maxY (CVY )− CVC

maxY (CVY )−minY (CVY )
, (3.12)

where CVC is the coefficient of variation associated with C and minY (CVY ) and maxY (CVY ) are

given as per Propositions 3.1 and 3.3, respectively.

The range of index IB is [0, 1] and it can be interpreted as the membership function associated

with the vague concept ‘balanced classification’. The higher the value of IB the more balanced is the

classification. Example 3.5 shows the computation of the value of IB for two different classifications.

When unbalanced classifications are preferred in a specific context, the index to use is:

IB = 1− IB . (3.13)

Example 3.5. Let C1 and C2 be the following two different classifications of the same data set

consisting of N = 260 individuals:

Y1 = {90, 80, 90};Y2 = {110, 30, 20, 90}

According to Propositions 3.1 and 3.3, minimum and maximum values of CVY with N = 260

individuals are 0 and 6.18, respectively. Computed values for CVY1
and CVY2

are 0.51 and 4.43,

respectively. Note than C2 has a worse value than C1. The standardised value of CVY1
and CVY2

,

and therefore the final values of indexes IB(C1) and IB(C2) are 0.92 and 0.28, respectively. Note

that the obtained value for C1 is almost 1, the higher achievable value for IB.
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3.3 Third criterion: coherent classification

The notion of adequacy of one individual to a class, which is modelled via a membership function,

is used in this section to establish the concept of ‘coherent classification’. A set of P qualitative or

quantitative descriptors {D1, . . . , DP } is defined. Each individual to be classified will be represented

as X = (x1, . . . , xP ), where xk is the observed value of X for descriptor Dk. Given a classification

C consisting of M classes {C1, . . . , CM}, the Marginal Adequacy Degree (MAD) of individual X to

class Ci according to descriptor Dk, MADCi(xk), is defined as follows;

MADCi(xk) = µki (xk), (3.14)

where µki is the marginal distribution of descriptor Dk in the class Ci, i ∈ {1, . . . ,M}. The MAD

is calculated via the density or frequency with which the specific marginal observation appears in

the given class (Aguilar-Martin et al., 2002). In the case of a qualitative descriptor, the MAD

is computed by taking into account the frequencies of the different modalities that the descriptor

exhibits in a certain class. A density function is used if the descriptor is quantitative, in which

case the height corresponding to the observed value of the individual inside the density function of

the descriptor in the class is measured. The density function to chose has to be estimated for each

descriptor, being the three following ones the most frequently used:

LAMDA classical function: This classical distribution function used by LAMDA1 is based on

the distribution function of a binomial variable:

MADCi(xk) = ρCi,k
xk · (1− ρCi,k)(1−xk), (3.15)

where ρCi,k stands for the average value of descriptor Dk in class Ci, and xk is the normalised

observed value of the individual X. Figure 3.4 shows some examples of LAMDA classical

function, with different values of ρ: from 0.1 (top-left to bottom-right) to 0.9 (bottom-left

to top-right). Note that these functions have one maximum value situated at the extreme,

except for ρ = 0.5 when the distribution function is constant.

1Learning Algorithm for Multivariate Data Analysis (LAMDA) is a technique able to perform both supervised

and unsupervised automatic learning. Based on fuzzy hybrid connectives, it’s described in Appendix A.
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Figure 3.4: LAMDA classical function with different values of ρ

Gaussian function: Given a normal distribution:

f(x; ρ, s2) =
1

s
√

2π
· e−

1
2 ·

(x−ρ)2

s2 ,

with standard deviation value s and mean value ρ, the following normalised function is used:

MADCi(xk) = e
− 1

2 ·
(xk−ρCi,k)2

s2
Ci,k , (3.16)

where sCi,k and ρCi,k are the standard deviation and mean values of descriptor Dk in class

Ci, while xk is the normalised observed value of the individual X. Figure 3.5 shows some

examples of the Gaussian function, with a fixed value of s = 0.1 and different values of ρ:

from 0.1 (left) to 0.9 (right). It is known that the maximum value of the Gaussian functions

is located in x = ρ.
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Figure 3.5: Gaussian function with value s = 0.1 and different values of ρ

Waissman function: The expression to use is a function defined by Waissman et al. (1998):

MADCi(xk) = ρ
νci,k (xk)

Ci,k
· (1− ρCi,k)1−νci,k (xk),

where xk is the normalised observed value of the individual X; ci,k is the centre of the

distribution of descriptor k in class Ci as the median of the distribution of descriptor k of

individuals belonging to class Ci; νc(x) = 1 − d(x, c) is a fuzzy number that measures the

amount of presence of each value x around the centre of the distribution c, being d(x, c) the

distance between value x and centre c (d(x, c) = |x − c|); and ρCi,k stands for a measure of

dispersion of descriptor k in class Ci computed as the inverse of the mean of distances between

each value of descriptor k and the centre ci,k, that is to say, ρCi,k = 1− 1
N ·
∑
d(xk, ci,k), being

N the total number of individuals. Note that the higher the value of ρ, the more important
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is that xk had a value close to ci,k because xk is more penalised when it moves away ci,k.

Also note that the mean of distances between each value and its centre is always lower than

or equal to 0.5, therefore ρ ≥ 0.5.

Figure 3.6 shows some examples of the Waissman function fixed the value of ρ to 0.7 and with

different values of c: from 0.1 (top-left) to 0.9 (bottom-right).

Figure 3.6: Waissman function with different values of the centre c

A classification is considered coherent when the differences between MADs are small enough

for each class and each individual. The index of coherence will ensure that the Global Adequacy

Degrees (GADs) are obtained from similar values of MADs, thus reflecting the fuzzy concept of

‘coherent classification’.
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Let us consider µijk as the MAD of individual j to class i according to descriptor k, the index

of coherence of classification C is defined as the following mean of differences (MDC):

MDC =

∑M
i=1

∑N
j=1maxk,k′ |µijk − µijk′ |

M
=

∑M
i=1

∑N
j=1[max(µijk)−min(µijk)]

M
. (3.17)

When all MADs are equal for each individual, then the coherence index will be 0. If each individual

has associated a MAD of zero (0) and a MAD of one (1) for each class then the index of coherence

will be N , where N is the number of individuals. Thus, the index of coherence range is [0, N ]. Given

that the lower MDC the more coherent is the classification C, the following inverse standardisation

function is proposed as the membership function of the index of coherence (Wu et al., 2009).

Definition 3.3. The index of coherence of classification is given as follows:

IC(C) = 1−
∑M
i=1

∑N
j=1[max(µijk)−min(µijk)]

M ·N
, (3.18)

where N ∈ N is the number of individuals, M ∈ N is the number of classes of classification C, and

µijk is the MAD of individual j to class i according to descriptor k.

Example 3.6 illustrates the computation of IC in a toy example.

Example 3.6. Let’s consider two classifications C1 and C2 consisting of two (A and B) and three

classes (C, D and E), respectively. The data set is composed of three individuals (i1, i2 and i3, thus

N = 3), and three descriptors (d1, d2 and d3). Tables 3.1 and 3.2 show the computed MADs by

using any of the functions described above.

Table 3.1: MADs of individuals in classification C1

Class A d1 d2 d3

i1 0.3 0.4 0.6

i2 0.2 0.3 0.2

i3 0.5 0.5 0.3

Class B d1 d2 d3

i1 0.7 0.5 0.5

i2 0.4 0.8 0.5

i3 0.9 0.6 0.7

It’s obvious that, in general, MADs of classification C1 are much more homogeneous than the

ones of classification C2. Calculation of IC(C1) and IC(C2) implies, for each row of the above tables,

the computation of the difference between the maximum and minimum MAD, as shown in Table

3.3. Its last row contains the sum of those differences for each analysed class.
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Table 3.2: MADs of individuals in classification C2

Class C d1 d2 d3

i1 0.1 0.6 0.4

i2 0.7 0.2 0.3

i3 0.4 0.8 0.3

Class D d1 d2 d3

i1 0.1 0.7 0.3

i2 0.5 0.2 0.7

i3 0.9 0.3 0.4

Class E d1 d2 d3

i1 0.9 0.2 0.7

i2 0.6 0.9 0.6

i3 0.7 0.6 0.1

Table 3.3: Differences between maximum and minimum MAD

C1 C2
Class A Class B Class C Class D Class E

i1 0.3 0.2 0.5 0.6 0.7

i2 0.1 0.4 0.5 0.5 0.3

i3 0.2 0.3 0.5 0.6 0.6

sum 0.6 0.9 1.5 1.7 1.6

Now IC(C1) and IC(C2) can be computed as the mean of these differences, that is to say, as the

sum of the differences of each of their classes, pondering them by the number of considered classes:

IC(C1) = 1− 0.6 + 0.9

2 · 3
= 1− 1.5

6
= 1− 0.25 = 0.75

IC(C2) = 1− 1.5 + 1.7 + 1.6

3 · 3
= 1− 4.8

9
= 1− 0.53 = 0.47

As it was expected, the coherence index for C1 is much higher than for C2, demonstrating its

higher coherence.

3.4 Fourth criterion: dependency on external variables

In many cases, the relevance of the classifications obtained is evaluated by using external variables

provided by experts and known as control variables. These control variables can be either a variable

not used in the process of generation of the analysed classifications, or another classification with

which a high level of compatibility can be required.

The dependency or not of a classification with respect to a control variable can be tested by ap-
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plying the χ2 non-parametric test computed by using the contingency table illustrated in Table 3.4,

with {C1 . . . Ci . . . CM} representing the classes of the considered classification; {D1 . . . Ds . . . DS}

the values of the external variable; and qis the number of observations that take the value Ds in

class Ci.

Table 3.4: Contingency table

Descriptors, intervals

Class or linguistic labels Total classes

D1 D2 . . . DS

C1 q11 q12 . . . q1S M1+

. . . . . . . . . . . . . . . . . .

Ci qi1 qi2 . . . qiS Mi+

. . . . . . . . . . . . . . . . . .

CM qM1 qM2 . . . qMS MM+

Total descriptors M+1 M+2 . . . M+S N

It is important to note that this criterion can be used directly when the control variables

are qualitative. In the case of quantitative control variables, they must be previously discretised

into intervals (Ds). The discretisation criterion will vary depending on the problem addressed

(Dougherty et al., 1995; Kurgan and Cios, 2004; Ruiz et al., 2008).

Under the hypothesis of being the variable independent of the classification, the relative fre-

quency with which members of different classes take different control variable values would not

differ significantly. This hypothesis is tested by using

χ2 =

N∑
i=1

S∑
s=1

(qis − eis)2

eis
, (3.19)

where eis is the number of expected cases under the hypothesis of independence and is defined as

eis =
Mi+ ·M+s

N
.

For each classification, the dependency of each control variable with respect to the classification is

studied, and those classifications that have a high dependency on these external variables will be

chosen. For this reason, the statistic χ2 must have a high value.
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The range of χ2 can vary according to the number of classes of the classification. For this reason,

Tschuprow’s coefficient (Tschuprow and Kantorowitcsch, 1939) is used to evaluate the degree of

dependency on the control variable.

Definition 3.4. Given a classification C, its index of dependency on a control variable is defined

as:

ID(C) =
χ2

N ·
√
M − 1 ·

√
S − 1

, (3.20)

where N is the number of individuals, M is the number of classes of C and S is the number of

unique values of the control variable, if it is qualitative, or the number of considered intervals in

the discretisation if it is quantitative.

Note that 0 ≤ ID(C) ≤ 1, and therefore this degree of dependency of a classification on a

control variable could be interpreted directly as the membership function associated with the fuzzy

concept ‘dependency on a control variable’. Other possible interpretations of the value offered by

this criterion rely on the concept of compatibility between the considered classification and the

classification defined by the control variable.

3.5 Fifth criterion: accuracy of the predictive model

A high predictability of the model obtained from a classification ensures new individuals to be

classified in the proper cluster. To this end, a criterion based on the achieved accuracy when

performing supervised learning from a classification is defined.

Following the well-known concepts of precision and recall in machine learning, the fuzzy concept

of accuracy of a particular classification is based on the precision and recall of the model. Precision

of a class is the proportion of individuals assigned to that class that were correctly classified, while

recall is the proportion of individuals of that class that have been classified in that class correctly.

Precision and recall of a classification can be defined as the weighted average of precision and recall

of its classes, with weights proportional to the cardinality of the classes. The index of accuracy of

a classification is defined as the harmonic mean of its precision and accuracy values:

Definition 3.5. Given a classification C, its index of accuracy is defined as:

IA(C) = 2 · precision(C) · recall(C)
precision(C) + recall(C)

, (3.21)
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where precision(C) and recall(C) are the weighted averages of precision and recall of classes of

C, respectively.

The range of precision and recall is [0, 1], so 0 ≤ IA(C) ≤ 1 and therefore this index of accuracy

could be understood as the membership function related to the fuzzy concept ‘accuracy of the

predictive model of the classification’.

3.6 Conclusions

In this chapter, a set of fuzzy criteria has been proposed and analysed, and modelled using a set

of indexes to evaluate the set of considered classifications. Properties and usability of the defined

criteria have been explained and proven.

The aims of the analysed criteria have been included in Table 2.1 of Section 2.1 to be compared

with criteria used or defined in other works. As it can be seen, criteria developed in this chapter

cover almost all the concepts used to assess a classification, including internal and external criteria.

On the one hand, four of the fuzzy criteria taken into account made reference to internal criteria,

trying to determine if the classification structure is appropriate for the data. In that sense, first

and second criteria are associated with the goals the user aims to achieve with that classification,

that is to say, to have a classification with a useful number of classes in terms of information

(having sufficient classes to acquire new knowledge) and manageability (not having to deal with

too many classes to interpret), and obtaining a balanced or unbalanced classification according

to the user preferences and expertise on the analysed data. Coherence index (third criterion)

measures both compactness and separability of the classes by rewarding classifications in which

individuals show a high adequacy degree in all descriptors of class in which they are included,

and a low adequacy in descriptors of the rest of classes. Finally, accuracy index (fifth criterion)

quantifies the prediction strength of each model associated with the considered classifications. On

the other hand, dependency index (fourth criterion) mades reference to an external criteria in which

the compatibility or dependency between each classification and a external variable named control

variable is evaluated.

The proposed criteria need the definition a set of parameters in order to be able to adjust

their utility to the actual problem analysed, despite default values can be used. For instance, the

computation of usefulness index requires on the one hand the definition of the interval of the number

46



CHAPTER 3. FUZZY CRITERIA FOR SELECTING CLASSIFICATIONS

of classes for which this index must take the highest value and, on the other hand, the shape of the

fuzzy number in order to define how this index should decrease as the number of obtained classes

moves away the interval with maximum usefulness. In the second criterion (balanced classifications)

user must decide if prioritising balanced or unbalanced classifications according to his expectations

or to the knowledge of a priori distribution of the analysed individuals. The computation of the

MADs involved in coherence index (third criterion) needs the selection of the density function to

be used on each quantitative descriptor according to their shown distribution. Fourth criterion

(dependency index) quantifies the compatibility level between each classification and a control

variable provided by the user, while accuracy index (fifth criterion) can be evaluated by using any

supervised learning technique preferred by the user. Note that not all indexes are useful in all

situations. It is responsibility of the user to decide which indexes to use for assessing the considered

classifications.

Once each considered index is computed for each classification, they must be used to choose

the best classification according to them. Indexes, for instance, can be analysed sequentially by

discarding in each step classifications not reaching a certain minimum threshold defined for each

index. This sequential approach presents some deficiencies (Sánchez-Hernández et al., 2013) and

therefore an aggregation of the indexes is advised by the author with the aim of selecting the most

suitable classification. In next Chapter, a natural language generation (NLG) system to describe

in a qualitative way the most important characteristics of classes of this chosen classification is

designed and developed.

The proposed criteria are inspired on well-known concepts for clustering validation (Halkidi

et al., 2001; Liu et al., 2010; Osei-Bryson, 2010; Yatskiv and Gusarova, 2005). The useful number

of classes and balanced classes criteria have a marketing background, since they were defined to

guarantee manageable segmentations (Casabayó, 2005). However, their implementations (IU and

IB) in a fuzzy environment is a specific contribution of this thesis. The coherence criterion measures

the compactness and separability of a given segmentation, that are common measures for clustering

validation. Its implementation (IC) is defined in a novel way via a normalised distribution function

(Aguilar and López de Mántaras, 1982). Regarding the dependency criterion, there are different

approaches in the literature to estimate the compatibility between the analysed segmentations and

an a priori segmentation or an external variable. In the methodology presented, the proposed index

ID relies on the concept of dependency given by a χ2 distribution. Finally, the accuracy criterion
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and its associated index IA have been defined as an aggregation of the widely-known recall and

precision indicators (Osei-Bryson, 2010; Tibshirani and Walther, 2005; Xiong et al., 2009).

The most important contributions introduced in this chapter are the definitions of five fuzzy

criteria and their corresponding membership functions including, specifically, the definition of a

fuzzy number according to the user expectations in the first criterion, the characterisation and

mathematical demonstration of the limits of the coefficient of variation used in the definition of the

second criterion, the definition of the third criterion by using the concept of adequacy degree, the

use of the conception of dependency to assess the relation or compatibility of each classification

with an external variable in the fourth criterion and the inclusion of accuracy notion to complete

the set of internal criteria for assessing classifications.

As future work, some of the criteria must be improved by generalising them in order to cover all

possible needs of the end user. For instance, second criterion (balanced classes) would be generalised

to compute the fitness of the distribution of individuals within classes on each distribution. If

previous information about the desired distribution of individuals is available, a new index would

compare this distribution with each classifications. Dependency index should also be improved

by taking into account if the control variable is an ordinal variable. Finally, the parametrisation

of the complete process should be formalised with the aim of driving the user to easily reach his

expectations.
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Chapter 4

Natural language-based automatic

qualitative description of clusters

This chapter aims to design a natural language generation (NLG) system to describe qualitatively

the most important characteristics of each class or cluster previously defined by means of a classifi-

cation or clustering process. This system can be used for describing the best classification chosen by

using the methodology defined in Chapter 3 in order to define a complete solution to be applied in

machine learning (ML) problems. An adaptation of a generic architecture for data-to-text systems

consisting in four stages is proposed. It includes the detection of the most relevant patterns of the

data and the definition of a grammar that generates the natural language description of the defined

clusters.

The use of unsupervised learning systems enables the definition of new classifications that were

previously unknown from a set of individuals. Interpretation and description for the obtained classes

requires an amount of technical knowledge the end user does not usually possess (Oja, 1983). For

this reason, it is desirable to rely on an automated tool for the description of these classes. If

this description is also done by using qualitative expressions, it facilitates the interpretation and

understanding of the results. This will therefore improve the transmission of useful knowledge to

experts who need to understand the profiles of the analysed items of the obtained clusters.

This work aims to provide a solution to this problem by automatically generating a natural

language description of the major characteristics of each of the clusters of a segmentation. A tool
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has been developed under the R environment (R Core Team, 2012). The base package has been

used in addition to several of packages gdata (Warnes et al., 2012) and fpc (Hennig, 2010).

In order to construct natural sentences according to the specific domain, an ontology must be

defined to encode domain knowledge (Gruber, 1993; Gómez-Pérez et al., 2004). This ontology

should include the following aspects:

• Type of the variables. Knowing the type of the considered variables permits the system to

merge properly the modality and variable in a sentence, specially if the specific construction

of the sentence is not provided. Modalities of ordinal variables can be treated, in general, as

adjectives of the corresponding variable.

• Is the modality an adjective of the variable? A more precise alternative this is the last

candidate. next esc will revert to uncompleted text. o the previous point is to know if the

modalities of a variable can actually be treated as adjectives of the variable. Only placing the

modality before the name of the variable gets a proper construction.

• List of modalities of the variables. This information can be automatically gathered in

the very first step of the system, but the order between modalities in ordinal or numerical

variables must be defined. For instance, it allows the system to merge properly sentences of

two or more consecutive modalities.

• Name of individuals. The individuals are by default referred as “individuals”. In order

to enrich the text, the proper name of individuals should be defined. With the aim of avoid

repetitive mentions, alternative names can be provided. Moreover, the proportions of how

many times each alternative appears in the text should be able to be defined in the ontology.

• Specific construction. There are always some variables that need the definition of how to

construct the proper expression when talking about one of their modalities. For instance, a

variable meaning the categorical location of points of sale must be included in the text with

the expression “located in”.

Reiter (2007) presents an architecture for data-to-text systems and more specifically, for those

systems dealing with raw data obtained from sensors. This architecture is based on the one described

in Dale and Reiter (2000), an architecture of a NLG system whose inputs are Artificial Intelligence

(AI) knowledge bases.

Reiter presents a four-stage architecture with the next stages:
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1. Signal analysis: detection of basic patterns in the numerical data. This stage is avoidable

if input data is not numeric.

2. Data interpretation: analysis of the obtained patterns and other discrete data to infer

messages about data and relations between patterns, events and messages.

3. Document planning: deciding which events will be mentioned in the text and the structure

of the text, pointing out how the events will be related to each other.

4. Microplanning and realisation: generating the actual text based on the content and

structure chosen in the previous stage.

This work adapts this architecture to systems dealing with well-structured data having subsets

perfectly defined. Figure 4.1 shows a schematic diagram of the adapted architecture used in this

work. Signal analysis stage receives data in a matrix form where each row corresponds to an

individual that is described by variables stored by columns. The set of individuals is partitioned

in classes. This stage select the variables that best explain the differences between the analysed

classes, and computes the extreme frequencies (EF) and values of importance (VoI) described in

Section 4.1. Data interpretation stage filters these extreme frequencies and values of importance by

analysing type-A rules, as shown in Section 4.2. Document planning stage finds relations between

the filtered extreme frequencies and values of importance by examining type-B rules according to

the domain-specific ontology, and points out lexical modifications to be carried out on the messages

associated to the values by employing type-C rules. Finally, activated rules detailed in Section 4.3

in conjunction with the ontology are used in Microplanning and realisation stage to sort and group

the messages associated with each EF and VoI and to obtain the final text, processes detailed in

Section 4.4. Next, the four stages are explained among the tasks involved in them.

4.1 Signal analysis

At this stage a data preprocessing step to select the variables that best explain the differences

between the defined classes is conducted.

In figure 4.2 a diagram of the tasks included in this stage is shown. Quantitative variables are

initially discretised in order to carry out the same analysis for all variables, to filter the significant
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Figure 4.1: Diagram of the designed NLG system.

ones. After that, relevant values of importance and extreme frequencies are computed. Below the

concrete tasks to be performed are detailed.

4.1.1 Discretisation

Discretisation is the process by which a continuous variable is transformed into a finite number

of intervals associated with a discrete variable. The use of discrete variables, besides decreasing

the computational cost of most data analysis processes, also facilitates the interpretation of the

obtained results (Dougherty et al., 1995; Liu et al., 2002). Moreover, a discretisation step unifies
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Figure 4.2: Diagram of the Signal analysis stage.

the methods to be used over any type of variables.

The studied techniques that have been applied in this approach are located in the area of

qualitative reasoning. The use of qualitative modelling to represent the type of reasoning that

people use to understand continuous aspects of the world is one of the main aspects of qualitative

reasoning (Forbus, 2011). Discretisation becomes a mandatory step on qualitative methods when

data presents excess of precision.

For instance, if the range of a numeric variable is unknown, it is not possible to decide if

a concrete value is high or low. If this variable is discretised in advance, it would be easier to

understand the actual extent of any value. Although its range is unknown, the variable can be

discretised.

The existing methods of discretisation can be classified mainly into two categories: unsupervised

and supervised Dougherty et al. (1995). Unsupervised methods do not consider the class to which

the patterns belong. The used discretisation method has to take advantage that a class variable

is provided within the data set, that is to say, it has to be supervised to ensure the maximum

dependence between the discretised variable and the defined class.

One of the simplest supervised algorithms for discretisation is 1R (Holte, 1993); Minimum De-
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scription Length (MDLP) criterion (Rissanenm, 1978), Information Entropy Maximisation (IEM)

(Fayyad and Irani, 1993), maximum-entropy (Wong and Chiu, 1987) and D2 (Catlett, 1991)

are entropy-based algorithms; there are also clustering-based algorithms like K-means (Tou and

González, 1974); IDD (Ruiz et al., 2008) takes into account the order of the classes (if available)

and is able to dealing with a large number of classes; statistics-based algorithms like ChiMerge

(Kerber, 1992), Chi2 (Liu and Setiono, 1997) and StatDist (Richeldi and Rossotto, 1995) provide

justification of using the χ2 statistic to measure the class-attribute interdependence. From among

them, CAIM algorithm (Kurgan and Cios, 2004) presents excellent results in improving the per-

formance of supervised ML, is able to automatically select the number of discrete intervals and

maximises mutual class-attribute interdependence by using the same concepts introduced in the

selection of significant features presented in the next subsection. CAIM is the general recommen-

dation of the author of this work when there is no any other specific technique that better deals

with peculiarities of the data.

4.1.2 Significant features

The qualitative description to be generated should emphasise the most available relevant features,

i.e. the variables that best differentiate one class from others. That is why a test of independence

between each variable and defined classes is conducted, discarding those variables that do not have

a sufficient level of dependence with the class variable.

In order to measure the class-attribute interdependence, a Chi-square test of independence is

performed on each of the considered variables. These non-parametric tests use a cross table of the

analysed variable and the class variable called contingency table, like the one shown in Example

4.1. They are based on the χ2 statistics and test if the observed distribution of the modalities

of the variable along the class is due to chance. Each χ2 distribution has a degree of freedom

associated with it which depends on the number of the modalities of the variable and the number of

classes. Under the hypothesis of being the variable independent to the classification the expected

frequencies are computed and differences between them and the observed frequencies are aggregated

into the χ2 statistic. The null hypothesis of the test claims that the observed frequencies are not

statistically different to the expected values, that is to say, variable and class are independent. If

the χ2 statistic is large enough, there are sufficient evidences to reject the null hypothesis, so the

variable is considered dependent on the class.
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There are two main requirements to apply there Chi-square tests of independence: the sample

size is reasonably large and there should be at least 5 expected cases per modality and class. Each

Chi-square test has its own peculiarities according to the nature of the analysed data. For instance,

Yates’ chi-squared test (Yates, 1934) performs a correction for continuity in which the analysed

continuous variable has been discretised by rounding it. Cochran-Mantel-Haenszel test (Mantel,

1963) allows the comparison of two groups on a dichotomous response, the same as occurs with

McNemar’s test (McNemar, 1947): they use a 2x2 contingency table. Portmanteau tests (Hosking,

1980) test for the presence of autocorrelation in time-series analysis. Finally, the best-known and

most-used of these chi-squared tests is Pearson’s chi-squared test (Pearson, 1900). It tests the

dependence of categorical variables with any number of modalities and is the chosen test to be

performed in this work.

Example 4.1. Let H be the height of an international sampling of people, and N the nationality

of each one of the people included in the study. Table 4.1 shows the frequency of the couple country-

height in the data set used in this study, considering H as a discretised variable, with modalities

“High”, “Average” and “Low”, that is to say, its absolute joint frequencies.

Table 4.1: Contingency table of the example

High Average Low Total

Norway 30 9 1 40

Spain 30 50 20 100

Japan 20 70 80 170

Total 80 129 101 310

If H and N where independent, the absolute frequencies would be very similar to those shown

in Table 4.2, which are the expected frequencies according to the total individuals of each modality

and country.

The chi-squared test of independence evaluates the differences between the observed values (Table

4.1) and expected ones (Table 4.2) by applying Equation (4.1)

χ2 =

3∑
i=1

3∑
h=1

(qih − eih)2

eih
, (4.1)
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Table 4.2: Expected values in the example

High Average Low Total

Norway 10.3 16.6 13.0 40

Spain 25.8 41.6 32.6 100

Japan 43.9 70.7 55.4 170

Total 80 129 101 310

where qih is the number of cases observed with modalities i ∈ N and h ∈ H, and eih is the number

of cases expected under the null hypothesis of independence. The p-value obtained by comparing the

value of the statistic (χ2 = 58.97) to a chi-squared distribution is almost zero, so null hypothesis

can be rejected and the dependence between variable N and H is proved.

Despite discarded variables may not have a dependence on defined classes, combinations of them

could present a level of dependence on the class variable. Example 4.2 shows a pair of variables

that individually don’t have any kind of dependence with defined class but the combination of their

modalities shows a dependence on classes.

Example 4.2. Let’s consider a data set consisting on 200 individuals described by two variables

and classified in two classes. Both variables have modalities “Low” and “High”. If we compute the

contingency table of Variable 1, independence of each separately variable and class is evident, as

shown in Table 4.3. The same applies to Variable 2.

Table 4.3: Example: variables independent on class but dependent when combining them

Var. 1 Var. 2 Class # of indiv.

Low Low 1 50

High High 1 50

Low High 2 50

High Low 2 50

Class
Variable 1

Total
Low High

1 50 50 100

2 50 50 100

Total 100 100 200

Let Variable 3 be a new variable consisting of combining modalities of Variables 1 and 2. Table

4.4 shows the new obtained data set and the contingency table corresponding with this new variable,

demonstrating the dependence of this new variable and the class variable. Obtained value of χ2
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statistic with 3 degrees of freedom is 200, whose corresponding p-value is almost 0.

Table 4.4: Example: combination of independent variables becoming dependent on class

Variable 3 Class # of individuals

Low–Low 1 50

High–High 1 50

Low–High 2 50

High–Low 2 50

Class
Variable 3

Total
Low–Low Low–High High–Low High–High

1 50 0 0 50 100

2 0 50 50 0 100

Total 50 50 50 50 200

Example 4.3 demonstrates that variables not having any dependence on the class, even combin-

ing them, will be discarded.

Example 4.3. Let’s consider a similar data set to the previous one, consisting of 200 individuals

described by two variables with modalities “Low” and “High”, and classified in two classes. The

contingency table included in Table 4.5 shows that Variable 1 (and even Variable 2) are independent

on the class variable.

Table 4.5: Example: variables independent on class and also independent when combining them

Var. 1 Var. 2 Class # of indiv.

Low Low 1 50

High High 1 50

Low Low 2 50

High High 2 50

Class
Variable 1

Total
Low High

1 50 50 100

2 50 50 100

Total 100 100 200

Again, Variable 3 is added by combining modalities of Variables 1 and 2. Table 4.6 shows the

new obtained data set in addition with contingency table corresponding with this new variable, that
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still remains independent on the class variable. Obtained value of χ2 statistic with 1 degree of

freedom is 0, whose corresponding p-value is 1.

Table 4.6: Example: combination of independent variables remaining independent on class

Variable 3 Class # of individuals

Low–Low 1 50

High–High 1 50

Low–Low 2 50

High–High 2 50

Class
Variable 3

Total
Low–Low Low–High High–Low High–High

1 50 0 0 50 100

2 50 0 0 50 100

Total 100 0 0 100 200

Therefore, instead of directly discarding non-dependent variables, a new process testing the

dependence of new variables obtaining by combining these non-dependent variables must be carried

out. In a first step, pairs of non-dependent variables are tested. If one of the new variables proves

to be dependent on the class variable, it is introduced in the system as a new variable, discarding

variables with which this new variable has been created. A second step tries to reproduce the

process by testing the dependence of trios of non-dependent variables.

4.1.3 Relevant values of importance

Once selected those features showing more dependence with the considered classes, the goal is to

develop a measure that assesses the differences in the distribution of the modalities of each variable

along each class and the population. These measures point out, within each variable, the importance

of each modality in the classes. To do this, the contingency table obtained in the stage of selecting

significant features is used to compute a value of importance (VoI) for each of the absolute joint

frequencies.
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Definition 4.1. Given a contingency table with the absolute joint frequencies, a VoI for each of

the frequencies is computed as follows:

V oIis = sign(qis − eis) ·
(qis − eis)2

eis
, (4.2)

where qis is the number of cases observed with modality s in class i and eis is its expected value.

Thus, a VoI is computed for each class, variable and modality.

Each VoI is the addend of the chi-squared statistic taking into account if the observed value is

greater than the expected one or vice versa. In other words, the VoIs are related to the importance

of their contribution in the χ2 test of independence between the distribution of the modalities of

a variable along the defined classes. The magnitude of each value of importance inside a variable

defines which ones must be included in the subsequent stage. Each variable is analysed separately

because the magnitudes of the VoIs are not comparable between variables.

A need for analysing some thresholds defining the relevance of the values of importance is shown

in Example 4.4. Moreover, the range of values of importance varies when computed for different

variables so these thresholds would have to be computed independently for each variable. Two

different levels of relevance of the VoIs are defined by using the Definitions 4.2 and 4.3.

Example 4.4. Let’s consider the study conducted in Example 4.1. Table 4.7 shows the values of

importance associated with the absolute frequencies of table 4.1, computed by applying Equation

(4.2).

Table 4.7: Values of importance in the example

High Average Low

Norway 37.5 -3.5 -11.1

Spain 0.7 1.7 -4.9

Japan -13.0 0.0 10.9

As it can be seen, the most important difference lies in norwegian tall people (V oINorway,High =

37.5): they are much taller than people in the sample. Its relevance in the differentiation between

classes and population is greater than other high values of importance, like the related to “Japan-

High” (VoI = −13.0) and “Norway-Low” (VoI = −11.1) in a negative way, i.e. their proportion
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in their classes are much lower than in the population, and in “Japan-Low” (VoI = 10.9). It is

convenient to note the different relevance of these two groups of values of importance. The latter

ones are relevant but not as much as the first one.

Definition 4.2. Given a variable V , which has proved to be dependent on the classification C, the

set ZV is defined as the combination of the VoIs in absolute values of the variable V according to

the classification C.

Note that the number of VoIs computed for variable V is M ∗ S, where M is the number of

classes of classification C and S is the number of modalities of the variable V .

Definition 4.3. Given the set ZV containing the VoIs of the variable Z according to the classifi-

cation C, and a discretisation of its values in K subsets (ZV,1 to ZV,k such that ∀zV,i ∈ ZV,i and

∀zV,j ∈ ZV,j, it satisfies zV,i < zV,j ∀i, j|i < j, the VoI very relevant are those that belong to ZV,K

while the VoI relevant are those that belong to ZV,K−1.

Any clustering technique can be applied to detect the relevance of the VoIs associated with a

variable. In this application K clusters are obtained and therefore K− 1 thresholds. In this work a

univariate K-means is applied to obtain K = 3 clusters and 2 thresholds. This technique has been

chosen due to be one of the most commonly known clustering techniques, to the simplicity of its

implementation, to its linear computational cost, and to the fact that it works fine when the clusters

to detect are similar in size (Xiong et al., 2009). VoIs assigned to the cluster with higher values

are treated as very relevant VoIs (high relevance) while the ones assigned to the next cluster are

considered simply relevant VoIs (medium relevance). Finally, VoIs allocated to the rest of clusters

are considered non-relevant (low relevance) and therefore discarded of next stages. Example 4.5

illustrates the application of this method.

Example 4.5. Let’s consider the VoIs shown in Table 4.7. The variable ZH associated with the

variable ‘Height’ is

ZH = {37.5, 3.5, 11.1, 0.7, 1.7, 4.9, 13.0, 0.0, 10.9}.

Note the positive signs of all values. This has be done because the importance of a VoI doesn’t

depend on its sign. It is as important an extremely low frequency than an extremely high one.

The application of a K-means technique on ZH , with K = 3, produces the thresholds h1 = 25.25

and h2 = 7.9. These values are shown in Figure 4.3 in the form of an horizontal line, alongside the

analysed VoI.
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Figure 4.3: The three clusters found in the VoIs of the example.

With this analysis the VoIs greater than h1 = 25.25 are defined as very relevant, as in the case

of the pair “Norway-High”, with an associated VoI of 37.5. It also recognises as simply relevant

VoIs the ones greater than h2 = 7.9, as the pairs “Norway-Low”, “Japan-High” and “Japan-Low”,

with the related VoIs −11.1, −13.0 and 10.9, respectively. Finally, the messages associated a VoIs

with an absolute value less than H2 = 7.9 are definitely filtered and discarded.

4.1.4 Extreme frequencies

In the previous subsection the values that more differentiate the classes between them have been

emphasised, considering the joint frequency distribution, i.e. taking into account all classes at once.

In this subsection each class is managed separately, i.e. the conditional frequencies on each of the

classes are examined.

The qualitative description must include a reference to those variables presenting some modali-

ties with extreme frequency (EF) in order to highlight those modalities that encompass most of

individuals in the class, or in which it have been observed very few individuals with that particular

modality.

With that goal a matrix of conditional distributions of the variable in reference of each class is

computed. It is necessary to study some thresholds in order to get a formal definition of what does

mean that a frequency conditioned to a class is an extreme value, as shown in Example 4.6.

Example 4.6. Let’s consider again the study presented in Example 4.1. Table 4.8 shows the

61



Germán Sánchez-Hernández

conditional relative frequencies, that is to say, the distribution of the modalities (High, Average

and Low) along the three classes (Norway, Spain and Japan). Also a matrix with the joint relative

distribution (and the marginal distributions) is included.

Table 4.8: Conditional and joint distributions in the example

High Average Low sum

Norway 0.75 0.22 0.02 1

Spain 0.3 0.5 0.2 1

Japan 0.12 0.41 0.47 1

High Average Low sum

Norway 0.097 0.029 0.003 0.13

Spain 0.097 0.161 0.065 0.32

Japan 0.065 0.226 0.258 0.55

sum 0.26 0.42 0.33 1

The most extreme frequency seems to be located in the pair “Norway-Low”: almost none of

norwegian people is short (2%). Some other frequencies could be highlighted so a threshold to decide

which ones to remark is required.

Definition 4.4. Given a classification C, the set W is defined as the combination of the relative

frequencies conditioned to the class of all the variables.

Definition 4.5. Given the set W containing the conditional frequencies of all the variables accord-

ing to classification C, the extreme frequencies are defined as those which are less or greater than

the percentiles 1% and 99% of the set W .

Note that the fact of working with percentiles leads the number of detected extreme frequencies

to be directly proportional to the number of analysed variables, thus increasing the length of the

descriptive text in those cases where the number of variables is high.

Example 4.7. Let’s consider the conditional frequencies shown in Table 4.8. To detect the extreme

frequencies all the analysed dependent variables must be considered. In this case, the use of this

unique variable is sufficient to illustrate the detection of the extreme frequencies. Thus, the set W

associated with this table is

W = {0.75, 0.22, 0.02, 0.3, 0.5, 0.2, 0.12, 0.41, 0.47}.

The percentiles 1% and 99% of W are p1 = 0.028 and p99 = 0.73, respectively. Therefore, the con-

ditional frequencies considered as extreme frequencies are 0.02 (less than p1) and 0.75 (greater than
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p99), associated respectively to the pairs “Norway-Low” and “Norway-High”. Then, the messages

associated with relative frequencies inside the interval ]p1, p99[ are discarded.

4.1.5 Initial messages

Each VoI and EF has an associated initial message. Each message has the following attributes:

• Type of message: either VoI or EF.

• Class: the class to which the message refers.

• Variable: the variable to which the message refers.

• Modality: the modality of the variable to which the message refers.

• Sign: low or high (negative or positive), it indicates the semantics of the message. For exam-

ple, a negative message suggests that the number of individuals showing a certain modality

of a variable in a certain class is very low either in relative terms by contrasting the class

with the rest of the population (VoI) or in absolute terms by comparing the frequency of the

modality with the other modalities of the variable (EF).

• Value: associated value of the message, either its own VoI or the relative frequency.

VoIs will have an extra attribute, which will be referred to the significance of the VoI: high,

medium or low.

Also note that in the examples the associated messages have been abbreviated for showing their

purpose clearer. The phrases in the final text must be complete. These complete sentences are

shown below, beside the notation used in the examples included in the sections below.

• (VoI+), the message is related to a VoI of positive sign: the proportion of individuals with

the modality M in the variable V is (much) greater than in the population.

• (VoI–), the message is related to a VoI of negative sign: the proportion of individuals with

the modality M in the variable V is (much) lower than in the population.

• (EF+), the message is related to an EF of positive sign: (almost) all individuals have the

modality M in the variable V .

• (EF–), the message is related to an EF of negative sign: (almost) none of the individuals has

the modality M in the variable V .
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4.2 Data interpretation

Data interpretation is the second stage of the four-stage architecture defined by Reiter and intro-

duced previously. In the current work, this stage is responsible for detecting basic relations between

the messages obtained in the previous stage.

The main aim of this is stage is to look for messages offering similar information in order to

avoid repetitions. Once two related messages have been detected, if one of them is implied by or

is redundant with the other one, it is discarded and the first one is prioritised. For instance, if a

message says that all individuals of a class present a certain modality, while other one says that the

proportion of individuals showing this same modality is higher than in the population, the second

message is discarded because it is implied by the first one and therefore it is redundant.

Rules for discovering these relations and for discarding redundant messages look for groups of

messages sharing the attributes are summarised in Table 4.9. This table informs, for each rule,

which attributes of the messages are used to detect the relations. Remember that type of a message

is either EF or VoI, the type of value which the message comes from, and sign stands for the sign

of the value (positive or negative). For example, rule A.1 will analyse messages that at least share

the same class, variable and type.

Table 4.9: Summary of type-A rules, showing which attributes are checked by each rule

Rule Class Variable Modality Type Sign

A.1 Yes Yes Yes

A.2 Yes Yes Yes Yes

A.3 Yes Yes

A.4 Yes Yes Yes Yes

A.5 Yes Yes Yes

At the end of this stage, a weight is assigned to each message, initially set to 1. After applying

each type-A rule, the weight of each discarded message is decreased by one unit, and the weights

of messages that have caused this discard (prioritised messages) are increased. Once explored all

rules, messages with a null or negative weight are definitely discarded: only messages with more

prioritisations than discards are passed to the next stage.

In the following subsections, an exhaustive description of the different rules for discarding mes-
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sages is introduced. In each subsection a different rule is explained and analysed. In addition,

examples are given to better understand its meaning and aim.

4.2.1 Rule A.1: discarding negative messages

This rule avoids negative messages of a variable in reference to a class when there are other positive

messages of the same variable and class but about a different modality. In general, if most of

the individuals of a class present a certain modality (positive message), the other modalities are

also highlighted in the form of a negative message. That is to say, the existence of these positive

messages about a modality of a variable implies the existence of negative messages of the other

modalities of the variable, so these latter messages must be avoided.

Given that EFs are more descriptive, messages of this type have to be treated in a different way

than the messages of typeVoIs. Below the different way in what messages derived from EFs or VoIs

is detailed.

Discarding messages related to EF: if there are positive and negative messages of type EF,

the negative ones must be discarded and the positive ones, prioritised. A positive EF means

that (almost) all the individuals in a class presents a certain modality, so it’s very usual

getting negative EF for the rest of modalities of the variable. These negative messages can

be avoided. Examples 4.8 and 4.9 detail this statement in the cases of variables with two or

three modalities, respectively.

Example 4.8. Let V be a binary variable with the two modalities “No” and “Yes”, and the following

messages obtained from EFs related to the same class:

• All individuals are “No” (EF+);

• None of the individuals is “Yes” (EF–).

Conduct to:

• All individuals are “No” (discard the negative EF message).

Example 4.9. Let V be a variable with the modalities “Red”, “Green” and “Blue”. The following

EFs are related to the same class:

• Almost all individuals are “Red” (EF+);
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• Almost none of the individuals is “Green” (EF–);

• Almost none of the individuals is “Blue” (EF–).

Conduct to:

• Almost all individuals are “Red” (discard the negative EFs messages).

Discarding messages related to VoI: if there are positive and negative messages of type VoI

for the same binary variable (two modalities), the negative ones must be discarded and the

positive ones, prioritised. A positive VoI of a binary variable means that the proportion of

individuals presenting a certain modality is (very) high. On the one hand, this implies that

positive VoI of the other modality can’t be obtained. On the other hand, it is very probable

to get a negative VoI for that other modality. In this case, this negative message must be

discarded. Note that the variable must be binary because otherwise it is possible to count with

two positive VoIs so discarding the negative VoIs can lead to a loss of information. Examples

4.10 and 4.11 detail this statement in the cases of variables with two or three modalities,

respectively.

Example 4.10. Let V be a binary variable with the two modalities “No” and “Yes”. The following

VoIs are related to the same class:

• The proportion of “No” is high (VoI+);

• The proportion of “Yes” is low (VoI–).

Conduct to:

• The proportion of “No” is high (discard the negative VoI message).

Example 4.11. Let V be a variable with the modalities “Red”, “Green” and “Blue”. The following

VoIs are related to the same class:

• The proportion of “Red” is high (VoI+);

• The proportion of “Green” is low (VoI–);

• The proportion of “Blue” is low (VoI–).

Conduct to:

• Negative VoIs can’t be discarded due to a loss of information.

To sum up, different messages can be affected by this rule if they are related to the same class,

variable and type.
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4.2.2 Rule A.2: discarding messages obtained from VoIs

This rule is made to avoid VoI messages about a modality of a variable when there are other EF

messages of the same modality and variable with the same sign. As it was said before, EF messages

are more descriptive than VoI so the latter ones can be discarded in favour of the first ones.

Proposition 4.1. Given a positive (negative) message coming from type EF, it implies the same

positive (negative) message of type VoI.

Proof. Let’s consider a positive EF message corresponding to the class C, the variable V and the

modality M . It means that most of individuals in class C have the modality M for the variable V . If

there not exists the same positive VoI (same class, variable and modality), i.e. the proportion of M

in C is not important, then the proportion of M in the other classes is similar to the proportion in

C. This implies that variable V has the same distribution in all classes, so variable V is independent

on the class variable. This leads us to a contradiction because in the previous stage only variables

dependent on the class variable were selected, so the existence of the positive VoI is proved. The

same proof can be applied for negative messages.

Examples 4.12 and 4.13 instances the application of rule A.2 in the case of positive and negative

messages, respectively.

Example 4.12. Let V be a variable with the modalities “Red”, “Green” and “Blue”. The following

messages are related to the same class:

• Almost all individuals are “Red” (EF+);

• The proportion of “Red” is high (VoI+).

Conduct to:

• Almost all individuals are “Red” (discard the VoI message).

Example 4.13. Let V be a variable with the modalities “Red”, “Green” and “Blue”. The following

messages are related to the same class:

• Almost none of the individuals is “Green” (EF–);

• The proportion of “Green” is low (VoI–).

Conduct to:

• Almost none of the individuals is “Green” (discard the VoI message).
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4.2.3 Rule A.3: discarding modalities

Rule A.3 avoids information overload that occurs when all modalities of a variable are highlighted

within a certain class. If this occurs, positive messages are prioritised giving priority to EFs over

VoIs, discarding the rest of messages.

Examples 4.14 to 4.17 illustrate the application of this rule. Let V be a variable with the

modalities “small”, “medium” and “big”. The following messages are related to the same class.

Example 4.14. Mixed-type messages with almost one positive EF:

• Almost all individuals are “medium” (EF+);

• Almost none of the individuals is “big” (EF–);

• The proportion of “small” is very low (VoI–).

Conduct to:

• Almost all individuals are “medium” (discard the negative messages).

Example 4.15. Mixed-type messages without any positive EF:

• Almost none of the individuals is “medium” (EF–);

• Almost none of the individuals is “big” (EF–);

• The proportion of “small” is very high (VoI+).

Conduct to:

• The proportion of “small” is very high (discard the negative messages).

Example 4.16. All messages are related to EFs:

• Almost all individuals are “medium” (EF+);

• Almost none of the individuals is “big” (EF–);

• Almost none of the individuals is “small” (EF–).

Conduct to:

• Almost all individuals are “medium” (discard the negative messages).

Note that this example is equivalent to Ex. 4.9. As the rules are applied sequentially, rule A.1 will

be the one to be used.

Example 4.17. All messages are related to VoIs:

68



CHAPTER 4. NATURAL LANGUAGE-BASED AUTOMATIC QUALITATIVE DESCRIPTION OF CLUSTERS

• The proportion of “medium” is high (VoI+);

• The proportion of “big” is low (VoI–);

• The proportion of “small” is low (VoI–).

Conduct to:

• The proportion of “medium” is high (discard the negative messages).

Note that this example is equivalent to Ex. 4.11. As the rules are applied sequentially, rule A.1 will

be the one to be used.

4.2.4 Rule A.4: discarding variables (messages of the same sign)

Rule A.4 has been designed to avoid situations in which the same information is highlighted in

all the analysed classes, i.e. there exist messages about all classes concerning the same variable,

modality, type and sign. In this case, rule A.4 will discard all the involved messages. These messages

share variable and modality, but in order to ensure that there is no loss of information by discarding

too many messages, they also must be the same type and even the same sign. Furthermore, they

cannot all be positive at a time, because if so, the variable would have been discarded in previous

steps for its independence with the classes. Examples 4.18 and 4.19 illustrate the behaviour of this

rule when dealing with messages coming from EFs and VoIs, respectively.

Example 4.18. Discarding extreme frequencies:

• Almost none of the individuals in class C1 is “medium” (EF–);

• None of the individuals in class C2 is “medium” (EF–);

• Almost none of the individuals in class C3 is “medium” (EF–).

Conduct to:

• Discard all messages.

Example 4.19. Discarding values of importance:

• The proportion of “medium” in class C1 is low (VoI–);

• The proportion of “medium” in class C2 is very low (VoI–);

• The proportion of “medium” in class C3 is low (VoI–).

Conduct to:

• Discard all messages.

69



Germán Sánchez-Hernández

4.2.5 Rule A.5: discarding variables (messages of different sign)

Analysing in more detail rule A.4, it is detected that messages sharing type, variable and modality

–when they cover all the classes– may be redundant even when their sign is different.

In cases where only one of the classes (let’s call it C) has a positive message (therefore, the

other classes have it negative), it means that C not only has a high percentage of individuals with

the shared modality, but most of elements that present that modality are classified in that class.

This new information is attached to the positive messages affected by rule A.5, after discarding the

negative ones.

Examples 4.20 and 4.21 show the behaviour of this rule when dealing with messages coming

from EFs and VoIs, respectively. Note the addition made in the sentences conducted.

Example 4.20. Discarding extreme frequencies concerning the same variable:

• Almost none of the individuals in class C1 is “medium”(EF–);

• Almost all individuals in class C2 are “medium” (EF+);

• None of the individuals in class C3 is “medium” (EF–).

Conduct to:

• Almost all individuals in class C2 are “medium” (moreover, almost all “medium” individuals

are in this class) (discard the negative messages and amplify the positive sentence).

Example 4.21. Discarding values of importance concerning the same variable:

• The proportion of “medium” in class C1 is low (VoI–);

• The proportion of “medium” in class C2 is high (VoI+);

• The proportion of “medium” in class C3 is very low (VoI–).

Conduct to:

• The proportion of “medium” in class C2 is high (moreover, most of “medium” individuals are

in this class) (discard the negative messages and amplify the positive sentence).

4.3 Document planning

Document planning is the third stage of the analysed four-stage architecture. This stage is responsi-

ble for two basic tasks. On the one hand, to discover relations among messages in order to combine
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them in the final text. On the other hand, to identify specific modifications to be carried out on the

sentences according to the semantics of the modalities or variables of these messages. It’s important

to note that these tasks are only addressed to detect and list relations and possible modifications.

The effective execution of these modifications is carried out in the next stage corresponding to the

realisation.

To identify the modifications to be carried out on the messages, an ontology must be defined to

encode domain knowledge. This ontology will be used again in the fourth stage of the NLG system.

In the following subsections these two tasks are analysed and detailed, providing examples for

each step.

4.3.1 Discovering relations among messages

In order to achieve a natural and compact final text, messages that are related to each other must

appear together in one sentence. The discovery of the relations among messages is performed

through the application of the rules defined in the following subsections. All these rules merge

messages concerning the same class, because the final text is organised by classes. These rules are

summarised in Table 4.10. This table shows, for each rule, which attributes of the messages have

to match to be considered in the same sentence. For example, rule B.1 will merge messages sharing

class, variable, type and sign.

Table 4.10: Summary of the activation of type-B rules, showing which attributes are checked by

each rule

Rule Class Variable Modality Type Sign

B.1 Yes Yes Yes Yes

B.2 Yes Yes Yes

B.3 Yes Yes Yes

B.4 Yes Yes

B.5 Yes Yes Yes

At the end of this phase, each message will be associated with a vector of activated rules to be

applied in the final stage of realisation. Following subsections describe exhaustively the different

rules designed for discovering relations among messages. Each subsection explains and analyses a
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different rule, including examples to better understand its meaning and aim.

Rule B.1: merging modalities of an ordinal variable

This rule groups messages sharing the same modality of an ordinal variable. If some modalities of

an ordinal variable are highlighted, they are merged in the proper way by applying this rule. In

addition, if the modalities highlighted are two or more consecutive ones, the constructed sentence

will take into account the interval containing these modalities.

As it is shown in Example 4.22, EFs and VoIs cannot be merged because if so, the obtained

sentence would be overcomplicated and there would be no gain by merging those messages of

different type.

Example 4.22. Analysing messages of different type:

• Almost all individuals are “weak” (EF+);

• The proportion of “strong” is high (VoI+).

Would conduct to:

• Almost all individuals are “weak” and the proportion of “strong” is low (it’s better still not to

merge these different type messages).

The same occurs with messages of different sign, as seen in Example 4.23, so this rule only takes

into account messages sharing not only class and variable, but also sign and type.

Example 4.23. Analysing messages of different sign:

• The proportion of “weak” is high (VoI+);

• The proportion of “strong” is low (VoI–).

Would conduct to:

• The proportion of “weak” is high while the proportion of “strong” is low (it’s better still not

to merge these different sign messages).

Examples 4.24 to 4.26 illustrate the behaviour of rule when dealing with messages of the same

sign. In all the cases the subject has had to be changed to plural in order to construct a truth

sentence. In Example 4.24 messages to be merged have two non-consecutive modalities Note that

the grammatical number of the subject must be changed to plural.
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Example 4.24. Merging messages of the same sign with non-consecutive modalites. Let’s assume

that the modalities of the analysed variable are “inexistent”, “weak”, “regular”, “strong” and “very

strong”:

• The proportion of “weak” is high (VoI+);

• The proportion of “strong” is high (VoI+).

Conduct to:

• The proportions of “weak” and “strong” are high (merge messages and change the grammatical

number of the subject to plural).

In example 4.25 the messages considered have consecutive modalities and some of them have

extreme modalities. Note that only the non-extreme modality is mentioned.

Example 4.25. Merging messages of the same sign with consecutive and extreme modalites. Let’s

assume that the modalities of the analysed variable are “inexistent”, “weak”, “regular”, “strong”

and “very strong”:

• The proportion of individuals with the modality “strong” in variable competition is low (VoI–);

• The proportion of individuals with the modality “very strong” in variable competition is low

(VoI–).

Conduct to:

• The proportions of individuals with a competition greater than or equal to “strong” are high

(merge messages and change the grammatical number of the subject to plural).

In example 4.26 messages with more than two consecutive and non-extreme modalities are

merged. In this case, the interval formed with the consecutive modalities is mentioned.

Example 4.26. Merging messages with more than two consecutive modalities. Let’s assume that

the modalities of the analysed variable are “very low”, “low”, “regular”, “high” and “very high”:

• The proportion of individuals with a “low” competition is high (VoI+);

• The proportion of individuals with a “regular” competition is high (VoI+);

• The proportion of individuals with a “high” competition is high (VoI+).

Conduct to:

• The proportions of individuals with a competition between “low” and “high” are high (merge

messages).
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Rule B.2: merging modalities

Rule B.2 groups messages in a similar way than in rule B.1, but in this case not only ordinal variables

are considered. Moreover, this rule also merges messages sharing class and variable, without the

need of sharing type of message.

This rule deals only with messages not affected by previous rule and consists of two steps. In

a first step messages sharing sign are merged while a second step is needed for merging the rest of

messages (those with different sign). Note that this rule is a very generic rule that will affect most

of the analysed messages.

Examples 4.27 and 4.28 show the behaviour of this rule when dealing with messages of the same

sign and type. When sharing sign, the obtained sentence is much more compact than when dealing

with messages of different sign.

Example 4.27. VoIs of the same sign:

• The proportion of individuals with modality “green” is low (VoI–);

• The proportion of individuals with modality “red” is low (VoI–).

Conduct to:

• The proportions of individuals with modalities “green” and “red” are low (merge messages).

Example 4.28. EFs of the same sign:

• None of the individuals is “green” (EF–);

• None of the individuals is “red” (EF–).

Conduct to:

• None of the individuals is “green” nor “red” (merge messages).

Examples 4.29 and 4.30 illustrate the behaviour with messages of the same type but with

different sign.

Example 4.29. VoIs of different sign:

• The proportion of individuals with modality “green” is low (VoI–);

• The proportion of individuals with modality “red” is high (VoI+).

Conduct to:
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• The proportion of individuals with modality “green” is low while the proportion of them with

modality “red” is high (merge messages).

Example 4.30. EFs of different sign:

• None of the individuals is “green” (EF–);

• Almost all individuals are “red” (EF+).

Conduct to:

• None of the individuals is “green” while almost all of them are “red” (merge messages).

Note that the negative EF would have been discarded by rule A.1 if the current variable had only

these two modalities. In this case, rule B.2 would not apply.

Finally, Examples 4.31 and 4.32 instances the application of rule B.2 with messages of different

type.

Example 4.31. Messages with the same sign but different type:

• Almost all individuals are “weak” (EF+);

• The proportion of “strong” is high (VoI+).

Conduct to:

• Almost all individuals are “weak” and the proportion of “strong” is high (merge messages).

Example 4.32. Messages of different type and sign:

• Almost all individuals are “weak” (EF+);

• The proportion of “strong” is low (VoI–).

Conduct to:

• Almost all individuals are “weak” while the proportion of “strong” is low (merge messages).

Rule B.3: merging variables with the same modalities

It’s usual to deal with different variables having the same modalities. Often quantitative variables

are discretised by using the same labels (“low”, “normal”, “high”, etc.) or ordinal variables with

a similar meaning use the same modalities (“deficient”, “regular”, “good”, “excellent” and so on).

Rule B.3 merge messages of the same type which share the modality. It firstly filters messages
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affected by previous type-B rules. In a first step, messages of the same sign are analysed and in a

second step, the rest of messages are taken into account.

When dealing with categorical variables, two or more messages can be merged by rule B.3 if

they refer to the same modality, regardless of the rest of modalities. In the case of handling with

messages relative to ordinal variables, messages can be merged only if their corresponding variables

share all the modalities, because the meaning of a certain modality can differ between variables

according for example to the number of modalities of the variable.

Examples 4.33 to 4.37 show the behaviour of this rule when dealing with messages of the same

sign and type. Among them, Examples 4.33 to 4.36 deal with messages coming from EFs. When

trying to merge EF messages associated with absolute values (they are related to the 100% or 0%

of the individuals of the class), the compaction is carried out in a simple way, as shown in Examples

4.33 and 4.34.

Example 4.33. Absolute positive EFs of the same sign about two ordinal variables with the same

exact modalities.

• All individuals have an “excellent” communication (EF+);

• All individuals have an “excellent” quality (EF+).

Conduct to:

• All individuals have an “excellent” communication and quality.

Example 4.34. Absolute negative EFs of the same sign about two categorical variables sharing the

analysed modality.

• None of the individuals has a “green” image (EF–);

• None of the individuals has a “green” building (EF–).

Conduct to:

• None of the individuals has a “green” image nor building.

In the case of dealing with non-absolute EF messages (those referring to less than 100% or more

than 0% of the individuals of the class), the compaction of the sentence cannot be done in a simple

way due to a possible lack of information or to an untrue statement, as shown in Examples 4.35

and 4.36.
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Example 4.35. Non-absolute positive EFs of the same sign about two ordinal variables with the

same exact modalities.

• Almost all individuals have an “excellent” communication (EF+);

• Almost all individuals have an “excellent” quality (EF+).

May conduct to:

• Almost all individuals have an “excellent” communication and quality (false statement: the

conjunction of both conditions may not be related to “almost all individuals”),

or to:

• Almost all individuals have an “excellent” communication or quality (lack of information),

but the correct way is:

• Regarding communication and quality, almost all individuals are excellent.

Example 4.36. Non-absolute negative EFs of the same sign about two ordinal variables with the

same exact modalities.

• Almost none of the individuals has an “excellent” communication (EF+);

• Almost none of the individuals has an “excellent” quality (EF+).

Conduct to:

• In reference to communication and quality, almost none of the individuals is excellent.

Example 4.37 illustrates the merging of messages coming from VoIs. In this case, the grammat-

ical number of the composed sentence has to be changed to plural.

Example 4.37. VoIs of the same sign about two ordinal variables with the same exact modalities:

• The proportion of individuals with a “small” size is low (VoI–);

• The proportion of individuals with a “small” showcase is low (VoI–).

Conduct to:

• The proportions of individuals with a “small” size and showcase are low (merge messages and

change the grammatical number of the sentence).

Examples 4.38 and 4.39 illustrate the behaviour of this rule when dealing with messages of the

different sign. In this case, the sentence cannot be compacted.
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Example 4.38. EFs of different sign:

• Almost all individuals have an “excellent” communication (EF+);

• None of the individuals has an “excellent” quality (EF–).

Conduct to:

• Almost all individuals have an “excellent” communication but none of them has an “excellent”

quality (merge messages).

Example 4.39. VoIs of different sign:

• The proportion of individuals with a “small” size is high (VoI+);

• The proportion of individuals with a “small” showcase is low (VoI–).

Conduct to:

• The proportion of individuals with a “small” size is high but the proportion of them with a

“small” showcase is low (merge messages).

Rule B.4: adding single modalities

Once reached this step, most messages have been associated with other messages. It is not natural,

when talking about the most relevant features of a certain class, to include a reference to a variable

that has already been previously referred. Rule B.4 avoids those situations by associating single

messages (those without relations) to sentences (groups of messages) that share the variable which

are related to, with the one of the single message. To this aim, this rule looks for single messages

and tries to associate them with any of the existing sentences. That is why this rule only analyses

the class and variable to which messages are related to.

Examples 4.40 and 4.41 illustrate the addition of single messages to sentences detected by rules

B.1 and B.2, respectively.

Example 4.40. B.1 sentence and EF:

• The proportions of “weak” and “strong” are high (positive sentence detected by rule B.1);

• None of the individuals is “inexistent” (EF–).

Conduct to:

• The proportions of “weak” and “strong” are high and none of the individuals is “inexistent”

(merge messages).
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Example 4.41. B.2 sentence and VoI:

• None of the individuals is “green” nor “red” (negative sentence detected by rule B.2);

• The proportion of “blue” is high (VoI+).

Conduct to:

• None of the individuals is “green” nor “red” and the proportion of “blue” is high (merge

messages).

Rule B.5: merging single messages

As the last step for merging messages, rule B.5 merges single messages (those without relations)

of the same type and sign. These messages don’t have any relation with other messages, but their

sign (and type) can define a slight relation with other single messages. Therefore, this rule looks

for single messages and tries to find relations among them, linking messages of the same type and

sign.

When merging messages coming from EFs, the absoluteness of them, as said in section 4.3.1,

must be taken into account. EF messages only can be compacted in a simple way if they are related

to absolute values (they affect to the 100% or 0% of the individuals of the class). Examples 4.42

and 4.43 show the behaviour of this rule when dealing with messages coming from absolute EFs

and non-absolute EFs, respectively.

Example 4.42. Merging single absolute EF messages:

• None of the individuals has a “strong” competition (EF–);

• None of the individuals has a “good” evaluation (EF–).

Conduct to:

• None of the individuals has a “strong” competition nor a “good” evaluation (merge and com-

pact messages).

In order to avoid a possible lack of information or an untrue statement, non-absolute messages

must be compacted as follows:

Example 4.43. Merging single non-absolute EF messages:

• Almost all individuals have a “weak” competition (EF+);
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• Almost all individuals have a “bad” evaluation (EF+).

Conduct to:

• Regarding communication and evaluation, almost all individuals are “weak” and “bad”, re-

spectively (merge messages).

Example 4.44 illustrates the way of behaving of rule B.5 when merging messages coming from

VoIs. The grammatical number of the composed sentence must be changed to plural in order to

compact it.

Example 4.44. Merging single VoI messages:

• The proportion of individuals with a “strong” competition is high (VoI+);

• The proportion of individuals with a “good” evaluation is high (VoI+).

Conduct to:

• The proportions of individuals with a “strong” competition and a “good” evaluation are high

(merge messages).

4.3.2 Using the semantics of variables and modalities

In order to obtain a natural description of the main features of the analysed classes, semantics of

variables and modalities must be used. To reach this objective, an ontology encoding the knowledge

of the domain must be defined. The following rules have been designed to detect which messages or

sentences must be modified with the aim of producing natural language phrases. Each rule includes

examples to better understand its meaning and aim.

Rule C.1: use of the semantics of modality “no”

Messages obtained from both the EFs and VoIs must change their verbal form when dealing with

“no” modalities. Examples 4.45 and 4.46 detail the application of this rule when treating positive

and negative EF messages, respectively. The application of rule C.1 with EF messages is direct,

only having to modify the sign of the sentence.

Example 4.45. Modifying the message of a positive EF:

• All individuals have the modality “no” in variable internet (EF+).

Conduct to:

80



CHAPTER 4. NATURAL LANGUAGE-BASED AUTOMATIC QUALITATIVE DESCRIPTION OF CLUSTERS

• None of the individuals has internet (invert the sign of the message).

Example 4.46. Modifying the message of a negative EF:

• None of the individuals has the modality “no” in variable internet (EF–).

Conduct to:

• All individuals have internet (invert the sign of the message).

Instead, the application of rule C.1 with messages coming from VoIs is not as direct. Examples

4.47 and 4.48 illustrate its application to positive and negative VoIs, respectively.

Example 4.47. Modifying the message of a positive VoI:

• The proportion of individuals with the modality “no” in variable internet is high (VoI+).

Conduct to:

• The proportion of individuals without internet is high (invert the sign of the preposition).

Example 4.48. Modifying the message of a negative VoI:

• The proportion of individuals with the modality “no” in variable internet is very low (VoI–).

Conduct to:

• The proportion of individuals without internet is very low (invert the sign of the preposition).

Rule C.2: use of the semantics of modality “yes”

By using a similar reasoning as in rule C.1, rule C.2 modifies sentences of both type EF and VoI

messages that are associated with the modality “yes”. In general, this rule will only avoid the

inclusion of the modality in the sentences, as shown in examples 4.49 and 4.50 in the case of type

EF messages and 4.51 and 4.52 in the case of type VoI messages.

Example 4.49. Modifying the message of a positive EF:

• All individuals have the modality “yes” in variable internet (EF+).

Conduct to:

• All individuals have internet (delete the mention of the modality).

Example 4.50. Modifying the message of a negative EF:
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• None of the individuals has the modality “yes” in variable internet (EF–).

Conduct to:

• None of the individuals has internet (delete the mention of the modality).

Example 4.51. Modifying the message of a positive VoI:

• The proportion of individuals with the modality “yes” in variable internet is high (VoI+).

Conduct to:

• The proportion of individuals with internet is high (delete the mention of the modality).

Example 4.52. Modifying the message of a negative VoI:

• The proportion of individuals with the modality “yes” in variable internet is very low (VoI–).

Conduct to:

• The proportion of individuals with internet is very low (invert the sign of the preposition and

delete the mention of the modality).

Rule C.3: use of the semantics of variables

Tule C.3 is one of the most important rules for obtaining a natural text. Generic rules can be

designed for discarding messages or finding relations among them, but a specific use of the semantics

of each variable can increase considerably the naturalness of the generated text.

The application of this rule implies the need of designing an ontology where the generation of

the messages associated with EFs or VoIs is defined for each variable. Examples 4.53 to 4.55 show

several cases in which the semantics of variables must be used.

Example 4.53. Variable “location”:

• Almost all individuals have the modality “city” in the variable location (EF+).

Conduct to:

• Almost all individuals are located in “cities”.

Example 4.54. Variable “size”:

• None of the individuals has the modality “medium” in the variable size (EF–).

Conduct to:
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• None of the individuals is medium-sized.

Example 4.55. Variable “number of assistants”:

• The proportion of individuals with the modality “few” in the variable number of assistants is

very high (VoI+).

Conduct to:

• The proportion of individuals with “few” assistants is very high.

Rule C.4: modalities as adjectives

One way to easily “naturalise” the generated text is taking into account if the modality acts as

an adjective of the variable. In this case, just placing the modality before the variable generates a

more natural sentence. This must be defined in the ontology of the current domain, however the

application of this rule is very easy. Marking which of the variables have modalities corresponding

to adjectives of their associated variable is the only requirement to apply this rule. These variables

don’t need the definition mentioned in the above rule C.3.

Examples 4.56 to 4.59 illustrate some variables of this kind, and how the message is modified

to take the meaning of the modality into account.

Example 4.56. Variable “communication”:

• All individuals have the modality “excellent” in the variable communication (EF+).

Conduct to:

• All individuals have an excellent communication (placing modality before the variable).

Example 4.57. Variable “competition”:

• Almost none of the individuals has the modality “strong” in the variable competition (EF–).

Conduct to:

• Almost none of the individuals has a strong competition (placing modality before the variable).

Example 4.58. Variable “weight”:

• The proportion of individuals with the modality “minimal” in the variable weight is very high

(VoI+).

Conduct to:
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• The proportion of individuals with a minimal weight is very high (placing modality before the

variable).

Example 4.59. Variable “sensitivity to promotions”:

• The proportion of individuals with the modality “high” in the variable sensitivity to promotions

is low (VoI–).

Conduct to:

• The proportion of individuals with a high sensitivity to promotions is low (placing modality

before the variable).

Rule C.5: use of linguistic quantifiers

Most of the examples used to illustrate how the rules work use linguistic quantifiers like “all”,

“none”, “very”, “low”, etc. to magnify the importance or relevance of the messages. The following

show how to use the quantifiers depending on type, sign and relevance of messages.

The quantifiers “high” and “low” are used to transform the sign of messages obtained from VoIs

into a natural sentence, as shown in Example 4.60.

Example 4.60. Messages using the quantifiers “high” and “low”:

• The proportion of “strong” is high (VoI+);

• The proportion of “weak” is low (VoI–).

The quantifier “very” is used to exhibit the high relevance of some VoIs, as shown in Example

4.61.

Example 4.61. Messages using the quantifier “very”:

• The proportion of “red” is very high (highly relevant VoI+);

• The proportion of “green” is very low (highly relevant VoI–).

The quantifiers “all” and “none” are used in messages coming from EFs, when their associated

value is 1 and 0 (100% and 0% of the individuals of the class), respectively, as shown in Example

4.62.

Example 4.62. Messages using the quantifiers “all” and “none”:
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• All individuals are “excellent” (EF+, with a value of 1);

• None of the individuals is “poor” (EF–, with a value of 0).

The quantifier “almost” is used in EF messages when they are not highly relevant, i.e. when

their associated value is below 1 for positive messages and above 0 for negative ones. Example 4.63

illustrate these cases.

Example 4.63. Messages using the quantifier “almost”:

• Almost all individuals are “excellent” (EF+, with a value lower than 1);

• Almost none of the individuals is “poor” (EF–, with a value lower than 0).

4.4 Microplanning and realisation

This stage is the final stage of the architecture of the presented NLG system. It is responsible for

stating the definitive structure of the text and transcribing the analysed messages into the final

text, by enriching them in order to obtain a natural text. This stage is divided into two substages:

microplanning and realisation. Microplanning stage is responsible for deciding the structure of

the final text. This structure must take into account the attributes of messages that come from

previous stages and the relations detected by type-B rules. Realisation stage receives this planning

and produces the final text by transforming messages and sentences obtained in previous stages

according to activated rules among types B and C.

Finally, in order to generate the phrases of the final text, a grammar should be formalised

(Dale and Reiter, 2000; Turner et al., 2006) and a tool should be developed to apply the designed

grammar. A formal grammar is a set of production rules that define the sentences accepted by

a certain language. A context-free grammar is a grammar in which the left-hand side of each

production rule consists of only a single nonterminal symbol. Despite the study of the appropriate

grammar in not within the scope of this thesis and will be presented as future work, a shorten

version of a Backus-Naur Form (BNF) grammar is introduced in Example 4.64.
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Example 4.64. Let’s consider the following grammar:

S → Dc |DcS

Dc → E |D | EDc |DDc

E → Qe X V bM V .

D → N of X with aM V V b Q V c .

Qe → All |Almost all |Almost none of the |None of the

X → individuals

V b → has | have | is | are

N → The proportion

M → list of modalities

V → list of variables

Q → very | λ

V c → high | low

where S is the initial symbol, Dc is the description of a certain class, E and D are sentences obtained

from a EF or a VoI, respectively, Qe is a quantifier for EF sentences, X is the name of the analysed

individuals, V b is a verbal form, N is a nominal syntagm, M is a modality of a variable, V is a

variable, Q is a quantifier adverb, V c is an adjective and “very”, ‘̀ındividals”,“None of the” and so

on are the terminal symbols of the grammar. The sentence “The proportion of individuals with a

good communication is high.” is generated as follows:

S → Dc

→ D

→ N of X with aM V V b Q V c .

→ The proportion of X with aM V V b Q V c .

→ The proportion of individuals with aM V V b Q V c .

→ The proportion of individuals with a good V V b Q V c .

→ The proportion of individuals with a good communication V b Q V c .
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→ The proportion of individuals with a good communication is Q V c .

→ The proportion of individuals with a good communication is λ V c .

→ The proportion of individuals with a good communication is high.

Following subsections describe in detail the different steps carried out in substages of microplan-

ning and realisation.

4.4.1 Microplanning

The natural text to be generated by the NLG system presented in this work has been designed to

describe the most important features of the classes or clusters analysed. Having this in mind, the

text has been organised considering each class separately. Therefore, messages concerning different

classes are not mixed in the same paragraph.

Within each class, messages are sorted according to the following criteria:

1. Weight: type-A rules discard messages that are redundant by prioritising the more descriptive

ones. Each time a message is prioritised, its weight is increased. Those prioritised messages

must be mentioned earlier in the text.

2. Type: as EF messages are more descriptive than VoI ones, messages coming from EFs are

included earlier.

3. Sign: positive messages are usually more important than negative ones. For example, as it

has been explained in section 4.2.1, the existence of a positive message in one class usually

implies the existence of as many negative messages as the rest of classes. So, positive messages

must be incorporated earlier in the text.

4. Relevance: finally, if messages are still tied after applying the above criteria, their relevance

is checked. Messages with a higher relevance must be mentioned earlier in the text.

Once messages are sorted, a group number is assigned sequentially to them and their related

messages according to type-B rules because all of them will belong to the same phrase, as shown

in the Example 4.65.

Example 4.65. Table 4.11 shows an example of several messages sorted by taking into account the

above criteria and the result of grouping them.
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Table 4.11: Example of messages ordered according to the defined criteria and the resulting groups

Message ID Class Related to Rules

1 1 4 B.1

2 1 - -

3 1 5 B.2

4 1 1 B.1

5 1 3 B.2

6 1 - -

7 2 - -

8 2 10 B.1

9 2 - -

10 2 8 B.1

11 2 8, 10 B.4

12 2 - -

13 3 16 B.2

14 3 15 B.3

15 3 14 B.3

16 3 13 B.2

17 3 - -

Group ID Class Messages

1 1 1, 4

2 1 2

3 1 3, 5

4 1 6

5 2 7

6 2 8, 10, 11

7 2 9

8 2 12

9 3 13, 16

10 3 14, 15

11 3 17

The first subtable shows a sorting of 17 messages according to the criteria. Messages can only

be grouped with messages of the same class. Messages marked with a hyphen in the column “Related

to” are not going to be grouped with any message. For instance, message #1 must be grouped with

message #4, while message #2 will appear alone in the text. The second subtable illustrates the

obtained groups (phrases). For instance, message #4 will be included in the first phrase thanks to

its related message #1 and despite having been sorted as the fourth message.

In the next substage a phrase is generated for each group of related messages.
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4.4.2 Realisation

The realisation of the final text is carried out by a sequential process that performs a transcription

in the form of natural language phrases of the different groups of messages obtained in the previous

microplanning substage. This substage explores sequentially the defined groups and generates a

phrase with the messages of the group according to the rules to be applied on them.

As type-A rules have been used for discarding messages in previous stages, the first type of rules

to be analysed are the type-B ones. Table 4.12 shows the compatibility among rules, i.e. if two

rules can co-exist in the same group of messages.

Table 4.12: Compatibility between type-B rules

B.1 B.2 B.3 B.4 B.5

B.1 - No No Yes No

B.2 No - No Yes No

B.3 No No - No No

B.4 Yes Yes No - No

B.5 No No No No -

Rules B.3 and B.5 are the most independent of type-B rules because if they are activated, it

means that the other rules aren’t. This is why these two rules are the first ones to be checked and

applied if needed.

As shown in Table 4.12, rules B.1 and B.2 are independent between them, but they both can

co-exist with rule B.4. Then, in those cases in which rules B.1 or B.2 are activated, they are applied

for the messages of the group that are affected by them and, if rule B.4 is activated in that group,

the obtained sentence is merged to the rest of the messages of the group.

The following sketch summarises the way of applying type-B rules for each of the groups of

messages. Example 4.66 illustrates the way of applying type-B rules for messages presented in

Table 4.11.

• If rules B.3 or B.5 are active → apply them on the whole group (end).

• If not →

– If rules B.1 or B.2 are active → apply them on the messages affected by them.
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∗ If rule B.4 is active→ apply it on the sentence generated by rule B.1 or B.2 and the

rest of messages of the group (end).

∗ If not → (end).

– If not → generate a generic sentence with the message of the group (end).

Example 4.66. Let’s analyse how to apply type-B rules for composing phrases #3 and #5 presented

in Table 4.11.

• Messages of phrase #3 (message IDs #3 and #5) are related by rule B.2. Looking at the

above sketch, rules B.3 and B.5 are not activated, so the next step is analysed. Rule B.2 is

activated, so it’s applied to build a sentence with both messages. Given that rule B.4 is not

activated, the process has finished.

• Messages of phrase #5 (message IDs #8, #10 and #11) are related by rules B.1 and B.4.

More specifically, messages #8 and #10 are related by rule B.1, and the sentence created by

merging them is related to message #11 by rule B.4. Let’s apply the sketch. Given that rules

B.3 and B.5 are not activated, the next step is considered. Given that rule B.1 is activated in

messages #8 and #10, a sentence merging both messages is created. Moreover, rule B.4 is

activated in message #11, so it is applied on the previous sentence to merge it with message

#11, finishing then the process.

Once decided which kind of sentence must be generated according to type-B rules, the type-C

rules are checked and applied in order to generate the proper components of the sentences that

will form the final phrases. The components of a sentence used in this work are described in detail

below:

• Subject: subject of messages differs depending on whether dealing with EF messages or VoI

messages. Moreover, there is a special case presented in section 4.3.1 (rule B.3), by Examples

4.35 and 4.36.

– In case of messages coming from EFs, the subject is very simple and it refers to how

many individuals present a certain modality: “(all | almost all | none of | almost none

of) individuals”. Just in case that the message is not the first message of the sentence,

the word for referring to individuals is replaced by the pronoum “them”: “[...] and all

of them [...]”.
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– In case of dealing with messages coming from VoIs, the subject is the most elaborated

part of the sentence, because it has to mention the variable or the modality and therefore,

the ontology must be used to compose the sentence. Sentences of this type of messages

begin with the nominal phrase “The proportion of individuals”. This nominal phrase is

completed with the variable of modality which the message refers to, usually beginning

with prepositions “with” or “without”: “with a strong competition | with few assistants

| without competition”.

When merging messages coming from VoIs (all type-B rules except B.4) with the same

sign, the grammatical number of the composed sentence must be changed to plural in

order to properly compact it: “The proportions of individuals”.

– When treating with non-absolute negative messages of type EF affected by rule B.3, the

subject must be preceded by the expression “(Regarding | In reference to) variables,”, in

order to avoid untrue sentences or lacks of information.

• Verb: the verb used in sentences depends not only on the type of message, but on the

semantics of the variable or modality associated with the message.

– When dealing from EF messages, it’s usual to use verb forms like “have” or “are”,

depending on the semantics of the variable or modality: “All individuals are | have”.

Just in case of dealing with negative EF messages, the verb number is changed to singular:

“None of the individuals is | has”.

– In case of translating VoI messages, the verb “to be” is always used in third person

singular, as it refers to “the proportion”: “The proportion of individuals with a certain

modality is”. As in the elaboration of the subject, when merging VoI messages of the

same sign, the grammatical number of the verb is changed to plural: “The proportion of

individuals with modalities | variables are”.

• Predicate: the predicate of messages coming from EFs is the part of sentence responsible

for referring the variable or modality of the message, in a similar way that the subject of

VoI messages. Its construction must use the defined ontology and therefor this part of the

sentence depends on the semantic of the variable or modality: “(All individuals) have a strong

competition — are located in little towns ...”. In case of dealing with messages coming from
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VoIs, the predicate is very simple as it only must reflect the sign and relevance of the message,

thus using linguistic quantifiers: “(The proportion of individuals with a certain modality is)

very high | high | low | very low”.

Table 4.13 summarises the peculiarities of the application of each rule, as explained in section

4.3.1. Column “Features of messages” indicates the characteristics that have the messages to be

merged, apart from the requirements defined for each rule shown in Table 4.10. For instance, B.1

rule merges messages related to the same ordinal variable and sharing type and sign. Then, the

composition of the sentence takes into account if the modalities are consecutive or not, and if there is

any extreme modality. The number of Examples is included, and the used connectives to merge the

different messages are detailed in the next columns. Finally, the last column states if the obtained

sentence has been compacted or not.

4.5 Conclusions

This chapter presents the design and development of a natural language generation (NLG) system

to describe in a qualitative way the most important characteristics of the classes of a clustered data

set. The system highlights the most relevant patterns of each class, on the one hand by analysing

separately the joint frequency distribution of each class and, on the other hand, by comparing their

conditional frequencies.

The designed system is based on an adaptation of a well known architecture for data-to-text

systems consisting in four stages: signal analysis, data interpretation, document planning and

microplanning and realisation. Each stage is widely described in this chapter, including exhaustive

examples to better understand the aim of each involved task. Theses tasks include the process

of the initial data in order to standardise the analysed variables, the selection of the significant

features that best differentiate each class, the identification of most relevant values (either extreme

frequency (EF) or value of importance (VoI)) and the transcription of these values into a natural

text.

The process involved in the translation of EFs and VoIs is based on the analysis and application

of rules. The values are firstly translated into messages, and rules are applied sequentially on them

in order to avoid redundant messages, to merge related messages to be combined in the final text

and to identify specific modifications on the messages to obtain a final natural text.
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An ontology to encode domain knowledge is introduced in addition to a grammar used to

implement the proper transcription of the messages. The system has been developed under the R

environment into a tool that automatically obtains the final text.

The most important contributions introduced in this chapter are the adaptation of a generic

four-stage architecture for data-to-text systems in order to design and develop a rule-based system

for dealing with well-structured data in which examples are segmented into several classes, the use

of the concept of dependence to detect the most relevant characteristics of each class, the analysis

and design of a set of rules to discard messages offering similar information in order to obtain a

cohesive description, the analysis and design of a set of rules to merge related messages with the

aim of generating a compact description and the analysis and design of a set of rules to naturalise

the generated description.

As future research, there are two main areas to further investigate. On the one hand, to improve

the detection of important values. This implies, for instance, to take into account the different levels

of importance of analysed variables with the aim of emphasise them in the final text, and to identify

other ways of highlighting other important values. On the other hand, to complete the definition

of the grammar to be used in the realisation stage and to develop the needed mechanisms to

incorporate it to the process.
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Table 4.13: Summary of type-B rules

Rule Features of messages Examples Used connectives Compacted

B.1

Non-consecutive modalities 4.24 and Yes

Consecutive modalities

+ extreme modality 4.25
(greater than | lower

than) or equal to
Yes

+ non-extreme modality 4.26 between . . . and Yes

B.2

Same type

+ same sign + VoIs 4.27 and | nor Yes

+ EFs 4.28 and | nor Yes

+ diff. sign + VoIs 4.29 while No

+ EFs 4.30 while No

Different type

+ same sign 4.31 and No

+ different sign 4.32 while No

B.3

Same sign

+ absolute EFs 4.33, 4.34 and | nor Yes

+ non-absolute EFs 4.35, 4.36
(Regarding | In reference

to) . . . and
Yes

+ VoIs 4.37 and Yes

Different sign

+ EFs 4.38 but No

+ VoIs 4.39 but No

B.4
B.1 + message 4.40 and | . No

B.2 + message 4.41 and | . No

B.5

Absolute EFs 4.42 and | nor Yes

Non-absolute EFs 4.43
(Regarding | In reference

to) . . . and
Yes

VoIs 4.44 and Yes
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Chapter 5

Application to market

segmentation

This chapter describes a case study addressing a challenge in a marketing environment, and solves it

by using the methodologies introduced in Chapters 3 and 4. The case presented shows the relation

between the theoretical study done in previous chapters and its connection to real applications. The

study takes place in a business to business (B2B) environment over nine months, where information

about the retailers of a commercial firm was provided by the firms’ sales representatives. B2B

environments appear when a firm distributes its products via other firms (retailers), and they are

characterised by marketing activities of organisations exchanging commerce transactions with other

organisations (Turnbull and Leek, 2003).

The challenge to solve in this case study is motivated to comprehend fluctuations in orders made

by points of sale that distribute the firm’s products. The impossibility of extensively analysing each

store due to the scarcity of resources makes necessary an automatic study that optimises the needed

resources for performing marketing campaigns intelligently oriented to the set of shops expected

to maximise customers’ (retailers) satisfaction and loyalty. The main objective of this study is to

identify and then segment a set of retailers (points of sale) of an industrial company, considering

behavioural, relational and descriptive variables.

There are three main actions to perform in order to solve the detected challenge. Firstly,

an automatic unsupervised learning process is carried out to get different ways of segmenting the
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analysed stores. Secondly, the methodology presented in Chapter 3 is used to select the best market

segmentation according to marketing experts and firm expectations. The main requirement of the

study is to obtain a segmentation as consistent as possible with the sensitivity to promotions of the

customers of each shop. Finally, in order to get a fully understandable segmentation, the system

introduced in Chapter 4 is employed to obtain a qualitative description in natural language of the

main relevant characteristics of the obtained segments. The obtained new segmentation and the

final text interpreting the considered classes will give an opportunity to marketing executives and

managers to understand their customers’ behaviour. In addition, it will enable them to design or

define appropriate and common marketing strategies for each segment.

5.1 Dataset

The study conducted is based on data collected using the observations, knowledge, and experience

of the sales representatives working for Textil Seu SA, an outdoor sporting equipment firm (Grifone,

http://www.grifone.com) established in La Seu d’Urgell (in Catalonia, Spain) for more than 25

years. Grifone works in a B2B environment and distributes clothes through points of sale and not

directly to customers.

Data was collected as a result of a visiting period of one week to the main offices of Textil

Seu, located in La Seu d’Urgell. Some of the data was obtained by extracting information of the

database in conjunction with the sales’ department. Subjective information was provided by the

representatives of the firm, that know in general the main characteristics of each shop. Obtained

data had to be preprocessed by discarding some non-informative variables and by recoding some

ordinal variables to achieve a sufficient diversity in order to be able to get segments sufficiently

heterogeneous between them.

This section presents the results obtained by considering a database of information from 260

shops that distribute Grifone products (Sánchez-Hernández et al., 2013). According to marketing

experts, 16 variables were selected to describe these points of sale (3 quantitative, 5 qualitative,

and 8 qualitative ordinal). The selected variables are summarised in Table 5.1, and include the

following:

• Aesthetics: aesthetics quality of the display window.

Values: “deficient”, “regular”, “good”, “excellent”.
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• Antiquity : how many months the shop is distributing our products.

Values: natural numbers.

• Assistants: number of full-time sellers in the shop.

Values: natural numbers.

• Communication: communicative quality of the display window.

Values: “deficient”, “regular”, “good”, “excellent”.

• Competition: level of competition within the area in which the store is located.

Values: “no”, “weak”, “strong”.

• DisplayGrifone: states if the display window of the store includes Grifone products.

Values: “no”, “yes”.

• DisplaySize: qualitative size of the display window.

Values: “small”, “medium”, “big”.

• Evaluation: subjective quantitative assessment provided by our Grifone representatives, in

terms of an overall impression of the point of sale.

Values: 0, . . . , 10.

• GrifoneWeight : qualitative weight of Grifone products in the store.

Values: “minimal”, “secondary”, “main”.

• Internet : revels if the shop commercialises its products through the Internet.

Values: “no”, “yes”.

• Location: type of the town in which the store is located, specially if this location is related to

the mountain and outdoor sports.

Values: “inner cities”, “seaside cities”, “no mountain towns”, “mountain towns”, “ski towns”.

• Maintenance: maintenance quality to which is subjected the store.

Values: “deficient”, “regular”, “good”, “excellent”.

• PromosSensit : level of sensitivity to promotions exhibited by the clients’ store.

Values: “low”, “medium”, “high”.

• Size: size of the store in term of square meters dedicated to selling products.

Values: “small”, “medium”, “big”.

• Specialists: indicates if the shop is whether specialised in the sector of outdoor sporting

equipment.
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Values: “no”, “yes”.

• ThermalExhibitor : specifies if the store has a thermal exhibitor, that is to say, an exhibitor

displaying thermal clothes.

Values: “no”, “yes”.

Consequently, each of the points of sale is described by a vector of dimension 16. Figure 5.1

plots the distribution of each variable. At this point, it should be noted that PromosSensit variable

is not going to be used in the unsupervised learning process. The aim of this approach is to obtain

classifications not related to promotional activities and then select the most compatible one with

PromosSensit variable. Therefore, this variable will be considered as external variable to be used

in criteria number 4 for classification selection.

Table 5.1: Description of variables

Type Number Name Description

Quantitative 3

Antiquity Duration of commercial relationship

Assistants Number of full-time sales assistants

Evaluation Assessment by Grifone representatives

Qualitative 5

Specialists Specialist store

Location Geographic location

DisplayGrifone Grifone products in the display window

ThermalExhibitor Thermal product display

Internet Use of the Internet for e-Commerce

Ordinal 8

Competition Level of competition

Size Store size

Maintenance Store maintenance

DisplaySize Display window size

Communication Communicative quality

Aesthetics Aesthetics quality

GrifoneWeight Grifone products’ importance

PromosSensit Promotions sensitivity
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Figure 5.1: Summary of the considered variables in the dataset

5.2 Obtaining segmentations

In order to obtain a set of different segmentations without taking into account any a priori infor-

mation, an unsupervised learning process must be performed. The unsupervised learning technique
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used in this work is based on the algorithm Learning Algorithm for Multivariate Data Analy-

sis (LAMDA) (Aguado, 1998; Aguado et al., 1999; Aguilar and López de Mántaras, 1982). LAMDA

is a classification method based on fuzzy hybrid connectives that combines some of the most inter-

esting capabilities of both purely numeric and purely symbolic algorithms. Its basic operation and

components are detailed in Appendix A.

All connectives mentioned in Appendix A have been considered, by automatically exploring

different degrees of tolerance. Fixed a connective, tolerance levels were obtained by varying it

between 0 and 1, ensuring each tested tolerance to produce a different segmentation (Aguado,

1998). LAMDA is an iterative process, that is to say, it processes each individual several times,

modifying its class until achieving a stability in which the classifications remains unalterable or

until reaching a maximum number of iterations prefixed to 10.

In order to compute the Marginal Adequacy Degree (MAD) of each individual to each class ac-

cording to each variable, density functions must be chosen for each quantitative variables according

to their actual distributions shown in Figure 5.1 (see page 99). Antiquity distribution has a single

maximum value not located in the extremes, so Waissman function is the chosen one. Assistantes

variable presents a left-skewed distribution, as the Classical function. Finally, variable Evaluation

shows a gaussian shape, so Gaussian function is the associated density function with it. These dis-

tributions and the corresponding functions with parameters obtained from the actual distribution

are detailed in Figure 5.2.

In this case, the unsupervised version of LAMDA is used to generate a set of segmentations.

Note that, as said before, variable Promotions sensitivity has not been included in this process

because the objective of this learning phase is to obtain segmentations naturally related to this

concept. The unsupervised learning process produced 566 segmentations, as shown in Table 5.2.

Note that despite the process of analysing different degrees of tolerance was carried out on each

considered connective, some of the obtained segmentations were discarded due to their instability,

as it can be seen in the case of Lukasiewicz connective. In this case, Lukasiewicz connective has

generated a single stable segmentation, that corresponds to tolerance 0. As seen in connectives

detailed in page 138, Frank n-norms have an extra parameter s whose value has been modified

between -5 and 5, avoiding the cases s = 0 and s = 1.

The 566 obtained segmentations are composed of a number of classes between 1 and 244. Con-

sidering all segmentations obtained in the unsupervised process, Figure 5.3 shows the distribution of
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Figure 5.2: Histogram of the quantitative descriptors and their chosen density functions

variable “number of classes” assigned to each segmentation. As it can be seen, this is a left-skewed

distribution because most of the obtained classifications have a low number of classes.

5.3 Ranking and selecting segmentations

Criteria defined in Chapter 3 are applied to choose the most appropriate points of sale segmentation

according to them. The corresponding index of each criterion is computed for each segmentation,

and only after this, the assessments obtained by each segmentation are aggregated by employing

an Ordered Weighted Averaging (OWA) operator. This section reviews parameters used in the

application of each criterion.
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Table 5.2: Number of segmentations obtained by hybrid connective

Connective Tolerance # of segmentations

MinMax Between 0 and 1 244

Frank

s = −5

Between

0 and 1

98

s = −4 58

s = −3 51

s = −2 27

s = −1 22

s = −0.5 31

s = 0.5 10

s = 1.5 3

s = 3 3

Prob. prod. Between 0 and 1 18

Lukasiewicz 0 1

Figure 5.3: Histogram of the variable “number of classes” for the obtained segmentations
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First criterion (usefulness index) needs, on the one hand, setting the values of K1 and K2 that

define the interval considered to have the highest value in its associated index. In this marketing

environment, the most desirable number of classes is set between three and five (Casabayó, 2005)

and therefore K1 = 3 and K2 = 5. On the other hand, the shape of the fuzzy number to use must be

defined: a left-linear function has been chosen as the simplest example of a strictly increasing func-

tion while a right-exponential function has been selected because the usefulness of a classification

should decrease asymptotically when the number of classes increases, as shown in (5.1).

IU,3,5(C) =


M−1
3−1 , if 1 ≤M < 3;

1, if 3 ≤M ≤ 5;

e(260−M)−1
e(260−5)−1 , if 5 < M ≤ 260.

(5.1)

Figure 5.4 shows a graphical representation of an extension to real numbers of the membership

function used in this study. Segmentations with a number of classes between the preferred K1 = 3

and K2 = 5 get the maximum degree of usefulness. Segmentations with only 1 class are not useful

so their degree is 0, while it has been considered that segmentations with 2 classes are not too

useful, having a usefulness of 0.5. On the right side, it has been decided to decrease exponentially

the degree of usefulness as the number of obtained classes increases.

Figure 5.4: Membership function used of modelling the fuzzy concept ‘Useful number of classes’

with K1 = 3 and K2 = 5

In order to avoid segmentations in which one of the classes encompasses most of the shops and

with the aim of getting manageable classes with a non too large number of shops per class, balanced

classes are required. Therefore, criterion (3.12) is used to compute the balanced index with the
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second part of (3.11) because N = 260 ≡ 2(mod 3).

Third criterion (coherence index) needs to choose the density function to be used on each

quantitative variable. This selection is carried out by examining the histogram of each of the three

quantitative variables. These histograms are shown in Figure 5.2 (see page 101). Distribution of

variable Antiquity presents a single maximum value close to the centre of the distribution, as in

Waissman function. Most of values of variable Assistants are located on the left side, so Classical

function has been chosen to represent it. Finally, variable Evaluation shows a gaussian shape, so

Gaussian function is the associated density function with it. These functions have been used to

compute the index defined in the third criterion of coherence.

According to the fourth criterion of dependency of external variables, variable PromosSensit is

used as the control variable to contribute in the computation of the fourth index. Table 5.3 details

the distribution of the modalities within this variable.

Table 5.3: Distribution of variable PromosSensit

Low Medium High

24 109 127

Segmentations obtained by analysing the variables included in the learning phase, with a high

degree of dependency or compatibility with this variable are desired. Therefore, the dependency

index between each segmentation and variable PromosSensit is computed.

Following the fifth criterion description, a supervised learning process is performed on the ob-

tained segmentations in order to compute the accuracy of the predictive model associated with

them. This step involves partitioning the dataset by means of a stratified cross-validation process

with 10 folds. This means that each randomly obtained fold has the same proportion of the classes

than in the whole dataset. Support Vector Machines (SVMs) are considered for supervised learning

due to their good performance on high dimensional spaces (Chapelle et al., 1999). In order to

obtain a statistically significant value for accuracy, the cross-validation process has been performed

30 times, and the accuracy index is the mean of the 30 accuracy indexes computed in each iteration.

Once the five indexes have been computed for the 566 different segmentations, each one of them

is represented by a vector of five components corresponding to this five indexes. Then, they are

aggregated for each segmentation by using an OWA operator. This operator is guided by the fuzzy
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linguistic quantifier ‘most of’, represented using the Regular Increasing Monotone (RIM) function

Q(r) = r1/2 as justified in Section 2.2, which has associated the following weighting vector in the

case of aggregating five values:

(0.447, 0.185, 0.142, 0.120, 0.106) .

Table 5.4 shows an extract of the best segmentations obtained by using this methodology, being

sorted by their achieved OWA value. The 100 best segmentations are shown in Table B.1 (see

Appendix B, page 141).

Table 5.4: Extract of the best segmentations using fuzzy selection criteria OWA methodology

Rank ID Conn. Toler.
Classes

M

Criterion assessment
OWA

IU IB IC ID IA

1 #259 Minmax 0.439 3 1 0.928 0.251 0.528 0.936 0.8423

2 #260 Minmax 0.469 3 1 0.929 0.254 0.363 0.922 0.8207

3 #258 Minmax 0.422 4 1 0.885 0.226 0.425 0.875 0.8103

4 #243 Minmax 0.290 3 1 0.909 0.256 0.008 0.965 0.7868

5 #244 Minmax 0.304 3 1 0.920 0.255 0.012 0.948 0.7855

6 #257 Minmax 0.411 3 1 0.933 0.279 0.032 0.856 0.7786

7 #256 Minmax 0.400 4 1 0.872 0.246 0.064 0.906 0.7751

8 #253 Minmax 0.359 4 1 0.883 0.231 0.021 0.915 0.7722

9 #252 Minmax 0.352 4 1 0.884 0.237 0.025 0.904 0.7712

10 #255 Minmax 0.393 4 1 0.939 0.263 0.063 0.768 0.7686

Note that despite all segmentations shown in Table 5.4 present a value of 1 in IU , there are some

segmentations ranked in the top 100 having a lower value in this index, as segmentations #248,

#78 and #51, shown in Table B.1. Such segmentations would have been discarded if the sequential

approach would have been taken into account.

Therefore, segmentation #259 has been selected, formed by three classes with 35, 98 and 127 el-

ements, respectively. Before assigning a qualitative name to each class, it is necessary to understand

which are the most important characteristics of each one, both by analysing them separately and

by comparing them with each other. This analysis is precisely what is carried out when obtaining
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the qualitative description of the classes.

5.4 Qualitative class description

The natural language generation (NLG) system described in Chapter 4 has been used to obtain

a qualitative description of the most important characteristics of the segments obtained in the

previous stage. Therefore, the application of this methodology will result in a final text explaining

each segment individually. Below the peculiarities of each stage of the adapted architecture are

detailed.

5.4.1 Signal analysis

The objective of this first stage, as seen in Figure 4.2 (page 53) is to obtain the list of the most

relevant characteristics of the classes of classification #259 in form of initial messages with their

associated values. This stage consists of the following steps: discretisation, features selection and

detection of relevant values of importance (VoIs) and extreme frequencies (EFs).

Three of the variables considered are quantitative (Table 5.1). With the aim of unifying the

methods to be used over all variables, a discretisation step is carried out over variables Antiquity,

Assistants and Evaluation. As it was justified in Subsection 4.1.1, the chosen supervised discretisa-

tion technique is the class-attribute interdependence maximisation (CAIM) method (Kurgan and

Cios, 2004). The three variables have been discretised into 3 intervals, whose distributions are

detailed in Table 5.5.

Table 5.5: Frequencies of each obtained interval in the discretisation process

Variable
Intervals

P1 P2 P3

Antiquity 80 69 111

Assistants 204 32 24

Evaluation 52 107 101

In order to enrich the final text, their modalities have been properly chosen, as shown in Table
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5.6.

Table 5.6: Chosen modalities for the discretised variables

Variable
Intervals

P1 P2 P3

Antiquity (years) less than two three more than three

Assistants few many a lot of

Evaluation bad good excellent

The selection of the significant variables is done by computing the dependence level of the

variables in respect to the class. A Pearson’s Chi-square test of independence is carried out for

each one of the 16 variables. Variables for which the dependence with the class variable is not

significant are discarded (the significance of the computed statistic is lower than 0.05). Figure 5.5

shows, for each variable, the distribution of their modalities within each class. In addition, the

statistical significance (p−value) of the computed statistic is given. Variables Antiquity, Specialists

and Internet are discarded because their modalities are distributed in a similar way along the three

analysed classes.

The detection of the relevant VoIs and the EFs implies the computation of several tables for

each considered variable. Both VoIs and EFs are based on the contingency table that include the

joint distribution of each variable and the analysed classes. Table 5.7 shows the contingency table

of variable Competition. The rest of the contingency tables are included in Tables B.2 and B.3 (see

Appendix B, pages 145 and 146). In general, all the computed tables are included in Appendix B

with the aim of facilitating the reading of this text.

Table 5.7: Contingency table of variable Competition

Competition No Weak Strong

1 0 13 21

2 26 38 34

3 24 42 60
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Figure 5.5: Distribution of the modalities within the classes, in addition with their p − value and

the decision result of the selection process

Each frequency is associated with a VoI, computed as the addend of the chi-squared statistic,

that is to say, by using the difference between this observed frequency and the expected one. In
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Table 5.8 the expected frequencies of variable Competition are included. The expected frequencies

of the rest of variables are detailed in Tables B.4 and B.5 (see Appendix B, pages 147 and 148). It

is important to note that, despite some variables present, in some of their modalities, an expected

frequency below 5, these lower frequencies are very close to this required minimum, so no further

action is done.

Table 5.8: Expected frequencies of variable Competition

Competition No Weak Strong

1 6.6 12.3 15.2

2 19.0 35.3 43.7

3 24.4 45.4 56.2

Table 5.9 displays the VoIs of variable Competition. Note that, despite the VoIs are always

positive numbers by definition (Equation 4.2), Table 5.9 includes their associated signs. The result

of the computation of the VoIs is included in Tables B.6 and B.7 (see Appendix B, pages 149 and

150).

Table 5.9: VoIs associated with variable Competition

Competition No Weak Strong

1 -6.66 0.05 2.25

2 2.59 0.20 -2.15

3 -0.01 -0.26 0.26

Looking at the absolute values of Table 5.9, it is clear that variable Competition will have three

type of VoIs. The greater one is the pair “Class 1 – No”, which will be considered as highly relevant.

The other group will contain three VoIs greater than 2, and will be considered simply relevant. The

rest of VoIs, close to 0, will be considered non relevant and therefore discarded.

A process for defining these different levels of relevance of VoI is carried out on each variable as

introduced in Chapter 4. VoI of each variable are grouped and a K-means method (Xiong et al.,

2009) with K = 3 is applied on each set associated with each variable. Among the three obtained
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clusters for each variable, the cluster of lower VoIs is discarded while the VoIs of the medium and

higher clusters are considered medium relevant and highly relevant, respectively. Table 5.10 shows,

for each variable, the computed cut points and the number of relevant and highly relevant detected

VoIs. This process has identified in total 67 VoIs, 38 of them relevant and 29 highly relevant.

Table 5.10: Cut points obtained for each variable and number of relevant VoIs detected

Variable Cut point 1 Cut point 2
# of relevant

VoIs

# of highly

relevant VoIs

Competition 1.2 4.6 3 1

Location 1.1 3.8 4 2

Size 1.6 6.6 4 2

Maintenance 1.1 6.2 5 2

DisplaySize 2.7 6.2 1 2

Communication 1.2 3.5 3 4

Aesthetics 0.8 2.7 3 4

DisplayGrifone 1.8 4.7 2 2

ThermalExhibitor 3.4 11.3 2 1

GrifoneWeight 3.7 10.3 4 1

Assistants 1.7 10.7 3 2

Evaluation 1.4 3.3 1 3

PromosSensit 19.3 37.9 3 3

The obtained cut points for variable Competition are 1.2 and 4.6. That means that VoIs with

an associated absolute value higher than 4.6 are defined to be highly relevant, while VoIs with a

value between 1.2 and 4.6 are defined to be simply relevant. Thus, application of these cut points

defines one highly relevant VoI and three relevant VoIs, as it can be seen when looking at Table 5.9.

As explained in chapter 4, the analysis of conditional frequencies of each variable will result

in the detection of extreme frequencies. Table 5.11 show the conditional frequencies of variable

Competition, while the conditional frequencies of the rest of variables are presented in Tables B.8

and B.9 (see Appendix B, pages 151 and 152).

The absence of individuals with modality “No” belonging to class 1 must be mentioned in the
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Table 5.11: Conditional frequencies of variable Competition

Competition No Weak Strong

1 0.00 0.38 0.62

2 0.27 0.39 0.35

3 0.19 0.33 0.48

final text and it seems that the rest of frequencies are not too extreme to be highlighted. In contrast

to the process of the detection of relevant VoIs, the identification of EFs is done by performing a

unique process over all variables. Conditional frequencies of each selected variable are combined

into set W . A histogram of the values of this set is displayed in Figure 5.6.

Figure 5.6: Histogram of the conditional frequencies of the dependent variables

The EFs are defined as those having a value lower than or equal to the percentile 1%, or those

being greater than or equal to the percentile 99% of set W , that is to say, those values lower or equal

to 0 or greater or equal to 0.971. Table 5.12 presents the values associated with some percentiles.

This process results in the identification of 13 EFs, three of them positive (almost all individuals

of the class present a certain modality) and the other 10 negative (none of the individuals has a

certain modality). Table 5.13 exhibits, for each variable and class, the number of obtained EFs.
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Table 5.12: Percentiles of conditional frequencies to detect EFs

1% 5% 10% 25% 50% 75% 90% 95% 99%

0.000 0.000 0.029 0.114 0.265 0.455 0.685 0.814 0.971

Table 5.13: Number of obtained extreme frequencies

Variable Class 1 Class 2 Class 3

Competition 1 0 0

Location 0 0 0

Size 1 0 0

Maintenance 1 0 0

DisplaySize 2 0 0

Communication 1 0 0

Aesthetics 1 0 0

DisplayGrifone 0 0 0

ThermalExhibitor 0 0 0

GrifoneWeight 0 0 0

Assistants 0 0 0

Evaluation 0 0 0

PromosSensit 2 1 3

In conclusion, in this first stage three numerical variables have been discretised, three non-

dependent variables out of 16 have been discarded, and 67 relevant VoIs and 13 EFs have been

identified. All values are combined into the same data frame. From now on, the values (both VoIs

and EFs) together with their associated information (type of value, class, variable, modality, sign

and relevance) are called initial messages. Table 5.14 includes the five initial messages of variable

Competition (1 highly relevant VoI, 3 relevant VoIs and 1 EFs), while the rest of messages are

shown in Table B.10 (see Appendix B, page 153).
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Table 5.14: Initial messages detected for variable Competition. The rest of messages are included

in Table B.10

ID Class Variable Modality Type Sign Relev. Value

#1 1 Competition no VoI neg. high 6.6

#30 1 Competition strong VoI pos. normal 2.3

#47 2 Competition no VoI pos. normal 2.6

#48 2 Competition strong VoI neg. normal 2.1

#68 1 Competition no EF neg. - 0.0

...

5.4.2 Data interpretation

The aim of this second stage is to apply a series of rules on the detected VoIs and EFs in order to

identify messages offering similar information for discarding the less descriptive ones. Section 4.2

defines a collection of five rules to be applied on the set of initial messages. These rules are applied

in this section on the identified VoIs and EFs by previous stage.

Before applying type-A rules, a initial weight of 1 is assigned to each of the 80 messages.

Each time a message is discarded, its weight is decreased one unit with the aim of decreasing the

importance of the message while the prioritisation of a message implies to increase its weight by

one unit in order to increase its importance.

Rule A.1 discards negative messages when there are other positive messages related to the

same class and variable containing similar information. In the case study analysed, this rule is

activated 6 times, as shown in Table 5.15. This Table shows, for each of the 6 groups of messages

analysed, which messages are discarded (the negative ones) and which of them are prioritised (the

positive ones).

The following paragraph analyses two of the identified groups of messages. Text associated with

message #71 is “In class 1, all shops have a medium display size”. Note that if all individuals of a

class present a certain modality, the other modalities cannot be present in the class, so the message

#72 “None of the shops has a big display size” will be discarded. Message #64 says “In class 3,

the proportion of individuals displaying Grifone products is high”. Again, if a modality of a binary
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Table 5.15: Groups of messages affected by rule A.1

Class Variable Type ID Modality Sign Action Weigth

1

DisplaySize EF
#71 medium pos. Prioritise 2

#72 big neg. Discard 0

ThermalExhibitor VoI
#9 yes pos. Prioritise 2

#42 no neg. Discard 0

PromosSensit EF
#75 medium pos. Prioritise 2

#76 high neg. Discard 0

2 DisplayGrifone VoI
#17 no pos. Prioritise 2

#18 yes neg. Discard 0

3

DisplayGrifone VoI
#64 yes pos. Prioritise 2

#63 no neg. Discard 0

PromosSensit EF

#80 high pos. Prioritise 2

#78 low neg. Discard 0

#79 medium neg. Discard 0

variable involves a great number of the individuals in a class, then the other modality presents a low

proportion of individuals, as said by message #62: “The proportion of individuals not displaying

Grifone products is low”. As a result, rule A.1 has discarded 7 negative messages and prioritised 6

positive ones.

Rule A.2 discards messages of type VoI when there are other EF messages of the same variable,

modality and sign, because the latter ones are more descriptive than the first ones. This rule is

activated for 11 pairs EF-VoI, as shown in Table B.12 (see Appendix B, page 157). In Table 5.16

only messages related to variable Competition are highlighted.

Both messages #68 and #1 are related to the same class, variable and modality and have the

same sign. Text associated with message #68 stands “None of the individual has a ‘no’ competi-

tion1” while message #1 speaks about the same individuals but in a different way: “The proportion

1The proper construction of this sentence is “All individuals have competition”, but its standard way is shown

for better understanding the aim of the rule.
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Table 5.16: Groups of messages of variable Competition affected by rule A.2. The rest of groups

are shown in Table B.12

Class Variable Modality Sign ID Type Action Weight

1 Competition no neg.
#68 EF Prioritise 2

#1 VoI Discard 0

of individuals with a ‘no’ competition is very low2”. If none of the individuals (or all of them)

presents a certain modality, it is trivial that the proportion of individuals with that modality will

be very low, so the redundant information will be discarded. Summarising, rule A.2 has discarded

11 messages related to VoIs, prioritising their related 11 EFs.

Rule A.3 discards messages when all modalities of a variable are highlighted within a certain

class, prioritising positive messages and messages related to VoIs. This rules affects 8 groups

of messages, shown in Table B.13 (see Appendix B, page 158). An extract of those groups are

exemplified in Table 5.17, showing a group related to variable PromosSensit.

Table 5.17: Messages of variable PromosSensit affected by rule A.3. The rest of groups are shown

in Table B.13

Class Variable ID Modality Type Sign Action Weight

2 PromosSensit

#55 low VoI pos. Prioritise 2

#56 medium VoI pos. Prioritise 2

#22 high VoI neg. Discard -1

#77 high EF neg. Discard 1

Sentences associated with the first group of messages (class 2) are the following:

• “The proportion of shops with a low sensitivity to promotions is high”

• “The proportion of shops with a medium sensitivity to promotions is high”

• “The proportion of shops with a high sensitivity to promotions is very low”

2Again, the proper construction of the sentence is: “The proportion of individuals without competition is very

low”.
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• “None of the shops has a high sensitivity to promotions”.

Variable PromosSensit has 3 modalities: “low”, “medium” and “high”. This rule stands that having

positive messages on two of the modalities, any mention to the third one can be avoided. In this

case, the two first positive messages (#55 and #56) say that two out of three modalities (“low”

and “medium”) present a high proportion of shops. It is reasonable to infer that the third modality

(in this case, “high”) will present a very low proportion (as it is looking at message #22) and even

that very few shops will have that modality (message #77). In conclusion, rule A.3 has discarded

14 negative messages, prioritising their related 13 positive messages.

Rule A.4 discards messages when the same information is mentioned for all classes, that is to

say, when there are messages sharing variable, modality, type and sign related to all classes. It is

difficult, in general, that this situation occurs very often, but if it happens, it must be avoided. In

the case study analysed, this rule has not been activated by any group of messages.

Rule A.5 is related to previous rule A.4 because its objective is the same: to avoid mentioning

information when this information is related to all classes. This rule is less restrictive than A.4

because it doesn’t take into account sign of messages. Having this relaxation in mind, Table 5.18

shows the 4 groups of messages affected by rule A.5.

Text associated with positive message #14 of variable Communication is “The proportion of

shops with a regular communication is very high in class 2 ”, while the related negative messages

#40 and #61 say “The proportion of shops with a regular communication is low in class 1 ” and “The

proportion of shops with a regular communication is low in class 3 ”, respectively. Information about

the negative messages can be avoided by remarking in sentence of message #14 that “moreover,

most of regular shops are in this class”. To sum up, rule A.5 has discarded 8 negative messages,

prioritising their corresponding 4 positive ones.

After applying all type-A rules, each message has an associated weight regarding its discards

and prioritisations. Table 5.19 shows the frequency of each final weight, that is to say, how many

messages have finally each weight. Table B.15 (see Appendix B, page 160) shows the list of the

filtered 52 messages that will be mentioned in the final text.

The 28 messages having a negative or null weight are directly discarded. The list of these

directly discarded messages is the following: #1, #2, #3, #4, #7, #16, #18, #22, #28, #35, #38,

#39, #40, #41, #42, #45, #46, #49, #61, #63, #72, #76, #77, #78, #79. It has been decided,

among messages with weight = 1, to discard those having at least one discard: these messages have
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Table 5.18: Groups of messages affected by rule A.5

Variable Modality Type ID Class Sign Action Weight

Aesthetics excellent VoI

#26 3 pos. Prioritise 2

#16 2 neg. Discard 0

#41 1 neg. Discard 0

Communication regular VoI

#14 2 pos. Prioritise 2

#40 1 neg. Discard 0

#61 3 neg. Discard 0

Location mountain/sky run towns VoI

#23 3 pos. Prioritise 2

#2 1 neg. Discard 0

#49 2 neg. Discard 0

PromosSentit high EF

#80 3 pos. Prioritise 5

#76 1 neg. Discard -1

#77 2 neg. Discard 0

Table 5.19: Frequency of each final weight after applying type-A rules

Weight -1 0 1 2 3 4 5

Number of messages 9 16 36 13 4 1 1

the same number of discards and prioritisations. The list of these secondly discarded messages is

the following: #5, #29, #69.

5.4.3 Document planning

The third stage of the NLG system described in this work consists of two tasks. On the one hand, to

discover relations between the 52 filtered messages to combine them into the same sentence (type-B

rules). On the other hand, to identify specific modifications to be made on the messages according

to the semantics of their variable or modality (type-C rules). These two tasks are widely explained

in Section 4.3. Rules are sequentially analysed and the identified relations are annotated to be used
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in the final stage. Note that although the merging process is performed in the final stage, this stage

only takes note of which messages are affected by which type-B or type-C rules.

Rule B.1 merges messages of the same ordinal variable with consecutive modalities. Messages

must also share the type and sign in order to be merged into the same sentence. This rule is

activated in three pairs of messages, as shown in Table 5.20. The order of each modality within its

variable (in addition to the number of modalities of the variable) is included to better understand

the application of this rule.

Table 5.20: Groups of messages affected by rule B.1

Class Variable Type Sign ID Modality Order

1

Assistants VoI pos.
#10 many 2/3

#11 a lot of 3/3

Size VoI pos.
#33 medium 2/3

#34 big 3/3

2 PromosSensit VoI pos.
#55 low 1/3

#56 medium 2/3

For instance, texts associated with both messages #55 and #56 are very similar: “The proportion

of shops with a low sensitivity to promotions is high” and “The proportion of shops with a medium

sensitivity to promotions is high”. They can easily be merged by taking into account the order of

their modalities: “The proportions of shops with a sensitivity to promotions lower than or equal to

medium are high”. As said before, this merging process will be detailed in the last stage.

Rule B.2 is a less restrictive version of rule B.1 in the sense that it groups messages of the

same variable where order is not required. Moreover, it associates messages of different sign and

even not sharing type. These rule is quite generic, and 16 pairs of messages have activated it. In a

first step, messages sharing sign are taken into account, as shown in Table 5.21.

Sentences obtained from merging messages sharing sign can be more compacted, but they must

have the same sign. The sentence associated with messages #31 and #32, both of them VoIs, is:

“The proportions of shops located in inner cities and no mountain towns are high”, while messages

#36 and #70 cannot be compacted: “The proportion of shops with a regular maintenance is low

and none of the shops has a deficient maintenance”.
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Table 5.21: Groups of messages affected by rule B.2 (first step, same sign).

Class Variable Sign ID Modality Type Order

1

Location pos.
#31 inner cities VoI -

#32 no mountain VoI -

Maintenance neg.
#36 regular VoI 2/4

#70 deficient EF 1/4

The result of a second step, in which messages with different sign are analysed, is detailed in

Table B.18 (see Appendix B, page 163). An extract of messages concerning variable Competition

is displayed in Table 5.22.

Table 5.22: Groups of messages of variable Competition affected by rule B.2 (second step, different

sign). The rest of groups are detailed in Table B.18

Class Variable ID Modality Type Sign Order

1 Competition
#30 strong VoI pos. 3/3

#68 no EF neg. 1/3

2 Competition
#47 no VoI pos. 1/3

#48 strong VoI neg. 3/3

Rule B.3 merges messages having the same modality, with variables with the same exact

list of modalities. It only takes into account messages not being affected by previous type-B rules.

Grouped messages must share their type, and messages are processed in two steps: it firstly analyses

messages of the same sign and it secondly takes into account all messages regardless their sign. This

rule has not been activated by any group of messages.

Rule B.4 merges single messages (those not having any relation with other messages) with

messages or groups of messages sharing the related variable. Therefore, the final text will mention

in the same sentence all messages related to the same variable. Only message #37 has been merged

into one of the existing groups. That group was created by the application of rule B.2 on messages

#36 and #70. Table 5.23 show the features of these three messages.
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Table 5.23: Messages affected by rule B.4

Class Variable ID Modality Type Sign Order

1 Maintentance

#37 good VoI pos. 3/4

#36 regular VoI neg. 2/4

#70 deficient EF neg. 1/4

The result of the merging process of these three messages is detailed in the next stage.

Rule B.5, as the last rule for merging messages, merges the last single messages (those not

having any relation with other messages) with other single messages that share the same type and

sign. This rule is activated in three groups of messages: EF–positive, VoI–positive and VoI–negative,

as shown in Table 5.24.

Table 5.24: Messages affected by rule B.5

Class Type Sign ID Variable Modality

1 EF pos.
#71 DisplaySize medium

#75 PromosSensit medium

2 VoI neg.
#52 ThermalExhibitor yes

#54 Assistants a lot of

3 VoI pos.
#64 DisplayGrifone yes

#65 GrifoneWeight main

For instance, the first group of messages can be merged in the same sentence as follows: “Almost

all shops have a medium-sized display and a medium sensitivity to promotions”.

In conclusion, type-B rules have been activated in 45 out of the 52 filtered messages, thus leaving

7 single messages.

Type-C rules detect which sentences will have to be modified according to the semantics of

variables or modalities of the associated messages. For this reason, the ontology previous defined

must be used. In concrete, rules C.3 and C.4 must know which variables need a special construction

and if modalities of variables can be treated as adjectives of the variables.
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Rule C.1 looks for messages having the modality “no”. This kind of messages must adjust

their transcription according to the meaning of modality “no” within the variable. There are three

messages affected by this rule (all three messages with modality “no”), detailed in Table 5.25.

Table 5.25: Messages affected by rule C.1

Modality ID Class Variable Type Sign

no

#17 2 DisplayGrifone VoI pos.

#47 2 Competition VoI pos.

#68 1 Competition EF neg.

The composition of the texts, as it will be explained in the final stage, depends on the sign

of the message. For instance, message #17 can be transcribed as “The proportion of shops not

showing Grifone products is high”, but negative messages must change the sign of the sentence, as

in message #68: from “None of the shops has a “no” competition” to “All shops have competition”.

Analogously to rule C.1, rule C.2 takes into account the semantics of modality “yes”. Three

of the messages present this modality, as shown in Table 5.26.

Table 5.26: Messages affected by rule C.2

Modality ID Class Variable Type Sign

yes

#9 1 ThermalExhibitor VoI pos.

#52 2 ThermalExhibitor VoI neg.

#64 3 DisplayGrifone VoI pos.

For instance, text associated with message #9 can be “The proportion of shops with thermal

exhibitor is high”, without mentioning the modality.

Rule C.3 uses the defined ontology in order to identify which messages need a special treatment

to be transcribed in a natural way. Among the 13 relevant variables, seven of them need this special

treatment, as shown in Table 5.27, in which a comment about the way of transcribing these messages

when related to both VoIs and EFs is included.

Thus, 22 messages related to variables included in Table 5.27 have activated this rule.
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Table 5.27: Variables needing a special transcription (rule C.3)

Variable VoIs transcription EFs transcription

Competition with/without competition have/have not competition

Location located in are located in

DisplaySize with a medium-sized display have a medium-sized display

DisplayGrifone displaying Grifone products display Grifone products

ThermalExhibitor with thermal exhibitor have thermal exhibitor

Assistants with few assistants have few assistants

Rule C.4 uses the ontology to detect which of the messages that do not need any special man-

agement when transcribed can be easily treated by just placing their modality before the variable.

This is correct because modalities are adjectives of their corresponding variables. Table 5.28 lists

and exemplifies variables whose messages are affected by this rule. Note that the construction of

all these variables is very similar.

Table 5.28: Variables with modalities as adjectives (rule C.4)

Variable VoIs transcription EFs transcription

Size with a small size have a small size

Maintenance with a good maintenance have a good maintenance

Communication with an excellent communication have an excellent communication

Aesthetics with a regular aesthetics have a regular aesthetics

GrifoneWeight with a main Grifone weight have a main Grifone weight

Evaluation with a bad evaluation have a bad evaluation

PromosSensit with a high sensitivity to promotions have a high sensitivity to promotions

In general, rules C.3 and C.4 do not have to be complementary, that is to say, there can exist

variables not affected by them. But in this case, all variables not affected by previous rule C.3 are

affected by rule C.4, thus having 30 messages affected by it.

Rule C.5 identifies messages that need the use of linguistic quantifiers. There are two main
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type of quantifiers used by this system. On the one hand, highly relevant VoIs use the quantifier

“very” to emphasise their relevance: “The proportion of shops with a good maintenance is very

high”. On the other hand, all EFs use the quantifiers “all”, “almost all’, “almost none” and “none”

to specify how many shops the sentence refers to: “All individuals have a medium sensitivity to

promotions”. In this study, 25 of the messages have activated this rule and therefore will use these

quantifiers in their transcription in the final text.

Table 5.29 summarises the number of messages analysed by each of the rules of this stage, and

how many of them have activated each rule. Sequential analysis of type-B rules, where each rule

only takes into account messages not affected by previous rules, is shown in their decreasing number

of analysed messages.

Table 5.29: Number of messages implied in the analysis of each rule

Rule
# analysed # affected

messages messages

B.1 52 6

B.2 46 32

B.3 14 2

B.4 12 3

B.5 11 4

C.1 52 3

C.2 52 3

C.3 52 22

C.4 52 30

C.5 52 25

5.4.4 Microplanning and realisation

The last stage of the system is responsible for deciding the final structure of the text and transcrib-

ing groups of messages into proper text. In the first substage, messages are sorted and grouped

according to the criteria defined in Section 4.4. Table 5.30 details the 29 obtained groups of mes-
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sages.

Table 5.30: Final planning of the text

Class Group Messages B Rules Group Messages B Rules

1

1 #71, #75 B.3 6 #74, #8 B.2

2 #9 - 7 #10, #11 B.1

3 #68, #30 B.2 8 #33, #34 B.1

4 #70, #36, #37 B.2, B.4 9 #31, #32 B.2

5 #73, #6 B.2 10 #44, #43 B.2

2

11 #17 - 16 #47, #48 B.2

12 #14, #15 B.2 17 #50, #13 B.2

13 #55, #56 B.1 18 #51 -

14 #19, #53 B.2 19 #12 -

15 #20, #21 B.2 20 #52, #54 B.5

3

21 #80 - 26 #25 -

22 #64, #65 B.5 27 #27, #67 B.2

23 #23, #57 B.2 28 #59, #58 B.2

24 #26, #62 B.2 29 #66 -

25 #24, #60 B.2

Realisation of the text is a sequential process that explores each group of messages transcribing

them into a phrase. This transcription is carried out according to the way of merging messages

inside a group defined in Table 4.13, and taking into account the specific way of generating each

sentence identified by type-C rules.

The construction of the phrase corresponding to group #4 is exemplified below. Table 5.31

shows the features of its components, messages #70, #36 and #37.

Standard sentences corresponding to the three messages are the following:

• (#37) The proportion of shops with modality “good” in variable “maintenance” is high.

• (#70) None of shops has modality “deficient” in variable “maintenance”.

• (#36) The proportion of shops with modality “regular” in variable “maintenance” is low.
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Table 5.31: Features of messages of group #4

ID Class Variable Modality Type Sign Relev. Value

#37

1 Maintenance

good VoI pos. normal 3.0

#70 deficient EF neg. - 0.0

#36 regular VoI neg. normal 2.2

All messages are affected by rule C.4, because modalities of variable Maintenance can be treated

as their adjectives. Therefore, sentences are transformed into the following:

• (#37) The proportion of shops with a good maintenance is high.

• (#70) None of shops has a deficient maintenance.

• (#36) The proportion of shops with a regular maintenance is low.

Messages #70 and #36 are affected by rule B.2, so a sentence between them must be firstly

created. Looking at Table 4.13 both messages correspond to different types but their sign is the

same. Their sentence cannot be totally compacted and the conjunction to be used between both

messages must be “and”, as in Example 4.31:

• (#70 ∧ #36) None of shops has a deficient maintenance and the proportion of shops with a

regular maintenance is low.

The unique modification that can be made is the use of the pronoun “them” in the second

sentence:

• (#70 ∧ #36) None of shops have a deficient maintenance and the proportion of them with a

regular maintenance is low.

The result of this merging step has to be joined with message #37 by using conjunction “and”

of a full stop, depending on if previous sentence has been compacted or not. As previous sentence

could not be compacted, a full stop is used between them:

• (#37 ∧ (#70 ∧ #36)) The proportion of shops with a good maintenance is high. None of

PoSs has a deficient maintenance and the proportion of them with a regular maintenance is

low.
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Finally, in order to avoid repetitive mentions to the name of individuals several alternatives

have been provided: “PoSs”, with a probability of 0.6, “shops” (0.25) and “stores” (0.15). The

final qualitative description obtained from classification #259 is the following:

Class 1

=======

Almost all shops have a medium-sized display and a medium sensitivity to promotions.

The proportion of PoSs with thermal product display is very high.

All PoSs have competition and the proportion of them with a strong competition is high.

The proportion of shops with a good maintenance is high. None of PoSs has a

deficient maintenance and the proportion of them with a regular maintenance is low.

None of PoSs has a deficient communication and the proportion of them with a good

communication is very high.

None of PoSs has a deficient aesthetics and the proportion of them with a good

aesthetics is very high.

The proportions of shops with a number of assistants greater than or equal to many

are very high.

The proportions of stores with a size greater than or equal to medium are high.

The proportions of shops located in inner cities and no mountain towns are high.

The proportion of PoSs with a secondary Grifone weight is high while the proportion

of them with a minimal Grifone weight is low.

Class 2

=======

The proportion of PoSs not displaying Grifone products is very high.

The proportion of stores with a regular communication is very high (moreover, most

of PoSs with a regular communication are in class 2) while the proportion of them

with an excellent communication is very low.

The proportions of PoSs with a sensitivity to promotions lower than or equal to

medium are high.

The proportion of shops with a minimal Grifone weight is very high while the

proportion of them with a main Grifone weight is low.

126



CHAPTER 5. APPLICATION TO MARKET SEGMENTATION

The proportion of PoSs with a good evaluation is very high while the proportion of

them with an excellent evaluation is very low.

The proportion of PoSs without competition is high while the proportion of them with

a strong competition is low.

The proportion of shops with a regular maintenance is high while the proportion of

them with an excellent maintenance is very low.

The proportion of shops with a regular aesthetics is high.

The proportion of PoSs with a big size is very low.

The proportion of shops with thermal product display or with a lot of assistants is low.

Class 3

=======

All PoSs have a high sensitivity to promotions (moreover, all PoSs with a high

sensitivity to promotions are in class 3).

The proportion of shops displaying Grifone products or with a main Grifone weight is high.

The proportion of shops located in mountain or ski towns is very high (moreover, most of

PoSs located in mountain or ski towns are in class 3) while the proportion of them

located in inner cities is low.

The proportion of stores with an excellent aesthetics is very high (moreover, most

of stores with an excellent aesthetics are in class 3) while the proportion of them

with a good aesthetics is low.

The proportion of PoSs with an excellent maintenance is very high while the

proportion of them with a good maintenance is low.

The proportion of PoSs with an excellent communication is very high.

The proportion of PoSs with an excellent evaluation is very high while the

proportion of them with a good evaluation is low.

The proportion of stores with a big size is high while the proportion of them with a

medium size is low.

The proportion of stores with many assistants is low.
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5.5 Discussion and managerial implications

This section firstly discusses some aspects of the ranking and selection method while in a second

part managerial implications derived by analysing in detail the qualitative description of the three

considered classes are described.

5.5.1 Discussion

The real case study presented in Subsection 5.3 illustrates one of the main advantages of the

proposed methodology for ranking and selecting classifications that is its capability to deal with the

ambiguity that appears when managing multiple criteria associated with fuzzy concepts. However,

one of the drawbacks of the study carried out in this chapter is that it considers subjective variables

obtained from different sales representatives. This can lead to incongruences if, for instance, some

of the representatives tends to give worse (or lower) values than the others, causing his/her shops to

have an overall worse evaluation. Nevertheless, this problem has been minimised by clearly defining

the meaning of linguistic labels used to evaluate each feature of the stores prior to data collection

process. One could think that a possible solution could be to have a unique person assessing all the

shops but it is almost impossible to count on one representative encompassing knowledge about all

considered individuals (260 points of sale).

Despite this approach does not take into account relative criteria for assessing classifications, it

covers almost all the validation concepts considered in the literature for evaluation classifications

(see Table 2.1 in page 12). In contrast, most of the reviewed approaches in clustering validation

only take into account some of those aspects.

The fuzzy indicators considered in this work can cause an increase of complexity in assessing

each of the classifications, but at the same time they provide to the process the inherent flexibility

of human reasoning. In addition, the consideration of OWA operators introduces the concept

of majority “most of”, widely employed in assessment processes and, in particular, in marketing

evaluations. The RIM function used in this work guarantees that all the individual valuations

contribute to the final aggregated value. It is important to note that the higher the ranking of

a value, the higher the weighting value associated with it, which is appropriate for conducting

aggregation processes in heterogeneous decision-making problems (Chiclana et al., 2007).

Below a discussion about the hypothetical rank defined by each criterion is discussed. Table
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5.32 shows the best segmentations looking exclusively at the values obtained from the balanced

classes criterion. Although in this study it has been desirable to obtain a balanced segmentation,

it is not indispensable, as indicated by the fact that best overall segmentations (#259, #260 and

#258) perform below segmentations #272, #189 and #172, the best ones according to IB .

Table 5.32: Best segmentations according to IB

ID Conn. Tol. M IU IB IC ID IA OWA rank

#272 Minmax 0.958 2 0.5 0.995 0.283 0.010 0.802 0.6996 75

#189 Minmax 0.782 3 1 0.992 0.277 0.018 0.168 0.6923 124

#172 Minmax 0.772 3 1 0.990 0.283 0.008 0.400 0.7222 44

Best segmentations according to the coherence criterion are included in Table 5.33. Values

obtained by this criterion are fairly homogeneous and therefore exhibiting a low influence in the

process of selecting the best segmentation in the methodology presented here. Indeed, the clas-

sifications discarded with the present methodology are caused by their low performance in other

criteria, as illustrated by segmentation #246, which performs very well in all criteria but ID.

Table 5.33: Best segmentations according to IC

ID Conn. Tol. M IU IB IC ID IA OWA rank

#214 Minmax 0.904 2 0.5 0.914 0.295 0.006 0.795 0.6632 233

#241 Minmax 0.843 3 1.0 0.965 0.290 0.012 0.108 0.6815 204

#246 Minmax 0.911 3 1 0.921 0.289 0.013 0.770 0.7633 22

The best three segmentations with the present methodology are kept using the dependency

criterion and shown in Table 5.34, which indicated a high importance of this criterion in this

methodology. However, it is important to note that this criterion is no decisive, as segmentation

#258 is ranked lower than segmentation #260 in the overall ranking due to its lower performance

in the other criteria despite having a higher value in ID.

Table 5.35 includes the best segmentations according to their accuracy. The fact that these seg-

mentations do not show a high overall rank, and the best overall segmentations in Table 5.4 exhibit
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Table 5.34: Best segmentations according to ID

ID Conn. Tol. M IU IB IC ID IA OWA rank

#259 Minmax 0.439 3 1 0.928 0.251 0.528 0.936 0.8423 1

#258 Minmax 0.422 4 1 0.885 0.226 0.425 0.875 0.8103 3

#260 Minmax 0.469 3 1 0.929 0.255 0.363 0.922 0.8208 2

a very high accuracy degree illustrates that in this case study a great number of segmentations that

are quite accurate also perform well in the rest of criteria.

Table 5.35: Best segmentations according to IA

ID Conn. Tol. M IU IB IC ID IA OWA rank

#003 Frank (0.5) 0.055 2 0.5 0.841 0.193 0.001 0.988 0.6921 125

#002 Frank (1.5) 1 2 0.5 0.841 0.193 0.001 0.988 0.6921 126

#001 Frank (3) 0.5 2 0.5 0.842 0.149 0.001 0.988 0.6871 164

The present methodology avoids, on the one hand, the predefinition of arbitrary thresholds

associated with each considered criterion in order to decide which segmentations are taken into

account in the application of subsequent criteria. On the other hand, it is clear that the sequential

application of the above set of criteria would have prevented any of the ten best overall classifications

shown in Table 5.4 and obtained with the methodology to have been ranked in those positions. For

instance, classification #243 is the fourth best one according to its aggregated value, but it would

have been discarded due to its low assessment according to the dependency criterion ID. Therefore,

the case study clearly illustrates that the methodology presented avoids discarding segmentations

that could be potentially useful for marketing experts when observed globally.

5.5.2 Managerial implications

The purpose of the generation of an automatic qualitative description of the chosen segmentation

is to allow marketing managers to understand the considered segments in order to define marketing

actions to improve their customers’ satisfaction. In general, analysing the obtained description,

130



CHAPTER 5. APPLICATION TO MARKET SEGMENTATION

marketing experts will build their understanding of each segment and even they can give them a

label to make clearer the meaning of each class.

Taking into account the qualitative description of segmentation #259 automatically obtained

by applying the presented methodology, in the following paragraphs a label is chosen for each class

and interpretation of the main features and implications are exposed.

Class 1: “Multi-sports shops”.

Consists of 35 points of sale with a strong competition, good qualities (in terms of main-

tenance, communication and aesthetics), big stores (in size and number of assistants), non

located in mountain towns and a secondary Grifone weight.

Class 1 might correspond to multi-sports shops having large stores, selling many different

products and not being located in mountain cities. As they are not mountain-sports special-

ists, so the marketing campaigns evolving this type of cities should be made to enhance the

attraction of mountain sports, taking into account the medium sensitivity to promotions of

the customers of these shops.

Class 2: “They don’t like us”.

This class has 98 shops with a minimal presence of Grifone products. Qualities of stores are

regular, although our commercials rated them pretty good. They do not use to have a high

level of competition and the points of sale are not too big (in size and number of assistants).

From our brand’s point of view, shops of Class 2 seem to be the less interesting shops. Grifone

is not well situated and customers of these shops demonstrate a low sensitivity to promotions.

Class 3: “The top shops”.

This is the largest class with 127 shops generally sector specialists, being situated in mountain

or ski towns. The points of sale are usually large without too assistants, their qualities are

the best of the analysed stores and Grifone brand is well situated.

The main feature os these shops is the high sensitivity to promotions of their customers. This

means that these points of sale are good candidates to give the best revenues to our marketing

campaigns. Being the shops of Class 3 the Grifone’s favourite clients, an analysis of their sales

should be carried out in order to detect the ones with the lower purchases level as a possible

target of a marketing campaign.
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5.6 Conclusions

This chapter details the application of the methodologies described in Chapters 3 and 4 on a

B2B real case study. The study analyses a dataset of 260 shops that distribute outdoor sporting

equipment of Grifone, the brand considered. Three actions have been carried out to solve the

challenge identified in this case study: to automatically obtain segmentations of the set of points of

sale, to select the best market segmentation according to the marketing department and to obtain

a qualitative description of this chosen segmentation in order to understand the defined segments

and therefore design specific and optimal marketing campaigns for each segment.

The application of the unsupervised version of LAMDA algorithm permits us to automatically

obtain more than 500 stable ways of segmenting the considered shops. Through the application of

criteria explained in Chapter 3, segmentations have been assessed, globally ranked and the best one

according to those criteria has been chosen. Finally, after explicit short domain information about

involved variables, an automatic qualitative description of the shops made in natural language has

been provided in order to better understand the considered segmentation.

In summary, a complete marketing challenge that includes segmentation of customers, selection

and description of the best segmentation has been faced in this chapter by applying methodologies

developed in this thesis, demonstrating their power and usability in a marketing case study. The

main contribution of this chapter is to show the global capacity of the introduced methodologies

in a real case study. In addition, it is demonstrated the goodness of the use of OWA operators to

aggregate a set of criteria instead of analysing each criterion sequentially, showing This approach

avoids the need of defining arbitrary thresholds for each considered criterion in order to discard

classifications with an assessment below those thresholds.

As future work, scalability of the system must be analysed with the aim of avoiding situations

in which for instance a number of obtained segmentations excessively high causes the problem to be

unmanageable. Moreover, from a general point of view, improvements detailed in the conclusions

section of each chapter must be analysed and developed.
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Limitations and future research

This chapter collects and expands the conclusions of each of the chapters contained in this doctoral

dissertation by considering a more general point of view. Further research is also included at the

end of the chapter.

A complete multi-criteria decision making (MCDM) system has been presented in this thesis

with the objective of creating, selecting and making understandable the best classification among

a set of individuals. In order to justify the relevance of the research done, a synthetic overview of

the state of the art is provided in Chapter 2 on the topics of criteria for selecting classifications,

aggregation functions for summarising individual assessments according to the defined criteria,

and data-to-text systems for generating natural language texts. A theoretical framework has been

proposed in two chapters that attempted to analyse a set of fuzzy criteria for assessing classifications

(Chapter 3) and to design a natural language generation (NLG) system to qualitatively describe

the most important characteristics of the considered clusters of a segmentation (Chapter 4). The

proposed methodologies have been applied in Chapter 5 by developing a real marketing case study

framed in a business to business (B2B) environment.

More specifically, in Chapter 3 a set of five fuzzy criteria to assess classifications has been

proposed, covering almost all the concepts employed when evaluating classifications. Each criterion

is modelled by means of an index that measures the degree up to which the criterion is met by each

classification. The properties and usability of the defined criteria have been explained and proven.

The most important contributions of this chapter are related to the mathematical characterisation
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and formal definition of the indexes associated with the proposed criteria. The indexes are proposed

to be aggregated by using an Ordered Weighted Averaging (OWA) operator guided by a fuzzy

linguistic quantifier that is used to implement the concept of fuzzy majority in the process. All the

theoretical background on which this process is based is detailed in Chapter 2, more specifically in

Section 2.2.

The aggregation of the defined indexes permits us to overall assess each alternative classification

and therefore the selection of the most suitable one. The design of a NLG system to describe

qualitatively the most important characteristics of this best classification is detailed in Chapter

4. This rule-based automatic system is able to produce context-based text by specifying some

short domain-specific information but the lack of this information does not prevent the generation

of a generic but informative text. The adaptation of a four-stage architecture for data-to-text

systems, the detection of the most relevant characteristics of each class by means of the concept of

dependence and the design of a set of rules to filter and merge messages of the final text are the

main contributions of this chapter.

These methodologies have been applied to a real marketing case based on a B2B environment

and presented in Chapter 5. This study encompasses all processes described in this dissertation:

generating segmentations of points of sale by employing the unsupervised learning capabilities of

LAMDA algorithm, assessing each segmentation by applying the defined criteria and by computing

their corresponding indexes, aggregating the indexes in order to obtain an overall evaluation of each

segmentation, ranking those segmentations and therefore selecting the best one, and generating a

natural text describing the considered classes. The main contribution of this application chapter

is the assessment of segmentations by means of an overall degree up to which most of the defined

criteria are met by each one, instead of employing the sequential approach.

Further research con be summarised in three lines: to improve the defined criteria and their

corresponding indexes, to further study other functions for aggregating information and finally,

to improve the qualitative description quality and naturalness. Regarding the fuzzy criteria for

assessing classifications, the following specific objectives can be taken into account for further

research:

• Generalisation of the defined criteria in order to consider all possible needs of the end user.

• Design of a user-friendly method for choosing parameters needed in the computation of the

indexes.
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• Definition and analysis of alternative selection criteria.

Regarding the aggregation of the indexes in order to rank classifications, these are the objectives

considered for future research:

• Study of the different types of OWA operators with the aim of improving the aggregation of

indexes. For instance, the importance of the considered criteria can be taken into account, or

even the computed indexes can take the form of fuzzy numbers.

• Study of other linguistic quantifiers to obtain the weights vector used by OWA operators, by

extending the study from quantifier “most” to others like “at least α” or “almost all”.

With regard to the natural text generation for describing a set of clusters, the following objectives

are being considered to further investigate:

• Improvement of the detection of important values in each cluster.

• Formalisation of the ontology to be used to generate a more natural description.

• Completing the definition of the grammar to be used to realise the text, and design and

implementation of the system to use the defined grammar.

Finally, from the application point of view, there are three specific objectives to continue the

research:

• Use of the defined criteria to assess the performance of unsupervised learning techniques

in different problems in order to understand their limitations in theoretical and real-world

problems.

• Use of the defined methodology to ensemble several machine learning techniques in order to

aggregate their outputs and to design an ensemble-based system.

• Application of the considered methodologies to other real problems. These methodologies will

be used to segment a set of users according to their profile. This profile will be constructed

using social networks (e.g. Facebook, LinkedIn) to capture their interest. This segmenta-

tion can be used to boost innovation by recommending bridges between users from different

segments.
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Appendix A

Learning Algorithm for

Multivariate Data Analysis

(LAMDA)

The machine learning technique used in this thesis is Learning Algorithm for Multivariate Data

Analysis (LAMDA). Despite its study is not within the scope of this thesis, it has been decided to

introduce a description of LAMDA in order to help the reader to understand the basic operation

of such an important tool for this work.

LAMDA was originally developed by Joseph Aguilar (Aguilar and López de Mántaras, 1982),

and implemented by Juan Carlos Aguado (Aguado et al., 1999). LAMDA is based on fuzzy hybrid

connectives, and employs the interpolation capabilities of logic operators over fuzzy environments

(Klir and Yuan, 1995). A linearly compensated hybrid connective, considered as an interpolation

between a t-norm T and its dual t-conorm T ∗ (T ∗(x, y) = 1− T (1− x, 1− y)) is used:

H = (1− β)T + βT ∗,

where β ∈ [0, 1] is known as the level of tolerance of the classification. It can be noted that for

β = 0, the t-norm is obtained, and for β = 1, the t-conorm is the result. Taking into account

that the t-norms are fuzzy operators associated to an intersection or conjunction and the t-conorms

are associated to a union or disjunction, the parameter β determines the exigency level of the
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classification. Obviously, we can define λ = 1−β as the tolerance level of a given classification. The

exploration of different tolerance levels is done automatically by taking into account all tolerances

that cause the generation of different classifications (Aguado et al., 1999).

The employed hybrid connectives have been obtained from t-norms Min, probabilistic product,

Lukasiewicz, and Frank n-norms together with their dual t-conorms. Below the proper expression

for each t-norm and t-conorm is detailed.

• MinMax:

– Min: M(x1, . . . , xn) = min{x1, . . . , xn}

– Max: M∗(x1, . . . , xn) = max{x1, . . . , xn}

• Probabilistic Product:

–
∏

(x1, . . . , xn) = x1 · . . . · xn

–
∏∗

(x1, . . . , xn) = 1−
∏n
i=1(1− xi)

• Lukasiewicz:

– W (x1, . . . , xn) = max{1− n+
∑n
i=1 xi, 0}

– W ∗(x1, . . . , xn) = min{
∑n
i=1 xi, 1}

• Frank n-norms:

– Fs(x1, . . . , xn) = logs(
1−

∏n
i=1(s

xi−1)
(s−1)n−1 + 1)

– F ∗s (x1, . . . , xn) = 1− logs(
1−

∏n
i=1(s

1−xi−1)
(s−1)n−1 + 1),

for s ∈ (0,+∞) and s 6= 1.

Note that the t-norms M ,
∑

and
∏

are obtained from Fs taking limits when s→ 0, s→ 1 and

s→∞, respectively.

Each segmentation depends, on the one hand, on the hybrid connective employed and, on the

other hand, on the selected exigency or tolerance level. Minimum tolerance means that an individual

is assigned to a class only if every descriptor points to that, whereas a maximum tolerance implies

that the individual is assigned to a class if this is the indicated by at least one of the descriptors.

LAMDA is able to automatically explore any in-between tolerance degree. The basic LAMDA

operation is depicted in Figure A.1.

Marginal Adequacy Degree (MAD) is computed for each descriptor, class and individual. These

partial results are aggregated by means of the hybrid connectives H to supply the Global Ade-
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Figure A.1: LAMDA: hybrid connectives-based classification

quacy Degree (GAD) of an individual to a class. The visible structural resemblance between the

LAMDA algorithm and the Artificial Neural Networks is worth noting, especially for the Radial

Base Functions (RBF) type. LAMDA exhibits greater flexibility than neural networks, for example,

in its ability to perform either a supervised or an unsupervised learning process indistinctly and its

capability to combine pattern recognition with a simple, non-iterative class upgrading.

Whenever the unsupervised learning LAMDA capabilities are employed, the first individual is

always placed in a class by itself. Subsequent individuals can then be be assigned to the already

existing class(es) or a new one is created. In order to determine when this occurs, the algorithm

generates, first of all, a special class called Non-Informative Class (NIC) which represents maximum

entropy, with the characteristic of returning the same (low) GAD for every possible individual. As

such, the decision-making process consists of comparing the GAD of the individual to the NIC class

with the GADs to every other existing class. If one of the real classes returns the maximum GAD,

the new individual will be assigned to it and the class will be modified accordingly. But if the NIC

is the one with the highest GAD, this means that none of the existing classes are close enough to

the individual and so a new class has to be created by the LAMDA algorithm.
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Appendix B

Tables of the case study

Table B.1: Best 100 segmentations

Rank ID Conn. Tol. M IU IB IC ID IA OWA

1 #259 MinMax 0.439 3 1.0 0.928 0.251 0.528 0.936 0.8423

2 #260 MinMax 0.469 3 1.0 0.929 0.255 0.363 0.922 0.8208

3 #258 MinMax 0.422 4 1.0 0.885 0.226 0.425 0.875 0.8103

4 #243 MinMax 0.290 3 1.0 0.909 0.257 0.008 0.965 0.7868

5 #244 MinMax 0.304 3 1.0 0.920 0.256 0.012 0.948 0.7856

6 #257 MinMax 0.411 3 1.0 0.933 0.280 0.032 0.856 0.7787

7 #256 MinMax 0.400 4 1.0 0.872 0.246 0.064 0.906 0.7752

8 #253 MinMax 0.359 4 1.0 0.883 0.232 0.021 0.915 0.7722

9 #252 MinMax 0.352 4 1.0 0.884 0.238 0.025 0.904 0.7714

10 #255 MinMax 0.393 4 1.0 0.939 0.264 0.063 0.768 0.7687

11 #254 MinMax 0.381 4 1.0 0.942 0.262 0.047 0.772 0.7677

12 #263 MinMax 0.511 3 1.0 0.894 0.279 0.013 0.842 0.7672

13 #262 MinMax 0.500 3 1.0 0.894 0.279 0.012 0.835 0.7662

14 #250 MinMax 0.350 5 1.0 0.872 0.242 0.112 0.820 0.7660

15 #276 MinMax 0.963 3 1.0 0.946 0.264 0.027 0.763 0.7654

Continued on next page
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Table B.1 – continued from previous page

Rank ID Conn. Tol. M IU IB IC ID IA OWA

16 #266 MinMax 0.944 3 1.0 0.955 0.264 0.019 0.754 0.7648

17 #261 MinMax 0.491 3 1.0 0.883 0.274 0.009 0.845 0.7646

18 #70 Frank 0.949 3 1.0 0.957 0.250 0.024 0.753 0.7640

19 #249 MinMax 0.343 5 1.0 0.887 0.239 0.120 0.782 0.7639

20 #246 MinMax 0.911 3 1.0 0.921 0.290 0.013 0.770 0.7635

21 #258 MinMax 0.940 3 1.0 0.923 0.278 0.045 0.742 0.7617

22 #248 MinMax 0.340 5 1.0 0.887 0.235 0.119 0.767 0.7612

23 #224 MinMax 0.827 3 1.0 0.923 0.266 0.009 0.743 0.7565

24 #278 MinMax 0.965 3 1.0 0.928 0.281 0.034 0.687 0.7541

25 #269 MinMax 0.947 3 1.0 0.928 0.278 0.026 0.689 0.7533

26 #207 MinMax 0.802 3 1.0 0.903 0.264 0.005 0.746 0.7527

27 #164 MinMax 0.731 4 1.0 0.955 0.255 0.015 0.663 0.7506

28 #135 MinMax 0.663 4 1.0 0.946 0.203 0.038 0.678 0.7473

29 #133 MinMax 0.662 4 1.0 0.965 0.217 0.024 0.652 0.7472

30 #140 MinMax 0.665 4 1.0 0.933 0.239 0.013 0.682 0.7471

31 #2 Frank 0.001 3 1.0 0.862 0.147 0.041 0.757 0.7365

32 #239 MinMax 0.842 3 1.0 0.931 0.269 0.020 0.538 0.7305

33 #199 MinMax 0.794 3 1.0 0.950 0.281 0.034 0.488 0.7298

34 #3 Prob. 0.001 3 1.0 0.843 0.141 0.032 0.741 0.7289

35 #191 MinMax 0.789 3 1.0 0.952 0.259 0.011 0.508 0.7279

36 #192 MinMax 0.788 3 1.0 0.949 0.255 0.012 0.511 0.7275

37 #249 MinMax 0.934 3 1.0 0.949 0.275 0.006 0.492 0.7264

38 #43 Frank 0.980 3 1.0 0.965 0.249 0.026 0.475 0.7262

39 #69 Frank 0.956 3 1.0 0.963 0.249 0.020 0.483 0.7261

40 #280 MinMax 0.964 3 1.0 0.939 0.287 0.022 0.473 0.7251

41 #75 Frank 0.969 3 1.0 0.964 0.252 0.028 0.460 0.7244

42 #96 MinMax 0.624 3 1.0 0.968 0.270 0.010 0.452 0.7243

43 #227 MinMax 0.832 3 1.0 0.954 0.279 0.015 0.458 0.7240

Continued on next page
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Table B.1 – continued from previous page

Rank ID Conn. Tol. M IU IB IC ID IA OWA

44 #188 MinMax 0.783 3 1.0 0.979 0.267 0.020 0.431 0.7239

45 #172 MinMax 0.772 3 1.0 0.990 0.284 0.008 0.400 0.7224

46 #201 MinMax 0.801 3 1.0 0.969 0.281 0.033 0.379 0.7177

47 #267 MinMax 0.946 3 1.0 0.979 0.274 0.013 0.374 0.7158

48 #243 MinMax 0.845 3 1.0 0.967 0.274 0.013 0.383 0.7150

49 #271 MinMax 0.974 3 1.0 0.905 0.271 0.011 0.459 0.7137

50 #165 MinMax 0.727 4 1.0 0.914 0.262 0.014 0.450 0.7133

51 #193 MinMax 0.790 3 1.0 0.966 0.259 0.014 0.374 0.7119

52 #186 MinMax 0.781 4 1.0 0.919 0.275 0.009 0.425 0.7118

53 #122 MinMax 0.659 4 1.0 0.945 0.261 0.013 0.398 0.7115

54 #262 MinMax 0.935 3 1.0 0.939 0.283 0.003 0.383 0.7099

55 #260 MinMax 0.934 3 1.0 0.941 0.278 0.061 0.338 0.7094

56 #253 MinMax 0.922 3 1.0 0.959 0.274 0.031 0.324 0.7069

57 #98 MinMax 0.653 4 1.0 0.956 0.258 0.011 0.354 0.7067

58 #290 MinMax 0.996 3 1.0 0.933 0.284 0.012 0.359 0.7065

59 #248 MinMax 0.918 2 0.5 0.989 0.290 0.011 0.843 0.7052

60 #282 MinMax 0.969 3 1.0 0.933 0.272 0.017 0.355 0.7049

61 #118 MinMax 0.656 4 1.0 0.956 0.259 0.011 0.338 0.7044

62 #109 MinMax 0.634 4 1.0 0.971 0.241 0.023 0.320 0.7038

63 #288 MinMax 0.995 3 1.0 0.943 0.266 0.031 0.329 0.7038

64 #102 MinMax 0.626 4 1.0 0.934 0.243 0.020 0.366 0.7034

65 #277 MinMax 0.967 3 1.0 0.956 0.281 0.033 0.291 0.7028

66 #174 MinMax 0.775 3 1.0 0.949 0.281 0.001 0.312 0.7012

67 #106 MinMax 0.631 4 1.0 0.960 0.241 0.022 0.316 0.7011

68 #208 MinMax 0.805 3 1.0 0.959 0.290 0.009 0.283 0.7009

69 #179 MinMax 0.776 3 1.0 0.950 0.278 0.003 0.308 0.7006

70 #78 Frank 0.988 2 0.5 0.989 0.281 0.008 0.823 0.7003

71 #51 Frank 0.996 2 0.5 0.989 0.277 0.008 0.823 0.6999

Continued on next page
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Table B.1 – continued from previous page

Rank ID Conn. Tol. M IU IB IC ID IA OWA

72 #274 MinMax 0.962 3 1.0 0.955 0.265 0.018 0.296 0.6998

73 #196 MinMax 0.791 3 1.0 0.959 0.280 0.008 0.279 0.6990

74 #198 MinMax 0.794 3 1.0 0.953 0.281 0.012 0.283 0.6989

75 #182 MinMax 0.779 3 1.0 0.960 0.284 0.009 0.271 0.6989

76 #143 MinMax 0.667 4 1.0 0.966 0.256 0.016 0.284 0.6988

77 #209 MinMax 0.805 3 1.0 0.963 0.282 0.014 0.263 0.6987

78 #289 MinMax 0.995 3 1.0 0.950 0.282 0.007 0.287 0.6986

79 #202 MinMax 0.795 3 1.0 0.972 0.276 0.027 0.244 0.6985

80 #190 MinMax 0.783 3 1.0 0.969 0.290 0.008 0.248 0.6985

81 #149 MinMax 0.679 3 1.0 0.959 0.286 0.013 0.259 0.6980

82 #142 MinMax 0.668 4 1.0 0.970 0.251 0.012 0.279 0.6978

83 #124 MinMax 0.660 4 1.0 0.953 0.260 0.014 0.291 0.6978

84 #108 MinMax 0.632 4 1.0 0.965 0.248 0.020 0.279 0.6976

85 #183 MinMax 0.780 3 1.0 0.963 0.283 0.011 0.255 0.6975

86 #147 MinMax 0.675 3 1.0 0.972 0.286 0.016 0.232 0.6974

87 #195 MinMax 0.792 3 1.0 0.963 0.280 0.010 0.255 0.6971

88 #113 MinMax 0.641 3 1.0 0.976 0.275 0.020 0.232 0.6970

89 #111 MinMax 0.639 3 1.0 0.975 0.278 0.015 0.232 0.6967

90 #137 MinMax 0.672 3 1.0 0.975 0.285 0.018 0.221 0.6967

91 #146 MinMax 0.669 4 1.0 0.983 0.253 0.012 0.250 0.6965

92 #148 MinMax 0.677 3 1.0 0.964 0.282 0.017 0.240 0.6964

93 #163 MinMax 0.767 3 1.0 0.986 0.288 0.011 0.203 0.6963

94 #116 MinMax 0.642 3 1.0 0.973 0.282 0.010 0.232 0.6963

95 #293 MinMax 0.997 3 1.0 0.968 0.281 0.026 0.225 0.6961

96 #139 MinMax 0.664 4 1.0 0.932 0.240 0.013 0.324 0.6961

97 #171 MinMax 0.771 3 1.0 0.987 0.284 0.015 0.199 0.6958

98 #211 MinMax 0.807 3 1.0 0.988 0.279 0.019 0.199 0.6957

99 #170 MinMax 0.735 3 1.0 0.977 0.285 0.008 0.217 0.6956

Continued on next page
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Table B.1 – continued from previous page

Rank ID Conn. Tol. M IU IB IC ID IA OWA

100 #187 MinMax 0.788 3 1.0 0.945 0.252 0.010 0.296 0.6955

Table B.2: Contingency tables of the selected variables (part I)

Competition No Weak Strong

1 0 13 21

2 26 38 34

3 24 42 60

Location IC SC M NMC

1 15 5 2 13

2 31 24 19 24

3 28 24 45 30

Size Small Medium Big

1 0 27 8

2 36 60 1

3 47 59 21

DisplaySize Small Medium Big

1 1 34 0

2 35 52 11

3 40 68 19

Maint. Def. Reg. Good Exc.

1 0 4 26 5

2 7 29 58 4

3 8 28 54 37

Comm. Def. Reg. Good Exc.

1 0 5 26 4

2 8 38 47 5

3 14 27 57 29
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Table B.3: Contingency tables of the selected variables (part II)

Aesthetics Def. Reg. Good Exc.

1 0 9 24 2

2 12 35 45 6

3 16 34 50 27

DisplayGrifone No Yes

1 15 19

2 66 31

3 49 77

ThermalExhibitor No Yes

1 16 19

2 87 9

3 95 31

GrifoneWeight Minimal Secondary Main

1 1 27 5

2 49 44 4

3 29 67 31

Assistants Few Many A lot of

1 13 12 10

2 84 11 3

3 107 9 11

Evaluation Bad Good Excellent

1 8 13 14

2 20 54 24

3 24 40 63

PromosSensit Low Medium High

1 1 34 0

2 23 75 0

3 0 0 127
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Table B.4: Expected frequencies of the selected variables (part I)

Competition No Weak Strong

1 6.6 12.3 15.2

2 19.0 35.3 43.7

3 24.4 45.4 56.2

Location IC SC M NMC

1 9.8 7.0 8.4 8.8

2 28.1 20.1 24.3 25.4

3 36.1 25.9 31.3 32.7

Size Small Medium Big

1 10.8 19.3 3.8

2 30.9 55.1 10.9

3 40.2 71.6 14.2

DisplaySize Small Medium Big

1 9.9 20.1 4.0

2 28.3 57.4 11.3

3 36.8 74.5 14.7

Maint. Def. Reg. Good Exc.

1 2.0 7.9 18.0 6.1

2 5.7 22.6 51.3 17.4

3 7.4 29.4 66.7 22.6

Comm. Def. Reg. Good Exc.

1 2.8 9.3 16.9 5.0

2 7.9 26.4 48.3 14.3

3 10.3 34.3 62.8 18.6
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Table B.5: Expected frequencies of the selected variables (part II)

Aesthetics Def. Reg. Good Exc.

1 3.7 10.2 15.5 4.6

2 10.6 29.1 44.2 13.2

3 13.7 37.8 57.4 17.2

DisplayGrifone No Yes

1 16.6 16.4

2 48.4 47.6

3 63.0 62.0

ThermalExhibitor No Yes

1 25.6 7.4

2 73.0 21.0

3 96.3 27.7

GrifoneWeight Minimal Secondary Main

1 9.6 16.4 5.0

2 28.9 49.1 15.0

3 38.5 65.5 20

Assistants Few Many A lot of

1 24.7 3.5 2.7

2 74.2 10.5 8.2

3 99.0 14.0 11.0

Evaluation Bad Good Excellent

1 6.2 12.4 12.4

2 18.7 37.1 37.1

3 25.0 49.5 49.5

PromosSensit Low Medium High

1 2.9 12.6 15.5

2 8.6 37.9 46.5

3 11.5 50.5 62.0
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Table B.6: Values of importance associated with the selected variables (part I)

Competition No Weak Strong

1 -6.66 0.05 2.25

2 2.59 0.20 -2.15

3 -0.01 -0.26 0.26

Location IC SC M NMC

1 2.55 -0.64 -5.33 1.76

2 0.35 0.81 -1.39 -0.06

3 -1.84 -0.14 5.05 -0.23

Size Small Medium Big

1 -11.22 2.68 3.84

2 0.78 0.52 -9.32

3 0.98 -2.21 2.69

DisplaySize Small Medium Big

1 -8.33 8.49 -4.04

2 1.41 -0.63 -0.01

3 0.22 -0.69 1.29

Maint. Def. Reg. Good Exc.

1 -2.02 -2.16 2.97 -0.23

2 0.32 1.57 0.69 -10.26

3 0.06 -0.11 -2.67 9.40

Comm. Def. Reg. Good Exc.

1 -2.96 -2.08 4.13 -0.24

2 -0.01 5.11 -0.08 -6.07

3 0.99 -1.51 -0.67 5.87
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Table B.7: Values of importance associated with the selected variables (part II)

Aesthetics Def. Reg. Good Exc.

1 -3.77 -0.21 3.98 -1.56

2 0.20 1.07 0.00 -3.92

3 0.39 -0.44 -1.14 5.74

DisplayGrifone No Yes

1 -0.28 0.29

2 5.84 -5.98

3 -3.41 3.49

ThermalExhibitor No Yes

1 -4.46 14.96

2 2.30 -7.71

3 -0.04 0.15

GrifoneWeight Minimal Secondary Main

1 -8.24 4.86 -0.00

2 12.34 -1.26 -8.16

3 -2.58 -0.02 6.38

Assistants Few Many A lot of

1 -7.62 13.74 14.18

2 0.66 -0.09 -4.04

3 0.54 -2.81 -0.04

Evaluation Bad Good Excellent

1 0.14 -0.14 0.01

2 0.01 4.63 -5.20

3 -0.08 -2.88 3.79

PromosSensit Low Medium High

1 -1.54 25.46 -17.10

2 21.52 28.00 -47.87

3 -11.72 -53.24 68.03
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Table B.8: Conditional frequencies of the selected variables (part I)

Competition No Weak Strong

1 0.00 0.38 0.62

2 0.27 0.39 0.35

3 0.19 0.33 0.48

Location IC SC M NMC

1 0.43 0.14 0.06 0.37

2 0.32 0.24 0.19 0.24

3 0.22 0.19 0.35 0.24

Size Small Medium Big

1 0.00 0.77 0.23

2 0.37 0.62 0.01

3 0.37 0.46 0.17

DisplaySize Small Medium Big

1 0.03 0.97 0.00

2 0.36 0.53 0.11

3 0.32 0.54 0.15

Maint. Def. Reg. Good Exc.

1 0.00 0.11 0.74 0.14

2 0.07 0.30 0.59 0.04

3 0.06 0.22 0.43 0.29

Comm. Def. Reg. Good Exc.

1 0.00 0.14 0.74 0.11

2 0.08 0.39 0.48 0.05

3 0.11 0.21 0.45 0.23
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Table B.9: Conditional frequencies of the selected variables (part II)

Aesthetics Def. Reg. Good Exc.

1 0.00 0.26 0.69 0.06

2 0.12 0.36 0.46 0.06

3 0.13 0.27 0.39 0.21

DisplayGrifone No Yes

1 0.44 0.56

2 0.68 0.32

3 0.39 0.61

ThermalExhibitor No Yes

1 0.46 0.54

2 0.91 0.09

3 0.75 0.25

GrifoneWeight Minimal Secondary Main

1 0.03 0.82 0.15

2 0.51 0.45 0.04

3 0.23 0.53 0.24

Assistants Few Many A lot of

1 0.37 0.34 0.29

2 0.86 0.11 0.03

3 0.84 0.07 0.09

Evaluation Bad Good Excellent

1 0.23 0.37 0.40

2 0.20 0.55 0.24

3 0.19 0.31 0.50

PromosSensit Low Medium High

1 0.03 0.97 0.00

2 0.23 0.77 0.00

3 0.00 0.00 1.00
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Table B.10: Initial messages of the selected variables

ID Class Variable Modality Type Sign Relev. Value

#1 1 Competition no VoI neg. high 6.6

#2 1 Location mount./ski run towns VoI neg. high 5.3

#3 1 Size small VoI neg. high 11.2

#4 1 DisplaySize small VoI neg. high 8.3

#5 1 DisplaySize medium VoI pos. high 8.5

#6 1 Communication good VoI pos. high 4.1

#7 1 Aesthetics deficient VoI neg. high 3.8

#8 1 Aesthetics good VoI pos. high 4.0

#9 1 ThermalExhibitor yes VoI pos. high 15.0

#10 1 Assistants many VoI pos. high 13.7

#11 1 Assistants a lot of VoI pos. high 14.2

#12 2 Size big VoI neg. high 9.3

#13 2 Maintenance excellent VoI neg. high 10.3

#14 2 Communication regular VoI pos. high 5.1

#15 2 Communication excellent VoI neg. high 6.1

#16 2 Aesthetics excellent VoI neg. high 3.9

#17 2 DisplayGrifone no VoI pos. high 5.8

#18 2 DisplayGrifone yes VoI neg. high 6.0

#19 2 GrifoneWeight minimal VoI pos. high 12.3

#20 2 Evaluation good VoI pos. high 4.6

#21 2 Evaluation excellent VoI neg. high 5.2

#22 2 PromosSensit high VoI neg. high 47.9

#23 3 Location mount./ski run towns VoI pos. high 5.1

#24 3 Maintenance excellent VoI pos. high 9.4

#25 3 Communication excellent VoI pos. high 5.9

#26 3 Aesthetics excellent VoI pos. high 5.7

#27 3 Evaluation excellent VoI pos. high 3.8

Continued on next page
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Table B.10 – continued from previous page

ID Class Variable Modality Type Sign Relev. Value

#28 3 PromosSensit medium VoI neg. high 53.2

#29 3 PromosSensit high VoI pos. high 68.0

#30 1 Competition strong VoI pos. normal 2.3

#31 1 Location inner cities VoI pos. normal 2.5

#32 1 Location no mountain towns VoI pos. normal 1.8

#33 1 Size medium VoI pos. normal 2.7

#34 1 Size big VoI pos. normal 3.8

#35 1 Maintenance deficient VoI neg. normal 2.0

#36 1 Maintenance regular VoI neg. normal 2.2

#37 1 Maintenance good VoI pos. normal 3.0

#38 1 DisplaySize big VoI neg. normal 4.0

#39 1 Communication deficient VoI neg. normal 3.0

#40 1 Communication regular VoI neg. normal 2.1

#41 1 Aesthetics excellent VoI neg. normal 1.6

#42 1 ThermalExhibitor no VoI neg. normal 4.5

#43 1 GrifoneWeight minimal VoI neg. normal 8.2

#44 1 GrifoneWeight secondary VoI pos. normal 4.9

#45 1 Assistants few VoI neg. normal 7.6

#46 1 PromosSensit medium VoI pos. normal 25.5

#47 2 Competition no VoI pos. normal 2.6

#48 2 Competition strong VoI neg. normal 2.1

#49 2 Location mount./ski run towns VoI neg. normal 1.4

#50 2 Maintenance regular VoI pos. normal 1.6

#51 2 Aesthetics regular VoI pos. normal 1.1

#52 2 ThermalExhibitor yes VoI neg. normal 7.7

#53 2 GrifoneWeight main VoI neg. normal 8.2

#54 2 Assistants a lot of VoI neg. normal 4.0

#55 2 PromosSensit low VoI pos. normal 21.5

Continued on next page
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Table B.10 – continued from previous page

ID Class Variable Modality Type Sign Relev. Value

#56 2 PromosSensit medium VoI pos. normal 28.0

#57 3 Location inner cities VoI neg. normal 1.8

#58 3 Size medium VoI neg. normal 2.2

#59 3 Size big VoI pos. normal 2.7

#60 3 Maintenance good VoI neg. normal 2.7

#61 3 Communication regular VoI neg. normal 1.5

#62 3 Aesthetics good VoI neg. normal 1.1

#63 3 DisplayGrifone no VoI neg. normal 3.4

#64 3 DisplayGrifone yes VoI pos. normal 3.5

#65 3 GrifoneWeight main VoI pos. normal 6.4

#66 3 Assistants many VoI neg. normal 2.8

#67 3 Evaluation good VoI neg. normal 2.9

#68 1 Competition no EF neg. - 0.0

#69 1 Size small EF neg. - 0.0

#70 1 Maintenance deficient EF neg. - 0.0

#71 1 DisplaySize medium EF pos. - 1.0

#72 1 DisplaySize big EF neg. - 0.0

#73 1 Communication deficient EF neg. - 0.0

#74 1 Aesthetics deficient EF neg. - 0.0

#75 1 PromosSensit medium EF pos. - 1.0

#76 1 PromosSensit high EF neg. - 0.0

#77 2 PromosSensit high EF neg. - 0.0

#78 3 PromosSensit low EF neg. - 0.0

#79 3 PromosSensit medium EF neg. - 0.0

#80 3 PromosSensit high EF pos. - 1.0
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Table B.11: Groups of messages affected by rule A.1

Class Variable Type ID Modality Sign Action Weigth

1

DisplaySize EF
#71 medium pos. Prioritise 2

#72 big neg. Discard 0

ThermalExhibitor VoI
#9 yes pos. Prioritise 2

#42 no neg. Discard 0

PromosSensit EF
#75 medium pos. Prioritise 2

#76 high neg. Discard 0

2 DisplayGrifone VoI
#17 no pos. Prioritise 2

#18 yes neg. Discard 0

3

DisplayGrifone VoI
#64 yes pos. Prioritise 2

#63 no neg. Discard 0

PromosSensit EF

#80 high pos. Prioritise 2

#78 low neg. Discard 0

#79 medium neg. Discard 0
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Table B.12: Groups of messages affected by rule A.2

Class Variable Modality Sign ID Type Action Weight

1

Aesthetics deficient pos.
#74 EF Prioritise 2

#7 VoI Discard 0

Communication deficient neg.
#73 EF Prioritise 2

#39 VoI Discard 0

Competition no neg.
#68 EF Prioritise 2

#1 VoI Discard 0

DisplaySize big neg.
#72 EF Prioritise 1

#38 VoI Discard 0

DisplaySize medium pos.
#71 EF Prioritise 3

#5 VoI Discard 0

Maintenance deficient neg.
#70 EF Prioritise 2

#35 VoI Discard 0

PromosSensit medium pos.
#75 EF Prioritise 3

#46 VoI Discard 0

Size small neg.
#69 EF Prioritise 2

#3 VoI Discard 0

2 PromosSensit high neg.
#77 EF Prioritise 2

#22 VoI Discard 0

3

PromosSensit high pos.
#80 EF Prioritise 3

#29 VoI Discard 0

PromosSensit medium neg.
#79 EF Prioritise 1

#28 VoI Discard 0

157



Germán Sánchez-Hernández

Table B.13: Groups of messages affected by rule A.3

Class Variable ID Modality Type Sign Action Weight

1

Assistants

#10 many VoI pos. Prioritise 2

#11 a lot of VoI pos. Prioritise 2

#45 few VoI neg. Discard 0

DisplaySize

#5 medium VoI pos. Prioritise 1

#71 medium EF pos. Prioritise 4

#4 small VoI neg. Discard 0

#38 big VoI neg. Discard -1

#72 big EF neg. Discard 0

ThermalExhibitor
# 9 yes VoI pos. Prioritise 3

#42 no VoI neg. Discard -1

Size

#33 medium VoI pos. Prioritise 2

#34 big VoI pos. Prioritise 2

#3 small VoI neg. Discard -1

#69 small EF neg. Discard 1

2

DisplayGrifone
#17 no VoI pos. Prioritise 3

#18 yes VoI neg. Discard -1

PromosSensit

#55 low VoI pos. Prioritise 2

#56 medium VoI pos. Prioritise 2

#22 high VoI neg. Discard -1

#77 high EF neg. Discard 1

3

DisplayGrifone
#64 yes VoI pos. Prioritise 3

#63 no VoI neg. Discard -1

PromosSensit

#29 high VoI pos. Prioritise 1

#80 high EF pos. Prioritise 4

#28 medium VoI neg. Discard -1

#78 low EF neg. Discard -1

#79 medium EF neg. Discard 0

158



APPENDIX B. TABLES OF THE CASE STUDY

Table B.14: Groups of messages affected by rule A.5

Variable Modality Type ID Class Sign Action Weight

Aesthetics excellent VoI

#26 3 pos. Prioritise 2

#16 2 neg. Discard 0

#41 1 neg. Discard 0

Communication regular VoI

#14 2 pos. Prioritise 2

#40 1 neg. Discard 0

#61 3 neg. Discard 0

Location mountain/sky run towns VoI

#23 3 pos. Prioritise 2

#2 1 neg. Discard 0

#49 2 neg. Discard 0

PromosSentit high EF

#80 3 pos. Prioritise 5

#76 1 neg. Discard -1

#77 2 neg. Discard 0
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Table B.15: Filtered messages that will be mentioned in the final text

ID Class Variable Modality Type Sign Relev. Value Weight

#6 1 Communication good VoI pos. high 4.1 1

#8 1 Aesthetics good VoI pos. high 4.0 1

#9 1 ThermalExhibitor yes VoI pos. high 15.0 3

#10 1 Assistants many VoI pos. high 13.7 2

#11 1 Assistants a lot of VoI pos. high 14.2 2

#12 2 Size big VoI neg. high 9.3 1

#13 2 Maintenance excellent VoI neg. high 10.3 1

#14 2 Communication regular VoI pos. high 5.1 2

#15 2 Communication excellent VoI neg. high 6.1 1

#17 2 DisplayGrifone no VoI pos. high 5.8 3

#19 2 GrifoneWeight minimal VoI pos. high 12.3 1

#20 2 Evaluation good VoI pos. high 4.6 1

#21 2 Evaluation excellent VoI neg. high 5.2 1

#23 3 Location mount./ski VoI pos. high 5.1 2

#24 3 Maintenance excellent VoI pos. high 9.4 1

#25 3 Communication excellent VoI pos. high 5.9 1

#26 3 Aesthetics excellent VoI pos. high 5.7 2

#27 3 Evaluation excellent VoI pos. high 3.8 1

#30 1 Competition strong VoI pos. normal 2.3 1

#31 1 Location inner cities VoI pos. normal 2.5 1

#32 1 Location no mountain VoI pos. normal 1.8 1

#33 1 Size medium VoI pos. normal 2.7 2

#34 1 Size big VoI pos. normal 3.8 2

#36 1 Maintenance regular VoI neg. normal 2.2 1

#37 1 Maintenance good VoI pos. normal 3.0 1

#43 1 GrifoneWeight minimal VoI neg. normal 8.2 1

#44 1 GrifoneWeight secondary VoI pos. normal 4.9 1

Continued on next page

160



APPENDIX B. TABLES OF THE CASE STUDY

Table B.15 – continued from previous page

ID Class Variable Modality Type Sign Relev. Value Weight

#47 2 Competition no VoI pos. normal 2.6 1

#48 2 Competition strong VoI neg. normal 2.1 1

#50 2 Maintenance regular VoI pos. normal 1.6 1

#51 2 Aesthetics regular VoI pos. normal 1.1 1

#52 2 ThermalExhibitor yes VoI neg. normal 7.7 1

#53 2 GrifoneWeight main VoI neg. normal 8.2 1

#54 2 Assistants a lot of VoI neg. normal 4.0 1

#55 2 PromosSensit low VoI pos. normal 21.5 2

#56 2 PromosSensit medium VoI pos. normal 28.0 2

#57 3 Location inner cities VoI neg. normal 1.8 1

#58 3 Size medium VoI neg. normal 2.2 1

#59 3 Size big VoI pos. normal 2.7 1

#60 3 Maintenance good VoI neg. normal 2.7 1

#62 3 Aesthetics good VoI neg. normal 1.1 1

#64 3 DisplayGrifone yes VoI pos. normal 3.5 3

#65 3 GrifoneWeight main VoI pos. normal 6.4 1

#66 3 Assistants many VoI neg. normal 2.8 1

#67 3 Evaluation good VoI neg. normal 2.9 1

#68 1 Competition no EF neg. - 0.0 2

#70 1 Maintenance deficient EF neg. - 0.0 2

#71 1 DisplaySize medium EF pos. - 1.0 4

#73 1 Communication deficient EF neg. - 0.0 2

#74 1 Aesthetics deficient EF neg. - 0.0 2

#75 1 PromosSensit medium EF pos. - 1.0 3

#80 3 PromosSensit high EF pos. - 1.0 5
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Table B.16: Groups of messages affected by rule B.1

Class Variable Type Sign ID Modality Order

1

Assistants VoI pos.
#10 many 2/3

#11 a lot of 3/3

Size VoI pos.
#33 medium 2/3

#34 big 3/3

2 PromosSensit VoI pos.
#55 low 1/3

#56 medium 2/3

Table B.17: Groups of messages affected by rule B.2 (first step: same sign).

Class Variable Sign ID Modality Type Order

1

Location pos.
#31 inner cities VoI -

#32 no mountain VoI -

Maintenance neg.
#36 regular VoI 2/4

#70 deficient EF 1/4
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Table B.18: Groups of messages affected by rule B.2 (second step: different sign)

Class Variable ID Modality Type Sign Order

1

Aesthetics
#8 good VoI pos. 3/4

#74 deficient EF neg. 1/4

Communication
#6 good VoI pos. 3/4

#73 deficient EF neg. 1/4

Competition
#30 strong VoI pos. 3/3

#68 no EF neg. 1/3

GrifoneWeight
#43 minimal VoI neg. 1/3

#44 secondary VoI pos. 2/3

2

Communication
#14 regular VoI pos. 2/4

#15 excellent VoI neg. 4/4

Competition
#47 no VoI pos. 1/3

#48 strong VoI neg. 3/3

Evaluation
#20 good VoI pos. 2/3

#21 excellent VoI neg. 3/3

GrifoneWeight
#19 minimal VoI pos. 1/3

#53 main VoI neg. 3/3

Maintenance
#13 excellent VoI neg. 4/4

#50 regular VoI pos. 2/4

3

Aesthetics
#26 excellent VoI pos. 4/4

#62 good VoI neg. 3/4

Evaluation
#27 excellent VoI pos. 3/3

#67 good VoI neg. 2/3

Location
#23 mount./ski VoI pos. -

#57 inner cities VoI neg. -

Maintenance
#24 excellent VoI pos. 4/4

#60 good VoI neg. 3/4

Size
#58 medium VoI neg. 2/3

#59 big VoI pos. 3/3
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Table B.19: Messages affected by rule B.4

Class Variable ID Modality Type Sign Order

1 Maintentance

#37 good VoI pos. 3/4

#36 regular VoI neg. 2/4

#70 deficient EF neg. 1/4

Table B.20: Messages affected by rule B.5

Class Type Sign ID Variable Modality

1 EF pos.
#71 DisplaySize medium

#75 PromosSensit medium

2 VoI neg.
#52 ThermalExhibitor yes

#54 Assistants a lot of

3 VoI pos.
#64 DisplayGrifone yes

#65 GrifoneWeight main

Table B.21: Messages affected by rule C.1

Modality ID Class Variable Type Sign

no

#17 2 DisplayGrifone VoI pos.

#47 2 Competition VoI pos.

#68 1 Competition EF neg.

Table B.22: Messages affected by rule C.2

Modality ID Class Variable Type Sign

yes

#9 1 ThermalExhibitor VoI pos.

#52 2 ThermalExhibitor VoI neg.

#64 3 DisplayGrifone VoI pos.
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Table B.23: Variables needing a special transcription (rule C.3)

Variable VoIs transcription EFs transcription

Competition with/without competition have/have not competition

Location located in are located in

Size medium-sized are medium-sized

DisplaySize with a medium-sized display have a medium-sized display

DisplayGrifone displaying Grifone products display Grifone products

ThermalExhibitor with thermal exhibitor have thermal exhibitor

Assistants with few assistants have few assistants

Table B.24: Variables with modalities as adjectives (rule C.4)

Variable VoIs transcription EFs transcription

Maintenance with a good maintenance have a good maintenance

Communication with an excellent communication have an excellent communication

Aesthetics with a regular aesthetics have a regular aesthetics

GrifoneWeight with a main Grifone weight have a main Grifone Weight

Evaluation with a bad evaluation have a bad evaluation

PromosSensit with a high sensitivity to promotions have a high sensitivity to promotions
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Gómez-Pérez, A., Fernández-López, M., and Corcho, O. (2004). Ontological Engineering: With

Examples from the Areas of Knowledge Management, E-commerce and the Semantic Web (1

ed.). Springer.
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