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Abstract

A traceability or fingerprinting scheme is a cryptographic scheme that facilitates the

identification of the source of leaked information. In a fingerprinting setting, a dis-

tributor delivers copies of a given content to a set of authorized users. If there are

dishonest members (traitors) among them, the distributor can deter plain redistribu-

tion of the content by delivering a personalized, i.e., marked, copy to each user. The

set of all user marks is known as a fingerprinting code. There is, however, another

threat. If several traitors collude to create a copy that is a combination of theirs,

then the pirated copy generated will contain a corrupted mark, which may obstruct

the identification of traitors.

This dissertation is about the study and analysis of codes for their use in trace-

ability and fingerprinting schemes, under the presence of collusion attacks. Moreover,

another of the main concerns in the present work will be the design of identification

algorithms that run efficiently, i.e., in polynomial time in the code length.

In Chapters 1 and 2, we introduce the topic and the notation used. We have

also discussed some properties that characterize fingerprinting codes known under

the names of separating, traceability (TA), and identifiable parent property (IPP),

which will be subject of research in this dissertation.

Chapter 3 is devoted to the study of the Kötter-Vardy soft-decision decoding

algorithm to solve a variety of problems that appear in fingerprinting schemes. The

concern of the chapter is restricted to schemes based on Reed-Solomon codes. By

using the Kötter-Vardy algorithm as the core part of the identification processes,

three different settings are approached: identification in TA codes, identification in

IPP codes and identification in binary concatenated fingerprinting codes. It is also
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discussed how by a careful setting of a reliability matrix, i.e., the channel information,

all possibly identifiable traitors can be found.

In Chapter 4, we introduce a relaxed version of separating codes. Relaxing the

separating property lead us to two different notions, namely, almost separating and

almost secure frameproof codes. From one of the main results it is seen that the lower

bounds on the asymptotical rate for almost separating and almost secure frameproof

codes are greater than the currently known lower bounds for ordinary separating

codes. Moreover, we also discuss how these new relaxed versions of separating codes

can be used to show the existence of families of fingerprinting codes with small error,

equipped with polynomial-time identification algorithms.

In Chapter 5, we present explicit constructions of almost secure frameproof codes

based on weakly biased arrays. We show how such arrays provide us with a natural

framework to construct these codes. Putting the results obtained in this chapter

together with the results from Chapter 4, shows that there exist explicit constructions

of fingerprinting codes based on almost secure frameproof codes with positive rate,

small error and polynomial-time identification complexity. We remark that showing

the existence of such explicit constructions was one of the main objectives of the

present work.

Finally, in Chapter 6, we study the relationship between the separating and trace-

ability properties of Reed-Solomon codes. It is a well-known result that a TA code

is an IPP code, and that an IPP code is a separating code. The converse of these

implications is in general false. However, it has been conjectured for some time that

for Reed-Solomon codes all three properties are equivalent. Giving an answer to this

conjecture has importance in the field of fingerprinting, because a proper character-

ization of these properties is directly related to an upper bound on the code rate,

i.e., the maximum users that a fingerprinting scheme can allocate. In this chapter we

investigate the equivalence between these properties, and provide a positive answer

for a large number of families of Reed-Solomon codes. The results obtained seem to

suggest that the conjecture is true.



Resumen

Un sistema de trazabilidad o de fingerprinting es un mecanismo criptográfico que per-

mite identificar el origen de información que ha sido filtrada. En el modelo de apli-

cación de estos sistemas, un distribuidor entrega copias de un determinado contenido

a un conjunto de usuarios autorizados. Si existen miembros deshonestos (traidores)

entre ellos, el distribuidor puede disuadir que realicen una redistribución ingenua

del contenido entregando copias personalizadas, es decir, marcadas, a cada uno de

los usuarios. El conjunto de todas las marcas de usuario se conoce como código de

fingerprinting. No obstante, existe otra amenaza más grave. Si diversos traidores

confabulan para crear una copia que es una combinación de sus copias del contenido,

entonces la copia pirata generada contendrá una marca corrompida que dificultará el

proceso de identificación de traidores.

Esta tesis versa sobre el estudio y análisis de códigos para su uso en sistemas de

trazabilidad o de fingerprinting bajo la presencia de ataques de confabulación. Otra

de las cuestiones importantes que se tratan es el diseño de algoritmos de identificación

eficientes, es decir, algoritmos que se ejecuten en tiempo polinómico en la longitud

del código.

En los Caṕıtulos 1 y 2 presentamos el tema e introducimos la notación que uti-

lizaremos. También presentaremos algunas propiedades que caracterizan los códigos

de fingerprinting, conocidas bajo los nombres de propiedad de separación, propiedad

identificadora de padres (IPP) y propiedad de trazabilidad (TA), que están sujetas a

estudio en este trabajo.

El Caṕıtulo 3 está dedicado al estudio del algoritmo de decodificación de lista con

información de canal de Kötter-Vardy en la resolución de determinados problemas que

ix
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aparecen en sistemas de fingerprinting. El ámbito de estudio del caṕıtulo son sistemas

basados en códigos de Reed-Solomon. Empleando el algoritmo de Kötter-Vardy como

parte central de los algoritmos de identificación, se analizan tres propuestas en el

caṕıtulo: identificación en códigos TA, identificación en códigos IPP e identificación en

códigos de fingerprinting binarios concatenados. También se analiza cómo mediante

un cuidadoso ajuste de una matriz de fiabilidad, es decir, de la información del canal,

se pueden encontrar a todos los traidores que es posible identificar eficientemente.

En el Caṕıtulo 4 presentamos una versión relajada de los códigos separables. Re-

lajando la propiedad de separación nos llevará a obtener dos nociones diferentes:

códigos cuasi separables y códigos cuasi seguros contra incriminaciones. De los resul-

tados principales se puede observar que las cotas inferiores de las tasas asintóticas para

códigos cuasi separables y cuasi seguros contra incriminaciones son mayores que las

cotas inferiores actualmente conocidas para códigos separables ordinarios. Además,

también estudiamos como estas nuevas familias de códigos pueden utilizarse para de-

mostrar la existencia de familias de códigos de fingerprinting de baja probabilidad de

error y dotados de un algoritmo de identificación en tiempo polinómico.

En el Caṕıtulo 5 presentamos construcciones expĺıcitas de códigos cuasi seguros

contra incriminaciones, basadas en matrices de bajo sesgo. Mostramos como tales

matrices nos proporcionan una herramienta para construir dichos códigos. Poniendo

en común los resultados de este caṕıtulo con los del Caṕıtulo 4, podemos ver que,

basándonos en códigos cuasi seguros contra incriminaciones, existen construcciones

expĺıcitas de códigos de fingerprinting de tasa positiva, baja probabilidad de error y

con un proceso de identificación en tiempo polinómico. Demostrar que existen dichas

construcciones expĺıcitas era uno de los principales objetivos de este trabajo.

Finalmente, en el Caṕıtulo 6, estudiamos la relación existente entre las propiedades

de separación y trazabilidad de los códigos de Reed-Solomon. Es un resultado bien

conocido el hecho que un código TA es un código IPP, y que un código IPP es un

código separable. Las implicaciones en el sentido opuesto son falsas en general. No

obstante, existe una conjetura acerca de la equivalencia de estas tres propiedades en el

caso de códigos de Reed-Solomon. Obtener una respuesta a esta conjetura es de una

importancia relevante en el campo del fingerprinting, puesto que la caracterización
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de estas propiedades está directamente relacionada con una cota superior en la tasa

del código, es decir, con el número de usuarios que puede gestionar un sistema de

fingerprinting. En este caṕıtulo investigamos esta equivalencia y proporcionamos una

respuesta afirmativa para un gran número de familias de códigos de Reed-Solomon.

Los resultados obtenidos parecen sugerir que la conjetura es cierta.
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Simarro-Haro, Prof. Francisco José Mart́ınez-Zald́ıvar and Prof. Alberto González.
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Chapter 1

Introduction

The Internet has become one of the most significant changes experienced by the world

in the last decades. It allows us to share information, socialize and buy and sell goods

faster, cheaper and more efficiently than ever before. Furthermore, it simplifies the

distribution of contents and information to a large number of users.

There are several settings where some control on the distribution process is re-

quired, in terms of disallowing users from redistributing their own copy of the con-

tent freely. These settings are typically motivated by the kind of content distributed

including, but not limited to, personal documents, industrial secrets, classified infor-

mation and copyrighted material.

One may attempt to tackle the redistribution problem by implementing a copy

prevention mechanism, i.e., implementing techniques that impede users from making

copies of the received content. However, it is generally accepted by numerous experts

in the field that it is theoretically impossible to completely prevent users from making

and distributing copies of the content that they have received. The main argument

for this assertion is the fact that any kind of content needs to be “read” somehow

to be used. Hence, a user could simply implement a reader that it first reads the

content, and then it writes an exact copy of what was read.

Another alternative consists in discouraging users from redistributing their copy

of the content, rather than trying to avoid this from happening. This is achieved by

copy detection techniques. By using these techniques, users are free to redistribute

1



2 1. Introduction

their own copy. Nevertheless, the distributor reserves the right to prosecute and/or

penalize in some way users found guilty of an illegitimate redistribution. Obviously,

if there is only a single user in the system, then it becomes trivial to identify the

guilty party when the content appears published elsewhere. Problems arise when the

content has been distributed to multiple legitimate users. If all of them have received

the same exact object, then it becomes impossible to identify dishonest members.

Therefore, it is clear that a distributor implementing a copy detection technique

must deliver a unique object to every authorized user. Each copy of the content can

be made unique by embedding in it a mark that identifies each user. By making each

copy unique, plain redistribution is ruled out. However a group of traitors (dishonest

users) could create a pirated copy, which is a “combination” of their copies of the

content, and distribute this new copy. We call such an attack a collusion attack. The

precise way in which the traitors combine their copies to generate a pirated copy

will be made precise below. The goal of the pirated copy is to disguise the identity

of the colluders once it is redistributed. What is worse, it could be the case that

the pirated copy be very similar to the copy of an innocent user, what could lead

the distributor to accuse that user incorrectly. Therefore, the distributor faces the

problem of identifying the real traitors using the information contained in the pirated

copy.

The original idea of making copies unique by embedding a different marks for

each user was introduced in [11]. There, this technique was coined under the name of

fingerprinting, by analogy to human fingerprints, and was subsequently adopted by

many authors, e.g. [11,12,13,14,15,16,17,18]; see also the tutorial paper [19]. Hence,

it is common to call the individual marks fingerprints, and the set of all user marks

a fingerprinting code.

1.1 General Considerations

A robust fingerprinting scheme should be designed so that innocent users are never

incorrectly accused. Also, it should allow the identification of traitors that have
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participated in a collusion attack. These two objectives are usually difficult to achieve,

and it is common to allow some (small) error probability for these events.

Now, let us describe a common set of considerations that are usually assumed in

a fingerprinting scheme.

First, the distributor chooses a set of marks, which constitutes the fingerprinting

code, where each mark identifies one of the possible users of the system. Next, a

subset of redundant positions in the content is selected, and the mark is embedded in

these positions. The marked copies are delivered correspondingly to the users. This

set of redundant positions are constant for all the copies. Regarding the embedding

process, it must satisfy some properties. On one hand, the marked content must not

differ substantially from the original content and must retain the same functionality.

On the other hand, the users should not be able to remove or degrade the mark once

it is embedded without rendering the content unusable.

As customary in the literature, we will assume a setting coined by Boneh and

Shaw [13, 14] as the marking assumption. In this setting, a coalition of traitors may

attempt to discover the positions of the fingerprints by comparing their copies, which

will reveal a number of differences, at the positions where their fingerprints differ.

Now, they generate a pirated copy following the assumption that the positions where

the traitors have not found any difference must remain unchanged in the pirated

copy. This is assumed because the traitors do not have any information about what

positions in the content are redundant, and modifying arbitrary positions may damage

the content. In the positions where they have found a difference, they are allowed to

change them in some way, possibly making that position unreadable.

Once an illegitimate redistribution has been found, the distributor extracts the

embedded mark. Using this information, the goal is to identify at least one of the

colluding members. Therefore, the set of user marks that constitute the fingerprinting

code must have tracing properties. Identifying users from arbitrary-size collusion

attacks is a very ambitious and restrictive requirement that imposes strong constraints

on the design of the fingerprinting code. Therefore, this requirement is usually relaxed

by bounding the maximum size of the coalitions to a certain number of traitors.
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For the reasons given above, when studying a fingerprinting scheme, it becomes

sufficient to study the set of marks, i.e., the fingerprinting code. This is because the

positions where the mark has not been embedded will be identical in all the copies of

the content, and according to the marking assumption, they will be unaltered in the

pirated copy, providing no information about the traitors.

1.2 Motivation and Objectives

The main objective of this dissertation is the study and design of codes appropriate

for fingerprinting settings under the presence of collusion attacks. We will be mainly

concerned with the existence conditions of such codes, and also with the design of

explicit constructions. Furthermore, it will also be a paramount topic in our discussion

the design of efficient identification algorithms, i.e., in polynomial time in the code

length.

It is a well-known result that conventional error-correcting codes over a sufficiently

large alphabet and with a sufficiently large minimum distance posses the desired iden-

tification capabilities. In other words, there exist solutions to the fingerprinting prob-

lem that allow the distributor identify traitors with zero-error probability. However,

relying only in the use of conventional error-correcting codes have two drawbacks. On

one hand, the use of these codes assume that the traitors generate pirated copies in a

very restricted way, which may be a very optimistic supposition. On the other hand,

the use of large alphabets is difficult to handle for the marking-insertion layer. To

overcome these problems, the idea of code concatenation has been used. Hence, the

study of how code concatenation can enable us to obtain new families of fingerprint-

ing codes with small error, and how identification can be done in polynomial time,

also constitute objectives of the dissertation.

Another objective of the dissertation is the study of the combinatorial properties

of codes used in fingerprinting schemes. Codes with separating and traceability prop-

erties have proved to be useful in these schemes. We will explore how these codes, or

modified versions of these codes, can be used to construct fingerprinting codes.
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Finally, we remark that in the present work we will not be concerned about the

nontrivial process of embedding and extracting marks from the content. Rather, we

will focus on how to design a set of marks that allow the distributor identify traitors

under the presence of collusion attacks.

1.3 Contributions

Below we list the publications derived from this work, in order of appearance.

J. Moreira, M. Fernández, and M. Soriano, “A note on the equivalence of the trace-

ability properties of Reed-Solomon codes for certain coalition sizes,” in Proc. IEEE

Int. Workshop Inform. Forensics, Security (WIFS), London, United Kingdom, Dec.

2009, pp. 36–40

J. Moreira, M. Fernández, and M. Soriano, “Propiedades de trazabilidad de los códigos

de Reed-Solomon para ciertos tamaños de coalición,” in Proc. Reunión Española sobre

Criptoloǵıa y Seguridad de la Información (RECSI), Tarragona, Spain, Sep. 2010, pp.

413–417

M. Fernández, J. Moreira, and M. Soriano, “Identifying traitors using the Koetter-

Vardy algorithm,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 692–704, Feb. 2011

M. Fernández, G. Kabatiansky, and J. Moreira, “Almost separating and almost secure

frameproof codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Saint Peters-

burg, Russia, Aug. 2011, pp. 2696–2700

J. Moreira, G. Kabatiansky, and M. Fernández, “Lower bounds on almost-separating

binary codes,” in Proc. IEEE Int. Workshop Inform. Forensics, Security (WIFS), Foz

do Iguaçu, Brazil, Nov. 2011, pp. 1–6

M. Á. Simarro-Haro, J. Moreira, M. Fernández, M. Soriano, A. González, and F. J.

Mart́ınez-Zald́ıvar, “Parallelization of the interpolation process in the Koetter-Vardy

soft-decision list decoding algorithm,” in Proc. Int. Conf. Comput. Math. Methods

(CMMSE), La Manga, Spain, Jul. 2012, pp. 1102–1110
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M. Á. Simarro-Haro, J. Moreira, M. Fernández, M. Soriano, A. González, and F. J.

Mart́ınez-Zald́ıvar, “Paralelización en la interpolación de la decodificación por listas

de códigos Reed-Solomon,” in Proc. Jornadas de Paralelismo (JP), Elx, Spain, Sep.

2012

J. Moreira, M. Fernández, and M. Soriano, “On the relationship between the trace-

ability properties of Reed-Solomon codes,” Adv. Math. Commun., vol. 6, no. 4, pp.

467–478, Nov. 2012

J. Moreira, M. Fernández, and G. Kabatiansky, “Fingerprinting basado en códigos

cuasi separables con identificación eficiente,” in Proc. Jornadas de Ingenieŕıa Tele-

mática (JITEL), Granada, Spain, Oct. 2013 (To appear)

J. Moreira, M. Fernández, and G. Kabatiansky, “Constructions of almost secure-

frameproof codes based on small-bias probability spaces,” in Proc. Int. Workshop

Security (IWSEC), ser. Lecture Notes Comput. Sci. (LNCS), vol. 8231, Okinawa,

Japan, Nov. 2013, pp. 53–67

1.4 Notation and Conventions

Here we list the most relevant notation used.

A = {a1, . . . , an} set having elements a1, . . . , an

|A| size of the set A

∅ empty set

An nth cartesian power of the set A

A \B set difference

r.v. random variable

pmf probability mass function

E[ ], Ef [ ] expectation / expectation over the pmf f

H2(x) binary entropy function, H2(x) = −x log2 x− (1− x) log2(1− x)
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D(x‖y) Kullback-Leibler divergence between two Bernoulli distributed r.v.’s

of parameters x and y, respectively, D(x‖y) = x log2(x/y) + (1 −
x) log2((1− x)/(1− y))

q! factorial, q! = q(q − 1) · · · 1
qj falling factorial, qj = q(q − 1) · · · (q − j + 1)(
n
k

)
binomial coefficient,

(
n
k

)
= n!

k!(n−k)!{
n
k

}
Stirling number of the second kind,

{
n
k

}
= 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn

Q finite alphabet, i.e., a nonempty finite set

Fq finite field of q elements

u = (u1, . . . , un) vector with entries over an alphabet Q, see p. 9

d(u,v) Hamming distance between vectors u and v, see p. 9

s(u,v) similitude between vectors u and v, s(u,v) = n− d(u,v), see p. 9

s(u,Z) similitude between vector u and the “set vector” Z, see p. 9

C a code

d(C) minimum distance of the code C, see p. 10

R(C) rate of the code C, see p. 10

(n,M)-code a code (over an alphabet Q) of length n and size M , i.e., a subset

of Qn of size M , see p. 10

[n, k]-code a linear code (over a finite field Fq) of length n and dimension k,

i.e., a vector subspace of Fnq of dimension k, see p. 10

c-coalition a subset of size c of a code, see p. 10

U, V c-coalitions

Pi(U) projection of the c-coalition U = {u1, . . . ,uc} on the ith position,

Pi(U) = {u1
i , . . . , u

c
i}, see p. 10

desc(U) narrow-sense envelope of U , see Definition 2.1, p. 10

desc∗(U) expanded narrow-sense envelope of U , see Definition 2.2, p. 11

Desc(U) wide-sense envelope of U , see Definition 2.2, p. 11

Desc∗(U) expanded wide-sense envelope of U , see Definition 2.2, p. 11

E(U) an arbitrary envelope of U , see p. 11

IPP, IPP code identifiable parent property, code with the identifiable parent prop-

erty, see Definition 2.8, p. 14
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TA, TA code traceability property, code with the traceability property, see Defi-

nition 2.9, p. 15

R(C) rate of a family of codes C = {Ct}t∈T , see Definition 2.11, p. 17

R(C) asymptotical rate of a sequence of codes C = (Ci)i≥1, see p. 60

Rfing
q (c) maximal asymptotically achievable c-fingerprinting rate, see p. 20

Rsep
q (n, c, c′) maximal rate of a q-ary (c, c′)-separating code of length n, see p. 57

Rsep*
q (c) maximal asymptotical rate among all asymptotically almost (c, c)-

separating families, see p. 60

RSFP*
q (c) maximal asymptotical rate among all asymptotically almost c-

secure frameproof families, see p. 67

deg f(x) degree of the polynomial f(x)

im f image of the application f

ker f kernel of the application f

v(j; q, c), v(j) pmf, evaluated at j, of an r.v. that counts the number of different

symbols of a q-ary vector of length c chosen uniformly at random,

see Lemma 4.3, p. 58

pdisj.
q,c,c′ probability that two q-ary vectors of lengths c and c′, respectively,

chosen uniformly and independently at random, have no common

element, see Lemma 4.4, p. 58

h(k;N,K, n) pmf, evaluated at k, of a hypergeometric r.v. with a total size of the

population N , number of items with the desired characteristic K,

and number of samples drawn n, see p. 65

N(j;U) number of positions where the elements of the c-coalition U have j

different symbols, see p. 61

Z(x;U) number of positions where all the elements of the c-coalition U have

the symbol x, see p. 63

νS(a;A) number of rows of a binary array (binary matrix) A whose projection

onto the indices of the subset S equals the vector a ∈ Fs2, see p. 83

θ(U, V ) number of separating positions between U and V , see p. 98

θc,c′(C), θc,c′ for a code C, minimum value of θ(U, V ) for disjoint U, V ⊆ C such

that |U | = c and |V | = c′, see p. 98



Chapter 2

Preliminaries and Background

In this chapter we present some basic elements of coding theory and fingerprinting

that will be used throughout the dissertation. This, in turn, will allow us to introduce

some notation and conventions.

Let q ≥ 2 be an integer. A q-ary alphabet Q is a nonempty set of size q. For any

integer n ≥ 1, let Qn denote the set of all possible n-tuples over the alphabet Q. We

denote the elements of Qn in boldface, e.g. u = (u1, . . . , un) ∈ Qn. The (Hamming)

distance between two elements u,v ∈ Qn is denoted d(u,v), and is defined as the

number of positions 1 ≤ i ≤ n where u and v differ,

d(u,v)
def
= |{i : ui 6= vi, 1 ≤ i ≤ n}|.

Sometimes, it will also be convenient to talk about the similitude of u and v, denoted

s(u,v), and defined as

s(u,v)
def
= |{i : ui = vi, 1 ≤ i ≤ n}| = n− d(u,w).

Moreover, for a set of subsets of the alphabet, Zi ⊆ Q, for 1 ≤ i ≤ n, and an element

u = (u1, . . . , un) ∈ Qn, we define the similitude between u and the “set vector”

Z = (Z1, . . . ,Zn) as

s(u,Z)
def
= |{i : ui ∈ Zi, 1 ≤ i ≤ n}|. (2.1)

9
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Let Q be a q-ary alphabet. An (n,M)-code C over Q is a subset of Qn of size M .

The parameter n is called the length of the code. If Q is the finite field of q elements,

we denote it by Fq. A code C is a linear [n, k]-code over Fq if C ⊆ Fnq is a vector

subspace of dimension k. The elements of a code are called codewords, and the matrix

formed with the codewords as rows is called codebook. The minimum distance of a

code C, denoted d(C), is the smallest Hamming distance between any two of its

codewords,

d(C)
def
= min

u,v∈C
{d(u,v) : u 6= v}.

The rate of a q-ary (n,M)-code C, denoted R(C), is defined as

R(C)
def
= n−1 logqM.

Obviously, if C is a linear [n, k]-code, we have R(C) = k/n.

For a code C, we call a subset of codewords U = {u1, . . . ,uc} ⊆ C of size c a

c-subset or c-coalition. Given a c-coalition U , we denote by Pi(U) the projection of U

on the ith position, i.e., the set of elements of the code alphabet at the ith position,

Pi(U)
def
= {u1

i , . . . , u
c
i}. (2.2)

A position i is undetectable for coalition U if the codewords of U match in their ith

position, i.e., u1
i = · · · = uci , or equivalently, |Pi(U)| = 1. A position that does not

satisfy this property is called detectable.

According to the marking assumption [13, 14], introduced in Section 1.1, when

a c-coalition U generates a forged copy of the content, the undetectable positions

remain unchanged in the pirated word. For the detectable positions, the traitors are

allowed to alter them in some way, possibly making them unreadable. This is a very

natural approach to model the generation of a pirated word, since when a group of up

to c traitors generates a pirated content, a comparison of their copies will only reveal

the detectable positions. How the traitors set the detectable positions in the pirated

words gives rise to different fingerprinting settings, leading to different results.
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Definition 2.1. Let C be an (n,M)-code over an alphabet Q, and consider the

c-coalition U = {u1, . . . ,uc} ⊆ C. We say that z ∈ Qn is a descendant of coalition

U if for each position 1 ≤ i ≤ n there exists a u ∈ U such that zi = ui. We call u a

parent of z. The set of all the descendants of U is denoted desc(U),

desc(U)
def
= {z ∈ Qn : zi ∈ Pi(U)}. (2.3)

Also, the c-descendant code of C, denoted descc(C), is defined as

descc(C)
def
=

⋃
U⊆C,|U |≤c

desc(U). (2.4)

The set of descendants that we have just introduced is also known as the narrow-

sense envelope by some authors [15]. This definition can be extended for some other

natural settings as follows.

Definition 2.2. Let C be an (n,M)-code over an alphabet Q, and consider the

c-coalition U = {u1, . . . ,uc} ⊆ C. Also, let ‘∗’ denote any element, ∗ 6∈ Q. Then, we

define

1) the expanded narrow-sense envelope of U , denoted desc∗(U), as the set of all

words z ∈ (Q ∪ {∗})n such that for all undetectable positions i we have zi ∈
Pi(U), and for all detectable positions j we have zj ∈ Pj(U) ∪ {∗};

2) the wide-sense envelope of U , denoted Desc(U), as the set of all words z ∈
Qn such that for all undetectable positions i we have zi ∈ Pi(U), and for all

detectable positions j we have zj ∈ Q;

3) the expanded wide-sense envelope of U , denoted Desc∗(U), as the set of all words

z ∈ (Q ∪ {∗})n such that for all undetectable positions i we have zi ∈ Pi(U),

and for all detectable positions j we have zj ∈ Q ∪ {∗}.
Similarly as in (2.4), denote the corresponding descendant codes, for coalitions of

size at most c, by desc∗c(C), Descc(C) and Desc∗c(C), respectively.

The symbol ‘∗’ above denotes an erased or unreadable position in the pirated word.

For a code C and a c-coalition U ⊆ C, we denote by E(U) an arbitrary envelope of

those defined above, and Ec(C) the corresponding c-descendant code. Hence E(U)
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can be interpreted as the set of pirated words that coalition U is able to generate in

a given fingerprinting setting. Note that U ⊆ E(U), and also note that the marking

assumption is fulfilled in every definition of the envelope model given above.

Example 2.3. Let U = {u1,u2} ∈ Q5, with Q = {1, 2, 3, 4}, u1 = (3, 4, 1, 2, 3) and

u2 = (4, 2, 1, 3, 3), then

– desc(U) = {3, 4} × {2, 4} × {1} × {2, 3} × {3},
– desc∗(U) = {3, 4, ∗} × {2, 4, ∗} × {1} × {2, 3, ∗} × {3},
– Desc(U) = Q×Q× {1} ×Q× {3},
– Desc∗(U) = (Q ∪ {∗})× (Q ∪ {∗})× {1} × (Q ∪ {∗})× {3}.

When an illegal redistribution of the content has occurred, the goal of the dis-

tributor is to identify at least one of the c traitors from the coalition U ⊆ C that

generated the pirated content, using the pirated word z ∈ E(U) observed in it. Recall

that all the undetectable positions are common to all the traitor codewords and to the

pirated word. Also, some of the detectable positions may coincide with some traitor

codeword. Using this information the distributor tries to perform the identification

using a decoding or identification algorithm, which can be regarded as a function A

A : Ec(C)→ C ∪ {?},

where ‘?’ denotes an unknown element. An identification error occurs when we have

A(z) 6∈ U . Observe, however, that two types of error can be considered. On one

hand, the completeness error (false negative), when A(z) =?, and on the other hand,

the soundness error (false positive), when A(z) ∈ C \U . Obviously, the latter type is

far more severe than the former, since the distributor would be accusing an innocent

user.

Remark 2.4. There are a variety of fingerprinting codes where the output of the

identification algorithm need not be a single codeword, but a subset of codewords

from the code C,

A : Ec(C)→ 2C .
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This fact depends on the nature of the codes and its identification algorithm. In

this case, the completeness error occurs when A(z) = ∅, and the soundness error

when A(z) ∩ (C \ U) 6= ∅. See [13, 14, 18] for examples of fingerprinting codes with

identification algorithms that may produce more than one output codeword.

2.1 Zero-Error Fingerprinting

Informally, we talk about zero-error fingerprinting when the distributor has mech-

anisms to identify unambiguously a traitor of any coalition of size at most c. In

other words, there exists a code C and an identification algorithm A such that for

any c-coalition U ⊆ C and any z ∈ E(U) we have A(z) ∈ U . This is, indeed, the

ideal situation in a fingerprinting setting. Note that it cannot be guaranteed that the

distributor finds more than one colluding user, since the remaining traitors could be

passive in the generation of the pirated content, or may contribute with few symbols

to the pirated word.

Definition 2.5 ([13, 14]). A code C is totally c-secure if for any c-coalition U there

is an identification algorithm A such that A(z) ∈ U for any z ∈ E(C).

Sadly, there are no totally c-secure codes when E(C) is an envelope model different

from the narrow-sense one defined above, and hence, zero-error probability cannot be

guaranteed in the identification process.

Theorem 2.6 ([13, 14]). For q ≥ 2, c ≥ 2 and M ≥ 3 there are no totally q-ary

c-secure (n,M)-codes under the wide-sense and the expanded envelope models.

In this section we will restrict our discussion to the particular case of the narrow-

sense envelope model. Let us introduce some codes that have interesting properties

for a fingerprinting setting under this model.

Definition 2.7. A code C is (c, c′)-separating if for every pair of disjoint subsets

U, V ⊆ C with |U | = c and |V | = c′ there is a position 1 ≤ i ≤ n such that their

projections on that position have empty intersection, i.e.,

Pi(U) ∩ Pi(V ) = ∅.
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Clearly, a code that is (c, c′)-separating is also (t, t′)-separating, for t ≤ c and

t′ ≤ c′.

The separating property was first discussed in [20], and has been investigated

by many authors [21, 22, 23, 24, 25, 26]. Recently, more attention has been paid to

separating codes in connection with fingerprinting settings. In the crypto literature,

(c, 1)- and (c, c)-separating codes are also known as c-frameproof codes and c-secure

frameproof codes, respectively, [13,14,27,28].

The connection between separating and fingerprinting codes is straightforward.

Assume that a fingerprinting code C has the (c, 1)-separating property. Then, no

coalition of size ≤ c will be able to generate a pirated word z ∈ descc(C) that

coincides with the fingerprint of an innocent user. Moreover, using a (c, c)-separating

code, a given coalition can not even claim that the pirated word was generated by a

disjoint coalition of size ≤ c, since for disjoint coalitions U, V ∈ C it is easy to see

that

desc(U) ∩ desc(V ) = ∅.

Still, the separating property is only a necessary condition to achieve unambiguous

identification of traitors. To see that it is not sufficient, consider the case c = 2 and

the code

C = {u1 = (0, 0, 0),u2 = (0, 1, 1),u3 = (1, 1, 0),u4 = (1, 0, 1)},

which is (2, 2)-separating. Since

(0, 1, 0) ∈ desc({u1,u2}) ∩ desc({u1,u3}) ∩ desc({u2,u3}),

one cannot decide which of the three possible pairs of codewords is the actual coalition

of traitors that generated the pirated word (0, 1, 0).

Now, we present codes with sufficient conditions to allow identification with zero-

error under the narrow-sense envelope model.
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Definition 2.8. A code C ⊆ Qn has the c-identifiable parent property (c-IPP) if for

all z ∈ Qn, either z 6∈ descc(C) or

⋂
U⊆C,|U |≤c

s.t. z∈desc(U)

U 6= ∅. (2.5)

Note that for a c-IPP code the intersection of all coalitions of size ≤ c that can

generate a given pirated word is nonempty. In particular, the codewords that lie

the intersection (2.5) belong to the coalition that generated the pirated word and

can be accused as traitors. This means that the distributor could simply apply an

identification algorithm A that consists in finding the intersection of all possible c-

coalitions. Hence, for a code of size M , the identification process runs in time O
(
M
c

)
in the general case.

Definition 2.9. A code C has the c-traceability property (c-TA) if for all subsets

U ⊆ C of size at most c, if z ∈ desc(U), then there exists a u ∈ U such that

d(z,u) < d(z,w) for all w ∈ C \ U .

That is, in a c-TA code the closest codeword to a descendant of a c-coalition U ,

in terms of Hamming distance, is in U .

It is easy to see that every TA code is an IPP code [28, 29, 30]. The main benefit

of using TA codes is that the identification process runs in time O(M). Nevertheless

the TA property imposes more restrictions to the code than the IPP property; see for

example [28].

The concepts of IPP and TA codes were originated in [29] (later in [30]). However,

no specific name was given to such codes. IPP codes where further studied in [31].

There, the authors coined the term “IPP,” that has been widely adopted in the crypto

literature. Also, IPP and TA codes have been investigated in [28] under the names

presented here.

A simple, sufficient condition for an (n,M)-code C to posses the TA property was

first presented in [29,30]. Namely, if

d(C) > (1− 1/c2)n, (2.6)
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the code is c-TA. In addition, the following chain of implications are also well-known

results:

d(C) > (1− 1/c2)n⇒ c-TA

⇒ c-IPP⇒ (c, c)-separating⇒ (c, 1)-separating. (2.7)

These results were presented later in the form of a theorem in [28]. Moreover, it is

not difficult to see that

d(C) > (1− 1/c)n⇒ (c, 1)-separating.

At a first glance, IPP codes seem to be the solution to the fingerprinting problem

in the narrow-sense envelope model. However, an important limitation of IPP codes

is that the size of the alphabet severely limits their collusion-resistant properties, as

stated in the following lemma.

Lemma 2.10 ([28]). Suppose C is a q-ary (n,M)-code and n− 1 ≥ c ≥ q− 1. Then

C is not a c-IPP code.

The algorithms used to embed marks in content have a worse performance as the

size of the code alphabet grows. Also, since we are mainly interested in the distri-

bution of digital contents, the case of binary alphabets is of high interest. However

the previous lemma sadly states that there are no c-IPP (or c-TA) codes over binary

alphabets.

Finally, observe that the code C = {(1, . . . , 1), . . . , (q, . . . , q)} over the alphabet

Q = {1, . . . , q} is a trivial c-IPP code regardless of its length. A c-IPP code of size

M over a q-ary alphabet is nontrivial if M > max{c, q}.

2.2 Nonzero-Error Fingerprinting

The use of IPP codes poses severe limitations in a fingerprinting setting: the size of

the code alphabet is lower bounded by the coalition size, and the setting is restricted

to the narrow-sense envelope model. These two limitations can be overcome if we
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allow some error in the identification process. Moreover, a single deterministic code

is not enough to achieve arbitrarily small decline in the identification error [13, 14],

and some “randomness” over a family of (fingerprinting) codes is required.

Definition 2.11. A family of q-ary (n,M)-codes is an indexed set, denoted C =

{Ct}t∈T , where each Ct is a q-ary (n,M)-code, and T is a finite set of elements called

keys. The rate of the family is defined as

R(C) def
= n−1 logqM.

To use a family of codes C = {Ct}t∈T the distributor chooses a code Ct ∈ C with

probability π(t). The family C and the pmf π are publicly known, but the specific code

Ct used by the distributor is kept secret. It is usual to assume that π(t) = |T |−1 for

all t ∈ T , and unless otherwise stated in this work, this will be the default probability

distribution in the analysis of the families of fingerprinting codes constructed. The

result of this random experiment is sometimes called a randomized code. Now, the

fingerprints assigned to the users correspond to the codewords of the selected code.

By an abuse of language, often is called “an identification algorithm for the family of

codes” what is in fact a collection of identification algorithms A = {At}t∈T ,

At : Ec(Ct)→ Ct ∪ {?}, t ∈ T.

Upon receiving a pirated word the distributor selects the appropriate algorithm At

to perform the identification of traitors.

Let C = {Ct}t∈T be a family of codes and let π be a pmf on T . Moreover, let

A = {At}t∈T be the corresponding set of identification algorithms. Since each code Ct

has size M , this is the maximum number of users that the distributor can allocate. Let

us number these users arbitrarily from 1 to M , and let Ct(i) denote the corresponding

codeword from Ct assigned by the distributor to the ith user. Similarly, for a group

of users of indices X ⊆ {1, . . . ,M}, let Ct(X) denote the set of assigned codewords

from Ct. If code Ct has been chosen and the pirated word z is observed, then the

distributor will accuse the user corresponding to codeword At(z).
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Let X be a group of, at most, c users and let their set of codewords be Ct(X).

Following the discussion from [15], their strategy can be modeled, in the most general

way, by the pmf

fX(z|Ct(X))
def
= Pr{coalition of users X produces pirated word z,

given that they observe codewords Ct(X)}.

Obviously, if E is the envelope model under consideration, we have fX(z|Ct(X)) = 0

when z 6∈ E(Ct(X)).

On the other hand, the most general decision rule for the distributor can be

modeled with the pmf

fdist(i|z; t)
def
= Pr{Ct(At(z)) = i},

that is, the probability that the ith user is returned by the identification algorithm

At given that code Ct was chosen and pirated word z was observed.

Then, the error probability of the distributor in identifying a member of X under

this envelope model can be expressed as

pe(X, fX)
def
= Eπ

[∑
i 6∈X

∑
z∈E(Ct(X))

fdist(i|z; t) · fX(z|Ct(X))
]
,

where Eπ[ ] denotes the expectation with respect the pmf π.

It is a natural assumption that the coalition of users X is interested in designing

a strategy fX such that this error probability is maximized. This fact motivates the

following definition.

Definition 2.12. Let C = {Ct}t∈T be a family of (n,M)-codes with pmf π on T ,

equipped with a set of identification algorithms A = {At}t∈T modeled by the decision

rules with pmf fdist. We say that the family C is c-secure with ε-error under envelope

model E if

pe(E ; C, T, π, fdist)
def
= max

X:|X|≤c
max
fX

pe(X, fX) ≤ ε. (2.8)
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Note that the error probability (2.8) depends on the choice of the family C, the

pmf’s fdist and π, and, if the number of keys (codes in the family C) is unrestricted,

also from the set T . It is assumed that the distributor chooses these parameters in

order to minimize this error probability. Hence, for a given envelope model E , we

define

pe(E ;n,M, c)
def
= min
C,T,π,fdist

pe(E ; C, T, π, fdist), (2.9)

where the minimization is understood over all families of q-ary (n,M)-codes and

collusion attacks carried out by groups of ≤ c traitors.

The general fingerprinting problem consists in finding pe(E ;n,M, c), codes and

identification algorithms achieving this error probability. For a more detailed exposi-

tion, see [15].

Some important conclusions about the fingerprinting problem are also discussed

in [15]. Even though in the design of a fingerprinting scheme the associated error

probability (2.9) highly depends on the envelope model that is considered, some

equivalences are identified. For example, for binary codes, the error probability takes

the same value, regardless of the specific envelope model considered. On the other

hand, for q-ary codes, (2.9) coincides in the wide-sense and expanded wide-sense

envelope models. Moreover, for a desired error probability ε, it is also shown that

|T | ≥ 1

(c+ 1)ε
.

This means that for a family of codes to achieve exponential decline of the error

probability ε, the number of codes in the family must grow exponentially with the

code length.

2.2.1 Optimal Codes

In practical settings, one of the main concerns of the distributor is to obtain families of

fingerprinting codes of maximal rate, i.e., families of codes that allocate the maximum

number of users for a given code length n and error probability ε. Equivalently, the

problem can be restated to obtaining families of codes with the shortest possible length
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for a given number of users to allocate M and error probability ε. In connection with

this problem, a figure of high theoretical value is the asymptotical rate of a family of

codes.

Let (Ci)i≥1 be a sequence of families of q-ary codes of growing length ni, where

each family Ci is c-secure with εi-error. We say that R is an asymptotically achievable

c-fingerprinting rate if there exists such a sequence with

lim
i→∞

εi = 0, and lim inf
i→∞

R(Ci) = R.

We denote by Rfing
q (c) the maximal possible asymptotically achievable c-fingerprinting

rate among all the sequences of families of q-ary codes. This figure is sometimes called

the q-ary c-fingerprinting capacity.

Some important values of the q-ary c-fingerprinting capacity are known. For

example, from [32] we have 0.25 ≤ Rfing
2 (2) ≤ 0.322 and 0.083 ≤ Rfing

2 (3) ≤ 0.199.

Also, from [18,32], we have O(1/t2) ≤ Rfing
q (c) ≤ O(1/t).

2.3 Code Concatenation

Frequently, codes with the IPP or the TA property are used as outer codes in concate-

nated fingerprinting constructions [13, 14, 15], and in traitor-tracing schemes [29, 30].

This connection was also pointed out in the seminal paper by Boneh and Shaw [13,14].

As an example, we can consider pay-TV systems, where each authorized user is given

a set of keys that allows him to decrypt the content. These keys are usually con-

tained in a decoder box. This particular case is clearly restricted to the narrow-sense

envelope model, since in a collusion attack, the traitors combine some of their keys

to construct a pirated decoder. In each position, the pirated word must contain one

of the colluding traitors keys, otherwise, the pirated receiver will not be capable of

decoding the TV signal. Again, when a pirated decoder is found, a traitor-tracing

scheme allows the distributor to identify at least one of the guilty users, using the

keys inside the decoder.
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As said above, in the binary case the identification process will always be subject

to a certain error probability. To construct practical binary fingerprinting codes many

authors [13, 14,15,33] have used the idea of code concatenation [34].

Construction 2.13. Let Cout be an (n,M)-code over a q-ary alphabet Q, and let

Cin be a binary (l, q)-code. Also, let φ denote a bijective mapping φ : Q → Cin

Then, the concatenated code C is the code obtained by considering each codeword

u = (u1, . . . , un) ∈ Cout and mapping every symbol ui ∈ Q to a codeword φ(ui) ∈ Cin,

C = {(φ(u1), . . . , φ(un)) : u ∈ Cout}.

The code Cout is called the outer code and Cin the inner code. The resulting code C

is a binary (n l,M)-code with rate R(C) = R(Cin)R(Cout).

Remark 2.14. Given n vectors v1, . . . ,vn ∈ Fl2, the notation (v1, . . . ,vn) above is a

shorthand for the vector (v11, . . . , v1l, . . . , vn1, . . . vnl) ∈ Fnl2 .

We will usually deal with concatenation of codes where the outer code used in the

construction is a linear code. Often, we will use Reed-Solomon or algebraic-geometric

codes, which allows us to benefit from list decoding.

According to the discussion leading to Definition 2.12, a deterministic code is not

sufficient, and some randomness over a family of codes is required. Code concatena-

tion is a technique that has been used to obtain c-secure with ε-error families of codes

with error probability decreasing exponentially with the code length, and equipped

with efficient identification algorithms. See for example [13,14,15].

2.4 The Chernoff and Hoeffding Inequalities

We will have several occasions to use the following well-known results. Let X1, . . . , Xn

be n independent indicator r.v.’s, i.e., taking on values in {0, 1}. Also, let X =
∑n

1 Xi

and p = E[n−1X]. That is, X counts the number of successes in n trials with average

probability of success p. Then, the probabilities of the tails can be bounded as

Pr{n−1X ≥ p+ δ}
(a)

≤ 2−nD(p+δ‖p)
(b)

≤ e−2nδ2 , for δ > 0, (2.10)
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and

Pr{n−1X ≤ p− δ}
(a)

≤ 2−nD(p−δ‖p)
(b)

≤ e−2nδ2 , for 0 < δ < p, (2.11)

where D(x‖y) denotes the Kullback-Leibler divergence between two Bernoulli dis-

tributed r.v.’s of parameters x and y, respectively,

D(x‖y)
def
= x log2(x/y) + (1− x) log2((1− x)/(1− y)).

Inequalities (a) in (2.10) and (2.11) are known as the Chernoff bounds, and inequal-

ities (b) are a special case of the Hoeffding bounds [35]. Observe that D(x‖y) ≥ 0

and D(x‖y) = 0 if and only if x = y.

Remark 2.15. Obviously, the bound (2.10) holds for p′ ≤ p, and both (2.10) and

(2.11) hold when X is a binomial r.v. of parameters n and p.



Chapter 3

Applications of Soft-Decision

Decoding to Identify Traitors

The result of a collusion attack can be viewed as a “transmission through a noisy

channel.” In this case, the pirated word is a corrupted version of the traitor codewords.

Intuitively, to identify some traitor, one has to “correct” a large number of errors.

In [36,37] Silverberg, Staddon and Walker apply techniques that correct errors beyond

the error-correction bound of the code to the identification process in IPP and TA

codes.

The idea of correcting errors beyond the correcting capabilities of the code can

be summarized as follows. In a code with minimum distance d, if in the transmission

of a codeword the number of errors e is greater than
⌊
d−1

2

⌋
, then there can be more

than one codeword within distance e from the received word. The decoder may

either decode it incorrectly or fail to decode it. This leads to the concept of list

decoding [38,39], where the decoder outputs a list of all codewords within distance e >⌊
d−1

2

⌋
of the received word, thus offering a potential way to recover from errors beyond

the error-correction bound of the code. Although the concept of list decoding was

proposed in the 1950’s, for the case of Reed-Solomon codes no polynomial-time list-

decoding algorithms were obtained until the breakthrough work presented by Sudan

in 1997 [40]. For codes of rate greater than 1/3, the output list in the original work

23
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of Sudan has size 1. However, Guruswami and Sudan overcome the rate limitation in

another milestone paper [41,42].

In soft-decision decoding, the input to the decoder is a reliability matrix that

indicates, for each position, the probability that a given symbol from the alphabet

was sent. Using this side information, the soft-decision decoder estimates the sent

codeword. Building from the results of Guruswami and Sudan, in [43,44] Kötter and

Vardy present a polynomial-time soft-decision decoding algorithm for Reed-Solomon

codes. This list-decoding algorithm is algebraic in nature and significantly outper-

forms both the Guruswami-Sudan decoding and the generalized minimum-distance

decoding of Reed-Solomon codes.

In this chapter we discuss the application of the Kötter-Vardy soft-decision de-

coding algorithm for the identification process in TA codes, IPP codes and binary

concatenated fingerprinting codes. The TA Tracing Algorithm consists in searching

for a list of at most c codewords that contains parents of a given descendant. On

the other hand, the IPP Tracing Algorithm consists in finding all coalitions of size

at most c that can generate a given descendant. Finally, we deal with c-secure with

ε-error families of binary codes. In this case, the construction that we discuss is based

on code concatenation and the identification algorithm consists in searching for the

codewords that can be identified with probability at least 1− ε as parents of a given

descendant. In all three cases, we take full advantage of the possibility of having as

input a reliability matrix by making the Kötter-Vardy algorithm the core part of the

identification process.

As said before, in [36, 37] the authors use the Guruswami-Sudan list-decoding

algorithm in the TA and IPP Tracing Algorithms. However, in the case of the TA

Tracing Algorithm their approach is only optimal when all parents (traitors) con-

tribute equally to the construction of the pirated, and there is no guarantee to find

more than one parent. In case of the IPP Tracing Algorithm, in order to find all

coalitions that can generate a given pirated, they have to puncture the code.

In the TA Tracing Algorithm, we show how, by setting up the entries of the

reliability matrix with appropriate values, traitors can be identified in polynomial

time in the code length. For algebraic-geometric codes, a similar approach is made



3.1. Reed-Solomon Codes and Soft-Decision Decoding 25

in [45]. For the TA Tracing Algorithm, we also discuss an upper bound on the

interpolation cost of the Kötter-Vardy algorithm.

In the case of the IPP Tracing Algorithm we present a straightforward algorithm

that finds all coalitions capable of creating a given descendant. We discuss how,

thanks to the Kötter-Vardy algorithm, the results in [36, 37] can be extensively im-

proved.

To improve the rate of binary fingerprinting codes, many constructions [13,14,15]

have used code concatenation [34], where the inner code is a binary code with some

error probability ε. When the outer code is a Reed-Solomon code, we discuss generic

constructions of such codes, equipped with an identification routine that uses the

Kötter-Vardy algorithm. In this case, we will show that even a suboptimal setting of

the entries of the Kötter-Vardy algorithm suffices for our purposes.

3.1 Reed-Solomon Codes and Soft-Decision Decod-

ing

Reed-Solomon codes are a well-known class of linear codes [46,47] that are used in a

broad range of applications, ranging from CD encoding to satellite communications.

They can be defined as follows.

Definition 3.1. Let γ be a primitive element of Fq. The [n, k]-Reed-Solomon code

over Fq, of length n = q − 1 and dimension k, is defined as the following vector

subspace of Fnq

{(f(γ1), . . . , f(γn)) : f(x) ∈ Fq[x], deg f(x) < k}.

Reed-Solomon codes are maximum distance separable (MDS) codes, since they

meet the Singleton bound [48], and hence the [n, k]-Reed-Solomon code has minimum

distance d = n− k + 1.

In this chapter, we will have occasion to develop some techniques that will work

not only for the narrow-sense envelope model, but also for a model closely related
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to the expanded narrow-sense envelope model from Definition 2.2, namely when no

more than a threshold of erasures are allowed. In connection with this model, in [49]

c-TA codes from Definition 2.9 are extended for the case of erasure tolerance.

Definition 3.2 ([49]). A code C is a c-TA code tolerating s erasures if for all subsets

U ⊆ C of size at most c, if z ∈ desc∗(U) with no more than s erasures, then there

exists a u ∈ U such that d(z,u) < d(z,w) for all w ∈ C \ U .

Also, the following result is a natural extension of (2.6) under the definition given

above.

Theorem 3.3 ([49]). Let C be an [n, k]-code. If d(C) > n(1− 1/c2) + s/c2, then C

is a c-TA code tolerating s erasures.

From (2.7), a c-TA code is a c-IPP code. In general, the converse is false. However,

it is conjectured that the converse is true for Reed-Solomon codes [36, 37]. We will

elaborate more on this topic in Chapter 6.

Recall that, for a code with minimum distance d, if the number of errors e is

greater than
⌊
d−1

2

⌋
, then there can be more than one codeword within distance e

from the received word. In this situation, a list-decoding algorithm [38, 39, 41, 42,

43, 44] outputs a list of all codewords within distance e of the received word. In

soft-decision decoding, the decoding process takes advantage of “side information,”

generated by the receiver and instead of using the received word symbols, the decoder

uses probabilistic reliability information about these received symbols.

Before giving an overview of the Kötter-Vardy soft-decision decoding algorithm,

let us introduce some concepts that will be useful below. For a detailed description

see [43,44].

A discrete memoryless channel can be defined as two finite alphabets X and Y ,

called the input alphabet and output alphabet, respectively, and |X | conditional pmf

functions

f(y|x) for all x ∈ X ,

where y ∈ Y . We suppose that these pmf’s are known to the decoder.
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If we see the input and the output of a discrete memoryless channel as r.v.’s X

and Y , respectively, and we suppose that X is uniformly distributed over X , then the

decoder can compute the probability that αi ∈ X was the transmitted symbol given

that βj ∈ Y was observed as

Pr{X = αi|Y = βj} =
f(βj|αi)∑
x∈X f(βj|x)

. (3.1)

For the case of Reed-Solomon codes, where the input alphabet is X = Fq, we

take α1, α2, . . . , αq as the ordering of the elements of Fq. If vector β = (β1, . . . , βn) is

received, then using (3.1) the following values can be computed:

rij
def
= Pr{X = αi|Y = βj}. (3.2)

These values are the entries of a stochastic q-by-n matrix R, called the reliability

matrix, which is the input of the Kötter-Vardy algorithm. This matrix is then trans-

formed into a q-by-n multiplicity matrix M, used in the subsequent steps of the

algorithm.

We are interested in knowing what codewords the Kötter-Vardy algorithm (Al-

gorithm 3.1) will return. With this aim, given two q-by-n matrices A = (aij) and

B = (bij) over the same field, the following product is defined:

〈A,B〉 def
= trace(ABT ) =

q∑
i=1

n∑
j=1

aijbij. (3.3)

Moreover, a word u = (u1, . . . , un) over Fq can be represented by an q-by-n matrix

[u] = ([u]ij). The entries [u]ij are defined as follows:

[u]ij
def
=

1 if uj = αi,

0 otherwise.

Algorithm 3.1 briefly outlines the Kötter-Vardy algorithm. For a detailed descrip-

tion, see [43,44]. The algorithm makes use of the following notion.
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Algorithm 3.1 The Kötter-Vardy soft-decision decoding algorithm

Initial ordering of the elements of Fq: α1, α2, . . . , αq.

Input: An [n, k]-Reed-Solomon code C over Fq and a q-by-n reliability matrix R.

Output: A subset of codewords of C.

KV[C,R]:

1) Using a multiplicity-assignment algorithm, transform the reliability matrix R,

into nonnegative q-by-n matrix of integers M, called multiplicity matrix, so

that M maximizes the expectation of 〈M, [u]〉, where u is the transmitted

codeword.

2) Interpolation step: From the multiplicity matrixM = (mij), compute a bivari-

ate polynomial Q(x, y) with minimum (1, k − 1)-weighted degree such that for

every nonzero mij it has a zero at the point (γj, αi) of multiplicity at least mij.

Here, γj is the evaluation point of the Reed-Solomon code at the jth position.

3) Factorization step: Find all the univariate polynomials f(x) such that (y−f(x))

divide Q(x, y). The output of the algorithm are the codewords generated by

every such f(x).
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Definition 3.4. Let Q(x, y) =
∑

ij qijx
iyj be a bivariate polynomial in Fq[x, y]. The

(wx, wy)-weighted degree of Q(x, y) is defined as

max{wxi+ wyj : qij 6= 0}.

It is worth noting here that in the interpolation step each interpolation point mij

imposes a set of mij(mij + 1)/2 linear constraints on the construction of Q(x, y).

Hence, for a given multiplicity matrix M = (mij), the total number of linear con-

straints, denoted cost(M), imposed on the interpolation polynomial Q(x, y) is

cost(M)
def
=

1

2

q∑
i=1

n∑
j=1

mij(mij + 1). (3.4)

This value is referred in the literature as the interpolation cost, since it has a direct

impact in both the outcome and the runtime of the interpolation process.

In [44] Kötter and Vardy state the following theorem.

Theorem 3.5 ([44]). Let C be an [n, k]-Reed-Solomon code, and let α1, α2, . . . , αq

be an ordering of the elements of Fq. If the codeword u ∈ C is transmitted, and the

word v = (v1, . . . , vn) is received and the reliability matrix R = (rij) is constructed

according to (3.2),

rij = Pr{X = αi|Y = vj},

then the Kötter-Vardy soft-decision decoding algorithm outputs a list that contains

the transmitted codeword u if

〈R, [u]〉√
〈R,R〉

≥
√
k − 1 + o(1), (3.5)

where o(1) is a function that tends to zero when the number of interpolation points

counted with multiplicities (and hence, the interpolation cost) is taken to infinity.
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3.1.1 Performance of the Kötter-Vardy Algorithm for the q-

ary Symmetric Channel

The performance of the Kötter-Vardy algorithm can be improved for certain channels

including the q-ary symmetric erasure channel.

A q-ary symmetric erasure channel with error probability ξ, erasure probability

δ, input alphabet X = Fq and output alphabet Y = Fq ∪ {∗}, can be characterized

as an |X |-by-|Y| transition probability matrix WY |X . If the rows are indexed by X ,

and the columns by Y , then the transition probability matrix WY |X has the following

expression:

WY |X(x, y) =


δ if y = ∗,

(1− δ)(1− ξ) if y = x,

(1− δ) ξ

q − 1
otherwise.

To construct the reliability matrix R, suppose that codeword u is transmitted and

word v is received. For this particular channel we have

R = (1− ξ)[v] +
ξ

q − 1
(1− [v]),

where, in this case, [v] is the q-by-n matrix defined as

[v]ij
def
=


1/q if vj = ∗,

1 if vj = αi,

0 otherwise,

and 1 denotes the q-by-n all-one matrix.

If we suppose that n−m erasures and m−l errors occurred during the transmission

(i.e., l correct symbols received), then, using the matrix product defined in (3.3) and

Theorem 3.5, the Kötter-Vardy algorithm will output codeword u if

l(1− ξ) + (m− l) ξ
q−1

+ n−m
q√

m(1− ξ)2 +m ξ2

q−1
+ n−m

q

>
√
k − 1. (3.6)
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Below we will need to maximize the number of errors that the Kötter-Vardy

algorithm can correct. To make matters worse, in the settings in which we will use

the Kötter-Vardy algorithm the channel parameter ξ will be unknown. This is due

to the fact that ξ will depend on the strategy of a coalition of traitors performing a

collusion attack. Therefore, given the code parameters, we are free to choose the value

of ξ and it is clearly convenient to choose the one that maximizes the left-hand side

of (3.6). According to [50], intuitively, this corresponds to maximizing the left-hand

side of (3.6) with respect to the worst channel that the Kötter-Vardy algorithm can

still handle for a given code rate. This value is

ξ =
m− l
m

. (3.7)

For this value of ξ, equation (3.6) remains valid and it reduces to

l2

m
+

(m− l)2

m(q − 1)
+
n−m
q

> k − 1. (3.8)

This means that if upon receiving a word v, with n−m symbols erased, then for every

value of l that satisfies (3.8) the Kötter-Vardy algorithm will output the transmitted

codeword u. Therefore the algorithm can handle n−m erasures and m− l errors.

3.2 The TA Tracing Algorithm

In this section we focus on the identification process of TA Reed-Solomon codes using

the Kötter-Vardy algorithm.

For a c-TA Reed-Solomon code tolerating s erasures, the goal of the TA Tracing

Algorithm is to output a list of size at most c that contains as many parents of a

given descendant as possible. One cannot expect to find all parents, since some of

them may contribute with too few positions and cannot be identified. This happens,

for example, when a parent contributes with no more than k − 1 positions.

We begin with the following proposition.
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Proposition 3.6. Let C be a c-TA (n,M)-code with minimum distance d = d(C)

tolerating s erasures, and let z ∈ desc∗c(C) be a descendant of some coalition of size

at most c. If a codeword u ∈ C agrees in at least c(n−d) + 1 unerased positions with

z, then u belongs to all coalitions of size at most c that are able to generate z:

u ∈
⋂

U⊆C,|U |≤c,
s.t. z∈desc∗(U)

U.

Proof. If the code C has minimum distance d, then two codewords can agree in at

most n− d positions. Therefore a coalition of size c is able to create a descendant z

that agrees in at most c(n−d) positions with any other codeword outside the coalition.

Hence, if there exists a codeword u that agrees with z in at least c(n−d)+1 positions,

then this codeword must be unique. Therefore u belongs to all coalitions of size at

most c that are able to create z.

Corollary 3.7. Let C be a c-TA (n,M)-code with minimum distance d = d(C)

tolerating s erasures, and let z ∈ desc∗c(C) be a descendant of some coalition of size

at most c. Furthermore, assume that z has at most s positions erased. Let u1, . . . ,uj

be j < c already identified parents that lie in the intersection of all coalitions of size

at most c that are able to create z:

ui ∈
⋂

U⊆C,|U |≤c,
s.t. z∈desc∗(U)

U, for all 1 ≤ i ≤ j.

If these j parents jointly match less than n− s− (c− j)(n− d) positions of z, then

any codeword u 6= u1, . . . ,uj that agrees with z in at least (c− j)(n− d) + 1 of the

yet unmatched positions also lies in the intersection.

The previous corollary motivates the following definition.

Definition 3.8. Let C be a c-TA code tolerating s erasures and let z ∈ desc∗c(C)

be a descendant of some coalition of size at most c. We call the set of codewords

satisfying the conditions of Proposition 3.6 and Corollary 3.7 the set of TA-parents

of z, denoted PTA(z).
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Algorithm 3.2 TA Tracing Algorithm

Initial ordering of the elements of Fq: α1, α2, . . . , αq.

Input:
– c: maximum size of the coalition,
– s: maximum number of erased positions,
– C: an [n, k]-Reed-Solomon code with minimum distance d > n(1−1/c2)+s/c2,
– z: a descendant in desc∗c(C) with ≤ s positions erased.

Output: A list of all TA-parents of z, PTA(z).

TA[c, s, C, z]:

1) Initially set

i := 1, ci := c, Si := {t : zt = ∗}, L := ∅.

2) Compute the q-by-n reliability matrix

R := (1− ξ)[z] +
ξ

q − 1
(1− [z]),

where, for 1 ≤ a ≤ q and 1 ≤ b ≤ n,

[z]a,b :=


1/q if b ∈ Si,
1 if b 6∈ Si and zb = αa,

0 otherwise,

using the error parameter ξ := n−|Si|−l
n−|Si| , with

l := max

{
ci(n− d) + 1,

⌈
n− |Si|
ci

⌉}
.

3) Plug the matrix R into the Kötter-Vardy algorithm and, from the output list,
take the set Λ = {u1, . . . ,uj} of all codewords that agree with z in, at least,
ci(n− d) + 1 positions not in Si. Set L := L ∪ Λ.

4) Set
i := i+ 1,
ci := ci−1 − j,
Si := {t : zt = ∗} ∪ {t : zt = ut for some u ∈ L}.

5) If j = 0 or if ci = 0 or if |Si| ≥ n − ci(n − d), output L and quit. Else go to
Step 2).
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Based on the Kötter-Vardy algorithm, the key idea of the TA Tracing Algorithm

(Algorithm 3.2) is described in Corollary 3.7. Given a c-TA Reed-Solomon code tol-

erating s erasures, and given a descendant z ∈ desc∗c(C), there is no side information

available. Hence, in the first iteration, the Kötter-Vardy algorithm is executed, con-

structing the reliability matrix as if the channel were a q-ary erasure channel. The

error parameter is computed according to (3.6) and (3.7). When some TA-parents

are identified, their matching positions with the descendant z are treated as erased

positions. Again, the reliability matrix and the error parameter are computed, now

considering the minimum number of positions where a TA-parent and the descendant

must agree to be declared a positive TA parent, and the Kötter-Vardy algorithm

is executed. The process continues until it becomes clear that there are no more

TA-parents.

3.2.1 Correctness of the Algorithm

As mentioned above, we construct the reliability matrix as if the channel were a q-ary

symmetric erasure channel. This type of channel is memoryless by definition. Unfor-

tunately, in their attack, the traitors are free to use any strategy of their choice. In

particular, they can compute an output symbol based on the entire set of detected

symbols. For instance, equal contribution of symbols from each traitor to the de-

scendant can be seen as a strategy with memory. Nevertheless, even if memory is

used by the traitors, once a descendant has been created, the positions in which this

descendant and a TA-parent disagree can be treated as “errors in the transmission.”

In the rest of this section, we show that ignoring the ability of the traitors to use

memory is completely safe for our purposes.

Initially, the “errors in the transmission” are the number of unerased positions

where a TA-parent and the descendant differ. Moreover, the set of “erased positions”

S1 contains the s positions that have been erased from the descendant. Since the

minimum distance of the [n, k]-Reed-Solomon code is d > n(1 − 1/c2) + s/c2, and

k − 1 = n− d, one can check from (3.6) that L is not empty after the first iteration.

This is because one TA-parent matches the descendant in at least m/c positions. In
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iteration i > 1 the set of erased positions is virtually augmented with the positions

where the descendant coincides with some previously identified TA-parent. Note that

in this iteration no TA-parent will be identified if |Si| ≥ n− ci(n− d), and also note

that, at least, one TA-parent will be identified if |Si| < n − c2
i (n − d). This leaves

open an uncertainty interval,

n− c2
i (n− d) ≤ |Si| < n− ci(n− d),

where the algorithm will output a codeword whenever its contribution satisfies the

condition of Corollary 3.7. Note also that, within the uncertainty interval, the TA

Tracing Algorithm executes the Kötter-Vardy algorithm with l ≥ ci(n − d) + 1 and

hence, the decoding radius satisfies the condition of Corollary 3.7.

Lemma 3.9. The TA Tracing Algorithm identifies all TA-parents of a given descen-

dant.

Proof. We have to show that no TA-parent remains unidentified when the algorithm

reaches a terminating condition. From Step 5) it is clear that the algorithm terminates

in one of the following three cases: when j = 0, or ci = 0 or |Si| ≥ n− ci(n− d).

If ci = 0, then we have |L| = c. This means that there are no unidentified

TA-parents.

If |Si| ≥ n−ci(n−d), then by Corollary 3.7 there cannot be any other TA-parent.

Now, it is only left to show that if in iteration i there are still unidentified TA-

parents, then at least one of them will appear in the output list of the Kötter-Vardy

algorithm. In other words, we will have that j > 0. Following the notation of

Section 3.1.1, we denote by mi = n − |Si| the number of “unerased positions” in

iteration i, and by l the number of “correct positions,” i.e., the number of unerased

positions where a TA-parent and the descendant agree. In iteration i there can be

at most ci = c − i + 1 unidentified parents. We first suppose that mi ≤ c2
i (n − d).

A TA-parent is a codeword that coincides with the descendant in l ≥ ci(n − d) + 1

unerased positions. For every TA-parent we have

l2

mi

≥ (ci(n− d) + 1)2

c2
i (n− d)

> k − 1 +
1

ci
.
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It follows that (3.8) is satisfied and, as a consequence, all TA-parents are returned by

the Kötter-Vardy algorithm and can be identified. Now, suppose that the number of

unerased positions is mi > c2
i (n− d). In this case, there exists a TA-parent such that

l > mi/ci. For this particular TA-parent, we have l2/mi > mi/c
2
i > k − 1. Again, it

follows that (3.8) is satisfied and therefore this TA-parent is identified.

3.2.2 Bounding the Interpolation Cost

In the TA Tracing Algorithm above, we have focused on the setup of the reliability

matrix without taking into account the insights of the Kötter-Vardy algorithm. We

have shown that all TA-parents can be identified, but at the expense of a very large

and undetermined cost. In this section, we propose how to bound the interpolation

cost for a practical execution of the Kötter-Vardy algorithm, ensuring that the set of

TA-parents are still contained in the output list.

The condition for successful identification in the TA Tracing Algorithm is based on

Theorem 3.5. Equation (3.5) implies an asymptotic performance of the Kötter-Vardy

algorithm, so we have not been paying any attention to the cost of the algorithm. To

introduce the cost into the discussion, we recall from Section 3.1 that the interpolation

cost is the total number of linear restrictions imposed on the interpolation polynomial,

computed according to (3.4).

Suppose that codeword u is a TA-parent. Then, according to [44], the Kötter-

Vardy algorithm will return a list of codewords that contains u if the computed

multiplicity matrix M satisfies

〈M, [u]〉 ≥
√

2(k − 1) cost(M), (3.9)

which for asymptotically large costs is reduced to (3.5). The multiplicity matrix M
is obtained from R using a multiplicity-assignment scheme that, for every real value

λ, allows to express M = bλRc. We take advantage of this expression to obtain a

bound for which (3.9) is satisfied.
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Assuming that we construct the multiplicity matrix as M = bλRc, being u a

TA-parent in iteration i of the TA Tracing Algorithm, the left-hand side of (3.9) is⌊
λ

q

⌋
|Si|+ bλ(1− ξ)cl +

⌊
λξ

q − 1

⌋
(n− |Si| − l), (3.10)

and the interpolation cost is

cost(M) = q|Si|
(bλ/qc+1

2

)
+ (n− |Si|)

[(bλ(1−ξ)c+1
2

)
+ (q − 1)

(bλξ/(q−1)c+1
2

)]
, (3.11)

which, for reasonable values of the code parameters, is always upper bounded as

cost(M) ≤ 3(n− |Si|)
(
bλ(1− ξ)c+ 1

2

)
. (3.12)

Since the cost is an increasing function of λ, we are interested in finding the

minimum value of λ such that (3.9) is satisfied. This is equivalent to define the

function

f(λ)
def
= 〈bλRc, [u]〉2 − 2(k − 1) cost(M) (3.13)

and find a bound λ′ such that f(λ) ≥ 0 for any λ ≥ λ′. One can always determine

such λ′ by direct search. Note that we only have to test the values of λ that change

the values of the floor functions of f(λ). Such values are of the form

∑
k∈Z

b1,b2,b3∈{0,1}

kqb1
(

1

1− ξ

)b2 (q − 1

ξ

)b3
.

A more straightforward approach to determine a bound for λ′ is presented in the

following lemma.

Lemma 3.10. Let g(λ) be the degree-2 polynomial constructed as

g(λ) = A2 − 2(k − 1)B,



38 3. Applications of Soft-Decision Decoding to Identify Traitors

where A is the expression obtained by substituting the floor functions bxc by x − 1

in (3.10) and B is the expression obtained by substituting the floor functions bxc by

x in (3.11), and let {λ1, λ2} be the set of roots of g(λ). Then λ′ ≤ max{λ1, λ2}.

Proof. Note that g(λ) is a degree-2 polynomial lower bound of the function f(λ)

defined in (3.13), with positive leading coefficient. Therefore, its largest root must

occur beyond the point where f(λ) becomes positive.

Hence, the cost of the interpolation process to find a TA-parent in the TA Tracing

Algorithm is upper bounded by (3.12) substituting λ by the maximum root of the

polynomial defined in Lemma 3.10. Note that the TA Tracing Algorithm loops at

most c times. Therefore, the overall interpolation cost of the algorithm can be upper

bounded by

cost(M) ≤ 3

2
c(n− |S|)λ(λ+ 1), (3.14)

taking the value of λ from Lemma 3.10. In other words, all TA-parents will be

identified with a total interpolation cost given by (3.14), and one cannot expect to

identify more TA-parents even allowing the instances of the Kötter-Vardy algorithm

run with a global interpolation cost higher than that.

3.3 The IPP Tracing Algorithm

In this section, we focus on the use of the Kötter-Vardy algorithm as the underlying

routine for the IPP identification process in Reed-Solomon codes.

From Definition 2.8, in a c-IPP code all coalitions of size at most c that are able to

generate a given descendant have a non-empty intersection. Clearly, the codewords

that lie in the intersection are the only ones that can be accused with certainty as

traitors.

Definition 3.11. Let C be a c-IPP code and let z ∈ descc(C) be a descendant of

some coalition of size at most c. We define the set of IPP-parents of z, denoted by

PIPP(z), as the set of codewords of C that belong to all coalitions of size at most c
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that are able to generate z:

PIPP(z)
def
=

⋂
U⊆C,|U |≤c,

s.t. z∈desc(U)

U.

The proof of next lemma is immediate from the definitions.

Lemma 3.12. Let C be a c-TA code and let z ∈ descc(C) be a descendant of some

coalition of size at most c. Then PTA(z) ⊆ PIPP(z).

Therefore, determining the set of c-IPP parents of a c-IPP code consists in search-

ing for coalitions of size at most c. If the code has M codewords, this task has a

runtime complexity of O
(
M
c

)
. Below we discuss an identification algorithm for c-IPP

Reed-Solomon codes based on list decoding.

As mentioned in Section 3.1 the characterization of c-IPP Reed-Solomon codes

is not clear. Fortunately, using the proven fact that any c-TA code is a c-IPP code,

a Reed-Solomon code that satisfies the distance condition (2.6) will suffice for our

purposes. Note also that, for any c-IPP code, there is more than one coalition that

can generate a given descendant z only if |PIPP(z)| < c.

Before discussing the IPP Tracing Algorithm (Algorithm 3.3) at length, we first

give some intuition. The algorithm that we present is recursive in nature. It receives

as its input a list of codewords L that (partially) “cover” z. Then, for this received

input list, the algorithm looks for an appropriate set of candidate codewords that

cover positions not already covered by the codewords in L. For each one of these

candidates u, the algorithm executes recursively, now using L ∪ {u} as its input list.

Clearly, this process eventually returns all coalitions that can generate z if a list that

contains a subset of the IPP-parents is given in the initial call of the algorithm. This

can be accomplished according to Lemma 3.12 by using, for example, the TA Tracing

Algorithm discussed in Section 3.2.

Also, as opposed to the case of the TA Tracing Algorithm, list decoding cannot

offer a total solution to the IPP identification problem. This is immediate to see by the

following simple example. Take a 2-IPP [n, k]-Reed-Solomon code. If a descendant z

contains n−1 symbols from a given parent, say u, then there are qk−1 possibilities for



40 3. Applications of Soft-Decision Decoding to Identify Traitors

Algorithm 3.3 IPP Tracing Algorithm
Initial ordering of the elements of Fq: α1, α2, . . . , αq.
A global variable L is needed. Initially set L = ∅.
The initial call needs to be with L := TA[c, 0, C, z].

Input:
– c: maximum size of the coalition,
– C: an [n, k]-Reed-Solomon code with minimum distance d > n(1− 1/c2),
– z: a descendant in descc(C),
– L: a (partial) list of parents of z.

Output: The set L of all coalitions L ⊆ C with |L| ≤ c such that z ∈ desc(L).

IPP[c, C, z, L]:

1) S := {t : zt = vt for some u ∈ L}.

– If |S| = n, then set L := L ∪ {L} and quit.
– If |S| < n and |L| = c, then quit.

2) Compute the q-by-n reliability matrix

R := (1− ξ)[z] +
ξ

q − 1
(1− [z]),

where, for 1 ≤ a ≤ q and 1 ≤ b ≤ n,

[z]a,b :=


1/q if b ∈ S,

1 if b 6∈ S and zb = αa,

0 otherwise,

using the error parameter ξ := 1− l
n−|S| , with l :=

⌈
n−|S|
c−|L|

⌉
.

3) Plug the matrix R into the Kötter-Vardy algorithm and, from the output list, take the set
Λ = {u1, . . . ,us} of all codewords that agree with z in at least l positions not in S.

4) If Λ = ∅,
Reencoding step:

– Set j := min{l, k}.
– For each subset {t1, . . . , tj} of j positions of z not in S,

– If j = k,
∗ v := reencode[(zt1 , t1), . . . , (ztk , tk)],
∗ Λ := Λ ∪ {v}.

– Else,
∗ Fix k − j positions tj+1, . . . , tk in S.
∗ For all (x1, . . . , xk−j) ∈ Fk−j

q ,
v := reencode[(zt1 , t1), . . . , (ztj , tj), (x1, tj+1), . . . , (xk−j , tk)],
Λ := Λ ∪ {v}.

5) For each u ∈ Λ, execute IPP[c, C, z, L ∪ {u}].



3.3. The IPP Tracing Algorithm 41

the remaining parent. Moreover, in this case the Kötter-Vardy algorithm should be

able to correct n− 1 erasures. From (3.8) it is clear that this is not possible. When

faced with this situation, we use reencoding in the style of [51] in order to find the

remaining codewords that can be part of a coalition.

3.3.1 Considerations about the Reencoding Step

In Step 3) of the IPP Tracing Algorithm, if the list returned by the Kötter-Vardy

algorithm is empty or its elements do not cover any position not in S, then we

must devise a different method to find the remaining elements to complete the coali-

tions. As discussed above, the method that we use is based on reencoding [51].

Due to the MDS property, for a Reed-Solomon code of dimension k, we can treat

the symbols in any k index positions t1, . . . , tk as information symbols. This allows

us to encapsulate the encoding steps into a routine reencode[(z1, t1), . . . , (zk, tk)],

where z1, . . . , zk are variables that take values from the elements of Fq. Therefore,

reencode[(z1, t1), . . . , (zk, tk)] returns the unique codeword with symbols z1, . . . , zk

in positions t1, . . . , tk, respectively. In the case of Reed-Solomon codes this can be

achieved easily by the evaluation of a Lagrange-interpolation polynomial.

Assume that ci is the number of remaining traitors to complete a coalition. There

are two different cases to be considered. The first case is when l = d(n−|S|)/cie ≥ k.

In this case, we can assume that at least one remaining codeword can be found by

taking all of its information positions not in S. This is again due to the MDS property

of Reed-Solomon codes. To do so, the algorithm runs over all the possible subsets of

size k among the n− |S| unerased positions and by applying the reencoding routine

to each subset obtains the corresponding codeword. Note that the maximum number

of reencodings in this case is upper bounded by
(
n−|S|
k

)
.

On the other hand, we can have that l = d(n−|S|)/cie < k. In this case, we cannot

assume that any remaining coalition codeword agrees in k unerased positions with

the descendant. Suppose that for l positions outside S say t1, . . . , tl, the descendant z

has symbols zt1 , . . . , ztl , respectively. Hence, we need to search for all codewords that

agree with z in these l positions. To do so, we fix a set of k − l positions in S that
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we represent as tl+1, . . . , tk. Let the variable (x1, . . . , xk−l) take all possible values

from Fk−lq . Then, for each value of (x1, . . . , xk−l) the reencoding routine with input

(zt1 , t1), . . . , (ztl , tl), (x1, tl+1), . . . , (xk−l, tk) will return one of the desired codewords.

In this case, the maximum number of reencodings is upper bounded by
(
n−|S|
l

)
qk−l.

Whenever one codeword is found, the remaining codewords to be added to a

coalition, if any, are found by recursive executions of the algorithm. Below, we present

a lemma that proves that, following this procedure, the output of the algorithm L
will eventually contain all the lists of codewords of size at most c that are able to

generate a given descendant.

3.3.2 Correctness of the Algorithm

Lemma 3.13. The IPP Tracing Algorithm identifies all coalitions of size at most c

that can generate a given descendant.

Proof. Note that the algorithm is executed recursively. Let L be the starting set

of codewords at a certain invocation of the algorithm. We first show that if there

is a coalition L′ ⊆ C with |L′| ≤ c that can generate z and L ⊆ L′, then L′ will

eventually be included in the global set L. If L = L′, it is obvious that L′ will be

included in L in Step 1). Otherwise, by the pigeonhole principle, there is a codeword

u ∈ L′ \ L such that it agrees with z in, at least, l = (n − |S|)/(c − |L|) positions

not in S. In Steps 2) – 4) the algorithm identifies such codeword, either using the

Kötter-Vardy algorithm or in the reencoding step. Now, the algorithm is executed

again using as input L1 = L ∪ {u}. It is clear that L ⊂ L1 ⊆ L′. Again, since L′ can

generate z, then either L1 = L′ or we can find a subset L2 such that L1 ⊂ L2 ⊆ L′.

Because |L′| ≤ c, there is only a finite number of subsets, say s ≤ c, such that

L ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ls ⊂ L′. Therefore, the algorithm will eventually be executed

with L′ as input and, hence, L′ will be included in L.

On the other hand, observe that the initial call of the algorithm is executed using

the set of TA-parents, generated by the TA Tracing Algorithm. This set belongs to

all coalitions that can generate z.
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It follows that when the recursive executions of the algorithm finish, L will contain

all coalitions L ⊆ C of size at most c that can generate z.

To determine the running complexity of the IPP Tracing Algorithm, let c′ be the

size of the list returned by the TA Tracing Algorithm.

We first consider the case that at each recursion the execution of the Kötter-

Vardy algorithm is successful. In other words, we obtain the list Λ of all codewords

that agree in at least l positions with the descendant. Then the total number of

recursions is upper bounded by |Λ|c−c′−1, with |Λ| < c. Therefore, the running time is

O(|Λ|c−c′−1TKV), where TKV denotes the complexity of the Kötter-Vardy algorithm,

which is polynomial in the code length. Hence, the algorithm offers a considerable

improvement over both the brute force approach and the algorithm presented in [36,

37].

On the other hand, it might be the case that the Kötter-Vardy algorithm does

not return any appropriate codeword. If we take as the worst-case situation when the

Kötter-Vardy algorithm fails in each recursion, then of course there is not much room

for improvement. In this case the number of executions of the IPP Tracing Algorithm

will be upper bounded by
(
M
c−c′
)
, i.e., an execution time O(M c−c′), as noted in [36,37].

This is, however, a clear improvement over the brute-force method, since c′ ≥ 1.

3.4 Concatenated Constructions

In this section, we deal with the case of c-secure with ε-error families of binary

codes. As said in Section 2.2, in the binary case the identification process will al-

ways be subjected to a certain error probability. To construct practical (shorter)

binary fingerprinting codes many authors [13, 14, 15, 33] have used the idea of code

concatenation [34].

According to the discussion leading to Definition 2.12, a single binary code is

not sufficient, but a family of codes C = {Ct}t∈T is required. We now show how to

obtain a family of binary concatenated fingerprinting codes with error probability
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decreasing exponentially with the code length, by modifying the codes obtained in

Construction 2.13.

Construction 3.14. Let Cout be an (n,M)-code over a q-ary alphabet Q. Rather

than a single inner code, let Cin = {C in
s }s∈S be a c-secure with εin-error family of

binary (l, q)-codes, as in Definition 2.12. For every code C in
s , let φs denote a bijective

mapping φs : Q → C in
s . Also, let (st1, . . . , stn) be the vector indexed by t in Sn

under an arbitrary total-order relation, where 1 ≤ i ≤ |S|n. Denote by Ct the code

constructed in the following way:

Ct
def
= {Φt(w) : w ∈ Cout}, (3.15)

where

Φt(w)
def
= (φst1(w1), . . . , φstn(wn)).

The set C = {Ct}t∈T , with T = {1, . . . , |S|n}, constitutes the concatenated family.

To use the family C = {Ct}t∈T from the construction above, the distributor chooses

the code Ct, where 1 ≤ t ≤ |T | is chosen with probability π(t) = |T |−1. Note that

this is equivalent to obtain a vector of keys (s1, . . . , sn), where each key is chosen

independently and uniformly from S, and with this vector construct the code Ct as in

(3.15). Recall that the actual value of t is kept secret. The set of keys S, the family

Cin, the mappings φs and the code Cout are publicly known. The distributor assigns

to each user a codeword from Ct. Moreover, since the number of codewords in Ct and

the number of codewords in Cout coincide, the distributor can also identify users by

codewords of Cout.

It is worth noting that for the inner family of codes in Construction 3.14, we do

not attach ourselves to any specific fingerprinting family proposal. Instead, we let Cin

be any c-secure with εin-error family of binary (l, q)-codes, as in Definition 2.12.

Given a descendant

z = (z1, . . . , zn) = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

) ∈ descc(Ct),
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Algorithm 3.4 Concatenated Tracing Algorithm 1

For notational simplicity, assume that (s1, . . . , sn) = (st1, . . . , stn).

Input: A concatenated code Ct from Construction 3.14, and a descendant z ∈
descc(Ct),

z = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

).

Output: A codeword of Ct.

1) Let Ain
s denote the identification algorithm for the inner code C in

s . Use the secret

key si to decode each block zi = (zi1, . . . , zil) of the descendant z by running

the identification algorithm Ain
si

(zi). According to Definition 2.12, we obtain at

most c codewords from C in
si

.

2) For 1 ≤ i ≤ n, use the inverse mapping

φ−1
si

: C in
si
→ Q

to obtain a set Zi of at most c symbols from Q. We pick at random one of these

symbols, say symbol Zi ∈ Zi.

3) Construct the word

Z := (Z1, . . . , Zn) ∈ Qn.

4) Compute the codeword ŵ ∈ Cout such that

d(ŵ,Z) = min
w∈Cout

d(w,Z),

and output û = Φt(ŵ) ∈ Ct.
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created by a traitor coalition of size at most c, it is clear that in order to identify

the traitors we first need to perform identification in each inner code and from the

obtained result perform identification in the outer code. This is made precise in

Algorithm 3.4, which corresponds to the identification algorithm of code Ct. Below,

we will see what conditions the family of codes needs to satisfy so that the output of

the algorithm is a traitor codeword with high probability.

We are now in the position to state the following theorem.

Theorem 3.15. Let Cout be an (n,M)-code over a q-ary alphabet Q, and let Cin =

{C in
s }s∈S be a c-secure with εin-error family of binary (l, q)-codes, as in Definition 2.12.

Let C = {Ct}t∈T be the family of concatenated codes from Construction 3.14 with

outer code Cout, the family of inner codes Cin, the mappings φs, the set of keys T ,

and π(t) = |T |−1. For any σ, where εin < σ < 1/(c + 1), the family of concatenated

codes C = {Ct}t∈T together with Algorithm 3.4 is a c-secure family of binary codes

with exponentially small error, ε = exp(−Ω(n)), if

d(Cout) > n− n(1− σ(c+ 1))

c2
.

Proof. Let Ct be the code chosen by the distributor. For convention, assume that

(s1, . . . , sn) = (st1, . . . , stn) ⊆ Sn is the set of keys of the inner family corresponding

to the chosen key t ∈ T . Note that this choice of t is equivalent to select the vector

(s1, . . . , sn) at random, where each entry is chosen uniformly and independently from

S. This choice is kept secret, but the rest of parameters from the family are public.

Let U = {u1, . . . ,uc} ⊆ Ct be a c-coalition, and also let the subset of their

corresponding outer codewords be W = {w1, . . . ,wc} ∈ Cout. That is, the codewords

uj = (φs1(w
j
1), . . . , φsn(wjn)) ∈ Ct, and wj = (wj1, . . . , w

j
n) ∈ Cout, for 1 ≤ j ≤ c. Also,

let

z = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

)

be a descendant created by coalition U . We use Algorithm 3.4 to identify traitors.

By decoding each block zi = (zi1, . . . , zil), following Steps 1) and 2) of the algorithm,

we obtain a symbol Zi ∈ Q. Recall from (2.2) that the projection of W on the ith
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position is defined as the set of the symbols of the code alphabet in that position,

Pi(W )
def
= {w1

i , . . . , w
c
i}.

Hence, according to Definition 2.12, Zi matches one of the outer traitor codewords,

i.e., Zi ∈ Pi(W ), with probability at least 1− εin.

For any given descendant z the errors in the decoding of each block zi are in-

dependent. To see this, we recall that the keys s1, . . . , sn are chosen independently

and uniformly at random. In other words, the inner codes C in
si

together with their

associated mappings φsi are chosen independently and uniformly from the the family

Cin. Then, it is clear that the errors made in each identification algorithm of the inner

code Ain
si

are independent.

Now, let X be the total number of errors made by the identification algorithm

of the inner code. Hence, the r.v. X can be viewed as the sum of n independent

indicator r.v.’s with probability of success ≤ εin each. We can bound Pr{X ≥ x},
by comparing X with an appropriate binomial r.v., of parameters n and εin. Then,

using (2.10),

Pr{X ≥ nσ} ≤ 2−nD(σ‖εin) ≤ e−2n(σ−εin)2 . (3.16)

Thus, after decoding the inner codes, we recover a word over the alphabet of the

outer code, Z = (Z1, . . . , Zn) ∈ Qn, with the property

Pr{|{Zi : Zi ∈ Pi(W )}| > n− nσ} ≥ 1− e−2n(σ−εin)2 . (3.17)

That is, with error probability ε ≤ e−2n(σ−εin)2 , the number of incorrectly decoded

positions in Z is at most nσ. This means that, with exponentially small error proba-

bility ε, there exists some coalition codeword û = Φt(ŵ) ∈ U for some ŵ ∈ W such

that the similitude with Z satisfies

s(ŵ,Z) ≥ n
1− σ
c

. (3.18)
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Note that since ε ≤ e−2n(σ−εin)2 , then for reasonable values of n we have

ε < εin.

Implied by the condition in the minimum distance of Cout, any two codewords

v,w ∈ Cout satisfy

s(v,w) <
n(1− σ(c+ 1))

c2
.

Recalling that with high probability nσ is an upper bound on the number of positions

such that Zj 6∈ Pi(W ) = {w1
j , . . . , w

c
j}, for any corresponding innocent codeword from

the outer code v ∈ Cout \W , we have

s(v,Z) ≤ nσ +
c∑
j=1

s(v,wj)

< nσ + c
n(1− σ(c+ 1))

c2
= n

1− σ
c

. (3.19)

Putting together (3.18) and (3.19), with error probability less than e−2n(σ−εin)2 , the

closest codeword ŵ ∈ Cout to Z is the outer codeword corresponding to a traitor

codeword, i.e., û = Φt(ŵ) ∈ U . This is precisely the output of Algorithm 3.4.

A related result has been obtained independently in [52,53].

3.4.1 Efficient Identification of Traitors

We have just shown that there exists a family of binary fingerprinting codes, based on

a concatenated construction, which together with Algorithm 3.4 can achieve identifi-

cation of traitors with arbitrarily small error. Now, we will show how the complexity

of the identification process in a concatenated code can be reduced using the Kötter-

Vardy algorithm when Reed-Solomon codes are used as outer codes.

Similarly to the Algorithm 3.4, the identification process of concatenated codes is

usually performed in two steps. In the first step, every inner code is decoded obtaining

a word of symbols from the outer code alphabet. Then, this word is decoded using a

decoding algorithm designed for the outer code.
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As stated in Remark 2.4, in a collusion attack, the output of the identification

algorithm of each inner code need not be a single symbol from the outer code alphabet.

It can also be a set of multiple symbols. All the (possible) multiple outputs are

considered to have the same reliability.

We will consider henceforth that the outer code Cout from Construction 3.14 is

an [n, k]-Reed-Solomon code over Fq. In this case, through the use of the reliability

matrix, the Kötter-Vardy algorithm provides a natural way to deal with all the in-

formation delivered by the inner identification process. Using the same notation as

above, we reflect this situation in Algorithm 3.5.

As in the proof of Theorem 3.15, let U = {u1, . . . ,uc} ⊆ Ct denote a c-coalition,

and let W = {w1, . . . ,wc} ⊆ Cout be the subset of their corresponding outer code-

words.

In Step 2) of the algorithm we recover a set of symbols Zi such that, from Defini-

tion 2.12, it is a nonempty subset satisfying

Zi ⊆ Pi(W ) = {w1
i , . . . , w

c
i}

with probability ≥ 1− εin, for 1 ≤ i ≤ n.

If no errors have been made in the inner identification process, i.e., Zi is nonempty

and Zi ⊆ Pi(W ) for 1 ≤ i ≤ n, then there is a traitor codeword w ∈ W such that

the similitude, as defined in (2.1), satisfies s(w,Z) ≥ n/c. However, following the

same reasoning used to obtain (3.16) and (3.17), it can only be guaranteed with high

probability that the inner identification process has made less than nσ errors. Hence

the previous condition needs to be reformulated as

s(w,Z) ≥ n
1− σ
c

, (3.20)

for some w ∈ W . It will only remain to show that such w will be returned by the

Kötter-Vardy algorithm.

Let us assume that |Zi| = c for all 1 ≤ i ≤ n. It is easy to see that, in particular

for σ < 1/(c+ 1), this is indeed a worst-case situation in the analysis below. Namely,

the one which minimizes the difference between the left-hand and the right-hand
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Algorithm 3.5 Concatenated Tracing Algorithm 2

Initial ordering of the elements of Fq: α1, α2, . . . , αq. For notational simplicity, assume
that (s1, . . . , sn) = (st1, . . . , stn).

Input: A concatenated code Ct from Construction 3.14, using an [n, k]-Reed-Solomon
code over Fq as outer code, a bound σ for the inner code error probability such that
εin < σ < 1/(c+ 1), and a descendant z ∈ descc(Ct),

z = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

).

Output: A subset of codewords of Ct.

1) Let Ain
s denote the identification algorithm for the inner code C in

s . Use the secret
key si to decode each block zi = (zi1, . . . , zil) of the descendant z by running
the identification algorithm Ain

si
(zi). According to Definition 2.12, we obtain at

most c codewords from C in
si

.

2) For 1 ≤ i ≤ n, use the inverse mapping

φ−1
si

: C in
si
→ Fq

to obtain a set Zi of at most c symbols from Fq.

3) Construct the set vector
Z := (Z1, . . . ,Zn).

4) Set ξ := σ and compute the q-by-n reliability matrix R = (rji), where for
1 ≤ j ≤ q and 1 ≤ i ≤ n,

rji :=


1− ξ
|Zi|

if αj ∈ Zi,

ξ

q − |Zi|
otherwise.

5) Plug the matrix R into the Kötter-Vardy algorithm and for every codeword
w = (w1, . . . , wn) ∈ Cout in the output list, compute the similitude s(w,Z),
according to (2.1).

6) Output the set L := {u1, . . . ,us}, consisting of all codewords u = Φt(w) ∈ Ct,
such that

s(w,Z) ≥ n
1− σ
c

,

for some codeword w obtained in Step 5).
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sides in the condition for successful decoding of the Kötter-Vardy algorithm stated in

Theorem 3.5,
〈R, [w]〉√
〈R,R〉

≥
√
k − 1 + o(1). (3.21)

For a codeword w ∈ W satisfying (3.20), we have

〈R, [w]〉 = (n− nσ)
1− ξ
c

+ nσ
ξ

q − c
,

where R is the reliability matrix constructed in Step 4), and since

√
〈R,R〉 =

√
n

c
(1− ξ)2 +

n

q − c
ξ2,

then w will appear in the output list of the Kötter-Vardy algorithm if

(n− nσ)1−ξ
c

+ nσ ξ
q−c√

n
c
(1− ξ)2 + n

q−cξ
2
>

√
n(1− σ(c+ 1))

c2
. (3.22)

The reason for ξ in the algorithm is to take into account the fact that the inner

code identification algorithm has a certain error probability. In this way, if in a given

position an error is made, then in this position we will still have some “contribution”

of the traitors.

The left-hand side of (3.22) is maximized by taking ξ = σ. This is intuitively very

satisfactory. It says that, in the setup of the reliability matrix R, the effect of the

errors of the inner binary fingerprinting code has to be considered. Moreover, this

effect has to be “spread” equally between all symbols that do not appear in the list

returned by the inner identification process. From Theorem 3.15, note that σ is an

upper bound on the error probability of each inner code, and represents a threshold

that allows us to “differentiate” parents (traitors) from non-parents.

Note that the analysis above implies that, with error probability ε = exp(−Ω(n)),

no innocent codeword will be accused, and every codeword u = Φt(w) such that

w ∈ Cout satisfies condition (3.20) can be accused as a traitor. This is in fact a

list-decoding algorithm that returns all codewords that satisfy (3.20).
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Finally note that, if done by brute force, the identification process of each inner

code is of complexity O(ln), as in [13, 14, 18]. This means a decoding complexity

of O(ln2) for all the entire inner decoding, where n is the outer code length. Since

the Kötter-Vardy algorithm is the core of Algorithm 3.5, and it is a polynomial-time

algorithm in the code length [44], we conclude that the identification process is also

accomplished in polynomial time in the total code length.

Thus, we have proved the following proposition.

Proposition 3.16. Let Cout be an [n, k]-Reed-Solomon code over Fq, and let Cin =

{C in
s }s∈S be a c-secure with εin-error family of binary (l, q)-codes, as in Definition 2.12.

Let C = {Ct}t∈T be the family of concatenated codes from Construction 3.14 with

outer code Cout, the family of inner codes Cin, the mappings φs, the set of keys T ,

and π(t) = |T |−1. For any σ, where εin < σ < 1/(c + 1), the family of concatenated

codes C = {Ct}t∈T together with Algorithm 3.5 is a c-secure family of binary codes

with exponentially small error, ε = exp(−Ω(n)), if

d(Cout) > n− n(1− σ(c+ 1))

c2
.

Moreover, the identification process is executed in polynomial time in the code length,

and its capacity is maximized by using as the input to the Kötter-Vardy algorithm a

reliability matrix R that has ≤ c entries of value ≥ (1−σ)/c and ≥ c entries of value

≤ σ/(q − c) in each column.

3.4.2 Suboptimal Setup of the Reliability Matrix

In the situation discussed above, we argued that the reason for ξ was to take into

account the errors made by the identification process of the inner codes. At that

point, the reader might have thought about what would happen if one had decided

to ignore the fact that the inner family of codes Cin has a probability of error. This
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would mean constructing the reliability matrix R = (rji) as

rji =


1

|Zi|
if αj ∈ Zi,

0 otherwise.

Again, we assume that the number of errors made by the identification process

of the inner codes are at most nσ with high probability, and the worst-case situation

where |Zi| = c for 1 ≤ i ≤ n. Then, for an outer codeword w ∈ W , we have

〈R, [w]〉 =
n− nσ

c
.

Since now √
〈R,R〉 =

√
n

c
,

then, according to (3.21), the codeword w will appear in the output list of the Kötter-

Vardy algorithm if

(n− nσ)/c√
n/c

>

√
n(1− σ(c+ 1))

c2
.

This is the same as

1− σ >
√

1− σ(c+ 1)

c
,

which for σ < 1/(c+ 1) is always satisfied.

This means that even for a suboptimal setup of the reliability matrix, the Kötter-

Vardy algorithm will output a codeword from the traitor coalition. In a way, this

is a surprising result. Recall from Section 3.2 that to find the TA-parents in the

TA Tracing Algorithm we had to push the Kötter-Vardy algorithm almost “to the

edge.” This was due to the fact that every column of the reliability matrix only

contained information from a single parent. On the other hand, here we are able

to exploit the full power of the Kötter-Vardy algorithm. This is because, whenever

it is possible, each column of the reliability matrix contains information from all

parents. Somehow, it looks as if the Kötter-Vardy algorithm is tailor made for these

concatenated constructions.
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3.5 Conclusion

As noted in [36,37], tracing traitors is a worthwhile addition to a system provided that

the associated identification algorithms add sufficiently little cost. In this chapter we

have shown the benefits of using the Kötter-Vardy soft-decision decoding algorithm

in the identification process when Reed-Solomon codes with tracing capabilities are

used.

For TA Reed-Solomon codes, on one hand, we give conditions for unambiguous

traitor identification. On the other hand, we show how the flexibility of the Kötter-

Vardy algorithm allows the reuse of information obtained in each loop of an iterative

process, in which the identification of traitors is based on the previously identified

ones. The use of feedback information from previous iterations of the algorithm

improves the task, allowing it to run in polynomial time in the code length, rather

than in the code size. We also discuss upper bounds of the needed cost in the Kötter-

Vardy algorithm so that at least one TA-parent always appears in the output list.

Moreover, we have also extended the work of [36, 37]. Again departing from the

Kötter-Vardy algorithm, for a c-IPP Reed-Solomon code, given a descendant we have

presented a method to obtain all possible coalitions that are able to generate it.

The use of the soft-decision decoding routine allows us to reduce the execution time,

which in the general case is upper-bounded by O
(
M
c

)
, where M is the total number

of codewords.

Finally, we have shown concatenated constructions of binary fingerprinting codes

based on Reed-Solomon outer codes. The constructions have exponentially small error

probability in the outer code length, and polynomial decoding time in the total code

length. We use the Kötter-Vardy soft-decision decoding algorithm in the outer code

identification process. It is noticeable that even a sub-optimal setup of the reliability

matrix achieves the same purposes than the matrix defined for the optimal case and

with equivalent computational complexity.

The contents of this chapter have been published in [3], and also in the joint

works [6] and [7].



Chapter 4

Almost Separating and Almost

Secure Frameproof Codes

Separating codes were introduced by Friedman et al. [20] more than 40 years ago.

A separating code is a very natural combinatorial object that has found application

in many areas. Fields such as automata synthesis, technical diagnosis, construction

of hash functions and traitor-tracing schemes have benefited from codes with the

separating property.

As commented in Section 2.1, separating codes have been subsequently investi-

gated by many authors, e.g. in [21,22,23,24,25,26]. Nontrivial lower and upper bounds

have been derived and relationships with similar notions have been established. See

for instance the surveys [21,25].

Recently, in connection with digital fingerprinting codes, a great deal of atten-

tion has been paid to separating codes. In this new area of application, separating

codes have been rediscovered under the names of frameproof and secure frameproof

codes [13, 14,27,28].

The main note of this chapter is the fact that relaxing the definitions of separat-

ing and secure frameproof codes, by demanding that these properties (separating and

secure frameproofness) hold with high probability, will bring us two different notions.

We call these two new notions almost separating and almost secure frameproof prop-

erty. As it will be shown, allowing a code that the separating property holds with high

55
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probability, as opposed to absolute separation, allows us to obtain codes with better

rates. Namely, we show existence bounds for almost separating and almost secure

frameproof codes that are better than the current existence bounds for separating

codes.

This chapter is organized as follows. In Section 4.1 we introduce the topic and

present some previous results. In Section 4.2 and Section 4.3, we obtain lower bounds

on the rate of the new codes introduced. Next, in Section 4.4 we compare the obtained

results with the current known state of the art. Our motivation for studying separat-

ing codes is their application to fingerprinting schemes. In Section 4.5, we construct

a family of fingerprinting codes with small error using almost separating and almost

secure frameproof codes. Finally, the conclusions are drawn in Section 4.6.

4.1 Separating and Secure Frameproof Codes Re-

visited

Let C be an (n,M)-code. For a pair of (disjoint) subsets U, V ⊆ C, using the notation

from (2.2), we say that a position i is separating if

Pi(U) ∩ Pi(V ) = ∅.

A pair of c-subsets U, V are called separated if there exists a separating position

1 ≤ i ≤ n for them. Moreover, we say that a c-subset U is separated if U is separated

from every other disjoint c-subset V ⊆ C.

Now, Definition 2.7 can be restated, and a code C can be defined as (c, c)-

separating if every pair of disjoint c-subsets U, V ⊆ C are separated. Equivalently, a

code is (c, c)-separating if every c-subset U ⊆ C is separated. We have the following

definitions.

Definition 4.1. A code C is c-frameproof if every set U ⊆ C with |U | ≤ c satisfies

desc(U) ∩ C = U .
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Definition 4.2. A code C is c-secure frameproof if for any U, V ⊆ C with |U | ≤ c,

|V | ≤ c and U ∩ V = ∅, then desc(U) ∩ desc(V ) = ∅.

The concepts of frameproof and secure frameproof codes were introduced in [13,

14,27,28]. It is easy to see, and it was clearly noticed, e.g. in [15], that a c-frameproof

code is the same as a (c, 1)-separating code, and that a c-secure frameproof code is

the same as a (c, c)-separating code.

Let Rsep
q (n, c, c′) denote the rate of an optimal (i.e., maximal) (c, c′)-separating

code of length n over a q-ary alphabet Q,

Rsep
q (n, c, c′)

def
= max

C ⊆ Qn s.t. C is
(c, c′)-separating

R(C).

Also, consider the corresponding asymptotical rates

Rsep
q (c, c′)

def
= lim inf

n→∞
Rsep
q (n, c, c′), R

sep

q (c, c′)
def
= lim sup

n→∞
Rsep
q (n, c, c′).

Lower bounds on (2, 2)-separating codes were studied in [20,22]. For binary sepa-

rating codes there are some important, well-known results that are worth mentioning.

For example, from [21, 22] we have Rsep
2 (2, 2) ≥ 1 − log2(7/8) = 0.0642, which also

holds for linear codes [22]. Also, for the general case, it was shown in [15] that

Rsep
2 (c, c′) ≥ − log2(1− 2−c−c

′+1)

c+ c′ − 1
. (4.1)

Regarding the upper bounds, in [21, 24] it was shown that R
sep

2 (2, 2) < 0.2835 for

arbitrary codes, and in [21] that R
sep

2 (2, 2) < 0.108 for linear codes.

In the following sections of this chapter, and unless otherwise stated, all random

(n,M)-codes are considered to be chosen with uniform probability among the ensem-

ble of all (n,M)-codes over a certain alphabet Q. That is, we generate M vectors of

length n, where each entry is uniformly and independently chosen from Q.
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4.2 Separating and Almost Separating Codes over

q-ary Alphabets

We start the study of separating and almost separating codes by obtaining lower

bounds for separating codes over arbitrary alphabets. This will allow us to compare

these results with the concepts of almost separating and almost secure frameproof

codes that we are introducing. We will use a standard probabilistic argument to

obtain a generalization of (4.1).

4.2.1 Lower Bounds for q-ary Separating Codes

Lemma 4.3. Let v(j; q, c) be the pmf, evaluated at j, of an r.v. that counts the

number of different symbols of a q-ary vector of length c chosen uniformly at random.

Then,

v(j; q, c)
def
=
qj

qc

{
c

j

}
, 1 ≤ j ≤ min{q, c}, (4.2)

where qj denotes the falling factorial and
{
c
j

}
denotes the Stirling number of the

second kind.

Proof. A subset of size c can be partitioned into j nonempty subsets in
{
c
j

}
different

ways. For each such partition there are q(q−1) · · · (q−j+1) = qj possible assignments

using j different elements from Q. The product of these two terms gives the number

of q-ary vectors of length c that contain exactly j different symbols. The proof follows

after dividing by the total number of vectors.

For notational simplicity, we will sometimes suppress the parameters q, c from

v(j; q, c), and we will refer to this pmf simply as v(j). Fortunately these parameters

will be clear from the context. Also, we will often omit the range of the support of

v in the summation indices, which will always be understood as above. In fact, one

could chose either parameter (q or c) arbitrarily as the upper limit in the range of

v(j; q, c). By definition v(j; q, c) will evaluate to 0 for j 6= 1, . . . ,min{q, c}.
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Lemma 4.4. Let pdisj.
q,c,c′ be the probability that two q-ary vectors of lengths c and c′,

respectively, chosen uniformly and independently at random are disjoint (i.e., have

no common element). We have

pdisj.
q,c,c′ =

∑
j

(1− j/q)c′ v(j; q, c),

where j ranges over the support of the pmf v, defined in (4.2).

Proof. Let a = (a1, . . . , ac) and b = (b1, . . . , bc′) be two random vectors, of length c

and c′, respectively, and let X be the r.v. that counts the number of different symbols

in a. The probability that a and b are disjoint, i.e., {a1, . . . , ac} ∩ {b1, . . . , bc′} = ∅,
can be computed as

pdisj.
q,c,c′ =

∑
j

Pr{a and b disjoint |X = j}Pr{X = j}.

Clearly, Pr{X = j} = v(j; q, c). Also, since b has c′ elements independently chosen

from a, we have Pr{a and b disjoint |X = j} = (1− j/q)c′ .

Note that, given two c-subsets U, V of a random q-ary (n,M)-code C, the proba-

bility that a position i is separating, i.e., Pi(U) ∩ Pi(V ) = ∅ is precisely pdisj.
q,c,c′ . Using

this fact, combined with the probabilistic argument borrowed from [15, Proposition

3.4], the following result follows easily. We provide the proof below for completeness.

Corollary 4.5. There exist q-ary (c, c′)-separating codes of asymptotical rate satis-

fying

Rsep
q (c, c′) ≥ −

logq(1− p
disj.
q,c,c′)

c+ c′ − 1
.

Proof. Let C be a random q-ary (n,M)-code, and let E be the expected number of

“bad” pairs U, V of subsets with |U | = c and |V | = c′, i.e., pairs that are not separated.

If E < M/2, then a q-ary (n,M/2)-code with the (c, c′)-separating property exists,

since by removing one codeword from each bad pair, the remaining codewords yield

a (c, c′)-separating code. The probability that a pair U, V of such subsets is not
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separated is (1− pdisj.
q,c,c′)

n. Hence, we have

E ≤
(
M

c

)(
M − c
c′

)
(1− pdisj.

q,c,c′)
n <

M c+c′

c! c′!
(1− pdisj.

q,c,c′)
n.

Observe that taking M =
(
c!c′!

2
(1 − pdisj.

q,c,c′)
−n)1/(c+c′−1)

, we have E < M/2. Finally,

since ( c!c
′!

2
)1/(c+c′−1) ≥ 1, we can disregard the logarithm of this term in the lower

bound on the code rate.

4.2.2 Lower Bounds for Almost Separating Codes

The separating property imposes a very strict combinatorial restriction to the code,

namely that every pair of c-subsets is separated. One could obtain codes with better

rates by relaxing this condition, and asking for codes where it is satisfied with high

probability, rather than in all cases. In this section we propose one possible way of

relaxing the separating condition.

Recall again that for a code C, a c-subset U ⊆ C is separated if U is separated

from every other disjoint c-subset V ⊆ C. Now, we have the following definition.

Definition 4.6. A code C is ε-almost (c, c)-separating if the ratio of c-subsets that

are separated is at least 1− ε.
A sequence of codes C = (Ci)i≥1 of growing length ni is an asymptotically almost

(c, c)-separating family if every code Ci is εi-almost (c, c)-separating and limi→∞ εi = 0.

We also define the asymptotical rate of a sequence C = (Ci)i≥1 as

R(C) = lim inf
i→∞

R(Ci). (4.3)

We are interested in estimating the maximal possible asymptotical rate, denoted

Rsep*
q (c), among all asymptotically almost (c, c)-separating families.

To derive lower bounds, we make use of a restricted version of strongly typical

subsets of codewords [54]. That is, subsets of codewords that appear with high

probability in a random code.
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Let C be a q-ary (n,M)-code, and let U ⊆ C be a c-subset. We say that a position

i is j-valued if its projection Pi(U) contains exactly j different symbols from the code

alphabet. We denote N(j;U), for 1 ≤ j ≤ min{q, c}, the number of positions i that

are j-valued. For example, if Q = {0, 1, 2} and

U = { (2, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2),

(1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2),

(1, 2, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 2, 0),

(2, 1, 1, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 2) },

then N(1;U) = 1, N(2;U) = 9, N(3;U) = 5 and N(j;U) = 0 otherwise. Note

that for a c-subset U uniformly chosen from a random (n,M)-code, the empirical

distribution n−1N(j;U) satisfies

E[n−1N(j;U)] = v(j), 1 ≤ j ≤ min{q, c}.

We say that the c-subset U is δ-typical if the empirical distribution of the number

of j-valued positions, i.e., n−1N(j;U), is “close” to the expected value v(j) of a

c-subset in a random code. Namely, for 0 < δ ≤ 1,

|n−1N(j;U)− v(j)| < δ, 1 ≤ j ≤ min{q, c}.

Also, we denote by A
(n)
δ (q, c) the set of δ-typical c-subsets of C,

A
(n)
δ (q, c)

def
= {U ⊆ C : |U | = c and U is δ-typical}. (4.4)

Note that each N(j;U) can be regarded as a binomial r.v. of parameters n and

v(j). Then, combining the union bound with (2.10) and (2.11), it is not difficult

to see that the probability that a randomly and uniformly chosen c-subset U is not

contained in the typical set satisfies

Pr{U 6∈ A(n)
δ (q, c)} ≤

∑
j

2−nD(v(j)−δ‖v(j)) + 2−nD(v(j)+δ‖v(j)) ≤ 2q e−2nδ2 . (4.5)
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With these results in mind, we are ready to derive a lower bound for q-ary almost

separating codes.

Theorem 4.7. For the maximal possible asymptotical rate Rsep*
q (c) among all asymp-

totically almost (c, c)-separating families of q-ary codes we have

Rsep*
q (c) ≥ −1

c

∑
j

logq(1− (1− j/q)c) v(j).

Proof. Consider a random q-ary (n,M)-code C. For a given c-subset U ⊆ C there

are exactly N(j;U) j-valued positions. For each such position i, the probability that

another random c-subset V satisfies Pi(U) ∩ Pi(V ) = ∅ equals (1− j/q)c. Thus,

Pr{U and V are not separated} =
∏
j

(1− (1− j/q)c)N(j;U).

Let U be a typical c-subset as defined in (4.4). Using (4.5), the probability ε that

U is not separated satisfies

ε = Pr{U is not separated |U is typical}Pr{U is typical}+

Pr{U is not separated |U is not typical}Pr{U is not typical}

≤ Pr{U is not separated |U is typical}+ Pr{U is not typical}

≤
(
M − c
c

)∏
j

(1− (1− j/q)c)n(v(j)−δ) + 2q e−2nδ2 .

Hence, we have

lim
n→∞

1

n
logq ε ≤ cR +

∑
j

logq(1− (1− j/q)c) v(j).

Now take a sequence of codes C = (Ci)i≥1 of growing length such that each

(ni,Mi)-code Ci is a random code. The probabilistic argument above shows that

taking an appropriate value for δi, for example δi = δi(ni) = lnni/
√
ni, we conclude
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that there exists a sequence with limi→∞ εi = 0 for any rate

R < −1

c

∑
j

logq(1− (1− j/q)c) v(j),

which completes the proof.

4.2.3 A Refined Lower Bound for Binary Almost Separating

Codes

The particular case of binary alphabets is of great importance, since many appli-

cations of coding theory, such as automata testing or digital fingerprinting codes,

rely on these alphabets. Without loss of generality, we consider the binary alphabet

Q = {0, 1}.

To obtain an improvement with respect to the previous case, we need to modify

our definition of typical set used above (4.4). For a c-subset U of a binary code C we

define Z(x;U) as the number of positions i such that Pi(U) = {x}, for x ∈ Q. That is,

Z(0;U) and Z(1;U) count the number of all-zero and all-one positions, respectively.

For example, if

U = { (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

(1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0),

(1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0),

(0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0) },

then Z(0;U) = 3 and Z(1;U) = 2. Note that in a c-subset U uniformly chosen from

a random (n,M)-code C we have

E[n−1Z(x;U)] = 2−c.

Now, for 0 < δ ≤ 1, we define the typical set B
(n)
δ (c) as

B
(n)
δ (c)

def
= {U ⊆ C : |U | = c and |n−1Z(x;U)− 2−c| < δ, x ∈ Q}.
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That is, B
(n)
δ (c) contains all the c-subsets U ⊆ C such that the empirical distri-

bution of the number of all-zero and all-one positions is “close” to the expected value

in a random code. Using a similar reasoning as above, for a random c-coalition U ,

Pr{U 6∈ B(n)
δ (c)} ≤ 4 e−2nδ2 . (4.6)

Now, the idea is to use the fact that if a c-subset is typical with high probability,

a pair of c-subsets will also be formed by typical subsets with high probability. First,

we present the following result, which we will use below.

Lemma 4.8. Let U, V ⊆ C be two disjoint c-subsets of a binary code C. If Z(0;U) =

Z(1;U) = Z(0;V ) = Z(1;V ) = n2−c, then the probability that U and V are not

separated satisfies

lim
n→∞

1

n
log2 Pr{U and V are not separated} ≤ G(c),

where

G(c)
def
=
(

(1− 2p+ `)H2

(
p

1−2p+`

)
+ pH2

(
`
p

)
+

(1− 2p)H2

(
p−`

1−2p

)
−H2(p)− (1− p)H2

(
p

1−p

))
,

with p = 2−c and ` = (2p− 1 +
√

8p2 − 4p+ 1)/2.

Proof. Take two random c-subsets U = {u1, . . . ,uc}, V = {v1, . . . ,vc}, from a binary

code, satisfying the conditions stated above. Define X0 as the r.v. that counts the

number of nonseparating positions i such that Pi(U) = {0}. That is, in X0 positions i

we have u1
i = · · · = uci = 0, and least one v ∈ V with vi = 0. Similarly, let X1 be the

r.v. that counts the number of nonseparating positions i such that Pi(U) = {1}.

Observe that 0 ≤ X0, X1 ≤ np, where p = 2−c, and that U and V have exactly

2np−X0−X1 separating positions. Thus, the two coalitions are nonseparated when



4.2. Separating and Almost Separating Codes over q-ary Alphabets 65

both X0 and X1 equal np. Let us denote pc the probability of this event. Then,

pc = Pr{X0 = np,X1 = np} = Pr{X0 = np}Pr{X1 = np|X0 = np}

= Pr{X0 = np}
np∑
j=0

Pr{Y0 = j|X0 = np}Pr{X1 = np|X0 = np, Y0 = j}. (4.7)

Here, the auxiliary r.v. Y0 counts the number of nonseparating positions i such that

Pi(U) = Pi(V ) = {0}, i.e., u1
i = · · · = uci = v1

i = · · · = vci = 0.

Now, let us denote h(k;N,K, n) the pmf at k of a hypergeometric r.v. with a

total size of the population N , number of items with the desired characteristic K,

and number of samples drawn n. Then,

h(k;N,K, n)
def
=

(
K
k

)(
N−K
n−k

)(
N
n

) , 0 ≤ k ≤ n.

It is not difficult to see that all the probabilities that appear in (4.7) can be expressed

in terms of the hypergeometric pmf as follows:

Pr{X0 = np} = h(np;n, n− np, np),

Pr{Y0 = j|X0 = np} = h(j;n− np, np, np),

Pr{X1 = np|X0 = np, Y0 = j} = h(np;n− np, n− 2np+ j, np).

Expanding the terms of the hypergeometric pmf, equation (4.7) reduces to

pc =
1(

n
np

)(
n−np
np

) np∑
j=0

(
n− 2np+ j

np

)(
np

j

)(
n− 2np

np− j

)
.

Considering the generalization of the binomial coefficient to real values, and using

its well-known asymptotic form

lim
n→∞

1

n
log2

(
n

pn

)
= H2(p), 0 ≤ p ≤ 1, (4.8)
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we obtain for n increasing

lim
n→∞

1

n
log2 pc ≤ max

0≤j′≤p

{
(1− 2p+ j′)H2

(
p

1−2p+j′

)
+ pH2

(
j′

p

)
+

(1− 2p)H2

(
p−j′
1−2p

)
−H2(p)− (1− p)H2

(
p

1−p

)}
.

It is routine to check that the j′ that maximizes the expression is j′ = `, and hence

the lemma follows.

Theorem 4.9. For the maximal possible asymptotical rate Rsep*
2 (c) among all asymp-

totically almost (c, c)-separating families of binary codes we have

Rsep*
2 (c) ≥ −1

c
G(c).

Proof. Consider a random binary (n,M)-code C. Note that, according to (4.6), the

expected ratio E of typical sets has limn→∞E = 1. Hence, it can be considered that

all c-subsets are δ-typical in the limit.

Let U, V ⊆ C be two δ-typical c-subsets. Moreover, let p′c be the probability that

U and V are nonseparated. Hence the expected number of nonseparated “couples

of c-subsets” {U, V }, where U and V are δ-typical, is at most
(
M
c

)(
M−c
c

)
p′c, and the

probability ε that a given δ-typical c-subset U is not separated satisfies

ε ≤
(
M − c
c

)
p′c.

Hence, using Lemma 4.8,

lim
n→∞

1

n
log2 ε ≤ cR +G(c).

Take a sequence of codes C = (Ci)i≥1 of growing length such that each (ni,Mi)-

code Ci is a random code. Again, the probabilistic argument above shows that taking

δi = δi(ni) = lnni/
√
ni there exists a sequence of codes with limi→∞ εi = 0 for any

rate

R < −1

c
G(c).
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4.3 Almost Secure Frameproof Codes

In this section we relax the definition of separating (or secure frameproof) code, again,

in order to obtain better code rates. The notion that we introduce here allows us to

separate the concepts of almost separating and almost secure frameproof codes.

Let us call a vector z ∈ descc(C) c-uniquely decodable if z ∈ desc(U) for some

c-subset U ⊆ C and z /∈ desc(V ) for any c-subset V ⊆ C such that U ∩ V = ∅. Note

that the c-secure frameproof codes from Definition 4.2 can be regarded as codes where

all vectors z ∈ descc(C) are c-uniquely decodable. This alternate definition allows us

to introduce the following concept.

Definition 4.10. A code C ⊆ Qn is ε-almost c-secure frameproof if the ratio of

c-uniquely decodable vectors among all z ∈ descc(C) is at least 1− ε.
A sequence of codes C = (Ci)i≥1 of growing length ni is an asymptotically almost

c-secure frameproof family if every code Ci is an εi-almost c-secure frameproof code

and limi→∞ εi = 0.

Consider again the asymptotical rate of a sequence of codes (4.3). As above, we

are interested in estimating the maximal possible asymptotical rate, RSFP*
q (c), among

all asymptotically almost c-secure frameproof families.

Theorem 4.11. For the maximal possible asymptotical rate RSFP*
q (c) among all

asymptotically almost c-secure frameproof families of codes we have

RSFP*
q (c) ≥ −1

c
logq(1− (1− 1/q)c).

Proof. Consider a random (n,M)-code C over a q-ary alphabet. Also, consider a

vector z = (z1, . . . , zn) which is generated by a c-coalition U ⊆ C. For a random

c-coalition V ⊆ C such that U ∩ V = ∅, using Lemma 4.4, we have

Pr{z ∈ desc(V )} = (1− pdisj.
q,c,1)n = (1− (1− 1/q)c)n.

In fact, there are n positions, and the probability that each position 1 ≤ i ≤ n

satisfies yi 6∈ Pi(V ) equals pdisj.
q,c,1, because V is a random, independent coalition from
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U . Therefore the probability that a given vector z ∈ descc(C) is not c-uniquely

decodable is at most ε ≤ M c(1 − pdisj.
q,c,1)n. Hence, there is a sequence C = (Ci)i≥1 of

growing length ni such that for each (ni,Mi)-code Ci the ratio of c-uniquely decodable

vectors among all z ∈ descc(Ci) is at least 1 − εi ≥ 1 − M c
i (1 − pdisj.

q,c,1)ni . Taking

Mi = o((1 − pdisj.
q,c,1)−ni/c), i.e., Mi = o((1 − (1 − 1/q)c)−ni/c), we have limi→∞ εi = 0,

and the proof follows.

Remark 4.12. If C ⊆ Qn is an ε-almost c-secure frameproof code, then for the

family of codes ϕ(C), where ϕ runs over the group G of all isometries of the Hamming

space Qn, the probability that any given vector y can be generated by two disjoint

coalitions is at most ε (since the group G is twice transitive). This property allows us

to replace the (c, c)-separating codes in the main construction of fingerprinting codes

from [15] with asymptotically almost c-secure frameproof families, what will result in

larger code rate with the same polynomial complexity identification algorithm. See

Section 4.5 below.

Remark 4.13. For the case of a family of codes (instead of a single code) we can

say “probability” instead of “ratio.” Namely, for every “received” vector y the

probability (i.e., the “ratio” of codes) that there exist at least two different c-coalitions

U, V of codewords which can generate y, is at most ε. Then, of course, for c = 2 the

lower bound on the code rate is the same and it also follows from [55].

4.3.1 Geometric Interpretation

For an (n,M)-code C over Q, consider the set of convex combinations between two

vectors u,v ⊆ C as

{z ∈ Qn : d(u, z) + d(z,v) = d(u,v)}. (4.9)

Note that for a c-subset U ⊆ C, its convex hull [U ] ⊆ Qn, i.e., the smallest set

containing all convex combinations between any two of its elements, is precisely the

envelope under the narrow-sense model, desc(U). Therefore, for the case c = 2 and

U = {u,v} ⊆ C, equation (4.9) suggests calling the set [{u,v}] a segment of C with
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vertices u and v. For c = 3 and a 3-coalition U ⊆ C, the set [U ] could be called a

(convex) polygon, and so on. For arbitrary c, let us call [U ] a (convex) c-polytope.

Hence, a c-secure frameproof code, or, what is the same, a (c, c)-separating code,

can be regarded as a set of points C in the q-ary Hamming space Qn with the property

that any two c-polytopes [U ], [V ] with U, V ⊆ C do not intersect, provided that they

do not share a common vertex from C.

For a random binary code C, consider the union C [c] of all points generated from

c-polytopes [U ] such that U ⊆ C, as in the proof of Theorem 4.11. In other words,

C [c] = descc(C). For a given z ∈ Qn and a random c-subset V ⊆ C, let us call

g(n) = Pr{z ∈ [V ]} = Pr{z ∈ desc(V )} = (1− pdisj.
q,c,1)n,

which follows from the proof of Theorem 4.11 above. Hence, the size of C [c] can be

estimated as

|C [c]| =
∑
z∈Qn

Pr{z ∈ C [c]} = qn Pr{z ∈ C [c]} = qn(1− (1− g(n))(
M
c )). (4.10)

Now, let us define the “volume” of C [c] by counting every point z ∈ C [c] with its

multiplicity, i.e., the number of c-polytopes to which z belongs. Using (4.2), we have

|C [c]| ≤ vol(C [c]) =

(
M

c

)(∑
j

j v(j)
)n

=

(
M

c

)
qn g(n). (4.11)

This result can be obtained in two different but equivalent ways. Indeed, there are(
M
c

)
c-polytopes, and the probability that each z ∈ Qn is generated by a given c-

polytope [U ] is g(n). Alternatively, the average number of points generated by every
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c-polytope [U ] can be computed as

c∑
j1=1

· · ·
c∑

jn=1

j1 · · · jn Pr{|P1(U)| = j1, . . . , |Pn(U)| = jn}

=
∑
j1

· · ·
∑
jn

j1 · · · jn v(j1) · · · v(jn) =
(∑

j

j v(j)
)n

=
(
q−c
∑
j

j qj
{
c

j

})n
(a)
=
(
q−c
∑
j

q(qj − (q − 1)j)

{
c

j

})n (b)
= (q−c+1(qc − (q − 1)c))n = qn g(n).

Here, (a) is obtained by routine algebraic manipulation, and (b) follows from the

well-known identity xc =
∑

j x
j
{
c
j

}
.

Hence, from (4.10) and (4.11) two nontrivial observations can be drawn. First,

for M = o(g(n)−1/c), we have limn→∞ vol(C [c])/|Qn| = 0, i.e., the volume of C [c]

is relatively small compared to the volume of the whole Hamming space. Second,

consider the average asymptotical multiplicity of the points from C [c],

lim
n→∞

vol(C [c])

|C [c]|
= lim

n→∞

M c g(n)

1− (1− g(n))Mc = lim
n→∞

M c g(n)

1− e−Mc g(n)
.

The last equality follows from the fact that limn→∞ g(n) = 0. Taking again M =

o(g(n)−1/c), it is easy to see that the the main part of points from C [c] have multiplicity

1, i.e., covered only once by code polytopes, which is a stronger statement than

Theorem 4.11.

4.4 Comparison of Results

In Table 4.1 we give some figures for the lower bounds on the asymptotical rate of

q-ary separating, almost separating and almost secure frameproof codes. It can be

seen that the lower bounds on the rate for almost separating codes roughly doubles

the rate of ordinary separating codes. This proportion increases for c growing and

slightly decreases for q growing, staying at about 1.9 for c > 7, almost independent

of q.
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q Code c = 2 3 4 5 10 15
Separating 6.422E−2 9.161E−3 1.616E−3 3.134E−4 1.448E−7 9.266E−11

2 Almost sep. 1.038E−1 1.605E−2 2.910E−3 5.725E−4 2.753E−7 1.792E−10
Almost sep.(*) 1.422E−1 1.703E−2 3.001E−3 5.815E−4 2.754E−7 1.792E−10
Almost s.f. 2.075E−1 6.422E−2 2.328E−2 9.161E−3 1.410E−4 2.935E−6

Separating 7.625E−2 1.080E−2 1.796E−3 3.191E−4 8.433E−8 2.997E−11
3 Almost sep. 1.249E−1 1.948E−2 3.320E−3 5.954E−4 1.609E−7 5.798E−11

Almost s.f. 2.675E−1 1.066E−1 5.008E−2 2.571E−2 1.592E−3 1.387E−4

Separating 9.562E−2 1.561E−2 2.889E−3 5.624E−4 2.327E−7 1.415E−10
4 Almost sep. 1.524E−1 2.772E−2 5.288E−3 1.040E−3 4.428E−7 2.735E−10

Almost s.f. 2.982E−1 1.318E−1 6.860E−2 3.908E−2 4.181E−3 6.470E−4

Separating 1.114E−1 2.091E−2 4.307E−3 9.053E−4 4.067E−7 2.158E−10
5 Almost sep. 1.744E−1 3.671E−2 7.853E−3 1.674E−3 7.741E−7 4.173E−10

Almost s.f. 3.174E−1 1.486E−1 8.185E−2 4.934E−2 7.058E−3 1.484E−3

Separating 1.549E−1 4.329E−2 1.350E−2 4.201E−3 6.568E−6 5.615E−9
10 Almost sep. 2.357E−1 7.372E−2 2.419E−2 7.728E−3 1.251E−5 1.086E−8

Almost s.f. 3.606E−1 1.890E−1 1.159E−1 7.755E−2 1.862E−2 6.675E−3

Separating 1.752E−1 5.723E−2 2.162E−2 8.418E−3 4.303E−5 7.895E−8
15 Almost sep. 2.649E−1 9.653E−2 3.840E−2 1.539E−2 8.202E−5 1.527E−7

Almost s.f. 3.783E−1 2.064E−1 1.313E−1 9.098E−2 2.572E−2 1.081E−2

Table 4.1: Lower bounds on the rate of some q-ary codes. The lower bounds (*)
correspond to the analysis for the binary case from Section 4.2.3.
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Also, the refined analysis for binary almost separating codes of Section 4.2.3 shows

an improvement on the lower bound, especially for small values of c.

4.5 Application to Fingerprinting Codes

In this section, we show how binary almost separating or almost secure frameproof

codes can be used to construct a family of binary fingerprinting codes. We will

outline the code construction and derive existence conditions. Our work has been

built upon [15] to obtain codes with better rates.

4.5.1 Family Construction

Recall that for a fingerprinting scheme to achieve an error probability as small as

desired a single code is not sufficient, but a family of codes C = {Ct}t∈T is needed. As

in Section 3.4, we will proceed by modifying the codes obtained in Construction 2.13

to obtain a family of binary concatenated fingerprinting codes C = {Ct}t∈T with error

probability decreasing exponentially with the code length.

Also, as opposed to Construction 3.14, we will only use a single inner binary

(l, q)-code Cin. This time, the randomness comes from the particular choice of the

mappings from the inner code to Q, the outer code alphabet, φ : Cin → Q. Consider

the vector of mappings (φ1, . . . , φn), where φi, 1 ≤ i ≤ n are bijections between Cin

and Q. It is clear that there are (q!)n different such vector mappings. If the mappings

are arbitrarily numbered from 1 to (q!)n, then

Φt
def
= (φt1, . . . , φtn) (4.12)

denotes the mapping indexed by t.

Construction 4.14. Let Cout be an (n,M)-code over a q-ary alphabet Q, and let

Cin be a binary (l, q)-code. Also, let Φt denote the mapping indexed by t as in (4.12).

Denote by Ct the code constructed in the following way:

Ct
def
= {Φt(w) : w ∈ Cout},
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where

Φt(w)
def
= (φt1(w1), . . . , φtn(wn)).

The set C = {Ct}t∈T , with T = {1, . . . , (q!)n}, constitutes the concatenated family.

Again, to use the family from Construction 4.14, C = {Ct}t∈T , the distributor has

to choose a secret value, t ∈ T according to a pmf π. Each user is then assigned a

codeword from Ct.

Let U = {u1, . . . ,uc} ⊆ Ct denote a c-coalition, and let W = {w1, . . . ,wc} ⊆ Cout

be the subset of their corresponding outer codewords. That is, uj = Φt(w
j) for

1 ≤ j ≤ c. Also, let

z = (z1, . . . , zn) = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

) ∈ desc(U),

be a descendant created by coalition U .

In the discussion of the identification algorithm, we will consider that the identi-

fication process of each inner block zi returns a set Vi ⊆ Cin of at most c codewords,

such that zi ∈ desc(Vi). Observe that, if the inner code Cin is an ε-almost (c, c)-

separating or an ε-almost c-secure frameproof code, then with probability ≥ 1 − ε

there is a v ∈ Vi such that v agrees with the ith block of a traitor codeword, i.e.,

v = φti(wi) for some w = (w1, . . . , wn) ∈ W .

We now state, in the form of a theorem, the precise parameters of the codes in

Construction 4.14 so that we can achieve exponentially small error probability when

used in conjunction with Algorithm 4.1.

Theorem 4.15. Let Cout be an (n,M)-code over a q-ary alphabet Q with minimum

distance d = d(Cout), and let Cin be an εin-almost (c, c)-separating or an εin-almost

c-secure frameproof (l, q)-code. Let C = {Ct}t∈T be the family of concatenated codes

from Construction 4.14 with outer code Cout, inner code Cin, the mappings Φt, the

set of keys T , and π(t) = |T |−1. For q > c2, if

d > n− n(1− σ)

c2
+
n(c− 1)

c(q − c)
, with εin < σ <

q − c2

q − c
, (4.13)
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Algorithm 4.1 Concatenated Tracing Algorithm 3

Input: A concatenated code Ct from Construction 4.14, satisfying the conditions from
Theorem 4.15, and a descendant z ∈ descc(Ct),

z = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

).

Output: A subset of codewords of Ct.

1) For 1 ≤ i ≤ n, decode each block zi = (zi1, . . . , zil) of the the descendant z as
follows:

(a) Find all c-subsets V ⊆ Cin such that zi ∈ desc(V ).

(b) If the intersection of all c-subsets V found in Step 1a) is empty, set Zi = ∅.

(c) Otherwise, pick an arbitrary c-subset V from Step 1a) and use the inverse
mapping

φ−1
ti : Cin → Q

to obtain a set Zi of c symbols from Q.

2) Construct the set vector
Z := (Z1, . . . ,Zn).

3) For each w ∈ Cout, compute the similitude s(w,Z), according to (2.1).

4) Output the set L := {u1, . . . ,us}, consisting of all codewords u = Φt(w) ∈ Ct,
such that

s(w,Z) ≥ n
1− σ
c

,

for some codeword w ∈ Cout. If L = ∅, declare identification error.
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then the family of concatenated codes C = {Ct}t∈T together with Algorithm 4.1 is a

c-secure with ε-error family of binary codes, with exponentially small error,

ε ≤ qk2
−nD(ρ‖ c−1

q−c )
+ 2−nD(σ‖εin) = exp(−Ω(n)), (4.14)

where ρ = 1−σ
c
− c(1− d/n).

Proof. Let U ⊆ Ct be a c-coalition, and let W ⊆ Cout be the subset of their corre-

sponding outer codewords, as stated above. Also, let z be

z = (z11, . . . , z1l︸ ︷︷ ︸
z1

, . . . , zn1, . . . , znl︸ ︷︷ ︸
zn

)

a descendant created by coalition U .

First, note that in Step 1b) of Tracing Algorithm 1 we are discarding all “nonsep-

arating blocks” by setting Zi = ∅, an event that occurs with probability ≤ ε due to

the properties of the inner code. Hence, Zi∩Pi(W ) 6= ∅, i.e., Zi contains at least one

element wi for some w = (w1, . . . , wn) ∈ W , with probability ≥ 1− ε.

Let X be the number of discarded blocks, which can be upper bounded using a

binomial r.v. of parameters n and p ≤ εin. Since σ > εin, we can use (2.10) to see

that

Pr{X ≥ nσ} ≤ 2−nD(σ‖εin), (4.15)

which decreases exponentially with n.

That is, with high probability, there is some coalition codeword û = Φt(ŵ) ∈ U
for some ŵ ∈ W such that

s(ŵ,Z) ≥ n
1− σ
c

, (4.16)

hence, a traitor is identified.

On the other hand, for an innocent codeword u = Φt(w), i.e., w 6∈ W , if the

element wi appears in a nondiscarded set Zi it could be because wi ∈ Pi(W ). Since

any two codewords of Cout can agree in ≤ n − d positions, this event can happen in

at most c(n− d) positions. Also, whenever wi 6∈ Pi(W ) the probability that wi ∈ Zi
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can be bounded as

pi = Pr{wi ∈ Zi|wi 6∈ Pi(W )} ≤ c− 1

q − c
. (4.17)

For 1 ≤ i ≤ n, let Yi be an r.v. that takes the value 1 with probability pi and 0 with

probability 1− pi. Therefore for w 6∈ W ,

Pr
{

s(w,Z) ≥ n
1− σ
c

∣∣∣w 6∈ W} ≤ Pr
{
c(n− d) +

n−X−
c(n−d)∑
i=1

Yi ≥ n
1− σ
c

}
≤ Pr

{
c(n− d) +

n∑
i=1

Yi ≥ n
1− σ
c

}
= Pr

{ n∑
i=1

Yi ≥ nρ
}

(a)

≤ Pr
{
Y ≥ nρ

}
≤ 2−nD(ρ‖ c−1

q−c
).

Inequality (a) above follows from (4.17), by comparing the summation
∑n

i=1 Yi with

an appropriate binomial r.v. Y of parameters n and (c − 1)/(q − c). Also, since

(c− 1)/(q− c) < ρ, which is implied by the condition in the minimum distance of the

outer code (4.13), applying (2.10) again gives the last inequality above.

Since there are qk codewords, the probability of accusing an innocent user as guilty

is upper bounded as

Pr
{

max
w 6∈W

s(w,Z) ≥ n
1− σ
c

}
≤ qk Pr

{
s(w,Z) ≥ n

1− σ
c

∣∣∣w 6∈ W}
≤ qk2−nD(ρ‖ c−1

q−c
). (4.18)

Recall that the probability of not accusing a real traitor is (4.15). Putting this

together with (4.18), we have

ε ≤ qk2−nD(ρ‖ c−1
q−c

) + 2−nD(σ‖εin).
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Moreover, this shows that with error probability ε no codeword w 6∈ W will lie within

the decoding radius (4.16).

4.5.2 Existence Conditions

The existence of a family of fingerprinting codes with error probability decreasing

exponentially in the outer code length is guaranteed using similar arguments to those

from [15]. Using Reed-Solomon as outer codes we have the following result, which

assumes c fixed and q growing.

Corollary 4.16. Let Cout be an extended [n, k]-Reed-Solomon code over Fq of rate

Rout = R(Cout), and let Cin be a binary εin-almost (c, c)-separating or εin-almost c-

secure frameproof (l, q)-code of rate Rin = R(Cin). Let C = {Ct}t∈T be the family of

concatenated codes from Construction 4.14 with outer code Cout, inner code Cin, the

mappings Φt, the set of keys T , and π(t) = |T |−1. For any q > c2, and any

Rout <
1− σ
c(c+ 1)

, with εin < σ <
q − c2

q − c
, (4.19)

the family of concatenated codes C = {Ct}t∈T together with Algorithm 4.1 is a c-

secure with ε-error family of binary codes, of rate

R = RoutRin,

and error probability ε decreasing exponentially as

ε ≤ 2−n l(
1−σ
c
Rin−(c+1)R+o(1)) + 2−nD(σ‖εin).

Proof. If Cout is an extended Reed-Solomon code with minimum distance d, we have

n = q and 1− d/n = Rout − 1/n, hence from Theorem 4.15

ρ =
1− σ
c
− c
(
Rout −

1

n

)
. (4.20)
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Now, the error probability from (4.14) can be expressed as

ε ≤ 2
−n lRin((log2 q)

−1D(ρ‖ c−1
q−c )−Rout) + 2−nD(σ‖εin).

The proof follows after substituting (4.20) into the previous equation and taking into

account that

lim
q→∞

(log2 q)
−1D

(
ρ
∥∥∥c− 1

q − c

)
= ρ

for c fixed and q growing.

Besides Reed-Solomon codes, in [15] algebraic-geometric codes are also proposed

as outer codes. As noted in Section 4.4, replacing ordinary separating codes by almost

separating codes enables us to double the asymptotical rate of the fingerprinting codes

proposed in [15].

4.5.3 Efficient Decoding

Finally, it is worth noting here that the main reason for Construction 4.14, Theo-

rem 4.15 and Corollary 4.16 is to mimic the following strategy from [15]. If the outer

code Cout is a Reed-Solomon (or an algebraic-geometric code), then traitor identifica-

tion can be efficiently done in polynomial time by using the list-decoding algorithms

from [41].

We now show how using the Kötter-Vardy algorithm, as in Section 3.4.1, all

codewords w ∈ Cout that satisfy (4.16) can be found in polynomial time. To see this,

for 1 ≤ j ≤ q and 1 ≤ i ≤ n, set up a q-by-n reliability matrix R = (rji) as

rji =



1− ξ
c

if αj ∈ Zi,

ξ

q − c
if αj 6∈ Zi and Zi 6= ∅,

1

q
otherwise.
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If there are no more than nσ empty sets Zi, the condition of successful decoding for

w reduces to

(n− nσ)1−ξ
c

+ nσ 1
q√

(n− nσ) (1−ξ)2
c

+ nσ 1
q

>

√
n(1− σ)

c2
+
n(c− 1)

c(q − c)
. (4.21)

It is easy to see that the left-hand side in the condition above is maximized for

ξ = 0. This matches the intuition. By the almost (c, c)-separating or almost c-secure

frameproof property of the inner code, we conclude that in any nonempty subset Zi,
at least one of the symbols matches an element from Pi(W ). Setting ξ = 0 means

that the error needs only to be “spread” among the elements of Zi. Under this

circumstance, condition (4.21) is met when the outer code satisfies (4.19).

4.6 Conclusion

In this chapter we have presented two different relaxed versions of (c, c)-separating

codes, namely almost (c, c)-separating and almost c-secure frameproof codes. The

notions introduced allows us to separate two concepts that coincide in the case of

absolute separation.

To show existence bounds for almost (c, c)-separating codes we have used the

concept of typicality. Two distinct approaches are considered. In the first approach,

we consider that a typical set of at most c codewords is separated with very high

probability, with all other disjoint sets also of at most c codewords. This analysis

shows that there exists almost (c, c)-separating codes that double the asymptotical

rate of ordinary separating codes. In the second approach, we have used a refined

analysis, applicable to the binary case, which allows us to show the existence of codes

with even better rates.

For almost c-secure frameproof codes we have used a probabilistic analysis show-

ing that there exist c-secure frameproof codes with asymptotical rate four times the

asymptotical rate of ordinary (c, c)-separating codes.
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We believe that these two notions are essentially different, in particular, we con-

jecture that for asymptotical rates

RSFP*
q (c) > Rsep*

q (c),

but it could be a rather difficult question since even for the simplest case q = c = 2

the best upper bound for the rate of (2, 2)-separating codes R
sep

2 (2, 2) ≤ 0.2835 is

very far from being “useful.”

Finally, we have presented a concatenated construction of a family of fingerprinting

codes. The use of almost (c, c)-separating codes as inner codes allows us to obtain

better rates preserving the exponential decline of the error probability on the outer

code length, and it also allows us to obtain a polynomial-time identification algorithm.

The results of this chapter have been published in [4, 5, 9].



Chapter 5

Construction of Almost Secure

Frameproof Codes

In this chapter we discuss the construction of almost secure frameproof codes over

binary alphabets. Recall that the notions of separating and secure frameproof code

coincide when we are considering their ordinary version. Relaxing the definition of a

separating code in two different ways allows us to obtain two different notions, as it

was shown in Chapter 4, where we showed their application to fingerprinting schemes.

For instance, they are useful to construct a family of fingerprinting codes in the style

of [15], improving the lower bound on the asymptotical rate.

We will connect the concept of almost secure frameproof code from Definition 4.10

with the concept of weakly biased arrays [56], which is closely related to small-bias

probability spaces [57, 58]. Let us consider an n-by-M matrix A = (aij) with entries

from F2, which is commonly called a binary array. Also, for each subset of indices

S ⊆ {1, . . . ,M}, let us call the sum
∑

j∈S aij the parity vector of S. The array

A is weakly biased if the parity vector of every subset S has, approximately, the

same number of zeros and ones. Note that if A contains every possible row from FM2
repeated the same number of times, then A can be regarded as unbiased.

If A is weakly biased and (X1, . . . , XM) is a random vector generated by choosing

a row of a binary array A uniformly at random, then the r.v.’s X1, . . . , XM are readily

seen to be “almost” independent. Let S = {i1, . . . , is} ⊆ {1, . . . ,M} be a subset of

81
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s ≤ t indices. We say that the array A is ε-away from t-wise independence if the

induced probability distribution on the r.v.’s Xi1 , . . . , Xis is “close” to the uniform

distribution on Fs2 for every possible subset S of size at most t.

Since every subset of t columns of an ε-away from t-wise independence array A

generates an “almost” uniform distribution on Ft2, then the array A has an interesting

property. For a small enough value of ε, every Ft2-configuration, i.e., every vector

from Ft2, appears in every subset of t columns. A set of rows (vectors) satisfying this

property constitute what is known as an (M, t)-universal set. This observation will

prove very useful for our purposes, since for t = 2c an (M, t)-universal set of size n

immediately generates a (c, c)-separating code.

From Definitions 4.6 and 4.10 it is easy to see that a code is a (c, c)-separating

code if and only if it is a c-secure frameproof code. However, when the definitions of

separation and frameproofness are relaxed, then both notions are different. Intuitively

it seems clear that almost separation is a more strict requirement than almost secure

frameproofness. In fact, we already showed in Chapter 4 that there exist almost se-

cure frameproof codes with a much higher rate than almost separating codes [4]. The

strategy used to establish the existing lower bounds in the asymptotical rates of al-

most separating and almost secure frameproof codes relies on a standard probabilistic

argument. It has been shown that there exist codes that achieve such rates within

an ensemble of codes, in which every codeword u = (u1, . . . , un) has been chosen at

random with Pr{ui = 0} = Pr{ui = 1} = 1/2 for each position 1 ≤ i ≤ n.

We are now in the position to underline the structure of the chapter. In Section 5.1

we provide some useful definitions and a brief overview of previous results. The main

contribution is discussed in Section 5.2. We begin by proving that the above choice of

probabilities Pr{ui = 0} = Pr{ui = 1} = 1/2 is in fact the appropriate one to use to

obtain codes with good separation properties. With this in mind we move into weakly

biased arrays, where by adjusting the bias we provide explicit constructions for sets

of vectors that are almost (M, t)-universal. Finally, we show that these constructions

are useful to construct almost c-secure frameproof codes, which, using the results

from Chapter 4, yield an explicit construction of a c-secure fingerprinting codes with

small error and efficient identification algorithm.
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5.1 Weakly Biased and Weakly Dependent Arrays

In this section we present the concepts about weakly biased and weakly dependent

arrays that will be used in the constructions below. We will concentrate on the binary

case, since our goal is to construct binary almost secure frameproof codes. Weakly

biased and weakly dependent arrays are strongly related to small-bias probability

spaces. For a more detailed exposition, we refer the reader to [56,57,58].

Consider the finite field F2 = {0, 1}. A binary (n,M)-array A is an n-by-M

matrix whose entries are elements from F2. For a binary (n,M)-array A and a subset

of indices S ⊆ {1, . . . ,M} of size s, let us denote νS(a;A) the number of rows of A

whose projection onto the indices of S equals the vector a ∈ Fs2. We will omit the

subindex S whenever s = M , i.e., when we are considering the whole rows of the

array. In particular, for a binary vector of length n, u ⊆ Fn2 , viewed as a binary

(n, 1)-array, ν(0; u) and ν(1; u) denote its number of zeros and ones, respectively.

Definition 5.1. Let u = (u1, . . . , un) ∈ Fn2 . The bias of vector u is defined as

n−1|ν(0; u)− ν(1; u)|.

That is, a vector u which has approximately the same number of zeros and ones

has small bias.

Definition 5.2. Let 0 ≤ ε < 1. A binary (n,M)-array is ε-biased if every nontrivial

linear combination of its columns has bias ≤ ε.

In other words, the bias of an array A is the bias of the linear binary code C

generated by its columns. By definition, the bias of A is low if the bias of every

nonzero codeword from C is low. Explicit constructions of ε-biased (n,M)-arrays,

with n = 2O(logM+log 1
ε

), can be found in [57].

The previous definition can be restricted by allowing a maximum number of

columns in the linear combination.

Definition 5.3. Let 0 ≤ ε < 1. A binary (n,M)-array is t-wise ε-biased if every

nontrivial linear combination of at most t columns has bias ≤ ε.



84 5. Construction of Almost Secure Frameproof Codes

We will also need the concepts of ε-dependent and ε-away from t-wise indepen-

dence arrays.

Definition 5.4. Let 0 ≤ ε < 1. A binary (n,M)-array A is t-wise ε-dependent if for

every subset S ⊆ {1, . . . ,M} of s ≤ t columns and every vector a ∈ Fs2, we have

|n−1νS(a;A)− 2−s| ≤ ε.

Definition 5.5. Let 0 ≤ ε < 1. A binary (n,M)-array A is ε-away from t-wise

independence if for every subset S ⊆ {1, . . . ,M} of s ≤ t columns, we have

∑
a∈Fs

2

|n−1νS(a;A)− 2−s| ≤ ε.

Remark 5.6. If the binary (n,M)-array A is t-wise ε-dependent, then it is 2Mε-

away from t-wise independence, and if A is ε-away from t-wise independence, then it

is t-wise ε-dependent.

As commented above, these definitions have an interpretation as a small-bias

probability space [57,58]. If the r.v.’s X1, . . . XM take uniformly at random the corre-

sponding values of a row of an (n,M)-array A that is ε-away from t-wise independence,

then any t of the r.v.’s are “almost independent,” provided that ε is small. Hence,

one would like to obtain such arrays A with n (the size of the sample space) as small

as possible.

For our purposes, the most important concept will be that of (M, t)-universal set.

Now, we have the following definition.

Definition 5.7. An (M, t)-universal set B is a subset of FM2 such that for every

subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements of B on

the indices of S contains every Ft2-configuration.

Let A be a binary (n,M)-array. Observe that if for every subset S ⊆ {1, . . .M} of

t columns and every vector a ∈ Ft2 we have νS(a;A) > 0, then the rows of A form an

(M, t)-universal set. We are interested in universal sets of as small size as possible.
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In [57] the relationship between this concept and ε-away from t-wise independence

arrays was shown.

Proposition 5.8. Let A be a binary (n,M)-array A. For ε ≤ 2−t, if A is ε-away

from t-wise independence, then the rows of A yield an (M, t)-universal set of size n.

Moreover, the following result [57, 59, 60] also relates these concepts with the

concept of ε-biased arrays.

Corollary 5.9. Let A be a binary (n,M)-array A. If A is ε-biased, then A is 2t/2ε-

away from t-wise independence.

Hence, the construction of universal sets is reduced to the construction of ε-

away from t-wise independence arrays by Proposition 5.8, which is reduced to the

construction of ε-biased arrays by Corollary 5.9.

We will have occasion to use Corollary 5.9 in the next section, where an even

more convenient method to construct ε-away from t-wise independence arrays will be

discussed.

5.2 Constructions

In this section we present our constructions for almost secure frameproof codes. Before

dwelling into explicit details we give an intuitive reasoning of our discussion.

First, we will show that the expected value of the probability that two c-coalitions

are separated in a random binary code is maximized when the codewords are gener-

ated according to a probability vector p = (p1, . . . , pn) such that p1 = · · · = pn = 1/2.

That is, we generate M random codewords (u1, . . . , un) with Pr{ui = 1} = pi = 1/2.

But since we are interested in almost secure frameproof codes, we will be able to allow

a small bias on these probabilities and therefore consider weakly biased arrays.

From [57], and by using the definitions and results from the previous section it

can be seen that from weakly biased arrays we can obtain (M, t)-universal sets of size

n = log2M · 2O(t). If we arrange the vectors of this universal set as the rows of an

(n,M)-array, the columns of that matrix form a c-secure frameproof code for t = 2c.
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This code has size M , length n = log2M · 2O(2c) and rate 2−O(2c). The main idea is

to allow a given number of Ft2-configurations in the universal set not to appear. This

relaxation yields what we call an almost universal set. We finally prove that almost

universal sets can be used to generate ε-almost c-secure frameproof codes with ε a

function of the fraction of configurations allowed not to appear.

5.2.1 Separation in Random Codes

We start by making some observations about random codes. Let us assume that C is

an (n,M)-random code generated according to a probability vector p = (p1, . . . , pn),

where p is chosen according to pmf fp. That is, we first generate a probability

vector p of length n, distributed according to fp, and then we randomly generate M

binary vectors u = (u1, . . . , un) such that Pr{ui = 1} = pi. We would like to know

which probability distribution fp maximizes the probability that two c-coalitions are

separated in a code generated in this way.

Lemma 5.10. Let C be an (n,M)-random code, whose codewords are generated ac-

cording to the probability vector p = (p1, . . . , pn). If the entries of p are iid r.v.’s, then

the expected value of the probability that two c-coalitions are separated is maximized

by taking p1 = · · · = pn = 1/2.

Proof. Note that for a given p the probability that two c-coalitions U, V are not

separated is
∏n

i=1(1− 2pci(1− pi)c).
Hence, we have

Efp

[
1−

n∏
i=1

(1− 2pci(1− pi)c)
]
= 1− (1− 2Efp [pc(1− p)c])n,

which follows after assuming that the components of p are iid r.v.’s distributed ac-

cording to fp. Observe that this expectation is maximized simply by considering a

pmf that takes 1 on the maximum of the argument of the expectation and 0 otherwise.

Since pc(1− p)c is symmetric around 1/2, the expected value is maximized simply by

taking p = 1/2 with probability 1.
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The previous lemma suggests that codes with approximately the same number of

zeros and ones in each row of the codebook are good candidates to be (c, c)-separating

codes. Equivalently, for each set of 2c rows of the codebook, one would expect that

every possible F2c
2 -configuration exhibit a uniform distribution approximately. In fact,

there exist constructions of (c, c)-separating codes which are based on this observa-

tion [61].

5.2.2 Universal and Almost Universal Sets

Universal sets have been described in Definition 5.7. Moreover, it has been shown

that the construction of universal sets can be reduced to the construction of ε-biased

arrays.

It is easy to see that an (M, 2c)-universal set of size n also yields a (c, c)-separating

(n,M)-code [61]. To see this, let A be an (n,M)-array whose rows form an (M, 2c)-

universal set. Now, regard the columns of A as the codewords of a code C. Consider

two disjoint c-subsets U, V ⊆ C, i.e., 2c columns of A. Since the rows of A are

an (M, 2c)-universal set, this means that for the selected 2c columns every possible

F2c
2 -configuration appears. In particular, there is a row i where all the columns cor-

responding to U contain symbol 0 and all the columns corresponding to V contain

symbol 1 in that particular row. Hence i is a separating position for coalitions U, V ,

i.e., Pi(U) ∩ Pi(V ) = ∅, as desired. Recall again that this is the same as a c-secure

frameproof code when we are talking about absolute separation.

Efficient constructions of (M, 2c)-universal sets using ε-biased from 2c-wise inde-

pendence arrays are presented in [57], by virtue of Proposition 5.8 and Corollary 5.9.

These constructions yield a (c, c)-separating code of length log2M · 2O(2c). Using this

idea, we aim to relax the constraint imposed by the (M, 2c)-universality to obtain a

code with a better rate. In fact, we do not need that every possible F2c
2 -configuration

appears in the code, for every choice of 2c codewords. Hence, we propose to relax

Definition 5.7 by allowing a fraction of vectors a ∈ F2c
2 , not to appear in the projec-

tion on a subset S ⊆ {1, . . . ,M} of 2c positions. This is formalized in the following

definition.



88 5. Construction of Almost Secure Frameproof Codes

Definition 5.11. An ε-almost (M, t)-universal set B is a subset of FM2 such that for

every subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements of

B on the indices of S contains a fraction of 1− ε or more Ft2-configurations.

Again, if A is a binary (n,M)-array, the rows of A generate an ε-almost (M, t)-

universal set provided that there are at least 2t(1 − ε) vectors a ∈ Ft2 such that

νS(a;A) > 0, for every subset S ⊆ {1, . . . ,M} of t columns.

Similarly as Proposition 5.8, the following results show the connection between

ε-almost (M, t)-universal sets and ε-away from t-wise independence arrays.

Proposition 5.12. Let A be a binary (n,M)-array A. If A is (ε + 2−t)-away from

t-wise independence, then the rows of A yield an ε-almost (M, t)-universal set of

size n.

Proof. Assume by contradiction that the rows of A do not yield an ε-almost (M, t)-

universal set. In other words, there is a subset S ⊆ {1, . . . ,M} of t columns such

that there are strictly more than 2tε configurations a ∈ Ft2 such that νS(a;A) = 0.

For this particular subset S we have

∑
a∈Ft

2

|n−1νS(a;A)− 2−t|

≥ (b2tεc+ 1)2−t +
∑

a∈Ft
2 s.t.

νS(a;A)>0

|n−1νS(a;A)− 2−t|

(a)

≥ (b2tεc+ 1)2−t + 1− 2−t(2t − b2tεc − 1) = (b2tεc+ 1)2−t+1.

Inequality (a) follows after applying the Pareto optimality criterion for resource allo-

cation with additive convex objective. It is routine to check that

(b2tεc+ 1)2−t+1 > ε+ 2−t

for all ε ≥ 0. This contradicts the fact that A is (ε+ 2−t)-away from t-wise indepen-

dence.
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5.2.3 Construction of Almost Universal Sets

As Proposition 5.12 states, the construction of an ε-almost (M, t)-universal set reduces

to constructing an (ε+2−t)-away from t-wise independence array, and by Corollary 5.9,

it reduces to the construction of a weakly biased array. Moreover, it is easy to see

that the array A from Corollary 5.9 can be regarded as a t-wise ε-biased array, which

is a less restrictive condition than an ε-biased array.

A standard construction of t-wise ε-biased binary arrays is also presented in [57].

Theorem 5.13. Let A be an ε-biased binary (n,M ′)-array, and let H be the parity-

check matrix of a binary [M,M −M ′]-code with minimum distance t+ 1. Then, the

matrix product A×H is a t-wise ε-biased (n,M)-array.

Usually, the matrix H used in Theorem 5.13 above is the parity-check matrix

of a binary [M,M − M ′]-BCH code with minimum distance t + 1. In this case,

the matrix H has M columns and M ′ = t log2M rows. It is shown in [57] that,

by using Theorem 5.13 in Corollary 5.9, the number of rows of an ε-away from t-

wise independence (n,M)-array can be reduced from n = 2O(t+logM+log 1
ε

) to n =

2O(t+log logM+log 1
ε

).

The problem now reduces to obtain binary ε-biased (n,M)-arrays with n as small

as possible. From [58], we have the following result.

Theorem 5.14. There exists an explicit construction of a binary (n,M)-array that

is ε-biased, with

n ≤ 22(log2M+log2
1
ε

).

However, in [56], better explicit construction of ε-biased arrays are given, when

the parameters satisfy some required conditions. The best construction shown there

is based in Suzuki codes. Below we rewrite [56, Theorem 10] in our notation.

Theorem 5.15. If log2M > 3 log2
1
ε
, then there exists an explicit construction of a

binary (n,M)-array that is ε-biased, with

n ≤ 23/2 (log2M+log2
1
ε

)+2.
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Hence, to construct an ε-almost (M, t)-universal set we can proceed as follows.

Construction 5.16. Let M and t be integers and 0 ≤ ε < 1.

1) Construct an (n,M ′)-array A′ that is ε′-biased, where we take M ′ = t log2M

and ε′ = 2−t/2(ε+ 2−t).

2) Construct the parity-check matrix H of a BCH code of length M , codimension

M ′ = t log2M and minimum distance t+ 1.

3) The matrix product A = A′ ×H generates a t-wise ε′-biased (n,M)-array.

4) By Corollary 5.9, the array A is also (ε+ 2−t)-away from t-wise independence.

5) Hence, by Proposition 5.12, the rows of A generate an ε-almost (M, t)-universal

set.

Observe that the conditions of Theorem 5.15 apply in Step 1) in the construction

above when log2M
′ > −3 log2

(
2−t/2(ε+ 2−t)

)
, i.e.,

log2 t+ log2 log2M > 3 t/2− 3 log2(ε+ 2−t).

The resulting ε-almost (M, t)-universal set, using Theorem 5.15, has size

n ≤ 23/2(t/2+log2 t+log2 log2M−log2(ε+2−t))+2.

We remark that the condition above, even though analytically meaningful, it is only

satisfied for impractically large values of M . That is, it will lead to codes with

an excessively large number of codewords. For practical scenarios, using the con-

structions for weakly biased arrays given from Theorem 5.14, the resulting ε-almost

(M, t)-universal sets have size

n ≤ 22(t/2+log2 t+log2 log2M−log2(ε+2−t)). (5.1)

In both cases the length of the construction is n = log2M · 2O(t−log(ε+2−t)).

We conclude this section with the following result that will be useful below.

Lemma 5.17. Let B be an ε-almost (M, t)-universal set. Then, B is an (M, t′)-

universal set with t′ = min{t,
⌈
log2

1
ε

⌉
− 1}.
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Proof. For each subset S ⊆ {1, . . . ,M} of t indices, let z = 2tε denote the maximum

number of missing Ft2-configurations. Observe that if z < 2t−t
′
, then B is (M, t′)-

universal. To see this, note that to remove an Ft′2 -configuration we need to remove,

at least, 2t−t
′ Ft2-configurations. Hence, as long as t′ is so that the aforementioned

condition is satisfied, i.e., t′ < log2
1
ε
, the set B is (M, t′)-universal.

5.2.4 Application to Almost Secure Frameproof Codes

Recall from Section 5.2.2 that for t = 2c an (M, t)-universal set of size n generates a c-

secure frameproof (n,M)-code. Now, take an (n,M)-array A whose rows generate an

ε′-almost (M, t)-universal set B with t ≥ c, and regard its columns as the codewords

of a code C. Since C is generated from an (n,M)-array A it is an (n,M)-code of rate

R = log2M/n.

Now, let us focus on the frameproof properties of such a code C. According to

Lemma 5.17, for t ≥ 2c and ε′ < 2−2c, the ε′-almost (M, t)-universal set B is (M, 2c)-

universal and hence, C is c-secure frameproof, as we have just recalled. If t < 2c, or

if t ≥ 2c and ε′ ≥ 2−2c, then B is not (M, 2c)-universal. However, in this latter case,

it could happen that C is still c-secure frameproof. Note that a c-secure frameproof

code only needs a separating position for every pair of c-subsets, which is a less strict

requirement than (M, 2c)-universality. This means that, in order to lose the c-secure

frameproof property, we have to remove, at least, a fraction of

ε ≥ 2t−2c + 2t−2c

2t
= 2−2c+1

Ft2-configurations from each projection of t positions of the (M, t)-universal set.

In the cases just mentioned, the underlying code has to be regarded as an almost

secure frameproof code. For technical reasons, we restrict our study to the case t > c.

For t < c, even using (M, t)-universal sets, it is not guaranteed the existence of enough

positions where all the codewords of a c-coalition have the same code element, which

will be a requirement in the proof below. Also, for t = c an (M, t)-universal set from

Construction 5.16 only guarantees the existence of two such positions.
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The following proposition formalizes the relationship between ε-almost c-secure

frameproof codes and ε′-almost (M, t)-universal sets that we have constructed above.

Proposition 5.18. Let c ≥ 2, t, M be integers such that M ≥ 2c, and let one of the

following conditions be satisfied

1) c < t < 2c and 0 ≤ ε′ < 2−c − 2−t, or

2) t ≥ 2c and 2−2c+1 ≤ ε′ < 2−c − 2−t.

Then, an ε′-almost (M, t)-universal set of size n from Construction 5.16 generates an

ε-almost c-secure frameproof (n,M)-code, for

ε ≥M c(1− 2−c + 2−t + ε′)n. (5.2)

Proof. Consider a code C generated from an ε′-almost (M, t)-universal set B, as

stated. By virtue of Lemma 5.17, B is an (M, c)-universal set when either condition

is satisfied. Let A be the (n,M)-array used to construct B, which, according to

Proposition 5.12, is (2−t + ε′)-away from t-wise independence. Moreover, as noted

in Remark 5.6, it is also a t-wise (2−t + ε′)-dependent array. This means that every

Fc2-configuration appears in every subset of c columns with probability p satisfying

2−c − 2−t − ε′ ≤ p ≤ 2−c + 2−t + ε′.

In other words, the codewords of a random c-coalition from C have the same symbol

in a given position with probability p.

Now, we can operate similarly as in Theorem 4.11. Let z be a descendant generated

by some c-coalition of the code, z ⊆ descc(C). The probability that z belongs to

another c-coalition V is at most (1 − p)n. Indeed, for every position 1 ≤ i ≤ n,

the probability Pr{zi ∈ Pi(V )} is ≤ 1 − p. Hence, by using the union bound, we

can bound the probability that z is generated by some other coalition of the code

as ≤ M c(1 − p)n. The ratio (probability) of not uniquely decodable descendants in

descc(C) is therefore ≤ ε, which means that C is an ε-almost c-secure frameproof

(n,M)-code.
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Remark 5.19. Observe that in Proposition 5.18 above there is the requirement that

the ε′-almost (M, t)-universal set be generated from an (2−t + ε′)-away from t-wise

independence array. If this is not the case, for t > c, an arbitrary ε′-almost (M, t)-

universal set only guarantees that every Fc2-configuration is repeated at most 2t−c

times. Consequently, each c-coalition is guaranteed to have only 2t−c constant-valued

positions. This would yield an ε-almost c-secure frameproof code with ε ≥M c 2−2t−c
,

which is of impractical use.

In order to ease the analysis, one could assume that for every subset of at most c

indices, each possible Ft2-configuration appears with uniform probability in the (M, c)-

universal sets in the proof above, obtaining ε-almost c-secure frameproof codes for

ε ≥ M c(1 − 2−c)n. This is a reasonable assumption, since universal sets generated

from weakly biased arrays are indeed “almost uniform” probability sample spaces.

However, the error probability from Proposition 5.18 is already negligible, and this

assumption would not handle the case t = c properly.

5.2.5 Results for Some Coalition Sizes

In Table 5.1 we show the computed code rates for ε-secure frameproof codes from

Proposition 5.18, for the case of coalitions of size c = 2 and 3. We are consider-

ing ε′-almost (M, t)-universal sets with t = 2c and, at most, z = 2tε′ missing Ft2-

configurations. Recall that when ε′ < 2−2c+1, i.e., z < 2 in this example, the code is

(c, c)-separating, that is ε = 0. The value of ε provided in the table corresponds to the

worst-case for every given row. The code rates have been computed for code sizes of

M = 103, 104, 105, 106 and 107 users, using the constructions of almost universal sets

derived from weakly biased arrays constructed according to Theorem 5.14. Note how

the code rate increases significatively as z = 2tε′ increases. For example, for c = 2,

we can obtain almost 2-secure frameproof codes with small error and with a rate

10 times higher than that of ordinary (2, 2)-separating codes constructed according

to [61] (equivalent to the first row of Table 5.1).
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Code size
c z log10 ε M = 103 M = 104 M = 105 M = 106 M = 107

2 0 n/a 1.531 · 10−6 1.148 · 10−6 9.187 · 10−7 7.656 · 10−7 6.562 · 10−7

2 1 n/a 6.124 · 10−6 4.593 · 10−6 3.675 · 10−6 3.062 · 10−6 2.625 · 10−6

2 2 −2.26 · 104 1.378 · 10−5 1.034 · 10−5 8.268 · 10−6 6.890 · 10−6 5.906 · 10−6

3 0 n/a 1.063 · 10−8 7.975 · 10−9 6.380 · 10−9 5.316 · 10−9 4.557 · 10−9

3 1 n/a 4.253 · 10−8 3.190 · 10−8 2.552 · 10−8 2.127 · 10−8 1.823 · 10−8

3 2 −3.79 · 106 9.569 · 10−8 7.177 · 10−8 5.742 · 10−8 4.785 · 10−8 4.101 · 10−8

3 3 −1.64 · 106 1.701 · 10−7 1.276 · 10−7 1.021 · 10−7 8.506 · 10−8 7.291 · 10−8

3 4 −7.81 · 105 2.658 · 10−7 1.994 · 10−7 1.595 · 10−7 1.329 · 10−7 1.139 · 10−7

3 5 −3.59 · 105 3.828 · 10−7 2.871 · 10−7 2.297 · 10−7 1.914 · 10−7 1.640 · 10−7

3 6 −1.31 · 105 5.210 · 10−7 3.908 · 10−7 3.126 · 10−7 2.605 · 10−7 2.233 · 10−7

Table 5.1: Some attainable code rates for explicit constructions of ε-almost c-secure
frameproof codes of size between 103 and 107.

5.2.6 Explicit Constructions of Fingerprinting Codes

Finally, we show how binary ε-almost c-secure frameproof codes can be used to ex-

plicitly construct a family of binary fingerprinting codes with an efficient decoding

algorithm.

In Chapter 4 existence conditions for a family of concatenated fingerprinting codes

is proposed, using a Reed-Solomon as outer code and an almost separating or almost

secure frameproof codes as inner code. Note that, from (5.1), the rate R of the binary

ε-almost c-secure frameproof (n,M)-codes from Proposition 5.18 attain its maximum

value for t = c+ 1, that is,

R ≤ 2−2( 3
2

(c+1)+log2(c+1))−log2 log2M .

Hence, combining Corollary 4.16 with the results from this chapter we have the fol-

lowing result.

Corollary 5.20. Let q, c, t, be integers, q > c2, t > c. Moreover, let εin and σ be so

that

εmin
in ≤ εin < σ <

q − c2

q − c
,
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where εmin
in depends on q, t and c. Then, for any fixed rate R such that

R <
1− σ
c(c+ 1)

Rin, with Rin ≤ 2−2( 3
2

(c+1)+log2(c+1))−log2 log2 q,

there exists an explicit construction of a c-secure with ε-error family of binary codes

C = {Ct}t∈T of length n, with polynomial-time identification algorithm, rate R, and

error probability ε decreasing exponentially as

ε ≤ 2−n(
1−σ
c
Rin−(c+1)R+o(1)) + 2−nD(σ‖εin).

Remark 5.21. The parameter εmin
in in the previous corollary takes its value from (5.2).

Then, it depends on the parameters q, t and c according to the associated (2−t + ε′)-

away from t-wise independence array used in Proposition 5.18.

As noted in Chapter 4, the use of almost secure frameproof codes instead of ordi-

nary secure frameproof codes introduces an additional error term in the identification

process. Note again that this error term decreases exponentially with the outer code

length.

5.3 Conclusion

Almost separating and almost secure frameproof codes are two relaxed versions of

separating codes. In this chapter, we have presented explicit constructions of almost

secure frameproof codes.

Our work has started with the study of the connection between weakly dependent

arrays and universal sets, and the subsequent connection between universal sets and

separating codes.

Starting with this idea, we have introduced a relaxation in the definition of a

universal set. We show that an almost universal set can be used to construct an almost

secure frameproof code. This observation has lead us to the explicit constructions of

almost secure frameproof codes presented. We have proposed a construction based on

Suzuki codes, which provide one of the best constructions known for weakly biased
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arrays. For practical uses, however, we have to switch to the constructions of small-

bias probability spaces proposed by Alon et al.

We remark that, as expected, the explicit constructions presented are somewhat

far from the theoretical existence bounds shown in earlier works. For example, prob-

abilistic arguments from Chapter 4 show the existence of asymptotically almost 2-

secure frameproof families of codes of rate R = 0.2075, whereas the explicit construc-

tions that we have presented above provide codes of rate below this figure. Never-

theless, our work shows the existence of constructible almost secure frameproof codes

of much higher rate than secure frameproof codes based on weakly biased arrays.

Also, the main point of our work is to present the first explicit and practical-use

constructions for such families of codes.

We have also shown how the proposed constructions can be used to explicitly

construct a family of fingerprinting codes. The construction presented is based on

the theoretical existence results, also from Chapter 5, which assumed the existence

of almost secure frameproof codes. Hence, another of the main contributions of this

chapter has been to provide a “real” implementation of such a theoretical existence

result for a fingerprinting scheme. As discussed in Theorem 4.15 and Corollary 4.16,

replacing ordinary separating codes by almost secure frameproof codes introduces an

additional error term in the identification of guilty users that, fortunately, decreases

exponentially with the outer code length.

Finally, we would like to note that even though a universal set is a separating

code, the relationship between an almost universal set and an almost separating code

is by no means evident and will we the subject of future research.

The results of this chapter have been published in [10].



Chapter 6

The Separating and Traceability

Properties of Reed-Solomon Codes

Under the narrow-sense envelope model it is possible to identify traitors with zero-

error probability. Recall from Section 2.1 that c-IPP and c-TA codes allow the un-

ambiguous identification of traitors from coalitions of size at most c. The existence

conditions for IPP codes are less strict than those for TA codes. Also, as opposed to

TA codes, IPP codes do not have an efficient identification algorithm in the general

case, i.e., they cannot be decoded using a minimum-distance decoding algorithm. On

the other hand, separating codes possess weaker identification capabilities, and do

not guarantee unambiguous identification of traitors. It is a well-known result (2.7)

that a TA code is an IPP code, and an IPP code is a separating code. The converse

is in general false. However, it has been conjectured that for Reed-Solomon codes

all three properties are equivalent. In this chapter we investigate this equivalence,

providing a positive answer for a large number of cases.

The motivation for the work in this chapter comes from a problem posed by

Silverberg et al. in [36, 37], regarding the connection between the IPP and the TA

properties of Reed-Solomon codes. However, it is worth noticing here that a more

general question was introduced earlier by Sagalovich in [21].

This chapter is organized as follows. In the next section we introduce the topic

and present some previous results. In Section 6.2 we present the main results of the

97
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chapter, showing the equivalence of some combinatorial properties for Reed-Solomon

codes, when certain conditions are met. Next, in Section 6.3 we provide an illustrative

example and a table summarizing the results. Finally we present the conclusions.

6.1 Statement of the Problem

Let us begin this section by introducing some concepts and notation that will be

useful in this chapter.

Let C be an (n,M)-code, and let U, V ⊆ C be two (disjoint) subsets of size c and

c′, respectively. Consider the projections Pi(U), Pi(V ) on the ith position as defined

in (2.2). Similarly as in [21], let us denote by θ(U, V ) the number of separating

positions between U and V , i.e.,

θ(U, V )
def
= |{i : Pi(U) ∩ Pi(V ) = ∅, 1 ≤ i ≤ n}|. (6.1)

According to the nomenclature introduced in Chapter 4, if θ(U, V ) = 0, then the

subsets U and V are not separated. Also, for a code C, let us denote θc,c′(C) the

smallest value θ(U, V ) attained for disjoint subsets U, V ⊆ C of size c and c′, respec-

tively. We shall immediately become less formal and we will simply use θc,c′ when the

code under study C is clear from the context. Of course, θc,c′ = θc′,c, and although

in general θ(U, V ) is not a metric in the mathematical sense of the term, clearly,

θ({u}, {v}) = d(u,v) and θ1,1 = d(C).

The values θc,c′ will be useful in the characterization of codes with separating and

traceability properties. In fact, a (c, c′)-separating code can be defined as a code C

that satisfies θc,c′ > 0.

Combining (2.7) with the results from [62] it is easy to see that for a code C

d(C) > (1− 1/c2)n⇒ θc,1 > (1− 1/c)n

⇒ c-TA⇒ c-IPP⇒ (c, c)-separating. (6.2)
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6.1.1 The Separating and Traceability Properties in MDS

Codes

The Singleton bound states that for an (n,M)-code with minimum distance d, we

have M ≤ qn−d+1. Codes that achieve equality in the Singleton bound are called

maximum distance separable (MDS) codes. Therefore, linear MDS [n, k]-codes have

minimum distance d = n− k + 1.

Even though the implications in (6.2) are well-known and obvious, it took several

years to prove the converse of the first and second implication for linear MDS codes.

The next result first appeared in [62].

Theorem 6.1 ([62, Theorem 2.3]). Let C be an MDS [n, k]-code with minimum

distance d over the finite field Fq such that n ≤ q + 1. Then, for c ≥ 2, C is a c-TA

code if and only if d > (1− 1/c2)n.

Putting this together with (6.2), we conclude that if C is a linear MDS [n, k]-code,

then

d(C) > (1− 1/c2)n⇔ θ1,c > (1− 1/c)n⇔ c-TA.

A well-known family of linear MDS codes are Reed-Solomon codes [46, 47]. Con-

sider the following definition.

Definition 6.2. Let Γ = {γ1, . . . , γn} be a subset of n elements of Fq, called evaluation

points. We define the [n, k]-code G(n, k) over Fq as

G(n, k)
def
= {(f(γ1), . . . , f(γn)) : f(x) ∈ Fq[x], deg f(x) < k}.

Note that the code G(n, k) is a linear MDS code, irrespective of the choice of the

set of evaluation points. If Γ is the multiplicative group of the ground field, F∗q, then

G(n, k) is the [n, k]-Reed-Solomon code as described in Definition 3.1. If Γ = Fq, then

it is known as extended Reed-Solomon code.

In [36, 37], the authors posed the following question.

Question 6.3. Is it the case that d > (1− 1/c2)n for all c-IPP Reed-Solomon codes

of length n and minimum distance d?
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In fact, we will see below that, for many families of Reed-Solomon codes, the

condition d ≤ (1− 1/c2)n implies not only losing the c-IPP property, but also losing

the (c, c)-separating property. Hence, the converse of all the implications in (6.2)

holds for such families.

Let C ′ and C be [n, k′] and [n, k]-Reed-Solomon codes, respectively, over Fq. Ob-

serve that for k′ ≤ k, we have C ′ ⊆ C ⊆ Fnq . Therefore, to provide a positive answer

to the question above, we only need to show that the [n, k]-Reed-Solomon code over

Fq with k = dn/c2e+ 1 has θc,c = 0, for every possible pair of values q and c.

Remark 6.4. A possible strategy to tackle the question above can be as follows. If

it can be shown that the [n, k]-Reed-Solomon code has θc,c′ = max{0, n− c c′(k− 1)},
then a positive answer to the question above would be immediate. Taking c = c′ and

d = n−k+1 ≤ (1−1/c2)n would imply θc,c = 0. This strategy was somehow pointed

out in [21].

The remark that we have just made suggests a generalization of Question 6.3 as

follows.

Question 6.5. Is it the case that θc,c′ = max{0, n− c c′(k− 1)} for all G(n, k) codes

from Definition 6.2?

The motivation for these questions arises from the fact that the amount of infor-

mation (fingerprint) that we can embed in a digital document is limited. Assume

that we can embed no more than n symbols from Fq. Then, there exists a c-TA

Reed-Solomon code that can allocate qk users, for any k < n/c2 + 1. If for the same

value of n the distributor needs to allocate more users, then by Theorem 6.1 the code

will not be c-TA. In this situation, is there a chance that we can still identify traitors?

The remark made above suggests that for k ≥ n/c2 + 1 there are neither c-IPP nor

(c, c)-separating codes, hence identification with zero-error probability would not be

possible.

In this chapter we are mainly concerned with giving an answer to Question 6.3.

However, the constructions presented also provide some answers for Question 6.5.



6.2. Equivalence of the Separating and Traceability Properties of RS Codes 101

6.1.2 Previous Results

In connection with Remark 6.4, an answer to the questions above for the case c = 2

can be found in [21]. It is written there that in 1986 G. D. Katsman and S. N. Litsyn

applied Mattson-Solomon polynomials and linearized polynomials to Reed-Solomon

codes obtaining

θ2,2 = n− 4(k − 1).

Taking k ≥ n/4 + 1, we have θ2,2 = 0. Therefore (2, 2)-separating⇒ d > (1− 1/4)n,

which means that the converse of every implication in (6.2) holds for Reed-Solomon

codes and the particular case c = 2. Unfortunately, the proof of this nice result has

not been published.

Also, in [36,37] a custom-made construction of G(n, k) codes is presented, defined

over sufficiently large alphabets. They have minimum distance d = (1 − 1/c2)n and

they are not (c, c)-separating. Nevertheless, no specific relation is given between the

code parameters.

In [63] a related result is presented for [n, k]-Reed-Solomon codes such that their

ground field contains the (k − 1)th roots of unity. The idea there was to restate the

separating condition algebraically, as a system of equations. From [63, Theorem 7],

and from the proof provided by the authors, the following corollary is immediate.

Corollary 6.6. Let C be an [n, k]-Reed-Solomon code over Fq with minimum distance

d. If n− d divides q − 1, then C is (c, c)-separating if and only if d > (1− 1/c2)n.

6.2 Equivalence of the Separating and Traceability

Properties of Reed-Solomon Codes

We begin by showing some upper and lower bounds of θc,c′ for linear and MDS codes.

These bounds were presented for the particular cases c = c′ = 2 in [21], and c = 1, c′

arbitrary in [62].



102 6. The Separating and Traceability Properties of Reed-Solomon Codes

Lemma 6.7. Let C be an [n, k]-code with minimum distance d = d(C), and let c, c′

be two positive integers. Then,

max{0, d− (c c′ − 1)(n− d)}≤ θc,c′ ≤max{0, d− (c+ c′ − 2)(k − 1)}. (6.3)

If C is additionally an MDS code and c, c′ ≥ 2, then

max{0, d− (c c′ − 1)(n− d)} ≤ θc,c′

≤ max{0, d− (c+ c′ − 2)(k − 1)− c− c′ + 3}. (6.4)

Proof. Let U, V be any two disjoint subsets of C of size c and c′, respectively. Note

that two different codewords of C agree in at most n−d positions. Also, from (6.1), the

number of positions i such that Pi(U)∩Pi(V ) 6= ∅, i.e., the number of nonseparating

positions, is n − θc,c′ . Hence, for every codeword u ∈ U , the codewords in V can

match together at most c′(n − d) positions of u. Since U has c elements, we have

n− θc,c′ ≤ c c′(n− d), which proves the lower bounds in (6.3) and (6.4).

To prove the upper bounds, construct two subsets U and V in the following way.

First, take any u,v ∈ C such that d(u,v) = d. Such codewords exist, by definition

of the minimum distance. Put u into U and v into V . Now insert c − 1 codewords

in U such that each one matches k − 1 disjoint positions of v, where u and v differ.

Such c − 1 codewords exist by virtue of [62, Lemma 2.2]. Equivalently, insert c′ − 1

codewords in V such that each one matches k − 1 disjoint positions of u, where u

and v differ. Therefore, the number of positions i such that Pi(U) ∩ Pi(V ) 6= ∅, i.e.,

where the elements of U and V have a common element, is n− d+ (c+ c′− 2)(k− 1),

which proves the upper bound in (6.3).

Recall that in an MDS code we can regard any k positions as information positions.

Hence, for an MDS code and c, c′ ≥ 2, we can force an additional position of every

codeword of V \{v} to match a position of a given codeword u′ ∈ U \{u}. Similarly,

we can set an additional position of each codeword of U \ {u,u′} to match a position

of any other codeword in V \{v}. This reduces the number of nonseparating positions

in c+ c′ − 3, and proves the upper bound in (6.4).
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Consider the case c = c′. For linear MDS [n, k]-codes with minimum distance d,

and from the previous lemma, it is clear that when d− 2(c− 1)(k − 1)− 2c+ 3 ≤ 0,

we have θc,c = 0. Therefore the code is not (c, c)-separating. Also, when we have

d − (c2 − 1)(n − d) > 0, then θc,c > 0 and the code is (c, c)-separating. In fact,

the latter condition implies that the code is c-TA. In conclusion, there is an “uncer-

tainty interval,” in terms of d, in which the (c, c)-separating property remains to be

characterized, namely

2(c− 1)n+ 2c− 3

2c− 1
< d ≤ (1− 1/c2)n.

6.2.1 Codes with Multiplicative Subgroups in the Ground

Field

Whenever the set of evaluation points Γ is a multiplicative subgroup with generator

element α, the code G(n, k) is (linearly equivalent to) a cyclic code. We denote by

u(i) the cyclic rotation of u ∈ Fnq in i positions to the right. In this case, it is easy to

see that if the polynomial f(x) generates the codeword u ∈ G(n, k), the polynomial

f(α−ix) generates the codeword u(i).

The following result, together with (6.2), generalizes Corollary 6.6 for any G(n, k)

code generated with a multiplicative subgroup of evaluation points, in particular it is

valid for Reed-Solomon codes.

Proposition 6.8. Let Γ be a multiplicative subgroup of F∗q. Also, let G(n, k) be

the code from Definition 6.2, generated with the set of evaluation points Γ, with

minimum distance d. If n − d divides n and d ≤ (1 − 1/c2)n, then the code is not

(c, c)-separating.

Proof. We need to show that under the conditions stated the code contains a non-

separated pair of subsets U, V each of size at most c.

Denote r = n/(k − 1), and consider the polynomial

f(x) =
k−2∏
i=0

(α−irx− 1),
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where α is a generator of Γ. Note that f(x) is a polynomial of degree k − 1. Hence,

the codeword generated from f(x), say u, is in G(n, k). It is easy to see that

f(α−rhx) = f(x) for any integer h. Hence, u(rh) = u. This, together with the

fact that the polynomial has degree k − 1, means that the codeword u consists of

k−1 concatenations of a vector of r distinct elements, say b = (b1, . . . , br). Now take

c′ = min{c, r} ≤ c and construct the following set of codewords:

U = {u(ic′) : 0 ≤ i < dr/c′e}.

From the starting assumptions, n − d = k − 1 ≥ n/c2, which implies that we have

|U | = dr/c′e ≤ c′ ≤ c. Since u is the repeated concatenation of the vector b, of

length r, and c′dr/c′e ≥ r, it is clear that for all 1 ≤ j ≤ n, there exists a codeword

u(ic′) in U such that u
(ic′)
j ∈ {b1, . . . , bc′}.

The code G(n, k) contains all the constant codewords in Fnq , hence one can con-

struct the set

V = {(bi, . . . , bi) : 1 ≤ i ≤ c′},

of size c′ ≤ c, which is disjoint from V . Since for U and V every position is not

separating, then θ(U, V ) = 0. It follows that the code is not (c, c)-separating.

Corollary 6.9. Let C be an [n, k]-Reed-Solomon code over Fq with minimum distance

d = d(C). If c ≥
√
q − 1 and d ≤ (1− 1/c2)n, then C is not (c, c)-separating.

Proof. From Proposition 6.8, if k ≥ dn/c2e+ 1 and dn/c2e divides n, then G(n, k) is

not (c, c)-separating. Reed-Solomon codes have n = q − 1. Taking c ≥
√
q − 1, we

have dn/c2e = 1, and the proof follows.

It is well-known [36, 37] that c-IPP codes over Fq do not exist for c ≥ q. The

previous corollary gives a tighter bound for the case of Reed-Solomon codes.

6.2.2 Coalition Size Dividing the Ground Field Size

This section contains the main result of the chapter, which comes in the form of the

following theorem.
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Theorem 6.10. Let C be an [n, k]-Reed-Solomon code over Fq with minimum dis-

tance d = d(C). If c divides q and d ≤ (1− 1/c2)n, then C is not (c, c)-separating.

In fact, from the proof of the theorem, one can easily see that it is valid for any

code G(n, k) with an arbitrary set of evaluation points Γ of size q − c2 < |Γ| ≤ q.

The proof is based on a special class of polynomials known as linearized polyno-

mials.

Definition 6.11. A polynomial of the form

L(x) =
h∑
i=0

lix
qi ,

with coefficients li in an extension field Fqm of Fq is called a linearized polynomial

over Fqm .

Let us present some important, well-known facts [64] about linearized polynomials.

First, if L(x) is a linearized polynomial over Fqm , then

L(aα + bβ) = aL(α) + bL(β), (6.5)

for all α, β ∈ Fqm and all a, b ∈ Fq. Thus, the polynomial function L : Fqm → Fqm ,

defined as x 7→ L(x), is a linear operator on Fqm over Fq. Also, the following result

will be useful in our proof below.

Theorem 6.12 ([64, Theorem 3.52]). Let S be a vector subspace of Fqm over Fq.
Then for any nonnegative integer s, the polynomial

L(x) =
∏
µ∈S

(x− µ)q
s

is a linearized polynomial over Fqm .

For our purposes, we will deal with linearized polynomials over Fq = Fpm such

that their roots also lie in Fq. We are now in the position to prove Theorem 6.10.
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Proof of Theorem 6.10. We prove the theorem by finding a pair of nonseparated c-

subsets again.

If c2 > q, the code is not (c, c)-separating by Corollary 6.9. Henceforth, we shall

assume that c2 ≤ q = pm. This, together with the fact that c divides q, implies that

c2 also divides q, i.e., c = pr for some r ≤ m/2. For any n such that q − c2 < n ≤ q,

and from the fact that d ≤ (1− 1/c2)n, we conclude that the code contains, at least,

all the codewords generated from polynomials of any degree up to q/c2 = pm−2r.

Now, consider the polynomial

L(x) =
∏
µ∈S

(x− µ),

where S is a vector subspace of Fq over Fp of dimension m− 2r and size q/c2. Note

that L(x) is a linearized polynomial by Theorem 6.12. Also, from (6.5) and the

fundamental theorem on homomorphisms, the polynomial function L : Fq → Fq is

an homomorphism with | kerL| = q/c2 and | imL| = c2. Clearly, imL is a vector

subspace of Fq of dimension 2r.

Now, take a vector subspace B ⊆ imL of dimension r and size c. Regard B as an

additive subgroup of Fq and consider its c cosets, which partition imL:

Bi = βi +B, 1 ≤ i ≤ c.

We can assume without loss of generality that β1 = 0. Now consider the following c

polynomials

fi(x) = L(x)− βi, 1 ≤ i ≤ c.

Observe that for every γ ∈ Fq there is exactly one polynomial fi(x) with fi(γ) ∈ B.

To see this, note that if L(γ) lies in the coset Bi of imL, i.e., L(γ) = βi + b for some

b ∈ B, then the polynomial fi(γ) = L(γ)− βi = βi + b− βi evaluates to b ∈ B. The

fact that the c cosets Bi partition imL into disjoint subsets implies that there is only

one fi(x) satisfying this condition.
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Now, consider the set of codewords

U = {u1, . . . ,uc},

where ui is the codeword generated from the polynomial fi(x), and the set of c

constant codewords

V = {(b, . . . , b) : b ∈ B}.

Obviously, U and V are disjoint, because deg fi(x) ≥ 1. Also, θ(U, V ) = 0, which

proves that the code is not (c, c)-separating.

This construction applies whenever the code contains, at least, all the codewords

generated from polynomials of degree up to q/c2. Since k − 1 ≥ (q − 1)/c2, this

happens in particular for the Reed-Solomon code. Finally, we remark that one can

choose an arbitrary coset βi +B for the generation of the constant codewords of the

set V .

However, there are other families of Reed-Solomon codes that can benefit from

the constructions presented in the previous proof.

Proposition 6.13. Let C be an [n, k]-Reed-Solomon code over Fq with minimum

distance d = d(C). If

c′ =

√
q

dq/c2e
(6.6)

is an integer and d ≤ (1− 1/c2)n, then the code is not (c, c)-separating.

Proof. Note that the code contains codewords generated from polynomials of degree

at least dq/c2e = q/c′2. Also, c′ and c′2 must divide q, which is implied by (6.6).

Using the construction from the proof of Theorem 6.10, one can easily see that the

code is not (c′, c′)-separating. The proof follows by noting that c′ ≤ c.

6.2.3 Summary of Results for Reed-Solomon Codes

We summarize here the results shown in the chapter for the case of [n, k]-Reed-

Solomon codes with minimum distance d = n− k + 1.
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1) For any

d ≤ 2(c− 1)n+ 2c− 3

2c− 1

the code is not (c, c)-separating.

2) The implication

d > (1− 1/c2)n⇔ (c, c)-separating

is true for families of Reed-Solomon codes when any of the following situations

occurs: (a) c = 2; (b) c2 > q; (c) k − 1 divides n; and (d)
√
q/dq/c2e is an

integer value.

Illustratively, in Table 6.1 we show some families of Reed-Solomon codes, for

certain values of c and q, satisfying d > (1 − 1/c2)n ⇔ (c, c)-separating, i.e., of

q = 64 81 125 128 243 256 512 625 729 1024 2187
c = 2 a a a a a a a a a a a

3 c d – – d – – – d – d
4 d c – d – d d c – d –
5 c c d – – – – d – – –
8 d c c d – d d – – d –
9 b d c d d d c c d – d

10 b b c d d c – – c c –
11 b b c d d c – c c – –

14-15 b b b b c – – c c – –
16 b b b b b d d c – d –

17-18 b b b b b b d c – d –
19 b b b b b b d c – c –

20-22 b b b b b b d c c c –
23-24 b b b b b b b c c – –

25 b b b b b b b d c – –
26 b b b b b b b b c – –
27 b b b b b b b b d – d

28-31 b b b b b b b b b – d
32 b b b b b b b b b d d
33 b b b b b b b b b b d

34-46 b b b b b b b b b b c
≥ 47 b b b b b b b b b b b

Table 6.1: Some known families of [n, k]-Reed-Solomon codes with n = q − 1, k =
dn/c2 + 1e and minimum distance d > (1− 1/c2)n⇔ (c, c)-separating: (a) c = 2; (b)
c2 > q; (c) k − 1 divides n; and (d)

√
q/dq/c2e is an integer value.



6.3. Example 109

dimension k = d(q−1)/c2+1e. This, together with several computer-assisted searches,

suggests a positive answer to Question 6.3.

6.3 Example

Let us illustrate the proof of Theorem 6.10 with the following example. Consider the

finite field F27 = F3[x]/(x3 +2x+1) with primitive element α = x. Let c = 3 and take

the [n, k]-Reed-Solomon code with n = 26 and k = 4. First, we take the subgroup

(or vector space over F3) S = {0, 1, α13} and construct the linearized polynomial

L(x) = (x− 0)(x− 1)(x− α13) = x3 + α13x.

The codeword generated from L(x) is

(0, α13, α9, α13, α3, α16, α, α3, α22, α13, α, α, α9,

0, 1, α22, 1, α16, α3, α14, α16, α9, 1, α14, α14, α22),

where it can be read that imL = {0, 1, α, α3, α9, α13, α14, α16, α22}. Since c2 = | imL|,
we take for example the subgroup B = {0, 1, α13} ≤ imL of c elements and its c

cosets:

B1 = β1 +B = {0, 1, α13},

B2 = β2 +B = {α, α3, α9},

B3 = β3 +B = {α14, α16, α22},

where β1 = 0, β2 = α and β3 = α14. Now consider the polynomials fi(x) = L(x)−βi,
for 1 ≤ i ≤ c. Due to space constraints, we will only show the first 16 positions of

their corresponding codewords, which are

(0 , α13,α9 , α13,α3 , α16,α ,α3 , α22, α13,α ,α ,α9 , 0 , 1 , α22, . . . ),

(α14, α22, 1 , α22, α13,α9 , 0 , α13,α3 , α22, 0 , 0 , 1 , α14, α16,α3 , . . . ),

(α ,α3 , α16,α3 , α22, 1 , α14, α22, α13,α3 , α14, α14, α16,α ,α9 , α13, . . . ),
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where the elements of the coset B2 have been highlighted. These codewords constitute

the set U from the proof of Theorem 6.10. Now, call V the set formed by the constant

codewords

(α , α , α , α , α , α ,α , α , α , α ,α ,α , α ,α , α , α , . . . ),

(α3 ,α3 , α3 ,α3 ,α3 , α3 , α3 ,α3 ,α3 ,α3 , α3 , α3 , α3 , α3 , α3 ,α3 , . . . ),

(α9 , α9 ,α9 , α9 , α9 ,α9 , α9 , α9 , α9 , α9 , α9 , α9 ,α9 , α9 ,α9 , α9 , . . . ),

that is, the codewords with constant elements in the coset B2. As we have just shown,

for every position, one of the three codewords in U has an element from B2. Hence,

θ(U, V ) = 0, and both coalitions can generate the same descendant:

(α , α3 , α9 , α3 , α3 , α9 , α , α3 , α3 , α3 , α , α , α9 , α , α9 , α3 , . . . ).

Note that if we had considered the extended Reed-Solomon code instead, it would

also have had k = 4, and the additional position involved would also have satisfied

the same property.

6.4 Conclusion

In this chapter we have discussed the separating and traceability properties of Reed-

Solomon codes. Our main goal was to give an answer to the question posed by

Silverberg et al. in [36, 37]: Is it the case that d > (1 − 1/c2)n for all c-IPP Reed-

Solomon codes of length n and minimum distance d?

We have given a positive answer for some families of Reed-Solomon, when c divides

the field size. Also, we have benefited from the proposed constructions to extend the

results to other families of punctured Reed-Solomon codes. Obviously this does not

provide a full answer to the question but hopefully it gives some hints that may be

useful in finding the final response.

The results of this chapter have been published in [1, 2, 8].



Chapter 7

Concluding Remarks

In this dissertation we have addressed several problems that appear in traceability

and fingerprinting schemes.

Our contributions from Chapter 3 shows the suitability of the Kötter-Vardy al-

gorithm in a variety of fingerprinting settings. The benefits of using list-decoding for

TA codes were already pointed out in [36, 37], and subsequently in [45]. We have

shown how the Kötter-Vardy algorithm can be used to identify traitors in TA and

IPP Reed-Solomon codes. This algorithm is especially appropriate in these situations,

since it eases the reuse of the information obtained in each iteration of the presented

algorithms, improving the results obtained in previous works. We have shown how

this information can be translated into a reliability matrix in a natural way. More-

over, we have also shown how a family of binary concatenated fingerprinting codes

can be constructed in such a way that the use of the Kötter-Vardy algorithm enables

polynomial-time identification of traitors in the code length. The presented results ex-

tend those from [16] for arbitrary coalition sizes and arbitrary inner codes. Again, we

have shown how the use of the Kötter-Vardy algorithm provides a natural framework

to deal with the information obtained in the steps of the proposed algorithms.

In Chapter 4 we proposed to relax the ordinary definition of separating code, which

is also known under the name of secure frameproof code. The relaxation yielded two

different notions, namely, almost separating and almost secure frameproof codes, as

opposed to ordinary (absolute) separation, when both notions coincide. The use
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of typical sets and probabilistic arguments allowed us show the existence of such

codes with better asymptotical rate than that of ordinary separating codes. This fact

enables to improve previous constructions of fingerprinting codes, e.g. [15], obtaining

codes with better rates preserving exponential decline in the error probability. We

have also linked the use of the Kötter-Vardy algorithm to show its applicability in

the identification algorithms of the presented codes.

In Chapter 5, we have connected the concept of weakly dependent arrays with the

construction of almost secure frameproof codes. Our construction is mainly based

in the results presented in [58]. The construction presented is somehow far from the

theoretical existence bounds from Chapter 4, however such an explicit construction

enables us to connect these results with the previous results to show that explicit

constructions of fingerprinting codes based on almost secure frameproof codes exist.

Finally, in Chapter 6 we have given a partial answer to the characterization of

IPP Reed-Solomon codes. This question was posed in [36,37]. Our study shows that,

in fact, this question has further implications, since it can be seen that the study of

IPP/TA Reed-Solomon codes can be linked to the study of the separating property,

which is a more “basic” property. We have provided constructive proofs for a large

number of families of Reed-Solomon codes, which are also suitable for punctured

Reed-Solomon codes. From our main results it seems that a separating and a TA

Reed-Solomon code are the same.

7.1 Future Work

Several questions addressed in the present work are subject to future research. These

include the following:

– The current definition of the set of TA-parents (Definition 3.8) can be inter-

preted as the set of IPP-parents (Definition 3.11) that can be efficiently com-

puted according to the algorithms proposed. Is the given definition “tight”?

That is, are there more IPP-parents that can be efficiently computed, in poly-

nomial time in the code length? Is it possible to completely characterize and

compute this set of parents for other families of codes?
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– We have also showed evidence that the almost separating and almost secure

frameproof properties from definitions Definition 4.6 and 4.10 are essentially

two different notions. Moreover, from our results, we have conjectured that

RSFP*
q (c) > Rsep*

q (c). Hence, it would be interesting to find an answer to this

question.

– It would be interesting to establish upper bounds on the rate for almost (c, c)-

separating and almost c-secure frameproof codes. It seems that establishing

tight upper and lower bounds is a rather difficult question, since, even in the

simplest case c = 2, for ordinary separation the gap between the best upper

and lower bounds is significant.

– Universal and almost universal sets have been useful to construct almost secure

frameproof codes. Establishing the relationship between an almost universal set

and an almost separating code also constitutes another topic of future research.

Can “useful” almost separating codes be constructed using almost universal

sets?

– It has been already noted that there is strong evidence to think that the sepa-

rating weight of an [n, k]-Reed-Solomon code is θc,c′ = max{0, n− c c′(k − 1)},
but this has yet to be confirmed. Hence, it would be very interesting to give a

complete proof for this question, which would, in turn, give a complete charac-

terization of the separating, IPP and TA properties for Reed-Solomon codes. If

proven true, could this result be extended to other families of codes (perhaps

MDS codes)?
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códigos de Reed-Solomon para ciertos tamaños de coalición,” in Proc. Reunión
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