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Als meus pares

“Hope lies in dreams, in imagination and in the courage
of those who dare to make dreams into reality.”

Jonas Salk
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Summary

Male premutation (PM) carriers presenting between 55 and 200
CGGQG repeats in the fragile X mental retardation (FMRI) gene are
at risk to develop fragile X tremor/ataxia syndrome (FXTAS),
and females to undergo premature ovarian failure (POF). These
pathologies are likely caused by the toxic gain of function of the
premutated FMRI mRNA. In this thesis, we have characterized
the transcriptome alterations associated to FMR] premutation and
further evaluated the relevance of the biogenesis and activity of
small RNAs formed by the repeated CGG (sCGG) in neuronal
dysfunction linked to the FMRI-PM. In blood of FMRI
premutation carriers (fXPCs) we have detected a strong
deregulation of genes enriched in FXTAS-relevant biological
pathways. We have also identified a deregulated gene (EAPI) that
may underlie POF1 in female fXPCs. In addition, we found
increased levels of sCGG in different models of FMRI-PM and
further demonstrated the neurotoxic activity of sCGG through a
mechanism dependent on RNA induced silencing machinery. We
propose that the activity of sCGG may contribute to
transcriptome  perturbations with downstream pathogenic
consequences. Overall, we provide mechanistic insight into the
disease process and further suggest targets for FXTAS diagnosis
to the myriad of phenotypes associated with fXPCs.
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Resum

Els homes portadors d’una premutacié (PM) en el gen del retard
mental del cromosoma X fragil (FMRI) tenen una expansi6 de
trinucleotids CGG d’entre 55 1 200 repeticions, presenten un alt
risc de desenvolupar el sindrome de tremolor/ataxia associat al
cromosoma X fragil (FXTAS), i les dones fallida ovarica precog
(POF). Aquestes malalties estan causades probablement per la
funcio toxica de I'ARN missatger del gen FMRI premutat. En
aquesta tesi, s'han caracteritzat les alteracions del transcriptoma
associades a la premutacid en el gen FMRI (FMRI-PM) i s’ha
analitzat la rellevancia de la biogeénesi i activitat d'un ARN de
mida petita, format per CGG repetits (sSCGG) en la disfuncio
neuronal relacionada amb al FMRI-PM. En sang de portadors de
la premutacid6 de FMRI (fXPCs) s'ha detectat una pronunciada
desregulacid de gens enriquits en vies biologiques rellevants en
FXTAS. També hem identificat un gen desregulat (EAPI) que
podria contribuir a POF1 en dones portadores de la permutacid. A
més, hem trobat un augment dels nivells de sSCGG en diferents
models de FMRI-PM i hem demostrat la seva activitat
neurotoxica a través d'un mecanisme dependent de la maquinaria
de silenciament genic. Proposem que 1'activitat dels sCGG podria
contribuir a causar alteracions en el transcriptoma i desencadenar
mecanismes patogenics. Aquest treball ofereix un nou enfoc en

procés de la malaltia i proporciona un conjunt de dianes amb
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possible utilitat diagnostica per a la gran varietat de fenotips

associats amb fXPCs.
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PREFACE

Aging population is more sensitive to suffer progressive lost of
neuronal function, leading to motor and cognitive behavioral deficits.
Such disorders, called neurodegenerative disorders, can be hereditary or
sporadic and are often associated with atrophy at the central or
peripheral structures of the nervous system. As life expectancy
increases, the number of aged population and thus the necessity to

prevent those age related disorders also expands.

In the last 20 years, DNA expansions of trinucleotide repeats (TNR)
have been related to several neurodegenerative disorders, the so-called
trinucleotide repeat disorders (TREDs). There are around 30 different
TREDs and they are all characterized by an expansion of a triplet DNA
sequence beyond a specific threshold. Some of the most studied are the
Huntington’s disease, a number of spinocerebellar ataxias and myotonic

dystrophy among others.

This thesis is focused in the study of the TNR associated with the
FMRI locus and the multiple number of phenotypes related to it. In
particular, this thesis aims to provide a better understanding of the
biological consequences of the CGG TNR expansion in the rage 50 and
200 repeats occurring at the 5’UTR of the FMRI gene. The thesis
provides a comprehensive approach to understand the overall
transcriptome changes linked to this TRED. In addition, it presents a
novel pathogenic mechanism of action for the expanded TNR, which
has been already reported in another TRED.

Barcelona, August 2013
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1. INTRODUCTION

1.1. Trinucleotide repeat disorders (TREDs)

In genetics, mutations are described as change in the sequence of DNA.
Insertions, deletions, translocations and substitutions from a single
nucleotide to a large fragment of DNA can lead to changes in the
phenotype of a living organism. Most of the changes in the DNA are
consequence of unrepaired DNA damage or errors in DNA replication.
Mutations have an important role for normal and abnormal biological

processes, such as evolution, cancer, and developmental disorders.

In 1981, sequence analysis upstream of the globin gene revealed a
varying number of short repetitive sequence motifs (1). Those repetitive
sequence and other of mono-, di-, tri-, tetra-, penta-, and
hexanucleotides are named microsatellites — also refereed as short
tandem repeats (STRs) or simple sequence repeats (SSRs) —. Since then
an enormous amount of microsatellites have been identified scattered in
the human genome. They are characterized as one of the most variable
types of DNA sequences in the genome (2), and their variability relies
in length rather than in the primary sequence. Although they present a

polymorphic nature, microsatellites are only stable within a specific



length beyond which they become unstable. Such characteristic has
named microsatellite expansions as dynamic mutation, in which
presentation of a mutant phenotype depends on the number of
expansions. Dynamic mutations are hereditability unstable upon
transmission and present anticipation phenomenon in subsequent
generations. Anticipation happens when the symptomatology of a
disease manifests at early ages and with increase severity in subsequent
generations. In the last 20 years, nearly 30 hereditary disorders had
been identified to be consequence of an increase or expansion of the
number of repeats in microsatellites (3). Specifically, trinucleotide
repeats (TNRs) are causative of around 20 different neuromuscular and
neurodegenerative disorders called trinucleotide repeat disorders
(TREDs) (3). Most models for TNRs length variability agree that
expansions occur through formation of a intermediate loop or hairpin,
which is incorporated into the DNA (3). Large expansions seam to
occur in non-dividing cells during repair of single strand breaks (SSBs)
either by base excision repair (BER) or by nucleotide excision repair
(NER) facilitating the formation of the loop (Figure 1) (4, 5). Short
expansions are the result of simple polymerase slippage during DNA

replication, which also facilitate the formation of a loop (4) (Figure 2).
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Figure 1. Base excision repair (BER) and nucleotide excision repair (NER)
mechanisms in long expansions of trinucleotide repeat (TNR)

Expansion scheme in a BER. 7,8-dihydro-8-oxoguanine DNA glycosylase
(OGG1) (blue oval) recognizes and removes oxidized guanines (O = G) (red)
in the DNA template. After the oxidized guanidine has been removed an
apurinic/apyrimidinic endonuclease 1 (APEl, also known as APEXI1) (pink
oval) produces a suitable 3’site for gap-filing by the DNA polymerase (Pol)
(green oval). During that process the TNR expansion is displaced forming a
loop/hairpin. Expansion occurs when the hairpin is ligated into the DNA. b |
Expansion scheme in NER. There are two possibilities: transcription-coupled
repair (TCR) (left) and global genome repair (GGR) (right). In both cases RNA
polymerase II (RNAPII) transcription is blocked (orange star) by the presence
of the CG-rich regions. Rescue of transcription progression depends on the
recruitment of several proteins. Action of the XPF-ERCCI complex
(composed of XPF and excision cross complementing repair 1 (ERCC1)) or
the endonuclease XPG, two nucleases, a nick is produce in the DNA. This
action permits a displacement of the DNA and the generation of a TNR
hairpin. As previously, the loop is inserted into the DNA leading to a TNR
expansion. Taken from Budhworth & McMurray et al. 2013, (5).



In any case, the loop is incorporated to the DNA resulting in an
expansion of the microsatellite repeats. The microsatellites with higher
amount of related disorders are the TNR. It is believed that the loop
structures generated by TNR during replication or DNA repair
mechanisms are structures with a relatively high amount of base pair
complementarities, thus stabilizing the loop and permitting the

expansion (3).

Figure 2. Slippage model for short expansions in trinucleotide repeats

Ilustrations show the error in slippage that leads to TNR expansions. a | DNA
polymerase on the leading strand (Pol €) and helicase perfectly couple before
the TNR. b | Unlike the helicase, Pol € velocity is slowed due to the TNR
presence. ¢ | To avoid uncoupling of the two enzymes, Pol & bypasses a
segment of unreplicated TNR segment. d | After bypassing the TNR region,
DNA segment will reassemble resulting I instability of the TNR region.

Each expansion disease is categorized upon three different criteria. One
is the sequence composition of the expansions. Although highly
heterogeneous, most of the repeat sequences are composed by CAG,
CTG and GCG trinucleotide repeats. Another criterion is the location of
the expansion within the gene, such as the promoter regions, 5’
untranslated regions (UTRs), introns, exons and 3’-UTRs. Finally, it is

also important to consider the mechanism of pathogenesis such as



polyglutamine gain of function, polyalanine gain of function, RNA gain
of function or RNA loss of function. Polyglutamine gain of function
mechanisms are the consequence of CAG expansions repeats coding for
polyglutamine tracks in coding regions and are responsible for
Huntington’s Disease (HD) and a number of Spinocerebellar Ataxias
(SCAs). Equally, GCN repeat expansions in the coding region of a gene
are responsible for polyalanine gain of function disorders as in
Oculopharyngeal Muscular Dystrophy (OPMD). In both mechanisms,
the mutant protein becomes toxic and deleterious for the cell
homeostasis. Trinucleotide expansions located outside the coding
region, cause RNA gain of function and RNA loss of function. RNA
gain of function is associated to Fragile X Tremor/Ataxia Syndrome
(FXTAS) and Myotonic Dystrophy type 1 (DMI1). Extensive repeat
expansion outside the coding region leads to the loss of activity of the
harbouring gene as occurs in Fragile X Syndrome (FXS or FRAXA)
and Friedreich’s Ataxia (FRDA). Table 1 shows a resume of the most
common expansion disorders and their characteristics. Clinical
consequences of repeat expansion related disorders range from

congenital syndromes to late-onset neurodegenerative disorders.



Causal repeat Repeat Mechanism
Disease Main clinical features P pea Comments
(gene) location or category

Muscle weakness, myotonia, o , N o ; scular dvs
DML dine-endocrine.Gil disease, MR CTG (PMD) 3'UTR RNA GOF A very common form of muscular dystrophy

Muscle weakness, myotonia,

DM o CTG (ZNF9P) Intron RNA GOF Astriking phenocopy of DM1
DRPLA as;‘;"a“:u;::’[::‘;ﬁ::;:: CAG (ATNI) Coding region Z‘Xglma'“i"c Very rare, most patients are in Japan

FRAXA :ﬁ;:ci”l dysmorphism, CGG (FMRI) 5'UTR LOF Most common inherited MR

FRAXE MR, hyperactivity GCC (FMR2) 5 UTR LOF Needs to be ruled out in X-linked MR

FRDA  A@Xia sensory loss, weakness, ) ey Intron LOF Most common inherited ataxia in Caucasian ethnicity

diabetes mellitus, cardiomyopathy
Ataxia, intention t L .

FXTAS e, imention fremor. CGG (FMR1) 5 UTR RNA GOF Premutation carriers only
parkinsonism

Chorea, dystonia, cognitive Polyglutamine

D e et e CAG (HTT) Coding region " One of the most common inherited diseases in humans
Chorea, dystonia, Not )
HpLy | ored dysiomia CTG (IPH3) 3 UTR o A striking phenocopy of HD
cognitive decline Determined
Eyelid weakness, dysphagia, C polyglutami ) '
opMp e weakness, dysphagia, GCG (PABPNI)  Coding region o amine Modest expansion causes disease
proximal limb weakness GOF
spma  Proximal limb weakness, CAG (AR) Coding region -0 ygluamine Phenotype includes LOF androgen insensitivit
k lower motor neuron discase ! e IeEON Gop P * sen insensitivity
Ataxia, dysarthria, ticity, . . Polyglutami; . .
ScAp i dysarthria, spasticlty CAG (ATXNI) Coding region oJ8Mamine Accounts for 6% of all dominant ataxia
ophthalmoplegia GOF
Ataxia, sl vement, ) _ Polyglut "
Scap s sloweye movemen CAG (ATXN2) Coding region & Hmine ATXN2 protein may not reside in the nucleus
hyporeflexia, motor discase GOF
Ataxia, dystonia, C polyglutami ! )
Scay i cystoma CAG (ATXN3) Coding region 8/ Hmne Most common dominant ataxia
lower motor neuron disease GOF
Ataxia, dysarthria, sensory loss, ) Polyglutamine .
SCAG I Cysarthnia, SENSOyIosS, oG (CACNAIA)  Coding region ot e Causal gene encodes a subunit of a P/Q-type Ca2+ channel
occasionally episodic GOF
Ataxia, dysarthria, . . Polyglutami . . . . .
sca7 st CAG (ATXN7) Coding region > & Hamine Clinically distinct as patients have retinal disease
cone-rod dystrophy retinal disease GOF
Ataxia, dysarthria, Untranslated  RNA GOF&
ScAg i cdysartna, CTGICAG (ATXNg) | ransiate TOES Many cases of reduced penetrance
nystagmus, spasticity RNA polyglutamine GOF

Ataxia, dysarthria, )
scalo ; ATTCT (ATXN10)  Intron RNA GOF? Huge repeats; only Mexican ancestry?
seizures, dysphagia

Tremor, ataxia,
SCAlp [emonaaE CAG (PPP2R2B)  5'UTR Unknown Causal gene encodes a phosphatase
spasticity, dementia

SCA17 Ataxia, dementia, CAG (TBP) Coding region ch)';glmummc

; ) Causal gene encodes a common transcription factor (TBP)
chorea, seizures, dystonia

Table 1. Clinical and molecular characteristics of some neurological
expansion repeat disorders

AR, androgen receptor; ARX, aristaless-related homeobox; ATNI, atrophin
1; ATXN, ataxin; CACNAIA, voltage-dependent P/Q-type calcium channel
subunit a-1A; CSTB, cystatin B; DM, myotonic dystrophy; DMPK, DRPLA,
dentatorubral-pallidoluysian atrophy; FRAXA, fragile X mental retardation
syndrome; FRAXE, fragile X E mental retardation; FRDA, Friedreich's
ataxia; FXN, frataxin; FXTAS, fragile X tremor ataxia syndrome; GI,
gastrointestinal; GOF, gain of function; HD, Huntington's disease; HDL?2,
Huntington's disease-like 2; HTT, huntingtin; JPH3, junctophilin 3; LOF, loss
of function; MR, mental retardation; OPMD, oculopharyngeal muscular
dystrophy; PABPNI, poly(A)-binding protein, nuclear 1; PPP2R2B, protein
phosphatase 2 regulatory subunit B, B isoform; SBMA, spinal and bulbar
muscular atrophy; SCA, spinocerebellar ataxia; TBP, TATA box-binding
protein; ZNF9, zinc finger 9. Adapted from LaSpada A, 2010 (6)



1.2. The Fragile X Site

a. FMR] alleles

The first identified gene related to expansion disorders was FMRI
(OMIN; 309550) (7). FMRI is a highly conserved gene located on the
X chromosome, Xq27.3, that consists of 17 exons spanning ~38 kb (8).
FMRI1 encodes the fragile X mental retardation protein (FMRP) (9).
FMRP is an RNA binding protein that is highly expressed in neurons
and glial cells (10, 11). FMRP has selective affinity for mRNA,
including its own transcript and other targets essential for neuronal
development and plasticity (12). FMRP is involved in the trafficking
from the nucleus to the cytoplasm of the mRNA for which it has
affinity (13). However, in neurons, the vast majority of FMRP is
localized to the cytoplasm where it binds mRNA and polyribosomes
and functions primarily as a regulator of translation (14). Mutations in
the FMRI gene can lead to a wide variety of disorders. The majority of
deleterious mutations in FMRI account for a CGG trinucleotide repeat
expansion in the 5’-UTR of the gene. Depending on the size of the
expansion, FRM]I alleles can be grouped in 4 different types: normal
allele, intermediate alleles or grey zone (GZ), premutation (PM) allele
and full mutation (FM) allele. In the general population the
trinucleotide repeat spreads between 6 and 44 CGG repeats (15), where
most of the alleles have 29-30 CGG repeats and are usually stable upon
transmission (16). GZ alleles account for an intermediate size between
normal alleles and PM (from 45 to 54 repeats) and have shown to be
slightly unstable upon transmission. Those alleles could potentially

expand and lead to a PM in future generations (17). Alleles larger than



GZ but <200 repeats, called PM, exhibit somatic and germ line
instability. PM alleles may also expand to a FM allele only upon
maternal transmission to the next generation. Transition to FM depends
on the size of the expansion; the smallest CGG expansion repeat known
to expand to a FM is 59 CGG repeat (18, 19). Finally, FM alleles are
those over 200 repeats (Figure 4).

(CGO),
>200 || P 0
55-200 Premutation
45-54 Intermediate
<45 Normal
5-UTR FMR1

Figure 3. FMRI allele

Representation of the different FMRI alleles. Schematic visualization of the
number of CGG repeat present in the different FMR/ alleles. Taken form
Filipovic-Sadic et al, 2010 (20).

b. FMRI instability

The classification and characterization of the different FMR/I alleles is
based on the association of the expansion size with different clinical
features. A good genetic counseling strategy relays on the analysis of
the FMRI allelic distribution in the world population and the risk
factors for the alleles to undergo expansion. Several reports, that have
used protocols by Fu et al. (21) to quantify CGG repeats, made possible
some cross-population comparisons. In a recent review (22),
comparisons of populations from different continents has been

performed. The study shows that for each population, a large number



of allelic variants for the CGG repeat exist, being 29 or 30 CGG repeat
the most abundant allele in most of the populations. Though, Mexican
population has a significant number of long alleles (34-40 repeats).
Specifically, in Mestizos and Tarahumaras populations the most

common variant is of 32 repeats.

Concerning the risk for CGG expansion there are two important
variables: position and number of AGG interruptions together with the
CGG repeat size. Characteristically, FMRI normal alleles have two
AGG  interruption  spaced every 9-10 CGG  repeats:
[(CGG)9AGG(CGG)9AGG(CGG)n]. Like CGG repeat length, AGG
presents a level of instability, such as the loss of an interruption during
transmission (23, 24). Recently, it has been also reported that such
interruption along the CGG repeats reduced the risk of transition of PM
below 100 repeats to a FM. More in detail, expansions between 70-80
repeats have a 60% decreased probability to expand to a FM when
interrupted with AGG triplet (25). Moreover, evidences show that
variations in the length of the CGG repeat are important to determine
the degree of instability. While no direct transition from a normal allele
to a FM has been detected, the risk of expansion from a PM to a FM is
almost 100% in PM >99 CGG repeats (26). It has been reported that
variations in the repeat length appear to be polar (23). Increments of
CGQG repeats happens distally from the most 3> AGG interruption (27).
A recent study demonstrates that both AGG interruptions and the length
of uninterrupted CGG repeat at the 3’-end are correlated with repeat
instability on transmission. In addition, a greater risk of instability is

linked to maternally alleles without AGG interruptions (28).



1.3. Clinical features of the fragile X families

In accordance with his high variety of alleles, FMRI gene is also related

to a plethora of phenotypes.

a. Full mutation (FM) alleles

Full mutation alleles are characterized by the presence of >200 CGG
repeats in the 5’-UTR of the FMRI (21). Through a mechanism that is
still not well understood, these expansions lead to the hypermethylation
of the CGG repeat and a 1 kb upstream CpG island, in the promoter
region (29). Methylation of the DNA is a common mechanism for gene
silencing that results in the lack of gene product. In addition to the
altered methylation status, the FMRI in the FM alleles also presents
other epigenetics changes. Remarkably, FM alleles present deacetilation
of histones H3 and H4, reduced methylation of lysine 4 (K4) and
increased methylation of lysine 9 (K9) in histone H3 (30). The
combination of such epigenetic changes induces a heterochromatic
configuration that prevents the binding of transcription factors and the
machinery for transcription (31), thus turning off gene expression.
Although most of the FM alleles are usually methylated, some
unmethylated FM alleles have also been described with milder clinical

features than methylated full mutation alleles (29).

The absence of functional FMRP is the cause for FXS, which has an
incidence of 1/4000 males and 1/6000 females (24, 32). The lost of
FMREP is usually caused by the trinucleotide repeat expansion in the 5°-

UTR of the gene, but there are other deletions and missense mutations
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liked to FXS (33, 34). FXS is the most common form of inherited metal
retardation and the major genetic cause for autism spectrum disorders
(21, 35). FXS has also other co-morbid features like depression, anxiety
and other behavioral problems. Though FXS occurs in both genders,
females are often less severely affected because of the protective effect
of the second X chromosome (36). Individuals with mosaicism also
develop milder symptomatology. There are two types of FM
mosaicism: repeat size and methylation mosaicism. Repeat size
mosaicism happens when PM alleles expand to FM in early embryonic
states, leading to the coexistence of both PM and FM alleles in the same
individual. Methylation mosaicism happens the FM allele is methylated
in some cells but not in others. As a consequence, individuals with
mosaicism can synthesize some FMRP, therefore having a variable

phenotype between FM and PM (37).

Mutation n° of CGG Methylation Status Clinical Status
Type Repeats of FMRI Male Female

Full mutation ~ >200 Methylated 100% MR 50% MR

Repeat Size PMorFM  Methylated+
epeat Size or cthylate ~100% ID  Variable

Mosaicism in # cells Unmethylated
Methylati
© }./e.uon >200 Mixture ~100% ID Variable
Mosaicism
Unmethylated
Fl\r;Ime yiate >200 Unmethylated ~100% ID Variable

Table 2. Clinical signs associated to FM alleles

Abbreviations: ID, intellectual disability; MR, mental retardation. Adapted
from Saul and Tarleton (38).
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b. Premutation (PM) alleles

Premutation alleles are those with a CGG repeat length between 54 and
200 repeats. In contrast to FM allele, PM alleles are not methylated and
the FMRI gene expression is increased (39). The clinical phenotypes
associated with PM alleles are at least two: fragile X tremor/ataxia
syndrome (FXTAS) (OMIM: #311360) and the fragile X premature
ovarian insufficiency (FXPOI) (OMIM: #300623) (40). Both
pathologies are restricted to PM alleles, suggesting a distinct
mechanism of pathogenesis from FM alleles. Such observations
coupled with an overexpression of FMRI mRNA in PM carriers, lead to
the postulation of a RNA toxic gain of function in PM carriers (41, 42).
FXTAS is a neurodegenerative disorder that develops mainly in men
over 50 years of age (40). It is characterized by a progressive action
tremor, gait ataxia and other frequent variable features of cognitive
decline; especially executive dysfunction, parkinsonism, neuropathy,
and autonomic dysfunction (43). FXTAS patients may also present
psychiatric symptoms, such as anxiety, mood liability and depression
(44, 45). FXTAS prevalence is 1 in ~400 males and ~250 females.
Penetrance in females is around 8-16% and in males near 40%, but it
increases with age to a 60-70% in males of around 80 years (24, 46).
These data suggest that FXTAS is one of the most common monogenic

forms of gait ataxia and tremor in older males.

Another usual clinical manifestation in female fragile X premutation
carrier (fXPCs) is premature ovarian failure (POF1). POF1 is
characterized by the cessation of menstruation prior to the age of 40

(47). f£XPCs has a 20-fold increase incidence of POF1, now known as
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FXPOI (48). The prevalence of FXPOI is estimated to be between 20%
and 28% of the female fXPCs (49).

Moreover, recent studies in premutation alleles carriers provide new
evidences that PM alleles can cause other clinical involvement beyond
FXTAS and FXPOI. Children fXPCs frequently present
neurodevelopmental phenotypes like attention deficit and hyperactivity
disorders and autism spectrum disorders (50, 51). Also seizures are a
significant co-morbid clinical aspect of the PM (51). Psychiatric
symptoms like depression and anxiety are also co-morbid aspects of the
premutation in adults (52). Nonetheless, psychiatrics symptoms are

more intense in individuals presenting FXTAS (45).

Age-dependent clinical involvement
Fragile X-associated disorders

0 20 40 60 80yr
FXTAS|
Adult
FXPOI
NElifédevelopmental

Figure 4. Clinical manifestations in FMR]1 premutation carriers

Schematic visualization from clinical signs associated with FMRI PM alleles.
Correlation between age of onset and clinical signs. Taken from Hagerman,
2013 (53)

13



1.4. Fragile X tremor/ataxia syndrome (FXTAS)

a. Clinical features

*  FXTAS symptomatology

Observations in Fragile X families indicate a high occurrence of a
neurodegenerative phenotype in grandfathers of children who suffered
FXS, now named FXTAS (41, 54). 30% of FXTAS patients started
presenting the symptomatology at the age of 50, whereas 70% start at
the age of 75 (46, 55). The most common clinical feature of FXTAS
patients is tremor. At least 50% present mild tremor and another 17%
moderate tremor, which resembles in appearance to essential tremor.
Parkinsonism resting tremor is uncommon in FXTAS patients, but 57%
have mild bradykinesia and 71% present rigidity (55). FXTAS patients
commonly also present ataxia (balance problems) and autonomic
dysfunction, such as erectile dysfunction (80%), hypertension and loss
of bowel and bladder function (30-55%) (54). Other symptoms like
peripheral neuropathy (60%), lower limb proximal muscle weakness,
hearing loss, dysphagia, sleep apnea, hypertension and immune-

mediated disorders are also present in FXTAS patients (41, 54-61).

Cognitive decline is also current in FXTAS patients with short-term
memory loss and difficulty in performing other cognitive tasks like
taking decisions (43). FXTAS patients exhibit executive dysfunction,
which prevents them from organizing, planning, anticipating, and
carrying out everyday tasks (62). Furthermore, neuropsychological

problems have also been diagnosed in FXTAS patients. Patients present
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anxiety, depression, apathy, reclusive behavior or social phobias and
mood changes which might include increased irritability, outbursts of

anger, and inappropriate or impulsive behavior (45, 63, 64).

Ultimately, significant dementia may also occur in FXTAS patients (54,
65). It has been suggested that dementia in FXTAS patients is defined
as frontal-subcortical dementia, which develops after movement

disorders (45) .

*  Radiological and neuroanatomical features of FXTAS

A diagnostic criterion for FXTAS patients is based on clinical features
as well as in radiological findings. Magnetic resonance imaging (MRI)
examination in FXTAS brains revealed an abnormal brain pattern. The
most important radiological signs are white matter alterations
manifested as increased T2 signal intensity in the middle cerebellar
peduncle (MCP) (41, 66), which are present in 60% of the FXTAS
patients (67). White matter disease is not restricted to MCP but present
in the overall of the brain. T2-weighted MRI and diffusion tensor
imaging techniques have identified white matter disease in the frontal
and parietal cortex and in the superior cerebellar peduncle (SCP), MCP,
the fornix, and stria terminalis, respectively (57, 68). Images also reveal
generalized brain atrophy and volume loss in brainstem, cerebellum,

cerebral cortex, amygdalo-hippocampal complex and thalamus (69, 70).

15



Figure 5. Radiological images form FXTAS brains

MRI images from FXTAS brains with white matter disease and structural
abnormalities. Each pair of image represents a control (left) and a FXTAS
(right) case. a | Arrows indicate increased signal intensity on T2 turbo spin-
echo sequences in the middle cerebellar peduncle. b | Thinning and increased
signal of the trunk and splenium of the corpus callosum.c | subinsular white
matter. d | Cerebral white matter disease. Taken form Hagerman, 2012 (71).

b. Diagnostic criteria

Ten years ago, Jacquemont et al. (41) proposed a diagnostic criteria
based on the study of 26 male fXPCs. The study compiled the clinical
and radiological data of the patients and classifies them into three
different groups: definite, probable and possible FXTAS. The

classification is based on three different criteria
Molecular FMRI CGG Repeat Size 55-200
Clinical

Major signs  Intention tremor

Gait ataxia
Minor signs  Parkinsonism
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Short term memory deficits
Executive function deficits

Radiological

Major signs MRI white matter lesions in the middle
cerebellar peduncle (MCP sign)

Minor signs Moderate to severe generalized atrophy
MRI white matter lesions in cerebral
white matter

Clinical and radiological criteria are divided in to two main groups,
major and minor signs. The division is based on statistical
measurements of clinical observation, being the major signs those more
commonly presented by FXTAS patients. Upon these criteria the

FXTAS diagnosis categories are:

Diagnostic Categories

Definite  Presence of one major radiological sign plus
one major clinical symptom

Probable Presence of either one major radiological sign plus one
minor clinical symptom or has two major clinical

symptoms

Possible  Presence of one minor radiological sign plus one major

clinical symptom

c. Neuropathology of FXTAS

Autopsies carried out in brains of symptomatic fXPCs correlate with
MRI findings and show moderate to severe cortical, brainstem, and

pontine atrophy; ventriculomegaly and loss of deep white matter.
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Cerebrum, cerebellum and brain steam present significant white matter
disease (65, 72). White matter histological changes are distinct from
those seen in other pathologies or vascular lesions. Precisely, T2
hyperintensities indicated by MRI correlate with spongiosis present in
subcortical and deep white matter, MCP and deep cerebellar white
matter (41, 66). Other histological changes associated with the
pathology in gray and white matter are the presence of reactive
astrocytes, axonal loss and glial cell lost, axonal swelling, cerebellar

Purkinje cell lost and Bergmann gliosis (Figure 6) (65, 72).

Postmortem criteria for a definite FXTAS is the presence of
eosinophilic, ubiquitin-positive intranuclar inclusions in neurons and
astrocytes (Figure 6) (65, 72). FXTAS inclusions are negative for a-
synuclein and tau, characteristics for Parkinson’s disease and
Huntington’s disease (HD), respectively. Inclusions are abundant in
cerebral cortex, amygdala, hippocampus, brainstem nuclei, cerebellum
and choroid plexus (65, 72, 73). Interestingly, a strong correlation has
been found between premutation length and presence of inclusions (72).
In a recent study, intranuclear inclusion where also found throughout
the peripheral nervous system and systemic organs (74). Among other,
inclusions where found in the pancreas, thyroid, adrenal gland, pituitary
gland, pineal gland, heart, mitral valve, testes, epididymis, and kidneys.
In resume, the three major neuropathological features of FXTAS are
white matter disease, astrocyte pathology and the presence of

intranuclear inclusions.
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Figure 6. Histopathological changes in FXTAS brains

Intranuclear inclusions in a | cortical neurons. b | astroglia. ¢ | Spongiform
changes in the white matter of the cerebellum. d | Cerebellar white matter with
axonal loss. e | Cerebellar white matter with myelin loss. f | Purkinje cell
dropout and the presence of axonal swelling in the cerebellum Adapted form
Greco et al., 2002 (65).

d. Molecular signature of FXTAS

Differences between normal alleles, FM alleles and PM alleles are also
detectable at a molecular level. The most characteristic trait for PM
alleles is the increased expression of the FMRI mRNA. Expression of
the transcript is between 2-8 times higher than in normal alleles, despite

normal or slightly reduced FMRP protein levels (75, 76). The
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mechanism by which overexpression occurs, are still uncertain. A
hypothesis is that high number of CGG repeats at the 5’-UTR of the
FMRI gene induced chromatin opening permitting the accessibility to
transcription machinery. Chromatin changes induced by CGG repeat
expansions induce the transcription of the FMRI gene and of its
antisense FMRI transcript (ASFMR1) (77). Interestingly, ASFMR1 has
different transcription start sites; all of them before the CGG repeat
region (-208 to -99) and another before it (+10243). In PM alleles,
ASFMRI is predominantly transcribed from the transcription start site

that expands the premutation (77).

5’ end of the FMRT gene
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Figure 7 FMRI transcriptional start sites.

Schematic representation of the FMRI genomic region. Each arrow represents
the initiation position and direction of a transcript

FXTAS has been postulated as a toxic RNA gain of function. There are
several findings that support this argument. The first is that FXTAS
clinical symptomatology is not present in expanded alleles that are
transcriptionally inactive. Thus, the expression of the RNA molecule is
necessary for the development of the symptomatology. As described
above, FMRI mRNA expression is higher than in normal alleles.

Moreover, expanded CGG repeats, as RNA, results in reduced cell
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viability in primary neural progenitor and established neural cell lines
(78). In accordance with these results, it has also been reported that
expression of a 90 CGG repeats mRNA is sufficient to cause
degeneration in a flies (42). Being this phenotype neuron specific and
CGG repeat dosage sensitive (79). Finally, FMRI mRNA is present in

the intranuclear inclusions characteristic of FXTAS patients (80).

Further investigations for the molecular pathogenesis of FXTAS were
performed to determine the composition of the intranuclear inclusions.
Several laboratories have identified more than 30 different proteins by
mass spectroscopy and immnunohistochemistry assays (IHC) (65, 72,
80-84). From those we can remark: aB-crystallin, lamine A/C, a-
tubulin, Glial fibrillary acidic protein (GFAP), Phosphorilated histone
2A member X (yYH2AX), Src-associated in mitosis 68 kD (SMA68),
DiGeorge syndrome critical region gene 8 (DGCRS), Double-Stranded
RNA-Specific Endoribonuclease (DROSHA), muscleblind-like splicing
regulator 1 (MBNLI1), Heterogeneous Nuclear Ribonucleoprotein
A2/B1 (hnRNP A2/B1), heat shock protein 70 (HSP70) and HSP27.

e. Models for RNA gain of function toxicity in FXTAS

Several mechanisms have been proposed to be the consequences of the

clinical features associated with the PM.

*  Titration of RNA binding proteins by CGG repeats

The most established mechanism proposed is protein sequestration

model by the RNA molecules with CGG expansions. The model
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proposes that FMRI mRNA is able to sequestrate RNA binding
proteins (RNA-BP). Specifically, that some RNA-BP have a high
affinity, and therefore bind, to RNA CGG expansions. The association
of the RNA with the proteins led to the formation of the intranuclear
inclusions present in FXTAS patients. But more importantly, the
consequence of the sequestration is a partial or total loss of function of
the sequestrated proteins. Some of the proteins present in the inclusions
are important factors for splicing, mRNA trafficking, transcription and
stress response (65, 72, 80—84), which can explain the clinical features
of FXTAS. The latest example for this mechanism was published early
this year by Sellier et al, (83). They demonstrate that CGG repeats can
bind DGCRS, an enzyme in the biogenesis of microRNA (miRNA).
The result is a decreased production of miRNA molecules, key
modulators of gene expression, which results in lower neuronal

viability and lower dendritic complexity.
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Figure 8. Representation of DGCRS role in FXTAS pathogenesis

a | Normal conditions. DGCRS binds to a specific helix region of the pri-
miRNA and recruits DROSHA. The complex is called microprocessor, which
cleaves pri-miRNA to pre-miRNA (miRNA precursors). b | PM conditions.
Expanded CGG repeat forma a helix structure that recruits DGCRS. The
microprocessor is not assembled and the levels of pri-miRNA in the nucleus
increase while the levels of mature miRNA decrease in the cytoplasm. Taken
form Hagerman, 2012 (71).

22



*  RNA-mediated protein aggregation

Another proposed toxic mechanism is the prionic-like mechanism. The
CGG expanded RNA would start a conformation changes is proteins
with prion-like domains, developing a cascade of aggregations (85, 86).
In agreement with this argument, a protein found within the inclusions,
hnRNP A2/BI, is among the highly “prionogenic” proteins (85), likely
contributing FXTAS pathogenesis.

*  Antisense-RNA effects on expression

As previously described, FMRI loci also codifies for an antisense
transcript. The transcript is transcribed by RNA polymerase II, is
spliced and polyadenylated (77, 87). It’s expression is coupled with the
FMR1 expression, being silenced in FM alleles and overexpressed in
PM alleles (77, 87). A study points that some of the spliced variants of
the ASFMRI are specific to PM alleles (77). In agreement, some
splicing factors and modulators like SAM68 and MBNL1 are present
within the FXTAS inclusions. These results suggest that some of the
spliced forms of the ASFMRI could present an associated pathogenic
mechanism. In contrast, another study shows that knockdown of
ASFMRI in cultured cell lines altered cell cycle progression and
induced cell death, whereas up-regulation of ASFMRI resulted in
enhanced cell proliferation (87). While, ASFMRI seems to have an
important role in cell survival and proliferation, more studies are need

to understand its relevance in FXTAS.
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*  RAN-mediated expression of alternative peptides

Translation initiation independent form the AUG codon has been
described to happen in transcripts with hairpin-forming repeats (88, 89).
This repeat-associated non-AUG-initiated (RAN) translation occurs
when the ribosome assembles and stalls due to the presence of a hairpin
structure, thus prompting transcription activation. RAN translation has
been reported in several TREDs involving CAG repeats and CGG
repeats (88, 89). This mechanism has been proposed to be a related
toxic mechanism in FXTAS (89). Translation initiation upstream form
the AUG codon and the CGG expansions produce short peptides rich in
polyglycine (ployGly) and polyalanine (polyAla), GGC and GCG
codify for glycine and Alanine, from two different reading frames
respectively (89). In agreement, this kind of peptides have been found
to accumulate in FXTAS inclusions (89). Polyarginine (PolyArg)
peptides, arising from the third reading frame, have not been detected.
Nonetheless, further studies are needed to evaluate the function and the

consequences of such short peptides.
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Schematic representation of RNA translation a | Ribosomes assemble on the
5’-UTR FMRI message and search for the AUG codon. The expanded CGG
repeat is folded into a hairpin structure that stalls the 43S (RED) triggering
RAN translation initiation close to the AUG codon. b | CGG is translated as a
glycine. The result is a long polyglycine that accumulates in the nucleus.
Trailing ribosomes (green) may not stall at the hairpin, thus initiating
translation normally at the AUG for FMRP.

*  siRNA formation form TNR structures

TNR structures based on CNG repeats form A-helices stabilized by C-
G and G-C pairs acting as strong support (90, 91). Transcripts
containing those long hairpin structures composed of CNG repeats can
be cleaved by the ribonuclease III DICER (92). Indeed, a study shows
that mutant transcripts involved in TREDs, such as myotonic dystrophy
type 1 (DM1), Huntington’s disease (HD) and spinocerebellar ataxia 1
(SCA1) are DICER substrates in fibroblasts of patients with these
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diseases. DICER activity results in the formation of a double-stranded
short-repeated CNG molecules similar to siRNAs/miRNAs that use the
RNA interference pathway to trigger downstream silencing effects (92).
The detrimental effect of small repeated CAG (sCAG) biogenesis was
recently demonstrated by our group, in HD (93). This recent study
demonstrates that short repeated CAG RNAs of around 21 nt in length
(sCAG) are produced in a DICER dependent manner from the mutant
transcript involved in HD. sACG detrimental mechanism of action

involves the RISC silencing machinery.

Structural characteristics from the mutant transcripts involved in DM1,
HD and SCALI are also present in FXTAS PM transcript. The formation
of hairpin structures in the case of long CGG repeat structures has been
supported by several studies (90, 91). Moreover, CGG repeat structures
are also a substrate of dicer (92, 94). But yet, no studies have further
investigated whether CGG molecules are involved in the pathologies

associated with fXPCs.

f. Cellular pathology in FXTAS

Although the toxic mechanism for FXTAS RNA gain of function are
still unclear, some advances have been done in neuronal cells. RNA
molecules with a CGG repeat within the permutation range can induce
intranuclear inclusions and disrupt the structure of lamin A/C in the
nucleus (78). Also, reduced cell viability, development of dendritic
arbors, and synaptic function have been observed in FXTAS tissue and
FXTAS mouse model, respectively (95, 96). These observations agree
with the mitochondrial dysfunction observed in fibroblast of FXTAS

patients, in hippocampal cultured cells from the FXTAS mouse model
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and in post-mortem central nervous system tissue from FXTAS patients
(97-99). There is also a lower import of nuclear encoded mitochondrial
proteins due to a reduced loading of zinc into metalloproteases that
process proteins for import (97). As a result, some of the nuclear
encoded proteins from the electronic chain transport are deficient in the
mitochondria, thus leading to a lower oxidative phosphorylation
capacity and a increase in oxidative stress response observed in FXTAS
brain tissue (97, 99). Finally, induction of mTOR, involved in
regulation of organismal growth and homeostasis (100), can ameliorate
neurodegeneration in the FXTAS fly model. Alterations in the mTOR
pathway are related to axon regeneration, dendrite arboritzation and

spine morphology (101).

g. Modeling of FXTAS

Genetic models for human disease have greatly contributed to the
understanding of the molecular causes underlying a disorder. For
FXTAS the introduction of expanded CGG repeats alone or within the
FMRI gene into the models organisms has provided a great inside in in
the pathogenesis of FXTAS. Two different models have been used to
study FXTAS, an invertebrate model (fly) and a mammalian vertebrate

model (mouse)

*  Fly model
The fly model for FXTAS was generated inserting a fragment of the

human FMR1 DNA containing 60 or 90 CGG repeats followed by the

green fluorescent protein (GFP) reporter gene (42). Different tissue
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specific promoter drove the expression of the vector in the eyes, in all
neurons of the peripheral and central nervous system, in the embryo and
in the epithelial cells. Strong expression of 90 CGG repeats in the
embryo and in the cells of the central and peripheral nervous system is
lethal for the fly. Expression in the eyes induced a rough eye
phenotype, loss of pigmentation and severe cell death. In contrast, no
effect was inflicted when the expression was directed to epithelial cells
(42). The same exploration was performed to flies expressing moderate
levels of the 90CGG vector and high to moderate levels of the 60CGG
vector. The results showed that moderate expression of the 90CGG
vector has similar consequences as strong expression of the 60CGG
vector, and there are both milder to the ones performed by strong
expression of 90CGG vector. In addition, moderate expression of
60CGG vector did not produce any phenotypic change. These results
manifest the importance of the CGG repeat length and its levels of

expression in FXTAS phenotype.

. . (CGG)60-EGFP (CGG)60-EGFP (CGG)90-EGFP (CGG)90-EGFP
GAL4 line Expression Pattern
Moderate* Strong* Moderate* Strong*
gmr-GAL4  All eye cells posterior No effect Rough eye, loss of  Mild rough eye Rough eye, loss of
to the furrow including pigmentation, and and holes in the pigmentation, and
photoreceptor neurons holes in the tangential sections severe cell death
and pigment cells tangential sections
elav-GAL4 All neurons of the No effect Reduced viability Reduced viability Lethal
peripheral and central
nervous system
Act5C-GAL Ubiquitous expression No effect Late larval lethal Male lethality and Late larval lethal
in embryo reduced viability
in females
dpp-GAL4  Along the anterior- No effect No effect No effect No effect

posterior boundary
of imaginal discs,
epithelial cells

Table 3. Effects of directed CGG repeat expression in different Drosophila
M. tissues

*Referred to the levels of vector expression. Adaptation form Jin et al, (42).
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Interestingly, flies expressing high levels of the 90CGG vector had a
worsening of their phenotypic characteristics with age, agreeing with
the late onset neurodegenerative disorder in humans. The fly model also
presents inclusions positive for ubiquitin and HSP70. Unlike human
inclusions that are only present in the nucleus, the fly model present

inclusions in the nucleus and the cytoplasm (42).

The presence of inclusions in this model permitted the investigation of
the RNA-BP sequestration model for the RNA toxic gain of function. A
genetic screening identified CUG binding protein (CUGBPI) as a
modifier of the rough eye phenotype in 90CGG expressing flies (102).
The screen revealed that overexpression of CUGBP1 suppresses the
rough eye phenotype (102). The binding it is mediated by AnRNP
A2/Bl, which its presence has been detected in human nuclear
inclusions (81, 102). In agreement, overexpression of hinRNP A2/Bl
and its two fly homologues can also suppress the eye phenotype in flies
(102). All the studies in the fly model have been crucial to support the
RNA-BP sequestration model for the RNA toxic gain of function in
FXTAS.

*  Mouse model

A mouse model for FXTAS was generated by Bontekoe et al. (103)
when generating a model to study the repeat instability in humans. The
model is a knock-in (KI) mouse model for the FMRI gene, which the 8
CGQG repeat expansion of the mouse Fmr/ gene has been replaced by
98 CGQG repeats from human origin. After the discovery that PM alleles

are associated with late onset neurodegenerative disorders, this model
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has undergone exhaustive studies of the molecular aspects, the cellular

pathology and the clinical signs displayed for FXTAS patients.

The KI mouse model exhibits a big proportion of the pathophysiology
and the behavioral deficits encountered in FXTAS patients. Both,
human FXTAS patients and KI mouse model, display elevated levels
Fmrl gene and slight decrease of FMRP expression in brain is found in
the KI mouse model (39, 103, 104). In addition, they both also show
ubiquitin-positive intranuclear inclusions in neurons and astrocytes,
which are also negative for a-synuclein and tau (72, 105, 106). So far,
three proteins have been identified within the mouse inclusions; Hsp40,
20S proteasome and the DNA repair ubiquitin-associated (HR23B)
(106, 107). In parallel with human inclusions, mouse inclusions are also
fund through out the brain, including the cerebral cortex, olfactory
nucleus, parafascicular thalamic nucleus, medial mammillary nucleus
and colliculus inferior, cerebellum, amygdala, pontine nucleus and
dentate gyrus at 72 weeks of age (104, 106). In agreement with the late
onset of FXTAS neurodegenerative disorder, the presence of inclusions
in the KI mouse increases in number and size during the course life
(106). Importantly, brain regions with intranuclear inclusions correlate
with clinical features in FXTAS patients (106). However, some of the
histopathological changes present in humans are not recapitulated by
the KI mouse including, neuronal cell loss, gliosis and Purkinje cell

death (106).

Motor deficits such as tremor and ataxia are a major clinical signature
of FXTAS patients. Studies in the KI mouse model have also
demonstrated motor deficits on the rota-rod test at 70 weeks (108). The
mouse model also showed deficits in the Morris water maze test,

indicating deficits in spatial learning and memory (108). The KI mouse
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also shows deficiencies in cognitive function, which exacerbate with
aging (109). In concrete, the mice show insufficiencies in spatial pattern

separation and spatial object recognition.

Finally, the KI mouse model also displays some of the psychological
changes that FXTAS patients suffer. The mice show increased anxiety
in open field behavior tests and high levels of corticosterone levels after
the exposure to a mild stressor (108, 110). These behaviors suggest that
an abnormal functioning of the hypothalamic-pituitary-adrenal axis
(HPA) may contribute to the pathophysiology of FXTAS (110). In
agreement, intranuclear inclusions have been found in the pituitary, the

adrenal gland and the amygdala of the KI mouse model (110).

Core pathology Human FXTAS CGG KI mouse

CGQG repeat expansion 55-200 CGG repeat length, 70-300 CGG repeat length,
length on FMR1 repeat instability modest repeat instability

Elevated FMR1 2-8-fold increase 1.5-3.0-fold increase

mRNA expression

FMREP levels Reduced in several Reduced in several brain regions

brain regions

Motor impairment Tremor/ataxia, postural Impaired on Rotorod, ladder rung task

sway, parkinsonism

Cognitive impairment  Poor working memory, anxiety, Spatial memory deficits,
depression, social phobia anxiety in elevated plus maze
Intranuclear inclusions Neurons and astrocytes, Neurons and astrocytes,
highly correlated with CGG repeat length,  related to length of CGG repeat,
frequency increases with aging frequency increases with aging

Table 4. Comparison of FXTAS with the CGG KI mouse model.

Adapted from Berman et al, 2012 (96).

Another two FXTAS mouse model have been also developed since the

discovery of FXTAS. The first was generated by Entezam et al. (2007)
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where the mouse Fmrl CGG repeat was expanded by serial ligations of
CGG-CCG-repeat tracts until 130 CGG-CCG (111). The mouse shows
repeat instability, increase levels of Fmrl, decreased levels of FMRP,
Purkinje cell dropout, hyperactivity and decreased dendritic
arborization (111, 112). Yet, the mouse has no motor deficiencies one

of the most important traits of FXTAS patients.

The other mouse model was generated by Hashem et al. (2009), in
which they express the 90 CGG repeats from human origin followed by
Fmrl or GFP under the control of a Purkinje promoter (113). Their
results show that neurodegeneration is dependent on the expression of a
90 CGG repeat. The mouse present ubiquitin-positive intranuclear,
axonal swellings and progressive age-dependent decline in neuromotor

learning ability.

h. Treatment

Patients diagnosed with FXTAS can only be treated to alleviate the
symptoms associated to FXTAS. Mainly, FXTAS patients are treated to
ameliorate tremor, ataxia, mood changes, anxiety, cognitive decline,

dementia, neuropathic pain and fibromyalgia.

Research in FXTAS is mostly focused in a better understanding of the
pathology to develop efficient drugs to slow-down the progression of
the disorder and cure it. Studies in flies have shown that histone
acetyltransferase inhibitors can change the chromatin structure of the
FMRI loci reducing the expression levels of the gene to normal levels.
The consequence is the reversion of the rough eye phenotype, thus

suppressing the toxic RNA gain of function (114). The results indicate
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that drugs that modulate the activity of histone acetylases could be a

good therapeutic strategy.

Another chemical screen performed in the fly model has also found a
molecule that recues the CGG RNA repeat toxicity by inhibiting the
phospholipases A2 (Pla?2) activity (115). PLA2 has also previously been
liked to other neurodegenerative disorders and brain trauma (116).
Nonetheless, more efforts are needed to study the application of these
results in treating patients and in the discovery of alternative therapeutic

targets for the disorder.

1.5. Fragile X associated premature ovarian
insufficiency (FXPOI)

a. Terminology

In 1998, a study conducted over 147 females presenting idiopathic POF
resulted in the association females fXPC with premature ovarian failure
(POF1 or POF). POF1 is defined as onset of menopause before the age
of 40 years (117). One year later, an international collaborative study of
760 women from fragile X families demonstrated that 16% of the
females fXPCs presented menopause before the age of 40, none of the
full mutation presented POF and 0.7% of the controls presented
menopause before the age of 40 (118). Now we know that one of the
most common known causes of POF is the PM allele of the FMRI
gene. In particular, POF cases related to fXPCs are called FXPOL.
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POF is a disorder that causes impaired fertility and hormonal
deficiencies in females (119). POF is a heterogeneous disorder with
different levels of severity. For that reason, it was proposed to use
primary ovarian insufficiency (POI) as a more accurate terminology to
describe the spectrum of decreased ovarian function by using specific
modifiers (120). Based on this last terminology, occult POI describes
normal menstrual cycles and normal follicle stimulating hormone
(FSH) but reduced fertility. Biochemical POI occurs in females with
normal menstrual cycles but elevated FSH levels and reduced fertility.
And over POI or POF happens when menstrual cycles are abnormal or
absent, levels of FSH are elevated and fertility is severely reduced
(119). Nonetheless, the lack of specification for ovarian dysfunction age
of onset is an important limitation for the use of POI terminology. In
this chapter POF will still be used in reference to overt POI before the

age of 40.

b. Clinical features

The prevalence of POF is between a 15% and 24% within fXPCs. Yet,
with the most severe form of the disorder, when menstrual cycles
ceases, ovarian follicles are present and can function spontaneously and
unpredictably (119). Moreover, the reduced ovarian function
characteristic of the patients causes estrogen deficiencies manifested as
hot flashes, vaginal dryness, insomnia and decreased bone mineral

density (121, 122).
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Figure 10. Age of menopause among FMR1 alleles

The graph shows the relation between the number of CGG repeats at the FMR]
5’-UTR and age of menopause onset. Taken from Sullivan et al. (123)

On average, the length of reproductive years in female fXPCs is
shortened by 5 (124, 125). There are several signs for premature
ovarian ageing, such as short menstrual cycles and elevated levels of
FSH in fXPCs (120). Increased levels of FSH suggest decreased follicle
number. In agreement, anti-mullerian hormone (AMH) levels, which
indicate the number of growing small follicles, are reduced in fXPCs
(126). As foreseen, fXPCs show reduced fertility when compared to

control females.

C. Modeling FXPOI

The availability of mouse models with PM alleles used to study FXTAS
has been also used recently to study FXPOI. The mouse model
generated by Entezam et al. (2007), previously described, displays fast
lost of all follicles classes, suggesting that the problem is intrinsic to the
ovary. The size of the follicles is small with less granulosa cells (GCs)

(127).
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Another mouse model generated in 2010 by Peier et al. also show some
ovarian abnormalities. The model was generated using the latest
techniques in homologous recombination of yeast artificial
chromosome (YAC). A PM allele was used in for homologous
recombination with a YAC that encoded for a normal allele of the
FMRI1 gene. Female of the mouse model show reduction in the number
of growing follicles, which is sufficient to impair female fertility (128).
They also show alteration FSH levels, like the alteration seen in human

female carriers.

1.6. Non-coding RNA

During the last years, the ENCODE (ENCyclopedia of DNA Elements)
consortium has shown that at least 90 % of the genome is transcribed in
the different cells and that most of the transcribed gens does not code
for proteins. These non-coding RNA (ncRNA) are structurally very
diverse and a significant part is functional. Such ncRNA characteristics
are the bases of the so-called pervasive transcription, in which
transcriptome and proteome are exposed to a complex layer of

regulation and modification (129, 130).
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Figure 11. Transcriptional patterns of ncRNAs

Schematic representation of the transcriptional complexity of ncRNA. The
figure represents the two strands of DNA with basic building blocks of a gene.
Black arrows indicate the transcription site location for a given ncRNA.
ncRNA; non-coding RNA. endo-siRNA; endogenous small interfering RNA.
piRNA; piwi-interacting RNA. snRNA; small nuclear RNA. snoRNA; small
nucleolar RNA. miRNA; microRNA. sdRNA; sno-derived RNA. lincRNA;
long intergenic non-coding RNA. eRNA; enhancer RNA. PALR; promoter-
associated long RNA. PASR; promoter-associated short RNA. tiRNA;
transcription initiation RNA. spliRNA; splice junction-associated RNA.
mRNA; messenger RNA. NAT; natural antisense transcript. TASR; termini-
associated short RNA. Taken from Salta et al. 2012 (131).

NcRNAs are expressed in all cell types, and especially in the central
nervous system. Their importance relay on many aspects of the normal
function and development of the CNS, such as neurogenesis, neuronal
patterning, neurotransmission and synaptic plasticity (132-134).
Increasing evidences of ncRNA deregulation or mutation in the CNS

have been related to several neurological disorders, including some

neurodegenerative disorders (93, 135, 136).
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a. Small ncRNA

Characteristically, ncRNA shorter than 200bp are called small ncRNAs.
The first identified short RNAs were the transfer RNA (tRNA) in 1868
followed by the ribosomar RNA (rRNA) more than 100 years after.
Although, in the last years the number of short ncRNA has increased

vastly.

Origen Mechanisms and functions

Small

Incorporate into RISC (miRISC), base pair to 3-UTR of
miRNAs Sense, intergenic or intronic mRNA targets, and mainly induce translational repression or
deadenylation and degradation

Incorporate into RISC (siRISC), base pair to mRNA target,

endo-siRNAs  Sense or antisense, intergenic or exonic . R . .
& and induce degradation or heterochromatin formation

Epigenetic and possible translational control via

PIRNAs Sense or antisense, intergenic complementarity with DNA or RNA sequences

PASRs1 Sense, intergenic (promoter region) Unknown

TASRs1 Antisense, intergenic (3"-UTR end of genes)  Unknown
Pre-RNA processing or nucleoside modification (2'-O-

snoRNAs Sense, intergenic or intronic ribose methylation and pseudouridylation) of other RNA
molecules

snRNAs Sense, intergenic or intronic pre-mRNA splicing

tiRNAs Sense or antisense, intergenic (5 -UTR Possibly promotes transcription via epigenetic regulation

transcription initiation sites)

spliRNAs Sense, exonic (splice donor site) Possible epigenetic regulation

Table 5. Classification of small ncRNAs

miRNAs; micro RNAs. endo-si RNAs; endogenous small interfering RNAs.
piRNAs; piwi-interacting RNAs. PASRs; promoter-associated short RNAs.
TASRs; termini-associated short RNAs. snoRNAs; small nucleolar RNAs.
snRNAs; small nuclear RNAs. tiRNAs; transcription initiation RNAs.
spliRNAs; splice junction-associated RNAs. Adapted from Salta et al. 2012
(131)

They are involved in most of essential mechanisms of the cell, such as
biosynthesis of proteins, removal of introns, site-specific RNA
modification, telomere synthesis, transcription, modulation of protein

function and regulation of gene expression.
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An interesting subgroup of the small ncRNA is the regulatory small
ncRNAs. This group is represent by micro RNAs (miRNAs), small
interfering RNA (siRNA) and PIWI-interacting RNAs (piRNAs). But
recently, many other have been identified product of the processing of
long RNAs, such as microRNA-offset RNAs (moRs), mirtrons,
miRNA-like sSRNAs derived from snoRNAs (H/ACA sRNAs), sSRNAs
derived from tRNAs (tsRNAs), short hairpin RNAs (shRNAs), and
vault RNA (svRNAs), QDE-2 interacting small RNAs (qiRNAs) and
C/D box snoRNAs derived small RNAs (C/D sRNAS).

This subset of small ncRNA is 18-35nt long, and associates with
Argonaute (AGO) protein family. The Ago family is divided into two
subfamilies, PIWI subfamily and the Argonaute subfamily.
Classification of this subset of small ncRNA is according to the
biogenesis mechanism and the type of AGO family protein they

interact.

*  Biogenesis of regulatory small RNAs

The most extensively characterized regulator small ncRNA are the
miRNAs. They are transcribed by RNA polymerase II from miRNA
genes, introns or coding protein genes (137). The transcription product
is a pri-miRNA, an 80nt transcript with a 5’cap, a polyadenylated tail
and a stem loop structure. Then the microprocessor is formed by the
union of RNase III enzyme (DROSHA), the Di George Syndrome
Critical region gene 8 (DGCRS); a double stranded RNA binding
protein and the newly synthetized pri-miRNA. The microprocessor

recognizes the stem loop of the pri-miRNA and cleaves it, resulting in a
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70bp pre-miRNA (138, 139). Exportine 5 will transport the pre-miRNA
to the cytoplasm (140). Once in the cytoplasm, another RNase III,
Dicer, further processes the pre-miRNA. Dicer generates a 21-25 RNA
duplex with a 5° phosphate and 2-3nt overhangs. Finally, one of the
strands from the RNA duplex, usually the thermodynamically less
stable at 5’ base paring, is loaded into the RNA-induced silencing
complex (RISC). The loading is performed by direct binding one of the
RNA duplex strands, which becomes the mature miRNA, with one of
the AGO proteins, main component of RISC (139, 141) (Figure 12-A).

Endogenous siRNAs (endo-siRNA) are about 21nt length. They
originate from transposon transcripts, from sense-antisense transcripts
pairs and long stem loop structures (Figure 12)(142—-144). Endo-siRNA
are synthesized in the nucleus and exported to the cytoplasm where the
action of Dicer trims them to a 21nt RNA duplex (145). Once the
duplex is from they interact with RISC promote mRNA cleavage or

repression of translation (146).
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Figure 12. Biogenesis of small RNAs

Schmeatic representation of the biogenesis of a | Small interfering RNA
(siRNA). Different types of transcripts that can generate endo-siRNAs. Once
in the cytoplasm, Dicer processes them. Finaly, they are loaded to AGO?2.
Bottom right; model for the generation of exogenous siRNA (exo-siRNA). The
double strand RNA (dsRNA) is also processed by dicer and loaded to any of
the AGO proteins. b | miRNAs. Is transcribed by RNa polymerase II and
processed by DROSHA and DICER. The pre-miRNA resulting is transported
to the cytoplasm and cleaved by Dicer. The mature miRNA is loaded into one
of the AGO proteins. Taken from Siomi et al, 2011 (147)

In addition to the action of DROSHA and DICER, there are also other
ribonucleases involved in the biogenesis of other types of short

ncRNAs (Figure 13).
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Schematic representation of enzymes involved in the biogenesis of small
ncRNAs. Each square represents the action of a specific ribonuclease. In the
square, headings indicate the ribonuclease; and the body represent the types of
small ncRNA processed by a specific ribonuclease. Overlapping squares
indicate the requirement of the overlapping ribonucleases for the biogenesis of
the specific short ncRNAs. Taken from Rother et al. 2011 (148)

*  Silencing mechanism

MiRNA regulation of gene expression occurs when the mature miRNA
within the RISC complex binds to an mRNA with a complementary
sequence. The miRNA seed region specifies the sequence
complementarity region, which is determined from the nucleotide 2 to 8
of the mature miRNA. The outcome of the interaction is translation
inhibition or mRNA destabilization/cleavage. Translational repression
by miRNA is not yet well understood and several studies show
contradictory results. Same laboratories have shown that miRNA
translational repression can be caused by the impediment of
circularization of the mRNA molecule, which is important for
translation initiation (149, 150). The circularization is a consequence of

the union of the eukaryotic translation initiation factor (elF4G), a
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scaffolding protein with the mRNA cap structure and the polyA-
binding protein (PABP), which binds to the poly A tale at the 3’-UTR
of the mRNA. Yet, RNA lacking polyA tales can still be targeted by
miRNA. Other models propose that miRNA promotes the unloading of
the ribosome. It has also been proposed that the miRNA loaded in the
RISC complex can compete with the 60S subunit of the ribosome or
with elF4E to binding the mRNA or the cap structure respectively, thus

blocking translation initiation (149).

Destabilization of mRNAs can also be performed by miRNA-RISC
with partially complementary mRNA targets (151). Trinucleotide
repeat-containing gene 6A (TNRC6A), B or C interact with the Ago
proteins and the poly A binding protein (PABP). These proteins can
also recruit deadenylases CCR4 and CAF1, which will remove the
polyA tale from the target mRNA. Thus, the mRNA is destabilized
promoting its degradation (151, 152). In many organisms, perfect
complementarity of the miRNA/siRNA with the target mRNA can lead
to the cleavage of the mRNA by the AGO protein. In humans, AGO2
still preserves the endonucleolitic activity to perform such degradation

(153, 154).

The other classes of small ncRNA except piRNA, also interact with
AGO proteins, leading to target specific gene silencing. piRNAs are a
special case of small ncRNA that interact with PIWI (P-element
induced wimpy testis) proteins (155-158). Studies in mammals have
shown that piRNA can also induce gene silencing and epigenetic

changes.
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b. Long non-coding RNAs (IncRNA)

ncRNA longer than 300nt are called long non-coding RNAs (IncRNAs)
and most are transcribed by transcribed by RNA polymerase II (159).
Taking in account the transcriptional pattern, IncRNA can be classified

as it follows:

Origen Mechanisms and functions

Long

lincRNAs31 Sense or antisense, intergenic Epigenetic regulation

NATs32 Antisense, exonic or intronic mRNA ni'anscrl[‘)tglon,. splicing, stability, and Iransla}mn,
epigenetic modifications, and precursors of endo-siRNAs

RNA si . . . . . . . .

cxpansion Sense or antisense, exonic or intronic Epigenetic regulation and RNA toxic effects

repeats33

ENORs34 Sense or antisense, intergenic Transcriptional regulation, genomic imprinting, precursors of
other short and long ncRNAs

eRNAs35 Sense, intergenic (enhancer region) Transcriptional regulation

PALRs] Sense, overlap with promoter and first exon of Unknown

genes
Table 6. Classification of IncRNA

Adapted from Salta et al. 2012 (131)

Increasing evidences suggest that an important role of IncRNA is the
regulation of protein expression. IncRNA can modify protein
expression by recruiting chromatin remodeling complexes to specific
genomic loci. Many IncRNA have a specific spatiotemporal pattern of
expression, which allows determinate changes in the chromatin
structure in a cell specific manner at a specific moment (160, 161).
Transcription can be also regulated in trans by IncRNA recruiting
repressors or activators of transcription at the promoter site or by
directly binding by complementarity to the DNA. This last mechanism
leads to the formation of a triple helix that obstructs the binding of
transcriptional machinery (162, 163). This last same principal, the

recognition and binding of complementary sequences, is adapted for the
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post-transcriptional modifications regulated by IncRNA. Expression of
complementary RNA sequences, like antisense transcripts, allows the
binding of two RNA molecules blocking the function of proteins
implicated in splicing, editing, transport, translation and degradation

processes (164).
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Figure 12. Function of long-non coding RNAs

IncRNA functional examples in a | Chromatin remodelling. b |
Transcriptional regulation. ¢ | post-transcriptional regulation.

Taken form Mercer et al. (2009)(165).

In light of the molecular pathways in which IncRNAs are implicated, is
not surprising that increasing evidences show their involvement in
disease, including neurodegenerative diseases. In particular IncRNA
alterations have been described in Huntington’s disease (HD),
Parkinson’s disease (PD) and Alzheimer’s disease (AD) (136, 166).
Indeed, it was been recently demonstrated that pseudogenes, IncRNAs
can act as a sponges of miRNAs competing with other transcripts for
the binding of miRNAs (166-168). Therefore, changes in the quantity
of IncRNA within the cell could lead to variations in the miRNA pool

of the cell, thus resulting in harmful changes for the cell.
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2. HYPOTHESIS AND OBJECTIVES

Carriers of CGG trinucleotide repeat expansions, between 55 and 200
repeats, in the 5’-UTR of the FMRI gene are at a risk of suffering
fragile X tremor/ataxia syndrome (FXTAS) and females premature
ovarian failure (POF1 or POF). Carriers of these alleles, also called
premutation (PM) alleles, present eosinophilic positive intranuclear
inclusions throughout neurons and astrocytes and abnormal high levels
of FMRI transcript (73). Despite the high levels of FMR]I transcript, no
increase in FMRI protein (FMRP) has been detected (39, 76). Those
findings prompted the suggestion that the pathogenic mechanism in the
FMRI PM alleles is related to a toxic mRNA gain of function.
Evidences that corroborate this hypothesis where found in mouse and
fly models, reproducing features of FXTAS neuropathology by
expressing PM alleles outside the Fmrl genomic context (42, 113).
Additionally, in vitro assays show that FMRI expanded CGG repeats
affect cell viability in primary neural progenitor cells and in established

neural cell lines (78).

Histopathological studies in inclusions found in FXTAS brain samples
revealed the presence of FMRI mRNA within the inclusions (7).
Additional studies demonstrate that the premutated transcript binds to

some RNA binding proteins and sequesters them, thus forming the
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inclusions (79, 83, 102). Some of the proteins present in the inclusions
have important roles in transcription splicing, mRNA trafficking,
translation and miRNA biogenesis (79, 81, 83, 84, 102). Sequestration
of these proteins prevents their normal function, likely causing an

impact on the transcriptome.

Moreover, several studies suggest that CGG repeats, such as the one
present in the 5’-UTR of the FMRI gene, can form a secondary
structure similar to that of miRNA precursors, and that this structure
can be cleaved by DICER, giving rise to a CGG duplex of about 21nt
(sCGG) (92, 94, 169). Thus, premutated FMRI transcript could

generate sSCGG and trigger downstream silencing effects.

Based on these data, our hypothesis is that changes in the transcriptome
induced by the expanded FMRI 5’-UTR and the activity of sCGG
biogenesis contribute to downstream pathogenic effects. The aim of this
thesis is to study changes in gene expression in FXTAS and FXPOI,
and to evaluate the involvement of the gene silencing machinery in
these pathologies. For this purpose the following objectives have been

established:

* Evaluation of transcriptome changes in peripheral blood samples
from FMRI premutation carriers.
o Identification of the biological pathways altered in PM carriers.
o Validation of genes altered in blood samples of FMR]I carriers
in brains of the FXTAS KI mouse model.
o Assessment of the contribution of the levels of expression of

the premutated allele to the observed transcriptional changes.
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Evaluation of the involvement of the gene silencing machinery in

expanded-FMR ] pathologies

e}

Identification of small CGG (sCGG) molecules in human and
mouse carriers of the FMRI premutation.

Evaluation of the toxic effects related to the sSCGG molecules
Evaluation of the involvement of the siRNA biogenesis
machinery in the formation of sCGG molecules

Evaluation of whether the toxic effects of sCGG molecules are
dependent on the RNA induced silencing complex (RISC).
Identification of putative silencing targets of the small CGG

molecules.
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3. RESULTS

3.1. Evaluation of transcriptome changes in
peripheral blood samples from FMR1

premutation carriers

In this section we focused on the description and identification of gene
expression perturbations and biological pathways altered in fragile X
premutation carriers (fXPCs). Subsequently, we validated gene
expression alterations in a mouse model for the FMRI PM. In addition,
we studied the effects of expanded FMRI expression levels in

perturbing the transcriptome.

a. Identification of the biological pathways altered

in peripheral blood of premutation carriers

To identify mechanisms with possible relevance in the nature and
progression of the FXTAS phenotype, we have examined changes in
the global gene expression profile in blood samples of male fXPCs. We

included nine PM carriers: five FXTAS-symptomatic patients (SP),
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four FXTAS-asymptomatic patients (AP) and five age-matched
controls (Table 7). During the course of the study, two of the AP fXPC
initiated FXTAS symptomatology and therefore became SP. FMRI
mRNA expression levels in the two other AP, were similar to control
individuals, while SP subjects presented a clear up-regulation of FMRI
mRNA when compared to controls (~2-fold change, p<0.01) (Table 7).
Accordingly, clinical characteristics of individuals of another study

reported AP with no increase in the expression of the FMRI gene (97).

mRNA % FXTAS

Subject Age (CGG)n Clinical Signs  Radiological Signs Diagnostics

FMR1: FMRP: Onset
fXPC1 63 106 1,56 67 2 major Imajor + Iminor DEF 62
fXPC2 65 113 32 88 1 major + Iminor 1 major DEF 64
fXPC3 62 60 1,72 100 2 major Imajor + Iminor DEF 60
fXPC4 43 60 1,22 94 Iminor 1 major PROB 64
fXPC5 69 75 2,06 83 2minor + Imajor 1 minor POS 62
fXPC6 65 83 1,93 78 1 major 2 major DEF 65
fXPC7 55 73 3,82 95 1 major + 2 minor 1 minor POS 57
fXPC8 65 80 1,04 78 None 1minor NO -
fXPC9 42 73 0,95 86 None None NO
Contol 1 72 28 1,09 - None None -
Contol 2 77 29 1,17 - None None
Contol 3 69 23 1 - None None
Contol 4 71 29 1,45 - None None
Contol 5 77 23 0,92 - None None

Table 7. Clinical and molecular characteristics from male fXPC

'RNA levels are reported as fold change over those in normal sex-matched
control individuals. *Percentage of hair root positive for FMRP by immune-
hystochemical staining. *Diagnostic criteria described by Jaquemont et al. (74).
DEF: definite, PROB: Probable, POS: Possible.

We performed gene expression profiling wusing Agilent-based
microarrays (SurePrint G3 Human GE 8x60K Microarray)
(GSEA48873). Transcripts that passed stringent filtering criteria (Fold
Change = | 1.5 | and FDR rate <1%) were considered as differentially
expressed genes (DEG). According to these criteria, a total of 1,660
RNAs were differentially expressed when comparing SP with control
individuals, being 1003 genes down-regulated, and 657 up-regulated.
Interestingly, more than 30% of the DEG were long non-coding RNAs
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(IncRNAs), being most of them (93%) down-regulated. Heatmap
analysis of DEG across different samples showed three main clusters
consisting in controls, AP and SP (Figure 13). Because FMRI mRNA
levels are different between SP and AP, both the CGG expansion per se
and the expression levels of the PM FMRI gene may account for the

gene deregulation observed in PM carriers.

Color Key

FXTAS 2

Figure 13. Gene expression analysis in peripheral blood samples from
fXPC

Heatmap plot from 1,660 differential expressed RNAs (Fold Change
=|1.5|and false discovery rate <1%). Genes with similar expression profiles
are grouped in eight different clusters, labeled with different colors. Columns
represent samples and rows show the genes. For each gene, red indicates up-
regulation and blue down-regulation of expression relative to the mean.
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In the heatmap analysis, we identified eight clusters of DEG, containing
between 1,260 (blue) and 51 (red) RNAs (Figure 13). Ingenuity
Pathway Analysis (IPA) in each cluster revealed enrichment in several
biological pathways that may underlie FXTAS-pathogenic aspects
(Table 8), including mitochondrial dysfunction, cell death and survival,
inflammatory response, reproductive system disease, and neurological
disorders. Thus, DEG in blood identifies pathways related to different
neuropathological aspects of the FXTAS phenotypes. Heatmap analysis
showed that 45% of the deregulated IncRNA clustered with protein-
coding genes involved in inflammatory response, and another 28% with
genes involved in nervous system development and function (Table 9),

suggesting a participation in analogous functions.
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Physiological System

lust
Cluster Development & Function

isorders

& Cellular Function

Canonical Pathways

Behavior
Nervous System
Organismal Development

Hereditary Disorder
Neurological Disease
Psychological Disorders

Tissue Devel
Cardiovascular System

Hematological System
Organismal Development
Cardiovascular System
Connective Tissue
Embryonic Development

Skeletal & Muscular System
Connective Tissue
Cardiovascular System
Organ morphology
Tissue morphology

Connective Tissue
Tissue development

Organismal Function
Hematological System
Embryonic Development

Hematological System
Immune Cell Trafficking
Embryonic Development

Heatopoiesis
Lymphoid Tissue Structure

Connective Tissue
Embryonic Development
Nervous System
Organ Morphology
“<mal 1

Cardio lar Disease
Connective Tissue Disorders

Renal & Urological disease
Neurological Disease
Cancer
Gastrointestinal Disease
Hepatic System Disease

Cardiovascular Disease
Developmental Disorders
Organismal Injury
& Abnormalities
Reproductive System Disease
Skeletal & Muscular Disorders

Cancer
Dermatological Disease
& Conditions
Inflammatory Response
Ophthalmic Disease
Respiratory Disease

Cancer
Hematological Disease
Renal and Urological disease
Gastrointestinal disease
Hepatic System Disease

Cardiovascular Disease
Connective Tissue Disorders
Dermatological Disease
& Conditions

1 Disorders

Or Dev

Cell-mediated Immune

Gastrointestinal Disease

Response Hereditary Disorder
Hematological System Developmental Disorder
Organismal Devel ious Disease

Tissue Development

Cell-to-Cell Signalling & Interacion
Amino Acid Metabolism
Molecular Transport
Small Molecule Biochemistry
Protein Synthesis

Post-Transletional Modifications
Cell Death & Survival

Cell Death & Survival
Gene Expression
Cell Cycle
Cellular Movement
Protein Synthesis

Cell-to-Cell Signalling
& Interacion
Amino Acid Metabolism
Carbohydrate Metabolism
Cell Cycle
Cell Death & Survival

Cellular Assembly & Organization
Cellular Function & Maintanance
Cell-to-Cell Signalling & Interacion
Cellular Growth & Proliferation
Cellular Development

RNA Post-Transciptional
Modification
Protein Synthesis
Gene Expression
Cellular Movement
Cellular Development

Carbohydrate Metabolism
Cell Death & Survival
Cellular Assembly & Organization
DNA Replication,
Recombination & Repair
Lipid Metabolism

RNA Post-Transciptional
Modification
Protein Synthesis
Gene Expression

Glutamate Receptor

Assembly of RNA polymerase
TI Complex

EIF2 Signaling
Regulation of eIF4
& p70S6K Signaling
mTOR Signaling
Mitochondrial Dysfunction

Role of BRCA1
in DNA Damage Response
RAN Signaling

EIF2 Signaling
Regulation of elF4
& p70S6K Signaling
mTOR Signaling
Mitochondrial Dysfunction

EIF2 Signaling
Regulation of elF4
& p70S6K Signaling
mTOR Signaling

Table 8. Pathway enrichment analysis of differential expressed genes in
blood of FXTAS patients vs. control individuals

List of the significantly enriched canonical pathways, molecular and cellular
functions, diseases and physiological system development and functions
altered for each of the eight gene clusters according to IPA.
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Cluster n’ CDS n° CPG n° IncRNA IncNRA % IncRNA % within cluster

450 187 226 28.39 50.22
250 229 15 1.88 6

191 142 31 3.89 16.23
292 127 136 17.09 46.58

1004 554 356 44.72 35.46
141 82 10 1.26 7.09

44 22 19 2.39 43.18
69 54 3 0.38 4.35

Table 9. Cluster distribution of differentially expressed IncRNA, in
patients with FXTAS vs. control individuals

In each cluster the table shows the number of coding sequences (CDS), number
of coding protein genes (CPG) among the CDS, and number of IncRNA
among the CDS. The percentage of IncRNA is refereed to the total number of
deregulated IncRNA and the percentage of IncRNA within the cluster is
refereed to the total number of deregulated CDS in the cluster.

To identify possible modulators explaining DEG, IPA uses two
statistical tools to determine the activation state of a given molecule: the
Z-score, calculated within our data set, and the overlap p-value, which
also takes into account already known regulators for a given gene. With
this approach, IPA identified several cytokines, transcription factors
and a number of miRNAs that could contribute to deregulation of gene

expression in FXTAS (Table S1).

Microarray expression data were validated by TagMan-based qPCR for
15 genes selected for their probable functional link to FXTAS (Table
11). These genes are involved in nervous system function,
inflammatory response, cell death, mitochondrial function, and
oxidative stress. We validated 14 out of 15 genes, using two different
reference genes: ACTB and TBP. The only gene that we could not
replicate was the potassium voltage-gated channel member 3 (KCNC3),
which was not consistently expressed in our samples (Ct values: 38-40).
One of the validated genes is the early at menopause 1 (EAPI) gene.

EAPI is an important component in the hypothalamic control for the
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initiation of puberty and maintenance of female reproductive cycles in
rodents and in non-human primates (170). Since POF is characteristic
of female fXPC, we determined the expression of EAPI in peripheral
blood samples of 25 female fXPC, 12 of them presenting POF1. As
controls we included eight females without the permutation, four

presenting premature menopause (onset before the age of 40 years)

(Table 10).
Subject (CGGn  Clinical Signs  Nienopause
Onset

Patient 1 94 POF1 <40 years
Patient 2 105 POF1 <40 years
Patient 3 119 POF1 <40 years
Patient 4 154 POF1 <40 years
Patient 5 82 POF1 <40 years
Patient 6 74 POF1 <40 years
Patient 7 126 POF1 <40 years
Patient 8 71 POF1 <40 years
Patient 9 62 POF1 <40 years
Patient 10 73 POF1 <40 years
Patient 11 168 non > 40 years
Patient 12 80 non > 40 years
Patient 13 60 non > 40 years
Patient 14 96 non > 40 years
Patient 15 116 non > 40 years
Patient 16 69 non > 40 years
Patient 17 60 non > 40 years
Patient 18 70 non > 40 years
Patient 19 76 non > 40 years
Patient 20 190 non > 40 years
Patient 21 73 POF1 <40 years
Patient 22 60 POF1 <40 years
Patient 23 80 non > 40 years
Patient 24 61 non > 40 years
Patient 25 81 non > 40 years
Patient 26 <45 POF1 <40 years
Patient 27 <45 POF1 <40 years
Patient 28 <45 POF1 <40 years
Patient 29 <45 POF1 <40 years
Control 1 <45 non > 40 years
Control 2 <45 non > 40 years
Control 3 <45 non > 40 years
Control 4 <45 non > 40 years

Table 10. Clinical and molecular characteristics of female fXPC
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RT-PCR analysis showed a significant down-regulation of EAPI in
fXPC patients when compared with any of the two control groups, thus
confirming EAPI deregulation both in male and female fXPCs. Down-
regulation was stronger (24%) in female fXPCs with POF1 compared
with female fXPCs without POF1 (Figure 14). However, a significant
EAPI decrease was also detected in controls with POF, thus suggesting
that EAPI low levels may be associated both with the FMR! PM and
with POF. These findings are in agreement with a common
involvement of EAPI decline in loss/disruption of the menstrual cycle,
in different genetic conditions. Thus, a possibility exists that decreased
EAPI levels in female fXPCs, contribute to the high prevalence of
POF1 in fXPCs.
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Figure 14. EAP1 expression in fXPCs females

EAPI mRNA expression levels in control females presenting or not POF and
female fXPCs presenting or not POF1. Expression levels are referred to a
control sample for RQ. Determinations were performed using two independent
reference genes. Plots show distribution and mean RQ + SE (**P<0.01;
***P<0.001; **P<0.01; ++*P<0.001; using a linear mixed effects model).
Bonferroni correction was applied for multiple comparisons. Significant
differences with respect to control individuals is indicated with “*” and
significant differences between fXPCs and fXPC+POF1 indicated with “*”.
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b. Validation of candidate genes altered in
peripheral blood samples of FMRI carriers in brains of

the CGG-KI mouse model

The altered expression of a large amount of transcripts in peripheral
blood samples of FXPC raises the question on whether similar changes
occur in other tissues affected by the CGG-repeat expansion, especially
in brain samples for the FXTAS phenotype. We therefore analyzed the
expression of selected genes in brain samples of the CGG-KI mouse
model, in which the endogenous mouse CGG repeats in the murine
Fmrl gene have been replaced by the human FMRI gene carrying 150
CGQG repeats (103). We analyzed the expression of 12 blood validated
DEG with relevant functions in neuronal homeostasis (Table 11), in
brain samples of three CGG-KI and four control mice. We performed
TagMan-based qPCR using two different reference genes in six brain
areas: prefrontal cortex (PFCx), motor cortex (MCx), striatum (STR),
hippocampus (HC), cerebellum (CRBL) and brainstem (BS). These
areas where selected according to their association with the
symptomatology in FXTAS patients and their affectation/involvement
in human tissue and mouse samples. MCx, PFCx and HC show high
content of intranuclear inclusions in the human brain as well as in the
CGG-KI mouse model (105, 106). In addition, working memory is
impaired in the CGG-KI mouse model, suggesting that hippocampal-
dependent impairments in spatial processing may occur (109).
Intranuclear inclusions are also present in specific BS nuclei and CRBL
layers of FXTAS CGG-KI mice (105, 106). Moreover, neuroimaging
studies in human fXPCs also revealed volume loss in cerebral cortex,
HC, CRBL and BS and white matter disease in BS and CRBL (69, 70).

Though, intranuclear inclusions are rare in the STR of CGG-KI mice
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(105, 106), other types of alterations in these areas may explain some of
the motor deficits in FXTAS patients, including resting tremor and

rigidity (171, 172).

Increased levels of Fmri mRNA (2-3 FC) were detected in all brain
areas of the CGG-KI mouse (Table 12), which agrees with previous
publications (171, 172). Out of the remaining 11 genes, we validated
nine in BS, eight in STR and seven MCx (Table 12) using two
independent reference genes (Hprt! and Thp). Moreover, half of the
genes studied showed the same expression direction in at least three of
the six brain regions. Specifically, down-regulation of potassium
voltage-gated channel member 3 (Kcnc3) and Bcl-2 interacting
mediator of cell death (Bim) could be validated in four out of six
different brain regions. Also, the ring finger protein 10 (Rnf10), histone
deacetylase 5 (Hdac$), Bcel-2-like protein 1 (Bcl-X), spinocerebellar
ataxia type 7 protein (4¢txn7) and Eapl showed down-regulation in half
of the tested brain regions. Interestingly, we found that Eapl was
significantly down-regulated in the BS and CB of CGG-KI mouse,
suggesting that Eapl levels in certain brain areas could contribute to
POF in this model (128). All together, these results suggest that gene
expression profiling in blood of fXPC partially reflects changes in the
brain transcriptome that may underlie neuropathological aspects in

FXTAS.
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Gene ID PFCx MCx Estriatum Hippocampus Cerebellum Bstem Array

Rnf10 . ?10.:VE -D1o.\gg - - ?10_\;3‘/; Down
e
IR A
Hdacs ; D10:V; D1O\gg o - - Down
S B B
O A A
o ’ ’ ?10.2,22 - - - Down
Atxn? - Df‘;"g D1°‘£’1n ) ?f:vg ) boun
Fmrt 295‘)9 1L.Js§9 2l.J1p7 2L.J(§7 2L.12ps zL.Jge up
App 19(;)8 . . . i 1l_J1p8 Up
Avnd *UZp? i i i . 19:54 up
i 12 _ ] ) ) 1L.Jspz up

Table 11. qPCR relative quantification of specific FXTAS-blood-DEG in
different brain areas of the CGG-KI FXTAS mouse model

Determinations were performed in the prefrontal cortex, motor cortex,
striatum, hippocampus, cerebellum and brain stem. The deregulation pattern
and the corresponding fold change are indicated for each gene and brain area.
Down or up indicate a statistically significant deregulation in CGG-KI vs.
control mice, using a linear mixed effects model, and “-“ indicates no
deregulation of transcript levels. Deregulation pattern observed with 2
independent endogenous reference genes is indicated in black labeling and
deregulation detected with one of the two reference genes is indicated in grey.
The last column indicates the deregulation pattern observed in blood of FXTAs
patients according to the array and qPCR validations.

Given the overlap in gene expression among peripheral blood and brain
samples, we further aimed to elucidate whether a broader correlation
existed between those two systems. For that reason we performed
microarray expression profiling in three of the dissected brain areas:
PFCx, STR and HC. The number of samples available for the
expression profiling, 3 CGG-KI mouse and 4 controls, was a limiting

parameter to get good statistical power. Nevertheless, taking in account
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p-value < 0,05 and Fold Change = |1,2

, we found 329, 693 and 198
DEG in PFCx, STR and HC, respectively. Hierarchical cluster analysis
of the three DEG list can distinguish CGG-KI mouse model from the
control mouse in HC and STR (Figure 15). Although some of the DEG
genes in peripheral blood could be validated in some brain areas of the
FXTAS mouse model, we did not detect a significant overlap of DEG
in the CGG-KI mouse model and peripheral blood human samples.
However, functional analysis of the DEG indicates that the altered
pathways are the same. IPA functional analysis of the of the DEG in the
three brain areas rank nervous system development and function as the
top physiological system altered and neurological disease, infectious
disease and inflammatory response as the most ranked disorders (Table

S2).

Hippocampus Striatum Prefrontal Cortex

- ©
2 s s
& 5 5 5 5
& 8 8

Figure 15. Cluster analysis of differential expressed genes in brains from
the CGG-KI mouse model compared to control mouse

Our previous results demonstrate that expression of CGG expansion in
the premutation range gives rise to a high deregulation of ncRNA in
blood samples of fXPCs. Therefore, we wanted to investigate whether

this also the case in brain samples of the mouse model. Data from our
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microarray experiments show that, again as seen in peripheral blood
samples of FXTAS patients, half of the DEG (Fold Change = | 1,2
p-value < 0.05) were ncRNAs. We identified 149, 346 and 144 ncRNA

and

deregulated in PFCx, STR and HC respectively, where 21 are common
in the three brain regions. Prediction of the upstream regulators by IPA
revealed that miR-221-3p putative targets showed a tendency for being
enriched in HC and PFCx of CGG-KI mouse model, similarly to the
analysis of DEG in blood (Table S3 & S4).

C. Assessment of the contribution of the levels of
expression of the premutated allele in modulating the

transcriptome.

According to patient clustering analysis (Figure 13) our data suggest
that SP and AP present differential gene expression profiles which may
be explained the levels of expression of FMRI 5’-UTR. To determine
whether premutated 5’-UTR FMRI expression levels could contribute
to neuronal gene expression deregulation, we used differentiated post-
mitotic SH-SYSY neuroblastoma cells transfected with expanded and
unexpanded 5’-UTR FMRI expression vectors. We used genomic DNA
from human immortalized lymphocyte cell lines to clone the FMRI 5’-
UTR of two different CGG lengths. The construct containing 21 CGG
repeats (21*CGG) was considered the wild-type (wt) unexpanded
allele, whereas a construct containing 79 CGG-repeats (79*CGG) was

used as the premutated/expanded allele.
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Figure 16. FMR1 5’-UTR expression vectors

CGG expanded (79*CGG) and unexpanded (21*CGG) FMRI 5’-UTR were
cloned into the bicistronic pCAGIG vector and transfected into differentiated
SH-SYS5Y cells. 79*CGG Two sets of primers (indicated by arrows) were used
to quantify the expression of the vectors.

Differentiated SH-SYSY cells were transiently transfected with the
empty vector, 21*CGG-5’FMR1 (V21), 79*CGG-5’FMR1 (V79) or
increased amounts of 79*CGG-5’FMR1 (V79_8x) in six independent
experiments (Figure 16). The expression levels of the vectors was
determined 24 h after transfection using two different custom TaqMan
assays designed to amplify GFP or pIRES (Figure 17). 79*CGG-
5’FMRI1 (V79) was expressed at similar levels as 21*CGG-5’FMR1
(V21) or 8-fold overexpressed (V79 _8x). These overexpression levels
of premutated-FMRI mRNA have been also reported in FXTAS
patients (39, 76). Gene expression was then profiled in the six
independent biological replicas, using the Agilent SurePrint G3 Human

GE 8x60K Microarray (GSE48903).
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GFP FMR1-IRES
FC p-Value FC p-Value
Mock vs. V21 0.91 2.00E-02 0.99 8.90E-01

Mock vs. V79 0.89 8.00E-04 0.98 5.70E-01
Mock vs. V79 g 8

2.00E-04 8.6 2.00E-04

Figure 17. Expression quantification for the FMR1 5°-UTR vectors

Quantification of the expression of the different vectors using two independent
sets of primers, covering GFP (right panel) or FMRI-IRES (left panel)
fragments. Quantification was normalized using two different reference genes.
Expression levels are referred to a control mock-transfected sample for RQ.

Heatmap analysis of the probe sets differently expressed in V79 8x vs.
V21 (Fold Change =| 1.2 |and FDR <5%) showed strong clustering of
cells overexpressing the 79*CGG vector with respect to the rest of the
samples and also discriminated between cells expressing 79*CGG
vector, the 21*CGG vector or the empty vector (Figure 18). We found
427 DEG (Fold Change =|1.2|and FDR rate <5%) when comparing
cells transfected with 21*CGG expressing vector with those
overexpressing 79*CGG (8-fold). A total of 16 of these genes presented
a similar deregulation pattern in blood when comparing control
individuals with SP (Fold Change =|1.2|and FDR <5%) (Table S5).
We also detected 197 DEG in cells expressing the 79*CGG vector vs.
cells overexpressing the same vector. From those, 21 genes presented a

similar deregulation pattern in blood when comparing AP with SP (Fold
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Change =|1.5

, Table S6). Although little overlap was observed
between DEG in patient’s blood and the cellular model, IPA suggests
that similar biological pathways are perturbed. Thus, overexpression of
expanded 5’-UTR FMRI might be sufficient to deregulate a subset of
genes involved in inflammation and nervous system development and
function. Moreover, 93% (178 out of 192) of DEG in cells expressing
the 79*CGG construct vs. cells overexpressing 79*CGG vector (8-fold)
were also differentially expressed in cells expressing 21*CGG vectors
vs. overexpressing 79*CGG vector (Table S7). This suggests that
overexpression of FMRI 5’-UTR leads to quantitative rather than
qualitative changes in gene expression. In line with this, the levels and
pattern of deregulation of 68% of DEG was more substantial in
21*CGG vs. 79*CGG (8-fold) than in 79*CGG vs. 79*CGG (8-fold). A
similar phenomenon was observed for 41 genes that showed a tendency
to deregulation (not reaching statistical significance) when comparing
21*CGG vs. 79*CGG transfected cells (Table S8). Again, the
deregulation levels of those genes was increased in 21*CGG vs.

79*CGG (8-fold) expressing cells.
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Figure 18. Cluster analysis of differential expressed genes upon
transfection of the FMR1 5’-UTR vectors

Heatmap plot of 427 DEG comparing 79*CGGS8x vs. 21¥*CGG expressing
cells (Fold Change =| 1.2 | and false discovery rate <5%) 24 h after transfection
of the vectors. Columns represent samples and rows represent genes. For each
gene, red indicates up-regulation and blue down-regulation of expression
relative to the mean.

To study if the sensitivity of DEG to 79*CGG dosage was specific to
the premutation/expansion, we evaluated whether a similar
phenomenon was detected upon overexpression of the 21*CGG control
vector. Using TagMan qPCR we validated the 79*CGG dosage
sensitivity for four genes out of five examined (Figure 19). For these

genes we did not observe significant changes when overexpressing
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21*CGG (Figure 20) suggesting selective sensitivity for overexpression

of the expanded FMRI 5’-UTR.
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Figure 19. Expression profile of 5 different gens upon transfection of the
FMR1 5°-UTR vectors

gPCR validation of the expression pattern of SERPINA3, TAPI, CACYBP,
ICAM1 and ISG15 for which the array showed significant deregulation when
comparing 79*CGG or 79*CGG8x vs. 21*CGG expressing cells. Plots show
distribution and mean RQ + SE. Expression levels are referred to a control
mock transfected cell for RQ. In all cases quantification was normalized using
two different reference genes. (**P<0.01; ***P<0.001; *P<0.01;
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¢+ +P<(.001;using a linear mixed effects model). Bonferroni correction was
applied for multiple comparisons. Significant differences in respect to cells
transfected with V21 is indicated with “*” and significant differences between
cells transfected with V79 and V79 _8x is indicated with “¢”.
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Figure 20. Expression profile of 5 different gens upon transfection of
21*CGG at two different concentrations

Relative quantification of 21*CGG overexpression using two independent sets
of primers, covering GFP (left panel) or FMR1-IRES (right panel) fragments.
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(B) qPCR analysis of SERPINA3, T4PI, ICAM]I and ISG15 in SH5Y-SY cells
over-expressing the 21*CGG FMR1 5’-UTR (V216x). Plots show distribution
and mean RQ + SE. Expression levels are referred to the 21*CGG (V21)
transfected cell for RQ and in all cases quantification was normalized using
two different reference genes.

We only found 10 differentially expressed IncRNA (Fold Change
=|1.2|and FDR <5%) in the in vitro cellular system, which contrasts
with the large number of IncRNA deregulated in blood of fXPC.
Nevertheless, it is worth mentioning that only 15% (919 probes) of the
IncRNA probes in the V1 version of the SurePrint G3 Human Gene
Expression 8x60K are contained in the newer V2 version. Using the
919 common IncRNA probes for both arrays we found 383 to be
differentially expressed in blood samples of patients with FXTAS, with
only one being also deregulated in our in vitro cell system: zinc finger

protein 815 (ZNF815), non-coding RNA.

3.2. Evaluation of the involvement of the gene
silencing machinery in PM-FMR1

pathogenesis

In this part of the thesis we aimed to determine whether PM range 5°-
UTR of the FMRI gene could generate small CGG (sCGQG) and cause

neuronal dysfunction.
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a. Identification of small CGG molecules

Transcripts with long CGG repeats form hairpin like secondary
structures that can be cleaved by the ribonuclease DICER, forming
SRNA of 2Int (sCGG) (92, 169, 173). The first objective was to
determine weather carriers of PM alleles and a cellular model for the

FMRI 5°-UTR presented increased levels of sCGG molecules.

*  Determination of SCGG in human carriers of the FMRI PM

We first intended to identify sCGG molecules in two models that
presented the entire genomic background of the FMRI gene. We
isolated total RNA from two different sources: lymphocytes cell lines
(LCL) from FXTAS male patients and peripheral blood samples of
female fXPCs. Initially, northern blot was used to identify small RNA
species product from FMRI 5°-UTR in both models. Unfortunately, this
technique was not sensitive enough to detect sCGG. Therefore,
polyadenylation of total RNA followed by a RT-PCR and a semi-
quantitative PCR was used as an alternative technique to detect RNA

products.

We established four LCL lines from male FXTAS patients. Peripheral
blood lymphocytes were isolated and subsequently immortalized by
infection with Epstein-Barr virus (EBV). Established LCL presented
CGG expansion alleles ranging from 60 to 100 CGG repeats. Four age
matched controls samples where obtained from the International
haplotype map (HapMap) project repository. Detection of sCGG by
polyadenilation reaction followed by PCR reaction indicated the

presence of sSCGG molecules in LCL. sCGG levels tend to increase in
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cell lines of FXTAS patients when compared to control individuals,
although differences did not reach statistical significance (Figure 21).
An increased number samples would have likely resulted in statistically

significant increases of sSCGG.

sCGG quantification in lymphocytes cell lines of

FXTAS patients

23 Sample  n2CGG
Control 1 <45
X 2 Control 2 <45
g Control 3 <45
§ L5 Control4 <45
2 FXTAS 1 60
g 1 FXTAS 2 70
Q FXTAS 3 80
0.5 FXTAS 4 100

Control Pacients

Figure 21. Identification and quantification of sCGG in lymphocytes cell
lines of FXTAS patients

sCGG levels are increased in lymphocyte cell line (LCL) of FXTAS carriers
when compared to control individuals. sCGG were quantified by semi
quantitative RT-PCR using RNU66 as the reference sSRNA. Values represent
mean fold change from optic density (O.D.) measurements with respect the
control samples + SEM (n=3).

Identification and quantification of sCGG was also performed in
peripheral blood samples of female fXPCs, previously described in
Table 10. In this case samples where divided in 18 fXPCs and 8
controls. The results indicate a positive correlation between the
formation of sCGG molecules and the presence of FMRI 5’-UTR

premutation (Figure 22).
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Figure 22. Identification and quantification of sCGG in peripheral blood
from fXPCs

sCGG levels are increased in peripheral blood samples of fXPCs when
compared to control individuals. sSCGG were quantified by semi quantitative
RT-PCR using RNU66 as the reference sRNA. Values represent mean fold
change from optic density (O.D.) measurements with respect the control
samples £ SEM (*p<0.05; using ¢-test).

*  Determination of sCGG species in brain samples of the KI model

We also evaluated the presence of sSCGG in the brain of the CGG-KI
FXTAS mouse model. We isolated total RNA from four different brain
regions: HC, PFCx, CRBL and BS, in three KI-CGG and three control
mice, and subsequently determined sCGG abundances (Figure 23). We
detected increased sCGG levels in two out of the four brain areas

analysed: HC and PFCx. Interestingly, sCGG molecules were
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significantly increased in the brain areas with higher number of

inclusions, PFCx and HC (105).
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Figure 23. Cetection of SCGG molecules in brains of CGG-KI mouse
model

a | Resolution of sCGG acrylamide gel. sSCGG and RNU6 were detected by
semi quantitative RT-PCR. b | Measurements of sCCG molecules in
Cerebellum ¢ | Hippocampus d | Prefrontal cortex e | Brain stem.
Quantification is normalized with RNU6 as a reference sRNA. Values
represent mean fold change from optic density (O.D) measurements with
respect the control samples + SEM (n=3; *p<0.05; using #-test).

*  Determination of sCGG species in an in vitro cell model

expressing the FMRI premutation
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We used a neuronal cell line transiently expressing the 5’-UTR of the
FMRI gene, as previously explained (Figure 16). sCGG levels were
determined in cells expressing the normal FMRI 5’-UTR with 21 CGG
(21*CGQG) and cells expressing the mutant FMRI 5°-UTR (79*CGG),
48 h after transfection of the corresponding vectors. sSCGG molecules
were significantly increased in cells expressing the expanded construct

(Figure 24).
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Figure 24. Identification and quantification of sCGG in SH-SYSY
neuroblastoma cell line

sCGG levels are increased in cells transfected with 79*CGG- when compared
to those transfected with the 21*CGG-vectors. a | sCGG were quantified by
semi quantitative RT-PCR and normalized by transfection efficiency using
GFP expression and RNU66 as the reference sSRNA. b | Values represent mean
fold change from optic density (O.D) measurements with respect the control
samples + SEM (n=3; *p<0.05; using #-test).
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*  Characterization of sCGG molecules

Our results show in different models that the presence of expanded
FMRI 5°-UTR correlates positively with an increase expression of
sCGG. To characterize the identity of sCGG products we cloned and
sequenced them. For these experiment we used RNA isolated from the
LCL samples because, due to their immortalized condition, they are an
unlimited source of RNA in the laboratory, unlike the other samples.
We used four control LCL lines and 4 FXTAS LCL lines. The results
show the presence of sCGG of 6 repeats length (CGGgy) in all the
samples and CGGy in 3 out of the 4 samples of the FXTAS LCL.

Three independent clones have been sequence for each LCL line.
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Figure 25. sCGG sequence in lymphocyte cell lines of FXTAS
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Histogram with the sequencing results of FXTAS LCL sample expressing a |
(CGG)y6 SRNA and b | (CGG),7 SRNA
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b. Evaluation of the toxic effects of small CGG

According to our data, the presence of sSCGG molecules is increased in
the presence of PM alleles of the FMRI gene. Yet, it remains uncertain
whether this event is related with detrimental changes in cellular
processes. Therefore, we aimed to assess neuronal viability and
oxidative stress responses linked to sCGG up-regulation, two major
hallmarks of neurodegenerative processes. Neuroblastoma cells SH-
SYS5Y were differentiated to a post-mitotic state and transfected either
with synthetic CGG-siRNA, similar to the sCGG that are being
produced from expanded FMRI1, or with the 79*CGG vector, from
which sCGG are produced through Dicer endonuclease activity (92,
94). At different time points, cell viability was assed by determinations
of lactate dehydrogenase enzymatic activity (LDH), a stable cytosolic
enzyme that is released upon permeabilization of the cellular membrane
and cell death. We measured cell toxicity 24h and 48h after transfection
of the synthetic siRNAs and 14h, 24h, 48h and 72h after transfection of
the FMRI 5°-UTR expression vectors. Biological effects were
compared to scramble siRNA or 21*CGG vector for CGG-siRNA and
79*CGG vector, respectively. LDH activity measurements indicate that
cells transfected with either synthetic CGG-siRNA or 79*CGG vector
have decreased cell viability compared with cells transfected with
scrambled siRNA or 21*CGG vector, respectively (Figure 26). In
addition, transfection of CGG-siRNA has faster detrimental effects on
cell viability than 79*CGG vector. Nonetheless, the 79*CGG vector
induced toxicity at a later time point. The effects of the 79*CGG
construct may reflect the need for expanded FMRI 5°-UTR processing
and/or the contribution of later detrimental effects induced by expanded

FMRI.
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Figure 26. CGG-siRNA and 79*CGG vector induce toxicity in
neuroblastoma human cells

a | CGG siRNA induces neuronal toxicity. LDH assay on differentiated
neuroblastoma cell line transfected with CGG siRNA (green bars) and
scramble siRNA (red bars) at 24 and 48h. b | 79*CGG vector induces neuronal
toxicity. LDH assay on differentiated neuroblastoma cell line transfected with
empty vector (blue bars), 21*CGG- (red bars) or the 79*CGG- vectors (green
bars). Mock condition was used as a negative control. Bars represent fold
change induction upon scramble siRNa or 21*CGG vector respectively.
Experiments were performed with quintuplicates (n=3; *p<0.05; **p<0.01;
**%p<0.001; using ¢-test)

Previous results in the laboratory showed that CGG-siRNA could
trigger oxidative stress responses in differentiated neurobalstoma cell
line (un published results, Bafiez-Coronel et al.). Interestingly, a recent
study has shown that MnSOD, an antioxidant enzyme that dismutates
superoxide anion to hydrogen peroxide, was decreased in FXTAS

fibroblasts (99). Reduced expression of MnSOD would lead to an
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increase of the superoxide radical in the cell and an increase in the
oxidative stress responses. Therefore, we measured concentration of the
superoxide anion upon transfection of 79*CGG vector compared to
21*CGG vector in the same cellular system. We used a red fluorogenic
dye that specifically targets mitochondria in living cells. The dye
produces red fluorescence upon oxidation by superoxide. We specially
used a red dye to be able to distinguish GFP positive cells and oxidative
stress response signal. Our results show that cells transfected with
79*CGG vector present a significant increase of superoxide anion when

compared to 21*CGG vector (Figure 27).
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Figure 27. Increase of superoxide anion concentration in cells expressing
79*CGG vector

a | Confocal images of ROS detection with a green fluorescent probe CM-H2-
DCFDA and DAPI staining of differentiated SH-SYSY cells 48h after
transfection of either scramble siRNA (left) or CGG-siRNA (right)
(Unpublished results, Bafiez-Coronel). b | Superoxide detection within the
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mitochondria with a red fluorescent probe MitoSOX 72 h after transfection
with 21*CGG vector (upper panel) or the 79*CGG vector (lower panel). c |
Graph shows the mean percentage of cells positive for superoxide detection +
SEM (n=3; *** p<0.001; using #-test).

In addition, to test whether toxicity associated with 5’-UTR FMRI PM
alleles is related with sRNA mechanisms, we purified the sRNA
fraction (<100nt) from neuronal cells expression the mock, 21*CGG
and 79*CGG vectors. Isolation of sRNA was performed 48h after
transfection of the vectors, when the sCGG rise was detected and the
cell viability of the transfected cells was not excessively compromised.
The population of sRNA isolated from cells expressing the 79*CGG
vector induced a cell death response when compared to those isolated
from cells expressing the 21*CGG vector (Figure 28).

Transfection of

A Isolation . .
fé\/lmliif -UTR I:> Small RNA. |:> Small RNA transfection
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BSRNA 79*CGG
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Figure 28. Small RNA derived from cells expressing 79*CGG vector
produce neuronal toxicity
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Transfection of sRNA obtained from cells expressing the 79*CGG vector
induce neuronal toxicity. a | schematic representation of the transfection
procedure. b | LDH assay on differentiated neuroblastoma cell line transfected
with sRNA (<100nt) obtained from cells expressing 21*CGG (red bars) or
79*CGG (green bars) at 24 and 48h. LDH activity was detected measured by a
colorimetric reaction at 490nm. Bars represent fold change induction referred
to scramble siRNA or 21*CGG vector respectively. Experiments were
performed with quintuplicates (n=3; **p<0.01; using ¢-test)
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Further on, we aimed to determine the contribution of sCGG molecules
in the toxicity induced by the SRNA fraction form cells transfected with
79*CGG vector. For that reason we designed a synthetic siRNA anti-
sCGG, which has the ability to sequester complementary sequences
such as the sCGG molecule. Therefore, we transfected again sRNA
isolated from cells expressing the 79*CGG vector together with a
scramble anti-siRNA or a siRNA anti-sCGG. Preliminary results
indicate that toxicity induced by sRNA isolated from 79*CGG
expressing cells can be prevented by anti-sCGG but not by a scrambled
anti-siRNA (Figure 29). These results suggest that sSCGG molecules are

an important element in the toxicity mediated by expanded FMRI

alleles.
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Figure 29. Anti-sCGG prevent cell toxicity mediated by small RNA
fraction isolated from cells expressing 79*CGG vector

Transfection of synthetic siRNA anti-sCGG prevents neuronal toxicity induced
by sRNA obtained from cells expressing 79*CGG vector. a | schematic
representation of the transfection procedure. b | LDH assay on differentiated
neuroblastoma cell line transfected with SRNA (<100nt) obtained from cells
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expressing 21*CGG (red bars) or 79*CGG (green bars) together with a CGG
siRNA or a scramble siRNA. 79*CGG sRNA toxicity is prevented upon co-
transfection of anti-sCGG but not scramble anti-siRNA. Bars represent fold
change induction upon scramble siRNA or 21*CGG vector respectively.
Experiments were performed with quintuplicates (n=1; **p<0.01; using #-test)

C. Evaluation of the involvement of the siRNA
biogenesis machinery in the formation of small CGG

molecules

We have previously described an increase presence of a small CGG
molecule in different models for the FMRI premutation. Furthermore,
we have reported that such sCGG molecules are toxic for neuronal cells
and likely account for the toxicity associated with expanded FMRI 5’-
UTR. Based on the knowledge that long CGG repeat RNA transcripts
can be cleaved by Dicer (92, 94), we wanted to evaluate whether
depletion of Dicer in cells expressing expanded FMR1 5°-UTR could
abolish the formation of sCGG molecules. We used the endogenous
RNA interference (RNAi) machinery of the cell to knock down (KD)
gene expression of Dicer, the limiting endonuclease in the siRNA
biogenesis pathway. A synthetic siRNA targeting Dicer mRNA was
transfected into differentiated SHSY-5Y cells. We measured cell
viability and expression of sCGG in differentiated neuroblastoma cells
KD for Dicer and expressing the 79*CGG vector. Knockdown (KD) of
Dicer protein showed to protect the cells against cell death induced by
expanded FMRI 5°-UTR (Figure 30A). Besides, such protective effect
was correlated with a partial disruption of the sSCGG biogenesis in

Dicer KD cells (Figure 30B).
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Figure 30. Knock down (KD) of Dicer reduces cellular toxicity mediated
by 79*CGG

a | LDH assay on differentiated neuroblastoma cell line KD for Dicer (bars on
the right) expressing with 21*CGG vector (red bars) or 79*CGG vector (green
bars). Bars represent fold change induction referred to cells transfected with
the 21*CGG vector. Experiments were performed with quintuplicates (n=3;
**p<0.01; using #-test). KD of Dicer protein is represented in the left panel. b |
Expression of sCGG molecules is reduced in cells KD for Dicer.

In addition, we have previously shown that SCGG molecules are not
equally overexpressed in the different brain areas of the CGG-KI mouse
model. In an effort to understand the causes of these differences we
have evaluated the expression levels of Fmrl and Dicer mRNAs in the
different brain areas. We used to independent endogenous controls for
relative quantification of both mRNAs ( 7bp and Hprtl). According to
previous studies, the expression of Fmrl mRNA between 2-3 fold in
CGG-KI mouse model when compared to control mouse (106).
Nonetheless, within the same group no significant differences in the
expression level of Fmrl can be observed among the different brain
areas (Figure 31a). Moreover, no changes in the expression levels of

Dicer are appreciated between control and CGG-KI mouse model in
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BS, HC and CRBL (Figure 13b). However, Dicer expression in control
and CGG-KI mouse model is decreased by a 50% in PFCx, a region
with increased expression of sCGG molecules. These results suggest
that sCGG production might be rated to Dicer activity in the distinct

brain areas rather than to its expression.
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Figure 31. Expression levels of Fmrl and Dicer in brains of control and
CGG-KI mouse model

qPCR validation of the expression pattern of a | Fmrl mRNA. b | Dicer
mRNA. Bars represent fold change induction normalized to brainstem of
control mouse + SE. Experiments were performed with two independent RT-
PCR and quadruplicates for each PCR sample. Quantification was normalized
using two different reference genes. (*¥**p<0.001;
using a linear mixed effects model). BS, Brainstem; HC, Hippocampus;
CRBL, Cerebellum; PFCx, Prefrontal cortex.
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d. Evaluation of whether the toxic effects of small
CGG molecules are dependent on the RNA induced
silencing complex (RISC)

We have shown that sCGG biogenesis from expanded FMR1 5’-UTR
depends on Dicer. Further, we wanted to study whether sCGG
molecules related toxicity is associated with pathogenic gene silencing.
To evaluate whether sCGG can act through RNA silencing
mechanisms, like siRNAs/miRNAs, we KD Argonaure 2 (AGO2), the
active component of the RISC silencing machinery. KD of AGO2 was
conducted with siRNA against AGO2 mRNA in differentiated
neuroblastoma cells. The decrease in cell viability induced by a CGG
siRNA and the 79*CGG vector was prevented upon AGO2 KD (Figure
32), thus indicating that AGO2 protein is important factor to mediate

sCGG associated toxicity.
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Figure 32. Knock down (KD) of Ago2 prevents cellular toxicity mediated
by 79*CGG and CGG-siRNA
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a | KD of AGO2 protein . b | LDH assay on differentiated neuroblastoma cell
line KD for AGO2. Left graph shows the ratio between 79*CGG/21*CGG
toxic effect (red bar) and the same ratio in cells KD for AGO2 (green bar).
Right graph shows the ratio between scramble siRNA/CGG siRNA toxic effect
(red bar) and the same ratio in cells KD for AGO2 (green bar). Bars represent
fold change induction referred to 21*CGG vector. Experiments were
performed with quintuplicates (n=3; *p<0.05; ***p<0.001; using z-test).

€. Identification of putative silencing targets of the

small CGG molecules

We aimed at identifying some putative mRNA silenced by sCGG. We
used the transcriptome data available from peripheral blood samples
from fXPCs. We first identified mRNA with complementary sequence
to the sCGG molecule. Our search was not restricted to a
complementarity of the sCGG in the 3’-UTR, but to the entire coding
region. Next, we evaluated the possibilities for the SCGG molecule to
bind to the mRNA with the complementary sequence. This analysis was
performed in silico with the RNAhybrid, a tool for finding the
minimum free energy hybridisation between a long and a short RNA.
For such purpose, the algorithm takes in account the complementary
nucleotide sequence, of 6 to 7nt length, to appear three times in the
mRNA sequence and its secondary structure. Finally, the list of genes
with the 300 mRNA most likely to be target of the sCGG was crossed
with the list of probes deregulated in peripheral blood samples of
fXPCs. This analysis showed no specific enrichment in genes

containing CGG stretches among the down-regulated genes (Figure 33).
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Figure 33. Venn diagram showing overlap between down-regulated genes
in fXPCs and putative sCGG targets

sCGG targets predicted by RNAhybrid are represented in blue. Transcript
probes down-regulated in microarray expression of fXPCs peripheral blood are
represented in yellow, while up-regulated probes are in green.

Yet, we found deregulation of nine genes that overlap with genes down-
regulated in the expression arrays of fXPCS. Five of the genes have
important roles in apoptosis, neuronal function and gene expression
regulation: BCL2L11, EAPI, HDACS5, KCNC3 and RNF10 (Figure 21).
Interestingly, we have validated by quantitative PCR the down-
regulation of those genes in peripheral blood of fXPCs and in brain
samples of CGG-KI mouse model (Table 5,6). The location of the GCC
seed region, complementary to the CGG repeat, is shown in table 12.
Although the demonstration of the direct targeting of these genes by
sCGG requires additional experiments, these data suggest that sCGG

may affect the expression of specific genes.
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Gene 5'-UTR Exon Intron 3'-UTR

HDACS5 6 1 - -
EAPI - 7 - -
KCNC3 4 - 1 -
BCL2LI11 5 - - -
RNF10 4 1 - -

Table 12. sCGG seed regions in putative targets

Number complementary regions to the sSCGG molecules of 6-7nt length. The
number indicates the number of seed regions present in each structural part of
the gene.
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3.3. Supplementary information

Supplementary Table 1 Predicted upstream regulators and its activation
state in FXTAS patients, in IPA of blood-DEG

Upstream Predicted p-value
Fold Change Molecule Type L. Z-score
Regulator Activation State overlap
BCR (complex) complex Activated 2.116 2.82E-01
CD3 complex Inhibited -5.183 1.79E-02
PDGF BB complex Inhibited -2.132 3.23E-01
CXCL12 cytokine Activated 2.201 1.00E+00
C5 cytokine Inhibited -2.152 1.00E+00
CRH cytokine Inhibited -2.216 1.00E+00
NPR1 enzyme Activated 2.204 1.48E-01
HRAS enzyme Activated 2.483 1.00E+00
FAAH -1.869 enzyme Inhibited -2.121 1.14E-03
CDC42 enzyme Inhibited -2.19 1.01E-01
FN1 enzyme Inhibited -2.066 1.00E+00
RACI1 enzyme Inhibited -2.219 1.00E+00
Hedgehog group Activated 2 5.55E-01
Hdac group Inhibited -2 1.00E+00
Akt -3.241 group Inhibited -2.669 1.00E+00
FGF1 -2.409 growth factor Inhibited -2.215 1.00E+00
BMP7 growth factor Inhibited -2.646 1.00E+00
ANXA7T ion channel Activated 2433 1.00E+00
INSR kinase Activated 3.111 3.21E-01
JAK1 kinase Inhibited -2 5.38E-01
AKTI1 -2.602 kinase Inhibited -2.168 1.00E+00
MAPKAPK2 kinase Inhibited -2.219 1.00E+00
ESRRA ligand-dependent Activated 2.57 4.88E-04
nuclear receptor
RORA ligand-dependent Inhibited -2 1.00E+00
nuclear receptor
AR ligand-dependent Inhibited -2.177 1.00E+00
nuclear receptor
RARA -3.751 ligand-dependent Inhibited -2.416 1.00E+00
nuclear receptor
miR-361-3p mature microRNA Activated 2.997 4.91E-02
miR-640 mature microRNA Inhibited -2.616 1.58E-03
miR-433-3p mature microRNA Inhibited -5.003 2.50E-03
miR-3913-3p mature microRNA Inhibited -2.714 3.38E-03
miR-590-3p mature microRNA Inhibited -8.106 3.76E-03
miR-802 mature microRNA Inhibited -2.744 4.24E-03
miR-4432 mature microRNA Inhibited -2.209 1.09E-02
miR-139-5p mature microRNA Inhibited -2.091 1.18E-02
miR-16-5p mature microRNA Inhibited -4.866 1.26E-02
miR-181b-1-3p mature microRNA Inhibited -3.872 1.53E-02
miR-503-5p mature microRNA Inhibited -2.159 1.65E-02
miR-622 mature microRNA Inhibited -2.81 1.66E-02
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Upstream Fold Change = Molecule Type l,)red,lCted Z-score p-value

Regulator Activation State overlap

miR-4633-5p mature microRNA Inhibited -2.34 1.83E-02
miR-628-3p mature microRNA Inhibited -2.201 1.88E-02
miR-4724-5p mature microRNA Inhibited -3.108 1.94E-02
miR-646 mature microRNA Inhibited -2.765 2.62E-02
miR-140-3p mature microRNA Inhibited -2.958 2.69E-02
miR-103-3p mature microRNA Inhibited -4.225 2.69E-02
miR-203b-5p mature microRNA Inhibited -2.012 2.84E-02
miR-1295b-5p mature microRNA Inhibited -3.671 3.04E-02
miR-875-5p mature microRNA Inhibited -3.001 3.06E-02
miR-217-5p mature microRNA Inhibited -4.062 3.24E-02
miR-31-5p mature microRNA Inhibited -2.279 3.42E-02
miR-4471 mature microRNA Inhibited -2.274 3.50E-02
miR-216b-5p mature microRNA Inhibited -3.043 3.54E-02
miR-298 mature microRNA Inhibited -2.078 3.60E-02
let-7i-5p mature microRNA Inhibited -5.229 3.76E-02
miR-499-5p mature microRNA Inhibited -4.076 3.87E-02
miR-548m mature microRNA Inhibited -2.408 3.89E-02
miR-340-5p mature microRNA Inhibited -7.006 4.19E-02
miR-221-3p mature microRNA Inhibited -2.564 4.53E-02
miR-627 mature microRNA Inhibited -2.423 4.82E-02
COBRAI other Activated 2 4.50E-02
LGALSI1 1.491 other Activated 22 3.30E-01
CUL4B other Inhibited -2.646 1.43E-03
MYCN ranscription regulato Activated 8.206 1.80E-21
MYC ranscription regulato Activated 4.69 9.63E-05
NRF1 ranscription regulato Activated 3.212 1.00E-04
NFE2L2 ranscription regulato Activated 4.872 4.14E-02
SKIL ranscription regulato Activated 2.433 2.11E-01
PPARGCIA ranscription regulato Activated 2.276 4.72E-01
CBFB 2.088 ranscription regulato Activated 2 1.00E+00
TFAP2A -2.202 ranscription regulato Inhibited -2.343 1.10E-01
IRF4 ranscription regulato Inhibited -2.673 1.54E-01
FOXC2 ranscription regulato Inhibited -2.236 4.53E-01
SMAD4 ranscription regulato Inhibited -2.053 1.00E+00
PAX6 ranscription regulato Inhibited -2.168 1.00E+00
NANOG ranscription regulato Inhibited -2.236 1.00E+00
ERG ranscription regulato Inhibited -2.333 1.00E+00
SMAD2 ranscription regulato Inhibited -2.429 1.00E+00
EIF4E 1.493 translation regulator Activated 3.951 7.25E-04
IGFIR ansmembrane recept Activated 2.481 1.48E-03
ITGB3 ansmembrane recept Activated 2 1.00E+00
CD28 1.834 ansmembrane recept Inhibited -3.523 3.91E-01




Supplementary Table 2. Pathway enrichment analysis of differential
expressed genes in the hippocampus, prefrontal cortex and striatum of the
CGG-KI mouse model vs. control mouse

Cluster __ Physiological System

Development & Function

Disease& Disorders

Molecular & Cellular Function

Canonical Pathways

Nervous System
Tissue morphology
Tissue Development
Organ morphology
Embryonic Development

Nervous System
Tissue Development
Organ morphology
Tissue morphology
ehavior

Nervous System
Organ morphology
Embryonic Development
Organ Development
Organismal Development

PFCx

Neurological Disease
Organismal Injury & Abnormalities
Hereditary Disorder
Skeletal &Muscle Disorders
Infectious Disease

Cardiovascular Disease
Neurological Disease
Infectious Disease
Developmental Disorders

Cell-to-Cell Signalling & Interacion
Cell Morphology
Molecular Transport
DNA Replication,
Recombination & Repair
Cellular Assembly and Organization

Cell-to-Cell Signalling & Interacion
Cell Morphology
Cellular function & Maintenance
Cellular Development

Organismal Injury & Abnormalities Cellular assembly & Organization

Cardiovascular Disease
Inflmatory Response
Infectious Disease
Neurological Disease
Cancer

Cell-to-Cell Signalling
& Interacion
Cellular function & Mai

DNA Double-Strand Break
Repair by Non-Homologous
End Joining
TR/RXR Activation

DNA Double-Strand Break
Repair by Non-Homologous
End Joining
TR/RXR Activation

Epoxysqualene Biosynthesis
Superpathway of Cholesterol

Bio:

Cellular assembly & Organization
Cellular Movement
Cell Death & Survival

Ketogenesis
ALS Pathway

List of the significantly enriched canonical pathways, molecular and cellular
functions, diseases and physiological system development and functions
altered for each of the eight gene clusters according to IPA.

93



Supplementary Table 3. Predicted upstream regulators and its activation
state in hippocampus samples of the CGG-Ki mouse modelsamples,
according to IPA

Upstream Fold Change Molecule Type li‘recl‘lcted Z-score p-value

Regulator Activation State overlap
ADAMIS peptidase 3.24E-02
AGPAT9 enzyme 4.81E-02
Alpha catenin group 0.218 1.12E-02
APOALI transporter 2.34E-02
AQP7 transporter 4.81E-02
ARNT transcription regulator 2.28E-02
ATG9B other 8.19E-03
ATR kinase 4.81E-02
B4GALT1 enzyme 4.03E-02
BAG6 enzyme 3.24E-02
BDKRB2 G-protein coupled receptor 4.89E-03
BIRCS other 4.05E-02
C5 cytokine 3.07E-02
CAV1 other 4.31E-02
CCL13 cytokine 6.68E-03
CD2AP other 2.44E-02
CD40LG cytokine 0.025 1.00E-02
CDKN3 phosphatase 4.81E-02
CEBPA transcription regulator 0.647 3.60E-03
CELAIL peptidase 1.63E-02
Cg complex -0.97 2.52E-02
CGGBP1 other 1.63E-02
CIITA transcription regulator 4.00E-04
CMAL peptidase 3.24E-02
COL14A1 other 8.19E-03
COL4A3 other 1.50E-02
Collagen Alphal group 4.81E-02
Collagen type I complex -1.715 1.10E-04
COMMDI1 transporter 1.15E-02
COMMD3-BMI1 transcription regulator 1.04E-02
CRP other 2.19E-02
CSF2RA transmembrane receptor 4.81E-02
CSF3R transmembrane receptor 2.31E-03
CTSB peptidase 4.89E-03
CXCL5 cytokine 2.44E-02
CXCR3 G-protein coupled receptor 4.03E-02
CYR61 other 2.65E-02
DDR2 kinase 3.24E-02
DEPDC1 transcription regulator 8.19E-03
DKK1 growth factor 2.19E-02
DVLI1 other 4.03E-02
DVL2 other 4.81E-02
EBF1 transcription regulator 1.26E-02
EBF3 other 2.44E-02
EDNRA transmembrane receptor 8.43E-05
EGFR kinase -1.982 9.52E-02
EGLN2 enzyme 4.03E-02
EGLN3 enzyme 4.81E-02
EGR2 transcription regulator -1 1.52E-02
EN2 transcription regulator 4.81E-02
Eotaxin group 2.44E-02
EPASI1 transcription regulator -0.371 1.78E-03
EPM2A phosphatase 2.44E-02
EPO cytokine -1.729 3.70E-02
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Upstream Predicted p-value

Fold Change Molecule Type L. Z-score

Regulator Activation State overlap
ERAPI1 peptidase 6.65E-05
ERBB2 kinase 4.47E-02
ERBB3 kinase -0.218 2.33E-03
ESR1 gand-dependent nuclear receptc -1.98 6.25E-02
F2 peptidase -0.223 3.36E-02
F2R G-protein coupled receptor 4.43E-02
FCGRI1A 1.199 transmembrane receptor 4.03E-02
FN1 enzyme 1.75E-02
FOXC2 transcription regulator 3.50E-02
FOXIJ1 transcription regulator 4.81E-02
FOXO1 transcription regulator 0.762 2.26E-02
FOXO03 transcription regulator 1.20E-03
FSH complex -1.067 1.78E-02
FZD4 G-protein coupled receptor 8.19E-03
Gata group 4.03E-02
GATA2 transcription regulator 1.14E-02
GATA6 transcription regulator 4.83E-02
GenSl group 4.81E-02
GDF5 growth factor 2.44E-02
GPR34 G-protein coupled receptor 1.63E-02
GPR98 G-protein coupled receptor 8.19E-03
GRBI10 other 2.44E-02
GRM1 G-protein coupled receptor 3.24E-02
GSN other 2.44E-02
GTF2IRDI transcription regulator 2.44E-02
HAMP other 3.24E-02
HDGF -1.219 growth factor 2.44E-02
HEPH transporter 4.03E-02
HFE2 other 2.44E-02
HIF1A transcription regulator 0 1.23E-02
HISTONE group 7.36E-04
HMOX1 enzyme 5.21E-03
HOXD10 transcription regulator 0 1.38E-03
HOXD3 transcription regulator 4.03E-02
HPGDS enzyme 3.24E-02
HPX transporter 1.63E-02
HRAS enzyme 1.78E-02
HRG other 1.50E-02
HSD11B2 enzyme 2.44E-02
HTR3A ion channel 1.63E-02
HTT transcription regulator 1.49E-03
IFNG cytokine -0.603 7.19E-04
IGF2 growth factor 2.87E-02
IKBKB kinase -0.323 8.16E-03
IL10R group 1.63E-02
IL13 cytokine -0.928 1.13E-02
IL1B cytokine 0.716 4.92E-03
1IL22RA2 transmembrane receptor 4.03E-02
1L27 cytokine Inhibited -2 3.83E-03
IL6 cytokine 1.216 1.53E-02
L8 cytokine 4.63E-02
INHA growth factor 4.65E-02
INPPL1 -1.323 phosphatase 4.03E-02
INSR kinase 3.69E-02

Interferon alpha group 0.246 2.48E-02



Upstream Predicted p-value
Fold Change Molecule Type A Z-score
Regulator \ctivation Sta overlap
ITGB1 transmembrane receptor 1.14E-02
ITGB3 transmembrane receptor 3.50E-02
ITGB5 other 3.24E-02
KCNJ9 ion channel 3.24E-02
KLF2 transcription regulator 1.61E-02
KNG1 other 8.42E-04
KRAS enzyme 0 7.81E-04
KSR1 kinase 3.24E-02
LEPR transmembrane receptor 4.59E-03
LHX2 transcription regulator 4.89E-03
LHX6 transcription regulator 2.44E-02
LIPE enzyme 1.35E-02
LNPEP peptidase 1.63E-02
MAP4K4 kinase 4.03E-02
Mapk group 3.16E-02
MAPK 14 kinase Inhibited -2 2.05E-02
mGLUR Group I group 4.03E-02
miR-133-3p mature microRNA 0 3.89E-02
miR-137-3p mature microRNA 1.767 1.00E+00
miR-138-5p mature microRNA 1.98 1.00E+00
miR-18-5p mature microRNA 0.109 3.30E-02
miR-203b-3p mature microRNA 2.65E-02
mir-205 microRNA 3.24E-02
miR-205-5p mature microRNA 1.966 3.73E-01
mir-214 microRNA 3.24E-02
miR-214-3p mature microRNA 1.562 3.29E-02
miR-22-3p mature microRNA -1.982 1.00E+00
miR-221-3p mature microRNA 0.6 9.63E-03
miR-28-3p mature microRNA 1.04E-02
miR-297-5p mature microRNA 2.19E-02
miR-3090-3p mature microRNA -1.982 1.66E-01
miR-3117-5p mature microRNA 4.05E-02
miR-3160-5p mature microRNA 2.90E-03
miR-320b mature microRNA Activated 2.007 4.08E-01
miR-338-3p mature microRNA 0.239 2.50E-02
miR-3473b mature microRNA Inhibited -2 2.09E-01
miR-3589 mature microRNA 1.50E-02
miR-3664-3p mature microRNA 3.45E-02
miR-3714 mature microRNA 4.31E-02
miR-4276 mature microRNA 1.43E-02
miR-4310 mature microRNA 3.68E-02
miR-4421 mature microRNA 3.56E-02
miR-4504 mature microRNA 6.68E-03
miR-4517 mature microRNA 3.95E-04
miR-4530 mature microRNA -1.981 7.74E-02
miR-4640-3p mature microRNA -0.218 4.58E-02
miR-4655-5p mature microRNA 4.05E-02
miR-4704-5p mature microRNA 3.15E-02
miR-4747-3p mature microRNA 9.81E-03
miR-4758-3p mature microRNA 1.01 2.47E-02
miR-4761-3p mature microRNA 2.97E-02
miR-4786-5p mature microRNA 3.66E-02
miR-591 mature microRNA 1.97E-02
miR-623 mature microRNA 1.83E-02
miR-638 mature microRNA 2.04E-02
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Upstream Predicted p-value
Fold Change Molecule Type A Z-score

Regulator Activation State overlap
miR-802 mature microRNA 3.86E-02
miR-95 mature microRNA 2.19E-02
MKX other 2.44E-02
MLXIP other 1.63E-02
MMP13 peptidase 4.81E-02
MTF1 transcription regulator 2.44E-02
MTF2 transcription regulator 4.03E-02
MTHFR enzyme 8.19E-03
MYBBP1A transcription regulator 3.24E-02
MYC transcription regulator -0.268 1.51E-02
MYOF other 8.19E-03
N-cor group 3.32E-02
NACA other 8.19E-03
NFkB (complex) complex -0.374 5.71E-03
NKIRAS1 enzyme 1.63E-02
NKX2-1 transcription regulator 8.94E-03
NKX2-3 transcription regulator -0.514 1.49E-02
NLRC5 other 1.36E-03
NLRP12 other 1.38E-02
NOD2 other 2.04E-02
NONO other 1.63E-02
NOS2 enzyme -0.152 2.74E-02
NOTCHI1 transcription regulator 2.26E-02
NR3C2 gand-dependent nuclear receptc 2.79E-02
NSF transporter 1.63E-02
Nuclear factor 1 group 1.38E-02
OLR1 transmembrane receptor 2.04E-02
OSM cytokine 0.059 3.13E-02
PACS2 other 8.19E-03
PDGFC growth factor 8.35E-03
PDX1 transcription regulator 3.63E-02
PI3K (complex) complex -0.784 1.49E-03
PIK3CG kinase 2.65E-02
PITX2 transcription regulator 4.63E-02
PLAUR transmembrane receptor 1.38E-02
POR enzyme 0.447 1.73E-03
PPARA gand-dependent nuclear receptc 1.969 1.46E-01
PPARD ‘gand-dependent nuclear receptc 0.152 2.93E-02
PPP1R14B phosphatase 4.81E-02
PPRCI other 4.05E-02
PRKAG3 kinase 8.48E-03
PRKD2 kinase 1.63E-02
PROC peptidase 4.63E-02
PSEN1 peptidase 1.987 1.70E-02
PSMB9 peptidase 3.24E-02
RBCK1 transcription regulator 3.24E-02
RELA transcription regulator 0.832 4.95E-02
REST transcription regulator 3.16E-02
RETN other 2.81E-02
RFX5 transcription regulator 1.83E-05
RFXANK transcription regulator 3.24E-02
RFXAP transcription regulator 4.03E-02
RGS4 other 4.81E-02
RHOA enzyme 1.03E-02
Rock group 2.19E-02
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Upstream Predicted p-value
Fold Change Molecule Type A Z-score

Regulator \ctivation Sta: overlap
RTKN other 4.03E-02
SDHA enzyme 2.44E-02
SEMAGA transmembrane receptor 8.19E-03
SERPINA12 other 4.03E-02
SERPINH1 other 2.44E-02
SH2B3 other 3.24E-02
SIN3A transcription regulator 2.98E-02
SLC2A4RG transcription regulator 8.19E-03
SMAD2 transcription regulator 9.32E-03
SNED1 other 4.81E-02
SNORD21 other 8.19E-03
SOX2 transcription regulator 2.28E-02
SP1 transcription regulator 1.89E-02
SP6 transcription regulator 1.63E-02
SPARC other 5.68E-03
STAT3 transcription regulator -1.342 5.33E-03
SWAP70 other 4.81E-02
T transcription regulator 8.35E-03
TAP1 transporter 2.44E-02
TAPBP transporter 1.63E-02
TGFBI1 growth factor -0.473 3.67E-02
TGFBR2 kinase -1.067 4.01E-02
THPO cytokine 2.19E-02
TNF cytokine -0.265 3.52E-02
TNFRSF10A transmembrane receptor 4.03E-02
TNFSF10 cytokine 7.50E-03
TPS3 transcription regulator 0.5 1.77E-04
TPH2 enzyme 2.44E-02
TRAM2 other 8.19E-03
Tropomyosin group 1.63E-02
TSH complex 5.56E-03
TXNIP other 2.65E-02
UTS2 other 1.63E-02
UXT other 3.24E-02
VAMP7 transporter 2.44E-02
VHL other 2.49E-02
VTN other 1.50E-02
WNT3A other -0.692 7.00E-03
WWOX enzyme 5.68E-03
XPA other 4.03E-02
XPC other 4.03E-02
ZNF224 other 1.63E-02
ZNF384 transcription regulator 4.81E-02
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Supplementary Table 4. Predicted upstream regulators and its activation
state in prefrontal cortex samples of the CGG-Ki mouse modelsamples,
according to IPA

Upstream Predicted p-value
Fold Change Molecule Type L. Z-score
Regulator Activation State overlap
ACOX1 enzyme -0.447 1.98E-02
ACTN4 other 2.33E-02
ADCY2 enzyme 1.17E-02
ADRA2B G-protein coupled receptor 4.61E-02
AGT growth factor Activated 2.56 1.95E-01
ALAS2 enzyme 2.33E-02
ANK2 other 3.48E-02
APH-1 group 4.61E-02
ARAF kinase 2.33E-02
ARHGEF2 other 1.17€-02
ATE1 enzyme 3.48E-02
ATF2 transcription regulator 4.58E-02
ATP7B transporter 9.24E-03
AXIN1 other 1.66E-02
BAG1 other 2.77E-03
BARX1 transcription regulator 1.17E-02
BCL11A transcription regulator 2.33E-02
BDNF growth factor 2.38E-02
BNIP3L other 2.31E-02
BRCA1 transcription regulator 3.42E-02
BTRC enzyme 1.48E-02
CALCOCO1 transcription regulator 1.17E-02
calpain complex 1.48E-02
CAPNS1 peptidase 1.99E-03
caspase group 2.71E-02
CcCL17 cytokine 1.17E-02
CCND1 2.032 other 3.71E-02
CCND2 other 4.61E-02
CCNDBP1 other 1.17€-02
CDC25B phosphatase 4.61E-02
CDH11 other 4.61E-02
CDH16 enzyme 3.48E-02
CDK20 kinase 1.17€-02
CEL enzyme 4.61E-02
CELA1 peptidase 2.33E-02
CFTR ion channel 4.92E-02
CGGBP1 other 2.33E-02
CHD4 enzyme 8.37E-03
CINP other 4.61E-02
CITED2 -1.868 transcription regulator 2.06E-02
Collagen type VI complex 4.61E-02
COMMD3-BMI1 -1.262 transcription regulator 2.71E-02
Creb group 0.75 2.43E-02
CREB1 transcription regulator 4.99E-02
CSNK2B kinase 4.61E-02
CST5 other 1.17E-02
CTAG1B (includes other other 3.48E-02
Ctbp group 1.85E-02
CTNNAL1 other 1.17€-02
CTNNB1 transcription regulator 0.394 1.08E-02
CTNNBIP1 other 4.61E-02
CYP2C9 enzyme 2.33E-02
DIO3 enzyme 4.81E-02
DLX4 transcription regulator 2.33E-02
DNAJB4 other 4.61E-02
DNMT3B enzyme 3.94E-02
DTNA other 2.33E-02
E2F4 transcription regulator 1.28E-02
ECT2 other 2.33E-02
EGF growth factor 0.638 4.86E-02
EGFR kinase -0.334 6.71E-03
EIF2B1 translation regulator 3.48E-02
EIF4H translation regulator 1.17E-02
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Upstream Predicted p-value
Fold Change Molecule Type . Z-score

Regulator Activation State overlap
ELAVL3 other 3.48E-02
EMD other 3.48E-02
EPAS1 transcription regulator 0 1.28E-02
ERAP1 peptidase 4.61E-02
ERBB4 kinase 0.816 3.81E-04
ERK1/2 group 1.96 2.21E-01
FAM3B cytokine 2.49E-02
FAMS57A other 4.61E-02
FBX031 other 1.17€-02
FBXO4 enzyme 2.33E-02
Fc gamma receptor group 4.81E-02
Fgf group 4.81E-02
FGF2 growth factor 1.937 4.69E-01
FGF4 growth factor 1.66E-02
FHL2 transcription regulator 2.71E-02
FOX03 transcription regulator 0.246 7.96E-03
FOX04 transcription regulator 0.109 5.76E-06
FzD4 G-protein coupled receptor 1.17€-02
GPC3 other 2.33E-02
GRM1 G-protein coupled receptor 4.61E-02
GTPBP4 enzyme 1.17E-02
Hedgehog group 2.09E-02
HISTONE group 3.19E-02
HLTF transcription regulator 2.33E-02
HMGA1 transcription regulator 3.97E-02
HOXC6 transcription regulator 9.94E-03
HTT transcription regulator 5.79E-03
1D2 transcription regulator 3.97E-02
IFNB1 cytokine -1.98 8.85E-02
IFNG cytokine 0.625 2.96E-02
IGF1 growth factor 0.511 4.15E-02
IL113 cytokine 0 4.93E-02
124 cytokine 3.97E-02
ILKAP phosphatase 2.33E-02
INSIG1 other -1.982 3.02E-02
Integrin alpha 5 beta 1 complex 1.17€-02
Interferon alpha group -1.331 3.48E-02
IQGAP2 other 4.61E-02
IRF2 transcription regulator 1.39E-02
JARID2 transcription regulator 4.61E-02
KCNJ12 ion channel 1.17€-02
KCNJ6 ion channel 2.33E-02
KHDRBS1 transcription regulator 4.61E-02
KLF7 transcription regulator 4.61E-02
KRAS enzyme 0.816 3.07E-02
LHX2 transcription regulator 1.48E-02
MAFK transcription regulator 1.30E-02
MAPK12 kinase 1.48E-02
MAPT other 4.82E-02
MCF2 other 4.61E-02
MCF2L other 2.33E-02
MED15 transcription regulator 1.17€-02
MEFV other 2.33E-02
miR-105-5p mature microRNA 3.97E-02
miR-1207-5p mature microRNA Inhibited -2.561 7.63E-02
miR-1237-5p mature microRNA -0.417 2.40E-02
miR-124-3p mature microRNA 0.693 4.57E-03
miR-1291 mature microRNA -1.634 2.10E-02
miR-1307-3p mature microRNA 2.95E-02
miR-130-3p mature microRNA Activated 2.022 1.53E-03
miR-132-3p mature microRNA 0.685 3.83E-02
miR-133-3p mature microRNA -0.309 4.05E-02
miR-135-5p mature microRNA -0.701 7.64E-03
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Upstream Predicted p-value
Fold Change Molecule Type A Z-score
Regulator Activation State overlap
ITGBI1 transmembrane receptor 1.14E-02
ITGB3 transmembrane receptor 3.50E-02
ITGBS other 3.24E-02
KCNJ9 ion channel 3.24E-02
KLF2 transcription regulator 1.61E-02
KNG1 other 8.42E-04
KRAS enzyme 0 7.81E-04
KSR1 kinase 3.24E-02
LEPR transmembrane receptor 4.59E-03
LHX2 transcription regulator 4.89E-03
LHX6 transcription regulator 2.44E-02
LIPE enzyme 1.35E-02
LNPEP peptidase 1.63E-02
MAP4K4 kinase 4.03E-02
Mapk group 3.16E-02
MAPK14 kinase Inhibited -2 2.05E-02
mGLUR Group I group 4.03E-02
miR-133-3p mature microRNA 0 3.89E-02
miR-137-3p mature microRNA 1.767 1.00E+00
miR-138-5p mature microRNA 1.98 1.00E+00
miR-18-5p mature microRNA 0.109 3.30E-02
miR-203b-3p mature microRNA 2.65E-02
mir-205 microRNA 3.24E-02
miR-205-5p mature microRNA 1.966 3.73E-01
mir-214 microRNA 3.24E-02
miR-214-3p mature microRNA 1.562 3.29E-02
miR-22-3p mature microRNA -1.982 1.00E+00
miR-221-3p mature microRNA 0.6 9.63E-03
miR-28-3p mature microRNA 1.04E-02
miR-297-5p mature microRNA 2.19E-02
miR-3090-3p mature microRNA -1.982 1.66E-01
miR-3117-5p mature microRNA 4.05E-02
miR-3160-5p mature microRNA 2.90E-03
miR-320b mature microRNA Activated 2.007 4.08E-01
miR-338-3p mature microRNA 0.239 2.50E-02
miR-3473b mature microRNA Inhibited -2 2.09E-01
miR-3589 mature microRNA 1.50E-02
miR-3664-3p mature microRNA 3.45E-02
miR-3714 mature microRNA 4.31E-02
miR-4276 mature microRNA 1.43E-02
miR-4310 mature microRNA 3.68E-02
miR-4421 mature microRNA 3.56E-02
miR-4504 mature microRNA 6.68E-03
miR-4517 mature microRNA 3.95E-04
miR-4530 mature microRNA -1.981 7.74E-02
miR-4640-3p mature microRNA -0.218 4.58E-02
miR-4655-5p mature microRNA 4.05E-02
miR-4704-5p mature microRNA 3.15E-02
miR-4747-3p mature microRNA 9.81E-03
miR-4758-3p mature microRNA 1.01 2.47E-02
miR-4761-3p mature microRNA 2.97E-02
miR-4786-5p mature microRNA 3.66E-02
miR-591 mature microRNA 1.97E-02
miR-623 mature microRNA 1.83E-02
miR-638 mature microRNA 2.04E-02
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Upstream Predicted p-value
Fold Change Molecule Type L. Z-score
Regulator Activation State overlap
miR-137-3p mature microRNA Activated 2.917 1.34E-01
miR-143-3p mature microRNA 0.881 1.61E-02
miR-149-3p mature microRNA Inhibited -2.332 2.75E-01
miR-153 mature microRNA Activated 2.067 1.02E-02
miR-1827 mature microRNA Inhibited -2.173 4.55E-01
miR-183-5p mature microRNA 1.97 1.47E-01
miR-1909-3p mature microRNA Inhibited -2.151 3.47E-01
miR-1913 mature microRNA Inhibited -2.099 6.48E-02
miR-1915-3p mature microRNA Inhibited -2.393 8.70E-02
miR-194-5p mature microRNA 0.582 1.69E-02
miR-19b-3p mature microRNA 1.723 1.50E-04
miR-203-3p mature microRNA Activated 2.473 3.26E-01
miR-208-3p mature microRNA -1.982 1.87E-01
miR-21-5p mature microRNA 0.702 2.00E-02
miR-218-5p mature microRNA 0.056 2.27E-03
miR-219-5p mature microRNA 1.275 2.41E-02
miR-221-3p mature microRNA 1.683 1.67E-02
miR-23-3p mature microRNA -0.133 3.56E-02
miR-296-5p mature microRNA Inhibited -2.661 3.09€E-03
miR-3120-5p mature microRNA -1.067 3.45E-03
miR-3128 mature microRNA -0.9 4.79E-02
miR-3162-3p mature microRNA 1.98 1.38E-01
miR-3173-5p mature microRNA Inhibited -2.2 5.50E-01
miR-3180-3p mature microRNA Inhibited -2.586 1.48E-01
miR-3194-5p mature microRNA -1.414 3.84E-02
miR-320b mature microRNA 1.588 1.46E-02
miR-330-3p mature microRNA 1.77€-02
miR-3473b mature microRNA Inhibited -2.449 2.15€E-01
miR-34-5p mature microRNA -0.886 8.09E-03
miR-3605-5p mature microRNA -0.13 3.43E-03
miR-3619-3p mature microRNA -0.331 4.58E-03
miR-362-5p mature microRNA 2.95E-02
miR-3620-3p mature microRNA -1.982 6.42E-02
miR-3648 mature microRNA -1.402 8.60E-04
miR-365-3p mature microRNA -1.953 5.46E-01
miR-3656 mature microRNA -1.498 5.48E-03
miR-3676-3p mature microRNA 4.52E-02
miR-3679-3p mature microRNA 1.777 1.23E-01
miR-3688-5p mature microRNA 0.371 4.42E-02
miR-376-3p mature microRNA 0.696 1.27E-04
miR-381-3p mature microRNA 0.589 1.75E-02
miR-411-5p mature microRNA 0.915 3.06E-03
miR-421-3p mature microRNA Activated 2.396 4.84E-01
miR-4283 mature microRNA -1.358 2.95E-03
miR-4292 mature microRNA Inhibited -2.804 3.72E-01
miR-433-3p mature microRNA -0.351 1.87E-02
miR-448-3p mature microRNA 0.845 2.46E-03
miR-4530 mature microRNA -1.977 2.56E-01
miR-455-5p mature microRNA 1.195 3.48E-02
miR-4639-3p mature microRNA -1.177 7.15E-03
miR-4640-3p mature microRNA -1.715 2.27E-02
miR-4642 mature microRNA -0.179 6.78E-03
miR-4667-3p mature microRNA -1.762 3.06E-02
miR-4691-5p mature microRNA -1.588 7.57E-03
miR-4701-5p mature microRNA -0.371 4.16E-02
miR-4715-3p mature microRNA Inhibited -2.213 9.88E-02
miR-4732-3p mature microRNA Inhibited -2.219 2.35E-02
miR-4790-5p mature microRNA 1.48E-02
miR-485-5p mature microRNA Inhibited -2.178 3.61E-01
miR-495-3p mature microRNA 0.813 4.14E-02
miR-504 mature microRNA Inhibited -2 1.00E+00
miR-539-5p mature microRNA Activated 2.473 4.48E-01
miR-554 mature microRNA -1.969 1.65E-02
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Upstream Fold Change Molecule Type l.’red.lcted Z-score p-value
Regulator Activation State overlap
miR-137-3p mature microRNA Activated 2.917 1.34E-01
miR-143-3p mature microRNA 0.881 1.61E-02
miR-149-3p mature microRNA Inhibited -2.332 2.75E-01
miR-153 mature microRNA Activated 2.067 1.02E-02
miR-1827 mature microRNA Inhibited -2.173 4.55E-01
miR-183-5p mature microRNA 1.97 1.47E-01
miR-1909-3p mature microRNA Inhibited -2.151 3.47E-01
miR-1913 mature microRNA Inhibited -2.099 6.48E-02
miR-1915-3p mature microRNA Inhibited -2.393 8.70E-02
miR-194-5p mature microRNA 0.582 1.69E-02
miR-19b-3p mature microRNA 1.723 1.50E-04
miR-203-3p mature microRNA Activated 2.473 3.26E-01
miR-208-3p mature microRNA -1.982 1.87E-01
miR-21-5p mature microRNA 0.702 2.00E-02
miR-218-5p mature microRNA 0.056 2.27E-03
miR-219-5p mature microRNA 1.275 2.41E-02
miR-221-3p mature microRNA 1.683 1.67E-02
miR-23-3p mature microRNA -0.133 3.56E-02
miR-296-5p mature microRNA Inhibited -2.661 3.09E-03
miR-3120-5p mature microRNA -1.067 3.45E-03
miR-3128 mature microRNA -0.9 4.79€E-02
miR-3162-3p mature microRNA 1.98 1.38E-01
miR-3173-5p mature microRNA Inhibited -2.2 5.50E-01
miR-3180-3p mature microRNA Inhibited -2.586 1.48E-01
miR-3194-5p mature microRNA -1.414 3.84E-02
miR-320b mature microRNA 1.588 1.46E-02
miR-330-3p mature microRNA 1.77E-02
miR-3473b mature microRNA Inhibited -2.449 2.15E-01
miR-34-5p mature microRNA -0.886 8.09E-03
miR-3605-5p mature microRNA -0.13 3.43E-03
miR-3619-3p mature microRNA -0.331 4.58E-03
miR-362-5p mature microRNA 2.95E-02
miR-3620-3p mature microRNA -1.982 6.42E-02
miR-3648 mature microRNA -1.402 8.60E-04
miR-365-3p mature microRNA -1.953 5.46E-01
miR-3656 mature microRNA -1.498 5.48E-03
miR-3676-3p mature microRNA 4.52E-02
miR-3679-3p mature microRNA 1.777 1.23E-01
miR-3688-5p mature microRNA 0.371 4.42E-02
miR-376-3p mature microRNA 0.696 1.27E-04
miR-381-3p mature microRNA 0.589 1.75E-02
miR-411-5p mature microRNA 0.915 3.06E-03
miR-421-3p mature microRNA Activated 2.396 4.84E-01
miR-4283 mature microRNA -1.358 2.95E-03
miR-4292 mature microRNA Inhibited -2.804 3.72E-01
miR-433-3p mature microRNA -0.351 1.87E-02
miR-448-3p mature microRNA 0.845 2.46E-03
miR-4530 mature microRNA -1.977 2.56E-01
miR-455-5p mature microRNA 1.195 3.48E-02
miR-4639-3p mature microRNA -1.177 7.15E-03
miR-4640-3p mature microRNA -1.715 2.27E-02
miR-4642 mature microRNA -0.179 6.78E-03
miR-4667-3p mature microRNA -1.762 3.06E-02
miR-4691-5p mature microRNA -1.588 7.57E-03
miR-4701-5p mature microRNA -0.371 4.16E-02
miR-4715-3p mature microRNA Inhibited -2.213 9.88E-02
miR-4732-3p mature microRNA Inhibited -2.219 2.35E-02
miR-4790-5p mature microRNA 1.48E-02
miR-485-5p mature microRNA Inhibited -2.178 3.61E-01
miR-495-3p mature microRNA 0.813 4.14E-02
miR-504 mature microRNA Inhibited -2 1.00E+00
miR-539-5p mature microRNA Activated 2.473 4.48E-01
miR-554 mature microRNA -1.969 1.65E-02
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Supplementary Table S. Genes commonly deregulated in blood samples of
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Supplementary Table 6. Genes commonly deregulated in blood samples of

AP vs. SP and in 79*CGG vs. 79*CGG8x expressing cells
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Supplementary Table 7. Genes commonly deregulated in 21*CGG vs.
79*CGGS8x expressing cells and 79*CGG vs. 79*CGG8x expressing cells
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Supplementary Table 8. Genes commonly deregulated in 21*CGG vs.
79*CGG expressing cells and 21*CGG vs. 79*CGG8x expressing cells.
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4. DISCUSSION

4.1. Evaluation of transcriptome changes in
peripheral blood samples from FUR1 PM

carriers.

Population-based studies in newborn for the FMRI PM allele have
estimated prevalences ranging from 1/209 in females to 1/430 in males
(174). Fragile X PM carriers (fXPC) are at risk to develop a myriad of
different disorders, including tremor and ataxia (FXTAS), early
menopause (POF1), thyroid dysfunction, hypertension, fibromyalgia,

and chronic muscle pain (7-10).

To evaluate the constellation of gene expression changes linked to
FMRI CGG-repeat premutation we have performed a comprehensive
gene expression profiling in peripheral blood samples of male FXPC,
including FXTAS patients. The pattern of DEG identified eight
premutation-associated clusters, each containing genes enriched in key
physiological processes, whose disruption is likely relevant in several

fXPC phenotypes.
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A large number of DEG encode for respiratory chain subunits, which
are essential for ATP production. We validated by qPCR the up-
regulation of cytochrome c oxidase subunit VIc and subunit VIIb
(COX6C and COX7B). The changes we observed in blood of FXTAS
patients was also detected in fibroblasts and in brain samples from
FXTAS patients, suggesting a shared disease response in different
tissues (97, 99). It has been proposed that the increase in the expression
of mitochondrial function related transcripts in FXTAS patients is a
compensatory response to overcome the diminished oxidative
phosphorylation capacity (97, 99). A compromised oxidative
phosphorylation affects ATP production and increases cellular stress by
generating mitochondrial reactive oxygen species, which can damage
cell components and lead to cell death. In line with this, we detected an
up-regulation of the superoxide dismutase 1 (SODI), involved in
neutralizing free superoxide radicals. Importantly, our data revealed
increased expression of genes implicated in other stress responses,
including spinocerebellar ataxia type 3 protein (47XN3), involved in
degradation of misfolded chaperone substrates (48), and the amyloid
beta (A4) precursor protein (APP), participating in endoplasmic
reticulum stress-induced apoptosis (175, 176). Among the DEG we also
detected an enrichment in oxidative stress response and in oxidative
phosphorylation pathways, which are both largely associated with

neurodegenerative processes (177).

Other gene clusters showed enrichment in mTOR signaling pathway
and its downstream effectors: elF2- elF4-, and p70S6K-signaling
regulation. mTOR integrates cellular signals to regulate organismal
growth and homeostasis. In the nervous system, mTOR is critical for
long-term memory formation, axon regeneration, dendrite arboritzation

and spine morphology (101). The relevance of mTOR in cellular and
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organismal homeostasis is further supported by its deregulation in aging
and neurodegenerative disorders (178). An upstream regulator of
mTOR is v-akt murine thymoma viral oncogene homolog 1 (4KT7), for
which we detected decreased expression levels in blood samples of SP.
It has been shown in the knock-down of AKT/ in the fly model of
FXTAS enhances the neurodegenerative phenotype in the eye (100),
indicating its importance FXTAS neuropathology.

Blood profiling showed DEG involved in gene expression regulation
that are important for normal neuronal homeostasis. A7XN7 is involved
chromatin remodeling and showed decreased expression in SP.
Mutations in ATXN7 leads to spinocerebellar ataxia type 7, a
neurodegenerative disorder closely related to FXTAS (179). We also
detected decreased expression of RNF10, a transcription factor involved
in expression regulation of myelin-associated glycoprotein (MAG)
(180). Studies with cerebral and cerebellar tissue from FXTAS patients
exhibit white matter disease, characterized among other factors by

neuron demyelination (65).

We also found decreased expression of HDACS in SP. Interestingly,
histone deacetylases (HDACs) activity is critical to suppress the
expanded CGG-repeat dependent phenotype in a fly model of FXTAS
(114). HDACs activation has been shown to rescue the rough eye
phenotype in a FXTAS drosophila model. Therefore decreased
expression of HDACS5 may be involved in FXTAS phenotype. In
addition, abnormal levels of genes involved in cell death and survival
pathways were also enriched in SP. Decreased expression of Bcl-X, a
potent inhibitor of cell death, and DNA fragmentation factor subunit
alpha (DFFA), an inhibitor of DNA fragmentation, together with the
upregulation of apoptosis-related cysteine peptidase 3 (CASP3),
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responsible for apoptosis execution, indicate a higher predisposition in

SP towards apoptosis activation.

Finally, we identified EAPI as a gene deregulated in male and female
blood samples of fXPC. EAP1 is an important component in the
hypothalamic control for the initiation of puberty and maintenance of
female reproductive cycles in rodents and in non-human primates (181,
182). Female FXPC are at a risk for fragile X-associated premature
ovarian failure (POF1) (118), which is characterized by menopause
symptomatology. Studies show that 20% of female carriers will present
FXPOI before 40 years of age and 30% before 45 years of age (121).
Thus, decreased expression of EAPI in female fXPC could contribute
to the appearance of POF1. In summary, the present study elucidates
gene expression profiles in blood samples of SP that, at least partially,

overlap with DEG in brain and fibroblast samples of FXTAS patients.

The study of DEG in human blood samples showed a high overlapping
deregulation pattern in the BS, MCx and STR of a FXTAS mouse
model. The PFCx and the BS displayed an up-regulation of genes
involved in the response to cellular stress, including App, Atxn3 and
Sodl. Moreover, four different brain regions showed decreased
expression of the histone modifiers Atxn7 and Hdac5, coinciding both
in MCx and STR and RnrfI0 in the MCx, STR and BS. We also
determined a decreased expression of Kcnc3 in four out of six brain
areas. Knock out mice for Kcnc3 display motor deficits such as tremor
and severe ataxia (183), similar to what is observed in FXTAS patients.
All together, these results suggest that gene expression profiling in
blood partially reflects changes in the brain transcriptome that underlie

neuropathological aspects in FXTAS.
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In peripheral blood of fXPC we identified gene expression profiles that
could distinguish between AP and SP. A previous report (28) and our
own data suggest that FMRI expression levels contribute to the clinical
manifestation of FXTAS. The expression profiles in a neuronal cell
model indicated that mutant FMR/ levels are relevant for transcriptome
deregulation involving cell death and survival pathways, inflammatory
response, and nervous system development and function. We therefore
propose that transcriptional changes driven by different levels of FMR1
PM may contribute to clinical/phenotypic differences between FXTAS

patients.

Changes in gene expression can also be the consequence of variations
in miRNA profiles, activity or concentration. Alteration in miRNA
processing machinery has been reported recently in FXTAS (83),
leading to a decreased expression of many miRNAs. In agreement with
this, upstream regulators IPA predicts a decreased activity of 31 out of
32 miRNAs. Of these, four are down-regulated in the blood of FXTAS
patients (184). One of the interesting candidates is miR-221-3p/miR-
221 (Z score = -2.56 and overlap p-value = 4.53e-2), which has an
important role in neuronal differentiation and participates in neuronal
apoptosis and inflammation processes (185, 186). In our data set we
found 49 up-regulated putative miR-221-3p targets, according to
Targetscan predictions and increased levels of two validated miR-221-
3p targets: cyclin-dependent kinase inhibitor 1B (CDKN1B or p275%")
and Bcl-2-modifying factor (BMF). Interestingly, miR-221-3p targets
the 3’-UTR of FMRI mRNA modulating its expression (187). Thus,
decreased levels of miR-221-3p might contribute to FMRI up-
regulation in FXTAS patients.
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Increasing evidences suggest that IncRNAs, by perturbing gene
expression, play an important role in human disease, including
neurodegenerative diseases. We report a significant FXTAS-associated
deregulation of IncRNAs in blood samples, which may trigger
downstream deregulation of protein coding genes in FXPC. We found
that maternally expressed 3 (MEG3) and tuarine up-regulated gene 1
(TUGI) are deregulated in our data set. Both IncRNA are known to
associate with polycomb repressive complex 2 (PRC2), acting as
epigenetic enhancers or repressors in cis- or in trans-, respectively (188,
189). Another IncRNA deregulated in our data set is Nuclear Enriched
Abundant Transcript 1 (NEATI), which is essential for the formation
and maintenance of paraspeckles (190), an irregular-shaped
compartment found in the nucleus’s interchromatin space (191)
involved in regulation of gene expression (192). Interestingly, TUGI,
MEG3 and NEATI are similarly deregulated in HD (136, 189), which

suggests a common involvement CNS dysfunction.

In summary, we have shown here a large number of genes with
abnormal expression deregulation in fXPCs. In blood, the main affected
functional pathways overlap with previous findings in the brain and
primary fibroblasts of FXPCs, suggesting that blood RNA profiling
reflects FXTAS pathogenic alterations. Specifically, we have identified
several genes whose expression deregulation likely contributes to
FXTAS and/or POF1, including EAPI, HDAC5 and KCNC3.
Moreover, we provide new evidences for a role of expanded 5’-UTR
FMRI expression levels in transcriptome modulation. Longitudinal
studies in fXPC addressing the relationship between the dynamic
changes in the expression of selective genes (specially FMRI) and the
clinical evolution may shed light onto the pathogenic mechanisms and

further target molecules with therapeutic potential.
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4.2. Evaluation of the involvement of the gene

silencing machinery in fXPCs pathologies

In the last ten years, a number of different studies have suggested a
toxic gain of function mechanism for the PM alleles of the FMRI gene.
Up to date, several RNA toxic mechanisms have been proposed to
contribute in fXPCs (65, 72, 77, 81-87, 89, 193), but none has explored
the generation and toxic activity of small RNA molecules containing
repeated CGG (sCGG). According to previous in vitro studies,
transcripts with large triplet expansions form stable hairpin structures
that can be a substrate for Dicer, a ribonuclease 11l enzyme involved in
the processing of siRNAs and miRNAs, generating 21nt length RNA
molecules (92, 173). This event has been reported for several transcripts
involved in expanded trinucleotide repeat neurodegenerative disorders,
such as HD, DM1 and SCA1 (92, 173). We have recently described in
vivo sCAG biogenesis from expanded HTT gene and further

demonstrated their neurotoxic activity in HD context (93).

In the case of long-CGG RNA transcripts, a study has described that
they form hairpins structures thermodynamically more stable than other
CNG repeat transcripts (N = A, U, or G) (91). In deed, several
evidences indicate that FMR1 PM alleles form a hairpin that can be
cleaved by Dicer (94, 194). In agreement with these findings, we found
that increases in sCGG molecules abundance correlated with the
presence of FMR1-PM alleles in peripheral blood samples blood, LCL
from FXTAS patients and a human neuronal cell line overexpressing
the PM 5°-UTR. Moreover, we demonstrate in a human neuronal cell

system that sCGG biogenesis from PM-FMR1 5°UTR could be
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prevented upon Dicer KD, thus indicating that sCGG formation was
strongly dependent on Dicer activity. We cannot exclude the possibility
that sCGG molecules could be also originated from bidirectional
transcription form the FMRI loci. fXPCs present increased expression
of the FMRI antisense gene (ASFMRI1) spanning the CGG repeat
region (77); and thus FMRI/ASFMRI1 duplexes may contribute to
Dicer-dependent sCGG biogenesis. Therefore, the origin of sCGG
detected in human samples may be related to DICER activity on hairpin
repeated CNG like structures or on double-stranded RNAs resulting

from bidirectional transcription (144)

Studies performed in the CGG-KI mouse model revealed increased
levels of sCGG in two of the four brain areas evaluated, HC and PFCx.
Study of the Fmrl expression indicates that there are no differences in
its the levels of expression in the different brain areas, thus not
accounting for the differences in the quantity of sCGG molecules.
Dicer expression levels and/or activity could explain why sCGG
molecules are more enriched in certain brain areas. Dicer mRNA levels
are comparable in HC, CRBL and BS of control and CGG-KI mouse
model. Besides, Dicer mRNA levels in PFCx, area with increased
quantity of sCGG molecules, are 50% reduced when compared to the
other brain regions. Therefore, increase abundant of sCGG molecules in
PFCx and HC is likely related to DICER protein activity rather than to
its expression. In agreement, recent studies indicate that an array of
proteins can modulate DICER activity by direct interaction to DICER
or the miRNA/siRNA precursor (194, 195). The combination of cell-
type specific transcriptome together with the specific regulation of
DICER activity in each brain region provides a model to understand
how the sCGG molecules affect differently distinct cell types. In

agreement, it has been previously shown in our laboratory that sCGG
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molecules do not affect breast, pancreas or bladder cell lines, but only

affect neuronal cell lines (Banez-Coronel M., unpublished).

Our results indicate that cells expressing a PM-FMRI 5’UTR not only
overexpress sSCGG molecules but trigger a reduced cell viability and the
induction of cellular stress responses, which agrees with previous
results in neuronal cell lines (78). The deleterious effect of transfection
of si-like sCGG molecules and sRNAs isolated from cells expressing
the expanded PM-FMR1-5’UTR further suggests that sCGG molecules
are, at least partially, responsible for neuronal toxicity induced by PM-
FMRI. Dicer and AGO2 KD in cells expressing the PM-FMRI 5’UTR
demonstrated that this toxic effect was largely dependent on these key
members of the RISC machinery. Thus, the detrimental changes might
be caused by pathogenic down-regulation of targets harboring
complementary CGG sites, similarly to what we have recently
described in HD (92). However, analysis of the down-regulated
transcripts in peripheral blood samples of fXPCs with complementary
CGQG regions did not show any significant enrichment. Nonetheless, we
identified five down-regulated genes with CGG complementary regions
with functions related to fXPCs associated pathologies: EAPI, HDACS,
KCNC3, BCL2LI1 and RNFI0. Although additional experiments
should be performed to establish a direct action of sSCGG molecules in
the down-regulation of such targets, a possibility exists that sCGG
silencing activity onto specific genes triggers downstream secondary

pathogenic changes in gene expression.

Alternative biological roles for sCGG molecules cannot be yet
discarded. Studies have reported that small RNAs, like miRNAs, can
bind and modulate the activity of proteins that regulate gene expression,

thus triggering histone modification and DNA methylation of promoter
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sites (196). In addition, a possibility exists that sCGG directly bind
RNA-biding proteins known to have affinity for the long CGG repeat
transcripts (81-84). These might provide additional mechanisms for
sCGG-induced perturbations in gene expression. In summary, our
results support the generation of sSCGG RNA molecules from expanded
FMRI 5°-UTR with toxic activity. The detrimental effects of sCGG
molecules trough RISC machinery provides a dynamic model in which
the physiological output depends on the quantity of sCGG molecules
and the transcriptome in a specific cell type. These aspects could
provide an explanation for the different levels of affection in different
cell types. Altogether, this study provides a complementary model to
study pathogenesis associated with fXPCs and develop new therapeutic

approaches.
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5. CONCLUSIONS

Expression profiles from peripheral blood samples and from a
neuronal cellular model indicated a strong gene expression

deregulation associated to FMRI PM alleles.

Transcriptome alterations in peripheral blood samples and in a
neuronal cellular model show enrichment in pathways involved in
biological processes relevant in FXTAS, such as mitochondrial
dysfunction, cell death and survival, stress responses and

inflammatory response.

Genes deregulated in peripheral blood samples of fXPCs and
involved in relevant biological processes in FXTAS are also
deregulated in brain samples of FXTAS mouse model, such as
Hdac5, Rnfl0, Eapl, Kcne3, Bel2lll, Bel2ll, Dffa, Atxn3, Atxn7,
Sodl and App. Thus, FMR1 PM-5’UTR in different systems
similarly deregulate biological pathways relevant for cellular

homeostasis and cell survival.

Changes in gene expression profiles from peripheral blood samples

and from a neuronal cellular model are influenced by FMRI mRNA
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expression levels and the number of CGG repeats in the FMRI 5’-
UTR.

* We have identified EAPI, a gene down-regulated in blood samples
of female fXPCs, the deregulation of which could underlie POF1

disorders.

e Increased formation of sCGG molecules is associated with PM

alleles for the FMRI in a DICER dependent manner.

* sCGG molecules are, at least partially, responsible for the
neurotoxic effect of PM FMRI 5’-UTR, inducing oxidative stress

and mitochondrial dysfunction.
* AGO2 protein is responsible to mediate the sCGG neurotoxicity,

thus indicating that gene silencing mechanisms may trigger a toxic

effect.
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6. MATERIAL AND METHODS

6.1. Human Samples

A total of 15 unrelated male individuals were recruited for the
expression profile study: 9 fragile X premutation carriers (FXPC) and 5
control males (average age of 73 years) of age with normal FMRI
alleles (Supplementary Table S1). All FXPC were recruited from FXS
families. At the time the samples where collected, a total of 5 fXPC
where diagnosed with FXTAS. In the course of this study, two
additional fXPC developed FXTAS. A total of 25 female fXPC were
recruited, with 12 presenting POF1 (Supplementary Table S4). In
addition, 8 control females were included, with 4 presenting POF. The
CGG repeat number and clinical/neurological findings of these patients
are summarized in tables S1 and S4. All patients provided written
informed consent for testing and for the use of their phenotypic and
genetic data. Determination of sSCGG molecules was performed in 4
LCL from FXTAS patients from the expression profiling samples and 4
control LCL from the HapMap project repository ( age between 65-75

years).
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6.2. Mouse samples

We used three male CGG-KI mice for the fragile X premutation (range
150-178 CGG repeats) (103) at 70 week of age and four male wild-type
(wt) mice of the same age range were included in this study. Mice were
sacrificed, and brain tissue was removed from the skull and cut sagittal
at the midline into two equal pieces before being frozen and preserved
in liquid nitrogen. Subsequent dissection of the different brain areas
was performed in transgenic and control mouse: pre-frontal cortex,

striatum, brainstem, motor cortex and hippocampus.

6.3. Total and small RNA isolation

For each individual, 2.5 mL of peripheral venous blood was collected in
5 mL PAXgene tubes. Whole blood RNA was isolated and purified
with the PAXgene Blood RNA Kit according to the manufacturer's
instructions. The mouse dissected brain areas were placed immediately
in Qiazol solution from Qiagen, followed by RNAextraction with
miRNeasy kit (Qiagen) as indicated by the manufacturer. RNA
extraction from our neuronal cell model was also performed with
miRNeasy (Qiagen) following manufacturer’s instructions. Isolation of
the small RNA fraction (<100bp) was performed using Nucleospin
extract Il Kit following manufacturer instructions (Macherey Nagel).
The RNA quality and quantity measures were done with a 2100
Bioanalyzer (Agilent Technologies) (Applied Biosystems) and an ND-
1000 spectrophotometer (Thermo Scientific), respectively. All RNA

samples showed an RNA integration number of seven or more.
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6.4. Microarray Hybridization and Analysis

100 ng of total RNA was labelled using LowInputQuick Amp Labeling
kit (Agilent) following manufacturer instructions. Briefly: mRNA was
reverse transcribed in the presence of T7-oligo-dT primer to produce
cDNA. cDNA was then in vitro transcribed with T7 RNA polymerase
in the presence of Cy3-CTP to produce labelled cRNA. The labelled
cRNA was hybridized to the Agilent SurePrint G3 Human gene
expression 8x60K microarray according to the manufacturer's protocol.
The arrays were washed, and scanned on an Agilent G2565CA
microarray scanner at 100% PMT and 3 um resolution. Intensity data

was extracted using the Feature Extraction software.

Raw data were taken from the Feature Extraction output files and was
corrected for background noise using the normexp method (197). To
assure comparability across samples we used quantile normalization
(198). Differential expression analysis was carried out on non control
probes with an empirical Bayes approach on linear models (limma)
(199). Results were corrected for multiple testing according to the False
Discovery Rate (FDR) method (200). All statistical analyses were
performed with the Bioconductor project
(http://www.bioconductor.org/) in the R statistical environment
(http://cran.r-project.org/) (201). We used SurePrint G3 Human GE
8x60K Microarray for peripheral blood samples of FXPC expression
profile, SurePrint G3 Human Gene Expression 8x60K v2 Microarray
for our in vitro cellular system and SurePrint G3 Mouse GE 8x60K

Microarray for the mouse brain regions analyzed (Agilent).
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6.5. Pathway enrichment analysis

We used Ingenuity Pathway Analysis (IPA) online tool (Ingenuity

System Inc, www.ingenuity.com) to interpret data in the context of

biological processes, pathways, and networks.

6.6. gPCR validations

Gene expression analysis was performed using 0.15 ug total RNA from
human peripheral blood and 0.3 pg total RNA from CGG-KI mice
model or SH-SY5Y cell line. cDNA synthesis was performed using
SuperScript III First-Strand Synthesis System for RT-PCR (Life
Technologies) following manufacturer’s instructions. The cDNA
product was diluted to 1/5 with sterile water. Real time PCR reaction
(rRT-PCR) was performed using TagMan gene expression assays,
following manufacturer’s instructions in an AB 7900HT Fast Real-

Time PCR System.

For each experiment, all cases and controls were analysed in the same
rRT-PCR experiment, each sample was run in quadruplicates and the
cDNA synthesis repeated at least twice. Relative quantification (RQ) as
shown in graphs was calculated with the 2 A A Ct method (202) using
ACTB and MRIP as a reference genes. RQ was calculated to compare
all expression values normalized to the reference genes among FXPC
and controls samples. These RQ and their statistical significance were
obtained from a linear mixed effects model (203) that accounted for the
different sources of variation derived from the experimental design

(135). TagMan Expression Assays are found in Supplementary Table 9.
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6.7. Generation of FMR1 5’-UTR vectors

Lymphocyte cell lines (LCL) from two different FXPC had been
established. One LCL is from a female FXPC, which permits the
cloning of a normal allele. B-lymphocytes were isolated from
peripheral blood samples by gradient centrifugation with Ficoll using
Leucoceps tubes (Greiner Bio-One). Peripheral Blood Mononuclear
Cells (PBNCs) interphase was collected and washed twice with
phosphate buffered solution (PBS), and finally resuspended in 5 mL
PBS. PBNCs were incubated with Epstein-Barr virus supernatant at
room temperature. After 3 hours incubation 7 mL of incubation
medium was added (RPMI 1640 + 20% FBS + 200 ng/mL cyclosporine
A). After 5-7 days, 5 mL of medium were replaced for fresh medium.
Polymerase chain reaction (PCR) amplification was carried out on
genomic DNA (gDNA) isolated from the established LCL.
Amplification conditions were as follows: an initial denaturation at
96°C for 30 s was followed by 25 cycles of 96°C for 30 s, 64°C for 30 s
and 68°C for 5 min and a final elongation of 30 min at 68°C. Each 12,5
ul reaction contained: 3 ul GC-RICH PCR reaction buffer 5x, 3 ul GC-
RICH resolution solution 5 M, 0.08 uM each oligonucleotide (FMR1 F
and FMR1 R), 150 uM of each dNTP, 200 ng of gDNA and 1 ul GC-
RICH Enzyme Mix (Roche). Products were purified through 2%
agarose gel and gel extracted using a gel extraction kit (QIAGEN).
Primers used were FMR1 F (5'-
AGCCCCGCACTTCCACCACCAGCTCCTCCA) and FMR1 R (5'-
TTCACTTCC GGTGGAGGGCCGCCTCTGAGC). Gel-purified PCR
products were cloned using the pGEM-T Easy Vector Systems
(Promega). The recombinant plasmids were transformed into SURE2

supercompetent cells (Stratagene) according to manufacturer
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instructions. The recombinant pGEM-T Easy Vector cloned in 5’ to 3’
orientation was digested with Sacll (New England BioLabs) followed
by a 3’ Polishing with X-Pfu DNA Polymerase (Kyratec) for 30 min at
37°C to achieve a blunt end. The insert was then realized using Notl
(New England BioLabs) and gel-purified. The DNA fragment of
interest was subcloned into the pCAGIG (Addgene plasmid 11159)
(204) and transformed into SURE2 supercompetent cells. Positive
plasmids were sequenced using the Big Dye 3.1 Termination Cycle
Sequencing Kit and DNA Sequencer (ABI3100) from Applied
Biosystems. PCR conditions where optimized with 7% DMSO in the
final volume. Sequencing conditions were as follow: an initial
denaturation at 94°C for 1 min was followed by 30 cycles of 94°C for
30 s, 58°C for 30 s and 60°C for 4 min. Each 10 pl reaction contained:
1 ul Big dye, 2 ul Big dye 5x buffer, 0.5 ul of oligonucleotide at a
100nM concentration, 0.7ul DMSO and 300 to 400ng od DNA
template; the final volume was adjusted with water. Sequencing was
performed using the cloning primers FMR1 F and FMR1 R

alternatively.

6.8. Cell culture

SH-SYS5Y neuroblastoma cells were grown in the Dulbecco’s modified
essential medium (DMEM, Invitrogen) supplemented with 10% of
inactivated foetal bovine serum (FBS) and 100 units/mL penicillin and
100 mg/mL Streptomycin (GIBCO, Invitrogen). Differentiation
protocol for SH-SYS5Y consisted of growing media with 10 mM
retinoic acid (RA) (SIGMA). After four days exposure, media was

removed and replaced by normal growing media plus 80 nM of 12-O-
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tetradecanoylphorbol-13-acetate (TPA) (SIGMA) during five additional
days (205).

6.9. Transfections

All the transfection experiments were performed using Lipofectamine
2000 (Invitrogen), according to the manufacturer’s instructions and at a
cell confluence of 60%. For the arrays experiments vectors were
transfected at a concentration that permits an equivalent expression of
the plasmids (between 0.6 ng/ul and 0.3 ng/ul). Cells were processed 24
hours after transfeccion and total RNA isolated as previously indicated.
Subsequently, rRT-PCR determinations of the expression levels of the
5’-UTR transgene were performed, using custom TaqMan assays:
EGFP (AGTTCGAGGGCGACACCCTGGTGAA) and FMRI-IRES
(GAAGCAGTTCCTCTGGAAGCTTCTT).

Transfection of siRNA were performed with 50 nM per well in a 96
wells multiwall. sCGG-siRNA (5°-
CGGCGGCGGCGGCGGCGGCGG-3’) and scramble siRNA (5°-
CTGTAACACGTGTATACGCCCA-3’) where ordered at Dharmacon.
LNA modified anti-sRNA were transfected to a final concentration of
60 nM. Anti-sRNAs were purchased from Exiqon: anti sCGG-sRNA
(5’-GCCGCCGCCGCCGCCGCC-3’) and anti scramble sRNA (5°-
GTGTAACACGTCTATACGCCCA-3’)

Transfections with sSRNA fractions (<100nt) were performed using 35
ng of each sRNA pool per well in 96 wells multiwell plate.

Transfections were performed in quintuplicate.
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Dicer and Ago2 knockdown experiments were performed by a double
transfection procedure consisting in the transfection of Ago2 or Dicer
siRNA in the first assay (50 nM), and the co-transfection of the siRNA
(75 nM) and 79*CGG or 21*CGG (400 ng), in 6 multiwell plates. Dicer
siRNA (5’- GCUCGAAAUCUUACGCAAAUA-3") and Ago2 siRNA
(5°>-GCACGGAAGUCCAUCUGAA-3") were purchased from
Dharmacon. Transfection efficiency in experiments using siRNA or
sRNA pools was determined at each experimental condition using
siGLO transfection indicator (Dharmacon). Transfection conditions
were optimized in order to obtain similar transfection efficiencies

(=90%) 1n all the cell transfections.

6.10. sCGG amplification

Total RNA was treated with TURBO DNA-free kit following
manufacture’s instructions (Ambion). In vitro polyadenylation reactions
were carried out using 1mg of total RNA using poly (A) polymerase
(Ambion) for 1 h at 37°C in the presence of ATP (1 mM). Samples
were then annealed with a polyT-adapter primer (5°-
CGAATTCTAGAGCTCGAGGCAGGCGACATGGCT{GGCTAGTT

AAGCTTGGTACCGAGCTCGGATCCACTAGTCCTTTTTTTTTTT

TTTTTTTTTTTTTTAC-3’) prior to RT reaction. Anneling was

performed at 65°C for 10 min followed by 10 min at 25°C and 10 more
minutes at 4°C. Specific primers recognizing the adapter and sCGG
allowed the amplification of specific products by PCR. Equal amounts
of cDNA were used for the PCR amplification. Five pmol of the
forward primer and reverse primer were used in each reaction.

Amplification for sCGG molecules was done under the conditions of 15

132



sec at 95°C and followed by 55 cycles consisting in 1 min at 70°C and 2
min at 72°C. For reference genes amplification was performe under the
conditions of 15 sec at 95°C and followed by 55 cycles consisting in 1
min at 60°C and 2 min at 72°C. RNU66 or RNU6B expression was used
as a reference small RNA. PCR products were run in a 6%
polyacrylamide gel. sCGG expression levels were analyzed by
densitometry of the PCR amplified products. Data are presented as the
ratio between the normalized expression of sCGG (sCGG/RNU66) or
(sCGG/RNUG6B). Primers for PCR amplification of the reference genes
were: RNU66 forward: 5’-GTAACTGTGGTGATGGAAATGTG-3’;
RNU66 reverse: 5°- GACTGTACTAGGATAGAAAGAACC-3’;
RNU6B forward: 5’-CGCTTCGGCAGCACATATAC-3’; RNU6B
reverse: 5’-TTCACGAATTTGCGTGTCAT-3".

6.11. sCGG sequencing

CGG PCR products were run on a 15% polyacrylamide gel and
visualized by SybrSafe staining (Invitrogene). PCR products were
purified and ligated into pPGEMT-easy vector. The sequencing reactions
of the vectors were carried out using the Big Dye 3.1 Termination
Cycle Sequencing Kit and DNA Sequencer (ABI3100) from Applied
Biosystems. Sequencing conditions were as follow: an initial
denaturation at 94°C for 1 min was followed by 30 cycles of 94°C for
30 s, 58°C for 30 s and 60°C for 4 min. Each 10 pl reaction contained:
1 ul Big dye, 2 ul Big dye 5x buffer, 0.5 ul of oligonucleotide at a
100nM concentration, 0.7ul DMSO and 300 to 400ng od DNA

template; the final volume was adjusted with water. Sequencing was
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performed with the oligo corresponding to the polyT adapter after
polyadenylation (59-CGAATTCTAGAGCTCGAGGCAGG-39).

6.12. Western blotting

Cells were rinsed with PBS1X, lysed with 0.05% SDS, boiled for 2 min
and centrifuged at 10,000g and 4°C for 10 min. The supernatant was
diluted with 6X Laemmli loading buffer and boiled for 2 min prior to
loading. Proteins were resolved by 10% SDS—PAGE, and electroblotted
onto nitrocellulose membranes using the i-Blot dry transfer system
(Invitrogen). Membranes were blocked with blocking solution (either
3% BSA or 10% dry milk, and 0.1% Tween-20, TBS1X) for at least 1
hour at RT. Primary antibodies were incubated overnight at 4°C then
membranes were washed with TBS-0.1% Tween, and incubated for 1 h
at RT with secondary antibodies (Abcam) at a dilution of 1:3,000. After
washing, membranes were developed with the enhanced
chemiluminiscence system (ECL, Amersham Life Sciences). Western
blot signal was quantified using Image] software. Expression of o-
tubulin was used as a loading normalization control. The primary
antibodies used anti-GFP (1:2000, Molecular Probes, rabbit), anti-Dicer
(1:500, Abcam, mouse), anti-Ago2, (1:500, Abnova, clone 2E12-1C9).

Anti-a-Tubulin (1:50000, Sigma, mouse) was used as loading controls.

6.13. Cell toxicity assays

Lactose dehydrogenase (LDH) released from dying cells was
determined using the LDH assay (Cytotox 96, Promega) according to

the manufacturer’s protocol, at different time-points following
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transfection. Absorbance was recorded at 490 nm. LDH determinations

were performed in quintuplicate.

6.14. Molecular probes for ROS detection and

mitochondrial labelling

Cells were plated for transfection in 24 MW plates over 13 mm
coverslips, then at 24 and 48 h post-transfection they were incubated
with MitoSOX™ Red Mitochondrial Superoxide Indicator at 1 pM
final concentration for 20 minutes at 37 °C. Then cells were rinsed with
PBS1X and coverslips were mounted in PBS1x. Images were directly
taken with a Zeiss Observer Z1 microscope. For quantification three
independent experiments were carried out and five fields were
randomly captured for each condition and experiment. Around 400 cells
were counted in each experiment. Statistical significance was calculated

with two-tailed Student’s t-test.

6.15. In silico identification of sCGG targets

The 21-nt long CGG repeat sequence was in silico hybridized to each
human RefSeq mRNA to identify candidate high-complementary
targets. Specifically, human RefSeq mRNA sequences were
downloaded from the UCSC table browser (PMID 14681465). The
repeat sequence was hybridized to each of these using RNAhybrid
(PMID 16845047) run with default parameters. This analysis was
performed three times, reporting the single, two or three best target

sites. For the analyses reporting the two or three best target sites,
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estimated hybridization energies were summed to a single value for

each 3' UTR.
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7. ANNEX

7.1. Publications

Work from this thesis has given rise to the following publication in

process of submission:

Blood expression profiles of fragile X premutation carriers identify
candidate genes involved in neurodegenerative and infertility
phenotypes; Mateu-Huertas, E., Rodriguez-Revenga, L., Alvarez-Mora, M.L,,
Madrigal, 1., Willemsen, R., Mila, M., Marti, E. & Estivill, X.

Publication in preparation:

A novel pathogenic mechanism involved in fXPCS associated

pathologies.

Other publications:

A pathogenic mechanism in Huntington's disease involves small

CAG-repeated RNAs with neurotoxic activity. Bafiez-Coronel, M.,
Porta, S., Kagerbauer, B., Mateu-Huertas, E., Pantano, L., Ferrer, 1.,
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Guzman, M., Estivill, X., Marti, E. PLoS Genetics 2012
Feb;8(2):€1002481. Epub 2012 Feb 23.

MicroRNA expression profiling in blood from fragile X-associated
tremor/ataxia syndrome patients; Alvarez-Mora, M.I, Rodriguez-
Revenga, L., Madrigal, 1., Torres-Silva, F., Mateu-Huertas, E., Lizano,
E., Friedlander, M., Marti, E., Estivill, X., & Mila, M. Genes Brain
Behav. 2013 Aug;12(6):595-603. doi: 10.1111/gbb.12061. Epub 2013
Jul 24.

Evidence of the biogenesis of more than thousand novel human
microRNAs; Friedlander, M., Lizano, E., Houben, A.J.S., Bafiez-
Coronel M., Mateu-Huertas E., Kagerbauer B., Gonzales J., J, Chen K.,
Marti, E., Estivill, X. (in preparation)

7.2. Communication to scientific meetings

a. Poster presentations

“CAG-repeated small RNAs selectively affects neuronal cell
survival”. Baifiez-Coronel, M., Mifiones-Moyano, E., Porta, S., Mateu-

Huertas, E., Estivill, X., Marti, E.; at the 6" International Conference on

Unstable Microsatellites and Human Disease; January 17-22, 2009,

Costa Rica
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“A novel mechanism involved in FXTAS neuropathology”. Mateu-
Huertas, E., Bafiez-Coronel, M., Mila, M., Estivill, X., Marti, E.; at the
SIROCCO Annual Meeting ;October 11-12, 2010, Heidelberg,

Germany

“RNA toxicity in the pathogenesis of Huntington Disease”. Baifiez-
Coronel, M., Porta, S., Kagerbauer, B., Mateu-Huertas, E., Ferrer, 1., Guzman,
M., Estivill, X., Marti, E.; at EMBO|JEMBL Symposium Non-Coding
Genome October 13-16, 2010, Heidelberg, Germany

“mRNA profiling in FMR1 premutation carriers”. Mateu-Huertas, E.,

Bafiez-Coronel, M., Friedlander, M., Willemsen, R., Mila, M., Estivill, X.,
Marti, E.; at Keystone Symposia Protein-RNA Interactions in Biology
and Disease (C1); 4-9 March 2012, Santa Fe, NM, USA

“mRNA profiling in FMR1 premutation carriers”. Mateu-Huertas, E.,

Bafiez-Coronel, M., Friedlander, M., Willemsen, R., Mila, M., Estivill, X.,
Marti, E.; at 7th International Conference on Unstable Microsatellites

and Human Diseases; 9-14 June 2012, Strasburg, France
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