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ABSTRACT  

Metaheuristic algorithms are approximate solution methods for optimisation problems which 
try to improve the quality of solution at hand iteratively in a random way. In recent years, 
various studies have been conducted in forming new metaheuristic algorithms and modifying 
or improving existing algorithms to enhance the performance in optimal solution search. In 
this study, we focus on extending an existing algorithm Prey-Predator algorithm proposed by 
Tilahun and Ong. Prey-Predator algorithm is a metaheuristic algorithm inspired by interaction 
between prey and predator among animals. The algorithm imitates the way a predator runs 
after and hunts its preys where each prey tries to stay with the pack trying to search for hiding 
place and run away from the predator. In extension of Prey-Predator algorithm, the number of 
both best preys and predators are increased resulting in a more reasonably exploitation and 
exploration so that multiple solutions can be achieved. The simulation of nmPPA is carried on 
ten selected benchmarks test function. nmPPA aimed to solve the problem of objective values 
being trapped in local optimum and to find multiple solutions at the same time. 
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ABSTRAK  

Al-Khwarizmi metaheuristik merupakan penyelesaian hampiran bagi masalah pengoptimuman 
yang digunakan untuk meningkatkan kualiti penyelesaian sedia ada secara lelaran dan rawak. 
Sejak kebelakangan ini, pelbagai penyelidikan telah dijalankan dalam membina al-Khwarizmi 
metaheuristik baharu dan mengubah suai atau memperbaiki al-Khwarizmi yang sedia ada bagi 
meningkatkan prestasi dalam pencarian penyelesaian yang optimum. Dalam kajian ini, 
penambahbaikan al-Khwarizmi Mangsa-Pamangsa yang dikaji oleh Tilahun dan Ong telah 
dilakukan. Al-Khwarizmi Mangsa-Pemangsa adalah al-Khwarizmi metaheuristik yang 
diilhamkan berdasarkan interaksi haiwan antara mangsa dengan pemangsa. Al-Khwarizmi 
Mangsa-Pemangsa meniru cara pemangsa berlari dan memburu mangsanya yang setiap 
mangsa cuba untuk berada dan bergerak dalam kumpulan bagi mencari tempat untuk 
berlindung dan melarikan diri daripada pemangsa. Dalam penambahbaikan al-Khwarizmi 
Mangsa-Pemangsa, bilangan kedua-dua mangsa dan pemangsa ditingkatkan bagi 
menghasilkan lebih banyak eksploitasi dan penerokaan yang lebih munasabah supaya pelbagai 
penyelesaian dapat dicapai. Simulasi nmPPA telah diuji terhadap sepuluh fungsi ujian terpilih 
bagi kayu ukur terhadap ujian. Simulasi nmPPA bertujuan untuk menyelesaikan masalah nilai 
objektif yang terperangkap dalam optimum tempatan dan mencari berbilang penyelesaian pada 
masa yang sama. 

Kata kunci: mangsa-pemangsa; pengoptimuman; metaheuristik                 

1. Introduction  

Mathematical optimisation is the study of designing optimisation problem which consists of 
objective function, either simple or multiple and a set of constraints via mathematical tools. 
However due to complexity of the problem, the traditional analytical methods are not 
sufficient to solve complex models. In complex problems, it is also impractical to search for 
all the possible combination of solutions in the solution space to find the optimal solution. 
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Metaheuristic optimisation algorithm is one of the alternative methods to improve the 
situation. 

Metaheuristic algorithm is defined as algorithm which employs ‘educated guess’ with 
randomisation in performing solution search and improves the solution quality through 
repeated search as the algorithm start with a set of randomly generated solution by 
implementing exploration and exploitation in the solution space (Tilahun & Ong 2014). The 
‘educated guess’ indicates a local search. As metaheuristic algorithm extends from heuristic 
algorithm, it performs better compared to the latter one by introducing randomisation and 
local search as the search basis which prevents the solution search from being trap in the local 
optimum. The purpose of exploitation is to execute local search by exploiting the region 
surrounding the current good solution in search of if this region exists an improved solution. 
On the other hand, exploration function explores the feasible solution space randomly on a 
global basis by generating diverse solutions. Randomisation allows a more thorough search 
where the search is at a global basis which makes metaheuristic algorithm a more appropriate 
option for global optimisation. The best solution can be found by combining both exploration 
and exploitation. Thus global optimum can be found through metaheuristic algorithm (Yang 
2010). 

The development of metaheuristics is influenced by several inspirations. Generally, the 
main three inspirations are the human brain, the Darwinian evolution and the social behaviour 
of nature. Among the recently developed metaheuristic algorithm, there are several algorithms 
which are inspired by nature. For example, the search mechanism of Prey-Predator algorithm 
is inspired from the interaction between the role of prey and predator in animals (Tilahun & 
Ong 2015), and the search mechanism for Simulated Annealing algorithm is based on the 
concept of changes in temperature (Kirkpatrick & Vecchi 1983). 

The main objective of our study is to extend the Prey-Predator algorithm by increasing the 
number of best preys and predators so that multiple solutions can be achieved. We are also 
interested in comparing the objective function values by assigning different number of 
predators and best preys with fixed iterations on selected benchmark test functions. 

2. Methodology  

2.1. Prey-Predator Algorithm (PPA) 

In this study, the focus is on the Prey-Predator algorithm, developed by Tilahun & Ong 
(2015) and inspired by interaction between prey and predator among animals. A prey is an 
animal hunted by another animal which is called the predator. Hence, the predators have 
managed to hunt and catch the weak preys, while the other hand the preys have also learnt 
how to escape from predators, searching for hiding place and survive. 

In the algorithm, a set of initial feasible solution will be generated and each solution 
number, xi , will be assigned with a survival value, ( )iSV x  based on the objective function of 
the optimisation problem. A higher survival value implies better performance in the objective 
function. This means for solution xi and xj, if xi performs better than xj in the objective 
function then ( ) ( )i jSV x SV x . In general:  

 ( )  ( ( ))i jSV x SV x            (1) 

where ( )iSV x is the survival value for xi, ( )if x  is the objective function for xi and a is -1 and 
1 for minimisation and maximisation problem. After generating survival value for each 
solution number, solution with the smallest survival value will be assigned as predator, xpredator 
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and the rest as preys. Once assigned the prey and predator, each prey needs to run away from 
the predator and tries to follow a better prey in terms of their survival value or look for a 
hiding place at the same time. The best prey does not need to look for hiding place, as it is 
considered as a prey which has already found hiding place and do not need to explore for 
hiding place. Thus the prey, xbest prey is said to be best prey if ( ) ( )best prey iSV x SV x , for all i 
which means the best prey has the highest survival value among all the solutions (Tilahun & 
Ong 2014). 

The predator does the exploration whereas the best prey focuses on exploitation. The best 
prey is considered as a prey that has found the hiding place and is not hunted by the predator, 
thus it does not need to run away from the predator. On the other hand, the rest of the prey 
will do both exploitation and exploration but mainly focus on exploration. They follow preys 
with better survival values while running away from predator and at the same time doing a 
local search. The movement of prey and predator involve two basic factors, the direction and 
the step length.  

In the algorithm, the movement of the prey depends on the follow up probability, pf . If the 
follow up probability is met, the prey will follow the other prey with better survival value and 
does a local search and at the same time search for hiding place. However if the follow up 
probability is not met, the prey will run away randomly from the predator. Suppose the follow 
up probability is met and there are x1, x2, …, xs preys which have better survival value 
compared to xi. Since most of the preys tend to follow the nearest pack therefore the 
movement direction is dependent on the distance between xi and preys with better survival 
value, xj. Hence the direction of the movement of xi can be calculated as follows (Tilahun & 
Ong 2014): 

 
( ) ( )

v
j ijSV x r

i j ij
y e x x          (2) 

where =   ij j ir x x  and v plays the role of magnifying or diminishing the effect of the 
survival values in the distance yi. By changing the value for v, it is possible to adjust the 
dependency of the direction on the survival value and the distance and the assigning a large or 
small value does not affect the jump size of xi. Thus the unit direction will be used to 
represent the direction as: 

 i
i

i

yu
y

           (3) 

Besides that, the local search is done by generating q random directions and check if there 
is any possible direction that can increase the survival value of xi if the solution moves in that 
direction. If such direction exists, that direction will be taken as a local search direction and 
be represented by yl. If such a direction does not exist, yl will be put as a zero vector. However 
if the follow up probability is not met, the prey will run away from the predator randomly. 
This is done by generating a random direction yr and comparing the distance between the 
predator and prey to decide if the prey moves in direction yr or – yr. The direction which takes 
the prey far from the predator will be chosen. 

The best prey will perform only local search. It only moves to direction which can improve 
its survival value from a randomly generated q directions or stays in its current position if no 
such direction exist among the q directions.  

For the case of predator, its main task is to motivate the prey for exploring the solution 
space while it also does the exploration of the solution spaces. Thus, it will chase after the 
prey with the least survival value and also moves randomly in the solution space. 

In real prey predator situation, those preys which are nearer to the predator need to run 
faster compared to those who are far from the predator. Same situation is also applied in the 
algorithm. Solution with small survival values needs to run faster and thus they need to have 
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larger step length in comparison with solutions with larger survival values. Therefore the step 
length, λ is inversely proportional to survival values of prey. The simplified formula is shown 
as: 

 max  rand           (4) 

Generalizing all the points across, the movement of the prey, excluding the best prey can be 
summarised as: 

  

           (5) 
 
if the follow up probability is met. If the follow up probability is not met, the movement of 
the prey will be given as: 

   

           (6) 
 
For the step length movement of the best prey, it is given as: 
 
 
           (7) 
 
For the case of the predator, which carries the role of chasing the weaker preys and updating 
its location, its formula is given as: 
 
 

          (8) 

 
where yr is a random vector for the randomness movement of the predator, rand is a random 
number range between 0 and 1 from a uniform probability distribution and x’l is a prey with 
the least survival value. The Prey-Predator algorithm is summarised in Figure 1. 
 

2.2. nmPPA 

Some optimisation problems may have multiple local and global optimums. Moreover, in 
some cases the global optimum is far from the local solution. Thus it is a challenge in 
metaheuristic algorithm when objective value tends to be trapped in the local optimum. In the 
Prey-Predator algorithm, the number of both best preys and predators are increased resulting 
in a more reasonably exploitation and exploration so that multiple solutions can be achieved. 
The extension of PPA is aimed to solve the problem of objective value being trapped in local 
optimum and to find multiple solutions at the same time by setting n number of solutions as 
predators and m as best preys. The n number of predators will be focused on exploration, 
while the m best preys will focus on exploitation. The assigning of n predators will be from n 
lowest survival values assigned while the m best preys will be the m top solutions having the 
highest survival values. The movement of these solutions will be governed in the same way as 
mentioned in PPA, where m = n = 1. 
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Figure 1: Flow chart of the extended Prey-Predator algorithm  
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3. Simulation Results and Discussions 

3.1. Benchmark Test Function 

The benchmark test functions are selected from different categories, which include continuity, 
differentiability, separability and dimensionality of unimodel or multimodel objective 
functions. For uniformity purpose, all the problems are taken as minimisation problems and 
those which are maximisation problems are converted to minimisation problem by 
multiplying the objective function with negative one. Thus all benchmark test functions can 
be formulated as follows: 

 min  1 2, ,..., nf x x x  

 such that  1 2, ,..., n
nx x x          (9) 

(1) Ackley function (Ackley 1987) is a two dimensional continuous, differentiable, non-
separable unimodel function. It has only one global minimum, located at the origin�

* (0,0)x  �with objective function value *
1( ) 200f x   , where 

 
2 2
1 20.02

1min ( ) 200 x xf x e     

 such that 1 232 , 32x x   .       (10) 

(2) Bartels Conn function (Jamil & Yang 2013) is a two dimensional continuous, non-
differentiable, non-separable multimodal function. The global minimum of the function 
is located at * (0,0)x  with objective function value  *

2 1.00f x   where 

 min      2 2
2 1 2 1 2 1 2 –  + sin + cosf x x x x x x x   , 

 such that 1 2500 , 500x x          (11) 

(3) Beale function (Jamil & Yang 2013) is a two dimensional continuous, differentiable, 
non-separable unimodal function. The global minimum of the function is located at 

 * 3,0.5x  with objective function value *
3 ( ) 0.00f x  , where 

 min      2 22 2 3
3 1 1 2 1 1 2 1 1 2( ) 1.5 2.25 2.625f x x x x x x x x x x          

 such that 1 24.5 , 4.5x x          (12) 

(4) Bird function (Mishra 2006) is a two dimensional continuous, differentiable, non-
separable multimodal function. The two global minimum of the function is located at 

   * 4.70104,3.15294 , 1.58214, 3.13024x     with objective function value 
 *

4 106.764537,f x    where 

 
2 2

2 1(1 cos ) (1 sin ) 2
4 1 1 1 2min ( ) sin( ) cos( ) ( )x xf x x e x e x x       

 such that 1 22 , 2x x            (13) 

(5) Branin RCOS function (Branin 1972) is a two dimensional continuous, differentiable, 
non-separable multimodal function. It has three global minima, located at 

     * ,12.275 , ,2.275 , 3 ,2.425x     with objective function value 
 *

5 0.3978873,f x  where 
 

    
22

1 1
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5.1 5 1
min 6 10 1 cos 10

4 8
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f x x x

  
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 such that 1 25 10,0 15x x           (14) 
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(6) Camel – Six Hump function (Branin 1972) is a two dimensional continuous, 
differentiable, non-separable multimodal function. The two global minima of the 
function is located at    * 0.0898,0.7126 , 0.0898, 0.7126x    with objective function 
value  *

6 1.0316f x   , where  

    
4

2 2 2 21
6 1 1 1 2 2 2min 4 2.1 4 4

4

x
f x x x x x x x

 
      
 

  

 such that 1 25 , 5x x           (15) 

(7) Egg Crate function (Jamil & Yang 2013) is a two dimensional continuous, separable 
multimodal function. The global minimum of the function is located at  * 0,0x  with 
objective function value  *

7 0f x  , where 

       2 2 2 2
7 1 2 1 2min 25 sin sinf x x x x x      

 such that 1 25 , 5x x           (16) 

(8) Leon Function (Lavi & Vogel 1966) is a two dimensional continuous, differentiable, 
non-separable unimodal function. The global minimum of the function is located at 

 * 1,1x  with objective function value  *
8 0f x  , where 

      2 22
8 2 1 1min 100 1f x x x x     

 such that 1 21.0 , 1.2x x          (17) 

(9) Mishra’s function No. 06 (Mishra 2006) is a two dimensional continuous, differentiable, 
non-separable multimodal function. The global minimum of the function is located at                  

 * 2.88631,1.82326x  with objective function value  *
9 2.28395f x   , where 

 
                 

22 2 22 2
9 1 2 1 2 1 1 2min ln sin cos cos cos sin sin 0.01 1 1f x x x x x x x x             

  such that 1 25 , 5x x           (18) 
 
(10) Shubert’s function (Molga & Smutnicki 2005) is a two dimensional continuous, 

differentiable, non-separable multimodal function. It has 760 minimum solutions among 
which 18 are global minimum with objective function value  *

10 186.7309f x  . The 18 
global minima of the function are located at  

 x* = (–7.0835,   4.8580), (–7.0835, –7.7083), (–1.4251, –7.0835) 
  (  5.4828,   4.8580), (–1.4251, –0.8003), (  4.8580,   5.4828) 
  (–7.7083, –7.0835), (–7.0835, –1.4251), (–7.7083, –0.8003) 
  (–7.7083,   5.4828), (–0.8003, –7.7083), (–0.8003, –1.4251) 
  (–0.8003,   4.8580), (–1.4251,   5.4828), (  5.4828, –7.7083) 
  (  4.8580, –7.0835), (  5.4828, –7.7083), (  4.8580, –0.8003) 

   

  

such that 1 210 , 10x x          (19) 

3.2. Results and Discussions 

This simulation is conducted whereby different number of preys and predators are tested on 
each benchmark test functions on fixed number of iterations, under same set of randomly 

       
5 5

10 1 2
1 1

min  cos 1 cos 1
i i

f x i i x i i i x i
 
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   
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generated feasible initial solutions, same local search direction and same maximum and 
minimum jumps with follow-up probability set to 0.5fp  . Observation is done on the 
effectiveness of nmPPA in the accuracy of obtaining minimum solution of each functions.  
 
(1) For the first benchmark test function, Ackley Function, the parameters are set fixed for 

each simulation. It is observed that we do obtain better objective function value when 
increasing the number of best preys and predators to more than one. When number of 
best preys is fixed as best prey 6n  , the objective function value becomes closer to the 
exact global minimum solution as the number of predators increase. The objective 
function also shows increasing accuracy when number of best preys are increased under 
fixed number of predators. However there is no sight of increasing accuracy while both 
number of best prey and predator are increased. In conclusion, nmPPA does show 
increasing accuracy for the case of fixed n, increasing m and fixed m, increasing n on 
Ackley function. It is also shown that nmPPA on Ackley function gives a more accurate 
objective value compared to PPA. 

(2) For the second function, Bartels Conn Function, two dimensional multimodel function. 
The exact global minimum solution for Bartels Conn function is  *

2 1.00f x   with           
* (0,0)x  . It is observed that objective function values from nmPPA are nearer to the 

exact global minimum compared to the objective function value for one best prey and 
one predator algorithm which is PPA. When numbers of best preys are fixed as 

best prey 6n  and the number of predators increases, the objective value show a slight trend 
of increasing accuracy. On the other hand, while number of best preys increases under 
fixed number of predators, a small increase trend is shown when number of best preys 
increases from 10 to 14. However there is no sight of increasing accuracy when both 
number of bests prey and predators are increased. Thus, the simulation on Bartels Conn 
function does show slight increment in accuracy under both conditions of fixed n, 
increasing m and fixed m, increasing n. Most nmPPA on this function also have more 
accurate objective value compared to PPA. 

(3) The third function, Beale Function is a two dimensional unimodel optimisation problem. 
The exact global minimum solution for Beale function is located * (3.0,0.5)x  with  

 *
3 0.00f x  . It is observed that objective function value from PPA of one best prey and 

predator has the most accurate objective value compared to objective values of other 
nmPPA. However it is observed that, the *x points found by nmPPA is closer to the 
actual global minimum point. The result obtained when number of best preys is fixed and 
increasing the number of predators show a small decrease in accuracy when number of 
best preys is increased from 6 to 10. On the other hand, the results do not show any 
pattern while number of best preys increases under fixed number of predators. There is 
also no sight of increasing accuracy when both number of best preys and predators are 
increased. In conclusion, the nmPPA simulation on Beale function only show increasing 
accuracy trend when m is fixed with increasing n but not on the other two cases. It can 
also be concluded that nmPPA in this function performs better as it generates optimal 
points that are closer to the actual global optimum point. 

(4) The fourth function, the Bird Function is a two dimensional multimodel optimisation 
problem. The exact global minimum solution for Bird function is  *

4 106.7645f x    
with two global minimum points  * (4.70104,3.15294), 1.58214, 3.12024x    . It is 
observed that most trials show objective function value from the point 

* ( 1.58214, 3.13024)x    . Although there is no trend of increasing accuracy when 
number of predators increases with fixed number of best prey, but the result tend to 
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achieve the other global minimum point as the number of predators increase. This 
indicates that as the number of predators increases, more exploration is done in the 
solution space which enables a wider search for better survival values. While number of 
best preys increase under fixed number of predators, a small increase trend is shown 
when number of best preys increases from 4 to 10. However there is no sight of 
increasing accuracy while both number of best preys and predators are increased. It can 
be concluded that, under both condition of fixed m, increasing n and fixed n, increasing 
m the accuracy increases since another global minimum is found under fixed m, 
increasing n. Apart from that some nmPPA simulation of Bird function also show better 
accuracy compared to PPA. 

(5) The fifth function, Branin RCOS function is a two dimensional multimodel function. 
Branin RCOS function has three global minima, located at 

   * ( ,12.275), ,2.275 , 3 ,2.425x     with all three having the same objective function 
value  *

5 0.3978873f x  . Simulation with 2 predators and 6 best preys generates the 
best objective value with the smallest error. There is no significant pattern shown when 
increasing the number of predators with fixed number of best preys or increasing the 
number of best preys with fixed number of predators. However, when the number of best 
preys and predators are increased to more than one, we did manage to obtain optimum 
solution from the other two global minimum point compared to one best prey and one 
predator PPA. Thus we can conclude that simulation on Branin RCOS function shows 
better result on nmPPA compared to PPA since by increasing the number of n and m 
enables more exploration and exploitation to take place which enables the algorithm to 
locate more global minimum point in the solution space. The result also show that the 
simulation on Branin RCOS function does not have any trend on both the cases of fixed 
n, increasing m and fixed m, increasing n. 

(6) For the sixth function, Camel Six-Hump Function, the parameters are set fixed for each 
trial of simulation. Camel Six-Hump Function has two global minima with objective 
function value  *

6 1.0316f x   . The two global minimum points of the function are 
located at  * 0.0898,0.7126x   and (0.0898, –0.7126). nmPPA with 6 predators and 8 
best preys generate the best objective value with the smallest error. There is no 
significant pattern shown when increasing the number of predators with fixed number of 
best prey or increasing the number of best preys with fixed number of predators. Only 
small trend of decreasing error when number of predators increase from 2 to 6 with fixed 
number of best preys best prey 6n  . In conclusion, the nmPPA simulation for Camel Six 
Hump function performs better compared to PPA of this function. However the 
simulation on Camel Six Hump function only show small increasing accuracy trend on 
the fixed m, and increasing n. 

(7) The seventh function, Egg Crate Function is of two dimensional multimodal optimisation 
problem. The global optimum for Egg Crate function is located at * (0,0)x  with 
objective function value  *

7 0f x  . There is no significant pattern shown when 
increasing the number of predators with fixed number of best preys or increasing the 
number of best preys with fixed number of predators. In conclusion, result show that the 
simulation on Egg Crate function does not have any trend on both the cases of fixed n, 
increasing m and fixed m, increasing n. However, the result by nmPPA simulation of this 
function does shows that the nmPPA on Egg Crate function enables the algorithm to get 
a more accurate result compared to PPA. 

(8) The eighth function, Leon Function is a two dimensional unimodel function. Since Leon 
Function is a unimodel function, its only global minimum of the function is located at      
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 * 1,1x   with objective function value  *
8 0f x  . PPA with only one best prey and 

predator shows best objective value with least error which is only 0.0001. Apart from 
that, there is also no significant pattern shown when increasing the number of predators 
with fixed number of best preys or increasing the number of best preys with fixed 
number of predators. In conclusion, result show that the simulation on Leon function 
does not have any trend on both the cases of fixed n, increasing m and fixed m, 
increasing n. It is also shown that the PPA simulation of this function is better compared 
to the nmPPA simulation. 

(9) Mishra’s function No. 06, the ninth function, is two dimensional multimodel 
optimisation problem. The global optimum for Mishra’s function No. 06 is located at 

 * 2.88631,  1.82326x  with objective function value  *
9 2.28395f x   . The best 

objective value is obtained at the simulation where when the number of predators is set 
to 6 and number of best preys set to 2 and also when the number of predators is set to 12 
and number of best preys set to 6. There is also no sign of pattern shown when increase 
the number of predator with fixed number of best preys or increasing the number of best 
prey with fix number of predator for this function. Thus it is concluded that the 
simulation on Mishra 6 function does not have any trend on both the cases of fixed n, 
increasing m and fixed m, increasing n. However, the result by nmPPA simulation of 
Mishra 6 function does prove that the nmPPA on Mishra 6 function enables the 
algorithm to get a more accurate result compared to PPA. 

(10) For our last function, Shubert’s Function which is a two dimensional multimodel 
function. Shubert’s Function contains 18 global minima out of 760 minimum solutions 
with objective function value  *

10 186.7309f x  . From simulation result, we managed 
to get different global minimum points when increasing the number of best prey and 
predator. It is also observed that some simulation results from nmPPA do give out more 
accurate objective solution compared to one best prey and one predator PPA. However 
the simulation on Shubert’s function does not have any trend on both the cases of fixed n, 
increasing m and fixed m, increasing n. In this simulation the main task is more on 
exploring for the global minimum points than exploiting the best result around that 
specific points as this function contains 18 global minimum points. 
 

After simulation on all the 10 benchmark test functions, we can summarise that nmPPA in 
most functions performs better compared than the PPA. The objective values of nmPPA 
shows better accuracy to the exact global optimum and generates optimum points that are 
closer to the global optimum point. Trend of increasing accuracy is observed when either 
number of best preys or predators are being fixed while increasing the other in unimodel 
function (Ackley function) and multimodel function with only one global optimum (Bartels 
Conn function). The functions with only one global optimum leads the algorithm to search for 
the best result at that certain point instead of exploiting for other better points in the solution 
space. However the result of multimodel functions with multi global optimum points does not 
show any increase in accuracy both the cases of fixed n, increasing m and fixed m, increasing 
n. As these multimodel functions contain more than one global optimum, the increasing of 
number of best preys and predators enable the nmPPA to spread out the exploration and 
exploitation to search global optimum in several optimum points. Thus there is no increased 
accuracy as it is more focused on exploring for different global optimum points. 
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Table 1: Simulation Result for 10 Benchmark Functions 

Objective 
Function predatorn   best preyn  fx x1 x2 Error 

 
1. Ackley Function 
 

1 1 -199.8862 0.0366 0.0346 0.1138 
8 6 -199.7902 0.0263 0.1624 0.2098 

10 6 -199.9042 0.0758 0.0136 0.0958 

12 6 -199.9754 0.0017 -0.0059 0.0246 

6 8 -198.7910 0.0085 0.3708 1.2090 

6 10 -199.8563 0.0004 -0.0421 0.1437 

6 12 -199.3842 -0.0086 0.3897 0.6158 

6 14 -199.9233 -0.0192 0.0264 0.0767 

2. Bartels Conn 
Function 

1 1 -1.00149 -0.00122 0.02426 0.00149 

2 6 -1.00018 0.00002 -0.01778 0.00018 

4 6 -1.00114 -0.00079 -0.02572 0.00114 

6 6 -1.00060 0.00058 0.00632 0.00060 

6 10 -1.00077 0.00067 -0.01496 0.00077 

6 12 -1.00071 0.00055 -0.03688 0.00071 

6 14 -1.00047 0.00244 0.03770 0.00047 

3. Beale Function 

1 1 -0.0168 3.4337 0.5911 0.0168 
6 6 -0.0195 3.4378 0.5913 0.0195 
8 6 -0.0197 3.4431 0.5901 0.0197 

10 6 -0.0207 3.4555 0.5935 0.0207 
6 6 -0.0195 3.4378 0.5913 0.0195 

 
6 8 -0.0207 3.4536 0.5939 0.0207 

6 10 -0.0188 3.4273 0.5898 0.0188 

4. Bird Function 

1 1 -106.7877 -1.5896 -3.1230 0.0262 

10 6 -106.7877 -1.5909 -3.1234 0.0261 

12 6 -106.7877 -1.5896 -3.1229 0.0262 

14 6 -106.7261 4.7151 3.1809 0.0355 

6 4 -106.7877 -1.5896 -3.1232 0.0262 

6 6 -106.7873 -1.5840 -3.1234 0.0257 

6 8 -106.7813 -1.5804 -3.1197 0.0197 

6 10 -106.7678 -1.5789 -3.1385 0.0062 

2 4 -106.7581 -1.6124 -3.1261 0.0034 

5. Branin RCOS 
Function 

1 1 -0.3978878 9.4242531 2.2481362 0.0000008 

2 6 -0.3978874 9.4247711 2.2495269 0.0000004 

4 6 -0.3980952 3.1363159 2.2663702 0.0002082 

6 6 -0.3978905 3.1417095 2.2476581 0.0000035 

6 4 -0.3978875 3.1417115 2.2491557 0.0000005 

6 6 -0.3978905 3.1417095 2.2476581 0.0000035 

6 8 -0.3978881 9.4256200 2.2507725 0.0000011 

2 4 -0.3978875 9.4249259 2.2501726 0.0000005 

6. Camel Six-
Hump Function 

1 1 -1.031627982 -0.089356470 0.712623827 0.000027982 

2 6 -1.031628452 -0.089848143 0.712671260 0.000028452 

4 6 -1.031628445 -0.089886855 0.712669794 0.000028445 

6 6 -1.031627408 -0.089759567 0.713255139 0.000027408 

6 2 -1.031628444 -0.089863601 0.712626788 0.000028444 

6 6 -1.031627408 -0.089759567 0.713255139 0.000027408 

6 8 -1.031626822 -0.091070397 0.712279976 0.000026822 

 
To be continued… 
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…Continuation 

 

4. Conclusion 

Optimisation problems may have multiple local and global optimums. In some cases, global 
optimum is far from the local solutions and being trapped in a local optimum is a challenge 
for metaheuristic algorithms. In this study, the PPA is being extended to nmPPA by assigning 
n of the solutions as predators and m of the solutions as best preys in which predators act in 
exploration and best preys do so in exploitation. This extension of nmPPA aimed to overcome 
the challenge of metaheuristic algorithm being trapped at local optimum and find multiple 
solutions at the same time. 

Referring to the simulation results on selected ten benchmark function with various 
characteristics, it is observed that nmPPA does generates better solution compared to PPA. 
Results from nmPPA are closer to the exact global objective values and its global optimum 
points. Apart from that, nmPPA also enables the algorithm to locate more than one solution 
when dealing with multimodel function with several global optimum points.  

Furthermore, nmPPA generally show a trend of increasing accuracy on either cases of 
fixed n, while increasing m or fixed m, while increasing n when dealing on unimodel function. 
However this trend is not shown when applying nmPPA on multimodel function with 

7. Egg Crate 
Function 

1 1 -0.0168 3.4337 0.5911 0.0168 

2 6 -0.0195 3.4375 0.5924 0.0195 

4 6 -0.0199 3.4434 0.5924 0.0199 

6 6 -0.0195 3.4378 0.5913 0.0195 

6 2 -0.0197 3.4416 0.5902 0.0197 

6 4 -0.0199 3.4421 0.5916 0.0199 

6 6 -0.0195 3.4378 0.5913 0.0195 

8. Leon Function 

1 1 -0.00010 1.01009 1.02027 0.00010 

2 6 -0.00060 0.97543 0.95154 0.00060 

4 6 -0.00092 0.96975 0.94012 0.00092 

6 6 -0.00112 0.96560 0.93242 0.00112 

6 2 -0.00282 0.94678 0.89532 0.00282 

6 4 -0.00097 0.96898 0.93860 0.00097 

6 6 -0.00112 0.96560 0.93242 0.00112 

9. Mishra 6 
Function 

1 1 -2.28389 2.89258 1.81567 0.00006 

4 6 -2.28392 2.88191 1.82755 0.00003 

8 6 -2.27126 2.93153 1.75056 0.01269 

12 6 -2.28395 2.8866 1.82699 0.00000 

6 2 -2.28395 2.88623 1.82338 0.00000 

6 8 -2.28002 2.91892 1.78515 0.00393 

6 14 -2.27294 2.92591 1.75466 0.01101 

10. Shubert's 
Function 

1 1 -186.7295 6.0841 0.4256 0.0012 
4 6 -186.7309 -6.4829 -5.8581 0.0002 

14 6 -186.7302 0.4249 6.0840 0.0005 
6 2 -186.4025 6.0790 -5.8470 0.3282 
6 6 -186.3530 -0.2082 0.4348 0.3777 
6 10 -186.7307 6.0838 -5.8579 0.0000 
8 10 -186.7295 6.0841 0.4256 0.0012 
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multiple global optimum as the nmPPA tends to explore the different peaks with high 
objective values instead of concentrating on only one peak to exploit the best objective value.  
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