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 ABSTRACT   

In this paper, we study a new subclass of analytic functions defined by a derivative operator. 
Coefficient bounds, extreme point and integral transform are investigated. 
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ABSTRAK  

Dalam makalah ini,  dikaji suatu subkelas baharu fungsi analisis yang ditakrif oleh 
pengoperasi terbitan. Batas pekali, titik ekstrim dan jelmaan kamiran diselidiki. 

Kata kunci: titik ekstrim; konvolusi; kebakbintangan; anggaran pekali            

1. Introduction 

Let A  denote a class of all analytic functions of the form 
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which are analytic in the open unit disc  : 1U z z   and normalised by 
'(0) (0) 1 0.f f     A function ( )f z A  is said to be starlike of order   if 
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This class is denoted by *( ).S   Similarly, a function ( )f z A  is said to be convex of order 

  if satisfy 
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Definition 1.1. A function ( )f z A  is said to be spirallike of order (0 1),    if 
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for some real .
2

   
 

  

This class of function is denoted by ( ).pS   

 

Definition 1.2. If 
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  are analytic in ,U  then their Hadamard 

product f g  defined by the power series is given by 
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 Note that the convolution (2) is also analytic in .U  The advent of operators in the field 
brought an ease and understanding to the study of analytic univalent functions. Most of these 
operators are expressed as convolution of analytic functions, see Al-Oboudi (2004), Bansal 
and Raina (2010), Carlson and Shaffer (1984), Prajapath and Raina (1984), Ruscheweyh 
(1975) and Zahid et al. (2012). Next, we shall introduce a derivative operator of certain 
analytic function which will be used throughout the article. 

Given the operator  , ( , , ) ( )l mA n a c f z  involving multiplier transformations as the following: 
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where  , , 0 .l m n N N   Here 0,0 (0, , ) ( ) ( )A a c f z f z   and 1( )ka   is the familiar 
Pochammer symbol. 
 
 By choosing suitable values, the operator reduces to several known operators in the 
literature. Few to mention here as follows: 
 

0,0
0 ( , , ) ( )A n a c f z is the Salagean operator (1983), 

, (0, , ) ( )l mA a c f z is the class defined and studied by  Bansal and Raina (2010), 
,0

0 (0, , ) ( )lA a c f z is the Al-Oboudi Operator (2004) and  
,0 ( , , ) ( )lA n a a f z is the class studied by Uralegadi et al. (1992). 

 
Definition 1.3. For ,f A  the operator , , ( )l m nD f z  defined by , , ( ) : ,l m nD f z A A  
 

, , ,( ) ( , , ) ( ) ( ),l m n l m nD f z A n a c f z D f z z U                      (3) 

 

where  , , 0 ,l m n N N   ( )nD f z is the familiar Ruscheweyh operator  [9]   
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where 1( )ka   is the familiar Pochammer symbol.  

We shall use the following definition and notations, with our style in the manner of Bansal 
and Raina (2010); Owa et al. (2002), to introduce a class of analytic function containing a linear 
operator defined in (4). 
 
Notations: The following notions will be used in this paper without loss of generality. 
 

 1,2,3,... ,N  

 

 0 ,N  

 

 1 : 1N u u      

and 
 

 1 1 \ 0 .    

 
Definition 1.4.  Let f A  and 1,u   we redefined the stated operator (4) as follows: 
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Definition 1.5.  Let 
( )

( ) ,
( )

u

v

D f z
P z

D f z
  a function f S  is said to be in the class ( , , )B u v   if it 

satisfy the inequality 
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             (6) 

 
for 0 1.   

 
We shall characterise ( , , )B u v   by investigating coefficient bounds, extreme point and 

integral operator. We shall make use of the methods and techniques in Aouf and Cho (1998), 
Cho and Kim (2003),  Owa et al. (2002)  and Salagean (1983) to establish our results. 

2. Conditions for Functions in the Class B u v ( , , )  and Coefficient Inequality 

Theorem 2.1. ( , , )f B u v   iff 
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Squaring both side of  (7) and simplifying, we have 
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Theorem 2.2. If f A  satisfies 
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Proof. It suffices to show that  
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Relating  (9) and  (10), we have our desired results.� 

3. Extreme Points 

Theorem 3.1.  Let ( , , )B u v   be the subclasses of ( , , )B u v   which consists of function 
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whose coefficient satisfy inequality  (8). Then ( , , )f B u v   iff it can be express in the form  
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which was to be established. Thus we conclude that the extreme point assumed are correct.� 
 

4. Integral Operator 

Theorem 4.1. Let ( , , )f B u v   and let c  be a real number such that 1.c    Then the 

function defined by 
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also belongs to the class ( , , ).B u v   
 
Proof. From the expanded representation of ( ),cF z  we have 
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relating this with Theorem 2.1, we can therefore write 
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Thus since ( , , ),f B u v   by Theorem 2.2, we have that ( ) ( , , ).cF z B u v   This proves our 
theorem.� 
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