
77

Jurnal Sains Kesihatan Malaysia 13 (1) 2015: 77-91

Kertas Asli/Original Articles

Technology Advancement Enabling the Link of Gut Microbiota with 
Obesity and Metabolic Disorder

(Perkembangan Teknologi di dalam Menghubungkaitkan Mikrobiota Usus dengan 
Obesiti dan Gangguan Metabolik)
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MAZLIFAH OMAR, THUHAIRAH RAHMAN & MOHD ZAKI SALLEH

ABSTRACT

Obesity is a growing epidemic due to an accelerated phase of industrialization and urbanization with the overfed people 
now outnumbered the underfed. It is the major public health problem with a lot of research interest as it is associated 
with many complicated chronic disorders such as type-2 diabetes, cardiovascular diseases (CVD) and cancers. A global 
estimation of 2.8 million deaths per year is due to obesity and there are tremendous on-going efforts to identify hosts 
and environmental factors that infl uence the cause and pathogenesis of obesity. Concerted efforts from different research 
groups had successfully shown that obese subjects have altered composition of gut microbiota and transplantation of this 
microbiota infl uences body weight in the germ-free recipient mice. The advancement of technology had made possible 
the study of gut microbiota which was unculturable for better understanding of their impact to human health. Rapid 
deep sequencing of DNA at reasonable cost through various options of platforms followed by data analysis using robust 
bioinformatic tools are an important way of analysing the gut microbiome. Here we review the role of gut microbiota 
which modulates host’s metabolic functions and gene expression, facilitating the extraction and storage of energy from the 
ingested dietary substances and leading to body-weight gain. We will discuss on the different techniques used, focusing 
on the high-defi nition technologies for the determination of the composition, function and ecology of gut microbiota. This 
allows the appropriate selection of platform which becomes the key for success of subsequent research. 

Keywords: Gut microbiota; obesity; metabolism; infl ammations

ABSTRAK

Arus perindustrian dan pemodenan menjadikan obesiti sebagai suatu epidemik yang menular. Kini masyarakat yang 
mengamalkan pengambilan makanan yang berlebihan mengatasi mereka yang kekurangan makanan. Penyelidikan 
berkaitan obesiti kini menjadi tumpuan kajian memandangkan ia merupakan masalah utama kesihatan awam dan berkait 
rapat dengan penyakit kronik seperti kencing manis jenis 2, penyakit kardiovaskular dan kanser. Dianggarkan kematian 
yang berpunca dari masalah obesiti adalah sebanyak 2.8 juta orang di seluruh dunia dan pelbagai usaha sedang dilakukan 
bagi mengenal pasti faktor-faktor perumah dan persekitaran yang mempengaruhi punca dan patogenesis masalah ini. 
Usahasama dari beberapa penyelidikan telah membuktikan bahawa subjek yang obes mempunyai komposisi mikrobiota 
usus yang berbeza dan pemindahan mikrobiota mempengaruhi berat badan tikus penerima yang bebas kuman. Kemajuan 
teknologi membolehkan penyelidikan terhadap microbiota yang tidak boleh dikultur dan memberi pemahaman yang 
lebih mengenai impak organisma ini terhadap kesihatan manusia. Penjujukan DNA secara terperinci dan cepat dengan 
kos yang berpatutan melalui pelbagai platform disusuli penganalisaan data menggunakan bioinformatik yang moden 
adalah penting bagi menganalisa mikrobiom usus. Di sini kami meneliti peranan mikrobiota usus dalam mengawal atur 
fungsi metabolisma dan ekspresi gen perumah, membantu pengekstrakan dan penyimpanan tenaga dari makanan yang 
diambil dan seterusnya menyebabkan peningkatan berat badan. Pelbagai teknik berdefi nisi tinggi turut dibincangkan 
di dalam pengenalpastian komposisi, fungsi dan ekologi mikrobiota usus. Ini akan dapat membantu dalam penggunaan 
teknologi yang bersesuaian untuk kejayaan penyelidikan.

Kata kunci: Mikrobiota usus; obesiti; metabolism; keradangan

INTRODUCTION

With the current state of acceleration in industrialization 
and urbanization, obesity has increased worldwide to the 
extent that those obese now outnumbered the malnourished 

people (Power & Schulkin 2008). WHO data indicates that 
currently, obesity affects at least 400 million people and it 
is the fi fth leading risk for global deaths worldwide. About 
65% of the world’s population lives in countries where 
excess body weight kills more people than underweight 
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(WHO 2012). Obesity is not classifi ed as a single disorder 
but currently characterized by a cluster of several metabolic 
disorders such as cardiovascular diseases, type-2 diabetes 
and cancers (WHO 2007; Sanz et al. 2010). Nevertheless, 
the exact pathogenesis of obesity and its related diseases are 
not well understood. Obesity is characterized by low grade, 
but persistent infl ammation with increased production of 
cytokines and acute-phase reactants, such as C-reactive 
protein (CRP) which eventually leads to insulin resistance 
and metabolic syndrome (Wellen & Hotamisligil 2005). 
Although excessive intake of energy-dense foods and a 
sedentary lifestyle are often blamed for obesity epidemic, 
there are emerging evidences pointing that gut microbiota 
is also responsible for the gain of body weight (Shoelson 
et al. 2007; Musso et al. 2010). Recent researches have 
postulated that gut microbiota alter host energy metabolism 
leading to adiposity and weight gain (Creely et al. 2006; 
Cani et al. 2007; Samuel et al. 2008).

Until recently, our understanding on how gut 
microbiota affects metabolic diseases is limited. The 
specifi c bacteria populations and the altered metabolic 
pathways which trigger the development of pathological 
conditions are not well defined. The complexity of 
gut microbial ecology and its impact on health can be 
better understood by fi rst knowing extensive coverage 
of microbial population in the gut. Without advanced 
technology, the data detailing microbial composition 
somehow lack comprehensiveness. Development of the 
non-culture-based analysis, such as metagenomics had 
revolutionised the advancement of medical microbiology 
in characterizing and identifying many clones which 
corresponds to novel species of microorganisms. Through 
metagenomics analysis, the full genome composition of 
microbiomes, and unique microbial genes associated with 
the microbiomes across the human body can be discovered. 
In addition, metabolomics approach can help expand our 
knowledge on the mechanisms that link gut microbiota 
to adipogenesis in both physiological and pathological 
condition of obesity (Turnbaugh et al. 2008).

In this review, we discuss the role of the gut microbiota 
in energy metabolism and infl ammation; and their possible 
links with obesity and other metabolic disorders. We also 
describe the different techniques that are used to unravel 
the specifi c changes of the composition of gut microbiota 
which affect or counteract the development of metabolic 
disorders.

GUT MICROBIOTA

Gut microbiota is a complex community of trillion of 
bacteria dwelling the length and width of the mammalian 
gastrointestinal tract. The majority of these microbial reside 
in our gut, with density estimated between 1011 to 1012 cells 
/ ml, and two kilograms heavier than our brain (MetaHIT 
2010). This bulk of the community could be considered as 
our additional organ, with respect to their integration and 
contribution to the host’s metabolism. Their genomes are 

also considered as ‘other’ genomes in the host, comprising 
more than 100 fold genes more than what human has. 

More than 3 million bacterial genes have been reported 
in our gut alone, which varies and are unique to each of 
us (Weinstock 2012). Collectively, there are nine distinct 
phyla of microbiota such as Proteobacteria, Fusobacteria, 
Verrucomicrobia, Cyanobacteria, Actinobacteria, 
Spirochaetes, VadinBE97 with Firmicutes and Bacteriodetes 
being the most dominant phyla residing in our gut 
ecosystem (Vrieze et al. 2010; Prakash et al. 2011; Dave 
et al. 2012). Firmicutes, a gram-positive group of bacteria 
contains more than 200 genera, including Lactobacillus, 
Mycoplasma, Bacillus and Clostridium; while the gram-
negative Bacteriodetes have about 20 genera such as 
Prevotella, Fusobacterium and Porphyromonas (Vrieze 
et al. 2010). 

Microhabitat variations throughout the gastrointestinal 
tract, such as pH, oxygen, and nutrient are some of the 
factors that infl uence specifi c types and compositions 
of gut bacteria. Based on conventional microbiological 
culture technique, anaerobic bacteria such as bacteroides, 
bifi dobacterium and eubacterium are more prevalent at 
the lower portion of the gut, whereas the upper portion is 
mainly inhabited by aerobic bacteria such as escherichia, 
enterobacter, and enterococcus (Guarner & Malagelada 
2003).

However, recent molecular based analysis showed 
that the same bacteria phyla, Firmicutes and Bacteriodetes 
are present at the different sites in the gut and that only 
the relative proportion of the subgroups of the common 
phyla varies. The subgroup of Firmicutes: the family 
Streptococcaceae was found dominant in small intestine 
while colon was enriched by Bacteroidetes phylum and 
Lachnospiraceae family of Firmicutes (Frank et al. 2007). 

Each individual has distinct and highly diversifi ed 
communities of gut microbes, although a similar set of gut 
colonizers which are the core gut microbiota are shared 
among individuals (Turnbaugh et al. 2009; Qin et al. 2010). 
Therefore, different microbial types which are present 
in different individuals need to be characterized as they 
play important roles in infl uencing the well-being of an 
individual, and perhaps the etiologies of some diseases.

MECHANISTICS INFLUENCE OF GUT MICROBIOTA ON 
ENERGY METABOLISM

The gut microbiota has been regarded as another 
‘important organ’ that is involved in the regulation of 
energy homeostasis. The metabolic activities of the gut 
microbiota help the host to extract and store calories as 
fat, and part of the calories are extracted from luminal 
nutrients for microbial growth and proliferation. Studies 
on the relationship of the gut microbiota with obesity have 
uncovered the infl uence of gut microbiota composition on 
adiposity. 

Bäckhed et al .  (2004) showed that young, 
conventionally raised (CONV-R) C57BL/6 mice had 40% 
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higher body fat content and 47% higher epididymal fat 
content compared to germfree (GF) C57BL/6 mice, despite 
consuming less food. When they colonized GF mice with 
the intestinal microbiota of CONV-R mice, they found 
that these “conventionalized” animals experienced a 
60% increase in body fat and epididymal fat within 2 
weeks. The increase in body fat was accompanied by 
insulin resistance, adipocyte hypertrophy, and increased 
levels of circulating leptin and glucose. This occurred 
despite the conventionalized animals consumed less food 
compared to their germfree counterparts. In addition to 
the modulation of de novo lipogenesis, the investigators 
found that conventionalized mice had a higher uptake of 
monosaccharides from the gut into the portal blood. This 
could be partly described by the higher density of the small 
intestinal villi capillaries of conventionalized mice as 
compared to germ free counterparts. These fi ndings support 
the hypothesis that the composition of the gut microbiota 
affects the amount of energy extracted from the diet as well 
as the culprits for many metabolic disorders. 

Bäckhed et al. (2007) further their study to understand 
the mechanisms of resistance to diet-induced obesity in 
the germfree mice. Germfree or conventionalized mice 
were fed with a high-fat, high-carbohydrate western 
diet. In addition to the results obtained in 2004, similar 
energy content was observed in the stool of both groups 
of mice, indicating that mechanisms other than energy 
harvested in conventionalized mice may be responsible 
for the gain in fat mass. Finally, 2 complementary but 
independent mechanisms that result in the increased fatty 
acid metabolism in germfree mice which were resistant to 
diet-induced obesity have been proposed:

1. An increased activity of fasting-induced adipocyte 
factor (FIAF) activates the production of peroxisome 
proliferator-activated receptor coactivator, which is 
known to increase the expression of genes encoding 
regulators of mitochondrial fatty acid oxidation and; 

2. An increased in the activity of adenosine monophosphate 
– activated protein kinase (AMPK), an enzyme that 
monitors the cellular energy status. AMPK will activate 
key enzymes of mitochondrial fatty acid oxidation, 
including acetyl-CoA carboxylase and carnitine 
palmitoyl transferase. These intriguing findings 
suggest that the gut microbiota has a suppressive effect 
on FIAF and AMPK activities, resulting in increased 
adiposity and insulin resistance in host.

In exploring the role of gut microbiota in host 
metabolism, the conventionalized mice were found 
to have an increased activity of hepatic carbohydrate 
response element-binding protein (ChREBP) and liver 
sterol response element-binding protein (SREBP-1) which 
promote fat deposition in the liver and increased insulin 
levels (Bäckhed et al. 2004). The gut microbiota therefore 
caused an increase of glucose uptake from the small 
intestine. This increase was associated with a high activity 
of glycosyl hydrolases in conventionalized mice, which are 

capable of digesting dietary polysaccharide. The glucose is 
subsequently converted into lipid in the liver. The lipogenic 
enzymes, acetyl-CoA carboxylase (ACC) and fatty acid 
synthase (FAS) are controlled by the 2 signaling proteins, 
ChREBP and liver SREBP-1 (Bäckhed et al. 2004; Denechaud 
et al. 2008). Interestingly, the conventionalization of FIAF-
defi cient knockout (KO) mice produced only a 10% extra 
total body fat compared to 60% fat gain observed in wild-
type counterparts (Bäckhed et al. 2004). 

A very recent evidence indicated that gut microbiota 
which produces t10,c12 conjugated linoleic acid (CLA) 
enhances hepatic lipogenesis and triglyceride synthesis 
through mammalian target of rapamycin (mTOR) /SREBP1 
pathway. In response to gut microbiota-producing t10,c12 
CLA treatment, lipid accumulation occurs as a result of 
(1) enhanced incorporation of acetate, palmitate, oleate, 
and 2-deoxyglucose into triglycerides; (2) increased 
mRNA expression and protein levels of lipogenic genes, 
which include SREBP-1, acetyl-CoA carboxylase 1 
(ACC1), fatty acid synthase (FASN), elongation of very 
long chain fatty acids protein 6 (ELOVL6), glycerol-3-
phosphate acyltransferase 1 (GPAT1), and diacylglycerol 
O-acyltransferase 1 (DGAT1) (Go et. al. 2013). Based 
on these evidences, extensive research is dedicated to 
differentiate the mechanisms that lead to lipogenesis and 
those that resulting in energy balance in host as potential 
therapeutic application (Parekh et. al. 2014).

Recent molecular studies have highlighted that the 
composition of intestinal microbiota in obese genetic 
models is different compared to lean wild-type animals. 
The obese animal model has mutations in the gene 
responsible for the production of leptin, a hormone that 
regulates energy intake and energy expenditure. 

Ley et al. (2005) found that the obese genotype had 
50% lower bacteroidetes prevalence and a signifi cantly 
higher prevalence of fi rmicutes compared to lean wild-
type mice. Using the same animal models, Turnbaugh 
et al. (2006) discovered that the gut microbiome of obese 
mice was enriched with sequences encoding for glycoside 
hydrolases. 

Elevated concentrations of acetate and butyrate were 
also observed in the caecum of genetically obese mice 
compared to lean mice. The gut microbiota produces a large 
amount of glycoside hydrolases that break down complex 
polysaccharides from the diet into absorbable forms, i.e 
monosaccharides and short chain fatty acids (SCFAs). 
Acetate, propionate and butyrate are the main SCFAs 
produced by this fermentation process. SCFAs function as 
ligands which bind to the G-protein-coupled receptors (Gpr 
41 and Gpr 43) of enteroendocrine cells. 

Upon ligand binding, these receptors stimulate 
secretion of gut hormone peptide YY (PYY), which lead 
to reduced intestinal transit, increased energy harvest and 
stimulation of hepatic lipogenesis (Samuel et al. 2008). 
Turnbaugh et al. (2006) also reported that the metabolic 
characteristics associated with the obese-type microbiota 
include the increased adiposity, which was transmissible 
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through transplantation of the gut microbiota from ob/ob 
mice to germfree non-ob/ob mice. After being colonized 
with an obesity-type microbiota, adult C57BL/6J mice gained 
signifi cantly higher body fat percentage and signifi cantly 
higher caecal levels of fi rmicutes. Bacteroides species 
which are the key polysaccharide degraders are the most 
abundantly represented faecal microbiota. 

There are 172 different genes found in Bacteroides 
thetaiotaomicron for polysaccharide utilization, compared 
with 39 genes encoded by Bifidobacterium longum. 
These genes allow B. thetaiotaomicron to metabolize a 
wide range of non-digestible plant polysaccharides into 
oligosaccharides and monosaccharides (Xu et al. 2003). 
B. thetaiotaomicron also appears to increase the activity 
of host monosaccharide transporters in the gut, promote 
angiogenesis and strengthen the mucosal barrier in germ 
free animals upon colonization, leading to increased body 
fat accumulation (Hooper et al. 2001; Stappenbeck et al. 
2002; Hooper el al. 2003; Xu & Gordon, 2003). 

Nevertheless, there are contradictory results on gut 
microbiota and adiposity. In the colonization studies of 
germ free animals, B. thetaiotaomicron which belong to 
the Bacteriodetes phylum was found to induce adiposity 
and body weight gain (Bäckhed et al. 2004; Faith et al. 
2014). The same trend was observed in other studies 
which characterized by a higher levels of Firmicutes and 
a reduction in Bacteriodetes population (Ley et al. 2005; 
Turnbaugh et al. 2006). According to Tuohy et al. (2009), 
germfree animals may have gut microbiota that are different 
from the conventional animals. The gastrointestinal tract 
of conventionally reared animals develops and matures 
alongside its resident microbiota while germfree animals 
are in fact truly xenobiotic and do not exist in nature. 

Their physiology and metabolism of the germ 
free mice were adapted for life without bacteria. The 
conventionalization of these animals with microorganisms 
would lead to a dramatic effect on their physiological 
processes. The conventionalized animals now have to 
cope with microbial derived metabolites, energy, antigens 
and signaling molecules. Thus the roles and mechanisms 
undertaken by the bacteroidetes in energy metabolism 
should be explored and understood. 

The fact that B. thetaiotaomicron appears to induce 
obesity upon the colonization of germ free animals may 
be related to the unique single bacterium-germ free animal 
interactions which may be less important in conventional 
animals or in humans colonized by many hundreds of 
different bacterial species. B. thetaiotaomicron was shown 
to induce angiogenesis and vascularization of the intestine 
of germfree mouse, which greatly increased the ability of 
the host to absorb nutrients from the gut. 

GUT MICROBIOTA, INFLAMMATION AND OBESITY

The disturbed gut microbiota rather than a single organism 
are often the pathologic agents of chronic diseases 
(Friedrich 2008), and this presumably means a different 

bacterial diversity and/or different degrees of overgrowth 
of the more aggressive residential bacteria, i.e., bacteria 
which induce infl ammatory responses via host’s immune 
system (Hakansson & Molin 2011). Gut microbiota that are 
known to be pathogenic or opportunistically pathogenic in 
the healthy individuals are Escherichia coli (E. coli) and 
Bacteroides fragilis (B. fragilis). Increased proportions of 
E. coli and B. fragilis have also been linked to infl ammatory 
bowel diseases (IBD) (Kleessen et al. 2002; Swidsinski et 
al. 2005; Wang et al. 2007).

Obesity and insulin resistance are associated with 
low-grade chronic systemic inflammation (Wellen & 
Hotamisligil 2005; Hotamisligil et al. 2006). Shi et al. 
(2006) found that gut microbiota initiate the infl ammatory 
state of obesity and insulin resistance through the activity 
of lipopolysaccharide (LPS), which trigger infl ammatory 
reactions by binding to the CD14 toll-like receptor-4 (TLR-4) 
complex at the surface of innate immune cells. LPS is a 
component of the gram-negative bacterial cell walls and 
very small amounts of LPS found in blood plasma of healthy 
human, ranging between1-200pg/ml, showing a healthy 
gut barrier (Moreira et al. 2012). Increased level of LPS 
in human is strongly associated with obesity and other 
metabolic disorders (Miller et al. 2009; Sun et al. 2010; 
Pussinen et al. 2011).

In an animal study, Cani et al. (2007) demonstrated that 
after 4 weeks of high-fat feeds, mice developed metabolic 
syndrome such as obesity, fasting hyperglycemia, steatosis, 
macrophages infi ltration of adipose tissue, hepatic insulin 
resistance and hyperinsulinemia. The plasma LPS level 
increased progressively in these high-fat fed mice, and 
this condition is called metabolic endotoxemia. The 
investigators also found that dietary pattern changed the 
composition of gut microbiota with an increase ratio of 
gram-negative to gram-positive bacteria. The alteration 
of gut microbiota composition will lead to increased 
intestinal permeability through several mechanisms. The 
gut microbiota reduce the expression of host’s genes coding 
for tight junction proteins ZO-1 and Occludin as well as 
increasing expression of anandamide and CB1 receptors 
(increased endocannabinoid system tone). The leaky gut 
will allows more LPS to enter the host circulation system, 
which triggers the activation of LPS receptor CD14, resulting 
in an increase of the infl ammatory pathways. The LPS could 
enhance the number of preadipocytes (hyperplasia) which 
result in obesity (Luche et. al. 2013). Activin A secreted by 
macrophages isolated from obese adipose tissue plays an 
important role in proliferation and differentiation of human 
preadipocytes to adipocytes (Zaragosi et al. 2010). 

In order to prove the causative link between LPS 
and metabolic diseases, CD14 mutant mice (CD14 knock-
out mice – CD14KO) were fed with high-fat diet and/or a 
chronic low dose LPS infusion. CD14KO were completely 
resistant to the metabolic diseases caused by both, LPS and 
high-fat diet. In metabolic endotoxemia, CD14 activates the 
expression of infl ammatory cytokines in adipose tissue 
such as tumor necrosis factor α (TNF-α), interleukin 1 (IL-1), 
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interleukin 6 (IL-6), and plasminogen activator inhibitor 1 
(PAI-1) leading to metabolic disorders. CD14KO mice were 
found to be hypersensitive to insulin even when they were 
fed a normal diet and show delayed occurrence of obesity, 
diabetes and insulin resistance. Therefore, these fi ndings 
support the hypothesis that the LPS/CD14 system sets the 
tone of insulin sensitivity and regulates the onset of obesity 
and diabetes (Cani et al. 2007). 

In a subsequent study by Cani et al. (2008), antibiotic 
was used to treat the mice which were fed with high-fat 
diet and ob/ob mice. Antibiotic treatment altered the 
composition of the gut microbiota which reduced the cecal 
and plasma LPS, and the high-fat diet-induced metabolic 
disorders. Improved glucose tolerance, reduced body 
weight and fat mass development and infl ammation were 
exhibited in both strains of obese mice. Another report 
by Brun et al. (2007) also indicated that plasma LPS is 
increased in leptin-defi cient (ob/ob) and hyperleptinemic 
(db/db) mice. Similar fi ndings were replicated in human 
studies which supported the fi ndings of animal studies. 
Treatment of humans with antibiotic polymyxin B, which 
specifi cally targets gram-negative bacteria, successfully 
decreased LPS levels and eliminated hepatic steatosis 
(Pappo et al. 1991). Another report has shown that patients 
with type-2 diabetes had higher LPS levels than a well-
matched group of control subjects without diabetes (Creely 
et al. 2006). Further investigation on role of gut microbiota 
in initiating the infl ammatory reaction was carried out in 
healthy human subjects recently. Consuming a high-fat 
and low-carbohydrate diet for one month was signifi cantly 
associated with increased plasma LPS level (71%), whereas 
low-fat diet reduced LPS level by 38% among healthy 
subjects (Pendyala et al. 2012).

ADVANCES IN ANALYSIS TECHNIQUES TO STUDYING
THE DIVERSITY OF GUT MICROBIOTA

The decreasing cost, increasing speed and depth of DNA 
sequencing coupled with advances in the bioinformatics 
strategies provided several options to analyse microbiome 
using culture-independent method. Metagenomics, also 
known as ‘environmental genomics’ provides a powerful 
alternative to rRNA sequencing for analysing complex 
microbial communities (von Mering et al. 2007). 

Metagenomic is an emerging field in which the 
power of genomic analysis applies to entire microbial 
communities through sequence-based and compositional 
analysis, without the need of isolating and culturing 
individual microbial species (Ventura et al. 2009). Qin 
et al. (2010) recently generated an extensive catalogue of 
DNA sequences from gut microbiota using metagenomics 
approach. They have characterized 3.3 million non-
redundant microbial genes which were derived from 576.7 
gigabases of sequences from European fecal samples. 

More fecal metagenomic data were reported from 
Danish, Spanish and American to generate community-level 
metabolic networks of the microbiome. By categorizing 

metagenomics sequences based on gene functions, they 
constructed community-level metabolic networks varying 
in gene abundance and examined the topological features 
of these networks in relation to the phenotypes of the hosts. 
Their analysis identifi ed specifi c network topologies related 
to obesity and infl ammatory bowel disease (IBD) where lean 
and obese microbiomes differ primarily in their interface 
with the hosts and in the way they interact with the host 
metabolism (Greenblum et al. 2012).

Over the last decade, many investigations have 
focused on culture-independent approaches to evaluate the 
complexity of the intestinal microbiota. However, prior to the 
development of second generation sequencing technologies, 
the diversity and complexities of the uncultured organisms 
were constructed using the phylogenetic of 16S ribosomal 
RNA (rRNA) -based sequences (Gill et al. 2006; Pruesse et 
al. 2007; Ley et al. 2008). 

These techniques however are dependent on PCR-based 
analysis of 16S rRNA as genome database of the majority 
of gut microbes have yet to be made available. Little 
information is available about microbial functions and the 
roles of microbiota in disease pathologies (Vacharaksa & 
Finlay 2010). Because of the limitations of these platforms, 
a wide variety of platforms have been developed to study 
gut microbial communities. Each of the platforms offers 
benefi ts and limitations (Table 1).

16S rRNA–based sequences have been used to analyze 
the diversity and complexities of the uncultured organisms. 
However, this technique does not provide direct evidence 
of functional capabilities (Gill et al. 2006; Pruesse et al. 
2007; Ley et al. 2008).

Introduction of next generation sequencing (NGS) 
allows more extensive analysis of small-subunit 16S 
ribosomal RNA gene sequences and also WHOle genome 
shotgun sequencing of microbes to catalogue the 
bacterial genome (Turnbaugh et al. 2007; Shendure & Ji 
2008; Gevers et al. 2012; Weinstock 2012). Since their 
introduction in 2005, NGS technologies can be classifi ed 
into two main categories; PCR-based technologies and 
single-molecule sequencing (SMS) technologies (Shokralla 
et al. 2012) (Table 2).

 To date, there are four commercially available NGS 
platforms adopting PCR-based technology; Roche 454 
Genome Sequencer (Roche Diagnostics Corporation, 
Branford, CT, USA), AB SOLiD™ System (Life Technologies 
Corporation, Carlsbad, CA, USA), HiSeq 2000 (Illumina 
Inc., San Diego, CA, USA) and Ion Personal Genome 
Machine (Ion Torrent™) (Life Technologies, South San 
Francisco, CA, USA) (Shokralla et al. 2012). 

For SMS technologies, three platforms have been 
developed and announced recently; HeliScope (Helicos 
BioSciences Corp., Cambridge, MA, USA), PacBio RS SMRT 
system (Pacifi c Biosciences, Menlo Park, CA, USA) and 
also Oxford Nanopore Technologies® (Oxford Nanopore 
Technologies Ltd, Oxford, UK) (Shokralla et al. 2012). 
The later platforms are considered the third generation 
sequencing technologies, which is non-PCR based and do 
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not require amplifi cation step prior to sequencing. SMS 
technologies were developed to provide a benchtop high-
throughput sequencing platform suitable for a clinical 
setting. Modest set-up, effective running cost and rapid 
reads output were among quality that will be offered by SMS 
technologies (Loman et al. 2012; Shokralla et al. 2012). 

 Different NGS technologies have been used to dissect 
the diversity of gut microbiome and have their own 
advantages and limitations. The 454 pyrosequencing was 
the fi rst NGS technology commercially available in 2005. 
This technology offers long reads length up to 800 base 
pair as compared with the rest of the NGS technology (Table 
2) (Thomas et al. 2012; Weinstock 2012). Long reads 
generated from this 454 pyrosequencing offered more 
fl exible output for accurate data binning and annotation 
in metagenomic analysis (Weinstock 2012). However, 
reads generated from this technology are prone to have 
insertion-deletion errors in homopolymers regions with 
high replication of sequences. 

Error as such is caused by the faulty CCD camera in 
454 which translate the actual number of incorporated 
nucleotides with their exact position during polymerization. 
Incorrect translation is due to the low intensity or too many 
variations of emitted light produced during sequencing 
by synthesis. Sequences with this frameshift might be 
interpreted as a rare biota in bioinformatics analysis, 
especially for protein prediction and annotation using 
KEGG or SEED pathway. Incorrect prediction or annotation 
happens whenever protein coding sequences (CDSs) are 
called on a single read that contained the frameshifts 
(Thomas et al. 2012). 

The major advantage of Illumina and SOLiD 
technologies as compared to 454 technologies is that the 
earlier detect each of the nucleotide incorporated one 
at a time during polymerization step (Shokralla et al. 
2012; Thomas et al. 2012; Weinstock 2012). In illumina, 
each cluster of templates is supplied with polymerase 
and four differently labelled fluorescent nucleotides 
that have their 3’-OH chemically inactivated. After each 
nucleotide is incorporated, excitation of fluorescent 
is detected by the system to identify the incorporated 
nucleotide. The additional step of chemical deblocking 
treatments will remove the fl uorescent group and this 
allows the fl owing nucleotides to be incorporated with 
the new fl uoresced nucleotides labelled in the next fl ow 
cycle (Shokralla et al. 2012). This specifi c one oligo 
per flow cycle with deblocking treatment minimize 
framshifts problems in generating sequences as compared 
with 454 pyrosequencing in both 16S rRNA and shotgun 
metagenomics sequencing. 

Even though SOLiD technology applies emulsion PCR 
similar with 454 pyrosequencing, it uses a sequencing-by-
oligo ligation technology to ensure homopolymer region 
is accurately sequenced (Shokralla et al. 2012). This 
technology will attach the universal adaptors-linked DNA 
fragments with complementary oligo bases present on the 
surface of each 1-mm magnetic bead. 

By this, starting of every DNA fragment is both 
known and identical before these magnetic beads are 
amplifi ed individually by emulsion PCR. The resulting 
amplifi ed sequences attached to the magnetic beads will 
be covalently bonded to a glass slide. This platform also 
employs the same deblocking treatment used by Illumina 
technologies prior to the following incorporation or ligation 
of nucleotide during polymerization. 

However, one of the disadvantages of both Illumina 
and SOLiD systems is their relatively short reads length 
ranging between 35 bp to 200 bp as depicted in Table 2. 
For 16S rRNA sequencing strategy, 454 pyrosequencing is 
more favoured by scientists since the longer radius of up to 
800 bp offered by this platform is able to cover up to three 
variable regions of 16S per reads. Shorter reads generated 
from Illumina and SOLiD sequencer is able to cover only one 
variable region of 16S (Weinstock 2012). For phylogeny 
analysis, several regions of 16S are needed since short 
reads limits its application for alignment, assignment and 
annotation in downstream analysis. 

For shot-gun approach, PCR-based NGS technologies 
are sharing the same problem in which bias are introduced 
during amplifi cation. It may happen in two stages as 
reviewed by Shokralla et al. (2012), the fi rst incidence 
may occur during library preparation due to low template 
concentration, incorrect primer selection and un-optimal 
profi le of annealing temperature and number of replication 
cycles. In addition, bias can be introduced during library 
amplifi cation by emulsion or bridge PCR prior to sequencing 
(Shokralla et al. 2012). 

Ion Torrent and more recently Ion Proton which 
was launched in 2010 and 2012 respectively, are the 
other 2 platforms offered as a second generation of NGS 
technologies (Shokralla et al. 2012). Both technologies are 
based on detection of hydrogen ion releases as a by-product 
during nucleotide incorporation of DNA polymerization. 
This technology uses ion semiconductor chip, an array of 
micro wells chips contains an ion sensor beneath which 
detects changes in the concentrations of hydrogen ion 
whenever nucleotides is incorporated. As up to date, there 
are three different micro wells offered by Ion Torrent; 314, 
316 and 318 million chips, which are able to generate reads 
up to 1 Gb (Table 2). 

The more advanced sequencer is the Ion Proton II, 
which contains 660 million micro wells to capture the 
release of hydrogen ions during DNA polymerization 
(Shokralla et al. 2012; Thomas et al. 2012; Weinstock 
2012). The generated reads data is approximately 100-fold 
more massive than Ion Torrent. This platform provides an 
alternative for scientists to do either 16S rRNA or shotgun 
metagenomics sequencing since it offers reads up to 400 
base reads per run as compared to Illumina and SOLiD 
technologies. 

To overcome this bias and short read problem from 
PCR based technologies sequencers, the third generation 
technology employs SMS technologies to bypass the needs 
of amplification prior sequencing. Helico Heliscope, 
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PacBio and Oxford Nanopore are the examples (Table 2). 
Helicos Heliscope was the fi rst SMS sequencer available in 
the market back then in 2008. No amplifi cation is needed 
after the library construction, where DNA polymerase and 
four fl uorescently labelled nucleotides will be fl owing 
in repetitively as the strands of DNA is extended. This 
platform offers read nearly 1 billion sequenced reads per 
run (Table 2). 

PacBio or Oxford Nanopore focuses on the use of 
16S rRNA and shotgun sequences, aiming to amplify more 
than 200 base reads on one go (Table 2). PacBio is offering 
long sequencing reads of up to 10 kb. This technology uses 
real time single molecule sequencing approach in which 
fl uoresced light pulses, emitted as a byproduct of nucleotide 
incorporation during sequencing are recorded. 

However, low accuracy of reads generated by PacBio 
sequencer is one of the drawbacks in metagenome analysis 
(Weinstock 2012). Oxford Nanopore is another latest 
single molecule based sequencing platform, developed by 
Oxford Nanopore Technologies Consortium. This platform 
targets to sequence very long reads, using detection on 
electronic signal produced whenever the nucleotide passes 
through a nanopore membrane. However the accuracy of 
this platform on 16S rRNA and shotgun sequencing for 
microbiome analysis is not guaranteed since it is still under 
development and trial (Weinstock 2012).

Besides genomic-based technology, the non-genomic 
approach such as metabolomics is a useful platform 
to study the metabolic activity of complex microbial 
populations through analysis of their metabolic profi les. 
The gut microbiota is believed to communicate with the 
host via a characteristic pattern and thus participate in 
the host metabolic network. The advances of profi ling 
techniques such as 1H nuclear magnetic resonance (NMR) 
spectroscopy, gas chromatography-mass spectrometry 
(GC-MS) and liquid chromatography mass spectrometry 
(LC-MS) allow the simultaneous monitoring of changes 
in metabolites with diverse chemical properties and at 
a wide range of concentrations (Griffi n 2006; Mashego 
et al. 2007). Metabolomics may provide clearer picture on 
the relationship between microbiota and its metabolisms, 
with host’s metabolisms and diseases. However, due 
to high complexity of most body fl uids and tissues, a 
comprehensive view of all the metabolites present in a 
sample is still not possible (Sekirov et al. 2010).

Application of mass spectrometry based-metabolomics 
in characterizing the impact of the murine intestinal 
microbiota showed that gut microbiota is essential for the 
production of bioactive indole-containing metabolites such 
as the antioxidant indole-3-propionic acid from tryptophan. 
Thus, this fi nding suggested that the gut microbiota has a 
profound and systemic impact on host metabolism (Wikoff 
et al. 2009). A more recent study has analyzed the colonic 
luminal metabolome using a novel technique, capillary 
electrophoresis mass spectrometry with time-of-fl ight (CE-
TOFMS). A total of 179 metabolites were detected from the 
colonic luminal metabolome. Meanwhile, 48 metabolites 

were detected in signifi cantly higher concentrations in 
germ free mice compared to ex-germ free mice. The 
colonic luminal metabolome is highly infl uenced by gut 
microbiota and a comprehensive catalogue of intestinal 
luminal metabolome (host and bacteria) is essential in 
order to understand the effects of host-intestinal bacterial 
interactions (Matsumoto et al. 2012). Schematic diagram 
on how metagenomic analysis and metabolomics analysis 
could discerning the role of gut microbiota in diseases is 
depicted in the Figure 1.

COMPUTATIONAL ANALYSIS DISSECTING THE GUT 
MICORBIAL ECOLOGY

Data from the metagenome analysis are vast and rich with 
information generated from various platforms as discussed 
earlier. According to Weinstock (2012), metagenomic data 
analysis has three phases depending on either it is 16S 
rRNA gene or shotgun sequencing. At the fi rst phase of 
both sequencing, reads produced must be in a good quality, 
to avoid any misclassifi cation during taxonomic analysis. 
Issue on chimeras sequences, read length after removal of 
low quality bases, duplicates reads, and also contamination 
of human sequences must be addressed before further 
analysis is performed.

In the second phase, sequences generated from 
16S rRNA gene sequencing can be classifi ed based on 
taxonomic or clustering using Operational Taxonomic 
Unit (OTU) (Weinstock 2012). For taxanomic classifi cation, 
the sequences generated are compared with the existing 
bacterial 16S rRNA gene databases such as Ribosomal 
Database Project (RDP), Greengenes, SILVA, and GAST. 

Taxonomy-supervised analysis will be able to classify 
bacterial strains according to similarity in physiology, 
morphology and any genetic constituents. OTU clustering 
system classifi es or clusters the sequences of a closely 
related species with a 97% homology using alignment-
based clustering. This specific nucleotide homology 
represents a community relationship between bacteria 
which is based on nucleotide distance using 16S rRNA gene 
sequences (Woo-Jun et al. 2011). 

Databases for bacterial 16S rRNA are available in 
GenBank or Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and are useful in comparative analysis. Data 
obtained from shot-guns reads can be compared with their 
respective species using a simple Basic Local Alignment 
Search Tools (BLAST). This alignment uses a specifi ed 
homology percentage of 97% to generate a list of genes that 
were matched reads from these two databases (Weinstock 
2012). However, there are limitations currently faced by 
researchers as not all bacteria has a deposited reference 
genome and in some cases, and some new roads are 
matched to the genes whereby the function has not been 
elucidated. 

A variety of software can be used in the second phase 
of analysis, for base-calling and detection of polymorphism 
of the sequences generated, de novo assembly using paired 
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or unpaired reads, annotation and prediction analysis. To 
be specifi c, BLAST is a suitable tool to align long reads, 
whereas Short Oligonucleotide Analysis Package (SOAP) 
de Novo can be used to align and reconstruct short reads 
without the aid of a reference genome. The assembly of 
these short fragments of sequences is very challenging 
since these reads have relatively low accuracy, thus de 
novo mate-paired reads assembly is the best alternative 
(Shendure & Ji 2008; Weinstock 2012). 

In the third phase of analysis, the assembled reads of 
similar communities were plotted on the abundance curves 
or biodiversity plots to generate the rarefraction curve of 
the studied metagenome (Schloss et al. 2009; Lozupone 
et al. 2011). Then, functional aspect of metagenome will 
be described to understand the roles of microbiota. One of 
the software that could be used is HMP Unifi ed Metabolic 
Analysis Network (HUMAnN) (Abubucker et al. 2012). 
Using this software, the shot-gun reads will be aligned to 

FIGURE 1. A fl ow chart showing the network of metagenomics and metabolomics in discerning the role of gut microbiota in diseases

Assembly of sequences

DNA extraction from stool 
of normal human

DNA extraction from stool of 
diseased human

Understanding the role of 
gut microbiota in diseases

Phyla, groups and species abundances of gut 
microbiota in normal and disease condition

Data integration through comparative analysis 
to validate the pathway mapping derived from 

metagenomics annotation server with metabolomics 
profi le of both host and microbiota from stool

Metabolic network reconstruction to correlate the genome of gut microbiome 
in a specifi c health condition with its molecular physiology

Pathway coverage and 
abundances associated with 

diseases

Metabolomics profi ling of human 
stool and plasma to identify 

metabotype of microbiota and host 
in normal and disease condition

Pathway coverage and 
abundances associated with 

normal human

Global mapping of molecular interaction between gut microbiome with metabolism of 
carbohydrate, energy regulation, lipid, glycan, cofactor/vitamin, chemical structure, 

secondary metabolite and amino acid derived from KEGG and SEED databases

Data binning using metagenomics annotation server

Shot-gun DNA sequencing

KEGG ontology database using the BLAST search hit list. 
The assignment of each gene family for each shot-gun 
reads are based on the total sums of the alignment from the 
BLAST search hit list. The identifi ed gene will be assigned 
to metabolic pathway using MinPath feature available in 
this software. The identifi ed pathway will be reconstructed 
using a maximum parsimony method with several 
fi ltrations to remove false positive pathway and to account 
for rare genes in abundant pathways. The resulting output 
will provide information on the presence or absence and 
abundances of the identifi ed pathways (Abubucker et al. 
2012). Therefore, the role of microbiota on the physiology 
and homeostasis of the host could be understood. 

Through genes weighted sum of hits, a list of hits from 
the BLAST search linked with KEGG and SEED databases is 
used to create metabolic pathways in order to reconstruct 
the functional descriptions of community (Abubucker et al. 
2012). Variance analysis can be done through alignments 
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of DNA reads to reference genomic. Computational analysis 
can also be used to determine which organisms co-occur 
or rarely co-occur by assessment of the dynamics of 
community structure in longitudinal time series (Caporaso 
et al. 2011).

For analyzing metabolomics data, many computational 
tools have been developed. Various metabolites produced 
by gut microbiota can be analyzed using Mass Profi ler 
Professional (MPP) software from Agilent Technologies 
(Agilent information 2012) and the databases such 
as METLIN Metabolite Personal Compound Database 
(PCD) and the METLIN Metabolite Personal Compound 
Database and Library (PCDL) provide information on 
the biological activities of small molecules (Agilent 
information 2012). The characterization of gut microbiota 
metabolic fi ngerprint and its interaction with the host can 
be revealed through metabolomics approach (Marcobal et 
al. 2013). The established biological pathways analysis are 
performed using Pathway Architect to effi ciently project 
the results of differential abundance results onto publicly 
available biological pathways, including KEGG, BioCyc 
and WikiPathways (Scalbert et al. 2009; McHardy et al. 
2013).

CONCLUSION

The gut microbiota is increasingly being accepted as an 
environmental factor that affects host metabolism and 
contributes too many chronic pathological conditions 
such as obesity, diabetes and cardiovascular disease. 
Compelling evidence supports the concept that the 
microbial community participates in the development of 
the fat mass deposition, insulin resistance and low-grade 
infl ammation that characterizes obesity. The development 
of powerful analytical methods will provide novel data 
lending insight into the complexity of the gut microbiota. 
Nevertheless, more researches with advanced methods 
should be carried out in order to determine how specifi c 
changes in the gut composition will affect or counteract 
the development of diseases.
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