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Outlier Detection in a Circular Regression Model 
(Pengesanan Terpencil dalam Model Regresi Berkeliling) 
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ABSTRACT

Recently, there is strong interest on the subject of outlier problem in circular data. In this paper, we focus on detecting 
outliers in a circular regression model proposed by Down and Mardia. The basic properties of the model are available 
including the exact form of covariance matrix of the parameters. Hence, we intend to identify outliers in the model by 
looking at the effect of the outliers on the covariance matrix. The method resembles closely the COVRATIO statistic for 
the case of linear regression problem. The corresponding critical values and the performance of the outlier detection 
procedure are studied via simulations. For illustration, we apply the procedure on the wind data set.
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ABSTRAK

Pada masa ini, terdapat minat yang mendalam pada subjek masalah terpencil dalam data berkeliling. Dalam kertas 
ini, kami menumpukan untuk mengesan pencilan dalam satu model regresi berkeliling yang dicadangkan oleh Down 
dan Mardia. Sifat asas model yang disediakan termasuk parameter bentuk matriks kovarians yang tepat. Oleh itu, kami 
berhasrat untuk mengenal pasti pencilan dalam model ini dengan melihat kesan daripada pencilan dalam matriks 
kovarians. Kaedah ini hampir menyerupai statistik COVRATIO bagi kes masalah regresi linear. Nilai kritikal sepadan 
dan prestasi prosedur pengesanan pencilan dikaji melalui simulasi. Untuk ilustrasi, kami menggunakan prosedur set 
data angin. 

Kata kunci: Berkeliling; regresi berkeliling; COVRATIO; pemerhatian berpengaruh; terpencil

INTRODUCTION

The study of outliers has been widely carried out in 
different areas of statistics. Their occurrence may be due 
to error or part of the phenomena under study. The earliest 
work includes that of Beckman and Cook (1983) who 
reviewed different approaches in dealing with outliers. 
Extensive studies on the subject can be found in linear 
regressions (Barnett & Lewis 1984; Belsley et al. 1980). 
On the other hand, only few studies of outliers in circular 
regression can be found in the literature. Abuzaid et 
al. (2013, 2011) and Ibrahim et al. (2013) explored the 
problem in two types of circular regression model using 
row deletion approach while Hussin et al. (2010) discussed 
the detection of influential observation in a linear functional 
relationship model for circular data.
 Circular regression attempts to model the relationship 
between a circular dependent and a set of circular 
independent variables. The circular variables can be 
envisaged as being distributed on the circumference of a 
unit circle in the range [0, 2π] radian. They are commonly 
found in many scientific fields including meteorology and 
biology. Laycock (1975) proposed a circular regression 
model of two circular variables u and v mimicking the 
complex linear regression. Later, Rivest (1997) proposed 
another model to predict the v-direction based on the 
rotation of the decentered u-angle. On the other hand, 

Jammalamadaka and Sarma (1993) considered the 
conditional expectation of the vector e(iv) given u which 
are further expressed in terms of Fourier series expansions 
with errors are assumed to follow a normal distribution. 
Meanwhile Hussin et al. (2004) proposed another simple 
model with a specific application on measuring the linear 
relationship between two circular variables. As in the 
linear case, the occurrence of outliers in bivariate circular 
data may affect the parameter estimation and forecasting 
accuracy. Abuzaid et al. (2011) identified outliers in 
a simple circular regression model by looking at the 
changes caused by removing one observation at a time 
on the covariance matrix of parameters. Later, Ibrahim et 
al. (2013) used similar idea with the covariance matrix of 
parameters is replaced by the sample covariance matrix 
when modeled using the Jammalamadaka and Sarma’s 
circular regression. In this paper, we extend the idea to 
another circular regression model proposed by Downs and 
Mardia (2002) as the model has an exact form of covariance 
matrix of parameters to be utilized in the approach. We 
shall use the term ‘DM circular regression model’ to mean 
this model in the rest of the paper.
 With that view in mind, this paper is organized as 
follows: Section 2 reviews the DM circular regression 
models and the method of estimating the parameters. 
Section 3 presents the derivation of covariance matrix of 
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the model. Section 4 presents the definition of COVRATIO 
statistic to be used in identifying influential observations in 
DM circular regression models. We then study the sampling 
behavior and performance of the procedure of detecting 
outliers in Sections 5 and 6, respectively. Finally, we apply 
the procedure on the wind data set as given in Hussin et 
al. (2004).

DM CIRCULAR REGRESSION MODEL

We consider the circular regression model proposed by 
Downs and Mardia (2002). Assume that v is the dependent 
random circular variable with circular location β, u is the 
fixed independent circular variable with circular location 
α and ω is a slope parameter in the closed interval [-1, 1]. 
The model is given by

  (1)

which has a unique solution given by

  (2)
 

 The model has three functionally independent 
parameters α, β and ω, which can be estimated using the 
maximum likelihood estimation method. Given a random 
sample of (uj, vj), j = 1, 2, …, n, the log-likelihood function 
can be obtained such that

l(α,β,ω,v1,…,vn) = –n log I0(κ) 
 + κΣj cos(vj – β – v(uj – α;ω))
 +constant,   (3)

where v(uj – α; ω) = 2 tan-1 . Since the first 
term on the right-hand side is constant, we may work with 
the precision parameter  such that

   (4)

 As a special case, we may set α and β to have a 
relationship such that α ± β = 0 or β = ±α. Hence, the 
log-likelihood functions of (3) and maximum likelihood 
estimator  of Eq. (4) are changed accordingly. 
 We employ an iterative method of obtaining the 
estimates of (α, β, ω), say , which maximize (3). 
This can be done by using the MS function available in 
S-Plus software. The function requires the determination of 
initial values α0, β0 and ω0. These initial values correspond 
to values which give maximum precision parameter   
in (4) for all possible pairs (α, β, ω) in a pre-specified 
sets. In our case, the following sets of parameter values 
are considered; α = [–π, π], β = [–π, π] and ω = [–1, 1]. 
Then using those initial values, we obtain the estimates 
iteratively for the three parameters of the model.

COVARIANCE MATRIX OF DM CIRCULAR 
REGRESSION MODEL

Downs and Mardia (2002) provided the information matrix 
for DM circular regression model using the log-likelihood 
function with known parameters (α, β, ω, κ):

 l = const – n log I0(κ) + κΣ cos(vi – μi),

where

 μi = β + 2 tan–1

Using the facts that

 E{cos(vi – μi)} = A(κ), E{sin(vi – μi)] = 0,

the Fisher information matrix I = (Iij)  for   θT = (β, α, ω, κ) 
= (θ1, θ2, θ3, θ4). Given that, I14 = I24 = I34 = 0 so that 1, 2,  
and  3 are independent of  4 as expected, asymptotically, 
we have

 

where 0T = (0,0,0),  C11 is 3×3 and  C22 is a scalar. Then, C22 
= I44 = nA'(κ),  C11 = κA(κ)B(θ1, θ2, θ3) where the elements 
of the matrix  B(β, α, ω) are

 

with 

    

and 

 

Thus, the covariance matrix is given by

  (5)

We will use the covariance matrix in developing the outlier 
detection procedure as described in the next section.
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OUTLIER DETECTION PROCEDURE

We develop an outlier detection procedure for DM circular 
regression using row deletion approach. If an outlier exists 
in the data, it is expected to affect the parameter of interest 
of the regression model such as parameter estimates, 
variance of residuals and covariance matrix. In particular, 
we look at the effect of removing an observation on the 
covariance matrix of the model by following work by 
Belsley et al. (1980) on the linear case. Let |COV| and 
|COV(–i)| be the determinant of the covariance matrix for 
the full data set and the reduced data set after removing 
the ith row, respectively. We then define the COVRATIO 
statistic as

  
(8)

 If the ratio is not close to one, then the ith observation 
is a candidate of being an outlier. In this paper, we use of 
the test statistic |COVRATIO(–i)| with the covariance matrix 
(5) to identify outliers in the DM circular regression model. 
The critical values of the test were obtained via simulation 
in the following section.

CRITICAL VALUES OF THE TEST STATISTIC

We perform a simulation study to investigate the sampling 
behavior of the test statistic |COVRATIO(–i)|. Sets of circular 
random errors are generated with mean direction μ = 0 
and different values of concentration parameter κ = 5, 
10, 30 and 50 from the von Mises distribution. Then, we 
generate the values of the independent circular variable μ 
from VM(π/2,3) for a given sample size n. Using the above 
information, the observed values of the response variable  v 
are then calculated using the DM circular regression model 
with fixed values of α =1.5, β =1.5, and ω = 0.5. 
 Upon fitting the DM regression model on the full 
and reduced simulated data set, we obtain the value 

of 
 
|COVRATIO(–i)| for i = 1, 2, …, n and consequently 

the maximum value of |COVRATIO(–i)|. The process is 
carried out 500 times for each combination of sample 
size and concentration parameter. We then computed the 
1, 5 and 10% upper percentiles of the maximum values 
of |COVRATIO(–i)| which will be considered as the critical 
values of the test statistic. 
 In general, for all κ and percentile levels considered, 
the critical values get smaller as n gets larger. On the 
other hand, there is no consistent pattern of the critical 
values observed as k increases, though they achieve their 
maximum when κ = 3 to 5. Note that the critical values 
described above are only for the case when ω = 0.5. In fact, 
the critical values do not depend on the parameter values 
α and β, but depend on ω. When ω gets closer to 1, the 
critical values get smaller. However, when ω  gets closer to 
0, the |COVRATIO(–i)| statistic fails to give reasonable set of 
critical values. This failure occurred due to the DM model 
property which is the only model that has a unique solution 
as given in (2) only if the value of ω ≠ 0. The critical values 
can be obtained from the authors upon request.

POWER OF PERFORMANCE OF TEST STATISTIC

To investigate the power of performance of test statistic, 
several sample sizes are considered. We generate the data 
using similar steps employed in the previous section. We 
contaminated the d-th observation vd such that

  = vd + λπ   mod(2π), 

where  is the contaminated observation at position d and 
λ is the contamination level, 0 ≤ λ ≤ 1. The generated data 
are fitted using (1). Then, we calculate the maximum value 
of test statistic for each simulated data set. The process 
is repeated 500 times. By comparing the values with the 
corresponding critival values, we calculate the percentage 
of correct detection of the contaminated observation at 
position d.

 (a) (b)

FIGURE 1. Power of performance of |COVRATIO(–i) – 1| statistics, for (a) n=70, (b) κ =10
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 Figure 1(a) gives the plot of power of performance 
of the procedure for n = 70 and various value of κ. It can 
be seen that the power function is an increasing function 
of the concentration parameter κ. This is expected as the 
data is more concentrated for larger concentration and more 
dispersed around the unit circle for smaller concentration. 
On the other hand, Figure 1(b) gives the plot of power of 
performance of the procedure for κ =10 and various value 
of n. It can be seen that the power curves are very close to 
each other for n = 50, 100 and 150 while the power curve 
is lower than the others for n = 30. Similar results are 
observed for the other cases. 

APPLICATION

Here we consider the ocean wind direction data obtained 
from Hussin et al. (2004). The data is the direction of 
the local wind which blows across the sea surface and 
along the coast where the HF radar system and anchored 
wave buoy are deployed. There were a total of 129 
measurements recorded by both instruments. Several 
plots can be used to show the distributions of both 
measurements. In general, from Figures 2 and 3, both sets 
of measurement follow the same distribution. It can be 
seen that there is a high frequency in the second quadrant 
for both sets of measurements. From Figure 4, there are 
two points located at the top of the Q-Q plot. These points 
might correspond to observations which are candidates to 
be outliers. Some of the descriptive statistics for the ocean 

wind direction data are given in Table 1. The summary 
statistics of the HF radar and anchored wave buoy are 
almost similar including the concentration parameter 
with the value less than one.
 Using the data set, we calculate the precision 
parameters in the pre-specified sets as described in 
previous. The initial values of each parameter correspond 
to the highest point observed in (4) giving αo = 126°, βo = 
126° and ωo = 0.9. Thus, using these initial values, the final 
estimated parameter values are obtained by maximizing the 
log likelihood function given by equation (5);  = 65.39°,  

 = 71.82° and  = 0.91.

FIGURE 2. Circular histogram for HF

FIGURE 3. Circular histogram for AB

FIGURE 4. Q-Q plot for residuals

TABLE 1. Descriptive statistics for ocean wind direction data

Variable HF AB

Mean Direction
Mean Resultant Length
Circular Std Dev
Median Direction
Concentration parameter

350.43°
0.41

76.374°
334.72°
0.902

351.06°
0.44
73°

327.33°
0.99

 Figure 5 gives the spoke plot of the data. By taking 
the horizontal axis in the right direction as 0°, the inner 
ring places the observations of anchored wave buoy AB 
while the outer ring for high frequency radar HF. The lines 
connecting points on outer and inner rings correspond 
to the observed values of AB and HF respectively for the 
same individual/item. There are only two lines crossing 
the inner ring. Further, by using the |COVRATIO(–i)| 
statistics we identify that observations 38 and 111 are 
candidates for influential observations. This can be 
further verified by looking at Figure 6 whereby there 
are two observations with high value of |COVRATIO(–i)| 
denoted by p. Here, we have n = 129 and κ = 6.84. By 
considering the critical value corresponding to n = 100 
and κ = 7, Table 2 gives the test value and the decision 
for each observation.
 Based on the results, in the first iteration, we identify 
observations n = 38 as influential observation because 
the test values exceed the critical value of the statistic 
which is 0.28. In the second iteration, we identify n = 
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111 as influential observation. The plots p versus index 
are given in Figures 6 and 7, respectively. Furthermore, 
we investigate the effect of these two observations on the 
parameter estimates. After removing observations 38 and 
111 from the data set, we noticed that  and  decrease by 
a large value which is  = 31.20°,  = 35.57° and  = 0.94 
as shown in Table 3. Hence, it is important to investigate 
the observations identified as influential observations 

FIGURE 5. Spoke plot of wind data

TABLE 2. Result based on COVRATIO statistics

Iteration Observation Test value Cut-off point Decision
1
2

38
111

0.95
0.68

0.28
0.28

Outlier
Outlier

TABLE 3. Effect of influential observation on parameter estimates

Data

Full data set
Without the 38th observation 
Without the 111th observation
Without both observations

65.39°
65.68°
33.81°
31.20°

71.82°
71.84°
38.42°
35.57°

0.91
0.91
0.94
0.94

FIGURE 6. Plot of p versus index for 1st iteration FIGURE 7. Plot of p versus index for 2nd iteration

in both measurements of ocean wind direction and the 
information might be useful for further investigation. 

CONCLUSION

The extension
 
|COVRATIO(–i)| statistic to the model of 

interest shows consistent. The critical values and the 
performance of the procedure are obtained via simulation. 
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The statistic shows better performance for large sample size 
and high concentration parameter. Finally, as an example, 
the |COVRATIO(–i)| statistic for circular bivariate data 
has successfully detected two outliers in the ocean wind 
direction data set which are observations number 8 and 111. 
This result shows that it is able to identify the presence of 
outliers in the DM circular regression model.
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