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ABSTRACT

Nonlinear conjugate gradient (CG) methods are the most important method for solving large-
scale unconstrained optimisation problems. Many studies and modifications have been conducted 
recently to improve this method. In this paper, a new class of conjugate gradient coefficients  
βk with a new parameter m = gk gk−1  that possesses global convergence properties is  

presented. The global convergence and sufficient descent property is established using inexact  
line searches to determine that α k is the step size of CG methods. Numerical result shows that  

the new formula is superior and more efficient when compared to other CG coefficients.

Keywords: unconstrained optimisation; conjugate gradient method; sufficient descent property; 
global convergence

ABSTRAK

Kaedah kecerunan konjugat (CG) tak linear adalah kaedah yang paling penting untuk 
menyelesaikan masalah pengoptimuman tak berkekangan yang berskala besar. Banyak kajian 
dan pengubahsuaian telah dijalankan baru-baru ini untuk meningkatkan kecekapan kaedah 
ini. Dalam makalah ini, suatu kelas baharu pekali kecerunan konjugat, βk dengan parameter  

m = gk gk−1  yang mempunyai sifat-sifat penumpuan sejagat dibentangkan. Sifat-sifat 

penumpuan sejagat dan penurunan yang mencukupi ditentukan daripada anggaran pencarian 
garis untuk menentukan bahawa saiz langkah kaedah CG, α k . Hasil berangka menunjukkan 

bahawa rumus baharu ini adalah lebih baik dan lebih cekap berbanding dengan pekali CG yang 
lain.

Kata kunci: pengoptimuman tak berkekangan; kaedah kecerunan konjugat; sifat penurunan 
yang mencukupi; penumpuan sejagat

1.	 Introduction

The nonlinear conjugate gradient methods (CG) can be used to find the minimum value of 
function for unconstrained optimisation problems. In general, the method has the following 
form

min
x∈Rn

f (x) , (1)

where f : Rn → R  is a continuously differentiable nonlinear function with gradient denoted 

by g x( ) . The CG methods are given by an iterative method of the form
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xk+1 = xk +α kdk ,        k = 0,1,2,...,  (2)

where xk is the current iterative point. The α k > 0  is a step size and dk  is the search direction. 
The step size is obtained by carrying out a one dimensional search known as the ‘line search’. 

The most common technique is the inexact strong Wolfe line search, where α k satisfies

f (xk +α kdk ) ≤ f (xk )+δα k gk
T dk , g(xk +α kd k )

T ≤σ gk
T dk ,  (3)

with 0 < δ <σ <1 are both constants.

The search direction, dk is defined by 

dk =
−gk if k = 0,
−gk + βkdk−1 if k ≥1,

⎧
⎨
⎩

 (4)

whereβk is a scalar and gk  is the gradient of nonlinear function. There are at least six formulae 

for βk , which are given as follows:

βk
HS =

gk
T gk − gk−1( )
gk − gk−1( )T dk−1

(Hestenes & Stiefel 1952),

βk
FR =

gk
T gk

gk−1
T gk−1

(Fletcher-Reeves & Reeves 1964),

βk
PRP =

gk
T gk − gk−1( )
gk−1
T gk−1

(Polak & Ribierre 1969),

βk
CD = −

gk
T gk

dk−1
T gk−1

(Fletcher 1987),

βk
LS = −

gk
T gk − gk−1( )
dk−1
T gk−1

(Liu & Storey 1992),

βk
DY =

gk
T gk

gk − gk−1( )T dk−1
(Dai & Yuan 1999). 

The convergence manner of the βk s’ formulae with some line search conditions has been 
studied by many authors (Dai & Yuan 1999; Fletcher 1987; Hestenes & Stiefel 1952; Polak & 
Ribierre 1969; Powell 1977).

Rivaie et al. (2012) presented a new modification of a conjugate gradient method. It 
has global convergence properties under exact line searches, but it did not prove the global 
convergence under an inexact line search.
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This paper is organised as follows. In section 2, we present the underlying idea of 
modification and we present a new nonlinear conjugate gradient method and algorithm. In 
section 3, we establish sufficient descent property and global convergence property with the 
strong Wolfe line search for the case σ = 0.1 . Lastly in section 4, we present our preliminary 
numerical results.

2.	 Modification

Our motivation mainly comes from Rivaie et al. (2012) and Hestenes and Stiefel (1952), where 

βk
RMIL =

gk
T gk − gk−1( )
dk−1
T dk−1 − gk( ) .  

We insert the parameter m = gk gk−1  
in the numerator and the denominator of βk

RMIL .  

We define the new CG coefficient asβk
AMRO . Hence,

βk
AMRO =

gk
T gk −mgk−1( )
dk−1
T dk−1 −mgk( ) ,

 (5)

where m = gk gk−1 .

Algorithm 2.1

Step 1: Initialisation. Given x0 ∈R
n , d0 = −g0 , k := 0 , if g0 = 0  then stop.

Step 2: Compute βk  based on the Eq. (5).

Step 3: Compute dk based on (4). If gk ≤ ε ,  then stop. Otherwise, go to the next step.

Step 4: Compute α k > 0  based on (3).

Step 5: Updating new point based on (2). If gk ≤ ε ,  then stop. Otherwise, set k := k +1 
 and go to step 3.

3.	 Convergence Analysis

In this section, we analyse and study the convergence properties of βk
AMRO  . We assume that 

gk ≠ 0 for all k , otherwise a stationary point has been found. The following assumptions are 
often used to prove the convergence of the nonlinear conjugate gradient methods. 

3.1.	 Sufficient Descent Conditions

Before giving the sufficient descent conditions, we need the following assumptions.
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Assumption 3.1. (i) The function f(x) is bounded below on the level set Rn and is continuous 

and differentiable in a neighbourhood N of the level set ℓ x0( ) = x ∈Rn | f (x) ≤ f x0( ){ }  at 

the initial point x0 . (ii) The gradient g(x) = ∇f (x)  is Lipschitz continuous in N, so a constant 
L > 0  exists, such that

g(x)− g( y) ≤ L x − y ,        for  any x, y ∈N  (6)

From (5), we have 

βk
AMRO ≤

2 gk
2

dk−1

2        if gk
T dk−1 ≤ 0

2 gk
dk−1

      if gk
T dk−1 > 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (7)

Theorem 3.1. Consider any method of Eqs. (2) and (4) be generated by Algorithm 2.1 and let 

the step-size α k  be determined by the strong Wolfe line search (3), where β
k
= βk

AMRO  is given 
in (5), then for all k ≥ 0 ,

gk
T dk ≤ −c gk

2
,  (8)

holds.

Proof. If k = 0 , then g0
T d0 ≤ −c g0

2
< 0 . Hence, condition (8) holds. We also need to show 

that for k ≥1, the condition (8) also holds. By (7), if gk
T dk−1 ≤ 0 and the second inequality in 

(3), then we get

βk
AMROgk+1

T dk ≤
2 gk+1

2

dk
2 σ gk

T dk . (9)

From (4), multiply by 1kg + , we get

gk+1
T dk+1
gk+1

2 = −1+ βk+1
AMRO gk+1

T dk
gk+1

2 .  (10)

We prove the descent property of dk{ } by induction. Since g0
T d0 ≤ −c g0

2
< 0 , if g0 ≠ 0  , 

now we suppose that di ,i = 1,2,...,k  are all descent direction, for example, gi
T di < 0.

By (10), we get
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βk+1
AMROgk+1

T dk ≤
2 gk+1

2

dk
2 σ −gk

T dk .  (11)

Then,

2 gk+1
2

dk
2 σ gk

T dk ≤ βk+1
AMROgk+1

T dk ≤ −
2 gk+1

2

dk
2 σ gk

T dk .  (12)

From (10) and together with (12), we get

−1+ 2σ
gk
T dk
dk

2 ≤
gk+1
T dk+1
gk+1

2 ≤ −1− 2σ
gk
T dk
dk

2 . (13)

Repeating this process and using the fact g0
T d0 = − d0

2
 imply 

− 2σ⎡⎣ ⎤⎦i=0

k∑
i
≤
gk+1
T dk+1
gk+1

2 ≤ −2+ 2σ⎡⎣ ⎤⎦i=0

k∑
i
.  (14)

By the restriction σ ∈ 0,1( ) , so 

2σ⎡⎣ ⎤⎦i=0

k∑
i
< 2σ⎡⎣ ⎤⎦

i
= 1
1− 2σi=0

∞∑ .  (15)

Then (14) can be written as

− 1
1− 2σ

≤
gk+1
T dk+1
gk+1

2 ≤ −2+ 1
1− 2σ

.  (16)

Thus, by induction, gk
T dk < 0  holds for all k ≥ 0 , denote c = 2− 1

1− 2σ
, then c∈ 0,1( )and 

(16) becomes

c − 2 ≤
gk+1
T dk+1
gk+1

2 ≤ −c.  (17)

Also from (7), if gk
T dk > 0  and the second inequality in (3), then we get

βk+1
AMROgk+1

T dk ≤
2 gk
dk−1

σ gk
T dk .  (18)
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By (18), we get

βk+1
AMROgk+1

T dk ≤
2 gk
dk−1

σ −gk
T dk( ),  (19)

2 gk
dk−1

σ gk
T dk( ) ≤ βk+1

AMROgk+1
T dk ≤ −

2 gk
dk−1

σ gk
T dk( ).  (20)

From (10) and (20), we have

−1+ 2σ
gk
T dk

gk+1 dk
≤
gk+1
T dk+1
gk+1

2 ≤ −1− 2σ
gk
T dk

gk+1 dk
.  (21) 

The second inequality of (3) implies

−1+ 2 ≤
gk+1
T dk+1
gk+1

2 ≤ −1− 2 .  (22)

Thus, by induction, gk
T dk < 0  holds for all k ≥ 0 , denote c = 1− 2 , then c∈ 0,1( )and (22) 

becomes

c − 2 ≤
gk+1
T dk+1
gk+1

2 ≤ −c.  (23)

Both (17) and (23) imply that (8) holds. □

3.2.	 Global Convergence Properties

Theorem 3.2. Suppose that Assumption 3.1 holds. Consider any CG method in the form of (2) 

and (4), where α k  is obtained by the strong Wolfe inexact line search (3). Also, the descent 
condition holds. Then

limk→∞ inf gk = 0 . (24) 

Proof. To prove Theorem 3.2, we use a contradiction method. That is, if Theorem 3.2 is not 
true, then a constant ε > 0exists, such that

gk ≥ ε . (25) 

Rewriting (4) as dk+1 + gk+1 = βk+1dk and squaring both sides of the equation, we obtain

dk+1
2
= − gk+1

2
− 2gk+1

T dk+1 + βk+1( )2 dk 2
.
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From (7), if gk
T dk−1 ≤ 0,  then we can get

dk+1
2
= − gk+1

2
− 2gk+1

T dk+1 +
4 gk+1

4

dk+1
2 .  (26)

We can divide (26) by gk+1
4
 and from (8), we get

dk+1
2

gk+1
4 ≤

4

gk+1
2 +

2c

gk+1
2 .

Suppose that (24) does not hold. Then, there exists ε > 0 , such that (25) holds for all k ≥ 0 , 

dk+1
2

gk+1
4 ≤

4
ε 2

+ 2c
ε 2

= 2c + 4
ε 2

,

gk+1
4

dk+1
2 ≥

ε 2

2c + 4
,

gk+1
4

dk+1
2k=0

∞∑ ≥ ∞ . (27)

Also, from Eq. (7), if gk
T dk−1 > 0  then we get

dk+1
2
≤ gk+1

2
− 2gk+1

T dk+1 . (28)

We divide (28) by gk+1
4
 and from (8), we get 

dk+1
2

gk+1
4 ≤

1

gk+1
2 +

2c

gk+1
2 ≤
2c
ε 2

+ 1
ε 2

. (29) 

gk+1
4

dk+1
2 ≥

ε 2

2c +1
,

gk+1
4

dk+1
2k=0

∞∑ ≥ ∞ . (30)

From (27) and (30), we get (24) and this shows that (24) holds. The proof is completed.□
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4.	 Numerical Results

In this section, most of the problems from Andrei (2008) have been used to test and analyse the 
efficiency of AMRO compared to FR, PRP and CD. The stopping criterium is set to gk ≥ ε ,  

where ε = 10−6 . As suggested by Hilstrom (1977) for each test problem, four or five initial 
points are used. All runs are performed on a PC ACER (Intel® Core™ i3-3217u CPU @ 1.8 
GHZ, with 4.00 GB RAM, Windows 7 Home Premium). Numerical results are compared based 
on the number of iterations and CPU time. Every problem mentioned in Table 1 is solved 
using Matlab10 subroutine programming. We used the inexact strong Wolfe line search as to 
give the inexact value of the step-size. The performance results are shown in Figures 1 and 2, 
respectively, using a performance profile introduced by Dolan and More (2002).

We use the performance profile to introduce the notion of a means to evaluate and 
compare the performance of the set solvers s on a test set p. Assuming ns  solvers and np  
problems exist, for each problem p and solver s, they defined tp,s  as computing time (the 

number of iterations or CPU time or others) required to solve problems p by solver s.  
They compared the performance on problem p by solver s with the best performance by any 

solver on this problem using the performance ratio rp,s ≤ t p,s / min t p,s : s ∈S{ } . Suppose 

that a parameter rM ≥ rp,s for all p and s are chosen, and rM = rp,s  if and only if solver s 

does not solve problem p. The performance solver s of given problems have to be the best,  
but we would like to obtain all evaluation performance of the solver, then it was defined 
P(t)s = 1

np size p∈P : rp,s ≤ t{ }.The P(t)s was probability for solver s∈S that a performance 

ratio rp,s  was within a factor t ∈R of efficient ratio. Then, function Ps was the cumulative 

distribution function for the performance ratio. The performance profile P : R→ 0,1⎡⎣ ⎤⎦  for 
solver was a non-decreasing, piecewise, and continuous from the right. The value P(1)s  is the 

probability that the solver will win over the rest of the solvers. In all, a solver with high values 
of P(t)s  or at the top right of the figure are preferable or represent the best solver.
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Table 1: List of problem functions

No Functions n Initial points
1 Zettl 2 (-10,-10),(-3,-3),(8,8),(20,20),(30,30)
2 Six-hump camel back 2 (-7,-7),(-2,-2),(3,3),(10,10)
3 Three-hump

Camel back
2 (-3,-3),(2,2),(8,8),(13,13)

4 Trecanni 2 (-10,-10),(-5,-5),(7,7),(20,20),(30,30)
5  Hager (2,4,10,100) (-5,…,-5),(-1,…,-1),(3,…,3),(7,…,7)
6 Raydan1 (2,4,10,100) (-3,…,-3),(2,…,2),(5,…,5),(10,…,10)
7 Shallow (6,10,100,500,1000) (8,…,8),(20,…,20),(40,…,40),(100,..,100)
8 Extended Tridiagonal2 (4,10) (-6,…,-6),(-1,…,-1),(2,…,2),(5,…,5)
9 Extended Maratos (2,4,10,100,500,1000) (-9,…,-9),(-5,…,-5),(2,…,2),(6,…,6),(10,…,10)
10 Extended Tridiagonal1 (4,6,10,100,500,1000) (2,…,2),(8,…,8),(14,…,14),(28,…,28)
11 Himmelblau (4,10,100,500,1000) (5,…,5),(11,…,11),(17,…,17),(31,…,31)
12 Generalised Quartic (2,10,100,500,1000) (-5,…,-5),(2,…,2),(7,…,7),(11,…,11)
13 Extended Rosenbrock (4,10,100,500,1000) (3,…,3),(6,…,6),(11,…,11),(23,…,23)
14 Extended Denschnb (4,10,10,100) (-5,…,-5),(-1,…,-1),(3,…,3),(10,…,10)
15 Arwhead (2,4,100,500,1000) (10,…,10),(50,…,50),(100,…,100),(200,…,200)

16 Freudenstein & Roth (4,10,100,500,1000,5000) (-6,…,-6),(-3,…,-3),(1,…,1),(7,…,7)
17 Flethcr (4,10,100,500) (-7,…,-7),(-2,…,-2),(5,…,5),(17,…,17)

18 Extended White & Holst (4,10,100,500,1000) (-8,..,-8),(-3,…,-3),(2,…,2),(10,…,10)

19 Powell (4,100,500,1000) (-5,…,-5),(-1,…,-1),(3,…,3),(10,…,10)
20 Extended Penalty (2,4,6,10,100,500,1000,5000) (-3,…,-3),(-1,…,-1),(2,…,2),(8,…,8)

5.	 Results and Discussions

Figures 1 and 2 show that AMRO CG,βk
AMRO  is capable of solving all the test problems and 

reach 100% accuracy. The performance of the conjugate gradient coefficients FR, PRP and CD 
can be divided into two groups. The first group that is related to PRP is better in performances 
than the second one which is related to FR and CD. The first group performance is less efficient 
than AMRO method; therefore, it solves only 85% of the problems, but it is better than the 
second group that solves about 80% of the problems. The AMRO method outperformed the 
other CGs.
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Figure 1: Performance profile based on the number of iterations

Figure 2: Performance profile based on the CPU time
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