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Abstract 
 
Mean-risk models have been widely used in portfolio optimisation.  However, such models may 

produce portfolios that are dominated with respect to second order stochastic dominance and therefore not 
optimal for rational and risk-averse investors. This paper considers the problem of constructing a portfolio 
which is nondominated with respect to second order stochastic dominance and whose return distribution 
has specified desirable properties. The problem is multi-objective and is transformed into a single 
objective problem by using the reference point method, in which target levels, known as aspiration points, 
are specified for the objective function values.  A model is proposed in which the aspiration points relate to 
ordered return outcomes of the portfolio return. The model is extended by additionally specifying 
reservation points, which act pre-emptively in the optimisation. The theoretical properties of the models 
are studied. The performance of the models on real data drawn from the Hang Seng index is also 
investigated. 
 
Keywords: portfolio selection; stochastic dominance; risk aversion; multi-criteria optimisation; reference 
point method. 
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1. Introduction and motivation 
 
The portfolio selection problem with one investment period is a particular case of 

the general problem of choosing between random variables when larger outcomes are 
preferred. There is, therefore, a need for models that make a choice between random 
variables (models for preference). Basically, there are three main types of such models: 
mean-risk models, expected utility maximisation and stochastic dominance models. 

 
Mean-risk models are convenient from a computational point of view, but in 

many cases, depending on the risk measure that is used, they lack a rational, theoretical 
basis for making a choice. Thus, the validity of the results provided is often questionable. 
Expected utility maximisation is usually difficult to put into practice since the choice of 
a suitable utility function is somewhat subjective. Stochastic dominance has a sounder 
theoretical basis for making choice under risk but unfortunately is very demanding from 
a computational point of view. 

 
In this paper, we present a model for portfolio selection, which combines the 

advantages of the previously mentioned approaches, in the sense that it provides a 
meaningful solution, corresponding to observed economic behaviour, and is practical 
from a computational point of view. The solution is meaningful in the sense that the 
selected portfolio is nondominated with respect to second order stochastic dominance 
(SSD). It is therefore optimal for every rational and risk averse investor. In addition, this 
portfolio has a return distribution close to a user-specified target (reference) distribution. 

 
In solving the model, there are three possible cases to consider. Firstly, if the 

reference distribution (appealing as it may seem) is not optimal with respect to SSD, the 
model provides a solution, which comes close to the reference, but is optimal with 
respect to SSD. In this case, the achieved return distribution is “better than target”. In the 
second case, if the reference distribution is optimal with respect to SSD, the model 
provides a solution, which yields exactly the reference distribution. Finally, the reference 
distribution may not be attainable (in the sense that some of its outcomes are too high 
such that there are no feasible portfolio weights that could produce such a portfolio 
distribution). In this case, the model provides a SSD efficient portfolio whose return 
distribution comes uniformly close to the reference distribution. 

 
The rest of the paper is organised as follows. In section two, models for choice 

under risk are reviewed, together with their advantages and disadvantages. Mean-risk 
models, expected utility maximisation and stochastic dominance models are considered. 
Section three presents the mathematical formulation of the proposed model. The SSD 
efficient solutions in the portfolio selection problem are Pareto efficient solutions of a 
multi-objective linear problem. In order to select a specific solution to this problem (the 
one that comes closest to the reference distribution), the reference point method (see 
Wierzbicki 1982, Steuer 1986, Makowski and Wierzbicki 2003) is used. This is an 
interactive method used in multi-objective programming for generating an efficient 
solution, in which desired levels for the objective functions (called aspiration points) are 
introduced. The multi-objective problem is transformed into a single objective 
optimisation problem by constructing a scalarizing achievement function, which is then 
optimised. We present a model where the aspiration points relate to the ordered return 
outcomes of the portfolio. This model is then extended by additionally introducing 
reservation points, which act pre-emptively in the optimisation. Section four presents the 
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computational results. A dataset drawn from the Hang Seng index with price history for 
20 stocks over 131 months is used to explore and evaluate the behaviour of the models. 
Section five presents the conclusions. 

 
 

2. Preliminaries: Models for choice under risk 
 

2.1. The portfolio selection problem 
 
 The problem of portfolio selection with one investment period is an example of 
the general problem of deciding between random variables when larger outcomes are 
preferred. Decisions are required on the amount (proportion) of capital to be invested in 
each of a number of available assets such that at the end of the investment period the 
return is as high as possible. Consider a set of n assets, with asset j in {1,…,n} giving a 
return Rj at the end of the investment period. Rj is a random variable, since the future 
price of the asset is not known. Let xj be the proportion of capital invested in asset j 
(xj=wj/w where wj is the capital invested in asset j and w is the total amount of capital to 
be invested), and let x=(x1,…,xn) represent the portfolio resulting from this choice. This 
portfolio’s return is the random variable: Rx=x1R1+…+xnRn, with distribution function 

)()( rRPrF x ≤=  that depends on the choice x=(x1,…,xn). 
 

To represent a portfolio, the weights (x1,…,xn) must satisfy a set of constraints 
that forms a feasible set M of decision vectors. The simplest way to define a feasible set 
is by the requirement that the weights must sum to 1 and short selling is not allowed. For 
this basic version of the problem, the set of feasible decision vectors is  

M={ ),...,( 1 nxx / 1
1

=�
=

n

j
jx , },...,1{,0 njx j ∈∀≥ }. 

Consider a different portfolio defined by the decision vector y=(y1,…,yn)∈M, 
where yj is the proportion of capital invested in asset j. The return of this portfolio is 
given by the random variable Ry=y1R1+…+ynRn. 
 

The problem of choosing between portfolio x=(x1,…,xn) and portfolio 
y=(y1,…,yn) becomes the problem of choosing between random variables Rx and Ry. The 
criteria by which one random variable is considered “better” than another random 
variable need to be specified and models for choosing between random variables 
(models for preference) are required. The purpose of such models is firstly, to define a 
preference relation among random variables and secondly, to identify random variables 
that are non-dominated with respect to that preference relation. 
 

The next issue is to consider a practical representation for the random variables 
that describe asset and portfolio returns. We treat these random variables as discrete and 
described by realisations under T states of the world, generated using scenario generation 
or finite sampling of historical data. Let state i∈{1,…,T} occur with probability pi, 

1
1

=�
=

T

i
ip . Let rij be the return of asset j under scenario i, i∈{1,…,T}, j∈{1,…,n}. Thus, 

the random variable Rj representing the return of asset j is finitely distributed over 
{r1j,…,rTj} with probabilities p1,…pT. The random variable Rx representing the return of 
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portfolio x=(x1,…,xn) is finitely distributed over {Rx1,…, RxT}, where Rxi=x1ri1+…+xnrin, 
∀i∈{1,…T}.  
 
 The main approaches for modelling choice among random variables: mean-risk 
models, expected utility maximisation and stochastic dominance models are now 
discussed. 
 
 

2.2. The mean-risk model 
 
 In mean- risk models, two scalars are attached to each random variable: the 
expected value (mean) and the value of a risk measure. Preference is then defined using a 
trade-off between the mean where a larger value is desirable and risk where a smaller 
value is desirable. 

 
Definition: In the mean-risk approach with the risk measure denoted by ρ, 

random variable Rx dominates (is preferred to) random variable Ry if and only if: 
E(Rx)≥E(Ry) and ρ(Rx)≤ρ(Ry) with at least one strict inequality. 

 
In this approach, the choice x (or the random variable Rx) is efficient (non-

dominated) if and only if there is no other choice y such that Ry has higher expected 
value and less risk than Rx. This means that, for a given level of expected return, Rx has 
the lowest possible risk, and, for a given level of risk, it has the highest possible expected 
return. Plotting the efficient portfolios in a mean-risk space gives the efficient frontier. 
 

In order to find efficient portfolios, we solve an optimisation problem with 
decision variables x1,…xn: 
 
Minimise ρ(Rx) 
Subject to: E(Rx)≥d and (x1,…xn}∈M, 
 
Where d represents the desired level of expected return for the portfolio. 
 
 Varying d and repeatedly solving the corresponding optimisation problems 
produces the efficient frontier of the mean-risk model. 
 
 

2.3. Expected Utility Maximisation 
 
 In expected utility maximisation, a single scalar value (the expected utility) is 
attached to each random variable. Preference is then defined by comparing expected 
utilities with a larger value preferred.  
 

A utility function is a real-valued function defined on real numbers (representing 
possible outcomes of the random variable), which measures the relative value of 
outcomes. 

 
Expected Utility Theory provides a basis for extending a utility function defined 

on real numbers (outcomes) to a utility function defined on random variables. A utility 
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value is assigned to each random variable in terms of the utility values of its outcomes 
and the probabilities associated with these outcomes. 
 

Definition: Given a utility function U, the expected utility of a random variable 

Rx is: �
∞

∞−

= )()()]([ αα dFURUE x , 

where F is the distribution function of Rx. 
 
In the discrete case, if the random variable Rx has the outcomes α1,…,αT with 

probabilities p1,…pT, the expected utility of Rx is: E[U(Rx)]=p1U(α1)+…+pTU(αT). 
 

The use of utility functions is based on an implied assumption that they reflect 
the behaviour of investors. There are progressively stronger assumptions about the 
behaviour of investors, which lead to progressively stronger forms of utility functions. 
 

The first assumption on investors’ behaviour is that they prefer more to less and 
are hence rational. In order to reflect this non-satiation attitude, the utility function must 
be nondecreasing. This is the only non-arguable condition for utility functions on wealth 
since all investors are assumed to be rational. 
 

The second aspect to consider is investors’ attitudes towards risk. There are three 
possible attitudes: risk aversion, risk neutrality and risk seeking. The general assumption 
is that investors are risk averse, which means that, as wealth increases, each additional 
increment is less valuable than the previous one. In order to reflect this, the utility 
function must be nondecreasing and concave (see Whitmore and Findlay 1978).  
 
 Further assumptions on investors’ behaviour (e.g. ruin aversion and decreasing 
absolute risk aversion) are also discussed in the literature (e.g. Whitmore and Findlay 
1978). These attitudes are less representative of investors’ behaviour and are not 
considered further in this paper. 
 
 

2.4. Stochastic Dominance 
 
 A difficulty with expected utility maximisation is that the specification of a 
utility function is a subjective task. Stochastic dominance (or stochastic ordering of 
random variables) was introduced, in order to overcome this difficulty (see Whitmore 
and Findlay 1978). Its purpose is to rank choices (random variables) under assumptions 
about general characteristics of utility functions that follow from prevalent modes of 
economic behaviour. Stochastic dominance ensures that all individuals, whose utility 
functions are in the same class, rank choices in the same way.  
 
 There are progressively stronger assumptions about investors’ behaviour that are 
used in the stochastic dominance approach, leading to first, second, and higher orders of 
stochastic dominance relations. In this paper, we consider only first and second order 
stochastic dominance relations: 
 

• First order stochastic dominance (FSD) assumes that an investor prefers more to 
less. Rx is preferred to Ry with respect to FSD (Notation: Rx>FSDRy) if and only if 
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E[U(Rx)]≥E[U(Ry)], for every nondecreasing utility function U. In this case, all 
rational investors prefer Rx to Ry. 

 
• Second order stochastic dominance (SSD) additionally assumes that an investor is 

risk-averse. Rx is preferred to Ry with respect to SSD (Notation: Rx>SSDRy) if and 
only if E[U(Rx)]≥E[U(Ry)], for every nondecreasing and concave utility function 
U. In this case, all rational and risk-averse investors prefer Rx to Ry. 

 
 SSD is stronger than FSD in the sense that it is able to order more pairs of 
random variables. We could have indifference between Rx and Ry with respect to FSD 
but prefer Rx or Ry with respect to SSD. Rx>FSDRy � Rx>SSDRy. Thus, an efficient 
solution with respect to SSD will be also an efficient solution with respect to FSD. 
 
 In practice we compare two random variables with respect to stochastic 
dominance relations by pointwise comparison of some performance functions 
constructed from their distribution functions. Let Fx and Fy be the distribution functions 
of Rx and Ry respectively. 
 

Proposition:  
Rx>FSDRy if and only if Fx(r)≤Fy(r), for every r.  
Rx>SSDRy if and only if F(2)

x(r)≤F(2)
y(r), for every r,  

Where: RrdttFrF
r

xx ∈∀= �
∞−

,)()()2(  

(for a proof see Whitmore and Findlay 1978). 
 

Performance functions for higher order stochastic dominance are similarly 
defined (see for example Ogryczak and Ruszczynski 1999, 2001). 
 

Consider the case where the two random variables Rx and Ry are discrete with T 
equally probable outcomes. In order to make the comparison, we rank the outcomes of 
Rx and Ry in ascending order to obtain two T-dimensional vectors: (α1,…, αT) and 
(β1,…, βT) such that α1≤…≤αT and β1≤…≤βT.  
 

Rx>FSDRy if and only if αi≥ βi for every i∈{1,…,T} with at least one strict 
inequality. 

Rx>SSDRy if and only if ��
==

≥
i

j
j

i

j
j

11

βα for every i∈{1,…,T} with at least one 

strict inequality. 
 

Consider a simple example: 
Rx: P(Rx=1)= P(Rx=4)=P(Rx=3)= P(Rx=2)=1/4 
Ry: P(Ry=3)= P(Ry=5)= P(Ry=0)= P(Ry=2)=1/4. 

 
Ordering the outcomes of Rx and Ry we obtain two 4-dimensional vectors: 

(1,2,3,4) and (0,2,3,5) respectively. Neither Rx nor Ry dominates with respect to FSD. If 
we cumulate the outcomes of these vectors, we obtain the vectors: (1,3,6,10) and 
(0,2,5,10), respectively. Since all the components of the first vector are greater than or 
equal to those of the second one, it follows that Rx dominates Ry with respect to SSD. 
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This was to be expected, since Rx has a higher outcome than Ry at the lowest level at the 
expense of a lower outcome at the highest level. Thus, a risk- averse investor will prefer 
Rx to Ry. 
 
 

2.5. A summary comparison of models for choice under risk 
 
 Mean-risk models 

Mean-risk models are practical from a computational point of view. However, 
depending on the risk measure to be used, they may lack a rational basis for making 
choices. Consider an example to support this statement. Consider a mean-risk model 
with a symmetric risk measure such as the variance and two random variables X and Y. 
X has one certain outcome W0. Y has 2 outcomes: W0 and W1, each with probability ½. 
Let W1>W0. Obviously Y should be preferred since it yields at least as much as X. 
However, according to a mean-variance model, neither one is preferred, since, although 
X has a smaller expected value, it also has zero risk. 
 

Expected utility maximisation 
As discussed earlier, with expected utility maximisation it is generally difficult to 

objectively specify an appropriate utility function. 
 

Stochastic dominance models 
Stochastic dominance relations are the soundest theoretical basis for making 

rational choices, corresponding to observed economic behaviour. Unfortunately, they are 
difficult to apply in practice. Finding the entire set of efficient solutions with respect to a 
stochastic dominance relation is practically intractable, when the number of random 
variables to be compared is not finite (as in the case of portfolio selection problem). 
 

The model that we present here selects a solution that is efficient with respect to 
second order stochastic dominance and is therefore a rational basis for making choice. In 
addition, the selected solution is not an arbitrary SSD efficient solution but one whose 
distribution is as close as possible to a specified distribution. 

 
 
 

3. A model for portfolio selection 
 

3.1.  SSD efficiency and multi-objective optimisation 
 

 Consider a portfolio x=(x1,…,xn) with return Rx and the case of T scenarios 
occurring with probabilities p1,…pT. The realisation of Rx under scenario i∈{1,…,T}is 
x1ri1+…+xnrin, where rij is the return of asset j under scenario i. Consider further, the case 

of equally probable scenarios: 
T

pi

1=  for i∈{1,…,T}. Since we search for solutions x 

such that Rx has outcomes as large as possible under each scenario, the portfolio 
selection problem may be viewed as a multi-objective problem with T objective 
functions to maximise: 

 
Max {f(x)=(f1(x),…,fT(x)): x∈M},                                                                   (1) 
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where: fi(x)= x1ri1+…+xnrin is the portfolio return in scenario i∈{1,…,T}, 
M is the set of feasible decision vectors. 

   
 Definition: y∈RT is an achievement vector if there exists a feasible solution x∈M 
such that y=f(x). 

 
Usually, in multi-objective optimisation, two achievement vectors are compared 

using the Pareto preference relation, defined as follows: 
 

An achievement vector y=(y1,…,yT) Pareto dominates another vector 
y’=(y’1,…,y’T) if yi≥y’i for every i∈{1,…T}, with at least one strict inequality. 

 
x0 is a Pareto efficient (non-dominated) solution of (1) if and only if there does 

not exist a feasible x such that f(x) Pareto dominates f(x0). In other words, a Pareto 
efficient solution is a feasible solution such that, in order to improve upon one objective 
function, at least one other objective function must assume a worse value. 
 

However, in the portfolio optimisation problem, in addition to Pareto dominance, 
there are other considerations. Thus, we do not look for simply Pareto efficient solutions.  

 
Firstly, an achievement vector represents a random variable with T equally 

probable outcomes for which the ordering is immaterial. We do not compare vectors, but 
the distributions that these vectors represent. We compare distributions with respect to 
the first order stochastic dominance relation (FSD) by comparing the k-th worst 
outcomes of the achievement vectors, for k=1,…,T. Thus, the distribution represented by 
y dominates that of y’ with respect to FSD if the k-th worst outcome of y is greater than 
the k-th worst outcome of y’, ∀k∈{1,…,T} (see section 2.4). 
 

Secondly, if we compare distributions from the point of view of a risk-averse 
decision-maker, we consider a surplus more valuable at low levels of outcomes than at 
high levels. Thus, transferring a small amount from an outcome to any worse outcome 
results in a preferred achievement vector, since it represents a less risky distribution. To 
reflect this, we compare two achievement vectors by comparing their cumulative 
outcomes (that is, the sums of their worst k outcomes, for each k∈{1,…,T}) (Ogryczak 
2000, 2002). In terms of distributions, this means comparing the two distributions 
represented by those vectors with respect to second order stochastic dominance. Thus, 
the distribution represented by y dominates that of y’ with respect to SSD if the sum of 
the worst k outcomes of y is greater than the sum of worst k outcomes of y’, 
∀k∈{1,…,T} (see section 2.4). 
 
Remarks:  

• The Value-at-Risk (VaR) at confidence level )1,0(∈
T
k

 of a random variable RX is 

})(/inf{)(
T
k

zRPzRVaR XX
T
k >≤−=  (see Acerbi and Tasche 2002). It easily 

follows that for a random variable with T equally probable outcomes, the k-th worst 
outcome is minus VaR at confidence level k/T. Thus, in this case, a random variable 
dominates another one with respect to FSD if its VaR at confidence level k/T is 
smaller, for every k in 1,…,T. 
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• For a random variable with T equally probable outcomes, the Conditional Value-at-
Risk (CVaR) at confidence level k/T is minus the mean of its worst k outcomes (this 
follows from the CVaR definition of Rockafellar and Uryasev 2002). Thus, in this 
case, a random variable dominates another one with respect to SSD if its CVaR at 
confidence level k/T is smaller, for every k in 1,…,T. 

 
 In order to find the FSD efficient solutions of the portfolio selection problem, the 
objective functions in (1) are replaced by the k-th worst portfolio returns, for k=1,…,T 
respectively (see Ogryczak 2002). 

 
Of greater interest are the SSD efficient solutions, which are obtained by 

replacing the objective functions in (1) with the cumulative outcomes: sums of the worst 
k portfolio returns, for k=1,…,T. 
 
 Proposition: For every k∈{1,…,T}, the sum of the worst k outcomes of a given 
achievement vector y=(y1,…,yT) is the optimal value of the following LP problem:  

)(
1
�

=
−

T

i
kik dktMax  

Subject to: kiik dyt ≤− , for i=1,…T 

                  0≥kid ,  for  i=1,…T. 
 

The proof follows easily from the CVaR optimisation formula (Rockafellar and 
Uryasev 2000). An independent proof is given by Ogryczak (2002). 
 

For each k∈{1,…,T}, the above problem has one free variable tk and T non-
negative variables dki, i=1,…,T. The value of tk is the k-th worst outcome of the 
achievement vector y (see Rockafellar and Uryasev 2000 or Ogryczak 2002). For each i 
∈{1,…,T}, dki takes value 0 if yi is greater than or equal to the k-th worst outcome tk; 
otherwise, dki=tk-yi. This means that at most (k-1) values of dki are strictly positive. 

 
 Thus, we can express the SSD efficient solutions for the portfolio selection 
problem as Pareto efficient solutions of the following multi-objective linear problem: 

),...,2,(
11

22
1

11 ���
===

−−−
T

i
TiT

T

i
i

T

i
i dTtdtdtMax                                                         (2) 

Subject to:  
      kiik dxft ≤− )( , for i, k=1,…T 

0≥kid , for i, k=1,…T 

1
1

=�
=

n

j
jx  

0≥jx , for j=1,…,n 
 

where j

n

j
iji xrxf �

=

=
1

)(  is the portfolio return in scenario i, i=1,..,T. 

 The problem has T free variables t1, t2,…,tT, with tk being the k-th worst outcome 
of the distribution that results, T2 non-negative variables (dki)k,i=1,…,T with the 
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interpretations given above and n non-negative variables giving the optimal portfolio 
weights. 

 
 Remark: An equivalent formulation is obtained by dividing the k-th objective 
function in (2) by k, for each k∈{1,…,T}, thus obtaining the means of the worst k 
outcomes as the objective functions. 
 

 
3.2. The reference point method 

  
 The problem (2) has an infinite number of efficient solutions and additional 
criteria are needed in order to select a specific solution. 
 

By specifying desirable outcomes for the portfolio return under the various 
scenarios, we are specifying a desirable (target) distribution. This results in desirable 
outcomes for the cumulative returns, and hence desirable outcomes for the objective 
functions in (2). We want to find the asset weights x1,…,xn that produce a SSD efficient 
distribution which comes closest to the target distribution. 

 
The method used is the Reference Point Method (Wierzbicki 1982, Makowski 

and Wierzbicki 2003). In order to select a Pareto efficient solution of a multi-objective 
problem, aspiration levels (called reference points) are specified for some or all of the 
objective functions in the multi-objective problem. Depending on these reference points, 
a special scalarizing achievement function is constructed, which, when maximised, 
produces an efficient solution of the original multi-objective problem. Thus, the multi-
objective problem is transformed into a single-objective problem. The process is 
interactive in that a solution is presented to the decision maker who can modify the 
aspiration levels in the light of the solutions already presented and obtain a further 
candidate solution.  

 
 Let z*=(z*1,…,z*T) be the target (i.e., z*k is the aspiration level for the k-th 
objective function). The simplest form of achievement function is: 

�
=≤≤

−+−=
T

k
kkkkTkz zzzzz

1
1* )*()*(min)( εγ                                                            (3) 

where z=(z1,…,zT) is the current achievement vector and ε is an arbitrary small 
parameter. 

 
The terms (zk-z*k) in (3) are usually replaced with more complicated functions of 

zk and z*k, γk(zk,z*k), which must satisfy certain properties: being monotonically 
increasing with respect to zk and taking value 0 if zk=z*k (see for example Makowski and 
Wierzbicki 2003). These functions are called partial achievement functions since they 
measure the actual achievement of outcome zk with respect to its corresponding 
aspiration level z*k. Various functions γk(zk,z*k) provide a wide modelling environment 
for measuring individual achievements. Another example of such functions γk(zk,z*k) are 
piece-wise linear functions with two segments whose gradients depend on whether the 
current outcome is above or below its aspiration point (see Makowski and Wierzbicki 
2003). 
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Remarks: 
• The scalarizing achievement function is essentially defined by the worst partial 

achievement: )*,(min
1 kkkTk

zzγ
≤≤

, which in our case means )*(min
1 kkTk

zz −
≤≤

. The 

latter term is introduced in order to guarantee the solution efficiency in the case 
where the maximisation of the worst partial achievement has non-unique optimal 
solutions. 

• Different values of ε can lead to different efficient solutions. A solution that 
maximises γz* will be a Pareto efficient solution of the multi-objective problem 
with a bound of M=1+1/ε on trade-off coefficients (see Makowski and Wierzbicki 
2003 for more details). 

 
 In addition, one could introduce reservation levels zr

k for the k-th objective 
function. In this case, the partial achievement functions will be γk(zk,z*k, z

r
k). The 

difference between aspiration and reservation levels is, as the name implies, that whilst it 
is desirable to achieve aspiration levels, reservation levels should be achieved if at all 
possible. The scalarizing achievement function must ensure that reservation levels pre-
empt aspiration levels. Thus, reservation levels represent soft lower bounds of the 
objective functions.  

 
In this paper, we consider piecewise linear partial achievement functions that use 

both aspiration and reservation levels (see Makowski and Wierzbicki 2003, Kaleta et al. 
2003): 
 

k
r

k

k
r

k

zz
zz

−
−

*
)(α

, for k
r

k zz ≤ ,                          

=),*,( k
r

kkk zzzγ  
k

r
k

k
r

k

zz
zz

−
−

*
, for kkk

r zzz *<< ,                                                  (4) 

1
*

)*(
+

−
−

k
r

k

kk

zz
zzβ

, for kk zz *≥ , 

 
where α, β are arbitrarily defined parameters such that 0<β<1<α.  

 
The parameter α>1 represents the decision maker’s dissatisfaction for outcomes 

worse than their corresponding reservation level, while the parameter β<1 represents 
satisfaction for outcomes better than their aspiration level (Kaleta et al. 2003). 
 
 The partial achievement functions (4) have attractive properties, which allow a 
simple interpretation of results. They take: 

- negative values if the outcome is below its reservation level (zk<zr
k); 

- value 0 for zk=zr
k; 

- value between 0 and 1 for outcomes between reservation and aspiration level 
- value 1 for zk=z*k; 
- value greater than 1 for outcomes better than the aspiration level. 

Thus, they map outcome values onto a normalized scale of decision maker’s satisfaction 
(Kaleta et al. 2003). 
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Moreover, under the condition 0<β<1<α, the partial achievement function is 
strictly increasing and concave. Thus, it can be expressed in the form: 
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which is useful when writing the model, since we can express the partial achievement 
functions using linear constraints: 
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Since the achievement function is maximised, the largest possible values of 
),*,( k

r
kkk zzzγ  are required. Thus, the linear constraints above are equivalent to (5). 

 
Remark: When the aspiration and the reservation levels for an objective function 

are chosen, they must lie between the lower and the upper bound of that objective 
function.  So, if zk

min and zk
max are the worst and best values for the k-th objective 

function, respectively, we require: 
 zk

min ≤zr
k≤z*k≤zk

max                                                                                           (6) 
Provided condition (6) is satisfied for every k∈{1,…,T}, the maximisation of the 

scalarizing achievement function produces an efficient solution of the initial multi-
objective problem (2) (see Makowski and Wierzbicki 2003). Moreover, the converse is 
true, in the sense that for every efficient solution, there exist aspiration (and reservation) 
levels such that this efficient solution maximises the corresponding achievement 
function (see Makowski and Wierzbicki 2003). 
 
 

3.3.  Models for portfolio selection 
 

 In this section, two models for portfolio selection (models M1 and M2) are 
presented. The motivation for model M1 is to find a SSD efficient portfolio whose return 
distribution comes close to a “target” aspiration distribution. Model M2 considers also a 
“reservation” distribution, which represents a first level target. 

 
For model M1, let aspk be the aspiration level for the k-th cumulative outcome 

(sum of the worst k outcomes), k=1,…,T. These levels imply aspiration levels for the 
ordered outcomes themselves and hence define a distribution, which we refer to as the 
“target”, “reference” or “aspiration” distribution. 

Intuitively, the stochastically larger random variable has a smaller distribution 
function (see Figure 1). Thus, our aim is to obtain a distribution whose outcomes are 
positioned further to the right. 

 
Remark: One way to choose the aspiration levels aspk is to choose desirable 

values for the ordered outcomes of the distribution and then cumulate them.  
The fact that there is no “universal recipe” for choosing the aspiration levels should be 
regarded as an advantage of this method. We can analyse the distribution of the portfolio 
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that we obtain, and, if not satisfactory, we can modify the aspiration levels and obtain a 
further candidate solution portfolio. 
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               Figure 1: cumulative distribution function and ordered outcomes 

 
We will keep the same notation used in (2). In addition, let zk represent the sum 

of the worst k outcomes, for k=1,…,T, and let )(min
...1 kkTk

aspz −=
=

δ represent the worst 

partial achievement. zk and δ are free variables.  
 
The following model for portfolio optimisation uses the achievement function 

defined by (3): 

(M1): Maximise ��
==

−+
T

k
k

T

k
k aspz

11

)(εδ . 
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i
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                             δ≥− kk aspz , for k=1,…,T. 
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The nature of the decision variables is discussed below: 

• tk= the k-th worst outcome of the portfolio return, for k=1,…,T (free variable); 
• zk=the sum of the worst k outcomes of the portfolio return, for k=1,…,T (free 

variable); 
• )(min

...1 kkTk
aspz −=

=
δ = the worst partial achievement (free variable); 

• (dki)k,i=1,…,T are non-negative variables. dki=0 if the portfolio return in scenario i is 
greater than or equal to the k-th worst outcome tk; otherwise, dki is the difference 
between the k-th worst outcome tk and the portfolio return in scenario i ; 

• xj, j=1,…,n are the portfolio weights to be determined (non-negative variables) 
 In solving the model, there are three cases to consider, depending on the 
reference distribution chosen by the decision maker: 

t1 t2 tT-1 tT 

1/T 

2/T 

3/T 

(T-1)/T 

1

t3 
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Case 1: If the reference distribution is not optimal with respect to SSD, the 

optimal value of the objective function will be strictly positive. In this case, the model 
improves on the reference distribution, in the sense that it provides a solution whose 
corresponding distribution is SSD efficient. 

 
 Case 2: If the reference distribution is optimal with respect to SSD, the optimal 
value of the objective function will be zero. In this case, the solution obtained matches 
exactly the reference distribution.  
 

Case 3: If the reference distribution is not attainable, in the sense that (some of) 
the outcomes are too high so that there are no feasible portfolio weights that could yield 
such a distribution, the optimal value of the objective function will be strictly negative. 
In this case, the model provides a SSD efficient solution whose distribution of outcomes 
comes as close as possible (uniformly) to the reference levels. 
 

The proof follows from the way that the reference point method works, 
depending on whether the aspiration points form an efficient, an inefficient or an 
unattainable achievement vector of the multi-objective problem (see Makowski and 
Wierzbicki 2003). 

 
For the model M2, we consider both aspiration (aspk) and reservation (resk) levels 

for (some of) the cumulative outcomes zk. The partial achievement functions are defined 
by (5). 

 
In addition to the variables used in model (M1), there are another T free 

variables: δk, for k=1,…,T, representing the values of the partial achievement functions. 
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In solving model (M2), there are five cases to consider, depending on the 
aspiration and reservation distributions chosen by the decision maker: 
 

Case 1: If the reservation distribution (and hence the aspiration distribution) is 
not attainable, the optimal value of the objective function is strictly negative. In this case, 
the model provides a SSD efficient solution whose return distribution is uniformly as 
close as possible to the reservation distribution. 
 

Case 2: If the reservation distribution is SSD efficient (and the aspiration 
distribution is not attainable), the optimal value of the objective function is zero. In this 
case, the model provides a SSD efficient solution that matches the reservation 
distribution. 
 

Case 3: If the reservation distribution is attainable but not SSD efficient and the 
aspiration distribution is not attainable, the optimal value of the objective function is 
between zero and one. In this case, the model provides a SSD efficient solution, whose 
return distribution improves on the reservation distribution and is uniformly as close as 
possible to the aspiration levels.  
 

Case 4: If the aspiration distribution is SSD efficient (which implies that the 
reservation distribution is not), the optimal value of the objective function is equal to 
one. The solution obtained matches the aspiration distribution. 
  
 Case 5: If the aspiration distribution (and hence the reservation distribution) is 
not SSD efficient, the optimal value of the objective function is greater than one. In this 
case, the model provides a solution, whose return distribution improves on the aspiration 
distribution, in the sense that is SSD efficient. 
 
 

3.4. Connection with mean-risk models 
 

a. Mean-CVaR models 
 

 The k-th objective function zk in (2) represents the sum (or, equivalently, the 
mean) of the worst k outcomes, for k=1,…,T. By attaching aspiration points only for the 
k-th (with k<T) and the T-th objective function, we obtain a mean-CVaR model, with 
CVaR at confidence level k/T. 
  

The classical mean-CVaR model, with CVaR at confidence level k/T, minimises 
CVaR using the optimisation formula of Rockafellar and Uryasev (2000), subject to 
conditions on expected return. Since CVaR at confidence level k/T is minus the mean of 
the worst k outcomes, the classical mean-CVaR model is equivalent to: 

Maximise �
=

−=
T

i
kikk dktz

1

 

Subject to: dxrz j
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i

n

j
ijT ≥=��

= =1 1

     

                   kiij
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, for i=1,…,T 
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j
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                   0≥jx , for j=1,…,n 

                   0≥kid , for i=1,…,T, 
 
where d is the desired level for the sum of all outcomes (or, equivalently, where d/T is 
the desired level of expected return) 
 

Basically, we have a multi-objective problem with 2 objective functions to 
maximise: zk and zT, and two different methods for producing an efficient solution.  

 
The reference point approach introduces aspiration levels for both zk and zT and 

then maximises the achievement function: 
[ ])(},min{ TTkkTTkk aspzaspzaspzaspzMax −+−+−− ε ,  

whereas, in classical mean-CVaR optimisation, zk is maximised whilst a lower limit is 
imposed on zT: zT≥d. 
 

Consider now the case where aspT=d. Whether or not both approaches will 
produce the same solution depends on the aspiration level aspk. Both solutions will be 
efficient, and, if aspk is sufficiently low, they will be the same, with zT=d and the best 
possible value for zk.  

If aspk is too high, a different solution will be obtained with the reference point 
method, in which the value of zk will be improved at the expense of decreasing the level 
for zT. This solution will be efficient in a mean-CVaR model with a lower level imposed 
for the expected return; it has a better CVaR and a worse mean. Computationally, both 
models are of similar complexity. 

 
The advantage of the reference point method is that it can deal with more than 

two reference levels. Although computationally more demanding, the distributions of 
portfolio returns can be modelled in a more refined way. In addition, this approach can 
produce any SSD efficient solution in the sense that there exist aspiration (and 
reservation) levels such that the solution maximises the corresponding achievement 
function. 

 
It may be noted that if the k-th objective function in (2) is maximised, a particular 

efficient solution of (2) is obtained: a portfolio that minimises CVaR at confidence level 
k/T. In a mean-CVaR model, with CVaR at confidence level k/T, this corresponds to the 
lower extremity of the efficient frontier – the minimum risk portfolio. 
 

b. The maximum mean portfolio 
 

The case of maximising the last objective function in (2) corresponds to 
maximising the expected return in a mean-risk model, irrespective of the risk measure 
used. In this case, the solution corresponds to the upper extremity of the efficient frontier 
in any mean-risk model. 

 
c. Weighted CVaR 
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It is well known that, for a multi-objective linear problem, we can obtain an 
efficient solution by the “weighted-sum approach” (see Steuer 1986, Ogryczak 2000).  
 

Consider the multi-objective linear problem: 
Max {Cx such that x∈Q}, where C is the Txn criterion matrix, Q is the set of feasible 
solutions. 
Let Λ denote the set of weighting vectors: 

}1,0/{
1

=>∈=Λ �
=

T

i
ii

TR λλλ . 

 
An optimal solution of the single objective linear problem: Max {λ*TCx such 

that x∈Q} with λ*∈Λ is an efficient solution of the initial multi-objective problem. 
The converse is also true: if x*∈Q is an efficient solution of the initial multi-

objective problem, then there exists λ*∈Λ such that x* is an optimal solution of the 
single objective problem Max {λ*TCx such that x∈Q}(see Steuer 1986). 
  

The objective functions in (2) can be considered as minus CVaR at confidence 
levels 1/T, 2/T,…k/T,…T/T. Thus, every efficient solution of (2) can be considered as 
one that minimises a “weighted CVaR” measure: 

TTTTT CVaRCVaRCVaR //22/11 ... λλλ +++ . 
 
Remark: A weighting approach for solving the portfolio optimisation problem via 

multi-objective problem (2) was suggested by Ogryczak (2000), Ogryczak and Sliwinski 
(2003). The advantage of using the reference point method instead of this is that the 
reference points provide a better way of controlling the selection of a solution, which is 
meaningful for the decision-maker, whereas the values of the weights to be attached are 
more difficult to interpret. 
 

 
d. VaR constraints 

 
We can impose (hard) constraints on VaR at a specified confidence level 

α∈(0,1). Suppose α lies between 
T

k 1−
 and 

T
k

. In this case, the value of the variable tk 

in model (M1) will be minus VaR at confidence level α. Thus, an additional constraint 
such as dtk ≥ may be added, where d is a desired lower limit for the value of the k-th 
worst outcome (or VaR at confidence level α). Of course, if the value of d is too high, 
infeasibility will result.  

 
If a high reference point is used for the last objective function in the model 

(which represents the expected return of the portfolio), an approximation to the 
corresponding solution of a mean-VaR model will be obtained. This solution probably 
will not have the best expected return for the specified VaR level, but will be SSD 
efficient and with other outcomes close to the reference points. 
 

 
e. Modelling the tail of distribution 
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It is possible to set reference levels only for the tail of the portfolio return 
distribution (i.e. the worst outcome, the sum of the worst two outcomes,…). The 
specified reference values are more likely to be achieved, and, in addition, the process is 
computationally simpler. 

 
Another approach would be to use hard constraints for the tail of the distribution, 

while using reference values for (the other) general outcomes. For example, in model 
(M1) we can impose additional VaR constraints: 11 dt ≥ , 22 dt ≥ , …, kk dt ≥  for  a 
specific value of k. Of course, infeasibility may result in this case. 

 
 

 
4. Computational results 

 
In this section, we present an experimental analysis of the models (M1) and (M2) 

presented in section 3.3. The returns of the portfolios produced by the models are 
evaluated in terms of their statistics (mean, median, standard deviation, skewness, 
kurtosis, range, minimum and maximum). Both in-sample and out-of-sample testing are 
performed. A data set, drawn from the Hang Seng index, was used for testing the 
models. Logarithmic returns of the 20 stocks that belonged to the index throughout the 
period 4 January 1993 - 1 December 2003 were considered. The data set consists of 
monthly returns and has 131 time periods, considered as equally probable scenarios 
(n=20, T=131). For the out-of sample analysis, the behaviour of the portfolios obtained 
is examined in the eight months following the date of selection (January 2004-August 
2004). The models were processed using CPLEX 9.0 optimisation solver and the value 
of ε in the models was fixed at 0.00005. 
 

In solving model (M1), there are three cases, depending on the aspiration 
distribution (see section 3.3). We examine each of these situations, by choosing 
appropriate aspiration distributions. The return distribution of the portfolio obtained in 
each case is analysed. In cases where the distribution obtained was considered 
unsatisfactory, we introduced reservation levels for some of the outcomes (mainly, in the 
left tail) and ran model (M2). We analysed the differences in the return distributions 
obtained with each model. 
 

Case 1:  
Here we examine the situation where the reference distribution is not SSD 

efficient. We chose the return distribution of the Hang Seng index as the reference 
distribution: the 131 monthly returns of the index were ordered and after that cumulated, 
in order to obtain the sum of the worst k outcomes, for k=1…131. The cumulative 
outcomes of the index were introduced as aspiration levels in model (M1). 
On solving the model, we obtain a positive optimal value of the objective function 
(0.185), which indicates that the index is not SSD efficient, in contrast with the portfolio 
obtained by the model. We denote this portfolio as P1. The value of δ (the worst partial 
achievement) is 0.18, which indicated that the cumulated outcomes of portfolio P1 are 
greater than the cumulated outcomes of the index by at least 0.18. 
  

Table 1 shows the in-sample performance of the two portfolios considered, with 
P1 outperforming the index on seven of the eight measures used: higher mean, higher 



20 20

median, lower variance, higher skewness (P1 has positive skewness, while the index has 
negative skewness), lower kurtosis, lower range, higher minimum but with lower 
maximum. 

 
In Figure 2 we present the cumulative distribution functions of returns of 

portfolio P1 and the Hang Seng index. In principle, these are “step functions”, but in 
Figure 2 they are displayed as piece-wise linear functions by connecting the chosen bins 
of the outcomes and their corresponding probabilities. It is obvious that P1 has a 
cumulative distribution function that is “smaller” for low outcomes, so at low levels, its 
outcomes are distributed further to the right than those of the index. This was to be 
expected, since P1 dominates the index with respect to SSD. 

 
  portfolio 
  P1 index 
Mean 0.0073 0.0059 
Median 0.0117 0.0094 
St. Deviation 0.0635 0.0861 
Skewness 0.0240 -0.0864 
Kurtosis Excess 0.9901 2.1539 
Range 0.3890 0.6128 
Minimum -0.1688 -0.3482 
Maximum 0.2202 0.2645 
  
Table 1: statistics for the return distributions of P1 and Hang Seng index (case 1) 
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Figure 2: cumulative distribution functions for returns of P1 and Hang Seng index 

 
For an out-of-sample evaluation, we considered the next eight time periods 

following the date of selection (January 2004-August 2004). The results are illustrated in 
Figure 3 and the ex-post parameters are presented in Table 2. The differences in the ex-
post parameters for these two portfolios are very similar to those of the in-sample 
analysis: P1 has almost all the ex-post parameters better than those of the index. 
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Figure 3: Out-of-sample evaluation of The Hang-Seng index and portfolio P1 (Jan-Aug 2004) 

 
  portfolio 
  P1 index 
Mean -0.00002 -0.00378 
St. Deviation 0.02727 0.05018 
Skewness -0.06427 -0.79758 
Kurtosis Excess 0.02027 -0.05637 
Minimum -0.04586 -0.09224 
Maximum 0.03631 0.05518 
Range 0.08217 0.14742 
  
Table 2: parameters for the out-of-sample performance of portfolios P1 and Hang Seng index (Jan-Aug 
2004). 
 

 
Case 2:  
Here we examine the case where the reference distribution is SSD efficient. The 

reference distribution is chosen to be the return distribution of the asset with the highest 
expected return. This portfolio, composed of just one asset, is efficient in any mean-risk 
model, irrespective of the risk measure – it lies at the upper extreme of the efficient 
frontier. Most importantly, it is also SSD efficient - it maximises the last objective 
function in (2), representing the sum of all outcomes. We call this portfolio Mean_max. 
Running model (M1) having as aspiration points the cumulated outcomes of this 
distribution, we obtain, as expected, an optimal objective value of 0 and the same 
portfolio weights: a value of one corresponding to the asset with the highest expected 
return and zero for the remaining weights. This distribution is SSD efficient and 
therefore cannot be improved. In order to illustrate this case we performed an “inverse” 
procedure by specifying the outcomes for the distribution and then determining the 
portfolio weights that produce these outcomes. 

 
This distribution is not particularly desirable but was chosen to demonstrate 

model behaviour. Though SSD efficient and also efficient in all mean-risk models, it has 
undesirable properties, such as a long left tail (worst outcome= -0.72, second worst 
outcome= -0.54, etc.). In such a situation model (M2) can play a useful role. As an 
example, consider reservation levels for the worst five outcomes to be: -0.3, -0.3, -0.2,    
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-0.2, -0.2. Cumulating these values, reservation levels for the first five cumulated 
outcomes are obtained. Aspiration levels were defined by considering the optimal values 
for the first five cumulated outcomes and the cumulated outcomes of Mean_max for the 
remaining ones. On solving this instance of model (M2), portfolio P2 is obtained and an 
optimal value of 0.91, which indicates, as expected, that the reservation distribution is 
not SSD efficient and the aspiration distribution is not attainable.  
 

As shown in Table 3, although the return distribution of Mean_max has a higher 
expected value than that of P2, it has also higher volatility and higher risk of lower 
returns (negative skewness, high kurtosis, very low minimum). 

 
  portfolio 
  Mean_max P2 
Mean 0.01273 0.00491 
Median 0.01604 0.00568 
St. Deviation 0.14332 0.06084 
Skewness -1.40261 0.12335 
Kurtosis Excess 5.74807 0.81840 
Range 0.99809 0.34853 
Minimum -0.72631 -0.14352 
Maximum 0.27179 0.20501 
  
Table 3: statistics for the return distributions of Mean_max and P2 (case 2) 
 

For an out-of-sample evaluation, the performance of the two portfolios over the 
eight time periods (January 2004-August 2004) is illustrated in Figure 4 and the ex-post 
parameters are presented in Table 4. Except for the maximum of out-of-sample returns, 
which is a little higher for Mean_max, all the other ex-post parameters are better for 
portfolio P2. Even the mean of the out-of-sample returns is higher for P2, which shows 
the importance of modelling the tail of a distribution. 
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Figure 4: Out-of-sample evaluation of portfolios Mean_max and P2.2 (Jan-Aug 2004) 
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  portfolio 
  Mean_max P2 
Mean -0.02337 0.00303 
St. Deviation 0.09914 0.03122 
Skewness -1.81243 0.05663 
Kurtosis Excess 4.12961 -0.19501 
Minimum -0.24471 -0.04709 
Maximum 0.07535 0.05131 
Range 0.32006 0.09841 
  
Table 4: parameters for the out-of-sample performance of portfolios Mean_max and P2 (Jan-Aug 2004) 
 

 
Case 3: 
Here we consider the case when the reference distribution is unattainable. We 

chose as aspiration points the optimal values for the cumulated outcomes. As expected, 
in solving model (M1) with these aspiration points, a negative optimal value for the 
objective function is obtained (-0.55). The portfolio obtained is denoted by P3.1. 
 

Model M2 can be used to obtain a portfolio whose return distribution has a 
shorter tail. By defining reservation points for the first seven cumulated outcomes and 
keeping the same aspiration levels as before (the best values for the cumulated 
outcomes) and solving model (M2), a portfolio P3.2 is obtained with an optimal value of 
the objective function between 0 and 1 (0.804), which indicates that the reservation 
distribution is not SSD efficient and the aspiration distribution is not attainable. 
(In this example, the reservation levels were chosen by first imposing minimum 
desirable outcomes for the worst seven outcomes of the portfolio distribution: -0.15,       
-0.13, -0.13, -0.12, -0.11, -0.11, -0.11. By cumulating these, reservation levels for the 
first seven cumulated outcomes were obtained). 

 
 As shown in Table 5, although the return distribution of P3.2 has a lower mean 
(and a lower maximum), most of its statistics are better, especially those concerning the 
distribution’s tail (higher skewness, lower kurtosis, lower range, higher minimum).  
 
  portfolio 
  P3.1 P3.2 
Mean 0.00856 0.00324 
Median 0.00828 0.00413 
St. Dev. 0.06785 0.06142 
Skewness -0.15626 0.23144 
Kurtosis Excess 1.02569 0.59529 
Range 0.42907 0.32448 
Minimum -0.21090 -0.13603 
Maximum 0.21816 0.18845 
  
Table 5: statistics for the return distributions of P3.1 and P3.2 (case 3) 
 

The out-of-sample returns of portfolios P3.1 and P3.2 over the eight time periods 
(January 2004-August 2004) are illustrated in Figure 5 and the ex-post parameters are 
presented in Table 6. The better performance of portfolio P3.2 can be clearly seen. All 
the ex-post parameters (except for variance, which is slightly higher) are better. 
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Figure 5: Out-of-sample evaluation of portfolios P3.1 and P3.2 (Jan-Aug 2004) 

 
  portfolio 
  P3.1 P3.2 
Mean -0.00307 0.00421 
St. Deviation 0.03753 0.03207 
Skewness -0.56962 0.09690 
Kurtosis Excess 1.73200 -0.80341 
Range 0.12756 0.09674 
Minimum -0.07525 -0.04407 
Maximum 0.05231 0.05267 
  
Table 6: parameters for the out-of-sample performance of portfolios P3.1 and P3.2 (Jan-Aug 20043) 
 
 
 

5. Concluding remarks 
 

The portfolio selection problem is presented as a particular case of decision 
making among random variables. The concern is to make meaningful decisions, 
according to observed economic behaviour, and at the same time preserve computational 
tractability. Meaningful decisions are usually considered those consistent with an 
axiomatic model of preference (stochastic dominance). Here, we considered the problem 
of choosing a portfolio that is efficient with respect to second order stochastic dominance 
(SSD). Thus, decision makers are assumed to be rational and risk-averse. The number of 
portfolios that are efficient with respect to second order stochastic dominance is infinite 
and additional criteria are needed in order to select a specific, meaningful solution. We 
proposed to do this by specifying a reference distribution, i.e. specifying return outcomes 
that would be desirable under various scenarios, and finding the portfolio whose return 
distribution comes closest to the reference. 

 
The models use target levels for the sums of the worst k outcomes, for 

k∈{1,…,T}, where T is the number of (equally probable) scenarios considered. The first 
model uses only aspiration levels. The second one uses, in addition, reservation levels, 
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which pre-empt the aspiration levels in the optimisation. Both models produce SSD 
efficient portfolios irrespective of the reference distribution used. 

The models were evaluated using a dataset drawn from the Hang Seng index and 
using different reference distributions. Both in sample and out-of sample analyses were 
performed. The portfolios produced by the models were evaluated by comparing 
statistics of their return distributions. Of primary interest in the evaluation is the status of 
the reference distribution with respect to SSD efficiency. In cases where the reference 
distribution was not SSD efficient, the portfolio produced by the first model (M1) had a 
return distribution with better statistics than the reference, and, in addition, better out-of-
sample results. When the reference distribution was SSD efficient, model M1 produced a 
portfolio whose return distribution matched the reference. The robustness of the model is 
such that, when the reference distribution is unattainable, a portfolio is produced whose 
return distribution is as close as possible to the reference.  

 
Model M1 was extended in order to gain greater modelling power in selecting 

desirable portfolios. In cases where the return distributions of the portfolios produced 
have undesirable outcomes under specific scenarios, the second model (M2) can be used 
to produce portfolios which improve on these outcomes. In particular, we used model 
M2 to model the left tail of the return distributions. The effectiveness of model M2 was 
demonstrated by producing portfolios that outperformed those produced by M1, both in 
terms of in sample statistics and out-of-sample results.  

 
It is envisaged that, as in many multi-objective applications, the models are used 

interactively with the decision maker specifying new aspiration (and reservation) levels 
in order to obtain portfolios with progressively better return distributions. 
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