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ABSTRACT

In this paper, a model called graph partitioning and transformation model (GPTM) which transforms a connected graph 
into a single-row network is introduced. The transformation is necessary in applications such as in the assignment of 
telephone channels to caller-receiver pairs roaming in cells in a cellular network on real-time basis. A connected graph 
is then transformed into its corresponding single-row network for assigning the channels to the caller-receiver pairs. 
The GPTM starts with the linear-time heuristic graph partitioning to produce two subgraphs with higher densities. The 
optimal labeling for nodes are then formed based on the simulated annealing technique. Experimental results support 
our hypothesis that GPTM efficiently transforms the connected graph into its single-row network.
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ABSTRAK

Dalam kertas kajian ini, suatu model yang dinamakan model pembahagian graf dan transformasi (GPTM) yang mengubah 
suatu graf berkait kepada rangkaian baris tunggal diperkenalkan. Transformasi tersebut diperlukan dalam aplikasi 
seperti penugasan saluran telefon kepada pasangan pemanggil-penerima merayau dalam sel dalam rangkaian selular 
atas asas masa sebenar. Suatu graf berkait kemudiannya diubah kepada rangkaian baris tunggal yang sepadan untuk 
pengagihan saluran kepada pasangan pemanggil dan penerima. GPTM bermula dengan pembahagian graf kepada dua 
subgraf berketumpatan lebih tinggi. Pelabelan optimum untuk nod kemudiannya dibentuk berdasarkan teknik simulasi 
penyepuhlindapan. Hasil uji kaji menyokong hipotesis ini bahawa GPTM mengubah graf berkait kepada rangkaian baris 
tunggal dengan cekap.

Kata kunci: Baris tunggal; graf berkait; pembahagian graf; transformasi

INTRODUCTION

Many engineering and science problems can be represented 
as a problem in graph theory. The graph represents the 
scenario of the real-life applications where the nodes in the 
graph can be treated as nodes in a network and the edges 
represent the communication links between the nodes. In this 
paper, the graph is transformed into a single-row network.
 The single-row routing problem has been shown to 
be an NP-complete problem by Ting et al. (1976). The 
optimum solution is not easy to determine. For this reason, 
Kuh et al. (1979) developed the necessary and sufficient 
conditions for an optimum single-row routing problem base 
on the work of Ting et al. (1976). A partitioning strategy 
was proposed by Tarng et al. (1984) to group the nets into 
zones which produced reasonably good solutions for some 
restricted models. Bhattacharya et al. (1988) proposed a 
new approach based on a graph-theoretic representation in 
which they relate the intervals of the single-row network 
with the overlap and interval graphs to solve the single-row 
routing problem.
 Figure 1 shows a realization in a single-row routing 
from the ordering list L = {N1, N2, N5, N4, N2}. Physically, 
each net in the single row represents a conductor path for 

its terminals to communicate. The area above the single-
row axis is called the upper street, while the below is the 
lower street. The number of horizontal tracks in the upper 
and lower streets is called the upper street congestion 
Qu and the lower street congestion Ql, respectively. The 
overall street congestion Q of a realization is defined as the 
maximum of its upper and lower street congestions, that is, 
Q = max(Qu, Ql) = 3 in the above figure. A crossing on the 
node axis, as shown through a line between nodes 4 and 
5 in the figure, is called a dogleg or interstreet crossing. 
The realization also produces two doglegs in this example. 
(Salleh et al. 2007, 2005)
 A model called enhanced simulated annealing 
technique for single-row routing (ESSR) was proposed by 
Salleh et al. (2002) to optimize the network by minimizing 
both the congestion and the number of doglegs. When the 
total energy value is minimized, congestion and number 
of doglegs are minimized as well. Based on the simulated 
annealing technique from Kirkpatrick et al. (1983), the 
energy function in ESSR is a function of the height of 
the segments of the nets in the single-row network. This 
technique has been successfully applied to produce optimal 
solutions to all net sizes.
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 The relation between a complete graph and its single-
row representation was formulated for the first time 
(Salleh et al. 2007, 2005). Both models were equipped 
with the technique of transforming a graph into a single-
row network where ESSR (Salleh et al. 2002) is applied to 
produce optimal results.
 Our present work focuses on a connected graph. 
In our previous work, a model called double simulated 
annealing (DSA) has been introduced to transform an 
arbitrary connected graph into a single-row network (Loh 
et al. 2008). DSA is the very first model which tackles the 
optimality of sequence of zones by permutated the position 
of zones using simulated annealing. In order to deal with 
a graph in general as different graphs have different 
properties, some models where each transforms a specific 
type of graph have been developed, such as perfect binary 
trees, trees, sparse graphs and connected graph with a 
number of clusters (Loh et al. 2014, 2012, 2011, 2010). As 
the order and the size of graph increase, graph partitioning 
is able to improve the results since it divides the graph 
based on the structure and the connection of the graph. A 
systematic arrangement given by graph partitioning leads 
towards better solutions.
 In this paper, a model called graph partitioning and 
transformation model (GPTM) is introduced which performs 
single-row transformation through two steps. The graph is 
first partitioned into two subgraphs with higher densities. 
The zones which correspond to the nodes in each of 
the subgraphs are then formed based on the simulated 

annealing technique to obtain the labeling for nodes. This 
model is followed by ESSR to produce an optimal single-
row network.

PROBLEM STATEMENT

The transformation problem can be stated as follows: 

How can a given connected graph G be optimally 
transformed into a single-row network S by graph 
partitioning so as to minimize the congestion and number 
of doglegs in the network? 

 The problem is illustrated in Figure 2. The figure 
shows a connected graph with the order n = 10 and its 
single-row network S. In the single-row transformation, a 
node vi in G is mapped onto di terminals in S where di is 
the degree of the node vi for i = 1, 2, …, n.
 In order to achieve optimality in S, the zones from 
each subgraph are arranged as a group in a single-row. 
For example, the graph G from Figure 2 can be partitioned 
into two subgraphs; first with nodes numbered one to five 
and second with nodes numbered six to ten with a graph 
density of 0.8 and 0.6, respectively, compared to 0.36 
given by graph G. The zones correspond to the nodes in 
a subgraph are then arranged by simulated annealing as a 
group of zones in S to reduce the congestion and doglegs 
caused by nets from different subgroup of zones. This is 
followed by ESSR for the optimal single-row network.

FIGURE 1. Terminologies in the single-row routing problem

FIGURE 2. Connected graph G (left) and its mapping into the single-row network S (right)
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GPTM: THE TRANSFORMATION MODEL

There are two main steps in the graph partitioning and 
transformation model (GPTM), namely, the linear-time 
heuristic graph partitioning to obtain two higher densities 
of subgraphs, and the formation of zones within each of 
the subgraphs. The schematic flow of GPTM is shown in 
Figure 3.

LINEAR-TIME HEURISTIC FOR GRAPH PARTITIONING

In 1970, Kernighan and Lin introduced a graph partitioning 
technique with a complexity of O(n2). Twelve years 
later, a linear-time heuristic in improving the network 
partitions was presented by Fiduccia and Mattheyses 
(1982) where one pass of an iterative min-cut heuristic 
for graph partitioning grows linearly with the size of the 
network. The advantages are avoiding unnecessary best 
node searching and the updating of nodes by each move. 
The minimization algorithm of the scheme requires O(P) 
time to complete one pass where P is the total number of 
terminals. 
 These ideas are applied in graph partitioning in GPTM. 
The aim of graph partitioning is to divide the graph into 
two subgraphs in such a way that the total interlinks are 
minimized. 
 Given a connected graph with n nodes consisting of 
m edges. Each node vi has di degree or pins for i = 1, 2, …, 
n. The structure of data involved a pair of nodes and its 
corresponding pin arrays from the sequence of edges given 
as the input. Initially, the n nodes are randomly divided 
into two partitions with a balance order followed by the 
determination of total interlinks Interi and intralinks Intrai 
every node. Each node in the partitions has a measurement 
called Gain Gi to show the decreasing of number of 
interlinks when the node vi is moved from its current 
partition to another partition. 
 Gain Gi is computed from the difference between the 
total interlinks and total intralinks of vi. The Gi is sorted in a 
list using an array, whose kth entry contains a doubly-linked 

list of free nodes with gains currently equal to k. Each of 
the partition needs such an array which is maintained by 
moving the node to an appropriate bucket whenever its gain 
is changed due to the movement of any of its neighbors. A 
bucket array is an array whose kth entry contains a doubly-
linked list of free nodes with Gi = k. 
 In order to reduce the total number of interlinks, the 
node with the highest gain is chosen based on the balance 
criterion and moved from its current partition to another 
new partition. The balance criterion used is Partition A and 
B, taking turns to allow a node to be moved alternately 
from one to another. Balance criterion is used to avoid 
the transferring of all nodes to one partition. Once a node 
is moved, the node is locked in its new partition to avoid 
an infinite loop in a pass until all of the nodes are locked 
or the balancing criterion prevents further moves. All 
nodes are then unlocked for the next pass since additional 
passes may be needed to improve the result until no further 
improvements are needed. The algorithm of linear-time 
heuristic for graph partitioning for a pass is outlined in 
Algorithm 1.

FIGURE 3. The schematic flow of GPTM
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FORMATION OF ZONES, TERMINALS AND 

INTERVALS FOR GPTM

The formation of zones represents the mapping from 
vertices in into zones in. Every in has a number of terminals 
equaling to its number of degree of vertex in. Hence, the 
total of terminals formed from to are aligned on a node axis. 
In the single-row transformation, the nodes in a partition 
or a subgraph are transformed into a group of zones on 
the node axis as shown in Figure 4. In each group of 
zones, the initial solutions for the sequence of zones are 
randomly done. The sequences of zones in both groups 
are permutated individually using simulated annealing to 
improve the results. 
 The heuristic approach formation of zones is outlined 
in Algorithm 2. In each group of zones, the initial 
solutions for the sequence of zones are randomly done. 
The sequences of zones in both groups are permutated 
individually using simulated annealing to improve the 
results.

 After the formation of zones, terminals for the zones 
are formed where each zone has terminals. All terminals 
are aligned on the node axis and numbered successively 
based on the sequence of zones. The terminals are then 
joined by the intervals (Loh et al. 2012).
 Once the nets construction process is completed, the 
nets are renumbered from their beginning terminals in 
ascending order. This step is followed by the assignment 
of each net to a unique level which represents the order of 
nets. The final step is applying ESSR (Salleh et al. 2002) to 
obtain the optimal sequence for the order of nets to produce 
a single-row network with the least congestion.

EXPERIMENTAL RESULTS AND DISCUSSION

A program has been developed based on the GPTM model 
using Microsoft Visual C++ 6.0. GPTM is applied on 
connected graphs with different orders and graph densities. 
The graphs are partitioned into two subgraphs, each with 
a higher density value than the graph. 

FIGURE 4. Transformation of nodes in subgraphs into groups of zones
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 The graphs with order n = 10 to 30 represent the 
small, medium and large data. A complete graph with 
n nodes has  m = number of edges with a unit of 
density. Hence, the density of graph is computed by the 
formula Density =  As the order of a graph increases, 
the lowest density of the graph decreases. Hence, the 
lowest density that a graph with 10 nodes can have is 0.2 
unit. 
 The transformation result is depending very much on 
the sequence of zones. However, the sequence of zones has 
no effect to complete graphs since each of the nodes are 
adjacent to each other. Hence, a high density graph (density 
of 0.7 and above) may be solved without any partitioning 
technique.
 The simulations are run and compared with the 
DSA model. The results in terms of energy values (E), 
congestion (Q) and number of doglegs (D) are summarized 
in Table 1.
 From Table 1, it is clear that the energy values are 
proportionally related to the order and density of the 
graph for both methods. GPTM gives an energy value of 
six compared to one unit from DSA for a graph order of 
ten nodes with the lowest density value. The results from 
both methods are the same for the density of graph 0.3 

which is seven units. GPTM then gives the result with five 
units more for density of graph 0.4 before it can beat DSA 
with one unit less in the next density of graph. When the 
density increases to 0.6 and 0.8, GPTM gives 86 and 219 
units of energy, respectively, while DSA gives 69 and 211 
units of energy, respectively.
 As the order of graph increases to 20 nodes, GPTM 
produces six units more energy than DSA which gives only 
two units of energy. Since then, GPTM produced better 
results than DSA by presenting 49, 213, 495, 1099, 2594 
and 8724 units of energy which are 4, 70, 107, 228, 993 
and 31 units less than DSA at a density of 0.2, 0.3, 0.4, 0.5, 
0.6 and 0.8, respectively. 
 GPTM improves the results of DSA as the order of the 
graph increases to 30 nodes. By showing six more units 
than DSA at a density of 0.1, GPTM improves the results 
of DSA by the amount of 166, 252, 881, 2117, 5654 and 
2869 each at densities of 0.2, 0.3, 0.4, 0.5, 0.6 and 0.8, 
respectively. 
 With the high density of 0.8, GPTM slightly improve the 
result compared to DSA in terms of congestion. This is due 
to the nodes labeling, which corresponds to the sequence 
of zones, of a massively dense graph has no significant 
affection to the result. Hence, the results for each order and 

TABLE 1. Results of single-row transformation for some graphs 10 to 30 with 
densities 0.1 to 0.8 by GPTM and DSA

Num.
Order of 

G, n 

Density  
of graph, 
Density

Size 
of G,  

m

Results
GPTM DSA

E Q D E Q D

1 10 0.2 9 6 2 0 1 1 0
2 10 0.3 14 7 2 0 7 2 0
3 10 0.4 18 19 4 0 14 3 0
4 10 0.5 23 31 4 4 32 5 4
5 10 0.6 27 86 7 13 69 6 12
6 10 0.8 36 219 12 32 211 12 36
7 20 0.1 19 8 2 1 2 1 0
8 20 0.2 38 49 4 6 53 5 4
9 20 0.3 57 213 9 42 283 15 42
10 20 0.4 76 495 15 86 602 15 107
11 20 0.5 95 1099 18 180 1327 26 200

12 20 0.6 114 2594 26 322 3587 31 432

13 20 0.8 152 8724 52 734 8755 55 735

14 30 0.1 44 48 5 4 42 5 3
15 30 0.2 87 342 11 60 508 14 98
16 30 0.3 131 2097 30 305 2349 35 321
17 30 0.4 174 4792 44 541 5673 50 562
18 30 0.5 218 7230 45 720 9347 48 818
19 30 0.6 261 15251 47 1497 20905 56 1686
20 30 0.8 305 93997 106 4035 96866 107 4070
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density of graphs (0.1 - 0.6) from two different methods 
are further compared by presenting Figure 5(a), 5(b) and 
5(c) accordingly. 

the nets constructed across two groups of zones and the 
degree of permutation of zones. In addition, simulated 
annealing is more effective for the lower order of graphs. 
Hence, GPTM successfully improves the results of DSA as 
the order of graph increases. 

CONCLUSION

In this paper, a new technique for transforming a connected 
graph into a single-row network has been developed 
namely graph partitioning and transformation model 
(GPTM). This model consists of two steps, namely, the 
graph partitioning and the formation of zones. 
 The given connected graph is divided into two 
subgraphs, each with a higher density of graph G compared 
to the connected graph by a linear-time heuristic of graph 
partitioning. The zones corresponding to the nodes in 
each of the subgraphs are mapped into groups of zones on 
node axis by the formation of zones. It is followed by the 
formation of intervals or nets in the single-row network. 
The simulation model, called ESSR is then applied to the 
intervals to produce an optimal single-row network by 
minimizing the energy. 
 GPTM has been tested using some different models 
of connected graphs with orders ranging from 10 to 30 
nodes and densities varying from 0.1 to 0.6. The DSA 
model has been applied to the same cases to compare the 
simulation results from GPTM. The simulations show GPTM 
is outstanding in terms of results as the order and density 
of the graph increase.
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