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A Complex Linear Regression Model
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ABSTRACT

This paper gives a comprehensive discussion on complex regression model by extending the idea of regression model 
to circular variables. Various aspect have been considered such as the biasness of parameters, error assumptions and 
model checking. The advantage of this approach is that it allows the use of usual technique available in ordinary linear 
regression for the regression of circular variables. The quality of the estimates and the feasibility of the approach were 
illustrated via simulation. The model was then applied to the wave direction data.
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ABSTRAK

Artikel ini membincangkan model regresi kompleks yang merupakan lanjutan daripada model regresi berarah. Pelbagai 
aspek dipertimbangkan seperti kepincangan parameter, andaian ralat dan pendiagnosisan kesahihan model tersebut. 
Kelebihan kaedah ini adalah ianya membenarkan penggunaan teknik sedia ada untuk model regresi linear biasa untuk 
regresi berarah. Kualiti anggaran parameter dan kebolehan kaedah ini disahkan dengan kajian simulasi. Model ini 
kemudiannya diterapkan kepada data arah ombak. 

Kata kunci: Model linear regresi kompleks; model regresi biasa; ujian Kolmogorov-Smirnov; pembolehubah berarah 

INTRODUCTION

The regression problem when both response and 
explanatory values are circular have not received enough 
attention. The circular variables are defined as one which 
takes value on the circumference at a circular, i.e. they 
are angles in range ⎣0, 2π) radian or ⎣0°, 360°). The data 
set for this circular variable are bounded closed space, for 
which the concept of origin is arbitrary or undefined. For 
this reason, the circular random variables must be analyzed 
by techniques differ from usual approach for linear or real 
line data set. Fisher and Lee (1992) suggested that when the 
distribution of these circular variables are not too dispersed, 
the regression problem can be handled satisfactorily by 
transforming the data to continuous linear variables. 
Fisher (1993) pointed out that one of the approaches is by 
using a linear function of g(.) = 2arctan(.). On the other 
hand, Hussin et al. (2004) proposed a simple regression 
model for circular variables X and Y given yi = a bxi + εi 
(mod 2π), whereεi is circular random error having a von 
Mises distribution with mean circular 0 and concentration 
parameter κ. In this paper, we proposed an alternative 
approach in analyzing the regression of circular variables 
by transforming the circular data to continuous or real 
line data set via complex form. By doing so, we can use 
techniques available for ordinary linear regression model 
for the circular case.
	 Certain assumptions need to be satisfied in regression 
analysis before we can proceed with further work such as 

forecasting and outlier detection. The regression analysis 
for circular variables has this kind of assumption too. 
If the assumption is violated, it may cause distortion in 
the modeling and consequently affecting the parameter 
estimation, outlier detection and forecasting. Hence, 
the need for model checking and assumptions are also 
indispensable for regression in circular variables. It is of 
interest to explore some of the properties imposed in this 
model, such as biasness of parameters, error assumption 
and model checking.

FORMULATION OF tHE MODEL

The two dimensional direction cosines of n observations 
(x1, y1), (x2, y2), …, (xn, yn) where 0 ≤ xj, yj<2π and j = 1, 
2, …, n can be written in complex form denoted by (cos 
x1 + i sin x1, cos y1 + i sin y1), (cos x2 + i sub x2, cos y2 + i 
sin y2), …, (cos xn + i sin xn, cos yn + i sin yn), respectively. 
Hence, the relationship between the two circular variables 
can now be described using the complex linear regression 
model which is given by

	 cos yj + i sin yj = a + b(cos xj + i sin xj) + ej,	 (1)

where ej has a bivariate Gaussian complex with mean  

and covariance respectively (Goodman  

1963). Taking the expectation of (1), we have
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	 	 (2)

	 Following Husin (1997), the log likelihood function 
is given by log L(a, b, σ2; x1, …, xn, y1, …, yn) = –n log 

(πσ2) 

	   
	
	 Differentiating log L with respect to parameters â, 
and , we may obtain
			    				     	
	 	 (3)

							        	
	 	 (4) 

	
	

(5) 
where Further, by using 
Fisher information it can be shown that the variance of 
parameter â, and are given by

	 	  (6)

and 								     
	  
	 	 (7)

	 From (1), the complex error or residual can be divided 
into two parts which are real and imaginary. The real part 
is given as

	 	  (8)

and the imaginary part is
				     			    	
	 	 (9)

	 Consequently, the normality of both real and imaginary 
residual can be tested using the Kolmogorov-Smirnov test, 
that is, we are testing for

	

H0 : ej ~ normal distribution.	  (10)

	 Other properties that will be considered in the next 
simulation section are the biasness of the parameters â, 

and of the model in (1).

SIMULATION STUDY

A simulation study is conducted to examine the normality 
of the error term in (8) and (9) as well as the biasness of 
MLE estimates â, and . We provide detailed steps to 
investigate the normality of the error term as follows:

1.	 Generate an independent von Mises distribution for 
variable xj of length n with mean  and parameter 
concentration κ = 3.

2.	 Generate another independent von Mises distribution 
for variable ej (error of the dependent variable yj) with 
mean m = 0 and parameter concentration κ.

3.	 The dependent variable 

	 yj = xj + ej	 (11)

	 is obtained by using the generated value in steps 1 
and 2, where 0 ≤ yj < 2π. Note that from (1) and (11), 
without loss of generality, we may choose the true 
value for a as 0 and b as 1, respectively.

4.	E stimate the parameters â, and , followed by the 
Kolmogorov-Smirnov normality test for ej

Re and ej
Im.

5.	 Repeat the above steps for 1,000 times. The following 
calculation were obtained:
(a)	E stimated bias of where 

since the true value of parameter a is equal to 0.
(b)	E stimated bias of where 

since the true value of parameter b is equal to 1.
(c)	E stimated mean, 

6.	 The proportion of null hypothesis acceptance at   10%, 
5% and 1% significant levels for  ej

Re and ej
Im were 

calculated, respectively.

	 Table 1 gives the bias for â, and when we vary 
the sample size n and parameter concentration k. Three 
main points can be observed from the results. Firstly, the 
estimated bias for a was consistently small for all different 
sample size n and parameter concentration  k. Secondly, the 
estimated bias for b decreased as parameter concentration 
k increased. Note that in von Mises distribution, a large 
value of parameter concentration  k corresponds to small 
dispersion of circular data set, in contrast to normal 
distribution for linear or real line data set. The estimated 
mean of decreased as parameter concentration k 
increased. A large parameter concentration k signifies a 
small dispersion of the error ej. Thus, the estimated mean 
of is expected to be small if the dispersion of the error 
is also small.
	 The performance of the Kolmogorov-Smirnov test for 
the real and imaginary error parts are presented in Tables 
2 and 3, respectively. The tables give the proportion of 
an accepted null hypothesis at three significant levels for 
different sample size n and parameter concentration k. 
For instance, in the third row of Table 2, the proportion of 
accepted null hypothesis at 10% significant level is 0.998 
when small sample size n = 30 is used.
	 This shows that 9% out of the 1,000 simulated error 
term follows normal distribution. Similar trend can be seen 
in both tables. The proportion of accepted null hypothesis 
increased as sample size n increased. Even at the lowest 
1% significant level, almost 100% of the error terms 
follow normal distribution. Another noticeable feature is 
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that the proportion increases as parameter concentration  k 
increased. When k = 30, all real and imaginary error parts 
follow normal distribution even though the sample size n 
is small.
	 By looking at the above results, both real and imaginary 
error terms follow a Gaussian complex distribution. Thus, 
simulation study agrees with normality assumption made 
on the error term in complex linear regression model.

APPLICATION OF THE MODEL

We used the wave direction data to illustrate the complex 
linear regression model. The data were collected along the 
Holderness Coastline of the North Sea, United Kingdom 
by using the radar and anchored wave buoy. There were 
56 measurements in radian recorded over the period of 2 
months (January and February 1994).
	 Our aim was to find a relationship between the radar 
(x) and anchored wave buoy (y) in measuring the wave 
direction. We fit the data to the model in (2). Table 4 
gives the parameter estimation for the wave direction data 
together with their expected standard error. The estimated 
relationship for wave direction data is given as

	 	 (12)

	I t is clear that the value of â and are close to 0 and 
1, respectively and the estimate of  is 0.0351. This 
indicates that the direction taken using radar and anchor 
wave does not differ much. Further, the estimation for the 
three parameters appear to be good as they have small 
standard errors of 0.01772 for â and , and 0.00016  for 

.

TABLE 1. Simulation results for estimated bias of a, estimated bias of b and estimated mean of  

Estimated bias of a Estimated bias of b Estimated bias of  

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

k = 15 -0.0002 -0.0012 -0.0006 -0.0341 -0.0334 -0.0333 0.0659 0.0661 0.0657
k = 30 -0.0008 0.0004 0.0008 -0.0161 -0.0170 -0.0173 0.0323 0.0326 0.0331
k = 50 0.0017 -0.0001 0.0001 -0.0111 -0.0100 -0.0101 0.0193 0.0198 0.0199

TABLE 2. Kolmogorov-Smirnov test for error term (real part)

10% 5% 1%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

k = 15 0.998 1.000 1.000 0.990 1.000 1.000 0.940 0.995 1.000
k = 15 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000
k = 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 3. Kolmogorov-Smirnov test for error term (imaginary part)

10% 5% 1%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

k = 15 0.998 1.000 1.000 0.992 1.000 1.000 0.969 0.998 1.000
k = 15 1.000 1.000 1.000 0.999 1.000 1.000 0.995 1.000 1.000
k = 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. Parameter estimation for wave direction data

Parameter Estimate Standard Error

 a 0.08442 0.01772
b 0.9789 0.01772

 0.0351 0.00016

	 Further, model checking is performed to verify the 
error assumption in (10). The quantile-quantile normal plot 
for real and imaginary error parts are given in Figures 1 
and 2 respectively. Both plots suggest that the errors follow 
normal distribution. Hence, the assumptions are satisfied 
and the model in (12) is the regression model which best 
represent the relationship between wave direction that has 
been measured by radar and anchored wave buoy.
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CONCLUSION

This paper suggests a regression of circular variables via 
complex form which allow us to use the available and usual 
techniques as in ordinary linear regression for regression 
of circular variables. It is shown that this method is simple 
and also give the closed-form expression for the parameter 
estimates.
	 Based on the simulation studies, we conclude that the 
proposed approach give a feasible and effective estimation 
of parameters and the imposed assumption. These are 
useful in particular for comparison studies involving 
circular data. We applied the proposed model to the 
problem of assessing radar measurements of wave data 
using two different techniques. The parameter estimation 
and model checking suggests a good picture at the quality 
of the complex linear regression model involving circular 
data.
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FIGURE 1. Quantile-quantile normal plot for the 
real residual part

FIGURE 2. Quantile-quantile normal plot for the imaginary 
residual part


