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ABSTRACT

Plant tissue culture uses the genetic potential, or totipotency, of plants to regenerate and give rise to a whole plant. Tissue
culture-derived plants are expected to have identical genetic material to the parent, and thus can serve as an effective tool for
controlled, mass clonal propagation. However, somaclonal variation has been observed in plant tissue culture due to either
point mutations, transposition activity of mobile genetic elements, chromosomal rearrangements, or ploidy level changes,
causing genetic instability. Tissue culture-induced mutations associated with transposable element activities have been reported
from many plant studies, related to stress conditions during tissue culture such as wounding, exposure to hormones and/or
specific compounds in the growth media, and genomic shocks from cytological changes. Transposable elements are repetitive
DNA fragments with the ability to transpose from one region to another within a genome. Mutations that may occur during
plant tissue culture suggest that the plantlets have to be regularly monitored. Methyl-sensitive transposon display (MSTD) is
an advanced, efficient DNA fingerprinting technique that can simultaneously detect genetic variation, changes in transposable
element insertion sites and the status of cytosine methylation of DNA in plant genomes. The main principles and notes for
application of MSTD such as design of element-specific primers, identification of transposable element sequences in plant
genomes, selection of the isochizomer enzymes used, and different classes of banding pattern shown are briefly discussed
based on our preliminary work with Nicotiana benthamiana (Tnt1 retroelement) and Musa acuminata (Copia-33 Mad-I
retroelement) examples.
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INTRODUCTION

Plant tissue culture, also known as plant cell, sterile,
axenic or in vitro culture, is a technique of growing
plant cells, tissues or organ in an artificial gel or
liquid media supplemented with nutrients, vitamins
and plant growth regulators under controlled and
sterile conditions (Singh and Kumar, 2009). Plant
cells possess sufficient genetic potential to be
able to regenerate and give rise to a whole plant
(totipotency) – making plant tissue culture an
important method in plant biotechnology studies as
well as having commercial applications (Thorpe,
2007). Originally proposed by Gottlieb Haberlandt
in 1902, single cells were predicted to regenerate

into a complete and functional plant (Krikorian and
Berquam, 1969), this hypothesis of totipotency
was first proved using tobacco cells (Vasil and
Hildebrand, 1965) and later using tobacco
protoplasts to regenerate a new plant (Takebe et
al., 1971).

Plants grown via tissue culture are expected to
have identical genetic material to the parent and
thus, keep their intrinsic characteristics. This
method of establishing genetically identical clones
from an organism’s tissue, capable of generating into
a complete plant is known as clonal propagation
or micropropagation (Vizel et al., 2010). Micro-
propagation has been extensively used for the
multiplication and growth of many plants in
horticulture and agriculture, ranging from wild
species such as orchids, ferns, carnivorous plants,
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medicinal plants, woody plants, and cultivated
crops (Fay, 1992; Debnath et al., 2006; Gatica-Arias
et al., 2008; Dam et al., 2010; Vergara-Galicia et
al., 2010; Paek et al., 2011). Main advantages
associated with micropropagation include the large
number of homogenous and genetically stable
plants that can be produced under sterile condition,
relative ease of controlling the environmental and
nutritional conditions and rapid production of new
varieties (Dobránzski and Texeira de Silva, 2010).
Two commonly used methods in micropropagation
include organogenesis and somatic embryogenesis
(Rout et al., 2006). These techniques share similar
main aims of enhancing the rate of multiplication
of regenerated plants and the production of disease
free plants (Eka et al., 2005).

Mutation leads to phenotypic, genetic variation
and genome instability

Plant tissue culture can be seen as an effective
tool for the large scale, controlled production of
plant material and represent an option for mass
clonal propagation (Chandrika and Rai, 2009). Even
though plant tissue culture provides many
advantages, one major drawback associated with it
is mutations that can cause phenotypic and genetic
changes i.e. somaclonal variation. Mutations can
cause phenotypic alteration, genetic variation and
genome instability among the regenerated plants
from a single donor clone. Possible mechanisms that
may cause a mutation to occur during the tissue
culture process are under the controls of genetic and
epigenetic systems where it can affect the genetic
and genome stability of the plant (Temel et al.,
2008). Somaclonal variation may arise due to point
mutations, the activation of mobile genetic
elements, chromosomal rearrangements, or ploidy
level changes (Jaligot et al., 2000). Any genetic
changes induced by tissue culture condition will
probably produce a plant with unique heritable
characteristics (Soniya et al., 2001). Even though
the resulting mutant phenotypes of the plants (e.g.
alteration in leaf shape, dwarfing, and other changes
in growth habit) are unique compared to the mother
plant, they are not normally deemed useful in
micropropagation or for crop improvement (Evans,
1989).

Mutations are induced by specific components
of culture medium where the unnatural condition
and environment, and hormone supplemented in the
media can generate spontaneous and heritable
genetic changes due to a “shocking” experience of
isolation. Rates of genetic instability (mutations) are
dependent on the type and quantity of the plant
growth regulators, such as auxin, cytokinin and
abscisic acid in the media (Michiba et al., 2001),
the duration of the regenerated plant in the culture
(Fras and Maluszynska, 2004) and the degree of

endopolyploidy of the explants (Nontaswatsri
and Fukai, 2005). Typically, high number of
subcultures, exposure to high concentration of
plant growth regulators and long term culture are
factors that can result in mutations (Marum et al.,
2009). Epigenetic changes are not due to sequence
modification and chromosomal aberration (Akimoto
et al., 2007). Tsaftaris et al. (2005) defined
epigenetic changes as “all meiotically and
mitotically heritable changes in gene expression
that are not coded in the DNA sequence itself”. This
aspect commonly occurred when the plants are under
stress conditions – in tissue culture environments
such as prolonged culture time and exposure to plant
growth regulators (Vázquez and Linacero, 2010).
One interesting source of genomic instability is
linked to the activation of transposable elements
that might be responsible for tissue-culture induced
mutation (Momose et al., 2010; Karajol and Naik,
2011; Bui and Grandbastien, 2012).

Activation of transposable elements during plant
tissue culture

Mobile genetic elements or transposable
elements (TEs) are repetitive DNA fragments that
have the ability to move or transpose from one area
to another area within a genome (Lisch, 2009).
Transposable elements contribute to the size of plant
genomes; for example, in certain species of grass,
they may comprise of 50% up to 80% of the genomes
(Meyers et al., 2001; Piegu et al., 2006; Dooner and
Weil, 2007; Macas et al., 2007). Shirasu et al. (2000)
reported that about 40% to 70% of the total DNA
content of crop plants may be made up of repetitive
elements, and it was reported that a correlation
exists between the evolution of LTR retro-
transposons and genome size (Zedek et al., 2010).
Transposable elements may greatly impact host
genomes by causing mutations when they transpose
into or near a gene (Chen et al., 2005). They can
alter expression of a nearby gene by operating as
promoters, silencers, enhancers, or act as targets
of epigenetic modification and other alternative
splicing events (Kazazian, 2004; Bui and
Grandbastien, 2012). They can also serve as
locations for homologous recombination, resulting
in chromosomal rearrangements such as deletions,
inversions, duplications or translocations due to
high, repetitive copies of integrated elements
(populations of the same family of elements) existing
in the genome (Devos et al., 2002; Kolomietz et al.,
2002; Bailey et al., 2003; Sen et al., 2006).

Generally divided into two classes based
mainly on their transposition intermediates,
retrotransposons (also known as Class I elements)
are elements which move via an RNA intermediate
while DNA transposons (or Class II elements)
directly transpose in the form of DNA (Feschotte et
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al., 2002; Todorovska, 2007). Retrotransposons
represent a substantial percentage of eukaryotic
genomes as they transpose by a “copy and paste”
mechanism catalyzed by reverse transcriptase and
endonuclease (EN) domains of a polyprotein
encoded by themselves or by other retrotransposons
(Collier and Largaespada, 2007). Based on their
structure, retrotransposons can be further divided
into two major types – elements that are flanked by
long terminals repeats (LTRs) and non-LTR
retrotransposon. Non-LTR retrotransposons are
divided into long interspersed nuclear elements
(LINEs) and short interspersed nuclear elements
(SINEs) (Feschotte et al., 2002; Karajol and Naik,
2011). LINEs are autonomous retrotransposons that
encode the enzymatic machinery required for their
propagation (Ostertag and Kazazian, 2001) while
SINEs are non-autonomous and require the
enzymatic machinery of LINE elements for
retrotransposition (Lenoir et al., 2001; Ostertag et
al., 2003).

In general, DNA transposons move only as DNA
from one genomic area to another and can be
deleted precisely though at a relatively low
frequency (Huang et al., 2008). Mobility of these
elements is performed by a “cut-and-paste”
mechanism using an element encoded transposase
(TPase) (Arkhipova and Meselson, 2005). However,
more recent work interestingly revealed that DNA
transposons may be further divided into three major
classes which consist of (i) “cut-and-paste” DNA
transposons, (ii) rolling-circle DNA transposons or
Helitrons, which were found to use a replicative
transposition mode and (iii) self-synthesizing DNA
transposon or Polintons. DNA transposons are
characterized by a superfamily-specific transposase
core which differs between superfamilies (Kapitonov
and Jurka, 2008). DNA transposons are also
distinguished by terminal inverted repeats (TIRs) at
their extremities and similar to retroelements, both
classes of elements form target site duplication
(TSDs) during insertion (Wicker et al., 2007). Upon
transposition, the TIRs are identified by the DNA-
binding domains of TPases and this element usually
excises from one location and reinserts into
elsewhere in the genome (Chandler and Mahillon,
2002). Both class I and II transposable elements
have been found to contain autonomous and non-
autonomous elements, whereby autonomous
elements have open reading frames (ORFs) that
encode the products required for the whole process
of transposition. Non-autonomous elements require
the presence of an active autonomous element in
order to move since they have no significant coding
capacity (Lisch, 2009).

During the process of plant tissue culture,
transposable elements have been found to be a
significant source of mutations and their activities

can be influenced (silenced) by some epigenetic
mechanisms due to changes in the environment and
culture condition (Gaut and Ross-Ibarra, 2008).
Tissue culture stress is related to wounding during
the isolation of explants, exposure to hormones and/
or specific compounds in the growth media during
in vitro cell culture or tissue culture. All these
factors may activate transposable elements and
result in changes in their copy numbers (Melayah
et al., 2001; Kubis et al., 2003; Bui and
Grandbastien, 2012). Due to the (potential) highly
mutagenic impact of TE activities, it is known that
host plants have evolved different epigenetic
mechanisms to regulate element activity. These
mechanisms include transcriptional silencing via
DNA methylation, histone modification and
alterations in chromatin packing and condensation,
as well as post-transcriptional silencing of elements
by the RNAi pathway, and the more recently
described transposon - derived small interfering (si)
RNAs and RNA directed DNA methylation (RDRM)
and histone modification to suppress transpositional
activity (Martienssen and Colot, 2001; Lippman and
Martienssen, 2004; Matzke and Birchler, 2005;
Slotkin and Martienssen, 2007; Ito 2012, 2013).

In plants, DNA (CpG) methylation have been
reported to normally repress transpositional activity
of diverse transposons, and studies comparing
transcriptional and transpositional activities of
elements (Evade, ONSEN), using methylation and
siRNAs mutants also demonstrated regulation of
transposable elements via RNAi-mediated chromatin
modifications (Mirouze et al., 2009; Ito et al., 2011).
Therefore, normal epigenetic program and re-
patterning that may not be established properly in
regenerated plants could lead to activation of
transposable elements due to hypomethylation in
tissue culture conditions (Kaeppler et al., 2000).
However, it is interesting to note that exceptions
have been detected, whereby CpG methylation
instead elevated transpositional activity of certain
elements (Sleeping Beauty, Frog Prince and Minos)
of the Tc1/mariner superfamily (Yusa et al., 2004;
Ikeda et al., 2007; Jursch et al., 2013). It was also
proposed that chromosome breakages that
sometimes occurred in tissue culture induce
genomic shock which in turn activates the
transposable elements, though the main cause of
chromosome breakage in plant tissue culture is still
unclear but may be related to changes in DNA
methylation pattern resulting in chromosome
bridges and breakage (Kaeppler et al., 2000).

Tissue culture-induced mutations associated
with transposable element activities have been
reported in many plant species - various studies have
reported that in vitro tissue culture can activate
transposable elements such Ac in maize (Brettell
and Dennis, 1991), Tto1 in Nicotiana tabacum
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(Hirochika, 1993), Tos17 (Miyao et al., 2003) and
Lullaby (Picault et al., 2009) in Oryza sativa, Tnt1
in Medicago truncatula (d’Erfuth et al., 2003), and
Rtsp-1 in Ipomea batatas (Tahara et al., 2004).
Hirochika et al. (1996) originally showed that Tos
retrotranposons were inactive in normal plants but
increased in transcription during tissue culture.
Kikuchi et al. (2003) observed the activation of
MITEs (mPing) during anther culture of rice, which
led to transpositions into new gene locations.
Interestingly, Huang et al. (2009) reported
transposition of nDaiZ9 was activated in most of the
samples upon treatment with a DNA methylation
inhibitor (5-azaC). Another study suggested that
prolonged tissue culture is needed for more
transposition of Tos17 in rice tissue culture leading
to more and severe gene mutations (Kuan et al.,
2010). Kour et al. (2009) showed that transposable
elements had been activated in callus regenerated
plants bearing the B chromosome of Plantago
lagopus, and deduced that activation of
transposable elements was highly related to the
condition in tissue culture since there were no
changes in the B chromosome of the mother plant.
Recently, microarrays and next generation
sequencing (NGS) analysis detected genome-wide
activities of transposable elements in tissue culture
and suspension cells of Arabidopsis thaliana
(Tanurdzic et al., 2008) and tissue culture derived
plants of Oryza sativa (Picault et al., 2009; Sabot
et al., 2011; Miyao et al., 2012).

An advanced molecular marker technique to
detect genomic instability: Methyl-Sensitive
Transposon Display (MSTD)

Mutations that may occur during plant tissue
culture suggest that the plantlets have to be
regularly monitored. Various molecular marker
techniques are available for use to detect somaclonal
variation. Most of the molecular marker techniques
involve amplifications of genomic DNA with short
random or specific primers. For example, tissue-
culture induced mutations of different plant tissue
cultures have been screened using Random
Amplified Polymorphic DNAs (RAPD) (Eshraghi et
al., 2005; Rasheed et al., 2005; Qin et al., 2007;
Venkatachalam and Sreedhar 2007; Sianipar et al.,
2008; Elmeer et al., 2009), Amplified Fragment
Length Polymorphism (AFLP) (Pontaroli and
Camadro, 2005; Puente et al., 2008; Chuang et al.,
2009), microsatellite markers or simple sequence
repeats (SSR) (Morgante et al., 2002; Lopes et al.,
2006; Burg et al., 2007), Sequence-Specific
Amplified Polymorphism (SSAP) (Venturi et al.,
2006; Du et al., 2009; Wegscheider et al., 2009) and
Methyl-Sensitive Amplified Polymorphism (MSAP)
(Peraza-Echeverria et al., 2001; Jaligot et al., 2004;

Lu et al., 2008). Recently, another modified
advanced method called Methyl-Sensitive
Transposon Display or MSTD (Figure 1a), was
shown to be useful for detecting genetic variation,
changes in transposable element banding pattern
and DNA methylation all in one technique (Parisod
et al., 2009).

Methyl-sensitive transposon display (MSTD) is
actually a combination method of MSAP (Reyna-
Lopez et al., 1997) and Sequence Specific
Amplification Polymorphism (SSAP), which is
highly similar to Transposon Display (Casa et al.,
2000; Syed and Flavell, 2007). Both MSAP and
MSTD are efficient DNA fingerprinting methods to
detect the conditions of large scale cytosine
methylation (status) in plant genomes, and
differences in the banding patterns rapidly reveal
and identify changes in methylation between the
genomes of the sampled plants. In addition, MSTD
is also able to provide information on epigenetic
(methylation status) of adjacent regions and
population dynamics (copy numbers) of transposable
elements (TEs) insertions (Zerjal et al., 2009). The
MSTD technique relies on primer(s) anchored at TE
extremities to specifically amplify digested genomic
DNA of the insertion sites of TEs and therefore, this
technique can be used to comparatively evaluate the
copy number of TEs. An amplified fragment will
consist of sequences of part of the element, and the
genomic sequence adjacent to the border of the
element - and this varies in length according to the
location of the nearest restriction site on the
genomic DNA (de Setta et al., 2007; Parisod et al.,
2014). Results from MSTD are also useful to
potentially provide information on the impact of
TE insertions on the genome since certain elements
such as retrotransposons are widely distributed
throughout the genome (Miyao et al., 2003) and
can give insights to improve our understanding,
predict and possibly track genomic evolution due
to transposition events (Mandal et al., 2006).
Parisod et al. (2009) performed a study in Spartina
using three elements, namely Ins2, Cassandra and
Wis-like, which were mostly shared by both parents
and hybrid plants. Their results found that CpG
methylation and major structural changes have
occurred near the TE insertion sites and thus caused
alterations in the plant genome following inter-
specific hybridization and/or genome duplication.

At present, a limited number of studies have
been performed to detect genomic instability that
may have occurred during plant tissue culture of
Malaysian crops. Perhaps one main hindrance is the
design of element-specific primers, which requires
existing DNA sequence information of well-
characterized elements. Nowadays, however, many
genomics studies using the application of high-
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throughput sequencing technologies have been
performed resulting in abundant information on
genomic sequences for many crop genomes (for
example, see Plant Genomes Central at National
Center for Biotechnology Information (NCBI) for
current list of plant genomic projects, @ http://
www.ncb i .n lm.n ih .gov /genomes /PLANTS/
PlantList.html). Available full genome sequence
information (datasets) have even been exploited to
develop a method that can predict the transposon
insertion display banding pattern of a given
transposable element primer (Le and Bureau, 2004)
so designed primers can be tested virtually before
being applied in MSTD. In addition, there is an
existing site hosting the Plant Repeat Databases
(h t tp : / /p lan t repea t s .p lan tb io logy .msu .edu /
about.html), created to assist in the compilation and
identification of repeat sequences in plant genomes
whereby repetitive DNA sequences of selected plant
genera are regularly queried and compiled from
GenBank and other published records (Ouyang and
Buell, 2004).

Our own preliminary work testing MSTD on the
model plant Nicotiana benthamiana and a crop
plant, banana (Musa acuminata) showed that it was
relatively easy to adopt the MSTD protocol. The
primer used for Nicotiana was based on the well-
studied tobacco retroelement Tnt1, which is one of
the few active retrotransposons in plants (Melayah
et al., 2001). Transposition of this element has been
shown previously to be activated during protoplast
culture in tobacco and tissue culture in the
heterologous hosts Arabidopsis thaliana and
Medicago truncatula during the early steps of the
in vitro transformation-regeneration process
(Grandbastien et al., 1998; d’Erfurth et al., 2003).
Sequences used to generate a retroelement primer for
Musa acuminata were directly obtained from NCBI
whereby a quick search revealed the availability of
a large Bacterial Artificial Chromosome (BAC) clone
sequence (AC226035). The program Repeat Masker,
Genetic Information Research Institute (GIRI)
(Kohany et al., 2006) identified several transposable
elements of which one was named Copia-33 Mad-I,
similar to copia elements from Malus domestica.
The primer used was then designed using Primer3
Input version 0.4.0 (Rozen and Skaletsky, 2000),
positioned facing outwards on the long terminal
repeat (5’ LTR) sequence of the Copia-33 Mad-I
retrotransposon element.

Our test application of MSTD on Nicotiana
(normal and mutant phenotype “grassy”) and
banana tissue cultured plantlets (normal and mutant
phenotype “cabbage-like”) with the Tnt1 and
Copia-33 Mad-I primers respectively produced
results as shown in Figure 1(b) and 1(c). Results
demonstrated banding pattern differences between

the normal and mutant plantlets in both the
Nicotiana and banana samples (Azman, 2011).
Polymorphic bands can be seen between normal and
mutant plantlets, as well as between the samples
digested by MspI and HpaII, by the disappearance
and appearance of bands, indicating differences in
DNA methylation pattern occurring near the
retroelement insertion sites or element activity, in
both normal as well as mutated plants. In addition,
the MSTD gel results also demonstrated that the
genome of banana contained many copies of Copia-
33 Mad-I, suggesting that this retrotransposon might
be present in high copy number and thus possibly
play a role in the evolution of the banana genome.

A notable step in the MSTD technique which
could influence the success of the analysis is
selection of the isochizomer enzymes used for
detection of methylation status. Isochizomers MspI
and HpaII have been widely used for methyl-
sensitive displays since these are frequent cutters
compared to other isochizomer enzymes such as
MseI and Taq1 (Takata et al., 2007). Both MspI and
HpaII recognize the same tetranucleotide sequence
of 5’-CCGG-3’ but have different sensitivity to
methylation (Krauss et al., 2009). HpaII activity is
blocked when either internal or external cytosine is
fully methylated (both strands) while MspI is only
blocked when the external cytosine is fully
methylated or in a rarer case, when the sequence is
hemi-methylated (Xiong et al., 1999). Different
levels of methylation of the internal cytosine will
result in different cutting by the restriction enzymes
thus generating uneven PCR bands between two
digests (Zerjal et al., 2009). Hence, the quality of
extracted genomic DNA (gDNA) used for the
digestion process is an important aspect to
ensure the success of the protocol. Significant
contamination occurring in the gDNA samples may
affect the ability of the restriction enzyme to
digest the gDNA as the presence of proteins,
polysaccharides and/or polyphenols may interfere
with restriction enzyme activity during the
digestion process, as well as Taq polymerase
activity during PCR amplification (Angeles et al.,
2005).

The MSTD analysis can provide a powerful
technique to investigate genomic changes around
transposable elements that occurred during the plant
tissue culture process. Three classes of bands may
be identified from the polyacrylamide gel
electrophoresis (PAGE) results – the first class
represent un-methylated bands, present in both
MspI- and HpaII- digested gDNAs; a second class
with presence of bands in gDNA digested with MspI
but missing in HpaII digested gDNA, representing
methylated sequences and a rare third class of bands
present in HpaII digested gDNA but missing from
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Fig. 1. (a) Schematic representation depicting the principle of methyl-sensitive transposon display (MSTD) adapted from
Parisod et al. (2014). Digestion of genomic DNA with methylation sensitive isoschizomers (such as MspI and HpaII) is
followed by digestion with a frequent cutter such as EcoRI, and then adaptors are ligated to the DNA fragments. PCR
amplification using a specific transposable element anchored primer with the complementary adaptor primer will generate
bands that are separated by polyacrylamide gel electrophoresis. (b) An example of MSTD profiles generated by using the
restriction enzymes MspI (C2 and C3) and HpaII (C2’ and C3’) of tissue culture-derived samples of normal (C3) and
mutant “grassy” (C2) Nicotiana benthamiana. (c) Preliminary example of MSTD profiles generated by using the restriction
enzymes MspI (2.1, 2.3 and 3.3) and HpaII (2.1’, 2.3’ and 3.3’) of tissue culture-derived samples of normal (2.1) and
mutant “cabbage” (2.3 and 3.3) Musa acuminata.

(a)

(b) (c)
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the MspI digested gDNA – these bands might
indicate hemi-methylation of the external cytosine
(Zerjal et al., 2009; Parisod et al., 2014). Presence
of a specific band from a selected sample may
correspond to either a transposition event or de-
methylation of the area near a TE insertion.
However, CpCpG methylation on both DNA strands
prevents the enzymes from digesting the DNA,
therefore, this technique does not perform well in
regions of the genome that are heavily methylated.
An absence of a band may signify a change in TE
insertion or increased levels of methylation and this
should be recognized during interpretation of the
MSTD profiles (Parisod et al., 2014). Protocol
adjustments and further explanations to aid the
interpretation of the banding patterns produced by
the MSAP method, which is similar to MSTD, is
available for samples that display difficult, complex
patterns (Fulnec

�
  ek and Kovar

�
 ík, 2014).

CONCLUSION

The occurrence of mutations during plant tissue
culture can be a problem as it leads to plant genomic
instability. As a result, the plantlet will possess
somaclonal variation and may display different
phenotypes from the mother plant. Studies which
can offer insights into the causes of mutations are
important in order to better understand the types of
mutation that may happen during the in vitro process
so that improvement on the procedure can be done
to reduce the number of mutants. Transposable
elements constitute a large fraction of repetitive
regions in plant genomes and its mobilization affect
the evolution of current genomes. Tissue culture
conditions have been observed in many plant
studies to induce transposable element activities,
making elements a source of mutations during tissue
culture. An advanced molecular marker technique
such as MSTD has not only been proven efficient
for the detection of genomic changes in mutant
plants and able to detect the complexity of DNA
methylation changes during plant development, it
also offers an opportunity to study the effect(s) of
transposition of TEs by examining insertions
potentially associated with specific phenotypic
changes of the plant. As a start, this can be done as
unique or specific MSTD bands can be isolated,
cloned and sequenced in order to discover the
affected DNA regions in the host plant. Further
genetic studies can then be performed to follow the
inheritance (segregation) of the specific marker with
the phenotype to confirm the genotype-phenotype
association.
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