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ABSTRACT

Somatic embryogenesis is an illustration of plant totipotency. There are many factors involved in causing development switching
during somatic embryogenesis. These include combination of plant growth regulators, media, pretreatments and culture
environments, which relate to various molecular events encompassing gene expression and signal transduction pathways.
The present review collates information on various aspects of somatic embryogenesis focusing on genes involved, proteins
and metabolites that have been identified during the last few years. Future work on integrating various data on somatic
embryogenesis using the computational or systems biology approach is suggested.
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INTRODUCTION

There are three ways to induce embryo development
from in vitro cultured plant cells; i.e. in vitro
fertilization, from microspores and in vitro somatic
embryogenesis (SE) (Féher et al., 2003). In vitro SE
can develop either indirectly, that is through callus
(indirect SE) or directly from the explant without
any intermediary callus formation (direct SE)
(Solis-Ramos et al., 2012). The direct or indirect
embryogenesis depends on culture conditions,
explant source, tissue and stage of development of
the explant materials (Carman, 1990). The direct or
indirect embryogenesis is plant specific. Some
species easily go through the direct somatic
embryogenesis while others need more treatment to
be embryogenic (Von Arnold et al., 2002).

Somatic embryogenesis (SE) is the process by
which somatic cells, under induction, generate
embryogenic cells via a series of morphological and
biochemical changes (Quiróz-Figueroa et al., 2006).
Plant cellular totipotency where individual somatic
cells can regenerate into a whole plant makes SE
possible. SE has been reported in many plant species
since the first report on carrot by Steward et al.,
(1958a, 1958b). The requirements for SE e.g.
combination of plant growth regulators, media,
pretreatments and culture environments, are
according to species, genotype and culture
environment (Féher, 2008; Jalil et al., 2008). The

process of somatic embryogenesis is expected to
follow the stages in the zygotic embryogenesis
process, where the globular, heart and torpedo shape
stages are successively observed (Zimmerman,
1993).

Somatic embryos originate by two pathways; i.e.
unicellular or multicellular (Quiroz-Figueroa et al.,
2006). When embryos have a unicellular origin,
coordinated cell divisions are observed and the
embryo is sometimes connected to the maternal
tissue by a suspensor-like structure (Williams and
Maheswaran, 1986). In contrast, multicellular-origin
embryos are initially observed as a protuberance,
with no coordinated cell divisions observable, and
those embryos in contact with the basal area are
typically fused to the maternal tissue (Quiroz-
Figueroa et al., 2006).

SE produces a higher number of regenerates
compared to organogenesis. Organogenesis is a
process of cell differentiation to form organs such
as leaves, stem or roots. A group of differentiated
cells are required to form these organs. In contrast,
only a single cell from embryogenic callus is needed
for induction of a somatic embryo. SE also contains
a low frequency of chimeras, a high number of
regenerates and a limited level of somaclonal
variation (Ahloowalia, 1991; Henry, 1998). Hence,
it is a more preferred system for genetic
transformation, in vitro mutagenesis and selection.
Somatic embryos are also being used for
management and conservation of genetic resources
using cryopreservation techniques for they give an
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appreciably higher rate of multiplication compared
to any other clonal propagation systems (Sharma,
2005).

FACTORS INFLUENCING SOMATIC
EMBRYOGENESIS

Gaj (2004) reviewed factors that influence the
initiation of somatic embryogenesis in plants. These
include genotype, type of plant, age and
developmental stage of an explant, physiological
state of an explant-donor plant, and the external
environment that includes composition of media and
physical culture conditions (light, temperature). The
selection of medium is also an important issue,
however MS (Murashige and Skoog, 1962) medium
is widely used for the induction of embryogenic
callus in many species (Singh et al., 2004).
Endogenous hormone levels can be considered as
major factors in determining specificity of cellular
responses to rather general stimuli such as
wounding, high salt concentration, heavy metal ions
or osmotic stress (Fehér et al., 2003; Jime'nez, 2005).
Exogenous application of plant growth regulators
in particular auxins and cytokinins has shown that
they play an integral role in dediffentiation process
during SE (Dudits et al., 1995; Elhiti et al., 2013).

External stimuli such as plant growth regulators
have been most frequently considered to generate
somatic embryos. This is particularly so with 2,4-
dichlorophenoxy acetic acid (2,4-D) for induction
of embryogenic response. It was suggested by Gaj
(2004) that this synthetic growth regulator appear
to act not only as an exogenous auxin analogue but
also as an effective stressor. 2,4-D plays an important
role in cell division and differentiation (Fehér et al.,
2003) which has been demonstrated in many
experiments for examples, Arecha catachu (Wang
et al., 2006), Psidium guajava cv Banarasi local (Rai
et al., 2007), oil palm (Scherwinski-Pereira et al.,
2010) and Arabidopsis (Elhiti et al., 2010). Other
auxin, for example indole acetic acid (IAA) and
α-naphthaleneacetic acid (NAA) are also able to
induce somatic embryogenesis. NAA alone induces
somatic embryogenesis in Solanum melongena
(Swamynathan et al., 2010). According to Dudits
et al. (1995), the mechanism of action of auxin in
physiological and regulatory processes is related to
the presence of protein receptors located in the
membrane, cytoplasm and nucleus. There is, in the
latter the activation of RNA-polymerase, which is
specific to the transcription of genes involved in the
regulation of cell division. In other words, auxin is
necessary for “competent” cells to express
totipotency. However, the removal of auxin is
necessary in the obtaining somatic embryogenesis

of litchi after callus induction in the medium of
high auxin (Yu et al., 2000). Auxin is proven to
inhibit the differentiation process when not removed
from the culture medium of Lilium longiforum
(Nhut et al., 2006).

Although cytokinin normally promotes cell
division, combinations with auxin are suitable for
some species to induce somatic embryogenesis
(Mashayekhi et al., 2008; Mahendran and Bai,
2012; Sane et al., 2012). Although in a very rare
case, combination of thidiazuron (TDZ) and BAP
are possible options in inducing somatic embryo-
genesis. This can be seen in the case of somatic
embryogenesis in mangosteen (Rohani et al., 2012).
Meanwhile, a combination of 2,4-D with dicamba
(3,6-dichloro-2-methoxybenzoic acid) has been
shown to be successful in Areca catachu (Wang et
al., 2006).

Generally, SE involves induction, maturation
and germination/conversion. Low efficiency of
embryo maturation, germination and conversion to
plantlets is a major problem in the completion of
somatic embryogenesis (Vahdati et al., 2008). The
maturation step is a process in which the
embryogenic callus will transform and differentiate,
usually indicated by differentiation of callus into a
heart shape structure, at which step, abscisic acid
(ABA) has been found to be effective to promote
maturation of the embryogenic callus in many plants
(Misra, 1994). Exogenous ABA has been used in a
wide range of 1-100 μM during the maturation
process (Stasolla et al., 2002). The temporary culture
of Podophyllum peltatum L. embryogenic callus
in 11.35 μM ABA followed by transfer to the MS
free medium has successfully stimulated the
development of somatic embryos (Kim et al., 2007).
In Persian walnut, the addition of 2 mgL-1 ABA in
MS medium has been observed to be suitable in
promoting the maturation and germination
compared to another combination of hormones,
though the percentage was low (Vahdati et al.,
2008). ABA has also been recognized as a factor for
promotion of normal development and maturation
of somatic embryos and  according to Misra (1994)
ABA is essential for the accumulation of storage
reserves and to synchronize maturation of somatic
embryos. Tian and Brown (2000) and Vahdati et al.
(2006) suggested that among the successive
developmental stages of somatic embryos, the
globular stage is the best stage for the application
of ABA as it is only at the globular stage that
embryos will respond to ABA. There are other
treatments that are used to stimulate the maturation
process, namely coconut water, Kinetin, IAA and
sucrose (Das and Rahman, 2013; Lara-Chavez et al.,
2011; Balaraju et al., 2011).
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Carbohydrate types and concentrations have
been found to play important roles in different stages
of the somatic embryogenesis process. Generally,
saccharides such as sucrose, maltose and glucose
serve as carbon and energy sources, osmotic agents,
stress protectants, and signal molecules in plants
(Lipavska and Konradova, 2004). The carbohydrate
source has been shown to be an important factor for
in vitro growth, affecting both somatic
embryogenesis and embryo maturation (Hassan &
Taha 2012; Businge et al., 2013). The application
of sugars in inducing process is species and
genotype specific (Yancheva and Roichev, 2005).
For example, Kulkarni and Bapat (2013) reported
that maltose is the best carbohydrate source for
maintenance of embryonic cell suspension of
banana (Rajeli AAB cultivar), but in grape culture,
sucrose is used in the induction and development
of embryogenic callus (Yancheva and Roichev,
2005).

Amino acids are another effective factor in
inducing maturation in somatic embryogenesis. A
study on strawberry somatic embryogenesis showed
that the best amino acid is proline (Gerdakaneh et
al., 2011). They also reported cultures grown on
amino-acid free medium attained lower percentage
of somatic embryos than cultures grown on amino
acid-treated medium. The frequently used amino
acid is glutamine, which was reported to enhance
maturation on Cajanus cajan (Aboshama, 2011),
Macrotyloma uniflorum (Varisai Mohamed et al.,
2004), soybean (Schmidt et al., 2005) and Psoralea
corylifolia (Sahrawat and Chand, 2001). A study
also reported the use of polyethylene glycol (PEG),
for example in Leucojum aestivum (Ptak et al.,
2013).

The process of obtaining somatic embryo-
genesis sometimes requires very specific treatment,
such as light and temperature. A study carried out
on Agave tequilana revealed that applying either
white or red light during callus induction followed
by wide-spectrum light during maturation induced
higher percentage of germinated embryos
(Rodriguez-Sahagun et al., 2011). A report on
Holvenia dulcis revealed the sensitivity of that
species to temperature for induction of secondary
embryo (Yang et al., 2013). At higher temperature
(30ºC), the explants were effective in inducing
secondary somatic embryos, but lower temperature
(20ºC) was found to be more suitable for further
embryo development, conversion and transplant
survival.

Having competent cells, which are morpho-
logically small, rounded cells with rich cytoplasm
and small vacuoles, allows dedifferentiation of
somatic cells, which consequently respond to new
developmental signals (Fehér, 2005). The
developmental switching in somatic embryogenesis

also involves differential gene expression conferring
on the somatic cells the ability to manifest the
embryogenic potential (Ragavan, 1997; 2000).

DEVELOPMENT SWITCHING AND GENE
EXPRESSION DURING SOMATIC EMBRYO-
GENESIS

An excellent review by Fehér et al. (2003) on
transition of somatic plant cells to an embryonic
state is referred to. During this transition, cells need
to dedifferentiate, activate their cell division cycle
and reorganize their physiology, metabolism and
gene expression patterns. It has been suggested that
in vitro condition exposes the explants to a
considerable stress condition such as wounding,
high salt concentration, heavy metal ions or osmotic
stress which, influence/induce SE (Dudits et al.,
1995). Adaptation to this condition include the
reprogramming of gene expression as well as
changes in the physiology and metabolism of the
cells (Fehér et al., 2003; Elhiti et al., 2013).

The developmental switching from somatic cells
into embryogenic cells involves differential gene
expression resulting in activating or suppressing
genes which have not been identified (Chugh and
Khurana, 2002). Hormones are the most likely
candidates in the regulation of developmental
switches (Fehér et al., 2003; Elhiti et al., 2013).
Elucidation of the signaling pathways where plant
cells remodel their gene expression programme is
central to understanding the regulation of the
somatic embryogenesis process (Thomas and
Jimenez, 2005). In this respect, the induction phase
of somatic embryogenesis is of primary interest as
it governs the subsequent stages of the somatic
embryogenesis process (Fehér, 2008) and he
hypothesized that although plant cells in general
have the capability for embryogenesis, the
expression trait (the acquisition of embryogenic
competence) is mainly determined by the given
physiological state of the cell which is determined
by its genetic and developmental conditions and by
environmental cues.

The advent of molecular techniques has been
crucial in identification of genes that exhibit
differential activity, which had been categorized
based on the gene structure and function (Chugh and
Kurana, 2002).  Two of the earlier studies using the
molecular approach were reported by Franz et al.
(1989) and Rao et al. (1990) who demonstrated the
isozyme differences between embryogenic and non
embryogenic cultures. Chugh and Kurana (2002),
Karami et al. (2009) and Yang and Zhang (2010)
reviewed gene expression and regulation of SE quite
thoroughly. Selected genes from the reviews with
current findings are described in this review.
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Somatic embryogenesis receptor kinase (SERK)
SERKs are involved in the acquisition of

embryogenic competence in plant cells, where in
carrot and Arabidopsis, SERKs were shown to be
characteristic markers of embryogenic cell cultures
and somatic embryogenesis (Schmidt et al., 1997;
Hecht et al., 2001). The SERK is now assumed to
be the marker for somatic embryogenesis (Thomas
and Jimenez, 2005). SERK gene, first isolated from
carrot somatic embryos (Schmidt et al., 1997) was
shown to be a specific marker, as it is able to
distinguish individual embryo-forming masses in
induced carrot suspension cultures and may also
serve as a characteristic molecular marker for
differentiating between competent and non-
competent cells. SERK belongs to a small gene
family with different number of family members
reported in different species. At least five members
of SERK family reported in Arabidopsis (AtSERK1-
5) (Hecht et al., 2001), six in Medicago trunctulata
(MtSERK1-6) (Nolan et al., 2003; 2011), four in
Helianthus annuus (Thomas et al., 2004), two in rice
(OsSERK1-2) (Ito et al., 2005), three in maize
(ZmSERK1-3) (Baudino et al., 2001), three in
Triticum aestivum (TaSERK1-3) (Singla et al.,
2008), and one in Cocos nucifera (CnSERK) (Pérez-
Nuñez et al., 2009).

The ectopic expression of AtSERK1
(Arabidopsis) gene enhanced embryogenic cells in
developing ovules, early embryos and in vascular
tissues. The AtSERK family is divided into two
subfamilies, comprises AtSERK1 and AtSERK2,
while the second comprises AtSERK 3-5 (He et al.,
2007; Albrecht et al., 2008). The expression pattern
of the ZmSERKs revealed that a strong correlation
exists between the developing stages of the
immature embryo and ZmSERK expression in maize.
ZmSERK1 and ZmSERK2 appear to play an
important role in maintaining embryogenesis, while
ZmSERK3 appears to have a dual role in embryo-
genesis by modulating its expression level (Zhang
et al., 2011). In situ hybridization analysis revealed
CitSERK1-like gene was mainly located in the
embryogenic callus and vascular cells of different
embryos or tissues of Citrus sinensis cv. ‘Valencia’,
showing that the gene played critical roles
throughout the process of somatic embryogenesis
(Ge et al., 2010). Expression of AaSERK1 during
somatic embryogenesis of a gymnosperm Araucaria
angustifolia was reported by Steiner et al. (2011).
Rohani et al. (2012) detected SERK1 in Garcinia
mangostana in the globular structure during somatic
embryogenesis. From these reports it can be
summarized that SERK1 expression is important in
acquisition of SE.

Other related/significant genes
Several genes encoding transcription factors

have been isolated and identiûed in somatic
embryogenesis. These include BABY BOOM
(BBM), LEAFY COTYLEDON1 (LEC1), LEAFY
COTYLEDON2 (LEC2), WUSCHEL (WUS) and
AGAMOUS like-15 (AGL15) that play a role in
promoting somatic embryogenesis (Lotan et al.,
1998; Hecht et al., 2001; Stone et al., 2001;
Boutilier et al., 2002; Zuo et al., 2002; Arroyo-
Herrera et al., 2008; Thakare et al., 2008, Karami et
al., 2009). The findings suggest that a large number
of transcription factors may play important roles in
the process of somatic embryogenesis, especially in
the transition from somatic to embryonic cells (Zhao
et al., 2011).

It was suggested that BBM gene is likely to
promote cell proliferation and morphogenesis during
embryogenesis (Boutilier et al., 2002; Kulinska-
Lukaszek et al., 2012). Zheng et al. (2013) reported
that AGL15 related to Medicago truncatula somatic
embryogenesis gene MtSERF1 in Arabidopsis and
soybean. Zheng et al. (2013) again reported that in
soybean, two orthologs are expressed in response to
induction of somatic embryogenesis in culture.
Increased in GmAGL15 leads to increased ethylene
production and may involve in induction of somatic
embryogenesis (Zheng et al., 2013).

The CsSCARECROW (CsSCR) was identified
after the induction of somatic embryogenesis in
cucumber (Cucumis sativus). Localization by in situ
hybridization of CsSCR gene was reported in
undifferentiated cells in the globular and heart
stages of somatic embryogenesis of cucumber
(Wisniewska et al., 2013). Wisniewska et al. (2013)
reported expression of this gene in the endodermis
of torpedo and cotyledonary stage somatic embryos.
They also reported the presence of CsSCR gene in
developing primary and lateral roots, which suggest
that CsSCR is likely to play a role in tissue radial
organization during somatic embryogenesis and root
development.

Late embryogenesis abundant (LEA) protein
genes are expressed in the later stages of embryo
maturation, are in abundance and are capable of
surviving the period of desiccation. While late in
embryogenesis, the lectin and storage protein-
coding genes genes are required for initiating and/
or maintaining maturation phase and repressing
precocious germination (Lotan et al., 1998; Stone
et al., 2001). It has been indicated that heat shock
protein hsps may have a specific role during
developmental switching in plant cells (Györgyey
et al., 1991).
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Germins and germin-like proteins (GLPs) are
known to play a wide variety of roles as enzymes,
structural proteins, or receptors during somatic
embryogenesis, salt stress and pathogen responses
(Dunwell et al., 2008; Bernier and Berna, 2001;
Lane, 2002, Neutelings et al., 1998). Yang and
Zhang (2010) reviewed the extracellular protein
such as the arabinogalactan proteins, non-specific
lipid transfer proteins and germin and germin-like
proteins as markers for SE. Most of the plant shoot
originates from a small group of stem cells are
specified by WUSCHEL (WUS) (Gallois et al., 2004),
expressed during leaf development. However,
ectopic WUS expression in induced somatic
embryogenesis suggests that WUS also promotes
embryogenic identity (Zuo et al., 2002). The study
on the expression of WUS in somatic embryogenesis,
reported by Herrera et al. (2008), found that the
expression of WUS increased the production somatic
embryo significantly.

Oxidative stress might induce somatic
embryogenesis, as suggested in gene expression
studies by Szechynska-Hebda et al. (2012), Zhang
et al. (2010) and Bossio et al. (2013). The
interaction between glutathione biosynthesis genes
(GSH) (genes involved in antioxidant responses) and
auxin in controlling somatic embryo development
is reported by Bossio et al. (2013). They
investigated the influence of post-transcriptional
silencing (PTGS) of the biosynthesis genes GSH1
and GSH2, and concluded that GSH is essential for
somatic embryogenesis in wheat (Bossio et al.,
2013).

Cell division kinase (CDK) protein is one of
the main enzymes of cell cycle regulation. The
cell cycle regulator (cdc2) gene encodes for the
catalytic subunit of this protein kinase. The
expression profile of Picdc2 showed two main
phases followed by a final decline in Prunus incisa
(Ben Mahmoud et al., 2013), where in the first 10
days, the low levels observed were associated with
cellular dedifferentiation phase and for the second
phase, the increase peak at day 25 was related to the
activation of cell proliferation and callus formation
observed in wounded sites of leaves followed by
embryoid dedifferentiation.

PROTEOMIC AND METABOLOMIC ANALYSIS
OF SOMATIC EMBRYOGENESIS

Research in somatic embryo development extends
over the past 20 years, but much of this work has
been focused on culturing technologies (Marsoni et
al., 2008). There are still many aspects of somatic
embryogenesis that are not yet understood.
Identification of proteins and metabolites associated
or involved in somatic embryo development may

help to elucidate mechanistic insights into SE.
Recent improvements of the high resolution two-
dimensional gel electrophoresis (2-DE) and mass
spectrometry (MS) technique have made the large-
scale proling and identication of proteins a dynamic
area of research in plant biology (Marsoni et al.,
2008) as been shown in Picea glauca (Stasolla et
al., 2004), Cyclamen persicum (Winkelmann et al.,
2006; Bian et al., 2010); Eruca sativa (Chen et al.,
2012) and Zea mays (Sun et al., 2013). Proteins
predominantly expressed in embryogenic calli of
Cyphomandra betacea included metabolism-related
proteins such as enolases or treonine synthases and
also heat-shock and ribosomal proteins (Correia et
al., 2012). Proteomic analysis of developing somatic
embryos of Coffea arabica by Tonietto et al. (2012)
revealed some proteins to be specific to different
stages of SE. One of these is enolase, a glycolytic
enzyme that catalyses the reversible conversion of
2-phospho-D-glycerate to phosphoenolpyruvate
(PEP) and could be a candidate for maturation
stage. Enolase was also found at a torpedo stage
in Picea glauca (Lippert et al., 2005), Cyclamen
persicum Mill (Rode et al., 2011), and Eruca sativa
(Chen et al., 2012). Chen et al. (2012) found
sucrose synthase, (also by Noah et al., 2013) and
phospolipase D to be highly expressed in
embryogenic calli of Eruca sativa. Enzymes for
carbohydrate metabolism, such as lactoylglutathione
lyase, malate synthase and malate dehydrogenase,
were found to be most abundant in cocoa cells
undergoing somatic embryogenesis (Noah et al.,
2013). As has been suggested/speculated that
oxidative stress stimulates cell dedifferentiation and
promotes somatic embryo formation (Fehér et al.,
2003), Noah et al. (2013) also observed high
abundance of stress related proteins such as the
peroxidases, pathogenesis related proteins and
glutathione S-transferase. Marsoni et al. (2008)
previously identied several stress-related proteins
induced in Vitis vinifera embryogenic cultures such
as two forms of cytosolic ascorbate peroxidase and
glutathione-S-transferase. Glutathione metabolism
and anti-oxidative stress was also observed in
Citrus sinensis (Pan et al., 2009). Tonietto et al.
(2012) found glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) to be highly expressed in the
globular stage, less in other stages. Hence, the up-
regulation of GAPDH may be related to the control
of reactive oxygen species (ROS) level.

The accumulation of ferritins in mature citrus
somatic embryos was observed and spermidine
synthase was found to be up-regulated during the
citrus SE (Pan et al., 2009). Early studies showed
that spermidine (a polyamine) positively affected
the embryogenic capability in several species such
as Panax ginseng (Kevers et al., 2000), Picea rubens
Sarg (Minocha et al., 2004) and Citrus sinensis (Wu
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et al., 2008). Liu et al. (2005) reported that,
spermidine increased with the development of
Valencia somatic embryo and peaked at the globular
embryo stage. Some investigators have suggested
that polyamines viz. spermidine, spermine and
putrescine are either essential as plant growth
regulators or secondary messenger in signaling
pathways (Lippert et al., 2005; Roberts, 2002).
Polyamines have been shown to play a crucial role
during somatic embryogenesis in several important
plants such as Momordica charantia (Paul et al.,
2009), Picea abies (Mala et al., 2009) and Vitis
vinifera (Bertoldi et al., 2004). Akhtar (2013),
indicated that temporal regulation of somatic
embryogenesis of guava (Psidium guajava L.) cv.
Allahabad safeda by 2,4-D was modulated by
polyamine metabolism.

In terms of cell proliferation, Sun et al. (2013)
reported two forms of tubulins to be up-regulated
in embryogenic calli. Tubulin plays an important
role in the separation of the daughter chromosomes
and tubulin microtubules and actin microtubules are
known to constitute the cytoskeleton. Some tubulins
were also shown to be up-regulated in embryogenic
calli by earlier studies (Marsoni et al., 2008; Pan et
al., 2009; Zhang et al., 2009). Storage globulin 11S
was observed at torpedo stage while heat shock
proteins expressed under stress conditions and
essential for cellular recovery and normal
functioning, and annexin involved in structural
organization, were found at cotyledonary stages
(Tonietto et al., 2012).

Metabolomics approach will add to information
obtained through the gene expression and
proteomics as regulation of developmental events
can be further elucidated at the metabolic level.
Nevertheless, at present the number of reports on
metabolomics/metabolite profiling during somatic
embryogenesis is still small compared to the work
on proteomics and gene expression.

Predicting regenerative capacity of SE in conifer
by metabolomics indicated that limited production
of mature viable embryos might be associated with
stress-linked mechanism (Robinson et al., 2009).
This is in line with the proteomics and the gene
expression findings above. Metabolic footprinting
study of white spruce somatic embryogenesis using
NMR spectroscopy (Dowlatabadi et al., 2009)
suggested that endogenous auxin and sugar
signaling affects initial stages of somatic embryo
development. Businge et al. (2012) hypothesized
that the presence of tryptophan during proliferation
and embryo differentiation is indicative of the
essential role auxin has during normal somatic
embryo development at these stages. The presence
of stress-related metabolites during late embryogeny
is consistent with Pinus taeda L. showing an

association between the capability of cell lines to
form mature embryos and their response to stress
conditions during maturation (Robinson et al.,
2009). This is in line with proteome analysis in P.
glauca, which revealed a differential expression of
stress response proteins during the maturation of
somatic embryos (Lippert et al., 2005). Robinson et
al. (2009) suggested a possible application of
metabolomics is to use specic metabolite sets for
monitoring the physiological status of cultures, in
determining the appropriate timing for a switch from
proliferation to maturation media, or in the
development of improved culture procedures.

FUTURE PROSPECTS

Successful SE protocols have been established and
reported for many species but for many others these
have not been achieved. Understanding SE would
not only solve the problem of micropropagation but
also will assist in crop/plant improvement. In
addition to biochemical and molecular approaches
to studying embryogenesis, recent advances in
technologies such as genomics, proteomics,
metabolomics and computational biology has
opened more avenues to elucidate SE. For example,
the different proteins expressed and metabolites
found at different SE stages would be a very
interesting basis of studying SE of mangosteen
(Garcinia mangostana) both naturally and in vitro.
Mangosteen has a unique structure of seed where
there is no differentiated embryos formed, and the
seeds are formed apomictically. The formation of
somatic embryos in mangosteen also has not been
following the normal embryo formation from
globular to cotyledonary (Elviana et al., 2011).
However, a common characteristic of globular
formation during somatic embryogenesis was
observed, and histological analysis of sections of
globular structures showed accumulation of dense
meristematic cells. Molecular analysis detected the
gene somatic embryogenesis receptor-like kinase 1
(SERK1) (Rohani et al., 2012).

Hence, understanding the whole process or
mechanism of somatic embryogenesis is utmost
important and this can be achieved through an
integrated systems biology approach. Analysis of
plant embryogenesis using the ‘omics’ technology,
for example, studies by Businge et al. (2012) on
metabolite profiling and Noah et al. (2013) on
proteomics during SE, together with computational
biology will reveal the mechanisms at work in the
establishment of the polarity, the differentiation of
the tissue systems and the elaboration of the pattern
that ultimately carries each species into the next
generation. The application of systems biology
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experiments on somatic embryos can contribute
significantly to elucidate the mysteries of plant
development as well as providing an analytical
understanding of the totipotency in higher plants.
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Szechyń  ska-Hebda, M., Skrzypek, E., Da�  browska,
G., We� dzony, M. and Lammeren, A. 2012. The
effect of endogenous hydrogen peroxide
induced by cold treatment in the improvement
of tissue regeneration efficiency. Acta Physio-
logiae Plantarum, 34(2): 547-560.

Thakare, D., Tang, W., Hill, K. and Perry, S.E. 2008.
The MADS-Domain transcriptional regulator
AGAMOUS-LIKE15 promotes somatic embryo
development in Arabidopsis and soybean. Plant
Physiology 146: 1663-1672.

Thomas, C. and Jimenez, V.M. 2005. Mode of action
of plant hormones and plant growth regulators
during induction of somatic embryogenesis:
Molecular aspects. In: Mujib, A. and Samaj, J.
(eds.). Plant Cell Monogr. 2, Somatic embryo-
genesis. Verlag: Springer. pp 157–175.

Thomas, C., Meyer, D., Himber, C. and Steinmetz,
A. 2004. Spatial expression of a sunflower SERK
gene during induction of somatic embryogenesis
and shoot organogenesis. Plant Physiol Bio-
chem 42: 35-42.

Tian, L. and Brown, D. 2000. Improvement of
soybean somatic embryo development and
maturation by abscisic acid treatment. Can. J.
Plant Sci. 80: 271-276.

Tonietto, A., Sato, J.H., Teixeira, J.B., de Souza,
E.M., Pedrosa, F.O., Franco, O.L. and Mehta, A.
2012. Proteomic analysis of developing somatic
embryos of Coffea arabica. Plant Mol. Biol. Rep
30: 1393-1399.

Vahdati, K., Bayat, S., Ebrahimzadeh, H., Jariteh and
Mirmasoumi, M. 2008. Effect of exogenous
ABA on somatic embryo maturation and
germination in Persian walnut (Juglans regia
L). Plant Cell Tiss. Org. Cult. 93: 163-171.

Vahdati, K., Jariteh, M., Niknam, V., Mirmasouri, M.
and Ebrahimzadeh, H. 2006. Somatic embryo-
genesis and embryo maturation in Persian
walnut. Acta Hort. 705: 100-205.

Von Arnold, S., Sabala, I., Bozhkov, P., Dyachock,
J. and Filonova, L. 2002. Developmental
pathways of somatic embryogenesis. Plant Cell
Tissue Org. Cult. 69: 233-240.

Varisai Mohamed, S., Wang, C.S., Thiruvengadam,
M. and Jayabalan, N. 2004. In vitro plant
regeneration via somatic embryogenesis
through cell suspension cultures of horsegram
(Macrotyloma uniflorum (Lam.) Verdc.). In Vitro
Cell Dev Biol - Plant 40: 284-289.

Wang, H.C., Chen, J.T. and Chang, W.C. 2006.
Somatic embryogenesis and plant regeneration
from leaf, root and stem-derived callus cultures
of Areca catechu. Biologia Plantarum 50(2):
279-282.

�



12 SOMATIC EMBRYOGENESIS IN HIGHER PLANTS

Williams, E.G. and Maheswaran, G. 1986. Somatic
embryogenesis: factors inuencing coordinated
behaviour of cells as an embryogenic group.
Ann Bot 57: 443-462.

Winkelmann, T., Heintz, D., van Dorsselaer, A.,
Serek, M. and Braun, H.P. 2006. Proteomic
analyses of somatic and zygotic embryos of
Cyclamen persicum Mill. Reveal new insights
into seed and germination physiology. Planta
224: 508-519.
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