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Interval Symmetric Single-step Procedure ISS2-5D for Polynomial Zeros
(Prosedur Selang Bersimetri Langkah-tunggal ISS2-5D untuk Punca Polinomial)
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ABSTRACT

We analyzed the rate of convergence of a new modified interval symmetric single-step procedure ISS2-5D which is an 
extension from the previous procedure ISS2. The algorithm of ISS2-5D includes the introduction of reusable correctors δi

(k) 
(i = 1, …, n) for k ≥ 0. Furthermore, this procedure was tested on five test polynomials and the results were obtained 
using MATLAB 2007 software in association with IntLab V5.5 toolbox to record the CPU times and the number of iterations. 
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ABSTRAK

Satu analisis dilakukan terhadap kadar penumpuan bagi prosedur terubahsuai selang bersimetri langkah-tunggal ISS2-5D 
baru yang merupakan lanjutan daripada prosedur ISS2 sebelumnya. Algoritma ISS2-5D termasuk pengenalan pembetulan 
yang boleh diguna semula δi

(k) (i = 1, …, n) untuk k ≥ 0. Prosedur ini diuji ke atas lima jenis polinomial dan keputusan 
diperoleh menggunakan perisian MATLAB 2007 dan peralatan IntLab V5.5 untuk merekod masa CPU dan bilangan lelaran.

Kata kunci: Kadar penumpuan; kemasukan serentak; prosedur selang; punca polinomial; selang langkah tunggal 
bersimetri

INTRODUCTION

Interval iterative procedure for simultaneous inclusion of 
simple polynomial zeros were discussed in Aberth (1973), 
Alefeld and Herzberger (1983), Gargantini and Henrici 
(1972), Iliev and Kyurkchiev (2010), Kyurkchiev (1998), 
Kyurkchiev and Markov (1983a, 1983b), Markov and 
Kyurkchiev (1989), Monsi and Wolfe (1988), Petkovic 
(1989) and Petkovic and Stefanovic (1986). In this paper, 
we consider the procedures developed by Bakar et al. 
(2012), Jamaluddin et al. (2013a, 2013b), Milovanovic 
and Petkovic (1983), Monsi et al. (2012), Nourien (1977), 
Salim et al. (2011) and Sham et al. (2013a, 2013b) in 
order to describe the algorithm of the interval symmetric 
single-step procedure ISS2-5D. This procedure needs some 
pre-conditions (Theorem 1) for initial intervals Xi

(0) (i = 1, 
…, n) to converge to the zeros xi

* (i = 1, …, n), respectively, 
starting with some disjoint intervals Xi

(0) (i = 1, …, n) each of 
which contains a polynomial zero. It will produce bounded 
closed intervals which will trap the required zero within a 
certain tolerance value.
	 The	forward	step	by	Salim	et	al.	(2011)	is	modified	
by adding a δ = δi

(k) (i = 1, …, n) (k	≥	0) (1(c)) on the 
second part of the summation of the denominator (1(d)). 
The backward step of this procedure comes from Monsi 
and Wolfe (1988). The interval analysis is very straight 
forward compared to the analysis of the point procedures 
Milovanovic and Petkovic (1983) and Nourien (1977). 
The programming language used is Matlab 2007a with the 
Intlab V5.5 toolbox by Rump (1999). The effectiveness of 
our procedure is measured numerically using CPU time and 
the number of iterations. 

METHODS

THE INTERVAL SYMMETRIC SINGLE-STEP 
PROCEDURE ISS2-5D

The interval symmetric single-step procedure ISS2-5D is 
an extension of the interval single-step procedure ISS2 by 
Salim et al. (2011) based on Aitken (1950), Alefeld and 
Herzberger (1983), Milovanovic and Petkovic (1983), 
Monsi and Wolfe (1988), Nourien (1977) and Ortega and 
Rheinboldt (1970). The sequences Xi

(k) (i = 1, …, n) are 
generated as follows.

Step 1:  (Initial intervals). (1a) 

Step 2: For  (i = 1, …, n). (1b) 

Step 3: Let  (i = 1, …, n). (1c) 

Step 4:

 
j  

 (i = 1, …, n) (1d) 
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Step 5:

  
 

 (i = 1, …, n) (1e)
 
Step 6: Xi

(k) → xi
* (k →	∞)	(i = 1, …, n).  (1f) 

Step 7: If  then stop. Else set k = k + 1  
 and go to Step 2.  (1g) 

 Step 4 is from Milovanovic and Petkovic (1983) and 
pointed out without δ by Nourien (1977), while Step 5 is 
from Monsi and Wolfe (1988).
 The procedure ISS2-5D has the following attractive 
features:

The use of 5δj instead of δi
(k) as in Milovanovic and 

Petkovic (1983); the values δi
(k) computed for use in Step 4 

are reused in Step 5; the summations  

used in Step 4 are reused in Step 5 and  so 
that  need not be computed.

THE RATE OF CONVERGENCE OF ISS2-5D

Now we have additional description of the Algorithm ISS2-
5D regarding the conditions, inclusion, convergent and the 
rate of convergence.

Theorem 1: Let p defined	by	p(x) =  (an	≠	0).	If	(i)	

p has n distinct zeros xi
* (i = 1, …, n), xi

* ∈ Xi
(0)  and Xi

(0) 
∩ Xj

(0) = ∅, (i, j = 1, …, n; i	≠	j)  hold; (ii) 0 ∉Di ∈ I(R)  
(Di = [diI, diS]) is such that p'(x) ∈ Di (∀x∈Di(∀x∈Xi

(0)),  
(i = 1, …, n) and

 

 

holds (where w(Xi
(k))	≤	  ); (iii) the 

sequence (i = 1,…,n) are generated from (1), then 
(iv) (∀k	≥	0)	xi

* ∈ X(k,i) ⊆ X(k) (i = 1,…,n); (v) X(0,i) ⊃ X(0,1) ⊃ 
X(0,2) ⊃ … with  Xi

(k) → xi
* (k → ∞)	(i = 1,…,n), 

and (vi) OR (ISS2 – 5D, xi
*)	≥	6	for	(i = 1,…,n).

 The proofs of (iv) and (v) are available in Aitken 
(1950). Now the proof of (vi) is as follows.

Proof

By Step 4 and Step 5, ∃α		>	0	such	that	(∀k	≥	0),	

 
 (i = 1, …, n), (2)

and 

   (i = n,…,1), (3)

where  

 wi
(k,s) = (n	–	1)	αw (Xi

(k,s)    (s = 0,1,2), (4) 

and 

  (5) 

Let 
      
  (6)

  (7) 

and for (r = 1,2), let

  (8) 

Then by (6) - (8), for (∀k ≥	0)

 

  (9)

and

  (10) 

Suppose, without any loss of generality, that

 wi
(0,0)	≤	h < 1   (i = 1, …, n). (11) 

 Then by inductive argument it follows from (2) - (10) 
that for (i = 1, …, n) (k	≥	0)	

  and  

whence by (1f) and (9), 

        (i = 1,…, n). (12)

So, (∀k	≥	0),	by	(4)	and	(12),

    (i = 1, …, n),			α	>	0.	 (13)
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Let

   (14)

Then by (13) and (14),

 

	 So,	by	the	definition	of	R-factor in Monsi et al. (2012), 
we have 

 = h < 1.

	 Therefore,	it	is	proven	(as	defined	in	Aitken	(1950), 
Gargantini and Henrici (1972) and Monsi and Wolf (1988) 
that the order of convergence of ISS2-5D is at least 6 or  
OR(ISS2 – 5D, xi

*)	≥	6,	(	i = 1, …, n).

DISCUSSION AND NUMERICAL RESULTS

We used the Intlab V5.5 toolbox by Rump (1999) for 
MATLAB R2007 to get the following results below as 
computed by Jamaludin et al. (2013a). The algorithms 
ISS2 and ISS2-5D are	run	on	five	test	polynomials	where	the	
stopping criterion used is w(k)	≤	1010. Test Polynomial 1 
was from Alefeld and Herzberger (1983), Test Polynomial 
2 was from Salim et al. (2011), Test Polynomial 3 was 
from Monsi and Wolfe (1988), Test Polynomial 4 and Test 
Polynomial 5 were from Monsi and Wolfe (1988).
 Table 1 as computed by Jamaludin et al. (2013a) shows 
that the procedure ISS2-5D required less CPU times than the 
procedure ISS2	for	all	five	test	polynomials,	and	required	
less number of iterations meaning ISS2-5D converges faster 
than ISS2. However, for test polynomials 2, 3 and 5, the 
number of iterations for both procedures is the same, but 
the time consumed for procedure ISS2-5D is still less than 
the ISS2 procedure. 

CONCLUSION

The above results have shown analytically in Section 3 that 
ISS2-5D has faster rate of convergence of at least 6, whereas 
the R-order of convergence of ISS2 Salim et al. (2011) is 
at least 5. Thus, we have this relationship QR(ISS2 – 5D, x*) 
> OR (ISS2,  x*). The attractive features of our procedure 

mentioned in Section 2 contribute to less CPU times and 
number of iterations.
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3
4
5

5
9
9
6
10

2
2
1
2
2
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1
2
1
1
2
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