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Sensitivity Analysis of the Refinement to the Mann-Whitney Test
 (Analisis Kepekaan Penghalusan kepada Ujian Mann-Whitney)
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ABSTRACT

The aim of researchers when comparing two independent groups is to collect large normally distributed samples unless 
they lack the resources to access them. In these situations, there are a myriad of non-parametric tests to select, of which 
the Mann Whitney U test is the most commonly used. In spite of its great advantages of usage, the U test is capable of 
producing inflated Type I error when applied in situation of heterogeneity or distinct variances. This current study will 
present a viable alternative called the refined Mann-Whitney test (RMW). A Monte Carlo evaluation test is conducted 
on RMW using artificial data of various combinations of extreme test conditions. This study reviews that the RMW test 
justified its development by enhancing the performance of the U test. The RMW test is able to control well its Type I error 
rates even though it has a lower power. 
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ABSTRAK

Semasa membuat perbandingan dua kumpulan tak bersandar, matlamat penyelidik ialah untuk mengumpul sampel 
taburan normal yang besar. Jika menghadapi kekurangan sumber untuk mencapai matlamat tersebut, terdapat pelbagai 
pilihan ujian tak-berparameter dengan ujian U Mann-Whitney paling sering dipilih. Sungguhpun ujian Mann-Whitney 
mempunyai banyak kelebihan daripada segi kegunaan, tetapi ia berkemungkinan menghasilkan ralat jenis I yang tinggi 
semasa digunakan dalam situasi beza varians yang ketara. Kajian ini akan memperkenalkan satu ujian alternatif yang 
dikenali sebagai ujian pengubahsuaian Mann-Whitney (RMW). Satu ujian penilaian Monte Carlo dijalankan dengan 
menggunakan data tiruan daripada pelbagai gabungan situasi pengujian yang ekstrem. Kajian ini mendapati ujian RMW 
menepati langkah pengubahsuaian demi penambahbaikan prestasi ujian Mann-Whitney. Ujian RMW dapat mengawal 
ralat jenis I dengan baik sungguhpun kuasanya rendah. 

Kata kunci: Kuasa; Monte Carlo; ralat jenis I; ujian Mann-Whitney; ujian pengubahsuaian Mann-Whitney

INTRODUCTION

The two-sample location problem assumes normality and 
homogeneity of variance. Even though the most widely 
used Welch test, designed to handle variance heterogeneity, 
requires the underlying populations be normal. The 
significance level of the Welch test is biased by variance 
heterogeneity especially when sample sizes are unequal 
(Overall et al. 1995; Scheffe 1959). Similarly, its non-
parametric counterpart, the Mann-Whitney test requires 
the populations to be symmetrical. However, violations 
of these assumptions are common, thus rendering these 
statistical tests inappropriate. Subsequent efforts are focus 
on developing statistical test where its performance is 
not constraint by assumptions. Babu and Padmanabhan 
(2002) proposed a robust solution to the non-parametric 
Behren-Fisher problem. The proposed test is a refinement 
of the Mann Whitney, RMW that does not require the 
symmetrical assumption of the underlying population. 
Lai (2009) reviewed the general robustness of the RMW 
test in a combination of test conditions from symmetrical 
distributions. The refinement test is only appropriate in 

a balanced homogeneous group samples from skewed 
distributions like exponential distribution and lognormal 
distribution. 
	 This study conducted a sensitivity analysis to gain 
a further insight into the robustness of the refinement 
test especially in extreme heterogeneity in a higher 
unbalanced group sample sizes. The sensitivity analysis 
was conducted by using computer simulated data to assess 
the distributional performance of the RMW test across a 
variety of test conditions (sample size, variance ratio and 
underlying distribution). A SPSS syntax program was design 
to generate independent samples from various types of 
population at various combinations of test conditions to 
be performed the RMW test, and Mann Whitney test. The 
random number seed used when generating the artificial 
samples for both procedures is the SPSS’s default seed of 
2000000. The outcomes of this sensitivity analysis will 
provide a comprehensive robust coverage of the RMW test 
that will enable practitioners effectively employed them. 
This study will also review the boundary test conditions 
for the classical and Mann-Whitney test.
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REFINEMENT OF THE MANN WHITNEY TEST

This section will present the theoretical framework of the 
proposed refined Mann Whitney test. This refinement test 
incorporated a bootstrap test for determining the critical 
values of the test statistics. The formula for the refined 
Mann-Whitney tests is presented as follows.
	 With reference to the two-sample problems, let X = 
(X1, …, Xm) and  Y = (Y1, …, Yn) be the two independent 
samples from their respectively continuous distributions, F1 

and F2. Briefly, F1(x) =  and F2(y) =   

with median M\X and MY, respectively. 
	 Hence, F is an arbitrary continuous distribution with 
median zero and the variances, σX and σY are possibly 
unequal.
	 Ideally, when  the performance of the 
classical Mann-Whitney test is robust in both validity 
and effectiveness. The test is distribution free and the 
Mann-Whitney statistics, W is extensively tabulated. 
Even though when  the Mann-Whitney test is still 
capable of maintaining its robust performance provided the 
underlying distributions are symmetrical. Under the null 
hypothesis of equal medians, the symmetry assumption 
of the underlying population distribution will ensure that 
p = P(X1 ≤ Y1) = 0.5 and hence E(W) = 0.5 mn.
	 The proposed RMW test is designed to do away with 
the symmetry assumption. When the symmetry assumption 
is violated, then value of p is no longer equal to 0.5 and 
its distribution is unknown. Consequently, W will not be 
centred at 0.5. The RMW test proposed to centre the value 
of  at ,  an estimator of p = P(X1 ≤ Y1). Since 
the distribution property of is unknown, the RMW test 
employed bootstrap percentile test to obtain its critical 
values. The RMW test proposed a different approach of 
computing the critical values.
	 Initially, the refinement test will align the two samples 
for location and scale. For location-alignment, being non-
parametric in nature, the obvious choices were the sample 
medians, respectively, and  There were many choices 
for scale-alignment of the two samples and the current 
study uses the standard deviations, sX and sY. The rational 
is that the best result for the statistics of U were obtained 
when the scales sX and sY are used (Babu & Padmanabhan 
2002). After alignment, both the aligned samples are 
combined and subsequently used to compute the test 
statistics, T.
	 Let the combined aligned sample (z1, …, zm+n) be 
defined by:

	

	 By denoting Q = m + n, the estimator of p and the test 
statistics, T are determine using the following equations.

	

	 The RMW test proposed a bootstrap test to obtain the 
critical values for the T statistic. 
	 Let  be a bootstrap sample obtained from z1, 
…, zQ. Let  i = 1, …, m and  j = 1, 
…, n be the two samples obtained after splitting. Next 
the relevant values of U*, p* and are computed using 

	 U* =  

	 p* =  and 

	 	

with  and  being the sample standard deviation of X*   
and Y* respectively. 

METHODS

The primary objective of this study was to evaluate the 
performance of the RMW test across various combinations 
of data conditions. This study is an extension of the 
earlier work on the RMW test. The selected conditions 
include higher unbalanced group sample sizes, extreme 
heterogeneity variance ratios and symmetrical underlying 
population distributions. For each distribution, there are 
four sets of sample sizes used ranging from 10 to 25, four 
different variance ratios. The underlying distributions 
identified are symmetrical distributions that are leptokurtic, 
mesokurtic and platykurtic. The two independent samples 
were obtained from population with the same mean and 
same variability. This study comprised of a thousand 
replications of the simulation test in order to obtain 
accurate estimates of the Type I error rates.

TYPE OF UNDERLYING DISTRIBUTIONS

This study involved the generation of samples/groups from 
distributions of specified shape to be used as synthetic data 
to study empirically the behaviours of refinement test in a 
controlled situation. The values of skewness and kurtosis 
(γ1, γ2) were used to show the different distributions and 
also allow examination of the extremes of the statistical 
tests in this study. Accordingly, Balakrishnan and 
Nevzoros (2003) indicates that distributions with γ2 > 3 are 
leptokurtic distributions; those with γ2 < 3 are platykurtic 
distributions; those with γ2 = 3 are mesokurtic distributions 
(including the normal distribution). Distributions with 
γ1 = 0 are symmetrical whereas γ1 > 0 are considered as 
positively skewed and those with γ1 < 0 are negatively 
skewed. The types of distributions proposed in this 
study were symmetrical distributions. There were three 
symmetrical distributions selected for the simulation study. 
The symmetrical distributions are the standard normal 
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distribution, uniform distribution and laplace distribution. 
The values of skewness and kurtosis of the selected 
distributions are tabulated as in Table 1.

SAMPLE DESIGN

The independent sample sizes used in this study was (n1, 
n2) = (10, 10), (10, 15), (15, 25) and (25, 25). These sample 
sizes were then systematically manipulated to incorporate 
the various combinations of variance ratios. The variance 
ratios  identified were (1:9), (1:16) and (1:64) to 
study the sensitivity of the tests to variance heterogeneity. 
Crossing these two factors yielded 12 sample size 
combinations for each distribution. These sample sizes 
were generated from each of the three distributions using 
RV subroutine of the SPSS syntax. Thus the total numbers 
of data set are 3 × 12 = 36.

MONTE CARLO ASSESSMENT OF TYPE I ERROR

The extent to which a test controls its Type I error rate 
depends on how well the underlying assumptions of the 
test are satisfied by the data and the sensitivity of the test 
to the departure from these assumptions. If it is found 
that departures from the underlying assumptions do not 
seriously impair the distributional properties of the test, 
then the test is robust. The framework for examining these 
assumptions is how well the statistical model (i.e. the test) 
fits the observed data. A good fit implies the test should be 
able to control its Type I error at nominal level whereas a 
poor fit indicates otherwise. To evaluate the performance 
of a statistical test in controlling its Type I error rate, this 
research uses a method of reporting to which extend a test 
statistic disagrees with the null hypothesis. This measure 
of disagreement is called the observed significance level 
or simply p-value of the test. By definition, p-value for 
a specific test is the probability (assuming Ho is true) of 
observing a value of the test statistic that is as least as 
contradictory to the null hypothesis and supportive of the 
alternative hypothesis. In the Monte Carlo assessment of 
Type I error, the various types of data sets produced from 
the systematic manipulation of the group sample size, the 
degree of inequalities of the population variances and the 
underlying shape of the distribution is subsequently used 
to compute their respectively p-value. The two groups 
are sampled from populations that conformed to the null 
hypothesis. As there were 1000 vectors per data sets, there 
were 1000 replications of p-values. These p-values will be 
used to determine the empirical estimate of the Type I error 
for a non-directional two sample hypothesis test. 

ROBUST CRITERIA

In order to quantify the performance of the refinement 
tests in controlling its probability of Type I error, this 
study uses the Bradley’s (1978) liberal criterion for 
robustness. According to Bradley’s (1978) liberal 
criterion of robustness, a test can be considered robust if 
its empirical rate of Type I error, αe is within the interval 
0.5α ≤ αe ≤ 1.5α where α is the significance level. Hence, 
for the non-directional Type I error rate, at the nominal 
level of significance, α = 0.05 the empirical Type I error 
rate is acceptable if it is located within the bounds of 
0.025 and 0.075. This represent good Type I error rate 
control and the test is considered robust. If the estimated 
error rates are outside the robust interval, they are either 
conservative if the rates are below the lower bound or 
otherwise liberal.

POWER ANALYSES

The power of a test is the ability of the test to detect an 
actual difference between the means of populations. Power 
analyses will investigate the power of a test for each of 
the combination of sample sizes and variance ratios. 
Hence, simulating datasets for power analysis will take 
into consideration the group sample size, variance ratio 
and effect size. For the power analysis, 1000 vectors per 
datasets will be generated for each combinations of test 
conditions. The power analysis is based on commonly 
applied effect size measurement that is the Cohen’s 
standardized effect size, d (Cohen 1969). The mean 
difference between the two sample sizes is computed and 
the reported power rate is 0.5. Table 2 shows the means and 
effect sizes for the various combinations of group sample 
sizes and variance ratios. The corresponding values of d 
will have a medium to large size of effect. 

RESULTS

The results obtained from Monte Carlo simulation on the 
tests are reported in Tables 3 - 4. These tables contained 
tabulated simulation results of Type I error and power 
analysis. The entries in Table 3 are empirical p-values for 
both tests under various combinations of test conditions. 
The shaded entries are indication that the particular 
empirical Type I error rates are within the Bradley’s (1987) 
liberal criteria. Table 3 shows that the RMW test is capable 
of maintaining its Type 1 error rates across all combination 
of test conditions. The MW test is not as robust since there 
are instances where the rates are inflated.

TABLE 1. Skewness and kurtosis values of the distributions used in the simulation

Skewness
(γ1)

Kurtosis(γ2)

Platykurtic Mesokurtic Leptokurtic
Symmetric γ1 = 0, γ2 = 1.8

Uniform (-1,1)
γ1 = 0, γ2 = 3
Normal (0,1)

γ1 = 0, γ2 = 6.0
Laplace (0,1)
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TABLE 2. Group sample means, effect sizes and sizes of effect for power analysis 

Group sample 
size (n1:n2)

Variance ratio Shift parameter d Size of effect

10:10
1:9
1:16
1:64

2.07
2.70
5.28

0.92
0.93
0.93

Large

10:15
1:9
1:16
1:64

1.87
2.44
4.76

0.84
0.84
0.84

Large

15:25
1:9
1:16
1:64

1.47
1.92
3.74

0.66
0.66
0.66

Medium

25:25 1:9
1:16
1:64

1.27
1.65
3.23

0.57
0.57
0.57

Medium

TABLE 3. Empirical Type I error rates

Group sample size Variance ratio Distribution RMW MW

(10,10)

1:9
Normal
Laplace
Uniform

0.045
0.052
0.047

0.050
0.061
0.061

1:16
Normal
Laplace
Uniform

0.033
0.055
0.041

0.063
0.067
0.067

1:64
Normal
Laplace
Uniform

0.047
0.043
0.050

0.074
0.082
0.082

(10,15)

1:9
Normal
Laplace
Uniform

0.053
0.056
0.051

0.038
0.052
0.040

1:16
Normal
Laplace
Uniform

0.053
0.058
0.052

0.040
0.049
0.044

1:64
Normal
Laplace
Uniform

0.042
0.056
0.047

0.048
0.052
0.045

(15,25)

1:9
Normal
Laplace
Uniform

0.056
0.049
0.062

0.043
0.036
0.049

1:16
Normal
Laplace
Uniform

0.049
0.054
0.052

0.044
0.037
0.056

1:64
Normal
Laplace
Uniform

0.054
0.061
0.051

0.053
0.044
0.056

(25,25)

1:9
Normal
Laplace
Uniform

0.067
0.068
0.062

0.077
0.067
0.079

1:16
Normal
Laplace
Uniform

0.059
0.061
0.061

0.080
0.066
0.082

1:64
Normal
Laplace
Uniform

0.044
0.049
0.050

0.090
0.077
0.085
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	 Table 4 contains simulation results of power analysis. 
The power rates of RMW test are generally higher than RMW 
test across all the test conditions. Hence, the RMW test is 
relatively the more powerful test.

CONCLUSION

This research reviewed that the RMW test justified 
its development as it is capable of improving the 
performance of the original MW test. The MW test is 
found to be appropriate but only if there is no severe 
variance heterogeneity observed in the data. Past studies 
(Robert & Casella 2004; Zimmerman 1987) have also 
shown that the MW produced inflated Type I error rates 
when applied in situations of heterogeneity or distinct 
variances. Therefore, the MW test must be used with 

TABLE 4. Power rates

Group sample size Variance ratio Distribution RMW MW

(10,10)

1:9
Normal
Laplace
Uniform

0.253
0.215
0.489

0.507
0.396
0.835

1:16
Normal
Laplace
Uniform

0.241
0.232
0.433

0.525
0.412
0.798

1:64
Normal
Laplace
Uniform

0.225
0.211
0.376

0.528
0.453
0.774

(10,15)

1:9
Normal
Laplace
Uniform

0.261
0.211
0.361

0.518
0.422
0.801

1:16
Normal
Laplace
Uniform

0.234
0.214
0.397

0.525
0.437
0.769

1:64
Normal
Laplace
Uniform

0.214
0.211
0.456

0.496
0.458
0.765

(15,25)

1:9
Normal
Laplace
Uniform

0.290
0.234
0.413

0.516
0.445
0.738

1:16
Normal
Laplace
Uniform

0.279
0.234
0.376

0.511
0.445
0.703

1:64
Normal
Laplace
Uniform

0.284
0.249
0.542

0.507
0.463
0.765

(25,25)

1:9
Normal
Laplace
Uniform

0.340
0.175
0.542

0.513
0.450
0.765

1:16
Normal
Laplace
Uniform

0.312
0.297
0.494

0.505
0.476
0.748

1:64
Normal
Laplace
Uniform

0.280
0.301
0.467

0.514
0.510
0.721

caution. The RMW test is a promising test as it is capable 
controlling its Type I error rates when handling multiple 
test assumptions violations. Despite the relatively lower 
power rates, the RMW test is a viable alternative. When 
severe variance heterogeneity is suspected, it is therefore 
more reliable to use the RMW test. 
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