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1. Introduction

1.1. Motivation

This study grew out of our attempt to answer the question raised by A. Edelman
(1997): “What is the probability pn,k that an n × n random real Gaussian matrix
has exactly k real eigenvalues?” In the physics literature, an ensemble of such
random matrices is known as GinOE – Ginibre’s Orthogonal Ensemble (Ginibre
1965). Looking into this particular problem, we have realised that no comprehensive
solution for the probability pn,k can be found without undertaking an in-depth study
(Kanzieper and Akemann 2005) of the integrable structure of GinOE. The results of
our investigation are reported in the present paper.

1.2. Main results

For the benefit of the readers, we collect our main results into this easy to read
subsection with pointers to the sections containing detailed derivations of each
statement.

1.2.1. Real part of GinOE spectrum

(I) Probability of Exactly k Real Eigenvalues. Let H be an n × n ran-
dom real matrix whose entries are statistically independent random variables picked
from a normal distribution N(0, 1). Then, for n− k = 2` even, the probability pn,k of
exactly k real eigenvalues † occurring is

pn,k = pn,n−2` =
pn,n

`!
Z(1`)(p1, · · · , p`), (1.1a)

where pn,n is the probability pn,n = 2−n(n−1)/4 of having all n eigenvalues real
(Edelman 1997). The universal multivariate functions Z(1`), solely determined by the
number ` of pairs of complex conjugated eigenvalues, are so-called zonal polynomials
(Macdonald 1998) that can be written as a sum over all partitions ‡ λ = (`σ1

1 , · · · , `σg
g )

of the size |λ| = `

Z(1`)(p1, · · · , p`) = (−1)``!
∑
|λ|=`

g∏
j=1

1
σj !

(
−

p`j

`j

)σj

. (1.1b)

A few first zonal polynomials are displayed in Table 1. The arguments pj ’s of the
zonal polynomials are nonuniversal §

pj = tr(0,bn/2c−1) %̂
j , (1.1c)

† The number of complex eigenvalues n−k = 2` is always even since the complex part of the spectrum
consists of ` pairs of complex conjugated eigenvalues.

‡ The notation λ = (`σ1
1 , · · · , `σg

g ) is known as the frequency representation of the partition λ of the
size |λ| = `. It implies that the part `j appears σj times so that ` =

Pg
j=1 `j σj , where g is the

number of inequivalent parts of the partition. In particular, the partition λ = (1`) equals (1, · · · , 1| {z }
` times

).

§ The notation tr(0,a) M̂ denotes the trace of an (a + 1)× (a + 1) matrix M̂ such that tr(0,a) M̂ =Pa
j=0 M̂jj . Also, bxc stands for the floor function. In what follows, the ceiling function dxe will be

used as well.
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Table 1. Explicit examples of zonal polynomials Z(1`)(p1, · · · , p`) as defined by

the equation (1.1b). Another way to compute Z(1`) is based on the recursion

equation (Macdonald 1998)

Z(1`)(p1, · · · , p`) = (`− 1)!

`−1X
r=0

(−1)`−r−1

r!
p`−r Z(1r)(p1, · · · , pr)

supplemented by the formal “boundary” condition Z(10) = 1. They are also

tabulated in the manuscript by H. Jack (1976).

λ Zλ(p1, · · · , p`)

(11) p1

(12) p2
1 − p2

(13) p3
1 − 3p1p2 + 2p3

(14) p4
1 + 8p1p3 − 6p2

1p2 + 3p2
2 − 6p4

(15) p5
1 − 10p3

1p2 + 20p2
1p3 + 15p1p2

2 − 30p1p4 − 20p2p3 + 24p5

for they depend on a nonuniversal matrix %̂. For n = 2m even, its entries are

%̂even
α, β =

∫ ∞

0

dy y2(β−α)−1 ey2
erfc(y

√
2)
[
(2α + 1)

× L
2(β−α)−1
2α+1 (−2y2) + 2y2 L

2(β−α)+1
2α−1 (−2y2)

]
(1.1d)

while for n = 2m + 1 odd,

%̂odd
α, β = %̂even

α, β − (−4)m−β m!
(2m)!

(2β)!
β!

%̂even
α, m. (1.1e)

Here, the notation erfc(φ) stands for the complementary error function,

erfc(φ) =
2√
π

∫ ∞

φ

dt e−t2 ,

while Lα
j (φ) denote the generalised Laguerre polynomials

Lα
j (φ) =

1
j!

φ−α eφ d j

dφ j

(
φ j+α e−φ

)
.

The above result (1.1a) will be derived in Section 6.

(II) Generating Function For Probabilities pn,k. The generating function
Gn(z) for the probabilities pn,k is

Gn(z) =
bn/2c∑
`=0

z`pn,n−2` = pn,n det
[
1̂ + z %̂

]
bn/2c×bn/2c. (1.2)

Equation (1.2) with the %̂ of needed parity provides us with yet another way of
computing the entire set of pn,k’s at once! Table 2 contains a comparison of our
analytic predictions with numeric simulations. The result (1.2) will be proven in
Section 6.
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(III) Probability pn,n−2 of Exactly One Pair of Complex Conjugated
Eigenvalues. For k = n− 2, the probability function pn,k reduces to

pn,n−2 = 2 pn,n

∫ ∞

0

dy y ey2
erfc(y

√
2) L2

n−2(−2y2). (1.3a)

An alternative expression reads:

pn,n−2 = pn,n

√2
bn/2c−1∑

j=0

3j+αn/2 P2j+αn

(
2√
3

)
− bn/2c

 . (1.3b)

Here, αn = dn/2e − bn/2c, and Pn(φ) stands for the Legendre polynomials

Pj(φ) =
(−1)j

2jj!
dj

dφj

[
(1− φ2)j

]
.

The leading large-n behaviour of the probability pn,n−2 is given by

pn,n−2 ≈
3n+1/2

8
√

π n
pn,n. (1.3c)

The above three results will be derived in Section 4.1, Section 7.1 and Section 7.2,
respectively.

1.2.2. Complex part of GinOE spectrum

(IV) Joint Probability Density Function of All Complex Eigenvalues
Given There Are k Real Eigenvalues. Let Hk be an n× n random real matrix
with k real eigenvalues such that its entries are statistically independent random vari-
ables picked from a normal distribution N(0, 1). Then, the joint probability density
function (j.p.d.f.) of its 2` = n− k complex eigenvalues is

PHk
(z1, · · · , z`) =

pn,n

`!

(
2
i

)`

×
∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

. (1.4)

Here, pf denotes the Pfaffian. The above j.p.d.f. is supported for (Re z1, · · · ,Re z`) ∈
R`, and (Im z1, · · · , Im z`) ∈ (R+)`. The antisymmetric kernel Dn(z, z′) is given
explicitly by (3.12) – (3.18) of Section 3 where the statement (1.4) is proven.

(V) Correlation Functions of Complex Eigenvalues in The Spectra Free
of Real Eigenvalues. Let H0 be an n× n random real matrix with no real eigen-
values such that its entries are statistically independent random variables picked from
a normal distribution N(0, 1). Then, the p-point correlation function (1 ≤ p ≤ `) of
its complex eigenvalues, defined by (2.7), equals

R
(H0)
0,p (z1, · · · , zp;n) = pn,n

∏`−1
j=0 rj∏n

j=1 Γ(j/2)

p∏
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)

×pf
[

κ`(zi, zj) κ`(zi, z̄j)
κ`(z̄i, zj) κ`(z̄i, z̄j)

]
2p×2p

. (1.5a)
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Table 2. Exact solution for p12,k (first and second column) compared to numeric
simulations (third column) performed by direct diagonalisation of 1, 000, 000 of
12× 12 matrices.

Analytic solution
Numeric

k Exact Approximate simulation

0
29930323227453−20772686238032

√
2

17592186044416
0.031452 0.031683

2
3(1899624551312

√
2−2060941421503)

4398046511104
0.426689 0.427670

4
3(2079282320189−505722262348

√
2)

8796093022208
0.465235 0.464098

6
252911550974

√
2−27511352125

4398046511104
0.075070 0.075021

8
15(1834091507−10083960

√
2)

17592186044416
0.001552 0.001526

10
3(1260495

√
2−512)

2199023255552
0.000002 0.000002

12
1

8589934592
0.000000 0.000000

Here, n = 2` and the ‘pre-kernel’ κ` equals

κ`(z, z′) = i

`−1∑
j=0

1
rj

[
p2j(z)p2j+1(z′)− p2j(z′)p2j+1(z)

]
. (1.5b)

The polynomials pj(z) are skew orthogonal in the complex half-plane Im z > 0,

〈p2j+1, p2k〉c = −〈p2k, p2j+1〉c = i rj δjk, (1.5c)
〈p2j+1, p2k+1〉c = 〈p2j , p2k〉c = 0, (1.5d)

with respect to the skew product

〈f, g〉c =
∫

Im z>0

d2z erfc
(

z − z̄

i
√

2

)
exp

(
−z2 + z̄2

2

)
[f(z)g(z̄)− f(z̄)g(z)] . (1.5e)

For detailed derivation, a reader is referred to Section 8 which also addresses the prob-
lem of calculating the probability pn,0 to find no real eigenvalues in the spectrum of
GinOE.

1.2.3. How to integrate a Pfaffian?

All the results announced so far would have not been derived without a Pfaffian inte-
gration theorem that we consider to be a major technical achievement of our study.
Conceptually, it is based on a new, topological, interpretation of the ordered Pfaffian
expansion as introduced in Section 5.
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(VI) The Pfaffian Integration Theorem. Let dπ(z) be any benign measure
on z ∈ C, and the function Qn(x, y) be an antisymmetric function of the form

Qn(x, y) =
1
2

n−1∑
j,k=0

qj(x) µ̂jk qk(y) (1.6a)

where qj ’s are arbitrary polynomials of j-th order, and µ̂ is an antisymmetric matrix.
Then the integration formula(

2
i

)` ∏̀
j=1

∫
zj∈C

dπ(zj) pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

= Z(1`)

(
1
2
tr(0,n−1)υ̂

1, · · · , 1
2
tr(0,n−1)υ̂

`

)
(1.6b)

holds, provided the integrals in its l.h.s. exist. Here, Z(1`) are zonal polynomials whose
` arguments are determined by a matrix υ̂ with the entries

υ̂α,β = i
n−1∑
k=0

µ̂α,k

∫
z∈C

dπ(z) [qk(z) qβ(z̄)− qβ(z) qk(z̄)] . (1.6c)

This theorem that can be viewed as a generalisation of the Dyson integration theorem
(Dyson 1970, Mahoux and Mehta 1991) will be proven in Section 5.

Interestingly, the Pfaffian integration theorem is not listed in the classic reference
book (Mehta 2004) on the Random Matrix Theory (RMT). Also, we are not aware
of any other RMT literature reporting this result which may have implications far
beyond the scope of the present paper.

1.3. A guide through the paper

Having announced the main results of our study, we defer plunging into formal
mathematical proofs of the above six statements until Section 3. Instead, in Section
2, we deliberately draw the reader’s attention to a comparative analysis of GinOE
and two other representatives of non-Hermitean random matrix models known as
Ginibre’s Unitary (GinUE) and Ginibre’s Symplectic (GinSE) Ensemble. Starting
with the definitions of the three ensembles, we briefly discuss their diverse physical
applications, pinpoint qualitative differences between their spectra, and present a
detailed comparative analysis of major structural results obtained for GinUE, GinSE
and GinOE since 1965. We took great pains to write a review-style Section 2 in order
(i) to help the reader better appreciate a profound difference between GinOE and the
two other non-Hermitean random matrix ensembles on both qualitative and structural
levels as well as (ii) place our own work in a more general context.

A formal analysis starts with Section 3 devoted to a general consideration of
statistics of real eigenvalues. Its first part, Section 3.1, summarises previously known
analytic results (Edelman 1997) for the probability function pn,k of the fluctuating
number of real eigenvalues in the spectrum of GinOE. Section 3.2 deals with the
joint probability density function of complex eigenvalues of GinOE random matrices
that have a given number of real eigenvalues. The Pfaffian representation (1.4) is
the main outcome of Section 3.2. This result is further utilised in Section 3.3 where
the probability function pn,k is put into the form of a ‘Pfaffian integral’ (3.19). The
analysis of the latter expression culminates in concluding that the Dyson integration
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theorem, a standard tool of Random Matrix Theory, is inapplicable for treating the
Pfaffian integral obtained. The latter task will be accomplished in Section 5.

Section 4 attacks the probability function pn,k for a few particular values of k.
The probabilities pn,n−2, pn,n−4 and pn,n−6 of one, two, and three pairs of complex
conjugated eigenvalues occurring are treated in Section 4.1, Section 4.2 and 4.3,
respectively. This is done by explicit calculation of the Pfaffian in (3.19) followed
by a term-by-term integration of the resulting Pfaffian expansion. In Section 4.4,
we briefly discuss a faster-than-exponential growth of the number of terms in this
expansion caused by further decrease of k.

Section 5, devoted to the Pfaffian integration theorem, is central to the paper.
Its main objective is to introduce a topological interpretation of the terms arising in
a permutational expansion of the Pfaffian in the l.h.s. of (1.6b). Such a topological
interpretation turns out to be the proper language in the subsequent proof of the
Pfaffian integration theorem. In Section 5.1, the Pfaffian integration theorem is
formulated and discussed in the light of the Dyson integration theorem. In Section 5.2,
an ordered permutational Pfaffian expansion is defined and interpreted in topological
terms. The notions of strings, substrings, loop-like strings and loop-like substrings for
certain subsets of terms arising in an ordered Pfaffian expansion are introduced and
illustrated on simple examples in Sections 5.2.1 and 5.2.2. Further, equivalent strings
and equivalent classes of strings are defined and counted. The issue of decomposition
of strings into a set of loop-like substrings is also considered in detail (Lemma 5.2).
Section 5.2.3 is devoted to the counting of loop-like strings. In Section 5.2.4, the
notion of adjacent strings is introduced and illustrated. Adjacent strings are counted
in Lemma 5.4. Their relation to loop-like strings is discussed in Lemma 5.5. Section
5.2.5 deals with a characterisation of adjacent strings by their handedness; adjacent
strings of a given handedness are counted there, too. In Section 5.2.6, equivalent
classes of adjacent strings are defined, counted, and explicitly built. Section 5.3 and
Section 5.4 are preparatory for Section 5.5, where the Pfaffian integration theorem is
eventually proven. For the readers’ benefit, a vocabulary of the topological terms we
use is summarised in Table 3.

Section 6 utilises the Pfaffian integration theorem to obtain a general solution for
the sought probability function pn,k (Section 6.1), derive a determinantal expression
for the entire generating function of pn,k’s (Section 6.2), and address the issue of integer
moments of the fluctuating number of real eigenvalues in GinOE spectra (Section 6.3).

Section 7 is devoted to the probability pn,n−2 for two complex conjugated pairs
of eigenvalues to occur; a large-n analysis of pn,n−2 is also presented there.

Section 8 discusses the Pfaffian structure of the p-point correlation functions of
complex eigenvalues belonging to spectra of a subclass of GinOE matrices without real
eigenvalues. The same section addresses the problem of calculating the probability pn,0

to find no real eigenvalues in spectra of GinOE.
Section 9 contains conclusions with the emphasis placed on open problems. The

most involved technical calculations are collected in four appendices.

2. Comparative analysis of GinOE, GinUE, and GinSE

2.1. Definition and consequences of violated Hermiticity

Ginibre’s three random matrix models – GinOE, GinUE, and GinSE – were derived
from the celebrated Gaussian Orthogonal (GOE), Gaussian Unitary (GUE), and
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Gaussian Symplectic (GSE) random matrix ensembles in a purely formal way by
dropping the Hermiticity constraint. Consequently, the non-Hermitean descendants
of GOE, GUE and GSE share the same Gaussian probability density function

Pβ [H] = (πaβ)−βn2/2 exp
[
−a−1

β tr
(
HH†

)]
, H† 6= H, β = 1, 2, 4, (2.1)

for a matrix “Hamiltonian” H ∈ Tβ(n) to occur; the constant aβ is chosen to be
aβ = 2 − δβ,2 (this slightly differs from the convention used in the original paper by
Ginibre). However, the spaces Tβ on which the matrices H vary are different: T1(n),
T2(n), and T4(n) span all n×n matrices with real (GinOE, β = 1), complex (GinUE,
β = 2), and real quaternion (GinSE, β = 4) entries, respectively.

The violated Hermiticity, H† 6= H, brings about the two major phenomena:
(i) complex-valuedness of the random matrix spectrum and (ii) splitting the random
matrix eigenvectors into a bi-orthogonal set of left and right eigenvectors. Statistics of
complex eigenvalues, including their joint probability density function, and statistics
of left and right eigenvectors of a random matrix H ∈ Tβ drawn from (2.1) are of
primary interest.

Only the spectral statistics will be addressed in the present paper. (For studies
of the eigenvector statistics in GinUE, the reader is referred to the papers by Chalker
and Mehlig (1998), Mehlig and Chalker (2000), and Janik et al (1999). We are not
aware of any results for eigenvector statistics in GinSE and GinOE.)

2.2. Physical applications

While the ensemble definition (2.1) was born out of pure mathematical curiosity ‖, non-
Hermitean random matrices have surfaced in various fields of knowledge by E. Wigner’s
“miracle of the appropriateness” (Wigner 1960). From the physical point of view,
non-Hermitean random matrices have proven to be as important as their Hermitean
counterparts. (For a detailed exposition of physical applications of Hermitean RMT
we refer to the review by Guhr et al (1998)).

Random matrices drawn from GinUE appear in the description of dissipative
quantum maps (Grobe et al 1988, Grobe and Haake 1989) and in the characterisation
of two-dimensional random space-filling cellular structures (Le Cäer and Ho 1990, Le
Cäer and Delannay 1993).

Ginibre’s Orthogonal Ensemble of random matrices arises in the studies of
dynamics (Sommers et al 1988, Sompolinsky et al 1988) and of synchronisation effect
(Timme et al 2002, Timme et al 2004) in random networks; GinOE is also helpful in
the statistical analysis of cross-hemisphere correlation matrix of the cortical electric
activity (Kwapień et al 2000) as well as in the understanding of inter-market financial
correlations (Kwapień et al 2006).

All three Ginibre ensembles (GinOE, GinUE, GinSE) arise in the context of
directed “quantum chaos” (Efetov 1997a, Efetov 1997b, Kolesnikov and Efetov 1999,
Fyodorov et al 1997, Markum et al 1999). Their chiral counterparts (Stephanov 1996,
Halasz et al 1997, Osborn 2004, Akemann 2005) help elucidate universal aspects of the
phenomenon of spontaneous chiral symmetry breaking in quantum chromodynamics
(QCD) with chemical potential: the presence or absence of real eigenvalues in the
complex spectrum singles out different chiral symmetry breaking patterns. For a
review of QCD applications of non-Hermitean random matrices with built-in chirality,
the reader is referred to Akemann (2007).

‖ J. Ginibre, private communication.
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Figure 1. Numerically simulated distributions of complex eigenvalues in GinUE
(left panel), GinSE (middle panel), and GinOE (right panel). Three different
eigenvalue patterns are clearly observed. Eigenvalues are scattered almost
uniformly in GinUE, depleted from the real axis in GinSE, and accumulated
along the real axis in GinOE.

Other recent findings (Zabrodin 2003) associate statistical models of non-
Hermitean normal random matrices with integrable structures of conformal maps
and interface dynamics at both classical (Mineev-Weinstein et al 2000) and quantum
(Agam et al 2002) scales. For a comprehensive review of these and other physical
applications, the reader is referred to the survey paper by Fyodorov and Sommers
(2003).

2.3. Spectral statistical properties of Ginibre’s random matrices

A profound difference between spectral patterns of the three non-Hermitean random
matrix models has been realised long ago. Anticipated in the early papers by Ginibre
(1965) and Mehta and Srivastava (1966), it was further confirmed analytically by
using varied techniques ¶ (Edelman 1997, Efetov 1997a, Efetov 1997b, Kolesnikov
and Efetov 1999, Kanzieper 2002a, Kanzieper 2002b, Nishigaki and Kamenev 2002,
Splittorff and Verbaarschot 2004, Kanzieper 2005, Akemann and Basile 2007).

Qualitatively, there is a general consensus that (i) the spectrum of GinUE is
approximately characterised by a uniform density of complex eigenvalues. This is
not the case for the two other ensembles. (ii) In GinSE, the density of complex
eigenvalues is smooth but the probability density of real eigenvalues tends to zero. This
corresponds to a depletion of the eigenvalues along the real axis. (iii) On the contrary,
the density of eigenvalues in GinOE exhibits an accumulation of the eigenvalues along
the real axis. It is the latter phenomenon that will be quantified in our paper.

Our immediate goal here is to highlight the inter-relation between these quali-
tative features of the complex spectra and the formal structures underlying Ginibre’s
random matrix ensembles. To this end, we present a brief comparative review of the
major structural results obtained for all three Ginibre’s ensembles (GinUE, GinSE,
and GinOE) since 1965, in the order of increasing difficulty of their treatment.

Joint Probability Density Function of All n Eigenvalues. In this sub-
section, we collect explicit results for the joint probability density functions of all n
complex eigenvalues of a random matrix H ∈ Tβ(n) drawn from any of the three

¶ The difference in spectral patterns of non-Hermitean chiral random matrix models arising in the
QCD context was first studied numerically by Halasz et al (1997). A review of recent theoretical
developments can be found in Akemann (2007).
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Ginibre random matrix ensembles.

• GinUE: The spectrum of a random matrix H ∈ T2(n) drawn from GinUE
consists of n complex eigenvalues (z1, · · · zn) whose joint probability density
function mirrors (Ginibre 1965) that of GUE (see, e.g., Mehta 2004),

P (2)
n (z1, · · · , zn) =

(
πn

n∏
`=1

`!

)−1 n∏
`1>`2=1

|z`1 − z`2 |2
n∏

`=1

e−z`z̄` . (2.2)

Similarly to the electrostatic model introduced by E. Wigner (1957), J. Gini-
bre pointed out that the j.p.d.f. (2.2) can be thought of as that describing the
distribution of the positions of charges of a two-dimensional Coulomb gas in an
harmonic oscillator potential U(z) = |z|2/2, at the inverse temperature 1/T = 2.

• GinSE: The spectrum of a random matrix H ∈ T4(n) drawn from GinSE
consists of n pairs of complex conjugated eigenvalues (z1, z̄1, · · · , zn, z̄n). The
corresponding joint probability density function was derived by Ginibre (1965),

P (4)
n (z1, · · · , zn) =

(
(2π)nn!

n∏
`=1

(2`− 1)!

)−1 n∏
`1>`2=1

|z`1 − z`2 |2|z`1 − z̄`2 |2

×
n∏

`=1

|z` − z̄`|2 exp(−z`z̄`). (2.3)

Notice that the factor
∏n

`=1 |z` − z̄`|2 in (2.3) is directly responsible for the de-
pletion of the eigenvalues along the real axis. For GinSE, a physical analogy with
a two-dimensional Coulomb gas is much less transparent; it has been discussed
by P. Forrester (2005).

• GinOE: Contrary to GinUE and GinSE, the complex spectrum (w1, · · · , wn) of a
random matrix H ∈ T1(n) drawn from GinOE generically contains a finite frac-
tion of real eigenvalues; the remaining complex eigenvalues always form complex
conjugated pairs. Indeed, no other option is allowed by the real secular equation
det (w −H) = 0 determining the eigenvalues of H.

This very peculiar feature of GinOE, that we call accumulation of the eigenvalues
along the real axis, can conveniently be accommodated by dividing the entire
space T1(n) spanned by all real n× n matrices H ∈ T1(n) into (n + 1) mutually
exclusive sectors T1(n/k) associated with the matrices Hk ⊂ H having exactly k
real eigenvalues, such that T1(n) =

⋃n
k=0 T1(n/k). The sectors T1(n/k), charac-

terised by the partial j.p.d.f.’s PH∈T1(n/k)(w1, · · · , wn), can be explored separately
because they contribute additively to the j.p.d.f. of all n eigenvalues of H from
T1(n):

P (1)
n (w1, · · · , wn) =

n∑
k=0

PH∈T(n/k)(w1, · · · , wn). (2.4)

In entire generality, the partial j.p.d.f.’s have been determined by Lehmann and
Sommers (1991) who proved, a quarter of a century after Ginibre’s work, that
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the k-th partial j.p.d.f. (0 ≤ k ≤ n) equals

PH∈T(n/k)(λ1, · · · , λk; z1, · · · , z`)

=
2`−n(n+1)/4

i` k! `!
∏n

j=1 Γ(j/2)

k∏
i>j=1

|λi − λj |
k∏

j=1

exp(−λ2
j/2)

×
k∏

j=1

∏̀
i=1

(λj − zi)(λj − z̄i)
∏̀

i>j=1

|zi − zj |2|zi − z̄j |2

×
∏̀
j=1

(zj − z̄j) erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
. (2.5)

Here, the parameterisation (w1, · · · , wn) = (λ1, · · · , λk; z1, z̄1, · · · , z`, z̄`) was used
to indicate that the spectrum is composed of k real and 2` complex eigenval-
ues so that k + 2` = n. The above j.p.d.f. is supported for (λ1, · · · , λk) ∈ Rk,
(Re z1, · · · ,Re z`) ∈ R`, and (Im z1, · · · , Im z`) ∈ (R+)`. Notice that since the
complex eigenvalues come in ` conjugated pairs, the identity n = 2` + k implies
that half of the sets T1(n/k) are empty: this happens whenever n and k are of
different parity.

In writing (2.5), we have used a representation due to Edelman (1997) who re-
discovered the result by Lehmann and Sommers (1991) a few years later. The
particular case k = n of (2.5), corresponding to the matrices H ∈ T(n/n) with all
eigenvalues real, was first derived by Ginibre (1965). No physical interpretation
of the distribution (2.5) in terms of a two-dimensional Coulomb gas is known as
yet.

Eigenvalue Correlation Functions and Inapplicability of the Dyson
Integration Theorem to the Description of GinOE. Spectral statistical
properties of random matrices can be retrieved from a set of spectral correlation
functions defined as

R(β)
p (z1, · · · , zp;n) =

n!
(n− p)!

n∏
j=p+1

∫
C

d2zj P (β)
n (z1, · · · , zn), β = 2, 4 (2.6)

for GinUE (β = 2) and GinSE (β = 4), and

R(Hk)
p,q (λ1, · · · , λp; z1, · · · , zq;n) =

k!
(k − p)!

`!
(`− q)!

×
k∏

j=p+1

∫
R

dλj

∏̀
m=q+1

∫
C

d2zm PH∈T(n/k)(λ1, · · · , λk; z1, · · · , z`), (2.7)

for GinOE (β = 1). The GinOE correlation function refers to the spectrum of matrices
Hk ⊂ H having exactly k real eigenvalues.

The analytic calculation of the above correlation functions is one of the major
operational tasks of the non-Hermitean RMT. Whenever feasible, such a calculation
either explicitly rests on or can eventually be traced back to the three concepts: (i) a
determinant (or Pfaffian) representation of the j.p.d.f.’s of all eigenvalues, (ii) a projec-
tion property of the kernel function associated with the aforementioned determinant
representation, and (iii) the Dyson integration theorem (Dyson 1970, Mahoux and



2 Comparative analysis of GinOE, GinUE, and GinSE 13

Mehta 1991) that makes use of both (i) and (ii). Highly successful in the Hermitean
RMT, the above three concepts are not always at work in the non-Hermitean RMT.
Particularly, the Dyson integration theorem, being effective for GinUE and GinSE
(see below), fails to work for GinOE.

It will be argued that a mixed character of the GinOE spectrum consisting of both
complex and purely real eigenvalues is the direct cause of the failure. For the readers
convenience as well as for the future reference, we cite the Dyson integration theorem
below + (Mehta (1976); see also Theorem 5.1.4 in Mehta’s book (2004)).

Theorem 2.1 (Dyson integration theorem). Let f(x, y) be a function with real,
complex or quaternion values, such that

f̄(x, y) = f(y, x), (2.8a)

where f̄ = f if f is real, f̄ is the complex conjugate if it is complex, and f̄ is the dual
of f if it is quaternion. Assume that∫

dπ(y) f(x, y) f(y, z) = f(x, z) + λ f(x, z)− f(x, z)λ, (2.8b)

where λ is a constant quaternion and dπ is a suitable measure. Let [f(xi, xj)]n×n

denote the n× n matrix with its (i, j) element equal to f(xi, xj). Then,∫
dπ(xn) det[f(xi, xj)]n×n = (c− n + 1) det[f(xi, xj)](n−1)×(n−1) (2.8c)

with

c =
∫

dπ(x) f(x, x). (2.8d)

When f(x, y) is real or complex, the quaternion constant λ vanishes. For f(x, y)
taking quaternion values, det should be replaced by qdet, the quaternion determinant
(Dyson 1972).

This theorem prompts the following definition.

Definition 2.1. A function f(x, y) satisfying the first and the second equation in the
Dyson integration theorem is said to obey the projection property.

Being equipped with the above reminder, we are ready to present, and discuss, a
collection of formulae available for the p-point correlation functions in Ginibre’s en-
sembles.

• GinUE: The joint probability density function (2.2) of all n eigenvalues is
reducible to a determinant form (Ginibre 1965)

P (2)
n (z1, · · · , zn) =

1
n!

det
[
K(2)

n (zk, z`)
]

n×n

n∏
j=1

e−zj z̄j (2.9)

+ While the formulation in Mehta (2004) refers to the flat measure dπ(x) = dx, the Theorem 2.1
stays valid for any benign measure dπ(x).
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with K
(2)
n (z, z′) being a two-point scalar kernel

K(2)
n (z, z′) =

1
π

n−1∑
`=0

(zz̄′)`

Γ(` + 1)
. (2.10)

Since it obeys the projection property, the Dyson Integration Theorem brings a
determinant expression for the p-point correlation function:

R(2)
p (z1, · · · , zp;n) = det

[
K(2)

n (zk, z`)
]

p×p

p∏
j=1

e−zj z̄j . (2.11)

These results, first derived by J. Ginibre (1965), provide a comprehensive descrip-
tion of spectral fluctuations in GinUE.

• GinSE: The joint probability density function (2.3) of all n eigenvalues is
reducible to a quaternion determinant form (Mehta and Srivastava 1966)

P (4)
n (z1, · · · , zn) =

1
n!

qdet
[
K(4)

n (zk, z`)
]

n×n

n∏
j=1

(z̄j − zj) e−zj z̄j , (2.12)

where K
(4)
n (z, z′) is a quaternion whose 2 × 2 matrix representation reads

(Kanzieper 2002a)

Θ[K(4)
n (z, z′)] =

(
−κ

(4)
n (z̄, z′) −κ

(4)
n (z̄, z̄′)

κ
(4)
n (z, z′) κ

(4)
n (z, z̄′)

)
. (2.13)

Here,

κ(4)
n (z, z′) =

1
2π

n−1∑
k=0

k∑
`=0

z2k+1(z′)2` − (z′)2k+1z2`

(2k + 1)!! (2`)!!
. (2.14)

Alternatively, but equivalently, (2.12) can be reduced to the Pfaffian form
(Akemann and Basile 2007)

P (4)
n (z1, · · · , zn) =

1
n!

pf

[
κ

(4)
n (zi, zj) κ

(4)
n (zi, z̄j)

κ
(4)
n (z̄i, zj) κ

(4)
n (z̄i, z̄j)

]
2n×2n

×
n∏

j=1

(z̄j − zj) e−zj z̄j (2.15)

which is instructive to compare with (1.4).

As soon as the quaternion kernel K
(4)
n (z, z′) satisfies the projection property,

the p-point correlation functions take a quaternion determinant/Pfaffian form:

R(4)
p (z1, · · · , zp;n) = qdet

[
K(4)

n (zk, z`)
]

p×p

p∏
j=1

(z̄j − zj) e−zj z̄j . (2.16)

This result is due to Mehta and Srivastava (1966).

• GinOE: To the best of our knowledge, structural aspects of correlation functions
in GinOE have never been addressed (see, however, a recent paper by Sinclair
(2006)); consequently, no analogues of the above GinUE and GinSE formulae
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[(2.11) and (2.16)] are available. This gap will partially be filled in the present
paper where we derive a quaternion determinant/Pfaffian expression (1.4) for
the j.p.d.f. of all complex eigenvalues of a random matrix H ∈ T1(n/k).
Importantly, the 2 × 2 kernel therein does not possess the projection property,
hereby making the Dyson integration theorem inapplicable for the calculation
of associated correlation functions. We reiterate that a mixed character of the
GinOE spectrum, composed of both complex and purely real eigenvalues is behind
the statement made ∗.

Quantifying the Qualitative Differences Between Spectra of GinUE,

GinSE, and GinOE. The mean density of eigenvalues R
(β)
1 (z = x+ iy;n) is the sim-

plest spectral statistics exemplifying differences in spectral patterns of GinUE, GinSE,
and
GinOE. Below we collect, and comment on, the exact and the large-n results for
the mean density of eigenvalues of H ∈ Tβ(n).

• GinUE: In accordance with (2.11) and (2.10), the exact result for the mean
spectral density reads (Ginibre 1965)

R
(2)
1 (z;n) =

Γ(n, x2 + y2)
π Γ(n)

. (2.17)

Here, Γ(a, φ) is the upper incomplete gamma function

Γ(a, φ) =
∫ ∞

φ

dt ta−1e−t.

For a large-n GinUE matrix and z = x + iy fixed ], the mean spectral density
approaches the constant

R
(2)
1 (z;n � 1) ' 1

π
. (2.18)

This suggests that that the eigenvalues of a large-n GinUE matrix are distributed
almost uniformly within the two-dimensional disk of the radius

√
n. More

rigorously, this statement follows from the macroscopic limit of (2.17)

lim
n→∞

R
(2)
1 (z = ẑ

√
n;n) =

1
π

{
1 if |ẑ| < 1
0 if |ẑ| > 1 (2.19)

known as the Girko circular law (Girko 1984, Girko 1986, Bai 1997). The density
of eigenvalues away from the disk is exponentially suppressed (Kanzieper 2005).

• GinSE: In accordance with (2.13) – (2.16), the exact result for the mean spectral
density reads (Mehta and Srivastava 1966, Kanzieper 2002a)

R
(4)
1 (z;n) = 2y e−(x2+y2) Im κ(4)

n (x + iy, x− iy) (2.20)

∗ Intriguingly, it will be shown in Section 8 that the matrices H ∈ T1(n/0) exhibit GinSE-like
correlations; this contrasts the well known correlations of the GOE type (Ginibre 1965) for the
matrices H ∈ T1(n/n).
] That is, z does not scale with n � 1.



2 Comparative analysis of GinOE, GinUE, and GinSE 16

Figure 2. Profiles of eigenlevel densities R
(β)
1 (z; n), plotted as functions of the

complex energy z = x+iy for n fixed, show a nearly uniform eigenlevel distribution
in GinUE (left panel), a depletion of eigenvalues along the real axis in GinSE as
exemplified by the density drop at y = 0 (middle panel), and accumulation of real
eigenvalues in GinOE displayed as a wall at y = 0 (right panel); the wall height
imitates the density of real eigenvalues.

with κ
(4)
n given by (2.14). For a large-n GinSE matrix and z = x + iy fixed, it

reduces to (Kanzieper, 2002a)

R
(4)
1 (z;n � 1) ' y√

2π
e−2y2

erfi
(
y
√

2
)
. (2.21)

Here, erfi (φ) is the imaginary error function

erfi(φ) =
2√
π

∫ φ

0

dt et2 .

Both results [(2.20) and (2.21)] suggest that the mean eigenvalue density is no
longer uniform but exhibits a depletion of eigenvalues along the real axis. Similarly
to the GinUE, the mean spectral density in GinSE is suppressed away from a disk
of the radius

√
2n as suggested by the circular law

lim
n→∞

R
(4)
1 (ẑ

√
2n;n) =

1
2π

{
1 if |ẑ| < 1
0 if |ẑ| > 1 (2.22)

due to Khoruzhenko and Mezzadri (2005).

• GinOE: A mixed character of the GinOE spectrum consisting of both complex
and real eigenvalues makes the RMT techniques based on the Dyson integration
theorem inapplicable to the description of spectral statistical properties of GinOE.
To evaluate the mean eigenvalue density in the finite-n GinOE, a totally different
approach has been invented by A. Edelman and co-workers (Edelman et al 1994,
Edelman 1997). Starting directly with the definition (2.1) taken at β = 1 and
applying the methods of multivariate statistical analysis (Muirhead 1982), these
authors have separately determined the exact mean densities † of purely real
eigenvalues (Edelman et al 1994)

† The two are related to the (p, q) correlation functions R
(Hk)
p,q for the matrices Hk restricted to have

exactly k real eigenvalues [see the definition (2.7)] as follows:

R
(1)
1,real(z; n) = δ(y)

nX
k=1

R
(Hk)
1,0 (x; n), R

(1)
1,complex(z; n) =

bn/2cX
`=1

R
(Hn−2`)

0,1 (z; n).
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R
(1)
1,real(z;n) =

δ(y)√
2π

[
Γ(n− 1, x2)

Γ(n− 1)
+

2n/2−3/2

Γ(n− 1)
|x|n−1 e−x2/2 γ

(
n− 1

2
,
x2

2

)]
(2.23)

and of strictly nonreal ‡ eigenvalues (Edelman 1997):

R
(1)
1,complex(z;n) =

√
2
π

Γ(n− 1, x2 + y2)
Γ(n− 1)

y e2y2
erfc

(
y
√

2
)
. (2.24)

Here x and y are real and imaginary parts of z = x + iy. The function γ(a, φ) in
(2.23) is the lower incomplete gamma function

γ(a, φ) =
∫ φ

0

dt ta−1e−t.

Importantly, no reference was made to the j.p.d.f. (2.4) and (2.5) in deriving
(2.23) and (2.24).

For a large-n GinOE matrix and z = x + iy fixed, the above two formulae yield
the mean density of eigenvalues in the form

R
(1)
1 (z;n � 1) ' 1√

2π
δ(y) +

√
2
π

y e2y2
erfc

(
y
√

2
)
. (2.25)

Similarly to GinUE and GinSE, the circular law (Girko 1984, Sommers et al 1988,
Bai 1997, Edelman 1997)

lim
n→∞

R
(1)
1 (ẑ

√
n;n) =

1
π

{
1 if |ẑ| < 1
0 if |ẑ| > 1 (2.26)

holds.

2.4. Statistical description of the eigenvalue accumulation in GinOE

In essence, the approach culminating in the explicit formula (2.23) for the mean density
of real eigenvalues represents the simplest possible quantitative description of the
phenomenon of eigenvalue accumulation along the real axis. Complementarily, the
one might be interested in the full statistics of the number Nr (Nc) of real (complex)
eigenvalues occurring in the GinOE spectrum. In the latter context, the result (2.23)
can only supply the first moment of Nr – the expected number En = E[Nr] of real
eigenvalues. Indeed, integrating out the eigenlevel densities (2.23) and/or (2.24) over
the entire complex plane,

En =
∫

C
d2z R

(1)
1, real(z;n) = n−

∫
C\R

d2z R
(1)
1, complex(z;n),

Edelman et al (1994) have obtained the remarkable result

En =
1
2

+
√

2 2F1 (1,−1/2;n; 1/2)
B(n, 1/2)

(2.27)

expressed in terms of the Gauss hypergeometric function and the Euler Beta function.
As n →∞, it furnishes the asymptotic series

En =

√
2n

π

(
1− 3

8n
− 3

128n2
+

27
1024n3

+
499

32768n4
+O(n−5)

)
+

1
2
. (2.28)

‡ In the formulae, we use the subscript “complex” to identify eigenvalues with zero real part.
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The nonperturbative
√

n-dependence of leading term in (2.28) had been earlier
detected numerically by Sommers et al (1988).

What is about a more detailed statistical description of the number Nr (Nc) of
real (complex) eigenvalues? Can all the moments and the entire probability function
of the discrete random variable Nr (Nc) be determined? The preceding discussion,
particularly highlighting a patchy knowledge of the spectral correlations in GinOE,
suggests that both spectral characteristics, which can be expressed as §

E[N p
r ] =

p∑
k=1

S(p, k)
∫

C
d2z1 · · ·

∫
C

d2zk R
(1)
k, real(z1, · · · , zk;n) (2.29)

and

E[N p
c ] =

p∑
`=1

S(p, `)
∫

C\R
d2z1 · · ·

∫
C\R

d2z` R
(1)
`, complex(z1, · · · , z`;n), (2.30)

are not within immediate reach. First, only one correlation function out of p involved
in either (2.29) or (2.30) is explicitly known. Second, even if all the multipoint
correlation functions were readily available, the integrations in (2.29) and (2.30) would
not be trivial either because of the anticipated inapplicability of the Dyson integration
theorem as discussed in Section 2.3.

Some of the difficulties outlined here will be overcome in the present paper. For
a list of our major results the reader is referred back to the Section 1.2. Proofs and
derivations are given in the Sections to follow.

3. Statistics of real eigenvalues in GinOE spectra: A Pfaffian integral
representation for the probability pn,k

3.1. Generalities and known results

Instead of targeting the moments E[N p
r ] of a fluctuating number of real eigenvalues

as discussed in the previous section, we are going to directly determine the entire
probability function pn,k = Prob(Nr = k). The definition of the pn,k, describing
the probability of finding exactly k real eigenvalues in the spectrum of an n × n real
Gaussian random matrix, can be deduced from (2.4) and (2.5),

pn,k = Prob(H ∈ T(n/k)) =
k∏

i=1

∫
R

dλi

∏̀
j=1

∫
Im zj>0

d2zj PH∈T(n/k). (3.1)

Here, ` is the number of pairs of complex conjugated eigenvalues in the spectrum of
an n× n matrix H ∈ T(n/k) having exactly k real eigenvalues, and PH∈T(n/k) is the
j.p.d.f. of all n eigenvalues of such a matrix. Obviously, the identity n = k + 2` holds.

Previous attempts to determine the probability function pn,k based on (3.1)
brought no explicit formula for pn,k for generic k. The only analytic results avail-
able are due to Edelman (1997) who proved the following properties of the above
probability function ‖:

Property 1. The probability of having all n eigenvalues real equals

pn,n = 2−n(n−1)/4. (3.2)

§ The coefficient S(p, k) is the Stirling number of the second kind.
‖ Table 2 provides a useful illustration of both properties.
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Property 2. For all 0 ≤ k ≤ n, the pn,k are of the form

pn,k = rn,k + sn,k

√
2, (3.3)

where rn,k and sn,k are rational.

The first result is a simple consequence of (3.1) which, at k = n, reduces to a known
Selberg integral. All known examples suggest that this is the smallest probability out
of all pn,k’s. The second result is based on more involved considerations of (3.1) and
(2.4).

3.2. Joint probability density function of complex eigenvalues of H ∈ T(n/k)

To evaluate the sought probability function pn,k, we start with the definition (3.1). In
a first step, we carry out the λ-integrations therein to assess the j.p.d.f. of all complex
eigenvalues of a random matrix H ∈ T(n/k) having exactly k real eigenvalues:

PHk
(z1, · · · , z`) =

k∏
i=1

∫
R

dλi PH∈T(n/k)(λ1, · · · , λk; z1, · · · , z`). (3.4)

To proceed, we consult (2.5) to spot that a part of it,

Ik,`({z, z̄}) ≡
k∏

i=1

∫
R

dλi

k∏
j=1

e−λ2
j/2

k∏
i>j

|λi − λj |
k∏

j=1

∏̀
i=1

(λj − zi)(λj − z̄i), (3.5)

coincides up to a prefactor to be specified below with the average characteristic
polynomial ¶

Pk,`({z, z̄}) =
(∫

DO e−tr O2/2

)−1

×
∫

DO
∏̀
j=1

det (zj −O) det (z̄j −O) e−tr O2/2 (3.6)

of a k × k real symmetric matrix O = OT drawn from the GOE. More precisely,

Ik,`({z, z̄}) = sk k!Pk,`({z, z̄}),
where sk is given by the Selberg integral (Mehta 2004)

sk =
1
k!

k∏
i=1

∫
R

dλi

k∏
j=1

e−λ2
j/2

k∏
i>j

|λi − λj | = 2k/2
k∏

j=1

Γ(j/2). (3.7)

Consequently, the j.p.d.f. of all complex eigenvalues of H ∈ T(n/k) is expressed in
terms of the average GOE characteristic polynomial Pk,`({z, z̄}) as

PHk
(z1, · · · , z`) =

2`

i``!
sk

sn
pn,n Pk,`({z, z̄})

∏̀
i>j=1

|zi − zj |2|zi − z̄j |2

×
∏̀
j=1

(zj − z̄j) erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
. (3.8)

¶ Equations (3.4) and (3.5) suggest that P0,n = 1.
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A little bit more spadework is needed to appreciate the beauty hidden in this
representation. Borrowing the result due to Borodin and Strahov (2005), who
discovered a Pfaffian formula for a general averaged GOE characteristic polynomial
(see also an earlier paper by Nagao and Nishigaki (2001)), we may write Pk,` in the
form

Pk,`({z, z̄}) =
sn/sk

∆2`({z, z̄})
(−1)`

×
∏̀
j=1

exp

(
z2
j + z̄2

j

2

)
pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

. (3.9)

Here, Dn(zi, zj) is the so-called D-part of the 2 × 2 GOE matrix kernel (Tracy and
Widom 1998) to be defined in (3.12) and (3.13) below; ∆2`({z, z̄}) is the Vandermonde
determinant +

∆2`({z, z̄}) = ∆2`(z1, z̄1, · · · , z`, z̄`) =
∏̀
i>j

|zi − zj |2
∏̀
i>j

|zi − z̄j |2
∏̀
i=1

(z̄i − zi). (3.10)

Combining (3.8), (3.9) and (3.10), we obtain:

PHk
(z1 · · · , z`) =

pn,n

`!

(
2
i

)`

×
∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

(3.11)

where (Re z1, · · · ,Re z`) ∈ R` and (Im z1, · · · , Im z`) ∈ (R+)` by derivation.
Equation (3.11) is the central result of this section. Announced in (1.4), it

describes the j.p.d.f. of ` pairs of complex conjugated eigenvalues {zj , z̄j} of an n× n
random matrix Hk whose k remaining eigenvalues are real, k + 2` = n.

To make the expression for the j.p.d.f. PHk
explicit, we have to specify the kernel

function Dn(zi, zj). The latter turns out to be sensitive to the parity of n (see, e.g.,
Adler et al (2000)). For n = 2m even, the kernel function is given by

D2m(x, y) =
1
2
e−(x2+y2)/2

m−1∑
j=0

q2j+1(x) q2j(y)− q2j(x) q2j+1(y)
hj

(3.12)

while for n = 2m + 1 odd, it equals

D2m+1(x, y) =
1
2
e−(x2+y2)/2

m−1∑
j=0

q̃2j+1(x) q̃2j(y)− q̃2j(x) q̃2j+1(y)
hj

. (3.13)

Both representations (3.12) and (3.13) involve the polynomials qj(x) skew orthogonal
on R with respect to the GOE skew product (Mehta 2004)

〈f, g〉 =
1
2

∫
R

dx e−x2/2

∫
R

dy e−y2/2sgn(y − x) f(x) g(y) (3.14)

such that

〈q2k, q2`+1〉 = −〈q2k+1, q2`〉 = hkδk,`, 〈q2k, q2`〉 = 〈q2k+1, q2`+1〉 = 0. (3.15)

+ Throughout the paper, we adopt the definition ∆k(x) =
Qk

i>j(xi − xj) which differs from that of

Borodin and Strahov (2005) who use the same notation ∆k(x) for the double product with i < j.
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The skew orthogonal polynomials qj(x) can be expressed ∗ in terms of Hermite
polynomials as ]

q2j(x) =
1

22j
H2j(x),

q2j+1(x) =
1

22j+1

[
H2j+1(x)− 4j H2j−1(x)

]
(3.16)

while “tilded” polynomials q̃j(x) † entering (3.13) are related to qj(x) via

q̃2j(x) = q2j(x)− (2j)!
22jj!

22mm!
(2m)!

q2m(x),

q̃2j+1(x) = q2j+1(x). (3.17)

Specifying the normalisation

hj = 〈q2j , q2j+1〉 =
√

π (2j)!
22j

(3.18)

completes our derivation of (3.11).

3.3. Probability function pn,k as a Pfaffian integral and inapplicability of the Dyson
integration theorem for its calculation

The results obtained in Section 3.2 allow us to express the probability function pn,k

in the form of an `-fold integral

pn,k =
pn,n

`!

(
2
i

)` ∏̀
j=1

∫
Im zj>0

d2zj

× erfc
(

zj − z̄j

i
√

2

)
pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

(3.19)

involving a Pfaffian. It can also be rewritten as a quaternion determinant

pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

= qdet[D̂n(zi, zj)]`×`

where the self-dual quaternion D̂n(zi, zj) has a 2× 2 matrix representation

Θ[D̂n(zi, zj)] =
(
−Dn(z̄i, zj) −Dn(z̄i, z̄j)
Dn(zi, zj) Dn(zi, z̄j)

)
.

The Pfaffian/quaternion determinant form of the integrand in (3.19), closely
resembling the structure of both the j.p.d.f. (2.12) of all complex eigenvalues and
the p-point correlation function (2.16) in GinSE, makes it tempting to attack the `-
fold integral (3.19) with the help of the Dyson integration theorem (see Section 2.3).
Unfortunately, the key condition of this theorem – the projection property – is not
fulfilled.

To see this point, we represent the kernel function Dn(x, y) in the form

Dn(x, y) =
1
2

e−(x2+y2)/2
n−1∑

j,k=0

qj(x) µ̂jk qk(y), (3.20)

∗ The representation (3.16) is not unique; see, e.g., Eynard (2001).
] Equation (3.16) assumes that H−1(x) ≡ 0.
† Note that the q̃2j(x) is no longer a polynomial of the degree 2j.
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see the primary definition (3.12) and (3.13). In (3.20), the real antisymmetric matrix
µ̂ of the size n× n depends on the parity of n. It equals

µ̂even
jk =

 −ê2h
−1
0

. . .
−ê2h

−1
m−1

 (3.21)

and

µ̂odd
jk =


−ê2h

−1
0 −ς̂T0

. . .
...

−ê2h
−1
m−1 −ς̂Tm−1

ς̂0 · · · ς̂m−1 0

 (3.22)

for n = 2m and n = 2m+1, respectively. We remind that hj is defined by (3.18); also
we have used the notation

ê2 =
(

0 1
−1 0

)
, ς̂j = cm

(
0,

1
j!
)
, cm =

m!
hm

. (3.23)

Actually, the representation (3.20) can be put into a more general form due to Tracy
and Widom (1998) that would contain arbitrary, not necessarily skew orthogonal,
polynomials upon a proper redefinition of the matrix µ̂.

For the Dyson integration theorem to be applicable, the projection property for
the self-dual quaternion D̂n(zi, zj) must hold. For this to be the case, the integral
identity∫

dα(w) [Dn(z1, w)Dn(w̄, z2)−Dn(z2, w)Dn(w̄, z1)]
?= −Dn(z1, z2) (3.24)

should be satisfied for the measure

dα(w) = erfc
(

w − w̄

i
√

2

)
θ(Im w) d2w. (3.25)

Here, θ(φ) is the Heaviside step function,

θ(φ) =
{

1 if φ > 0
0 if φ < 0 .

Straightforward calculations based on (3.20) show that the integral on the l.h.s. of
(3.24) equals

1
2

e−(z2
1+z2

2)/2
n−1∑

j,k=0

qj(z1) (µ̂ χ̂ µ̂)jk qk(z2), (3.26)

where n× n matrix χ̂ has the entries

χ̂jk =
1
2

∫
dα(w) e−(w2+w̄2)/2 [qj(w) qk(w̄)− qj(w̄) qk(w)] . (3.27)

Since ‡ (µ̂ χ̂) 6= −1̂n, the l.h.s. of (3.24) given by (3.26) differs from the r.h.s. (3.24).
As a result, the kernel function Dn(z1, z2) does not satisfy the projection property
§. Consequently, the Dyson integration theorem is inapplicable for the calculation of
pn,k in the form of the Pfaffian integral (3.19).

‡ That −(µ̂χ̂) cannot be a unit matrix 1̂, follows from the fact that χ̂jk is purely imaginary [(3.27)]
while µ̂jk are real valued [(3.21) and (3.22)]. See Appendix B for an explicit calculation.
§ As soon as the integral on the l.h.s. of (3.24) combines a D-part of the GOE 2 × 2 matrix kernel
originally introduced for the GOE’s real spectrum with the GinOE-induced measure dα(w) supported
in the complex half-plane Im w > 0, a violation of the projection property is not unexpected.
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4. Probability function pn,k: Sensing a structure through particular cases

Before turning to the derivation of the general formula for pn,k (see the results
announced in Section 1.2), it is instructive to consider a few particular cases
corresponding to low values of `, the number of pairs of complex conjugated
eigenvalues. Below, the cases of ` = 1, 2 and 3 are treated explicitly.

4.1. What is the probability to find exactly one pair of complex conjugated
eigenvalues?

As a first nontrivial application of the Pfaffian integral representation (3.19) for the
probability function pn,k, let us consider the next-to-the-simplest ‖ case of ` = 1
corresponding to the occurrence of exactly one pair of complex conjugated eigenvalues.
Since the D-kernel (3.20) is antisymmetric under exchange of its arguments,

Dn(x, y) = −Dn(y, x), (4.1)

the Pfaffian in (3.19) reduces to

pf
[

0 Dn(z, z̄)
−Dn(z, z̄) 0

]
= Dn(z, z̄)

resulting in

pn,n−2 = pn,n
2
i

∫
Im z>0

d2z erfc
(

z − z̄

i
√

2

)
Dn(z, z̄). (4.2)

To calculate the integral

I1 =
∫

Im z>0

d2z erfc
(

z − z̄

i
√

2

)
Dn(z, z̄) =

∫
dα(z)Dn(z, z̄)

(see (3.25)), we rewrite it in a more symmetric manner
1
2

∫
dα(z)

[
Dn(z, z̄)−Dn(z̄, z)

]
,

and make use of (3.27), (3.25) and (3.20) to deduce that it equals

−1
2

n−1∑
j,k=0

µjkχkj = −1
2
tr(0,n−1)(µ̂χ̂),

or, equivalently,

I1 =
∫

dα(z)Dn(z, z̄) =
i

4
tr(0,n−1)σ̂. (4.3)

Here, σ̂ is given by σ̂ = 2iµ̂χ̂ (see also Appendix B). We therefore conclude that the
probability sought equals

pn,n−2 =
1
2

pn,n tr(0,n−1)σ̂. (4.4)

Due to the trace identity (C.5) proven in Appendix C, we eventually derive:

pn,n−2 = pn,n tr(0,bn/2c−1)%̂, (4.5)

reducing the size of the matrix by two. Here, the smaller matrix %̂ depends on the
parity of n, as defined in the Section 1.2 (see also (C.3) and (C.4)).

‖ In the simplest case of ` = 0, our representation (3.19) reproduces the result (3.2) first derived by
Edelman (1997).
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Remarkably, the trace in (4.5) can explicitly be calculated (see Appendix D)
to yield a closed expression for the probability to find exactly one pair of complex
conjugated eigenvalues:

pn,n−2 = 2 pn,n

∫ ∞

0

dy y ey2
erfc(y

√
2) L2

n−2(−2y2). (4.6)

Yet another, though equivalent, representation for the probability pn,n−2 is given in
Section 7 that addresses the large-n behaviour of pn,n−2.

4.2. Two pairs of complex conjugated eigenvalues (` = 2)

For ` = 2, the Pfaffian in (3.19)

pf


0 Dn(z1, z̄1) Dn(z1, z2) Dn(z1, z̄2)

−Dn(z1, z̄1) 0 Dn(z̄1, z2) Dn(z̄1, z̄2)
−Dn(z1, z2) −Dn(z̄1, z2) 0 Dn(z2, z̄2)
−Dn(z1, z̄2) −Dn(z̄1, z̄2) −Dn(z2, z̄2) 0

 (4.7)

reduces to

Dn(z1, z̄1)Dn(z2, z̄2) +Dn(z1, z̄2)Dn(z̄1, z2)−Dn(z1, z2)Dn(z̄1, z̄2), (4.8)

so that

pn,n−4 = −2 pn,n

∫
dα(z1)

∫
dα(z2)

×
[
Dn(z1, z̄1)Dn(z2, z̄2) +Dn(z1, z̄2)Dn(z̄1, z2)−Dn(z1, z2)Dn(z̄1, z̄2)

]
. (4.9)

Apart from a known integral taking the form of (4.3), a new integral

I2 =
∫

dα(z1)
∫

dα(z2)
[
Dn(z1, z̄2)Dn(z̄1, z2)−Dn(z1, z2)Dn(z̄1, z̄2)

]
(4.10)

appears in (4.9). Somewhat lengthy but straightforward calculations based on (3.27),
(3.25) and (3.20) result in

I2 =
1
8

tr(0,n−1)(σ̂
2). (4.11)

Combining (4.9), (4.3), (4.10) and (4.11), we obtain:

pn,n−4 = pn,n

[
1
8
(
tr(0,n−1)σ̂

)2 − 1
4

tr(0,n−1)(σ̂
2)
]

. (4.12)

Due to the trace identity (C.5) proven in Appendix C, the latter reduces to

pn,n−4 =
1
2

pn,n

[(
tr(0,bn/2c−1)%̂

)2 − tr(0,bn/2c−1)(%̂
2)
]
. (4.13)

Interestingly, the expression in the parenthesis of (4.13) coincides with Z(12)(p1, p2)
after the substitution tr %̂j = pj (see Table 1).

4.3. Three pairs of complex conjugated eigenvalues (` = 3)

The complexity of the integrand in (3.19) grows rapidly with increasing `. For ` = 3,
that is three pairs of complex conjugated eigenvalues in the matrix spectrum, the
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Pfaffian of the 6× 6 antisymmetric matrix
0 Dn(z1, z̄1) Dn(z1, z2) Dn(z1, z̄2) Dn(z1, z3) Dn(z1, z̄3)

−Dn(z1, z̄1) 0 Dn(z̄1, z2) Dn(z̄1, z̄2) Dn(z̄1, z3) Dn(z̄1, z̄3)
−Dn(z1, z2) −Dn(z̄1, z2) 0 Dn(z2, z̄2) Dn(z2, z3) Dn(z2, z̄3)
−Dn(z1, z̄2) −Dn(z̄1, z̄2) −Dn(z2, z̄2) 0 Dn(z̄2, z3) Dn(z̄2, z̄3)
−Dn(z1, z3) −Dn(z̄1, z3) −Dn(z2, z3) −Dn(z̄2, z3) 0 Dn(z3, z̄3)
−Dn(z1, z̄3) −Dn(z̄1, z̄3) −Dn(z2, z̄3) −Dn(z̄2, z̄3) −Dn(z3, z̄3) 0


is getting involved. It can be calculated with some effort to give 15 terms which can
be attributed to three different groups. The first group consists of the single term

G1 = Dn(z1, z̄1)Dn(z2, z̄2)Dn(z3, z̄3). (4.14)

The second group contains 6 terms,

G2 = Dn(z1, z̄1)
[
Dn(z2, z̄3)Dn(z̄2, z3) −Dn(z2, z3)Dn(z̄2, z̄3)

]
+Dn(z2, z̄2)

[
Dn(z1, z̄3)Dn(z̄1, z3) −Dn(z1, z3)Dn(z̄1, z̄3)

]
+Dn(z3, z̄3)

[
Dn(z1, z̄2)Dn(z̄1, z2) −Dn(z1, z2)Dn(z̄1, z̄2)

]
, (4.15)

while the third group counts 8 terms:

G3 = Dn(z1, z̄3)Dn(z̄2, z3)Dn(z̄1, z2) −Dn(z̄1, z3)Dn(z2, z̄3)Dn(z1, z̄2)
+Dn(z1, z̄2)Dn(z2, z3)Dn(z̄1, z̄3)−Dn(z̄1, z2)Dn(z̄2, z̄3)Dn(z1, z3)
+Dn(z̄1, z̄2)Dn(z2, z̄3)Dn(z1, z3) −Dn(z1, z2)Dn(z̄2, z3)Dn(z̄1, z̄3)
+Dn(z1, z2)Dn(z̄2, z̄3)Dn(z̄1, z3)−Dn(z̄1, z̄2)Dn(z2, z3)Dn(z1, z̄3). (4.16)

In the above notation, the probability function pn,n−6 takes the form

pn,n−6 =
4i

3
pn,n

∫
dα(z1)

∫
dα(z2)

∫
dα(z3)

[
G1 + G2 + G3

]
. (4.17)

The integrals containing G1 and G2 can easily be performed with the help of (4.3),
(4.10) and (4.11) to bring∫

dα(z1)
∫

dα(z2)
∫

dα(z3)G1 = I3
1 =

(
i

4
tr(0,n−1)σ̂

)3

(4.18)

and∫
dα(z1)

∫
dα(z2)

∫
dα(z3)G2 = 3 I1 I2

= 3
(

i

4
tr(0,n−1)σ̂

) (
1
8

tr(0,n−1)(σ̂
2)
)

. (4.19)

The remaining integral involving G3 can be evaluated similarly to I1 and I2, the result
being

I3 =
∫

dα(z1)
∫

dα(z2)
∫

dα(z3) G3 =
i3

8
tr(0,n−1)(σ̂

3). (4.20)

Combining (4.17), (4.18), (4.19) and (4.20), we derive:

pn,n−6 = pn,n

[
1
48
(
tr(0,n−1)σ̂

)3 − 1
8

tr(0,n−1)σ̂ tr(0,n−1)(σ̂
2) +

1
6

tr(0,n−1)(σ̂
3)
]

.

(4.21)
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Finally, we apply the trace identity (C.5) to end up with the formula

pn,n−6 =
1
6

pn,n

[ (
tr(0,bn/2c−1)%̂

)3
− 3 tr(0,bn/2c−1)%̂ tr(0,bn/2c−1)(%̂

2) + 2 tr(0,bn/2c−1)(%̂
3)
]
. (4.22)

The expression in the parenthesis of (4.22) is seen to coincide with Z(13)(p1, p2, p3)
after the substitution tr %̂j = pj (see Table 1).

4.4. Higher `

The three examples considered clearly demonstrate that the calculational complexity
grows enormously with increasing `, the number of complex conjugated eigenvalues in
the random matrix spectrum. Indeed, the number of terms N` in the expansion of the
Pfaffian in (3.19) equals N` = (2`−1)!! and exhibits a faster-than-exponential growth,
N` ≈ 2`+1/2 e` (ln `−1), for ` � 1. For this reason, one has to invent a classification of
the terms arising in the Pfaffian expansion that facilitates their effective computation.
This will be done in Section 5, where we introduce a topological interpretation of the
Pfaffian expansion, and prove the Pfaffian integration theorem which can be viewed
as a generalisation of the Dyson integration theorem (see Section 2.3).

5. Topological interpretation of the Pfaffian expansion, and the Pfaffian
integration theorem

5.1. Statement of the main result and its discussion

Before stating the main result of this section, the Pfaffian integration theorem, we
wish to start with presenting a simple Corollary to the Dyson integration theorem.

Corollary 5.1. Let f(x, y) be a function with real, complex or quaternion values
satisfying the conditions (2.8a) and (2.8b) of the Theorem 2.1, and dπ be a suitable
measure. Then ∫ ∏̀

j=1

dπ(xj) det [f(xi, xj)]`×` =
Γ(c + 1)

Γ(c + 1− `)
, (5.1a)

where

c =
∫

dπ(x) f(x, x). (5.1b)

For f taking quaternion values, the det should be interpreted as qdet, the quaternion
determinant (Dyson 1972).

Proof. Repeatedly apply the Dyson integration theorem to the l.h.s. of (5.1a) to
arrive at its r.h.s. �

Importantly, the above Corollary exclusively applies to functions f(x, y) satisfying
the projection property as defined in Section 2.3 (see Definition 2.1 therein). How-
ever, guided by our study of the integrable structure of GinOE, we are going to ask if
the integrals of the kind (5.1a) can explicitly be calculated if the projection property is
relaxed. In general, the answer is positive. In particular, for f(x, y) being a self-dual
quaternion, the following integration theorem will be proven.
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Theorem 5.1 (Pfaffian integration theorem). Let dπ(z) be any benign measure
on z ∈ C, and the function Qn(x, y) be an antisymmetric function of the form

Qn(x, y) =
1
2

n−1∑
j,k=0

qj(x) µ̂jk qk(y) (5.2a)

where the qj(x) are arbitrary polynomials of j-th order, and µ̂ is an antisymmetric
matrix. Then the integration formula∫

C

∏̀
j=1

dπ(zj) pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

=
(

i

2

)`

Z(1`)

(
1
2
tr(0,n−1)υ̂

1, · · · , 1
2
tr(0,n−1)υ̂

`

)
(5.2b)

holds, provided the integrals in its l.h.s. exist. Here, Z(1`) are zonal polynomials whose
` arguments are determined by a matrix υ̂ with the entries

υ̂α,β = i

n−1∑
k=0

µ̂α,k

∫
z∈C

dπ(z) [qk(z) qβ(z̄)− qβ(z) qk(z̄)] . (5.2c)

As we integrate over all variables, the Pfaffian integration theorem can be viewed
as a generalisation of the Corollary 5.1 proven a few lines above, for the case of a
kernel not satisfying the projection property. This follows from the identity

pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

= qdet
[
Q̂n(zi, zj)

]
`×`

,

where the quaternion Q̂n(zi, zj) has the 2× 2 matrix representation:

f(zi, zj) = Θ[Q̂n(zi, zj)] =
(
−Qn(z̄i, zj) −Qn(z̄i, z̄j)

Qn(zi, zj) Qn(zi, z̄j)

)
. (5.3)

To see that the Pfaffian integration theorem reduces to the Corollary for the particular
case of a kernel with restored projection property, we spot that the latter is equivalent
to the statement

υ̂ = −2i 1̂n (5.4)

as can be deduced from the discussion below (3.24), Section 3.3. As a result,

tr (0,n−1) υ̂
j = n

(
2
i

) j

, (5.5)

and the r.h.s. of (5.2b) reduces to (Macdonald 1998)(
i

2

)`

Z(1`)

(
n

2

(
2
i

)1

, · · · , n

2

(
2
i

)`
)

=
(

i

2
∂

∂z

)`

exp

(
n

2

∑
r≥1

(−1)r−1 (−2i z)r

r

)∣∣∣∣∣
z=0

=
(

∂

∂z

)`

(1 + z)n/2

∣∣∣∣∣
z=0

=
Γ(n/2 + 1)

Γ(n/2 + 1− `)
. (5.6)

Finally, noticing from (5.3) that∫
dπ(z)f(z, z) =

∫
dπ(z)

(
Qn(z, z̄) 0

0 Qn(z, z̄)

)
=

i

4
ê0 tr (0,n−1)υ̂ = (n/2) ê0 (5.7)
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Table 3. The vocabulary of topological terms defined to interpret the ordered
Pfaffian expansion. The notation used is: D – Definition, E – Example, L –
Lemma, T – Theorem, C – Corollary, F – Figure.

Term Notation Appearance

String Si D5.1, E5.1, F3, F4

Length of a string ‖Si‖ D5.2, E5.2

Equivalent strings Si ∼ Sj D5.3, E5.3, L5.1, F3

Equivalence class of strings Cj D5.4, E5.4, L5.1, F3, F5

Size of equivalence class ‖Cj‖ D5.4, L5.1, F3

Substring S(p)
i D5.5, E5.5

Length of a substring p = ‖S(p)
i ‖ D5.5, E5.5

Loop-like substring S(p)
i D5.6, E5.6, L5.2, L5.5,

F3, F4

Longest loop-like string S(`)
i F3, E5.7, L5.4

Adjacent loop-like string S(p)
i D5.7, E5.7, E5.9, E5.11,

L5.4–L5.6, C5.2, F4, F5

Handedness of adjacent (sub)string H(αL, αR) D5.8, E5.8, E5.9, E5.11,
L5.6, C5.2, F5

Equivalent adjacent (sub)strings Si ∼ Sj D5.9, E5.10, E5.11,
L5.7, F5

Equivalence class of adjacent (sub)strings ACj D5.10

Compound string Si D5.11, T5.3, F3, F6

Topology class λ F6

with ê0 = diag(1, 1), we conclude that the constant c in the Corollary [(5.1b)] equals
c = n/2 so that the result (5.6) brought by the Pfaffian integration theorem is
identically equivalent to the one [(5.1a)] following from the Dyson integration theorem.
We stress that this is only true for the kernel Qn(zi, zj) satisfying the projection
property.

To prove the Theorem 5.1, we will invent a formalism based on a topological
interpretation of the ordered Pfaffian expansion. For the readers’ benefit, a vocabulary
of the topological terms to be defined and used in the following sections is summarised
in Table 3.

5.2. Topological interpretation of the ordered Pfaffian expansion

To integrate the Pfaffian in (5.2b), we start with its ordered expansion

pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

=
1

2``!

∑
σ∈S2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)).

(5.8)

Here, the summation extends over all permutations σ ∈ S2` of 2` objects

{w1 = z1, w2 = z̄1, · · · , w2`−1 = z`, w2` = z̄`} (5.9)

so that the total number of terms in (5.8) is (2`)!.
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5.2.1. Strings and their equivalence classes

Definition 5.1. Each term of the ordered Pfaffian expansion is called a string.
The i-th string Si equals

Si = sgn(σi)
`−1∏
j=0

Qn(wσi(2j+1), wσi(2j+2)). (5.10)

where σi is the i-th permutation out of (2`)! possible permutations σ ∈ S2`. Notice
that a sign is attached to each string.

Example 5.1. The ordered expansion of the Pfaffian for ` = 2 [see (4.7)] contains
4! = 24 strings that we assign to three different groups (their meaning will become
clear below):

Group 1 Group 2 Group 3

+ (11̄)(22̄) +(12̄)(1̄2) −(12)(1̄2̄)
−(11̄)(2̄2) −(12̄)(21̄) +(12)(2̄1̄)
+(1̄1)(2̄2) +(2̄1)(21̄) −(21)(2̄1̄)
−(1̄1)(22̄) −(2̄1)(1̄2) +(21)(1̄2̄)
+(22̄)(11̄) +(1̄2)(12̄) −(1̄2̄)(12)
−(22̄)(1̄1) −(1̄2)(2̄1) +(1̄2̄)(21)
+(2̄2)(1̄1) +(21̄)(2̄1) −(2̄1̄)(21)
−(2̄2)(11̄) −(21̄)(12̄) +(2̄1̄)(12)

(5.11)

For brevity, the obvious notation ±(pq)(p̄q̄) was used to denote the string
±Qn(zp, zq)Qn(z̄p, z̄q). The three strings shown in bold are those that previously
appeared in (4.8) when treating the probability pn,n−4.

Definition 5.2. The length ‖Si‖ of a string Si equals the number of kernels it
is composed of.

Example 5.2. The string Si in (5.10) is of the length `: ‖Si‖ = `. All strings
in (5.11) are of the length 2.

Definition 5.3. Two strings Si and Sj of the ordered Pfaffian expansion are said
to be equivalent strings, Si ∼ Sj, if they can be obtained from each other by (i)
permutation of kernels and/or (ii) permutation of arguments inside kernels (these will
also be called intra-kernel permutations).

Example 5.3. For ` = 2, three different groups of equivalent strings can be identified
as suggested by (5.11). The first group, exemplified by the string +(11̄)(22̄) involves
8 equivalent strings; two other groups, each consisting of 8 strings as well, are repre-
sented by the strings +(12̄)(1̄2) and −(12)(1̄2̄), respectively.

Definition 5.4. A group of equivalent strings is called the equivalence class of
strings. The j-th equivalence class to be denoted as Cj consists of ‖Cj‖ equivalent
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Ordered Pfaffian Expansion:
(2`− 1)!! equivalence classes
each made of (2`)!! equivalent

strings

 



C1

...
C(2`−2)!!

  Longest Loop-Like Strings
Total amount: (2`)!!(2`− 2)!!

− − − − −
C(2`−2)!!+1

...
C(2`−1)!!

 
Compound Strings
made of at least two

sets of loop-like strings

Figure 3. The (2`)! terms, or strings, of an ordered Pfaffian expansion can be
assigned to (2` − 1)!! equivalence classes {C1, · · · , C(2`−1)!!}, each one containing
(2`)!! equivalent strings (Lemma 5.1). Any given string of the length ` can be
decomposed into a set of loop-like substrings of respective lengths {`j} such thatP

j `j = ` (Lemma 5.2). The sets consisting of only one loop-like string are called
longest loop-like strings; the sets made of more than one loop-like substring are
called compound strings. An amount of longest loop-like strings is counted in
Lemma 5.3.

strings. The number ‖Cj‖ is called the size of equivalence class.

Example 5.4. For ` = 2, exactly three different equivalence classes of strings (5.11)
can be identified in the ordered Pfaffian expansion (5.8).

In the context of the initiated classification of strings arising in the ordered Pfaffian
expansion (5.8), a natural question to ask is this: Can the total number of equivalence
classes and the number of of equivalent strings in each class be determined? The
answer is provided by Lemma 5.1.

Lemma 5.1. All terms of the ordered Pfaffian expansion can be assigned to (2`− 1)!!
equivalence classes {C1, · · · , C(2`−1)!!}, each containing (2`)!! equivalent strings: ‖Cj‖ =
(2`)!! for all j ∈ 1, · · · , (2`− 1)!!.

Proof. Consider a string Si belonging to the equivalence class Cj and composed
of ` specific kernels, ‖Si‖ = `. There exist `! possible permutations of kernels and
2` intra-kernel permutations of arguments. As a result, the total number of strings
generated by these two operations from a given string Si equals ‖Cj‖ = 2``! = (2`)!!.
Since the total number of strings in the ordered expansion is (2`)!, one concludes that
there exist (2`)!/(2`)!! = (2`− 1)!! different equivalence classes. �

The results of this and the two subsequent Sections are summarised in Fig. 3.

5.2.2. Decomposing strings into loop-like substrings

Having assigned all (2`)! strings of the ordered Pfaffian expansion to (2`− 1)!! equiv-
alence classes each containing (2`)!! strings, we wish to concentrate on the structure
of the strings themselves. Below, we shall prove that any string Si (of the length
‖Si‖ = `) can be decomposed into a certain number (between 1 and `) of loop-like



5 Pfaffian integration theorem 31

substrings, see the Lemma 5.2. To prepare the reader to the definition of a loop-like
substring, we first define the notion of a substring itself.

Definition 5.5. A product S(p)
i of p kernels Qn is called a substring of the string

Si = sgn(σi)
`−1∏
j=0

Qn(wσi(2j+1), wσi(2j+2)), ‖Si‖ = `, (5.12)

specified in Definition 5.1, if it takes the form

S(p)
i =

p∏
k=1

Qn(wσi(2jk+1), wσi(2jk+2)) (5.13)

where j1 6= j2 6= · · · 6= jp. The length ‖S(p)
i ‖ of the substring is ‖S(p)

i ‖ = p with
1 ≤ p ≤ `. Notice that no sign is assigned to a substring.

Example 5.5. The string

+(11̄)(23̄)(2̄3)

arising in the ` = 3 Pfaffian expansion (see the first term in (4.15)) can exhaustively
be decomposed into seven substrings ¶
(11̄), (23̄), (2̄3)︸ ︷︷ ︸

p=1

, (11̄)(23̄), (11̄)(2̄3), (23̄)(2̄3)︸ ︷︷ ︸
p=2

, (11̄)(23̄)(2̄3)︸ ︷︷ ︸
p=3

of lengths p = 1, 2 and 3, respectively.

Definition 5.6. A substring

S(p)
i =

p∏
k=1

Qn(wσi(2jk+1), wσi(2jk+2))

is said to be a loop-like substring of the length p = ‖S(p)
i ‖, if the two conditions are

satisfied:

(i) The set of all 2p arguments

W2p = {wσi(2j1+1), wσi(2j1+2), · · · , wσi(2jp+1), wσi(2jp+2)}

collected from the substring S(p)
i remains unchanged under the operation of

complex conjugation

W̄2p = {w̄σi(2j1+1), w̄σi(2j1+2), · · · , w̄σi(2jp+1), w̄σi(2jp+2)}.
That means the two sets W̄2p and W2p of arguments are identical, up to their
order. (This property will be referred to as invariance under complex conjugation.)

(ii) For all subsets δS(q)
i consisting of q kernels Qn with 1 ≤ q ≤ p− 1, the substring

S(p)
i \δS(q)

i of the length p − q obtained by removal of δS(q)
i from S(p)

i is not in-
variant under the operation of complex conjugation of its arguments.

¶ It is easy to see that the number of substrings of the length p equals
�`
p

�
so that the total amount

of all possible substrings of a string of the length ` is

X̀
p=1

�`

p

�
= 2` − 1.
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Example 5.6. Out of seven substrings of the string +(11̄)(23̄)(2̄3) detailed in the
Example 5.5, the two substrings

(11̄), (23̄)(2̄3)
are loop-like (of the lengths p = 1 and 2, respectively). The remaining five substrings
are not loop-like. Four of them,

(23̄), (2̄3), (11̄)(23̄), (11̄)(2̄3),
are not loop-like substrings because the property (i) of Definition 5.6 is not satisfied.
The fifth substring (of the length p = 3)

(11̄)(23̄)(2̄3)
is not loop-like because the property (ii) of Definition 5.6 is violated. Indeed, there
does exist a subset δS(1)

i consisting of one kernel, represented by the pair of argu-
ments (11̄), whose removal would not destroy the property (i) for the reduced substring
(23̄)(2̄3).

The example presented shows that a particular string of the ordered Pfaffian expan-
sion could be decomposed into a set of loop-like substrings. Is such a decomposition
possible in general? The answer is given by the following Lemma.

Lemma 5.2. Any given string Si of the length ‖Si‖ = ` from the ordered Pfaf-
fian expansion can be decomposed into a set of loop-like substrings S(`j)

i of respective
lengths ‖S(`j)

i ‖ = `j,

Si =
⋃
j

S(`j)
i

such that
∑

j `j = `.

Proof. We use induction to prove the above statement.
(i) Induction Basis. For ` = 1, the Lemma obviously holds since the strings (1, 1̄)

and (1̄, 1) are loop-like by Definition 5.6.
(ii) Induction Hypothesis. The Lemma is supposed to hold for any string Si of the

length ‖Si‖ = `:

Si =
⋃
j

S(`j)
i , with

∑
j

`j = `. (5.14)

(iii) Induction Step. Consider a given string S̃i of the length ‖S̃i‖ = ` + 1. Given the
induction hypothesis, we are going to prove that such a string S̃i can be decom-
posed into a set of loop-like substrings.

To proceed, we note that any given string S̃i of the length ‖S̃i‖ = ` + 1 can
be generated from some string Si of length ` (see 5.12) by adding to it an addi-
tional pair of arguments (z`+1, z̄`+1):

S̃i = (z`+1, z̄`+1) ⊗
∏̀
k=1

(wσi(2jk+1), wσi(2jk+2))︸ ︷︷ ︸
the string Si with sgn(σi) dropped

(5.15)

with (or without) further exchange of either z`+1 or z̄`+1 with one of the arguments
belonging to the string Si of length `.
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(a) If no exchange is made, the given string S̃i is a unit of a single loop-like string
Π(1) = (z`+1, z̄`+1) and of a string Si admitting the decomposition (5.14).
As a result, the string S̃i of the length (` + 1) is decomposed into a set of
loop-like substrings

S̃i = Π(1)
⋃⋃

j

S(`j)
i

 . (5.16)

(b) If either z`+1 or z̄`+1 was swapped with one of the arguments belonging to
a loop-like substring S

(`j0 )
i ⊂ Si of the string Si, such an exchange will give

rise to a new loop-like substring S
(`′j0 )

i ⊂ S̃i of the length

‖S
(`′j0 )

i ‖ = ‖S(`j0 )
i ‖+ 1 = `j0 + 1.

Consequently, the given string S̃i of the length (` + 1) is then decomposed
into a set of loop-like substrings

S̃i = S
(`′j0 )

i

⋃⋃
j 6=j0

S(`j)
i

 . (5.17)

To prove that the substring S
(`′j0 )

i is indeed loop-like, two properties have to
be checked in accordance with the Definition 5.6.

First, one has to show that the set of 2(`j0 +1) arguments collected from the

substring S
(`′j0 )

i is invariant under the operation of complex conjugation; this
is obviously true because S(`j0 )

i is loop-like. Second, one has to demonstrate

that the removal of any subset δS from S
(`′j0 )

i will destroy the invariance

property of the remaining substring S
(`′j0 )

i \δS. Three different cases are to
be considered here:

(b1) If the subset δS does not contain the fragments (z`+1, · · ·) and
(· · · , z̄`+1), it is also a subset of S

(`j0 )
i . Since the latter is loop-like, the

invariance property is destroyed.

(b2) If the subset δS contains only one of the fragments (z`+1, · · ·) or
(· · · , z̄`+1), the invariance property is obviously destroyed.

(b3) If the subset δS contains both fragments (z`+1, u) and (v, z̄`+1), the
invariance property is also destroyed. To prove it, we use the reductio ad

absurdum. Indeed, let us assume that there exists a subset δS ⊂ S
(`′j0

)

i ⊂ S̃i,
containing both fragments (z`+1, u) and (v, z̄`+1), whose removal does not

destroy the invariance property of S
(`′j0 )

i \δS. The existence of such a subset
δS implies the existence of yet another subset δS ′ ⊂ S(`j0 )

i ⊂ Si,

δS ′ =
{

δS\ {(z`+1, u) ∪ (v, z̄`+1)}
}
∪ {(v, u)}, (5.18)

whose removal does destroy the invariance of S(`j0 )
i \δS ′ under the operation

of complex conjugation (this claim is obviously true because the substring
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Figure 4. Graphic explanation of the notion “loop-like substring”. (a) The
substring (23̄)(2̄3) can be transformed into the form of an adjacent substring
(in the sense of Definition 5.7) by flipping arguments in the second kernel,
(2̄3) 7→ (32̄). (b) The emerging adjacent substring (23̄)(32̄) can clearly be depicted
in the form of a loop by gluing the arguments 2 and 2̄ together.

S(`j0 )
i is loop-like). Then, the identity

S
(`′j0 )

i \δS = S(`j0 )
i \δS ′ (5.19)

suggests that the removal of δS from S
(`′j0 )

i must destroy the invariance

of S
(`′j0 )

i \δS as well. Since this contradicts to the assumption made, one
concludes that the invariance property is indeed destroyed.

End of the proof. �

We close this Section by providing a brief explanation of the origin of the term “loop-
like substring” introduced in Definition 5.6. In Section 5.2.4, it will be proven that any
loop-like substring can be brought to the form of an adjacent substring (Definition 5.7)
by means of proper (i) permutation of kernels and/or (ii) permutation of intra-kernel
arguments (Lemma 5.5). The latter can graphically be represented as a loop. Indeed,
the loop-like substring (23̄)(2̄3) considered in Example 5.6 can be transformed into the
form of an adjacent substring (in the sense of Definition 5.7) by flipping arguments in
the second kernel, (2̄3) 7→ (32̄):

(23̄)(2̄3)︸ ︷︷ ︸
loop−like substring

7→ (23̄)(32̄)︸ ︷︷ ︸
adjacent substring

.

The resulting adjacent string (23̄)(32̄) can be drawn in the form of a loop, see Fig. 4.
This is precisely the reason why the substring (23̄)(2̄3) is called loop-like.

5.2.3. Counting longest loop-like substrings S(`)
i of the length `

Although in this subsection, we are going to concentrate on the longest loop-like
substrings + of the length `, our main counting result given by Lemma 5.3 stays valid
for loop-like substrings of a smaller length 1 ≤ p < `.

Lemma 5.3. The ordered Pfaffian expansion contains (2`)!! (2`−2)!! longest loop-like
strings of the length `.
+ As soon as substrings of the longest possible length ` are considered, they are strings themselves.
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Proof. Let NL(`) be the total number of loop-like strings of the length ` in the
ordered Pfaffian expansion and let nL(`) denote the number of equivalence classes all
longest loop-like strings can be assigned to. Following Lemma 5.1, the two are related
to each other as

NL(`) = (2`)!!nL(`), (5.20)

because each equivalence class Cj contains precisely (2`)!! equivalent strings (see
Definition 5.3). It thus remains to determine nL(`) that can equally be interpreted as
a number of inequivalent ∗ longest loop-like strings of the length `.

The latter can be evaluated by counting the number of ways, nL(` + 1), all
inequivalent longest loop-like strings of the length ` + 1 can be generated from those
longest of the length `. Since both numbers, nL(`) and nL(` + 1), refer to the longest
loop-like strings, the two correspond to the Pfaffians of matrices of the size `× ` and
(`+1)× (`+1), correspondingly. In the language of strings, an increase of the matrix
size by one leads to the appearance of an additional pair of arguments (z`+1, z̄`+1) in
a string of the length ` + 1.

We claim that

nL(` + 1) = 2` nL(`). (5.21)

To prove this, we concentrate on a given longest loop-like string of the length ` and
add to it an additional pair of arguments (z`+1, z̄`+1):

(z`+1, z̄`+1) ⊗
∏̀
k=1

(wσi(2jk+1), wσi(2jk+2))︸ ︷︷ ︸
longest loop−like string of the length `

. (5.22)

Here, σi is a particular permutation of 2` arguments (5.9) corresponding to a longest
loop-like string of the length `. The resulting string (5.22) is not a longest loop-like
string of the length `+1 (rather, it is composed of two loop-like strings of the lengths
1 and `, respectively). Since a loop-like string necessarily assumes the presence of
a fragment (z`+1, · · ·) (· · · , z̄`+1) somewhere in the string, one has to exchange either
z`+1 or z̄`+1 with one of the arguments belonging to the original longest loop-like
string of the length `. Clearly, there exist 2` exchange options for each argument, z`+1

(or z̄`+1). As a result, we arrive at the relation (5.21). Given nL(1) = 1, we derive
the desired result by induction:

nL(`) = (2`− 2)!! (5.23)

Combining it with (5.20) completes the proof. ] �

5.2.4. Adjacent vs non-adjacent loop-like substrings

Further classification of loop-like substrings is needed in order to prepare ourselves to
∗ In view of Definition 5.3, the two strings are inequivalent if they cannot be reduced to each other
by means of (i) permutation of kernels and/or (ii) intra-kernel permutation of arguments.
] It is instructive to turn to Example 5.1 that discusses the ordered Pfaffian expansion for ` = 2. The
Lemma 5.3 predicts existence of NL(2) = 4!! 2!! = 16 longest loop-like strings that can be assigned to
nL(2) = 2!! = 2 equivalence classes, each composed of (2`)!! = 4!! = 8 equivalent strings. This is in
line with direct counting (5.11): the two equivalence classes are represented by the longest loop-like
strings +(12̄)(1̄2) and −(12)(1̄2̄) (see the second and third column); each equivalence class contains
8 equivalent strings.
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the proof of the Pfaffian integration theorem.

Definition 5.7. A loop-like substring S(p)
i of the length p = ‖S(p)

i ‖ is called ad-
jacent loop-like substring, or simply a loop, if it is represented by a product

S(p)
i =

p∏
k=1

Qn(wσi(2jk+1), wσi(2jk+2))

of p kernels such that:

(i) The first argument of the first kernel and the second argument of the last, p-th
kernel, are complex conjugate of each other,

wσi(2j1+1) = w̄σi(2jp+2).

(ii) For each pair of neighbouring kernels in the string, the second argument of the
left kernel in the pair and the first argument of the right kernel in the pair are
complex conjugate of each other,

wσi(2jk+2) = w̄σi(2jk+1+1), k = 1, · · · , p− 1.

Example 5.7. Out of 16 longest loop-like strings arising in the Pfaffian expansion
for ` = 2 †, the following eight are adjacent:

−(12̄)(21̄), −(2̄1)(1̄2), −(1̄2)(2̄1), −(21̄)(12̄),
+(12)(2̄1̄), +(21)(1̄2̄), +(1̄2̄)(21), +(2̄1̄)(12).

Notice that although longest loop-like strings have been considered in the above exam-
ple, the notion of an adjacent string is equally relevant for a loop-like string of smaller
length.

Lemma 5.4. Out of (2`)!!(2` − 2)!! longest loop-like strings of the length ` asso-
ciated with an ordered Pfaffian expansion, exactly (2`)!! are adjacent.

Proof. To count the total number NA(`) of all adjacent loop-like strings of the length
`, we consider a specific pair of adjacent loop-like strings of the length ` represented
by the sequences of arguments

(zj1 , z̄j2)(zj2︸ ︷︷ ︸
pair \ 1

, z̄j3)(zj3︸ ︷︷ ︸
pair \ 2

, z̄j4) · · · (zjp−1 , z̄jp
) · · · (zj`−1 , z̄j`

)(zj`︸ ︷︷ ︸
pair \ (`−1)

, z̄j1)

and

(z̄j1 , z̄j2)(zj2︸ ︷︷ ︸
pair \ 1

, z̄j3)(zj3︸ ︷︷ ︸
pair \ 2

, z̄j4) · · · (zjp−1 , z̄jp
) · · · (zj`−1 , z̄j`

)(zj`︸ ︷︷ ︸
pair \ (`−1)

, zj1).

Here, the mutually distinct jp take the values from 1 to `. The two strings are identical
up to an exchange of the first and the last arguments zj1 � z̄j1 . The remaining 2(`−1)
arguments are distributed between the kernels in such a way that an adjacent string
is formed in accordance with the Definition 5.7; the (` − 1) underbraces identifying

† For an example, please refer to the second and third column in (5.11). Also, see Lemma 5.3 for
the explanation of the number 16 = 4!! 2!! and Definition 5.6 for the notion of a loop-like string.
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(` − 1) pairs of complex conjugate arguments highlight the structure of an adjacent
string.

The total number NA(`) of all adjacent loop-like strings of the length ` equals
the number of ways to generate those strings from the two depicted above. As soon as
there are (i) ` ways to assign a number from 1 to ` to the label j1, (ii) (`− 1)! ways to
assign the remaining (`− 1) numbers to the (`− 1) pairs left (labelled by j2, · · · , j`),
and (iii) 2`−1 ways to exchange the arguments zjk

� z̄jk
(k = 2, · · · , `) within those

(`− 1) pairs, we derive:

NA(`) = 2× `× (`− 1)!× 2`−1 = (2`)!! (5.24)

End of proof.‡ �

Remark 5.1. Since the above reasoning holds for loop-like (sub)strings of any length
1 ≤ p ≤ `, one concludes that the total number of adjacent (sub)strings of the length
p equals NA(p) = (2p)!!.

Lemma 5.5. Any loop-like (sub)string of the length p can be transformed into an
adjacent (sub)string of the same length by means of proper (i) permutation of kernels
and/or (ii) permutation of intra-kernel arguments.

Proof. To be coherent with the notations used in the proof of the Lemma 5.3, we
deal below with a loop-like string of the length `. However, the very same argument
applies to any loop-like (sub)string of the length 1 ≤ p ≤ ` so that our proof (based
on mathematical induction) holds generally.

(i) For ` = 1 and ` = 2, the Lemma’s statement is obviously true. Indeed, a
loop-like string of the length ` = 1 is automatically an adjacent one. For ` = 2, a
loop-like string composed of two kernels is reduced to an adjacent string by utmost
one intra-kernel permutation of arguments.

(ii) Now we assume the Lemma to hold for loop-like (sub)strings of the length `
(that is, that any loop-like string of the length ` can be reduced to an adjacent string
by means of the two types of allowed operations).

(iii) Given the previous assumption, we have to show that a loop-like (sub)string
of the length (` + 1) can also be reduced to an adjacent (sub)string. It follows from
the proof of the Lemma 5.3 (see the discussion around (5.22)) that a loop-like string
of the length (` + 1) can be generated from a loop-like string of a smaller length `
by adding an additional pair of arguments (z`+1, z̄`+1) followed by exchange of either
z`+1 or z̄`+1 with one of the arguments of the original loop-like string of the length `.
Since, under the induction assumption (ii), the latter can be made adjacent,

(z`+1, z̄`+1) ⊗ [(zj1 , . . .) · · · (. . . , z̄jq
) (zjq

, . . .) · · · (. . . , z̄j1)]︸ ︷︷ ︸
adjacent string of the length `

, (5.25)

one readily concludes that we are only two steps away from forming an adjacent string
of the length (`+1) out of (5.25). Indeed, an exchange of arguments z̄`+1 � z̄jq

brings
(5.25) to the form

(z`+1, z̄jq
) (zj1 , . . .) · · · (. . . , z̄`+1) (zjq

, . . .) · · · (. . . , z̄j1) (5.26)

‡ In particular, there should exist eight adjacent strings in the ordered Pfaffian expansion for ` = 2.
This is in concert with the explicit counting in Example 5.7.
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which boils down to the required adjacent string

(zj1 , . . .) · · · (. . . , z̄`+1) (z`+1, z̄jq
) (zjq

, . . .) · · · (. . . , z̄j1)︸ ︷︷ ︸
adjacent string of the length (`+1)

(5.27)

upon moving the pair (z`+1, z̄jq
) through (q − 1) pairs on the right. Exchanging

z̄`+1 � zjq
instead can be done in the same way. �

Remark 5.2. The reduction of a loop-like (sub)string to an adjacent (sub)string
is not unique. For instance, the loop-like string

+(13̄)(2̄3)(1̄2)

(see the first term in (4.16)) can be reduced, by permutation of kernels and
permutation of intra-kernel arguments, to one of the following adjacent strings:

+(13̄)(32̄)(21̄), −(1̄2)(2̄3)(3̄1),
+(21̄)(13̄)(32̄), −(2̄3)(3̄1)(1̄2),
+(32̄)(21̄)(13̄), −(3̄1)(1̄2)(2̄3). (5.28)

To handle the problem of the non-unique reduction of a loop-like string to an adjacent
string, the notion of string handedness has to be introduced.

5.2.5. Handedness of an adjacent substring

Definition 5.8. Close an adjacent substring S into a loop by “gluing” the right
argument of the last kernel with the left argument of the first kernel below the chain
as in Figure 4.,

S :  • (wj1 , w̄j2)︸ ︷︷ ︸
first kernel

· (wj2 , w̄j3) · · · (wjq−1 , w̄jq ) · · · (wjp−1 , w̄jp) · (wjp , w̄j1)︸ ︷︷ ︸
last kernel

• 

(here, a set of the arguments (w1, · · · , w2p) is specified by (5.9) with ` set to p, and the
symbol • denotes a gluing point). Read the arguments of a loop, one after the other, in
a clockwise direction (as depicted by the symbol  ), starting with w̄j1 until you arrive
at wjp . If αR is the number of times an argument zjq is followed by its conjugate z̄jq

for all q ∈ (1, · · · , p),

(. . . , zjq
) · (z̄jq

, . . .),

an adjacent substring S is said to have the handedness H(αL, αR), where αL =
p− αR.

Example 5.8. The handedness of eight adjacent strings considered in the Exam-
ple 5.7 with p = l = 2 is listed below:

H(2, 0), H(0, 2), H(0, 2), H(2, 0),
H(1, 1), H(1, 1), H(1, 1), H(1, 1). (5.29)

Lemma 5.6. Out of (2`)!! adjacent strings of the length ` arising in an ordered
Pfaffian expansion, there are exactly

Nα(`) = `!
(

`

α

)
(5.30)
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strings with the handedness H(α, `− α).

Proof. A string with the handedness H(α, ` − α) closed into a loop (see Defini-
tion 5.8) contains α “left” fragments (. . . , z̄jq

) · (zjq
, . . .) and (`−α) “right” fragments

(. . . , zjq ) · (z̄jq , . . .) with the opposite order of complex conjugation in the nearest
neighbouring kernels; each fragment is labelled by an integer number jq ∈ (1, · · · , `).
To count a total number of all strings with the handedness H(α, `−α), we notice that
there exist

(
`
α

)
ways to distribute “left” and “right” fragments on the loop, and `!

ways to assign ` integer numbers (from 1 to `) to the labels j1, · · · , j`. Applying the
combinatorial multiplication rule completes the proof. �

Remark 5.3. It is instructive to realise that the Lemma 5.4 can be seen as a corollary
to the Lemma 5.6. Indeed, the total number of all adjacent strings of the length ` is
nothing but ∑̀

α=0

Nα(`) = `!
∑̀
α=0

(
`

α

)
= (2`)!!

Not unexpectedly, this result is in concert with the Lemma 5.4.

Corollary 5.2. The number of adjacent substrings of the length p, 1 ≤ p < `,
with the handedness H(α, p− α) equals

Nα(p) = p!
(

p

α

)
. (5.31)

The total number of all adjacent substrings of the length p is (2p)!!

Proof. Follow the proof of the Lemma 5.6 and the Remark 5.3 with ` replaced
by p. �

Example 5.9. Out of 16 longest loop-like strings arising in the Pfaffian expansion for
` = 2, there are eight adjacent as explicitly specified in Example 5.7. The handedness
of those strings was considered in Example 5.8. In accordance with the Lemma 5.6,
there must exist N0(2) = 2 strings of the handedness H(0, 2), N2(2) = 2 strings of the
handedness H(2, 0), and N1(2) = 4 strings of the handedness H(1, 1). Direct counting
(5.29) confirms that this is indeed the case.

5.2.6. Equivalence classes of adjacent (sub)strings

Having defined a notion of the handedness of an adjacent string, we are back to
the issue of a non-uniqueness of reduction of a loop-like string to an adjacent one. To
deal with the indicated non-uniqueness problem, we would like to define, and explic-
itly identify, all distinct equivalence classes for (2`)!! adjacent strings arising in the
context of an ordered Pfaffian expansion.

Definition 5.9. Two adjacent strings, Si and Sj, are said to be equivalent ad-
jacent strings, Si ∼ Sj, if they can be obtained from each other by (i) permutation
of kernels and/or (ii) intra-kernel permutation of arguments.

Example 5.10. The six adjacent strings (5.28) are equivalent to each other.
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Definition 5.10. A group of equivalent adjacent strings is called the equivalence
class of adjacent strings. The j-th equivalence class to be denoted ACj consists of
‖ACj‖ equivalent adjacent strings.

Lemma 5.7. All (2`)!! adjacent strings arising in the ordered Pfaffian expansion
can be assigned to (2` − 2)!! equivalence classes {AC1, · · · ,AC(2`−2)!!} of adjacent
strings, each class containing 2` equivalent adjacent strings: ‖ACj‖ = 2` for all
j ∈ 1, · · · , (2`− 2)!!.

Proof. Let us concentrate on a given adjacent string S with the handedness H(α, `−α)
that belongs to an equivalence classACj and count a number of ways to generate equiv-
alent strings out of it by means of (i) permutation of kernels and/or (ii) intra-kernel
permutation of arguments without destroying the adjacency property. Two comple-
mentary generating mechanisms exist.

• First way (M1): One starts with an adjacent string of the handedness H(α, `−α),
 • (wj1 , w̄j2)︸ ︷︷ ︸

first kernel

· (wj2 , w̄j3) · · · (wjp−1 , w̄jp) · · · (wj`−1 , w̄j`
) · (wj`

, w̄j1)︸ ︷︷ ︸
last kernel

• (5.32)

(the reader is referred to the Definition 5.8 for the notation used), simultaneously
flips the intra-kernel arguments in all ` kernels,

(w̄j2 , wj1)︸ ︷︷ ︸
first kernel

· (w̄j3 , wj2) · · · (w̄jp , wjp−1) · · · (w̄j`
, wj`−1) · (w̄j1 , wj`

)︸ ︷︷ ︸
last kernel

,

and further permutes the kernels in a fan-like way so that the last `-th kernel
in the string becomes the first, the (` − 1)-th kernel in the string becomes the
second, etc.:
 • (w̄j1 , wj`

)︸ ︷︷ ︸
last kernel

· (w̄j`
, wj`−1) · · · (w̄jp

, wjp−1) · · · (w̄j3 , wj2) · (w̄j2 , wj1)︸ ︷︷ ︸
first kernel

• (5.33)

The so obtained adjacent string is equivalent to the initial one (5.32) but possesses
the complementary handedness H(`− α, α).

• Second way (M2): One starts with an adjacent string of the handedness H(α, `−
α), and permutes the ` kernels in a cyclic manner to generate (`− 1) additional
(but equivalent) adjacent strings with the same handedness (to visualise the
process, one may think of moving a gluing point • through the kernels in (5.32)).

The two mechanisms, M1 and M2, combined together bring up 2` equivalent adja-
cent strings due to the combinatorial multiplication rule. As a result, we conclude
that ‖ACj‖ = 2`. Consequently, the number of distinct equivalence classes equals
(2`)!!/(2`) = (2`− 2)!!. �

Example 5.11. To illustrate the Lemma 5.7, we consider an ordered Pfaffian ex-
pansion for ` = 2 as detailed in the Example 5.1. The eight adjacent strings of the
length ` = 2 were specified in the Example 5.7; their handedness was considered in
the Example 5.8. In accordance with the Lemma 5.7, there should exist 2 distinct
equivalence classes, each containing 4 adjacent strings. Indeed, one readily verifies
that those two equivalence classes are

AC1 : −(12̄)(21̄), −(2̄1)(1̄2), −(1̄2)(2̄1), −(21̄)(12̄)



5 Pfaffian integration theorem 41

Longest Loop-Like Strings
Total amount: (2`)!!(2`− 2)!!

=
Adjacent Strings
Total amount: (2`)!!

⋃ Non-Adjacent
Strings


C1

· · ·
Cj

· · ·
C(2`−2)!!

  



AC1  
` strings: H(α1, `− α1)
` strings: H(`− α1, α1)

· · ·

ACj  
` strings: H(αj , `− αj)
` strings: H(`− αj , αj)

· · ·

AC(2`−2)!!  
` strings: H(α(2`−2)!!, `− α(2`−2)!!)
` strings: H(`− α(2`−2)!!, α(2`−2)!!)



Figure 5. Any longest loop-like string from the equivalence classes
{C1, · · · , C(2`−2)!!} can be reduced to an adjacent string belonging to one
of the equivalence classes {AC1, · · · ,AC(2`−2)!!} of adjacent strings by means
of proper permutation of kernels and/or permutation of intra-kernel arguments
(Lemma 5.5). This reduction is non-unique (Remark 5.2). Each equivalence class
ACj of adjacent strings contains ` adjacent strings of the handedness H(αj , `−αj)
and ` adjacent strings of the complementary handedness H(` − αj , αj) (Remark
5.4). Notice that two distinct equivalence classes ACi and ACj (where i 6= j)
may have the same values for α: αi = αj .

and

AC2 : +(12)(2̄1̄), +(21)(1̄2̄), +(1̄2̄)(21), +(2̄1̄)(12).

Remark 5.4. In fact, a generic prescription can be given to build (2` − 2)!! dis-
tinct equivalence classes {AC1, · · · ,AC(2`−2)!!} for (2`)!! adjacent strings arising in the
ordered Pfaffian expansion. Because of the “duality” between equivalent adjacent
strings with complementary handedness H(α, `− α) and H(`− α, α) discussed in the
proof of the Lemma 5.6, the adjacent strings whose handedness H(α, `−α) is restricted
by the inequality 0 ≤ α ≤ b`/2c will form a natural basis in the consideration to follow.

• The case ` = 2λ + 1 odd.

(i) For 0 ≤ α1 ≤ λ, (i.a) pick up an adjacent string with the handedness
H(α1, ` − α1), out of Nα1(`), and generate ` equivalent adjacent strings with
the same handedness through the mechanism M2 of the Lemma 5.7. (i.b) Apply
the mechanism M1 of the same Lemma to each of the ` adjacent strings generated
in (i.a) to create ` more equivalent adjacent strings of the handedness H(`−α1, α1)
hereby raising their total amount to 2`. The strings generated in (i.a) and (i.b)
are said to belong to the equivalence class AC1.
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(ii) To generate the next equivalence class AC2 6= AC1, pick up an adjacent string
not belonging to AC1 with the handedness H(α2, `− α2) out of (Nα1(`)− `) left
(again, α2 is restricted to 0 ≤ α2 ≤ λ), and repeat the actions described in (i.a)
and (i.b) to generate another set of 2` equivalent strings. These will belong to
the equivalence class AC2 which is distinct from AC1.

(iii) To generate the j-th equivalence class ACj , one picks up an adjacent string
out of (Nα1(`)− (j − 1)`) left and repeats the actions sketched in (ii).

(iv) The procedure stops once there are no adjacent strings left. Obviously, the
total number of equivalence classes is

1
`

b`/2c∑
α=0

Nα(`) = (2λ)!
λ∑

α=0

(
2λ + 1

α

)
= (2λ)! 22λ = (2`− 2)!! (5.34)

This is in concert with the Lemma 5.7.

• The case ` = 2λ even.

In this case, special care should be exercised for the set of adjacent strings with
the handedness H(λ, λ) because these adjacent strings are self-complementary:
the mechanism M1 applied to any of those adjacent strings generates a string
with the same, not complementary, handedness. The latter circumstance can
readily be accommodated when giving a prescription for building (2` − 2)!! dis-
tinct equivalence classes of adjacent strings.

(i) First, we separate all adjacent strings with the handedness H(α, `− α) where
0 ≤ α ≤ λ− 1 and apply a procedure identically equivalent to that described for
the case ` odd to generate distinct equivalence classes of adjacent strings. The
total amount of distinct equivalence classes built in this way equals

L1 =
1
`

b`/2c−1∑
α=0

Nα(`) = (2λ− 1)!
λ−1∑
α=0

(
2λ

α

)
= (2`− 2)!!− (2λ− 1)!

2

(
2λ

λ

)
. (5.35)

(ii) Second, having generated in the previous step L1 distinct equivalence classes
{AC1, · · · ,ACL1} of adjacent strings, we concentrate on the adjacent strings with
the handedness H(λ, λ) not treated so far. To this end, we (ii.a) pick up an adja-
cent string out of Nλ(2λ) with the handedness H(λ, λ) and perform the operations
M1 and M2 to generate 2` = 4λ equivalent strings with the same handedness.
The 2` equivalent adjacent strings will belong to a certain equivalence class, say,
ACL1+1. (ii.b) In the next step, we pick up an adjacent string with the handed-
ness H(λ, λ) out of (Nλ(2λ)−2`) left, and perform the operations detailed in (ii.a)
in order to generate yet another set of 2` equivalent adjacent strings belonging to
an equivalence class ACL1+2. (ii.c) We proceed further on until the last available
equivalence class composed of 2` adjacent strings is formed, ACL1+L2 , where L2

equals

L2 =
1
2`
Nλ(`) =

(2λ− 1)!
2

(
2λ

λ

)
. (5.36)
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Hence, for ` = 2λ, the total number of equivalence classes for adjacent strings
equals

L1 + L2 = (2`− 2)!! (5.37)
as expected from the Lemma 5.7.

5.3. Integrating out all longest loop-like strings of the length `

More spadework is needed to prove the Pfaffian integration theorem. Below, we will
be interested in calculating the contribution CL(`) of longest loop-like strings (of the
length `) into the sought integral (5.2b):

CL(`) =
∫

C

∏̀
j=1

dπ(zj)

(
pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

)
longest

loop− like strings

=
1

2``!

∫
C

∏̀
j=1

dπ(zj)
∑

σ∈S′
2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)). (5.38)

In the second line of (5.38), only that part of the ordered Pfaffian expansion (5.8)
appears which corresponds to a set of all loop-like strings of the length `. They are
accounted for by picking up proper permutations S′2` ⊂ S2` in the expansion (5.8),

S′2` 7→ (longest loop− like strings of the length `).
Although, in accordance with the Lemma 5.3, the number of terms in the expansion
(5.38) equals NL(`) = (2`)!!(2` − 2)!!, there is no need to integrate all of them out
because various loop-like strings belonging to the same equivalence class yield identical
contributions. The latter observation effectively reduces the number of terms in (5.38)
so that

CL(`) =
(2`)!!
2``!

∫
C

∏̀
j=1

dπ(zj)
∑

σ∈S′′
2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)). (5.39)

Here, the prefactor (2`)!! = 2``! equals the number of longest loop-like strings in each
equivalence class; the σ-series runs over the permutations S′′2` ⊂ S′2` corresponding to
nL(`) = (2`− 2)!! longest loop-like strings, each of them being a representative of one
distinct equivalence class,

S′′2` 7→ {S1 ∈ C1, · · · ,S(2`−2)!! ∈ C(2`−2)!!}, (5.40)
see the Lemma 5.3. There are (2`− 2)!! terms in (5.39).

To perform the integration explicitly, one has to reduce the longest loop-
like strings in (5.39) to the form of adjacent strings as discussed in the Lemma
5.5. In accordance with the Lemma 5.7, there exist (2` − 2)!! equivalence classes
{AC1, · · · ,AC(2`−2)!!} of adjacent strings, each of them containing 2` equivalent
adjacent strings (see also Fig. 5). This results in the representation

CL(`) =
∫

C

∏̀
j=1

dπ(zj)
∑

σ∈S̃′′
2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)), (5.41)

where the σ-series runs over the permutations S̃′′2` ⊂ S′2` corresponding to (2` − 2)!!
adjacent loop-like strings of the length `, each of them being a representative of each
one of existing equivalence classes of adjacent strings,

S̃′′2` 7→ {S̃1 ∈ AC1, · · · , S̃(2`−2)!! ∈ AC(2`−2)!!}. (5.42)
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The number of terms in (5.41) is (2`− 2)!!.
To proceed, we rewrite (5.41) in a more symmetric form that treats all adjacent

strings on the same footing:

CL(`) =
1
2`

∫
C

∏̀
j=1

dπ(zj)
∑

σ∈S′′′
2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)). (5.43)

Here, the σ-series runs over the permutations S′′′2` ⊂ S′2` corresponding to all adjacent
loop-like strings of the length `:

S′′′2` 7→
{
{S̃(1)

1 , · · · , S̃(1)
2` } ∈ AC1, · · · , {S̃((2`−2)!!)

1 , · · · , S̃((2`−2)!!)
2` } ∈ AC(2`−2)!!

}
. (5.44)

As soon as there exist 2` equivalent adjacent strings in each equivalent class ACi

of adjacent strings, the prefactor (2`)−1 was included into (5.43) to avoid the
overcounting.

An advantage of the representation (5.43) can be appreciated with the help of the
Lemma 5.6. According to it, the summation over the permutations σ ∈ S′′′2` can be
replaced with the summation over all longest adjacent strings with a given handedness
H(α, `− α), for all α ∈ (0, `):∑

σ∈S′′′
2`

sgn(σ)
`−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2)) =
∑̀
α=0

Nα(`)∑
i=1

Si(α). (5.45)

Here, Si(α) denotes the i-th adjacent string of the length ‖Si(α)‖ = ` with the
handedness H(α, `− α). In accordance with the Lemma 5.6,

Nα(`) = `!
(

`

α

)
. (5.46)

Given (5.45), the integration in (5.43) can be performed explicitly. Due to the new
representation

CL(`) =
1
2`

∑̀
α=0

Nα(`)∑
i=1

∫
C

∏̀
j=1

dπ(zj)Si(α), (5.47)

one has to calculate the contribution of a string Si(α) with the handedness H(α, `−α)
to the integral:

I`(α) =
∫

C

∏̀
j=1

dπ(zj)Si(α). (5.48)

(i) The case α = 0 is the simplest one. Having in mind the definition (5.2a) and
introducing an auxiliary matrix ς̂ with the entries

ςjk =
1
2

∫
C

dπ(z) qj(z) qk(z̄), (5.49)

we straightforwardly derive:

I`(0) = sgn(σ0)
∫

C

∏̀
j=1

dπ(zj)

`−1∏
j=1

Qn(z̄j , zj+1)

Qn(z̄`, z1) = −tr(0,n−1)

[
(µ̂ς̂)`

]
.(5.50)

Here, the permutation sign, sign(σ0), is sgn(σ0) = −1 (see (5.9)), while the trace
tr(0,n−1)(· · ·) reflects the fact that the integrated adjacent string is loop-like. Impor-
tantly, the result of the integration (5.50) does not depend on a particular arrangement
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of the arguments zj and z̄j as far as the handedness H(0, `) is kept.

(ii) The case α = ` associated with the adjacent loop-like strings of the handedness
H(`, 0) can be treated along the same lines to bring

I`(`) = (−1)`−1tr(0,n−1)

[
(µ̂ς̂∗)`

]
. (5.51)

(iii) More care should be exercised for 0 < α < `. In this case, two adjacent strings with
the same handedness H(α, ` − α) may bring different contributions into the integral
(5.48). For instance, the adjacent string §

S1(α) = sgn(σα)

α−1∏
j=1

Qn(zj , z̄j+1)

Qn(zα, zα+1)

 `−1∏
j=α+1

Qn(z̄j , zj+1)

Qn(z̄`, z̄1)

yields the contribution

I
(1)
` (α) = (−1)α−1tr(0,n−1)

[
(µ̂ς̂∗)α(µ̂ς̂)`−α

]
. (5.52)

At the same time, the adjacent string

S(`
α)(α) = sgn(σα)

×

`−α−1∏
j=1

Qn(z̄j , zj+1)

Qn(z̄`−α, z̄`−α+1)

 `−1∏
j=`−α+1

Qn(zj , z̄j+1)

Qn(z`, z1),

possessing the very same handedness, yields

I
((`

α))
` (α) = (−1)α−1tr(0,n−1)

[
(µ̂ς̂)`−α(µ̂ς̂∗)α

]
. (5.53)

In deriving the results (5.52) and (5.53), we have used the fact that the permutation
sign sign(σα) is sign(σα) = (−1)α−1.

It can readily be seen that the adjacent strings with a given handedness H(α, `−α)
bring all possible

(
`
α

)
contributions, or words, that can be represented as a trace

Wj(`, α) = −tr(0,n−1) [· · · (−µ̂ς̂∗) · · · (µ̂ς̂) · · · (−µ̂ς̂∗) · · ·]︸ ︷︷ ︸
α letters (−µ̂ς̂∗) and `−α letters (µ̂ς̂)

(5.54)

of a product of α matrices, or letters, (−µ̂ς̂∗) and ` − α matrices (letters) (µ̂ς̂)
distributed in all possible

(
`
α

)
ways. Hence, the index j in (5.54) takes the values

1 ≤ j ≤
(

`
α

)
. Importantly, each word Wj(`, α) appears exactly `! times since there

always exist `! adjacent strings Sik
(α) (k = 1, · · · , `!) which are related to each other by

a permutation of the integration variables in (5.47). As a result, the latter is reduced
to

CL(`) =
1
2`

`!
∑̀
α=0

(`
α)∑

j=1

Wj(`, α). (5.55)

Spotting that

∑̀
α=0

(`
α)∑

j=1

Wj(`, α) = −tr(0,n−1)

[
(µ̂ς̂ − µ̂ς̂∗)`

]
, (5.56)

§ The empty products are interpreted to be 1.
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we obtain

CL(`) = −1
2

(`− 1)! tr(0,n−1)

[
(µ̂ς̂ − µ̂ς̂∗)`

]
. (5.57)

Finally, noticing that the matrix (µ̂ς̂ − µ̂ς̂∗) under the sign of trace is related to the
matrix υ̂ defined by (5.2c) as

υ̂ = 2i (µ̂ς̂ − µ̂ς̂∗), (5.58)

we arrive at the remarkably compact result

CL(`) = −1
2

(`− 1)!
(2i)`

tr(0,n−1)(υ̂
`). (5.59)

Hence, we have proven the following Theorem.

Theorem 5.2. Let dπ(z) be any benign measure on z ∈ C, and the function Qn(x, y)
be an antisymmetric function of the form

Qn(x, y) =
1
2

n−1∑
j,k=0

qj(x) µ̂jk qk(y)

where qj’s are arbitrary polynomials of j-th order, and µ̂ is an antisymmetric matrix.
Then the integration formula

CL(`) =
∏̀
j=1

∫
zj∈C

dπ(zj)

(
pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

)
longest

loop− like strings

= −1
2

(`− 1)!
(2i)`

tr(0,n−1)(υ̂
`) (5.60)

holds, provided the integrals on the l.h.s. exist. Here, the matrix υ̂ is determined by
the entries

υ̂α,β = i

n−1∑
k=0

µ̂α,k

∫
z∈C

dπ(z) [qk(z) qβ(z̄)− qβ(z) qk(z̄)] .

The following corollary holds.

Corollary 5.3. Consider a set of 2p arguments

{w1 = z1, w2 = z̄1, · · · , w2p−1 = zp, w2p = z̄p}, (5.61)

all (2p)! permutations of which are denoted by S2p. Take the subset S′2p ⊂ S2p of S2p

corresponding to all loop-like strings S(p)
i of the length ‖S(p)

i ‖ = p,

S(p)
i =

p−1∏
j=0

Qn(wσi(2j+1), wσi(2j+2)).

Here, σi labels the i-th permutation σi ∈ S′2p. The Theorem 5.2 implies:

CL(p) =
1

2pp!

∫
C

p∏
j=1

dπ(zj)
∑

σ∈S′
2p

sgn(σ)
p−1∏
j=0

Qn(wσ(2j+1), wσ(2j+2))

= −1
2

(p− 1)!
(2i)p

tr(0,n−1)(υ̂
p). (5.62)
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5.4. Integrating out compound strings

Having dealt with the longest loop-like strings arising in the ordered Pfaffian expansion
(see Theorem 5.2) and having extended the result of this theorem to loop-like strings
of a smaller length (see Corollary 5.3), we now turn to the treatment of the remaining
(2`)! − (2`)!!(2` − 2)!! strings to be referred to as compound strings. Our final goal
here is to calculate their contribution to the integral in the l.h.s. of (5.2b).

To give a definition of a compound string, we remind that any given string Si of
the length ‖Si‖ = ` from the ordered Pfaffian expansion can be decomposed into a set
of loop-like substrings of smaller lengths (see Lemma 5.2). According to the Lemma
5.5, each of the above loop-like substrings S(`j)

i can further be reduced to the form of
an adjacent substring. This leads us to the following definition:

Definition 5.11. A string Si of the length ‖Si‖ = ` from the ordered Pfaffian expan-
sion is called a compound string if it is composed of a set of adjacent substrings S(`j)

i

of respective lengths ‖S(`j)
i ‖ = `j such that Si =

⋃
j S

(`j)
i with

∑
j `j = `.

Remark 5.5. (i) This definition suggests that all compound strings can be clas-
sified in accordance with all possible patterns of unordered partitions λ of the size
|λ| = ` of an integer `:

λ = (`σ1
1 , · · · , `σg

g ). (5.63)

The frequency representation (5.63) of the partition λ says that the part `j appears
σj times so that

` =
g∑

j=1

`jσj . (5.64)

Here, g is the number of inequivalent parts of the partition λ.

(ii) Alternatively, the partition (5.63) of an integer ` can be represented as

λ = (¯̀1, · · · , ¯̀
r), (5.65)

where the order of ¯̀
j ’s is irrelevant, and some of them can be equal to each other.

Obviously,
r∑

j=1

¯̀
j = `. (5.66)

Here, r is the length of unordered partition λ.

(iii) The correspondence between compound strings of the length ` and unordered
partitions λ of the size |λ| = ` gives rise to a topological interpretation of compound
strings, which can conveniently be represented in a diagrammatic form (see Fig. 6).
The diagram for a generic compound string

Si =
r⋃

j=1

S(¯̀j)
i ,

r∑
j=1

¯̀
j = `,

consists of r loops, the j-th loop depicting an adjacent substring S(¯̀j)
i of the length ¯̀

j .
Such a diagram will be said to belong to a topology class {¯̀1, · · · , ¯̀

r} = {`σ1
1 , · · · , `σg

g }.
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Figure 6. A diagrammatic representation of a compound string belonging to the
topology class λ = (`σ1

1 , · · · , `σg
g ) with

Pg
j=1 `jσj = ` and

Pg
j=1 σj = r. Here,

g denotes the number of inequivalent parts of the partition λ whilst r equals the
total number of loops.

Remark 5.6. The number of topologically distinct diagrams equals the number
p(`) of unordered partitions of an integer ` (see Remark 5.5). These are known to
follow the sequence

p(`) = {1, 2, 3, 5, 7, 11, 15, 22, 30, 42, · · ·}. (5.67)

An exact evaluation of p(`) can be performed with the help of Euler’s generating
function (Andrews 1998)

∞∑
`=0

p(`) q` =
∞∏

m=1

1
(1− qm)

≡ 1
(q)∞

. (5.68)

The asymptotic behaviour of p(`) for ` � 1 was studied by Hardy and Ramanujan
(1918),

p(`) ∼ 1
4`
√

3
exp

(
π
√

2`/3
)

. (5.69)

To calculate the contribution of compound strings to the integral in the l.h.s. of
(5.2b), one has to determine (i) the contribution of a diagram belonging to a given
topology class to the integral, and (ii) the number of diagrams within a given topology
class.

Lemma 5.8. The number of diagrams belonging to the topology class λ =
(`σ1

1 , · · · , `σg
g ) equals

N{`σ1
1 ,···,`σg

g } = `!
g∏

j=1

1
(`j !)σj σj !

. (5.70)

Proof. To determine the number N{`σ1
1 ,···,`σg

g } of diagrams belonging to a given
topology class {¯̀1, · · · , ¯̀

r} = {`σ1
1 , · · · , `σg

g }, we use the multiplication principle.

• First, we distribute the pairs of arguments {¯̀1, · · · , ¯̀
r} between r loops. This can

be achieved by m1 ways,

m1 =
(

`
¯̀
1

)(
`− ¯̀

1

¯̀
2

)
· · ·
(

`− ¯̀
1 − · · · − ¯̀

r−2

¯̀
r−1

)(
`− ¯̀

1 − · · · − ¯̀
r−1

¯̀
r

)
× 1

r!
.
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The factor 1/r! reflects the fact that the order of the r loops is irrelevant. (Indeed,
a given topology class is associated with an unordered partition of an integer `).
Simple rearrangements show that m1 simplifies down to

m1 =
`!

¯̀
1! · · · ¯̀r!

1
r!

. (5.71)

• Next, we shuffle all inequivalent loops (those with distinct lengths). This can be
achieved by m2 ways,

m2 =
(σ1 + · · ·+ σg)!

σ1! · · ·σg!
=

r!
σ1! · · ·σg!

. (5.72)

As a result, the total number of diagrams belonging to the topology class λ =
(`σ1

1 , · · · , `σg
g ) equals

N{`σ1
1 ,···,`σg

g } = m1m2 =
`!

¯̀
1! · · · ¯̀r!

1
σ1! · · ·σg!

. (5.73)

The observation
∏r

j=1
¯̀
j ! =

∏g
j=1(`j !)σj ends the proof. �

Lemma 5.9. A diagram associated with a topology class λ = (`σ1
1 , · · · , `σg

g ) con-
tributes

C{`σ1
1 ,···,`σg

g } =
g∏

j=1

C
σj

L (`j) (5.74)

to the integral in the l.h.s. of (5.2b). The function CL(p) is defined by (5.62) of the
Corollary 5.3.

Proof. The above claim is a direct consequence of the Lemma 5.2, Definition 5.11,
and Remark 5.5. End of proof. �

Theorem 5.3. All compound strings belonging to the topology class λ = (`σ1
1 , · · · , `σg

g )
yield, after the integration in (5.2b), the contribution

C̃λ =
`!

(2i)`

g∏
j=1

[
1

`
σj

j σj !

(
−1

2
tr(0,n−1)(υ̂

`j )
)σj

]
. (5.75)

Proof. Observe that C̃λ = N{`σ1
1 ,···,`σg

g }C{`σ1
1 ,···,`σg

g }, and make use of (5.62), (5.70)
and (5.74) to derive (5.75). End of proof. �

5.5. Proof of the Pfaffian integration theorem

Now we have all ingredients needed to complete the proof of the Pfaffian integration
theorem announced in Section 5.1. Indeed, in accordance with the topological
interpretation of the terms arising in the Pfaffian expansion (5.8), the integral on
the l.h.s. of (5.2b) is given by the sum of contributions of adjacent strings of two
types: the longest adjacent strings and the compound strings. The contribution of
the former, CL(`), is given by the Theorem 5.2 while the contribution of the latter,
C̃λ, is determined by the Theorem 5.3. As soon as

CL(`) = C̃λ=(`1),
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one immediately concludes that the integrated Pfaffian equals the sum of C̃λ over all
unordered partitions λ of the size |λ| = `:

I =
∫

C

∏̀
j=1

dπ(zj) pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

=
∑
|λ|=`

C̃λ

=
(

i

2

)`

(−1)``!
∑
|λ|=`

g∏
j=1

[
1

σj !

(
− 1

2`j
tr(0,n−1)(υ̂

`j )
)σj

]
. (5.76)

Quite remarkably, the r.h.s. of (5.76) can be recognised to be a zonal polynomial
(Macdonald 1998)

Z(1`)(p1, · · · , p`) = (−1)``!
∑
|λ|=`

g∏
j=1

1
σj !

(
−

p`j

`j

)σj

with the arguments

pj =
1
2

tr(0,n−1)(υ̂
j), j = 1, 2, · · · , `. (5.77)

As a result, we conclude that

I =
(

i

2

)`

Z(1`)

(
1
2
tr(0,n−1)υ̂

1, · · · , 1
2
tr(0,n−1)υ̂

`

)
. (5.78)

This coincides with the statement (5.2b) of the Pfaffian integration theorem. �

6. Probability function pn,k: General solution and generating function

6.1. General solution

The general solution for the probability function pn,k of a fluctuating number of real
eigenvalues in spectra of GinOE is now straightforward to derive. Indeed, it was shown
in Section 3.3 that the probability function pn,k admits the representation

pn,k =
pn,n

`!

(
2
i

)` ∏̀
j=1

∫
Im zj>0

d2zj

× erfc
(

zj − z̄j

i
√

2

)
pf
[
Dn(zi, zj) Dn(zi, z̄j)
Dn(z̄i, zj) Dn(z̄i, z̄j)

]
2`×2`

(6.1)

with the kernel function Dn(x, y) given by (3.12) and (3.13).
The `-fold integral in (6.1) can explicitly be performed by virtue of the Pfaffian

integration theorem after the identification

dπ(z) = e−(z2+z̄2)/2erfc
(

z − z̄

i
√

2

)
θ(Im z) d2z, Qn(x, y) = e(x2+y2)/2Dn(x, y).

Straightforward calculations bring

pn,k =
pn,n

`!
Z(1`)

(
1
2
tr(0,n−1)υ̂

1, · · · , 1
2
tr(0,n−1)υ̂

`

)
(6.2)

where the matrix υ̂ is given by (5.2c). Combining the definition (5.2c) with (3.21),
(3.22), (3.23), (3.25) and (3.27), one concludes that

υ̂ = 2i(µ̂χ̂) = σ̂, (6.3)
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see Appendices A and B. Finally, making use of the trace identity

tr (0,n−1)σ̂
j = 2 tr (0,bn/2c−1)%̂

j (6.4)

proven in Appendix C, we end up with the exact formula

pn,k =
pn,n

`!
Z(1`)

(
tr (0,bn/2c−1)%̂

1, · · · , tr (0,bn/2c−1)%̂
`
)

. (6.5)

The entries of the matrix %̂, calculated in Appendix C, are given by

%̂even
α,β =

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2)

×
[
(2α + 1) L

2(β−α)−1
2α+1 (−2y2) + 2y2 L

2(β−α)+1
2α−1 (−2y2)

]
(6.6)

and

%̂odd
α, β = %̂even

α, β − (−4)m−β m!
(2m)!

(2β)!
β!

%̂even
α, m (6.7)

for n = 2m even and n = 2m + 1 odd, respectively.

6.2. Generating function for pn,k

Interestingly, the entire generating function

Gn(z) =
bn/2c∑
`=0

z`pn,n−2` (6.8)

for the probabilities pn,k can explicitly be determined. To proceed, we make use of
the summation formula

∞∑
r=0

zr

r!
Z(1r)(p1, · · · , pr) = exp

∑
r≥1

(−1)r−1 prz
r

r

 (6.9)

well known in the theory of symmetric functions (Macdonald 1998). With pr =
tr (0,bn/2c−1)%̂

r, the r.h.s. transforms to

exp

tr (0,bn/2c−1)

∑
r≥1

(−1)r−1 (z%̂)r

r

 = exp
(
tr (0,bn/2c−1) log(1̂bn/2c + z%̂)

)
,

= det
[
1̂ + z%̂

]
bn/2c×bn/2c , (6.10)

resulting in an amazingly simple answer:

Gn(z) =
bn/2c∑
`=0

z`pn,n−2` = pn,n det
[
1̂ + z%̂

]
bn/2c×bn/2c . (6.11)

6.3. Integer moments of the number of real eigenvalues

The result (6.11) allows us to formally determine any integer moment E[N q
r ] of the

fluctuating number Nr of real eigenvalues in the spectra of GinOE. Denoting the
fluctuating number of complex eigenvalues through 2Nc, we derive:

E[N q
r ] = E[(n− 2Nc)q] =

q∑
j=0

(
q

j

)
nq−j(−2)jE[N j

c ]. (6.12)
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Since

E[N j
c ] =

(
z

∂

∂z

)j

Gn(z)
∣∣∣
z=1

, (6.13)

the formula (6.12) simplifies to

E[N q
r ] = pn,n

(
n− 2z

∂

∂z

)q

det
[
1̂ + z%̂

]
bn/2c×bn/2c

∣∣∣
z=1

. (6.14)

Of course, to make the formulae (6.11) and (6.14) explicit, the determinant

dn(z) = det
[
1̂ + z%̂

]
bn/2c×bn/2c

has to be evaluated in a closed form. There are a few indications that this is a
formidable task, but we have not succeeded in the calculation of dn(z) yet.

7. Asymptotic analysis of the probability pn,n−2 to find exactly one pair of
complex conjugated eigenvalues

To determine a qualitative behaviour of the probability function pn,k, an asymptotic
analysis of the exact solution (1.1a) is needed. In this section, the simplest probability
function pn,n−2,

pn,n−2 = 2 pn,n

∫ ∞

0

dy y ey2
erfc(y

√
2) L2

n−2(−2y2), (7.1)

is studied in the large-n limit. Our consideration is based on an alternative exact
representation for pn,n−2 (see the Theorem 7.1) which is more suitable for obtaining
regular large-n asymptotics.

7.1. Alternative exact representation of pn,n−2

Let us define the sequence

Sn =
∫ ∞

0

dy y ey2
erfc(y

√
2) L2

n(−2y2), n = 0, 1, · · · , (7.2)

such that

pn,n−2 = 2pn,n Sn−2. (7.3)

To find an exact alternative representation for Sn (and, hence, for pn,n−2), we (i)
introduce a generating function τ(z) in the form

τ(z) =
∞∑

n=0

Snzn (7.4)

which is supposed to exist in some domain Ωτ ∈ R of the real line R (to be specified
later on), (ii) calculate τ(z) explicitly, and (iii) expand it back in z ∈ Ωτ .

Lemma 7.1. The generating function τ(z) reads:

τ(z) =
1

2(1− z2)(1− z)

(
−1 +

√
2

√
1− z

1− 3z

)
, (7.5)

where

−1 < z <
1
3
. (7.6)
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Proof. The identity ‖
∞∑

n=0

Lλ
n(x) zn = (1− z)−λ−1 exp

(
xz

z − 1

)
, |z| < 1,

applied in the context of (7.2) and (7.4), gives rise to the representation

τ(z) =
1

(1− z)3

∫ ∞

0

dy y erfc (y
√

2) exp
(

y2 1 + z

1− z

)
, |z| < 1. (7.7)

A change of the integration variable y to

ξ = y2 1 + z

1− z
(7.8)

followed by integration by parts results in

τ(z) =
1

2(1− z2)(1− z)

[
eξ erfc

(
az

√
ξ
) ∣∣∣ξ=∞

ξ=0
−
∫ ∞

0

dξ eξ d

dξ
erfc

(
az

√
ξ
)]

, (7.9)

where

az =
√

2

√
1− z

1 + z
.

For the boundary term in (7.9) to nullify at ξ = ∞, the parameter z has to belong to
the domain

Ωτ : −1 < z <
1
3
. (7.10)

Performing the remaining integral, we end up with (7.5). End of proof. �

Having determined the generating function τ(z), we are going to Taylor-expand it
around z = 0 in order to arrive at an alternative formula for the sequence Sn. As τ(z)
is a relatively simple function, we may expect that Sn obtained in this way will also
have a relatively simple form.

Lemma 7.2. The following formula holds:

Sn =
1√
2

bn/2c∑
j=0

3j+αn/2 P2j+αn

(
2√
3

)
− 1

2

(
bn/2c+ 1

)
. (7.11)

Here, αn = dn/2e − bn/2c.

Proof. To expand the function τ(z) given by (7.5) around z = 0, we represent it
in the form

τ(z) =
1
2

τ1(z)
(
−1 +

√
2 τ2(z)

)
, (7.12)

where

τ1(z) =
1

(1− z2)(1− z)
, τ2(z) =

√
1− z

1− 3z
, (7.13)

and constantly use a variant of the Cauchy formula( ∞∑
k=0

ak zk

)
·

( ∞∑
k=0

bk zk

)
=

∞∑
n=0

cn zn, cn =
n∑

k=0

ak bn−k, (7.14)

‖ See Eq. (5.11.2.1) in Prudnikov, Brychkov and Marichev (1986).
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where absolute convergence of the resulting series is assumed.

Expansion of τ1(z). To determine the coefficients c
(1)
k in the expansion

τ1(z) =
∞∑

k=0

c
(1)
k zk, (7.15)

we notice that

1
1− z

=
∞∑

k=0

zk,
1

1− z2
=

∞∑
k=0

z2k, (7.16)

so that, in the notation of (7.14),

ak = 1, bk =
1 + (−1)k

2
. (7.17)

Straightforward application of the Cauchy formula yields

c
(1)
k =

k∑
j=0

ajbk−j =
1
2

[
k + 1 +

1 + (−1)k

2

]
= bk/2c+ 1. (7.18)

Expansion of τ2(z). To determine the coefficients c
(2)
k in the expansion

τ2(z) =
∞∑

k=0

c
(2)
k zk, (7.19)

we notice that
√

1− z =
∞∑

k=0

(
1/2
k

)
(−z)k,

1√
1− 3z

=
∞∑

k=0

(
−1/2

k

)
(−3z)k, (7.20)

so that, in the notation of (7.14),

ak =
(

1/2
k

)
(−1)k, bk =

(
−1/2

k

)
(−3)k. (7.21)

The Cauchy formula yields

c
(2)
k =

k∑
j=0

ajbk−j = 3k (1/2)k

k! 2F1

(
−1

2
,−k;

1
2
− k;

1
3

)
. (7.22)

The latter can be expressed in terms of Legendre polynomials by means of the
identity ¶

2F1

(
−1

2
,−k;

1
2
− k;w

)
=

k!
(1/2)k

wk/2

[
Pk

(
w + 1
2
√

w

)
−
√

w Pk−1

(
w + 1
2
√

w

)]
(7.23)

that simplifies (7.22) to

c
(2)
k = 3k/2Pk

(
2√
3

)
− 3(k−1)/2Pk−1

(
2√
3

)
. (7.24)

¶ See Eq. (7.3.1.153) in Prudnikov, Brychkov and Marichev (1990)
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Expansion of the product τ1(z)τ2(z). To determine the coefficients c
(3)
k in the ex-

pansion

τ1(z)τ2(z) =
∞∑

k=0

c
(3)
k zk, (7.25)

we again use the Cauchy formula

c
(3)
k =

k∑
j=0

c
(1)
k−jc

(2)
j , (7.26)

with c
(1)
k and c

(2)
k given by (7.18) and (7.24), respectively. Lengthy but straightforward

calculations result in

c
(3)
k =

bk/2c∑
j=0

3j+αk/2 P2j+αk

(
2√
3

)
, (7.27)

where αk = dk/2e − bk/2c.

The observation

Sn =
1√
2

c(3)
n − 1

2
c(1)
n (7.28)

completes the proof. �

Theorem 7.1. The probability pn,n−2 to find exactly one pair of complex conjugated
eigenvalues in spectra of GinOE admits the following exact representation:

pn,n−2 = pn,n

√2
bn/2c−1∑

j=0

3j+αn/2 P2j+αn

(
2√
3

)
− bn/2c

 . (7.29)

Here, αn = dn/2e − bn/2c, and Pn stands for Legendre polynomials.

Proof. Use the Lemma 7.2 and relation (7.3) to deduce (7.29). �

7.2. Asymptotic analysis of pn,n−2

The result (7.29), combined with the integral representation of Legendre polynomials

Pn(φ) =
1
π

∫ π

0

dθ
(
φ +

√
φ2 − 1 cos θ

)n

, (7.30)

is particularly useful for carrying out an asymptotic analysis of the probability pn,n−2

in the large-n limit. Indeed, (7.30) facilitates performing a summation in (7.29) leading
to

pn,n−2 = pn,n

[√
2

π

∫ +1

−1

dx√
1− x2

(x + 2)αn − (x + 2)n

1− (x + 2)2
− bn/2c

]
. (7.31)

The large-n behaviour of the integral

Jn =
∫ +1

−1

dx√
1− x2

(x + 2)αn − (x + 2)n

1− (x + 2)2
(7.32)
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is of our primary interest. A saddle-point analysis shows that the saddle point
xsp ≈ −2 lies away from the integration domain x ∈ (−1,+1). As a result, the
contribution of the end points of the integration domain, xL = −1 and xR = +1,
should be examined. One can see that the close vicinity x = 1 − ε of xR = +1
dominates exponentially in n � 1. Indeed, the vicinity ε ∈ (0, c0) yields

Jn ≈
∫ c0

0

dε√
ε(2− ε)

3n(1− ε/3)n − 3αn(1− ε/3)αn

32(1− ε/3)2 − 1
,

where c0 is a proper cut-off. In the large-n limit, only a region of order n−1, ε = τ/n,
effectively contributes Jn reducing it to

Jn ≈
3n

8
√

2n

∫ ∞

0

dτ√
τ

e−τ/3 =
3n+1/2

8

√
π

2n
. (7.33)

Combined with (7.31) and (7.32), this estimate leads to the following theorem.

Theorem 7.2. The leading large-n behaviour of the probability pn,n−2 is given by
the formula

pn,n−2 ≈
3n+1/2

8
√

π n
pn,n (7.34)

where pn,n = 2−n(n−1)/4.

Remark 7.1. The Theorem 7.2 implies the inequality pn,n−2 � pn,n.

8. Correlations of complex eigenvalues of a matrix without real
eigenvalues

8.1. GOE correlations in GinOE spectra

One of the earliest results on eigenlevel statistics in GinOE is due to Ginibre (1965)
who spotted that spectra of random real matrices which happened to have no complex
eigenvalues exhibit the famous GOE behaviour. Indeed, for Hn ∈ T(n/n), the j.p.d.f.
(2.5) reduces to +

PHn
(λ1, · · · , λn) =

2−n(n+1)/4

n!
∏n

j=1 Γ(j/2)

n∏
i>j=1

|λi − λj |
n∏

j=1

exp(−λ2
j/2). (8.1)

The GOE spectral correlations readily follow (Mehta 2004).

8.2. GinSE-like correlations in GinOE spectra

Below, we concentrate on just the opposite case of random real matrices H0 ∈ T(n/0)
whose spectrum occasionally contains no real eigenvalues. The j.p.d.f. of all complex
+ As a side remark, we notice that the explicit formula (3.2) for the probability pn,n can easily be
derived by integrating PHn over all of its arguments. Due to Selberg’s integral (Mehta 2004)

nY
j=1

Z
R

dλj e−λ2
j /2

nY
i>j=1

|λi − λj | = 2n/2n!
nY

j=1

Γ(j/2),

one obtains pn,n = 2−n(n−1)/4.
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eigenvalues of H0 can also be deduced from (2.5), the result being

PH0(z1, · · · , z`) =
2−n(n−1)/4 in/2

(n/2)!
∏n

j=1 Γ(j/2)

∏̀
i>j=1

|zi − zj |2|zi − z̄j |2

×
∏̀
j=1

(z̄j − zj) erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
(8.2)

with n even, n = 2`. Remarkably, while the above j.p.d.f. resembles the j.p.d.f. of
complex eigenvalues in GinSE (2.3), it is manifestly different from the latter.

Is it possible to determine the correlation functions for the new complex eigen-
value model (8.2)? The answer is positive.

Lemma 8.1. Let H0 be an n × n random real matrix with no real eigenvalues such
that its entries are statistically independent random variables picked from a normal
distribution N(0, 1). Then, the p-point correlation function (1 ≤ p ≤ `) of its complex
eigenvalues equals

R
(H0)
0,p (z1, · · · , zp;n) = pn,n

∏`−1
j=0 rj∏n

j=1 Γ(j/2)

p∏
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)

×pf
[

κ`(zi, zj) κ`(zi, z̄j)
κ`(z̄i, zj) κ`(z̄i, z̄j)

]
2p×2p

. (8.3)

Here, n = 2` and the ‘pre-kernel’ κ` is

κ`(z, z′) = i
`−1∑
j=0

1
rj

[
p2j(z)p2j+1(z′)− p2j(z′)p2j+1(z)

]
. (8.4)

The polynomials pj(z) in (8.4) are skew orthogonal in the complex half-plane Im z > 0,

〈p2j+1, p2k〉c = −〈p2k, p2j+1〉c = i rj δjk, (8.5)
〈p2j+1, p2k+1〉c = 〈p2j , p2k〉c = 0, (8.6)

with respect to the skew product

〈f, g〉c =
∫

Im z>0

d2z erfc
(

z − z̄

i
√

2

)
exp

(
−z2 + z̄2

2

)
[f(z)g(z̄)− f(z̄)g(z)] . (8.7)

Proof. By definition (2.7), the p-point correlation function is

R
(H0)
0,p (z1, · · · , zp;n) =

`!
(`− p)!

∏̀
j=p+1

∫
Imzj>0

d2zj PH0(z1, · · · , z`). (8.8)

Since the n×n real matrix with no real eigenvalues has ` pairs of complex conjugated
eigenvalues, it holds that n = 2`.

Conceptually, the proof to be presented consists of three parts. First, we concen-
trate on the j.p.d.f. PH0(z1, · · · , z`) and show that it can be represented in terms of a
certain quaternion determinant. Second, we prove that the quaternion matrix under
the quaternion determinant enjoys the projection property (see Definition 2.1). Third,
we apply the Dyson integration theorem to carry out all (`− p) integrations in (8.8).
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Part 1.—As the Vandermonde structure of (8.2) mimics that of GinSE (2.3), it is
tempting to employ the identity∏̀
i>j=1

|zi − zj |2|zi − z̄j |2
∏̀
j=1

(z̄j − zj) = det
[
zi−1
j , z̄i−1

j

]
i=1,···,2`

j=1,···,`

(8.9)

that helps us reduce the j.p.d.f. PH0 to the form

PH0(z1, · · · , z`) =
2−n(n−1)/4 i`

(n/2)!
∏n

j=1 Γ(j/2)
det
[
pi−1(zj), pi−1(z̄j)

]
i=1,···,2`

j=1,···,`

×
∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
. (8.10)

Here, pk(z) are arbitrary monic polynomials of degree k.
The very structure of the matrix under the determinant in (8.10),

det



p0(z1) p0(z̄1) · · · · · · p0(z`) p0(z̄`)
p1(z1) p1(z̄1) · · · · · · p1(z`) p1(z̄`)

...
...

...
...

...
...

...
...

p2`−2(z1) p2`−2(z̄1) · · · · · · p2`−2(z`) p2`−2(z̄`)
p2`−1(z1) p2`−1(z̄1) · · · · · · p2`−1(z`) p2`−1(z̄`)


suggests that we introduce a set of quaternions {ψ0(z), · · · ,ψ`−1(z)},

ψj(z) =
p2j(z) + p2j+1(z̄)

2
ê0 +

p2j(z)− p2j+1(z̄)
2i

ê1

+
p2j(z̄)− p2j+1(z)

2
ê2 +

p2j(z̄) + p2j+1(z)
2i

ê3 (8.11)

whose 2× 2 matrix representation reads ∗

Θ[ψj(z)] =
[

p2j(z) p2j(z̄)
p2j+1(z) p2j+1(z̄)

]
. (8.12)

As a result, the above determinant can equivalently be written as

det [pi−1(zj), pi−1(z̄j)] i=1,···,2`

j=1,···,`

= det
[
Θ[ψi−1(zj)]

]
i=1,···,`

j=1,···,`

. (8.13)

The latter can be put into a quaternion determinant form (see Corollary 5.1.3 in
Mehta’s book (2004)):

det
[
Θ[ψi−1(zj)]

]
i=1,···,`

j=1,···,`

= qdet
[
AĀ

]
`×`

= qdet
[
ĀA

]
`×`

. (8.14)

Here, A is an `× ` quaternion matrix with the entries

Aij = ψi−1(zj) (8.15)

∗ The 2× 2 matrices êj are defined as follows:

ê0 =

�
1 0
0 1

�
, ê1 =

�
i 0
0 −i

�
, ê2 =

�
0 1
−1 0

�
, ê3 =

�
0 i
i 0

�
.
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and Ā is the dual quaternion matrix whose entries

Āij = ψ̄j−1(zi) (8.16)

are determined by the dual quaternion ψ̄j(z),

ψ̄j(z) =
p2j(z) + p2j+1(z̄)

2
ê0 −

p2j(z)− p2j+1(z̄)
2i

ê1

− p2j(z̄)− p2j+1(z)
2

ê2 −
p2j(z̄) + p2j+1(z)

2i
ê3 (8.17)

such that

Θ[ψ̄j(z)] = ê2 Θ[ψj(z)]T ê−1
2 =

[
p2j+1(z̄) −p2j(z̄)
−p2j+1(z) p2j(z)

]
. (8.18)

Combining (8.13) and (8.14) into

det [pi−1(zj), pi−1(z̄j)] i=1,···,2`

j=1,···,`

= qdet
[
ĀA

]
`×`

, (8.19)

we obtain

det [pi−1(zj), pi−1(z̄j)] i=1,···,2`

j=1,···,`

= i−`
`−1∏
j=0

rj qdet [κ̂`(zi, zj)]`×` .(8.20)

Here, the (self-dual) quaternion kernel κ̂` admits a 2× 2 matrix representation

Θ [κ̂`(zi, zj)] =
(
−κ`(z̄i, zj) −κ`(z̄i, z̄j)
κ`(zi, zj) κ`(zi, z̄j)

)
(8.21)

with

κ`(z, w) = i
`−1∑
j=0

1
rj

[
p2j(z)p2j+1(w)− p2j(w)p2j+1(z)

]
. (8.22)

The set of constants {rj} is not fixed so far.
The above consideration results in the following expression for the j.p.d.f. PH0

[Eq. (8.10)]

PH0(z1, · · · , z`) =
2−n(n−1)/4

(n/2)!

∏`−1
j=0 rj∏n

j=1 Γ(j/2)
qdet [κ̂`(zi, zj)]`×`

×
∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
, (8.23)

that serves as a proper starting point for evaluating the p-point correlation function
R

(H0)
0,p (z1, · · · , zp;n) specified in Eq. (8.3).

Part 2.—Now, we are going to prove that the quaternion κ̂` satisfies the projec-
tion property Definition 2.1. To simplify the consideration to follow, we set the so far
arbitrary monic polynomials pk(z) to be skew-orthogonal in the complex half-plane,
Im z > 0, as defined by (8.5) – (8.7).

Having imposed the skew-orthogonality on pk(z), with rj ∈ R, we are in the
position to verify whether or not the projection property for the quaternion κ̂` is
fulfilled. In accordance with the Definition 2.1, one has to consider the integral

I =
∫

Im w>0

d2w erfc
(

w − w̄

i
√

2

)
exp

(
−w2 + w̄2

2

)
Θ [κ̂`(z1, w)] Θ [κ̂`(w, z2)] (8.24)
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that equals

I =
(

δ`(z̄1, z2) δ`(z̄1, z̄2)
−δ`(z1, z2) −δ`(z1, z̄2)

)
. (8.25)

Here, the function δ`(z1, z2) is defined by the integral

δ`(z1, z2) =
∫

Im w>0

d2w erfc
(

w − w̄

i
√

2

)
exp

(
−w2 + w̄2

2

)
×
[
κ`(z1, w)κ`(w̄, z2)− κ`(z2, w)κ`(w̄, z1)

]
. (8.26)

Its evaluation, based on (8.22), (8.7), (8.5) and (8.6), is straightforward, the result
being

δ`(z1, z2) = −κ`(z1, z2) (8.27)

so that

I = Θ [κ̂`(z1, z2)] . (8.28)

Put differently, the quaternion kernel κ̂` satisfies the projection property in the form∫
Im w>0

d2w erfc
(

w − w̄

i
√

2

)
exp

(
−w2 + w̄2

2

)
κ̂`(z1, w) κ̂`(w, z2) = κ̂`(z1, z2). (8.29)

This is precisely (2.8b) of the Dyson integration theorem with a quaternion λ = 0.

Part 3.—The above proof of the projection property for the quaternion kernel κ̂`

in (8.23) paves the way for carrying out the (` − p) integrations in (8.8). Indeed,
the integrations therein can be performed by virtue of the Dyson integration theorem
(Theorem 2.1) since

Θ
[ ¯̂κ`(z1, z2)

] def= ê2 Θ [κ̂`(z1, z2)]
T
ê−1

2 = Θ [κ̂`(z2, z1)] . (8.30)

To this end, one has to determine the constant c defined by the integral [see (2.8d)]

c e0 =
∫

Im z>0

d2z erfc
(

z − z̄

i
√

2

)
exp

(
−z2 + z̄2

2

)
κ̂`(z, z) (8.31)

yielding

c =
∫

Im z>0

d2z erfc
(

z − z̄

i
√

2

)
exp

(
−z2 + z̄2

2

)
κ`(z, z̄) = `. (8.32)

The projection property (8.29) combined with the result (8.32) brings the key
integration identity:

1
(`− p)!

∏̀
j=p+1

∫
Im zj>0

d2zj erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
qdet [κ̂`(zi, zj)]`×`

= qdet [κ̂`(zi, zj)]p×p = pf
[

κ`(zi, zj) κ`(zi, z̄j)
κ`(z̄i, zj) κ`(z̄i, z̄j)

]
2p×2p

. (8.33)

Applied to (8.8) and (8.23), it results in

R
(Hk)
0,p (z1, · · · , zp;n) = pn,n

∏`−1
j=0 rj∏n

j=1 Γ(j/2)

p∏
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)

×pf
[

κ`(zi, zj) κ`(zi, z̄j)
κ`(z̄i, zj) κ`(z̄i, z̄j)

]
2p×2p

, (8.34)

where n = 2`. This completes the proof of the Lemma 8.1. �
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8.3. Probability pn,0 to find no real eigenvalues

The technique exposed in the previous subsection allows us to establish the following
structural result for the probability to find no real eigenvalues in GinOE spectra.

Corollary 8.1. The probability pn,0 to find no real eigenvalues in spectra of GinOE
equals

pn,0 =
pn,n∏n

j=1 Γ(j/2)

`−1∏
j=0

rj . (8.35)

Here, n = 2`; the constants rj are defined by (8.5).

Proof. For n = 2` even, the definition (3.1) translates to

pn,0 =
∏̀
j=1

∫
Im zj>0

d2zj PH0(z1, · · · , z`). (8.36)

Given PH0 in the form (8.23), the above probability reduces to

pn,0 =
pn,n

`!

∏`−1
j=0 rj∏n

j=1 Γ(j/2)

∏̀
j=1

∫
Im zj>0

d2zj qdet [κ̂`(zi, zj)]`×`

×
∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
. (8.37)

Due to the projection property (8.29) of the quaternion kernel κ̂`, the integration in
(8.37) can readily be performed [see, e.g., the identity (8.33)] bringing∏̀
j=1

∫
Im zj>0

d2zj qdet [κ̂`(zi, zj)]`×`

∏̀
j=1

erfc
(

zj − z̄j

i
√

2

)
exp

(
−

z2
j + z̄2

j

2

)
= `! (8.38)

This establishes the result (8.35) thus completing the proof. �

Remark 8.1. To make the formula (8.35) explicit, one has to know the normali-
sation constants rj which we have failed to determine explicitly so far.

9. Conclusions and open problems

To summarise, an exact formula was derived for the probability pn,k to find precisely
k real eigenvalues in the spectrum of an n × n random matrix drawn from GinOE.
Based on the Pfaffian integration theorem (that can be seen as an extension of the
Dyson integration theorem to kernels that do not possess the projection property), the
solution found expresses the probability function pn,k in terms of zonal polynomials ].
This links the integrable structure of GinOE to the theory of symmetric functions
(Macdonald 1998). Undoubtedly, much more effort is needed to accomplish the
spectral theory of GinOE. Below, we list some of the open problems that have to
be addressed.

] To the best of our knowledge, this is the first ever random-matrix-theory observable admitting a
representation in terms of symmetric functions.
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(I) Probability Function pn,k and Associated Generating Function Gn(z).
The exact solution for the probability pn,k expresses the probability in terms of zonal
polynomials of some complicated arguments. Does a more explicit representation (like
the one for pn,n−2, see (7.1) and (7.29)) exist for pn,k? A similar question arises in
the context of the solution for the determinantal generating function Gn(z) given by
(6.11). Can the determinant (6.11) be calculated in a closed form as a function of k,
n and z? We have a few indications that this is a formidable task.

(II) Asymptotic Analysis of pn,k in the Large-n Limit. The problem we wish
to pose here concerns the large-n behaviour of pn,k in various scaling limits: (a)
k ∼ n0, (b) n−k ∼ n0, and (c) k ∼ n1/2 (this scaling is prompted by the result (2.28)
for an average number of real eigenvalues). If available, the large-n formulae of this
kind would facilitate a comparison of our exact theory with existing numerical and
experimental data, as reported † by Halasz et al (1997) and Kwapień et al (2000).

(III) Correlation Functions of Complex Eigenvalues and pn,0. The solution
presented for these two spectral characteristics involves specific polynomials which are
skew orthogonal in the complex plane with respect to a somewhat unusual weight
function containing the complementary error function. Can those be determined
explicitly to eventually bring closed formulae for both the correlation functions and
the probability pn,0? Their large-n analysis would be of great interest, too.

(IV) Correlation Functions of Both Real and Complex Eigenvalues and
a Generalised Pfaffian Integration Theorem. The calculation of all partial
(p, q)-point correlation functions R

(Hk)
p,q for GinOE matrices with a given number (k)

of real eigenvalues (defined as an integral of the j.p.d.f. over all but p real and q
complex eigenvalues, see (2.7)) is yet another important problem to tackle. Also,
can the unconditional (p, q)-point correlation functions Rp,q =

∑
k R

(Hk)
p,q be explicitly

determined? We believe that progress in this direction can be achieved through a
proper extension of the Pfaffian integration theorem:∏̀
j=p+1

∫
zj∈C

dπ(zj) pf
[

Qn(zi, zj) Qn(zi, z̄j)
Qn(z̄i, zj) Qn(z̄i, z̄j)

]
2`×2`

= ? (9.1)

Here, the notation of the Theorem 5.1 was used. Notice that one should not assume
the projection property for the kernel Qn.

The above list of open problems calls for further research of GinOE that will eventu-
ally unveil the rich mathematical structures underlying this classical but still largely
unexplored non-Hermitean random matrix model.
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Appendix A. The n× n matrix χ̂

A1. Symmetries of χ̂ and useful expansions.—The definition (3.27) of the matrix χ̂
suggests that it is antisymmetric,

χ̂jk = −χ̂kj , (A.1)

and purely imaginary
¯̂χjk = −χ̂jk (A.2)

as confirmed by the formula

χ̂jk = i

∫
dα(w) e−(w2+w̄2)/2 [ Re qj(w) Im qk(w̄) + Im qj(w)Re qk(w̄)] . (A.3)

Due to (3.16) that relates the skew orthogonal polynomials qj(w) to Hermite
polynomials Hj(w), the following expansions‡ are useful for even/odd order Hermite
polynomials taken at w = x + iy:

Re H2m(w) =
m∑

j=0

(−1)j22j

(2j)!
(−2m)2j y2jH2m−2j(x), (A.4)

Im H2m(w) =
m−1∑
j=0

(−1)j−122j+1

(2j + 1)!
(−2m)2j+1 y2j+1H2m−2j−1(x), (A.5)

and

Re H2m+1(w) =
m∑

j=0

(−1)j22j

(2j)!
(−2m− 1)2j y2jH2m+1−2j(x), (A.6)

Im H2m+1(w) =
m∑

j=0

(−1)j−122j+1

(2j + 1)!
(−2m− 1)2j+1 y2j+1H2m−2j(x). (A.7)

Here, (−a)n is the Pochhammer symbol (a > 0),

(−a)n = (−1)n Γ(a + 1)
Γ(a− n + 1)

.

A2. Calculation of the matrix elements χ̂2α,2β and χ̂2α+1,2β+1.—We claim that

χ̂2α,2β = χ̂2α+1,2β+1 = 0 (A.8)

for all α = 0, 1, · · · and β = 0, 1, · · ·. To prove this statement, let us consider χ̂2α,2β .
In accordance with (A.3), this matrix element is related to the integral containing

e−(w2+w̄2)/2
[
Re q2α(w) Im q2β(w̄) + Im q2α(w) Re q2β(w̄)

]
.

Having in mind (3.16), (A.4) and (A.5), we observe that the above expression, being
integrated over the x-part of the integration measure

dα(w) = dx · erfc(y
√

2) θ(y) dy, (A.9)

nullifies due to the products of Hermite polynomials Heven \(x) Hodd \(x) of even and
odd orders. Thus, we conclude that χ̂2α,2β = 0. By the same token, the matrix ele-
ment χ̂2α+1,2β+1 is zero as well.

‡ http://functions.wolfram.com/05.01.19.0001.01 and .../05.01.19.0002.01
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A3. Calculation of the matrix elements χ̂2α+1,2β and χ̂2α,2β+1.—We claim that

χ̂2α+1,2β =
i

2
(−1)β−αhα

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2)

×
[
(2α + 1)L

2(β−α)−1
2α+1 (−2y2) + 2y2 L

2(β−α)+1
2α−1 (−2y2)

]
. (A.10)

In accordance with the symmetry relation (A.1), it holds
χ̂2α,2β+1 = −χ̂2β+1,2α. (A.11)

To prove the result (A.10), we start with the definition (A.3),

χ̂2α+1,2β = i

∫
dα(w) e−(w2+w̄2)/2

× [ Re q2α+1(w) Im q2β(w̄) + Im q2α+1(w) Re q2β(w̄)] , (A.12)
where the skew orthogonal polynomials qj(w) are given by (3.16). Substituting them
into (A.12), representing w as w = x + iy and making use of the expansions (A.4)
to (A.7), one can carry out the integration over x ∈ R straightforwardly, due to the
factorised integration measure (A.9) and the orthogonality of Hermite polynomials
on R with respect to the weight exp(−x2). Lengthy but straightforward calculations
result in

χ̂2α+1,2β =
i α!
2

(γ̃α,β − γ̃α−1,β) (A.13)

where γ̃α,β is

γ̃α,β = (−1)β−α (2α + 1)
hα

α!

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2)

×(2β)!
2α+1∑
j=0

(2y2)j

j! (2α + 1− j)! (j + 2(β − α)− 1)!
. (A.14)

Notice that for α ≤ −1, the sum in (A.14) is void so that γ̃α≤−1,β = 0. Otherwise,
the series can be summed up in terms of Laguerre polynomials,

(2β)!
2α+1∑
j=0

(2y2)j

j! (2α + 1− j)! (j + 2(β − α)− 1)!
= L

2(β−α)−1
2α+1 (−2y2), (A.15)

to yield

γ̃α,β = (−1)β−α (2α + 1)
hα

α!

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2) L

2(β−α)−1
2α+1 (−2y2). (A.16)

From now on, the Laguerre polynomials of “negative order” are interpreted to be ze-
ros. Substituting it back to (A.13), we end up with (A.10).

Finally, the formula for χ̂2α,2β+1 follows from the symmetry relation (A.11).

A4. The structure of χ̂.—To summarise the calculations of Appendix A, the structure
of the n× n matrix χ̂ is presented below. For n = 2m even, the matrix χ̂ is

χ̂even
ij =


0 χ̂01 · · · 0 χ̂0,2m−1

−χ̂01 0 · · · χ̂1,2m−2 0
...

...
. . .

...
...

0 −χ̂1,2m−2 · · · 0 χ̂2m−2,2m−1

−χ̂0,2m−1 0 · · · −χ̂2m−2,2m−1 0

 . (A.17)
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For n = 2m + 1 odd, the structure of χ̂ follows the pattern

χ̂odd
ij =


0 χ̂01 · · · χ̂0,2m−1 0

−χ̂01 0 · · · 0 χ̂1,2m

...
...

. . .
...

...
−χ̂0,2m−1 0 · · · 0 χ̂2m−1,2m

0 −χ̂1,2m · · · −χ̂2m−1,2m 0

 . (A.18)

Appendix B. The n× n matrix σ̂ = 2i (µ̂χ̂)

B1. Calculation of the entries σ̂α,β = 2i (µ̂χ̂)α,β for n even.—The matrices µ̂, χ̂ and
thus (µ̂χ̂) are sensitive to the parity of n, the matrix dimensionality. For n = 2m, we
make use of (3.21), (A.8), (A.11) and (A.17) to derive

(µ̂χ̂)even2α,2β+1 = (µ̂χ̂)even2α+1,2β = 0, (B.1)

(µ̂χ̂)even2α,2β = − 1
hα

χ̂2α+1,2β =
1
hα

χ̂2β,2α+1, (B.2)

(µ̂χ̂)even2α+1,2β+1 =
1
hα

χ̂2α,2β+1 = − 1
hα

χ̂2β+1,2α =
hβ

hα
(µ̂χ̂)even2β,2α. (B.3)

Here, α = 0, 1, · · · and β = 0, 1, · · ·.
An integral representation for the entries σ̂even

2α,2β and σ̂even
2α+1,2β+1 can be read off

from (A.10). Explicitly, we have

σ̂even
2α,2β = (−1)β−α

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2)

×
[
(2α + 1)L

2(β−α)−1
2α+1 (−2y2) + 2y2 L

2(β−α)+1
2α−1 (−2y2)

]
(B.4)

and

σ̂even
2α+1,2β+1 =

hβ

hα
σ̂even

2β,2α. (B.5)

All other entries are zeros.
Yet another representation in terms of γ̃α,β given by (A.16) is useful. Equations

(A.13), (B.2) and (B.3) yield:

σ̂even
2α,2β =

α!
hα

(γ̃α,β − γ̃α−1,β) , (B.6)

σ̂even
2α+1,2β+1 =

β!
hα

(γ̃β,α − γ̃β−1,α) . (B.7)

All other entries nullify in accordance with (B.1).

B2. Calculation of the entries σ̂α,β = 2i (µ̂χ̂)α,β for n odd.—For n = 2m + 1, we
make use of (3.22), (A.8), (A.11), (A.18), (B.2) and (B.3) to derive

(µ̂χ̂)odd
2α,2β+1 = (µ̂χ̂)odd

2α+1,2β = 0, (B.8)

(µ̂χ̂)odd
2α,2β = (1− δα,m)(µ̂χ̂)even2α,2β −

m!
hm

δα,m

m−1∑
j=0

hj

j!
(µ̂χ̂)even2j,2β , (B.9)

(µ̂χ̂)odd
2α+1,2β+1 =

hβ

hα

[
(µ̂χ̂)even2β,2α −

m!
hm

hα

α!
(µ̂χ̂)even2β,2m

]
. (B.10)
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Here, α = 0, 1, · · · and β = 0, 1, · · ·.
The above formulae simplify if expressed in terms of γ̃α,β akin to (B.6) and (B.7).

Straightforward calculations lead to the following result for the entries of σ̂odd:

σ̂odd
2α,2β =

α!
hα

[
(1− δα,m)(γ̃α,β − γ̃α−1,β)− δα,m γ̃m−1,β

]
, (B.11)

σ̂odd
2α+1,2β+1 =

β!
α!

[ α!
hα

(γ̃β,α − γ̃β−1,α)− m!
hm

(γ̃β,m − γ̃β−1,m)
]
. (B.12)

Finally, the integral representations for (B.11) and (B.12) can be obtained from (A.16).

Appendix C. The bn/2c × bn/2c matrix %̂ and the trace identity

C1. The definition of %̂.—Since the n × n matrix σ̂ has half of its entries vanishing,
it is useful to define a reduced, bn/2c × bn/2c matrix %̂, such that

%̂even
α,β = (−1)β−α σ̂even

2α,2β = (−1)β−α α!
hα

(γ̃α,β − γ̃α−1,β) (C.1)

for n = 2m even, and

%̂odd
α,β = (−1)β−α hβ

hα
σ̂odd

2β+1,2α+1 = (−1)β−α

[
σ̂even

2α,2β −
m!
hm

hβ

β!
σ̂even

2α,2m

]
= %̂even

α,β − (−1)β−m m!
hm

hβ

β!
%̂even

α,m (C.2)

for n = 2m + 1 odd. Explicitly,

%̂even
α,β =

∫ ∞

0

dy y2(β−α)−1 ey2
erfc (y

√
2)

×
[
(2α + 1) L

2(β−α)−1
2α+1 (−2y2) + 2y2 L

2(β−α)+1
2α−1 (−2y2)

]
(C.3)

and

%̂odd
α, β = %̂even

α, β − (−4)m−β m!
(2m)!

(2β)!
β!

%̂even
α, m. (C.4)

The above formulae have been obtained from the definitions (C.1) and (C.2) with the
help of (B.4) and (3.18).

C2. The trace identity.—It turns out that the probability function pn,k is most eco-
nomically expressed in terms of %̂. To realise this, it is instructive to prove the following
trace identity.

Lemma C1. Let σ̂ be an n× n matrix with the entries given by either (B.6), (B.7)
or (B.11), (B.12) depending on the parity of n. Then, the trace identity

tr (0,n−1)σ̂
j = 2 tr (0,bn/2c−1)%̂

j (C.5)

holds for all j = 1, 2, · · · and the matrix %̂ defined by (C.1) and (C.2).

Proof. Since the matrix elements σ̂2α,2β+1 and σ̂2α+1,2β are zeros, the trace of σ̂j

(j = 1, 2, · · ·) can always be separated into two pieces:

tr (0,n−1)σ̂
j = tr (0,dn/2e−1)â

j + tr (0,bn/2c−1)b̂
j
. (C.6)



Appendix C 68

The matrices â and b̂ are defined through their entries,

âα,β = σ̂2α,2β , (C.7)

b̂α,β = σ̂2α+1,2β+1, (C.8)

and explicitly depend on the parity of n in accordance with the discussion in Appendix
B.

(i) The case n = 2m even is the simplest one because of the relation (B.5). Indeed,
its straightforward use results in

tr (0,m−1)b̂
j

= tr (0,m−1)â
j . (C.9)

This can further be simplified due to(C.9), (C.7), (C.6) and (C.1),

tr (0,2m−1)σ̂
j = 2 tr (0,m−1)â

j = 2 tr (0,m−1)%̂
evenj

. (C.10)

This completes the proof of (C.5) for n = 2m even.

(ii) The case n = 2m + 1 odd is a bit more complicated since a simple analogue
of (B.5) does not exist. Instead, we have [(C.7) and (C.8)]

âα,β = cα

[
(1− δα,m)(γ̃α,β − γ̃α−1,β)− δα,m γ̃m−1,β

]
, (C.11)

b̂α,β = cα (γ̃β,α − γ̃β−1,α)− cm (γ̃β,m − γ̃β−1,m), (C.12)

where cα = α!/hα has been defined in (3.23). In writing (C.12), we dropped the
prefactor β!/α! appearing in (B.12) since it does not affect the value of the second
trace in (C.6). To prove (C.5), we will start with (C.6) in order to demonstrate that

tr (0,m−1)b̂
j

= tr (0,m)â
j . (C.13)

This will be followed by a proof that either of these traces reduces to tr (0,m−1)%̂
odd j .

Let us prove (C.13) by focusing on the eigenvalues {λ} of the matrices â and b̂
which are the roots of the secular equations

det
[
â− λ 1̂

]
(m+1)×(m+1)

= 0, (C.14)

det
[
b̂− λ 1̂

]
m×m

= 0. (C.15)

We claim that (C.13) holds because exactly one out of (m + 1) eigenvalues of the
matrix â is zero whilst the remaining m eigenvalues of â coincide with m eigenvalues
of b̂. Put differently, we are going to prove that

det
[
â− λ 1̂

]
(m+1)×(m+1)

= −λ det
[
b̂− λ 1̂

]
m×m

. (C.16)

The proof consists of four steps.

Step \ 1. Consider the (m + 1) × (m + 1) matrix â − λ1̂ under the determinant
in the secular equation (C.14),

c0 γ̃0,0 − λ c0 γ̃0,1 · · · c0 γ̃0,m−1 c0 γ̃0,m

c1 Γ1,0 c1 Γ1,1 − λ · · · c1 Γ1,m−1 c1 Γ1,m

...
...

. . .
...

...
cm−1 Γm−1,0 cm−1 Γm−1,1 · · · cm−1 Γm−1,m−1 − λ cm−1 Γm−1,m

−cm γ̃m−1,0 −cm γ̃m−1,1 · · · −cm γ̃m−1,m−1 −cm γ̃m−1,m − λ

 ,

(C.17)
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where Γα,β = γ̃α,β − γ̃α−1,β . Let us perform a number of operations with rows and
columns that will leave the value of the secular determinant intact. First, we multiply
the content of the first row by c1/c0 and add it to the second row. Having done this,
we multiply a new content of the second row by c2/c1 and add it to the content of
the third row. We go on with this procedure until we arrive at the modified mth row
whose content is multiplied by cm/cm−1 and further added to the last, (m + 1)th,
row. While not affecting a value of the determinant in (C.14), the above sequence of
transformations brings (C.17) to the form

c0 γ̃0,0 − λ c0 γ̃0,1 · · · c0 γ̃0,m

c1 γ̃1,0 − (c1/c0)λ c1 γ̃1,1 − λ · · · c1 γ̃1,m

...
...

. . .
...

cm−1 γ̃m−1,0 − (cm−1/c0)λ cm−1 γ̃m−1,1 − (cm−1/c1)λ · · · cm−1 γ̃m−1,m

−(cm/c0)λ −(cm/c1)λ · · · −(cm/cm)λ

 .

(C.18)

The last row of this equation suggests that a factor λ can be taken out of the secular
determinant. In other words, λ = 0 is always an eigenvalue of the (m + 1)× (m + 1)
matrix â.

Step \ 2. Next, we multiply the content of the first row in (C.18) by c1/c0 and subtract
it from the content of the second row; having done that, we multiply the content of
the modified second row by c2/c1 and subtract it from the third row; going on with
this procedure, we arrive at the (m− 1)th row, multiply it by cm−1/cm−2 to subtract
this from the content of the mth row. We do not touch the last, (m + 1)th row. This
set of transformations yields

c0 γ̃0,0 − λ c0 γ̃0,1 · · · c0 γ̃0,m−1 c0 γ̃0,m

c1 Γ1,0 c1 Γ1,1 − λ · · · c1 Γ1,m−1 c1 Γ1,m

...
...

. . .
...

...
cm−1 Γm−1,0 cm−1 Γm−1,1 · · · cm−1 Γm−1,m−1 − λ cm−1 Γm−1,m

−(cm/c0)λ −(cm/c1)λ · · · −(cm/cm−1)λ −(cm/cm)λ

 .

(C.19)

Note, that all but the last row of the matrix (C.19) coincide with those in (C.17).

Step \ 3. Now, let us factor out c0 from the first row, c1 from the second row, ...,
cm−1 from the mth row to obtain

m−1∏
j=0

cj

times
γ̃0,0 − λ/c0 γ̃0,1 · · · γ̃0,m−1 γ̃0,m

Γ1,0 Γ1,1 − λ/c1 · · · Γ1,m−1 Γ1,m

...
...

. . .
...

...
Γm−1,0 Γm−1,1 · · · Γm−1,m−1 − λ/cm−1 Γm−1,m

−(cm/c0)λ −(cm/c1)λ · · · −(cm/cm−1)λ −(cm/cm)λ

 . (C.20)



Appendix D 70

Next, we multiply the first column by c0, the second column by c1, ..., the mth column
by cm−1, and do not alter the last, (m + 1)th column. This leads us to

c0 γ̃0,0 − λ c1 γ̃0,1 · · · cm−1 γ̃0,m−1 γ̃0,m

c0 Γ1,0 c1 Γ1,1 − λ · · · cm−1 Γ1,m−1 Γ1,m

...
...

. . .
...

...
c0 Γm−1,0 c1 Γm−1,1 · · · cm−1 Γm−1,m−1 − λ Γm−1,m

−cmλ −cmλ · · · −cmλ −λ

 . (C.21)

Step \ 4. Now, we multiply the last, (m +1)th column by cm and subtract it from the
first, second, ..., the mth column to reduce (C.21) to

c0 γ̃0,0 − cmγ̃0,m − λ · · · · · · γ̃0,m

c0 Γ1,0 − cm Γ1,m · · · · · · Γ1,m

...
. . .

...
...

c0 Γm−1,0 − cm Γm−1,m · · · · · · Γm−1,m

0 · · · 0 −λ

 . (C.22)

The determinant of the latter matrix can be calculated via expanding with respect to
its last row. As a result, the secular equation (C.14) is reduced to

−λ · det [cβ (γ̃α,β − γ̃α−1,β)− cm (γ̃α,m − γ̃α−1,m)− λ δα,β ](α,β)=0,···,m−1 . (C.23)

A comparison with (C.12) allows us to rewrite (C.23) in the form

−λ det
[
b̂
T
− λ 1̂

]
m×m

. (C.24)

This establishes (C.13).

Finally, it remains to show that, for all j = 1, 2, · · ·, the identity

tr(0,m−1)b̂
j

= tr(0,m−1)%̂
odd j , (C.25)

holds. That (C.25) is indeed true, follows from (C.8) and (C.2). This completes our
proof of the Lemma. �

Appendix D. Calculation of the trace tr(0,bn/2c−1)%̂

Since the matrix %̂ is sensitive to the parity of n, two separate calculations are needed.

(i) The case n = 2m even.—To calculate the trace, we make use of (C.3) to write
down

tr(0,m−1)%̂
even =

m−1∑
α=0

%̂α,α =
∫ ∞

0

dy y−1 ey2
erfc(y

√
2)

×
m−1∑
α=0

[
(2α + 1)L−1

2α+1(−2y2) + 2y2 L1
2α−1(−2y2)

]
. (D.1)

First, to put (D.1) into a more tractable form, we apply the identity §

L−m
n (w) =

wm

(−n)m
Lm

n−m(w) (D.2)

§ http://functions.wolfram.com/05.08.17.0009.01
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which, in the context of (D.1), reads

L−1
2α+1(w) = − w

2α + 1
L1

2α(w). (D.3)

The use of (D.3) reduces the integrand of (D.1) to

(2α + 1) L−1
2α+1(−2y2) + 2y2 L1

2α−1(−2y2) = 2y2
[
L1

2α(−2y2) + L1
2α−1(−2y2)

]
. (D.4)

Second, we spot that the transformation

Lλ−1
ν (w) = Lλ

ν (w)− Lλ
ν−1(w) (D.5)

applied to (D.4), yields

L1
2α(−2y2)︸ ︷︷ ︸

L2
2α−L2

2α−1

+L1
2α−1(−2y2)︸ ︷︷ ︸

L2
2α−1−L2

2α−2

= L2
2α(−2y2)− L2

2α−2(−2y2). (D.6)

As a consequence, the summation in (D.1) can be performed explicitly,
m−1∑
α=0

[
(2α + 1) L−1

2α+1(−2y2) + 2y2 L1
2α−1(−2y2)

]
= 2y2

m−1∑
α=0

[
L2

2α(−2y2)− L2
2α−2(−2y2)

]
= 2y2 L2

2m−2(−2y2), (D.7)

resulting in a remarkably simple formula

tr(0,m−1)%̂
even = 2

∫ ∞

0

dy y ey2
erfc(y

√
2) L2

2m−2(−2y2). (D.8)

(ii) The case n = 2m + 1 odd.—To calculate the trace, we combine (C.1) and (C.4)
into

%̂odd
α,α = %̂even

α,α − m!
hm

(γ̃α,m − γ̃α−1,m) . (D.9)

Summing it up, we derive

tr(0,m−1)%̂
odd = tr(0,m−1)%̂

even − m!
hm

γ̃m−1,m. (D.10)

Further use of (D.8) and (A.16) yields

tr(0,m−1)%̂
odd = 2

∫ ∞

0

dy y ey2
erfc(y

√
2)
[
L2

2m−2(−2y2) + L1
2m−1(−2y2)

]
. (D.11)

With the help of the identity (D.5), this eventually simplifies to

tr(0,m−1)%̂
odd = 2

∫ ∞

0

dy y ey2
erfc(y

√
2) L2

2m−1(−2y2). (D.12)

The formulae (D.8) and (D.12) can be unified into a single equation, holding for
n of arbitrary parity:

tr(0,bn/2c−1)%̂ = 2
∫ ∞

0

dy y ey2
erfc(y

√
2) L2

n−2(−2y2). (D.13)
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Kwapień J, Drożdż S, Górski A Z, and Oświȩcimka P 2006 Asymmetric matrices in an analysis of

financial correlations Acta Phys. Polonica B37, 3039
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