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ZUSAMMENFASSUNG 

Obgleich bekannt ist, dass die Ausprägung zahlreicher neuropsychiatrischer Erkrankungen genetisch 

bedingt ist, sind die grundlegenden Mechanismen dieses Zusammenhangs noch weitestgehend 

unbekannt. Eine Methode, um Einblicke in die Genetik neuropsychiatrischer Erkrankungen zu 

erhalten, sind genomweite Assoziationsstudien (GWASs). Mit Hilfe dieser konnten bisher über 2.000 

Loci für genetische Risikofaktoren von Hirnerkrankungen identifiziert werden. Die Mehrheit dieser 

Loci befindet sich in nicht-codierenden DNA-Bereichen, was ihre funktionelle Erforschung erschwert. 

Die vorliegende Arbeit geht der Fragestellung nach, inwieweit regulatorische Sequenzvarianten, 

welche DNA-Methylierung und Genexpression beeinflussen, zur genetischen Disposition von 

neuropsychiatrischen Erkrankungen beitragen. 

Meine Studie nutzt einen integrativen Ansatz der funktionellen Genomik, um epigenetische 

Regulationen im hippocampalen Hirngewebe bei Patienten mit pharmakoresistenter mesialer 

Temporallappenepilepsie zu untersuchen. Hierzu wurden SNP-Genotypen mit genomweiter CpG-

Methylierung und mRNA Genexpression korreliert. Die daraus resultierenden »genomweiten 

Landkarten« von quantitativen Methylierungs Trait Loci (meQTLs) und quantitativen Expressions 

Trait Loci (eQTLs) wurden zur Lokalisation von regulatorischen SNPs (rSNPs) verwendet die in 

Zusammenhang mit einigen Hirnerkrankungen stehen (488 GWAS Katalog Einträge, P < 5,0 x 10-8). 

Die vorliegende Arbeit stellt die erste meQTL Studie dar, welche den leistungsfähigen Human 

Methylation450 array auf Basis von frisch-gefrorenem menschlichem Hirngewebe verwendet. Mit 

Hilfe einer linearen Regressionsanalyse und unter Berücksichtigung einer Korrektur für die 

Gewebeheterogenität, wurden insgesamt 19.954 (8,5% der 362.000 CpGs) cis-regulierte meQTLs 

identifiziert. Dies entspricht einer Versechsfachung der bisher bekannten meQTLs aus postmortalem 

Hirngewebe. Eine signifikante Anreicherung der meQTLs in der 5´-regulatorischen Region vor den 

Genpromotoren (TSS201-1500; P = 7,7 x 10-61) spiegelt den funktionellen Einfluss dieser Region 

wider, welche Enhancer als auch Insulatoren beherbergt. Es hat sich gezeigt, dass einige der hoch 

signifikanten cis-meQTLs bekannte Kandidaten Gene für neurologische Entwicklungsstörungen 

beeinflussen (ADARB2, HDAC4, NAPRT1, MAD1L1, PTPRN2 und RIMBP2). Die Gewebespezifität 

wurde anhand einer weiteren meQTL-Analyse, unter Beibehaltung gleicher experimenteller 

Bedingungen, in Blutzellen von 496 deutsch stämmigen Kontrollproben ohne neuropsychiatrische 

Erkrankungen untersucht. 65% der im Hirngewebe identifizierten meQTLs konnten auch in Blutzellen 

wiedergefunden werden (Spearman Rank Koeffizient = 0,42). Diese nennenswerte Übereinstimmung 

eröffnet die Möglichkeit, epigenetische Biomarker für komplexe Hirnerkrankungen in einfach 

zugänglichem Gewebe auszuwählen. Die zusätzlich zur meQTL Analyse durchgeführte eQTL Analyse 

konnte unter den 31.000 mRNA-Sonden insgesamt 734 signifikant cis-wirkende eQTLs identifizieren. 
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In einer weiteren Analyse wurden CpG-Methylierung und Genexpression korreliert – diese stellt die 

erste systematische Untersuchung dieser Form in frisch-gefrorenem Hirngewebe dar. Hierbei wurden 

sowohl negative (73%) als auch positive (27%) Korrelationen beobachtet. Die stärksten negativen 

Korrelationen wurden bei dem Gen NAPRT1, welches die Nicotinat Phosphoribosyltransferase 

kodiert, beobachtet. Des Weiteren konnte bei den mit NAPRT1 assoziierten meQTLs und eQTLs eine 

genetische Beeinflussung durch ein und denselben SNP rs9657360 festgestellt werden. Die 

Korrelations-Ergebnisse kombiniert mit der genetischen Beeinflussung des SNPs zeigten auf, dass das 

minor C Allel eben dieses SNPs mit einer erhöhten Methylierung in der NAPRT1-Promoterregion und 

einer verminderten Genexpression assoziiert ist. Die Kombination aus einer tumorspezifischen 

Hypermethylierung einer in der Promoterregion gelegenen CpG island mit gleichzeitiger 

Verminderung der NAPRT1 Expression wurde ebenfalls in der Krebsforschung erkannt: NAPRT1 kann 

als prädiktiver Biomarker zur Therapie von Karzinomen mit NAMPT Inhibitoren eingesetzt werden. 

Durch den innovativen Ansatz, translationale Auswirkungen der epigenetischen Regulation der 

Genexpression in Kombination mit meQTLs und eQTLs zu testen, wurde zusätzliche eine genetische 

Determination erkannt. Diese ist von großer klinischer Bedeutung, da sie einen Ansatz zur Erfassung 

von Patienten erlaubt, die von der Gabe von NAMPT Inhibitoren profitieren können. 

Zusätzlich wurde eine Imprinting meQTL (imeQTL) Analyse durchgeführt, um das Potential der 

Kombination aus Imprinting  und Methylierung zu untersuchen. Zur Erfassung der imeQTLs wurde 

der Methylierungsstatus von 269 Individuen (auf Basis von Blutzellen), stratifiziert nach den elterlich 

inversen heterozygoten Genotypen, verglichen. Insgesamt konnten 177 CpGs an 31 genomischen 

Loci identifiziert werden, von denen 22 bisher unbekannte Imprinting Regionen darstellen. Die 

stärkste Auswirkung von Parent-of-Origin-Effekte auf Methylierung wurde in Regionen beobachtet, 

die Gene für neurologische Entwicklungsstörungen beherbergen, sowie im chromosomalen Segment 

3p21.1, welches eine GWAS Kandidaten Region für affektive Störungen ist. Positionelle Gene in 

Imprinting Regionen sind aussichtsreiche Kandidaten Gene aufgrund ihrer potentiell monoallelischen 

Genexpression. Hierdurch wird es möglich, potentiell rezessive Erkrankungsmutationen zu ermitteln. 

Die Enrichment Analysen von cis-meQTL assoziierten Genen ergab eine Überrepräsentation von 

Genen, die positionell im Bereich von GWAS Loci liegen (P = 5,8 x 10-4). Potentielle rSNPs wurden in 

der GWAS Kandidaten Region von 1q31.2 (RGS1) und von 3p21.1 (PRBM1) lokalisiert. Die allelische 

Veränderung von Transkriptionsfaktor-Bindungsstellen durch potentielle rSNPs führt zu quantitativen 

Änderungen der Gentranskription oder Spleißprozessen, welche wiederum zu pathogenen Verläufen 

von neuropsychiatrischen Erkrankungen beitragen. Die aus diesen Studien hervorgehende 

Datenbank von autosomalen meQTLs, imeQTLs und eQTLs in Hirngewebe stellt eine wertvolle Quelle 

dar, um rSNPs zu identifizieren und deren Beteiligung an Erkrankungsprozessen aufzuklären.  
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ABSTRACT 

Neuropsychiatric disorders have a strong genetic predisposition, but their genetic basis remains 

elusive. Genome-wide association studies (GWASs) have mapped more than 2,000 susceptibility loci 

that were shown to increase the risk of common brain disorders. However, the majority of these 

susceptibility loci reside in non-coding regions and their functional consequences are unknown. The 

present study addresses the question whether regulatory sequence variants, affecting DNA 

methylation and gene expression, may be causal susceptibility alleles. 

I used an integrative functional genomics approach to investigate epigenetic regulation phenomena 

in human hippocampal brain of 115 European patients with pharmacoresistant mesial temporal lobe 

epilepsy. High-density SNP genotypes were correlated with genome-wide quantitative CpG 

methylation and mRNA expression levels using the Human Methylation450 array (HM450) and the 

Human HT-12 v3 array. Subsequently, a genome-wide map of methylation quantitative trait loci 

(meQTLs) and expression quantitative trait loci (eQTLs) was used to dissect regulatory SNPs (rSNPs) 

that confer susceptibility to common brain disorders at 488 known GWAS hits (P < 5.0 x 10-8). 

This is the first meQTL study of brain tissue applying the high-density HM450 array in specimens of 

fresh frozen human brain tissue obtained by epilepsy surgery at large scale. Linear regression analysis 

of this study implementing a correction for cell-type heterogeneity, identified 19,954 (8.5% of 362k 

CpGs) cis-acting meQTLs at a false-discovery rate (FDR) of 5%, which is a six-fold increase compared 

to previous meQTL studies that all investigated postmortem brain tissue. Specifically, cis-meQTLs 

were strongly enriched upstream of the gene promoter region (TSS201-1500; P = 7.7 x 10-61), 

highlighting the functional impact of this 5´-regulatory region that harbors binding sites of enhancers 

and insulators. Some of the most significant cis-meQTLs affected high-ranking candidate genes 

(ADARB2, HDAC4, NAPRT1, MAD1L1, PTPRN2 and RIMBP2) for neurodevelopmental disorders. To 

explore tissue specifity, the same approach was repeated in an additional meQTL analysis of whole 

blood cells originating from 496 German population controls without neuropsychiatric disorders. 

Results show that 65% of the meQTLs in brain tissues were also present in whole blood cells 

(Spearman’s Rank coefficient = 0.42). The present database of cis-meQTLs in brain and blood cells 

provides a key to select accessible epigenetic biomarkers for brain disorders in whole blood cells. The 

performed eQTL study identified 734 out of 31k mRNA probes at which expression levels were 

significantly influenced by cis-acting SNPs (FDR < 5%). 

Apart from meQTL and eQTL analyses, additionally a CpG methylation to gene expression correlation 

analysis was performed. This represents the first systematic delineation of methylation-driven genes 

in fresh frozen brain tissue. Both inverse correlations (73%) and positive correlations (27%) were 
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observed, whereby the strongest inverse correlations were detected at NAPRT1, the gene encoding 

Nicotinate Phosphoribosyltransferase. Furthermore, the NAPRT1-associated meQTLs and eQTL were 

both genetically regulated by SNP rs9657360. The minor C allele of that very SNP was significantly 

associated with high methylation levels in the NAPRT1 promoter region and simultaneously 

associated with low gene expression of NAPRT1. Both, the tumor-specific hypermethylation of a 

promoter CpG island as well as loss of NAPRT1 expression have been previously proposed as 

predictive biomarkers for the therapy of carcinomas using NAMPT inhibitors. The additionally genetic 

risk constellation which has been identified by my approach – combining meQTLs and eQTLs to 

unravel the translational impact of epigenetic regulation of gene expression – is of high clinical 

relevance. It enables a diagnostically driven clinical strategy in tumorigenesis including the selection 

of patients which likely benefit from the administration of NAMPT inhibitors. 

To dissect imprinted meQTLs (imeQTLs) exhibiting differential methylation in a Parent-of-Origin 

(PofO) dependent manner, the CpG methylation states of blood cells in groups of 269 individuals 

stratified by parentally inverse heterozygous genotypes of nearby SNPs were compared. The imeQTL 

analysis revealed 177 CpGs at 31 genomic loci of which 22 were previously unknown. The strongest 

PofO effects were observed at loci harboring neurodevelopmental genes and on chromosome 

3p21.1, which is a GWAS candidate region for mood disorders. Genes at genomic loci that show 

imprinting effects are promising candidate genes because of their potentially monoallelic gene 

expression which may unmask recessive susceptibility alleles. 

Enrichment analyses of genes associated with cis-meQTLs revealed an overrepresentation of genes 

implicated in GWAS hits of brain disorders (P = 5.8 x 10-4). Potential rSNPs at the GWAS candidate loci 

1q31.2 (RGS1 gene locus) and 3p21.1 (PRBM1 gene locus) were identified. The allelic alteration of 

transcription factor binding sites by potential rSNPs is likely to result in changes of gene transcription 

or splicing processes which could contribute to pathogenic pathways underlying neuropsychiatric 

disorders. As exemplified in this thesis, the created database of autosomal meQTLs, imeQTLs and 

eQTLs in brain tissue provides a valuable resource to dissect rSNPs at GWAS hits and to decipher 

their functional effects.  
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1. INTRODUCTION 

1.1 Neuropsychiatric disorders 

Neuropsychiatric disorders such as epilepsy, schizophrenia, bipolar disorder, major depressive 

disorder, autism spectrum disorder, attention deficit-hyperactivity disorder and substance use 

disorders represent 13% of the global burden of diseases, surpassing cardiovascular disease and 

cancer (World Health Organization 2008; Collins et al. 2011). They cause enormous personal and 

social burdens (Collins et al. 2011; Labrie et al. 2012) and have a lifetime prevalence that ranges from 

0.1% for autism spectrum disorder to approximately 1% for schizophrenia and up to 24% for nicotine 

dependence (Sullivan et al. 2012). Family studies, including twin and adoption studies provide 

consistent evidence that genetic factors contribute to the risk of neuropsychiatric disorders (Kendler 

et al. 2005). These family studies assessed heritability estimates ranging from 37% for major 

depressive disorder to more than 80% for schizophrenia and bipolar disorder (Cardno et al. 1999; 

Sullivan et al. 2012) and show empirical evidence of a shared genetic etiology across neuropsychiatric 

disorders (Cross-Disorder Group of the Psychiatric Genomics Consortium 2013). Overall, almost all 

neuropsychiatric traits display a complex genetic predisposition (Labrie et al. 2012; Gelernter 2015) 

and only a small fraction follows mendelian inheritance patterns (Lander & Schork 1994). There is no 

common genetic architecture for the set of complex psychiatric traits. Generally, the genetic 

architecture of the vast majority of neuropsychiatric disorders is composed by highly polygenic and 

heterogeneous factors including multiple risk alleles, epistatic and epigenetic effects. Risk alleles can 

individually be common or rare, and can include, for example, single nucleotide polymorphisms 

(SNPs) and copy number variants (CNVs, Gelernter 2015). 

Common neuropsychiatric disorders are among the most complex and poorly understood conditions 

affecting the human body. In recent years there have been major research efforts to improve our 

understanding of their complex genetic predisposition. Initial studies included genetic linkage 

studies, candidate gene association studies and targeted sequencing studies, which follow a 

hypothesis-driven approach. Although these “traditional” approaches have identified a few 

susceptibility genes, these studies did not succeed to identify common major susceptibility loci. The 

scenario started to change with the advent of genome-wide association studies (GWASs) which 

allowed a more systematic, hypothesis-free exploration of the genetic basis of neuropsychiatric 

disorders. The hypothesis-free approach of a GWAS offered the opportunity to overcome difficulties 

and obstacles enforced upon the incomplete understanding of the pathophysiology of the disease 

(Kitsios & Zintzaras 2009). 
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1.2 Genetic strategies for the dissection of the genetic architecture of 

neuropsychiatric disorders 

A GWAS is usually designed as a case-control association study, in which allelic variation of SNPs is 

compared between individuals with a particular disease and unaffected individuals. The strategy of 

the GWAS approach is mainly directed on the discovery of common variants conferring 

low/moderate risks following the “common disease/common variant” hypothesis (Reich & Lander 

2001). This hypothesis predicts that the genetic risk for common diseases will often be due to 

disease-predisposing alleles with relatively high frequencies. In the last few years, a huge number of 

GWASs have been performed to dissect the genetic basis of many different complex diseases and 

traits. GWASs investigating the genetic architecture of neuropsychiatric disorders have identified 

many susceptibility variants (Psychiatric GWAS Consortium Bipolar Disorder Working Group 2011; 

Sullivan et al. 2012). The National Human Genome Research Institute (NHGRI) catalog of published 

GWAS hits harbors more than 15,000 SNPs associated with human diseases, of which more than 

2,000 SNPs are associated with neuropsychiatric disorders (Welter et al. 2014). However, the 

identified genetic variants characteristically explain only a modest proportion of the total heritability 

of these traits. This has led to the common question, how the “missing heritability” of complex 

diseases can be explained (Eichler et al. 2010). One plausible explanation is that most of GWASs have 

SNPs with minor allele frequencies of more than 5% implying that many rare variants has not been 

ascertained by current GWASs. According to the alternative “common disease/rare variant” 

hypothesis, complex traits are caused collectively by multiple rare DNA sequence variants, each with 

moderate to high penetrance (Marian 2012). To test this hypothesis, gene sequencing studies have 

been carried out by next-generation sequencing (NGS) methods: either as target candidate gene 

studies and whole exome or genome studies (Bamshad et al. 2011). Although NGS has identified 

many deleterious gene mutations, the current findings do not close the gap of the missing heritability 

(Petronis 2010; Liu & Leal 2012). One problem arises by the difficulty to interpret the biological effect 

of variants identified by GWASs (Westra & Franke 2014). Typically, a candidate region identified by a 

GWAS contains more than one gene and multiple sequence variants form a linkage disequilibrium 

(LD) block (Albert & Kruglyak 2015). Although variants that alter coding sequences are obvious 

candidates, the majority of loci identified in GWASs is found in non-coding regions and probably 

affects regulatory elements (Maurano et al. 2012). It is difficult to unequivocally identify the causal 

variant for each locus by using the traditional fine-mapping methods. Several lines of evidence 

suggest that many sequence variants in non-coding regions influence regulatory processes 

controlling mRNA transcription. 
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1.3 Genome- and epigenome-wide projects 

I presume that the understanding of the molecular mechanisms underlying common diseases will be 

improved by an integrated functional genomics strategy. By 2004, large-scale genome projects 

already indicate that genome sequences alone cannot explain the whole diversity of life, because 

they are very similar within and across species (cf. Ptashne et al. 2010). Instead, epigenetics may 

explain how these similar genetic codes are differentially expressed in different cell-types within 

different environmental conditions and at different times (Ptashne et al. 2010). Epigenetics refers to 

heritable changes in gene expression caused by alterations in DNA methylation and chromatin 

structure (Henikoff & Matzke 1997). Epigenetic factors have been linked to developmental processes 

and play a critical role in normal cellular differentiation during embryogenesis (Li 2002). They have 

been implicated to play an important role in several human diseases, including cancer and 

neuropsychiatric disorders (Dalton et al. 2014). Epigenomics is the science of functional elements 

regulating gene expression in cells. The epigenome consists of the complete collection of epigenetic 

marks, such as DNA methylation, histone modifications and non-coding RNAs that exist in a cell at 

any given point (Romanoski et al. 2015). 

Ongoing projects such as ENCODE (Encyclopedia of DNA Elements), the International Human 

Epigenome Consortium (Bae 2013) and the US National Institutes of Health Epigenomics Roadmap 

are generating cell-specific reference data sets that provide a basis for delineating the complex 

interplay between epigenomic processes and the transcriptome. The ENCODE project aimed to 

catalog the regulatory elements in human cells and to study the epigenomic signatures of cells which 

are grown in culture (ENCODE Project Consortium 2004, 2007, 2012). Additional approaches and 

projects further benefit from the ENCODE project (Civelek & Lusis 2014): Systematic maps of 

transcription factor binding sites and chromatin modifications have been generated as have 

databases and web-tools such as GWAS3D (Li et al. 2013), which help to automate some of the 

processes involved. In addition, the Roadmap Epigenomics Project extends the ENCODE project and 

aims to elucidate how epigenetic processes contribute to human biology and disease (Kundaje et al. 

2015). The researchers have linked epigenomic signatures to the corresponding genetic information, 

producing reference epigenomes for several human tissues and cell-types. The result is a 

comprehensive landscape of epigenomic elements regulating gene expression in the human body 

(Romanoski et al. 2015). Kundaje and co-workers (2015) enable insights into the epigenomic 

landscape, its dynamics across cell-types or tissues and development. Their epigenomic data sets, 

regulatory annotation and integrative analyses have resulted in the most comprehensive map of the 

human epigenomic landscapes so far and cover the largest collection of primary cells and tissues 

(Kundaje et al. 2015). Some of the most widely studied mechanisms of epigenetic regulation include 
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DNA methylation, histone modifications as well as non-coding RNAs. DNA methylation is the most 

stable of all epigenetic modifications and the most studied epigenetic modification to date (Beck & 

Rakyan 2008; Dalton et al. 2014). 

 

1.4 DNA methylation 

DNA methylation is the only epigenetic mark for which a detailed mechanism of mitotic inheritance 

has been described (Bird 2002). The most common form of DNA methylation in vertebrates is 5-

methylcytosine (5mC), which arises by the addition of a methyl group to cytosine nucleotides (C) and 

affects 70 to 80% of CpGs in the human genome (Ehrlich et al. 1982). High levels of 5mC in promoter 

regions that are CpG-rich are strongly associated with transcriptional repression, whereas genomic 

regions that are CpG-poor exhibit a more complex relationship between DNA methylation and 

transcriptional activity (Jones 2012). DNA methylation has become an important tool in the emerging 

systems approach to explore and better understand genome function in health and disease. DNA 

methylation has been extensively studied for its role in several biological processes such as for 

example genomic imprinting (Barlow 2011) and characteristic changes in DNA methylation have been 

reported for cancer (Baylin & Jones 2011; Shames et al. 2013) and several other diseases (Feinberg 

2007). 

Over the past decade, numerous approaches have been evolved for methylation analysis. Recent 

advances in NGS and microarray technology allow mapping of DNA methylation at a high genome-

wide resolution and in a large number of samples (Laird 2010). These new methods create enormous 

opportunities for research of the epigenome (Bock 2012). Key advantages of the NGS technology are 

its comprehensive genomic coverage, high quantitative accuracy and excellent reproducibility (Bock 

2012). But the most widely-used approach for epigenome-wide DNA methylation analysis is the 

Illumina Infinium Human Methylation450 BeadChip microarray (HM450). The HM450 microarray 

offers a powerful tool to assess DNA methylation across the genome. The genomic coverage of the 

Infinium assay is more limited than that of most bisulfite-sequencing based methods, but the 

compatibility with existing genotyping pipelines, the lower per-sample cost compared with whole-

genome bisulfite sequencing and the simpler analysis and interpretation of methylation data makes 

it an attractive approach for large-scale sample collections (Bock 2012; Morris & Beck 2015). 

Verification and validation are usually done using locus-specific DNA methylation assays at a small 

number of CpGs in many samples to reduce the cost of studying large validation cohorts. For this 

purpose the most popular method is pyrosequencing (Tost & Gut 2007; Potapova et al. 2011). 
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1.5 Quantitative trait loci (QTLs) 

In 2001, Jansen and Nap introduced the concept for a strategy, coined ‘genetical genomics’ to 

identify which genes are regulated by genetic variation (Jansen & Nap 2001). By correlating genetic 

variants with intermediate molecular quantitative traits, such as methylation levels or gene 

expression levels, it is possible to identify quantitative trait loci (QTLs). To identify the variants that 

influence DNA methylation or gene expression, two types of data must be collected from each 

individual. First, the genotype data of each individual are required. Second, in each individual the 

DNA methylation is measured using an array platform considering genome-wide patterns or the 

expression of each gene in the genome is measured using either expression microarrays or RNA 

sequencing. The QTLs are then identified by comparing the genotypes with the methylation or 

expression levels using a statistical association test. During that course, individuals are grouped 

according to the allele they carry. A significantly higher methylation or expression level for a gene in 

one group than in the other group suggests that the variant (or another variant in LD) influences the 

methylation or expression of this gene. The test is repeated at every DNA variant in the genome 

which results in a genome scan for methylation quantitative trait loci (meQTLs) or expression 

quantitative trait loci (eQTLs) for this gene (Albert & Kruglyak 2015). 

QTLs can be divided into those that have local effects (cis-QTLs), meaning that the genetic variant is 

located near the genomic probe and those with distant effects (trans-QTLs), meaning that the genetic 

variant is located further away from the genomic probe (e.g. >10 Mbps apart or on a different 

chromosome; Januar et al. 2015). Recent studies have examined the association between genetic 

variants and the quantitative traits in both cis and trans, of which cis-acting QTLs predominate (Gibbs 

et al. 2010; Zhang et al. 2010; Bell et al. 2011; Numata et al. 2012; Westra et al. 2013; Ramasamy et 

al. 2014; Schramm et al. 2014). Distant QTLs have smaller effects sizes and seem also to be more 

tissue-specific than local QTLs which are often conserved among various tissues (Petretto et al. 2006; 

van Nas et al. 2010; Fairfax et al. 2012), which further complicates the detection of those trans-acting 

QTLs. Overall, previous reported studies show that the genetic regulation of gene expression is 

complex and differs widely across cell-types and tissues, especially for genetic variants that are 

disease-associated.  

The choice of tissue type is a major challenge that distinguishes genetic and epigenetic studies. The 

tissue type is largely irrelevant for genetic studies of germline genetic variation in contrast to 

epigenetic studies where often the primary disease- or exposure-relevant target tissue (or cell-type) 

is available on a limited scale, e.g. brain tissue (Mill & Heijmans 2013). So far, several QTL studies 

have investigated human brain tissue in neuropsychiatric disorders (Gibbs et al. 2010; Zhang et al. 

2010; Numata et al. 2012; Gamazon et al. 2013; Kim et al. 2014; Numata et al. 2014; Ramasamy et al. 
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2014; Smith et al. 2014), but all of them performed QTL analyses in postmortem brain tissue. 

Postmortem studies of brain tissue have several limitations: postmortem brain tissue samples have 

restrictions with respect to mRNA conservation (Bray et al. 2003; Webster et al. 2009) and methods 

of tissue preservation alter the quality of biomolecules obtained (Januar et al. 2015). A delay of the 

autopsy of postmortem brain tissue alters DNA methylation profiles from baseline (Miller-Delaney et 

al. 2015). Additionally, postmortem studies of brain tissue are critical for understanding the disease 

aetiology (Januar et al. 2015). On the one hand these aspects indicate the need for fresh frozen 

human brain tissue obtained from living patients. On the other hand it is necessary to explore the 

extent to which easily accessible cells obtained from tissues such as whole blood can be used to 

address questions about epigenomic variation in inaccessible tissues such as the brain. 

Known and unknown confounders can contribute significantly to the dataset variance in quantitative 

epigenomic high throughput analyses, so the integration of major confounding factors are required 

to perform a successful analysis of QTL data (Januar et al. 2015). Potential confounders include age, 

gender and ethnic diversity. Further, medical histories of participants, such as antiepileptic 

treatments, antipsychotic or antidepressant medications are useful and necessary. Studies that use 

postmortem brain tissue also have to consider confounders such as antemortem history, medication 

use and cause of death or postmortem delay. Another important issue when performing QTL studies 

is cellular heterogeneity. To overcome this issue, methods of adjusting for DNA methylation 

variability associated with cell composition differences have been developed for brain as well as for 

blood cells and can be incorporated in statistical models for adjustment (Houseman et al. 2012; 

Guintivano et al. 2013; Jaffe & Irizarry 2014). Cellular heterogeneity provides an important issue but 

only a few current studies start to consider this confounding factor. 

1.5.1 Methylation quantitative trait loci (meQTLs) 

The association between genetic variants and the disorder could be mediated via its ability to 

influence DNA methylation (meQTLs). Because sequence variation can directly influence DNA 

methylation in cis (Schalkwyk et al. 2010) and evidence already provides an enrichment of meQTLs at 

loci for several disorders identified by GWAS (Numata et al. 2012; Gamazon et al. 2013; Smith et al. 

2014), it is likely that interpretation of genetic data can be largely improved by integrating allele-

specific epigenetic information into the analyses (Meaburn et al. 2010). 

Early meQTL studies focused on methylation data from relatively few CpGs showing a strong bias 

towards promoter regions. The comprehensive array platform considering genome-wide patterns 

enable recent studies to cover much more meQTLs. The present study uses the popular platform of 

the HM450 array that is the best known platform capable of high-throughput work. However, 
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technical artifacts need to be taken into account, especially where Infinium probes overlap with 

positions of known DNA variants (Barrow & Byun 2014). When using microarray platforms and 

studying meQTLs regarding SNPs whose genotype correlates with DNA methylation, potential SNP 

artifacts represent a substantial challenge (Barrow & Byun 2014). Removing of all SNP-associated 

probes from the analysis process would not be appropriate as 56% of the probes on the Infinium 

array contain SNPs. Definite factors such as the distance of an SNP within the probe and the minor 

allele frequency within the ethnicity of the study population should be considered. It is important to 

give careful consideration to what parameters should be set and potential confounding factors 

should be subsequently excluded without minimizing the HM450 probe set excessively. Up to date 

only few meQTLs have been reported to change gene expression (Gibbs et al. 2010; Gamazon et al. 

2013; Gutierrez-Arcelus et al. 2013). The present study addresses this promising issue. 

1.5.2 Expression quantitative trait loci (eQTLs) 

Expression quantitative trait loci (eQTLs) are regions of the genome which contain DNA sequence 

variants that influence the expression level of one or more genes (Albert & Kruglyak 2015). The 

genetics of expression variation of single genes has been studied for a long time, at least since 1962 

(Schwartz 1962). Maps of eQTLs are being built in large-scale studies in humans for different cell-

types or tissues, such as blood cells and brain tissue (Gibbs et al. 2010; Westra et al. 2013; Kim et al. 

2014; Ramasamy et al. 2014; Schramm et al. 2014). 

Beyond the hitherto description of large eQTL catalogs, the understanding of the role of regulator 

variation is currently being expanded in two directions. Typically, eQTLs were identified as ‘loci’, 

statistical associations between regions of the genome and the expression of genes. Recently, eQTLs 

are being used to identify the causal variants and their molecular mechanism of action. One 

immediate application of eQTLs lies in the interpretation of GWAS risk loci. Large eQTL studies can 

help to prioritize potential causal variants among multiple polymorphisms within the GWAS 

candidate regions (Albert & Kruglyak 2015). 

1.5.3 Imprinted methylation quantitative trait loci (imeQTLs) 

Imprinting meQTL (imeQTL) analyses imply the association of SNP genotypes of defined parental 

origin with methylation levels. Genes that show a parental bias in methylation will undergo 

differential regulatory effects from the paternal and maternal alleles. As standard association studies 

treat both alleles equally, they are unable to detect effects such as imprinting in which the two 

alleles are differentially regulated. 

Genomic imprinting is a form of epigenetic variation whereby Parent-of-Origin (PofO) specific 

epigenetic modifications are inherited by offspring, resulting in mono-allelic gene expression. 
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Aberrations in normal imprinting patterns have been linked to congenital disorders such as Prader-

Willi / Angelman syndromes (Nicholls et al. 1989; Clayton‐Smith 1993), and Beckwith-Wiedemann 

syndrome (Reik et al. 1995). This finding is consistent with the fact that many imprinted genes have 

prominent roles in growth and development (Georgiades et al. 2001; Lambertini et al. 2012). Recent 

GWASs have taken into account potential PofO effects and have uncovered important contributions 

of imprinting to common complex diseases (Kong et al. 2009). In addition to genetic studies, 

epidemiological data in many common diseases, including multiple sclerosis (Chao et al. 2010), 

asthma (Carroll et al. 2005), and bipolar disorder (McMahon et al. 1995; Kornberg et al. 2000) further 

imply that PofO and imprinting-mediated effects on disease may be pervasive. But despite evidence 

for the significant impact of imprinting in genome function and disease, catalogs of imprinted genes 

in the human genome are almost certainly incomplete. At present, there are >120 known imprinted 

genes in mice; yet in humans, only approximately 85 have been confirmed (www.geneimprint.com; 

Wei et al. 2014), 10% of which have been identified since 2012 (Barbaux et al. 2012). The imprinting 

meQTLs of the present study may help to identify additional imprinted genes which display both 

allele specific CpG methylation and genomic imprinting. The imeQTL study of this work will help to 

identify PofO dependent susceptibility effects that may improve the analytical power of GWASs to 

dissect the complex genetic architecture of common brain disorders and may explain a substantial 

fraction of the missing genetic heritability. 

 

1.6 Perspectives 

The field of epigenetics is expanding at an exponential rate and projects like the Roadmap 

Epigenomics Consortium (Romanoski et al. 2015) makes huge efforts to fill the gap of epigenomic 

studies and its association with human disease. Systems genetics studies are aiming to identify the 

role of regulatory variation in complex traits by integrating intermediate phenotypes, such as CpG 

methylation, transcript, protein or metabolite levels (Civelek & Lusis 2014; Albert & Kruglyak 2015). 

Recent reviews present a survey about the current knowledge of the molecular architecture of 

complex traits and are useful for the identification of genes and pathways that underlie common 

human diseases. However, our understanding of the exact mechanisms by which epigenetic changes 

modify a phenotype, particularly in association with common neuropsychiatric disorders in humans, 

is still limited. Current research in this area is limited by a number of factors including difficulties in 

establishing functional causality, tissue heterogeneity and other confounding factors such as spatial 

and temporal effects (Januar et al. 2015). The understanding of the role of the methylome in 

regulating human health and disease is yet at the beginning. This is particularly true in the field of 

http://www.geneimprint.com/
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neuropsychiatric disorders for which access to pathogenic brain tissue is usually not available in living 

patients. 

1.7 Objectives 

The present study aims to get a deeper insight into the role of regulatory variation in complex traits, 

especially in neuropsychiatric disorders, with a particular interest in mapping the effects of common 

genetic variants on gene expression and DNA methylation. An integrative functional model of 

genomics and epigenomics will be optimal for understanding the etiological pathways to common 

disorders with complex genetic predisposition, such as neuropsychiatric disorders. An integrative 

functional approach will further help to trace molecular changes through layers of biological 

information to the disease outcome. 

Functional genomics studies of common brain disorders are difficult because human brain tissue is 

usually not available. Temporal lobe epilepsy (TLE) offers a unique opportunity to obtain bioptic brain 

specimens when epilepsy surgery is necessary to control pharmacoresistant seizures (Grote et al. 

2015). I used this intriguing resource to perform the first meQTL and eQTL study of bioptic human 

brain tissues of pharmacoresistant mesial TLE (mTLE) patients. Additionally, the approach of the 

present study allows a systematically examination of the influence of cis-meQTLs on gene expression 

to delineate methylation-driven genes in fresh frozen brain tissue. 

Currently, there are no QTL studies, which consider cellular heterogeneity among different brain 

regions and focus on neuropsychiatric disorders. Thus, the present study considers two major 

aspects of epigenetic studies including tissue relevance, as I can use tissue in which the given disease 

emerges, and cellular heterogeneity. 

An intra-individual cross-tissue study concluded that between-tissue variation in DNA methylation 

greatly exceeds inter-individual differences for any one tissue but suggested that some inter-

individual variation in DNA methylation may be correlated between brain regions and blood (Davies 

et al. 2012). To explore tissue-specifity of the cis-meQTLs detected in hippocampal brain tissue, 

meQTL analyses in whole blood cells of 496 German population controls without neuropsychiatric 

disorders were performed, using the same array platform and analytical procedures. This may offer 

the opportunity to dissect accessible biomarkers in blood DNA sources for common brain disorders. 

One major achievement of this study will be a public release (publication in preparation) of a 

database reporting the complete meQTL and eQTL findings of this thesis. These genome-wide maps 

of meQTLs and eQTLs will improve the prospects to elucidate the genetic mechanisms determining 

DNA methylation and gene expression in common brain disorders. 
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2. MATERIALS AND METHODS 

Genome-wide methylation quantitative trait loci (meQTL) and expression quantitative trait loci 

(eQTL) analyses were performed in fresh frozen hippocampal brain tissue of European patients with 

pharmacoresistant mesial temporal lobe epilepsy (mTLE). Individual high-density SNP genotypes 

were correlated with individual quantitative methylation states and individual expression levels. To 

delineate accessible epigenetic biomarkers, genome-wide maps of meQTLs were also generated in 

whole blood cells from German population controls using the same methylation microarray. In 

addition, blood cell DNA samples of parent-offspring trios with Genetic Generalized Epilepsy (GGE) 

were investigated to screen for differentially methylated parental genomic regions (imprinting 

meQTLs, imeQTLs). 

 

2.1. Study participants and surgical specimens 

2.1.1 Fresh frozen hippocampal brain tissue 

The present study included 117 pharmacoresistant mTLE patients of European descent who 

underwent surgical treatment in the Epilepsy Surgery Program at the University of Bonn Medical 

Center (Wiebe et al. 2001). In all patients, presurgical evaluation using a combination of noninvasive 

and invasive procedures revealed that seizures originated in the mesial temporal lobe (Kral et al. 

2002). Surgical resection of the hippocampus was clinically indicated in every case (Pernhorst et al. 

2011). Informed written approval was obtained from all patients and procedures were in accordance 

with the Declaration of Helsinki and approved by the local ethics committee. 

All fresh frozen hippocampus tissue samples were from identical regions of the hippocampus. Fresh 

frozen sections were analyzed according to international standards and the diagnostic classification 

was established by an experienced neuropathologist according to international criteria (Becker et al. 

2003; Blumcke et al. 2007). The majority (> 60%) of the hippocampi specimens displayed Ammon’s 

horn sclerosis (AHS; segmental neuronal cell loss and concomitant astrogliosis and microglia 

activation). A smaller proportion of the specimens showed predominantly lesional alterations such as 

cortical dysplasia or tumors. Up to five 20 µm thick tissue sections were used for the preparation of 

genomic DNA and mRNA. DNA was isolated from tissue specimens using the DNeasy Blood and 

Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s protocol (Schonberger et al. 

2009). mRNA was isolated from tissue specimens using the Dynabeads mRNA Direct Micro Kit (Dynal, 

Oslo, Norway) following the manufacturer’s protocol (Fassunke et al. 2008). Complementary DNA 
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(cDNA) was synthesized by reverse transcription of total mRNA using the RevertAid First-Strand cDNA 

Synthase Kit (Fermentas, St. Leon-Rot, Germany) according to the manufacturer’s protocol. 

All 117 mTLE patients fulfilled the inclusion criteria by having mRNA-expression data, DNA 

methylation data and genotypes in sufficient quality. Two patients were excluded because of their 

outstanding disease type (Rasmussen's encephalitis). Conclusively, analyses have been performed on 

115 hippocampal brain tissue samples (60 males, 55 females; range of age of seizure onset: 

1-47 years, average age: 11.1). The mTLE patient group was clinically characterized with respect to 

seizure manifestation. The clinical parameters of the mTLE patients are summarized in Appendix, 

Table 6-1. 

2.1.2 Whole blood cells from German population controls 

A population-based cohort of 498 unrelated German population controls without neuropsychiatric 

disorder (273 males, 225 females; age range: 54 – 74 years, average age: 57.4) was collected from 

the Western regions of Germany (Ruhr area) within the framework of the cardiovascular longitudinal 

Heinz Nixdorf RECALL study (HNR; Schmermund et al. 2002). Of the 498 population controls two 

individuals did not fulfill the inclusion criteria having DNA methylation data and genotypes in 

sufficient quality. Hence, analyses have been performed on 496 population controls.  

2.1.3 Whole blood cells from parent-offspring trios with GGE 

Epilepsy patients of European ancestry with common GGE syndromes, including genetic absence 

epilepsies (GAE), juvenile myoclonic epilepsy (JME) and epilepsies with generalized tonic clonic 

seizures alone (EGTCS) exhibiting generalized spike and wave discharges in their resting 

electroencephalogram (gsw-EEG), were recruited in a multi-center effort from the European EPICURE 

Project (http://www.epicureproject.eu). The diagnostic classification of GGE syndromes were 

prepared according to EPICURE guidelines and standardized phenotyping protocols 

(http://portal.ccg.uni-koeln.de/ccg/research/epilepsy-genetics/sampling-procedure/; ILAE 1989; 

Nordli 2005; Berg et al. 2010). Individuals with a history of major psychiatric disorders (autism 

spectrum disorder, schizophrenia or affective disorder) or severe intellectual disabilities were 

excluded (Trucks 2013). In total, 269 parent-offspring trios of European origin with offspring affected 

by GGE were available for imeQTL analysis (103 male trio children, 166 females; range of age of 

seizure onset: 2 – 21 years, average age: 9.8). Trios were recruited from different European countries 

or countries with European ancestry, including Australia (N = 69), Bulgaria (N=2), Denmark (N = 20), 

Germany (N = 14), Italy (N = 138), and Turkey (N = 26). The offspring trios were affected by the 

following GGE syndromes: 175 GAE, 92 JME, and 2 EGTCS alone. All study participants gave informed 

consent according to the regulations at their local institutional review boards. 

http://www.epicureproject.eu/
http://portal.ccg.uni-koeln.de/ccg/research/epilepsy-genetics/sampling-procedure/


MATERIALS AND METHODS 

12 
 

2.2 Genome-wide high-density SNP genotyping 

Genome-wide high-density SNP genotyping was carried out by using different SNP genotyping arrays 

for the different study cohorts. For the mTLE patients SNP genotyping was performed using the 

Illumina HumanHap550 SNP array (550k SNPs; Illumina, San Diego, CA, USA). For the HNR controls 

two genotyping arrays, Illumina HumanOmniExpress 12 v1.1 and Illumina HumanOmni1 Quad v1.0 

(overlap of 539k SNPs; Illumina, San Diego, CA, USA) were combined. For the GGE offspring trios the 

Affymetrix Axiom Genome Wide Human genotyping array (567k SNPs; Affymetrix, Santa Clara, CA, 

USA) was used. To ensure a high accuracy of the SNP genotype calls, several quality filters were 

applied for the individual array and the single SNP. Exclusion criteria for SNP arrays were: call rate 

per array < 97%, and autosomal heterozygosity rate > 29%. Exclusion criteria for SNPs were: i) non-

autosomal position, ii) missing hg19 annotation, iii) call rate per SNP < 97%, and iv) European minor 

allele frequency (MAF) < 5% from the 1000 Genomes Project. In addition, the trio pedigree structure 

and the relationship of all trio members was checked with the PedigreeExplorer 

(http://pedigreeexplorer.meb.uni-bonn.de/) and by IBD-estimation and was further visualized with 

GRR (graphical representation of relationship errors; Abecasis et al. 2001). All quality control (QC) 

procedures were carried out using Plink, version 1.9 (http://pngu.mgh.harvard.edu/purcell/plink/, 

Purcell et al. 2007). 

2.2.1 SNP imputing 

SNP imputing is a useful method that can detect causal variants that use the linkage disequilibrium 

(LD) structure in a genomic segment to infer the alleles of SNPs which are not directly genotyped 

(Marchini et al. 2007). The pre-phasing based imputation was carried out using a combination of the 

programs SHAPEIT2 and IMPUTE2 (Howie et al. 2012). Imputation with IMPUTE2 was based on the 

reference panel: 1000 Genomes Phase I release of NCBI build 37 (hg19). The imputed SNP genotypes 

were additionally quality filtered using SNPTESTv2 (Marchini et al. 2007). Imputed SNPs were 

excluded from further analyses according the following criteria: i) SNPtest info quality value < 0.9, ii) 

MAF < 5%, iii) missing data proportion > 3% using Plink 1.9. Furthermore, a LD-based SNP pruning 

was performed, considering a window of 50 SNPs, followed by a LD calculation between each pair of 

SNPs in the window and removal of one SNP of SNP pairs with a LD r2 > 0.8. 

 

http://pedigreeexplorer.meb.uni-bonn.de/
http://pngu.mgh.harvard.edu/purcell/plink/
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2.3 DNA methylation analysis 

2.3.1 Bisulfite treatment of genomic DNA  

All methylation profiling technologies of Illumina are based on genotyping bisulfite-converted DNA. 

The EZ DNA Methylation Kit from Zymo Research (Zymo Research, Irvine, CA, USA) was used for 

bisulfite treatment of genomic DNA samples. The kit is based on the divergent reaction of 

unmethylated vs. methylated cytosine and sodium bisulfite: unmethylated cytosine is converted into 

uracil while methylated cytosine is protected and remains cytosine (Zilberman & Henikoff 2007). 

Following PCR, the converted uracil nucleotides will be detected as thymine.  

A standardized bisulfite conversion protocol was used. Genomic DNA was applied according to the 

manufacturer’s protocol of the Zymo EZ DNA Methylation kit (#D5001). Alternative incubation 

conditions are recommended, which differ from the normal manufacturer’s protocol, when the 

Illumina Infinium methylation assay is used. This step based upon Illumina’s feedback to Zymo 

Research that bisulfite conversion efficiency can be improved by incorporating a cyclic denaturation 

protocol during the process of conversion. 

2.3.2 Array-based genome-wide assessment of CpG methylation 

For mapping CpG methylation level of genomic bisulfite-converted DNA the Infinium Human 

Methylation450k BeadChip array (HM450; Illumina, San Diego, CA, USA) was used. The HM450 array 

assesses the methylation levels of 485,577 CpG sites (482,421 CpG sites, 3,091 non-CpG sites and 65 

random SNPs) and uses the Infinium methylation assay. 

The CpG probes of the HM450 BeadChip are located in 21,231 RefSeq genes and 26,658 UCSC 

annotated CpG islands (CGI), as well as in genomic regions such as 5’ and 3’ UTRs, gene body and 

promoter. The 5´-regulatory gene region was divided into two blocks of 200 bps (TSS200) and 1,500 

bps (TSS201-TSS1500) upstream of the transcription start site (TSS). The CGI region was further 

extended by including the 2 kb regions flanking CpG island shores (N = 26,249) as well as the CpG 

island shelves (2 kb regions upstream and downstream of the CpG island shores; N = 24,018; Bibikova 

et al. 2011).  

The Human Methylation450 BeadChip applies both Infinium I and II assay chemistry technologies to 

quantitatively assess the methylation state of bisulfite-treated CpG sites. Both Infinium probes are 50 

bases long, but detection of the methylation levels occur by different mechanisms. One bead type of 

the Infinium I assay corresponds to methylated (C), another bead type to unmethylated (T) state of 

the CpG site. Both bead types for the same CpG locus incorporate the same type of labeled 

nucleotide, determined by the base preceding the interrogated “C” in the CpG locus, and will be 
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detected in the same color channel. For the Infinium II assay only one bead type corresponds to each 

CpG locus. Each locus will be detected in two colors (red and green fluorescence signals) by single-

base extension (SBE) which reflects the methylation state (Bibikova et al. 2011). The Infinium 

methylation assay was performed following the standard Infinium protocol. 

2.3.3 Assessment of signal intensities 

Infinium methylation data was processed with the Methylation Module of the GenomeStudio 

software (v2011.1) using HumanMethylation450 manifest v1.1. The GenomeStudio Methylation 

Module calculates methylation level of each CpG locus as methylation beta-value (β-value, see 

below) using the ratio of intensities between methylated and unmethylated alleles (Bibikova et al. 

2011). These β-values were exported and used for further analyses. In addition, the GenomeStudio 

Methylation Module has an Infinium Methylation Controls Dashboard which provides a couple of 

quality parameter like staining, hybridization, extension, bisulfite conversion and specificity. This 

Control Dashboard gives an overview of the technical quality of the array and the array run. 

2.3.4 Normalization of signal intensities 

The brain and blood methylation arrays were SWAN (subset-quantile within array normalization; 

Maksimovic et al. 2012) corrected and quantile normalized using the Bioconductor R-packages 

preprocessCore and minfi. The SWAN performs an independent normalization of six probe categories. 

The categories are defined by the differentiation of type I and II Infinium probes and in combination 

with the CpG number in the probe-body (one to three). Using the SWAN method technical variability 

within and between arrays could be reduced. To increase the performance in terms of detection and 

true positive rate of highly methylated and unmethylated CpG sites (Du et al. 2010) ß-values where 

transformed to M-values (see below) and subsequently quantile normalized between the arrays 

(Figure 2-1). The resulting M-values where further checked for general signal deviances in a principle 

component analysis (PCA). PCA was performed using a correlation dispersion matrix and normalized 

Eigenvector scaling (prcomb, stats R-package). 
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Figure 2-1: Normalization and transformation effects. 

The distribution of signal values without normalization (A, B), using within array SWAN normalization (C), using within array 

SWAN normalization and between arrays quantile normalization (D) and using M-value transformation (B - D) is plotted. 

 

The β-value is defined as the ratio of the methylated probe intensity and the overall intensity (sum of 

methylated and unmethylated probe intensities), ranging from 0 to 1. For an ith interrogated CpG site 

ß-value is defined as: 

𝛽𝑖 =  
max (𝑦𝑖,𝑚𝑒𝑡ℎ𝑦 , 0)

max(𝑦𝑖,𝑢𝑛𝑚𝑒𝑡ℎ𝑦 , 0) + max(𝑦𝑖,𝑚𝑒𝑡ℎ𝑦 , 0) +  𝛼
 

yi,methy and yi,unmethy are the intensities measured by the ith methylated and unmethylated probes, 

respectively. Ideally, a value of zero indicates that all copies of a CpG site are completely 

unmethylated (no methylated molecules are measured) and a value of one indicates that every copy 

of the site is methylated. In contrast, the M-value is calculated as the log2 ratio of the intensities of 

methylated probe versus unmethylated probe as shown in the following equation: 

𝑀𝑖 = log 2 (
max(𝑦𝑖,𝑚𝑒𝑡ℎ𝑦 , 0) +  𝛼

max(𝑦𝑖,𝑢𝑛𝑚𝑡ℎ𝑒𝑦 , 0) +  𝛼
) 

It has a range from positive to negative values. An M-value close to 0 indicates a similar intensity 

between the methylated and unmethylated probes, which means that the CpG site is about half-

methylated. The meaning of positive M-values is that more molecules are methylated than 
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unmethylated, while negative M-values mean the opposite. M-values have been widely used in 

expression microarray analysis, especially two-color microarray analysis and are more statistically 

valid for differential methylation analysis of methylation levels of CpG loci. In the present work M-

values are particularly used for demonstrating methylation levels. 

2.3.5 Quality control filters of CpG methylation profiles 

To ensure a high accuracy of the CpG methylation profiles several quality control filters were applied 

– mainly based on the previous work of Chen and colleagues (2013): i) CpG probe sets were filtered 

according to hg19 autosomal representation, ii) CpG detection signal had to be sufficient (P-value > 

0.01 in > 5% of the samples), and iii) SNPs in the cg 50mer probe with MAF > 1% using the 1000 

Genomes Project (release 20110521) were excluded. Additionally, CpGs that overlap known SNPs, so 

called polymorphic CpGs, were excluded. A CpG site was defined to be polymorphic if a SNP resided 

at the position of the cytosine or guanine on either strand, and for Infinium I assays, if a SNP resided 

at the position where SBE occurs (base before C). Furthermore, nonspecific probes (aka as cross-

reactive probes, Chen et al. 2013) on the Illumina 450K array, i.e. probes which co-hybridize to 

alternate sequences which are highly homologous to the intended targets (ca. 6%) were excluded. In 

total, a set of QC-filtered 362,722 CpG probes remained of the original 485,577 CpG probe set for the 

regression statistics (see below 2.5). 

 

2.4 mRNA expression analysis 

For mapping mRNA expression of the 115 mTLE patients the Illumina HumanHT-12 v3 Expression 

BeadChip (Illumina, San Diego, CA, USA) was used. Each array on the HumanHT-12 v3 Expression 

BeadChip targets more than 48,000 probes which were derived from the National Center for 

Biotechnology Information Reference Sequence (NCBI, RefSeq) (Build 36.2, Release 22) and the 

UniGene (Build 199). 

Raw intensity values for each mRNA expression probe were generated in the Department of 

Genomics, Research Center Life & Brain at Bonn University, Germany, using the HumanHT-12 v3 

BeadChips. Subsequently, mRNA expression data were quantile normalized on probe level and 

without background correction using Illumina GenomeStudio. The resulting signals were log2 

transformations after offset addition (+16). Exclusion criteria for Illumina HT12 probes included: i) 

probes which were only marginal or not expressed (minimum Illumina detection P-value > 0.05), and 

ii) probes without autosomal (hg19) positioning. Additionally, ambiguous and SNP-containing probes 
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(MAF > 1% in dbSNP 137, 1000 Genomes release 20110521) were excluded for further investigations. 

A set of QC-filtered 31,146 mRNA expression probes was used for regression statistics. 

 

2.5 Statistical quantitative trait loci (QTL) analyses 

QTL analyses investigate the influence of genetic variation (SNPs) and a quantitative trait (CpG 

methylation or mRNA expression). A survey of the integrated data sets for QTL analyses are listed in 

Table 2-1. 

The meQTL and eQTL analyses were performed using the linear regression model of the R-package 

MatrixEQTL (Shabalin 2012). MatrixEQTL is designed for fast and memory efficient QTL analyses on 

large data sets and provides the opportunity of covariate integration without loss of speed. Multiple 

testing corrections were performed in cis and in trans using the false discovery rate (FDR) step up 

procedure of MatrixEQTL (Benjamini & Hochberg 1995). A ± 1 Mbps cis window and a standard 5% 

FDR threshold were used throughout this study. A cis-meQTL or cis-eQTL refer to the most associated 

SNP/CpG or SNP/mRNA pair within the 1 Mbps windows flanking the target CpG or target mRNA 

probe, respectively. Trans-meQTLs or trans-eQTLs will refer to all SNP/CpG or SNP/mRNA pairs 

outside the 1 Mbps windows flanking the target CpG or target mRNA probe respectively. 

Nevertheless, FDR-correction was done over the complete cis or trans data matrix respectively. 

Table 2-1: Survey of the data sets integrated for QTL analyses. 

The available sample cohorts with the number of filtered individuals, CpG sites, mRNA probes and SNPs are listed. 

Condition Count 

Fresh frozen hippocampal brain tissue of mTLE patients:  

meQTL and eQTL analyses with samples having  

- genotype data: HumanHap550, autosomal QC-filtered SNPs (imputed & LD-pruned) 

- methylation data: HM450, autosomal QC-filtered CpG sites 

- expression data: HumanHT12, autosomal QC-filtered mRNA probes 

115 

 

643,195 

362,722 

31,146 

Blood cells of HNR controls: 

meQTL analysis with samples having  

- genotype data: OmniExpress-12 & Omni1-Quad, autosomal QC-filtered SNPs 

- methylation data: HM450, autosomal QC-filtered CpG sites 

496 

 

539,936 

362,722 

Blood cells of GGE parent-offspring-trios:  

imeQTL analysis with samples having  

- genotype data: Axiom, autosomal QC-filtered SNPs (imputed & LD-pruned) 

- methylation data: HM450, autosomal QC-filtered CpG sites 

269 

 

886,110 

362,722 
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2.5.1 meQTL and eQTL analyses in hippocampal brain tissue 

meQTL and eQTL analyses in 115 fresh frozen hippocampal brain tissue were performed using 

gender, age at epilepsy surgery and neuronal proportion as cofactors. Gender (Zhang et al. 2010), 

age at epilepsy surgery (Martino et al. 2013) and neuronal proportion (Guintivano et al. 2013) are 

known confounders with impact on the general CpG methylome. Existence of additional unknown 

confounders with general impact on DNA methylation or RNA expression was investigated by PCA on 

linear regression gender/age/neuronal-proportion residuals. Component loading of the first or first 

and second principal component (PC) were used as additional cofactors in meQTL and eQTL analyses, 

respectively. 

2.5.1.1 Quantification of cell-type heterogeneity 

To quantify neuronal proportions and to generate in silico neuronal profiles following removal of cell-

type heterogeneity bias from DNA methylation profiles (Guintivano et al. 2013) the CETS package in R 

was used. 

The resulting measures were matched with the pathological diagnosis of the proportion of neuronal 

cells in the hippocampal brain tissue. A Spearman rank correlation rho of the clinical parameters 

"nerve cell loss" and "pathology" and the CETS prediction of neuronal cells was calculated. The nerve 

cell loss parameters are positive correlated to each other. The status of lesional mTLE was found to 

be positively correlated to the neuronal cell proportion calculated by the R-package CETS. From a 

clinical point of view, the observed decrease of the neuronal proportion in AHS is plausible and in 

concordance to the pathophysiological observed nerve cell loss in AHS. The CETS proportion of 

neurons is negatively correlated to the nerve cell loss parameters but only significant in CA1 and CA3 

(Table 2-2 & 2-3). 

Table 2-2: Parameters and counts of clinical parameters for hippocampal brain tissue. 

Parameter Total count Feature count 

Pathology N = 115 AHS: N = 79; lesional mTLE: N = 36 

Nerve cell loss CA1 N = 73 AHS: N = 65; lesional mTLE: N = 8 

Nerve cell loss CA2 N = 68 AHS: N = 59; lesional mTLE: N = 9 

Nerve cell loss CA3 N = 67 AHS: N = 58; lesional mTLE: N = 7 

Nerve cell loss CA4 N = 74 AHS: N = 65; lesional mTLE: N = 9 

Abbreviations: AHS, Ammon’s Horn sclerosis; mTLE, mesial temporal lobe epilepsy; CA1 – CA4, hippocampal regions of the 

cornu Ammonis (Ammon’s horn; Blumcke et al. 2007). 
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Table 2-3: Spearman rank correlation rhos and nominal P-values of pairs of parameters. 

 Lesional 
mTLE 

CETS neurons 
(proportion of 

neurons) 

Nerve cell 
loss CA1 

Nerve cell 
loss CA2 

Nerve cell 
loss CA3 

Nerve 
cell loss 

CA4 

Lesional mTLE  0.53 -0.76  -0.40  -0.42  -0.37  

CETS neurons 1.44E-09**  -0.28  -0.02  -0.23  -0.18  

Nerve cell loss CA1 3.12E-23** 2.44E-03*  0.35 0.31 0.23 

Nerve cell loss CA2 1.13E-05** 8.28E-01   1.48E-04**  0.37 0.36 

Nerve cell loss CA3 2.85E-06** 1.53E-02* 8.16E-04** 3.65E-05**  0.85 

Nerve cell loss CA4 3.93E-05** 5.64E-02   1.32E-02*   8.99E-05** 2.01E-33**  

** P < 0.001; * P < 0.05; blue, Spearman rank correlations and red, nominal P-values of pairs of parameters. 

 

2.5.1.2 Principal component analysis (PCA) 

PCAs were calculated using prcomb (stats R-package) on residuals of known confounders (gender, 

age and neuronal proportion) generated by lm (stats R-package). Selection of relevant PC was done 

by scree plots. The scree plots show the proportion of variance accounted for each individual PC. 

Based on the scree plots PC1 was chosen as additional cofactor in meQTL analysis as the amount of 

explained variation dropped after the first component and PC2 as additional cofactor in eQTL analysis 

as the amount of explained variation dropped after the second component (Figure 2-2). These PCs 

have general impact on DNA methylation and mRNA expression, respectively; model for meQTL 

analysis signal ~ gender + age at epilepsy surgery + neuronal proportion + PC1, model for eQTL 

analysis signal ~ gender + age at epilepsy surgery + neuronal proportion + PC1 + PC2. 

            
Figure 2-2: Scree plots. 

On the left side: PCA variance proportion of CpG methylation; on the right side: PCA variance proportion of mRNA 

expression. 

 

A successive addition of the PCs one to 10 to the model followed by additional cis-meQTL and cis-

eQTL calculations respectively was used to estimate the influence of the first ten PCs to P-value 

inflation. The successive addition of PCs led to a very moderate increase of λ only. The lambda 

median for meQTL analysis (CpG) varied from 1.031 to 1.035 and the lambda median for eQTL 

analysis (mRNA) varied from 1.016 to 1.020. In conclusion, I can state that the first ten PCs do not 



MATERIALS AND METHODS 

20 
 

include potential hidden factors which led to a substantial decrease of inflation in cis and can be 

considered robust. 

2.5.2 Methylation-driven gene expression in hippocampal brain tissue 

DNA methylation and gene expression patterns of 115 fresh frozen hippocampal brain tissue samples 

were combined by performing CpG methylation to mRNA gene expression correlation analyses. For 

correlation analyses of meQTL and eQTL of hippocampal brain tissue, the same models as before 

were used (model for CpG methylation to gene expression signal ~ gender + age at epilepsy surgery + 

neuronal proportion + PC1; model for gene expression to CpG methylation signal ~ gender + age at 

epilepsy surgery + neuronal proportion + PC 1 + PC2). Pearson correlation analyses were calculated 

on residuals of the confounders generated by the MatrixEQTL R-package. Multiple testing corrections 

were performed in cis (± 1Mbps) using FDR step up procedure of MatrixEQTL (Benjamini & Hochberg 

1995). For the most associated CpG/mRNA pairs within the 1 Mbps windows flanking the target CpG 

or target mRNA probe, respectively, Pearson correlation coefficients (r-values) were calculated using 

cor (stats R-package). 

Significant CpG/mRNA probe pairs were selected and these pairs were expanded into triplets of SNP 

and CpG/mRNA pairs. The SNPs were significantly correlated in cis with the CpG methylation site (cis-

meQTL finding) and the mRNA transcript probe (cis-eQTL finding) of the respective CpG/mRNA pair. 

The meQTL-SNPs and eQTL-SNPs had to be in LD (r2 ≥ 0.2). 

2.5.3 meQTL analysis in blood cells 

meQTL analysis in 496 HNR blood cells was performed using gender, age of blood withdrawal, cell-

type composition (6 levels), and month of methylotyping (3 of 4 levels) as cofactors. Gender and age 

of blood withdrawal, as well as cell-type composition (Houseman et al. 2012; Jaffe & Irizarry 2014) 

and month of methylotyping (as batch effect; Harper et al. 2013) are known confounders with impact 

on the general CpG methylome. Existence of additional unknown confounders with general impact 

on DNA methylation was investigated by PCA on linear regression gender/age/ cell-type 

composition/ month of methylotyping residuals. 

2.5.3.1 Determination of cell-type composition 

Cell-type composition was performed according to Jaffe and Irizarry (2014) and Houseman et al. 

(2012) which estimate relative proportions of cell-type components in whole blood. Six cell-types 

including CD4+ effector T-cells (CD4T), B-cells (Bcell), Cytotoxic T-cell (CD8T), Natural killer cells (NK), 

Mononuclear white blood cells (Mono) and Granulocytes (Gran) were used. The statistical method by 

Houseman et al. (2012) is virtually the same statistical approach described in Guintivano et al. (2013) 

for estimating neuron and non-neuron components in brain samples. 
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2.5.3.2 Determination of month of methylotyping 

PCA considering four levels of month of methylotyping revealed a strong agglomeration of the factor, 

mainly in the third and fourth PC. The third and forth PC reflect 2.36% and 2.24% of data set 

variance, respectively (Figure 2-3). Therefore, month of methylotyping was added as cofactor. 

 

Figure 2-3: PC variance for four levels of month of methylotyping. 

On the left side: variance of PC 1 & of PC 2; on the right side: variance of PC 3 & of PC 4. The four colors indicate the four 

different months of methylotyping. 

 

2.5.3.3 Principal component analysis (PCA) 

PCAs were calculated using prcomb (stats R-package) on residuals of known confounders (gender, 

age of blood withdrawal, cell-type composition, and month of methylotyping) generated by lm (stats 

R-package). No PC was added as additional cofactor in meQTL analysis of the blood cells as the 

proportion of variance remained steady for all PCs. The PCs have no general impact on DNA 

methylation; model for meQTL analysis signal ~ gender + age of blood withdrawal + cell-type 

composition + month of methylotyping. A successive addition of the PCs one to 10 to the model 

followed by additional cis-meQTL calculations was used to estimate the influence of the first ten PCs 

to P-value inflation. The successive addition of PCs led to a very moderate increase of λ only. The 

lambda median for meQTL analysis (CpG) varied from 1.111 to 1.118. In conclusion, I can state that 

the first ten PCs do not include potential hidden factors which led to a substantial decrease of 

inflation in cis and that models can be considered robust. 

2.5.4 Imprinting methylation QTL (imeQTL) analysis in blood cells 

I used a novel approach to identify meQTLs with a Parent-of-Origin (PofO) bias. Parent-offspring trios 

with GGE were used for the dissection of differentially methylated parental genomic regions. imeQTL 

analysis in 269 parent-offspring trios was performed using gender, age of blood withdrawal, cell-type 
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composition (6 levels), month of methylotyping (4 of 5 levels) and origin as cofactors. Gender, age of 

blood withdrawal, cell-type composition, month of methylotyping and origin of sample are known 

confounders with impact on the general CpG methylome (Zhang et al. 2010). Cofactor origin included 

the different European countries (or countries with European ancestry) from where parent-offspring 

trios were recruited. The cofactors were AUS (Australia) + central Europe (Denmark & Germany) + IT 

(Italy) + TR (Turkey). Existence of additional unknown confounders with general impact on DNA 

methylation was investigated by PCA on linear regression gender/age/cell-type composition/month 

of methylotyping/origin residuals. PCAs were calculated using prcomb (stats R-package) on residuals 

of known confounders generated by lm (stats R-package). No PC was added as additional cofactor in 

imeQTL analysis as the proportion of variance remained steady across PCs and hence it can be 

assumed that the PCs have no general impact on DNA methylation; model for imeQTL analysis signal 

~ gender + age of blood withdrawal + cell-type composition + month of methylotyping + origin. 

With trios, by analyzing parent and child genotypes, rules of Mendelian inheritance allow parental 

origin of SNP alleles in the child to be defined, as long as at least one member of the trio is 

homozygous. Three cis-association tests were performed to determine the parental origin and to test 

PofO specific association for a SNP: i) an association study using only maternally inherited SNPs, ii) an 

association study using only paternally inherited SNPs, and iii) a comparison of the frequencies of the 

two classes of reciprocal heterozygote in which parental origin is reversed (AMAT/BPAT vs. APAT/BMAT; 

Garg et al. 2012). The method is summarized in Figure 2-4. 

 

Figure 2-4: Determination of parental origin and PofO specific association testing for a hypothetical SNP. 

A) & B) Assignment of allele parental origin at a given SNP (alleles A and B): the homozygous mother can only contribute 

allele A to her offspring (MAT, pink), and thus child’s B allele must be paternally inherited (PAT, blue). C) Standard 

association study between SNP genotypes and quantitative trait compared to the proposed scheme, which considers the 

parental origin of the inherited SNPs present in the child (Figure adapted from Garg et al. 2012). 
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To detect the differential paternal or maternal associations the following thresholds were defined: 1) 

one of the parental FDR corrected P-values has to be significant (FDR < 0.05) whereas the other, 

native P-value has to be non-significant (native P-value > 0.05). The difference between the maternal 

and paternal P-values had to be greater than 10-6. 

2.5.4.1 Known imprinted genes 

The definition of known imprinted genes was adopted from Fang et al. (2012). Fang and colleagues 

analyzed the methylome for a diverse set of human cell-types, including cultured and uncultured 

differentiated cells, embryonic stem cells and induced pluripotent stem cells to generate a genomic 

landscape of human allele-specific DNA methylation (Table 2-4). Validated imprinting regions were 

double-checked and ensured by using the information repository of mammalian imprinted genes, 

MetaImprint (Wei et al. 2014). 

 

Table 2-4: Known imprinted clusters and associated allelically methylated regions. 

Clusters are named according to a representative gene; approximately 65 validated human imprinting genes reside in 32 

imprinted clusters were identified. In total, 21 of the clusters contained validated allelically methylated region (AMRs) in four 

of five uncultured cells. Columns also indicate whether the selected representative AMR was previously identified, and 

whether it is a known imprinted control region (ICR). 

Imprinting 
Cluster 

hg19 location Size (kb) Uncultured Previously 
identified 

Known 
ICR 

Total 
human 

DIRAS3 chr1:68515537-68517691 2154 5 Yes Yes 19 

NAP1L5 chr4:89617864-89619549 1685 5 Yes Yes 21 

FAM50B chr6:3848745-3850911 2166 4 Yes Yes 12 

PLAGL1/HYMAI chr6:144327845-144330191 2346 4 Yes Yes 18 

DDC/GRB10 chr7:50849470-50851331 1861 4 Yes Yes 19 

SGCE/PEG10 chr7:94284018-94289851 5833 5 Yes Yes 22 

MESTIT1/MEST chr7:130129559-130133682 4123 5 Yes Yes 22 

KCNK9 chr8:141108018-141111481 3463 5 Yes Yes 20 

FANK1 chr10:127584249-127588031 3782 5 Yes Yes 18 

INS-IGF2-H19 chr11:2016476-2024739 8263 5 Yes Yes 20 

KCNQ1OT1 chr11:2719386-2722440 3054 5 Yes Yes 21 

RB1 chr13:48890275-48895948 5673 5 Yes Yes 7 

DLK1/MEG3 chr14:101290239-101295152 4913 3 Yes Yes 5 

SNRPN/SNURF chr15:25199298-25202152 2854 5 Yes Yes 22 

ZNF597,NAA60 chr16:3492777-3494769 1992 5 Yes Yes 22 

ZIM2/PEG3 chr19:57348719-57353128 4409 5 Yes Yes 12 

PSIMCT-1/HM13 chr20:30134590-30135902 1312 5 Yes Yes 20 

BLCAP/NNAT chr20:36148274-36151269 2995 5 Yes Yes 14 

L3MBTL chr20:42142223-42144439 2216 4 Yes Yes 19 

GNAS chr20:57414794-57486250 71456 5 Yes Yes 22 

TCEB3C chr18:44548657-44550534 1877 4 Yes Yes 11 
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2.6 Exploration of the genomic features of QTL analyses 

2.6.1 Genomic distribution of cis-meQTLs 

To explore the distribution of methylated sites associated with cis-meQTLs 12 chromatin state 

annotations in a B-lymphoblastoid cell line from the blood of a Caucasian female donor (GM12878; 

Ernst & Kellis 2010) were used. Ernst et al. (2011) distinguished six broad classes of chromatin states, 

which are referred to as promoter, enhancer, and insulator, as well as transcribed, repressed and 

inactive states. Within these, active, weak and poised promoters differ in expression level, strong and 

weak candidate enhancers differ in expression of proximal genes, and strongly and weakly 

transcribed regions also differ in their positional enrichments along transcripts. Polycomb-repressed 

regions differ from heterochromatin and repetitive states (Ernst et al. 2011). 

2.6.2 Enrichment analysis of cis-meQTLs and cis-eQTLs 

The enrichment analyses were performed using the R-package goseq, which allows selection-

unbiased testing for category enrichment amongst differently expressed or methylated genes. Any 

category may be tested using goseq. The following gene-sets, compiled by their expression in brain 

and their involvement in neuropsychiatric disorders, were used: i) brain expressed genes (N = 8,852; 

Pinto et al. 2014), ii) genes involved in neurodevelopmental disorders (N = 1,689; Krumm et al. 2013), 

iii) genes involved in autism spectrum disorder (N = 1,559; Uddin et al. 2014), and iv) susceptibility 

genes (N = 1,200) at GWAS loci published in the NHGRI GWAS catalog (P < 1 x 10-6; Welter et al. 

2014). A correction for the numbers of CpG sites located in different classes of genes according to 

Geeleher et al. (2013) was performed. goseq used CpG counts as bias data. For calculating the P-

values the Wallenius approximation was used. The name of the category and the P-value for the 

associated category being over represented amongst differentially methylated genes was 

documented. 

 

2.7 Exploration of the role of QTL-associated rSNPs in common neuropsychiatric 

disorders 

Five filtering steps were carried out to explore whether regulatory SNPs (rSNPs) affecting 

transcription factor binding sites (TFBS) underlie both the cis-acting QTLs (meQTLs and eQTLs) and 

the regional GWAS hits. The step-wise filtering procedures included: 1) positional screening of cis-

QTLs close by (1 Mbps window) the lead SNPs of GWAS hits (P < 5 x 10-8); 2) dissection of those SNP-

pairs (cis-QTL-SNP / GWAS-SNP) showing a LD-relationship with r2 > 0.5; 3) extension of the 

candidate rSNPs by capturing all SNPs in LD r2 > 0.8 with the GWAS lead SNP; 4) prioritization of 
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potential rSNPs affecting TFBS by assessing the allelic alteration of their binding affinity using the 

GWAS3D software tool (http://jjwanglab.org/gwas3d, Li et al. 2013); and 5) quantitative estimates of 

pathogenic effects across a wide range of functional categories based on i) the combined annotation 

dependent depletion score (CADD score, Kircher et al. 2014), and ii) the GERP++ score assessing 

evolutionary sequence conservation (Davydov et al. 2010) implemented in the SNP annotation tool 

SNiPA (http://snipa.helmholtz-muenchen.de/snipa/, Arnold et al. 2014).  

The detected transcription factors (TFs) all belong to TRANSFAC (TRANScription FACtor database) 

which is a database on eukaryotic transcriptional regulation comprising data on TFs, their target 

genes and regulatory binding sites (Matys 2003). 

  

http://jjwanglab.org/gwas3d
http://snipa.helmholtz-muenchen.de/snipa/
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3. RESULTS 

My analyses addressed the following objectives: 

1) Identification of rSNPs quantitatively influencing CpG methylation and mRNA expression in 

fresh frozen hippocampal brain tissue. 

2) Delineation of a genome-wide meQTL map in fresh frozen hippocampal brain tissue and 

blood cells, offering the dissection of accessible biomarkers. 

3) Genome-wide assessment of imeQTLs to identify loci that are prone for susceptibility effects 

by their Parent-of-Origin PofO dependent monoallelic expression. 

4) Generation of a genome-wide eQTL map in fresh frozen hippocampal brain tissue and 

delineation of methylation-driven gene expression. 

5) Identification of rSNPs involved in common brain disorders. 

Genome-wide methylation and expression analyses were performed in fresh frozen hippocampal 

brain tissue of 115 European (descent) patients with resistant mesial temporal lobe epilepsy (mTLE). 

These analyses were meant to gain fundamental insights into epigenetic regulation in human 

hippocampal brain tissue and to dissect those epigenetic alterations involved in common 

neuropsychiatric disorders. For this goal, individual high-density SNP genotypes were correlated with 

both (i) the individual quantitative methylation states of 362k CpG sites assessed by the Human 

Methylation450 array (HM450) and (ii) the individual expression level of 31k gene transcripts using 

the Human HT-12 v3 array. To delineate accessible epigenetic biomarkers, genome-wide maps of 

meQTLs were also generated in whole blood cells from 496 German population controls using the 

same 362k HM450 CpG sites.  

The significance threshold applied throughout this study refers to a standard FDR threshold < 0.05 

based on all examined SNP/CpG or SNP/mRNA pairs. In the following, a cis-meQTL or cis-eQTL will 

refer to the most associated SNP/CpG or SNP/mRNA pair within the 1 Mbps windows flanking the 

target CpG or target mRNA probe. Trans-meQTLs or trans-eQTLs will refer to all SNP/CpG or 

SNP/mRNA pairs outside the 1 Mbps windows flanking the target CpG or target mRNA probe. 

 

3.1 Methylation QTL analyses 

3.1.1 Cis-meQTL analysis in hippocampal brain tissue 

The meQTL analysis examined the influence of cis-acting genetic variations on the quantitative state 

of CpG methylation. After stringent quality control, 362,722 CpGs and 643,195 LD-pruned SNPs were 
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correlated for cis-meQTL analysis, resulting in 1.75 x 108 tests corresponding to a nominal 

significance threshold of P = 2.95 x 10-5 at a FDR of 5%. At the FDR threshold of 5%, 19,954 (5.5%) out 

of 362,722 CpG sites account for significant cis-acting meQTLs (P-value range = 1.99 x 10-59 to 2.95 x 

10-5, Figure 3-1). A QQ-plot of the CpG methylation in 115 hippocampal brain tissue samples is shown 

in Appendix, Figure 6-1. 

 

Figure 3-1: Manhattan plot for cis-meQTLs identified in hippocampal brain tissue samples. 

The x-axis shows the genomic position of CpGs on chromosomes 1 to 22 (NCBI built 37.3, hg19); the y-axis shows the 

negative log10 of the P-value per SNP/CpG pair. The red line represents the threshold for significant cis-meQTLs with FDR < 

0.05. The genes of the 20 most significant cis-meQTLs (shown in Table 3-4) are highlighted. 

 

In total, 13,355 out of 19,954 cis-meQTLs were located intragenic of 7,827 Ensembl genes (hg19). For 

1,934 cis-meQTL CpGs a signal with two or more different gene transcripts was observed, while 6,599 

cis-meQTLs could not be localized to an Ensembl gene annotation. 11,253 SNPs showed cis-

association with two or more CpG sites. The positions of SNPs with significant cis-meQTLs were 

preferentially located near the CpG sites, 76% within a range of < 150 kb. 

3.1.1.1 Genomic features associated with cis-meQTLs 

Previous studies have shown that SNPs are weakly correlated with the methylation status of CpG 

islands (Bock et al. 2007; Gibbs et al. 2010). Consistently, cis-meQTLs in hippocampal brain tissue 

were found to be more likely outside of CpG islands than within (as defined in Gardiner-Garden & 

Frommer 1987). While 55% of 362k CpG sites are within a CpG island, only 23% of the CpG sites of a 

significant meQTL for mTLE patients were in islands (P < 2.2 x 10-16). These results focused on CpG 
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islands themselves without considering CpG island shores (0-2 kb from CpG island) and CpG island 

shelves (2-4 kb from CpG island). 

Exploration of the cis-meQTLs in gene-centric regions revealed a moderate enrichment in the 

TSS1500 region encompassing the regulatory 5´-region 1500 bps upstream from the transcription 

start site (TSS), compared to the distribution of all quality-filtered 362k CpGs (P = 4.41 x 10-3; Table 3-

1 & Figure 3-2). For the other genomic regions a depletion of sites associated with meQTLs were 

found. The findings revealed a particular accumulation of cis-meQTLs in the gene-centric region 

TSS201-TSS1500. In total, 3,055 (8.45%) cis-meQTLs were found in the TSS201-TSS1500 region 

compared to 3.6% of all 362k CpG sites (P = 7.72 x 10-61). 

Table 3-1: Distribution of meQTLs within different gene-centric regions in hippocampal brain tissue. 

The proportion of all quality-filtered 362,722 CpGs in gene-centric regions, as specified by Illumina is shown. Pearson's Chi-

squared test with Yates' continuity correction was used to calculate the distribution of 19,954 cis-meQTLs (FDR < 0.05) in 

different gene-centric regions in hippocampal brain tissue compared to all 362k CpG sites. Red colored background indicates 

depletion, green colored background an enrichment of meQTLs compared to all 362k CpGs. TSS200 & TS1500, promoter 

regions were divided into two bins of 200 bps and 1,500 bps blocks upstream of the TSS.  

Illumina Group All, 362,722 CpGs cis-meQTL, brain P-values, cis-meQTL, brain 

1st Exon 4.88% 3.02% *** 4.70E-36 

3'UTR 3.72% 3.16% **   1.60E-05 

5'UTR 9.15% 7.16% *** 9.45E-24 

Gene Body 34.06% 34.27%        5.40E-01 

TSS200 10.98% 6.86% *** 1.07E-81 

TSS201-1500 14.62% 15.31% *     4.41E-03 

Intergenic regions 22.59% 30.22%*** 2.50E-155 

Chi-square test: ***P < 10
-50

; **P < 10
-5

; *P < 0.05 

 

 
Figure 3-2: Functional localization of genomic regions of meQTLs in hippocampal brain tissue. 

Distribution of different genomic regions for the significant 19,954 meQTLs obtained from hippocampal brain tissue. 
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3.1.1.2 Enrichment analysis 

To investigate the biological function of the obtained cis-meQTL signals I looked for an enrichment of 

gene-sets compiled by their expression in brain and their involvement in neuropsychiatric disorders. 

The gene-sets included brain expressed genes (N = 8,852; Pinto et al. 2014), genes involved in 

neurodevelopmental disorders (N = 1,689; Krumm et al. 2013) and autism spectrum disorder (N = 

1,559; Uddin et al. 2014). In addition, susceptibility genes (N = 1,200) at GWAS loci published in the 

NHGRI GWAS catalog (P < 1 x 10-6, Welter et al. 2014) were examined for the following common 

neuropsychiatric disorders: Alzheimer’s disease, attention-deficit hyperactivity disorder, autism, 

bipolar disorder, epilepsy, major depressive disorder, migraine, nicotine dependence, Parkinson’s 

disease and schizophrenia. This gene-set will further be referred as Brain-Disorder-GWAS gene-set. 

Because functional categories are biased by differing CpG contents of the gene-sets, a CpG bias 

correction was applied. Therefore, the number of CpG sites located in different classes of genes was 

adjusted according to the procedure recommended by Geeleher et al. (2013). The meQTLs in 

hippocampal brain tissue were significantly enriched in the Brain-Disorder-GWAS gene-set (P = 5.79 x 

10-4) and in the gene-set previously implicated in neurodevelopment disorders (P = 0.04). No 

significant enrichment was observed for brain-expressed and for autism spectrum disorder genes 

after correcting of the CpG bias (Table 3-2). The significance of these results was determined 

empirically using sample randomization of 1,000 randomly distributed genes. 

Table 3-2: Gene-set enrichment analyses of cis-meQTLs in hippocampal brain tissue. 

Enrichment analyses performed in hippocampal brain tissue samples. The analyses applied a correction of the number of 

CpG sites per gene, respectively. For each category a P-value is given for an enrichment of the compiled gene-set category. 

Category Overrepresented P-value 

Brain-Disorder-GWAS Genes (N = 1,200) 5.79E-04 

Neurodevelopment Genes (N = 1,689) 3.90E-02 

Autism Spectrum Disorder Genes (N = 1,559) 6.12E-01 

Brain Expressed Genes (N = 8,852) 1.00E+00 

 

3.1.1.3 Comparison of cis-meQTLs in hippocampal brain tissue and top cis-meQTLs 

I compared cis-meQTL findings obtained from recent studies analyzing cis-meQTLs with quality-

filtered 362k CpGs (Gibbs et al. 2010; Zhang et al. 2010; Numata et al. 2014; Smith et al. 2014; for an 

overview on studies that are frequently mentioned for comparison reasons, please refer to Table 6-2 

in Appendix). Notable, all comparable meQTL studies assessed cis-methylation levels of postmortem 

brain tissue and peripheral blood cells with the Infinium HumanMethylation27 BeadChip (HM27). In 

total, 69% of the cis-meQTLs generated by Gibbs et al. (2010), 71% of the cis-meQTLs generated by 

Zhang et al. (2010), 67% of the cis-meQTLs generated by Numata et al. (2014), and 77% of the cis-

meQTLs generated by Smith et al. (2014) could be identified in the 362k CpGs (Table 3-3). Overall, 
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66% of the cis-meQTLs generated by the four previous studies were also identified as significant cis-

meQTLs in the present study. 

Table 3-3: Overlaps with comparable human meQTL studies. 

Epigenetic study Cell-type or tissue studied Overlap with 362k CpGs 

Gibbs et al. (2010) Postmortem brain tissue 69% (615 out of 887) 

Zhang et al. (2010) Postmortem brain tissue 71% (1,446 out of 2,046) 

Numata et al. (2014) Postmortem brain tissue 67% (2,427 out of 3,612) 

Smith et al. (2014) Whole Blood & postmortem brain tissue 77% (710 out of 926) 

 

A major aim of the present meQTL study was a comprehensive map of meQTL findings of all quality-

checked 362k CpGs for 115 hippocampal brain tissue samples and 496 blood cell samples in a 

publically accessible database. These databases will be reported in context with the publication of 

this study (manuscript in preparation). 

The 20 most significant cis-meQTLs for hippocampal brain tissue are shown in Table 3-4. Additionally, 

FDR values of the cis-meQTLs for the respective CpG site in blood cells are listed.  



 

 
 

Table 3-4: Top hits of meQTLs in hippocampal brain tissue. 

CpG Chr CpG Pos Gene Symbol meQTL SNP SNP Pos FDR, brain FDR, blood 

cg07796016 1 152779584 LCE1C(0.5k) rs7524281 152783255 3.48E-51 2.29E-202 

cg09316607 10 1511024 ADARB2 rs1533486 1511786 5.52E-50 > 5.00E-02 

cg15652532 2 30669759 LCLAT1(0.3k) rs4952148 30777908 1.12E-49 3.02E-240 

cg04993605 1 28573052 ATPIF1 rs2938867 28515292 1.92E-45 > 5.00E-02 

cg08308162 16 8889244 PMM2 rs45515994 8876845 1.28E-44 5.29E-21 

cg24657347 2 20261756 AC098828.2(1.9k) rs7570953 20255015 6.25E-44 > 5.00E-02 

cg06917450 1 38156652 C1orf109 rs768659 38162707 6.51E-43 1.67E-189 

cg21717724 9 123604514 PSMD5-AS1 rs3793638 123582697 1.15E-42 2.82E-159 

cg02375585 6 33091111 HLA-DPB2 rs114476417 33094663 6.13E-42 1.22E-39 

cg23649088 2 200775458 AC073043.1 rs10180850 200747690 2.94E-41 3.29E-202 

cg12454169 2 30669597 LCLAT1(0.5k) rs4952148 30777908 3.91E-41 1.45E-196 

cg09496634 16 87712353 JPH3 rs888652 87712366 7.60E-41 2.41E-119 

cg19766460 21 43528205 C21orf128 rs2051401 43530856 9.01E-41 8.15E-238 

cg24441899 7 4244372 SDK1 rs57656159 4244666 3.41E-40 9.79E-103 

cg14418922 10 70824840 SRGN(23.0k) rs17558246 70851873 4.79E-40 1.65E-217 

cg19825371 17 79454562 ACTG1(22.4k) rs62075991 79459113 7.16E-40 1.98E-126 

cg18795169 1 18902165 RP1-8B22.2(19.7k) rs2745311 18904033 2.85E-38 8.01E-114 

cg14440550 9 136131118 ABO rs8176751 136131022 3.07E-38 2.16E-139 

cg01290755 12 129554587 TMEM132D(1.7k) rs11060115 129554644 3.07E-38 5.92E-153 

cg07673080 2 240241154 HDAC4 rs12476996 240257894 7.23E-38 2.62E-133 
Abbreviations: CpG, Illumina annotation of the CpG dinucleotide; Chr, chromosome; CpG Pos, cytosine base-pair position of CpG site; Gene Symbol, gene which contains the CpG site; meQTL SNP 

brain, SNP of the most significant meQTL in hippocampal brain tissue; SNP Pos brain, base-pair position of SNP in hippocampal brain tissue; FDR brain & blood, most significant FDR for a SNP-CpG 

pair in hippocampal brain tissue samples and in blood cell samples. All annotations refer to genome build hg19. 
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3.1.1.4 Neurodevelopmental candidate genes of cis-meQTLs 

Some of the most significant cis-meQTLs were identified in genomic regions of several high-ranking 

candidate genes for neurodevelopmental disorders: ADARB2 (Pmin = 6.33 x 10-58), HDAC4 (Pmin = 1.62 x 

10-44), NAPRT1 (Pmin = 1.61 x 10-39), MAD1L1 (Pmin = 8.35 x 10-29), PTPRN2 (Pmin = 1.67 x 10-26), and 

RIMBP2 (Pmin = 2.32 x 10-24; Table 3-5). 

Table 3-5: Significant cis-meQTLs of high-ranking candidate genes in hippocampal brain tissue.  

CpG Chr CpG Pos Gene 
Symbol 

meQTL SNP SNP Pos FDR Rank cis-
meQTL 

cg09316607 10 1511024 ADARB2 rs1533486 1511786 5.52E-50 2 

cg07673080 2 240257894 HDAC4 rs12476996 240257894 7.23E-38 29 

cg17524265 8 144659883 NAPRT1 rs9657360 144676862 3.20E-33 61 

cg13165778 7 1952518 MAD1L1 rs6950151 1953521 3.52E-23 247 

cg24764310 7 157512201 PTPRN2 rs11762822 157507684 4.70E-21 351 

cg20111978 12 130959558 RIMBP2 rs6486542 130952209 4.54E-19 481 
Abbreviations: Rank cis-meQTL, position of the significant cis-meQTL compared to all detected cis-meQTLs; other 

abbreviations see Table 3-4. 

 

3.1.2 Comparative cis-meQTL analysis of brain cells and whole blood cells 

To discover accessible epigenetic biomarkers and to test for tissue specificity in meQTL analyses, a 

genome-wide map of cis-meQTLs were also generated in whole blood cells from 496 German 

population controls using the same 362k HM450 CpG sites. After stringent quality control, 362,722 

CpGs and 539,936 LD-pruned SNPs were correlated for cis-meQTL analysis in blood cell samples, 

resulting in 1.60 x 108 tests corresponding to a nominal significance threshold of P = 4.40 x 10-4 at a 

FDR of 5%. At the FDR threshold of 5%, 108,628 (30%) out of 362,722 CpG sites were identified as cis-

meQTLs (P-value range = 2.23 x 10-308 to 4.40 x 10-4). A QQ-plot of the meQTL analysis in blood cell 

samples is shown in Appendix, Figure 6-1. 

In total, more than 65% of the significant cis-meQTLs in hippocampal brain tissue were also found in 

blood cells. Overall, 12,974 out of 19,954 CpGs with significant meQTLs in hippocampal brain tissue 

represent also meQTLs in blood cells. Accordingly, a moderate correlation of the significant cis-

meQTL results in the hippocampal brain tissue and the cis-meQTL results in blood cells (Spearman’s 

Rank coefficient = 0.416; Figure 3-3) was observed. 
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Figure 3-3: P-value scatter plot of hippocampal brain tissue and blood cells. 

The linear correlation between 115 hippocampal brain tissue samples and 496 blood cell samples is shown. The negative 

log10 of the P-value per SNP/CpG pair is plotted. 

 

Cis-acting meQTLs with the best value per CpG at different significance thresholds for hippocampal 

brain tissue as well as for blood cells are given in Table 3-6. 

Table 3-6: Frequency of cis-meQTLs for different significance thresholds for hippocampal brain tissue and blood cells. 

Threshold Brain cis FDR Blood cis FDR 

Value < 5.00E-02 19,954 108,628 

Value < 1.00E-10 1,899 24,346 

Value < 1.00E-20 378 13,908 

Value < 1.00E-30 84 9,177 

Value < 1.00E-40 19 6,548 

Value < 1.00E-50 1 4,891 

 

Whereas the majority of cis-meQTLs seems to be consistent across tissues – 65% of the significant 

meQTLs in hippocampal brain tissue represent meQTLs in blood cells –also hippocampal brain tissue-

specific meQTLs were observed. The 10 most significant tissue-specific cis-meQTLs for hippocampal 

brain tissue are shown in Table 3-7. An extra column also indicates the non-significant P-values of the 

respective CpG sites of the cis-meQTLs in blood cells. 



 

 
 

Table 3-7: Brain tissue-specific cis-meQTLs not found in blood cells. 

CpG Chr CpG Pos Gene Symbol meQTL SNP SNP Pos FDR, brain Rank cis-meQTL P-value, blood 

cg09316607 10 1511024 ADARB2 rs1533486 1511786 5.52E-50 2 1.27E-03 

cg04993605 1 28573052 ATPIF1 rs2938867 28515292 1.92E-45 5 4.46E-04 

cg24657347 2 20261756 AC098828.2(1.9k) rs7570953 20255015 6.25E-44 9 1.54E-03 

cg13560919 6 33536144 BAK1(4.2k) rs17627049 33537802 6.06E-34 52 2.14E-03 

cg05315633 6 168628719 RP11-503C24.2(1.5k) rs73028658 168623545 2.80E-33 60 7.16E-03 

cg23020514 14 103360112 TRAF3 rs7147331 103380208 1.97E-31 75 1.13E-03 

cg05431684 11 130781542 SNX19 rs73028875 130780595 9.17E-30 96 7.88E-04 

cg16307866 4 7129517 RN7SKP36(15.4k) rs4689604 7129556 1.03E-29 98 3.11E-03 

cg07744270 11 64186719 AP003774.5(1.1k) rs10897503 64186979 1.11E-29 99 9.58E-04 

cg13144783 3 46249795 CCR3 rs2201150 46258902 1.06E-28 110 1.14E-03 
Abbreviations: P-value, blood, refers to the most significant P-value for a SNP-CpG pair in blood cell samples (FDR < 0.05); other abbreviations see Table 3-4. All annotations refer to genome build 

hg19. 
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3.1.2.1 Genomic distribution of cis-meQTLs 

I compared the distribution of methylated sites associated with cis-meQTLs of all assayed 362k CpG 

methylation sites in B-lymphoblastoid cells (GM12878) and further compared the distribution of 

significant cis-meQTL associated CpGs between hippocampal brain tissue and blood cells. A strong 

significant depletion of sites associated with meQTLs at active promoters (P = 7.17 x 10-101 for brain 

meQTLs and P < 10-300 for blood meQTLs), as well as a moderate enrichment at weak promoters 

(P = 7.16 x 10-3 for brain meQTLs and P = 2.3 x 10-4 for blood meQTLs) was found. In addition, a 

relative enrichment of meQTLs at insulators (P = 1.72 x 10-26 for brain meQTLs and P = 7.07 x 10-91 for 

blood meQTLs) and at enhancers (P = 4.63 x 10-12 for brain meQTLs and P < 10-250 for blood meQTLs) 

were found. In particular, these results show that the distribution of the meQTLs obtained from 

blood cells display a similar distribution as those found in hippocampal brain tissue. An overlap of 

90% of meQTL associated CpGs between hippocampal brain tissue and blood cells (Table 3-8 & Figure 

3-4) was observed. 

Table 3-8: Genomic distribution of cis-meQTL associated CpGs in hippocampal brain tissue and blood cells. 

Specified genomic features from cell line GM12878 were counted for all quality-filtered 362,722 CpGs. Pearson's Chi-squared 

test with Yates' continuity correction was used to calculate the distribution of the genomic features of CpGs of significant cis-

meQTLs (FDR < 0.05) in hippocampal brain tissue and blood cell versus all 362k CpG sites. The last column represents the 

concordance of meQTL associated CpGs within the genomic feature between hippocampal brain tissue and blood cells. Red 

colored background indicates depletion, green colored background an enrichment of meQTL associated CpGs versus all 

CpGs.  

Cell-type (GM12878) All, 
362k CpGs 

cis-meQTL, brain P-values, 
cis-meQTL, 

brain 

cis-meQTL, 
blood 

Brain vs. 
blood 

Active Promoter 19.89% 11.81% **** 7.17E-101 12.30% **** 96% 

Weak Promoter 6.84% 7.22% *        7.16E-03 7.08% *        98% 

Poised Promoter 4.35% 3.57% **      5.05E-09 3.94% **      91% 

Strong Enhancer 4.06% 5.07% **      4.63E-12 5.94% ****  85% 

Weak Enhancer 6.10% 6.86% **      1.51E-06 7.36% ***    93% 

Insulator 1.62% 2.64% **      1.72E-26 2.27% ***    86% 

Transcriptional Transition 1.15% 0.99% *        6.45E-03 1.17%             85% 

Transcriptional Elongation 5.40% 3.87% **      7.49E-23 4.08% ***    95% 

Weak Transcribed 9.49% 10.91% **      2.45E-19 9.77% *        90% 

Polycomb Repressed 10.68% 11.27% **      8.95E-08 12.21% ***    92% 

Heterochromatin 30.21% 35.44% ***    6.40E-55 33.63% ***    95% 

Repetitive/CNV 0.20% 0.36% **      2.47E-06 0.25% **      69% 

Missing Type 0.01% 0.01%            3.70E-01 0.01%            100% 

Chi-square test: ****P < 10
-100

; ***P < 10
-50

; **P < 10
-5

; * P < 0.05 
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Figure 3-4: Functional localization of CpGs in GM12878. 

Distribution of different regulatory annotations in GM12878 for A) all 362,722 CpGs, B) the significant 19,954 meQTLs 

obtained from hippocampal brain tissue, and C) the significant 108,628 meQTLs obtained from blood cells. 
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3.1.3 Trans-meQTL analysis in hippocampal brain tissue 

After stringent quality control, 362,722 CpGs and 643,195 LD-pruned SNPs were correlated for trans-

meQTL analysis, resulting in 2.33 x 1011 tests corresponding to a nominal significance threshold of 

P = 1.93 x 10-9 at a FDR of 5%. In addition to the CpG quality filters applied for meQTL analysis, a 

more stringent filter was used to sort out CpG probes that show cross-hybridization at other genomic 

locations (Zhang et al. 2014) and may lead to ambiguous CpG methylation states. Accordingly, trans-

meQTLs analysis was carried out with 268,397 CpGs. At the FDR threshold of 5%, 3,927 out of 

268,397 CpG sites account for significant trans-acting meQTLs (P-value range = 2.93 x 10-38 to 1.93 x 

10-9). 

As in previous studies comparing QTL P-value distributions in cis and trans, more strong associations 

in cis were found (Gibbs et al. 2010; Gamazon et al. 2013; Ramasamy et al. 2014). In total, 348 trans-

meQTL SNPs were significantly associated with methylation levels of two or more genes. Among 

those, eight “master regulatory loci” with significant simultaneous impact on methylation level of 

four or more genes in trans were identified (Figure3- 5). 

To eliminate long-range (>± 1 Mbps) cis-acting meQTLs, it was checked whether trans-CpGs and 

markers were located on the same chromosome. This pattern was observed for 189 trans-meQTLs, 

but the trans-markers were more than 10 Mbps away from the CpG sites. Thus, for these SNPs, the 

effect on the regulation of genes in trans are unlikely to result from long-range cis-relationships. 

 

Figure 3-5: Circos plot of 115 hippocampal brain tissue for trans-meQTLs. 

Criteria for plotting trans-meQTLs: CpG to SNP distance > 10 Mbps, stack size ≥ 4 CpGs per SNP and FDR corrected P-value 

(P < 0.05), 1 Mbps frame in 100k sliding window. The -log10 P-values are plotted at CpG position. 
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Except for two SNPs (rs114267096 and rs1273196), all trans-acting meQTL SNPs with simultaneous 

impact on the regulation of four or more genes were not significantly associated with the 

methylation of a gene located in cis in the underlying data. However, the effects in trans were barely 

significant; it is difficult to cover robust trans-meQTL findings. 

Comparison of trans-meQTL results with other studies testing trans-associations was sparsely useful. 

Comparable studies assessed methylation levels of postmortem brain tissue with the HM27 

BeadChips and utilized different CpG quality filters (Gibbs et al. 2010; Zhang et al. 2010; Numata et 

al. 2012). A table with the eight master regulatory loci with significant simultaneous impact on 

methylation level of four or more genes in trans can be found in Appendix, Table 6-3. 

3.1.4 Imprinting methylation QTL analysis in blood 

In total, blood cell DNA samples of 269 parent-offspring trios with GGE were investigated to screen 

for differentially methylated parental genomic regions. Screening for imeQTLs was performed by 

comparing CpG methylation states of GGE trio offspring with nearby reciprocal heterozygote SNP 

genotypes of inverse parental origin (AMAT/BPAT vs. APAT/BMAT; Garg et al. 2012). Thus, any difference in 

the CpG methylation state detected between these two groups strongly suggests an underlying PofO 

effect. To specify the parental methylation status of an imeQTL, association analyses using only i) 

maternally inherited and ii) paternally inherited SNP alleles were carried out. The predominant 

parental CpG methylation state is indicated by the segregation of the alleles. 

After stringent quality control, 362,722 CpGs and 886,110 LD-pruned SNPs were correlated for the 

imeQTL analysis, resulting in 1.92 x 108 tests corresponding to a nominal significance threshold of P = 

1.68 x 10-7 at a FDR of 5%. At the FDR threshold of 5%, 177 out of 362,722 CpG sites were identified 

as autosomal imeQTLs (P-value range = 3.47 x 10-46 to 1.68 x 10-7, Figure 3-6). QQ-plots of the CpG 

methylation in parent-offspring trios are shown in Appendix, Figure 6-2 and Figure 6-3. 
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Figure 3-6: Manhattan plot for cis-imeQTLs of 269 trio offspring. 

The x-axis shows the genomic position of CpGs on chromosomes 1 to 22 (NCBI built 37.3, hg19); the y-axis shows the 

negative log10 of the P-value per SNP/CpG pair. The red line represents the significance threshold of P < 1.68 x 10
-7

 

corresponding to a FDR of 5%. Red dots and in red highlighted gene names indicate CpGs in validated imprinted regions (P < 

1.68 x 10
-7

). In blue highlighted gene names indicate CpGs in novel imprinted regions which are shown in Table 3-9. 

 

Genome-wide screening of imeQTLs revealed significant imeQTLs for 177 CpGs at 31 genomic loci 

(P < 1.68 x 10-7). Altogether, nine known and 22 potentially novel imprinted regions were identified 

and subsequently specified for their predominant parental methylation state. In total, 29% of the 

imeQTLs (N = 52) reside in nine known imprinting regions (Fang et al. 2012; Wei et al. 2014). The top-

ranked imprinted loci were observed in the region 4q22.1 at the known imprinted HERC3/NAP1L5 

locus (Pmin = 3.47 x 10-46), at chromosome 20q11.23 at the known imprinted NNAT/BLCAP locus 

(Pmin = 5.41 x 10-22), and at a novel locus on chromosome 3p21.1. The 3p21.1 locus harbors GWAS 

candidate regions for among others bipolar disorder and major depressive disorder including the 

genes NISCH/STAB1 (Pmin = 6.56 x 10-39), ITIH3 (Pmin = 9.24 x 10-32) and GNL3 (Pmin = 1.71 x 10-26). 

The 10 most significant imeQTLs including several high-ranking candidate genes emphasized for 

neurodevelopmental disorders are shown and listed in Table 3-9. The most significantly imeQTLs 

exhibited a combination of both; PofO and allele-specific effects on CpG methylation. The delineation 

of the parental methylation status of an imprinted CpG and the quantification of the allele-specific 

meQTL effect is shown exemplary in Figure 3-7 for two top imeQTL signals; at chromosome 3p21.1 

(NISCH) and at chromosome 20q11.23 (NNAT/BLCAP). 
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Table 3-9: Top 10 imeQTLs and specification of their preferential parental expression. 

CpG Chr CpG Pos Gene Symbol imeQTL SNP SNP Pos FDR (het) Impr locus Meth 
allele 

cg26065870 3 52522591 NISCH rs409803 52443280 4.21E-31 Novel Mat 

cg18182844 3 52828292 ITIH3(0.5k) rs409803 52443280 4.45E-24 Novel Mat 

cg00447581 3 52724578 GNL3 rs409803 52443280 6.58E-19 Novel Mat 

cg07598930 3 52233294 ALAS1 rs409803 52443280 1.34E-12 Novel Mat 

cg01026744 4 89619053 HERC3/NAP1L5 rs61737091 89671721 6.68E-38 Known Pat 

cg11408952 13 48892244 RB1 rs3825417 48891836 3.84E-13 Known Pat 

cg02273647 14 45722745 MIS18BP1 rs114370731 45386388 4.12E-13 Novel Pat 

cg23757721 20 36148604 NNAT/BLCAP chr20:36159062:D 36159062 1.74E-14 Known Pat 

cg08402058 20 36148961 NNAT/BLCAP chr20:36159062:D 36159062 2.06E-14 Known Pat 

cg14765818 20 36148954 NNAT/BLCAP chr20:36159062:D 36159062 1.98E-12 Known Pat 
Abbreviations: FDR (het), FDR-value of the heterozygote test; Impr locus, indicating if the imeQTL is at a known or novel 

imprinting locus. The predominant parental CpG methylation state is indicated by the parental methylated allele identified 

by the transmission analysis (‘Meth allele’), whereas ‘Pat’ indicates the paternally-derived allele and ‘Mat’ indicates the 

maternal-derived allele. All annotations refer to the genome build hg19. 
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Figure 3-7: Quantification of the allele-specific imeQTL effect. 

The upper plots present regional detail plots of the negative log10 of P-values of the imeQTL analysis; the x-axes show the 

genomic position of CpGs at a specific locus. Genes close to the detected association are presented as well. The lower box-

plots show the distribution of the methylation states for a specific CpG. In A) a regional detail plot of the negative log 10 P-

value for CpG cg26065870 on chromosome 3p21.1 and a box-plot of the paternally imprinted CpG cg26065870 at the NISCH 

locus is shown; in B) a regional detail plot of the negative log10 P-value for CpG cg23757721 on chromosome 20q11.23 and 

a box-plot of the maternally imprinted CpG cg23757721 at the NNAT/BLCAP locus. 
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The boxplots show the distribution of the methylation states for the CpGs, respectively with respect 

to maternally and paternally inherited SNPs. The x-axis shows the genotypes of the parental origin of 

the heterozygous SNP alleles, respectively: for example in A) Gmat and Amat for maternally inherited 

SNPs and Gpat and Apat for paternally inherited SNPs. At the y-axis the methylation level, expressed as 

M-value of the CpGs is shown. The M-value ranges among +3 and -3 whereas a positive M-value 

indicates that the allele is highly methylated and therefore inactivated. An allele-specific effect was 

observed. Furthermore the observed difference between heterozygous individuals of reciprocal 

parental origin indicated a PofO effect at these loci, as these individuals showed a difference in 

methylation despite having the same genotype. 

The region of chromosome 3p21.1 is of special interest as several studies listed in the NHGRI GWAS 

catalog found genome-wide significant evidence that SNPs in this region were associated with 

various neuropsychiatric diseases including major mood disorder (composed of bipolar disorder and 

major depressive disorder), autism spectrum disorder, attention-deficit hyperactivity disorder and 

schizophrenia. Additionally, Witt and colleagues (2014) identified STAB1 as the potentially causative 

gene for bipolar disorder. This gene is located in close proximity to known mood disorder genes of 

the 3p21.1 region including PRBM1 (McMahon et al. 2010) and the NEK4-ITIH1-ITIH3-ITIH4 multigene 

region (Psychiatric GWAS Consortium Bipolar Disorder Working Group 2012). 

Further, the imeQTL results in 269 blood cell trios were compared with a recently published eQTL 

study in highly divergent mouse crosses (Crowley et al. 2015). Crowley and co-workers (2015) 

observed that classical imprinting is under genetic control and found a global allelic imbalance in 

expression favoring the paternal allele; imprinted genes were 1.5 times more likely to be expressed 

from the paternal than the maternal allele. My imeQTL results were consistent with these 

observations. A 1.8 times increased likelihood of imprinted genes to be expressed from the paternal 

than the maternal allele was observed (79 among 123 divergent parental imeQTLs were expressed 

from the paternal allele, 64%). 

In total, 138 among 177 imeQTL CpGs were located intragenic of 78 Ensembl genes (hg19). Among 

these 78 genes, eight (10%) were consistent with the imprinted genes in mouse brain reported by 

Crowley et al. (2015). Yet, half (N = 4) of the overlapping genes were in the top 55 of the 

heterozygous imprinting analysis. All overlapping genes were detected by a threshold of P < 1.68 x 

10-7 (Table 3-10). Additionally, by using the paternal-specific association analysis the GABRB3 locus 

which is known to be involved in epileptogenesis (Urak et al. 2006; Pernhorst et al. 2011) was 

detected. This locus showed evidence of association with paternally inherited alleles but no 

association with maternally inherited alleles. GABRB3 was also included in the imprinting gene list of 

Crowley et al. (2015) as a paternally expressed allele. 



 

 
 

Table 3-10: Eight imeQTLs with specification according to their parental expression loci consistent with Crowley et al. (2015).  

CpG Chr CpG Pos Gene Symbol imeQTL SNP SNP Pos FDR (het) Rank imeQTL Impr locus Meth allele P-value, Mat P-value, Pat 

cg01026744 4 89619053 HERC3/NAP1L5 rs61737091 89671721 6.68E-38 1 Known Pat 5.88E-04 3.55E-164 

cg23757721 20 36148604 NNAT/BLCAP chr20:36159062:D 36159062 1.74E-14 5 Known Pat 8.78E-03 4.58E-39 

cg18279536 14 101194748 DLK1 rs10144381 101173297 3.09E-16 21 Known Pat 9.29E-05 2.59E-14 

cg17696847 20 57414217 GNAS rs6070619 57383157 1.27E-05 52 Known Mat 3.24E-19 2.42E-07 

cg05260959 7 130133110 MEST rs992859 130120122 1.29E-04 64 Known Pat 1.06E-03 3.68E-17 

cg23460430 6 144329887 PLAGL1 rs55769736 144333557 1.53E-04 67 Known Pat 2.50E-03 1.56E-18 

cg27644292 15 25123287 SNRPN rs73371266 25128475 6.04E-04 80 Known Pat 5.05E-04 4.94E-22 

cg16349612 7 50849723 GRB10 rs1019002 50810582 1.85E-02 141 Known Pat 3.28E-04 3.94E-13 
Abbreviations: FDR (het), FDR-value of the heterozygote test; Impr locus, indicating if the imeQTL is at a known or novel imprinting locus. The predominant parental CpG methylation state is 

indicated by the parental methylated allele identified by the transmission analysis (‘Meth allele’), whereas ‘Pat’ indicates the paternally-derived allele and ‘Mat’ indicates the maternal-derived 

allele. All annotations refer to genome build hg19. 
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3.2 Expression QTL analyses 

3.2.1 Cis-eQTL analysis in hippocampal brain tissue 

The eQTL analysis examined the influence of cis-acting genetic variations on the quantitative state of 

mRNA gene expression using the Illumina HumanHT-12 v3 (HT12v3) array. After stringent quality 

control, 31,146 mRNA probes and 643,195 LD-pruned SNPs were correlated for cis-eQTL analysis, 

resulting in 8.46 x 106 tests corresponding to a nominal significance threshold of P = 2.10 x 10-5 at a 

FDR of 5%. At the FDR threshold of 5%, 734 (2.4%) out of 31,146 mRNA probes account for significant 

cis-acting eQTLs (P-value range = 2.34 x 10-42 to 2.10 x 10-5, Figure 3-8). A QQ-plot of the mRNA 

expression in hippocampal brain tissue samples is shown in Appendix, Figure 6-4. 

 

Figure 3-8: Manhattan plot for cis-eQTLs identified in 115 hippocampal brain tissue samples. 

The x-axis shows the genomic position of gene transcript start sites on chromosomes 1 to 22 (NCBI built 37.3, hg19); the y-

axis shows the negative log10 of the P-value per SNP/mRNA pair. The red line represents the threshold for significant cis-

eQTLs with FDR < 0.05. The genes of the 20 most significant cis-eQTLs (shown in Table 3-12) are highlighted. 

 

cis-eQTL confirmation analyses were performed by comparing my cis-eQTL analysis with three recent 

cis-eQTL studies investigating diverse postmortem brain tissues (Gibbs et al. 2010; Kim et al. 2014; 

Ramasamy et al. 2014). All studies used different assays to profile mRNA transcript in comparison to 

my analysis (for an overview on studies that are frequently mentioned for comparison reasons, 

please refer to Table 6-2 in Appendix). Therefore, the significant cis-eQTL SNPs from all three studies 

had to be within 1 Mbps of my mRNA transcription site and further their SNPs had to be in LD of r2 > 

0.2 with my cis-eQTL SNPs. In total, an overlap of 14% was observed in the significant cis-eQTLs 
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obtained from fresh frozen hippocampal brain tissue with those generated by Gibbs et al. (2010). 

Comparing the results of the present study to those found in the eQTL meta-analysis in brain cells 

(Kim et al. 2014) an overlap of 65% (474 out of 734) cis-eQTLs was observed. But the best overlap 

was detected by comparing results to those found in the eQTL analysis in ten regions of the human 

brain (Ramasamy et al. 2014): an overlap of 71% (522 out of 734) cis-eQTLs was observable, 

considering that a cis-eQTL signal was identified in more than one brain region. Considering only the 

hippocampal brain region, an overlap of 27% (197 out of 734) cis-eQTLs was identified (Table 3-11). 

In addition, Schramm and co-workers (2014) performed a whole-genome eQTL analysis in blood cell 

samples using the HT12v3 expression array, and the meta-eQTL analysis in blood cells carried out by 

Westra and colleagues (2013) was restricted to probes present on the HT12v3 array. I found that 50% 

of cis-eQTLs in hippocampal brain tissue matched to the cis-eQTLs in blood cells detected by 

Schramm et al. (2014), and 58% matched with those reported by Westra et al. (2013). 

Table 3-11: Cis-eQTL overlaps with comparable human eQTL studies. 

Epigenetic study Cell-type or tissue studied Overlap with cis-eQTL (FDR < 0.05)  

Gibbs et al. (2010) Postmortem brain tissue 14% (105 out of 734) 

Kim et al. (2014) Postmortem brain tissue 65% (474 out of 734) 

Ramasamy et al. (2014) Postmortem brain tissue 71% (522 out of 734) 

Schramm et al. (2014) Whole Blood 50% (367 out of 734) 

Westra et al. (2013) Whole Blood 58% (423 out of 734) 

 

The 20 most significant cis-eQTLs for 115 hippocampal brain tissue are shown in Table 3-12, including 

columns confirming the cis-eQTL results of the present study in diverse postmortem brain tissues 

(Gibbs et al. 2010; Kim et al. 2014; Ramasamy et al. 2014) as well as in blood cells (Westra et al. 2013; 

Schramm et al. 2014). 

 



 

 
 

Table 3-12: Top hits of cis-eQTLs in hippocampal brain tissue.  

mRNA probe mRNA 
Location 

Gene 
Symbol 

eQTL SNP SNP Pos FDR Detec P-
value > 0.05 

P-value 
(Brain

1
) 

P-value 
(Brain

2
) 

P-value 
(Brain

3
) 

P-value 
(Blood

4
) 

P-value 
(Blood

5
) 

ILMN_1719064 12:109886649 KCTD10 rs4766601 109890080 3.32E-35 115 5.02E-47 7.61E-09 1.25E-23 1.91E-230 9.81E-198 

ILMN_2209027 12:56436251 RPS26 rs10876864 56401085 1.17E-32 115 NA 6.99E-06 1.43E-15 NA NA 

ILMN_1753164 12:30782283 IPO8 rs10771758 30856139 1.66E-30 111 NA 6.53E-08 9.14E-19 < 1E-270 9.81E-198 

ILMN_1760708 22:25625496 CRYBB2 rs113130491 25861797 4.83E-30 110 NA NA NA NA NA 

ILMN_1809212 16:72110608 HPR rs2000999 72108093 1.68E-27 112 3.64E-10 1.06E-26 NA NA NA 

ILMN_1651745 11:118406322 TMEM25 rs56403966 118425051 3.37E-27 81 NA 5.42E-08 NA NA 1.12E-04 

ILMN_1765332 11:57296041 TIMM10 rs2649652 57324428 5.52E-27 115 2.89E-22 1.58E-14 8.78E-32 2.25E-198 9.81E-198 

ILMN_2389590 17:66528779 PRKAR1A rs2952272 66524565 1.05E-26 109 NA 1.68E-07 NA 1.42E-190 9.81E-198 

ILMN_2216918 17:3511949 SHPK rs62069929 3515275 2.78E-25 115 NA 1.11E-14 4.81E-14 1.66E-36 NA 

ILMN_1830462 16:17196448 XYLT1 rs9934313 17198524 1.14E-24 84 NA NA NA 1.98E-174 NA 

ILMN_2229649 13:77454497 KCTD12 rs73544577 77434063 4.02E-24 20 NA 2.87E-08 NA NA 3.76E-78 

ILMN_1710752 8:144656991 NAPRT1 rs9657360 144676862 2.20E-23 114 3.27E-18 2.18E-30 6.23E-32 3.24E-163 9.81E-198 

ILMN_2183938 12:65641975 LEMD3 rs193244911 65622186 2.20E-23 115 NA NA NA 6.88E-239 9.81E-198 

ILMN_2262288 11:62334905 EEF1G chr11:62369880:I 62369880 4.25E-23 115 NA 2.30E-23 NA 1.91E-254 NA 

ILMN_1798177 14:65401520 CHURC1 rs4902345 65403904 8.00E-23 115 5.77E-41 1.92E-29 3.79E-37 < 1E-270 9.81E-198 

ILMN_1851020 9:32454228 DDX58(1.0k) rs1360171 32454348 5.43E-22 44 NA NA NA NA NA 

ILMN_1664641 13:48650456 MED4 rs4942723 48525457 7.31E-22 115 NA 3.69E-07 4.49E-09 1.73E-239 9.81E-198 

ILMN_1704056 14:20811256 RPPH1 rs79030532 20814865 1.99E-21 83 NA 7.02E-08 NA NA NA 

ILMN_1774949 21:38445331 PIGP rs1793870 38481436 6.26E-20 104 NA 3.78E-12 1.75E-24 3.42E-75 NA 

ILMN_1745116 20:25275591 ABHD12 rs6107052 25530838 8.38E-20 115 NA 7.52E-39 7.11E-10 6.61E-46 9.81E-198 
Abbreviations: mRNA probe, Illumina annotation of the mRNA probe; mRNA Location, chromosome of the mRNA probe and the average of the start and end position of the mRNA probe; Gene 

Symbol, gene which contains the mRNA probe; eQTL SNP, SNP of most significant eQTL of a specific mRNA probe; SNP Pos, base-pair position of SNP; FDR, most significant FDR for a SNP/mRNA 

pair; Detec P-value > 0.05, number of samples with detection P-value > 0.05; P-value Brain1, cis-eQTL P-value according to Gibbs et al. (2010); P-value Brain2, P-value according to Ramasamy et al. 

(2014); P-value Brain3, cis-eQTL P-value according to Kim et al. (2014), meta-analysis; P-value Blood4, cis-eQTL P-value according to Schramm et al. (2014); P-value Blood5, cis-eQTL P-value 

according to Westra et al. (2013), meta-analysis. All annotations refer to genome build hg19. 
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3.2.1.1 Enrichment analysis of cis-eQTLs 

Enrichment analyses for the cis-eQTLs were performed using the same gene-sets as for the cis-

meQTL enrichment analysis; brain expressed genes (N = 8,852; Pinto et al. 2014), genes involved in 

neurodevelopmental disorders (N = 1,689) and autism spectrum disorder (N = 1,559), as well as the 

previously described Brain-Disorder-GWAS gene-set (N = 1,200). The analysis revealed no 

significantly enrichment in the gene-sets. Here, the significant enrichment in brain expressed genes 

(P = 1.35 x 10-12) could be seen as a kind of validation for performing the enrichment analysis in these 

cis-eQTLs. 

3.2.2 Trans-eQTL analysis in hippocampal brain tissue 

After stringent quality control, 31,146 mRNA probes and 643,195 LD-pruned SNPs were correlated 

for trans-eQTL analysis, resulting in 1.68 x 1010 tests corresponding to a nominal significance 

threshold of 3.79 x 10-11 at a FDR of 5%. At the FDR threshold of 5%, 16 significant trans-acting eQTLs 

were observed (P-value range = 3.06 x 10-35 to 3.79 x 10-11). Overall, 15 of the trans-eQTLs had SNPs 

from different chromosomes than the respective mRNA probe while one was on the same 

chromosome but more than 70 Mbps away from the target mRNA probe. Thus, there was no 

evidence for long-range cis-eQTLs.  

With regard to the rare trans-eQTL findings, only four trans-eQTL SNPs were significantly associated 

with expression levels of two genes (Table 3-13). None of the obtained trans-eQTL genes overlap 

with those reported in previously published eQTL studies (Gibbs et al. 2010; Westra et al. 2013; 

Ramasamy et al. 2014; Schramm et al. 2014). 

Table 3-13: Master regulatory sites – trans-eQTL SNPs with simultaneous impact on the expression of two genes. 

SNP Chr 
SNP 

Gene of SNP SNP Pos mRNA Gene of 
mRNA 

mRNA Location FDR 

rs10876864 12 IKZF4(0.4k) 56401085 ILMN_1678522 LOC644934 15:64885219 6.12E-25 

 12 IKZF4(0.4k) 56401085 ILMN_2310703 RPS26L 13:101192220 3.30E-24 

rs17718169 5 ATP6V0E1(4.9k) 172405897 ILMN_1666845 KRT17 17:39775733 3.89E-06 

 5 ATP6V0E1(4.9k) 172405897 ILMN_1689515 CPLX3 15:75123999 5.41E-03 

rs2069408 12 DGKA(16.5k) 56364321 ILMN_2310703 RPS26L 13:101192220 8.81E-05 

 12 DGKA(16.5k) 56364321 ILMN_1678522 LOC644934 15:64885219 1.92E-02 

rs12340642 9 NA 79893032 ILMN_1713668 TSNAX 1:231700328 1.09E-02 

 9 NA 79893032 ILMN_1718712 C20orf177 20:58522158 4.13E-02 
Abbreviations see Table3-12. 
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3.3 Delineation of methylation-driven gene expression in hippocampal brain 

tissue  

3.3.1 Correlation analysis of CpG methylation with gene expression 

By correlating local CpG methylation with mRNA gene expression, 565 CpG-expression probe pairs 

(comprising 565 CpG sites and 292 expression probes of 378 genes) displayed a significant correlation 

(P-value range = 7.58 x 10-30 to 2.38 x 10-6), of which 152 were positively correlated (Pearson 

correlation coefficient r = +0.42 to +0.80) and 413 showed an inverse correlation (r ranged from -0.83 

to -0.42). 

Overall, 27% (152 of 565) of the significant CpG-mRNA pairs were correlated in the same direction 

(positive correlation). Namely, a pattern whereby high methylation levels were associated with high 

expression levels was observed. This pattern was observed both for methylation sites located within 

and outside gene bodies. Yet, CpG sites whose methylation levels were positively correlated with 

expression levels of nearby genes were more distant from the gene’s TSS than CpG sites whose 

methylation levels were inversely correlated with expression levels of nearby genes (median distance 

of 8,954 bps and 5,766 bps for positive correlation and inverse correlation, respectively; P = 0.038). 

In total, 73% (413 of 565 sites) of the significant cis CpG-expression probe pairs were observed with 

an inverse correlation, demonstrating that high methylation states result in low mRNA expression 

levels. When considering only those CpG-mRNA probe pairs where the CpG site was within a CpG 

island (as defined in Gardiner-Garden & Frommer 1987) 96 CpG sites were identified. Of those 96 

CpG sites, 71% (68 out of 96) of the CpG-mRNA probe pairs were inversely correlated. 

The correlation analysis of CpG methylation to gene expression demonstrated that the CpG sites 

affecting mRNA expression were enriched in gene bodies (P = 1.85 x 10-3) and at strong enhancers 

(P = 3.41 x 10-38). A depletion of CpG-mRNA probe pairs compared to all 362k CpG sites was observed 

in the TSS200 region (P = 0.04). Interestingly, further differences between positive and inverse 

correlation of the CpG-expression probe pairs were observed. As mentioned, I was able to identify 

enrichment in gene bodies but did not observe a difference in the direction of correlations between 

CpGs within or outside gene bodies. When comparing all 362k CpGs sites with the distribution of 565 

correlated CpG-mRNA probe pairs at active promoters, no significant difference was observed. But 

when comparing positive with inverse correlation at active promoters a significant difference was 

observable (P = 9.43 x 10-3): CpG-expression probe pairs showing inverse correlation displayed 

enrichment at active promoters, CpG-expression probe pairs showing positive correlation displayed 

depletion at active promoters. In addition, the same distribution was observed for the TSS200 region 

where a moderate difference between the correlation types was detected (P = 0.01) and at strong 
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enhancers which revealed the strongest difference between the correlation types (P = 1.58 x 10-4; 

Table 3-14). 

Table 3-14: Genomic distribution of CpGs influencing gene expression in gene features in hippocampal brain tissue. 

First table: proportion of all quality-filtered 362,722 CpGs in gene features. Pearson's Chi-squared test with Yates' continuity 

correction was used to calculate the distribution of 565 CpG-mRNA probe pairs (FDR < 0.05) in different gene features in 

hippocampal brain tissue compared to all 362k CpG sites. Red colored background indicates depletion, green colored 

background an enrichment of CpG-mRNA probe pairs compared to all 362k CpGs. The second table shows the genomic 

distribution of positive or inverse correlated CpG-mRNA probe pairs. Differences of the correlation types are highlighted. 

Illumina Group All, 362,722 CpGs Correlation CpG-mRNA P-values, correlation 

3'UTR 3.72% 3.19%        5.74E-01 

5'UTR 9.15% 11.33%        8.50E-02 

Gene Body 34.06% 40.35%*      1.85E-03 

TSS200 10.98% 8.14%*      3.70E-02 

TSS201-1500 14.62% 17.35%        7.50E-02 

Active Promoter
1
 19.89% 20.35%        8.25E-01 

Strong Enhancer
1
 4.06% 14.87%*** 3.41E-38 

Insulator
1
 1.62% 1.24%        5.76E-01 

1
These genomic features are from cell line GM12878. 

Chi-square test: ***P < 10
-30

; **P < 10
-5

; * P < 0.05 

 

Illumina Group Correlation 
CpG-mRNA 

Inverse correlation Positive correlation P-values, correlation 

3'UTR 3.19% 2.66%   4.61%   2.80E-01 

5'UTR 11.33% 11.14%   11.84%   8.81E-01 

Gene Body 40.35% 39.47%   42.76%   4.99E-01 

TSS200 8.14% 9.20%* 5.26%* 1.00E-02 

TSS201-1500 17.35% 16.46%   19.74%   3.81E-01 

Active Promoter
1
 20.35% 23.00%* 13.16%* 9.43E-03 

Strong Enhancer
1
 14.87% 18.16%* 5.92%* 1.58E-04 

Insulator
1
 1.24% 0.73%   2.63%   8.80E-02 

1
These genomic features are from cell line GM12878. 

Chi-square test: ***P < 10
-30

; **P < 10
-5

; * P < 0.05 

 

To further explore the correlation of CpG methylation with mRNA gene expression the allelic status 

of these was tested. The significant CpG-mRNA probe pairs were selected where both the CpG 

methylation site and the mRNA transcript probe had a positional overlapping cis-meQTL or cis-eQTL 

finding. Overall, 102 of 565 CpG-expression probe pairs (comprising 102 CpG sites and 45 expression 

probes) had a positional overlapping cis-meQTL and cis-eQTL finding. For only one of the 102 

correlations of CpG methylation with mRNA gene expression, neither the same meQTL-eQTL SNP nor 

a meQTL SNP in LD (r2 ≥ 0.2) with an eQTL SNP was found. In total, for 18% of the CpG methylation-

expression correlation the CpG methylation and – presumably indirect – the RNA expression was 

significant genetically determined.  
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The 10 most significant correlations of CpG methylation with mRNA gene expression and their 

associated significant cis-meQTLs and cis-eQTLs are shown in Table 3-15. In total, 44 genes showed 

SNP-methylation-expression three-way associations; the same SNP (or two times an LD SNP) 

simultaneously showed significant association with both DNA methylation and gene expression, 

while DNA methylation was significantly correlated with gene expression. The 44 genes involved 101 

CpG sites, 44 expression probes, and 340 SNPs. 



 

 
 

Table 3-15: Top hits of CpG methylation-driven gene expression in hippocampal brain tissue. 

Probe CpG Chr Gene Symbol R FDR CpG Pos mRNA Location Correlated SNP SNP Pos FDR, cis-meQTL FDR, cis-eQTL 

ILMN_1710752 cg17524265 8 NAPRT1 -0.83 1.06E-22 144659883 8:144656991 rs9657360 144676862 3.20E-33 2.20E-23 

ILMN_1730054 cg11141652 22 GSTT1 0.80 4.44E-20 24348549 22:24376401 rs738809 24405492 1.42E-06 1.88E-11 

ILMN_2326324 cg07415359 11 LDHC -0.80 8.07E-20 18434354 11:18472557 rs4757651 18417583 2.20E-27 1.55E-16 

ILMN_1736184 cg10807101 1 GSTM5 -0.69 1.76E-11 110282274 1:110276633 rs1887547 110295772 2.91E-15 8.75E-09 

ILMN_2173294 cg04051697 2 THNSL2 -0.66 8.56E-10 88470813 2:88486079 rs7582011 88452740 1.67E-06 4.64E-14 

ILMN_1746646 cg24786847 15 CHRM5 -0.64 6.87E-09 34261172 15:34357171 rs618868 34293378 1.35E-06 1.05E-05 

ILMN_1899338 cg19520046 6 KIF25 -0.63 2.26E-08 168397360 6:168376777 rs11752225 168409629 1.53E-04 7.32E-07 

ILMN_1732089 cg25755428 19 MRI1(0.1k) -0.62 5.50E-08 13875111 19:13884988 rs371671 13870153 5.32E-27 5.53E-09 

ILMN_1774949 cg21832243 21 PIGP 0.61 3.21E-07 38444223 21:38445331 rs1793870 38481436 3.61E-14 6.26E-20 

ILMN_1809212 cg23815491 16 HPR 0.59 1.14E-06 72088622 16:72110608 rs2000999 72108093 1.10E-10 1.68E-27 
Abbreviations: R, Pearson correlation coefficient; Genes in the ‘Gene Symbol’ column indicate the gene of the mRNA probe. All annotations refer to genome build hg19. 
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One of these genes encodes the Nicotinate Phosphoribosyltransferase (NAPRT1). A cis-eQTL 

regulating NAPRT1 expression has been reported in several meta-eQTL analyses in brain cells (Gibbs 

et al. 2010; Kim et al. 2014), in whole blood cells (Westra et al. 2013; Battle et al. 2014) as well as in 

CD14+ monocytes (Raj et al. 2014; Gjoneska et al. 2015). The inverse correlation (r-value range = -

0.83 to -0.72) of seven successive CpG probes in the promoter region of NAPRT1 with the NAPRT1 3’ 

expression probe ILMN_1710752 was the strongest methylation-driven expression in the present 

study (P-value range = 7.58 x 10-30 to 7.0 x 10-20). The seven CpG probes (cg17524265, cg08017634, 

cg16316162, cg13282195, cg19357499, cg01494348, cg21187068; chr8:144,659,627-144,660,772) 

flank the TSS of NAPRT1. Five of these CpGs reside in a CpG island (chr8:144,659,745-144,660,635; 

assigned as CpG: 94). Two additional CpGs are located in the 2 kb region flanking CpG island shores. 

Moreover, the NAPRT1-associated meQTLs and eQTL were genetically regulated by the same SNP 

rs9657360 (Pmin = 1.61 x 10-39 and P = 2.15 x 10-29, respectively). The minor C allele of SNP rs9657360 

was significantly associated with high methylation levels in the NAPRT1 promoter region and 

simultaneously associated with low gene expression of NAPRT1. The box plot of methylation 

(cg17524265) and expression (ILMN_1710752) in the NAPRT1 gene with SNP rs9657360 is shown in 

Figure 3-9 as well as the significant inverse correlation between methylation and expression. The 

methylation and expression levels are represented by their residuals. 

 

Figure 3-9: DNA methylation and gene expression of NAPRT1 plotted by genotypes of rs9657360. 

DNA methylation (left) and gene expression (middle) of NAPRT1 is correlated with genotypes of SNP rs9657360. The x axis 

harbors three genotypes of rs9657360, and the y axis displays residuals representing DNA methylation and gene expression 

levels. Minor allele C is significantly associated with high methylation level of NAPRT1 in a cis-manner and simultaneously 

associated with low gene expression of NAPRT1. The scatter plot (right) indicates the linear inverse correlation between 

methylation and expression and differentiates the three genotype clusters of the CpG methylation and mRNA expression 

profiles. Blue dots, genotype CC; black dots, genotype CT, and red dots, genotype TT. 

 

The SWAN corrected and quantile normalized ß -values representing methylation levels of 

cg17524265 show the following values for the genotypes of SNP rs9657360: CC, ß-value of 0.71; CT, 

ß-value of 0.54 and TT, ß-value of 0.40. Equally, the quantile normalized log2-values representing 

expression levels of ILMN_1710752 show the following values for the genotypes of SNP rs9657360: 

CC, log2-ratio of 6.95; CT, log2-ratio of 7.64 and TT, log2-ratio of 8.03. 
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The NAPRT1 region including CpG cg17524265 (plus additional six CpG probes), expression probe 

ILMN_1710752 and SNP rs9657360 is illustrated in Figure 3-10. 

 

           

Figure 3-10: NAPRT1 region. 

The SNP-methylation-expression three-way association of the NAPRT1 region is illustrated. CpG cg17524265, mRNA probe 

ILMN_1710752 and SNP rs9657360 are highlighted in red. The additional six CpGs which are associated with the mRNA 

probe are marked in blue (blue lines). It is shown that the CpG probes reside in a CpG island (CpG: 94) encompassing the TSS 

and the promoter region of NAPRT1. 

 

3.4 Exploration of the role of QTL-associated rSNPs in common neuropsychiatric 

disorders 

The results of the enrichment analyses demonstrated that meQTLs in hippocampal brain tissue were 

positional overrepresented in the Brain-Disorder-GWAS gene-set (P = 5.79 x 10-4). Therefore, it was 

examined, whether rSNPs affecting transcription factor binding sites underlie both the cis-acting 

QTLs (meQTLs and eQTLs) and the regional GWAS hits, to pinpoint causative rSNPs. 

3.4.1 Co-occurrence of cis-acting meQTLs and GWAS hits 

The analysis was restricted to GWAS signals with P < 5 x 10-8, meQTLs with FDR < 0.05 and LD of the 

GWAS lead SNP and meQTL SNP with r2 ≥ 0.5. Overall, 52 GWAS lead SNPs (P < 5 x 10-8) were in 

strong LD (r2 ≥ 0.5) with one of the identified cis-meQTL SNPs. Strong LD of the GWAS lead SNPs and 

cis-meQTL SNPs is shown for six cis-meQTLs in hippocampal brain tissue in Table 3-16. 



 

 
 

Table 3-16: GWAS lead SNPs in strong LD with cis-acting meQTLs in hippocampal brain tissue.  

CpG Chr CpG Pos meQTL SNP SNP Pos FDR LD SNP  
GWAS-meQTL 

GWAS 
SNP 

GWAS 
P-value 

Disease Gene Symbol PMID 

cg02586212 1 192544902 rs1359062 192541472 2.21E-17 0.99 rs1323292 2.0E-08 MS RGS1 21833088 

cg22674798 1 3096360 rs207200 3073555 6.17E-07 0.80 rs2651899 4.0E-14 Migraine PRDM16 23793025 

cg18099408 3 52552593 rs6445529 52662722 1.38E-14 0.96 rs2251219 2.0E-09 BD,MDD PBRM1 20081856 

cg18404041 3 52824283 rs2710331 52837855 3.25E-14 0.88 rs2535629 3.0E-12 AUT,ADHD,BD,MDD,SCZ ITIH3 23453885 

cg22298860 6 29690822 rs1362125 29691090 3.26E-21 0.75 rs2523393 1.0E-17 MS HLA-F 19525953 

cg13165778 7 1952518 rs6950151 1953521 3.52E-23 0.74 rs6461049 6.0E-13 SCZ MAD1L1 23974872 
Abbreviations: ADHD, attention-deficit hyperactivity disorder; AUT, autism; BD, bipolar disorder; MDD, major depressive disorder; MS, multiple sclerosis; SCZ, schizophrenia. GWAS associations 

exceeding P-values < 5 x 10
-8

 from the NHGRI GWAS catalog, LD of GWAS SNPs and meQTL SNPs with r
2
 ≥ 0.5 and an FDR of 5% for meQTLs. 

5
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3.4.2 Co-occurrence of cis-acting eQTLs and GWAS hits 

My exploration was focused on GWAS hits with P < 5 x 10-8, eQTLs with FDR < 0.05 and LD of GWAS 

SNP and eQTL SNP pairs with r2 ≥ 0.5. Two SNPs of eQTLs were in strong LD with two GWAS lead 

SNPs, respectively. These findings included the following traits: schizophrenia (AS3MT; GWAS P-value 

= 4 x 10-14; Ripke et al. 2013) and multiple sclerosis (CLECL1; GWAS P-value= 3 x 10-10; International 

Multiple Sclerosis Genetics Consortium 2010). 
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4. DISCUSSION 

One of the main goals of human genetics is to elucidate molecular mechanisms underlying disease 

susceptibility. Up until today, neuropsychiatric disorders are among the most complex and poorly 

understood conditions. Genome-wide association studies (GWASs) have captured more than two 

thousand susceptibility loci increasing risk of brain disorders (Kim et al. 2014). However, the majority 

of these susceptibility loci reside in non-coding regions and their functional consequences remain 

elusive. Therefore, the question arises whether regulatory sequence variants affecting DNA 

methylation and gene expression may be the causal susceptibility alleles (Maurano et al. 2012). 

The present study aimed to identify regulatory SNPs (rSNPs) that quantitatively influence CpG 

methylation (meQTL) and mRNA expression (eQTL) and aimed to dissect those rSNPs that confer 

susceptibility to common brain disorders. To achieve this aim, large-scale data sets of SNPs, CpG 

methylation states and gene expression profiles of 115 individual samples of fresh frozen 

hippocampal brain tissue obtained by epilepsy surgery have been integrated using a novel and 

promising approach. A particular strength of the present study arises from the application of the 

Human Methylation450k (HM450) array and the superior quality of fresh frozen brain tissue from a 

uniform region of the hippocampus (Grote et al. 2015). These advantages resulted in a six-fold 

increase of identified meQTLs compared to previous studies with postmortem brain tissue using the 

Human Methylation27k (HM27) array (Gibbs et al. 2010; Zhang et al. 2010; Numata et al. 2012; 

Gamazon et al. 2013; Numata et al. 2014; Smith et al. 2014). The present study is the first that 

systematically examined the influence of cis-meQTLs on gene expression in fresh frozen brain tissue 

to delineate methylation-driven genes. Based on the advances of the 1000 Genomes Project (1000 

Genomes Project Consortium 2010), I was also able to improve the quality check (QC) filtering 

procedures for the CpG methylation (Barrow and Byun 2014) and mRNA expression probes (Westra 

et al. 2013). In detail, I was successful in removing artificial findings more accurately and refined the 

quantitative assessment of methylation and expression profiles by implementing a correction for 

cell-type heterogeneity in the QTL regression analyses (Guintivano et al. 2013). Although recent 

studies start to consider cellular heterogeneity among different brain regions (De Jager et al. 2014; 

Pidsley et al. 2014; Xiao et al. 2014), there are yet no comparable studies which focus on 

neuropsychiatric disorders and perform simultaneously large QTL analyses. 

Another major achievement of this study will be the public release of a database reporting the 

complete meQTL and eQTL findings in context of the publication of this study. These genome-wide 

maps of meQTLs and eQTLs will improve the prospects to elucidate the genetic mechanisms 

determining DNA methylation and gene expression, to explore the interplay of DNA methylation and 
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gene expression, and to extend the allelic spectrum of disease genes of common disorders with 

complex genetic predisposition. Using the same array platform and analytical procedures, a genome-

wide map of cis- and trans-meQTLs in whole blood cells of 496 German population controls without 

neuropsychiatric disorders was generated as well. With regard to the strong overlap of meQTLs in 

brain and blood cells, this thesis provides the prerequisites to establish easily accessible epigenetic 

biomarkers in blood cells for disease-associated cis-meQTLs in brain. 

 

4.1 Autosomal map of cis-meQTLs in human hippocampal brain tissue 

This study represents the largest meQTL study in human brain tissue reported so far. To the best of 

my knowledge, this study is the first study which uses the HM450 array on specimens of fresh frozen 

human brain tissue. After careful and highly conservative quality filtering procedures, 362,722 

autosomal CpGs were included in the meQTL analysis. Previous meQTL studies have been used the 

smaller HM27 array (27,578 CpGs) and investigations were based on postmortem brain tissue (Gibbs 

et al. 2010; Zhang et al. 2010; Numata et al. 2014; Smith et al. 2014; for an overview on studies that 

are frequently mentioned for comparison reasons, please refer to Table 6-2 in Appendix), what might 

entail unwanted side effects (e.g. alterations in DNA methylation profiles from baseline; cf. 1.5 

Quantitative trait loci). Four previous publications of meQTL studies using the HM27 array in brain 

tissue revealed at the maximum about three thousand (range per study: 887 - 3,612) cis-meQTLs per 

study (Gibbs et al. 2010; Zhang et al. 2010; Numata et al. 2014; Smith et al. 2014). However, with the 

present layout I was able to identified 19,954 (out of 362k CpG sites, see above) at which 

methylation levels are significantly influenced by nearby genetic variations, demonstrating that cis-

acting meQTLs are abundant in the autosomal genome. The vast majority (76%) of cis-acting meQTL 

SNPs displaying the strongest impact on CpG methylation were located within a genomic region of 

150 kb around the CpG site. In total, 67% of the identified cis-meQTLs are located intragenic or 

nearby 7,827 Ensembl genes (± 50 kb). Notably, a strong enrichment of cis-meQTLs upstream 

(TSS201-TSS1500) of the gene promoter region (Table 3-1) was found, highlighting the functional 

impact of this 5´-regulatory region in the epigenetic regulation of gene expression. 

The before mentioned four previous studies have reported 5,061 cis-meQTLs in postmortem brain 

tissue altogether, of which 3,566 quality-filtered CpG sites were also assessed in my study and 2,353 

cis-meQTLs were also identified as significant cis-meQTL. This strong overlap of the cis-meQTLs 

identified in previous studies of brain tissue support the validity of the overlapping cis-meQTLs 

observed in the present study. 
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The enrichment analyses of genes associated with cis-meQTLs indicated an overrepresentation of 

genes implicated in neurodevelopmental disorders (Krumm et al. 2013) and GWAS hits of brain 

disorders (Welter et al. 2014). Some of the most significant cis-meQTLs identified within my work are 

located in genomic regions of several high-ranking candidate genes for neurodevelopmental 

disorders, such as ADARB2, HDAC4, NAPRT1, MAD1L1, PTPRN2, and RIMBP2 (cf. Table 3-5). 

The present cis-meQTL and eQTL findings strongly suggest that sequence variants affecting 

regulatory elements of gene expression or mRNA splicing contribute to the allelic spectrum of 

disease mutations besides the traditional deleterious exonic and splice-site variants detected by 

next-generation sequencing (NGS) based whole exome sequencing approaches. At the gene level, 

these cis-meQTL and -eQTL findings will guide the identification of the causative regulatory sequence 

variants. 

Notably, the SNP showing the strongest correlation with the individual CpG methylation states is not 

necessarily the regulatory SNP causing the modulating effect. The identified meQTL SNP could be in 

strong linkage disequilibrium (LD) with the ‘real’ rSNP which may not be included in the SNP 

screening set. Consequently, all known SNPs in strong LD with the identified meQTL SNP would have 

to be examined for their functional alteration of regulatory elements, such as binding sites for 

transcription factors (TFs), microRNAs, DNaseI hypersensitive sites and regions of histone 

modifications (Li et al. 2013). Advances of the systematic exploration of regulatory elements of the 

human genome (Kundaje et al. 2015) have accelerated progress in the dissection of rSNPs. However, 

deeper insights into the regulatory mechanisms are still required to differentiate the role of potential 

rSNPs in context of spatial and temporal aspects of gene expression (Januar et al. 2015). 

4.1.1 Gene-centric distribution of cis-meQTLs 

To explore the gene-centric distribution of the 19k cis-meQTLs identified in hippocampal brain tissue, 

the localization of the CpGs of the identified cis-meQTLs with the distribution of all QC-filtered 362k 

CpG sites was compared. A relative positional depletion of cis-meQTLs in the promoter region of 

genes (TSS200 region) was observed, whereas a relative enrichment was found in intergenic regions 

and in the 5´-regulatory region of genes upstream of the promoter region (TSS201-TSS1500). The 

TSS201-1500 region includes well known regulatory elements, such as the insulator CTCF, which is 

known to exhibit a variable binding affinity of CTCF due to differential CpG methylation at its binding 

site (Wendt et al. 2008). Specifically, 8.45% (N = 3,055) cis-meQTLs were detected in the TSS201-

TSS1500 region compared to 3.6% of all 362k CpG sites (P = 7.7 x 10-61). These findings indicate that 

methylation-driven gene regulation occurs more likely in regions upstream of the gene promoter, a 

region which harbors important regulatory elements, such as enhancers and insulators (Jones 2012). 
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The observed depletion of meQTLs at active promoters is in line with findings of previous studies 

(Gibbs et al. 2010; Gutierrez-Arcelus et al. 2013; Banovich et al. 2014; De Jager et al. 2014; Kundaje et 

al. 2015), demonstrating that DNA methylation levels at promoters seem to be less variable and have 

a lower average methylation level compared with other genomic regions, especially enhancers. 

It should also be mentioned that a similar gene-centric distribution of cis-meQTLs in hippocampal 

brain tissue and blood cells was observed, suggesting that a large proportion of meQTLs share similar 

methylation control mechanisms in both tissues. 

4.1.2 Enrichment analysis of cis-meQTLs 

It was evaluated whether the found significant cis-meQTLs were enriched in four gene-sets 

comprising genes implicated in neurodevelopmental disorders and common traits of the central 

nervous system. Enrichment analysis showed that cis-meQTLs of the hippocampal brain tissue were 

significantly enriched in susceptibility genes of GWAS hits of brain disorders (P = 5.8 x 10-4) published 

in the NHGRI GWAS catalog (Welter et al. 2014) and in genes previously implicated in 

neurodevelopment disorders (P = 0.04, Krumm et al. 2013). As diverse functional gene-set 

categories, e.g. GO categories, are biased according to gene size and the variable coverage of 

meQTLs (Geeleher et al. 2013; Lockett et al. 2013; Adams et al. 2014; Berko et al. 2014; Delahaye et 

al. 2014), enrichment results were corrected for the numbers of CpG sites located in different classes 

of genes. 

The enrichment of susceptibility genes implicated by GWAS hits of brain disorders and 

neurodevelopmental disorders emphasizes, that regulatory SNPs and their effects on CpG 

methylation and gene expression may confer a substantial contribution to the genetic basis of 

common neuropsychiatric disorders. 

4.1.3 Tissue-specifity of cis-meQTLs in hippocampal brain cells 

To explore tissue-specifity of the cis-meQTLs detected in hippocampal brain tissue, the same array 

platform and analytical procedures were also applied in an additional meQTL analysis of whole blood 

cells originated from 496 German population controls without neuropsychiatric disorders. The main 

reasoning behind this analysis is the mere instance that whole blood cells are much more easily 

accessible as compared to fresh frozen or postmortem brain tissue. In fact, whole blood cells are the 

most convenient source of tissue for the establishment of epigenetic biomarkers. 

Within the analysis more than 108k cis-meQTLs were identified in whole blood cells at a FDR < 0.05. 

Comparison of cis-meQTLs detected in hippocampal brain tissue with those found in blood cells 

showed an 65% overlap with a substantial correlation (Spearman’s Rank coefficient = 0.42). However, 
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65% overlap entail that 35% of the CpG sites of cis-meQTLs in brain tissue had no cis-meQTL 

counterpart in the blood cells. Furthermore, these discordant brain-specific cis-meQTLs includes 

genes involved in epileptogenesis, such as GABRB3 (Epi4K Consortium & Epilepsy Phenome/Genome 

Project 2013), GRIN2A (Lemke et al. 2013), CHRNB2 (Steinlein 2000) and RBFOX1 (Lal et al. 2013). 

Hence, this finding demonstrates that brain-specific meQTL analyses are inevitable to identify all 

rSNPs contributing to common brain disorder. However, results suggest that meQTLs found in whole 

blood cells are frequently representative for meQTLs in brain tissue and may be suitable as 

epigenetic biomarkers for brain disorders. The present database of cis-meQTLs in brain and blood 

cells allows differentiating those cis-meQTLs that are present in both tissues or those that only occur 

in brain-tissue but not in whole blood cells. Epigenetic biomarkers could lead to improvements in 

diagnosis and options for early intervention therapies (Januar et al. 2015). 

 

4.2 Autosomal map of trans-meQTLs in human hippocampal brain tissue 

Altogether, 2,436 CpG sites at which methylation levels in hippocampal brain tissue are significantly 

associated with genetic variations in trans (3,927 trans-meQTLs) were identified. For trans-meQTL 

analysis it was tried to minimize ambiguous trans-signals due to cross-hybridization of CpG probes at 

additional genomic localizations. Therefore, the HM450 set of CpGs was reduced to 268,397 CpGs, 

according to more robust and conservative quality-filters applied by Zhang and colleagues (2014) 

which included a careful genome-wide screen for cross-hybridization of the HM450 CpG probes. 

Furthermore, the potential effect that SNPs on the regulation of genes in trans resulted from long-

range cis-relationships was checked and excluded. These additional filters reduced the number of 

potentially trans-regulated CpG sites from 3,579 to 2,436 CpGs (and 8,989 to 3,927 for trans-

meQTLs). This small sample size used for generating trans-meQTLs largely limited the power to 

detect trans signals that had previously been implicated in methylation, rendering these analyses 

even more difficult to interpret. These results demonstrate the complexity of handling trans-acting 

QTL results and the possibility of a large number of potentially spurious trans-meQTL findings. 

 

4.3 Genome-wide assessment of imprinting meQTLs in GGE parent-offspring 

trios 

The objective of the imprinting meQTL (imeQTL) analysis was the dissection of CpG sites which are 

differentially methylated depending on their parental origin. Imprinted genes are of particular 
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interest because they are prone for susceptibility effects due to their Parent-of-Origin (PofO) 

dependent monoallelic gene expression. 

My imeQTL analysis in 269 parent-offspring trios revealed 177 CpGs at 31 genomic loci exhibiting 

differential methylation in a parent-of-origin dependent manner, of which nine loci were already 

known (Fang et al. 2012; Wei et al. 2014) and 22 were novel imprinted loci. The detection of nine 

known imprinting loci can be considered as proof-of-principle of the applied screening approach 

which compared the CpG methylation states of individuals with parentally inverse heterozygous 

genotypes of nearby SNPs (Garg et al. 2012). A 1.8-fold increase of paternally imprinted genes 

compared to maternally imprinted genes was observed. Of the nine known imprinting regions eight 

imprinted genes are expressed by the paternal allele, and only one is expressed from the maternal 

allele. 

PofO effects are present when the phenotypic effect of an allele depended upon its paternal origin, 

hence, whether it was inherited from the mother or the father. Strong PofO methylation effects at 

loci encompassing neurodevelopmental genes, such as the Nucleosome Assembly Protein 1-Like 5 

retrogene (NAP1L5), Neuronatin (NNAT) and Nischarin (NISCH) were observed. NAP1L5 is a 

chromatin-modifying protein critical for neuronal development, which is most abundantly expressed 

in neural tissues (Smith et al. 2003). NNAT is a dendritically expressed Ca2+ regulator and may play a 

crucial role in synaptic and possibly cognitive function in the hippocampus (Oyang et al. 2011). NISCH 

is differentially expressed in rat brain, regulates neuronal migration (Ding et al. 2013) and has been 

implicated to play a role in brain development, dementia, brain cancers and neurodegenerative 

disorders (Ding et al. 2013; Ostrow et al. 2013). 

Those imeQTLs detected on chromosome 3p21.1 are of special interest, considering that GWAS 

findings of several neuropsychiatric diseases, such as major mood disorder (McMahon et al. 2010), 

schizophrenia and bipolar disorder (Cross-Disorder Group of the Psychiatric Genomics Consortium et 

al. 2013; Sleiman et al. 2013), as well as autism spectrum disorder and attention deficit-hyperactivity 

disorder (Cross-Disorder Group of the Psychiatric Genomics Consortium et al. 2013) have been 

mapped to this candidate region. 

A recently published study investigates the effects of genetic variation and parental origin on gene 

expression in mice (Crowley et al. 2015). Crowley and co-workers (2015) showed that cis-regulated 

genes in human blood often have a counterpart in the mouse orthologue. Comparison of my 

imeQTLs in blood cells with those eQTLs displaying imprinting effects in mice revealed a substantial 

overlap: 138 out of 177 imeQTL CpGs were located intragenic of 78 Ensembl genes, of which eight 

(10%) overlapped with imprinted genes detected in mouse brain by Crowley and co-workers (2015). 
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Additionally, Crowley and co-workers (2015) observed a global allelic imbalance in expression 

favoring the paternal allele comparable to the allelic imbalance of CpG methylation detected in my 

imeQTL analysis. 

Overall, only few PofO specific allelic associations at imprinted loci have been described for complex 

traits so far (Lawson et al. 2013). Genes at genomic loci showing imprinting effects should be 

prioritized as promising candidate genes because of their potentially monoallelic gene expression 

which may unmask recessive susceptibility alleles. 

 

4.4 Autosomal map of cis-eQTLs in human hippocampal brain tissue 

To examine the influence of cis- and trans-acting genetic variations on mRNA expression in human 

brain tissue, the Human HT-12 v3 (HT12v3) array was used to measure the expression profiles of 

31,146 QC-filtered mRNA target sequences in 115 samples of fresh frozen hippocampal brain tissue. 

Altogether 734 mRNA probes were identified for which expression levels were significantly 

influenced by cis-acting SNPs. 

Up until now, only few eQTL studies of human brain tissue focus on common brain disorders while 

employing none candidate gene approaches. The few published studies using brain tissue suffer from 

small sample sizes and they do not replicate well (Kim et al. 2014). However, notable overlap was 

found comparing the 734 cis-eQTL results with those reported in previous eQTL studies (Gibbs et al. 

2010; Kim et al. 2014; Ramasamy et al. 2014). With respect to an eQTL meta-analysis in postmortem 

brain cells (Kim et al. 2014), a 65% overlap was found (474 out of 734). An even higher overlap of 

71% was found with an eQTL study based on human brain tissue from ten different regions using the 

Affymetrix Human Exon 1.0 ST array (Ramasamy et al. 2014), considering that a cis-eQTL signal was 

identified in more than one brain region. Altogether, these overlapping eQTL findings underline the 

validity of the cis-eQTLs identified in this study. 

Also, comparisons with previous eQTL meta-analysis in blood cells render interesting and notable 

overlap (Westra et al. 2013; Schramm et al. 2014). Schramm and co-workers (2014) performed a 

whole-genome eQTL analysis in 890 blood cell samples using the HT12v3 expression array, and the 

meta-eQTL analysis in 5,311 blood cells carried out by Westra and colleagues (2013) was restricted to 

probes present on the HT12v3 array. I found that 50% (367 among 734) of cis-eQTLs in hippocampal 

brain tissue matched to the cis-eQTLs in blood cells detected by Schramm et al. (2014), and 58% (423 

among 734) matched with those reported by Westra et al. (2013). Altogether, some cross-tissue 

similarities within cis-eQTLs from hippocampal brain tissue and whole blood cells were observed. 
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These offer the option to delineate accessible transcriptomic biomarkers for at least some eQTLs 

observed in brain. 

 

4.5 Autosomal map of trans-eQTLs in human hippocampal brain tissue 

Altogether, 16 trans-eQTLs with a low significance level were observed of which none has been 

previously reported (cf. Gibbs et al. 2010; Westra et al. 2013; Ramasamy et al. 2014; Schramm et al. 

2014). The available sample size seems to be too small to detect larger effect sizes of trans-eQTLs –

 this is consistent with general trends in the literature. Westra and Franke (2014) reported that effect 

sizes of trans-eQTLs are generally small in contrast to cis-eQTL effects. 

 

4.6 Delineation of methylation-driven gene expression in hippocampal brain 

tissue 

Correlation analysis of CpG methylation with mRNA gene expression revealed both inverse and 

positive correlations. Overall, 73% of CpG-mRNA pairs were inversely correlated and showed an 

enrichment of methylated CpG sites at active promoters in combination with a reduced gene 

expression. This is in congruence with previous studies, which demonstrated that DNA methylation 

at promoter regions reduces gene expression levels (Jones 2012; Gutierrez-Arcelus et al. 2013). 

Furthermore, results also show that CpG-mRNA pairs with inverse correlation were frequently 

associated with methylated CpG sites at strong enhancers. Additionally, the observed results suggest 

that CpG sites affecting gene expression are more likely enriched in non-CpG island (CGI) regions 

than within CGIs (P < 2.2 x 10-16). CpG sites within CGIs were predominately unmethylated and do not 

substantially contribute to the variance of gene expression. When analyzing CpG-mRNA pairs for 

which the target methylation site resided within a CGI, the classical inverse relationship of increased 

CpG methylation associated with decreased expression levels was observed (in 71% of these cases). 

There are only few studies reporting that DNA methylation was positively correlated with gene 

expression levels (Gibbs et al. 2010; Bell et al. 2011; Gutierrez-Arcelus et al. 2013; Banovich et al. 

2014). Previous studies demonstrated that DNA methylation in gene bodies is often associated with 

activating histone mark and increased expression levels (Hahn et al. 2011; Jones 2012). In contrast, I 

did not observe a difference in the direction of correlations between CpG sites within or outside gene 

bodies. Instead, it was found that the CpG and transcription start site (TSS) tend to be more distant 

from each other in positive correlated CpG-mRNA pairs. This finding was evident with the observed 

depletion at active promoters and in the TSS200 region for the positive correlated CpG-mRNA pairs. 
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Exploring the functional effects of SNPs on both DNA methylation and gene expression, only 44 

genes were identified fitting this constellation. There may be several explanations for this, including 

that i) the coverage of the HT12v3 expression array is limited, ii) gene expression levels are 

controlled by many other factors such as TF binding, chromatin state including histone marks and 

nucleosome positioning, and by regulation of small RNAs, and iii) the sample size of brain tissue of 

115 mTLE patients only provided modest power for eQTL and meQTL mapping. However, compared 

to the four existing studies which correlated CpG methylation to mRNA gene expression in 

postmortem brain tissue (Gibbs et al. 2010; Zhang et al. 2010; Gamazon et al. 2013; Numata et al. 

2014), the present study revels more CpG methylation and gene expression correlations whereby the 

CpG methylation and the mRNA expression was significant genetically determined. This is due to the 

superior genomic coverage of CpG sites investigated by the HM450 array compared to the HM27 

array employed by the reference studies. 

4.6.1 Functional implications of meQTL and eQTL effects on NAPRT1 expression 

An example of the translational impact of the epigenetic regulation of gene expression is illustrated 

by using meQTL and eQTL findings on the NAPRT1 gene, which encodes Nicotinate 

Phosphoribosyltransferase. I was able to demonstrate that the strong inverse correlations of seven 

CpGs in the promoter region of NAPRT1 (correlation coefficient range = -0.83 to -0.72) were 

genetically determined and controlled via a common rSNP.  

In detail, the correlation analysis revealed that five of the seven CpGs reside in a CpG island 

(chr8:144,659,745-144,660,635; assigned as CpG: 94) and overlap with the TSS of NAPRT1. 

Furthermore, the present meQTL and eQTL results suggest that methylation-driven gene expression 

of NAPRT1 is modulated by the genotype of SNP rs9657360 or a nearby rSNP in strong LD with the 

screening SNP. The minor C-allele (MAF(C)-EUR: 0.20) of the common meQTL/eQTL lead SNP 

rs9657360 is significantly associated with high methylation state level of the CpG: 94 island in the 

NAPRT1 promoter region and low gene expression of NAPRT1. Both, the tumor-specific 

hypermethylation of the promoter CpG: 94 island as well as loss of NAPRT1 expression has been 

previously proposed as predictive biomarkers for the therapy of carcinomas using NAMPT inhibitors 

(Shames et al. 2013; Sampath et al. 2015). Considering that a low expression level of NAPRT1 

increases the therapeutic index of NAMPT inhibitors in cancer, approximately 4% of the general 

population carrying a homozygous C/C genotype of SNP rs9657360 should be responsive for NAMPT 

inhibitors. Thus, this genetic risk constellation is of clinical relevance as it enables a diagnostically 

driven clinical strategy in tumorigenesis including the selection of patients which likely benefit from 

the administration of NAMPT inhibitors (Shames et al. 2013; Sampath et al. 2015). 
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4.7 Dissection of rSNPs involved in common neuropsychiatric disorders 

It was aimed to identify causative rSNPs, which increase the risk of common neuropsychiatric 

disorders. Previous studies have demonstrated that transcription factor binding sites (TFBSs) 

influence DNA methylation and gene expression (Stadler et al. 2011; Ziller et al. 2013; Tsankov et al. 

2015). To decipher the role of potential rSNPs in neuropsychiatric disorders, it was examined 

whether SNPs in strong LD (r2 > 0.8) with the GWAS lead SNPs and nearby cis-QTLs cause allelic 

alterations of TFBSs and change the binding affinity of TFs. Two examples are highlighted below. 

The first example involves a GWAS susceptibility locus on chromosome 1q31.2 (RGS1 gene locus) that 

has been associated with the risk of multiple sclerosis (MS; Sawcer with the International Multiple 

Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2 2011). MS is a 

chronic inflammatory demyelinating disease of the central nervous system (CNS). All cis-meQTL SNPs 

in high LD (r2 > 0.8) with the GWAS lead SNP rs1323292 were also significantly associated with 

meQTL-CpG cg02586212 (N = 17, P < 2.4 x 10-14). The most promising LD SNP rs2760528 (CADD 6.8) 

resides in an evolutionarily conserved sequence (GERP++ score: 3.33) and causes an alteration of the 

binding affinity of five closely related TRANSFAC binding motifs of the TF STAT (Signal Transducer and 

Activator of Transcription, Figure 4-1). The strongest allelic alteration of the STAT binding affinities 

was found for the STAT3 (P-value = 4.93 x 10-5) and the STAT5A (P-value = 5.74 x 10-5) TFBS. STAT 

family proteins are major regulators of general immune response mediated by the interplay of STAT 

family proteins with diverse interleukines (IL) and other cytokines regulating T-cell differentiation 

(Adamson et al. 2009). An abnormal humoral immune response has been described in MS patients 

(Hafler et al. 2005). The strong LD of SNP rs2760528 with the MS GWAS lead SNP rs1323292 

(distance = 4.2 kb; LD = 0.99) implicates a potential functional role of the gene RGS1, encoding the 

regulator of G-protein signaling 1. Previous studies provided evidence for an involvement of RGS1 in 

the pathogenesis of MS (International Multiple Sclerosis Genetics Consortium 2010; Tran et al. 2010) 

and Sawcer and co-workers (2011) identified for the first time RGS1 as candidate gene for MS via a 

GWAS. It has been shown that RGS1 is expressed in immune cells and that overexpression in B-cells 

attenuates chemokine signaling which plays a major role in attracting immune cells to the site of 

inflammation (Moratz et al. 2004). An upregulation of RGS1 measured by gene expression profiling in 

MS patients highlights the possible importance of RGS1 for the regulation of chemokine activity in 

the treatment of MS (Tran et al. 2010). Alterations of RGS1 expression, potentially through an allelic 

alteration of the binding affinity of the TFs STAT3/STAT5, could impair the migratory capability of B-

cells and possibly alter their migration into the CNS (International Multiple Sclerosis Genetics 

Consortium 2010). Well fitting, several reports provide evidence for a role of B-cells in the 

immunopathology of MS (Lucchinetti et al. 2000; Cross et al. 2001; Hafler et al. 2005). 
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Figure 4-1: Chromosome 1q31.2 region. 

The GWAS lead SNP rs1323292 associated with the risk of MS is illustrated and highlighted in red, as well as the cis-meQTL 

CpG cg02586212. The LD SNP rs2760528 is highlighted in blue. Further, regulatory elements such as DNaseI Hypersensitive 

sites, genome segmentations and conserved TFBS for the chromosome 1q31.2 region are shown. 
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The second example involves a GWAS locus on chromosome 3p21.1 (gene complex 

NEK4/PRBM1/ITIH3/GNL3) that is associated with the risk of several neuropsychiatric disorders 

including bipolar disorder and major depressive disorder (McMahon et al. 2010), autism spectrum 

disorder and schizophrenia (Cross-Disorder Group of the Psychiatric Genomics Consortium 2013). All 

cis-meQTL SNPs in high LD (r2 > 0.8) with the GWAS lead SNP rs2251219 (PRBM1) for major mood 

disorder on chromosome 3 were also significantly associated with the meQTL CpG cg18099408 

(N = 216, P < 6.6 x 10-11). The cis-meQTL SNP rs2251219 was prioritized as top-ranking variant 

because the synonymous SNP rs2251219 in the PRBM1 gene affects many regulatory elements 

including two active enhancer marks (H3K27ac and H3K4me1), resides in an evolutionarily conserved 

sequence (GERP++ score: 3.54), and encompasses binding sites for four TFs (TRANSFAC binding 

motifs). The strongest TFBS affinity was obtained for the Tal1 motif (P-value = 4.28 x 10-3) which is 

involved in the differentiating of midbrain and hindbrain GABAergic neurons (Achim et al. 2012; 

Achim et al. 2013). The GWAS lead SNP rs2251219 displays a CADD score of 9 indicating that this 

potential rSNP is ranked among the 10% most deleterious substitutions in the human genome. The 

GWAS lead SNP rs2251219 is located in PRBM1, which encodes polybromo-1 and is important in 

chromatin remodeling (Thompson 2009). McMahon and co-workers (2010) demonstrated that 

PRBM1 is overexpressed in the dorsolateral prefrontal cortex of patients with bipolar disorder. The 

cis-regulation of gene PRBM1 could take place potentially through an allelic alteration of the binding 

affinity of the Tal1 TFBS. Additionally, cis-eQTLs of SNP rs2251219 have been reported with mRNA 

expression of ITIH4, GLT8D1, NT5DC2, PRBM1 and STAB1 (Xia et al. 2012; Witt et al. 2014). Witt and 

colleagues (2014) emphasized STAB1 as a new and highly promising candidate gene for bipolar 

disorder in the chromosome 3p21.1 region based on gene-expression studies in postmortem tissue 

of the dorsolateral prefrontal cortex which revealed differential expression of STAB1 in bipolar 

disorder and schizophrenia patients compared with controls. STAB1 encodes a multifunctional 

scavenger receptor, and its expression is induced during chronic inflammation and tumor progression 

(Kzhyshkowska 2010). STAB1 is located in close proximity to gene PRBM1 (distance = 21 kb). The 

strong LD across the chromosomal ITIH4/GLT8D1/NT5DC2/PRBM1/STAB1 segment (r2 > 0.9) hinders 

the efforts to dissect rSNPs of single target genes for neuropsychiatric disorders (McMahon et al. 

2010). Complementarily, deleterious non-synonymous SNPs affecting the protein structure facilitate 

the identification of underlying disease genes. The non-synonymous SNP variant rs4434138 

(p.I2282V), located in the STAB1 gene, is in high LD (r2 > 0.78) with the GWAS lead SNP rs2251219 

and display a high CADD score of 11.3, supporting STAB1 as promising target gene for 

neuropsychiatric disorders, especially bipolar disorder. Noteworthy, additional non-synonymous LD 

SNPs associated with meQTLs in the 3p21.1 GWAS candidate region, display high CADD and GERP++ 
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scores and could be considered as potential susceptibility variants (e.g. SNP rs1029871, NEK4 

p.P225A, CADD 29.2, GERP++ 5.9; SNP rs678, ITIH1 p.E585V, CADD 17.2, GERP++ 5.3).  

My explorations highlight several potential rSNPs within the GWAS candidate loci on chromosome 

1q31.2 (RGS1 gene locus) and 3p21.1 (PRBM1 gene locus) based on their allelic alteration of TFBSs, 

strong enhancer marks, DNaseI-hypersensitive sites and gene expression. The allelic alteration of 

TFBSs by potential rSNPs is likely to result in changes of the binding affinities of TFs and thereby gene 

transcription or splicing processes. Notably, rSNPs extend the allelic spectrum of disease genes and 

may explain a substantial fraction of the missing heritability. 

 

4.8 Outlook 

The rapidly growing number of catalogs of QTLs provides deeper insights into the functional impact 

of regulatory variation and epigenetic processes in neuropsychiatric disorders (Westra & Franke 

2014; Albert & Kruglyak 2015; Januar et al. 2015; Kundaje et al. 2015). The Roadmap Epigenetics 

Project of the US National Institute of Health has generated the most comprehensive human 

epigenomic landscape across the largest collection of primary cells and tissues (Kundaje et al. 2015), 

which provides the key to integrate genomic variability with regulatory processes in a spatial and 

temporal context. However, our understanding of the exact mechanisms by which epigenetic 

changes modify phenotype is still very limited and further experimental work is necessary. 

Large sample sizes and tissue collections will be crucial to ensure that no relevant QTLs will be 

missed, especially the trans-acting variants, whose effects are likely to be small. To find more trans-

QTLs, meta-analyses are required to scale up QTL studies. These meta-analyses will further provide a 

higher-resolution overview of the downstream effects of common and rare SNPs and will permit 

causal inference (Westra & Franke 2014). Larger tissue and cell-type specific data sets will specify the 

cell-type specific QTL effects. To address this need, the Roadmap Epigenomics Consortium has linked 

epigenomic data to genetic information and produced reference epigenomes for 127 tissue and cell-

types (Kundaje et al. 2015; Romanoski et al. 2015). It is important to generate QTL maps under a 

variety of physiologically important conditions to ensure that the relevant biology is captured (Albert 

& Kruglyak 2015). The examination of changes in the disease over time and longitudinal epigenetic 

data at various points in time is crucial. The optimum would involve a longitudinal study of disease-

associated tissue of patients collected prior to disease onset and followed up at multiple times 

throughout the course of the disease. A number of such studies are currently in progress (Pembrey et 

al. 2014).  
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The connections along the causal chain from DNA variant to altered expression and trait variation is 

complex and the identification of large catalogs of causal variants that underlie meQTLs or eQTLs still 

remains a major challenge (Albert & Kruglyak 2015). To maximize the chance to link GWAS hits with 

intermediate QTLs, it is necessary to map QTLs in disease-associated tissues (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium 2014; Torres et al. 2014). Currently, all QTL studies 

focusing on common brain disorder used postmortem brain tissue (cf. Table 6-2) to measure 

methylation and expression levels what entails several limitations. Fresh frozen hippocampal brain 

tissue would be the first choice to perform QTL analyses to study neuropsychiatric disorders. 

Alternatively, if tissues are difficult to obtain or if they represent complex mixtures of cell-types, such 

as brain tissues, differentiated induced pluripotent stem (iPSC) cells provide a promising option 

(Sterneckert et al. 2014). In addition, to prioritize putative causal links between DNA variation, 

expression and phenotypes further development of advanced data integration will be required. 

Another important factor arises from the recent and rather rapid advances in technology, which 

ultimately enabled the acquisition of huge epigenomic data. NGS and microarray technology now 

offer an option for automated high-throughput data generation and allow mapping of DNA 

methylation at a high genome-wide resolution and in a large number of samples (Laird 2010). The 

HM450 array is the most popular platform to profile DNA methylation. However, the platform does 

not differentiate between methylation and 5-Hydroxymethylcytosine (5hmC). This seems to be a 

limitation as 5hmC appears to be abundant in brain tissue (Szulwach et al. 2011; Lister et al. 2013) 

and has recently been discovered to play a critical role in dynamic regulation of genes silenced by 

methylation (Bhutani et al. 2011; Numata et al. 2012). Furthermore, 5hmC has been implicated in 

neurodevelopment and could be particularly important in neuropsychiatric disorders (Tseng et al. 

2014). Recent studies hypothesize that positive correlation between CpG methylation and gene 

expression levels is due to 5hmC as it has been shown that 5hmC has activating effects on 

transcription (Yu et al. 2012; Banovich et al. 2014). Histone acetylation and chromatin marks are 

other epigenetic modifications, which seem to play an important role in the regulation of gene 

expression. Histone mark combinations show distinct levels of DNA methylation and predict 

differences in RNA expression levels that are not reflected in DNA methylation (Kundaje et al. 2015). 

ChIP-Seq studies permit the targeting of pertinent transcription factors that regulate gene expression 

within susceptibility loci (Bennett et al. 2015). All these results will inform the identification and 

refinement of molecular networks that can lead to neuropsychiatric disorders and are influenced by 

their pathology. 

Most published eQTL mapping studies have measured gene expression levels using microarray 

technology (Westra & Franke 2014) and there are also several eQTL studies available which used the 
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HT12v3 array (Schurmann et al. 2012; Westra et al. 2013; Schramm et al. 2014). However, the 

HT13v3 array has been designed to measure whole gene expression and has limitations to 

differentiate gene isoforms (Pickrell et al. 2010). Recent advances in RNA sequencing (RNAseq) 

enable the relatively unbiased measurements of expression levels across the entire length of a 

transcript (Wang et al. 2009). RNAseq comprehensively covers of the entire transcriptome including 

transcript isoforms, splicing aberrations and RNA-editing modifications (Liang et al. 2013). In 

addition, RNAseq offers a higher resolution of gene expression quantification than microarrays 

(Westra & Franke 2014) and allows better mapping of cis-eQTLs within exons (Montgomery et al. 

2010; Westra & Franke 2014). 

Considering the high complexity of the brain and neuropsychiatric disorders including epilepsy, 

autism spectrum disorder, bipolar disorder and schizophrenia, integrative functional genomic studies 

improve the prospects to dissect the complex gene regulation processes in human brain disorders. 

My study has integrated high-density data sets of SNPs, CpG methylation and gene expression on a 

genome wide level from the unique resource of fresh frozen human epileptic brain tissue. It was 

demonstrated that methylation as well as expression levels are affected by genetic variation at a 

large number of loci across the genome. The presented results provide an initial basis for 

understanding how genetic variance in humans influences epigenetic marks and expression and 

forms the basis for further comprehensive analyses.  
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6. APPENDIX 

6.1 Clinical parameters of 115 mTLE patients 

Parameters including gender, pathology and drug therapy are presented in percentage values. Age at 

epilepsy surgery in years and age at seizure onset in years are presented in mean ± SEM values. 

Biopsy specimens were analyzed according to international standards and the diagnostic 

classification was established by an experienced neuropathologist according to international criteria 

(Becker et al. 2003; Blumcke et al. 2007). The hippocampi were stratified according to the 

pathological pattern of the patient into two groups: Ammon’s horn sclerosis (segmental neuronal cell 

loss and concomitant astrogliosis and microglia activation) and lesion associated (cortical dysplasia or 

tumors). 

Table 6-1: Distribution of clinical parameters within sample group. 

Number of mTLE patients 

Gender (male vs. female) 

Age at seizure onset in years 

Drug therapy (Sodium-channel blockers monotherapy vs. levetiracetam 

combinations vs. non-levetiracetam combinations) 

Age at epilepsy surgery in years 

Pathology (Ammon’s horn sclerosis vs. lesion associated) 

115 

52.2% vs. 47.8% 

11.1 ± 8.7 

19.1% vs. 36.6% vs. 44.3% 

 

31.5 ± 14.2 

68.7% vs. 31.3% 

 

6.2 Confirmation analyses of cis-meQTLs and cis-eQTLs in hippocampal brain 

tissue and whole blood cells 

In recent years, most meQTL studies which assess methylation levels of postmortem brain tissue and 

whole peripheral blood cells used the Infinium Human Methylation27 BeadChip (HM27; Gibbs et al. 

2010; Zhang et al. 2010; Numata et al. 2012; Gamazon et al. 2013; Smith et al. 2014; Numata et al. 

2014), while only few used the HM450 array in different blood cell lines (Gutierrez-Arcelus et al. 

2013; Banovich et al. 2014). 

eQTL studies which assess expression levels of postmortem brain tissue use different arrays to profile 

mRNA transcript in comparison with my analysis (Gibbs et al. 2010; Gamazon et al. 2013; Ramasamy 

et al. 2014; Kim et al. 2014). As confirmation criteria the significant cis-eQTL SNPs from the four 

studies had to be within 1 Mbps of the mRNA transcription site. Additionally, the SNPs had to be in 

LD of r2 > 0.2 with my cis-eQTL SNPs. An eQTL analysis in whole blood cell samples was performed 

using also the Illumina HumanHT-12 v3 (HT12v3) expression BeadChip (Schramm et al. 2014) and a 

meta-eQTL analysis in whole blood cells was performed by restricting their analysis to sequences 
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present on the HT12v3 platform (Westra et al. 2013). The previous meQTL and eQTL studies are 

described in Table 6-2. 



 

 
 

Table 6-2: Reference meQTL and eQTL studies exploited for confirmation analyses. 

Epigenetic 
study 

Reference Statistics Array type Tissue-/Cell-type Number of individuals 
in QTL analyses 

Phenotypic trait* 

Methylation Banovich et al. 2014 cis-meQTL HM450 Blood, LCLs 64 
none specific 
phenotypic trait 

Methylation Smith et al. 2014 cis-meQTL HM27 
Whole blood & 4 brain 
regions, postmortem 
(CRBLM, FCTX, PONS, TCTX)  

90 (blood), 105 
(CRBLM), 111 (FCTX), 
106 (PONS), 125 (TCTX) 

none specific 
phenotypic trait 

Methylation Numata et al. 2012 cis- & trans-meQTL HM27 Brain, postmortem (PFC) 108 
none specific 
phenotypic trait 

Methylation 
& Expression 

Numata et al. 2014 
cis-meQTL, correlation 
methylation/expression 

HM27 & IL Human HT-
12 v3 

a
 

Brain, postmortem (DLPFC) 
216 (106 with 
schizophrenia, 110 non-
psychiatric controls) 

Schizophrenia 

Methylation 
& Expression 

Gamazon et al. 2013 
cis-meQTL & cis-eQTL, 
correlation 
methylation/expression 

HM27 & Affy Human 
Gene 1.0 ST 

Brain, postmortem (CRBLM) 
153 (132 for correlation 
analysis) 

Bipolar disorder 

Methylation 
& Expression 

Gutierrez-Arcelus et 
al. 2013 

cis- meQTL & cis-eQTL, 
correlation 
methylation/expression 

HM450 & RNAseq 
Blood, fibroblasts, LCLs, T-
cells 

107-183 (fibroblasts), 
11-185 (LCLs), 66-186 
(T-cells) 

none specific 
phenotypic trait 

Methylation 
& Expression 

Bell et al. 2011 
cis- & trans meQTL, 
correlation 
methylation/expression 

HM27 & RNAseq 
b
 Blood, LCLs 

77 (69 for correlation 
analysis) 

none specific 
phenotypic trait 

Methylation 
& Expression 

Zhang et al. 2010 
cis- & trans meQTL, 
correlation 
methylation/expression 

HM27 & Affy 
HGU95Av2 

c
 

Brain, postmortem (CRBLM) 
153 (45 for correlation 
analysis) 

none specific 
phenotypic trait 

Methylation 
& Expression 

Gibbs et al. 2010 
cis- & trans-meQTL, cis- & 
trans-eQTL, correlation 
methylation/expression 

HM27 & IL HumanRef-8 
Brain, 4 regions, postmortem 
(CRBLM, FCTX, PONS, TCTX) 

150 (from each human 
brain region) 

none specific 
phenotypic trait 

Expression Ramasamy et al. 2014 cis- & trans-eQTL Human exon 1.0 ST 
Brain, 10 regions, 
postmortem 

d
 

134 
Parkinson’s disease 
and other brain 
disorders 

Expression Kim et al. 2014 
Meta-analysis (5 studies), 
cis-eQTL 

RNAseq, IL Human 49k 
oligo, IL HumanRef-8 v2, 
Affy HG-U133a 

Brain, postmortem (FCTX, 
TCTX) 

424 (235 in FCTX, 189 in 
FCTX 6 TCTX) 

Psychiatric disorders 
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Table 6-2 (continued): Reference meQTL and eQTL studies exploited for confirmation analyses.  

Epigenetic 
study 

Reference Statistics Array type Tissue-/Cell-type Number of individuals Phenotypic trait* 

Expression Schramm et al. 2014 cis- & trans eQTL  IL Human HT-12 v3 Whole Blood 890 
Immune response & 
metabolic traits 

Expression Westra et al. 2013
 e

 
Meta-analysis (7 studies), 
cis- & trans-eQTL 

IL Human HT-12 v3, IL 
Human HT-12 v4, IL 
HumanRef-8 v2 

Whole Blood 5,311 
Type 1 diabetes & 
cholesterol 
metabolism 

Abbreviations: eQTL, expression quantitative trait loci; meQTL, methylation quantitative trait loci; HM27, Illumina Human Methylation27k BeadChip; HM450, Illumina Human Methylation450k 

BeadChip; IL, Illumina; Affy, Affymetrix; RNA seq, RNA sequencing; CRBLM, cerebellum; DLPFC, dorsolateral prefrontal cortex; FCTX, frontal cortex; PFC, prefrontal cortex; PONS, caudal pons; TCTX, 

temporal cortex; LCL, lymphoblastoid cell line. *Selections of traits from those highlighted in the given paper are shown; meQTLs and eQTLs are often compared to many more traits. 
a
 Numata et 

al. (2014) utilized previously published expression data from the DLPFC obtained using HumanHT-12_V3 Illumina BeadArrays as described in detail in Ye et al. (2012). 
b
 Bell et al. (2011) used the 

RNA-sequencing data which were obtained for LCLs from 69 individuals in the study from Pickrell et al. (2010). 
c
 Zhang et al. (2010) used expression data from cerebellum for 45 of the same 

individuals, available from the SMRI Online Genomics Database. 
d
 The ten human brain regions from Ramasamy et al. (2014) included cerebellar cortex (CRBL), frontal cortex (FCTX), hippocampus 

(HIPP), inferior olivary nucleus (sub-dissected from the medulla, MEDU), occipital cortex (OCTX), putamen (PUTM), substantia nigra (SNIG), temporal cortex (TCTX), thalamus (THAL), intralobular 

white matter (WHMT). 
e
 Westra et al. (2013) represents the largest eQTL meta-analysis so far. 
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6.3 Master regulatory loci of trans-meQTL SNPs 

Table 6-3: Master regulatory sites – trans-meQTL SNPs with simultaneous impact on the methylation of at least four genes. 

SNP Chr SNP SNP Pos Gene of SNP CpG Chr CpG CpG Pos Gene of CpG FDR 

rs12137847 1 218227046 RP11-152L7.1(20.0k) cg27508046 12 124249428 DNAH10 1.78E-03 

 1 218227046 RP11-152L7.1(20.0k) cg17892401 7 32529540 LSM5 1.16E-02 

 1 218227046 RP11-152L7.1(20.0k) cg03026929 6 32806028 TAP2 3.48E-02 

 1 218227046 RP11-152L7.1(20.0k) cg22684443 3 169756200 GPR160 4.90E-02 

rs12464646 2 45339491 NA cg09603795 10 75256221 RP11-137L10.6 2.87E-02 

 2 45339491 NA cg07805911 7 818287 HEATR2 3.74E-02 

 2 45339491 NA cg11637718 16 4029254 ADCY9 3.98E-02 

 2 45339491 NA cg00299396 11 115483607 AP000997.1(15.2k) 4.43E-02 

 2 45339491 NA cg05262711 16 2807476 SRRM2 4.92E-02 

rs73944570 2 104844126 NA cg14061772 12 73266969 AC131213.1(82.5k) 3.01E-03 

 2 104844126 NA cg20701799 3 10549576 ATP2B2 1.23E-02 

 2 104844126 NA cg22538778 12 63294404 PPM1H 4.22E-02 

 2 104844126 NA cg14047244 19 2457194 GADD45B(18.9k) 4.40E-02 

rs114267096 6 31572801 AIF1(10.2k) cg26221494 8 575388 ERICH1 5.10E-03 

 6 31572801 AIF1(10.2k) cg20814026 2 71205520 AC007040.11 1.32E-02 

 6 31572801 AIF1(10.2k) cg21685048 2 17771856 VSNL1 2.93E-02 

 6 31572801 AIF1(10.2k) cg14720996 3 130278864 COL6A6(0.3k) 4.78E-02 

rs59758536 7 83391843 NA cg12615916 1 227505854 CDC42BPA 5.03E-04 

 7 83391843 NA cg10519543 7 47694732 C7orf65(0.1k) 1.83E-03 

 7 83391843 NA cg13642142 9 139572213 AGPAT2 4.59E-03 

 7 83391843 NA cg04512931 17 43341971 MAP3K14 2.49E-02 

 7 83391843 NA cg19600667 4 6030497 JAKMIP1 4.80E-02 

 7 83391843 NA cg17013990 1 161091682 DEDD 4.94E-02 

rs3920533 11 32297640 NA cg24870476 1 221910211 DUSP10 3.14E-04 

 11 32297640 NA cg18496271 19 1388932 NDUFS7 2.29E-02 
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Table 6-3 (continued): Master regulatory sites – trans-meQTL SNPs with simultaneous impact on the methylation of at least four genes. 

SNP Chr SNP SNP Pos Gene of SNP CpG Chr CpG CpG Pos Gene of CpG FDR 

 11 32297640 NA cg11931953 7 4781767 FOXK1 4.44E-02 

 11 32297640 NA cg03906031 11 72489173 ARAP1 4.52E-02 

rs1273196 14 64739505 SYNE2(46.3k) cg08822494 15 88279757 RP11-648K4.2(32.7k) 9.61E-04 

 14 64739505 SYNE2(46.3k) cg01845013 14 80697777 DIO2-AS1 1.18E-02 

 14 64739505 SYNE2(46.3k) cg18450582 7 95546539 DYNC1I1 1.71E-02 

 14 64739505 SYNE2(46.3k) cg26714129 8 142310710 SLC45A4 2.27E-02 

 14 64739505 SYNE2(46.3k) cg11377054 13 112189885 RP11-65D24.2(50.7k) 2.30E-02 

 14 64739505 SYNE2(46.3k) cg21484956 12 77273469 RP11-461F16.3 2.46E-02 

chr19:40667344:D 19 40667344 MAP3K10(30.3k) cg08008562 1 154530682 UBE2Q1 3.02E-02 

 19 40667344 MAP3K10(30.3k) cg04322363 3 159757071 CTD-2049J23.2 4.39E-02 

 19 40667344 MAP3K10(30.3k) cg10487970 2 63277030 OTX1(0.2k) 4.46E-02 

 19 40667344 MAP3K10(30.3k) cg22539294 3 167033938 ZBBX 4.57E-02 
Abbreviations: SNP, SNP of the significant trans-meQTLs in hippocampal brain tissue; Chr SNP, chromosome of the respective SNP; SNP Pos, base-pair position of SNP in hippocampal brain tissue; 

Gene of SNP, gene which contains the SNP site; CpG, Illumina annotation of the CpG dinucleotide; Chr CpG, chromosome of the respective CpG; CpG Pos, cytosine base-pair position of CpG site; 

Gene of CpG, gene which contains the CpG site; FDR, significant FDR for a SNP-CpG pair in hippocampal brain tissue samples. All annotations refer to genome build hg19. 
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6.4 QQ-plots of QTL analyses 

6.4.1 QQ-plots of meQTL analysis 

 

Figure 6-1: QQ-plot of CpG methylation in 115 hippocampal brain tissue samples and 496 blood cell samples. 

QQ-plots in 115 hippocampal brain tissue samples (left side) and 496 blood cell samples (right side). Distribution of cis-

meQTLs (± 1 Mbps) is in red; distribution of trans-meQTLs is in blue. 

 

6.4.2 QQ-plots of imeQTL analysis 

 

Figure 6-2: QQ-plot of CpG methylation in 269 parent-offspring trios (heterozygote test). 

QQ-plots in 269 parent-offspring trios of the imeQTL heterozygote test. Distribution of cis-imeQTLs (± 1 Mbps) is in red; 

distribution of trans-imeQTLs is in blue. 
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Figure 6-3: QQ-plot of CpG methylation in 269 parent-offspring trios (maternal and paternal imeQTL analysis). 

QQ-plots in 269 parent-offspring trios of the maternal imeQTL analysis (left side) and the paternal imeQTL analysis (right 

side). Distribution of cis-imeQTLs (± 1 Mbps) is in red; distribution of trans-imeQTLs is in blue. 

 

6.4.3 QQ-plot of eQTL analysis 

 

Figure 6-4: QQ-plot of mRNA expression in 115 hippocampal brain tissue samples. 

Distribution of cis-eQTLs (± 1 Mbps) is in red; distribution of trans-eQTLs is in blue. 
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