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1.		Abstract		

	

																				Blood	 vessels	 transport	 oxygen	 and	 nutrients	 within	 the	 body.	

However,	 blood	 vessels	 also	 nourish	 cancer.	 Numerous	 evidences	 indicate	

uniformly	 towards	 the	 fact	 that	 tumors	 cannot	 grow	 without	 access	 to	 and	

recruitment	of	blood	vessels,	a	process	widely	known	as	tumor	angiogenesis.	It	

has	 been	 well	 described	 that	 endothelial	 cell	 migration	 and	 proliferation	 is	

primarily	 regulated	 by	 VEGF-A	 binding	 to	 its	 receptor	 VEGFR2.	 However	

molecular	mechanisms	that	control	 the	shift	 in	angiogenic	switch	 in	Non	Small	

Cell	Lung	Cancer	remain	poorly	understood	till	date.	In	this	PhD	thesis	we	have	

identified	a	novel	autocrine	feed-forward	loop	active	in	the	tumor	where	tumor-

cell	 autonomous	VEGF:VEGFR2	 feed	 forward	 loop	 triggers	 signal	 amplification	

substantially	amplifying	the	pro-angiogenic	signal	required	for	establishing	fully	

angiogenic	 tumors	 in	 lung	 cancer.	 In	 20%	 of	 lung	 cancer	 patients	 this	 feed	

forward	loop	was	active	as	the	level	of	VEGF:	VEGFR2	binding	in	tumor	cells	and	

directly	 correlated	 with	 tumor	 angiogenesis.	 Disruption	 of	 this	 feed	 forward	

loop	 using	 inhibitors	 against	 VEGFR2	 or	 knockdown	was	 sufficient	 to	 prevent	

tumor	 growth	 in	 vivo.	 Furthermore,	 inhibition	 of	 tumor	 cell	 VEGFR2	 induced	

feedback	 activation	 of	 the	 IRS/MAPK	 signalling	 pathway	 switching	 the	 tumor	

cells	 from	 an	 angiogenic	 to	 a	 proliferative	 phenotype.	 Combined	

pharmacological	 inhibition	of	VEGFR2	with	ZD6474	and	MEK	with	PD0325901	
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resulted	in	dramatic	tumor	shrinkage.	We	thereby	propose	that	high	expression	

of	 tumor	 VEGF:VEGFR2	 can	 serve	 as	 a	 predictive	 biomarker	 for	 therapeutic	

efficacy	of	dual	VEGFR2/MEK	inhibition	in	the	patients	with	NSCLC.		

																				Our	next	project	was	 to	 investigate	 the	role	of	VEGFR2	 in	 the	 tumor	

microenvironment	 using	 cancer	 cells,	 which	 do	 not	 have	 a	 high	 expression	 of	

VEGFR2.	 In	 most	 cancers,	 tumor	 vasculature	 is	 leaky,	 disorganized	 with	 a	

chaotic	 morphology	 resulting	 in	 a	 hostile	 tumor	 microenvironment	

characterized	 by	 increased	 hypoxia	 and	 high	 interstitial	 fluid	 pressure.	 These	

abnormal	vessels	interfere	with	effective	delivery	of	drugs	and	supports	tumor	

progression	and	resistance	 to	 treatment.	The	 traditional	 concept	of	using	anti-

angiogenic	 therapy	 to	 eradicate	 tumors	 by	 starving	 them	 from	 oxygen	 and	

nutrient	 supply	by	destroying	existing	vessels	has	not	 seen	much	success.	One	

reason	 for	 this	 failure	 can	 be	 attributed	 to	 the	 vessel-leakiness	 hindering	

homogeneous	drug	delivery	within	the	tumor.	Alternative	strong	evidences	are	

emerging	that	transient	application	of	anti-angiogenic	agents	can	normalize	the	

aberrant	 tumor	 vasculature	 and	 that	 cytotoxic	 therapy	 given	 during	 this	

normalization	window	might	have	the	best	outcome.	Yet	there	remains	a	lack	of	

clarity	 about	 how	 to	 optimize	 scheduling	 such	drug	 combinations.	 In	 this	 PhD	

thesis,	 we	 observed	 that	 short-term	 treatment	 with	 the	 VEGFR	 /	 PDGFR	

inhibitor	PTK787	or	VEGFR2	 inhibitor	ZD6474	 initiated	a	 transient	window	of	

improved	blood	flow	using	[15O]	H2O	Positron	Emission	Tomography	(PET)	in	a	

preclinical	mouse	model	of	Non	Small	Cell	Lung	Cancer.	This	improvement	was	

associated	 with	 reduced	 vessel	 leakiness	 and	 enhanced	 pericyte	 coverage.	

Initiation	 of	 cytotoxic	 treatment	 with	 erlotinib	 during	 this	 normalization	
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window	 resulted	 in	 improved	 treatment	 efficacy.	 Additionally	 intermittent	

PTK787	 treatment	 also	 facilitated	 long-term	 tumor	 regression.	 Concisely,	 our	

findings	 offer	 strong	 evidence	 that	 short-term	 anti-angiogenic	 therapy	 can	

promote	 transient	 vessel	 normalization	 that	 can	 improve	 the	 delivery	 and	

efficacy	of	a	targeted	cytotoxic	drug.	

																				In	summary,	VEGFR2	expressed	on	tumor	cells	plays	a	pivotal	role	in	

driving	 tumor	 angiogenesis	 and	 the	 same	 receptor	 expressed	 in	 the	 tumor	

microenvironment	 is	 relevant	 for	 normalization	 of	 tumor	 vasculature.	 Hence	

VEGFR2	 can	 serve	 as	 an	 effective	 therapeutic	 target,	 which	 may	 lead	 to	

eradication	of	tumors	or	survival	advantage	in	advanced	NSCLC	patients	 in	the	

clinic.	
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2.		Zusammenfassung	

	

Blutgefäße	 transportieren	 Sauerstoff	 und	 Nährstoffe	 im	 Körper.	 Damit	

unterstützen	 Blutgefäße	 aber	 auch	 das	 Wachstum	 von	 Tumoren.	 Zahlreiche	

Studien	deuten	darauf	hin,	dass	Tumore	nicht	ohne	Zugang	zu	Blutgefäßen	bzw.		

der	Neubildung	von	Blutgefäßen,	einem	Prozess,	der	unter	Angiogenese	bekannt	

ist,	 wachsen	 können.	 Es	 konnte	 gezeigt	 werden,	 dass	 die	 Migration	 und	

Ausbreitung	der	Endothelzellen	hauptsächlich	durch	die	Bindung	von	VEGF-A	an	

seinen	 Rezeptor	 VEGFR2	 reguliert	 wird.	 Allerdings	 sind	 die	 molekularen	

Mechanismen,	 die	 den	 Übergang	 des	 angiogenen	 –	 das	 Wachstum	 der	

Tumorgefäße	 stimulierenden	 -	 Schalters	 im	 nicht-kleinzelligen	

Bronchialkarzinomen	 steuern,	 zum	 jetzigen	 Zeitpunkt	 kaum	 verstanden.	 In	

dieser	 Doktorarbeit	 haben	 wir	 eine	 neue	 autokrine	 Rückkopplungsschleife	

identifiziert,	 die	 in	 den	 Tumorzellen	 aktiv	 ist.	 Diese	 autonome	 VEGF:VEGFR2	

„Feed-Forward“	Schleife	löst	eine	Signalverstärkung	aus,	die	das	pro-angiogene	

Signal,	 das	 zur	 Erschaffung	 	 von	 angiogenen	 Tumoren	 in	 Lungenkrebs	

notwendig	 ist,	 wesentlich	 verstärkt.	 Wir	 konnten	 zeigen,	 dass	 bei	 20%	 der	

Patienten	 mit	 Lungenkrebs	 diese	 Rückkopplungsschleife	 aktiv	 ist.	 Das	

Unterbrechen	 dieser	 „Feed-Forward“	 Schleife	 durch	 VEGFR2-Inhibitoren	 oder	

Gen-Knock-down	 war	 in	 vivo	 ausreichend	 das	 Wachstum	 des	 Tumors	 zu	

verhindern.	 Weiterhin	 hat	 die	 Inhibition	 des	 tumoreigenen	 VEGFR2	 die	
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Aktivierung	 eines	 zweiten	 Signalweges,	 des	 IRS/MAPK	 Signalweges	 induziert,	

woraufhin	 die	 Tumorzellen	 von	 einem	 angiogenen	 zu	 einem	 proliferativen	

Phänotyp	 wechselten.	 Eine	 kombinierte	 pharmakologische	 Inhibition	 von	

VEGFR2	 mit	 ZD6474	 und	 MEK	 mit	 PD0325901	 führte	 zu	 einer	 deutlichen	

Schrumpfung	des	Tumors.	Wir	konnten	damit	zeigen,	dass	eine	hohe	Expression	

des	 tumoreigenen	 VEGF:VEGFR2	 als	 Biomarker	 für	 die	 therapeutische	

Wirksamkeit	der	kombinierten	VEGFR2/	MEK	Inhibition	in	Patienten	mit	nicht-

kleinzelligen	 Bronchialkarzinom	 dient.	 	 In	 unserem	 nächsten	 Projekt	

untersuchten	wir	die	Rolle	von	VEGFR2	in	der	Tumorumgebung.	In	den	meisten	

Krebsarten	sind	die	Blutgefäße	durchlässig,	nicht	organisiert	und	besitzen	eine	

chaotische	 Gestalt,	 die	 zu	 einer	 Tumormikroumgebung	 führen,	 die	 durch	

Hypoxie	 und	 hohen	 Druck	 der	 Interstitialflüssigkeit	 charakterisiert	 ist.	 Diese	

abnormalen	 Blutgefäße	 behindern	 die	 effektive	 Medikamentenzufuhr	 und	

unterstützen	 die	 Entwicklung	 von	 Resistenzmechanismen	 des	 Tumors	 gegen	

eine	 Behandlung.	 Die	 bisherige	 Methode	 –	 	 der	 Einsatz	 einer	 anti-angiogene	

Therapie	um	den	Tumor	abzutöten,	indem	man	vorhandene	Blutzellen	zerstört	

um	 so	 seine	 Sauerstoff-	 und	 Nährstoffzufuhr	 	 zu	 unterbrechen	 –	 hat	 keine	

großen	 Erfolge	 gezeigt.	 Ein	 Grund	 für	 dieses	 Versagen	 ist	 den	 undichten	

Blutgefäßen	zuschreiben,	die	eine	effiziente	Zufuhr	der	Medikamente	innerhalb	

des	 Tumors	 verhindern.	 Andererseits	 gibt	 es	 Hinweise	 dafür,	 dass	 eine	

kurzzeitige	 Anwendung	 von	 anti-angiogenen	 Medikamenten	 die	 abweichende	

Morphologie	 der	 Blutgefäße	 des	 Tumors	 kurzzeitig	 normalisieren	 kann,	 und	

somit	 eine	 zytotoxische	 Therapie	 in	 diesem	 Zeitfenster	 der	 Normalisierung		

möglicherweise	 den	 bestmöglichen	 Erfolg	 erzielen	 kann.	 Es	 war	 allerdings	
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bislang	 ungewiss,	 wie	 man	 eine	 derartige	 Medikamentenkombination	 optimal	

planen	soll.	In	dieser	Doktorarbeit	haben	wir	unter	Verwendung	von	[15O]	H2O	

Positron	 Emission	 Tomographie	 (PET)	 in	 vorklinischen	 Mausmodellen	 nicht-

kleinzelliger	Bronchialkarzinome	beobachtet,	dass	eine	kurzzeitige	Behandlung	

mit	dem	VEGFR	/	PDGFR	 Inhibitor	PTK787	zu	einer	 transienten	Verbesserung	

der	 Durchblutung	 führt.	 Diese	 Verbesserung	 war	 mit	 einer	 verminderten	

Durchlässigkeit	 der	 Blutgefäße	 und	 einer	 verbesserten	 Perizytenabdeckung	

verbunden.	 Der	 Start	 der	 zytotoxischen	 Behandlung	 mit	 Erlotinib	 innerhalb	

dieses	 Zeitfensters	 resultierte	 in	 einer	 gesteigerten	 Behandlungswirksamkeit.		

Zusätzliche	 zwischenzeitliche	 Behandlung	 mit	 PTK787	 verbesserte	 den	

langfristigen	 Rückgang	 des	 Tumors.	 Zusammenfassend	 zeigen	 unsere	

Untersuchungsergebnisse,	 dass	 eine	 kurzzeitige	 anti-angiogene	 Therapie	 zu	

einer	 kurzzeitigen	 Blutgefäßnormalisierung	 führen	 kann,	 die	 die	 Zufuhr	 und	

Wirksamkeit		eines	abgestimmten	zytotoxischen	Medikaments	verbessern	kann.	

Die	Expression	von	VEGFR2	in	Tumorzellen	spielt	eine	ausschlaggebende	Rolle	

bei	 der	 Tumorangiogenese.	 Derselbe	 Rezeptor	 ist	 in	 der	 Tumorumgebung	

ausschlaggebend	 für	 die	 Blutgefäßnormalisierung	 des	 Tumors.	 VEGFR2	 	 kann	

somit	 als	 ein	 effektive,	 therapeutische	 Zielstruktur	 dienen,	 dessen	 gezielte	

Inhibierung	 zur	 Schrumpfung	 des	 Tumors	 und	 möglicherweise	 zur	 Erhöhung	

der	 Überlebenschancen	 bei	 Patienten	mit	 fortgeschrittenen	 nicht-kleinzelligen	

Bronchialkarzinomen	führt.	

	

	

	



	 14	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 15	

	

	

3.		List	of	publications	

	

Ι .	

Sampurna	Chatterjee,	Lukas	C.	Heukamp,	Maike	Siobal,	Jakob	Schöttle,	Caroline	

Wieczorek,	Martin	Peifer,	Davide	Frasca,	Mirjam	Koker,	Katharina	König,	Lydia	

Meder,	 Daniel	 Rauh,	 Reinhard	 Buettner,	 Jürgen	 Wolf,	 Rolf	 A.	 Brekken,	 Bernd	

Neumaier,	Gerhard	Christofori,	Roman	K.	Thomas	and	Roland	T.	Ullrich.	

Tumor	VEGF:VEGFR2	autocrine	feed-forward	loop	triggers	angiogenesis	in	

lung	cancer.		

Journal	of	Clinical	Investigation.	2013,	1732-1740.	

	

ΙΙ .	

Sampurna	Chatterjee,	Caroline	Wieczorek,	Jakob	Schöttle,	Maike	Siobal,	Yvonne	

Hinze,	 Thomas	 Franz,	 Alexandra	 Florin,	 Joanna	 Adamczak,	 Lukas	 C.	 Heukamp,	

Bernd	Neumaier	and	Roland	T.	Ullrich.		

Transient	 antiangiogenic	 treatment	 improves	 delivery	 of	 cytotoxic	

compounds	and	therapeutic	outcome	in	lung	cancer.		

Cancer	Research.	2014,	2816-2824.		

	

	

	



	 16	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 17	

3.1.		Individual	contributions:	

	

Ι .	

																				All	 experiments	 have	 been	 planned,	 executed	 and	 analyzed	 by	 me	

unless	 and	 otherwise	 stated.	 In	 this	 project	 I	 designed	 the	 concept	 along	with	

Gerhard	Christofori,	Roman	Thomas	and	Roland	Ullrich.	 I	did	the	 in	vitro	work	

including	 ELISA,	 immunoprecipitaion,	 Western	 blotting,	 FACS	 analysis.	

Additionally	all	 in	vivo	work	was	also	done	by	me	including	preparation	of	cell	

suspension	from	multiple	NSCLC	cell	lines,	xenografts,	treatment	of	mice	by	oral	

gavage,	tumor	volume	measurement,	PET	measurements,	BLI	measurements	in	

the	 orthotopic	 murine	 lung	 cancer	 model,	 explantation	 of	 the	 xenografts	 and	

preparing	 tumor	 lysates.	 Lukas	Heukamp,	 Reinhard	 Buettner	 and	 Jürgen	Wolf	

gave	me	substantial	support	in	immunohistochemistry	and	analyzing	patient	as	

well	as	xenografts	samples.	Davide	Frasca	assisted	them.	Rolf	Brekken	provided	

us	 an	 antibody	 that	 specifically	 recognizes	VEGF	binding	 to	VEGFR2	on	 tumor	

cells.	Bernd	Neumaier	 synthesized	 the	 radiotracers	FLT	and	MET.	Daniel	Rauh	

provided	 us	 the	 structural	 configuration	 of	 resistance	 gatekeeper	mutation	 of	

VEGFR2.	 I	 received	 considerable	 support	 from	 Maike	 Siobal	 in	 establishing	

stable	knockdown	and	the	mutation	in	VEGFR2.	Along	with	her	I	repeated	some	

ELISA	 and	 Western	 Blots.	 Jakob	 Schöttle	 sometimes	 assisted	 me	 in	 PET	

measurements.	Caroline	Wieczorek	performed	proliferation	assays	 in	different	

cell	 lines.	 Martin	 Peifer	 provided	 the	 Affymetrix	 U133A	 array.	 Mirjam	 Koker	

provided	technical	support	in	establishing	IP.	Katharina	König	supplied	us	with	

a	 murine	 Ras-mutated	 lung	 cancer	 model	 in	 mice.	 Lydia	 Meder	 performed	
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VEGFR2	 FACS	 measurement.	 I	 analyzed	 all	 data	 sometimes	 aided	 by	 Roland	

Ullrich	and	performed	all	statistical	analysis.	Roland	Ullrich	and	Roman	Thomas	

helped	in	editing	and	correcting	the	manuscript.	

	

ΙΙ .		

																				All	 experiments	 have	 been	 planned,	 executed	 and	 analyzed	 by	 me	

unless	 and	 otherwise	 stated.	 I	 designed	 the	 project	with	Roland	Ullrich.	 All	 in	

vivo	work	were	carried	out	by	me	including	preparation	of	cell	suspension	from	

multiple	NSCLC	 cell	 lines,	 xenografts,	 treatment	of	mice	by	oral	 gavage,	 tumor	

volume	measurement,	 measuring	 blood	 perfusion	 in	 tumors	 and	 proliferation	

using	[15O]	H2O	and	[18F]	FLT	PET	measurements	respectively,	injection	of	FITC	

Dextran	 via	 tail	 vein,	 	 perfusion	 of	 mice	 and	 explantation	 of	 the	 xenografts,		

preparation	 tumor	 lysates	 and	 Western	 Blotting.	 I	 also	 performed	

Immunofluorescence	 with	 tumor	 sections.	 Additionally	 I	 calculated	 pericyte	

coverage	 in	 the	 tumor	 blood	 vessels.	 Caroline	 Wieczorek	 supported	 me	 in	

repeating	H2O	PET.	 Jakob	Schöttle	 analyzed	 some	H2O	PET	data	 together	with	

me.	Maike	Siobal	provided	technical	support	for	Western	Blotting.	Thomas	Franz	

and	Yvonne	Hinze	measured	erlotinib	concentration	within	the	tumors	via	mass	

spectrometric	analysis.	Lukas	Heukamp	and	Alexandra	Florin	provided	support	

in	 immunohistology	 of	 tumor	 samples.	 Together	 with	 Joanna	 Adamczak	 I	

performed	 perfusion	 of	 mice	 with	 4%	 paraformaldehyde.	 Bernd	 Neumaier	

synthesized	the	radiotracers	H2O	and	FLT.	I	collected	and	analyzed	all	data,	did	

the	statistical	analysis	and	wrote	the	manuscript.	It	was	corrected	and	approved	

by	Roland	Ullrich	and	all	co-authors.	
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4.		Introduction:	

	

4.1.		Overview	of	lung	cancer	

	

																				Cancer	 is	 a	 disease	 attributed	 by	 uncontrolled	 growth	 of	 abnormal	

cells.	Lung	cancer	is	by	far	the	second	most	common	cancer	and	a	leading	cause	

of	death	due	to	cancer	in	men	and	women	worldwide	[1].	Lung	cancer	incidence	

rates	are	highest	in	North	America	and	Europe	accounting	for	26%	of	all	female	

cancer	deaths	and	28%	of	all	male	cancer	deaths	in	2013	in	The	United	States.	In	

Europe,	lung	cancer	mortality	rate	was	16.8%	in	females	and	26.1%	in	males	in	

2013.	 In	 Germany	 lung	 cancer	 remains	 the	 commonest	 cause	 of	 death	 due	 to	

cancer	among	men	accounting	 for	25%	of	 the	deaths	while	 it	 is	 the	 third	most	

common	in	women	(14%).	Lung	cancer	is	the	most	common	or	the	second	most	

common	cancer	 in	Asia	except	 India,	 Japan,	Mongolia	and	Taiwan	with	highest	

incidence	 rates	 in	 both	 males	 and	 females	 in	 Korea,	 Philippines,	 China	 and	

Singapore	and	the	lowest	in	India	and	Sri	Lanka.	Lung	cancer	mortality	rates	are	

much	 higher	 for	 males	 than	 females	 in	 Asia	 exceeding	 40	 per	 100,000	

population	in	Philippines,	Singapore	and	Korea	and	37	per	100,000	in	China	and	

Taiwan.	Females	have	the	highest	mortality	rate	in	Singapore	(18	per	100,000)	

followed	by	Taiwan	and	China	(16/100,000).	
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4.2.		Classification,	causes	and	symptoms	

																				The	 two	major	 forms	of	 lung	cancer	are	Non	Small	Cell	Lung	Cancer	

(NSCLC)	and	Small	Cell	Lung	Cancer	 (SCLC).	NSCLC	alone	contributes	 to	about	

80	 –	 85%	 of	 all	 lung	 cancers	 [2].	 NSCLC	 consists	 of	 three	 main	 histological	

subtypes:		

adenocarcinoma	(ADC),	squamous	cell	carcinoma	(SCC)	and	large	cell	carcinoma	

[3],	[4].	Adenocarcinoma	constitutes	to	about	to	40%	of	all	lung	cancers	arising	

from	 cells	 having	 glandular	 or	 secretory	 properties	 and	 often	 found	 in	 the	

peripheral	 lung	 tissue.	 Around	 30%	 of	 all	 lung	 cancers	 are	 squamous	 cell	

carcinomas	arising	from	multilayered	squamous	lining	cells	usually	occurring	at	

the	 centre	 of	 the	 lung	near	 to	 the	bronchi.	 Large	 cell	 carcinoma	has	 a	 vaguely	

defined	identity	and	can	appear	anywhere	in	the	lungs.		

																				Substances	 and	 exposures	 that	 might	 have	 different	 levels	 of	

cancer-causing	 potential	 and	 may	 cause	 cancer	 are	 called	 carcinogens.	

Smoking	 including	 passive	 smoking	 is	 associated	 with	 all	 major	 histological	

types	 of	 lung	 cancer	 but	most	 strongly	 linked	 to	 small-cell	 and	 squamous-cell	

carcinomas	than	adenocarcinomas	[5].	 In	contrast	adenocarcinoma	 is	 the	most	

common	 form	 of	 lung	 cancer	 in	 non	 smokers	 [6].	 Cigarette	 smoke	 contains	

several	thousand	chemicals	with	over	60	identified	carcinogens	the	most	potent	

being	polycyclic	hydrocarbons	(PAHs)	like	the	tobacco	specific	nicotine-derived	

nitrosoaminoketone	(NNK).	

																				Chronic	 exposure	 to	 radon	 is	 nowadays	 known	 to	 be	 the	 second	

leading	 cause	 of	 lung	 cancer	 after	 smoking	 [7].	 Exposure	 to	 certain	 chemicals	

including	asbestos,	arsenic,	silica	and	air	pollution	(diesel	exhaust,	use	of	coal	for	
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cooking)	 can	 cause	 lung	 cancer.	 Cancer	 survivors	 who	 received	 radiation	 or	

chemotherapy	are	at	higher	risk	of	lung	cancer.		

																				Factors	 that	 are	 unrelated	 to	 smoking	 include	 genetic	 (for	 e.g.	 p53	

mutation),	family	history	of	lung	cancer	or	viral	(people	with	HIV	or	AIDS	are	at	

a	higher	risk	of	lung	cancer	because	of	their	lower	immunity)	factors.	

	

	

	
Figure	1:	Evolution	of	lung	cancer	
Smoking	 related	 discolored	 patches	 mostly	 develop	 along	 the	 central	 airways	 of	 the	
lungs.	These	are	usually	squamous-cell	or	small-cell	carcinoma.	Most	tumors	unrelated	
to	 smoking	 are	 adenocarcinomas	 that	 arise	 in	 the	 peripheral	 airways.	 Genetic	 and	
epigenetic	 changes	 lead	 to	 aberrant	 pathway	 activation	 and	 cellular	 functions	
(uncontrolled	 proliferation	 and	 apoptosis)	 resulting	 in	 premalignant	 patches	 with	
clones	 and	 subclones	 of	 mutations	 (e.g.	 ,	 KRAS,	 p53,	 EGFR	 etc)	 and	 loss	 of	
heterozygosity.	(Image	adapted	from	[2])	
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																				Signs	or	symptoms	are	not	common	in	the	early	stages	of	lung	cancer.	

However,	symptoms	develop	as	the	disease	progresses,	which	include	

persisting	 cough	 associated	 with	 a	 change	 in	 colour	 of	 sputum	 (coughing	 up	

mucus	and	blood),	

persistent	breathlessness	with	chest	pain	while	breathing,	

feeling	tired	or	lack	of	energy	

loss	of	appetite	and	rapid	weight	loss	

recurrent	lung	problems	including	infections	such	as	bronchitis	and	pneumonia.	

	

NSCLC	is	divided	into	five	stages:	

Stage	0	-	the	cancer	is	located	within	the	inner	lining	of	the	lung	

Stage	1	-	the	cancer	is	in	the	lung	but	has	not	spreaded	to	nearby	lymph	nodes	

Stage	 2	 -	 the	 cancer	 has	 spreaded	 to	 some	 lymph	 nodes	 located	 near	 to	 the	

original	tumor.	

Stage	3	–	the	cancer	has	spreaded	to	the	nearby	tissue	or	lymph	nodes	far	away	

(locally	advanced	disease)	

Stage	4	–	the	cancer	has	spreaded	to	both	lungs	and	/	or	to	another	organ	for	e.g.	

liver	or	brain	(most	advanced	stage	of	lung	cancer).	

																				Depending	 on	 the	 stage	 of	 cancer	 diagnosis,	 NSCLC	 patients	 can	 be	

treated	by	surgery,	chemotherapy,	radiation	or	a	combination	of	those.	However	

success	 with	 traditional	 therapeutic	 regimens	 has	 reached	 a	 plateau	 and	

therefore	new	treatment	approaches	are	needed	to	be	developed	[8].	
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4.3.		Tumor	angiogenesis	

																				Sprouting	of	new	capillaries	from	existing	blood	vessels	is	defined	as	

angiogenesis	 [9].	 Physiological	 angiogenesis	 is	 important	 for	 growth	 and	

development,	 reproduction	 and	 wound	 repair.	 Proliferation	 and	 migration	 of	

endothelial	 cells	 undergoing	 DNA	 synthesis	 are	 common	 hallmarks	 of	

angiogenesis	[10].	

																				About	 30	 years	 ago	 Judah	 Folkman	 pointed	 out	 that	 tumor	 growth	

cannot	proceed	without	access	 to	and	recruitment	of	new	blood	vessels	 [11]	a	

process	 defined	 as	 ‘tumor	 angiogenesis’	 a	 term	 first	 coined	 by	 Shubi	 Phillipe	

[12].	Combination	of	genetic	and	epigenetic	alterations	activating	oncogenes	or	

inhibiting	 tumor	 suppressor	 genes	 lead	 to	 tumor	 development.	 Pathological	

angiogenesis	 is	 important	 for	 dormant	 tumors	 to	 grow	 beyond	 a	microscopic	

size,	maintain	metabolic	activity,	survive	and	metastasize	[13].	The	tumor	mass	

attains	 a	 critical	 size	 because	 of	 uncontrolled	 proliferation	 and	 tumor	 cells	

located	far	away	from	blood	vessel	lack	supply	of	nutrients	and	oxygen	thereby	

turning	apoptotic,	 necrotic	or	hypoxic.	However,	 to	overcome	 this,	 tumor	 cells	

communicate	with	the	microenvironment	secreting	substances	first	described	as	

tumor	angiogenesis	 factors	 [14]	by	 Judah	Folkman	which	 induces	 sprouting	of	

new	capillaries	from	existing	vessels[15].	This	well	defined,	multistep	transition	

from	pre-vascular	hyperplasia	to	densely	vascularized	and	proliferating	tumor	is	

referred	to	as	the	‚angiogenic	switch’	[16].	

																				In	the	past	decades	an	assemblage	of	pro-angiogenic	agents	have	been	

identified	 for	 example	 Vascular	 Endothelial	 Growth	 Factor	 (VEGF)	 [17],	

Fibroblast	 Growth	 Factor	 (FGF)	 [18],	 Platelet-derived	 Growth	 Factor	 (PDGF)	
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[19],	angiopoietins	[20],	 interleukins	[21].	Simultaneously	an	arsenal	of	 factors	

opposing	 angiogenesis	 (anti-angiogenic	 agents)	 have	 been	 characterized	 for	

example	endostatins	[22],	thrombospondin	[23],	angiostatins	[24].		

	

	

Figure	2:	Angiogenic	switch	in	cancer	
Angiogenic	 switch	 refers	 to	 a	 discreet	 transition	 from	 dormant	 hyperplasia	 to	
vascularized,	 malignant	 tumor	 where	 the	 balance	 between	 pro-angiogenic	 factors	
(VEGF,	FGF,	PDGF	etc)	and	anti-angiogenic	factors	(thrombospondins,	angiostatins	etc)	
is	 shifted	 in	 favour	 of	 a	 pro-angiogenic	 outcome.	 (Image	 modified	 from	
www.medscape.org)	
	
	
																				The	most	widely	studied	pro-angiogenic	polypeptide	VEGF	belongs	to	

the	mammalian	glycoprotein	family,	which	includes	all	the	types	VEGF-A,	VEGF-

B,	VEGF-C,	VEGF-D,	and	Placenta	Growth	Factor	(PLGF)	[25].	Best	characterized	

subtype	 is	VEGF-A	which	 is	 expressed	 in	different	 isoforms	 like	121,	165,	189	

and	206	amino	acid	proteins	with	VEGF-A	165	being	 the	predominant	 isoform	

[26].	 VEGF	 is	 highly	 expressed	 in	 hypoxic	 condition	 and	 most	 commonly	

overexpressed	in	almost	all	kinds	of	human	cancers[21,	27].	The	classical	VEGF	

receptors	are	 the	RTK	VEGFRs	–	VEGFR1	(also	known	as	FLT1),	VEGFR2	(also	

known	as	KDR	and	FLK1)	and	VEGFR3	(also	known	as	FLT4)	[28].	VEGFR1	is	a	

kinase	 impaired	 RTK	 and	 has	 a	 strong	 binding	 affinity	 for	 VEGF	 [29,	 30];	 in	
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contrast,	 the	 downstream	 intracellular	 signaling	 is	much	 stronger	 and	distinct	

when	VEGF	binds	to	VEGFR2	activating	a	broad	range	of	downstream	signaling	

cascades	 and	 inducing	 diverse	 biological	 responses	 [31].	 VEGFR2	 is	 the	

predominant	RTK	 that	 drives	VEGF	mediated	 angiogenesis	 in	 endothelial	 cells	

[32].	Nowadays	there	are	several	reports	confirming	that	a	variety	of	tumor	cells	

also	 express	 VEGFR2,	 which	 plays	 a	 pivotal	 role	 in	 mediating	 VEGF	 signaling	

[33].	 VEGF-C	 and	 VEGF-D	 bind	 preferentially	 to	 VEGFR3	 which	 is	 mostly	

expressed	on	 lymphatic	endothelial	cells	 [26].	VEGFR3	plays	an	 important	role	

in	lymphangiogenesis	[34]	and	nowadays	also	known	to	induce	lymphatic	vessel	

sprouting	 thereby	 enhancing	metastasis	 in	 some	 tumors	 for	 e.g.	 	 human	 large	

cell	 carcinoma	 of	 the	 lung	 [35].	 Neuropillins	 (NRP-1	 and	 NRP-2)	 primarily	

function	as	co-receptors	to	the	VEGFRs	[36].	They	form	complexes	with	VEGFR1	

and	 VEGFR2	 increasing	 their	 affinity	 for	 VEGF-A	 165	 [37].	 Neuropillins	 have	

been	also	known	to	be	expressed	on	both	endothelial	and	tumor	cells	[38].		

	

Figure	3:	Overview	of	VEGF	family	members	and	their	receptors	
The	mammalian	family	of	VEGF	ligands	constitutes	of	VEGF-A,	VEGF-B,	VEGF-C,	VEGF-D	
and	 PLGF.	 They	 bind	 to	 the	 VEGF	 receptor	 (VEGFR)	 tyrosine	 kinases	 activating	
downstream	signaling.	VEGF-A	binds	 to	both	VEGFR1	and	VEGFR2.	VEGF-B	and	PLGF	
binds	 mainly	 to	 VEGFR1.	 VEGF-C	 and	 VEGF-D	 specifically	 binds	 to	 VEGFR3	 and	
sometimes	 to	 VEGFR2.	 NRP-1	 and	 NRP-2	 act	 as	 co-receptors	 supporting	 binding	 of	
VEGF	to	VEGFRs.	(Figure	adapted	from[26])		
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Figure	4:	Schematic	representation	of	tumor	angiogenesis	
Tumor	cells	secrete	VEGF,	which	binds	to	VEGFR2	and	NRP-1/NRP-2	on	the	endothelial	
cells.	Matrix	metalloproteinases	(MMPs)	are	secreted	simultaneously	by	endothelial	and	
the	VEGF-stimulated	tumor	cells.	MMPs	help	in	activating	other	pro-angiogenic	factors	
from	 the	 stroma	 of	 tumor	microenvironment.	While	 angiopoietin1	 (ANGPT1)	 tries	 to	
normalize	the	blood	vessels,	angiopoietin2	(ANGPT2)	released	by	tumor	cells	degrades	
the	 vascular	 basement	 membrane	 inducing	 migration	 of	 endothelial	 cells	 promoting	
sprouting	of	new	vessels.	Other	pro-angiogenic	agents	 like	FGF	and	PDGF	can	activate	
their	 receptors	 and	 facilitate	 tumor	 angiogenesis	 in	 similar	manner.	 (Figure	 Adapted	
from	[9])	
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																				The	 spontaneous	 progression	 from	 non-angiogenic	 hyperplasia	 to	

vascularized	 tumor	 is	 defined	 as	 the	 angiogenic	 switch.	 Angiogenic	 switch	

happens	when	the	balance	between	pro-	and	anti-angiogenic	agents	is	shifted	in	

the	favour	of	the	pro-angiogenic	factors.		

	

	
Figure	5:	Angiogenic	switch	
In	 a	 healthy	 organism	 angiogenesis	 is	 tightly	 controlled	 and	 limited	 to	 physiological	
phenomena	like	wound	healing,	ovulation	etc.	However	during	tumor	development	the	
equilibrium	between	pro-	and	anti-	angiogenic	factors	are	shifted	towards	high	levels	of	
pro-angiogenic	 factors	 favouring	 the	 balance	 towards	 angiogenesis	 triggering	 the	
‘angiogenic	 switch’.	 This	 switch	 disrupts	 the	 delicate	 balance	 facilitating	 sprouting	 of	
new	vessels	and	growth	of	tumor.	(Figure	adapted	from	[39])	
	
	

The	 onset	 of	 angiogenic	 switch	 and	 extent	 of	 angiogenesis	 are	 critical	

determinants	 of	 tumor	 progression	 [40].	 Molecular	 mechanisms	 underlying	

angiogenic	 switch	 is	 being	 studied	 extensively.	 Angiogenesis	 depends	 upon	 a	

complex	 interaction	 among	 tumor	 cells,	 endothelial	 cells	 and	 the	 tumor	

microenvironment	 including	 macrophages,	 stromal	 cells	 and	 pericytes	 in	 the	
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microvessels.	Tumor	angiogenesis	on	a	molecular	basis	relies	on	a	coordinated	

interplay	 among	 pro-angiogenic	 factors	 (VEGF,	 FGF,	 PDGF	 etc),	 coordination	

between	migrating	tip	cells	and	proliferative	stalk	cells	regulated	by	crosstalks	

between	 intracellular	 signaling	 molecules	 like	 VEGFR2	 and	 NOTCH	 [41].	 All	

these	 together	 activate	 the	 PI3K/AKT/mTOR	 pathway	 stimulating	 VEGF	

production	 and	 regulating	 cancer-cell	 induced	 angiogenesis	 [42-45].	 Fast	

proliferating	tumor	cells	create	hypoxic	regions	within	the	tumor	subsequently	

activating	Hypoxia	Inducible	Factor	1	(HIF-1α)	which	has	been	identified	as	the	

transcriptional	 factor	 responsible	 for	 upregulation	 of	 VEGF	 under	 hypoxic	

conditions	inducing	the	angiogenic	switch	[46,	47].	Macrophages	cultured	under	

hypoxic	conditions	release	PDGF	and	FGF,	which	can	stimulate	endothelial	cells	

modulating	 angiogenesis	 [48].	 Recruitment	 of	 host	 blood	 vessels	 to	 the	 tumor	

sites	is	additionally	triggered	by	genetic	alterations	(activation	of	oncogenes	or	

loss	 of	 tumor	 suppressor	 genes)	 [49].	 Potent	 oncogenes	 can	 interfere	 with	

expressions	of	both	pro-	and	anti-angiogenic	 factors	 in	 tumors	 [50],	 (Table	1).	

For	example,	oncogenic	ras	mutants	are	known	to	upregulate	VEGF	production	

simultaneously	 downregulating	 thrombospondin-1(TSP-1)	 [51].	 Tumor	

suppressor	gene	p53	inhibits	angiogenesis	by	inducing	expression	of	TSP-1	[52].	

Another	tumor	suppression	gene	PTEN	impede	tumor	angiogenesis	by	inhibiting	

PI3K	 [43];	 simultaneously	 loss	 or	 inactivation	 of	 PTEN	 enhances	 tumor	

angiogenesis	 [53].	 All	 these	 cumulatively	 results	 in	 a	 leaky	 tumor	 vasculature	

which	 is	 highly	 permeable,	 tortuous	 with	 increased	 interstitial	 pressure	 that	

might	interfere	with	targeted	delivery	of	cytotoxic	agents	[54].	
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Table	 1:	 Role	 of	 several	 oncogenes	 as	 regulators	 of	 tumor	 angiogenesis	
(modified	from	[50])	
	
	

																				Hence	selective	 inhibition	or	destruction	of	 tumor	vasculature	might	

lead	 to	 tumor	 regression.	 Since	 VEGF	 has	 been	 recognized	 as	 one	 of	 the	 key	

drivers	of	angiogenesis,	studies	over	the	past	20	years	have	provided	significant	

development	of	therapeutic	approaches	that	include	antibodies	against	VEGF	or	

VEGFRs	 and	 tyrosine	 kinase	 inhibitors	 (TKIs)	 against	 VEGFRs.	 Bevacizumab	

(BV),	a	humanized	monoclonal	antibody	against	VEGF	was	first	reported	in	1997	

[55].	 FDA	 has	 approved	 it	 for	 clinical	 trials	 involving	 patients	with	metastatic	

colorectal	carcinoma	(CRC),	NSCLC	and	metastatic	breast	cancer	in	combination	

with	 chemotherapy	 [56-58].	 Addition	 of	 BV	 to	 a	 standard	 double-agent	

chemotherapy	regimen	resulted	in	a	significant	improvement	in	overall	survival	

(OV)	and	progression-free	survival	(PFS)	in	patients	with	NSCLC	and	metastatic	

CRC	[56,	57].	VEGFR	TKIs	such	as	sorafenib	and	sunitinib	have	been	approved	
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for	clinical	trials	and	they	have	shown	efficacy	as	single	agents	in	patients	with	

renal	 cell	 carcinoma	(RCC)	 [59-61].	Gefitinib	and	erlotinib,	 two	small	molecule	

TKIs	of	endothelial	growth	 factor	receptor	(EGFR)	which	 is	overexpressed	and	

mutated	 in	 solid	 tumors	 including	 NSCLC,	 are	 currently	 in	 clinical	 trials	 for	

patients	 with	 advanced	 NSCLC	 [62-66].	 It	 is	 known	 that	 EGFR	 activation	 can	

regulate	VEGF	production	and	increase	VEGFR	expression	in	preclinical	models	

and	 increased	 VEGF	 expression	 has	 been	 associated	 with	 resistance	 to	 EGFR	

inhibition	 in	 xenograft	model	 of	NSCLC	 [67-69].	Hence	 dual	 targeting	 of	 EGFR	

and	 VEGF	 by	 combining	 erlotinib	 with	 bevacizumab	 has	 been	 a	 particularly	

appealing	 therapeutic	 strategy	 in	 the	 clinic.	 A	 randomized	 Phase	 III	 trial	

comparing	BV	therapy	with	or	without	erlotinib	significantly	improved	median	

PFS	 in	 the	 combination	 group	 [70].	 However,	 modest	 impact	 on	 OS	 and	

increased	toxicity	associated	with	the	combination	treatment	indicates	towards	

the	fact	that	this	two-drug	treatment	regimen	might	not	lead	to	new	therapeutic	

developments	 in	 the	 clinic.	 Vandetinib	 (ZD6474,	 Zactima;	 AstraZeneca)	

competes	with	ATP	binding	in	the	catalytic	domain	of	several	tyrosine	kinases.	It	

is	a	potent	inhibitor	of	VEGFR2	(50%	inhibitory	concentration	IC50	40	nM)	[71].	

Additionally	 it	 is	 also	 inhibits	VEGFR3	 (IC50	 110	nM)	 and	EGFR	 (IC50	 500	nM)	

[71].	 Based	 on	 promising	 results	 from	 Phase	 I	 studies	with	 good	 tolerance	 of	

vandetinib	upto	300mg	daily	 [72-74],	 few	Phase	 II	 and	Phase	 III	 (ZEAL,	 ZEST,	

ZODIAC)	 trials	 using	 vandetinib	 as	 monotherapy	 and	 in	 combination	 with	

chemotherapy	 were	 conducted	 in	 advanced	 NSCLC	 patients	 [75,	 76].	 No	

statistically	significant	PFS	or	OS	was	observed	in	patients.	However	the	ZODIAC	

study	met	its	primary	endpoint	by	showing	statistically	significant	improvement	
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in	 the	 median	 PFS	 with	 8.9	 months	 for	 the	 arm	 vandetanib	 +	 chemotherapy	

compared	to	4	months	for	the	chemotherapy	only	arm.	Adverse	side	effects	were	

similar	 in	 all	 three	 trials	most	 common	 being	 diarrhoea,	 rash,	 fatigue,	 nausea	

and	hypertension.	To	date,	the	OS	benefit	 in	patients	from	only	anti-angiogenic	

therapies	 remains	 modest.	 One	 major	 reason	 for	 disappointing	 results	 in	 the	

clinic	is	that	there	are	no	validated	biomarker	for	anti-angiogenic	drugs	[77].	If	

we	 can	 identify	 specific	 biomarkers	 to	 select	 patients	 who	 can	 benefit	 from	

specific	anti-angiogenic	therapies	then	the	survival	advantage	in	those	patients	

can	 be	 comparable	 to	 that	 from	 other	 targeted	 therapies	 [78].	 In	 order	 to	

achieve	this	aim	we	need	a	better	understanding	of	the	molecular	mechanisms	

that	 control	 the	 balance	 between	 anti-	 and	 pro-angiogenic	 factors	 and	 the	

resistance	mechanisms	of	tumors	against	different	antiangiogenic	agents	[77,	79,	

80].		

																				Bevacizumab	 only	 provided	 a	 survival	 advantage	 when	 used	 with	

chemotherapy	 or	 immune	 therapy	 in	 NSCLC,	 CRC,	 RCC,	 breast	 cancer	 [56-58,	

81].	 This	might	 seem	 to	 be	 paradoxical	 since	 the	 original	 target	 of	 angiogenic	

therapy	 was	 to	 destroy	 tumor	 vasculature	 and	 chemotherapy	 or	 immune	

therapy	needs	functional	blood	vessels	to	deliver	the	drugs	into	the	tumor.	The	

hypothesis	 of	 ‘normalization	 of	 tumor	 vasculature’	 suggested	 by	 Rakesh	 Jain	

might	resolve	this	paradox	[54].	Unlike	normal	vasculature,	tumor	blood	vessels	

are	leaky,	tortuous,	dilated	and	chaotic	[82-86].	The	vessel	walls	are	leaky	with	

inconsistent	 basement	 membrane	 and	 less	 pericyte	 coverage	 [87-89].	 This	

leakiness	 leads	 to	 extravasation	of	 plasma	proteins	 increasing	 interstitial	 fluid	

pressure	within	 the	 tumor.	This	abnormal	phenotype	of	 the	 tumor	vasculature	
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supports	tumor	progression,	aggravates	tumor	hypoxia,	interferes	with	delivery	

of	drugs	and	renders	the	cancer	cells	resistant	to	traditional	treatment	regimens	

[90].	 The	 original	 concept	 of	 anti-angiogenic	 treatment	 was	 to	 inhibit	 tumor	

vessel	 growth	 thereby	 abrogating	 supply	 of	 nutrients	 and	 oxygen	 to	 the	 cells.	

However,	anti-angiogenic	treatment	using	DC101	(an	antibody	against	VEGFR2)	

resulted	in	a	reduction	of	tumor	vessels	but	increased	tumor	invasiveness	[91].	

This	 is	 probably	 due	 to	 increased	 hypoxia	 within	 the	 tumor	 during	 anti-

angiogenic	therapy	[92].	Higher	doses	of	drugs	to	increase	tumor	concentration	

of	drugs	have	not	shown	much	success	in	the	clinic.	Since	there	are	holes	in	the	

walls	of	the	vessels	it	does	not	matter	how	much	drug	is	administered.	The	drug	

and	 oxygen	 remain	 concentrated	 in	 some	 regions	 and	 do	 not	 reach	 the	

inaccessible	 areas	 of	 the	 tumor.	 However	 if	 the	 vessels	 can	 be	 repaired	 and	

made	functional	after	anti-angiogenic	therapy,	then	that	would	result	in	targeted	

and	 effective	 drug	 delivery.	 Here	 lies	 the	 rationale	 of	 normalizing	 tumor	

vasculature	 rather	 than	 destroying	 the	 blood	 vessels,	which	might	 explain	 the	

better	 treatment	 response	 in	 patients	 receiving	 chemotherapy	 with	 anti-

angiogenic	 therapy.	 The	 concept	 of	 normalizing	 tumor	 vasculature	 using	

different	 anti-angiogenic	 agents	 has	 already	 been	 verified	 in	 xenograft	models	

[93-96].	Clinical	data	from	patients	with	rectal	carcinoma	showed	that	blocking	

VEGF	using	BV	could	 indeed	normalize	 tumor	vessels	 [97,	98].	Most	 intriguing	

evidence	in	favour	of	vessel	normalization	came	from	change	in	blood	perfusion	

data	 from	 clinic	where	 anti-VEGF	 therapy	 improved	 tumor	 blood	 perfusion	 in	

some	 patients.	 Infact,	 patients	 with	 maximum	 vessel	 normalization	 and	

increased	 blood	 perfusion	 had	 the	 highest	 PFS	 and	 OS[99-101].	 These	
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compelling	 pre-clinical	 and	 clinical	 evidences	 indicate	 clearly	 towards	 the	 fact	

that	 anti-angiogenic	 treatment	 which	 were	 originally	 developed	 to	 starve	

tumors	can	also	be	used	to	normalize	tumor	vessels	improving	blood	perfusion	

and	 better	 delivery	 of	 cytotoxic	 drugs	 thereby	 prolonging	 patient	 survival.	

However,	 this	 raises	 a	 few	 sets	 of	 questions	 for	 example:	 When	 does	 vessel	

normalization	begin?	What	 is	the	optimal	dose	and	schedule	of	anti-angiogenic	

drugs	to	induce	vessel	normalization?	How	long	does	the	vasculature	remains	in	

this	well	 fortified	state?	Does	normalized	vessels	 indeed	deliver	drugs	 into	 the	

tumor	 more	 efficiently?	 Is	 there	 any	 imaging	 technique	 other	 than	 magnetic	

resonance	 imaging	 (MRI)	 that	 can	 be	 used	 in	 the	 clinic	 to	 define	 and	 follow	

tumor	perfusion	after	administration	of	anti-angiogenic	therapy?	

	

	

	
Figure	6:	Hypothesis	of	vascular	normalization		
Vasculature	 can	 be:	 normal	 (left):	 equilibrium	 between	 angiogenic	 stimulators	 and	
inhibitors	 reinforces	 normal	 pathological	 angiogenesis	 with	 organized	 network	 of	
matured	 vessels	 branching	 into	 smaller	 ones,	 abnormal	 (middle):	 an	 imbalance	
created	 by	 a	 surplus	 of	 pro-angiogenic	 factors	 like	 VEGF,	 PDGF	 results	 in	 aberrant	
vessel	 sprouting	 creating	 a	 structurally	 and	 functionally	 abnormal	 vasculature,	
normalized	 (right):	 prudent	 anti-angiogenic	 therapy	 can	 initially	 prune	 chaotic	
sprouts	 improving	 the	 structure	 and	 function	 of	 existing	 vasculature	 leading	 to	
‘vascular	normalization’.	(Figure	modified	from	[78])	
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5.		Present	Investigation	

‘VEGFR2	as	a	biomarker	and	effective	therapeutic	target	in	Non	

Small	Cell	Lung	Cancer.’	
	

5.1.	 	 	Tumor	VEGF:VEGFR2	autocrine	feed-forward	loop	triggers	

angiogenesis	in	lung	cancer.		
	
																					Molecular	 mechanisms	 within	 the	 cancer	 cells	 controlling	 the	

angiogenic	 switch	 remains	 poorly	 understood	 till	 date.	 Identification	 of	 a	

potential	biomarker	on	the	tumor	cells	can	be	highly	relevant	for	treating	cancer	

in	 the	 clinic.	 In	 this	 study	 we	 aimed	 to	 investigate	 the	 impact	 of	 VEGFR2	

expressed	on	tumor	cells	as	a	driver	of	angiogenic	switch	by	inhibiting	VEGFR2	

in	 tumors	 combining	 pharmacological	 perturbation	 and	 multimodal	 imaging.	

Here	 I	 present	my	 original	work	 that	 has	 been	 published	 in	 [102]	 along	with	

some	additional	results.		

	

	

Materials	and	Methods	

	

VEGFR2	expression	in	NSCLC	cell	lines		

	

A.	Affymetrix	U133A	array	

VEGFR2	expression	was	analyzed	in	53	NSCLC	cell	lines	using	Affymetrix	U133A	

arrays.	 RNA	 extraction,	 hybridization	 and	 scanning	 of	 arrays	 were	 performed	
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using	standard	procedures.	CEL	files	 from	U133A	arrays	were	preprocessed	as	

described	previously	[103].		

B.	Flow	cytometry		

Cell	 lines	H1650,	 A549,	 H1975,	 H441	 and	HCC1359	were	 stained	 for	 VEGFR2	

expression.	100,000	cells	were	fixed	with	4%	Formaldehyde	for	20	min	at	4°C,	

permeabilized	with	0.5%	saponin	 in	PBS	 for	20	min	at	4°C.	Cells	were	 stained	

with	 anti-VEGFR2	 antibody	 (clone	 55B11,	 1:100,	 Cell	 Signaling)	 for	 30	min	 at	

4°C.	 Alexa-488	 conjugated	 goat	 anti-rabbit	 antibody	 (A-11034,	 1:1000,	 Life	

technologies)	 was	 used.	 	 Data	 of	 10,000	 cells	 per	 sample	 were	 acquired	 by	 a	

FACS	Canto	(BD	Bioscience)	and	analyzed	using	FlowJo	(Tree	Star)	software.	

Cell	lines	and	reagents	

NSCLC	cell	lines	H441,	H1975,	HCC1359,	A549	and	H1650	were	purchased	from	

the	American	Type	Culture	Collection	(ATCC)	and	maintained	in	RPMI	medium	

with	10%	FCS	and	1%	(Penicillin+Streptomycin)	antibiotic.	VEGF	was	purchased	

from	Tebu-bio	 GmbH,	 ZD6474	 from	Astra-Zeneca,	 PK90	 from	Axon	Medchem,	

Torin1	 from	 Tocris	 Bioscience,	 Rapamycin	 from	 LC	 labs.	 Compounds	 were	

stored	at	-20°C	and	dissolved	in	DMSO	or	vehicle	on	a	rotating	device	at	4°C	for	

invivo	use.	

	

Lentiviral	RNAi,	retroviral	expression	and	stable	transduction	

The	VEGFR2	V916M	gatekeeper	mutation	was	introduced	into	H1975	cells	with	

a	 pBABE	 vector	 by	 site	 directed	 mutagenesis.	 Replication	 incompetent	

retroviruses	were	produced	by	co-transfection	with	the	pCL	ampho	plasmid	 in	
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HEK	293T	cells	(Orbigen,	USA)	using	TRANS-IT	(Mirus,	USA).	Hairpins	targeting	

the	 different	 genes	 were	 ordered	 from	 Sigma	 (www.sigmaaldrich.com).	

Replication	 incompetent	 lentiviruses	 were	 produced	 from	 pLKO.1	 vector	

(www.broad.mit.edu/genome_bio/trc/)	 by	 co-transfection	 with	 ∆8.9	 and	

pMGD2	in	HEK	293T	cells	(www.broadinstitute.org/rnai/trc/lib)	using	TRANS-

IT.	 Cells	 were	 transduced	 with	 polybrene	 and	 were	 selected	 with	 puromycin	

after	transduction.	

	

Western	blotting	

Western	blotting	was	performed	using	the	following	antibodies:	ß-actin	clone	C4	

(MPBiomedicals	 LLC,	USA),	 pAKT-S473	 (1:500),	 AKT	 (1:1000),	 pS6K	 (1:1000),	

S6K	 (1:1000),	 IRS-1	 (1:500),	 pERK	 (1:500),	 ERK	 (1:500),	 pVEGFR2	 (1:500),	

VEGFR2	(1:500),	VEGFR1	(1:500),	pFoxO3a	(1:500)	(Cell	Signaling	Technology,	

USA),	anti-rabbit-HRP-	and	anti-mouse-HRP-antibody	(Millipore,	Germany).	

	

Immunoprecipitation	

Protein	A/G	PLUS-Agarose	beads	(Santa	Cruz	Biotechnology,	Inc)	were	washed	

twice	 in	 PBS	 and	 resuspended	 in	 500µl	 of	 lysis	 buffer.	 Beads	 were	 incubated	

overnight	 with	 anti-PhosphoTyrosine	 antibody,	 clone	 4G10	 (1:50)	 (Millipore,	

Germany)	in	a	rotating	chamber	at	4°C.	Tubes	were	centrifuged	at	3000	rpm	for	

one	minute	 and	washed	 three	 times	 in	 ice-cold	 PBS.	 500µg	 of	 cell	 lysate	 was	

added	and	volume	was	filled	upto	1ml	with	lysis	buffer.	Tubes	were	incubated,	

centrifuged	 and	 washed	 as	 described	 previously.	 Supernatant	 was	 removed,	

beads	were	 resuspended	 in	 4x	 NuPage	 LDS	 buffer	 (Invitrogen)	 and	 heated	 at	
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80°C	for	ten	minutes.	Supernatant	was	carefully	pipetted	and	loaded	in	a	gel	for	

western	blotting.	pVEGFR2	was	used	as	the	primary	antibody.	

ELISA		

Cells	were	plated	in	6-well	plates	and	incubated	for	24	hours	in	starving	media.	

Cells	 were	 then	 stimulated	with	 40	 ng	 VEGF-A	 165	 either	 alone	 or	 after	 pre-

treatment	 with	 ZD6474	 (1	 µM)	 or	 with	 Rapamycin	 (100	 nM)	 for	 4	 hours.	

Secretion	of	VEGF	 into	 cell	 culture	 supernatants	was	measured	with	 the	VEGF	

Human	 ELISA	Kit	 from	Tebu-Bio	 GmbH	 (cat.	 No.	 ELH-VEGF-001)	 according	 to	

the	manufacturer’s	instructions.	

	

Flow	cytometry	

Cells	were	plated	in	6-well	plates	and	incubated	for	24	hours	in	starving	media.	

Cells	were	then	either	treated	with	DMSO	or	stimulated	with	40	ng	VEGF-A	165	

alone	 or	 after	 pretreatment	 with	 ZD6474	 (0.5	 and	 1	 µM)	 for	 4	 hours.	 The	

incorporated	 BrdU	was	 stained	with	 specific	 anti-BrdU	 fluorescent	 antibodies	

according	 to	 instructions	 for	 the	BrdU	Flow	Kit	 from	BD	Pharmingen	 (cat.	No.	

559619).	The	 levels	of	cell-associated	BrdU	were	then	measured	with	a	Gallios	

Flow	 cytometer	 from	 Beckman	 Coulter.	 Results	 were	 calculated	 using	 Gallios	

FACS	software.	

	

Multimodal	imaging	

A.	Positron	Emission	Tomography	(PET)		

Nude	mice	with	macroscopic	 subcutaneous	 tumors	were	 treated	with	 an	 oral	

gavage	 of	 75	 mg/kg	 ZD6474	 and	 imaged	 with	 a	 FOCUS	 microPET	 scanner	
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(Concord	 Microsystems,	 Inc.,	 Knoxville,	 TN).	 [18F]FLT	 and	 [11C]MET	 were	

synthesized	 as	 described	 previously	 [104,	 105].	 3’-deoxy-3’-fluorothymidine	

([18F]FLT)	 is	an	analogue	substrate	of	Thymidine.	Clinical	studies	have	already	

revealed	 significant	 correlation	 between	 [18F]FLT	 uptake	 and	 the	 in	 vitro	

proliferation	 marker	 Ki-67	 in	 different	 tumors	 [106,	 107].	 Nucleoside	

transporters	 on	 the	 cell	 membrane	 regulate	 its	 uptake.	 Within	 the	 cell	

Thymidine	Kinase	1	phosphorylates	[18F]FLT	to	[18F]FLT	monophosphate,	di	and	

triphosphate.	In	contrast	to	Thymidine,	only	a	very	small	proportion	of	[18F]FLT	

is	incorporated	into	the	DNA	[108].		

																				Amino	 acid	 tracer	 such	 as	 [11C]methyl-L-Methionine	 ([11C]MET)	 has	

been	 used	 for	 diagnosis	 of	 tumors.	 Increase	 in	 [11C]MET	 uptake	 within	 the	

tumors	 is	 due	 to	 increased	 transport	 mediated	 by	 L-amino	 acid	 transporters	

mediated	by	growth	factors	that	regulate	mTOR	signaling	 in	tumors	[109].	No-

carrier-added	[18F]FLT	and	[11C]MET	were	administered	 i.v.	 (tail	vein)	 into	the	

animals	with	a	dose	of	200	µCi/mouse	and	400	µCi/mouse	respectively.	[18F]FLT	

PET	 and	 [11C]MET	 PET	 imaging	 were	 performed	 60	 min	 and	 20	 min	 after	

injection	 respectively.	Data	evaluation	was	based	on	a	 region	of	 interest	 (ROI)	

analysis	of	the	entire	tumor	using	software	VINCI.	For	data	analysis	the	maximal	

voxel	radioactivity	within	 the	tumors	was	taken.	The	mediastinum	was	chosen	

as	 a	 reference	 for	 determination	 of	 uptake	 ratio,	 since	 we	 observed	 constant	

uptake	for	[18F]FLT	and	[11C]MET	in	this	region.	All	data	were	decay	corrected.		
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B.	Bioluminescence	imaging		(BLI)	

This	 optical	 imaging	 method	 depends	 on	 the	 sensitive	 detection	 of	 light	 to	

visualize	 cellular	 and	 molecular	 processes.	 Bioluminescence	 is	 a	 kind	 of	

chemiluminescence	where	 light	 energy	 is	 released	 as	 a	 result	 of	 an	 enzymatic	

reaction	 between	 luciferin,	 a	 substrate	 and	 it’s	 enzyme	 luciferase.	

Bioluminescence	has	been	observed	in	jellyfish	(Aequorea),	corals	(Tenilla)	and	

also	 several	 bacterial	 species	 (Vibrio	 fischeri).	 Most	 commonly	 used	

bioluminescence	 reporter	 in	 research	 is	 the	 D-luciferin	 from	 firefly	 (Photinus	

pyralis).	 Mammalian	 cells	 do	 not	 express	 the	 enzyme	 luciferase.	 Hence	 signal	

from	bioluminescence	imaging	can	be	unambiguously	attributed	to	the	process	

under	investigation	generating	images	with	high	signal	to	background	ratio.	

	

				A																																																																																																								B	

																									 	

Figure	7:	Principles	of	bioluminescence	imaging	
A.	 Enzyme	 luciferase	 oxidises	 luciferin	 emitting	 light	 (530-640nm)	 adapted	 from	
www.piercenet.com.	B.	 1x105	H441	cells	 expressing	 luciferase	were	 injected	as	 single	
cell	suspension	intra	venous	(IV)	via	the	tail	vein	in	our	lab.	Three	weeks	later	BLI	signal	
from	cancer	cells	in	the	lungs	as	recorded	by	Biospace	imaging	system.	
	

Luc2	DNA	was	 inserted	 in	 pBABE	 vector	 and	HEK293T	 cells	were	 transfected	

with	Luc2	construct	with	retroviral	particles.	NSCLC	cell	 lines	were	transduced	
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with	 virus	 containing	 Luc2,	 selected	 with	 antibiotics	 and	 implanted	 in	 mice.	

Analysis	of	 luciferase	gene	expression	was	performed	using	an	optical	 imaging	

system	 (Biospace,	 France).	 For	 bioluminescence	 detection,	mice	were	 injected	

intraperitoneally	with	D-luciferin	(4	mg/animal	in	200	µl	PBS)	and	images	were	

acquired	10	min	after	 luciferin	 injection.	Data	evaluation	was	performed	using	

ROI	analysis	of	BLI	images	to	determine	maximum	values	in	photons.	Data	were	

background	subtracted.	

	

Mouse	models	

All	 animal	 experiments	 and	 methodologies	 were	 approved	 in	 advance	 by	 the	

local	animal	protection	committee	and	the	local	authorities.	5x106	cells	(for	each	

tumor)	 from	 individual	 cell	 lines	 suspended	 in	 plain	 RPMI	 were	 injected	

subcutaneously	into	male	nude	mice.	Mice	with	established	tumors	(70	mm3)	or	

one	day	after	tumor	cell	inoculation	were	treated	daily	by	oral	gavage	of	ZD6474	

(75	 mg/kg,	 dissolved	 in	 sterile,	 deionised	 water	 with	 1%	 Tween	 80),	

PD0325901	 (12	 mg/kg,	 dissolved	 in	 propylene	 glycol:water	 (1:1)),	 the	

combination	 of	 ZD6474	 (75	 mg/kg)	 and	 PD0325901	 (12	 mg/kg)	 or	 vehicle	

alone.	Bevacizumab	treatment	was	given	i.p.	(twice	a	week,	5mg/kg).	Tumor	size	

was	 monitored	 by	 measuring	 perpendicular	 diameters.	 Tumor	 volumes	 were	

calculated	 by	 determination	 of	 the	 largest	 diameter	 and	 its	 perpendicular	

according	 to	 the	 equation	 [tumor	 volume	 =	 a×(b2/2)].	 The	 RasLO	 construct	

under	the	β-actin	promoter	is	followed	by	a	STOP	codon	flanked	by	LoxP	sites.	

Human	mutated	KrasVal12	as	well	as	a	fusion	molecule	consisting	of	ovalbumin,	S-

tag	 and	 luciferase	 are	 expressed	 after	 excision	 of	 the	 STOP	 codon	 by	 Cre-
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recombinase	 encoded	 in	 Adeno	 Virus.	 In	 order	 to	 induce	 tumor	 growth	

specifically	 in	 the	 lung,	107	PFU	Adeno-Cre	was	applied	 intra-nasally	 in	RasLO	

genotype	positive	mice	between	6	 to	8	weeks	of	 age	 that	had	been	previously	

anesthetized	 with	 Ketamin.	 Tumor	 progression	 or	 regression	 was	 non-

invasively	monitored	by	bioluminescence	imaging	(BLI)	(Biospace)	as	described	

before.		

	

Tumor	samples	and	immunohistochemistry	

All	 tumor	 samples	 were	 received	 from	 the	 CIO	 Biobank	 at	 the	 Institute	 of	

Pathology,	 University	 of	 Bonn,	 Germany.	 All	 tumors	 were	 clinically	 and	

pathologically	 identified	 as	 being	 the	 primary	 and	 only	 neoplastic	 lesion	 and	

classified	according	to	World	Health	Organization	(WHO)	guidelines.	3µm	thick	

sections	 of	 FFPE	 tumors	 were	 deparaffinized	 and	 antigen	 retrieval	 was	

performed	by	boiling	the	section	in	citrate	buffer	at	pH6,	or	EDTA	at	pH9	for	20	

min.	 Primary	 antibodies	 used	 were:	 VEGF	 (sc-152,	 1:100,	 pH6,	 Santa	 Cruz	

Biotech);	 VEGF	 (Bevacizumab,	 1:100,	 pH6,	 Roche;	 secondary	 anti	 human	 IgG-

FITC,	Dako),	CD31	(SZ31,	1:50,	pH6,	Dianova),	VEGFR2	(2479,	1:200,	pH9,	Cell	

signaling),	ki-67	(mib-1,	1:100,	pH6,	Thermo	scientific),	pERK	(4376,	1:50,	pH6,	

Cell	 signaling),	pMAPK	 (4631,	1:50,	pH6,	Cell	 signaling),	 IRS-1	 (ab40777,	1:50,	

pH6,	Abcam),	VEGF:VEGFR	 (GV39M,	1:2,	 culture	 supernatant),	HIF-1α	 (1:300).	

Corresponding	 secondary	 antibody	 detection	 kits	 on	murine	 tissue	were	 used	

(Histofine	Simple	Stain	Mouse	MAX	PO,	Medac,	Hamburg,	Germany)	to	minimize	

background	 and	 stained	 using	 automated	 LabVision	 Autostainer	 480S	 from	

Thermo	 Scientific.	 The	 immunofluorescent	 double	 stainings	 of	 VEGF	 and	
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VEGFR2	 was	 performed	 using	 the	 same	 primary	 antibodies	 and	 secondary	

antibodies.	 Three	 independent	 observers	 using	 a	 four-tier	 scoring	 system	

individually	 evaluated	 staining	 intensities.	 Statistical	 analysis	 was	 performed	

using	a	Fisher’s	exact	test.	

	

	

	

Results	

	

Non	 small	 cell	 lung	 cancers	 express	 VEGFR2	 differentially;	 VEGFR2	

inhibition	affects	angiogenesis	but	not	cellular	proliferation;	VEGF:VEGFR2	

signaling	 induces	 a	 downstream	 feed	 forward	 loop	 via	 VEGFR2-PI3K-

mTOR-VEGF	cascade.	

	

																				Human	 lung	 cancer	 cell	 lines	 H441,	 HCC1359	 and	 H1975	with	 high	

expression	 of	 VEGFR2	 and	 H1650,	 A549	 with	 low	 VEGFR2	 expression	 were	

chosen	 (Figure	8A).	Mice	 implanted	with	H441	and	H1975	were	 treated	with	

the	 dual	 VEGFR2/EGFR	 inhibitor	 ZD6474,	 which	 has	 a	 40-fold	 lower	 activity	

against	Flt1	[71].	Both	cell	lines	are	resistant	to	EGFR	inhibition,	either	due	to	a	

KRAS-mutation	(H441)	or	to	the	presence	of	the	T790M	gatekeeper	mutation	of	

EGFR	(H1975)	[110].	Thus,	any	therapeutic	impact	of	ZD6474	on	these	cell	lines	

is	primarily	due	to	VEGFR2	inhibition	and	cannot	be	attributed	to	 inhibition	of	

EGFR.	 In	 macroscopic	 tumors	 ZD6474	 treatment	 completely	 inhibited	

methionine	uptake	after	one	week	of	treatment,	detected	by	[11C]MET;	(Figure	

8B).	 However,	 uptake	 of	 [18F]FLT,	 a	 marker	 of	 proliferation,	 was	 slightly	

increased	(Figure	8B),	suggesting	that	 the	cells	continued	to	progress	 through	
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the	 cell	 cycle.	 Thus,	 VEGFR2	 inhibition	 seems	 to	 inhibit	 a	 VEGFR2-dependent	

signaling	 pathway	 in	 tumor	 cells	 that	 affects	 amino	 acid	 transport	 without	

influencing	cellular	proliferation	(Figure	8B).		

	

Figure	8:	VEGFR2	expression	profile	and	impact	of	VEGFR2	inhibition	in	NSCLC	
A.	VEGFR2	expression	data	from	53	NSCLC	cell	lines	from	Affymetrix	U133A	arrays.	B.	
mice	with	established	tumors	(H1975)	were	treated	with	ZD6474	and	PET	imaging	was	
performed	 on	 day	 0	 (before	 start	 of	 therapy)	 and	 at	 the	 indicated	 time	 points	 after	
treatment	(left	panels,	[18F]FLT-PET;	right	panels,	[11C]MET-PET).	
	
	
																				To	unravel	if	the	reduction	in	MET	uptake	is	specifically	due	to	VEGFR2	

inhibition,	we	 introduced	 a	 resistant	mutation	 against	 ZD6474-induced	 VEGFR2	

inhibition.	 The	 substitution	 of	 Val916	 with	 Met	 at	 the	 gatekeeper	 position	 of	

VEGFR2	creates	a	steric	clash	with	ZD6474	that	specifically	prevents	ZD6474	from	

binding	 to	 the	 VEGFR2	 binding	 pocket	 (Figure	 9A).	 This	 gatekeeper	 mutation	

(H1975	VEGFR2V916M)	was	 sufficient	 to	 abrogate	 the	 inhibitory	 effect	 of	 ZD6474	

on	MET	uptake	(Figure	9B).	The	cellular	uptake	of	methionine	is	facilitated	by	the	

LAT1	 transporter	 that	 is	 regulated	 by	 mTOR[111].	 As	 VEGF	 secretion	 is	 partly	

regulated	by	mTOR,	we	sought	to	investigate	if	VEGF-VEGFR2	signaling	induces	a	

feed-forward	 loop	 via	 mTOR.	 Consistent	 the	 postulated	 existence	 of	 a	 feed-

forward	 loop	 stimulating	VEGF	 secretion	 in	 a	VEGFR2-dependent	manner,	VEGF	

secretion	was	 strongly	 induced	 by	 addition	 of	 exogenous	 VEGF	 in	H1975,	H441	

and	 HCC1359	 (Figure	 9C)	 blunted	 by	 treatment	 with	 ZD6474	 (Figure	 9C).	 In	
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accordance	 with	 the	 hypothesis	 that	 VEGFR2-dependent	 secretion	 of	 VEGF	 is	

under	 the	 control	 of	 mTOR,	 which	 regulates	 methionine	 uptake	 via	 the	 LAT-1	

transporter[112,	 113],	 rapamycin	 treatment	 blunted	 VEGF-induced	 VEGF	

secretion	 of	 tumor	 cells	 (Figure	 9C).	 Another	 additional	 VEGFR2	 inhibitor	

PTK787		also	reduced	secretion	of	VEGF	validating	our	findings	(Figure	9C).		

	

	
Figure	9:	VEGF:VEGFR2	feed-forward	loop	in	tumor	cells	boosts	VEGF	secretion		
A.	ZD6474	 a	 classic	 Type	 I	 tyrosine	 kinase	 inhibitor	 binds	 to	 the	 hinge	 region	 of	 the	
kinase	domain	of	VEGFR2WT.	Substitution	of	Val916	by	Met	at	the	gatekeeper	position	of	
VEGFR	 creates	 a	 steric	 clash	 with	 the	 inhibitor	 preventing	 ZD6474	 from	 binding.	B.	
mice	 with	 established	 tumors	 H1975	 VEGFR2V916M	 were	 treated	 with	 ZD6474	 and	
[11C]MET-PET	 imaging	 was	 performed	 on	 day	 0	 (before	 start	 of	 therapy)	 and	 at	 the	
indicated	time	points	after	treatment.	C.	VEGF	secretion	by	H1975,	H441	and	HCC1359	
was	 measured	 in	 vitro	 by	 ELISA	 following	 stimulation	 with	 40	 ng	 VEGF	 (V).	 Cells	
pretreated	 with	 (Z=ZD6474	 1	 µM,	 Rapa=Rapamycin	 0.2	 µM,	 PIK90	 0.2	 µM,	 PTK787	
20µM,	Torin1	0.25	µM)	were	stimulated	with	40	ng	VEGF	(V).		
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																					VEGF-mediated	 stimulation	 of	 VEGFR2	 induced	 S6	 phosphorylation	

(Figure	 10A).	 Phosphorylation	 of	 S6	 coincided	 with	 the	 activation	 of	 PDK1,	

which	 might	 provide	 an	 alternative	 route	 for	 mTOR	 activation	 (Figure	

10A)[114].	 In	 accordance	 with	 the	 induction	 of	 PI3K-mTOR-VEGF	 signaling,	

PI3K	inhibition	resulted	in	reduced	VEGF	secretion	(figure	9C).		

																				Additionally,	we	detected	a	consistent	reduction	in	phosphorylation	of	

ERK	and	of	AKT	 (Figure	10A).	Thus,	under	autocrine	VEGF:VEGFR2	signaling,	

the	slight	reduction	in	tumor	growth	observed	in	response	to	VEGFR2	inhibition	

is	 likely	 to	 be	 independent	 of	 ERK-mediated	 proliferation.	 These	 results	

correlate	with	 those	 of	 our	 PET	 experiments	 showing	 a	 continuous	 uptake	 of	

[18F]FLT	 (Figure	 8B).	 In	H1975	 VEGFR2V916M	mutant	 cells,	 VEGF	 levels	were	

unaffected	after	addition	of	ZD6474	(Figure	10B).	Additionally	ZD6474	failed	to	

mediate	VEGFR2-dephosphorylation	and	its	downstream	signaling	target	mTOR	

(Figure	 10C).	 Hence	 the	 observed	 ZD6474-mediated	 effects	 were	 specifically	

due	 to	 inhibition	 of	 VEGFR2	 in	 tumor	 cells.	 In	 animal	 models,	 H1975	

VEGFR2V916M	 cells	 continued	 to	 grow	 overcoming	 tumor	 inhibiting	 effects	 of	

ZD6474	(Figure	10D).	Thus,	in	accordance	with	the	MET	PET	data,	the	ZD6474-

mediated	effects	on	 tumor	VEGF-VEGFR2-mTOR	signaling	were	predominantly	

due	to	inhibition	of	VEGFR2	on	the	tumor	cells	and	not	due	to	inhibition	of	other	

kinases	or	VEGFR2	on	endothelial	cells.		
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Figure	10:	Tumor	derived	VEGFR2	is	a	key	player	in	tumor	angiogenesis	
A.	 H1975	 and	 H441	 were	 treated	 with	 VEGF	 and	 indicated	 doses	 of	 ZD6474.	
Phosphorylation	 of	 VEGFR2	was	 determined	 by	 immunoprecipitation.	 The	 impact	 on	
activation	of	downstream	signaling	was	determined	by	immunoblotting,	employing	the	
indicated	phospho-specific	antibodies.	B.	H1975	VEGFR2V916M	mutants	pretreated	with	
the	 indicated	 dose	 of	 ZD6474	 were	 stimulated	 with	 VEGF	 and	 VEGF	 levels	 were	
measured	by	ELISA.	C.	H1975	VEGFR2V916M	was	treated	with	VEGF	and	indicated	doses	
of	ZD6474.	Phosphorylation	of	VEGFR2	was	determined	by	 immunoprecipitation.	The	
impact	 on	 activation	 of	 downstream	 signaling	 was	 determined	 by	 immunoblotting,	
employing	 the	 indicated	phospho-specific	 antibodies.	D.	H1975	 xenografts	 expressing	
the	 VEGFR2V916M	 mutant	 or	 the	 VEGFR2WT	 control	 were	 injected	 into	 nude	 mice	 and	
treated	with	 ZD6474	 or	 vehicle	 on	 day	 1	 after	 tumor	 cell	 injections.	 Tumor	 volumes	
were	recorded.	
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VEGF:VEGFR2	 signaling	 is	 a	 key	 inducer	 of	 tumor	 development	 and	

angiogenic	switch.	

	

																				VEGFR2	 was	 silenced	 with	 lentiviral	 shRNA	 in	 H1975	 and	 H441	

(Figure	 11A).	 VEGFR2	 knockdown	 did	 not	 reduce	 tumor	 cell	 proliferation	 in	

vitro	but	dramatically	reduced	secretion	of	VEGF	by	tumor	cells	 in	response	to	

hypoxia	 (Figure	 11B),	 thereby	 confirming	 that	 binding	 of	 VEGF	 to	 VEGFR2	

amplifies	VEGF	secretion	in	a	VEGFR2-dependent	manner.	VEGFR2	knockdown	

in	tumor	cells	alone	was	sufficient	to	almost	entirely	abrogate	initiation	of	tumor	

growth	in	vivo	(Figure	11C),	suggesting	that	autocrine	VEGF:VEGFR2	signaling	

in	tumor	cells	is	essential	for	tumor	development	in	vivo.	While	the	large	tumors	

transduced	with	empty	control	vector	 (H1975eV)	exhibited	a	highly	angiogenic	

phenotype	 with	 many	 CD31-positive	 blood	 vessels,	 the	 small	 residual	

H1975VEGFR2KD	 tumors	 lacked	 blood	 vessels	 almost	 completely	 (Figure	 11D).	

H1975VEGFR2KD	 tumors	 expressed	 almost	 no	 VEGF	 contrast	 to	 H1975eV	 tumors	

(Figure	 11D).	 Tumor	 derived	 (human)	 VEGF	was	 stained	 using	 bevacizumab,	

which	 showed	 that	 silencing	VEGFR2	 on	 the	 tumor	 cells	 dramatically	 reduced	

the	 secretion	 of	 tumor-derived	 VEGF	 (Figure	 11D).	 Furthermore,	 by	 staining	

with	 an	 antibody	 that	 specifically	 recognizes	 human	 VEGF	 bound	 to	 human	

VEGFR2[115],	we	could	show	that	tumor	cell-derived	VEGF	binds	to	VEGFR2	on	

tumor	cells	 in	H1975eV	but	to	a	much	lesser	degree	in	H1975VEGFR2KD	xenograft	

tumors	indicating	the	operation	of	autocrine	stimulation	in	vivo	(Figure	11D).	



	 49	

	

Figure	 11:	 VEGF:VEGFR2	 autocrine	 signaling	 is	 essential	 for	 induction	 of	 tumor	
angiogenesis	
A.	 H1975WT	 cells	 were	 stably	 transduced	 with	 lentiviral	 shRNA	 vectors	 targeting	
VEGFR2	 (shVEGFR2)	 or	 with	 empty	 vector	 control	 (eV).	 Knockdown	 efficiency	 was	
determined	by	western	blotting	(upper	panel,	Flt-1;	lower	panel,	VEGFR2).	B.	Stable	cell	
lines	 were	 cultured	 and	 quantified	 under	 normoxic	 or	 hypoxic	 conditions	 (1%	 O2).	
VEGF	 secretion	was	determined	over	 time	by	ELISA.	C.	 Stable	 cell	 lines	were	 injected	
into	nude	mice	and	tumor	growth	was	monitored	over	time.	D.	Tumors	were	harvested	
and	stained	for	pan	VEGF,	CD31,	human	VEGF	(employing	GFP-labeled	Avastin),	human	
VEGF	complexed	with	VEGFR2,	and	an	antibody	binding	VEGF	bound	to	VEGFR2.		
	

																				As	an	alternative	approach	to	determining	whether	VEGFR2	inhibition	

on	tumor	cells	can	prevent	tumor	formation,	we	treated	mice	with	the	VEGFR2	

inhibitor	ZD6474	simultaneous	to	tumor	cell	 inoculation.	Concomitant	VEGFR2	

inhibition	in	NSCLC-H1975	tumors	expressing	high	levels	of	VEGFR2	completely	
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abrogated	 the	 establishment	 of	 tumors	 in	 vivo	 (Figure	 8I),	 and	 was	

accompanied	by	a	sharp	reduction	in	tumor	vessel	density	(Figure	12A,B).	This	

blocking	 of	 tumor	 growth	 can	 be	 attributed	 to	 inhibition	 of	 VEGFR2,	 as	 the	

introduction	of	the	resistance	mutation	VEGFR2V916M	in	H1975	was	sufficient	to	

abrogate	the	ZD6474	mediated	treatment	effect	(Figure	8I).	However	in	NSCLCs	

with	 low	 levels	 of	 VEGFR2	 expression,	 such	 as	 H1650,	 pS6	 levels	 remained	

unaffected	 under	 VEGFR2	 inhibition	 (Figure	 12C).	 Concomitant	 VEGFR2	

inhibition	also	failed	to	abrogate	tumor	development	in	vivo	(Figure	12D).		

	

	Figure12:	 Low	 VEGFR2	 expressing	 tumor	 cell	 lines	 are	 unaffected	 by	 VEGFR2	
inhibition		
A,B.	 H1975WT	 tumors	were	 explanted	 from	mice	 treated	 daily	with	 an	 oral	 gavage	 of	
ZD6474	 or	 vehicle	 for	 2	 weeks.	 Microvessels	 were	 imaged	 under	 a	 phase-contrast	
inverted-light	 microscope	 (Axiovert	 135,	 Zeiss.	 LLC,	 US).	 C.	 H1650	 cells	 with	 low	
VEGFR2	expression	were	pretreated	with	ZD6474	(Z)	0.5	and	1	µM	for	4	hours	and	then	
stimulated	with	40	ng	VEGF	(V)	for	30	minutes.	Cell	 lysates	were	immunoblotted	with	
indicated	phospho-specific	antibodies.	D.	H1650	cells	were	injected	into	nude	mice	and	
treated	with	 ZD6474	 or	 vehicle	 on	 day	 1	 after	 tumor	 cell	 injections.	 Tumor	 volumes	
were	recorded	overtime.	
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																				In	 summary,	 the	 VEGF:VEGFR2	 feed-forward	 loop	 is	 active	 only	 in	

tumor	cells	with	high	expression	profile	of	VEGFR2	in	vivo.	It	is	essential	for	the	

establishment	of	 fully	angiogenic	 tumors	and	disruption	of	VEGF:VEGFR2	 loop	

(either	 by	 VEGFR2	 inhibition	 or	 blockade	 of	 VEGF)	 is	 sufficient	 to	 completely	

prevent	tumor	formation	in	vivo.	

	

VEGF:VEGFR2	 feed-forward	 loop	 is	 active	 in	 primary	 human	 lung	

adenocarcinoma;	predictive	biomarker	for	highly	angiogenic	phenotype.	

	

																					Immunhistochemical	analysis	of	VEGF	and	VEGFR2	in	117	surgically	

resected	 primary	 human	 lung	 adenocarcinomas	 was	 performed.	 VEGF	

expression	 correlated	

significantly	 with	

expression	 of	 VEGFR2	 on	

the	 tumor	 cells	

(p=2.612x10-5)	 as	well	 as	

with	 microvessel	 density	

(p=2.2x10-11);	 (Table	 2),	

indicating	 that	 activated	

autocrine	 VEGF:VEGFR2	

signaling	loop	is	a	 feature	

of	 highly	 angiogenic	 lung	

adenocarcinomas.		

Table2:	Tissue	microarrays	of	117	lung	adenocarcinomas	were	stained	with	antibodies	
recognizing	human	VEGFR2,	VEGF,	CD31.	Staining	intensity	of	the	different	antibodies	is	
given	in	chi-square	tables	scored	on	a	0-3	scale.	
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																				Immunofluorescence	 study	also	 revealed	 that	VEGF	and	VEGFR2	co-

localized	 on	 tumors	 (Figure	 13B).	 Finally,	 staining	 of	 representative	 tumors	

with	an	antibody	specifically	recognizing	human	VEGF	when	bound	to	VEGFR2,	

confirmed	that	in	the	tumors	co-expressing	VEGF	and	VEGFR2,	VEGF	was	indeed	

bound	 to	 VEGFR2	 on	 tumor	 cells	 (Figure	 13B).	 Moreover,	 patients	 with	

adenocarcinomas	that	co-expressed	high	VEGF	and	VEGFR2,	presented	a	highly	

angiogenic	phenotype	(Figure	13B).		

	

Figure	13.	The	VEGF:VEGFR2	feed-forward	loop	is	active	 in	primary	human	lung	
adenocarcinomas	
A.	Human	adenocarcinomas	were	immunofluorescently	stained	to	reveal	co-expression	
of	 VEGF	 and	 VEGFR2	 by	 the	 same	 tumor	 cell	 population.	 B.	 Patient	 1	 with	 a	 high	
angiogenic	 phenotype	 represented	 by	 strong	 VEGF:VEGFR2	 staining	 and	 high	 CD31	
positive	 cells.	 In	 contrast,	 patient	 2	 presents	 a	 low	 angiogenic	 phenotype	 with	 only	
moderate	VEGF:VEGFR2	positive	 tumor	cells,	 corresponding	 to	a	 low	density	of	CD31	
positive	cells.		
		
	

These	results	support	the	hypothesis	that	 the	VEGF:VEGFR2	feed-forward	loop	

also	plays	a	critical	role	in	the	formation	of	primary	lung	tumors	in	patients.	
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Inhibition	of	VEGFR2	activates	ERK	signaling	and	sensitizes	cancer	cells	to	

MAPK	inhibition.		

																				To	 our	 surprise	 we	 observed	 that	 H1975VEGFR2KD	 tumors	 exhibited	

increased	levels	of	Ki67-	and	pERK-positive	cells	compared	to	H1975eV	(Figure	

14A).	In	the	same	manner,	pERK	signaling	was	reduced	by	VEGF	stimulation	in	

vitro	 and	 increased	 again	 on	 treatment	 with	 ZD6474	 (Figure	 10A,	 14B).	 In	

concordance	with	the	in-vitro	data	presented	above,	ZD6474	treatment	induced	

inhibition	 of	 pS6	 and	 an	 increase	 in	 pERK	 in	 vivo	 (Figure	 14C).	 We	 thus	

hypothesized	 that	 inhibiting	 the	 VEGF:VEGFR2	 feed-forward	 loop	 results	 in	

activation	of	 the	ERK	signaling	pathway	and	thereby	appears	 to	 induce	a	ERK-

dependant	proliferative	phenotype.		

	

	
Figure	 14:	 VEGFR2	 inhibition	 decreases	 mTOR	 phosphorylation	 and	 induces	
pERK	in	high	VEGFR2	expressing	NSCLC	
A.	Tumors	were	harvested	and	stained	for	Ki67	and	pERK	.	B.	HCC1359	cells	with	very	
high	VEGFR2	expression	were	pretreated	with	ZD6474	(Z)	0.5	and	1	µM	for	4	hours	and	
then	stimulated	with	40	ng	VEGF	(V)	for	30	minutes	followed	by	immunoblotting	with	
specific	 antibodies.	C.	After	 treating	mice	over	14	days	either	with	vehicle	or	ZD6474	
(75mg/kg	daily),	tumors	were	explanted,	lysed	and	immunoblotted	for	pS6	and	pERK.	
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																				Recently,	Rosen	et	al.	described	a	negative	feedback	regulation	of	IGF	

signaling	 via	 mTOR	 and	 its	 transcriptional	 regulation	 of	 FOXO	 transcription	

factors	 [116].	 In	 line	 with	 these	 findings,	 we	 found	 that	 inhibiting	 the	 VEGF-

VEGFR2-mTOR	 autocrine	 feed-forward	 loop	 enhanced	 ERK	 signaling	 through	

activation	 of	 the	 insulin	 growth	 factor	 receptor	 (IGFR)	 signaling	 pathway	 via	

IRS-1,	 both	 in	 vivo	 and	 in	 vitro	 (Figure	 15A,B).	 This	 activation	 of	 ERK	 was	

mediated	 by	 increased	 FOXO	 levels	 upon	 VEGFR2-mTOR	 inhibition	 in	 a	 time-

dependent	manner	(Figure	15B).		

	

Figure	15:	 Inhibition	of	VEGFR2	enhances	ERK	signaling	 through	 insulin	growth	
factor	receptor	(IGFR)	signaling	pathway	via	IRS-1	
A,B.	H1975	 cells	were	 engrafted	 subcutaneously	 in	 nude	mice;	mice	with	 established	
tumors	were	treated	with	ZD6474	daily	for	14	days.	Tumors	were	explanted	and	impact	
of	 ZD6474	 treatment	 on	 feed-forward	 activation	 of	 insulin	 receptor	 signaling	 was	
determined	by	IHC	(A)	and	by	western	blots	(B)	employing	the	indicated	antibodies.	
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																				Remarkably,	combined	inhibition	of	ERK	by	PD0325901	and	VEGFR2	

by	 ZD6474	 resulted	 in	 a	 dramatic	 reduction	 of	 tumor	 cell	 proliferation,	 as	

indicated	by	[18F]FLT	PET	and	complete	tumor	shrinkage	(Figure	16A,	B).	

		
	
Figure	16.	Combined	inhibition	of	VEGFR2	and	ERK	signaling	results	in	dramatic	
tumor	shrinkage		
A.	 H1975	 cells	 were	 engrafted	 subcutaneously	 in	 nude	 mice;	 mice	 with	 established	
tumors	were	 treated	with	 combined	 ZD6474	 plus	 PD0325901.	 [18F]FLT-PET	 imaging	
was	 performed	 on	 day	 0	 (before	 treatment)	 and	 at	 the	 indicated	 time	 points	 after	
treatment.	Representative	imaging	results	are	shown.	B.	Tumor	size	of	subcutaneously	
grown	 H1975	 tumors	 was	 determined	 at	 the	 indicated	 time	 points	 under	 treatment	
with	 either	 vehicle,	 ZD6474	 alone,	 PD0325901	 (12	 mg/kg)	 alone,	 or	 combined	
PD0325901	plus	ZD6474.		
	
	
																				In	 an	 orthotopic	 tumor	 model,	 where	 we	 applied	 a	 murine	 Ras-

mutated	 lung	 cancer	 model	 expressing	 VEGFR2	 on	 tumor	 cells	 (Figure	 17)	
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combined	 PD0325901	 and	 ZD6474	 treatment	 resulted	 in	 substantial	 tumor	

regression	as	detected	by	bioluminescence	imaging	(BLI)	(Figure	17).		

	

	

Figure	 17.	 Combined	 inhibition	 of	 VEGFR2	 and	 ERK	 signaling	 induces	 tumor	
shrinkage	in	an	orthotopic	KrasVal12	driven	murine	lung	cancer	model		
A-C.	Mice	with	KrasVal12	driven	orthotopic	murine	Luc-positive	tumors	were	treated	and	
BLI	 imaging	 was	 performed	 on	 day	 0	 (before	 treatment)	 and	 at	 the	 indicated	 time	
points	 after	 treatment.	 Mice	 were	 treated	 with	 either	 ZD6474,	 PD0325901,	 or	
PD0325901	 +	 ZD6474.	 A-C.	 Lower	 panels	 show	 quantification	 BLI	 signal	 based	 on	
region	 of	 interest	 analysis	 (ROI).	D-F.	 Representative	 images	 of	 explanted	 lungs	 after	
treatment	with	ZD6474	+	PD0325901	(D),	PD0325901	only	(E)	or	ZD6474	(F)	only.		
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																				It	 is	noteworthy	that	a	response	 in	the	 form	of	 tumor	shrinkage	was	

associated	with	the	expression	levels	of	VEGFR2	on	tumor	cells.	Consistent	with	

our	 hypothesis,	 NSCLC-H1650	 and	 A549	 with	 only	 low	 VEGFR2	 expressions	

failed	 to	 respond	 to	 combined	 VEGFR2	 and	 ERK	 inhibition	 (Figure	 18C,D)	

compared	to	excellent	tumor	shrinkage	in	high	VEGFR2	expressing	cells	(Figure	

18A,B)	

	
	
Figure	18:	 Low	VEGFR2	expressing	NSCLCs	are	 insensitive	 to	 combined	VEGFR2	
and	ERK	signaling	
Tumor	volumes	of	subcutaneously	engrafted	H441,	HCC1359	(high	VEGFR2	expressing	
cell	 lines)	 (A,B)	 and	 H1650,	 A549	 (low	 VEGFR2	 expressing	 cell	 lines)	 (C,D)	 were	
recorded	over	time	under	treatment	with	either	vehicle,	ZD6474	alone,	PD0325901	(12	
mg/kg)	alone,	or	PD0325901	combined	with	ZD6474.	
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Concluding	remarks	

	

																					Combining	multimodal	 imaging	and	chemical	genetics	we	have	been	

able	 to	unravel	 the	molecular	mechanism	that	 initiate	 the	angiogenic	switch	 in	

NSCLC	 tumor.	 The	 preliminary	 pro-angiogenic	 signal	 is	 amplified	 via	 an	

autocrine	feed-forward	loop	in	lung	cancer	where	tumor	derived	VEGF	binds	to	

tumor	VEGFR2	activating	mTOR	inducing	VEGF	secretion.		

	

	

High	 coexpression	 of	 VEGF:VEGFR2	 in	 NSCLC	 patients	 correlated	 to	 strong	

angiogenic	tumors.	Disruption	of	this	feed-forward	loop	shifted	the	tumor	cells	

from	 an	 angiogenic	 to	 proliferative	 phenotype	 sensitizing	 the	 tumor	 to	MAPK	

inhibition.	

	Hence	we	propose	that	high	expression	profile	of	VEGF:VEGFR2	can	serve	as	a	

potential	biomarker	in	the	clinic	to	estimate	which	NSCLC	patients	might	benefit	

from	the	therapeutic	efficacy	of	combined	VEGFR2	and	MEK	inhibition.	
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5.2.	 	 	Transient	anti-angiogenic	treatment	improves	delivery	of	

cytotoxic	 compounds	 and	 therapeutic	 outcome	 in	 lung	

cancer.	
	

																				The	 popular	 concept	 of	 eradicating	 cancer	 by	 destroying	 tumor	

vasculature	using	anti-angiogenic	agents	has	not	seen	much	success	 in	 the	 last	

years.	 Prudent	 anti-angiogenic	 therapy	 might	 transiently	 normalize	 blood	

vessels	 improving	 tumor	oxygenation	and	drug	delivery.	Clinical	 trials	 indicate	

towards	the	fact	that	anti-angiogenic	therapy	must	be	combined	with	cytotoxic	

treatment	 to	obtain	maximal	efficacy.	Yet	 there	 remains	a	 lack	of	 clarity	about	

optimization	of	such	drug	combinations.	Here	we	tend	to	investigate	if	inhibition	

of	 VEGFR2	 in	 tumor	 microenvironment	 can	 promote	 normalization	 of	 tumor	

vasculature	and	improves	the	delivery	and	efficacy	of	a	targeted	cytotoxic	drug	

in	 NSCLC.	 PTK787	 (ZK	 222584)	 and	 ZD6474	 are	 potent	 inhibitors	 of	 VEGFR	

tyrosine	 kinases,	 PDGFR	 beta	 tyrosine	 kinase	 and	 c-Kit	 whereas	 ZD6474	

additionally	targets	EGFR	and	RET.	Imaging	tumor	vessel	normalization	induced	

by	prudent	anti-angiogenic	agents	PTK787	and	ZD6474	were	used	 to	 improve	

drug	delivery	of	targeted	compounds	as	erlotinib	and	GDC0941.	Here	I	present	

my	work	that	has	been	published	in	[117]	along	with	some	additional	results.		

	

Materials	and	Methods:	

	

Cell	lines	and	reagents	

	NSCLC	 cell	 lines	 H1975	 and	 PC9	 were	 purchased	 from	 the	 American	 Type	

Culture	 Collection	 (ATCC)	 and	 European	 Collection	 of	 Cell	 Cultures	 (ECACC)	
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respectively.	 Both	 cell	 lines	were	maintained	 in	 RPMI-1640	medium	 enriched	

with	10%	FCS	and	1%	Penicillin+Streptomycin.	ZD6474,	PTK787,	erlotinib	were	

purchased	 from	LC	 labs	and	GDC0941	 from	Axon	Medchem.	Compound	stocks	

were	stored	at	-20°C	and	dissolved	in	DMSO	in	vitro.	For	animal	therapy	ZD6474	

and	PTK787	were	dissolved	in	sterilized,	deionized	water	with	1%	tween-80	at	a	

concentration	of	10mg/ml.	Erlotinib	was	dissolved	in	6%	Captisol®	(CyDex	Inc.,	

USA)	 at	 a	 concentration	 of	 9mg/ml.	 GDC0941	 was	 dissolved	 in	 MCT	 (0.5%	

methylcellulose	 with	 0.2%	 Tween-80	 in	 distilled	 water)	 at	 concentrations	 of	

22.5mg/ml	 (monotherapy)	and	15mg/ml	 (in	combination	with	anti-angiogenic	

therapy).	All	solutions	were	stored	on	a	rotating	device	at	4°C.	

	

Western	blotting	

Western	 blotting	 was	 performed	 as	 described	 previously	 [118].	 For	 Western	

blotting	the	following	antibodies	were	used:	ß-actin	(clone	C4)	(MPBiomedicals	

LLC,	 USA),	 pEGFR,	 pAKT	 (S473),	 pERK	 (Cell	 Signaling	 Technology,	 USA),	 anti-

rabbit-HRP-	and	anti-mouse-HRP-antibody	(Millipore,	Germany).	

	

Immunofluorescence	

Vascular	leakage	was	assessed	by	i.v.	injection	of	0.1	ml	10	mg/ml	FITC-dextran	

(200,000	 kDa)	 from	 Sigma.	 After	 30	min	mice	were	 anesthetized	 followed	 by	

perfusion	with	4%	paraformaldehyde	 injected	 into	 the	aorta	via	 an	 incision	 in	

the	 left	 ventricle	 and	 washed	 one	 time	 with	 PBS.	 	 Blood	 and	 fixative	 were	

allowed	 to	 pass	 out	 via	 the	 right	 atrium.	 Tumor	 sections	 were	 collected	 and	

immersed	in	30%	sucrose	solution	until	samples	dropped	to	the	bottom	of	the	
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vials.	 A	 cold	 bath	 was	 prepared	 with	 dry	 ice	 and	methanol.	 Tissue	 Tek	 wells	

were	labeled	and	filled	up	with	Jung	tissue	freezing	medium	(Leica	Biosystems,	

Germany).	Excess	sucrose	was	removed	from	tissues	and	placed	in	the	centre	of	

wells	and	frozen	by	floating	them	on	the	methanol	bath.	Blocks	were	stored	at	-

20˚C	 and	 sliced	 at	 10	 to	 20µm	 on	 cryostat.	 Slides	 were	 dried	 at	 room	

temperature	 for	 at	 least	 2	 hours	 and	 stained	with	 anti-mouse	 CD31	 (1:25,	 BD	

Pharmingen,	Germany),	 anti-pVEGFR2	 (1:300,	Cell	 Signaling	Technology,	USA),	

fixed	and	processed	for	analysis	in	a	Biorevo	(Keyence)	BZ-9000	microscope.	

	

Tumor	samples	and	immunohistochemistry	

	All	 tumors	were	stored	 in	4%	paraformaldehyde	overnight	and	 transferred	 to	

PBS.	Tissues	were	embedded	in	paraffin	following	standard	protocol	and	stained	

with	primary	antibodies:	mouse	CD31	(1:25,	BD	Pharmingen),	cleaved	Caspase3	

(1:750,	 Cell	 Signaling),	 pAKT	 (1:25,	 Cell	 Signaling)	 and	 alpha	 smooth	 muscle	

actin	 α-SMA	 (1:50)	 (Abcam)	 for	 marking	 pericytes.	 Corresponding	 secondary	

antibody	 detection	 kits	 for	 reduced	 background	 on	 murine	 tissue	 were	 used	

(Histofine	 Simple	 Stain	Mouse	MAX	 PO,	medac)	 and	 stained	 on	 an	 automated	

stainer	(LabVision	Autostainer	480S,	Thermo	Scientific).		

	

Xenograft	experiments	

All	animal	procedures	were	approved	by	the	local	animal	protection	committee	

and	the	local	authorities	(Bezirksregierung	Cologne).	8	weeks	old	healthy	nu/nu	

athymic	male	mice	weighing	 30g	 in	 an	 average	were	 purchased	 from	 Janvier,	

Europe.	Tumors	were	generated	by	s.c.	injection	of	PC9	and	H1975	cells	(5x105	
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cells/tumor).	 Tumor-bearing	 mice	 were	 treated	 by	 oral	 gavage	 with	 the	

following	set	ups:	PTK787	or	ZD6474	75mg/kg	daily	as	monotherapy,	erlotinib	

30mg/kg	 daily	 as	 monotherapy,	 GDC0941	 75mg/kg	 daily	 as	 monotherapy,	

vehicle,	 erlotinib	30mg/kg	or	GDC0941	50mg/kg	pretreated	with	PTK787	and	

continued	as	monotherapy	during	indicated	timespan.	The	size	of	tumors	ranged	

between	70	mm3	and	125	mm3.	Monotherapy	and	vehicle	of	each	drug	was	used	

as	control.	Tumor	volume	was	recorded	accordingly.		

	

[15O]H2O	/	[18F]FLT	Positron	Emission	Tomography	(PET)	imaging:		

Animals	 bearing	macroscopic	 tumors	were	 investigated	 on	 day	 0	 followed	 by	

start	of	treatment	with	PTK787	75mg/kg	or	ZD6474	75mg/kg	daily,	day	4,	day	8	

and	 day	 18	 using	 a	 FOCUS	 microPET	 scanner	 (Siemens	 Microsystems,	 Inc.,	

Knoxville,	TN,	max.	transaxial	resolution	1.3mm).	In	total,	25	animals	underwent	

[15O]H2O	 and	 [18F]FLT	 imaging,	 each	 animal	 carried	 3	 tumors.	 The	 PTK787-

treated	 group	 contained	 15	 animals,	 the	 vehicle	 treated	 group	 10	 mice.	 All	

animals	 underwent	 PET	 imaging	 at	 4	 different	 time	 points.	 We	 calculated	

percentage	changes	in	tracer	uptake	with	day	0	as	baseline	for	each	time	point	

and	tumor.	[15O]H2O	PET	imaging	was	performed	before	[18F]FLT	PET.	[18F]FLT	

PET	 was	 measured	 one	 hour	 after	 [15O]H2O	 PET.	 [15O]H2O	 was	 injected	

dynamically	via	tail	vein	and	PET	images	were	acquired	for	2	min.	after	injection	

of	400	µCi/mouse.	[18F]FLT	was	administered	i.v.	(200	µCi/mouse).	PET	imaging	

was	 performed	 60	 min.	 after	 injection	 [119].	 Data	 evaluation	 was	 performed	

using	in-house	VINCI	software.	Data	evaluation	was	based	on	a	region	of	interest	

(ROI)	 analysis.	 For	 data	 analysis	 we	 used	 the	 maximal	 and	 the	 mean	 voxel	
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radioactivity	of	the	defined	ROI	within	the	tumors.	The	mediastinum	was	chosen	

as	 a	 reference	 for	 determination	 of	 uptake	 ratio,	 since	 we	 observed	 constant	

uptake	 for	 [18F]FLT	 in	 this	 region.	 The	 heart	 was	 used	 as	 reference	 for	

calculation	of	the	[15O]H2O	perfusion.	All	data	were	decay	corrected.		

	

Mass	spectrometry		

For	absolute	quantification	of	erlotinib	and	OSI-420	in	positive	ESI	MRM	(multi	

reaction	 monitoring)	 mode,	 an	 Acquitiy	 UPLC	 /	 XevoTM	 TQ	 (Waters)	 with	

MassLynx	 and	 absolute	 quantification	 TargetLynx	 (Waters)	 were	 used.	 An	

Acquity	UPLC	BEH	C18	1.7	µm,	2.1	x	50	mm	column	was	used	at	25°C.	Solvent	A	

was	0.1%	formic	acid	(Biosolve)	and	B	acetonitrile	(Biosolve).	A	linear	gradient	

from	 95%	 A	 to	 5%	 in	 4.10	 min	 at	 a	 flow	 rate	 of	 0.4	 ml/min	 was	 used.	 The	

following	 MRM	 transitions	 were	 used	 for	 erlotinib	 m/z	 394.03	 (M+H+)+	 to	

277.95	 (quantifier),	 m/z	 394.03	 to	 303.95	 (qualifier),	 m/z	 394.03	 to	 335.94	

(qualifier),	for	OSI-420	m/z	380.03	to	277.85	(quantifier),	m/z	380.03	to	249.89	

(qualifier),	 m/z	 380.03	 to	 321.93	 (qualifier).	 All	 compounds	 were	 freshly	

prepared	 during	 2	 months	 and	 dissolved	 in	 0.1%	 Formic	 acid	 (Biosolve)	

prepared	 with	 0.22	 µm	 MilliQ-Water.	 With	 erlotinib	 eluting	 at	 2.94	 min	 a	

standard	 calibration	 curve	was	 calculated	 using	 following	 concentrations:	 0.2,	

0.5,	 1,	 5,	 20,	 50,	 150,	 300,	 500,	 750	 ng/ml	 (prepared	 individually	 from	 stock	

solutions	100	µg/ml).	With	OSI-420	eluting	 at	2.51	min	a	 standard	 calibration	

curve	 was	 calculated	 using	 following	 concentrations:	 0.1,	 0.5,	 1,	 2,	 4,	 6,	 8,	 10	

ng/ml	 (prepared	 individually	 from	 stock	 solutions	 100	 µg/ml).	 Correlation	

coefficient:	r	<	0.990;	response	type:	external	standard,	area;	curve	type	linear;	
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weighting	 1/x.	 The	 peak	 integrations	 were	 corrected	 manually,	 if	 necessary.	

Quality	 control	 standards	 of	 each	 standard	were	 used	 during	 sample	 analysis	

and	 showed	 between	 0.5%	 and	 40%	 deviation	 respectively.	 Blanks	 after	 the	

standards,	 quality	 control	 and	 sample	 batch	 proved	 to	 be	 sufficient.	 No	 carry	

over	was	detected.		

	

Statistics	

Fisher’s	 exact	 tests	 were	 performed	 using	 R	 version	 2.7.1	 (http://www.r-

project.org).	 Data	 are	 presented	 as	mean	 ±SD	 in	 all	 figure	 panels	where	 error	

bars	are	shown.	A	level	of	significance	of	p<0.05	was	chosen	(where	mentioned).	
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Results:	

	

Prudent	 anti-angiogenic	 treatment	 induces	 a	 time	 window	 of	 improved	

blood	perfusion	into	the	tumor.	

																				In	 established	 human	 NSCLC	 cell	 line	 PC9	 xenografts	 PTK787	

treatment	 improved	 tumor	 blood	 flow	 after	 four	 days	 of	 treatment	 by	 12%	

(n=45	 where	 n	 represents	 total	 number	 of	 tumors),	 as	 determined	 by	 [15O]-

water	PET	([15O]H2O;	Figure	19A,	right	panel,	Figure	19B).	A	steady	increase	

in	tumor	blood	flow	by	33.58%	(n=45)	was	measured	until	day	8	of	 treatment	

with	PTK787	 (p-value<0.001)	probably	mediated	by	 a	 transient	normalization	

of	vessels	followed	by	a	sharp	decrease	of	17.23%	(n=45)	till	day	18.	In	contrast,	

blood	flow	decreased	consistently	from	day	4	to	day	8	by	20.42%	(n=30)	and	by	

30.75%	(n=30	where	n	represents	total	number	of	 tumors)	until	day	18	 in	the	

vehicle-treated	 tumors	 (Figure	 19A,	 left	 panel,	 Figure	 19B).	 To	 explicate	 if	

improvement	in	blood	flow	can	be	also	achieved	by	using	other	anti-angiogenic	

agents	 we	 used	 a	 dual	 VEGFR/EGFR	 inhibitor	 ZD6474	 in	 H1975	 xenografts	

which	are	 resistant	 to	EGFR	 inhibition	due	 the	presence	of	T790M	gatekeeper	

mutation	of	EGFR.	There	was	an	increase	in	blood	flow	by	21.39%	from	day	0	to	

day	8	of	ZD6474	treatment	followed	by	a	drop	of	20.95%	from	day	0	to	day	18	

(Figure	 20A,	 right	 panel,	 Figure	 20B).	 Vehicle-treated	 tumors	 displayed	 a	

stable	decrease	in	blood	flow	by	8.95%	from	day	0	to	day	8	and	by	14.78%	on	

day	18	(Figure	20A,	left	panel,	Figure	20B).	
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Figure	19:	Multimodal	imaging	of	tumor	blood	flow	with	[15O]H2O	PET	in	PC9	
xenografts	using	PTK787	as	anti-angiogenic	agent	
	A.	PET	imaging	was	performed	on	nude	mice	with	macroscopic	subcutaneous	tumors	
on	day	0	(before	start	of	therapy)	and	at	the	indicated	time	points	after	treatment	with	
vehicle	(A,	left	panel)	and	PTK787	(A,	right	panel).	B.	Quantitative	analysis	of	tumor	
blood	perfusion	before	(day	0)	and	after	4,	8,	18	days	of	PTK787	treatment	compared	to	
vehicle	sets.	
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Figure	20:	Multimodal	 imaging	of	 tumor	blood	flow	with	[15O]H2O	PET	in	H1975	
xenografts	using	ZD6474	as	anti-angiogenic	agent.	
A.	PET	 imaging	was	performed	on	nude	mice	with	macroscopic	 subcutaneous	 tumors	
on	day	0	(before	start	of	therapy)	and	at	the	indicated	time	points	after	treatment	with	
vehicle	 (A,	 left	 panel)	 and	 ZD6474	 (A,	 right	 panel).	B.	 Quantitative	 analysis	 of	 tumor	
blood	perfusion	before	(day	0)	and	after	4,	8,	18	days	of	ZD6474	treatment	compared	to	
vehicle	sets.		
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																				Simultaneously,	during	PTK787	therapy,	uptake	of	[18F]FLT,	a	marker	

of	proliferation	increased	by	51.08%	(day	0	to	day	4)	(n=30)	and	by	76%	(day	0	

to	day	8	(n=30)	(Figure	21A,B,C)	suggesting	that	the	cells	continued	to	progress	

through	 the	 cell	 cycle.	 Proliferation	 remained	 unaffected	 also	 under	 ZD6474	

therapy	as	measured	by	an	increase	in	[18F]FLT	uptake	by	67.1%	(	day	0	to	day	

4,	n=30)	and	by	78.02%	(day	0	to	day	8,	n=30)	(Figure	21D,E,F).	

	

Figure21:	 Imaging	 of	 tumor	 cell	 proliferation	 using	 [18F]FLT	 PET	 in	 PC9	 and	
H1975	tumors.	
Imaging	 of	 tumor	 cell	 proliferation	 using	 [18F]FLT	 PET	was	 performed	 on	 nude	mice	
with	macroscopic	 subcutaneous	 tumors	PC9	 (A,B)	 and	H1975	(D,E)	on	day	0	 (before	
start	of	therapy)	and	at	the	indicated	time	points	after	treatment	with	vehicle	(A,D)	and	
PTK787	(B)	/	ZD6474	(E).		Quantitative	analysis	of	tumor	cell	proliferation	before	(day	
0)	and	after	4	and	8	days	of	PTK787	treatment	(C)	/	ZD6474	treatment	(F)	compared	to	
vehicle	sets.		
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																				These	data	indicate	that	prudent	anti-angiogenic	treatment	induces	a	

short-lived	time	window	of	about	one	week	when	tumor	vessels	are	transiently	

normalized	which	can	be	monitored	by	an	increase	in	blood	into	the	tumor.	

	

Short-time	 anti-angiogenic	 therapy	 reduces	 leakiness	 by	 improving	

pericyte	coverage	in	tumor	blood	vessels	in	xenografts.	

																				To	elucidate	 if	 the	 improved	blood	 flow	 into	 the	 tumors	was	 indeed	

due	to	vessel	normalization,	permeability	of	the	blood	vessels	were	examined	by	

fluorescence	microscopy	after	tumor-bearing	animals	were	perfused	with	FITC-

dextran.	 Blood	 vessels	 of	 vehicle-treated	 tumors	were	 dilated	with	 haphazard	

morphological	 pattern	 and	 displayed	 extensive	 leakiness	 associated	 with	

massive	 extravasation	 of	 FITC-dextran	 in	 tumors	 from	 different	mice	 (Figure	

22A,B,	 left	panel,)	and	correlated	with	high	expression	of	CD31	and	pVEGFR2	

(Figure	22A,	left	panel).	However,	in	tumors	that	were	treated	with	PTK787	for	

four	 days	 blood	 vessels	 showed	 strikingly	 reduced	 leakiness	 with	 minimum	

extravasation	 of	 FITC-dextran	 (Figure	 22A,	 22B,	 right	 panel)	 supported	 by	

eight	fold	reduction	in	signal	intensity	(Figure	22C)	accompanied	by	diminished	

CD31	and	pVEGFR2	expression.	(Figure	22A,	right	panel).	Tumor	vasculature	

was	characterized	by	abnormal	and	discontinuous	pericyte	 lining	of	vessels	as	

indicated	by	arrows	on	day	0	 (Figure	22D).	4	days	of	anti-angiogenic	 therapy	

transiently	 improved	 pericyte	 coverage	 in	 contrast	 to	 vehicle-treated	 tumors	

which	 still	 exhibited	 incoherent	 pericyte	 lining	 (Figure	 22D,E).	 However,	 the	

number	 of	 blood	 vessels	 decreased	 remarkably	 in	 both	 control	 and	 treated	

tumors	over	18	days	of	PTK787	treatment	(Figure	22D).	
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Figure	22:	Blood	vessel	morphology	and	permeability	
A,B.	 Vascular	 leakage	was	 assessed	by	 i.v.	 injection	 of	 0.1	ml	 10	mg/ml	 FITC-dextran	
(200,000	 kDa).	 10	 to	 20µm	 thick	 slices	 of	 perfused	 tumors	 were	 stained	 with	 anti-
mouseCD31	 and	 anti-pVEGFR2	 antibody:	 control	 set	 (A,B	 left	 panel)	 and	 PTK787-
treated	tumors	(A,B	right	panel).	C.	Signal	intensity	of	the	total	area	of	green	staining	
(FITC-dextran)	 was	 quantified	 (four	 fields	 per	 tumor	 in	 both	 control	 and	 PTK787	
treated	groups).	D.	Histology	of	tumors	stained	for	α-SMA	(brown,	pericytes)	comparing	
untreated	 vasculature	 (D,	 left	 panel)	with	 PTK787	 sets	 (D,	 right	 panel).	E.	 Pericyte	
coverage	was	quantified	(fraction	of	area	covered)	using	four	random	fields	from	each	
tumor	on	day	0,	day	4,	day	8	and	day	18	of	PTK787	treatment	or	vehicle.	
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Anti-angiogenic	 treatment	 improves	 cytotoxic	 therapeutic	 outcome	 in	

NSCLC	with	enhanced	delivery	of	erlotinib	into	the	tumor.	

																				To	 investigate	 if	 augmented	 blood	 flow	 induced	 by	 short-term	 anti-

angiogenic	 treatment	 had	 any	 improved	 therapeutic	 efficacy	 in	 NSCLC,	 mice	

bearing	 macroscopic	 PC9	 tumors	 were	 treated	 by	 an	 oral	 gavage	 of	 PTK787	

(75mg/kg	daily)	 for	1	week.	 Since	water	PET	data	 indicated	 that	 tumor	blood	

flow	 improves	 within	 a	 span	 of	 7	 days	 of	 anti-angiogenic	 therapy,	 erlotinib	

treatment	was	started	within	this	 ‘Normalization	window’	from	day	4	onwards	

and	 continued	 as	 monotherapy	 for	 13	 days.	 Mice	 receiving	 erlotinib	 therapy	

pretreated	 with	 PTK787	 had	 a	 sharp	 initial	 increase	 in	 tumor	 volume	 from	

100%	on	day	1	to	221.28%	on	day	4	followed	by	a	massive	reduction	to	45.63%	

on	day	7	and	to	almost	complete	shrinkage	of	tumor	after	16	days	of	treatment	

(9.14%	of	original	mass	left)	(Figure	23A).	Erlotinib	as	monotherapy	restricted	

tumor	proliferation	resulting	in	a	slow	reduction	(up	to	50%	of	tumor	mass)	but	

not	 as	 strong	 as	with	 intermittent	PTK787	 treatment	 (p-value<0.001)	 (Figure	

23A).	 There	 was	 no	 further	 shrinkage	 in	 tumor	 volume,	 which	 resulted	 in	 a	

stable	disease.	PTK787	monotherapy	and	vehicle	 treatment	 resulted	 in	similar	

outcome	with	an	increase	in	tumor	volume	to	245%	and	220%	respectively	on	

day	4	(Figure	23A).		

																				To	 check	 if	 the	 normalized	 blood	 vessels	were	 effectively	 delivering	

drugs	 into	the	tumors,	erlotinib	concentration	within	the	tumor	was	measured	

via	mass-spectrometric	analysis.	 In	 tumor	 lysates	 from	monotherapy	sets	with	

erlotinib,	there	was	a	slight	improvement	of	the	drug	uptake	into	the	tumor	from	

day	1	 (start	 of	 treatment)	 to	day	4	by	20%	 (Figure	23B).	 In	 contrast,	 tumors	
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pre-treated	with	PTK787	for	4	days	displayed	an	improved	erlotinib	uptake	by	

140%	 on	 the	 first	 day	 of	 erlotinib	 treatment	 (day	 4),	 which	 increased	 up	 to	

160%	on	day	8	(Figure	23B).	Monotherapy	sets	showed	reduction	in	erlotinib	

uptake	by	42%	on	day	8	(Figure	23B)	indicating	towards	a	hindered	delivery	of	

the	drug	within	the	tumor.	

																				Western	 blot	 analysis	 of	 lysates	 from	 tumors	 treated	 with	 different	

set-ups	of	PTK787	and	erlotinib	showed	an	time-dependent	reduction	in	pEGFR	

signal	 from	day	1	 to	day	4	corresponding	 to	pAKT	and	pERK	 levels	 in	 the	sets	

which	 received	erlotinib	pretreated	with	PTK787	 (Figure	23C).	 There	was	no	

change	 in	 signal	 intensity	 of	 pEGFR,	 pAKT	 or	 pERK	 in	 the	 vehicle	 or	

monotherapy	 sets	 (PTK787	 alone	 or	 erlotinib	 alone)	 on	 day	 1	 (Figure	 23C).	

Western	 blot	 results	 correlated	with	 histology	where	 Ki67	 positive	 cells	were	

strongly	 reduced	 in	 PTK	 pretreated	 tumors	 receiving	 erlotinib	 on	 day	 1	

compared	to	tumors	receiving	erlotinib	as	monotherapy	on	day	1	(Figure	23D).	

Control	 tumors	 had	 a	 strong	 positive	 staining	 for	 Ki67	 positive	 cells	 (Figure	

23D).	 In	 PTK	 pretreated	 tumors	 receiving	 erlotinib,	 Ki67	 positive	 cells	

continued	reducing	further	in	number	from	day	1	to	day	4	until	only	a	few	Ki67	

positive	cells	were	left	on	day	8	(Figure	23D).		



	 73	

	

Figure	23:	Prudent	anti-angiogenic	treatment	improves	delivery	of	erlotinib	into	
the	tumor	and	promotes	therapeutic	outcome	
	A.	 Tumor	 volumes	 in	 nude	 mice	 were	 recorded	 over	 time	 under	 treatment	 with	
PTK787	(75mg/kg),	erlotinib	(30mg/kg)	and	PTK787	(75mg/kg)	+	erlotinib	(30mg/kg)	
and	vehicle	control	at	indicated	days.	B.	Quantification	of	erlotinib	uptake	as	measured	
by	Mass-Spectrometry	in	PTK787	pre-treated	tumors	(blue	column)	between	day	4	and	
8	 compared	 to	 uptake	 in	 the	 tumors	 receiving	 erlotinib	 just	 as	 monotherapy	 (4	
independent	 tumors	 from	different	mice	 per	 set	 up).	C.	Tumor	 lysates	 from	different	
therapy	modules	(as	indicated)	were	immunoblotted	with	phospho-specific	antibodies.	
Representative	 western	 blots	 are	 shown.	 D.	 Tumors	 under	 different	 treatment	
conditions	were	explanted	on	days	mentioned	and	stained	for	Ki67	positive	cells.	
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																				Histology	results	also	showed	complete	inhibition	of	pAKT	from	day	0	

to	day	4	 in	PTK787	pretreated	 tumors	receiving	erlotinib	(Figure	24A).	pAKT	

levels	 remained	 inhibited	 on	 day	 8	 with	 induction	 of	 necrosis	 (Figure	 24A).	

Even	though	tumor	cells	were	healthy	in	both	sets	on	day	0	(Figure	24A),	heavy	

induction	 of	 apoptosis	 (cleaved	 caspase	 3)	 was	 detected	 in	 tumors	 receiving	

erlotinib	 pretreated	 with	 PTK787	 on	 day	 4	 (Figure	 24B)	 which	 remained	

consistent	 till	 day	 8	 (Figure	 24B).	 However,	 in	 erlotinib	 monotherapy	 sets	

displayed	only	moderate	induction	of	apoptosis	overtime	(Figure	24B).	

	

	

	
Figure	24:	Erlotinib	therapy	pretreated	with	PTK	induces	strong	pAKT	inhibition	
and	apoptosis	in	vivo	
A,B	 Histology	 of	 tumor	 samples	 from	 23C	 comparing	 pAKT	 expression	 (A)	 and	
induction	 of	 apoptosis	 (cleaved	 caspase	 3)	 (B)	 in	 the	 same	 tumor	 samples	 between	
erlotinib	monotherapy	and	erlotinib	pre-treated	with	PTK787	tumors	on	day	0	(before	
start	of	treatment)	and	on	indicated	days	after	therapy		
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																				To	confirm	that	this	effect	of	tumor	shrinkage	was	only	due	to	better	

drug	 delivery	 facilitated	 by	 prudent	 anti-angiogenic	 treatment,	 macroscopic	

H1975	 tumor-bearing	 mice	 pretreated	 with	 PTK787	 were	 treated	 with	 PI3K	

kinase	inhibitor	GDC0941.	Tumors	receiving	GDC0941	therapy	pre-treated	with	

PTK787	receded	by	50%	over	28	days	compared	to	a	mild	growth-inhibition	in	

GDC0941	monotherapy	 sets	which	 tumor	volumes	 surpassed	by	250%	on	day	

22		(Figure	25).	PTK787	monotherapy	and	vehicle	treatment	resulted	in	similar	

outcome	with	an	increase	in	tumor	volume	over	250%	on	day	4	(Figure	25).	

	

	
Figure	 25:	 Short	 anti-angiogenic	 treatment	 improves	 therapeutic	 outcome	 of	
GDC0941	in	vivo	
PC9	cells	were	engrafted	s.c.	in	nude	mice	and	tumor	volumes	were	recorded	over	time	
for	28	days	under	treatment	with	vehicle,	PTK787	(75mg/kg),	GDC0941	(75mg/kg)	and	
PTK787	(75mg/kg)	+	GDC0941	(50mg/kg)	at	indicated	days.	
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Intermittent	 anti-angiogenic	 treatment	 facilitates	 long-term	 tumor	

regression		

																				A	 long-term	 xenograft	 study	 with	 subcutaneous	 PC9	 tumors	 was	

performed	 where	 mice	 were	 treated	 with	 a	 continuous	 dose	 of	 erlotinib	

combined	 with	 a	 short	 PTK787	 treatment	 every	 ten	 days.	 Tumors	 remained	

regressed	 in	 this	 combination	 model	 over	 the	 entire	 time	 span	 of	 65	 days	

(Figure	26).	However,	in	mice	treated	with	erlotinib	alone,	there	was	an	initial	

tumor	regression	up	to	40%	of	original	tumor	volume	until	day	22	followed	by	a	

stable	disease	(Figure	26).		

	
	
Figure	26:	 Intermittent	 anti-angiogenic	 therapy	 also	promotes	 long-term	 tumor	
regression	
PC9	cells	were	engrafted	s.c.	in	nude	mice	and	tumor	volumes	were	recorded	over	time	
for	65	days	under	treatment	with	vehicle,	PTK787	(75mg/kg),	erlotinib	(30mg/kg)	and	
erlotinib	(30mg/kg)	with	intermittent	PTK787	treatment		from	day	1	to	day	7,	day	17	to	
day	25,	day	35	to	day	43	and	day	51	to	day	58.	
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Concluding	remarks	

																				Using	 [15O]H2O	 Positron	 Emission	 Tomography	 (PET)	 imaging	 in	 a	

preclinical	 model	 of	 non	 small	 cell	 lung	 cancer	 we	 showed	 that	 short-term	

treatment	 with	 anti-angiogenic	 agents	 (PTK787/ZD6474)	 licensed	 a	 transient	

window	of	improved	tumor	blood	perfusion.	Initiation	of	cytotoxic	treatment	in	

this	window	of	vessel	normalization	resulted	in	increased	efficacy,	as	illustrated	

by	 improved	 outcome	 of	 erlotinib	 and	 GDC0941	 therapy	 after	 initial	 anti-

angiogenic	treatment.	

	

In	 summary,	 our	 findings	 are	 consistent	 with	 the	 vascular	 normalization	

hypothesis	and	offer	strong	evidence	that	prudent	anti-angiogenic	therapy	leads	

to	 evanescent	 vessel	 normalization	 resulting	 in	 better	 cytotoxic	 therapeutic	

outcome.	 From	 this	 study	 it	 is	 tempting	 to	 speculate	 that	 optimized	 cytotoxic	

treatment	 starting	with	 the	 ‘normalization	 time	 frame’	may	provide	maximum	

survival	advantage	in	advance	NSCLC	patients.	
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6.		Discussion	

	

																				Considerable	 advances	 have	 been	 made	 to	 untangle	 the	 complex	

molecular	mechanism	that	underlies	tumor	development	from	neoplasic	lesions.	

Majority	 of	 solid	 tumors	 exhibit	 an	 aberrant	 vasculature	 afflicted	 with	

structurally	 and	 functionally	 abnormal	 vessels	 in	 response	 to	 excessive	

production	 of	 pro-angiogenic	 factors	 by	 the	 tumor	 [87].	 The	 hypothesis	 of	

inhibiting	tumors	by	destroying	tumor	vasculature	has	been	speculated	to	yield	

satisfactory	results	 in	treating	cancer.	This	has	driven	tremendous	advances	 in	

the	 field	 of	 targeted	 therapies	 including	 anti-angiogenic	 agents	 such	 as	

bevacizumab	 (BV)	 as	 well	 as	 anti-VEGF	 receptor	 tyrosine	 kinase	 receptors	

(TKIs).	 However,	 clinical	 tools	 to	 predispose	 patients	 towards	 particular	

targeted	 therapeutic	 regimens	 have	 been	 lacking	 till	 date	 and	 results	 from	

clinical	 trials	 have	 been	moderate	 or	 unsatisfactory	 or	 contradictory.	 This	 has	

triggered	some	important	questions	such	as:	why	just	some	subsets	of	patients	

respond	to	anti-angiogenic	therapy,	some	not	at	all	and	just	a	partial	response	is	

seen	in	other	cases?	Is	the	mechanism	of	action	of	the	drug	same	in	patients	as	

deciphered	 in	 pre-clinical	 models?	 Why	 do	 tumors	 occasionally	 develop	

resistance	to	anti-angiogenic	therapy?	What	additional	pathways	should	be	co-

targeted	 with	 anti-angiogenic	 therapy	 to	 achieve	 maximum	 tumor	 regression	

and	 prolong	 survival?	 How	 to	 optimize	 drug	 scheduling	 and	 dosage	 to	 reach	

paramount	drug	efficacy	without	increasing	toxic	side	effects?	Could	the	overall	

survival	 in	 patients	 be	 improved	 beyond	 a	 few	 months?	 One	 of	 the	 biggest	

challenges	 to	 answer	 these	 questions	 is	 the	 lack	 of	 validated	 biomarker/s	 for	
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preselecting	 cancer	 patients	 who	 might	 benefit	 from	 anti-angiogenic	 therapy.	

Biomarkers	can	be	classified	into:	

	prognostic:	 biomarker	 that	 provide	 information	 about	 the	 likely	 outcome	 of	

cancer	in	patients	irrespective	of	therapy	[120,	121]	

predictive:	 biomarker	 that	 provides	 information	 in	 advance	 of	 therapy	 about	

likely	benefit	of	patients	(in	terms	of	tumor	shrinkage	or	survival)	from	specific	

treatment	[120,	122],	

pharmacodynamic:	 a	 biomarker	 that	 is	 a	measure	 of	 altered	 expression	 of	 a	

molecular	target	in	response	to	a	certain	therapy	[123,	124]	and	

surrogate:	a	biomarker	used	as	a	substitute	for	a	clinically	meaningful	endpoint,	

which	is	a	direct	measure	of	how	the	patient	feels,	functions	or	survives	[125].		

																				Successful	development	and	application	of	 tyrosine	kinase	 inhibitors	

largely	 depend	 on	 the	 predictive	 biomarkers	 for	 patient	 selection.	 The	 most	

extensively	studied	biomarker	in	cancer	research	is	VEGF.	Contradictory	studies	

have	 raised	 questions	 regarding	 association	 between	 initial	 VEGF	 levels	 in	

patients	 and	 the	 outcome	 of	 anti-angiogenic	 treatment.	 In	 advanced	 NSCLC,	

baseline	plasma	VEGF	levels	correlated	directly	to	progression-free	survival	but	

only	in	patients	with	low	baseline	levels	of	circulating	VEGF	[126].	On	the	other	

hand	high	 levels	of	circulating	VEGF	 in	patients	with	metastatic	NSCLC	did	not	

predict	 progression-free	 survival	 inspite	 of	 correlating	 with	 improved	 overall	

response	rate	in	a	phase	II/III	trial	[127].	These	discrepancies	in	the	results	raise	

doubts	about	the	potential	of	circulating	VEGF	as	a	predictive	biomarker.	

																				In	my	PhD	thesis,	we	have	 identified	a	novel	 tumor	cell	autonomous	

VEGF:VEGFR2	 feed-forward	 loop	 in	 NSCLCs	 expressing	 high	 levels	 of	 VEGFR2	
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leading	 to	 amplification	 of	 VEGF	 secretion.	 VEGF	 secretion	 is	 boosted	 by	

activation	of	HIF-1α,	which	is	specific	to	mTORC1	and	remain	unaffected	by	the	

status	of	mTORC2	[128].	We	observed	that	mTORC1	inhibition	using	rapamycin	

can	 reduce	 VEGF	 expression	 induced	 by	 VEGFR2.	 Thus	 our	 data	 strongly	

indicates	 that	 VEGF:VEGFR2	 signaling	 cascade	 functions	 via	 VEGFR2-PI3K-

mTOR	 signaling,	 inducing	 an	 mTOR	 dependent	 upregulation	 of	 VEGF.	 Our	

observation	 that	 knockdown	 of	 VEGFR2	 in	 tumor	 cells	 alone	was	 sufficient	 to	

almost	abolish	formation	of	tumors	in	vivo	supports	a	model	where	tumor	cell-

autonomous	 activation	 of	 VEGF:VEGFR2	 feed-forward	 loop	 is	 absolutely	

indispensable	 for	 tumor	 initiation,	 switching	 the	 balance	 towards	 pro-

angiogenesis	 promoting	 sprouting	 of	 new	 vessels.	 Proliferation	 in	 tumor	with	

high	 expressions	 of	 VEGF:VEGFR2	 remained	 at	 basal	 levels	 confirmed	 by	 our	

finding	 that	 VEGFR2/mTOR	 inhibition	 activated	 IRS/MAPK	 signaling	 overtime	

[116,	 129].	 Interfering	 the	 VEGF:VEGFR2	 signaling	 cascade	 in	 xenografts	

switched	 the	 tumor	 towards	 a	 proliferative	 phenotype	 inciting	 therapeutic	

dependency	on	MAPK	signaling.	Combined	 targeting	of	angiogenesis	 (VEGFR2)	

with	ZD6474	and	proliferation	(MAPK)	with	PD0325901	in	tumors	having	high	

expression	 profile	 of	 VEGF:VEGFR2	 proved	 to	 be	 very	 effective	 in	 regressing	

tumor	mass	substantially.	In	contrast,	VEGF:VEGFR2	feed-forward	loop	was	not	

active	in	tumors	with	low	VEGFR2	expression	and	they	remained	unaffected	by	

the	combined	ZD6474	and	PD0325901	therapy.	Consistent	with	our	pre-clinical	

model,	high	VEGFR2	expression	in	20%	of	lung	cancer	patients	correlated	with	

highly	angiogenic	tumors.	To	summarize	the	first	part	of	our	study,	NSCLCs	with	

high	 VEGFR2	 expression	 exhibit	 highly	 angiogenic	 phenotype.	 Knockdown	 of	



	 82	

VEGFR2	or	inhibition	with	anti-angiogenic	therapy	results	in	massive	reduction	

of	mTOR,	VEGF	and	microvessels	(CD31)	simultaneously	activating	proliferative	

pathway	 via	 MAPK	 signaling	 as	 an	 escape	 mechanism.	 Co-targeting	 MAPK	

pathway	results	in	massive	tumor	shrinkage.	Cumulatively	from	our	findings,	we	

propose	 high	 co-expression	 of	 VEGF:VEGFR2	 on	 tumor	 cells	 as	 a	 predictive	

biomarker	 for	 selecting	 advanced	 NSCLC	 patients	 who	 can	 benefit	 from	

therapeutic	efficacy	of	dual	VEGFR2/MEK	inhibition.		

																				Our	 findings	have	prompted	to	 the	development	of	a	 ‘Phase	 I/II	

clinical	 trial	 with	 vandetinib	 and	 selumetinib	 in	 advanced	 EGFRWT	 Non	

Small	 Cell	 Lung	 Cancer	 patients	 with	 high	 VEGF:VEGFR2	 expression	

profile’.	This	trial	is	currently	ongoing	at	the	University	Hospital	of	Cologne	

under	 the	 leadership	 of	 Prof.	 Jürgen	Wolf	 from	 the	 Centre	 of	 Integrated	

Oncology	(CIO	Köln	Bonn)	and	Lung	Cancer	Group	Cologne	(LCGC).		

																				Tumor	 regression	 in	 response	 to	 anti-angiogenic	 therapies	 is	 often	

transitory	owing	to	excessive	pruning	of	vessels,	increase	in	invasiveness	due	to	

elevated	hypoxia	within	the	tumor	or	due	to	intrinsic	or	acquired	resistances	to	

those	 particular	 agents.	 These	 adverse	 effects	 of	 anti-angiogenic	 therapy	 have	

lead	 to	 the	 concept	 of	 ‘vascular	 normalization’	 rather	 than	 destruction	 using	

prudent	 anti-angiogenic	 treatment.	 Judicious	 administration	 of	 anti-angiogenic	

therapies	 has	 been	 shown	 to	 heal	 leakiness,	 reduce	 vascular	 permeability	 and	

interstitial	 fluid	 pressure	 improving	 pericyte	 coverage	 [96,	 130,	 131].	 Several	

potential	 targets	 and	 drugs	 have	 been	 described	 to	 improve	 functionality	 of	

tumor	 vessels	 for	 example	 apricoxib,	 a	 Cox-2	 inhibitor	 enhances	 maturity	 of	

tumor	blood	vessels	[132].	Another	study	showed	that	dopamine	could	improve	
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activity	 of	 vessels	 by	 upregulating	 angiopoetin-1	 and	 Krüppel-like	 factor-2	

[131].	This	might	result	 in	effective	drug	delivery	within	 the	 tumor	potentially	

sensitizing	the	cells	to	cytotoxic	therapies	and	/	or	improving	survival	[96,	130,	

133,	 134].	 Thus	 the	 inducers	 of	 vascular	 normalization	 can	 serve	 as	 potential	

biomarkers.	Response	monitoring	in	advanced	NSCLC	is	complicated	given	that	

anti-angiogenic	 therapy	does	not	 lead	 to	 tumor	 shrinkage.	Nowadays	dynamic	

contrast-enhanced	 (DCE)	 MRI	 and	 PET	 are	 used	 in	 preclinical	 models	 and	 in	

clinic	 for	 non-invasive	 visualization	 and	 assessment	 of	 tumor	 response	

depending	on	the	tracer	types	[135-137].	Tumor	blood	flow	can	be	meticulously	

measured	by	 [15O]	H2O	 flow	which	 is	 a	 freely	diffusible	perfusion	 tracer.	 Even	

though	 [15O]	H2O	PET	has	not	been	so	 frequently	used	 in	 clinical	 study,	 subtle	

effects	on	tumor	blood	perfusion	can	be	detected	using	[15O]	H2O	PET	making	it	

as	aspiring	imaging	technique	[138].		

																				Using	 	 [15O]	 H2O	 PET	 imaging	we	 have	 validated	 that	 prudent	 anti-

angiogenic	 treatment	with	 PTK787	 improves	 blood	 flow	 in	 the	 tumor	 in	 vivo.	

Targeting	 VEGFR2	 in	 the	 tumor	 microenvironment	 with	 PTK787	 transiently	

normalized	 vasculature	 enhancing	delivery	 and	distribution	of	 cytotoxic	 drugs	

like	 erlotinib	 into	 the	 tumors	 resulting	 in	 significant	 tumor	 regression.	

Improvement	in	tumor	shrinkage	is	consistent	with	the	notion	that	higher-dose	

EGFR-targeted	 drug	 exposure	 yields	 to	 more	 effective	 target	 inhibition	 [139].	

Recent	 reports	 from	 Rakesh	 Jain	 indicate	 towards	 the	 fact	 that	 VGFE:VEGFR2	

inhibition-induced	vessel	normalization	effect	 is	 time	and	dose	dependent	 [78,	

140].	Applying	 [15O]	H2O	PET	 imaging	we	 could	decipher	 the	brief	 time	 frame	

during	which	tumor	vasculature	become	normalized.	PTK787	treatment	created	
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a	 time	 window,	 which	 lasted	 atleast	 8	 days	 during	 which	 tumor	 blood	 flow	

improved,	 followed	 by	 a	 decline	 till	 day	 18	 of	 treatment.	 Similar	 results	were	

obtained	 using	 ZD6474,	 which	 prompted	 normalization	 window	 to	 set	 in	 by	

increasing	 tumor	 blood	 perfusion	 from	 day	 4	 to	 day	 8	 followed	 by	 steady	

decrease	 in	 blood	 flow.	 ZD6474	 is	 a	 tyrosine	 kinase	 inhibitor	 that	 primarily	

targets	VEGFR2	 and	EGFR.	However,	 since	we	used	H1975	 in	 this	 case,	which	

are	 resistant	 to	 EGFR	 inhibition,	 the	 ZD6474	 mediated	 effect	 on	 tumor	

vasculature	 can	 be	 attributed	 to	 inhibition	 of	 VEGFR2.	 Our	 findings	 strongly	

support	 the	 concept	 that	 tumor	 vascular	 normalization	 by	 anti-angiogenic	

therapy	is	time	dependent.	It	has	been	shown	that	treatment	with	low	doses	of	

DC101	 (an	 antibody	 against	 VEGFR2)	 can	 improve	 pericyte	 coverage	 in	 a	

preclinical	model	of	breast	cancer	[141].	Our	findings	uniformly	signify	that	the	

principal	 target	 to	 induce	 vascular	 normalization	 is	 probably	 VEGFR2,	 which	

might	 serve	 as	 a	 predictive	 biomarker	 of	 vascular	 normalization.	 However,	

vascular	normalization	effect	seems	to	be	transient	as	continued	anti-angiogenic	

therapy	with	PTK787	or	ZD6474	resulted	in	a	deterioration	of	tumor	blood	flow	

beyond	 8	 days	 of	 treatment	 as	 visualized	 by	 our	 [15O]	 H2O	 PET	 imaging.	

Considering	that	vessels	remain	well	fortified	only	until	day	8	of	anti-angiogenic	

treatment,	we	decided	to	take	this	time	frame	as	the	‘normalization	window’	as	a	

starting	 point	 of	 cytotoxic	 therapy.	 Implication	 of	 [15O]	 H2O	 PET	 guided	

pretreatment	with	PTK787	and	ZD6474	significantly	improved	the	delivery	and	

therapeutic	 efficacy	 of	 cytotoxic	 compounds	 erlotinib	 and	 GDC0941.	 Our	 data	

consolidate	 the	 benefit	 of	 using	 [15O]	 H2O	 PET	 imaging	 in	 clinical	 studies	 to	

monitor	 tumor	blood	 flow	as	 a	 precise	pharmacodynamic	marker	 for	 vascular	
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normalization.	 Cytotoxic	 agents	 combined	 with	 anti-angiogenic	 therapy	 has	

shown	 mixed	 outcome	 in	 the	 clinic.	 Bevacizumab	 treatment	 in	 glioblastoma	

patients	 with	 high	 and	 stable	 perfusion	 receiving	 chemotherapy	 had	

significantly	 increased	progression	 free	 and	 overall	 survival	 [100].	 A	 Phase	 III	

study	 involving	 NSCLC	 patients	 receiving	 chemotherapy	 with	 bevacizumab	

displayed	significant	survival	benefit	over	 the	chemotherapy	group	[142].	Still,	

there	 are	 some	 controversies	 and	 challenges	 that	 should	 be	 clarified	 before	

cancer	therapy	by	vessel	normalization	can	be	clinically	 implicated.	 In	a	recent	

human	 study	 there	 was	 a	 rapid	 reduction	 of	 blood	 perfusion	 and	 docetaxel	

uptake	 in	 NSCLC	 after	 patients	were	 administered	with	 bevacizumab	 for	 four	

days	[143].	In	another	Phase	III	trial,	addition	of	bevacizumab	to	chemotherapy	

in	newly	diagnose	GBM	did	not	improve	overall	survival.	This	study	is	confirmed	

by	 our	 PET	 data	 that	 vascular	 normalization	 is	 only	 transient	 and	 continuous	

dosing	of	 anti-angiogenic	 compounds	 can	 result	 in	 a	 reduction	 in	 tumor	blood	

flow.	 In	 summary,	 our	 data	 strengthen	 the	 fact	 that	 prudent	 anti-angiogenic	

therapy	 leads	 to	 evanescent	 vessel	 normalization	 resulting	 in	 better	 drug	

delivery	 and	 therapeutic	 outcome.	However,	 optimal	designing	of	 drug	dosage	

and	 scheduling	 using	 [15O]	 H2O	 PET	 imaging	 are	 absolutely	 indispensable	 to	

achieve	maximal	clinical	outcome.	
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8.		Appendix	

	

8.1.	List	of	Abbreviations	

ADC:	adenocarcinoma	

ATP:	adenosine	triphosphate	

AIDS:	acquired	immuno	deficiency	syndrome	

ANGP:	angiopoietin	

BLI:	bioluminescence	imaging	

BV:	bevacizumab	

BrdU:	5-bromo-2’-deoxyuridine	

CRC:	colorectal	carcinoma	

DNA:	deoxyribonucleic	acid	

ELISA:	enzyme	linked	immunosorbent	assay	

EGFR:	endothelial	growth	factor	receptor	

[18F]FLT:	[18F]	3'-deoxy-3'-[18F]-fluoro-L-thymidine	

FITC:	fluorescein	isothiocyanate	

FGF:	fibroblast	growth	factor	

Flk1:	fetal	liver	kinase	1	

GBM:	glioblastoma	

HIV:	human	immunodeficiency	virus	

HIF:	hypoxia	inducible	factor	

IRS:	insulin	receptor	substrate	

IGFR:	insulin	growth	factor	receptor	

KD:	knockdown	

KDR:	kinase	insert	domain	receptor	

MAPK:	mitogen-activated	protein	kinase	

MEK:	mitogen-activated	protein	kinase	kinase	

[11C]MET:	methyl-L-	[11C]-methionine	

MMP:	matrix	metalloproteinase	

MRI:	magnetic	resonance	imaging	
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NNK:	nitrosoaminoketone	

NRP:	neuropillin	

NSCLC:	non	small	cell	lung	cancer	

OV:	overall	survival	

PDGF:	platelet	derived	growth	factor	

PDGFR:	platelet	derived	growth	factor	receptor	

PET:	positron	emission	tomography	

PAHS:	polycyclic	hydrocarbons	

PFS:	progression	free	survival	

PLGF:	placental	growth	factor	

PBS:	phosphate	buffered	saline	

RTK:	receptor	tyrosine	kinase	

RCC:	renal	cell	carcinoma	

RNA:	ribonucleic	acid	

ROI:	region	of	interest	

TSP:	thrombospondin	

TKI:	tyrosine	kinase	inhibitor	

SCLC:	small	cell	lung	cancer	

SCC:	squamous	cell	carcinoma	

VEGF:	vascular	endothelial	growth	factor	

VEGFR:	vascular	endothelial	growth	factor	receptor	
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Kalisperati,	 the	 sweet	 girl	 from	Greece	 have	 been	 a	 great	 friend	 and	 support	

since	the	time	I	got	to	know	her	from	our	German	lessons.	
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contributions	 of	my	 family	 and	 friends	nine	 thousand	kilometres	 away.	 I	 have	
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faith	 in	 me.	 My	 maternal	 grandmother	 with	 her	 tender	 heart,	 my	 maternal	
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paternal	grandfather	 (who	 taught	me	English)	with	his	 intense	desire	 to	know	
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temparament	and	vibrant	smile	have	defined	many	traits	of	my	personality	and	

made	me	who	I	am	today.	My	deeply	emotional	father	have	shown	me	that	it	is	

ok	to	fall	or	loose	once	in	a	while	in	the	race	of	life	as	long	as	I	manage	to	get	up	

and	 move	 on.	 Finally	 it	 is	 the	 moment	 that	 I	 mention	 this	 very	 special	 lady,	

whose	 intrepid	 struggle	 with	 life,	 unflinching	 dedication	 towards	 me	 and	
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life	 and	 dealing	 with	 any	 obstacle	 coming	 in	 my	 way;	 my	mother,	 the	 most	

amazing	woman	in	my	life,	I	would	not	have	made	it	up	till	here	without	you.	
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Ullrich,	my	supervisor	and	phillosopher	has	curved	out	the	whole	trajectory	for	

me	 ensuring	 that	my	 PhD	 time	 in	 his	 lab	 becomes	 interesting	 and	 rewarding	

laying	the	path	for	future	advances	in	my	scientific	career.	
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