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Zusammenfassung

Zur korrekten Verarbeitung von neuronalen Signalen müssen verschiedene neuronale
Gruppen untereinander koordiniert werden. Um dies zu erreichen, muss zwischen den
Neuronen eine Verbindung bestehen. Diese Verbindungen und insbesondere ihre Stärke
sind a priori nicht bekannt und können nur in den seltensten Fällen direkt gemessen
werden.

In dieser Arbeit werden drei Publikationen (Rosjat et al., 2014; Tóth et al., 2015;
Popovych et al., under review) und die Ergebnisse zweier weiterer Arbeiten vorgestellt,
die sich mit der Analyse von Kopplungen in experimentell gemessenen neuronalen Ak-
tivitäten befassen. Die Arbeiten unterteilen sich in die Untersuchung von intrinsischen
sowie extrinsischen intra- und intersegmentalen Verbindungen in der Stabheuschrecke
Carausius morosus und in die Analyse und Modellierung von Kopplungen anhand von
EEG-Messungen des menschlichen Gehirns bei der Ausführung von unterschiedlichen
Aufgaben. In beiden Bereichen wurden unter anderem mathematische Modelle verwen-
det, um Hypothesen über bislang unbekannte Kopplungsmechanismen aufzustellen.

Die erste Studie befasst sich mit den durch Schizophrenie ausgelösten Veränderungen
von Kopplungen im thalamo-kortikalen Kreislauf (Rosjat et al., 2014). Hierfür wurden
bereits vorherig publizierte EEG-Daten aus einem Doppelklick-Paradigma verwendet,
um ein mathematisches Modell, bestehend aus einer thalamischen und einer kortikalen
neuronalen Population, zu erstellen. Die einzelnen Populationen bestanden aus einer
Vielzahl von Phasenoszillatoren mit kontinuierlich verteilten Eigenfrequenzen. Unter
Verwendung der Reduktionsmethoden von Pikovsky und Rosenblum, Ott und Anton-
sen sowie Watanabe und Strogatz wurden die Einflüsse der bidirektionalen Verbindun-
gen zwischen den beiden Hirnarealen auf die Synchronisation innerhalb dieser Bereiche
untersucht. Das Modell war in der Lage, die experimentellen Daten zufriedenstellend
zu reproduzieren. Wir konnten beobachten, dass die Kopplungsstärke von der thalami-
schen zur kortikalen Region hauptsächlich die Dauer der Synchronisation beeinflusst,
wohingegen die Rückkopplung zur thalamischen Region einen stärkeren Effekt auf die
Synchronisationsstärke ausübt. Dies führte zu der Hypothese, dass die Rückkopplung
zur thalamischen Region bei an Schizophrenie erkrankten Testpersonen vermindert sei.

In der zweiten Studie werden intersegmentale Kopplungen im Protraktor-Retraktor-
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System des pro- und mesothorakal Ganglions der Stabheuschrecke Carausius morosus
mit Hilfe von an experimentelle Daten angepassten mathematischen Modellen unter-
sucht (Tóth et al., 2015). Wir haben dafür einerseits experimentell ermittelte und ande-
rerseits von mathematischen Modellen simulierte Phasen-Antwort-Kurven verwendet,
um die Art und Stärke der Verbindungen zu untersuchen. Wir konnten zeigen, dass
Verbindungen von beiden Seiten des prothorakalen zum mesothorakalen Netzwerk nö-
tig waren, um eine gute Übereinstimmung der Phasen-Antwort-Kurven zu erzielen.
Außerdem zeigte sich, dass die Stärke von exzitatorischen Verbindungen maßgeblich
zu den Phasen-Antwort-Kurven beigetragen hat, wohingegen die Stärke der inhibitori-
schen Verbindungen keinen großen Einfluss zu haben scheint.

Die dritte Studie beschäftigt sich mit der Identifizierung eines neuronalen Markers
der Bewegungsausführung (Popovych et al., under review). In dieser Arbeit haben wir
die Auswirkung von intern sowie extern evozierten Bewegungen auf die Phasensyn-
chronisation untersucht. Dafür haben wir die Signale, die von über dem motorischen
Cortex platzierten Elektroden aufgezeichnet wurden, auf dem Phasenniveau der Haupt-
frequenzbereiche (δ-, θ-, α-, β- und dem niedrigen γ-Bereich) hinsichtlich ihrer Phasen-
synchronität zwischen einzelnen Wiederholungen analysiert. Es hat sich gezeigt, dass
unabhängig von der Hand, welche die Bewegung ausführt, und unabhängig von der Art,
wie diese Bewegung ausgelöst wurde, eine stark lateralisierte Phasensynchronisation in
den niedrigen Frequenzbereichen (δ und θ) in Elektroden über dem kontralateralen
primären Motorcortex stattfindet. Diese Ergebnisse legen nahe, dass sich die Phasen-
synchronisation in motorischen Bereichen zusätzlich zu den etablierten Markern der
ereignisbezogenen Desynchronisation und der ereignisbezogenen Synchronisation, wel-
che sich auf Änderungen der Amplitude im α- und β-Frequenzbereich beziehen, als
neuronaler Marker der Bewegungsausführung eignet.
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Abstract

The correct signal processing of neuronal signals requires coordination of different
groups of neurons. To achieve this there has to be a connection between those neurons.
This connection and especially the strength of the connection is not known a priori
and can only be measured directly in rare cases.

In this thesis I present three publications (Rosjat et al., 2014; Tóth et al., 2015; Po-
povych et al., under review) and the results from two additional studies focussing on
the analysis of couplings in experimental measured neuronal activities. The publica-
tions can be divided into investigations of intrinsic, as well as extrinsic intra- and
intersegmental connections in the stick insect Carausius morosus and into analysis and
mathematical modeling of couplings from EEG-measurements of the human brain whi-
le subjects were performing different tasks. In both parts I made use of mathematical
models to build hypotheses about so far unknown coupling mechanisms.

The first study deals with connectivity changes in the thalamo-cortical loop caused
by schizophrenia (Rosjat et al., 2014). To build a mathematical model consisting of
neural populations representing the thalamus and the auditory cortex we made use of
published EEG-data, which were collected while subjects performed a double-click pa-
radigm. The individual populations comprised a large number of phase oscillators with
continuously distributed natural frequencies. Applying reduction methods by Pikovsky
and Rosenblum, Ott and Antonsen together with the reduction method by Watanabe
and Strogatz we investigated the influences of the bidirectional connections between
the brain areas on the synchronization of the neuronal populations. The model was able
to replicate the experimental data adequately. We observed that the coupling strength
from the thalamic region to the cortical region mainly affected the duration of syn-
chrony while the feedback to the thalamic region had a bigger effect on the strength
of synchrony. This led to the hypothesis that the back coupling to the thalamic region
might be reduced in schizophrenia patients.

The second study will show an analysis of intersegmental couplings in the protractor-
retractor system of the pro- and mesothoracic ganglion of the stick insect Carausius
morosus using mathematical models based on experimental data (Tóth et al., 2015).
We made use of phase-response curves that were calculated experimentally on the one
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hand and simulated by mathematical models on the other hand to determine the nature
and the strength of their connection. We showed that connections on both sides from
the prothoracic to the mesothoracic network were necessary to achieve a good agree-
ment with the experimental phase-response curves. Additionally, it was found that the
strength of the excitatory connection played a key role, while the strength of the inhi-
bitory connection did not have a big influence on the shape of the phase-response curves.

The third study deals with the identification of a neuronal marker of movement exe-
cution (Popovych et al., under review). In this work we investigated the influence of
internally and externally triggered movement on the phase synchronization in the mo-
tor system. We tested the signals, that were recorded from electrodes lying above the
motor cortex, in the phase space including the major frequency bands (δ-, θ-, α-, β−
and low γ-frequencies) for inter-trial phase synchrony. The study revealed a strong la-
teralized phase synchronization in the lower frequency bands (δ and θ) in the electrodes
above the contralateral primary motor cortex independent of the hand performing and
the cue triggering the movement. The results suggest that this phase synchronization
could serve as an electrophysiological marker of movement execution additionally to
the well established event-related desynchronization and event-related synchronization
that are based on the amplitude changes in α- and β frequency bands.
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Nomenclature

CPG . . . . . . . . . . . . Central Pattern Generator
CS . . . . . . . . . . . . . . Campaniform Sensilla
CTr . . . . . . . . . . . . . Coxa-trochanter joint
DCM . . . . . . . . . . . Dynamic Causal Modeling
EEG . . . . . . . . . . . . Electroencephalography
EF . . . . . . . . . . . . . . Extensor-Flexor
fCO. . . . . . . . . . . . . Femoral Chordotonal Organ
FeTi . . . . . . . . . . . . Femur-tibia joint
FFT . . . . . . . . . . . . Fast Fourier Transform
FLB . . . . . . . . . . . . Fold Limit Cycle Bifurcation
fMRI. . . . . . . . . . . . functional magnetic resonance imaging
HB. . . . . . . . . . . . . . Hopf Bifurcation
LD. . . . . . . . . . . . . . Levator-Depressor
lM1 . . . . . . . . . . . . . left Primary Motor Cortex
lPM. . . . . . . . . . . . . left Premotor Cortex
MN . . . . . . . . . . . . . Motoneurone
OA . . . . . . . . . . . . . Ott-Antonsen
ODE. . . . . . . . . . . . Ordinary Differential Equation
PLI . . . . . . . . . . . . . Phase-locking Index
PR. . . . . . . . . . . . . . Protractor-Retractor
PRC . . . . . . . . . . . . Phase Response Curve
rM1 . . . . . . . . . . . . . right Primary Motor Cortex
rPLV. . . . . . . . . . . . rescaled phase-locking value
rPM . . . . . . . . . . . . right Premotor Cortex
SLI . . . . . . . . . . . . . Stimulus-locking Index
SMA. . . . . . . . . . . . Supplementary Motor Area
sPLV. . . . . . . . . . . . single-frequency phase-locking value
ThC . . . . . . . . . . . . Thorax-coxa joint
WS . . . . . . . . . . . . . Watanabe-Strogatz
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1 Introduction

All sorts of behaviour, be it coordinated movements, processing of external inputs or
planning of motions, need interactions of activities of the nervous system.

“To move things is all that mankind can do, and for this task the sole exe-
cutant is a muscle, whether it be whispering a syllable or felling a forest.”
(Sherrington, 1941)

The loss of such basic behavioural abilities represents a major limitation in normal
day-to-day life of patients suffering from mental illnesses, such as Parkinson’s disease,
schizophrenia or stroke. It is the aim of this thesis to investigate the neural mechanisms
underlying these basic abilities. Those fundamental actions of living organisms could
either be observed on the behavioural level or recorded and analyzed on an electro-
physiological level. Electrophysiology deals with electrical properties from microscopic
(e.g. single-cell recordings) to a macroscopic view (e.g. whole brain recordings like
electroencephalography). In this work I will approach neural activities from both the
microscopic side, in extracellular nerve recordings of the stick insect using so-called
hook electrodes (Schmitz et al., 1988), and the macroscopic side, in EEG recordings of
the human brain.

Stick insects are often used as a model organism for neuronal studies, since their ner-
vous system is easy to access and their walking behaviour is directly observable. Its
legs consist of three leg joints that produce coordinated movements during walking and
climbing. The thorax-coxa (ThC) joint is responsible for forward and backward move-
ments, the coxa-trochanter (CTr) joint is able to move the femur of the stick insect in
upward and downward direction and finally the femur-tibia (FTi) joint that is responsi-
ble for outward and inward movements of the leg. Each of the leg joints is controlled by
antagonistic muscle pairs, namely the protractor-retractor (ThC), the levator-depressor
(CTr) and the flexor-extensor (FTi) muscle pair (Graham and Epstein, 1985). In stick
insects (Büschges, 2005) as well as in other insect species (cockroach: (Fuchs et al.,
2010), cricket: (Grillner, 2003)) each muscle pair of each of the six legs is controlled by
central pattern generators (CPGs). In the stick insect, these CPGs are located in the
central nervous system (Büschges, 2005). Sensory feedback can effect the timing and
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the magnitude of the CPG output (Büschges, 2005), what is necessary for coordinated
locomotor behaviour. The main sensory organs involved in locomotion are the femoral
chordotonal organ, that provides information of the movement and angular velocity
of the leg (Bässler, 1967), the femoral and trochanteral campaniform sensilla, that are
responsible for force and load signals (Bässler, 1977a; Akay et al., 2001, 2004), and hair
plates as well as hair rows which provide information on the position of the leg relative
to the body of the stick insect (Bässler, 1977a).

Previous experimental studies have shown that a single stepping front leg is able to
induce rhythmic protractor-retractor motoneuron activity in the adjacent thoracic seg-
ment (Borgmann et al., 2009), whereas the last thoracic segment showed only a tonic
increase in protractor-retractor motoneuron activity (Borgmann et al., 2007). In a semi-
intact preparation, where all legs except for an ipsilateral pair, consisting of a front and
a middle leg, were removed, a general increase in tonic motoneuron activity in the me-
tathoracic ganglion was observed during stepping of the middle leg. However, stepping
of both legs induced alternating activity in the protractor and retractor motoneurons
of the metathoracic ganglion that was in phase with front leg steps (Borgmann et al.,
2009). A single stepping hind leg on the other side caused a tonic increase of protractor-
retractor motoneuron activity in two thirds of the experiments and rhythmic activity
in the remaining third of the experiments in the mesothoracic ganglion (Borgmann
et al., 2009). Additionally, it could be shown that stepping of a single hind leg also
entrains a pilocarpine induced rhythm in the protractor and retractor motoneurons of
the prothoracic ganglion (Grabowska, 2014).

Even though many studies focussed on the inter-segmental effects of sensory feedback,
the exact contribution of those effects on the inter-leg coordination remains unclear.
Mathematical models are a good tool to build hypotheses about the underlying coup-
ling structures leading to the observed inter-segmental influences. Depending on the
research question, these models could be simplified by a reduction to the phase plane
as in the biomechanical cockroach model (Holmes et al., 2006; Proctor et al., 2010)
or they could be based on more complex systems of Hodgkin-Huxley type neurons
(Hodgkin and Huxley, 1952) that are able to describe the interactions in more detail
(Daun et al., 2009; Daun-Gruhn et al., 2011; Daun-Gruhn and Tóth, 2011). The study
of the precise inter-segmental influences of sensory information on motoneuron pools
that control a concrete pair of muscles, thus, requests the use of the latter modeling
approach. This model is not only able to reproduce different walking patterns observed
in stick insects, but it also enables us to simulate various experimental paradigms by
decoupling and deactivating certain leg joints from the rest of the network. Thereby
an artificial deafferentation of the desired legs as used in previous experimental studies
(Borgmann et al., 2009) can be produced. This model can then be used to investigate
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the coupling structure and especially the nature of the connections, e.g. inhibition,
excitation and coupling strengths, that are needed to achieve similar behaviour as ob-
served in experiments.

However, the presence of the strong sensory inputs during leg movements makes it
difficult to investigate the intrinsic intra- and inter-segmental interaction between the
different CPG networks. In order to understand the role of this intrinsic coupling it
is necessary to remove all sensory influences on the system. For this purpose a large
number of studies dealt with deafferented isolated nerve cords in the state of fictive
locomotion induced by the muscarinic receptor agonist pilocarpine (c.f. Büschges et
al., 1995). This kind of preparation allows us to analyze the interactions of the CPG
networks in the different thoracic segments.

In contrast to the stick insects nervous system, the human brain cannot be accessed ea-
sily for direct recordings of neuronal activities. Therefore, non-invasive technologies are
needed to measure the brain activity. The techniques mostly used in the last decades
are functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG)
and electroencephalography (EEG).

The human brain is an extremely complex structure that contains up to 1012 neu-
rons and about 1013 to 5 · 1013 glial cells, that do not take part directly in the synaptic
interactions and electrical signaling. Every neuron can have up to 104 post-synaptic
connections which leads to a very high complexity in the networks formed by connected
neurons. To be able to capture networks in this dimension, the neurons are grouped in
families, the so called brain areas. These areas are specialized on different tasks and
can be distinguished by their cytoarchitecture, histological structure and organization
of cells (Brodmann, 1909). The cortex can be subdivided into six cortical layers (Shipp,
2007). The cortical layers contain cells of different neuronal size, shapes and density
and can be divided into three parts. The supragranular layers consist of the layers I
to III. They are the main origin of corticocortical connections and consist of small
pyramidal cells (layer III), small stellate cells (layer II) and nerve fibers (layer I). The
second part is the internal granular layer IV that receives thalamocortical connections
through stellate cells. The last part, the infragranular layers V to VI, primarily connects
the cerebral cortex to subcortical layers and consists mainly of large pyramidal cells
(Schusdziarra et al., 1977; Shipp, 2007; Greig et al., 2013). The composition of the six
layers is different in certain cortical areas, while the motor cortex has a prominent layer
V and only a small layer IV. Other cortical areas such as the primary sensory cortices,
show a more pronounced granular layer (Shipp, 2007).

The various non-invasive techniques record different quantities of the brain activities
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in the brain areas. In fMRI the changes of the blood-oxygen-level dependent (BOLD)
signal in response to neural activity are detected. The idea behind this technique is
that active brain areas consume more oxygen and thus the blood flow in these are-
as increases (Heeger and Ress, 2002). The advantage of this method is its excellent
spatial resolution, while it has deficits in the determination of neural events at fast
time-scales. MEG and EEG on the other hand measure magnetical and electrical si-
gnals. EEG measures potential differences on the scalp produced by volume currents,
while MEG measures magnetic fields induced mainly by tangential primary currents
based on excitatory activity (Okada et al., 1997). The simultaneous activity of about
50.000 pyramidal cells gives rise to measurable EEG and MEG signals (Murakami and
Okada, 2006). Although EEG and MEG have the advantage of high temporal resoluti-
on, volume conductance leads to a poor spatial resolution. Thus, we have no detailed
information on single neurons or small brain areas. This makes it necessary to use pre-
processing steps like source reconstruction or spatial filtering via Laplacian references
to improve the localization of the recorded signals (e.g. Van Veen et al., 1997; Dale et
al., 2000; McFarland et al., 1997).

As mentioned above, the loss of basic cognitive functions is a substantial impairment
to day-to-day life of patients suffering from mental diseases. Thus it is of paramount
importance to understand the interplay of brain regions while performing basic cogni-
tive tasks, such as sensory processing, movement preparation and execution, in order
to increase the understanding of possible dysfunctions in the involved networks and
possible improvements of their rehabilitation.

Previous studies have shown bio-markers for movement preparation and movement
execution. These are, amongst others, the Bereitschaftspotential preceding self-initiated
movements (Shibasaki and Hallett, 2006) and the event-related desynchronization (ERD)
and event-related synchronization (ERS) in movement related tasks (Neuper et al.,
2006; Pfurtscheller and da Silva, 1999). These bio-markers are based on changes of
amplitudes only and do not take phase-synchronization effects into account. As seen
in (Brockhaus-Dumke et al., 2008), the lack of phase-synchronization plays a key-role
in auditory evoked responses in schizophrenia. Up to now it remains unclear whether
similar phase-locking effects can be found in the human motor system and whether its
nature is changed due to different cognitive diseases.

These phase-locking effects could be used to build mathematical models and there-
by could lead to hypotheses about the modulation of the interaction between different
brain areas. Based on the work by Hodgkin and Huxley (1952) many mathematical
models were derived (c.f. Carlsson, 2006; an der Heiden, 2006). Most of those models
only describe the coupling of a small number of neurons. Since we want to study a
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bigger population of neurons, which would be expected to be involved in the human
brain during execution of certain tasks, we need to find a simplified way to model the
neuronal dynamics. A commonly used way to investigate the coupling structure of EEG
data is dynamic causal modelling (DCM). DCM simulates the activity of infragranular,
supragranular and granular layers via neural mass models using the Jansen and Rit
model and estimates the coupling between the different sources of activity (Jansen and
Rit, 1995; Kiebel et al., 2008). Another approach for neuronal networks of this size are
ensembles of coupled phase-oscillators that can be further reduced to the mean field
activity of each ensemble (Pikovsky and Rosenblum, 2011). These models can serve
as an abstract phenomenological representation of the observed activities that can be
adjusted to different brain regions easily. With the help of these models, insights in the
general coupling structure of the investigated neural networks can be obtained.
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The aim of the present thesis is to investigate coupling mechanisms and synchroniza-
tion phenomena in neuronal networks on the micro- and macroscopic scale tackled by
direct analysis of experimental data and by investigations of mathematical models.

The first publication (Rosjat et al., 2014) shows possible differences in the thalamo-
cortical loop in patients suffering from schizophrenia. For this work, mathematical
models based on large ensembles of phase oscillators were fitted to experimentally
obtained synchronization effects in EEG data. The model was reduced to lower di-
mensions via the Pikovsky-Rosenblum ansatz (Pikovsky and Rosenblum, 2011). The
model is - despite its abstract nature - in good agreement with the recorded EEG data.
This justifies our chosen degree of approximation. The results suggest that the decrease
in phase-synchronization, that is present in schizophrenia patients, is due to reduced
connectivity from the auditory cortex to thalamic regions.

The second study (Tóth et al., 2015) shows an analysis of inter-segmental coupling
in the protractor-retractor system of the pro- and mesothoracic ganglion of the stick
insect. The mathematical model was adjusted to match the experimental condition, i.e.
all legs except for a single front leg were removed. Theoretical phase-response curves
(PRCs) were then fitted to the ones obtained by experiments to determine the nature
and the strength of the connection between the pro- and mesothoracic segment. We
showed that connections on both sides from the prothoracic to the mesothoracic net-
work were necessary to achieve a good agreement with the experimental phase-response
curves. Additionally it was found that the strength of the excitatory connection played
a key role, while the strength of the inhibitory connection did not have a big influence
on the shape of the phase-response curves.

The third work (Popovych et al., under review) describes synchronization phenomena
on the phase and amplitude level in movement related tasks. Therefore, EEG data
of young healthy participants were recorded during externally and internally trigge-
red finger tapping movements, as well as a vision only control condition. The analysis
showed low frequency intra-regional phase-synchronization in electrodes located above
the pre-motor cortex, the primary motor cortex and supplementary motor areas ad-
ditionally to the well-known ERD and ERS effects during movement preparation and
movement execution. In contrast to phase-synchronization found in auditory double-
click paradigms, there were no synchronization effects present in frequencies higher
than approximately 10Hz. The observed effect was strongest in the electrodes lying
above the primary motor cortex contralateral to the moving hand.

The last part of the thesis describes the results from two additional unpublished stu-
dies. The first subsection deals with inter-regional phase-synchronization effects during
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movement preparation and execution. For this purpose phase-locking metrics were used
to analyze the inter-regional synchronization picked up by electrodes lying above motor
related areas. The analysis showed a significant increase in phase locking that was stron-
gest between motor regions contralateral to the moving hand and the supplementary
motor area during movement preparation and execution in δ − θ frequencies (2-7Hz).
An increase in β-phase synchronization (13-30Hz) was observed between contralateral
motor areas and the supplementary motor area, after the movement had finished.

The second subsection deals with the analysis of intrinsic connectivities in the deafferen-
ted thoracic nerve cord of the stick insect. The recorded depressor motoneuron activity
was analyzed via two approaches, a first descriptive approach using phase-difference
analysis and a second more sophisticated approach using dynamic causal modelling.
Both approaches showed a strong agreement on the level of coupling strengths. The
results suggest the existence of intra- and ipsilateral inter-segmental couplings between
the segments of the pro-, meso- and metathoracic ganglia in the levator-depressor sys-
tem. The study showed that the intra-segmental coupling strength in the mesothoracic
ganglion is the strongest, while intra-segmental connections between meso- and meta-
thoracic ganglia are the weakest over all experimental conditions. The connectivity in
the prothoracic ganglion, that controls the behaviour of the front legs, shows a high
variability between and within the different approaches. This result might reflect the
independent movements from the other legs during searching movements, as well as
the coupled movements during walking behaviour.
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RESEARCH Open Access

A mathematical model of dysfunction of the
thalamo-cortical loop in schizophrenia
Nils Rosjat*, Svitlana Popovych and Silvia Daun-Gruhn

*Correspondence:
rosjatn@uni-koeln.de
Heisenberg Research Group of
Computational Biology,
Department of Animal Physiology,
Institute of Zoology, University of
Cologne, Zülpicher Str. 47b, 50674
Cologne, Germany

Abstract

Background: Recent experimental results suggest that impairment of auditory
information processing in the thalamo-cortical loop is crucially related to
schizophrenia. Large differences between schizophrenia patients and healthy controls
were found in the cortical EEG signals.

Methods: We derive a phenomenological mathematical model, based on coupled
phase oscillators with continuously distributed frequencies to describe the neural
activity of the thalamo-cortical loop. We examine the influence of the bidirectional
coupling strengths between the thalamic and the cortical area with regard to the
phase-locking effects observed in the experiments. We extend this approach to a
model consisting of a thalamic area coupled to two cortical areas, each comprising a
set of nonidentical phase oscillators. In the investigations of our model, we applied the
Ott-Antonsen theory and the Pikovsky-Rosenblum reduction methods to the original
system.

Results: The results derived from our mathematical model satisfactorily reproduce the
experimental data obtained by EEG measurements. Furthermore, they show that
modifying the coupling strength from the thalamic region to a cortical region affects
the duration of phase synchronization, while a change in the feedback to the thalamus
affects the strength of synchronization in the cortex. In addition, our model provides an
explanation in terms of nonlinear dynamics as to why brain waves desynchronize after
a given phase reset.

Conclusion: Our model can explain functional differences seen between EEG records
of healthy subjects and schizophrenia patients on a system theoretic basis. Because of
this and its predictive character, the model may be considered to pave the way
towards an early and reliable clinical detection of schizophrenia that is dependent on
the interconnections between the thalamic and cortical regions. In particular, the
model parameter that describes the strength of this connection can be used for a
diagnostic classification of schizophrenia patients.

Keywords: Mathematical modeling, Phase oscillators, EEG, Synchronization

Introduction
Schizophrenia is a severe and complex mental illness causing disability [1-3]. It has been
conceptualized as a disconnectivity syndrome concerning the interplay of the brain areas
involved. As information on the activity of some of the deeply localized involved brain
areas, such as the thalamus is not accessible to noninvasive electroencephalography (EEG)
measurement, alternative methods, like mathematical models, need to be developed
in order to deepen our understanding of the fundamental neural processes underlying

© 2014 Rosjat et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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schizophrenia, and to detect dysfunctions in the interactions between the participating
brain areas. Such methods aim at deriving reliable criteria that indicate the progress of the
disease at an early stage. The early recognition is considered to be of special importance
in schizophrenia.

As schizophrenia has a very high degree of complexity, due to the large number of
neuronal processes involved, there is no model that treats all aspects of the disease con-
currently. The model in [4], for instance, focuses on the empirical dopamine hypothesis
of schizophrenia and postulates that an imbalance between glutamate and dopamine
activity plays a key role in schizophrenia disorder. In particular, the authors could show
that both hypoglutamatergia and hyperdopaminergia result in reduced activation of the
striatal complex and thus leads to schizophrenia [4].

Heiden et al. [5] on the other hand modeled the basic neural circuit underlying
schizophrenia as a dynamical system on a microstructural level of pyramidal cells (see also
Mackey et al. [6]). In their model, periodic firing patterns were associated with healthy
behavior, whereas aperiodic/chaotic firing patterns were associated with schizophrenic
states and the switch from periodic to aperiodic firing took place due to an increase in
dopamine level. In [7], the same model was analyzed in a hypo-glutamatergic setting, and
it also exhibited aperiodic firing.

A top-down approach in modeling the symptoms of schizophrenia is proposed in [8,9].
These authors relate cognitive, negative and positive symptoms of schizophrenia to a
reduced depth of attractor basins of the model regarded as a dynamical system. The model
consisting of pools of leaky integrate-and-fire neurons for the involved pyramidal cells and
inhibitory interneurons and AMPA, NMDA and GABAA synapses either developed spon-
taneous firing or was attracted to a high-firing state. The decrease in NMDA-receptor
conductance led to a decrease in attractor stability and therefore a decrease in mem-
ory and an increase in distractability [8,9]. An additional decrease in the conductance of
GABA-synapses led to jumping from spontaneous activity to attractors which could be
identified with the increase of positive symptoms [8].

In [10], fMRI data of healthy and schizophrenic test persons obtained in a memory-task
experiment were used to assess the connectivity between the visual, parietal and pre-
frontal regions using DCM as proposed by [11]. Each of these regions has a self-coupling
and bidirectional all-to-all coupling. Moreover, the working memory modulates the cou-
pling from visual to prefrontal and from prefrontal to parietal regions. The schizophrenic
patients and the healthy subjects differed significantly in the self-coupling strengths,
in the coupling between parietal and prefrontal regions in both directions and in the
coupling from visual to prefrontral regions [10].

In contrast to the modeling studies described above, we focused our attention on the
phenomena observed on the large-scale level of dysfunction of the thalamo-cortical loop
in schizophrenia. We did therefore not include any explicit biophysical properties into our
model. We constructed a mathematical model based on a study by [12]. In this study, the
difference between healthy subjects and schizophrenia patients was investigated, using
individual EEG recordings with respect to phase locking (PL) in the four frequency bands
(θ , α, β and γ ). The two groups of test persons showed significant difference in the
strength of PL in the θ- and α-frequency band, while no significant difference in PL was
observed in the other two frequency bands. The duration of PL, i.e. the time until the
system desynchronize again, differed for each frequency band. However it did not differ
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significantly between healthy subjects and schizophrenia patients in each of the four
frequency bands.

In our earlier model [13], we described each component of the thalamo-cortical loop as
a single phase oscillator, where each of them operated at its natural frequency. We used
phase oscillators for the description of the dynamics in each brain area, since previous
studies suggested that the timing of the brain rhythms, i.e. the phases, were more impor-
tant than their amplitudes [12]. The coupling between these oscillators was expressed
in form of weighted phase differences with suitable coefficients, which were determined
from the natural frequencies of the oscillators. Using this model, we were able to explain
the difference in phase locking in the respective frequency bands of the two groups of test
persons depending on the feedback from the cortex to the thalamus. In this model, how-
ever, the synchronization effect observed directly after the given auditory stimulus did
not abate and vanish after a given period of time, contrary to what was seen in the exper-
iments [12]. We had therefore to change our mathematical model in order to be able to
account for the desynchronization effects, too.

In the present study we extended this mathematical model such that now each area of
the thalamo-cortical loop is represented by a large population of phase oscillators. The
coupling between populations is driven by a complex meanfield (definition see below).
To reduce this high-dimensional model to a low dimensional system which still reflects
the behavior observed in the EEG data and to allow its analysis, we use the reduction
methods of Watanabe- Strogatz [14], Ott-Antonsen [15] and Pikovsky-Rosenblum [16].
The mathematical analysis of the model offers a conducive explanation for the under-
lying mechanisms leading to the differences observed between healthy subjects and
schizophrenia patients, as seen in the experiments by [12]. Our results suggest that the
differences are due to a decrease in strength of the coupling from the auditory cortex to
the thalamus in schizophrenia patients. Even so, our model is a rather abstract descrip-
tion of the neural dynamics that take place in the thalamo-cortical loop. A decrease in
coupling strength can occur due to changes in the dopamine, glutamate or serotonin con-
centrations. This means in any case a reduction in signal transduction from the auditory
cortex to the thalamus. Furthermore, our analysis of the reduced system reveals that the
mechanism underlying the abolition of synchrony observed in all four brain wave bands
is based on a fold limit cycle bifurcation that takes place when the coupling between the
auditory cortex and the thalamus is changed (in either direction). Our model addition-
ally predicts that a change in coupling strength from the thalamus to the auditory cortex,
however, affects the duration of phase synchrony.

The paper is organized as follows. In section “The experimental setup and results”,
we review the experimental setup and the results of the study by [12]. In section
“Mathematical model”, we present the general structure of the thalamo-cortical loop and
set up a mathematical model which we use to analyze first the behavior of two coupled
brain regions, the thalamus and one cortical region, and then that of three coupled ones,
the thalamus and two cortical regions.

The experimental setup and results
The mathematical model presented below is based on experimental results (for details of
the experiment and methods used see [12]). In the following, we outline the experiment
performed in [12]. Two groups of participants were investigated during the experiment:
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the first group consisted of 32 schizophrenia patients and the second of 32 healthy
subjects. The experiment was based on the well-established paired click paradigm [17]. It
consisted of 96 paired clicks (S1 and S2). Each click had a duration of 1 ms. The interstim-
ulus interval between the two clicks within a pair lasted 500 ms, and the inter-trial interval
between pairs of clicks 10 s. The EEG was continuously recorded using 32 electrodes dur-
ing the whole experiment. Data from the vertex electrode Cz were taken for the analysis,
because the cortex around the location of this electrode performs sensory and motor
functions, see [18]. The recorded data have been divided into epochs of 1500 ms (500 ms
prior to S1 and 500 ms following stimulus S2). The occurence of stimulus S1 in each seg-
ment was set to t = 0, hence the stimulus of each segment appeared at t = 0. To obtain
detailed information on the temporal and spectral properties of the EEG, a single-trial
analysis was applied to the epochs. Thus a complex Morlet wavelet transformation in the
frequency range from 3 Hz to 60 Hz in 1 Hz steps was performed to compute the phases of
the single-trial data. A typical result is displayed in Figure 1 (adapted from [13]) where the
cosine of the single trial phase after the wavelet transformation for a fixed frequency 54
Hz is shown. It includes 82 superimposed segments. Uniform distribution of the phases
prior stimulus onset, i.e. for t ∈[−50, 0] is clearly visible, while the so called phase lock-
ing effect after the stimulus, i.e. for t ∈[0, 75], and the effect of desynchronisation after
t = 75 ms can also be clearly discerned.

The stimulus locking index

SLI(t) =
∣∣∣∣∣ 1
n

n∑
k=1

e2π iφk(t)

∣∣∣∣∣ (1)

defined in [19], can be used to measure the degree of phase locking for a certain fre-
quency at time t. We denote the number of repetitions of the auditory double clicks by
n and the phase of the k-th oscillation at time t by φk(t). Values near 0 indicate a uni-
form distribution of phases and values near 1 nearly synchronized phases. It was found
that schizophrenia patients produced significantly less phase locking in lower frequency
bands after the first stimulus than healthy subjects [12].

Table 1 shows the SLI and the duration of synchronization for the two groups of subjects
for the θ- and α-frequency band for which significant differences were found in the SLI
(see [12]). Based on these experimental results, we constructed a mathematical model

Figure 1 Experimental data. The cosine of the phases, derived from EEG data of a single participant,
expressing a frequency of 54 Hz is shown (from [13]).
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Table 1 Example behavior of cortical regions

Max. SLI Duration
Patients Control [ms]

θ .30 .37 400

α .19 .26 250

Columns 1-2: Maximum SLI values (from [12]); Column 3: Approximate duration of stimulus responses ([12], Figure two).

of the thalamo-cortical loop and used it to explain the observed differences between the
neural activities of schizophrenia patients and healthy subjects.

Mathematical model
Our model of the thalamo-cortical loop is based on the results of [4,12,13,20]. Accord-
ing to the experimental findings in these sources, we assume that essentially three main
brain areas are actively involved in auditory signal processing, i.e. the thalamic auditory
relay nucleus (here for the sake of simplicity, they are referred to as thalamus), the tha-
lamic reticular nucleus (here named TRN) and areas of the auditory cortex. An auditory
input signal reaches the thalamus and then propagates to the auditory cortex. From the
auditory cortex, the signal propagates to higher cerebral regions such as the prefrontal
cortex and back to the TRN, which inhibits the thalamus. Furthermore, backpropagation
from higher regions such as the prefrontal cortex modulates the activity of the thalamus.
These inhibitory and modulating influences lead to a reduced response of the thalamus
to the second of the two clicks [21-23]. Since we are only interested in the dynamics
after the first and before the second stimulus, we neglected the impact of the TRN. This
means that only the thalamus and different regions of the auditory cortex are present in
our model. It can be assumed that the different cortical regions act in different oscillatory
frequency ranges, which correspond to the θ , α, β and γ ranges. The structure of the
thalamo-cortical loop used in our model is shown in Figure 2.

In our earlier work [13], we described each part of the thalamo-cortical loop by a single
phase oscillator. Each oscillator had a natural frequency, which was chosen according
to biological/experimental observations. We assumed, that coupling between all phases
is a form of weighted phase difference with suitable coefficients to be determined from
the natural frequencies. With this model, it was possible to reproduce the effects that
correspond to phase locking as observed in the EEG data of the two groups of subjects.
However, in contrast to what the data showed (see Figure 1, t > 75 ms), the oscillators

Figure 2 Thalamo-cortical loop. The general structure of the thalamo-cortical loop used in our modeling
study. KT and KC denote coupling strengths between the thalamus and the auditory cortex. Both the thalamus
and the cortex are represented by one population of oscillators each. I denotes the stimulation strength.
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remained in the synchronized state perpetually, and their phases did not desynchronize
again. To overcome this major drawback of our old model, we now describe each element
of the thalamo-cortical loop as a large ensemble of nonidentical phase oscillators. Each
oscillator in the population has a natural frequency ω, which is chosen from a Lorentz
distribution n(x). The coupling between populations is driven by a complex meanfield. In
the experiments, repeated stimulations were used in order to obtain stimulation moments
at different phases. In our mathematical model we use 1000 oscillators with distributed
phases in each population and stimulate each oscillator at t = 0. Since we choose the
initial conditions for each oscillator to be different, the results obtained by stimulating
them at only one point in time are comparable to the experimental conditions.

First, we will consider a minimal mathematical model, which consists of only two
populations of oscillators, one for the thalamus and one for the θ-frequency band of
the auditory cortex. We will use this simplified model to understand the mechanism
behind the transition from the synchronized to the desynchronized state after stimulation
(as seen in Figure 1).

Minimal mathematical model (two populations)

In the minimal model, two populations of oscillators are coupled via their complex mean
fields as shown in Figure 3. One of them describes brain wave activity in the thalamus and
the other one in the cortex, in this case in the θ-band. In the course of this work, we will
refer to these populations as thalamus population and cortex population, respectively.

The system describing the neural activities of the two populations reads as follows

dφT (ωT )

dt
= ωT + KCRC sin (θC − φT (ωT )) + I(t) cos(φT (ωT )), (2)

dφC(ωC)

dt
= ωC + KT RT sin(θT − φC(ωC)), (3)

where ωT and ωC are continuous parameters distributed in each ensemble of oscillators as

na(ωa) = 2
π(1 + 4(ωa − ω̃a)2)

, a = {T , C} (4)

Figure 3 Mean field coupling. Visualization of the complex mean field coupling between the thalamic
region (T ) and a single cortical region (C). Black represents the individual oscillators and red their complex
mean fields. The oscillators of one population are coupled through the mean phases 	 and the degree of
synchronization R of the oscillators in the other population. See text for details.
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and represent the natural frequencies of the oscillators. φT and φC denote the phases
of the oscillators of the thalamus and cortex populations, respectively. The state of each
population can be described by the distribution density W (x, φ, t) = n(x)w(x, φ, t), with
the conditional distribution density of oscillators denoted by w(x, φ, t) [16].

Each oscillator in the cortical population is coupled to the complex mean field

YT = RT eiθT =
∫

n(x)

π∫
−π

eiφT w(x, φT , t)dφdx (5)

of the thalamic population and each oscillator in the thalamic population is coupled to
the complex mean field

YC = RCeiθC =
∫

n(x)

π∫
−π

eiφC w(x, φC , t)dφdx (6)

of the cortical populations (see Figure 3). Coupling strengths are denoted by KT and KC ,
respectively.

The thalamus population is stimulated by an external stimulus that acts directly on it
(see Figure 2). This stimulus is represented by the term I(t) cos(φT ) where

I(t) =
⎧⎨
⎩I during stimulus,

0 otherwise.
(7)

A complete analysis of the model can be performed by means of the Watanabe-
Strogatz (WS) theory [14]. With this theory an N-dimensional system of identical
oscillators can be reduced to a three-dimensional system with the global variables
ρ, φ and ψ . Here ρ is the global amplitute, φ and ψ are global phases. The origi-
nal phase variables can be reconstructed from the obtained WS variables by means
of the time-dependent transformation. The theory is described in more detail in the
Appendix.

Following [14-16,24], we transform system (2)-(3) using Equation 36 (see Appendix) and
obtain a reduced system of WS equations with the new variable ρT , φT , ψT and ρC , φC ,
ψC . By additionally introducing za(ωa) = ρaeiφa and the phase shift αa(ωa) = φa − ψa,
(a = T , C), we obtain

dzT (ωT )

dt
= iωT zT (ωT ) + KC

2
(
YC − Y ∗

CzT (ωT )2) + I(t)i
2

(
1 + zT (ωT )2) , (8)

dαT (ωT )

dt
= ωT + Im

(
zT (ωT )∗ (KCYC + I(t)i)

)
, (9)

dzC(ωC)

dt
= iωCzC(ωC) + KT

2
(
YT − Y ∗

T zC(ωC)2) , (10)

dαC(ωC)

dt
= ωC + Im

(
zC(ωC)∗KT YT

)
. (11)

Here, i = √−1 and A∗ denotes the conjugate complex of A.
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Now we consider this reduced set of equations with respect to the Ott-Antonsen
manifold [25]. In this case, z(ω) no longer depends on α(ω), and the mean fields YC and
YT can therefore be written as

Ya = Raeiθa =
∫

na(x)za(x)dx, (a = T , C). (12)

Following the work by Ott and Antonsen for a similar distribution [25], the integrals
in Equation (12) can be calculated by applying the residue theorem, under an additional
assumption that za(ω) (a = T , C) is analytic in the upper half-plane. This calculation
yields

YT = zT (ω̃T + i/2), (13)

YC = zC(ω̃C + i/2). (14)

Thus Equation (8) for ωT = ω̃T + i/2 and Equation (10) for ωC = ω̃C + i/2 provide a
2-dimensional system of complex ODEs that describe the behavior of the order parameter
of the thalamic and the cortex population, respectively:

dYT
dt

=
(

ω̃T i − 1
2

)
YT + 1

2
(
KCYC + I(t)i − Y 2

T
(
KCY ∗

C − I(t)i
))

(15)

dYC
dt

=
(

ω̃Ci − 1
2

)
YC + KT

2
(
YT − Y 2

CY ∗
T
)

(16)

In the following, we will investigate this system of two complex differential equations,
i.e. its dynamics during the post-stimulus interval.

Analysis of the model behavior in the post-stimulation interval

For the analysis of eqs. (15)-(16) in the post-stimulus interval, i.e. when I(t) = 0, we trans-
form them to a 4-dimensional system of real ODEs via YT = xT + iyT and YC = xC + iyC .
This leads to

dxT
dt

= − xT
2

− ωT yT + KC
2

(
xC − (

x2
T − y2

T
)

xC − 2xT yT yC
)

(17)

dyT
dt

= ωT xT − 1
2

yT + 1
2

KC
(
yC − 2xT yT xC + (

x2
T − y2

T
)

yC
)

(18)

dxC
dt

= − 1
2

xC − ωCyC + 1
2

KT
(
xT − (

x2
C − y2

C
)

xT − 2xCyCyT
)

(19)

dyC
dt

= ωCxC − 1
2

yC + 1
2

KT
(
yT − 2xCyCxT + (

x2
C − y2

C
)

yT
)

. (20)

In a next step, we linearize this new system about its fixed point xF = (0, 0, 0, 0) and
investigate the stability of this fixed point with the coupling strengths KC and KT as
parameters. The linearized system reads:
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⎛
⎜⎜⎜⎝

dxT
dt

dyT
dt

dxC
dt

dyC
dt

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

xT
yT
xC
yC

⎞
⎟⎟⎟⎠ with (21)

A =

⎛
⎜⎜⎜⎝

− 1
2 −ωT

KC
2 0

ωT − 1
2 0 KC

2
KT
2 0 − 1

2 −ωC
0 KT

2 ωC − 1
2

⎞
⎟⎟⎟⎠ . (22)

A one-dimensional bifurcation diagram is displayed in Figure 4. For the calculation of
this diagram, we fix one of the coupling parameters, KC = 1.2, and show the dependence
of one of the system variables (xC) on the second coupling parameter KT . The system has
a fixed point xF = (0, 0, 0, 0), which is stable for KT < KHB

T . At KT =KHB
T = (ωT −ωC)2+1

KC
a Hopf bifurcation (HB) occurs in the system, i.e. a complex conjugate pair of eigenvalues
of A passes through the imaginary axis (see Figure 4). At this point, the branch of stable
fixed points (xF , red line in Figure 4) loses its stability because it collapses into a branch
of unstable periodic orbits (xPU , blue circles). Additionally, the system exibits a fold limit
cycle bifurcation (FLB) at KFLB

T < KHB
T . At this bifurcation point, two periodic orbits, a

stable (xPS, green discs) and an unstable one (blue circles) are born. The bifurcation dia-
gram reveals three parameter regions in which the system displays different behavior. In
region I

(
0 < KT < KFLB

T
)

we have a stable fixed point xF = (0, 0, 0, 0), which corresponds
to the state of full desynchronization in the non-reduced system (2)-(3). In region III(
KT > KHB

T
)

the fixed point xF has lost its stability and all trajectories are attracted to the

Figure 4 Bifurcation diagram. Bifurcation diagram in the (KT − xC)-plane. The coupling strength from the
cortex to the thalamus has been set to KC = 1.2 and the coupling strength KT from the thalamus to the
cortex is varied; ω̃C = 3 Hz and ω̃T = 7 Hz. Red line: stable fixed points (xF ), black line: unstable fixed points;
green filled circles represent the maximum and minimum of stable periodic orbits (xPS) while the blue circles
represent the maximum and minimum of unstable periodic orbits (xPU). Bifurcation points, i.e. the fold limit
cycle bifurcation (FLB) at KFLB

T and the Hopf-bifurcation (HB) at KHB
T are marked with vertical blue lines. The

light blue box represents the parameter region where the initially synchronized system desynchronizes in
finite time (like in Figure 1).
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stable periodic orbit xPS (filled green circles in Figure 4). This corresponds to a state near
perfect synchronization of the non-reduced system. In region II

(
KFLB

T < KT < KHB
T

)
, the

system is bistable. It can exhibit fixed point solutions as well as periodic ones. Both behav-
iors are separated by an unstable periodic orbit xPU . Depending on the initial conditions
of the system, the trajectory will stay in the region of attraction of the fixed point xF or is
attracted by the stable periodic orbit xPS.

Let us now focus on the blue region surrounding the bifurcation points FLB. It is pos-
sible to choose a value of the parameter KT inside this region such that the trajectory is
resetted to a state near the periodic orbit and drops back to the stable fixed point after a
certain amount of time.

Figure 5 shows the behavior of the reduced system (left) and the corresponding behav-
ior of the non-reduced system (right) for the three parameter regions described above.
Red lines in the figures of the left column indicate the maximum amplitude of the solu-
tions. Black thick lines in the figures of the right column indicate the SLIs. In region I
(see Figure 4), i.e. for low value of KT , e.g. KT = 1, the reduced system exhibits a sta-
ble fix point solution (Figure 5(a), left), and the corresponding non-reduced system is
in the desynchronization regime (Figure 5(a), right), hence SLI = 0. For KT in region III
(see Figure 4), e.g. KT = 16, the stable periodic orbit of the reduced system is shown in

Figure 5 Bifurcation behaviors. The real part of the solution of the reduced system (left) and the
corresponding cosine of the solution of the non-reduced system (right) for (a) KT = 1 in region I, (b) KT = 16
in region III and (c) KT = 5.5 in region II of Figure 4 are shown. In (c) the behavior of both systems is shown
during and after stimulation. For the reduced system, red lines indicate the maximum amplitude of the
solutions (panels in the left column). For the non-reduced system, the oscillators’ (only 200 out of N = 1000
displayed) activities are shown as blue curves, and the corresponding max SLI is plotted in black (panels in
the right column). KC = 1.2, ω̃C = 3 Hz, ω̃T = 7 Hz. The stimulus intensity was set to I = 100 and had a
duration of 50 ms for all simuli.
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Figure 5(b) on the left and the corresponding synchronization regime of the non-reduced
system on the right with SLI = 0.6. In Figure 5(c) KT is fixed near KFLB

T (KT = 5.5, left edge
of blue region in Figure 4). With this parameter choice, we observe the same dynamics
as seen in the experiments: before stimulation we have desynchronization in the non-
reduced system and a fix point in the reduced one. After the stimulation interval (marked
with vertical dash lines), we see a phase reset, and the phases of the oscillators of the non-
reduced system are now synchronized (thin wave). After some time (t > 700 ms) they
desynchronize again. The length of the synchronization state can be modulated by chang-
ing the distance of KT to KFLB

T . The closer KT is set to KFLB
T the longer the trajectory will

stay in the state of synchronization before it desynchronizes again.
In Figure 6, top left, the maximum SLI of the cortex population for different pairs of

coupling strengths (KC , KT ) is shown. For this we stimulated the system of two popula-
tions (N = 1000 oscillators each) with a stimulation strength of I = 100 for 50 ms and

calculated max
t

1
1000

1000∑
j=1

e2π iϕCj (t) for each fixed pair (KC , KT ). The dependence of the peak

of the frequency distribution on these parameters was calculated using the fast Fourier
transformation (MATLAB function FFT). It is shown in the bottom left panel of Figure 6.
The coupling strengths KT and KC were varied independently from 0 to 10 with a step

Figure 6 Coupling parameter dependence. Left: Maximal SLI (top) and mean frequency (bottom) of the
oscillators in the cortical region (for ω̃C = 3 Hz, ω̃T = 7 Hz and N = 1000) as functions of the coupling
strengths KC and KT . Right: enlargments of the marked areas in the corresponding panels. Solid curves mark
Hopf-Bifurcations (black) and fold-limit cycle bifurcations (gray) of the reduced system. The arrows A and B
show possible transitions from a level of high synchronization (KC = 2, KT = 5) to a level of lower
synchronization (tip of arrow A: KC = 1.1, KT = 5; tip of arrow B: KC = 2, KT = 4.5).
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size of 0.05. The grey and black curves in the KC-KT plane represent the branches of fold
limit cycle bifurcations (FLBs) of the periodic orbits and of Hopf-bifurcations (HBs) of
the fixed points, respectively. As seen in Figure 4, only parameter values to the left and
close to the grey curve and parameter values which yield SLI ≥ 0.3 guarantee a strong
synchronized population which desynchronizes in finite time. The closer the coupling
parameters are set to the branch of FLBs the longer the population will stay in the syn-
chronized state. When the value of the coupling parameter KT is decreased the system
moves away from the curve of FLBs, thus the synchronization of the system becomes
weaker and shorter. This happens even for small changes in KT (direction denoted by B in
Figure 6, top left). Changing the value of the coupling parameter KC , however, has a much
weaker effect on the strength of synchronization (direction denoted by A in Figure 6,
top left). An enlargement of this region of interest is shown in Figure 6, top right.

We know from the experimental data of [12] that schizophrenia patients show a lower
synchronization in the θ-band than healthy subjects (max SLI = 0.3 and 0.37, respec-
tively). If we now change the parameters KC and KT such that the SLI changes from 0.37
to 0.3 (in the A or B direction or in a direction representing a linear combination of the
two), the mean frequency of the θ-oscillators does only minimally change, i.e. it remains
approximately 6 Hz. A major change in the mean frequency should of course not hap-
pen when the conditions of the system are changed from the healthy to the schizophrenic
state. Figure 6, bottom left shows the mean frequency of the cortical oscillators for dif-
ferent pairs of coupling parameters (KC , KT ). An enlargement of the region of interest is
shown in Figure 6, bottom right.

Summing up, our model simulations nicely show that the neural dynamics observed in
EEG data of schizophrenia patients and healthy subjects strongly depend on the strength
of the coupling between the thalamus and the cortex: decreasing one or both of the cou-
pling parameters KT or KC in an appropriate manner decreases the max SLI of the system
and changes the time the system stays synchronized but leaves its mean frequency nearly
unchanged.

Model with three populations

In this section, we consider the extension of our minimal model to three populations of
coupled phase oscillators, where one of them describes brain activity in the thalamus and
the other two θ- and α-brain waves in the auditory cortex. We only consider the θ- and
α-frequency band here since the experimental data of [12] showed significant differences
between schizophrenia patients and healthy subjects in these frequency bands, only.

Our extended system has the form

dφT (ωT )

dt
= ωT +

2∑
j=1

KCj RCj sin
(
θCj − φT (ωT )

) + I(t) cos (φT (ωT )) , (23)

dφC1(ωC1)

dt
= ωC1 + KT1 RT sin

(
θT − φC1(ωC1)

)
, (24)

dφC2(ωC2)

dt
= ωC2 + KT2 RT sin

(
θT − φC2(ωC2)

)
. (25)

All notations are the same as in the minimal model. φT and φC1 , φC2 are the phases cor-
responding to the oscillators of the thalamus population and the oscillators of the θ cortex
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and α cortex populations, respectively. ωT , ωC1 and ωC2 represent the natural frequencies
of the corresponding oscillators chosen from the distribution described in Equation 4.

Each oscillator of both cortical populations is coupled to the complex mean field

YT = RT eiθT =
∫

n(x)

π∫
−π

eiφT w(x, φT , t)dφdx

of the thalamic population with the corresponding coupling parameters KTj , j = 1, 2. Each
oscillator in the thalamic population is coupled to both complex mean fields

YCj = RCj e
iθCj =

∫
n(x)

π∫
−π

eiφCj w(x, φCj , t)dφdx, j = 1, 2

of the θ and α cortical populations with the corresponding coupling parameter KCj ,
j = 1, 2.

For the sake of simplicity and as a first approximation, we assume, that there is no direct
connection between the two cortical populations. Note, that these populations are con-
sidered as functionally distinct groups in the cortex, not as anatomically distinct ones.
They, however, influence each other indirectly through the feedback they receive from
the thalamic population. Figure 7 shows a schematic illustration of the thalamo-cortical
loop with two cortex populations. The thalamus population is stimulated with the same
external stimulus as in the case of the minimal model (see Equation 7).

Again, we apply the Watanabe-Strogatz ansatz [14] and its extension by Pikovsky and
Rosenblum [16] to the system (23)-(25) and obtain

dzT (ωT )

dt
= iωT zT (ωT ) +

2∑
j=1

KCj

2

(
YCj − Y ∗

Cj zT (ωT )2
)

+ I(t)i
2

(
1 + zT (ωT )2) , (26)

dαT (ωT )

dt
= ωT + Im

(
zT (ωT )∗

(
KC1 YC1 + KC2 YC2 + I(t)i

))
, (27)

dzC1(ωC1)

dt
= iωC1 zC1(ωC1) + KT1

2
(
YT − Y ∗

T zC1(ωC1)
2) , (28)

dαC1(ωC1)

dt
= ωC1 + Im

(
zC1(ωC1)

∗KT1 YT
)

, (29)

Figure 7 Three population structure. Scheme of the three-population model. Fixed couplings are shown
in black and variable ones in red.
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dzC2(ωC2)

dt
= iωC2 zC2(ωC2) + KT2

2
(
YT − Y ∗

T zC2(ωC2)
2) , (30)

dαC2(ωC2)

dt
= ωC2 + Im

(
zC2(ωC2)

∗KT2 YT
)

. (31)

This system can again be reduced to a 3-dimensional system of complex ODEs
representing the dynamics of the order parameters. The reduced system has the form:

dYT
dt

=
(

ω̃T i − 1
2

)
YT + 1

2
(
I(t)i + Y 2

T I(t)i
) +

+ 1
2

2∑
j=1

(
KCj YCj − Y 2

T KCj Y ∗
Cj

)
, (32)

dYC1

dt
=

(
ω̃C1 i − 1

2

)
YC1 + KT1

2

(
YT − Y 2

C1
Y ∗

T

)
, (33)

dYC2

dt
=

(
ω̃C2 i − 1

2

)
YC2 + KT2

2

(
YT − Y 2

C2
Y ∗

T

)
. (34)

The main results of the analysis of this model are illustrated in Figure 8. The pan-
els of the figure on the left show the maximum SLI and the frequency for both cortex
populations over the plane of the coupling parameters KC1 and KC2 . The right column
shows enlargements of a region of interest of each of the figures shown in the left col-
umn. In these simulations we fixed the coupling from the thalamus population to the θ-
and α-populations, i.e. KT1 = 5.5 and KT2 = 7, respectively. For each parameter pair
(KC2 , KC1), we stimulated the system (N = 1000 oscillators in each of the three popula-
tions) with a stimulus intensity of I = 100 for 50 ms and calculated the maximum SLI

as max
t

1
1000

1000∑
j=1

e2π iϕCj (t). The results are shown in the first and third row of Figure 8.

The figures in the second and fourth row of Figure 8 show the mean frequency of the θ-
and α-populations, respectively, as functions of the coupling strengths KC1 and KC2 . The
coupling strengths KC1 and KC2 were varied independently from 0 to 10 with a step size
of 0.05. The grey and black curves again denote the branches of fold limit cycle bifur-
cations (FLBs) of the periodic orbits and of Hopf bifurcations (HBs) of the fixed points,
respectively.

Using these simulations, we can now navigate through the (KC2 , KC1) parameter plane
and find pairs of coupling parameter values at which our model exhibits brain dynamics
as observed in healthy subjects or in schizophrenia patients. To change the dynamics of
the model from the healthy to the schizophrenic state, the parameter pairs need to be
chosen such that: i) the max SLI of the θ-brain waves changes from 0.37 to 0.3; ii) the one
of the α-waves from 0.26 to 0.19; iii) the frequencies of the θ- and α-populations change
only minimally, i.e. they remain approximately 5 − 7 Hz for the θ- and 9 − 12 Hz for the
α-population.

With the letters P and C, we label the positions in the (KC2 , KC1) parameter plane
which correspond to the max SLIs and frequencies observed in schizophrenia patients
and healthy subjects, respectively. For healthy subjects the coupling constants are
KC2 = 3.9, KC1 = 2.2, for schizophrenia patients KC2 = 3.2, KC1 = 1.2. We can see that
schizophrenia patients, compared to healthy subjects, have a reduced feedback from both
cortex populations to the thalamus.

We therefore hypothesize based on our model that schizophrenia patients have deficits
in signal transduction from the auditory cortex back to the thalamus.
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Figure 8 Coupling parameter dependence for three populations. Left: maximum SLI and frequency of
the θ -population (ω̃C1 = 3 Hz; top two) and the α-population (ω̃C1 = 14 Hz; bottom two) as functions of the
coupling parameters KC2 and KC1 . Right: enlargement of the marked areas. The points in the corresponding
left panels C (KC2 = 3.9, KC1 = 1.2) and P (KC2 = 3.2, KC1 = 1.2) mark parameter choices that yield the max SLIs
and frequencies observed in healthy subjects (controls) and schizophrenia patients, repectively. The coupling
parameters from the thalamus (ω̃T = 7 Hz) to the cortex are fixed at KT1 = 5.5 and KT2 = 7.0. Solid curves
mark branches of Hopf bifurcations (black) and of fold limit cycle bifurcations (gray) of the reduced system.

Figure 9 shows the behaviour of the θ- and α-populations in the case of schizophrenia
patients, i.e. the coupling parameters are KT1 = 5.5, KT2 = 7, KC2 = 3.2, KC1 = 1.2.
The cosine of the phases of 200 oscillators is shown (in total we calculated N=1000 oscil-
lators in each population). The system was stimulated at t = 0. The black lines indicate
the max SLI. Before the stimulation, i.e. t ∈[−100, 0], we have a uniform distribution of
the phases, which means that the oscillators in each population are desynchronized, i.e.
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Figure 9 Dynamic behavior of cortical regions. An example of the desynchronization in the two cortical
areas of the non-reduced system (only 200 of N = 1000 oscillators are shown); ω̃C1 = 3 Hz ω̃C2 = 14 Hz,
ω̃T = 7 Hz, KT1 = 5.5, KT2 = 7.0, KC2 = 3.2, KC1 = 1.2. The max SLI is shown in black. Frequency of coupled
oscillators in the phase-locking interval: 6 Hz for θ -population and 9.4 Hz for α-population.

max SLI = 0. Directly after the stimulation at t = 0 a phase reset occurs and the phases
of the oscillators synchronize (thin blue waves), hence now max SLI > 0. After a cer-
tain time, they desynchronize again: the desynchronization in the α-population happens
earlier (at ≈ 250 ms) followed by that in the θ-population (at ≈ 400 ms). These simulation
results fully agree with the experimental data [12].

Discussion
We have constructed a mathematical model which describes some aspects of the dysfunc-
tion in neural activity of the thalamo-cortical loop during schizophrenia. This model is,
in contrast to the models introduced at the beginning [5,7,8,10], an abstract description
of the neural activity of the brain regions involved. The description is based on synchro-
nization phenomena as found in the EEG records of healthy subjects and schizophrenia
patients. The model allows us to study the interaction of the brain areas involved in a
systematic way and to detect the effects of changes of the couplings between them.

A major advantage of our model is that it provides insight into activities of brain
areas not directly accessible by EEG measurements. A second advantage is its flexibility:
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since we did not include any explicit biophysical properties into our model and stayed
on a phenomenological macrostructural level, it can be adjusted to fit similar effects
in other diseases, e.g. Morbus Parkinson [5] or bipolar disorder [26]. Patients suffer-
ing from Morbus Parkinson show a decrease in post-movement synchronization in the
β-band [27] in the motor cortex. To simulate the system dynamics underlying this dis-
ease, it is possible to extend our model by including oscillators with β-frequencies in
the cortex population (as done by the extension of our model from initially 2 to 3
populations). In a graph-theoretical analysis, Kim et al. [26] could show that only syn-
chronization in α frequencies is significantly lower in patients with bipolar disorder
than in healthy controls. Thus it would be possible to adjust the coupling strengths
in our model in a way that it could appropriately reproduce the symptoms of this
disease.

We have seen that the description of each area by a population of phase oscillators
with distributed frequencies instead of only a single one per region allows the model
to exhibit phase desynchronization in addition to phase-resetting after a given auditory
stimulus. With this model it is now possible to get insights into the brain dynamics of
the thalamic region which are not accessible to EEG measurements and to investigate
the impact of different connection topologies between the thalamic and cortical brain
regions on the duration and strength of synchronization in the respective brain frequency
bands.

By analyzing our model, we have seen that it supports the current view [9] that the cou-
pling between the thalamic and the cortical regions is responsible for dysfunction of the
thalamo-cortical loop in schizophrenia. In particular, our model shows that a reduction
in the strength of coupling from the thalamic to a cortical region, i.e. decreasing the cou-
pling parameters KTi , shortens the time interval of phase synchronization after stimulus.
The closer KTi is to the fold limit cycle bifurcation the longer the state of high synchrony
lasts. A reduction in the strength of the coupling from the cortical regions back to the
thalamus, i.e. decreasing the coupling parameters KCi , however reduces the strength of
synchronization. Comparing this with the findings in [12] yields that patients differ mostly
in the θ- and α-frequency bands in that they have a significantly lower coupling KCi from
the cortex to the thalamus and only a little weaker coupling KTi from the thalamus to the
cortex, than healthy subjects.

The bifurcation analysis of our model was only possible, because we were able to
reduce this large-scale model to systems of only two or three dimensions by using the
Ott-Antonsen theory and the reduction methods by Pikovsky and Rosenblum. Thanks
to these reduction methods, we could do so without loosing the desynchronization
phenomena observed in experiments and exhibited by the large-scale model. The bifurca-
tion analysis helped us to understand the mechanisms underlying the desynchronization
which follows the initial phase reset after the auditory stimulus. As far as we are aware
of, our model can show for the first time which bifurcations underlie the changes in the
simulated brain dynamics.

We have, furthermore, seen that the mechanism of desynchronization is preserved if
the model is extended from initially 2 to 3 regions to describe the neural activity in
the thalamo-cortical loop. In this model, however, both parameter regions which corre-
spond to data of schizophrenia patients and of healthy subjects are rather small (see little
island in Figure 8). For the sake of simplicity and as a first approximation, we did not
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include any direct couplings between the cortical regions. Preliminary results (simulation
results not shown) suggest that the size of this parameter region will increase, if additional
intra-cortical connections are included in the model, and the mechanisms of desynchro-
nization will still be preserved. However, further investigations will be needed to gather
firm evidence that supports the preliminary results.

Simulation results obtained with our model support the notion that schizophrenia is not
caused by focal brain abnormalities, but results from pathological interactions between
brain regions [28]. In contrast to other studies that found abnormal functional connec-
tivity between temporal and frontal regions, as measured by PET and fMRI [29-31], our
model hypothesizes that it is the feedback from the thalamus to the auditory cortex that
causes the disabilities, even in the absense of direct coupling between cortical frequencies.

Of course, the validity of our model needs to be further tested by comparing
the simulation results with experimental ones obtained in new measurements. The
“disconnection hypothesis” suggests that the core pathology of schizophrenia is an
impaired neuromodulation of synaptic plasticity that leads to abnormal functional inte-
gration of neural systems, i.e., “dysconnectivity” [32,33]. A possible next step would
therefore be to investigate the influence of medications like eicosapentaenoic acid
[34], pregnenolone [35,36] or antipsychotics [37] on the functional signal transduc-
tion by calculating individual SLIs from the EEG data or in a DCM study [38]. This
would provide information on the coupling between the thalamus and the auditory
cortex in schizophrenia patients. One could then compare whether a regeneration
of functions can be linked to a restored connection strength between thalamus and
cortex.

Moreover, EEG measurements on individual patients and the calculation of their indi-
vidual coupling strength between the thalamus and the cortex could then be used as a
tool to diagnostically classify the different types of schizophrenia. The advantage of this
approach would be that the grouping of patients would not simply be driven by data but
would be constrained by a well-founded and carefully specified theory.

In order to explain the experimental observations we consider in this paper a simple
and plausible model which inherits properties of the coupling of the Kuramoto model.
Despite the simplicity of the model, we observed good agreement between experimental
data and numerical simulations. This justifies our chosen degree of approximation. Of
course more sophisticated phase models including the nonresonance case [39,40] as well
as detailed networks of the brain regions of interest could improve the quality of that
results. Particularly, if we extended our model to include other brain regions with distinct
natural frequencies, such as β- or γ -bands, we should definitely consider models that
incorporate the nonresonance property.

Conclusion
Our model can explain functional differences seen between EEG records of healthy sub-
jects and schizophrenia patients on a system theoretic basis. Because of this and its
predictive character, the model may be considered to pave the way towards an early
and reliable clinical detection of schizophrenia that is dependent on the interconnec-
tions between the thalamic and cortical regions. In particular, the model parameter that
describes the strength of this connection can be used for a diagnostic classification of
schizophrenia patients.
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Appendix
Mathematical theory

In this section, we will present the main reduction methods that are used to analyze
our systems in section “Mathematical model”. The Pikovsky-Rosenblum ansatz [16] is an
extension of the reduction method by Watanabe and Strogatz [14] which covers infinitely
large systems of nonidentical phase oscillators. The general model treated in this theory
reads:

dφ(x, t)
dt

= ω(x, t) + Im
[
H(x, t)e−iφ]

. (35)

The natural frequencies of the oscillators are denoted by ω(x, t). They depend on a
continuous parameter x. The oscillators are coupled via a complex field H(x, t). The state
of the system can be described by the distribution density W (x, φ, t) which is determined
by the distribution density of the parameter n(x) and the conditional distribution density
of oscillators w(x, φ, t), written as

W (x, φ, t) = n(x)w(x, φ, t).

According to the idea presented in [14], three new variables ρ(x, t), (x, t), �(x, t)
and constants of motion ψ(x) are introduced to the original system of equations via the
transformation

eiφ = ei ρ + ei(ψ−�)

ρei(ψ−�) + 1
, (36)

which transforms the time-dependent density w(x, φ, t) to a stationary density σ(x, ψ)

with the new variables (x, t), �(x, t) and ρ(x, t) which satisfy the following

∂ρ(x, t)
∂t

= 1 − ρ2

2
Re

(
H(x, t)e−i)

, (37)

∂(x, t)
∂t

= ω(x, t) + 1 + ρ2

2ρ
Im

(
H(x, t)e−i)

, (38)

∂�(x, t)
∂t

= 1 − ρ2

2ρ
Im

(
H(x, t)e−i)

. (39)

As three new variables are added to the system, additional constraints have to be defined
to guarantee that the transformation (36) determines ρ, , � uniquely. These constraints
are defined in [14,16] as follows:

π∫
−π

σ(ψ , x)eiψdψ = 0

and

Re
π∫

−π

σ(ψ , x)ei2ψdψ = 0.

In section “Mathematical model”, we apply this ansatz to populations of oscillators with
complex mean field coupling. It is therefore important to determine the order parameters
of each subpopulation. In [16] it was shown that

Y = Rei	 =
∫

n(x)Z(x)dx =
∫

n(x)γ (x)z(x)dx

holds. This simplifies further if the constants of motion are distributed uniformly in which
case γ (x) = 1 (see [16]).
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In [15,25] the same general model (35) is treated with a different ansatz. Their idea was
to extend the density function W (x, φ, t) to a Fourier series:

W (x, φ, t) = n(x)

2π

{
1 +

[ ∞∑
m=1

fm(x, t)e−imφ + c.c.
]}

,

where c.c. denotes complex conjugate. Ott and Antonsen have shown that the continu-
ity equation that expresses the conservation of the number of oscillators is fullfilled if
the Fourier coefficients fm can be written in terms of a single function Fm. This set of
solutions is the so-called OA-manifold. Pikovsky and Rosenblum argued in [16] that the
OA-manifold corresponds to the case of uniformly distributed constants of motion in the
Watanabe-Strogatz Theory. Ott and Antonsen discussed in [25] that the OA-manifold is
the only attractive region in terms of long-time evolution under the assumption that the
parameter distribution n(x) is continuous. This makes it possible to reduce the systems
to the OA-manifold for purposes of a long-time analysis.
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Abstract The neuronal networks that control themotion of
the individual legs in insects, in particular in the stick insect,
are located in the pro-, meso- and meta-thoracic ganglia.
They ensure high flexibility of movement control. Thus, the
legs can move in an apparently independent way, e.g., during
searchmovements, but also in tight coordination during loco-
motion. The latter is evidently a very important behavioural
mode. It has, therefore, inspired a large number of studies, all
aiming at uncovering the nature of the inter-leg coordination.
One of the basic questions has been as to how the individual
control networks in the three thoracic ganglia are connected
to each other. One way to study this problem is to use phase
response curves. They can reveal properties of the coupling
between oscillatory systems, such as the central pattern gen-
erators in the control networks in the thoracic ganglia. In this
paper, we report results that we have achieved by means of
a combined experimental and modelling approach. We have
calculated phase response curves from data obtained in as yet
unpublished experiments as well as from those in previously
published ones. By using models of the connected pro- and
meso-thoracic control networks of the protractor and retrac-
tor neuromuscular systems, we have also produced simulated
phase response curves and compared them with the experi-
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mental ones. In thisway,wecouldgain important information
of the nature of the connections between the aforementioned
control networks. Specifically, we have found that connec-
tions from both the protractor and the retractor “sides” of the
pro-thoracic network to the meso-thoracic one are necessary
for producing phase response curves that show close sim-
ilarity to the experimental ones. Furthermore, the strength
of the excitatory connections has been proven to be crucial,
while the inhibitory connections have essentially been irrel-
evant. We, thus, suggest that this type of connection might
also be present in the stick insect, and possibly in other insect
species.

Keywords Phase response curves · Network model ·
Peripheral stimulation · Inter-segmental coordination ·
Stick insect

1 Introduction

The three thoracic ganglia: the pro-, meso- andmeta-thoracic
in insects, and in the stick insect in particular, contain the
neuronal apparatuses that control the motion of the indi-
vidual legs of the animal. The thoracic control mechanisms
enjoy, on the one hand, considerable functional autonomy,
that is, they are capable of moving the individual legs in an
apparently independent way during search movements, on
the other hand, their activity is precisely coordinated dur-
ing normal locomotion, i.e., walking. This hints at a com-
plex and flexible control mechanism of the leg movements in
these animals that is capable of bringing about tight inter-leg
coordination by suitable synaptic connections between the
segmental neuronal control networks. It comes, therefore, as
no surprise that the nature, the structure, and mechanisms of
the inter-leg coordination have been the subject of a number
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of studies on a variety of insects (Hughes 1952;Wilson 1966;
Delcomyn 1971, 1981; Pearson and Franklin 1984; Graham
1985; Laurent and Burrows 1989a,b; Cruse et al. 1990, 2009;
Ritzmann andBüschges 2007), and on the stick insect, in par-
ticular (e.g., Graham 1972; Ludwar et al. 2005; Borgmann
et al. 2007, 2009, 2011; Grabowska 2012). These studies
dealtwith various aspects of the inter-segmental coordination
during locomotion: some of them were behavioural studies
(e.g., Hughes 1952;Wilson 1966;Graham1972, 1985; Cruse
et al. 1990; Grabowska 2012), while others (e.g., Laurent and
Burrows 1989a,b; Ludwar et al. 2005; Borgmann et al. 2007,
2009, 2011) used electrophysiological techniques. The latter
techniques are suitable to uncover the elementary mecha-
nisms that underlie inter-segmental coordination, and ulti-
mately locomotion (normal walking) itself. A further advan-
tage of these techniques is that they can reveal structure and
function of small local neuronal networks that take part in the
coordination processes, and by that, they lend themselves to
mathematical modelling of their functions.

This is exactly the kind of approach that we employ in this
study in order to help advance our understanding in this field.
Specifically, we want to find out more about the nature of the
inter-segmental neuronal connections descending from the
pro-thoracic ganglion to the meso- and meta-thoracic gan-
glions. To this end, we make use of phase response curves
(PRCs). PRCs are an effective means for uncovering prop-
erties of coupled oscillatory systems (e.g., Winfree 2000;
Schultheiss et al. 2012). In this paper, we thus report on the
analysis and simulation of PRCs and their role in uncovering
properties of the underlying inter-segmental coordination.
The simulated PRCs obtained from two different models
were compared to experimental PRCs from as yet unpub-
lished and from earlier experiments (Borgmann et al. 2009),
while varying the type and strength of synaptic connections
from the pro-thoracic protractor–retractor central pattern
generator (CPG) to the meso-thoracic one. We found close
similarity between these experimental PRCs and the simu-
lated ones obtained from theCPGactivities at a strong excita-
tory synaptic connection on the “protractor side” and a mod-
erate one on “the retractor side.” We thus suggest that con-
nections of similar nature might also be present in the stick
insect‘s local neuronal networks that control muscle activity.

2 Materials and methods

We first provide a summary of the experimental procedures,
and then we will treat the inter-segmental model.

2.1 Short description of the experiments

The experiments to be described here consist of three groups.
One of them comprises experiments that were performed

and published earlier (Borgmann et al. 2007, 2009). The
other two groups contain as yet unpublished experiments.
The basic experimental procedures are the same for both
groups. Their description can be found elsewhere (Akay et al.
2007; Borgmann et al. 2007, 2009, 2011). Here, we present
the procedures that were applied in the hitherto unpublished
experiments. In both groups of them, all legs of a stick insect
but the front right one were amputated at mid-coxa. In the
first group of experiments, the front leg was cut at the middle
of the femur. The femur was then shaved with a scalpel blade
in order to remove the sensory hairs. By the removal of the
tibia, the femoral chordotonal organ (fCO) was, of course,
also rendered ineffective. Then 5× 10−4 M pilocarpine was
administered to the meso-thoracic ganglion alone (split-bath
preparation,Borgmann et al. (2009)) in order to elicit (nearly)
periodic oscillation in the CPGs of the meso-thoracic gan-
glion. The campaniform sensilla (CS) of the front leg were
then directly stimulated while the meso-thoracic CPG was
oscillating. The stimulation technique applied was the same
as in Akay et al. (2007). An increase of load on the leg was
mimicked by bending the femur against the fixed coxa joint
from anterior to posterior using a piezo-electric device. The
time course of the stimulus was a ramp function of con-
stant duration and amplitude having a very fast rising phase
(as indicated in Fig. 1a). It was applied at different phases
of the pilocarpine-induced periodic oscillation of the meso-
thoracic protractor–retractor CPG. The oscillatory activity
was extracellularly recorded from themeso-thoracic protrac-
tor motoneurones (MNs). In particular, the length T until the
nextMN activity after the stimulus wasmeasured and related
to the average period length Tp0 as follows:

φ = d

Tp0
(1)

�φ = T − Tp0

Tp0
(2)

Thus, the PRC was created as a function �φ of the phase φ

of the stimulus timing (see also Fig. 1a). The average period
Tp0 was calculated as the average of at least three periods
(denoted Tp in Fig. 1a) immediately preceding the stimulus.
d is the time interval from the start of an oscillatory period
(start of a protractor burst) to the application of the stimulus
(cf. Fig. 1a). These experiments were performed on five ani-
mals. Since not all phases (φ) could be obtained in a single
experiment, the φ − �φ data from all (successful) experi-
ments on five animals were pooled to a single data set in
order to construct a PRC with as many phase points (φ) as
possible. The resulting PRC is shown in Fig. 1b.

In the second group of hitherto unpublished experiments,
the left front leg was intact and was placed on a tread wheel.
The wheel was moved backwards in order to force forward
stepping of the leg. The movement of the leg was started
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Fig. 1 Experimental records from the meso-thoracic protractor MNs.
a Administration of pilocarpine to the meso-thoracic ganglion as indi-
cated at the top of the panel. Note the time quantities T and Tp and their
relations to �φ the phase-shift induced by the stimulus. d is the time
elapsed between the start of an oscillatory period and the application of
the stimulus. b Phase response curve obtained with stimulation of the

femoral campaniform sensilla; c phase response curves obtained during
forced (red curve) and free (blue curve) front leg stepping. (The latter is
adapted from Borgmann et al. (2009), their Fig. 2C, with permission).
Note also that the period (Tp) in panel (a) is normalized to one in panels
(b) and (c). In these experiments, Tp ≈ 7.5 s and Tp ≈ 6.2 s for the
forced and free stepping, respectively (colour figure online)

at different phases (φ) of the pilocarpine-induced oscillation
of the protractor–retractor CPG in the meso-thoracic gan-
glion. This process ensured a nearly natural and simultaneous
stimulation of CS, the hair fields, and the fCO (Bässler 1977,
1983; Büschges and Gruhn 2008; Schmitz 1986a,b). The�φ

values of the PRCwere produced from the experimental data
the same way as in the preceding case. The PRC was then
constructed by pooling the phase points obtained from five
animals. The resulting PRC is the red curve in Fig. 1c.

In the experiments that were published earlier in
Borgmann et al. (2009) front-leg stepping of the animals was
monitored on a passive treadmill. Only spontaneous front
leg stepping sequences were taken into account in order to
be free of effects that abdominal stimulation with a paint
brush may cause. Here, too, CS, the hair fields, and the fCO
were, thus, stimulated in a natural way (Bässler 1977, 1983;
Büschges and Gruhn 2008; Schmitz 1986a,b). The stepping
coincidentally occurred at different phases of the oscillatory
period, and again the PRC was constructed by pooling the
phase data from five animals the same way as in the hith-
erto unpublished experiments. The resulting PRC is the blue
curve in Fig. 1c. Both PRCs in Fig. 1c are rather erratic in

the range 0 ≤ φ < 0.2. The reason for this we shall explain
in detail in the Results.

Thus, the experimental PRCs should be deemed to be
unreliable in this range of φ (cf. Fig. 1c).

2.2 Network models used in the simulations

We used two types of models in the simulations: one “skele-
ton” model comprising only the protractor–retractor CPGs
of the pro- and meso-thoracic ganglia and the excitatory and
inhibitory synaptic pathways between the two CPGs (Fig. 2);
and a model obtained by extending a detailed 1-leg model of
the stick insect (Knops et al. 2013). In the “skeleton” model,
both excitatory and inhibitory synaptic pathways run ipsilat-
erally from the pro-thoracic CPG to the meso-thoracic one.
Moreover, these pathways are present both on the “protractor
side” and the “retractor side”, as indicated in Fig. 2. There
is, however, no specific sensory input to the CPGs. With this
simple model, we aimed at finding out whether a direct exci-
tatory stimulus alone can give rise to PRCs similar to those
constructed from the experimental data. In this model, the
stimulus currents Isr and Isp were, thus, directly applied to
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(g       )  app1
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(g       )  app2

Isp

C7
R P

C8

Meso−thor. CPG

g       app7 g       app8

Fig. 2 The “skeleton” model consisting only of the pro-thoracic and
meso-thoracic protractor–retractor CPGs (as indicated), and the excita-
tory and inhibitory synaptic pathways from the former CPG to the latter.
Here, R stands for retractor and P for protractor; furthermore, Pro-thor.
for pro-thoracic, andMeso-thor. for meso-thoracic. The numbering C1,
C2, C7, and C8 of the CPG neurons was done for reasons of consistency
with the extended 1-leg model, which will be introduced below. Isr and
Isp are the stimulus currents to the retractor and the protractor neuron of
the pro-thoracic CPG, respectively. The conductances of the (central)
drives to the CPG neurons (gapp1 etc.) are also given for the sake of con-
sistency with the 1-leg model. The parentheses around gapp1 and gapp2
indicate that the stimulus current to the CPG neurons C1 and C2 was
applied directly and not by changing the value of gapp1 or gapp2. The
empty triangles on the meso-thoracic CPG denote excitatory synapses,
the filled circles are inhibitory synapses whose pathways originate at
the pro-thoracic CPG

the retractor or the protractor neuron of the pro-thoracic gan-
glion on top of the “normal” excitation, which ensured the
oscillatory behaviour of the CPGs. The simulated PRC was
calculated from the activity of the protractor neuron of the
meso-thoracic CPG.

The 1-leg model represents the intact front leg of the stick
insect in the aforementioned experiments and is basically
the model in Knops et al. (2013). This model is then com-
plemented by adding a local control network to play the
role of the meso-thoracic protractor–retractor local control
network. It receives both excitatory and inhibitory synaptic
connections from its pro-thoracic counterpart (Fig. 3). This
arrangement corresponds in essence to the experimental con-
ditions, where all legs, except one front leg, are amputated.
Also, the local control networks in the meta-thoracic gan-
glion played no role in the experimental investigations. They
were, therefore, completely omitted from the models used in
present study.

In more detail, the extended network model in Fig. 3 con-
tains the three main neuro-muscular systems and their inter-
connections in the intact front leg (pro-thoracic level): the
protractor–rectractor (PR), the levator–depressor (LD), and
the extensor–flexor (EF) system.

There is, however, a difference to the model in Knops
et al. (2013). In contrast to it, in the present version of the leg-
model, the (lumped) position signal γ (in a hexagon in Fig. 3)
contributes to the excitation of theLDsystem.This excitatory
connection, together with the excitatory effect of the β signal
on the CPG of the EF system (cf. Fig. 3) can bring about
the autonomous stepping movements in the intact leg. At
the same time, the β signal represents the peripheral sensory
signals to the PR system. It thus replaces the abstract sensory
signals and their gating in the abstract sensory neurons in the
model by Daun-Gruhn and Toth (2011). The intra-EF effect
of γ is omitted here, because it was found much weaker in
the simulations than the inter-joint effect of γ just described.

Since all other legs were amputated, none of the LD and
EF systems of the other legs appear in the models used in this
study. Hence, no sensory inputs are effective at themeso- and
meta-thoracic levels, in contrast to the inter-segmental model
in Daun-Gruhn and Toth (2011). Even the EF system of the
front leg is unnecessary for the simulations. The oblique lines
in Fig. 3 indicate that the latter sub-system is severed from
the LD system. Hence, it could have been omitted, as in
Fig. 6. We, nevertheless, kept it in Fig. 3 in order to illustrate
the model of an intact leg. The PR system of the middle
leg (meso-thoracic level) was, however, added since the aim
of the present study was to uncover possible connections
from the pro- to the meso-thoracic PR system. As far as the
meta-thoracic level is concerned, the PR system of the hind
leg remained in the experiments formally intact but played
no part, directly or indirectly, in the experiments. It was,
therefore, not incorporated into the model used here.

The model in Fig. 3 is built from several topologically
similar units (e.g., PR control network). These units or sub-
systems consist of a local neuronal network controlling the
activity of an antagonistic muscle pair. The properties of
one such sub-system arise mainly from direct or indirect
experimental evidence and to some extent from physiologi-
cally reasonable assumptions. A detailed description of the
experimental evidence and the assumptions can be found in
Borgmann et al. (2011), Daun-Gruhn and Toth (2011), Daun-
Gruhn et al. (2011), Toth and Daun-Gruhn (2011), Toth et al.
(2012), and Knops et al. (2013). One of the main proper-
ties based on experimental findings is that the MNs do not
receive a direct excitatory drive from the CPG but inhibition
(Büschges 1995) presumably via inhibitory (non-spiking)
interneurons (Büschges 1998). However, central excitatory
signals do act on them uniformly (Westmark et al. 2009). The
topology of the local networks faithfully mirrors this finding.
In addition, the presence of a layer of pre-motor inhibitory
interneurons (IN1 etc.) increases the flexibility of the local
networks in controlling the activity of the attached antago-
nistic muscle pair. The activity of the CPGs is governed by,
presumably central, inputs denoted as gapp1 etc., where gapp1
etc. are the conductances of the excitatory input currents to
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Fig. 3 The extended neuromuscular model used in the simulations.
The pro-thoracic segment (front leg) is intact, i.e., it contains, beside
the protractor–retractor local neuronal network and muscles, both the
complete levator–depressor and extensor–flexor neuromuscular sub-
systems. At the meso-thoracic segment, only the protractor–retractor
sub-system is present in analogy to the amputation of the middle leg.
The three sub-systems at the meta-thoracic level are omitted altogether,
since they are considered to be irrelevant for purposes of mimicking the
experimental arrangements. In the (extended) neuromuscular model,
each local neuronal network (PR control network etc.) controls the
activity of an antagonistic muscle pair (Pro. m–Ret. m etc.). Parts of
a local neuronal network: CPG consisting of two, mutually inhibitory
neurones (C1–C2 etc.), as indicated; two pre-motor inhibitory interneu-
rones (IN1, IN2 etc.), two modulatory interneurons (IN3, IN4 etc.), and
two motoneurons [MN(P), MN(R) etc.]. Empty triangles on neurons:
excitatory synapses; filled circles on neurons: inhibitory synapses; filled

yellow squares on neuronsC7 andC8: separate excitatory and inhibitory
synapses lumped together for the sake of simplicity. The insert on the
right hand side indicates this fact. Their paths originate in the CPG
neurons C1 and C2, respectively. Hexagons with β and γ written in
them: sources of afferent signals encoded in the levation angle β and
the femur-tibia angle γ , respectively. gapp1, gapp2 etc.: conductances
of the (central) excitatory inputs to the CPG neurones; gd1, gd2 etc.:
conductances of the (central) inhibitory inputs to the inhibitory pre-
motor neurons; gMN: conductance of the central excitatory input to all
motoneurons. Thick oblique double lines synaptic connection is cut.
Further abbreviations: FL front leg, ML middle leg, PR protractor–
retractor, LD levator–depressor, EF extensor–flexor, per. stim. site of
the peripheral stimulation. Note that for technical reasons, the neurons
have also been numbered consecutively. For a more detailed explana-
tion, see text

the CPG neurones, and by the excitatory and inhibitory out-
puts of the “modulatory” interneurons. For example, IN3 and
IN4 are suchmodulatory neurons in the pro-thoracic PR con-
trol network (Fig. 3). The modulatory interneurons are, in
turn, driven by sensory signals that encode load and posi-
tion (touch-down of the tarsus). In the model, these signals
are represented by the levation angle β and the angle at the
femur-tibia joint γ (and their critical values for signalizing,
for example, touch-down) (Fig. 3).

In modelling the neuro-muscular coupling, each action
potential of a MN contributes to the contraction of the

attached muscle. In this way, co-contractions of an antag-
onistic muscle pair could easily be mimicked. A detailed
explanation of the model of the neuromuscular coupling is
in Toth et al. (2012). The muscle model is, in essence, a
simplified and linearized Hill model (Hill 1953). It takes the
specific geometry at each leg joint into account. The form
of the equations of mechanical motion is, therefore, differ-
ent at each leg joint. However, at each joint, the (velocity-
dependent) torque generated by the viscosity during muscle
contraction is one component of the total torque developed
(cf. Toth et al. 2012; Knops et al. 2013).
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We used simple Hodgkin–Huxley-type neuron models
(Hodgkin and Huxley 1952) in constructing the models of
the local networks. All model neurons, except for the MNs,
were non-spiking ones containing only one voltage-gated
current,which was a slowly inactivating sodium current INaP
with instantaneous activation kinetics (Daun et al. 2009;
Daun-Gruhn andToth 2011). Themodel of theMNs admitted
the usual Na–K action potentials and, in addition, adaptation
of the firing frequency (Daun-Gruhn and Toth 2011). For
emulating the synaptic activity, a simple model was used in
which the synaptic activation was described by a sigmoid
(Boltzmann-) function of the presynaptic potential (Daun-
Gruhn and Toth 2011).

The inter-segmental coupling from the pro-thoracic to
the meso-thoracic CPG consisted of both excitatory and
inhibitory synaptic pathways from the pro-thoracic to the
meso-thoracicCPG. (These synapses are represented, lumped
together, by yellow squares on the CPG neurons C7 and C8
in Fig. 3). Moreover, the pathways were bilateral, i.e., con-
necting the protractor neuron of the pro-thoracic CPG to that
of the meso-thoracic CPG, and similarly, the retractor neu-
ron of the pro-thoracic CPG to that of the meso-thoracic
CPG (pathways: bold lines from C1 to C7 and from C2 to
C8, respectively, as shown in Fig. 3). The direction of the
connection reflects experimental findings (Borgmann et al.
2007, 2009). Note that both the CPGs of the PR systems and
the type of connection between them were the same in the
“skeleton” model (Fig. 2) and in the extended 1-leg model
(Fig. 3).

The site of peripheral stimulation in the model was
assigned to the input of themodulatory interneuron IN8of the
LDneuromuscular sub-system, as indicated in Fig. 3. Cutting
the sensory pathways of the γ signal from the EF sub-system
to IN8 (indicated by oblique double lines in Fig. 3), the latter
became an input site of the model. Then, varying the value
of the conductance gd8 of the input current, we could mimic
the experimental stimuli in the model. It is important to bear
in mind that, in the model, peripheral stimulation at the IN8,
as indicated in Fig. 3 always induces mechanical movement
in the LD neuromuscular system. Selective CS stimulation
is, therefore, not possible in the model. It is more appropriate
to assume that the simulated PRCs better correspond to the
experimental ones that were obtained during front leg step-
ping, especially forced front leg stepping of the stick insect.
This point will become important when the synaptic connec-
tions from the pro-thoracic CPG to the meso-thoracic one
depend on signals from sense organs responding to (angular)
velocity.

The model was implemented in the form of a computer
program written in the programming language C and was
run under the Linux operating system. The program contains
the numerical values of all system parameters. It is freely
available from the authors on request.

3 Results

3.1 Experimental phase response curves

Figure 1 shows the PRCs obtained in the experiments: one,
by directly stimulatingCS of the front leg alone (Fig. 1b), and
two, when the stimulus was produced by free or forced front
leg stepping (blue and red curve in Fig. 1c, respectively).
(Note that the blue PRC in Fig. 1c was previously published
in Borgmann et al. (2009): their Fig. 2C). The PRC in Fig. 1b
exhibits apparently little regularity. Perhaps, a weak linear
trend may be discerned in the interval 0.2 ≤ φ ≤ 0.6.

The experimental PRCs obtained during free or forced
stepping of the intact front leg look quite similar (Fig. 1c).
In contrast to the PRC in Fig. 1b, there is a large interval
of φ ([0.2, 0.8]) in which they behave linearly. Moreover,
the slopes of these linear segments are approximately equal
(1.05 and 0.95 for the blue and the red PRC, respectively).
The similarity between them might not be very surprising,
since both of them were produced from data during front
leg stepping. That is, in both cases not only the CS but
also the hair fields and the fCO were simultaneously stim-
ulated. The difference between them is that during forced
stepping the start of a step can more accurately be con-
trolled.

As for the differences between the PRC in Fig. 1b and the
PRCs in Fig. 1c, we think that direct CS stimulation alone
fails to produce sufficient sensory input in the first group of
hitherto unpublished experiments, in order to produce PRCs
with a high enough signal to noise ratio. By contrast, in
the experiments in which the stimulation evoked multimodal
sensory input by making the front leg step, sufficient sensory
input was provided to produce PRCs with clear determinis-
tic trends. All three PRCs display erratic behaviour in the
interval [0.0, 0.2]. This hints at a common origin in all mea-
surements. In measurements at small phase (φ) values, the
stimulus can start during a discharge of the protractor MNs.
Thus, the stimulus directly interferes with the MN activity.
This interference is strongly nonlinear; hence, it can lead to
large uncertainties as to the starting point of the next MN
burst. The phase shift �φ can, therefore, be subject to large
deviations. Indeed, all three PRCs show such large devia-
tions for small phases (φ ≤ 0.2) (cf. Fig. 1b, c). We think
that the suspected weak linearity in the PRC in Fig. 1b is
a sign of the CS-induced excitation in the protractor MNs.
However, this effect is rather weak, since CS stimulation
alone is insufficient to produce the clear phase relationship
in that PRC. For this reason, we did not pursue a comparison
of this experimental PRC obtained with direct CS stimu-
lation with the simulation results. Nevertheless, these data
proved useful in showing the differences between experi-
mental PRCs that were obtained in different experimental
conditions.
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3.2 Simulated phase response curves obtained with the
“skeleton” model

The so-called “skeleton” model comprised only the pro- and
meso-thoracic protractor–retractor CPGswith excitatory and
inhibitory synaptic pathways from the pro-thoracic to the
meso-thoracic CPG on both the “retractor” and the “protrac-
tor side” (Fig. 2). Both the pro- and meso-thoracic CPGwere
autonomously oscillating due to setting the values of the con-
ductances gapp1, gapp2, gapp7 and gapp8 of the central drive
to the CPG neurons C1, C2, C7, and C8 to suitable values
(gapp1 = gapp7 = 0.1925nS, gapp2 = gapp8 = 0.1875nS).
Although the period of the oscillations was much shorter
than that in the experiments (Tper ≈ 124 ms), the relation
of roughly 1:3 between protractor and retractor phase was
preserved.

The system received direct stimuli to the neurons of the
pro-thoracic CPG. When a stimulus of Isr = 3 nA was
applied, in addition to the driving currents Iapp1 and Iapp2, on
the “retractor side” and no stimulus was applied to the “pro-
tractor side”, we obtained PRCs quite similar to the experi-
mental one. Other combinations of stimuli (e.g., Isp alone or
Isp and Isr) did not yield acceptable results.

Similarity of PRCs was judged by the presence and coin-
cidence of linear parts of both PRCs. More precisely, we
regarded a simulated PRC to be in satisfactory agreement
with, or similar to, the experimental one, if the linear parts
of both PRCs started nearly at the same phase φ, they were
approximately of the same length, and their slope was also
nearly of the same value (≈ 1.0).

For the resulting PRC in Fig. 4, the following synaptic
strengths (conductances) were used: gs,e(7, 1) = 0.17nS,
gs,i(7, 1) = 0.1nS, gs,e(8, 2) = 0.17nS, gs,i(8, 2) = 0.1
nS. Here, gs,x(k, j) denotes the synaptic conductance from
neuron j to neuron k, and x = e means excitatory, x = i
inhibitory synapse. We used the same numbering of the CPG
neurons as in the extended 1-leg model for the sake of com-
parability (cf. Fig. 3). However, other symmetric combina-
tions of the conductance values were also possible in order to
obtain satisfactory simulated PRCs. The range for gs,e(7, 1)
and gs,e(8, 2)was found to be [0.1, 0.18]nS, and a somewhat
larger range [0.02, 0.2]nS for gs,i(7, 1) and gs,i(8, 2). Thus,
excitatory connections were necessary to produce PRCs that
were similar to the experimental one, whereas even weak
inhibitory connections sufficed to get such results. When the
synaptic conductances fell into the above ranges, the sim-
ulated PRC showed fairly good agreement with the experi-
mental one, especially in its linear part (Fig. 4).

Asymmetric value combinations of the synaptic conduc-
tances, that is, when the conductance values on the “protrac-
tor side” differed from those on the “retractor side”, were
also tested. Choosing the conductance values 0.17, 0.1, 0.05
and 0nS that are to represent strong, moderate, weak and no
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Fig. 4 Simulated phase response curve (blue points) obtained with the
“skeleton”model, and its comparison with the experimental one: forced
front leg stepping (red continuous line). Note the similarity in the linear
parts of the two curves (colour figure online)

synaptic connection, respectively, we found four cases with
satisfactory agreement between experimental and simulated
PRC. In all such cases, the excitatory connection on the “pro-
tractor side” (gs,e(8, 2)) was strong. The excitatory connec-
tion on the “retractor side” (gs,e(7, 1)) was in three cases of
moderate strength, and weak in one case. The inhibitory con-
nection on the “protractor side” (gs,i(8, 2)) was moderate in
three cases and strong in one, while the inhibitory connection
on the “retractor side” (gs,i(7, 1)) was zero (no connection) in
two cases, and of moderate strength in the other two. From
this, it can be seen that a strong excitatory connection on
the “protractor side” and, essentially, a moderate excitatory
connection on the “retractor side” are necessary for a satis-
factory simulation result. The same is true for the inhibitory
connection on the “protractor side”, while the presence of
the inhibitory connection on the “retractor side” is, at certain
value combinations of the conductances of the other connec-
tions, not required.

3.3 Simulated phase response curves obtained with the
extended 1-leg model

We carried out simulations with a variety of synaptic
strengths, expressed by the synaptic conductances of the
excitatory and inhibitory synapses on the CPG neurons
C7 and C8 (cf. Fig. 3). We found in preliminary simula-
tions that gsyn = 0.01nS proved to be a weak connection,
gsyn = 0.04nS an intermediate, and gsyn = 0.1nS a strong
one for both excitatory and inhibitory synapses on C7 and
C8. The latter synaptic strength proved to be so strong for
the excitatory synapse on C7 (“retractor” CPG neurone) that,
when applied, the oscillatory behaviour of the meso-thoracic
CPG (C7–C8) was abolished regardless of the value of the
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Fig. 5 Simulated phase response curves for three sets of synaptic con-
nection strengths from the pro-thoracic to the meso-thoracic CPG, as
indicated above the individual panels. The panel at the bottom right is
the experimental phase response curve obtained with forced front leg
stepping. 1 → 7 above the panels showing simulation results means
synaptic connection from neuron C1–C7; 2 → 8 has an analogous

meaning; gs,e stands for the conductance of excitatory synapse, gs,i for
that of inhibitory one. Tp means the actual period in the meso-thoracic
CPG. In the experiments, the period was about 7.5 s. The simulated
phase response curves are only vaguely similar to the experimental
one. For further explanations, see text

other synaptic conductances (not illustrated). This value for
the excitatory synapse on C7 was, therefore, excluded from
the subsequent simulation trials.

Furthermore, we found that the value combination of the
synaptic strengths on the “protractor side”, i.e., from C2 to
C8, strongly affected the length of the oscillatory period in
the meso-thoracic CPG (C7–C8) even in the absence of ramp
stimulation at interneuron IN8 peripheral stimulation). Note
that in the absence of stimuli at interneuron IN8, the “pro-
tractor” CPG neurone C2 remained in the depolarized state;
hence, its counterpart C1 was permanently kept at rest, thus,
no excitatory or inhibitory synaptic signal could be transmit-
ted on the “retractor side”, i.e., from C1 to C7 (cf. Fig. 3).
With no synaptic connection, the period in the meso-thoracic
CPG was 1173ms, which was reduced to 502 ms, when the
excitatory connection gsyn,e(8, 2) was increased to 0.1nS.
Other values of this synaptic conductance yielded periods

between these values, but it is worth mentioning that even a
weak excitatory connection of 0.01nS reduced the period
substantially (to Tper < 900ms). Some combinations of
these excitatory and inhibitory connections even abolished
the oscillatory behaviour in the meso-thoracic CPG, i.e.,
when gsyn,e(8, 2) ≤ 0.01nS and gsyn,i(8, 2) ≥ gsyn,e(8, 2)).

We ran simulations with 11 representative combinations
of synaptic connections on both the “retractor” and the “pro-
tractor side” (i.e., connections from C1 to C7 and from
C2 to C8, respectively). These were the combinations that
yielded oscillatory behaviour in themeso-thoracic CPG (C7–
C8), although with shortened periods, as mentioned above.
For each of them, we constructed the PRC. Three result-
ing PRCs that showed the best agreement with the experi-
mental PRC relative to the other simulation results are dis-
played in Fig. 5. Even so, the similarity between the sim-
ulated PRCs and the experimental one remained, for sev-
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eral reasons, rather limited. Firstly, the range of �φ val-
ues in the simulations is much smaller (≤0.5) than in the
experiment (≈0.8). Also, the (nearly) linear part with slope
about 1, present in the experimental PRC, is missing in all
but one simulated PRCs. Even in the only simulated PRC
where it is present, the PRC undergoes a sudden change at
φ ≈ 0.56, which is absent in the experimental one. There
is one more essential shortcoming of the simulated PRCs
obtained so far with the extended 1-leg model: the oscil-
latory period in the simulations strongly reduced to values
less than 1 s as soon as at least some of the synaptic strengths
from the pro-thoracic CPG (C1–C2) to themeso-thoracic one
(C7–C8) became intermediate (0.04nS) or strong (0.1nS).
In Fig. 5, in fact, all periods are about 0.5 s. Such shorten-
ing of oscillatory periods were never observed in the exper-
iments. There, the oscillatory periods were between 2 and
7.5 s (hitherto unpublished experiments and Borgmann et al.
2007, 2009). In summary, we can, thus, state that the connec-
tion scheme in the model that makes use of “static” synapses
from the pro-thoracic CPG (C1–C2) to themeso-thoracic one
(C7–C8) is unsatisfactory; hence, there is a call for change
in the model’s properties, in particular, in the connection
properties.

Thus, we modified the aforementioned synaptic connec-
tions in a later version of the model. The main change was
that, in steady state, that is, when no movement of the front
leg took place or no peripheral stimulus was applied to IN8,
no synaptic signal was present on the CPG neurones C7 and
C8 from the pro-thoracic CPG (C1–C2). In physiological
terms, this means that the above synaptic connections now
also depended on the (angular) velocity signals produced by
the velocity-dependent sense organs (hair fields and fCO,
(Büschges and Gruhn 2008)) in the front leg. The modified
model is displayed in Fig. 6. The main difference between
the preceding version of the model and the one displayed in
Fig. 6 is that in the latter version, the synaptic connection
from the pro-thoracic to the meso-thoracic CPG are effec-
tive only if the LD control network is active, i.e., produced
changes in the angle β, hence, |dβ/dt | > 0. This turned out
to be a substantial change as the results of simulations with
this version of the model will show below.

We carried out simulations for all 192 combinations of the
four synaptic strengths (conductance values) of the synapses
on the meso-thoracic CPG from the pro-thoracic CPG for
which oscillatory behaviour occurred in the meso-thoracic
CPG. The four values of synaptic conductances used were
0.0nS (no connection), 0.01nS (weak connection), 0.04nS
(moderate connection), and 0.1nS (strong connection). As it
turned out, at some combinations of the synaptic strengths,
the oscillation in themeso-thoracicCPGwas abolishedby the
peripheral stimulation (at IN8) (cf. Fig. 6). In the first group
of cases in which that happened, only a moderate excitatory
connection was present from the CPG neurone C1 to the

CPG neurone C7 (cf. Fig. 6), i.e., gs,e(7, 1) = 0.04nS and
gs,i(7, 1) = 0.0nS, and on the “protractor side”, we had
gs,e(8, 2) ≤ gs,i(8, 2) and gs,i(8, 2) ≥ 0.04nS. In the second
group of cases, there was also a weak inhibitory synaptic
connection from C1 to C7 (gs,1(7, 1) = 0.01nS), and the
inhibitory synaptic connection from C2 to C8 was strong
(gs,i(8, 2) = 0.1nS). The number of such cases in the two
groups amounted to ten. Thus, the total number of cases in
which the meso-thoracic CPG showed oscillatory behaviour
was 182. From these 182 cases, which can be subdivided
according to the combinations of the values of the synaptic
conductances from C2 to C8 into 16 groups, we chose 1–
3 representatives from each of these groups for which we
computed the full PRC. From these results, altogether 25
cases were selected for display in Fig. 7. In each panel of
Fig. 7, two or three simulated PRCs showing nearly identical
behaviour are displayed. We clustered the results such that
the left column in Fig. 7 contain results that partially agree
with the experimental one, the middle column results that
show a good agreement with the experimental one, and in
the right column, the simulation results are in no agreement
with the experimental one.

The criteria for the goodness of agreement are as defined
before for simulated PRCs obtained with the “skeleton”
model. Accordingly, at good agreement (middle column of
panels in Fig. 7), the lengths of the linear parts of the PRCs
almost exactly coincided, although the slope of the experi-
mental PRCwas somewhat smaller than that of the simulated
ones (≈0.95 vs. ≈1.00). In the group of results with partial
agreement (left column of panels in Fig. 7), at least half of
the linear parts coincided.

The clustering enabled us to find common properties in
the connection strengths, i.e., common values of the synap-
tic conductances from the pro-thoracic to the meso-thoracic
CPG. Thus, we found gs,e(7, 1) = 0.04nS and gs,e(8, 2) =
0.1nS for all simulated PRCs in the middle column, while
the strength of the inhibitory connections varied the whole
range of admissible values (0.0–0.1nS). Thus, the value
of the inhibitory connections was irrelevant for the good
agreement of these simulated PRCs with the experimental
one. For the simulated PRCs in the left column, we have
gs,e(7, 1) = gs,e(8, 2) = 0.04nS, while the inhibitory con-
nection on the “protractor side” varies between weak and
moderate strength and on the “retractor side” it takes all
admissible values. Thus, partial agreement seems to occur
essentially due to the weaker excitatory connection (smaller
value of gs,e(8, 2)) on the “protractor side”.

In the cases in which the agreement between simulation
and experimental results was poor, the excitatory synap-
tic connection from the pro-thoracic CPG to the meso-
thoracic one on the “protractor side” was absent or weak
(gs,e(8, 2) ≤ 0.01nS), and the excitatory connection on the
“retractor side” was in most cases moderate and in a few
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Fig. 6 Modified network model that includes velocity-sensitive gat-
ing. dβ in a pentagon: velocity-dependent sensory signal, proportional
to the angular velocity dβ/dt . Circles on the synaptic paths from the
pro-thoracic CPG to the meso-thoracic one symbolize the gating func-

tion that depends on the angular velocity dβ/dt . Other parts of themodel
are identical to those in Fig. 3, except for the pro-thoracic EF control
network, which is omitted here for the sake of simplicity

cases weak (gs,e(7, 1) = 0.04nS and gs,e(7, 1) = 0.01nS,
respectively).

In summary, we found that a strong excitatory connection
from the pro-thoracic CPG to the meso-thoracic one was
necessary on the “protractor side” and a moderate excitatory
connection on the “retractor side”. These conditions together
were also sufficient to achieve good agreement between sim-
ulated and experimental PRCs.

4 Discussion

The main goal of this study has been to make progress in
understanding the structure and function of, in particular,

the inter-segmental coordination between the thoracic neural
networks of the stick insect. We studied the connections
between the pro- and meso-thoracic ganglia by means of
models that produced simulated PRCs, and made use of cor-
responding results of hitherto unpublished, and of earlier,
published experiments (Borgmann et al. 2009). In one group
of the as yet unpublished experiments, the data for the PRC
were obtained by directly stimulating the CS. In the other
group, forced stepping of the intact front leg was induced
at different phase values (φ) of the oscillatory period of
the protractor–retractor CPG of the meso-thoracic ganglion.
The PRC was then constructed as described in Materials and
methods.
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Fig. 7 Simulated phase response curves obtainedwith the gated synap-
tic connections from the pro-thoracic CPG to themeso-thoracic one. For
the sake of direct comparability, the phase response curve obtained in
experiments with forced front leg stepping is drawn in every panel as
a continuous line. The simulated curves are drawn as a sequence of
discrete points using a different point type and colour for each curve
within the same panel. The simulation results are clustered such that
the first column shows simulated phase response curves that partially
agree with the experimental one, the second column shows the simu-

lated results with a good agreement with the experimental one, and in
the third column, simulation results with no agreement with the exper-
imental one are displayed. On the top of each column, the values of the
conductances of the excitatory synapses characteristic for that group of
simulated phase response curves are shown. The numbers in the legend
of each panel are the (technical) codes for the actual combinations of
the four synaptic strengths at the four synapses from the pro-thoracic
to the meso-thoracic CPG. The notation is the same as in Fig. 5

In the simulations, we used a “skeleton” model of the
inter-segmental coupling (Fig. 2) and an extended version of
our existing 1-leg model (Toth et al. 2012; Knops et al. 2013)
(cf. Figs. 3 and 6), to produce simulated PRCs. Our approach
was to compare the experimental and simulated PRCs under
the basic assumption that if the PRCs are similar so are the
systems that generate them. In this study, it was not our goal
to invent or introduce a substantially new model but rather to
apply our existing one to the above task. As it turned out, this
could only be done with some modification of the original
model.

We carried out the task in two stages: first using a simple
“skeleton” model in order to check whether any meaning-

ful results would arise when coupling two CPGs directly
using both excitatory and inhibitory bilateral synaptic con-
nections. Then we tried to reproduce the experimental results
(PRCs) by means of a more detailed, biologically more rel-
evant model, which we called the (extended) 1-leg model.
In the “skeleton” model, the stimuli were directly applied to
the neurons of the pro-thoracic CPG, while they acted indi-
rectly, via the β signal and interneuron IN4, on the neurons of
the pro-thoracic CPG in the extended 1-leg model. As men-
tioned earlier, peripheral stimuli in the extended 1-leg model
always induced mechanical movement in the LD neuromus-
cular system. This movement of the femur corresponds well
to (forced) front leg stepping in the experiments. A com-
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parison with the experimental PRC obtained with direct and
selective CS stimulation would, thus, be problematic. Fur-
thermore, this PRC is also very noisy. The noise almost fully
masked a possibly present linear part of that PRC. We do not
have an explanation as to the source of the noise, we would
only suggest that perhaps the efficacy of the CS stimuli alone
was not high enough to produce reliable response signals in
the protractor MNs. In addition, the pro-thoracic protractor–
retractor CPG might also have been far away, in the system
theoretic sense, from its oscillatory state it is in during nor-
mal locomotion. Interestingly, there seems to be some pre-
liminary experimental evidence that stimulation of the fCO
alone has no discernible effect on the activity of the meso-
thoracicCPG, at least for the conditions inwhich those exper-
iments were performed (K. Hellekes unpublished results).
One may assume that, during front leg stepping, additional
excitatory signals representing leg movement (e.g., position,
angular velocity), apart from the CS-induced signal, arrive
at the protractor MNs, and, thus, a robust phase relationship
will be established resulting in a less noisy PRC. The sim-
ulations support the hypothesis that apart from the position-
dependent sensory signals, signals that encode the angular
velocity of the femur-tibia joint are necessary to produce
simulated PRCs that show good agreement with the experi-
mental one.

By clustering the simulated PRCs, obtained with the
extended 1-leg model, according to the goodness of their
fit to the experimental one (Fig. 7), we could determine the
nature of the synaptic connections that ensured good agree-
ment between experimental and the simulated PRCs. It thus
turned out that, for this, a strong excitatory synaptic con-
nection was required on the “protractor side” and a moder-
ate excitatory one on the “retractor side”. Most notably, the
inhibitory connections on both sides proved to be irrelevant.

An earlier model of ours comprising the protractor–
retractor systems of all three thoracic ganglia (Daun-Gruhn
and Toth 2011) was used to model the neuronal mechanisms
that might underlie the tetrapod and tripod gaits (coordina-
tion patterns) and the transition between them. In that model,
the cyclic connection between the “retractor” CPG neurons
modulated by sensory signals proved to be sufficient to pro-
duce the desired gaits (coordination patterns) and the tran-
sition between them. However, when we used it to gener-
ate simulated PRCs, we obtained partial agreement at best
between the experimental and the simulated PRCs (unpub-
lished results). This finding thus underpins the necessity of
the excitatory connection between CPGs on both the “pro-
tractor” and the “retractor side”.

The above results are in qualitative agreement with the
simulation results obtained with the “skeleton” model. There
we found a narrow range ([0.1, 0.18]nS) of admissible con-
ductance values of the excitatory synapses in the symmetric
case. At the same time, the conductances of the inhibitory

synapses could vary over a larger range: [0.02, 0.2]nS. In the
asymmetric case, the suitable conductance values of the exci-
tatory synapses roughly correspond to those obtainedwith the
extended 1-leg model (gs,e(8, 2) = 0.17nS in all four cases,
and gs,e(7, 1) = 0.1nS in three out of four cases). The con-
ductance of the inhibitory synapse on the “protractor side”,
however, takes values gs,i(8, 2) ≥ 0.1nS, whereas gs,i(7, 1)
can even be equal to zero (no connection). Moreover, stim-
uli in the “skeleton” model were applied on the “retractor
side” of the pro-thoracic CPG. This, in essence, corresponds
to the stimulus that excites the “retractor” CPG neuron C1
in the extended 1-leg model via the β signal and, thus, via
IN4, while indirectly inhibiting C2 (Fig. 6). However, in the
extended 1-leg model, the sensory signals represented by the
angular velocity dβ/dt additionally gate the excitatory and
inhibitory connections from the pro-thoracic to the meso-
thoracic CPG (Fig. 6). The inclusion of this gating function
proved crucial because without it, no satisfactory replication
of the experimental PRCs could be obtained in the simula-
tions. The (angular) velocity-sensitive gating is, therefore,
an indispensable part of the extended model. Nevertheless, it
does not interfere with the types of dynamic behaviour that
were mimicked by earlier versions of the model, since in all
of those cases the angular velocity dβ/dt was virtually never
zero; hence, the “velocity gates” were always open. Thus,
the present, extended, version of the model is, in this respect,
fully compatible with earlier ones.

Another important point is the comparability of stimuli
in the experiments and simulations. It is obvious that exper-
imental stimuli and those used in the simulation with the
“skeleton”model bear little direct analogy.On the other hand,
stimuli used in the extended 1-leg model correspond well to
(forced) front leg stepping stimuli in the experiments, since
in the model, they induce mechanical (lifting) movement of
the femur and, thus, both position- and velocity-dependent
sensory signals. These signals then act as direct stimuli on the
pro-thoracic CPG and determine the actual synaptic connec-
tions from the pro-thoracic to the meso-thoracic CPG. Thus,
the use of “peripheral stimuli” results in front-leg movement
in the model. Hence, to compare the experimental PRCs,
obtained with front-leg stepping, to simulated ones is rea-
sonably justified. Moreover, the experimental PRC produced
with selective CS stimulation is too noisy to serve as a basis
for a comparison with simulated PRCs (cf. Fig. 1b). By con-
trast, the PRCs obtained from experiments with free and
forced stepping animals (Fig. 1c) show very close similar-
ity.

There is yet another, more general point to be dealt with,
that is, how to relate the conclusions drawn from the results
of the present modelling work to neurophysiological proper-
ties of the stick insect. One could, for example, argue that the
analogy between themodel and the stick insect’s nervous sys-
tem is rather weak since, in the model, single neurons stand
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for whole neuron populations in the stick insect’s nervous
system. Therefore, the properties of themodel are not valid in
the nervous system. It is certainly true that in our model, sin-
gle neurons represent neuron populations in the stick insect’s
nervous system. One can, however, in a thought experiment
replace the single neurons by (almost) simultaneously active
neuron populations which would act in a similar manner as
a single neuron. In this way, the strength of a synaptic con-
nection between two neuronal populations is determined by
the strength of individual synaptic connections and the num-
ber of the parallel synaptic pathways. Conversely, because
of the high degree of spatial summation, this total synaptic
connection strength can be reduced to a synaptic connection
between single neurons with a synaptic strength that corre-
sponds to the total connection strength of the whole neu-
ron population. Hodgkin–Huxley-type neuron models, and
the corresponding synaptic connection models, lend them-
selves to this approach since their parameters can directly
be interpreted in neurophysiological terms. The models we
have been using are certainly strong simplifications of the
neuronal systems they emulate. They, nevertheless, admit a
physiologically meaningful interpretation of the simulation
results achieved with them along the lines of the foregoing
reasoning.

From these results and reasoning, a more general con-
clusion can also be drawn. They suggest that the model net-
work we used here, in particular the inter-segmental synaptic
connections between the neurons of the thoracic protractor–
retractor CPGs in it, might provide a blueprint for a possible
implementation of the biological neuronal network that pro-
duced the PRCs.
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Abstract 37 

Motor actions result from a complex interplay of various brain regions. These 38 

are assembled into different functional networks depending on the specifics of 39 

the action. Identifying the neural signals that encode an action’s component 40 

remains a challenge. In this study, we sought to identify neural markers of the 41 

execution of a movement that are invariant despite differences in the type of 42 

movement initiation and hence the neural processes and functional networks 43 

involved. To this end,  EEG activity was continuously recorded from 18 right-44 

handed healthy participants while they performed a simple motor task 45 

consisting of button presses with the left or right index finger. The movement 46 

was performed either in response to a visual cue or at a self-chosen, i.e. non-47 

cued point in time. Despite substantial difference in how the actions were 48 

initiated, properties of the EEG signals common to both conditions could be 49 

identified using time-frequency and phase locking analyses of the EEG data: 50 

In both conditions, a significant phase locking effect was observed that started 51 

prior to the movement onset in the δ-θ frequency band (2-7 Hz), and that was 52 

strongest at the electrodes above the contralateral motor regions (M1). Results 53 

suggest that phase locking in the δ-θ frequency band is a neural marker of 54 

movement execution, which is invariant under differences in the functional 55 

networks involved in movement initiation. This enhanced synchronization is 56 

likely to present a neural state necessary to facilitate the convergence of 57 

simultaneously active distinct cortical pathways onto the common motor 58 

output. 59 

 60 
 61 

Significance statement 62 
 63 
 64 

In this study, we identified phase locking in the δ-θ frequency band as an 65 

electrophysiological marker of movement execution, which is invariant despite 66 

differences in the functional networks involved in the initiation of a movement. 67 

We suggest that this enhanced synchronization prior to the start of the movement 68 
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can serve as a mechanism by which distinct simultaneously active cortical 69 

pathways converge onto the common motor output and thereby forms the basis 70 

necessary for the activation of the processes that trigger the actual motor task.  71 

  72 
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Introduction 73 
 74 
 75 

Motor actions are basic functions of living organisms. In humans, they have 76 

reached immense complexity and sophistication. A voluntary action is defined 77 

by its ’internal’ origin. Consequently, voluntary actions are often compared to 78 

actions triggered by ’external’ stimuli. Multiple lines of evidence have 79 

established that internally- and externally-triggered actions are effectuated by 80 

distinct cortical pathways whose simultaneous activities converges onto a 81 

common final efferent pathway, which predominantly consists of the primary 82 

motor cortex (M1) and the corticospinal tract (CST)  (Jenkins et al., 2000; 83 

Waszak et al., 2005; Hughes et al., 2011; Krieghoff et al., 2011). However, for 84 

motor actions to be executed accurately and efficiently, a precise timing of the 85 

action potentials fired by the neurons, which project from M1 into the CST 86 

where in turn the appropriate motor neurons drive the muscles, is crucial. The 87 

nature and properties of neural markers of such a timing mechanism remain as yet 88 

unclear in humans. 89 

Previous studies have ascribed a crucial role to synchronization dynamics 90 

during movement execution. For instance, Baker et al. (1997, 2001) suggested 91 

that synchrony of neural assemblies in the primary motor cortex of monkeys 92 

during a precision grip task is of functional importance, since it was strongly 93 

modulated during different phases of the task and correlated with synchronous 94 

activity in the hand muscles performing the task.  95 

Furthermore, synchronization of oscillatory activity is important for shaping 96 

functional connections between different brain areas. Uhlaas and colleagues, 97 

for instance, have shown that synchronized neural oscillations in the low (δ, θ, 98 

α) and high (β, γ) frequency bands constitute fundamental mechanisms that 99 

enable coordinated activity in the normally functioning brain (Uhlhaas et al., 100 

2010). Consequently, the primary goal of our study was the search for neural 101 

markers related to synchronous activity in the human motor system. 102 

To achieve this goal, we examined neural markers of the execution of a 103 

movement that are invariant despite profound differences in the functional 104 
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networks,  which trigger them. We hypothesized that such neural markers would 105 

be indicative of a common synchronization mechanism. Such a mechanism is 106 

likely to facilitate the convergence of the simultaneous activities of the 107 

functional pathways from these networks onto the common motor output. 108 

The electroencephalogram (EEG) has a high temporal resolution and is well 109 

suited to study and analyze neuronal processes, in particular neural synchrony, 110 

on a millisecond scale. EEG activity was, therefore, continuously recorded 111 

from 18 right-handed healthy participants while they performed a simple 112 

motor task consisting of button presses with the left or right index finger. The 113 

movement was performed either (i) in response to a visual cue or (ii) at a 114 

self-chosen, i.e. non-cued point in time. Importantly, although such button presses 115 

are (i) simple to perform and (ii) involve only a small group of skeletal 116 

muscles, they are complex enough to engage the most important motor brain 117 

areas (e.g., Gerloff et al., 1998; Witt et al., 2008; Michely et al., 2012). They 118 

are hence suitable to enable the systematic investigation of the physiological 119 

processes that take place during motor activities.  120 

We carried out time-frequency (wavelet) analysis (e.g., Blinowska and Durka, 121 

1994; Sanei and Chambers, 2013) and used methods to uncover phase locking 122 

(Lachaux  et al., 1999; Wang  et al., 2006) in the EEG signals. We found 123 

phase locking in the δ-θ (2-7 Hz) frequency band around  movement onset at 124 

all electrodes above the cortical motor areas: C1, C3 and C2, C4 above the left 125 

and right primary motor cortex (lM1, rM1), respectively, FC3 and FC4 above 126 

the left and right pre-motor cortex (lPM, rPM), respectively, as well as FCz 127 

and Cz above the supplementary motor area (SMA). Phase locking was 128 

strongest at the electrodes lying above the motor regions contralateral to the 129 

moving index finger (left and right), in particular M1, but it was independent 130 

of how the movement was initiated. Phase locking did, however, not occur in 131 

the higher frequency bands. 132 

 133 

 134 

  135 
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Material and methods 136 
 137 
 138 

Participants 139 
 140 
 141 

Twenty-one healthy participants were recruited from which 18 could be used 142 

for data analysis (11 women and 7 men; age range 22-35 years). Data from 143 

three participants were excluded due to insufficient quality of the recordings 144 

(see EEG pre-processing section). The participants had normal or corrected-145 

to-normal vision and no history of neurological or psychiatric diseases. The 146 

experimental protocol was approved by the Ethics Committee of the Medical 147 

Faculty, University of Cologne, and the participants provided informed, 148 

written consent before the start of the experiment. According to the selection 149 

criteria, all participants were right handed, had no mental or physical illness 150 

and did not use any psycho-active or psycho-tropic substance. We utilized the 151 

Edinburgh Handedness Inventory (Oldfield, 1971) to identify the dominant 152 

hand of the participants. 153 

 154 
 155 

Task design 156 
 157 
 158 

Subjects were asked to perform button presses with their index finger of the 159 

left or right hand. There were two motor conditions: (i) self-initiated movements 160 

and (ii) movements upon appearance of a visual cue. In addition, a third 161 

condition with identical visual stimulation but without motor responses served 162 

as control condition to estimate EEG activity evoked by the visual stimuli in the 163 

absence of response-related activity. 164 

In the first condition (’self-initiated movements’), subjects were allowed to 165 

choose when and with which hand to perform the button press. Apart from 166 

the fixation point that was displayed for the entire duration of the block (Figure 167 

1A), there were no additional visual stimuli to indicate (i) when, and (ii) with 168 

which hand each of these responses were to be performed. The following 169 

constraints applied: (i) responses had to be given with an inter-trial interval 170 

of approximately 4-8 seconds; (ii) subjects had to roughly balance the number 171 
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of left and right hand responses, and (iii) subjects had to avoid regular sequences 172 

(e.g., alternating between left and right hand). 173 

In the second condition (’visually-cued movements’), a right or left-pointing 174 

arrow (2° wide and 1 . 2 °  h igh expressed as visual angles), was presented first 175 

for 200 ms on a presentation screen with inter-stimulus intervals (ISI) of 176 

varying length   4 s. The participant had to press the button, as soon as 177 

possible after the visual stimulus had appeared, with either the left or the right 178 

index finger, depending on the direction of the arrow. That is, he/she had to 179 

press with the right index finger if the arrow was pointing to the right, and 180 

with the left index finger, if the arrow was pointing to the left. 181 

In the third condition (’vision-only’), the same visual stimulus (i.e., a left or 182 

right-pointing arrow) was presented as in the visually-cued tapping condition 183 

but now the participant was instructed to pay attention to the arrow, only, 184 

without pressing the button. Thus, no motor action was performed in this 185 

condition. 186 

Before the start of the experiment, participants were introduced to the 187 

experimental procedure. They were given instructions on how to perform the 188 

task while the electrode cap was put on. They were also intensively trained in 189 

order to achieve good task performance and for fulfilling the above mentioned 190 

criteria. In order to help the subjects to remember the actual condition, we used 191 

unique geometric objects as indicated in the panels 1-3 of Fig. 1A, for each 192 

condition. All visual stimuli were generated using the software ’Presentation’ 193 

(version 11.0, Neurobehavioral Systems, Albany, CA). 194 

The whole experiment lasted about 70 minutes, and consisted of 16 blocks 195 

of each condition. These 16 blocks were divided into 4 runs with each run 196 

(approximately 17 minutes long) containing four blocks of each condition. 197 

Each condition was presented for 60 seconds after which the participant was 198 

informed about his/her performance. After the feedback, there was a white 199 

fixation period of 10 s in order to produce a baseline between two subsequent 200 

conditions. All blocks started with the self-initiated tapping condition but the 201 

other two conditions appeared in random order. The recorded inter-response-202 
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intervals of the self-initiated tapping condition were used as the inter-stimulus 203 

intervals in the vision-only and visually-cued conditions, after randomizing the 204 

order. Additionally, intervals with a duration less than 4 s were replaced with a 205 

random duration ranging from 4 s to 8 s. This adaptive procedure limited the 206 

influence of poorly timed responses in the self-initiated condition on the other 207 

conditions. Additionally, it ensured that the total number of responses, 208 

proportion of left/right responses, and the timing between responses were 209 

closely matched across conditions. Between blocks, the participants had 1 min 210 

resting time. During the entire experiment, every participant performed 80-90 211 

button presses per condition. 212 

 213 
 214 

Procedure 215 
 216 
 217 

After the preparation of the electrode cap, participants were seated in a 218 

comfortable chair in a sound-proof room, and their head was kept in static 219 

position by a chin-rest. The distance of their eyes from the presentation screen 220 

was approximately 70 cm. During the EEG signal acquisition, the room lights 221 

were dimmed. Accelerometer sensors (Brain Products GmbH, Munich, 222 

Germany) were attached to the dorsal tip of both index fingers, and fixed by 223 

tapes. We used these accelerometer sensors to identify the onset of the finger 224 

movement and the movement time, i.e., the time between movement onset and 225 

button press. Subjects were then asked to perform the task. While doing so, 226 

their body (apart from the active hand, if applicable) had to be kept steady and 227 

at rest. Task performance was monitored online by the examiner via a video 228 

camera to ensure that the participants were alert and did not fall asleep. It 229 

was also ensured by the same means that the self-initiated tapping was not 230 

regular. Moreover, the participants were asked to minimize the number of eye 231 

blinks during the recording. After the experiment, the participants were 232 

interviewed about their strategy to perform the task in the self-initiated tapping 233 

condition. This was done in order to ensure that they neither counted mentally 234 

the number of left- and right-hand tappings nor tried to measure the time (e.g., 235 
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by counting the seconds) between two button presses. 236 

 237 
 238 

Recording of EEG and acceleration signals 239 
 240 
 241 

EEG data were acquired using 64 active Ag/AgCl electrodes (Brain Products 242 

GmbH, Munich, Germany) placed according to the international 10-20 system 243 

in a spherical array. Bilateral horizontal and left vertical electro-oculograms 244 

(EOG) were recorded by three of the 64 scalp electrodes (FT9, FT10, TP10 in 245 

the 10-20 system) placed bilaterally at the outer canthi and under the left eye, 246 

respectively. The reference electrode was placed at the left earlobe. At the 247 

beginning and the end of the experiment, the impedance of each electrode was 248 

measured to ascertain that it was smaller than 15 kΩ. The EEG signals were 249 

amplified, band-pass filtered in the frequency band 0.87-500 Hz, and digitized 250 

at a sample rate of 2500 Hz. 251 

Two acceleration sensors, one for each hand, were attached to the index 252 

fingers for the detection of finger movements throughout the experiment. The 253 

sensors generated voltage signals, which were recorded  simultaneously with 254 

the EEG signals using separate channels. Each sensor signal had three 255 

components that encoded the instantaneous accelerations in the X, Y, and Z 256 

direction. The first derivative of the X, Y, and Z components of the acceleration 257 

signal were computed and then combined to obtain the scalar (Euclidean) 258 

magnitude of the instantaneous acceleration change at each time point (Wyatt, 259 

1998). This time-series was then smoothed, rescaled and a threshold was set to 260 

identify the earliest time point  in a 125 ms window prior to each button press 261 

that showed a continuous increase in acceleration rate. All trials in which the 262 

movement onset could not be unambiguously detected were excluded from 263 

further analysis. 264 

We used accelerometers as our key measure of motor-output as the 265 

acceleration signals are highly sensitive to detect the start of a movement and are 266 

not restricted to a muscle group and a specific movement direction like, e.g., 267 

surface EMG (Keil et al., 1999). Additionally, the use of accelerometers also 268 
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allowed us to exclude trials with excessive or mirror movements. 269 

 270 
 271 

Preprocessing of the recorded data 272 
 273 
 274 

For preprocessing and analysis of the EEG data, we used the EEGLAB 275 

toolbox (Delorme and Makeig, 2004) and scripts in Matlab R2014a 276 

(MathWorks Inc.). First, the data were band-pass filtered in the frequency band 277 

0.5-48 Hz, and then down-sampled from 2500 Hz to 200 Hz in order to achieve 278 

a substantial data reduction, and, thereby, a shortening of the processing time. 279 

Next, the continuous raw EEG data were visually inspected for paroxysmal 280 

and muscular artifacts not related to eye-blinks. Eye-blink related artifacts were 281 

removed by using ICA (see below). Noisy portions of the EEG signal were 282 

excluded from further analysis. The trials in the self-initiated tapping condition 283 

with inter-trial intervals shorter than 4 s were removed, as well as trials in the 284 

visually-cued tapping condition in which the time between the stimulus and the 285 

onset of the movement (accelerometer signal) was longer than 1 s. This led to a 286 

reduction of the data by 10-20 %. 287 

In the next step, the EEG recordings were epoched to single trials, i.e., they 288 

were subdivided into intervals of 4 s depending on the experimental condition. 289 

In the vision-only condition, the reference point (time zero) was assigned to the 290 

start of the visual stimulus. The intervals reached from 1500 ms before the 291 

stimulus to 2500 ms after it: [-1500, 2500] ms. In the self-initiated tapping 292 

condition, the onset of the finger movement  as determined by the accelerometer 293 

signal was set to be the reference point (time zero). Here, the 4 s intervals 294 

started 2500 ms before the onset of the movement and lasted until 1500 ms 295 

after it ([-2500, 1500] ms). In the visually-cued tapping condition, two different 296 

subdivisions, henceforth intervals, were used. In one case, the reference point 297 

was assigned to the start of the visual stimulus, and we used the same interval 298 

[-1500, 2500] ms as in the vision-only condition. In the other, the reference 299 

point (time zero) was set to the onset of the finger movement, and the interval 300 

reached from 2000 ms before the onset of the finger movement until 1500 ms 301 

after it ([-2000, 1500] ms), as illustrated in Fig. 1B. The use of the two 302 
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different intervals in the visually-cued tapping condition was necessary in order 303 

to preserve the comparability of the results with those obtained in the vision-304 

only condition, and with those in the self-initiated tapping condition. In the 305 

self-initiated tapping condition, the onset of the finger movement is the only 306 

point in time that can serve as reference. It is usually preceded by the build-up 307 

of the so-called readiness potential (Bereitschaftspotential), which takes about 308 

2000 ms (Shibasaki and Hallett, 2006). In the visually-cued tapping condition, 309 

by contrast, the motor action is triggered by an external visual stimulus. 310 

Therefore, this condition has two potential reference points, i.e., response-311 

locked or stimulus-locked (t = 0). The length of 4000 ms for the intervals was 312 

chosen such as to avoid overlaps between subsequent trials. This applies to all 313 

conditions. 314 

After subdividing the data into single trials, data were further corrected for 315 

artifacts. All trials with an amplitude larger than 100 µV in any of the 316 

recording channels, or showing a drift that exceeded 75 µV over the whole 317 

interval (abnormal drift) were rejected. This is a common procedure, see e.g. 318 

Herz et al. ( 2012). Trials with other artifacts (blinks, eye movements, muscle 319 

activity, and infrequent single-channel noise) were identified by means of a 320 

semi-automated procedure based on independent components analysis (ICA) 321 

(Jung et al., 2000a,b; Hyvärinen et al., 2004; Langlois et al., 2010). ICA was 322 

used with the Info-Max ICA algorithm implemented in EEGLAB (Langlois et 323 

al., 2010). Signals containing blink/oculomotor artifacts or other artifacts that 324 

were clearly of different origin were subtracted from the data by using t he  325 

procedure ADJUST from EEGLAB (Mognon et al., 2011). Noisy channels 326 

were automatically detected by EEGLAB. The noisy signals were corrected by 327 

interpolation of adjacent noise-free channels using spherical splines (Perrin et 328 

al., 1989). Finally, the trials were baseline-corrected taking the first 1000 ms of 329 

each interval as baseline. In order to improve the spatial resolution and to 330 

eliminate the influence of distortions due to the reference electrode, we used 331 

the so-called small Laplacian (e.g., McFarland et al., 1997) for all EEG 332 

channels, except for the boundary ones. 333 
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 334 
 335 

Data analysis 336 
 337 
 338 

There are many ways of time-frequency decomposition of EEG data. They 339 

mainly differ in the choice of the basis functions. We chose the complex 340 

Morlet wavelets as basis function, which are often used for time-frequency 341 

decomposition of EEG/MEG data (Lachaux et al., 1999). They are sinusoidal, 342 

weighted by a Gaussian kernel, hence they can capture local oscillatory 343 

components in the time series. Contrary to the standard short-time Fourier 344 

transform, wavelets have variable resolution in time and frequency (Sanei and 345 

Chambers, 2013). When choosing the wavelet, we, in essence, made a trade-off 346 

between temporal and spectral resolution. The analysis of EEG signals yielded 347 

spectral power and phase of the signals in different conditions such as self-348 

initiated or visually-cued tapping. These quantities were, in practice, computed 349 

by means of procedures implementing the aforementioned wavelet transform 350 

as part of the software package SPM12 (Friston et al., 2006). 351 

The time-frequency analysis was performed in all main frequency bands: 352 

delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and low-gamma 353 

(30-48 Hz) and for all EEG channels. A detailed analysis, however, is only 354 

presented for the following EEG channels: C2 and C4 over the right primary 355 

motor cortex: rM1; C1 and C3 over the left primary motor cortex: lM1; FC3 356 

over the left pre-motor cortex: lPM; FC4 over the right pre-motor cortex: rPM; 357 

FCz and Cz over the supplementary motor area: SMA. The occipital electrode 358 

Oz above the primary visual cortex V1 was used to record and monitor the 359 

activity of V1 in the visually-cued tapping and the vision-only condition. We 360 

did not carry out source identification for two reasons: first, all electrodes of 361 

interest were positioned directly above the motor areas of interest, i.e. above 362 

the very sources; secondly, as we used (the small) Laplacian in preprocessing 363 

the EEG data, this method might have interfered with source identification 364 

(Michel et al., 2004). 365 

The Morlet transformation provided two (physical) quantities for each trial 366 
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and each electrode: the (instantaneous) phase φ (t, f) and the (instantaneous) 367 

amplitude (power) A (t, f ), which depend on the time (t) and the oscillatory 368 

frequency (f). We computed the amplitude and the phase dynamics in each 369 

condition and tried to derive properties common across trials. An important 370 

characteristic of the phase dynamics between the trials is the phase locking 371 

index (PLI), also denoted as the so-called inter-trial phase locking or inter-372 

trial coherence.  PLI is defined as  373 

 374 

           
 

 
               

 

   

  

 375 

where N is the number of trials, and φk is the phase of trial k at time t and at 376 

a given frequency f; i is the imaginary unit: i2  = −1. It is a measure of 377 

similarity of the phases of a signal over many repetitions. PLI ranges from 0 378 

to 1. PLI = 1 means identical phase of the signal across the trials. Low values 379 

of PLI suggest temporal heterogeneity of the phases in the individual trials. 380 

Thus,  PLI measures the degree of inter-trial variation in phase between the 381 

responses to stimuli and thereby quantifies phase locking of the oscillatory 382 

activity irrespective of its amplitude (Herrmann et al., 2005; Tass, 2007). 383 

We carried out a simple statistical analysis of the data to verify that our 384 

results are statistically significant. For this, we calculated the average value of 385 

PLI over the frequency band 2-7 Hz in both tapping conditions and for both 386 

hands. We then performed a pointwise t-test on each of the average PLI curves 387 

in both (self-initiated and visually-cued tapping) conditions. We compared the 388 

PLI obtained for each of these conditions with the corresponding baseline at 389 

the significance level of         with a False Discovery Rate (FDR) correction 390 

(Benjamini and Hochberg, 1995). In self-initiated tapping, the baseline was 391 

computed using the interval [-2300, -1500] ms, whereas in visually-cued 392 

tapping the baseline was computed using the interval [-1800, -1000] ms. In both 393 

conditions, the baseline ended at least 1 s before the onset of the movement, 394 
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thereby ensuring that the baseline was not contaminated by the movement itself 395 

or by stimulus-related activity (cf. epoching of data described in the section 396 

’Preprocessing of the recorded  data’). The first 200 ms of the trial intervals 397 

were cut in both conditions to make sure that edge effects from the wavelet 398 

transform did not distort the baseline. 399 

 400 

 401 

Results 402 
 403 
 404 

Amplitude and PLI were computed from single-trial data in the frequency range 405 

from 2 to 48 Hz using Morlet wavelet functions as implemented in SPM 12 406 

(Friston et al., 2006). 407 

 408 
 409 

Amplitude dynamics 410 
 411 
 412 

First, we investigated the amplitudes (power) of the wavelet transforms (cf. 413 

Material and methods) near the onset of the movement. 414 

Fig. 2 shows the changes in amplitude with respect to the baseline in self-415 

initiated tapping (A) and visually-cued tapping (B) with the right (top rows) 416 

and left (bottom rows) index finger at the electrodes C3 (lM1) and C4 (rM1) 417 

in the frequency range 2-48 Hz. A decrease of power in the α and β frequency 418 

bands around movement onset and during the movement can clearly be 419 

discerned in both conditions and for both hands. Additionally, an increase of 420 

power in these frequency bands upon termination of the movement can be 421 

observed in both tapping conditions at the electrode contralateral to the 422 

moving hand (i.e., C3 for right hand and C4 for left hand tapping). At the 423 

electrode ipsilateral to the moving hand, no or only a weak increase in the α 424 

and β amplitude band can be seen. Finally, an increase in amplitude in the δ-θ 425 

frequency band around movement onset can be observed at the electrode 426 

contralateral to the moving hand in both tapping conditions. This increase was 427 

also observed at the electrode ipsilateral to the moving hand in the visually-428 

cued tapping condition. 429 
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In summary, our results replicate the well-known event-related 430 

desynchronization (ERD) and event-related synchronization (ERS) related to 431 

the onset and the termination of the movement in the α, β, and the low 432 

frequency bands (e.g., Pfurtscheller and da Silva, 1999; Neuper et al., 2006) 433 

and underpin the validity of our dataset. 434 

 435 
 436 

Phase dynamics 437 
 438 
 439 

Next, we investigated the phases of the wavelet transforms (cf. Material and 440 

methods) and their dynamics near the onset of the movement. Fig. 3 shows the 441 

group average of the PLI over 18 participants in the frequency range 2-48 Hz 442 

at the electrode C4 in the self-initiated (A), and the visually-cued tapping 443 

condition (B) when tapping was done with the left hand. As this figure reveals, 444 

PLI changed only in the δ-θ frequency band (2-7 Hz) around the onset of the 445 

movement. Hence, we restricted our further investigations to this frequency 446 

band. In Fig. 4, the group average of the PLI over 18 participants for all 61 447 

channels are displayed for the self-initiated (A,B) and visually-cued (C,D) 448 

tapping condition (A,C: left hand tapping, B,D: right hand tapping). Each small 449 

panel is placed according to the position of the corresponding EEG electrode. 450 

In each of them, the PLI obtained from the EEG signal that was recorded by the 451 

corresponding electrode is shown. In the panels, the horizontal axis is the time 452 

and the vertical axis is the frequency from 2 Hz to 7 Hz. An increase of PLI 453 

can clearly be discerned around the onset of the movement at the central 454 

electrodes, which are located close to the motor regions, in both conditions 455 

(Fig. 4A-D), as well as at the electrodes lying above the occipital regions in 456 

the visually-cued condition (Fig. 4C-D). 457 

As described in the Material and Methods section, we selected the electrodes 458 

C1-C4, FC3-FC4, FCz, and Cz, i.e. the central electrodes, which are located 459 

close to the motor regions, in order to perform a  more detailed analysis. Visual 460 

activity in the visually-cued tapping condition was recorded and monitored at 461 

the electrode Oz. Fig. 5 illustrates, how PLI changed at the aforementioned 462 
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electrodes. In all panels of Fig. 5, the horizontal axis is the time interval [-1000, 463 

1000] ms around the onset of the movement (determined by the accelerometer 464 

signal), which is marked by a black, vertical line at t = 0. The vertical axis is 465 

the frequency f in the δ-θ band (2-7 Hz). PLI is shown in color-coded form at a 466 

given time t and frequency f. Figs. 5A and 5B display the results for the self-467 

initiated tapping condition performed with the left or right hand, respectively. 468 

Figs. 5C and 5D show the equivalent data for the visually-cued tapping 469 

condition. As illustrated, PLI increases before the onset of the movement in 470 

all movement conditions for both left and right finger tapping. Furthermore, in 471 

both conditions, the maximum PLI values are highest at the electrodes lying 472 

above the SMA (electrode Cz) and above the primary motor cortex (M1) 473 

contralateral to the moving hand. These are the electrodes C2, C4 for left and 474 

C1, C3 for right finger movements, respectively. In the visually-cued tapping 475 

condition, PLI was larger than in the self-initiated tapping condition. 476 

To test whether this finding is a statistically significant result, we carried 477 

out a simple statistical analysis of the data. We calculated the average value of 478 

PLI over the frequency band 2-7 Hz in both conditions. The results are 479 

displayed in Fig. 6. The horizontal axis represents time, while the vertical axis 480 

shows the average values of PLI at each instant of time. Fig. 6A shows the 481 

PLIs as functions of time in self-initiated tapping in blue and those in visually-482 

cued tapping in green for left hand tapping. Analogous results are displayed in 483 

Fig. 6B for right hand tapping. In both sets of panels, the onset of the 484 

movement is at t = 0. We then performed a pointwise t-test on each of the 485 

average PLI curves in both (self-initiated and visually-cued tapping) 486 

conditions. We compared PLI obtained in each of these conditions with the 487 

corresponding baseline at the significance level of         with FDR 488 

correction for multiple comparisons. Intervals with significant differences to 489 

baseline are marked in red for the self-initiated condition and in blue for the 490 

visually-cued condition. The results clearly reveal that the intervals in which 491 

PLI was significantly different from baseline were longer in the visually-cued 492 
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tapping condition than in the self-initiated tapping condition at most of the 493 

electrodes. It can be seen that at all nine electrodes, the interval of significant 494 

difference started earlier in visually-cued tapping than in self-initiated tapping, 495 

and in most of them it also finished later. 496 

In summary, these results show that PLI was significantly different from its 497 

baseline value in a time interval around the onset of the movement at all 498 

electrodes of interest, in both conditions, and for both hands (except of course 499 

at Oz in the self-initiated tapping condition, because of the lack of the visual 500 

stimulus). This means that in both conditions, the neural activity in the 501 

respective areas of the motor cortex (i.e. PM, SMA and M1) had already been 502 

highly synchronized before the movement was executed. Furthermore, the 503 

presence of the visual stimulus in the visually-cued condition increased the 504 

time of neural synchrony in the motor cortex before and after movement 505 

execution. 506 

 507 
 508 

Hemispheric dependence of PLI 509 
 510 
 511 

Having confirmed that neural synchrony in the regions of the motor cortex 512 

was significantly enhanced around movement onset in both conditions, we next 513 

investigated whether the PLI exhibited spatial differences. 514 

To assess inter-hemispheric differences in EEG activity, we computed a 515 

lateralization index (LI) (Deiber et al., 2012). With regard to PLI, it measures 516 

the cumulative asymmetry between the PLI values in the right and left 517 

hemisphere. It is defined as follows: 518 

 519 

   
                                                 

 
 

 520 

Here PLIC4,left is the value of PLI at the electrode C4 when the tapping is 521 

done with the left hand. The other PLICx,h (x = 3, 4, h = left, or right) 522 

quantities are defined analogously. Fig. 7 illustrates the time course of LI in 523 

both tapping conditions in the interval 500 ms before until 700 ms after the 524 
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start of the motor action (t = 0). The blue curve corresponds to self-initiated 525 

tapping, and the green one to visually- cued tapping. The figure shows that the 526 

cumulative asymmetry (LI) of the function of the hemispheres is large and 527 

about of the same size in the interval [-500, 700] ms in both conditions. This 528 

means that phase locking was stronger in the motor regions, in particular M1, 529 

contralateral to the moving hand in a time interval around the motor action in 530 

both the self-initiated and the visually-cued tapping condition. 531 

Furthermore, when the tapping was performed with the left hand, phase 532 

locking was strongest at electrode C4 (rM1) in both conditions (cf. Fig. 6). An 533 

analogous result holds true when tapping was done with the right hand. In 534 

this case, the strongest effect occurred at C1 (lM1) and Cz (SMA) in both 535 

conditions. The strength of phase locking was defined by the length of the time 536 

interval in which PLI was significantly different from its baseline as well as by 537 

its maximum value (cf. Fig. 6). In both conditions and for both hands, these 538 

intervals started already approximately 400-500 ms before the onset of the 539 

movement at the electrodes C1 and C4, which lie above the left and right M1. 540 

In summary, our results suggest that phase locking in the δ-θ frequency 541 

band is a neural marker of movement execution, since it remains unchanged 542 

despite differences in the functional networks involved in the initiation of a 543 

movement. We further suggest that this enhanced synchronization before the 544 

start of an action paves the way for distinct active cortical pathways to converge 545 

onto the common motor output. The synchronization thus establishes the basis 546 

necessary for the activation of the processes that generate the actual movement. 547 

The activation was therefore always the strongest in M1 contralateral to the 548 

moving hand. 549 

 550 
 551 

Effect of the visual stimulus on PLI 552 
 553 
 554 

In order to verify that PLI found in the motor cortex in the visually-cued 555 

tapping condition was not solely due to visual stimulation, we compared the 556 

PLI in the visually-cued tapping condition with that in the vision-only 557 

condition in the time interval [-2000, 1500] ms with respect to the onset of 558 
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the visual stimulation (t = 0). This test was necessary to ensure that a pure 559 

motor effect common to externally or internally triggered movements was 560 

identified. 561 

Fig. 7 exhibits the differences in the PLI values in the 2-30 Hz frequency 562 

band at the electrodes Oz, C4, and C3 in the vision-only condition with left-563 

pointing arrow (left column) and in the visually-cued tapping condition with 564 

left hand tapping (right column). Phase locking appears not only in the δ-θ 565 

frequency band, but also in the α and β frequency bands. Here t = 0 is the 566 

onset of stimulation. It is evident from this figure that the PLI was 567 

significantly larger in the motor cortex (cf. C4 and C3) in the visually-cued 568 

tapping condition than in the vision-only condition (t-test,        FDR 569 

corrected). The large signals in the motor cortex (C4, C3) are therefore 570 

unlikely to result from effects of the visual stimulation, only. 571 

 572 
 573 

The relation of PLI to behavior 574 
 575 
 576 

Next, we tested whether the observed increase in neural synchronization within 577 

the regions of the motor cortex or the occipital regions could be linked to the 578 

behavioral performance of the individual subjects. To this end, processing time 579 

(PT) was defined as the time that elapsed from the onset of the stimulus until 580 

the onset of the movement (defined by the accelerometer) and movement time 581 

(MvT) as the time from the onset of the movement to the button press (cf. 582 

Fig. 1B). In the visually-cued tapping condition, a significant correlation 583 

between the individual PTs of the 18 participants and the maximum PLI 584 

values was found in the occipital region (Oz) (Pearson, left p=0.0145 and right  585 

p=0.0429, respectively). This underpins the physiological validity of the data, 586 

since the visual stimulus was processed in this brain region.  587 

Furthermore, we found a significant correlation between the MvTs of the 18 588 

participants and the maximum values of PLI obtained from the EEG at the 589 

electrode C1 and C2 for left hand tapping (Pearson, p=0.0332) and for right 590 

hand tapping (Pearson, p=0.0087), respectively, in the self-initiated tapping 591 
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condition. This means that the stronger the phase locking preparing the 592 

movement in a given motor region, the faster the movement performed with 593 

the contralateral hand. 594 

 595 
 596 

Discussion 597 
 598 
 599 

The objective of the current study was to identify EGG markers related to the 600 

mechanisms involved in the precise timing of the neural signals underlying 601 

isolated finger movements. We hypothesized that such neural markers would be 602 

specific forms of synchronization dynamics that are invariant in the functional 603 

networks irrespective of the initiation of an action. To this end, we carried out 604 

EEG recordings on 18 right-handed young healthy human subjects who had to 605 

perform simple motor tasks probing internal and external initiation of finger 606 

movements. We used a rather simple task, since it has the advantage of being 607 

simple enough to be used in studies of both healthy subjects and patients 608 

suffering from neurological disorders affecting the motor system.  609 

We analyzed the EEG recordings with respect to changes in amplitude 610 

(power) and phase locking index (PLI) over the trials in each subject for every 611 

instant of the sampled time and at every integer frequency in the frequency 612 

band 2-48 Hz. We found that in the δ-θ frequency band PLI was significantly 613 

different from its baseline value in a time interval around the onset of the 614 

movement at all electrodes of interest (C1-C4, FC3-FC4, and FCz, Cz and Oz), 615 

in both conditions and for both hands (except, of course, at Oz in the self-616 

initiated tapping condition, because of the lack of the visual stimulus). We 617 

furthermore found, by calculating the lateralization index LI, that this phase 618 

locking was stronger in the motor regions contralateral to the moving hand in 619 

both the self-initiated and the visually-cued tapping condition. This phase 620 

locking cannot be attributed to the effects of sensory feedback from the 621 

tapping, since the PLI started to become significantly different from baseline 622 

in the primary motor area 500 ms before the onset of the movement, i.e., 623 
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about 600 ms before the button press. The significant presence of PLI in the 624 

visually-cued tapping condition was not due to the visual stimulus alone, 625 

since phase locking was stronger at the electrodes lying above the motor 626 

regions in the visually-cued than in the vision-only condition at the onset of 627 

the stimulus. One can therefore regard those changes of PLI in the EEG signals 628 

as general markers of movement execution, which are present irrespective of 629 

how the motor action is initiated and which hand is used.  630 

The analysis of phase locking properties in the EEG data constitutes a novel 631 

finding of our work. The widely known bio-markers of movement preparation 632 

and execution (e.g., Pfurtscheller and da Silva, 1999; Neuper et al., 2006) are 633 

based on changes of amplitudes (ERD and ERS), only, and do not take phase-634 

locking effects into account. Our results replicate the well-known event-635 

related-desynchronization (ERD) and event-related-synchronization (ERS) 636 

related to the onset and the termination of the movement in the power of the α 637 

and β and the lower frequency bands (e.g., Gerloff et al., 1998; Pfurtscheller 638 

and da Silva, 1999; Luu and Tucker, 2001; Neuper et al., 2006) and thereby 639 

demonstrate the physiological validity of our data. However, our results strongly 640 

support the importance of calculating the phase in addition to the amplitude 641 

when investigating event-related changes of brain activity.  642 

It remains to be tested whether this newly identified neural marker of 643 

movement execution, i.e., the increase of the PLI around movement onset, is (i) 644 

effector dependent, and (ii) dependent on actual physical execution. Pfurtscheller 645 

and colleagues, for instance, intensively investigated changes in amplitudes of 646 

EEG/MEG signals during motor preparation, execution and imagery of internally 647 

and externally triggered index finger, thumb, hand and foot movements (e.g., 648 

Pfurtscheller and da Silva, 1999, Neuper and Pfurtscheller, 2001; Pfurtscheller, 649 

2001; Neuper et al. 2006; Pfurtscheller et al. 2006). ERD/ERS were identified as 650 

generally occurring effects in all of those movements. However, the changes in 651 

amplitude differed depending on the electrodes as well as the frequency bands at 652 

which the ERD and ERS effects were apparent.  653 
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A relationship between decision making and EEG activity in the δ-θ 654 

frequency band (2-7 Hz) has recently been established (e.g. Cohen and Donner, 655 

2013). However, previous studies investigating EEG activity during finger tapping 656 

tasks (Gerloff et al., 1998; Zhao et al., 2014) did not report a phase locking of 657 

EEG signals in the δ-θ band. Recently, Igarashi  et al. (2013) showed that θ 658 

oscillations play a part in the neuronal coordination during motor activity, in 659 

particular motor planning and output, albeit in the rat. The authors 660 

demonstrated a close (functional) connection between θ oscillation and layer-661 

dependent  firing of cortical neurons (at high and low β frequencies). These 662 

data, at least indirectly, support our results concerning the role of δ-θ 663 

oscillations as markers of human motor actions. 664 

As far as the physiological significance of our results, i.e., the enhanced 665 

synchronization just before the start of the motor action, is concerned, we 666 

hypothesize that the spike rate of the motor neurons projecting from M1 to the 667 

spinal cord increases at a certain preferred phase angle of the δ-θ cycle. This 668 

concept is illustrated in Fig. 9. Here the cosine of the phase of each trial k is 669 

shown for all trials of one subject at a frequency of 3 Hz (with maximal PLI) 670 

in the visually-cued tapping condition. The red line indicates the time at which 671 

we expect this increase in the spike rate to occur, i.e., the instant of time at which 672 

the command to move the finger is send from M1 to the spinal cord, which is 673 

≈ 50 ms before the onset of the movement. 674 

This interpretation is in line with a study by Lee et al. ( 2005) who 675 

investigated local field potentials and single unit activity from multi-electrodes 676 

placed in the extrastriate visual cortex of monkeys while the animals were 677 

performing a working memory task. The authors found that θ oscillations had a 678 

systematic effect on single neuron activity, with neurons emitting more action 679 

potentials near their preferred phase angle of each θ cycle. Lee and colleagues 680 

therefore suggested that extrastriate visual cortex is involved in short-term 681 

storage of information and that θ oscillations provide a mechanism for 682 

structuring the interaction between neurons in different brain regions that 683 
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underlie working memory. 684 

Finally, we suggest that phase locking in the δ-θ frequency band, being 685 

most pronounced in M1 contralateral to the moving hand, constitutes a 686 

mechanism by which distinct active cortical pathways, which initiate voluntary 687 

and stimulus-triggered movements, converge to the common motor output. This 688 

mechanism may thus form the basis for the activation of the appropriate 689 

muscles, via the motor neurons, to perform the movement. 690 

 691 
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Fig.  1 869 
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(A) Scheme of organization of the experiments. See text for further details.  871 

(B) Typical trial epoched with respect to movement onset or visual stimulus. 872 

The visual stimulus was applied in the interval [-519, -245] ms with respect to 873 

the start of the motor action. Pressing the button in both cases took place in 874 

the interval [62, 98] ms after the onset of the movement. 875 

 876 
 877 

Fig.  2 878 
 879 

Group average of the amplitude over 18 participants in the frequency range 880 
 881 

2-48 Hz at the electrodes C3 and C4 in the self-initiated tapping condition 882 

(A) when tapping was done with the right (top row) or left hand (bottom 883 

row) and in the visually-cued tapping condition (B) when tapping was done 884 

with the right (top row) or left hand (bottom row).  885 

The onset of the movement as determined by the accelerometer is marked by a 886 

black vertical line. 887 

 888 
 889 

Fig.  3 890 
 891 

Group average of the phase locking index over 18 participants in the frequency 892 
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range 2-48 Hz in the self-initiated (A) and the visually-cued tapping condition 893 

(B) at electrode C4. 894 

The onset of the movement as determined by the accelerometer is marked by a 895 

black vertical line. 896 

 897 
 898 

Fig.  4 899 
 900 

Phase locking index at all channels in self-initiated tapping with the left hand 901 

(A) or right hand (B); and in visually-cued tapping with the left hand (C) or 902 

right hand (D). In all panels, the horizontal axis is time in the interval [-1400, 903 

1400] ms, and the vertical axis is frequency in the δ-θ band (2-7 Hz). The 904 

onset of the movement, as determined by the accelerometer, is set to t = 0. 905 

The color bar is the same as in Fig. 2. 906 

 907 
 908 

Fig.  5 909 
 910 

Phase locking index at the electrodes of interest. Their locations are above 911 

different regions of the motor cortex. C2,C4: right primary motor area (rM1); 912 

C1,C3: left primary motor area (lM1); FC3: left pre-motor area (lPM); FC4: 913 

right pre-motor area (rPM); FCz,Cz: supplementary motor area (SMA); Oz: 914 

primary visual area V1. Self-initiated tapping with the left hand (A) or the right 915 

hand (B). Visually-cued tapping with the left hand (C) or the right hand (D). In 916 

all panels, the horizontal axis is the time in the interval [-1000, 1000] ms; the 917 

black vertical line represents the onset of the movement, t = 0. The vertical 918 

axis is the frequency in the band 2-7 Hz. The value of the phase locking index 919 

is shown by means of a color-coded scale (below the panels). The edge effects 920 

of PLI reach until 8-10 Hz at some of the electrodes in this condition. 921 

 922 
 923 

Fig.  6 924 
 925 

Average PLIs over the 2-7 Hz frequency band in visually-cued tapping (green 926 

curves), and in self-initiated tapping (blue curves). The time intervals of 927 

statistical significance (      , FDR corrected) are determined by the red 928 
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shaded regions in self-initiated tapping, and by the light-blue shaded regions in 929 

visually-cued tapping. Left hand tapping (A), right hand tapping (B). The 930 

horizontal-axis is the same as in Fig. 4. The vertical axis shows the values of 931 

the phase locking index. 932 

 933 
 934 

Fig.  7 935 
 936 

The lateralization index related to the phase locking index in self-initiated 937 

(blue curve), and in visually-cued tapping (green curve) at the electrodes C3 and 938 

C4. The coordinate axes are the same as in Fig. 4. For further explanation, 939 

please, see text. 940 

 941 
 942 

Fig.  8 943 
 944 

Phase locking index around the onset of the visual stimulus (t = 0) at the 945 

electrodes Oz, C4, and C3 in the vision-only condition with left-pointing arrow 946 

(left column), and in the visually-cued tapping condition with left hand tapping 947 

(right column). Time is again on the x-axis and frequency (2-30 Hz) on the y-948 

axis. 949 

 950 
 951 

Fig.  9 952 
 953 

The cosine of the phase φ derived from the individual trials k of the EEG data 954 

of a single participant at a frequency of 3 Hz at the electrode C4 for self-955 

initiated tapping with the left hand. 956 
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1. Introduction

The performance of motor actions is a highly complex task where different body

parts and brain regions have to be coordinated properly. To ensure this, the

interplay of various brain regions of the motor cortex is important. In this

study we investigate the communication of different motor related brain regions

during simple internally and externally initiated finger movements during their

preparation and execution.

In our earlier work, we have shown that intraregional synchronization in δ-θ

frequencies is an EEG marker for the motor output during finger tapping tasks

[11]. Several studies hypothesized that synchronization between different brain

regions and different frequencies plays a crucial role when performing move-

ments [2, 3, 15]. Thus we used time-frequency analysis and investigated the

communication of motor related brain regions via interregional phase-locking

analysis in the EEG signals. We found strong changes of synchronization in

the δ-θ frequency band during movement preparation and movement execution.

The calculation of lateralization networks revealed that the phase-locking ef-

fect in these frequency bands was stronger in connections between brain regions
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from motor regions contralateral of the moving hand to supplementary motor

areas than in those on the ipsilateral side. Those interregional synchronizations

only appeared when both regions showed a strong intraregional phase locking.

Thus intraregional phase locking in δ-θ frequencies seems to be a prerequisite for

interregional phase locking. Additionally we could show a strong synchroniza-

tion in the β-frequency band that appeared after the movement was executed

in connections from the primary motor cortex and the pre-motor cortex con-

tralateral to the moving hand to the supplementary motor areas. As previous

studies have shown [4, 5] this kind of β phase-synchronization might be linked to

movement suppression. Since this synchronization effect is expressed stronger

in the self-initiated finger movement, we suggest that it might be related to the

suppression of the internal “go” cue after the movement was executed that is

not as strong in the visually cued tapping task.

2. Materials and methods

Participants. We investigated 21 healthy individuals (10F/11M, age: 22-35

years). All participants were right-handed according to the Edinburgh Hand-

edness Inventory [9], had normal color vision and no history of psychiatric or

neurological disease. All participants gave their written informed consent to the

study before the experiment, which was approved by the local ethics committee

of the Faculty of Medicine at the University of Cologne. Three subjects had to

be excluded due to data quality: one of the subjects had too many noisy trials

and two subjects were not able to perform the task properly. Thus 18 subjects

were included in our study.

Experimental design. We recorded EEG data of healthy young subjects while

they were performing a simple finger movement task (for details of the experi-

ment and methods used to preprocess the data see [11]). The task consisted of

three main conditions (Figure 1). The first condition was a self-initiated con-

dition where the subjects were asked to perform voluntary left and right index

finger movements each 4-8 s. In the second condition a visual stimulus pointing

2
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… self-initiated  

… visually -cued 

… vision-only  

60 s 

Figure 1: Experimental paradigm used for the finger tapping task. Consisting of 1) uncued,

self-initiated voluntary movements, 2) visually triggered movements and 3) vision-only control

condition.

to the left or to the right was shown to the subjects using a randomized order

of the inter-trial intervals recorded from the self-initiated condition. The sub-

jects were asked to press the button with the corresponding index finger as fast

as possible. The last condition was a vision-only condition that was used as a

control condition. In this part of the experiment the subjects were shown visual

stimuli again, but without any action from the subjects required. The whole

duration of the task was about 60-70 min. During that time each participant

performed between 80 and 90 trials for each condition.

EEG recording and preprocessing. During the experiment we acquired data con-

tinuously from 64 active Ag/AgCl electrodes (Brain Products GmbH, Munich,

Germany) that were placed in the order of the international 10-20 system. The

reference electrode was placed at the left earlobe since we expected this loca-

tion to be uninvolved in visual processing, movement planning and execution.

Bipolar horizontal and left vertical electro-oculograms (EOG) were recorded

using three of the 64 scalp electrodes (FT9, FT10 and TP10 in 10-20 nomen-

clature). They were placed at the bilateral outer canthi and under the left eye

to monitor eye movement and blinks. Before the experiment we made sure that

the impedance of the electrodes was below 15 kΩ. EEG signals were amplified,

3
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band-pass filtered from 0.87−500 Hz and digitised at a sampling rate of 2.5 kHz.

Two acceleration sensors, one for each index finger, were attached at the finger

tip for detection of movement onset. We chose to use these sensors in favor

of EMG electrodes since they are more sensitive to small movements and are

not restricted to single muscle groups. We also used the information from the

acceleration signals to monitor the behaviour of the subjects to exclude errors,

e.g. mirror movements.

The details of the preprocessing performed can be found elsewhere [11]. We

defined the onset of each finger movement by application of a threshold to the

norm of the numerically differentiated acceleration signal [16]. The signals were

band-pass filtered from 0.5− 48 Hz and downsampled from 2.5 kHz to 200 Hz to

reduce the filesize and thereby the amount of computation time. Artifacts were

removed by a half-automatic procedure in EEGLAB described in detail in [11].

The data was finally epoched to intervals centered around the movement onset.

In both conditions we had different requirements for the epochs. In the self-

initiated tapping condition the baseline needed to be located before the start

of the Bereitschaftspotential (readiness potential) [13] and in the visually-cued

tapping condition we needed to avoid overlap between consecutive trials. Thus

in the self-initiated tapping condition the epoch was defined as [-2500,1500] ms

with the baseline [-2500,-1500] ms and for the visually-cued tapping condition

we set the epoch to [-2000,1500] ms with a baseline interval of [-2000,-1000] ms.

Data analysis. The preprocessed data was re-referenced to small Laplacian ref-

erence [8] in order to improve the spatial resolution of the signals. We then

transformed the data to the time-frequency domain using Morlet wavelets [7].

These steps were performed using the Statistical Parametric Mapping toolbox

(SPM12, Wellcome Trust Centre for Neuroimaging, London, UK) implemented

in MatLab R2011b (The MathWorks Inc., Massachusetts, USA). Following we

analyzed the phase-information received from the time-frequency decomposition

with custom programmed MatLab scripts.

4
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Figure 2: Workflow representing the preprocessing steps for the phase-locking analysis. First

column: Raw signals; Second column: extracted phase information; Third column: phase-

di↵erence of two channels; Fourth column: single-frequency and relative phase-locking value.

6

Figure 2: Workflow representing the preprocessing steps for the phase-locking analysis. First

column: Raw signals; Second column: extracted phase information; Third column: phase-

difference of two channels; Fourth column: single-frequency and relative phase-locking value.

Phase-locking analysis. We analyzed the interregional synchronization of the

rhythms produced by different brain regions. We included four major frequency

bands: δ (2-3 Hz), θ (4-7 Hz), α (8-12 Hz), β (13-30 Hz). In the following, our

analysis will be restricted to EEG channels lying above motor regions. We iden-

tified the channels C2 and C4 with the right primary motor cortex rM1, C1

and C3 with the left primary motor cortex lM1, respectively. The frontocentral

electrodes FC3 and FC4 representing the left and right pre-motor cortex (lPM,

rPM) and the central electrodes Cz, FCz were chosen to analyze activity from

the supplementary motor area (SMA, pre-SMA). We added the electrode Oz as

a control for activity in the visual area (V1).

The complex Morlet wavelet transformation gives the possibility to analyze

two quantities of the signal separately for each frequency, namely the amplitude

A(f,t) and the phase ϕ(f, t). Our previous study [11] showed that intraregional

phase locking in low frequency bands can serve as a bio-marker of movement ex-

5
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ecution. This led us to focus our attention on the analysis of interregional phase

locking to get an insight in possible synchronization mechanisms between differ-

ent motor regions. As a characteristic for interregional communication or syn-

chronization we used the single-frequency phase-locking value (sPLV) (adapted

from phase-locking value defined in [7]). Instead of the widely used technique of

filtering the signal to frequency bands of interest and calculating a single phase-

locking value for the whole frequency band, we calculated the single-frequency

phase-locking value for each single frequency separately in 1 Hz steps (see Figure

2). In this way we got information on the exact contribution of each frequency

to the observed phase locking. The sPLV for a channel pair m and n is defined

as:

sPLVm,n(f, t) =
1

N

∣∣∣∣∣
N∑

k=1

exp (i(ϕmk
(f, t) − ϕnk

(f, t)))

∣∣∣∣∣ (1)

Here ϕmk
represents the phase of channel m in trial number k. The sPLV

ranges from 0 to 1. While a sPLV of 0 represents a random distribution of

phase-differences over all trials without any coherence at all, a sPLV of 1 means

perfect intertrial phase locking of the phase-differences of both channels over all

trials.

Since we were more interested in the effects of movement preparation and move-

ment execution and less in constant synchronizations, we normalized the sPLV

of each pair of channels to its baseline and calculated the relative change over the

whole epoch. We called these normalized sPLVs relative phase-locking values

(rPLV):

rPLVm,n(f, t) =
sPLVm,n(f, t) − sPLVm,n(f, t)

sPLVm,n(f, t)
(2)

Here sPLV denotes the mean sPLV in the baseline interval, i.e. [-2500,-1500] ms

in the self-initiated tapping condition and [-2000,1500] ms in the visually-cued

tapping condition.

6
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Figure 3: Single frequency phase locking for frequencies 2-30 Hz in all tapping conditions (self-

initiated top, visually-cued bottom, left tapping shown left, right tapping shown right) for six

example channel pairs.

3. Results

We used the phase-locking approach to get information about the interregional

communication of motor areas, represented by six channels located above those

areas, during movement preparation and execution. As we have seen in earlier

work the only intraregional phase-locking effect could be observed in the δ-θ

frequency band [11]. Thus we mainly focused our analysis on the frequencies

ranging from 2-7 Hz. We used the morlet wavelet transformation to get the

phase-information of each trial on the single subject level and calculated both

the sPLV and the rPLV from 2-30 Hz.
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Figure 4: Significant differences in sPLV for 2-7 Hz compared with an artificial baseline (sPLV

marked as solid blue line, PLIs marked as black solid line (first channel) and black dashed

line (second channel), interval of significant changes marked with light blue box).

Figure 3 shows the group result of the sPLV analysis for self-initiated and

visually-cued left and right finger tapping conditions. In general all conditions

showed an interregional phase-locking effect in the δ-θ frequency band around

movement onset. While this effect was present in almost every tested connec-

tion for the visually-cued tapping condition, it was present in the connections

contralateral to the moving hand in the self-initiated tapping. Additionally,

we found a strong phase locking in β-frequencies after the movement had fin-

ished between electrodes lying above the pre- and primary motor cortex and

electrodes lying above the supplementary motor area. This β frequency phase

locking was not observed in the phase locking within individual regions and ap-

pears only in interregional phase locking. Unlike the other effects we observed,

e.g. low frequency sPLV and PLI, these effects were significantly stronger in the

self-initiated tapping condition compared to the visually-cued tapping condition

(p < .0005).

For further analysis of the phase locking in the δ-θ frequency band we aver-
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Figure 5: Preferred mean phase-differences in intervals of increased phase locking around

movement onset for self-initiated and visually-cued movements (left tapping black solid lines,

right tapping red solid lines).

aged the sPLVs over the frequency range from 2-7 Hz (shown in Figure 4). Here

we plot the sPLV as a solid blue line and the corresponding intraregional phase-

locking indices (PLIs) as dotted and dashed lines (from [11]). The intervals

where the sPLV changed significantly from an artificial baseline, that was con-

structed from the mean value and the standard-deviation in the baseline interval

(first second of the epoch), at a significant level of p < 0.05 (FDR corrected) are

presented as blue boxes. While only few significant changes around movement

onset, that primarily consist of electrodes that are located above the hemisphere

contralateral to the moving hand, were found in the self-initiated tapping condi-

tion, almost every electrode pair showed a significant increase around movement

onset in the visually-cued tapping condition. In Figure 6 we can see all pairs

of regions that show a significant change around movement onset. While the

pairs of channels that show a significant increase were strongly lateralized in

the self-initiated left finger tapping, there was no evident lateralization in the

self-initiated right finger tapping condition. This lack of lateralization in the

right finger movements could be due to the fact that all of our subjects were

right handed and thus needed less effort for movements with their dominant

9
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hand. When comparing interregional phase locking to the intraregional one in

the corresponding electrodes, it becomes clear that the sPLV only shows sig-

nificant changes if both electrodes develop a high synchronization in the same

time-interval.

An analysis of the phase-differences in the intervals of increased phase lock-

ing showed a similar pattern when comparing left to right hand movements of

the same condition, but different structures between the conditions (see Fig. 5).

In the self-initiated condition phases in M1 were preceding phases in SMA that

were followed by PM, while the phases of PM were followed by SMA and M1

in the visually-cued condition. The phase-differences vary between 20-45◦ with

two exceptions in the visually-cued condition where M1 followed pre-SMA by

approximately 170◦ (see Fig. 5).

The β phase synchronization showed a significant increase for connections from

pre-SMA to M1 contralateral to the moving hand for self-initiated left and right

finger movements as well as visually-cued right finger movements. The visually-

cued left movement condition did not show an increase that was significant on

a statistical level. However, the same trend can be seen in this condition. The

mean phase difference analysis in the intervals of increased β band synchroniza-

tion showed that M1 lags behind pre-SMA (self-initiated: ≈ 160◦; visually-cued:

≈ 135◦)

In the following we aimed at determining whether the interregional phase lock-

ing in the δ-θ frequency band is a lateralized effect that is expressed stronger

on one hemisphere than on the other. To exclude high phase-locking values,

that resulted from a high baseline synchronization between the two channels

that was not related to movement preparation or execution, we calculated the

rPLV. In this way we were able to analyze the changes in phase locking relative

to the baseline synchronization. Figure 7 shows that the overall effect did not

change drastically, but all channel pairs are now normalized in a way that they

10
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Figure 6: Networks for all channel pairs that show significant changes compared to an artificial

baseline around movement onset for self-initiated and visually-cued movements (left tapping

black solid lines, right tapping red solid lines).

can be compared to each other. We then averaged the rPLV over frequencies

from 2-7 Hz to get the mean response in the δ-θ frequency band and tested the

maximal values of channel pairs contralateral to the moving hand to channel

pairs on the ipsilateral side of the moving hand. The lateralization index Lat is

defined as follows:

Lat(cpc, cpi) =
max(cpc) − max(cpi)

max(cpc) + max(cpi)
(3)

Here cpc denotes a channel pair from SMA to pre or primary motor areas con-

tralateral to the moving hand and cpi denotes the channel pair ipsilateral to the

moving hand. This results in positive values when the synchronization on the

contralateral hemisphere is stronger than the one on the ipsilateral hemisphere

and negative values vice versa. The results of the lateralization analysis are

presented in Figure 8. Most of the connections are stronger synchronized to

pre- and primary motor regions contralateral of the moving hand (14 out of 18

possible connections) no matter if the left hand (marked with black lines) or

the right hand (marked with red lines) is performing the task or whether it is

initiated internally or externally.
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Figure 7: rPLV from 2-30 Hz for all tapping conditions for six example channel pairs.

4. Conclusions

We have performed interregional phase-locking analysis on EEG data during

simple self-initiated and visually-cued finger tapping tasks. We have seen that

there is a strong interregional phase locking in the δ-θ frequency band around

movement onset additional to earlier reported intraregional phase locking [11].

We also observed phase locking in higher β-frequencies after the movement had

finished from pre- and primary motor cortex to supplementary motor areas that

were not related to intraregional phase locking in this frequency range and that

were significantly stronger in the self-initiated tapping condition compared to

the visually-cued one.
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Figure 8: Lateralization network for the self-initiated and visually-cued tapping condition.

Corresponding finger movements are marked with black (left) and red lines (right).

The phase differences in the intervals of increased phase locking revealed a

different order of the involved brain areas in self-initiated and visually-cued

tapping conditions. This order is in accordance with the one obtained from

the timepoints of maximal phase locking within the regions (cf. [11]). These

findings imply a directionality in the connections between the regions. In the

self-initiated tapping condition the signal originates in M1 and proceed to SMA

and PM, while it is the inverse direction in the visually-cued condition. Analyses

of additional channels above the parietal and frontal cortices will be necessary

to check whether the signals in the self-initiated condition are truly initiated in

M1 or whether they originate in parietal or frontal regions.

We suggest that the communication of motor-regions and the supplementary

motor area represented by an increase in phase locking in δ − θ frequencies is

necessary to establish and maintain the movement of the finger. Even though

we found a different order of the involved brain areas in different movement con-

ditions, they showed similar synchronization patterns in M1 and SMA during

movement execution as they converge to the same motor output. The event-
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related β synchronization in the amplitude dynamics is often interpreted as

idling of the motor cortex after movement execution [10], however there is a

hint that phase locking in the β-frequencies can be linked to the suppression of

movement after execution [4, 5]. Our results showed that the phase of the SMA

is preceding the phase of M1. Thus, further motor output from M1 might be

suppressed by phase locking to the phase of the β rhythm in SMA. It will be

necessary to investigate if the β phase locking is reduced in subjects that have

problems with terminating the movements, e.g. elderly subjects or subjects suf-

fering from Parkinson’s disease.

In future investigations these findings will be compared for different groups

of subjects, e.g. elderly subjects and stroke patients. The interregional phase-

locking effects might be reduced in general in both of the groups. Additionally

it is reasonable to assume that stroke patients show a strong reduction of phase

locking and also in the lateralization-indices when using their affected hand.

This might then be used as a basis for mathematical modelling of the underly-

ing network using populations of phase-oscillators (cf. [12]). This mathematical

model would then be able to give information on the differences in interregional

coupling strengths between different groups. The hypotheses derived from the

mathematical model could then be verified by additional experiments using

transcranial magnetic stimulation (TMS). This technique can be used to alter

the activity in certain brain regions [c.f. 1, 6, 14]. In this way, it can be tested

whether an alteration in the same region of the mathematical model shows

similar effects.
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Abstract

Walking results from a complex interplay of central pattern generating networks

(CPGs), local sensory feedback signalizing position, velocity and forces gener-

ated in the legs, and coordinating signals from neighboring limbs. In the stick

insect, the neural basis of inter-segmental coordination and the precise effects

of sensory information on the central networks in establishing coordinated mo-

tor output are largely unknown. The antagonistic muscles of each leg joint are

driven by one CPG that can be activated by the muscarinic acetylcholine ag-

onist pilocarpine. Sensory information plays a crucial role in coordinating the

different CPGs of one leg and appears to play a major role in inter-segmental co-

ordination of the different legs, too. However, precious little is known about the

interactions between the different CPG networks. Here, we aimed to investigate

potential coupling between CPGs at the CTr-joint in the different segments,

in more detail. Rhythmic motor activity was induced by bath application of

the muscarinic receptor agonist pilocarpine. We used phase-difference analysis

and dynamic causal modeling (DCM) to investigate the coupling structure and

strength of pairs of coupled ganglia. We set up different coupling schemes for

DCM and compared them using Bayesian model selection methods. There was

a clear preference to models with lateral connections in each segment and ipsi-

lateral connections on both sides to all other tested models. Our results show a

high probability for the existence of ipsilateral inter- and lateral intra-segmental
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coupling between the CPGs controlling the coxa-trochanteral joint musculature

in the stick insect thoracic nerve cord. Furthermore we show that the lateral

intrasegmental coupling strength in the mesothoracic ganglion is the strongest

and most stable coupling in all three ganglia.

Keywords: Central pattern generator, weak coupling, insect locomotion,

intersegmental coordination, dynamic causal modeling, phase-coupling

1. Introduction

Various experiments on vertebrate and invertebrate animal models confirm the

existence of central pattern generating networks (CPGs). Those networks are

responsible for the generation of periodic muscle activity [9, 18] that has to be

coordinated to create walking patterns. In the stick insect Carausius morosus,

each leg is individually controlled by its own CPG located in the pro- (front

legs), meso- (middle legs) and metathoracic ganglion (hind legs) [10, 28]. Each

leg consists of three leg joints that produce coordinated movements during walk-

ing and climbing: The thorax-coxa (ThC) joint is responsible for forward and

backward movements, the coxa-trochanter (CTr) joint is able to move the femur

of the stick insect in upward and downward direction and finally the femur-tibia

(FTi) joint that is responsible for outward and inward movements of the leg.

Each of the leg joints is controlled by antagonistic muscle pairs, namely the

protractor-retractor (ThC), the levator-depressor (CTr) and the flexor extensor

(FTi) muscle pair [11]. When it comes to coordination of the CPGs innervating

the motoneuron (MN) pools of legs within the same segment (intra-segmental) or

CPGs innervating the MN pools of legs of different segments (inter-segmental),

sensory input plays a major role in establishing the coordinated and functional

motor output [2, 4, 5, 13, 15]. However, little is known about the interaction

between the different CPG networks. In order to understand how a stable lo-

comotor pattern is achieved we need to understand the contribution and the

interaction of the central and peripheral components.

2
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So far there is a long and successful history in mathematically describing and

modeling central pattern generating networks with phase oscillators. A lot of

interesting and fruitful insights come from the models of weakly coupled oscil-

lators [8, 16, 24]. Nevertheless, there is a drawback on this modeling approach.

Up to now there is hardly a way to come up with coupling strengths that truly

come from the data and not from the model itself. There are some promising

approaches for the handling of EEG recordings for example [14, 22]. In this pa-

per we tackle the problem with two different approaches. A simpler and more

descriptive approach and a more complex modeling approach in order to assign

relative strength of coupling to the connections of the coupling of fictive motor

rhythms of levator-depressor CPGs of different hemisegments.

Usually the interaction of oscillators is quantified with coupling strengths. These

coupling strengths usually come from a model that was fitted to the data some-

how. As there is no direct bridge between recorded data and modeling, we

decided to investigate the effect of central coupling from both sides: The side of

data analysis, using a more descriptive approach, and the side of modeling, to

get an indication about the strength of observed effects in order to characterize

the coupling between the CPGs of the different segments in the thoracic nerve

cord.

This article is organized as follows: In section Materials and methods, we will

first review the experimental set up and describe the phase-difference and dy-

namic causal modeling methods we are going to use for the data analysis. The

section Results is separated into two parts. In the first part we will present the

results of the analysis for the meso- and metathoracic ganglia and in the second

part the results for the pro- and mesothoracic ganglia.

3
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2. Materials and methods

Animals. The experiments were carried out on adult female Indian stick insects,

Carausius morosus [3]. The animals are obtained from our colony maintained

at 22-24◦C, at approximately 60% humidity and under a 12 h light / 12 h dark

cycle.

Preparation. We recorded the CPG activity of C2 leg nerves innervating the

depressor trochanteris muscles extracellularly from contralateral nerves on pro-,

meso- and metathoracic ganglia using ’hook’ electrodes [25] (for detailed de-

scriptions of the preparation, experimental setup and electrophysiology see [17]).

Therefore all legs of the stick insects were removed, all lateral and connective

nerves, except the ones of interest, were cut off (isolated and deafferented prepa-

ration). Also sensory axons were destroyed to avoid sensory feedback and pe-

ripheral input being recorded. Rhythmic activity in leg motoneuron pools was

then induced by bath application of the muscarinic receptor agonist pilocarpine

[6].

We used phase analysis to detect the intrasegmental (within one segment) and

intersegmental (between two segments) ganglia coupling of motor outputs. The

intersegmental analysis will be done for the meso- and metathoracic ganglia first

and second for the pro- and mesothoracic ganglia.

Data analysis. The collected data was preprocessed offline using Spike2 7.09

(CED, Cambridge, UK). We used the signal processing functions DC-remove,

Rectify and Smooth to get rectified and smoothed waveforms that are cor-

rected for DC shifts. This data was then downsampled to 200 Hz, extracted

as a time-series and further processed with MatLab R2011b (The MathWorks

Inc., Massachusetts, USA). Phase-difference analysis was done using custom

programmed MatLab scripts, while we used the Statistical Parametric Map-

ping toolbox (SPM12, Wellcome Trust Centre for Neuroimaging, London, UK)

implemented in MatLab for dynamic causal modelling.
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Figure 1: Top: Rectified and smoothed signal Xr (Left: Meso-Meta, Right: Pro-Meso); Mid-

dle: Discrete-time analytic Discrete-Timesignal with Poincar-section marked in black (normal)

and red (adjusted for small units) (Left: Meso-Meta, Right: Pro-Meso); Bottom: Resulting

instantaneous phase ϕ (Left: Meso-Meta, Right: Pro-Meso).

Phase-connectivity approach. We analyzed the coordination of the rhythms pro-

duced by the CPGs controlling the leg movements in the stick insect in the

absence of sensory input on the phase level, to investigate possible coupling of

those units. This analysis was performed according to established methods de-

scribed elsewhere [24, 26]. Using this approach we got information about the

development of multiple rhythms in relation to each other.

For this, we analyzed the phase development of each nerve recording. To do

this the preprocessed extracellular recordings were transformed to the complex

plane via the so-called discrete-time analytic signal

X = Xr + iXi, (1)

such that Xi is the Hilbert transform of the real data vector Xr [19]. Then

a Poincarè-section was used to define the onsets of the bursts and thereby the

phase onset of the rhythm. The phase φ of each recording was then defined to
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Figure 2: Left top: Sample recording of left and right depressor activity in the metathoracic

ganglion, with an example gliding window marked in red; Left bottom: Development of the

R-vector length of left-right metathoracic phase-differences over a whole recording, coupled

regions marked with grey boxes; Right: Phase-histogram shown for the coupled interval ≈
[50,140]

increase linearly from 0 to 1 (2π) during one cycle. In a last step this phase

was unwrapped, i.e. we let it grow continuously from the first to the last cycle

(Figure 1, left). The signal in the prothoracic ganglion showed activities with

small amplitudes additionally to the high amplitude bursts, thus we added a

second analysis where we adjusted the Poincar-section such that only the big

amplitudes were marked as burst onsets (Figure 1 right).

To investigate the coupling of two CPGs, we calculated the phase-difference.

The signals are assumed to be coupled if their phase-difference remains con-

stant over a time-period, i.e.

||ϕ1(t)− ϕ2(t)|| = c+ ε, ε small (2)

In our analysis we ensured this by demanding the following two criteria, for

the R-vector (cf. [1]) which is measuring the similarity of the phase-differences

of the coupled phases.

1. The R-vector length in a 15 s long gliding time-window should stay above

a length of 0.8 for at least 50 s (corresponds to 10 cycles) (Figure 2, left).
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2. Over the whole time-interval defined above the R-vector should stay above

0.3 and have a clear peak in the histogram (Figure 2, right). This criterium

prevents a drifting of the phases over the coupled interval.

Both thresholds for the R-vectors were adjusted manually in a way that the

program was able to correctly assign clearly coupled or clearly uncoupled in-

tervals to the right group. We defined coupling strength as the likelihood of

coupling over the whole recording, i.e. the sum of all interval lengths in which

coupling occurred relative to the total length of the corresponding recording,

while recordings without coupling were taken into account with 0 s of coupling.

Dynamic causal modeling approach. In the second approach we used Dynamic

causal modeling (DCM) [14] to investigate the coupling structure and the cou-

pling strength of intra- and inter-segmental couplings between the thoracic gan-

glia of the levator-depressor system of the stick insect. This approach is widely

used in the analysis of coupling strengths of EEG and fMRI data [7, 12, 27] and

in the analysis of local field potentials [22].

This approach uses neural mass models [20, 21] to describe the neuronal ac-

tivity of the recorded sources. Therefore the parameters will be fed into a set

of differential equations that are coupled after a predefined coupling structure

to simulate the recorded source activity.

ż = (A+ uB)z, (3)

where z is the output of the sources, the coupling structure is defined in A

and possible connectivity changes between different experimental conditions is

modeled with B. The coupling strengths saved in A and B will then be fitted

to be optimal for the recorded activity. After testing for the best coupling

structure via bayesian model selection (BMS) [23], this gives us the possibility to

investigate intra- and intersegmental coupling strengths in the preferred model

architecture.
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Figure 3: Coupling strength in the meso-meta thoracic ganglia over all experiments using the

phase-connectivity approach (N=10).

3. Results

In this study we applied methods commonly used for EEG analysis to analyze

pharmacologically induced rhythmicity in MN pools of an invertebrate system.

Coupling of the CPG motor output of the CTr-joint of multiple segments, either

meso-meta or pro-meso connectivity, was investigated first on the phase level of

the bursting behavior and second via mathematical model fits reproducing the

recorded depressor MN activity.

Meso-Meta thoracic ganglia. The first part of the experiment consisted of record-

ings from the C2 nerves of the meso- and metathoracic ganglia. In 9 animals

we collected data from both sides in the meso- and metathoracic ganglion.

The results of the phase-coupling approach are presented in Figure 3. The

likelihood of coupled segments was highest for the intra-segmental couplings,

i.e. the coupling between both sides of the mesothoracic ganglion (meso-meso)

and the coupling between both sides of the metathoracic ganglion (meta-meta).

The likelihood of inter-segmental coupling (meso-meta) was significantly lower

8
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(p = 0.0396) than the intra-segmental coupling, while intra-segmental couplings

in the meso- and metathoracic ganglia itself showed no significant difference

(p = 0.2224).

Then we used the bilateral recorded data for the DCM analysis. First we tested

different possibilities for the predefined coupling structure. The tested mod-

els consisted of unconnected (2), fully connected (3), cross connected with (4)

and without lateral connections (5), intrasegmental unconnected (6), interseg-

mental unconnected (7) ganglia and a circular connected model (1) (Figure 4

(A)). All models were tested with excitatory and inhibitory connections. Here

we show only the results of excitatory coupling, since both groups (excitatory

and inhibitory) showed the same winning model structure. Over all the win-

ning model with excitatory connections had the highest probability. The BMS

showed that the coupling structure best fitting the recorded data was model 1

(Figure 4 (B)).

We used this coupling structure as the basis for further analysis of the coupling

strengths. We decided to analyze the recordings in two steps. First we used

biased intervals that were defined as coupled from the phase-coupling approach

and second we analyzed unbiased arbitrary chosen time-intervals. With this ap-

proach it was possible to get information about differences in coupling strengths

during phase-synchronized time-intervals in comparison to unsynchronized ones.

The analysis of the biased intervals lead to coupling strengths that are de-

picted in Figure 5. In agreement with the phase-coupling approach we can see

the highest coupling strengths in the meso-meso and meta-meta connectivity,

while the meso-meta connectivity was significantly lower (meso-meso: p = 0.013,

meta-meta: p = 0.041). Then we looked at five unbiased intervals of 15 s du-

ration each that were merged together (Figure 6, right). When comparing the

coupling strengths of the same animal in the biased intervals, we see that the

coupling strengths in the mesothoracic ganglion and the intersegmental coupling

9
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Figure 4: (A) Model architectures tested with DCM (B) Model selection; left: Result of

Bayesian Model selection for the meso-meta thoracic ganglia; right: Structure of the winning

model (1), triangles marking excitatory connections between CPGs.
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Figure 5: Coupling strength in the meso-meta thoracic ganglia over all experiments using

the DCM approach (N=5, n=11) for biased intervals already identified as coupled by the

phase-coupling approach.

strengths stay roughly at the same levels, while the coupling strengths in the

metathoracic ganglion is decreased by a factor of five. This result suggests that

the mesothoracic intra-segmental coupling remains high throughout the whole

experiment whereas the coupling in the metathoracic ganglion is strong only in

the intervals where the phases are also coupled to each other.

Since DCM was developed for EEG data of the human brain, we performed

an analysis to test whether it is able to be applied to extracellular recordings, in

particular to reproduce coupling strengths that we would expect to exist in the

animal. Therefore we added a second experimental condition to the experiment

where the connectives between the meso- and metathoracic ganglia were cut.

In this case the connectivity between both segments is destroyed. This time we

set up DCM to calculate coupling strengths for the case of connected segments

(A-matrix) and the changes from these values in the case of cut connectives

(B-matrix). We did not give any prior information on which connections should

be changed by DCM. The model showed a strong decrease, 90% on the left

side and 95% on the right side, of connection strength between the meso- and
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Figure 6: Coupling strength for the same animal. Left: biased interval of 50 s length, Right:

unbiased interval from 5 intervals of 15 s length each. Red lines mark strong connections,

black lines medium connections and blue lines weak connections respectively.

metathoracic ganglion (Figure 7). The connection between both segments was

not removed completely by DCM. This is due to the fact that DCM is set to

use at least a minimal strength for the connection whenever it is defined to

be present. In addition to the intersegmental decrease, there was a strong in-

crease in the intrasegmental coupling in the mesothoracic ganglion (2-20x as

strong) and a decrease in connectivity in the metathoracic ganglion (1/2x as

strong). This fits to [17] where they could demonstrate that the mesothoracic

ganglion showed phase-coupling even in the isolated state, while the metatho-

racic ganglion needed to be connected to the mesothoracic ganglion to show

phase-coupling.

Pro-Meso thoracic ganglia. In the second part we analyzed the coupling between

the pro- and the mesothoracic ganglia. We recorded the activity of the C2 nerve

on both sides of both ganglia in 5 animals, on both sides of the mesothoracic

ganglion and on one side of the prothoracic ganglion in 3 animals and on both

sides of the prothoracic and on one side of the mesothoracic ganglion in 5 ani-

mals.

Since there was a lot of small unit activity, we added a second analysis with

an adjusted Poincaré section to just mark the onset of the bursts of the big

units, i.e. add a threshold for the amplitude of the signal (cf. Figure 1, right).
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Figure 7: Differences in connectivity from connected segments (trial 1) to unconnected seg-

ments (trial 2). Left: Changes of connectivity strength, with trial 1 normed to 100% coupling

strength; Right: Changes of connectivity compared to trial 1, red lines mark an increase

in connectivity, blue lines a decrease in connectivity and black lines no reliable connectivity

change (above 70%).
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Figure 8: Coupling strength in the pro-meso thoracic ganglia over all experiments using the

phase-coupling approach (N=8). Left: without adjustment to the Poincar-section, Right:

With Poincar-section adjusted to big units.
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The analysis of the uncorrected phase-differences revealed weak intersegmental

coupling and weak intrasegmental coupling in the prothoracic ganglion, while

the coupling strength was increased in the mesothoracic ganglion compared with

the intersegmental coupling strength (p = 0.0394, Figure 8, left). In the adjusted

analysis the mean mesothoracic coupling strength was still higher than the pro-

thoracic and the intersegmental coupling strength. However, this difference was

not significant on a statistical level (pp-mm p = 0.29, pm-mm p = 0.541, pm-pp

p = 0.437).

We then investigated the data with the DCM approach. First we started again

with the selection of the best fitting coupling structure for the data with the

same models tested as in the meso-meta thoracic ganglia (Figure 4 (A)). The

BMS showed the same result (Figure 4), which is why we used the same cou-

pling structure for the analysis of the pro-meso thoracic ganglia. In the biased

coupling intervals (N=5,n=10) we can see that the intrasegmental meso-meso

coupling (p = 0.003) and the intersegmental pro-meso coupling (p = 0.013) are

significantly stronger than the intrasegmental pro-pro coupling (Figure 9, left).

The same trend can be seen for unbiased intervals (Figure 9, right). Here we

used 4 intervals from 2 animals that were arbitrarily chosen with a length of

50 s. The pro-meso (p = 0.025) and meso-meso coupling (p = 0.001) strengths

are again significantly stronger than the pro-pro coupling strength.

4. Conclusions

Our results show a strong evidence that weak inter- and intrasegmental central

coupling is present in the stick insect. In figure 10 we sum up the connectivity

results from both approaches. We have seen that there is a coupling present in

each ganglion, but with a different coupling strength. In the DCM approach the

intrasegmental coupling strength of the prothoracic ganglion was the weakest

coupling present (Figure 10). In the phase-coupling approach this connection

was amongst the weakest that were analyzed, however it was not significantly
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Figure 9: Coupling strength in the pro-meso thoracic ganglia over all experiments using the

DCM approach. Left: Coupling strength for biased intervals (N=5 , n=10); Right: Coupling

strength for unbiased intervals (N=2, n=4).

weaker than all other connections. This reflects the role of the front legs that are

also heavily involved in searching movements. Thus it is necessary for the stick

insect to be able to move both legs independently, what would be guaranteed

by a weaker coupling between both sides of the front leg CPGs.

Our analysis revealed that the intrasegmental coupling of the mesothoracic

ganglion is the strongest of all connections, no matter if we are looking at the

phase-difference approach or the biased or unbiased DCM approach (Figure 10).

The cut-connective experiment also showed that the presence of the meso-meta

connection was needed for a strong intrasegmental coupling in the metathoracic

ganglion. This result is also supported by [17] where they could show that

the phase-coupling of the recordings in the metathoracic ganglion became more

stable when the meso- and metathoracic ganglia were interconnected. These

findings combined suggest that the information from the mesothoracic CPGs

are stabilizing the other segment and act as some kind of a clock generating the

rhythm.

In our analysis we showed for the first time that well established methods for an-
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Figure 10: Summary of the differences in coupling strengths obtained by both approaches.

Strong connections shown in red, weak connections shown in blue, no significant change is

marked in grey.

alyzing EEG data can be adapted for the analysis of pilocarpine induced fictive

locomotion pattern of the stick insect Carausius morosus. We have seen that

the DCM approach that uses neural mass models, that were developed for EEG,

was able to detect changes in the system for different experimental conditions.

DCM detected the absence of coupling between the meso- and metathoracic

ganglia after the connectives were cut.

The next thing to investigate would be to do experiments with electrodes record-

ing from all three segments at the same time to get information on the coupling

structure of the pro- and metathoracic ganglion and also to investigate the

change of coupling strength that might occur when both connectives anterior

and posterior of the mesothoracic ganglion are intact. We are also planning to

use the coupling strengths produced by DCM to build models of phase oscilla-

tors or more sophisticated models to compare their output to the experimental

data.
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4 Discussion

In this work I present different approaches for the analysis of couplings and especially
the strengths of coupling in neuronal networks that are based on experimental data.
First, I will discuss how networks consisting of phase-oscillators can be used to re-
produce synchronization effects from EEG data and how the analysis of these models
reveals information about the alteration of coupling strengths of different brain regions
in the comparison of healthy control subjects and schizophrenia patients (see Rosjat
et al., 2014). Next, we used a mathematical model based on Hodgkin-Huxley type
neurons to define the coupling strengths between the pro- and mesothoracic ganglion
of the protractor-retractor system of the stick insect (see Tóth et al., 2015). In the
third study we used intraregional phase locking to define a neurophysiological marker
of movement execution from EEG recordings of the human brain during simple motor
tasks that were induced either internally or externally by a visual cue (Popovych et al,
under review). Following, I present the results from two studies that further analyzed
the aforementioned systems in the human brain and the stick insect locomotor system.
In the first part phase-locking analysis to identify the synchronization effects caused
by interregional coupling between different motor regions of the human brain were ap-
plied (see section 3.1, (Rosjat et al., in prep)). In the last part possible applications of
analysis methods, developed for EEG recordings, in the analysis of extracellular nerve
recordings of the stick insect were demonstrated. There, I used two different approa-
ches, one based on phase-analysis and another one based on dynamic causal modeling,
to investigate the intrinsic intra- and intersegmental coupling strengths in the thoracic
nerve cord of the stick insect (see section 3.2, (Rosjat et al., in prep)) during fictive
locomotion.

In the first study (see Rosjat et al., 2014) the connectivity changes in the thalamo-
cortical loop in schizophrenia were analyzed. For this purpose, we built a mathemati-
cal model that was based on phase-oscillators in the θ- and α−frequency range as an
abstract description of the thalamo-cortical loop. Those frequencies were selected, sin-
ce they were shown to change significantly in patients suffering from schizophrenia in
comparison to a control group (c.f. Brockhaus-Dumke et al., 2008). Each cortical region
and the thalamic region were modeled by a large number of coupled oscillators. The
mathematical model was then used to first reproduce the phase-locking phenomena
observed in recordings of a double-click paradigm and then to make hypotheses on the
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connectivity changes due to the illness. We have seen that coupling strengths from cor-
tical to thalamic regions was reduced drastically, while the back coupling to the cortical
regions was just a little weaker in the patient group. Thus, our model suggested that
schizophrenia results from pathological interactions between brain regions. In a next
step groups of subjects treated with different drugs, e.g. eicosapentaenoic acid (Peet
et al., 2001), pregnenolone (Marx et al., 2009; Ritsner et al., 2010) or antipsychotics
(Carlsson, 1978), should be included in the analysis to test whether the reduction of
pathological symptoms is also represented in a regained phase locking in the auditory
cortex.

In the second study (see Tóth et al. (2014)) we aimed at a better understanding of
the structure and function of the inter-segmental coordination between the pro- and
mesothoracic neural networks of the stick insect. Therefore, we used mathematical
models, at first a simplified “skeleton model” followed by an extended version of the
existing 1-leg model (Tóth et al., 2012), to produce simulated PRCs. We made use of
corresponding experimental results that were published earlier as well as up to then
unpublished results (Borgmann et al., 2009). Our approach was to compare simulated
to experimentally obtained PRCs under the assumption that similar PRCs are gene-
rated by equally similar underlying networks. Even though the stimuli were applied
differently in the simplified “skeleton” model and the extended 1-leg model, they both
yield similar results concerning the nature and strengths necessary to produce rea-
sonable PRCs. Both approaches showed that a strong excitatory connection between
protractor CPGs and a moderate excitatory connection between retractor CPGs of the
pro- and mesothoracic ganglia were crucial for the generation of PRCs which fitted
the experimental ones well, while inhibitory connections proved to be irrelevant. Even
though models that were solely connected through retractor CPG neurons were able
to reproduce the observed walking behaviour, connections only on the retractor side
were not sufficient to produce acceptable PRCs.

In the third study (see Popovych et al., under review) we sought to identify EEG
markers related to the precise timing of mechanisms underlying isolated finger tap-
ping movements. We hypothesized that such neural markers would be connected with
phase-synchronization that is invariant irrespective of the hand performing and the cue
triggering the task. For this purpose, we performed EEG recordings on 18 right-handed
healthy human control subjects that were asked to perform internally and externally
triggered finger tapping movements. The design of the task was held as simple as pos-
sible to achieve the aim of the study. This way it will be possible to use the same
paradigm also in elderly subjects or patients suffering from neurological disorders af-
fecting the motor system in future investigations. We analyzed the EEG data with
respect to the changes in power of certain frequency bands as well as synchronization
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measured by the phase-locking index (PLI). We found phase locking during movement
preparation and movement execution in the δ-θ frequency band that was significantly
increased compared to its baseline value in all electrodes of interest above motor regi-
ons in internally and externally triggered movements. Externally triggered movements
showed an increased phase locking in visual electrodes in addition. The computati-
on of lateralization indices revealed that phase locking is stronger in the hemisphere
contralateral to the moving hand. In contrast to the widely known bio-markers of mo-
vement preparation and execution (Bereitschaftspotential, ERD, ERS) that focus on
changes in amplitudes only (Shibasaki and Hallett, 2006; Pfurtscheller and da Silva,
1999; Neuper et al., 2006), the PLI is a direct measure of synchronization at the level
of neural oscillations.

It remains to be tested whether the increase in phase locking is depending on actual
movement execution and whether this effect is specific for index finger movements. For
ERD and ERS it has been shown that both can be observed in different kinds of limb
movements as well as during motor imaginary tasks (Pfurtscheller and da Silva, 1999;
Neuper and Pfurtscheller, 2001; Pfurtscheller, 2001; Neuper et al., 2006; Pfurtscheller
et al., 2006), however, the strengths observed and the brain regions showing the effect
vary in the different kinds of movements.

We hypothesize that the δ-θ rhythm is reset to a certain preferred phase angle at
which the spike rate of the motor neurons projecting from M1 to the spinal cord is
increased. As we have seen, this increase in phase locking can be observed at the point
in time where the command to move the finger is send from M1 to the spinal cord
(approximately 50ms before the onset of the actual movement). In accordance to this
hypothesis Lee et al. (2005) found an increase of firing rate at certain preferred phase
angles during the θ cycle in local field potential (LFP) data in monkeys during working
memory tasks. They hypothesized that θ oscillations provide a mechanism for structu-
ring the interaction of different brain regions. Thus, we suggest that δ-θ phase locking
serves as a common mechanism at which distinct cortical pathways, which initiate in-
ternally and externally triggered movements, converge to the same motor output, i.e.
the finger movements.

The fourth study (Rosjat et al., in preparation) in chapter 3.1 presents results that
build on the third study presented above and showed that the phase-locking effects
are not limited to local brain areas, but can also be observed on the interregional le-
vel. Interregional phase-locking analyses were performed on the data set consisting of
the internally and externally triggered index finger movements of the 18 young he-
althy right-handed subjects (c.f. Popovych et al., 2015). Phase-locking values similar
to the measures suggested by (Lachaux et al., 1999) were calculated to investigate
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the phase-locking between the electrodes of interest (C3-C4, Cz-FCz, FC3-FC4, Oz).
We found an increase in phase locking between the motor regions in δ-θ frequencies
around movement onset in all conditions. In internally triggered movements this effect
was mainly visible in pairs of channels with at least one channel on the hemisphere
contralateral to the hand performing the task. This lateralization effect turned out to
be less pronounced when the subjects were performing the task with their right hand.
This could be due to the fact that all our subjects were right-handed and needed less
activity when performing the task with their dominant hand. This was also reflected in
other measures that have been shown earlier (peak PLI value (Popovych et al., 2015),
maximal amplitude in the Bereitschaftspotential (Shibasaki and Hallett, 2006)). Howe-
ver, it still needs to be verified whether a group of left-handed subjects would show a
similar reduction in synchronization while using their left hands. Externally triggered
movements, on the other hand side, showed a very strong increase in phase locking
that resulted in significant changes in nearly all pairs of electrodes investigated. Since
the sole analysis of significant changes did not yield much information in this con-
dition, we added an analysis of lateralization. Therefore, the sPLVs were normalized
by rescaling to the relative change compared to baseline values. It turned out that
even though the changes in externally triggered movements were significant in nearly
every pair, the stronger phase locking could be found in the electrodes above the he-
misphere contralateral to the moving hand in 70% for externally triggered movements
and in 87.5% for internally triggered movements. The analysis of the preferred phase
differences revealed different structures for self-initiated and visually-cued tapping con-
ditions. While the interregional phase locking originates in M1 and propagates to SMA
and PM in the self-initiated tapping condition, the direction is reversed in the visually-
cued tapping condition, namely it originates in PM and propagates to SMA and M1.
Analyses of additional channels above parietal and frontal cortices will be necessary
to test whether they might be the origin of phase locking in the self-initiated condition.

In contrast to the PLI analysis (see chapter 2.3), this approach showed an additio-
nal phase locking in the β-frequency band (13-30Hz) after the movement has finished.
Unlike the low frequency phase locking, this effect was significantly higher in the inter-
nally triggered tapping condition as compared to the externally initiated movements.
In de Hemptinne et al. (2013, 2015) they found first evidence for the contribution of
β synchronization in movement suppression. We suggest that the late high frequency
synchronization in our data set might be related to the suppression of a second finger
movement after the button press. This effect might be enhanced during the internally
triggered movements, because subjects did not react to a certain stimulus and had
to prevent multiple voluntary finger movements. The analysis of the preferred phase
relation between M1 and SMA during β phase synchronization revealed that M1 is
preceding SMA by 130 to 160◦. This suggests that SMA is acting on M1 and thereby
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might prevent additional finger movements. Analyses of subjects with motor suppres-
sion deficits will be needed to test whether they show decreased phase locking in the
β frequencies after the movement had finished.

Over the past years several studies have employed the single-trial phase-locking value
(PLV) in the detection of imaginary movements in brain-computer interfaces (Brun-
ner et al., 2006; Krusienski et al., 2012; Song et al., 2005; Wang et al., 2006a). They
showed an increased predictability of motor imaginary tasks for the PLV compared to
methods that are based on amplitude dynamics especially in the first 1-2 s of motor
imagination (Song et al., 2005). Their results suggest that PLV is another robust fea-
ture for the differentiation between different motor tasks, e.g. left and right finger or
foot movements (Brunner et al., 2006). The differences in interregional phase locking
and preferred phase relationships, as presented above, might serve as an additional
aspect for a differentiation between motor tasks. However, it remains to be checked
whether the observed intra- and interregional phase-locking effects are special for mo-
tor execution or whether they would be present in motor imagination, too.

In the last study (Rosjat et al., in preparation), in chapter 3.2, I looked at the intrinsic
intra- and intersegmental connectivity in the pro-, meso- and metathoracic ganglia of
the stick insect levator-depressor system from two different perspectives. Both approa-
ches are purely data driven. While the phase-coupling approach is directly based on
synchronization measures of the phases of the recorded signal, the DCM approach utili-
zes mathematical models fitted to the recorded data to define the appropriate coupling
strengths best fitting the data. Even though DCM was first developed for human brain
recordings, I was able to substantiate this method with an experiment under a con-
trolled connectivity setting, i.e. after complete removal of certain connections in the
network. The analyses showed that the coupling structure, most likely to be present
intrinsically, has a cyclic form within pairs of neighbouring segments. Thus, the results
suggest that there are no cross-connections from one side of a thoracic ganglion to
the other side of a neighbouring thoracic ganglion. Both approaches showed a very
high agreement in the coupling strengths in most of the connections underpinning the
results. They revealed that the intrasegmental coupling strengths in the meso- and me-
tathoracic ganglia were significantly stronger than the intersegmental coupling strength
between both ganglia. While this effect stayed present over different recorded intervals
for the mesothoracic intrasegmental connectivity, it got weaker in the metathorax when
analyzing randomly selected intervals, i.e. they were not necessarily defined as coupled
by the phase-approach. Additionally, after decoupling the mesothoracic ganglion from
the metathoracic ganglion, the mesothoracic coupling strength was increased up to
twenty times as strong as in the coupled situation. Thus, the intra-segmental coupling
strength needed to be increased to maintain the synchronization when the feedback
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from the metathoracic ganglion is removed.

Despite some problems in generating regular rhythms in the prothoracic ganglion both
approaches showed at least the same trend in the strengths of connections between
the pro- and mesothoracic ganglion. While the mesothoracic intrasegmental connecti-
vity was again the highest, the prothoracic intrasegmental connectivity strength was
significantly weaker in the DCM approach with the same trend in the phase-approach.
However, the difference was not significant on a statistical level in the phase-approach.
The special role of the front legs, that are controlled by the CPGs located in the pro-
thoracic ganglion, during walking has been discussed in (Grabowska et al., 2012). They
showed that front legs can be moved independently of the walking cycles of the adja-
cent legs, while the remaining four legs performed coordinated movements that were
similar to walking patterns observed in quadrupeds. They suggested that only a weak
inter-segmental coupling between the front and the middle legs would be necessary in
the decoupled movements, while it would need to be strengthened in a coupled regular
hexapedal walking situation. Our results support this hypothesis as they showed large
variability of strong and weak intra-segmental coupling between pro- and mesothoracic
ganglia. The weaker coupling in the prothoracic ganglion would enable the animal to
decouple the front legs from the middle and hind legs to use them for independent
movements, e.g. searching movements (Dürr, 2001), while the other two pairs of legs
remain unaffected. In our analysis of the pro-, meso- and metathoracic ganglia the
intra-segmental mesothoracic connectivity was the strongest and most stable one. This
suggests that it might serve as some kind of an internal controller producing a stable
locomotor pattern.

The studies presented above investigated the interactions in neuronal networks eit-
her in the stick insect locomotor system or in human cortical networks. All results
discussed above showed evidences for the high importance of oscillatory phases in the
neuronal communication.

The next step in the investigation of the human motor cortex will include experiments
on different groups of subjects. These groups might contain young healthy left-handed
subjects to get information about the differences arising from the dominant hand. We
assume that phase locking as well as amplitudes in the Bereitschaftspotential will be
weaker when using the left dominant hand, while it might get more prominent when
they perform the experiments with their right hand. Another group consisting of elder-
ly subjects could serve as a control group for non-pathological ageing. The subjects in
this group will show slower reactions, make more errors when reacting to visual stimuli
and have bigger problems in producing internally triggered movements that fulfill the
requirements of the experiment. Therefore, we suppose that the phase-locking effects
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will get weaker in general. In a third group we could analyze the effects of pathological
ageing in subjects suffering from mental disorders that affect the motor system, e.g.
stroke patients. Since these subjects are in the same age range as the group of elderly
subjects, they will show similar changes in the phase locking effects, but there will
be other additional changes due to the lesioned hemisphere. Those changes in phase
locking might include reduction in the lesioned hemisphere as well as an increase in the
unaffected hemisphere that has to compensate for the loss of function. We also suspect
to observe an increase in PLV lateralization to the channel pairs of the ipsilateral he-
misphere when subjects perform finger movements with their affected hand.

Suggestion for a mathematical model of the human

motor system

It will now be possible to build mathematical models to analyze the underlying network
structure and coupling strengths between the involved motor areas. The connectivity
structure best fitting the measured data could be analyzed using dynamic causal mo-
deling (cf. section 3.2, (Kiebel et al., 2008)). Previous fMRI studies for bilateral mo-
vements (Grefkes et al., 2008) and EEG studies for unilateral movements (Herz et al.,
2012) suggest an all-to-all coupling in the regions of interest in the motor system. The-
refore, a first model might consist of a single fully connected hemisphere modeling the
effects of unilateral movements that could then be enhanced to a full bilateral system
for the analysis of left and right handed tasks. Each of the desired motor regions will be
represented by a population of phase oscillators that interact via their mean fields as
presented in section 2.1 for the thalamo-cortical loop. Since the strongest phase-locking
effects occur in the δ, θ and β frequency bands, as we have seen in section 2.3 and 3.1,
those populations are composed of oscillators with natural frequencies lying within
these frequency ranges. The internal and external stimuli might then act on different
parts of the motor system. As suggested by the phase difference analysis, the external
stimulus will act on PM and SMA, while the internal stimulus will act on M1 directly.
The increase in synchronization in the primary motor cortex populations, determined
by their mean fields, will result in an increase of information send to the motor net-
work to trigger the motor output. The local motoneuron network itself is controlled by
CPGs (c.f. Calancie et al., 1994; Zehr et al., 2004). In the model the signals send from
the primary motor cortex to the MN network would play the role of the central drive
(cf. CPG network of the 1-leg model (Tóth et al., 2012)) that evokes certain patterns
produced by the CPG and thereby in the motor output. The different CPG networks
controlling the left and right hand movements do not need to be coupled strongly, since
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each hand can be moved independent of what the other hand is doing. This situation
can be compared to the weakly coupled CPG networks of the prothoracic ganglion in
the stick insect that might be due to the role of the front legs in searching movements
(cf. section 3.2). CPG networks controlling human left and right leg movements, on the
other side, need to be closely linked to each other to prevent simultaneous elevation of
both legs. However, it still needs to be checked whether similar phase-locking effects
are present during leg movements, too.

These models will help getting insights in the interplay of the involved brain regions
and how these interactions change during non-pathological and pathological ageing.
The results might then be verified either by comparison to coupling strengths obtai-
ned by DCM for phase coupling (Penny et al., 2009) or by further experiments using
transcranial magnetic stimulation (TMS). With this technique it is possible to incre-
ase or decrease the activity and the connectivity of certain brain areas, e.g. primary
motor cortex (Baeken and De Raedt, 2011; Fitzgerald et al., 2008; Terao and Ugawa,
2002). Thereby hypotheses of the model in terms of activity and connectivity changes
of certain brain regions in different groups of subjects can be verified by application of
similar changes induced by TMS to a control group.

Comparison of the phase oscillator model to

different mathematical models

The phase oscillator model suggested above consists of coupled oscillator populations
with distributed natural frequencies in certain frequency ranges, as they were used in
(Rosjat et al., 2014). A large number of mathematical models of neuronal networks, on
the other hand, focus on small networks of local cortical structures.

The model presented in (Jansen and Rit, 1995) deals with the coupling of single cortical
columns. They investigated the effect of populations of pyramidal cells that interact
with populations of inhibitory and excitatory interneurons. The authors were able to
reproduce a large variety of EEG-like activity using this modelling approach. Dynamic
Causal Modeling (Friston et al., 2003; Kiebel et al., 2008) is fitting the output of the
Jansen-Rit model to recorded EEG data via forward modeling of the produced output
to scalp activity. The compositions of the three layers, pyramidal cells, inhibitory and
excitatory interneurons, used in the Jansen-Rit model, were developed to reproduce ac-
tivity of the visual cortex. Thus, the model parameters are set such that they represent
a well developed granular layer IV. However, this layer is not prominent in the motor
cortex (Amunts et al., 1996; Skoglund et al., 1997; Yamawaki et al., 2015). Thereby,
the model used in this approach is not applicable to the motor cortex directly without
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further adjustments.

The NEST toolbox (Gewaltig and Diesmann, 2007) simulates the signals recorded
with microarrays, i.e. the activity of local networks. The models supported by this
toolbox are, among others, integrate-and-fire neuron models and Hodgkin-Huxley type
neurons. With this toolbox it is possible to determine local spike-frequency synchroni-
zation patterns.

Other models describing the brain dynamics underlying schizophrenia (an der Heiden,
2006; Loh et al., 2007; Rolls et al., 2008) are based on the simulation of networks of
pyramidal cells. In (an der Heiden, 2006) they investigated microstructural systems of
pyramidal cells. The authors in (Loh et al., 2007; Rolls et al., 2008) used a top-down ap-
proach in modelling the symptoms of schizophrenia via leaky integrate-and-fire models
to simulate the interaction of populations of pyramidal cells, inhibitory interneurons
and AMPA, NMDA and GABAA synapses. In both approaches, the microstructural
one and the top-down approach, certain firing patterns were associated with control
behaviour and different symptoms of schizophrenia.

In contrast to these mathematical models of human cortical networks, the sugges-
ted phase oscillator model does not include explicit biophysical properties. In this way
the model is not restricted to a certain application and it is possible to adapt the des-
cribed model to match other situations that make it necessary to use different cortical
areas or different frequency ranges, e.g. when modelling different mental illnesses like
Parkinson’s disease or bipolar disorder. It has been shown that these disorders show
abnormal effects in α frequencies (bipolar disorder (Kim et al., 2013)) and β frequencies
(Parkinson’s disease (an der Heiden, 2006)). By focussing on these frequency bands,
the phase oscillator model would be able to treat the effects observed in these diseases
as well.
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5 Conclusion

All the different works in my thesis deal with mechanisms related to coordination of
neuronal activity. The studies yield evidence that the communication on level of oscilla-
tory phases is crucial for establishing and maintaining coordinated activity in neuronal
networks. My thesis combines studies of local CPG networks in the stick insect locomo-
tor system and large scale cortical control networks in the human motor and auditory
cortex. Both parts make use of direct analysis of experimental data as well as ma-
thematical models as tools for the analysis of the underlying networks producing the
observed activities.

The studies in chapters 2.2 and 3.2 add to previous experimental studies by (Borgmann
et al., 2007, 2009). In the first study we emphasized the importance of intersegmental
connections in the protractor-retractor system in the pro- and mesothoracic ganglia of
the stick insect. The existence of the excitatory intersegmental connections was crucial
to reproduce experimentally obtained PRCs. The results were stable over a large range
of connectivity strengths. However, the results presented in chapter 3.2 show evidence
for the existence of intrinsic inter- and intrasegmental coupling in the levator-depressor
system.

In the studies presented in chapters 2.1, 2.3 and 3.1, we have seen that the com-
munication between several brain areas is necessary to produce normal brain activity.
A decrease of coupling strengths between brain regions led to loss of synchronizati-
on that could be associated with a loss of cognitive functions in neurological disease.
In the extended 1-leg model of the stick insect we have observed that a reduction of
inter-segmental coupling strengths will lead to PRCs that are not comparable to the
ones observed in experimental data. This could also be interpreted as a pathological
behaviour in the stick insect due to insufficient coupling of the segments.

Furthermore, I want to emphasize, that the phase-locking effects reported in 2.3 and
3.1 might serve as another robust marker of movement execution. The sPLV, when
calculated over motor imaginary intervals in single trials, would possibly also be ap-
plicable as an additional measure in the field of brain-computer interfaces and might
improve the predictability of different movement conditions.
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The strength of the approaches presented in this thesis is the easy adaptability to
different research questions. This is shown by the models of CPG networks (Daun-
Gruhn and Tóth, 2011) that can be used for various experimental conditions, e.g.
single leg preparations. As it has been shown by (Grabowska, 2014) this basic module
can easily be adjusted in such a way that it can also be used to represent multi-legged
locomotion in other animals, e.g. crustaceans. The easy adaptability is also shown by
the phase oscillator ensemble model (Rosjat et al., 2014), that can be used for studies
of different brain areas or different dysfunctions by replacing or adding the necessary
oscillator regimes to the neural network.
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