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Abstract
In this dissertation, we investigate cosmological models within the framework
of canonical quantum gravity based on the Wheeler–DeWitt equation with regard
to whether it is possible to observe effects of quantum gravity in the Cosmic
Microwave Background radiation and whether a specific class of mild singularities
can be resolved by quantizing classical cosmological models in which they appear.

The first part is motivated by the fact that there are several candidates for a the-
ory of quantum gravity and it is therefore crucial to find tests in order to figure
out which theory is closest to the truth. The main problem here is that quantum-
gravitational effects are highly suppressed at the energy scales one can nowadays
probe in experiments. However, the inflationary phase of the universe takes place at
an energy scale where effects of quantum gravity could be sizeable. During inflation
one can investigate primordial cosmological perturbations that are thought to be the
seed for structure formation in the early universe as well as for primordial gravita-
tional waves. Thus they have left their imprints in the anisotropies and the polariza-
tion of the Cosmic Microwave Background radiation, which have been measured by
the space observatories COBE, WMAP and Planck. We investigate to which extent
quantum-gravitational effects influence these perturbations by canonically quantiz-
ing inflationary models, in which a scalar inflaton field drives the exponential ex-
pansion of the universe. At first, we analyze a simplified model, where we only add
perturbations to the scalar field. Secondly, we consider scalar and tensor perturba-
tions in a gauge-invariant way for a de Sitter universe and a generic quasi-de Sitter
slow-roll model. We perform a semiclassical Born–Oppenheimer type of approxi-
mation to the Wheeler–DeWitt equation of each model and recover a Schrödinger
equation for the perturbation modes as well as a modified Schrödinger equation
with a quantum-gravitational correction term. From the uncorrected Schrödinger
equation, we derive the usual slow-roll power spectra. The quantum-gravitational
correction term leads to a modification of the power spectra on the largest scales.
This effect is, however, too small to be measurable, especially in light of the statisti-
cal uncertainty due to cosmic variance, which is most prominent on large scales. We
also obtain a quantum-gravitational correction to the tensor-to-scalar ratio, which
is, however, much more suppressed than the second-order slow-roll corrections.
Finally, we compare our results to other methods in Wheeler–DeWitt quantum cos-
mology and to findings in other approaches to quantum gravity.

The second part of this dissertation is based on the expectation that a quantum
theory of gravity should resolve the singularities appearing in general relativity and
in classical cosmology. We will focus on a specific set of cosmological singularities
called type IV singularities that are of a mild nature in the sense that only higher
derivatives of the Hubble parameter diverge. We model a universe with such a
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singularity by introducing a perfect fluid described by a generalized Chaplygin gas
in the form of a scalar field, for which we consider both a standard as well as a
phantom field with negative energy. After discussing the classical behavior, we can
solve the Wheeler–DeWitt equation of this model analytically for a special case and
can draw conclusions for the general case. We use the criterion that a singularity
is avoided if the wave function vanishes in the region where the classical singular-
ity is located. However, we obtain as a result that only particular solutions of the
Wheeler–DeWitt equation of our model fulfill this criterion and therefore avoid the
appearance of a type IV singularity. Lastly, we compare this result to earlier re-
sults finding an avoidance of other types of singularities and we discuss singularity
resolution in other quantum gravity theories.

Zusammenfassung
In dieser Dissertation untersuchen wir kosmologische Modelle im Rahmen
einer kanonischen Quantisierung der Gravitation basierend auf der Wheeler-
DeWitt-Gleichung im Hinblick darauf, ob es möglich ist, quantengravitative Effekte
in der Strahlung des Kosmischen Mikrowellenhintergrunds zu beobachten, sowie
ob eine bestimmte Klasse schwacher Singularitäten durch Quantisierung kosmo-
logischer Modelle, in welchen diese auftreten, beseitigt werden kann.

Der erste Teilaspekt gründet darauf, dass uns mehrere Kandidaten einer
Quantentheorie der Gravitation zur Verfügung stehen und es daher notwendig ist,
Möglichkeiten zu finden, um zu testen, welche dieser Theorien am ehesten die
Natur beschreibt. Das Hauptproblem hierbei ist, dass quantengravitative Effekte bei
den Energieskalen, die uns heute experimentell zugänglich sind, stark unterdrückt
sind. Die inflationäre Phase des Universums läuft jedoch bei Energien ab, bei
denen Effekte der Quantengravitation eine größere Rolle spielen könnten. Es ist
möglich, primordiale kosmologische Störungen während dieser Inflationsphase
zu untersuchen, welche als Keime der Strukturentwicklung im frühen Universum
sowie als Ursprung primordialer Gravitationswellen angesehen werden. Somit sind
diese Störungen letztlich für die Anisotropien bzw. die Polarisation der Kosmischen
Mikrowellenhintergrundstrahlung verantwortlich, welche von den Raumsonden
COBE, WMAP und Planck gemessen wurden. Wir untersuchen, inwieweit quan-
tengravitative Effekte diese Störungen beeinflussen, indem wir Inflationsmodelle,
in denen die exponentielle Expansion des Universums durch ein skalares Infla-
tonfeld hervorgerufen wird, kanonisch quantisieren. Zunächst untersuchen wir
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ein vereinfachtes Modell, in welchem wir lediglich zu dem Skalarfeld Störungen
hinzufügen. Nachfolgend betrachten wir skalare und tensorielle Störungen in
einer eichinvarianten Formulierung sowohl in einem de-Sitter-Universum als
auch in einem Quasi-de-Sitter-Universum, welches auch als Slow-Roll-Modell
bezeichnet wird. Wir führen eine semiklassische Born-Oppenheimer-ähnliche
Näherung der Wheeler-DeWitt-Gleichung der jeweiligen Modelle durch und er-
halten eine Schrödingergleichung für die Störungsmoden sowie eine modifizierte
Schrödingergleichung mit einem quantengravitativen Korrekturterm. Mit Hilfe der
unkorrigierten Schrödingergleichung können wir die bekannten Leistungsspektren
der Slow-Roll-Modelle herleiten. Der quantengravitative Korrekturterm führt zu
einer Modifizierung der Leistungsspektren auf den größten Längenskalen. Dieser
Effekt ist jedoch zu klein um messbar zu sein, insbesondere im Hinblick auf die
statistische Unsicherheit aufgrund der Kosmischen Varianz, die auf großen Skalen
am dominantesten ist. Wir erhalten ebenfalls eine quantengravitative Korrektur zu
dem Verhältnis der tensoriellen zu den skalaren Störungen, welches allerdings im
Vergleich zu den Korrekturen der zweiten Ordnung der Slow-Roll-Näherung stark
unterdrückt ist. Zuletzt vergleichen wir unsere Ergebnisse mit anderen Methoden
innerhalb der Wheeler-DeWitt-Quantenkosmologie sowie mit anderen Zugängen
zur Quantengravitation.

Der zweite Teil der Dissertation basiert auf der Erwartung, dass eine Quanten-
theorie der Gravitation die Singularitäten beseitigen sollte, die in der Allgemeinen
Relativitätstheorie und in der klassischen Kosmologie auftreten. Wir konzentrieren
uns auf eine bestimmte Art kosmologischer Singularitäten, welche als Typ-IV-
Singularitäten bezeichnet werden und die als schwach bezeichnet werden können,
da hier nur höhere Ableitungen des Hubble-Parameters divergieren. Wir model-
lieren Universen mit einer solchen Singularität, indem wir eine ideale Flüssig-
keit, die durch ein Chaplygin-Gas beschrieben wird, in der Form eines Skalarfeldes
einführen, wobei wir sowohl ein Standard-Skalarfeld als auch ein Phantom-Feld
mit negativer Energie betrachten. Nachdem wir das klassische Verhalten unter-
sucht haben, können wir die Wheeler-DeWitt-Gleichung dieses Modells für einen
Spezialfall analytisch lösen und hierdurch Rückschlüsse auf den allgemeinen Fall
ziehen. Wir verwenden das Kriterium, dass eine Singularität vermieden wird, wenn
die Wellenfunktion in der Region, in der die klassische Singularität auftritt, ver-
schwindet. Allerdings erhalten wir als Ergebnis, dass nur bestimmte Lösungen der
Wheeler-DeWitt-Gleichung unseres Modells dieses Kriterium erfüllen und somit die
Typ-IV-Singularität vermeiden. Abschließend vergleichen wir dieses Ergebnis mit
Resultaten aus vorherigen Untersuchungen, in denen eine Vermeidung von Singu-
laritäten anderer Arten auftritt, und diskutieren Singularitätsvermeidung in anderen
Quantengravitationstheorien.



Notation

Unless explicitly stated, we set the velocity of light c ⌘ 1 throughout this thesis.
The same holds for the reduced Planck constant ~h starting from chapter 5.

The gravitational constant G will appear most of the time in the form of the Planck
mass MP, which in its original form is defined as

MP :=

r
~hc
G
' 1.22⇥ 1019 GeV/c2 .

However, in order to avoid the appearance of numerical factors, we use either the
reduced Planck mass

MP :=
1
p

8⇡
MP =

r
~hc

8⇡G
' 2.435⇥ 1018 GeV/c2

or for the semiclassical approximation in chapter 5 and following, a rescaled Planck
mass

mP :=

r
3⇡
2

MP =

r
3⇡~hc
2G
' 2.65⇥ 1019 GeV/c2 .

The latter two definitions can appear together in one expression.
Additionally, in chapter 8, the gravitational constant G appears in the definition

 :=
p

8⇡G =
1

MP
.

In chapter 5, we define the wave number k corresponding to a length L as

k :=
2⇡
L

.

In chapter 6, we skip the appearing factor of 2⇡ and define

k :=
1
L

.

For the signature of a spacetime metric g, we use the spacelike (or “east-coast” or
“mostly plus”) convention:

sign(g) = (�,+,+,+) .

In this context, Greek indices run from 0 to 3, while Latin indices range from 1 to 3.
For repeatedly appearing indices, the Einstein summation convention is used.
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1
Introduction

About ninety-nine years before these lines were written, on November 25, 1915,
Albert Einstein presented the final version of his theory of general relativity. The
theory introduced a completely new notion of space and time and explained a
couple of deviations from Newtonian gravity, for instance, for light deflection
around the Sun or the perihelion shift of Mercury, which were testable already
at that time. Nowadays, general relativity has been tested to an incredibly high
precision, notably by the measurement of binary pulsars.

Yet we know that the theory is unlikely to be the final answer of how we
should understand the concept of space and time. In fact, the theory’s problems
lie deep within itself. Even the simplest solutions to the central equations of
general relativity include a singularity, a point at which the theory breaks down
and spacetime in some sense comes to an end. In the case of black hole solutions,
these singularities are in most cases hidden behind a horizon, through which no
information can reach us. However, in cosmological scenarios a singularity means
that quantities like the energy density or pressure of the matter inside the universe
diverge, which would have drastic consequences in the case of a singularity that
happens later in the evolution of the universe – one could speak of a doomsday
event. In the case of the cosmological model describing our universe best, there is a
singularity of infinite energy density and pressure at the beginning of the evolution
of the universe, the Big Bang, which is unavoidable in the classical theory.

In the decade that followed the discovery of general relativity, quantum mechan-
ics, the other cornerstone of our current understanding of Nature, was developed.
Today in physics there is often the dichotomy that quantum mechanics and quantum
field theory are used to describe Nature on microscopic scales from atoms to nuclei
and beyond, while general relativity is applied to describe macroscopic scales from
the movement of satellites in the gravitational field of the Earth, planets in our
solar system, and so forth up to cosmology.
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This dichotomy works practically in most cases, mainly because the energy scale
where quantum effects of gravity would become sizeable is thought to be at the
Planck scale, which can be characterized by the Planck mass MP that is defined in
terms of the reduced Planck constant ~h, the velocity of light c and the gravitational
constant G as

MP =

r
~hc
G
' 1.22⇥ 1019 GeV/c2 .

This corresponds to an extremely high energy. An accelerator probing this energy
scale built with current technology would have to be the size of the solar system.
However, simply accepting this dichotomy and moving on is not satisfying for
several reasons. First of all, gravity as an interaction couples to all kinds of
matter that is generally quantized. Describing gravity as a classical interaction can
therefore be regarded as inconsistent. Furthermore, without quantizing gravity, the
singularities appearing in general relativity that have been described above would
necessarily remain. One expects that these singularities disappear in a theory of
quantum gravity, which might lead to a new notion of spacetime.

Thus, the search for a theory of quantum gravity has been ongoing for more than
eighty years.

The most ambitious attempt is, of course, to unify all forces in Nature. For this
approach, the most elaborate candidate theory is string theory, which can only
be formulated consistently in 10, 11 or 26 spacetime dimensions. In order to
describe our apparent four-dimensional reality, the additional dimensions have to
be compactified, which is an intricate procedure that is non-unique and leads to
an enormous amount of solutions called string vacua. This is one of the reasons
why string theory has not yet led to testable predictions. Additionally, most parts
of string theory are only formulated perturbatively on a fixed background like in
quantum field theory. A fundamentally background-independent formulation of
string theory has not yet been achieved.

A more humble approach is to restrict oneself to just quantizing gravity, that
is to find a quantum theory of spacetime that leads to general relativity in the
low-energy limit. This approach can be divided further into two parts: covariant
and canonical quantum gravity.

In covariant quantum gravity, one tries to quantize general relativity using
perturbation theory or path-integral methods, but since general relativity has
turned out to be non-renormalizable, one had to find new methods in order to
make sense of covariant quantum gravity, for instance, by considering Asymptotic
Safety [94] or by discretizing spacetime using Causal Dynamical Triangulation [8].

Canonical quantum gravity is, as the name implies, based on a direct canonical
quantization of a Hamiltonian formulation of general relativity. This approach
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is further split, because one can either use the usual three-metric as canonical
variable, which leads to Quantum Geometrodynamics [43, 110], or one introduces
new variables that, for example, lead to a loop-like structure, which gave the name
for Loop Quantum Gravity [10, 11, 97].

We see that there are a number of candidates for a theory of quantum gravity,
so we are faced with the problem to decide which of these theories is closest to
the truth. One could be satisfied with mathematical consistency, but in the end it
should always be the experiment that decides the validity of a theory.

However, as we have mentioned above, the energy scale where effects of
quantum gravity are expected to become sizeable is extremely high.

Situations where such energies are present could probably occur in black holes,
but these objects are not particularly suited for observations. Another situation
is the very early universe and here we luckily are capable of seeing the relicts
of physics that happened at very high energies in the anisotropies of the Cosmic
Microwave Background. These can be related to quantum fluctuations that were in
a sense enhanced to macroscopic scales during a very early period of exponential
expansion of the universe called inflation, which happened at energy scales of up to
1015 GeV, which is only four orders of magnitude below the Planck scale.

The aim of this dissertation is first of all to use canonical quantum gravity based
on the Wheeler–DeWitt equation as a conservative approach to quantum gravity in
order to investigate whether quantum-gravitational effects can be measurable in the
anisotropies of the Cosmic Microwave Background. We use a particular feature of
the Wheeler–DeWitt equation, which is that one can use a systematic semiclassical
approximation to recover quantum field theory in curved spacetime in the form
of a functional Schrödinger equation and in a further step quantum-gravitational
corrections to it, which allows us to calculate corrections to known quantities like
the power spectra of inflationary perturbations.

Furthermore, we also tackle the question whether singularities appearing in
cosmological models are resolved by quantizing these models. We focus on
cosmological models containing a dark-energy-like fluid and additionally consider
a type of mild singularities that has not yet been investigated in the context of
Wheeler–DeWitt quantum cosmology.

This dissertation is organized in the following way. In chapter 2, we will give
an introduction into classical cosmology and its problems, the theory of inflation
to solve these problems, as well as the physics of the Cosmic Microwave Back-
ground. Chapter 3 is then devoted to Quantum Geometrodynamics, the direct
canonical quantization of general relativity. Here we will present the derivation
of the Wheeler–DeWitt equation for both the full theory of general relativity as well
as for a symmetry-reduced model describing our universe. In chapter 4, we shall
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present semiclassical approximation schemes in quantum mechanics and how they
can be used for the Wheeler–DeWitt equation. In chapter 5, we then present the
Wheeler–DeWitt equation of a model of an inflationary universe with perturbations
of a scalar field and use a semiclassical approximation to derive the Schrödinger
equation for the perturbation modes with a quantum-gravitational correction term,
from which we can deduce how the power spectrum of these perturbations is mod-
ified due to this correction term. Chapter 6 extends this analysis to gauge-invariant
scalar and tensor perturbations which allows us to also include primordial gravita-
tional waves. In chapter 7, we will discuss whether these corrections are actually
measurable in the CMB and we will compare our results with similar calculations
in other approaches to quantum gravity. The topic of chapter 8 is the question
whether type IV singularities are resolved in quantum cosmology and we conclude
with a summary and outlook in chapter 9.



2
Cosmology, inflation and the
Cosmic Microwave Background

In this chapter, we will present all the aspects of the present state of cosmology
that are relevant for our discussion on quantum-cosmological applications in the
following chapters. We start with a short description of homogeneous Friedmann
cosmology and its problems, followed by an introduction to the theory of inflation
and close with a short description of the Cosmic Microwave Background. We base
our description here on several standard textbooks on cosmology [45, 77, 92, 99]
as well as [17, 34, 78, 107].

2.1 The homogeneous universe

Cosmology studies the physics of the universe on scales of typically more than 1 Mpc
up to the largest observable scales. From observations performed by the 2-degree
Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey (SDSS)
we know that the large-scale matter distribution in our universe is homogeneous
and isotropic on scales above about 200 kpc, i. e. the scale of galaxy clusters, to a
good approximation. On larger scales, this observation is even more apparent, since
the Cosmic Microwave Background (CMB) fills the universe with a background
radiation that is homogeneous and isotropic up to one part over 105. [56, 4] The
tiny deviations from the isotropy of the CMB are nevertheless extremely important
in order to understand the formation of structure in the universe as we will see in
chapter 5 and following but we shall neglect them at first.

Homogeneity means that a certain property is the same at every point of
observation and isotropy means that a property is independent of the direction
of observation. In light of the above-mentioned empirical observations, we can
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establish the so-called cosmological principle which states that on large scales the
universe looks the same for all observers, it does not possess a privileged point or
direction and it is therefore homogeneous and isotropic with respect to all locations.

A further observation that arises from measuring the redshift of galaxies is that
these galaxies seem to move away from us. This apparent movement is due to the
expansion of the universe itself. In our local universe, the apparent velocity v can
be described by Hubble’s law

v = H0 D , (2.1)

where D is the proper distance of the observed object and H0 is the Hubble constant
that according to recent measurements of the Planck satellite [4] has the value:

H0 = 67.80± 0.77
km

s Mpc
. (2.2)

There is, however, an observed deviation from the linear Hubble law for objects
that are farther away from us. The objects whose redshift is observable best at large
distances are the Type Ia supernovae due to the fact that they are bright standard
candles. Measurement of these supernovae have shown that the expansion of the
universe accelerates, which leads to the problem of Dark Energy, which we will
discuss in chapter 8.

2.1.1 The Friedmann–Lemaître–Robertson–Walker metric

We now want to describe our expanding homogeneous and isotropic universe within
the framework of general relativity. In order to do this, we assume that our space-
time is a four-dimensional globally hyperbolic Lorentzian manifold (M, g)with met-
ric g, such that we can foliate it into spatial hypersurfaces along a suitable time axis.
The most general ansatz for such a metric can be obtained by using the ADM method
named after Richard Arnowitt, Stanley Deser and Charles W. Misner [9] and looks
as follows

ds2 =
î
�N 2(x, t) + Ni(x, t)N i(x, t)

ó
dt2+2 Ni(x, t)dt dx i+hi j(x, t)dx i dx j , (2.3)

where N(x, t) is the lapse function, N i(x, t) the shift vector and hi j(x, t) is the three-
metric on the spatial hypersurface. Assuming spatial homogeneity and isotropy as
the symmetries of our spacetime translates into invariance under translations and
rotations. The former implies that N(x, t) and N i(x, t) are independent of x and the
latter demands that the shift vector N i(t) be equal to zero. Furthermore, we can
write the spatial part of the metric as

hi j(x, t)dx i dx j = a2(t)d⌦2
3,K , (2.4)
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where a(t) is called scale factor and d⌦2
3,K can be written with the radial coordinate

r 2 [0,1) and angular coordinates # 2 [0,⇡] and ' 2 [0, 2⇡] as

d⌦2
3,K =

dr2

1�K r2 + r2
Ä

d#2+ sin2(#)d'2
ä

. (2.5)

The parameter K can take the values K = �1,0, 1, which correspond to the cases
of an open, flat or closed universe, in which the spatial slice takes the form of a
hyperboloid, cube or sphere, respectively.

In the end, we are left with the metric

ds2 = �N 2(t)dt2+ a2(t)d⌦2
3,K , (2.6)

which is most generally called Friedmann–Lemaître–Robertson–Walker metric,
where the name Lemaître is often and both Friedmann and Lemaître are occasionally
dropped. We will refer to it as FLRW metric from now on.

We see that due to spatial homogeneity and isotropy, the ten degrees of freedom
of the metric tensor have been reduced to the lapse function N(t) and the scale
factor a(t). But in fact, because of the time reparametrization invariance of general
relativity, the former is just part of the gauge freedom and, hence, not a dynamical
degree of freedom, such that we are left with just one physically meaningful degree
of freedom, the scale factor a(t).

An alternative, often convenient choice of time is the conformal time ⌘ defined by

d⌘ =
dt

a(t)
, (2.7)

which can be incorporated into the FLRW metric by setting the lapse function equal
to the scale factor, N(t) = a(t). In the following, we will set N(t) ⌘ 1 and refer to
the different choices of time by using t for cosmic and ⌘ for conformal time.

The spatial coordinates we have introduced here are in fact comoving, which
means that they are not influenced by the cosmic expansion that is encoded in the
scale factor a(t). Therefore, in order to describe the proper physical distance�xprop

at a time t, we have to scale the comoving distance �xcom set at a special point in
time t = t0 with a(t):

�xprop(t) = a(t)�xcom . (2.8)

One usually chooses t0 to be today, which implies that the scale factor is set to
a(t0) = 1 at present time.
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Note that the scale factor here is a dimensionless quantity. Later, when we
canonically quantize models of the universe, we redefine the scale factor to have
the dimension of a length.

An alternative form of the spatial part of the FLRW metric (2.6) can be found
by introducing a new radial coordinate � 2 [0,1) that is related to the previous
coordinate r in (2.5) by means of the function r = fK(�). The function fK(�)
depends on the parameter K describing the curvature of the universe – which in
this case is not restricted to the values �1, 0 and 1 – and is defined as

fK(�) =

8
<
:

1pK sin
Äp

K�
ä

for K > 0 ,

� for K = 0 ,
1p�K sinh

Äp�K�
ä

for K < 0 .

(2.9)

Using this, the spatial part d⌦2
3,K of the FLRW metric can be written as

d⌦2
3,K = d�2+ f 2

K(�)
Ä

d#2+ sin2(#)d'2
ä

. (2.10)

We can thus write out the FLRW metric as

ds2 = �dt2+ a2(t)
î

d�2+ f 2
K(�)

Ä
d#2+ sin2(#)d'2

äó
(2.11)

and, for later convenience, we define

�µ⌫ := a2(t) diag
Ä

0, 1, f 2
K(�), f 2

K(�) sin2(#)
ä

. (2.12)

The function fK(�) is also used to define the angular diameter distance.

2.1.2 The Friedmann equations

Up to now, we have only discussed the kinematics of the homogeneous universe.
In general relativity, the dynamics of spacetime are described by the Einstein
equations. Therefore, in order to describe the dynamics of the homogeneous
universe characterized by the evolution of the scale factor a(t), we have to write
out and then analyze the equations of motion arising from the Einstein equations
for the FLRW metric (2.6).

The Einstein equations with cosmological constant ⇤ and energy–momentum ten-
sor Tµ⌫ are given by

Gµ⌫ +⇤ gµ⌫ = 8⇡G Tµ⌫ , (2.13)

where Gµ⌫ is the Einstein tensor,

Gµ⌫ := Rµ⌫ �
1
2

gµ⌫ R , (2.14)
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whose components we have to compute for the FLRW metric. This calculation is,
for instance, presented in [92]. By defining the Hubble parameter H as

H :=
ȧ
a

, (2.15)

we can write out the components of the Einstein tensor as follows:

G00 = 3
✓

H2+
K
a2

◆
, Gi j = �

✓
H2+

2ä
a
+

K
a2

◆
�i j , (2.16)

where �i j is given by (2.12).

We now want to define an energy–momentum tensor for our universe. In order
to do so, we have to introduce a set of observers whose world lines are tangent to
the four-velocity

uµ =
dxµ

d⌧
, gµ⌫u

µu⌫ = �1 , (2.17)

where ⌧ is the proper time of the observers. We can therefore write the metric of
the spatial sections orthogonal to uµ as

�̂µ⌫ ⌘ gµ⌫ + uµu⌫ . (2.18)

The most general form of the energy–momentum tensor of an (im)perfect fluid then
takes the form

Tµ⌫ = ⇢ uµu⌫ + P �̂µ⌫ + 2 q(µu⌫) +⌃µ⌫ , (2.19)

where ⇢ is the energy density and P is the isotropic pressure, which are given by

⇢ = Tµ⌫u
µu⌫ and P =

1
3

Tµ⌫ �̂
µ⌫ . (2.20)

Furthermore, qµ is the energy-flux vector defined as

qµ = � �̂ ↵µ T↵�u� , (2.21)

and ⌃µ⌫ is the symmetric and trace-free anisotropic stress tensor that is given by

⌃µ⌫ = �̂ ↵[µ �̂
�
⌫] T↵� . (2.22)

Since one can assume that galaxies are freely streaming through space, it is reason-
able to consider a perfect fluid for the energy–momentum tensor of our universe
and for this case, one can find a unique four-velocity such that both qµ and ⌃µ⌫
vanish. If we furthermore consider a frame that is comoving with the fluid, we can
set uµ = (1,0, 0,0), such that �̂i j = �i j as defined in (2.12), and we finally arrive at
an energy–momentum tensor of the form

Tµ⌫ = ⇢ uµu⌫ + P �µ⌫ . (2.23)
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Hence, we can write out Tµ⌫ as follows

Tµ⌫ = diag
Ä
⇢, P a2, P a2 f 2

K(�), P a2 f 2
K(�) sin2(#)

ä
. (2.24)

Going back to the Einstein equations (2.13), we can now insert our results for Gµ⌫
and Tµ⌫ . For the (0,0)-component of the Einstein equations we get

H2 =
✓

ȧ
a

◆2

=
8⇡G

3
⇢� K

a2 +
⇤
3

, (2.25)

while for the (i, j)-components, we obtain after inserting the previous equation

ä
a
= � 4⇡G

3
�
⇢+ 3P

�
+
⇤
3

. (2.26)

These two equations are called Friedmann equations.

Since the energy–momentum tensor is covariantly conserved,

Tµ⌫ ;µ = 0 , (2.27)

we furthermore find a continuity equation

⇢̇+ 3H
�
⇢+ P

�
= 0 , (2.28)

which one can also derive directly by combining the two Friedmann equations. This
is due to the fact that the three equations (2.25), (2.26) and (2.28) are not inde-
pendent of one another.

2.1.3 Matter constituents and epochs of the universe

The two independent Friedmann equations determine the time evolution of three
independent variables, the scale factor a, the energy density ⇢ and the pressure
P. Therefore, we need another relation between the variables to find a solution
to this system of differential equations. This additional information is given by the
equation of state that relates ⇢ and P. In the most simple form, one introduces
a constant parameter w called barotropic index that depends on the nature of the
matter. The equation of state is then given by

P = w⇢ , (2.29)

such that w takes the following values for the forms of matter usually considered in
cosmology:

w =

8
<
:

0 for pressureless matter (dust),
1
3

for radiation,

�1 for a cosmological constant.

(2.30)
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In fact, the barotropic index can also be time-dependent as it is, for example, the
case in more complicated equations of state such as the one for a Chaplygin gas

P = � A
⇢

, A= const.> 0 , (2.31)

which exhibits dust-like behavior at early times and behaves like a cosmological
constant at late times. This type of matter will be studied further in chapter 8.

But sticking at first to the simple form (2.29), equation (2.28) takes the form

@ ⇢

@ t
+ 3 H ⇢ (1+ w) = 0 , @ ⇢

@ a
+

3
a
⇢ (1+ w) = 0 , (2.32)

such that we can easily find a solution for ⇢(a) with the ansatz ⇢(a) / an, which is
then given by

⇢(a)/ a�3(1+w) . (2.33)

We can also define dimensionless density parameters for matter and radiation using
the critical density, which corresponds to the density of an exactly flat universe at
the present epoch and is given by

⇢crit :=
3H2

0

8⇡G
, (2.34)

where H0 := H(t0) is the Hubble constant at the present time. The dimensionless
density parameters then read

⌦m(a) :=
⇢m(a)
⇢crit

, ⌦m,0 :=
⇢m,0

⇢crit
, ⌦r(a) :=

⇢r(a)
⇢crit

, ⌦r,0 :=
⇢r,0

⇢crit
, (2.35)

where we have used the index 0 to denote the densities at the present epoch t0.
Additionally, the cosmological constant leads to the density parameter

⌦⇤ :=
⇢⇤
⇢crit

=
⇤

3H2
0

. (2.36)

We can also introduce total density parameters, which are the sum of the matter
constituents of the universe. They are given by

⌦tot(a) := ⌦m(a) +⌦r(a) +⌦⇤ , (2.37)

⌦0 := ⌦m,0+⌦r,0+⌦⇤ . (2.38)

With these definitions, we can rewrite the first Friedmann equation (2.25) in the
following way

H2 = H2
0

Ç
⌦r,0

a4 +
⌦m,0

a3 �
K

a2H2
0

+⌦⇤

å
. (2.39)
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Given that the curvature parameter K can be written as

K = H2
0

�
⌦0� 1

�
, (2.40)

equation (2.39) can be expressed as

H2 = H2
0

✓⌦r,0

a4 +
⌦m,0

a3 +
1�⌦0

a2 +⌦⇤

◆
. (2.41)

This equation immediately allows us to determine, which matter type dominates
at which epoch. Radiation dominated at very early times, after which a period of
ordinary matter (dust) domination followed. Then the curvature term took over
and at late times, the cosmological constant will be the only contributor driving the
expansion of the universe.

2.2 Problems of the cosmological standard model

The standard model of cosmology as outlined above has been widely successful
to describe a large set observations in the universe using only a minimal set of
parameters. However, several problems have been identified, which have made it
clear that the model needs to be extended in some way.

The flatness problem

The first problem arises from the apparent flatness of the universe. From recent
measurements of the Planck satellite [4], it was deduced that the universe is spa-
tially flat to a very high precision, at a confidence level of 95 %, the limits of the
total density parameter at the current epoch are within

0.993< ⌦0 < 1.006 .

This flatness, however, leads to a problem of finetuning, because as we will show
below, the universe must have been much flatter, i.e. finetuned to ⌦0 = 1, in order
to obtain the present-day approximate flatness.

In order to see this, we rewrite the total density parameter ⌦tot(a) as given in
(2.37) in terms of the present-time density parameters by using equation (2.41):

⌦tot(a)� 1=
⌦0� 1

⌦r,0 a�2+⌦m,0 a�1+
�
1�⌦0

�
+ a2⌦⇤

. (2.42)

In the limit a⌧ 1, we thus obtain

⌦tot(a)� 1= a2 ⌦0� 1
⌦r,0

. (2.43)
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We see that at early times, ⌦tot(a)� 1 approaches zero no matter what the values
of the current density parameters are. This also means that in order for the ⌦0 to
be close to unity today, it had to be several orders of magnitude closer to unity at
earlier times. Hence, the universe must have been finetuned to be flat to a very
large degree at early times, which calls for an explanation.

The horizon problem

As we have mentioned before, we can infer from the observation of the Cosmic
Microwave Background (CMB) radiation, whose anisotropies are of the order 10�5,
that the universe is largely isotropic. However, as we will now show such a large
isotropy cannot be explained within the cosmological standard model.

Let us follow [99] and consider two points of space in the universe. In order
for these to have been in causal contact since the beginning of the universe, both
must lie within a horizon called Hubble radius that can be expressed as a comoving
quantity as

rhor,com(a) =

tZ

0

d t̃
a( t̃)

=
1

H0

aZ

0

dã
ã2H(ã)

. (2.44)

As we will discuss in section 2.4, the CMB was formed during an epoch where the
universe was matter-dominated. Thus for our purposes here, we can evaluate the
above expression by inserting the corresponding matter part of (2.41):

rhor,com(a) =
1

H0

aZ

0

dãp
ã⌦m,0

=
2

H0

r
a
⌦m,0

. (2.45)

We also easily obtain the proper horizon length during matter domination:

rhor,prop(a) = a rhor,com(a) =
2

H0

a3/2

p
⌦m,0

. (2.46)

In order to relate the proper horizon length to an angle on the sky, we need to find
an expression for the angular diameter distance Dfi of a source located at a certain
redshift z, where z can is related to a by

a =
1

1+ z
. (2.47)

Using the comoving distance � and the function fK defined in (2.9), we can express
Dfi as

Dfi(z) = a(z) fK(�(z)) . (2.48)
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There is an analytic expression available for the angular diameter distance in a
matter-dominated universe, which is the Mattig relation:

Dfi(z) =
1

H0

2
⌦2

m,0 (1+ z)2
h
⌦m,0 z +

Ä
⌦m,0� 2

ä⇣p
1+⌦m,0 z � 1

⌘i
. (2.49)

We want to calculate the angular diameter distance from today to the redshift,
where the CMB was formed, which happened at about zCMB ' 1000. Therefore,
we can simplify the above relation to:

Dfi(zCMB)'
1

H0

2
⌦m,0 zCMB

. (2.50)

The angle on the sky corresponding to the horizon scale at the time the CMB was
created can thus be calculated as:

#hor,CMB =
rhor,prop(zCMB)

Dfi(zCMB)
'
r
⌦m,0

zCMB
'

p
⌦m,0

30
' 2�

p
⌦m,0 . (2.51)

Hence, we see that parts of the sky that are seperated by more than 2� should never
have been in causal contact according to the cosmological standard model, which
clearly contradicts the observed near isotropy of the CMB.

2.3 Inflation

Cosmologist have developed a framework called inflation in order to tackle
the above-mentioned problems of the standard model of cosmology. The main
assumption of inflationary models is that the universe underwent a phase of rapid
accelerated expansion at the very first instances after the Big Bang. Alan Guth
[52] and Andrei D. Linde [84] worked out such models in 1981, after Alexei A.
Starobinsky had used a similar idea two years before [103]. In the meantime,
inflation has become regarded as a very successful theory, especially because it gives
an explanation for the origin of structure in the universe as quantum fluctuations of
spacetime that become macroscopic due to inflation, which we will discuss in more
detail in chapters 5 to 7.

But let us first give a brief overview of the main ideas of inflation using one of the
simplest possible models. We base this presentation on [78, 82, 83, 92].

Inflationary models

The easiest way to obtain an inflationary phase in the evolution of the universe is to
introduce a scalar field �, whose energy density and pressure are given by:

⇢� =
1
2
�̇2+ V(�) , P� =

1
2
�̇2� V(�) . (2.52)
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We have to demand that the following condition be fulfilled

⇢� + 3 P� < 0 , (2.53)

in order to achieve an accelerated expansion. The potential V(�) can, for instance,
be chosen to have the simple form used in the chaotic inflation model [85] with a
mass m:

V(�) =
1
2

m2�2 . (2.54)

The Friedmann equations (2.25) and (2.26) then yield:

H2 =
8⇡G

3

✓
1
2
�̇2+ V(�)

◆
, (2.55)

�̈(t) + 3H �̇(t) + V 0(�) = 0 . (2.56)

The slow-roll approximation

An approximation that is often used, because it is in good agreement with observa-
tions, is the so-called slow-roll approximation. It assumes that the scalar field � stays
approximately constant during inflation, which simplifies the equations of motion
outlined above significantly:

H2 ' 8⇡G
3

V(�) , 3H�̇(t)' �V 0(�) . (2.57)

We can also define the slow-roll parameters ✏V and ⌘V in terms of the potential V
as follows

✏V =
1

16⇡G

Ç
V 0

V

å2

, ⌘V =
1

8⇡G
V 00

V
, (2.58)

where we have used a prime to indicate a derivative with respect to �. Using these
parameters, the conditions for slow-roll inflation can be written as

✏V ⌧ 1 , |⌘V |⌧ 1 . (2.59)

An estimate of the magnitude of the expansion occurring during inflation can be
given by the number of e-foldings defined as

N := ln


a(tend)
a(tinitial)

�
=

tendZ

tinitial

dt H(t) ' �8⇡G

�endZ

�intial

d� V 0

V
. (2.60)

About 70 e-foldings, which implies an expansion by a factor of about 1030, are
necessary in order to flatten spacetime sufficiently during inflation such that the
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flatness problem described above can be regarded as solved [82].

Considering the slow-roll approximation in the chaotic inflation model with the
potential V(�) defined in equation (2.54), we can write the Friedmann equations
as

H2 =
4⇡G

3
m2�2 , 3H �̇ +m2� = 0 , (2.61)

while the slow-roll parameters are given by

✏V = ⌘V =
1

4⇡G�2 . (2.62)

This allows us to solve equations (2.61) as well as (2.60) analytically and we obtain:

�(t) = �init�
m

p
12⇡G

t , (2.63)

a(t) = ainit exp

2
4
r

4⇡G
3

m
✓
�init t � m

p
48⇡G

t2
◆3
5 , (2.64)

N = 2⇡G�2
init�

1
2

, (2.65)

where ainit and �init are the values at the start of inflation.

A very special case of inflation is to take a constant scalar field �(t) ⌘ �0, such
that the scalar field acts as a “supercharged” cosmological constant. We can imme-
diately solve the Friedmann equation

H2 =
4⇡G

3
m2�2

0 = const. (2.66)

in this case and arrive at

a(t) = ainit eHt = ainit exp

2
4
r

4⇡G
3

m�0 t

3
5 . (2.67)

The spacetime that is generated by this type of inflation is the de Sitter spacetime,
which can be represented as the embedding of the four-dimensional hyperboloid
described by

� z2
0 + z2

1 + z2
2 + z2

3 + z2
4 =

1
H2 (2.68)

within a five-dimensional Lorentzian manifold.
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Depending on what kind of slicing of the five-dimensional manifold one uses,
different representations of the de Sitter spacetime emerge. A Euclidean slicing
leads to the flat de Sitter spacetime described above, whose metric reads

ds2 = �dt2+ e2H t d⌦2
3,K=0 . (2.69)

Using a spherical slicing yields a closed de Sitter spacetime, for which the metric is
given by

ds2 = �dt2+
cosh2(Ht)

H2 d⌦2
3,K=1 . (2.70)

In this case, the scale factor takes the form

a(t)/ cosh(Ht) . (2.71)

2.4 The Cosmic Microwave Background

In the following, we will give a short overview of the physical processes that lead
to the emergence of the Cosmic Microwave Background. Its radiation originated
during a phase in the thermal history of the universe called recombination. For this
reason, we will focus on describing this phase in the following. A more detailed
description of the thermal history of the universe as a whole can be found, for
instance, in [77].

Recombination and the origin of the CMB

We consider the epoch after the lightest elements have already been created by
primordial nucleosynthesis and after the universe has transitioned from radiation
to matter domination. In this era the temperature of the universe continues to
decrease until it reaches the temperature that allows free electrons to combine with
nuclei for the first time and thus form neutral atoms. Although the universe has
always been ionized before, the name recombination is used for this process.

The binding energy of a hydrogen atom is approximately 13.6eV ⇡ 105 K, but
due to the fact that there are photons that have a higher energy than this binding
energy in the Wien tail of the energy distribution and that can therefore reionize
the newly formed hydrogen atoms, recombination only effectively starts when the
universe has reached a temperature of about 3000 K. Additionally, one has to take
into account that each recombination process creates a photon with an energy
high enough to ionize another neutral atom and the cross section for this process
is sufficiently high to occur frequently. Therefore, the actual process leading to
recombination goes via a more complicated process, the two-photon decay.
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Nevertheless, as soon as the process of recombination starts at the redshift of
about z ⇠ 1000, it is so effective that the universe transitions from being almost
entirely ionized to being almost completely neutral in a relatively short timespan of
around �z ⇠ 60.

However, one also has to take into account the expansion rate of the universe,
which for small enough ionizations is larger than the recombination rate, such that
the process of recombination is not completely finished, because there are nuclei
left that do not encounter an electron to combine with fast enough, which causes a
remaining a net ionization of about 10�4. Nevertheless, the remaining electrons do
not obstruct the propagation of photons entirely, since the optical depth of Thomson
scattering caused by these elections is small for photons whose wavelength is larger
than 1216Å [99]. This allows photons from that epoch, also called last scattering,
to still be around in the universe today without having experienced an interaction
with matter. At the time of last scattering, the energy distribution of these photons
corresponded to a Planck spectrum and therefore it should be possible to observe a
background of photons having such a spectrum today, but due to the expansion of
the universe, these photos should be redshifted into the microwave regime.

Exactly this is the Cosmic Microwave Background (CMB) that was discovered by
Arno Penzias and Robert Wilson in 1965 [91]. In fact, the existence of the CMB
was already predicted by George Gamov in 1946 [49]. Measuring the spectrum
of the CMB revealed the most precise Planck spectrum ever encountered, but the
temperature anisotropies being only of order 10�5 have turned out to be one of the
most important measurements for cosmology.

Anisotropies in the CMB

During the era described above, there were already inhomogeneities present in the
universe, such that the CMB exhibits anisotropies in its temperature that originate
from the structure at the time the photons forming the CMB decoupled from matter.
More precisely, these primary anisotropies are due to the gravitational redshifting
of those photons that originate from regions with a higher matter density, which is
the so-called Sachs–Wolfe effect. Additionally, the energy of photons in regions of
higher density is also changed by the Doppler effect caused by the peculiar velocity
of the matter they interact with. These effects producing anisotropies in the CMB
are counteracted on smaller scales due to Silk damping, which is a process that is
caused by the decoupling of photons and baryons on small scales.

The CMB photons are furthermore influenced by secondary anisotropies on their
propagation through the universe until the present day. One process is the Thomson
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scattering of photons with matter that has been reionized. Another change of
energy called integrated Sachs–Wolfe effect arises, when photons propagate through
a gravitational potential that changes in time. Furthermore, photons are gravita-
tionally deflected by the structure of matter on their way and are scattered by hot
gas in galaxy clusters, which is called the Sunyaev–Zel’dovich effect.

Description of the CMB anisotropies

The anisotropies of the CMB temperature T can be described by the quantity

T (n) =
T (n)� T

T
, (2.72)

where n is a normal unit vector on the 2-sphere and T denotes the mean tempera-
ture of the CMB.

In order to average over all pairs of directions n and n0 that are separated by a
given angle #, one introduces the correlation function:

C(#) =
⌦
T (n)T (n0)

↵
, (2.73)

We can also define the power spectrum of the temperature anisotropies by using a
decomposition of the above-defined correlation function in terms of spherical har-
monics on the 2-sphere. The coefficients of the power spectrum are then given by
`(`+ 1)C` using the quantity ` that is related to the angle # by

# ' ⇡
`

, (2.74)

such that ` = 1 corresponds to the dipole, ` = 2 the quadrupole of the temperature
anisotropies and so forth, cf. for instance, [58] for more details.

Features of the CMB power spectrum

Looking at the form of the CMB power spectrum measured by WMAP [56] and
Planck [4], one immediately notices a large number of so-called acoustic peaks for
multipoles above ` ¶ 100, which are caused by oscillations of the baryon–photon
fluid. Temperature fluctuations originate from these oscillation because of the
Doppler effect and adiabatic compression. The acoustic peaks contain several
pieces of information about cosmological parameters. In particular, it is possible
to derive the curvature of the universe from the exact position of the first peak at
around ` ⇠ 200, because the position of this peak, i.e. the angular size of the most
prominent features of the CMB anisotropies, is determined by the physical length
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of the horizon during recombination, which can then be compared to each other
by means of a relation depending on the curvature of the universe, such that it is
possible to determine the curvature.

For larger multipoles the amplitude of the anisotropies decreases because of Silk
damping. On the other hand, for lower multipoles, i.e. larger scales, the Sachs–
Wolfe effect is the main contributor for the anisotropies and thus the power spec-
trum of the primordial cosmological perturbations is directly imprinted in the CMB
on these scales. However, on large scales, the integrated Sachs–Wolfe effect also has
to be taken into account. In the presence of a cosmological constant becoming more
dominant at present times, the gravitational potentials of structures the photons
propagate through change in time and thus modify the energy of the CMB photons,
such that the power of the anisotropies is increased at large scales depending on the
magnitude of the cosmological constant.



3
The Wheeler–DeWitt equation

In this chapter, we will present the procedure to canonically quantize gravity de-
scribed by general relativity, which leads to the Wheeler–DeWitt equation. We
shall first discuss the general case and then move to a symmetry-reduced model
that describes a homogeneous and isotropic universe. This chapter is based on
[54, 69, 73, 78].

3.1 The 3+1-decomposition of general relativity

In order to apply a canonical quantization scheme to general relativity, one has
to reformulate the theory such that it obtains a Hamiltonian structure. Such a
reformulation was developed by Richard Arnowitt, Stanley Deser and Charles
W. Misner [9] and it is therefore referred to as ADM formalism.

The Hamiltonian structure of general relativity is obtained by a foliation of a
spacetime M with a metric gµ⌫ into space-like hypersurfaces ⌃t . This procedure
does not break the covariance of general relativity, because one takes into account
all possible foliations of spacetime. We thus introduce a time function t and a vector
field tµ, which obey

tµrµ t = 1 . (3.1)

We assign a normal unit vector nµ, nµnµ = �1, to each hypersurface ⌃t and can
thus decompose tµ into a normal and tangential component with respect to ⌃t in
the subsequent way

tµ = Nnµ+ Nµ , (3.2)

where we have introduced the lapse function N as well as the shift vector Nµ.
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Furthermore, we can then write the three-metric hµ⌫ that is induced by gµ⌫ on
each hypersurface as

hµ⌫ = gµ⌫ + nµn⌫ . (3.3)

We now define the extrinsic curvature Kµ⌫ describing the embedding curvature of ⌃t

into M in terms of a Lie derivative along the normal vector field nµ as follows

Kµ⌫ =
1
2
Lnhµ⌫ = h �

µ r�n⌫ . (3.4)

The spatial part of the extrinsic curvature can be expressed in terms of the lapse
function and shift vector in the following way

Ki j =
1

2N

Ä
ḣi j � DiNj � DjNi

ä
. (3.5)

Here Di stands for the spatial covariant derivative. We can use this quantity and its
contraction to rewrite the Einstein–Hilbert action as

SEH =
1

16⇡G

Z

M
dt d3x N

p
h
Ä

Ki jK
i j � K2+ (3)R� 2⇤

ä
, (3.6)

where (3)R denotes the three-dimensional Ricci scalar, h stands for the determinant
of hi j and ⇤ is the cosmological constant. We can simplify the notation slightly by
introducing the so-called DeWitt metric, which is defined by

Gi jkl =
1

2
p

h

Ä
hikhjl + hilhjk � hi jhkl

ä
, (3.7)

such that the Einstein–Hilbert action takes the form

SEH =
1

16⇡G

Z

M
dt d3x N

Å
Gi jkl Ki jKkl +

p
h
î
(3)R� 2⇤

óã
. (3.8)

Using the Lagrange density

Lg := N
Å

Gi jkl Ki jKkl +
p

h
î
(3)R� 2⇤

óã
, (3.9)

the conjugate momenta of the lapse function N and shift vector N i read:

pN =
@Lg

@ Ṅ
= 0 , pg

i =
@Lg

@ Ṅ i
= 0 . (3.10)

The fact that both expressions vanish is because they act as Lagrange multipliers
instead of being dynamical variables.
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For the conjugate momenta to the three-metric hi j, we obtain:

pi j =
@Lg

@ ḣi j

=
1

16⇡G
Gi jkl Kkl =

p
h

16⇡G

Ä
Ki j � K hi j

ä
. (3.11)

The Hamiltonian density Hg is therefore given by the Legendre transform

Hg = pi jḣi j �Lg (3.12)

and we can express ḣi j in terms of the momenta pi j as

ḣi j =
32⇡G N
p

h

✓
pi j �

1
2

p hi j

◆
+ DiNj + DjNi , (3.13)

where we have defined
p := pi jhi j . (3.14)

The Hamiltonian density (3.12) thus reads

Hg = 16⇡G N Gi jkl pi j pkl � N

p
h

16⇡G

Ä
(3)R� 2⇤

ä
� 2 Nj

Ä
Di p

i j
ä

(3.15)

and we immediately obtain the full Hamiltonian Hg by the following integration:

Hg =
Z

d3x Hg =
Z

d3x
Ä

N Hg
?+ N i Hg

i

ä
, (3.16)

where we have introduced

Hg
? := 16⇡G Gi jkl pi j pkl �

p
h

16⇡G

Ä
(3)R� 2⇤

ä
, (3.17)

Hg
i := �2 Dj p

j
i . (3.18)

Finally, we can therefore rewrite the Einstein–Hilbert action (3.6) as

SEH =
1

16⇡G

Z

M
dt d3x

Ä
pi jḣi j � N Hg

? � N i Hg
i

ä
. (3.19)

Varying this action with respect to N and N i then leads to the following two con-
straints:

Hg
? ⇡ 0 , (3.20)

Hg
i ⇡ 0 , (3.21)

where the first constraint is the Hamiltonian constraint and the second one the dif-
feomorphism constraint. The approximation sign is used here to denote a weak
equality as defined by Dirac [44], which means that one first has to evaluate the
corresponding Poisson brackets before setting the constraint equal to zero.
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3.2 Quantum Geometrodynamics

Now that we have obtained a Hamiltonian form for general relativity, we can di-
rectly quantize the theory canonically. This form of canonical quantum gravity is
usually called Quantum Geometrodynamics. Our canonical variables are thus the
three-metric hi j and its conjugate momenta pi j. We promote both variables to quan-
tum operators ĥi j and p̂i j, which obey the following commutation relations:

î
ĥi j(x), p̂kl(y)

ó
= i~h�k

(i�
l
j)�(x,y) , (3.22)

where we have indicated a symmetrization of indices by parentheses.

These operators then act on a wave functional  , which is defined in the space of
all three-geometries called superspace, in the following way

ĥi j(x) 
⇥

hab(x)
⇤
= hi j(x) 

⇥
hab(x)

⇤
, (3.23)

p̂i j(x) 
⇥

hab(x)
⇤
= � i~h �

�hi j(x)
 
⇥

hab(x)
⇤

. (3.24)

Using these relations, we can convert the classical constraints (3.20) and (3.21) to
quantum operators, let them act on a wave functional  and set these expressions
equal to zero. From the Hamiltonian constraint we then obtain the Wheeler–DeWitt
equation

Ĥg
? 

⇥
hab(x)

⇤
=

ñ
�16⇡G~h2 Gi jkl

�2

�hi j�hkl
�
p

h
16⇡G

Ä
(3)R� 2⇤

äô
 
⇥

hab(x)
⇤
= 0 ,

(3.25)
which is the central equation of Quantum Geometrodynamics. The diffeomorphism
constraint leads to

Ĥg
i  

⇥
hab(x)

⇤
= �2 Djhik

~h
i
�

�hjk
 
⇥

hab(x)
⇤
= 0 . (3.26)

We can see that the Wheeler–DeWitt equation (3.25) does not contain any depen-
dence on time, it is entirely timeless. It is, however, possible to recover a notion
of time within a semiclassical approximation scheme, as we shall see in the next
chapter.

One also has to remark that it is problematic to define equation (3.25) in a strict
mathematical sense because of the appearance of second functional derivatives,
which lead to indefinite expressions. In the following we will apply the quanti-
zation scheme presented here to a symmetry-reduced model of the universe, where
the problem related to the functional derivatives does not appear.
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3.3 Minisuperspace

Now we will focus our attention to the quantization of cosmological models. The
large symmetry inherent in these models implies that the quantization procedure
simplifies drastically.

We take a homogeneous and isotropic universe that is described by the
Friedmann–Lemaître–Robertson–Walker metric (2.6) with lapse function N(t)

ds2 = �N 2(t)dt2+ a2(t)d⌦2
3,K , (3.27)

where d⌦2
3,K is defined in (2.9) and (2.10) for K = 0,±1. Due to the maximal

symmetry of the spatial part, the shift vector N i does not appear here. Furthermore,
we add a massive scalar field � as matter. Hence, the infinitely many degrees of
freedom of the full superspace are reduced to a set of two, which are the scale
factor a and the scalar field �. They thus form the so-called minisuperspace.

From the form of the FLRW metric, the 3+1-decomposition of spacetime is imme-
diately apparent and we can write out induced spatial metric hi j(t) on the space-like
hypersurfaces as

hi j(t) = a2(t) diag
Ä

1, f 2
K(�), f 2

K(�) sin
2(#)

ä
(3.28)

and its time derivative reads

ḣi j = ȧ
@ hi j

@ a
=

2 ȧ
a

hi j . (3.29)

We can thus write the extrinsic curvature (3.5) as

Ki j =
1

2N
ḣi j =

1
N

ȧ
a

hi j (3.30)

and its trace is given by

K = Ki jh
i j =

3
N

ȧ
a

, (3.31)

since hi jhi j = 3. The Einstein–Hilbert action (3.6) therefore becomes

Sgrav =
3⇡
4G

Z
dt N

Ç
� a ȧ2

N 2 +K a� ⇤ a3

3

å
, (3.32)

where the integration over the spatial part was carried out assigning the volume of
a three-sphere to it, which is 2⇡2.
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On top of that we need the action Smat for the scalar field � with potential V(�),
which is given by

Smat = ⇡2

Z
dt Na3

Ç
�̇2

N 2 � 2V(�)
å

. (3.33)

Here we have also integrated over the spatial part and assigned the value 2⇡2 to it.

Therefore we arrive at the following minisuperspace action

S = Sgrav+ Smat =
Z

L(a,�, ȧ, �̇)dt , (3.34)

where the Lagrangian L(a,�, ȧ, �̇) takes the form

L(a,�, ȧ, �̇) = N

ñ
� 3⇡

4G
a

N 2 ȧ2+
⇡2a3

N 2 �̇2�⇡2a3
✓
⇤

4⇡G
� 3K

4⇡G
1
a2 + 2V(�)

◆ô
.

(3.35)
We now simplify this expression by introducing a minisuperspace metric. For this
purpose, we define a “vector” qA, whose index runs from from 0 to 1 and to which
we assign the variables

q0 := a , q1 := � . (3.36)

Using the subsequent definition of a metric GAB for the minisuperspace

GAB := diag
✓
� 3⇡

2G
a, 2⇡2a3

◆
(3.37)

and defining a minisuperspace potential V (a,�) as

V (a,�) := � 3⇡K
4G

a+⇡2a3
✓

2V(�) +
⇤

4⇡G

◆
, (3.38)

we can rewrite the Lagrangian (3.35) in the following way

L(qJ , q̇J) = N
✓

1
2N 2 GAB q̇Aq̇B � V (qJ)

◆
. (3.39)

The canonical momentum for the lapse function N again vanishes

p(N) =
@ L

@ Ṅ
= 0 , (3.40)

whereas we obtain for the scale factor a and the scalar field �:

p(a) =
@ L
@ ȧ
= � 3⇡

2G
a
N

ȧ , p(�) =
@ L

@ �̇
=

2⇡2a3

N
�̇ . (3.41)
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In order to arrive at the Hamiltonian, we use the Legendre transform

H = p(a)ȧ+ p(�)�̇ � L , (3.42)

which leads to:

H = N
✓
� G

3⇡a
p2
(a) +

1
4⇡2a3 p2

(�) + V (a,�)
◆

. (3.43)

With the minisuperspace metric (3.37) and potential (3.38), this Hamiltonian sim-
plifies to

H = N
✓

1
2
GAB pA pB + V (qJ)

◆
. (3.44)

3.4 Quantum Cosmology

In order to canonically quantize the minisuperspace Hamiltonian, we proceed as
for the general case of the full superspace and promote a and � as well as their
canonical momenta to quantum operators. The operators for the momenta are then
replaced by partial derivatives with respect to the corresponding minisuperspace
variable.

However, in the product ĜAB p̂A p̂B appearing in the quantum operator version of
(3.44), we face an ambiguity in the factor ordering. In order to specify a certain
ordering, we take the method from [69], where the factor ordering is chosen in that
way that the invariance of the kinetic term under transformations in configuration
space is kept, which leads to the so-called Laplace–Beltrami factor ordering. It uses
the covariant generalization of the Laplace operator, the Laplace–Beltrami operator
4LB, that is defined for a metric gµ⌫ with determinant g as

4LB :=
1p
�g
@µ

⇣p
�g gµ⌫ @⌫

⌘
. (3.45)

The quantum operator product ĜAB p̂A p̂B is thus replaced by

ĜAB p̂A p̂B !�
~h
p�G

@

@ qA

✓p
�G GAB @

@ qB

◆
, (3.46)

where we have used the determinant G of GAB, which can be written out as

G = � 3⇡2

G
a4 . (3.47)
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The expression (3.46) then explicitly takes the form

� ~hp�G
@

@ qa

✓p
�G Gab @

@ qb

◆
=

2~h2G
3⇡

Ç
1
a
@

@ a
+

1
a2

@ 2

@ a2

å
� ~h

2⇡2

1
a3

@ 2

@ �2

=
2~h2G
3⇡

1
a3

@

@ a

✓
a
@

@ a

◆
� ~h

2⇡2

1
a3

@ 2

@ �2 . (3.48)

Letting the quantum Hamiltonian Ĥ derived from (3.44) with N ⌘ 1 act on the
minisuperspace wave function  (a,�) leads to the Wheeler–DeWitt equation

Ĥ (a,�) = 0 , (3.49)

which using (3.48) explicitly reads:
ñ
~h2G
3⇡a2

@

@ a

✓
a
@

@ a

◆
� ~h

2

4⇡2a3

@ 2

@ �2

� 3⇡K
4G

a+ a3⇡2
✓

2V(�) +
⇤

4⇡G

◆ô
 (a,�) = 0 .

(3.50)
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The semiclassical approximation
to the Wheeler–DeWitt equation

This chapter is devoted to the semiclassical approximation of canonical quantum
gravity leading to the Wheeler–DeWitt equation. In general, any theory of quantum
gravity has to recover classical spacetime in some appropriate limit and for the
Wheeler–DeWitt equation this can be achieved by using a Born–Oppenheimer type
of expansion in terms of the gravitational constant, which we will describe below.
From this expansion one recovers general relativity in the form of a Hamilton–
Jacobi equation and subsequently quantum field theory on curved spacetime as a
functional Schrödinger equation. Furthermore, this approximation scheme allows
us to derive quantum-gravitational corrections terms to this Schrödinger equation
and we will use this in the following chapters to calculate the effects arising from
these corrections terms to the power spectra of inflationary perturbations.

We will present here a summary of the semiclassical approximation scheme for
the full Wheeler–DeWitt equation based on [69, 75, 78]. The calculation for a
cosmological model will be derived in detail in the next chapter.

4.1 The classical limit in quantum mechanics

Before focussing on canonical quantum gravity, let us briefly recap how the semiclas-
sical limit is obtained in ordinary quantum mechanics. Considering the Schrödinger
equation for a wave function  (x, t) with potential V (x),

i~h @
@ t
 (x, t) =


� ~h

2m
r+ V (x)

�
 (x, t) , (4.1)
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one makes the following ansatz with the function S(x, t)

 (x, t) = ei S(x,t)/~h , (4.2)

that is also used in the WKB approximation. Hence, one obtains

� @ S
@ t
=

1
2m
(rS)2� i~h

2m
�rS2�+ V (x) . (4.3)

The semiclassical approximation is then performed by taking the limit ~h ! 0, for
which the second term on the right-hand side vanishes and we recover the classical
Hamilton–Jacobi equation.

4.2 The Born–Oppenheimer type of approximation

For the semiclassical approximation of the Wheeler–DeWitt equation (3.25) we use
a similar ansatz as (4.2), but combine it with a Born–Oppenheimer type of approxi-
mation that establishes a hierarchy between the gravitational part and a matter part,
for which we introduce a scalar field � with potential U and matter Hamiltonian Hm

that is given by

Hm
⇥

hi j(x),�(x)
⇤
= � ~h

2

2
p

h

�2

��2 + U
⇥

hi j,�,�,i
⇤

. (4.4)

Thus our Wheeler–DeWitt equation reads
ñ
�16⇡G~h2 Gi jkl

�2

�hi j�hkl
�
p

h (3)R
16⇡G

� ~h
2

2
p

h

�2

��2 + U
⇥

hmn,�,�,m
⇤
ô
 
⇥

hmn,�
⇤
= 0 ,

(4.5)
where we have also set the cosmological constant ⇤ equal to zero.

The smallness of the gravitational constant that appears as a factor in front of
the first term and in the denominator of the second term implies that the dynamics
of the gravitational part are negligible compared to matter field. In the language
of atomic and molecular physics, where the Born–Oppenheimer approximation is
usually used, the gravitational background thus corresponds to a heavy nucleus,
whereas the matter field plays the role of a light electron.

Before we continue with our derivation, let us follow [75] and first simplify equa-
tion (4.5) by combining indices that only appear in pairs in the following way

hi j ! ha , Gi jkl ! Gab ,
�

�hi j
! �

�ha
. (4.6)
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and by defining the gravitational potential

V
⇥

ha(x)
⇤

:= �2
p

h (3)R . (4.7)

For later convenience, we also introduce a parameter M

M :=
1

32⇡G
(4.8)

with respect to which we will carry out the semiclassical expansion. Hence, equation
(4.5) finally reads:

ñ
� ~h

2

2M
Gab

�2

�ha�hb
+M V

⇥
ha
⇤� ~h

2

2
p

h

�2

��2 + U
⇥

ha,�,�,a
⇤
ô
 
⇥

ha,�
⇤
= 0 .

(4.9)
We then implement the Born–Oppenheimer type of approximation as in [75] by
using the following WKB-type ansatz for the wave functional  [ha,�]

 
⇥

ha,�
⇤
= exp

✓
i
~h S

⇥
ha,�

⇤◆
, (4.10)

where we expand the functional S[ha,�] in terms of the parameter M in the fol-
lowing way:

S = M1 S0+M0 S1+M�1 S2+ . . . (4.11)

We plug the ansatz (4.10) with the above expansion into equation (4.9) and formally
treat the appearing functional derivatives as ordinary partial derivatives. In the re-
sulting equation we collect all the terms containing a factor of a certain power of M
and set the collection of these terms equal to zero for each power of M individually.

4.3 The gravitational background

We find that the highest order of M that appears in the expansion is M2 and the
differential equation at this order is given by:

1

2
p

h

Ç
�S0

⇥
ha,�

⇤

��

å2

= 0 . (4.12)

This simply implies that S0 is independent of the matter field �, S0[ha,�]⌘ S0[ha],
and thus S0 represents purely the gravitational background.

The next order, which is M1, then leads to the subsequent equation
1
2

Gab
�S0

�ha

�S0

�hb
+ V

⇥
ha
⇤
= 0 , (4.13)

which is the Hamilton–Jacobi equation of the gravitational background. This equa-
tion is equivalent to the Einstein equations [50]. Hence, we have recovered general
relativity from canonical quantum gravity with the Wheeler–DeWitt equation.
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4.4 The functional Schrödinger equation

At the subsequent order M0, we obtain an equation where additionally S1 appears:

Gab
�S0

�ha

�S1

�hb
� i~h

2
Gab

�2S0

�ha�hb
+

1

2
p

h

✓
�S1

��

◆2

� i~h
2
p

h

�2S1

��2 + U
⇥

ha,�,�,a
⇤
= 0 .

(4.14)
It is possible to rewrite this equation with respect to a wave functional

 (0)
⇥

ha,�
⇤

:= �
⇥

ha
⇤

ei S1[ha ,�]/~h , (4.15)

where we have introduced a prefactor �[ha], onto which we can impose a condition,
such that it disappears in the following, cf. [75]. The resulting equation takes the
form

Hm 
(0) = i~h Gab

�S0

�ha

� (0)

�hb
(4.16)

and it allows us to define a WKB time ⌧ as

�

�⌧
:= Gab

�S0

�ha

�

�hb
, (4.17)

such that we can rewrite (4.16) as a functional Schrödinger equation:

i~h � 
(0)

�⌧
=Hm 

(0) . (4.18)

Hence, we see that from the Wheeler–DeWitt equation, one can also recover quan-
tum field theory on a curved spacetime in the form of a functional Schrödinger
equation for matter fields acting on a background that is described by the Hamilton–
Jacobi equation (4.13).

4.5 The quantum-gravitationally corrected functional
Schrödinger equation

Up to now we have recovered known physics, but the next order M�1 takes us into
the quantum gravity regime and we can derive quantum-gravitational correction
terms to the functional Schrödinger equation (4.18) obtained above. The respective
equation from the expansion of (3.25) thus incorporates S2 and takes the form

Gab
�S0

�ha

�S2

�hb
+

1
2

Gab
�S1

�ha

�S1

�hb
� i~h

2
Gab

�2S1

�ha�hb
+

1
p

h

�S1

��

�S2

��
� i~h

2
p

h

�2S2

��2 = 0 .

(4.19)
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We split the function S2 into a part &[ha] that only depends on the background and
a part ⌘[ha,�] that additionally depends on the matter field

S2
⇥

ha,�
⇤
= &

⇥
ha
⇤
+⌘

⇥
ha,�

⇤
. (4.20)

Since we can impose a condition on the background part &[ha] as for the WKB
prefactor �[ha] in order to remove it from the subsequent equations (cf. [75] or
section 5.2.4 for details), we can define a corrected wave functional  (1) using  (0)

from (4.15) and additionally only ⌘[ha,�] in the following way

 (1)
⇥

ha,�
⇤

:= (0)
⇥

ha,�
⇤

ei M�1 ⌘[ha ,�]/~h . (4.21)

From (4.19), we can deduce that this corrected wave functional obeys the equation

i~h � 
(1)

�⌧
=Hm 

(1) +
~h2

2M (0)

Ç
2
�

Gab
� (0)

�ha

��

�hb
� Gab

�2 (0)

�ha�hb

å
 (1) , (4.22)

which already has the form of a Schrödinger equation with a quantum-gravitational
correction term that is suppressed by M . We can rewrite the correction term in
terms of the matter Hamiltonian Hm using a decomposition of � (0)/�ha into a
normal and tangential part with respect to the hypersurfaces given by S0 = const.,
see [75] and section 5.2.4 for the detailed derivation.

In the end, we arrive at the following form for the quantum-gravitationally cor-
rected functional Schrödinger equation:

i~h � 
(1)

�⌧
=Hm 

(1) +
4⇡G
p

h (3)R

ñ
H2

m+ i~h
Ç
�Hm

�⌧
� 1
p

h (3)R

�(
p

h (3)R)
�⌧

Hm

åô
 (1) .

(4.23)





5
Quantum-gravitational effects
on scalar-field perturbations
during inflation

In this and the following two chapters, we will discuss how canonical quantum
gravity based on the Wheeler–DeWitt equation influences cosmological perturba-
tions during inflation and whether such a quantum-gravitational effect can be seen
in the anisotropies of the Cosmic Microwave Background (CMB).

In the present chapter we shall focus on the simplest model in which such an
investigation can be performed, which is a homogeneous and isotropic universe
that contains a scalar field, which acts as an inflaton and thus drives the exponential
expansion of the universe, but also contains fluctuations in space that we will regard
in this simplified model as the seed for structure formation.

We will quantize this model canonically and perform a semiclassical Born–
Oppenheimer type of approximation to the resulting Wheeler–DeWitt equation as
presented in the previous chapter in order to obtain the power spectrum of the
scalar field perturbations and quantum-gravitational corrections to it. We shall then
connect this result with observations and discuss whether such an effect of quantum
gravity can be seen in the CMB anisotropies.

Even though this model is largely simplified, it will serve as a initial step to esti-
mate the qualitative features and the magnitude of quantum-gravitational effects. In
the subsequent chapter, we will then extend this model in order to be in accordance
with the standard methods of cosmological perturbation theory.

The present chapter is based on the two articles [71] and [22] as well as the essay
[70], where the first article is partly based on the diploma thesis of the author of
this dissertation [78], which also partially serves as a source of this chapter.
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5.1 Derivation of the Wheeler–DeWitt equation

We consider a flat Friedmann–Lemaître universe, for which the Robertson–Walker
line element is given by

ds2 = �N 2(t)dt2+ a2(t)dx2 . (5.1)

We work with cosmic time t, which is why we can set the lapse function N(t)
equal to one. Furthermore, we introduce a scalar field � that acts as an inflaton,
which means that it is approximately constant in space and time and leads to an
accelerated expansion of the universe. The choice of the potential V(�) does not
influence our result as long as a slow-roll condition of the form

�̇2⌧ |V(�)| (5.2)

holds at the classical level, but for definiteness we choose

V(�) =
1
2

m2�2 , (5.3)

which is the simplest potential in chaotic inflation [85].

As we have derived in the chapter 3, we can immediately write down the
Wheeler–DeWitt equation for the minisuperspace background. We set ~h = 1 and
define a rescaled Planck mass

mP :=

r
3⇡
2G
⇡ 2.65⇥ 1019 GeV . (5.4)

Note that we still use the capital letter MP for the reduced Planck mass MP =
(8⇡G)�1/2. We introduce the quantity ↵ defined with respect to a reference scale
factor a0, which we will not explicitly write out in the following, as

↵ := ln
✓

a
a0

◆
(5.5)

and after furthermore redefining the scalar field

�! 1
p

2⇡
� , (5.6)

we get the following the Wheeler–DeWitt equation for the background

1
2

e�3↵

ñ
1

m2
P

@ 2

@ ↵2 �
@ 2

@ �2 + e6↵m2�2

ô
 0(↵,�) = 0 . (5.7)
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In order to implement the slow-roll approximation (5.2), we assume that the kinetic
term of the scalar field is small compared to the potential term

@ 2 0

@ �2 ⌧ e6↵m2�2 0 (5.8)

and consequently neglect the �-kinetic term in (5.7).

Furthermore, due to the slow-roll approximation, we can replace the scalar field
� by the quasistatic inflationary Hubble parameter H, which in the classical limit
obeys |Ḣ|⌧ H2. From the Friedmann equation in the slow-roll limit, we get

H2 ' 8⇡G
3

V(�) (5.4;5.6)
=

1
m2

P

m2�2 (5.9)

and can therefore set
m� ⇡ mPH ⇡ const. (5.10)

The fact that � is a quantum variable, whereas H is a classical variable does not
represent a problem, because in the Born–Oppenheimer approximation that fol-
lows, equation (5.7) will describe the classical background, on which the quantum
fluctuations of the scalar field propagate. We will therefore omit the variable � in
the following. Finally, our Wheeler–DeWitt equation for the minisuperspace back-
ground takes the simple form

H0 0(↵) =
1
2

e�3↵

ñ
1

m2
P

@ 2

@ ↵2 + e6↵m2
P H2

ô
 0(↵) = 0 . (5.11)

Effectively, we are dealing now with a pure de Sitter background, since we regard
H as being constant in the subsequent calculations.

We now want to add perturbations to the inflaton field �, which in our simplified
picture then become the source of structure in the universe. We therefore add fluc-
tuations of an inhomogeneous inflaton field on top of its homogeneous part in the
following way

�! �(t) +��(x, t) . (5.12)

We then decompose these fluctuations into Fourier modes fk(t) with wave vector k,
k := |k|,

��(x, t) =
Z

d3k

(2⇡)3
fk(t)eik·x . (5.13)

From the action of a scalar field in a FLRW metric, we get

S =
1
2

Z
d3k

(2⇡)3

Z
dt a3

Ç
�
�� ḟk

��2+ k2

a2

�� fk

��2+m2
�� fk

��2
å

(5.14)
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and we can therefore write out the Hamiltonian density for each fluctuation mode

Hk =
1
2

e�3↵

ñ
� @ 2

@ f 2
k

+
⇣

k2 e4↵+m2 e6↵
⌘

f 2
k

ô
. (5.15)

For simplicity, we now assume that the universe is compact and that therefore the
spectrum for k is discrete. This, of course, implies that there is a maximum scale L
and we have to take this into consideration later when we want to discuss observable
quantities. We can thus replace the integral by a sum using the relation [90]

Z
d3k

⇢
· · ·

�
!

✓
2⇡
L

◆3 1X

k 6=0

⇢
· · ·

�
(5.16)

and we obtain

��(x, t) =
1
L3

X

k

fk(t)eik·x . (5.17)

Consequently, our Wheeler–DeWitt equation for the full wave function 
�
↵, { fk}

1

k=1

�

including the fluctuation modes reads [55]
2
4H0+

1
L3

1X

k=1

Hk

3
5 �↵, { fk}

1

k=1

�
= 0 . (5.18)

We can eliminate the length scale L appearing here by making the following re-
placements:

k! k
k0
=

k
2⇡

L , e↵! e↵L . (5.19)

This means that we have to regard k as a dimensionless variable, while the quantity
e↵ has to be understood as having the dimension of a length when we want to
replace it with a.

Since we deal with small fluctuations, we can neglect their self-interaction, and
can therefore make the following product ansatz for the full wave function:

 
�
↵, { fk}

1

k=1

�
=  0(↵)

1Y

k=1

e k(↵, fk) .

If we define the wave functions

 k(↵, fk) :=  0(↵) e k(↵, fk) , (5.20)

we immediately see that each wave function  k(↵, fk) obeys the following Wheeler–
DeWitt equation [55, 65]

1
2

e�3↵


1
m2

P

@ 2

@ ↵2 + e6↵ m2
P H2� @ 2

@ f 2
k

+Wk(↵) f 2
k

�
 k(↵, fk) = 0 , (5.21)
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where we have used the definition

Wk(↵) := k2 e4↵+m2 e6↵ . (5.22)

Equation (5.21) is our master equation that we use as the starting point for the
subsequent semiclassical Born–Oppenheimer type of approximation.

5.2 Semiclassical approximation

We now want to perform a semiclassical approximation to equation (5.21) that is of
a Born–Oppenheimer type in the sense that we treat the background represented by
the logarithmic scale factor ↵ and the quasi-constant inflaton field � as the “heavy”
variable, while the scalar field perturbations are treated as the “light” variable.

We take advantage of the fact that the appearing factors of the rescaled Planck
mass mP act as a weighting factor that on the one hand, suppresses the derivative of
the background variable ↵, such that its influence on the dynamics of the scalar field
perturbations is negligible, and on the other hand, enhances the minisuperspace
potential given by the inflationary Hubble parameter.

As presented in chapter 4 as well as partly in [78], we follow the procedure taken
in [75] and start with the WKB-like ansatz

 k(↵, fk) = ei S(↵, fk) . (5.23)

Note that we do not include a prefactor at this point as in the usual WKB approxi-
mation; such a prefactor will however appear later.

The Born–Oppenheimer approximation is implemented by expanding S(↵, fk) in
terms of powers of m2

P

S(↵, fk) = m2
P S0+m0

P S1+m�2
P S2+ . . . (5.24)

and inserting the ansatz (5.23) with this expansion into (5.21). The resulting equa-
tion has the form

1X

n=0

An m4�2n
P = 0 (5.25)

and we set the coefficients An equal to zero individually.
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5.2.1 O(m4
P): The background condition

At the highest order, n= 0, which corresponds to the terms including a factor of m4
P,

we obtain the subsequent equation

@

@ fk
S0(↵, fk) = 0 . (5.26)

It immediately implies that S0 is independent of the perturbation variable fk and
only depends on the background variable ↵, such that we can set S0(↵, fk) ⌘ S0(↵).
Therefore the background of our universe – i.e. the “heavy” part of our system – is
entirely described by the wave function ei m2

P S0 and we can thus write

 0(↵) = ei m2
P S0(↵) . (5.27)

5.2.2 O(m2
P): The Hamilton–Jacobi equation for the background

The next order, i.e. terms with a factor of m2
P, leads to the following differential

equation ✓
@ S0

@ ↵

◆2

� e6↵H2 = 0 , (5.28)

which is the Hamilton–Jacobi equation for the classical minisuperspace background.
It is solved by

S0(↵) = ±
1
3

e3↵H , (5.29)

such that the background wave function  0(↵) takes the form

 0(↵) = exp
✓
± i

3
m2

P e3↵H
◆

. (5.30)

5.2.3 O(m0
P): The Schrödinger equation for the perturbation

modes

At the next order m0
P, we obtain the following expression, which for the first time

contains terms with S1(↵, fk) and Wk(↵) that depend on fk:

� 2
@ S0

@ ↵

@ S1

@ ↵
+ i
@ 2S0

@ ↵2 +
✓
@ S1

@ fk

◆2

� i
@ 2S1

@ f 2
k

+Wk(↵) f 2
k = 0 . (5.31)

We shall now show how we can derive a Schrödinger equation from this expression.
In order to do so, we introduce a wave function  (0)k (↵, fk) that is defined as

 (0)k (↵, fk) := �(↵)ei S1(↵, fk) , (5.32)
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where we have introduced a function �(↵) that represents the inverse of the WKB
prefactor we have omitted in our ansatz (5.23). We demand that � fulfill the fol-
lowing condition

@

@ ↵

✓
1

2�2

@ S0

@ ↵

◆
= 0 , 1

�

@ S0

@ ↵

@ �

@ ↵
� 1

2
@ 2S0

@ ↵2 = 0 . (5.33)

We now apply the Hamiltonian density Hk of the perturbation modes to the wave
function  (0)k (↵, fk) and manipulate it using the above expressions

Hk 
(0)
k =

1
2

e�3↵

ñ
� @ 2

@ f 2
k

+Wk(↵) f 2
k

ô
 (0)k

(5.32)
=

1
2

e�3↵

ñ
� @ 2

@ f 2
k

+Wk(↵) f 2
k

ô
�(↵)ei S1(↵, fk)

=
1
2

e�3↵

ñ✓
@ S1

@ fk

◆2

� i
@ 2S1

@ f 2
k

+Wk(↵) f 2
k

ô
 (0)k

(5.31)
=

1
2

e�3↵

ñ
� i
@ 2S0

@ ↵2 + 2
@ S0

@ ↵

@ S1

@ ↵

ô
 (0)k

(5.33)
= e�3↵


� i
�

@ S0

@ ↵

@ �

@ ↵
+
@ S0

@ ↵

@ S1

@ ↵

�
 (0)k

= � i e�3↵ @ S0

@ ↵

@

@ ↵


�(↵)ei S1(↵, fk)

�
= � i e�3↵ @ S0

@ ↵

@ (0)k

@ ↵
. (5.34)

We can now define the WKB time

@

@ t
:= �e�3↵ @ S0

@ ↵

@

@ ↵
, (5.35)

which allows us to rewrite (5.34) as a Schrödinger equation for each mode  (0)k :

i
@

@ t
 (0)k =Hk 

(0)
k . (5.36)

We will use this equation to derive the power spectrum of the scalar field pertur-
bations later. It is also possible to derive this Schrödinger equation using a less
systematic semiclassical approximation, see e.g. [55] and [65]. For our purposes,
the scheme presented here is favorable, because it enables us to continue in a
rather straightforward way and calculate quantum-gravitational corrections to this
Schrödinger equation, which we shall do in the following.
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5.2.4 O(m�2
P ): Quantum-gravitational corrections to the

Schrödinger equation

At the order m�2
P , we leave the regime of quantum theory on a classical background

and enter the regime where quantum gravity comes into play. The expression we
obtain at this order looks as follows and contains S2 for the first time:

� @ S0

@ ↵

@ S2

@ ↵
� 1

2

✓
@ S1

@ ↵

◆2

+
i
2
@ 2S1

@ ↵2 +
@ S1

@ fk

@ S2

@ fk
� i

2
@ 2S2

@ f 2
k

= 0 . (5.37)

In order to obtain correction terms to the Schrödinger equation (5.36), we follow
[75, 78] and decompose S2 into a part & that depends only on the logarithmic scale
factor ↵ and a part ⌘, which also includes the scalar field perturbations fk:

S2(↵, fk)⌘ &(↵) +⌘(↵, fk) . (5.38)

In order to calculate the derivatives appearing in (5.37), we write out S1 in terms of
� and  (0)k using the definition (5.32)

S1(↵, fk) = � i ln
✓

1
�(↵)

 (0)k (↵, fk)
◆

. (5.39)

The respective derivatives of S1 then read as follows:

@

@ ↵
S1(↵, fk) = i

 
1
�

@ �

@ ↵
� 1

 (0)k

@ (0)k

@ ↵

!
,

@ 2

@ ↵2 S1(↵, fk) = i

2
4� 1

�2

✓
@ �

@ ↵

◆2

+
1
�

@ 2�

@ ↵2 +
1

�
 (0)k

�2

Ç
@ (0)k

@ ↵

å2

� 1

 (0)k

@ 2 (0)k

@ ↵2

3
5 ,

@

@ fk
S1(↵, fk) = �

i

 (0)k

@ (0)k

@ fk
.

Plugging these expressions together with the derivatives of S2 into equation (5.37),
we obtain

� @ S0

@ ↵

✓
@ &

@ ↵
+
@ ⌘

@ ↵

◆
+

1
2

 
1
�

@ �

@ ↵
� 1

 (0)k

@ (0)k

@ ↵

!2

� 1
2

2
4� 1

�2

✓
@ �

@ ↵

◆2

+
1
�

@ 2�

@ ↵2 +
1

�
 (0)k

�2

Ç
@ (0)k

@ ↵

å2

� 1

 (0)k

@ 2 (0)↵
@ ↵2

3
5

� i

 (0)k

@ (0)k

@ fk

@ ⌘

@ fk
� i

2
@ 2⌘

@ f 2
k

= 0 .

(5.40)
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After performing a couple of straightforward manipulations of this expression, we
collect all the terms containing  (0)k and put them on one side of the equation:

� @ S0

@ ↵

@ &

@ ↵
� @ S0

@ ↵

@ ⌘

@ ↵
+

1
�2

✓
@ �

@ ↵

◆2

� 1
2�
@ 2�

@ ↵2

=
1

� (0)k

@ (0)k

@ ↵

@ �

@ ↵
� 1

2 (0)k

@ 2 (0)k

@ ↵2 +
i

 (0)k

@ (0)k

@ fk

@ ⌘

@ fk
+

i
2
@ 2⌘

@ f 2
k

.
(5.41)

At this point, we demand that &(↵) be the standard second-order WKB correction
of the background part of the wave function  (↵, fk), which translates into the
following condition on &(↵):

� @ S0

@ ↵

@ &

@ ↵
+

1
�2

✓
@ �

@ ↵

◆2

� 1
2�
@ 2�

@ ↵2 = 0 . (5.42)

Using the WKB time (5.35) this condition reads

@ &

@ t
= e�3↵

ñ
1
�2

✓
@ �

@ ↵

◆2

� 1
2�
@ 2�

@ ↵2

ô
. (5.43)

Due to this condition, equation (5.41) simplifies significantly, in particular, all terms
including & are eliminated and we obtain

� @ S0

@ ↵

@ ⌘

@ ↵
=

1

� (0)k

@ (0)k

@ ↵

@ �

@ ↵
� 1

2 (0)k

@ 2 (0)k

@ ↵2 +
i

 (0)k

@ (0)k

@ fk

@ ⌘

@ fk
+

i
2
@ 2⌘

@ f 2
k

. (5.44)

We can again use the WKB time (5.35) to rewrite this equation:

@ ⌘

@ t
=

e�3↵

 (0)k

 
1
�

@ (0)k

@ ↵

@ �

@ ↵
� 1

2
@ 2 (0)k

@ ↵2 + i
@ (0)k

@ fk

@ ⌘

@ fk
+

i (0)k

2
@ 2⌘

@ f 2
k

!
. (5.45)

Now we define the wave functions

 (1)k (↵, fk) := (0)k (↵, fk)ei m�2
P ⌘(↵, fk) , (5.46)

which – as we shall see – are the functions that obey the quantum-gravitationally
corrected Schrödinger equation we are about to derive.

Analogously to the calculation at order m0
P, we let the Hamiltonian density of the

perturbation modes Hk act on  (1)k (↵, fk), which leads to

Hk 
(1)
k (↵, fk)

=
1
2

e�3↵

ñ
� @

2

@ f 2
k

+Wk f 2
k

ô
 (1)k

=
1
2

e�3↵

ñ
� @

2

@ f 2
k

⇣
 (0)k ei m�2

P ⌘
⌘
+Wk f 2

k  
(0)
k ei m�2

P ⌘

ô
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=
1
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e�3↵
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@ f 2
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P ⌘� 2
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ô

(5.36)
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 (0)k
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P ⌘� e�3↵
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4i
@ (0)k
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i (0)k
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@ 2⌘

@ f 2
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3
5ei m�2

P ⌘ . (5.47)

In the second-to-last line we neglected the term proportional to m�4
P , since we trun-

cate our approximation at the order m�2
P .

Now we want to take a look at the other side of the Schrödinger equation that
contains the time derivative of  (1)k (↵, fk):

i
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@ t
 (1)k

= i
@

@ t
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Already at this point, we can regard the final expression in (5.48) as the corrected
Schrödinger equation of order m�2

P for the wave function  (1)k :

i
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 (1)k =Hk 
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k +

e�3↵
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(0)
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!
 (1)k . (5.49)

However, in the following, we want to express the two terms appearing in this
expression in terms of the Hamiltonian of the perturbation modes. For notational
simplicity we define

V (↵) := e6↵H2 , (5.50)

such that the Hamilton–Jacobi equation (5.28) of the background reads
✓
@ S0

@ ↵

◆2

= V (↵)> 0 . (5.51)

Therefore we have
@ S0

@ ↵
=
p

V (↵) (5.52)

and we can rewrite the derivative of  (0)k with respect to ↵ as follows
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For the second derivative we then obtain
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We also need to use the condition we imposed on � in (5.33)
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such that we end up with
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. (5.56)
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Inserting the expressions (5.53) and (5.54) into the quantum-gravitationally cor-
rected Schrödinger equation (5.48) then leads to
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and finally we obtain:
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In principle, we could follow [75] further and eliminate the appearing wave func-
tions (0)k using the following argument. We can decompose derivatives of (1)k with
respect to q 2 {↵, fk} and neglect all the terms of order m�2

P , since these terms would
translate to terms of order m�4

P in the correction term of the Schrödinger equation
(5.58). Doing this for the first and higher derivatives iteratively leads to [78]
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Hence, we end up with the subsequent corrected Schrödinger equation, which cor-
responds to the final result in [75]:
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However, finding a solution for  (1)k using (5.60) is much harder than for the pre-
vious equation (5.58), because in the latter equation the correction term translates
into an additional factor that does not contain derivates of  (1)k unlike in (5.60).
Therefore we will skip the last step and use (5.58) as our quantum-gravitationally
corrected Schrödinger equation in the following.

The second term in the correction term of (5.58), which is proportional to the
imaginary unit i, induces a small violation of unitarity. A consistent definition of
unitarity in the full theory of Wheeler–DeWitt quantum gravity has not been found,
since the Hilbert space structure of the theory is unknown. However, the states
 k corresponding to fk obey an approximate Schrödinger equation and therefore
we can define unitarity here with respect to the standard L2-inner product for the
modes fk. [71]

We can interpret this term by noting that the Wheeler–DeWitt equation corre-
sponds to a Klein–Gordon type of equation, instead of a Schrödinger type. If one
expands the conserved Klein–Gordon-type current in powers of m�2

P , one obtains an
exact conservation of the Schrödinger current at order m0

P, but going to the order
m�2

P then leads to a violation of this conservation due to a term corresponding to
the unitarity-violating term in (5.58). [22]

It can be shown that this unitarity-violating term is subdominant compared to
the term containing the square of the Hamiltonian in most situations [75]. Note in
this context that this term would have to be multiplied by ~h when reinstating the
natural constants. Using this argument we will neglect the unitarity-violating term
from now on. An alternative method would be to use an appropriate redefinition
of the wave function in order to restore unitarity at order m�2

P . This procedure
was shown for the general case in [20] and also applied in the context of the
quantum-mechanical Klein–Gordon equation in an external gravitational field in
[80].

Neglecting the unitarity-violating term, we arrive at the following corrected
Schrödinger equation
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5.3 Derivation of the power spectrum

In order to derive the power spectrum of the scalar-field perturbations, we have
to solve the uncorrected Schrödinger equation (5.36). Since perturbations during
inflation are assumed to remain in the ground state, we make the Gaussian ansatz

 (0)k (t, fk) =N (0)
k (t)e

� 1
2 ⌦

(0)
k (t) f 2

k . (5.62)

Here, we use the WKB time defined via (5.35), which allows us also to set ↵ = Ht.
Inserting this ansatz into (5.36), we find the following coupled set of nonlinear
differential equations for N (0)

k and ⌦(0)k :

d
dt

N (0)
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k (t) , (5.63)
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⌦(0)k (t) = i e�3Ht

h
��⌦(0)k (t)

�2+ k2e4H t +m2e6H t
i

. (5.64)

We can immediately find a solution for N (0)
n (t) by considering the usual normaliza-

tion condition of the wave function  (0)k , which reads
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Therefore we have
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which leads to
��N (0)

k (t)
��2 =

»
<e⌦(0)k (t)

⇡
. (5.67)

If we insert this solution into (5.63), we obtain

d
dt
<e⌦(0)k (t) = 2<e⌦(0)k (t)=m⌦

(0)
k (t) . (5.68)

We get the same expression when taking the real part of equation (5.64).

In order to solve equation (5.64), which corresponds to a Riccati equation that is
widely applied in physics [100], we introduce the dimensionless variable

⇠(t) :=
k

Ha(t)
, (5.69)
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such that we can write for the time derivative

d
dt
= �⇠H

d
d⇠

. (5.70)

Equation (5.64) therefore takes the form

d
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åô
. (5.71)

In [71], the last term proportional to m2/H2 is neglected using the argument that
the mass m of the inflaton has to be much smaller than the Hubble parameter in
chaotic inflation [85], which is used here as our model. Furthermore, it is as-
sumed that for large wave numbers k ! 1, the state (5.62) approaches the free
Minkowski vacuum. This translates to the condition that for ⇠ ! 1, the function
⌦(0)k approaches

⌦(0)k (⇠)⇡
k3

H2⇠2 = k a2 , (5.72)

which in the massive case corresponds to the Bunch–Davies vacuum [33]. Neglect-
ing the mass term and choosing the above-mentioned boundary condition then im-
mediately leads to the solution

⌦(0)k =
k3

H2

1
⇠(⇠� i)

. (5.73)

In [22], equation (5.71) including the mass term is solved. Following these calcula-
tions, we define the dimensionless quantity

µ :=
m
H

. (5.74)

The resulting solution can then be written in terms of an unknown parameter U1 as
well as the Bessel functions J⌫ and Y⌫ at order

⌫ :=
1
2

p
9� 4µ2 . (5.75)

As we have mentioned before, in scenarios of inflation, and especially in chaotic
inflation, one assumes that m < H. Because of this, ⌫ is a real parameter. The
explicit form of the solution thus reads
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. (5.76)
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Solving the Klein–Gordon equation for a massive scalar field in de Sitter space leads
to a similar solution, cf. e.g. [53], or equation (51) of [16], or section 8.3.2 in [92].

Considering now the massless case µ= 0, the coefficient ⌫ of the Bessel functions
takes the value ⌫ = 3/2 and using standard relations between the Bessel functions
of half-odd order [1], we find the following general solution
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From this equation we obtain the previous solution (5.73), by setting U1 = �i. In
order to investigate the general solution (5.77) further, we write U1 in terms of two
variables ⇣ and � as follows

U1 = ⇣ei� . (5.78)

This allows us to re-express (5.77) in the following form
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|B|2 , (5.79)

where A and B are given by

A := ⇢+ i� , B := �+ i� (5.80)

and we used the definitions
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We now want to derive an expression for the power spectrum of the scalar-field
perturbations. We follow the description in [89], and start with the energy density
⇢ of the scalar field �(x, t), which is classically given by

⇢ ' 1
2
�̇2 . (5.82)
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The energy density of small perturbations of �(x, t) can therefore be written up to
the first order as

�⇢(x, t) = ⇢(x, t)�⇢(t) = 1
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Going into momentum space, we can write

�⇢k(t) = �̇(t) �̇k(t) , (5.84)

where �k(t) is the classical quantity related to the quantum-mechanical quantity
fk. Establishing this relation is in principle a highly non-trivial task that requires the
consideration of the decoherence of the quantum fluctuations of the scalar field �,
see e.g. [72, 73, 74]. Here we take a simplified approach like in [89] and define the
�k(t) by taking the expectation value of fk for a Gaussian state, which leads to
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Assuming that the average energy density during inflation is dominated by the
quasi-constant inflaton potential V(�) ' V0 = const., we can write the density
contrast of the scalar-field perturbations as

�k(t) =
�̇(t) �̇k(t)

V0
. (5.86)

We have to evaluate �k(t) for each mode individually at the time tenter when it
reenters the Hubble radius during the radiation-dominated phase. At this point the
relation

k
Ha
= 2⇡ (5.87)

holds. Following [89], we can derive a relation between the density contrast of a
mode at the time texit when it leaves the Hubble radius during the inflationary phase
and the time tenter when it reenters it. For modes outside of the Hubble radius, we
have the following relation of pressure P and energy density ⇢

�k(t)/ 1+
P(t)
⇢(t)

. (5.88)

This can be translated to the subsequent relation
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⇢(texit)
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. (5.89)
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During inflation, we have

1+
P(t)
⇢(t)
' �̇

2

V0
. (5.90)

In the radiation-dominated phase, we find by using the relation (2.30)
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4
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. (5.91)

Putting all this together therefore leads to the following relation

�k(tenter) =
4
3

V0

�̇2
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and finally using equation (5.86), we end up with
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In the case considered here, we can write �k at the level of approximation of  (0)k
as
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The derivative of �k appearing in (5.93) reads in terms of ⇠
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Inserting our general solution for the massless case (5.79) then leads to
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In the last step, we have used the condition ⇠(texit) = k/(Ha) = 2⇡ at Hubble-scale
crossing. We define the function f (⇣,�) as

f (⇣,�) :=

p
⇣
�
⇣+ 2⇡ cos�

�
p

sin�
p
⇣2+ 4⇡ cos� + 4⇡2

, (5.97)

and plot this function in Figure 5.1. We see that f (⇣,�) shows no relative minima
or maxima, and therefore one cannot determine specific preferred values of ⇣ and
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Figure 5.1: The function f (⇣,�) defined in equation (5.97) plotted for the values
⇣ 2 {0.5, 2, 5, 2⇡, 10}, from [22].

� from a mathematical point of view. For the case considered in [71], i.e. setting
⇣ = 1, � = 3

2
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The power spectrum of the scalar-field perturbations can be directly inferred from
(5.93) and is given by

P (0)� (k) :=
k3

2⇡2

���k(tenter)
��2 . (5.99)

Inserting our solution (5.96), we get
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Using the definition of the slow-roll parameter ✏

✏ := � Ḣ
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4⇡G
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and defining

MP :=

r
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8⇡G
(5.102)
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we can rewrite (5.100) as

P (0)� (k) =
32
9
⇡2

�� f (⇣,�)
��2 H2

M2
P ✏

. (5.103)

5.4 Quantum-gravitational corrections

We now want to calculate quantum-gravitational corrections to the power spectrum
(5.103) by using the corrected Schrödinger equation (5.61) without the unitarity-
violating term. For convenience, we write out this equation together with the defi-
nition of the relevant quantities once again:
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where
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and Wk := k2e4↵+m2e6↵ . (5.105)

Following [71] and [22], we assume that the corrected wave functions  (1)k can be
described by the following Gaussian ansatz, where we included corrections of Nk

and ⌦k, which are suppressed by the factor m�2
P
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After plugging this ansatz into the corrected Schrödinger equation (5.104), we ob-
tain the following differential equation
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This equation can be written in the form

2X

l=0

A2l f 2l
k = 0 (5.108)
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where the A2l are time-dependent coefficients. The differential equation we have to
solve in order to find a solution for ⌦(1)k is obtained by setting the coefficient A2 to
zero and it reads

⌦̇(1)k (t) = �2i e�3↵⌦(0)k (t)
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. (5.109)

Converting this equation to the variable ⇠, where e�↵ = H⇠/k, and inserting our
solution (5.79), this equation takes the following form
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(5.110)
where we have used the definitions

C := ⇢�� �� , D := ⇢�+�� . (5.111)

Now we have to choose a suitable boundary condition for ⌦(1)k . The choice made in
[71] and [22] is to demand that the quantum-gravitational corrections vanish for
late times, which is consistent and in agreement with observations. The relation
between ⇠ and t is given by

⇠(t) = e�H t k
H

. (5.112)

Therefore our chosen boundary condition ⌦(1)k (t)! 0 for t !1 translates to

⌦(1)k (⇠)! 0 for ⇠! 0 . (5.113)

We start as in [71] by considering the choice that the initial state of the pertur-
bations is the Bunch–Davies vacuum. This means that we set ⇣ = 1 and � = 3

2
⇡.

Furthermore, we neglect the mass term µ. Consequently, equation (5.110) simpli-
fies considerably to

d⌦(1)k

d⇠
=

2i⇠
(⇠� i)

⌦(1)k +
3
2
⇠3 (2⇠� i)
(⇠� i)3

. (5.114)

With the boundary condition (5.113), we then find the exact solution given in [22]

⌦(1)k (⇠) = �
3
8

e2i⇠ [1+ Ei(1, 2)e2]
(1+ i⇠)2

+⌦(1,part)
k (⇠) , (5.115)

where

⌦(1,part)
k (⇠) =

3
8

î
�5+ 6(1+ i⇠) + 4Ei (1,2(1+ i⇠))e2(1+i⇠)� 4⇠2(1+ i⇠)

ó

(1+ i⇠)2
.

(5.116)
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Figure 5.2: Plot of the real and imaginary part of ⌦(1)k (⇠) using E1(z).

Ei(a, z) denotes the exponential integral that is defined by

Ei(a, z) :=
Z 1

1

e�tz

ta dt . (5.117)

In the present case the function appearing in (5.115) and (5.116) is Ei(1, z), which
can be rewritten as (cf. [1], Sec. 5.1.)

Ei(1, z)⌘ �(0, z)⌘ E1(z) . (5.118)

We present a plot of the real and imaginary part of ⌦(1)k (⇠) in figure 5.2.

A further investigation of the differential equation (5.114) can be found in the
appendix. We can also use our solution (5.115) for the special case ⇣ = 1, � =
3
2
⇡, µ = 0 in order to look for a solution of the general equation (5.110) when

considering a linearization around ⇣ = 1 and � = 3
2
⇡, while keeping µ = 0. This

means to look for solutions of the form

⌦(1)k (⇠) = e⌦(1)k (⇠) + (⇣� 1)⌦(1)ak (⇠) +
✓
� � 3

2
⇡

◆
⌦(1)bk (⇠) , (5.119)

where e⌦(1)k denotes the special solution (5.115). Inserting (5.119) into (5.110) leads
to the following set of equations:

d⌦(1)ak

d⇠
= � 2i⇠

(i� ⇠) ⌦
(1)a
k �

1
4

i⇠
�
i sin⇠� 2cos⇠� 2i cos2 ⇠ sin⇠+ 2 cos3 ⇠

�
�
i sin⇠� 3 cos⇠� 4i cos2 ⇠ sin⇠+ cos3 ⇠

�
(i � ⇠)3

A(⇠) ,

d⌦(1)bk

d⇠
= � 2i⇠

(i� ⇠) ⌦
(1)b
k +

⇠2 �2 cos2 ⇠� 1+ 2i cos⇠ sin⇠
�

4 (i� ⇠)4
A(⇠) , (5.120)

where A(⇠) is defined as

A(⇠) = 12⇠4� 6⇠2+ 18i⇠+ 3+ 8e2i⇠P1+ 12 Ei(1, 2(1+ i⇠))e2(1+i⇠) , (5.121)



5.4 Quantum-gravitational corrections 65

and P1 stands for

P1 = �
3
8
� 3

2
e2 Ei(1,2) . (5.122)

These differential equations can only be studied numerically, which could be useful
to investigate what kind of influence the choice of a different vacuum for the initial
state would have. However, such an investigation is beyond the scope of this work
and we shall therefore focus in the following on the special case ⇣ = 1, � = 3

2
⇡,

µ= 0 with the solution (5.115).

In order to calculate the quantum-gravitationally corrected power spectrum, we
have to insert the real parts of (5.73) and (5.114) into the following equation that
represents the quantum-gravity correction to (5.95)

���̇(1)k (t)
��=

����
H⇠
p

2

d
d⇠

ïÄ
<e⌦(0)k (⇠) +m�2

P <e⌦
(1)
k (⇠)

ä� 1
2

ò���� . (5.123)

This leads to

���̇(1)k (t)
��=

�����
⇠2

p
2(⇠2+ 1)

H2

k
3
2

Ç
1+

⇠2+ 1
k3 <e⌦

(1)
k (⇠)

H2

m2
P

å� 3
2

⇥
Ç

1� (⇠
2+ 1)2

2⇠ k3 <e


d
d⇠
⌦(1)k (⇠)

�
H2

m2
P

å����� . (5.124)

Comparing this with (5.98), we see that we can combine the two terms in brackets
into one correction function Ck defined as

Ck :=

Ç
1+

⇠2+ 1
k3 <e⌦

(1)
k (⇠)

H2

m2
P

å� 3
2
Ç

1� (⇠
2+ 1)2

2⇠ k3 <e


d
d⇠
⌦(1)k (⇠)

�
H2

m2
P

å

(5.125)
and consequently, we get ���̇(1)k (t)

��= |Ck|
���̇(0)k (t)

�� . (5.126)

Therefore, all that is left to do in order to obtain the power spectrum is to evaluate
(5.125) at the point of horizon crossing, ⇠ = 2⇡. For the function ⌦(1)k , we obtain
the following numerical values from (5.115)

<e⌦(1)k (⇠= 2⇡)' �1.343 and <e


d
d⇠
⌦(1)k (⇠)

�

⇠=2⇡
' �0.061 . (5.127)

Hence, we get the following expression for (5.125)

Ck '
Ç

1� 54.37
k3

H2

m2
P

å� 3
2
Ç

1+
7.98
k3

H2

m2
P

å
. (5.128)
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Figure 5.3: Plot of the imaginary part of E1(2i⇠+ 2) and Ei(2i⇠+ 2).

The corrected power spectrum P (1)(k) can therefore be written as

P (1)(k) = P (0)(k)C2
k ' P (0)(k)

ñ
1+

89.54
k3

H2

m2
P

+
1
k6 O

Ç
H4

m4
P

åô2

' P (0)(k)
ñ

1+
179.09

k3

H2

m2
P

+
1
k6 O

Ç
H4

m4
P

åô
. (5.129)

Thus, the quantum-gravitational correction leads to an enhancement of power on
the largest scales.

In the original article [71], a different exact solution of (5.114) is used, which
is of the same form as (5.115), but the exponential integral Ei(1, z) is replaced –
instead of E1(z) – by the following exponential integral

Ei(z) := �
Z 1

�z

e�t

t
dt . (5.130)

While both solutions Ei(z) and E1(z) are defined to assume the value zero for ⇠= 0,
the solution E1(z) approaches this value continuously, whereas the function Ei(z)
makes a jump of size ⇡ in its imaginary part according to the relation [1]

E1(� x ± i 0) = �Ei(x)⌥ i⇡ , (5.131)

where E1 is defined as given above

E1(z) :=
Z 1

z

e�t

t
dt for |arg z|< ⇡ . (5.132)

This behavior is illustrated in figure 5.3. The additional i⇡ causes an oscillatory
behavior of the solution ⌦(1)k as it is shown in figure 5.4.
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Figure 5.4: Plot of the real and imaginary part of ⌦(1)k (⇠) using Ei(z).

Hence, if we want to impose the continuity of our solution as a selection criterion,
we would have to disregard the second solution defined with Ei(x). However,
one could also argue in the following way: This discontinuity only happens for
the imaginary part of ⌦(1)k and the relevant quantity �̇(1)k to calculate the power
spectrum only contains the real part of ⌦(1)k , which goes to zero for ⇠! 0. Therefore
independently of which value the imaginary part takes, �̇(1)k goes to �̇(0)k for ⇠! 0.
Therefore, it is in accordance with our requirement that the quantum-gravitational
correction should vanish for late times.

Evaluating ⌦(1)k (⇠) and its derivative at ⇠ = 2⇡ with the Ei(x) solution gives the
values of [71]

<e⌦(1)k (⇠= 2⇡)' �1.076 and <e


d
d⇠
⌦(1)k (⇠)

�

⇠=2⇡
' 1.451 . (5.133)

Note that the derivative has changed the sign compared to (5.127). Inserting these
values into (5.125) and setting ⇠= 2⇡ then leads to

Ck '
Ç

1� 43.56
k3

H2

m2
P

å� 3
2
Ç

1� 189.18
k3

H2

m2
P

å
. (5.134)

For the corrected power spectrum we then get a suppression of power on large scales
in contrast to (5.129)

P (1)(k) = P (0)(k)C2
k ' P (0)(k)

ñ
1� 123.83

k3

H2

m2
P

+
1
k6 O

Ç
H4

m4
P

åô2

' P (0)(k)
ñ

1� 247.68
k3

H2

m2
P

+
1
k6 O

Ç
H4

m4
P

åô
. (5.135)
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Figure 5.5: Plot of eC(⇠) using E1(z) (left) and Ei(z) (right).

In order to investigate this issue further, we can plot the function eC(⇠), which is
defined via

C2
k ' 1+

eC(⇠)
k3

H2

m2
P

+
1
k6 O

Ç
H4

m4
P

å
(5.136)

and describes which value the correction term is multiplied with depending on
which value of ⇠ the quantity �̇(1)k is evaluated at. Figure 5.5 shows that using the
continuous function E1(z) always leads to an enhancement of the power spectrum,
no matter at which value ⇠ we evaluate the perturbations. However, when using
Ei(z), the function eC(⇠) oscillates and the result whether one has an enhancement
or suppression of the power depends on the value of ⇠ at which we evaluate the
power spectrum. Our choice ⇠= 2⇡ leads to a suppression.

Furthermore, we see that both functions go to zero for ⇠! 0 and therefore fulfill
the requirement we have chosen to set the boundary condition, namely that the
quantum-gravitational corrections vanish for late times.

We can also evaluate eC(⇠) at the value ⇠ = 1 in order to find out, how the
correction term behaves, if we use the definition k = L�1 for the wave number. This
leads to the value

eC(⇠= 1)' 2.6387 (5.137)

for the choice E1(z) and
eC(⇠= 1)' 80.4527 (5.138)

if we use the function Ei(z). Hence, we see that we have an enhancement in both
cases, which is, however, more prominent if we use the function E1(z).
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For later purposes, we can also write the corrected power spectrum in the form

P (1)� (k) = P (0)� (k)
ñ

1+�WDW
� (k) +O

Ç
H4

m4
P

åô
, (5.139)

where the correction function is given by

�WDW
� (k) =

H2

m2
P

eC(⇠)
k3 . (5.140)

In the next chapter, we shall extend the analysis of perturbations during inflation
to gauge-invariant scalar and tensor perturbations. In chapter 7, we will then dis-
cuss whether the quantum-gravity correction discussed in this and the subsequent
chapter can in principle be observable in the Cosmic Microwave Background.





6
Quantum-gravitational effects on
gauge-invariant scalar and tensor
perturbations during inflation

In this chapter, we are going to extend the analysis on quantum-gravitational correc-
tions to the power spectrum of primordial perturbations presented in the previous
chapter. We use gauge-invariant variables for scalar perturbations to make our work
more comparable with the standard procedure in cosmological perturbation theory
and also include tensor perturbations to see how quantum gravity influences the
power spectrum of primordial gravitational waves. We perform our calculations
both in a pure de Sitter universe as well as for a generic model of slow-roll inflation.

6.1 Derivation of the Wheeler–DeWitt equation

6.1.1 The background

We start with formulating the Wheeler–DeWitt equation for our background uni-
verse in terms of the conformal time ⌘, for which we recall its definition in terms of
the cosmic time t and scale factor a

d⌘
dt
=

1
a

. (6.1)

The Robertson–Walker line element then takes the following form

ds2 = a2(⌘)
Ä
�d⌘2+ dx2

ä
, (6.2)

such that by comparison with the standard form,

ds2 = �N 2(t)dt2+ a2(t)d⌦2
3,K , (6.3)
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we set the lapse function N equal to a, such that the action for a flat FLRW universe
without cosmological constant and including a massive scalar field � with potential
V(�), which we have derived in the chapter 3 as

S =
1
2

Z
dt L3 N a3

Ç
� 3⇡

2G
1

N 2

ȧ2

a2 +
�̇2

N 2 � 2V(�)
å

, (6.4)

becomes

S =
1
2

Z
d⌘L3

✓
� 3⇡

2G
a02+ a2�02� 2 a4 V(�)

◆
⌘
Z

d⌘ L , (6.5)

where we denote derivatives with respect to ⌘ as primes and have introduced an
arbitrary length scale L that enters here due to the former integration over the
volume. Since we do not want to denote this length scale explicitly in the subsequent
calculations, we follow [64] and make the replacements

anew = aold L , ⌘new =
⌘old

L
. (6.6)

In doing so, the scale factor a has the dimension of a length and ⌘ is dimensionless.
The length scale L appearing in (6.5) is then effectively set to one. We have
to remember to restore L explicitly in all respective quantities when discussing
observational consequences of our calculations.

After performing this replacement, the Lagrangian itself takes the form

L = � 3⇡
4G

a02+
a2

2
�02� a4 V(�) . (6.7)

The canonical momenta then read

⇡a =
@ L
@ a0
= � 3⇡

2G
a0 , ⇡� =

@ L
@ �0

= a2�0 , (6.8)

such that by using the Legendre transform

H = ⇡a a0+⇡� �0 � L , (6.9)

we obtain the following Hamiltonian

H = � G
3⇡
⇡2

a +
1

2a2 ⇡
2
� + a4 V(�) . (6.10)

Before we proceed to quantization, let us introduce the minisuperspace metric GAB,
whose indices run from 0 to 1, in the following way

GAB = diag
✓
� 3⇡

2G
, a2

◆
, G = � 3⇡

2G
a2 (6.11)
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such that by defining q0 := a and q1 := �, we can write

L(qA, q0A) =
1
2
GAB q0Aq0B � V (qA) , (6.12)

and

H =
1
2
GAB pA pB + V (qA) , (6.13)

where V (qA) = a4 V(�).

For quantization we use the Laplace–Beltrami factor ordering, which means that
we perform the following replacement

GAB pA pB !�
~h2

p�G
@

@ qA

✓p
�G GAB @

@ qB

◆
. (6.14)

In our case, this leads to

� ~h
2

p�G
@

@ qA

✓p
�G GAB @

@ qB

◆
=

2~h2G
3⇡a

@

@ a

✓
a
@

@ a

◆
� ~h

2

a2

@ 2

@ �2 . (6.15)

Our choice is motivated by the fact that the Laplace–Beltrami factor ordering en-
sures that the kinetic term is invariant under transformations in configuration space.
Different choices for the factor ordering, which in this case only affect the term con-
taining derivatives of a, can be parametrized by introducing a parameter s in the
following way

a�s @

@ a

✓
as @

@ a

◆
. (6.16)

For the Laplace–Beltrami factor ordering, s = 1. We will later see that the factor
ordering does not influence our results, since the affected term will only appear in
the definition of the WKB time and can therefore be incorporated into this definition.

Finally, we can write out the Wheeler–DeWitt equation for our background uni-
verse ñ

~h2G
3⇡a

@

@ a

✓
a
@

@ a

◆
� ~h

2

2a2

@ 2

@ �2 + a4 V(�)
ô
 0(a,�) = 0 . (6.17)

A common simplification of this equation is to introduce the quantity ↵, defined in
terms of a reference scale factor a0 as

↵ := ln
✓

a
a0

◆
. (6.18)

We will refrain from writing out a0 explicitly in the following. Our Wheeler–DeWitt
equation then reads

ñ
~h2G
3⇡

e�2↵ @
2

@ ↵2 �
~h2

2
e�2↵ @

2

@ �2 + e6↵ V(�)
ô
 0(↵,�) = 0 . (6.19)
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If we now set ~h⌘ 1 and define for convenience

m2
P :=

3⇡
2G

, (6.20)

we finally arrive at

1
2

e�2↵

ñ
1

m2
P

@ 2

@ ↵2 �
@ 2

@ �2 + 2e6↵ V(�)
ô
 0(↵,�) = 0 . (6.21)

6.1.2 Scalar perturbations

The next step is to introduce scalar perturbations to the background metric that can
be parametrized by the four scalar functions A, B,  and E, which are functions of
space and time, as follows

ds2 = a2(⌘)
¶
� (1� 2A)d⌘2+ 2

�
@iB

�
dx id⌘+

î�
1� 2 

�
�i j + 2@i@ j E

ó
dx idx j

©
.

(6.22)
This parametrization still contains three unphysical degrees of freedom, because
gauge transformations have not been taken into account up to now. In order to
remove these additional degrees of freedom, we consider infinitesimal coordinate
transformations of the form

xµ! x̃µ = xµ+ ⇠µ , (6.23)

where the generator ⇠µ can be decomposed into a temporal as well as a spatial part,
and the latter can be further decomposed into a transversal and a longitudinal part

⇠µ = �µ0 ⇠
0+�µi

Ä
⇠i

T+�
i j⇠, j

ä
. (6.24)

The spatial transversal part ⇠i
T only influences vector perturbations. Hence, we are

left with the following two coordinate transformations for our four scalar degrees
of freedom

⌘! ⌘̃ = ⌘+ ⇠0 , x i ! x̃ i = x i +�i j @ j⇠ . (6.25)

Consequently, the scalar functions A, B,  and E transform in the subsequent way

A! Ã= A+H⇠0+
Ä
⇠0
ä0

, B! B̃ = B+ ⇠0� ⇠0 , (6.26)

 !  ̃ = +H⇠0 , E! Ẽ = E + ⇠ , (6.27)

where H := a0/a as before. From this, one can construct two gauge-invariant quan-
tities that characterize the physical scalar metric perturbations. These quantities are
called the Bardeen potentials �B and  B and are defined as

�B(⌘,x) := A+
1
a
⇥

a
�
B� E0

�⇤0 ,  B(⌘,x) := �H
�
B+ E0

�
. (6.28)
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Apart from the metric perturbations, the scalar sector also includes fluctuations
��(⌘,x) of the scalar inflaton field �(⌘). These fluctuations can be expressed in a
gauge-invariant way as follows

��(gi)(⌘,x) = �� +�0
�
B� E0

�
. (6.29)

Finally, as it was shown e.g. in [87], we can combine the quantities �B and ��(gi)

to a single gauge-invariant quantity, the so-called Mukhanov–Sasaki variable v, that
fully describes the scalar sector of the perturbations:

v(⌘,x) = a

��(gi) +�0

�B

H

�
. (6.30)

From an expansion of the Einstein–Hilbert action plus the scalar field action around
a FLRW background up to the second order in the perturbations, one obtains the
following action for the variable v [87]

(2)�S =
1
2

Z
d⌘d3x

ñ
�

v0
�2��i j @i v @ j v +

z00

z
v2

ô
, (6.31)

where z is given by

z =
�0

H
=

a
H
�0 , (6.32)

such that z00/z in the general case becomes a highly intricate expression containing
first and second ⌘-derivatives of � and a. However, in the de Sitter and slow-roll
cases we will discuss later, we can significantly simplify the respective expressions.

Given that we deal with a linear theory, we can assume that all modes of the
perturbations evolve independently and, hence, perform a Fourier transform of the
variable v:

v
�
⌘,x

�
=
Z

R3

d3k

(2⇡)3/2
vk(⌘)eik·x . (6.33)

Note that in this chapter, we relate the wave vector k and its modulus k = |k| to a
length without including the factor 2⇡, i. e. we have the following relation for the
wave length L corresponding to k

k = L�1 . (6.34)

Since v is real, the relation v�k = v⇤k holds. Inserting the Fourier transform into eq.
(6.31) then leads to

(2)�S =
Z

d⌘

Z
d3k

®
v0kv⇤k

0+ vkv⇤k

ñ
z00

z
� k2

ô´
, (6.35)
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where we have taken the integral over the spatial volume. Note that the k-integral
here is understood to be taken only over half of the Fourier space.

For later convenience, we now want to replace the integral over k by a sum over
k := |k|. In order to do so, we have to introduce an arbitrary length scale L like for
the background in the previous section, cf. [90],

Z
d3k

⇢
· · ·

�
! 1

L3

1X

k 6=0

⇢
· · ·

�
. (6.36)

We thus obtain

(2)�S =
Z

d⌘
1
L3

1X

k 6=0

®
v0kv⇤k

0+ vkv⇤k

ñ
z00

z
� k2

ô´
. (6.37)

Again following [64], we can eliminate L by performing the replacements (6.6)
done in the previous section in addition to two replacements for v and k:

anew = aold L , ⌘new =
⌘old

L
, vnew =

vold

L2 , knew = kold L , (6.38)

which means that the wave vector k is now regarded as a dimensionless quantity
and we have to introduce a reference scale later when comparing our result to
observations. For our action we end up with

(2)�S =
Z

d⌘
1X

k 6=0

®
v0kv⇤k

0+ vkv⇤k

ñ
z00

z
� k2

ô´
. (6.39)

Defining the canonical momentum as

pk =
@L
@ v⇤k
0 = v0k , (6.40)

we can write out the Hamiltonian as follows

H =
1X

k 6=0

®
pkp⇤k+ vkv⇤k

ñ
k2� z00

z

ô´
. (6.41)

In principle, in order to perform a complete quantization that includes the back-
ground variables a and �, we also have to replace the ⌘-derivatives of a and �
appearing in z00/z by their canonical momenta like it is, for example, done in [81].
This would complicate the quantization procedure significantly and since we will
later only consider the de Sitter and slow-roll cases, in which the derivatives con-
tained in z00/z are approximated by parameters determined at the classical level, we
shall keep z00/z unquantized.
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For convenience, we define the quantity

S!2
k(⌘) = k2� z00

z
, (6.42)

which can be regarded as a time-dependent frequency of the parametric harmonic
oscillator described by the Hamiltonian (6.41). The Mukhanov–Sasaki variable con-
sequently obeys the following equation of motion at the classical level:

v00k +
S!2

k(⌘) vk = 0 . (6.43)

Before quantization, we make the subsequent definitions in order to be able to work
with real variables:

vk ⌘
1
p

2

Ä
vR

k + i vI
k

ä
, pk ⌘

1
p

2

Ä
pR

k + i pI
k

ä
. (6.44)

Note that the resulting wave functional can be factorized as follows:

 
⇥

v(⌘,x)
⇤
=
Y

k

 k

Ä
vR

k , vI
k

ä
=
Y

k

 R
k

Ä
vR

k

ä
 I

k

Ä
vI

k

ä
. (6.45)

We now promote vk and pk to quantum operators v̂k and p̂k that obey the following
commutation relations

h
v̂R

k , p̂R
q

i
= i�

�
k� q

�
,

h
v̂I

k, p̂I
q

i
= i�

�
k� q

�
, (6.46)

such that we can represent v̂k and p̂k in the subsequent way

v̂R,I
k  = vR,I

k  , p̂R,I
k  =�i

@ 

@ vR,I
k

. (6.47)

The total quantum Hamiltonian for the scalar perturbations then reads

SĤ =
1X

k 6=0

Ä
SĤR

k +
SĤI

k

ä
, (6.48)

where the Hamiltonians for the individual modes are given by

SĤR,I
k = �

1
2

@ 2

@
Ä

vR,I
k

ä2 +
1
2

S!2
k(⌘)

Ä
vR,I

k

ä2
. (6.49)

For notational simplicity we now omit the labels R and I as well as the circumflex to
denote the quantum-operator nature of H, such that the Hamiltonian of the scalar
fluctuations finally takes the form:

SH =
1X

k 6=0

SHk =
X

k

®
� 1

2
@ 2

@ v2
k

+
1
2

S!2
k(⌘) v2

k

´
. (6.50)
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6.1.3 Tensor perturbations

Apart from the scalar perturbations we also introduce tensor perturbations that
would lead to primordial gravitational waves. In the CMB radiation, these would
be detectable especially as B-mode polarization.

We introduce tensor perturbations as a symmetric, traceless and divergenceless
tensor hi j as follows

ds2 = a2(⌘)
î
�d⌘2+

Ä
�i j + hi j

ä
dx idx j

ó
. (6.51)

These perturbations are already gauge-invariant by construction. The six indepen-
dent components of the symmetric tensor hi j = hji are reduced by three due to its
divergencelessness @ ihi j = 0 and by one due to its tracelessness �i jhi j = 0, such that
two degrees of freedom remain that correspond to two polarizations, h(+) and h(⇥).
If we define

v(�),Rk :=
aMPp

2
<e(hk) , v(�),Ik :=

aMPp
2
=m(hk) , (6.52)

we can write out the total Hamiltonian for the tensor perturbations in the following
way

TĤ =
X

�=+,⇥

Z
d3k

Ä
TĤ(�),Rk + TĤ(�),Ik

ä
, (6.53)

where the Hamiltonians for the respective polarization modes are given by

TĤ(�);R,I
k = �1

2
@ 2

@
Ä

v(�);R,I
k

ä2 +
1
2

T!2
k(⌘)

Ä
vk
(�);R,I

ä2
. (6.54)

The crucial difference to the scalar perturbations apart from the two polarizations
lies in the time-dependent frequency, which is now given by

T!2
k(⌘) = k2� a00

a
. (6.55)

We can replace the integral in (6.53) by a sum using the procedure presented in
(6.36) and (6.38), which leads to

TĤ =
X

�=+,⇥

1X

k 6=0

Ä
Ĥ(�),Rk + TĤ(�),Ik

ä
. (6.56)

Again, omitting the labels R and I as well as the circumflex leads to the following
Hamiltonian for the tensor perturbations:

TH =
1X

k 6=0

THk =
1X

k 6=0

®
� 1

2
@ 2

@ v2
k

+
1
2

T!2
k(⌘) v2

k

´
, (6.57)

i. e. the Hamiltonian has the same form as for the scalar perturbations, which allows
us to treat both cases in the same manner.
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6.1.4 Master Wheeler–DeWitt equation

In the end, our master Wheeler–DeWitt equation for both scalar and tensor pertur-
bations reads:
1
2

®
e�2↵

ñ
1

m2
P

@ 2

@ ↵2 �
@ 2

@ �2 + 2e6↵ V(�)
ô
+
X

k;S,T

ñ
� @

2

@ v2
k

+ S,T!2
k(⌘) v2

k

ô´
 (↵,�, {vk}) = 0 .

(6.58)
For notational simplicity, we shall skip the superscripts S and T as well as the hat
to denote operators from now on and we therefore use the following Hamiltonian
density for both scalar and tensor perturbations

Hk = �
@ 2

@ v2
k

+!2
k(⌘) v2

k . (6.59)

Assuming that we can neglect the self-interaction of the perturbation modes, we can
use a product ansatz for the wave function of the form

 
�
↵,�, {vk}

1

k=1

�
=  0(↵,�)

1Y

k=1

e k(↵,�, vk) (6.60)

and find that each of the wave functions

 k(↵,�, vk) :=  0(↵,�)e k(↵,�, vk) (6.61)

fulfills the following Wheeler–DeWitt equation

1
2

®
e�2↵

ñ
1

m2
P

@ 2

@ ↵2 �
@ 2

@ �2 + 2e6↵ V(�)
ô
� @ 2

@ v2
k

+!2
k(⌘) v2

k

´
 k(↵,�, vk) = 0 .

(6.62)
We now want to streamline the notation by introducing a minisuperspace metric. In
order to do so, we rescale the scalar field � with the inversely squared Planck mass

�̃ := m�1
P � (6.63)

and introduce the minisuperspace variable qA, whose index can take either the value
0 or 1. We set

q0 := ↵ and q1 := �̃ . (6.64)

Defining a minisuperspace metric GAB as

GAB := diag
Ä
�e�2↵, e�2↵

ä
, (6.65)

and using the definition

V (qA) :=
2

m2
P

e4↵ V(�) = 2e4↵ V(�̃) , (6.66)

we can finally write

1
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®
� 1

m2
P

GAB
@ 2

@ qA@ qB
+m2

P V (qA)� @ 2

@ v2
k

+!2
k(⌘) v2

k

´
 k(↵,�, vk) = 0 . (6.67)
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6.2 Semiclassical approximation

In order to calculate the power spectrum and quantum-gravitational corrections to
it, we now want to perform the semiclassical approximation that was introduced
in the previous chapter. The calculation in the present case is largely analogous
to the former one, the only difference is the use of the conformal time instead of
cosmic time, as well as the inclusion of the kinetic term of the scalar field in the
background. However, by using the minisuperspace metric (6.65), the equations
become formally equivalent to just using the scale factor as background and
therefore we shall only present the main steps of the semiclassical approximation
in the following.

As before, we start with the WKB ansatz

 k(qA, vk) = ei S(qA,vk) (6.68)

and expand S(qA, vk) in terms of powers of m2
P

S(qA, vk) = m2
P S0+m0

P S1+m�2
P S2+ . . . . (6.69)

We again insert this ansatz into (6.67), collect terms with a certain power of mP and
set the sum of terms with a specific power of mP equal to zero. The highest order
appearing is m4

P and from this we obtain the background condition

@

@ vk
S0(qA, vk) = 0 , (6.70)

which implies that S0 does not depend on the vk.

At order m2
P, our approximation leads to the Hamilton–Jacobi equation of the

background

GAB
@ S0

@ qA

@ S0

@ qB
+ V (qA) = 0 , (6.71)

which is equivalent to the Friedmann equation. We will solve this equation in the
de Sitter and slow-roll case later.

The next order corresponds to m0
P. Here we get the following equation:

2GAB
@ S0

@ qA

@ S1

@ qB
� iGAB

@ 2S0

@ qA@ qB
+
✓
@ S1

@ vk

◆2

� i
@ 2S1

@ v2
k

+!2
k v2

k = 0 . (6.72)

In this case, we go through the derivation of the Schrödinger equation in more
detail, because we now want to use conformal time and need to make sure that the
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resulting Schrödinger equation with conformal time is consistent. We again define
the following wave function that will obey the Schrödinger equation we are about
to derive:

 (0)k (q
A, vk) := �(qA)ei S1(qA,vk) . (6.73)

The prefactor � is again the WKB prefactor we actually omitted in the WKB ansatz
(6.68) we used. We impose the following condition on �:

GAB
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�
= 0 , 1

�
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2
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@ 2S0
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= 0 . (6.74)

If we furthermore define the conformal WKB time to be
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ô
, (6.75)

we can make the following manipulations to the Hamiltonian densities of the scalar
(6.49) and tensor (6.54) modes
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= i

@

@ ⌘
 (0)k . (6.76)

Hence, we finally arrive at the following Schrödinger equation

i
@

@ ⌘
 (0)k =Hk 

(0)
k (6.77)

In order to obtain quantum-gravitational correction terms to this equation, we again
have to look at the terms of order m�2

P , where we get
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As before, we split S2 into a part & depending only on the background variables, and
a part ⇠ containing also the perturbations vk:

S2(qA, vk)⌘ &(qA) + ⇠(qA, vk) . (6.79)

This split leads to the following equation for ⇠
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(6.80)
which can be rewritten using (6.75) as
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(6.81)
We define again the quantum-gravitationally corrected wave function  (1)k (q

A, vk)
for the perturbation modes as follows

 (1)k (q
A, vk) := (0)k (q

A, vk)ei m�2
P ⇠(qA,vk) , (6.82)

and after some calculations, which are analogous to the ones presented in the pre-
vious chapter, we obtain
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In the end, this leads to the quantum-gravitationally corrected Schrödinger equation
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. (6.84)

6.3 Gaussian ansatz

As in the previous chapter, where we only considered scalar field perturbations,
we also assume here that the scalar and tensor perturbations are in the ground
state. In order to solve the Schrödinger equation (6.77), we therefore make the
following Gaussian ansatz with normalization factor N (0)

k (⌘) and inverse Gaussian
width ⌦(0)k (⌘)

 (0)k (⌘, vk) =N (0)
k (⌘)e

� 1
2 ⌦

(0)
k (⌘) v2

k . (6.85)
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Inserting this ansatz into equation (6.77), collecting all terms that contain a factor
of v2

k or v0
k and setting these equal to zero individually, leads to the following two

equations

iN 0(0)k (⌘) = � 1
2
N (0)

k (⌘)⌦
(0)
k (⌘) , (6.86)

i⌦0(0)k (⌘) =
�
⌦(0)k (⌘)

�2�!2
k(⌘) . (6.87)

We can find a solution to the first one immediately by considering the normalization
of the wave function
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!= 1 . (6.88)

This leads to

|N (0)
k (⌘)|2 =

»
<e⌦(0)k (⌘)

⇡
. (6.89)

Inserting this solution into (6.86) yields

<e⌦0(0)k (⌘) = 2<e⌦(0)k (⌘)=m⌦
(0)
k (⌘) , (6.90)

which is the same expression as taking the real part of equation (6.87).

For the quantum-gravitationally corrected Schrödinger equation, we make again
the following ansatz as motivated in the previous chapter
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(6.91)
Taking into account only the first part of the correction term in (6.84), we get the
following differential equation for ⌦(1)k :

i⌦0(1)k (⌘) = 2⌦(0)k (⌘)
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6.4 Derivation of the power spectra

6.4.1 The de Sitter case

In the previous chapter, we did our calculations assuming that our background is a
de Sitter universe. Before discussing the more realistic quasi-de Sitter case, we shall
consider the pure de Sitter case again due to its computational simplicity.

In order to use a de Sitter universe as our background, we set the scalar field � to
a constant value determined by the constant Hubble parameter H during inflation
and the mass m of the scalar field

� = mP �̃ = mP
H
m

. (6.93)

We therefore have

V(�) =
1
2

m2�2 =
1
2

m2
P H2 . (6.94)

Furthermore we can neglect the derivative with respect to �, such that our master
Wheeler–DeWitt equation simplifies to
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The quantity !2
k(⌘) is given for both scalar and tensor perturbations as

!2
k(⌘) = k2� 2

⌘2 . (6.96)

Hence, we will treat both perturbations at once up to the point where we calculate
the power spectra.

The Hamilton–Jacobi equation (6.71) reads
✓
@ S0

@ ↵

◆2

� e6↵H2 = 0 , (6.97)

and its solution is given by

S0(↵) = ±
1
3

e3↵H . (6.98)

The definition of the WKB conformal time therefore takes the form
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. (6.99)

In order to obtain the usual definition of time, we have to choose the minus sign in
equation (6.98)

S0(↵) = �
1
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. (6.100)
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The Schrödinger equation (6.77) takes the form

i
@

@ ⌘
 (0)k =

1
2

ñ
� @

2

@ v2
k

+
✓

k2� 2
⌘2

◆
v2

k

ô
 (0)k . (6.101)

With the Gaussian ansatz (6.85)

 (0)k (⌘, vk) =N (0)
k (⌘)e

� 1
2 ⌦

(0)
k (⌘) v2

k , (6.102)

we have to solve the following differential equation

i⌦0(0)k (⌘) =
�
⌦(0)k (⌘)

�2� k2+
2
⌘2 . (6.103)

The corresponding equation from our previous calculation reads

i ⌦̇(0)k,old(t) = e�3H t�⌦(0)k,old(t)
�2� eH t k2 . (6.104)

In order to transform the two equations into each other, one has to perform the
following transformation

⌦(0)k (⌘) = a2⌦(0)k,old(t)� i aH =
⌦(0)k,old(t)

H2⌘2 +
i
⌘

. (6.105)

We see that there is an additional imaginary term i/⌘. This term appears because
in (6.30) we multiplied the perturbation variable with the scale factor before
quantization. Such a term is also discussed in [86], where it is shown that it does
not influence the classical result. We should, however, not expect that this also
holds for the quantum-gravitational corrections. Due to the inclusion of the scale
factor, the full quantum theory we are discussing here is different from the one
discussed in chapter 5.

While equation (6.103) can be solved directly by integration, a more elegant way
to find a solution, which is the one normally taken, is to use the ansatz

⌦(0)k (⌘) = � i
y 0(⌘)
y(⌘)

, (6.106)

which leads to the following equation for both the scalar and tensor modes
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This equation can be solved by
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In order to obtain the Bunch–Davies vacuum for ⌘!�1, we have to set

c1 = �1 , c2 = �i , (6.109)

which leads to
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and consequently
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For later convenience, we rewrite this result in terms of the dimensionless variable

⇠ :=
k

Ha
= � k⌘ , (6.112)

which leads to
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Compared to our previous result

⌦(0)k,old(⌘) =
k2
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1
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1
⇠� i

, (6.114)

we can confirm that the transformation (6.105) yields the new result as well.

Power spectrum of the scalar perturbations

In order to derive the power spectrum of the scalar perturbations in the standard
formalism (cf. e. g. [86]), we have to consider the two-point correlation function
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(6.115)
One can show that this can be simplified to
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<e⌦(0)k can be rewritten as

<e⌦(0)k = �
i
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W
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, (6.117)
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where
W = y 0k y⇤k � y 0⇤k yk . (6.118)

In the Heisenberg quantization the Wronskian W has to be defined as being equal to
i, in the Schrödinger quantization the value is not fixed and also does not influence
any observable quantity. We set it to i nevertheless for convenience. Hence, we
arrive at

¨
 k

��v̂(⌘,x)v̂(⌘,x+ r)
�� k

∂
=

1
(2⇡)3

Z
dpe�ip·r i

W
|yp|2 =

1
2⇡2

Z +1

0

dp
p

sin(pr)
pr

p3 |yp|2

(6.119)
and we can define the power spectrum as

P (0)v (k) =
k3

2⇡2 |yk|2 . (6.120)

Doing the same calculation in order to obtain the two-point correlation function of
the Fourier transformed variable v, we arrive at

≠
 k

���v̂k v̂⇤p

��� k

∑
=
Z Y

q

dvR
q dvI

q 
⇤
q v̂k v̂⇤p q , (6.121)

which leads to ≠
 k

���v̂k v̂⇤p

��� k

∑
=

2⇡2

k3 P (0)v (k)�(k� p) . (6.122)

The temperature anisotropies of the CMB are directly related to the curvature per-
turbation ⇣ defined by

⇣ =
2
3
H�1�0B+�B

1+ w
+�B , (6.123)

where �B is the Bardeen potential and w is the barotropic index in the equation of
state P = w⇢. In the matter-dominated era, during which recombination occurs,
and considering only perturbations on large scales, this equation simplifies to

⇣ ' 5
3
�B . (6.124)

In terms of the Mukhanov–Sasaki variable, ⇣ takes the form

⇣k =
1

a
p

2✏

vk

MP
(6.125)

and the two-point correlation function reads
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⇤
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, (6.126)
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which we can use to define the power spectrum of the curvature perturbations

P (0)⇣ (k) =
1

2a2 M2
P✏

P (0)v (k) =
1

2a2 M2
P✏

k3

2⇡2 |yk|2 =
1

2a2 M2
P✏

k3

2⇡2

1

2<e⌦(0)k

. (6.127)

Before we insert the real part of our solution (6.111), we have to take the limit
�k⌘ = ⇠! 0, which is the limit of superhorizon scales. It leads to

<e⌦(0)k (⌘) =
k3⌘2

k2⌘2+ 1
�! k3⌘2 . (6.128)

or equivalently

<e⌦(0)k (⇠) =
k⇠2

⇠2+ 1
�! k⇠2 . (6.129)

Inserting this expression into (6.127) together with the relation

a = � 1
H⌘
=

k
H⇠

(6.130)

leads to

P (0)⇣ (k) =
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2 M2
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1
2k3⌘2 =

H2⇠2
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2⇡2

1
2k⇠2 , (6.131)

such that we end up with the following power spectrum for the scalar sector

P (0)S (k) = P (0)⇣ (k) =
H2

8⇡2 M2
P✏

����
k=Ha

. (6.132)

Due to the appearance of the slow-roll parameter ✏, the final expression has to
be evaluated at the point in time, at which a specific mode k reenters the Hubble
radius, which is k = Ha (or ⇠ = 1). This makes the power spectrum (6.132)
become k-dependent. We thus have obtained a power spectrum that is almost
scale-independent, but tilted due to the fact that the ✏ appears and that we evaluate
the expression at different points in time for each mode. Hence, even though our
calculation was done in the pure de Sitter case, we have obtained a result that
describes effectively the quasi-de Sitter case by letting ✏, which we have considered
to be constant in our calculations, vary again.
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Power spectrum of the tensor perturbations

For the tensor modes, the power spectrum for the Mukhanov–Sasaki variable v is
also given by

P (0)v (k) =
k3

2⇡2 |yk|2 =
k3

2⇡2

1

2<e⌦(0)k

, (6.133)

but the relevant physical variable we have to evaluate reads

hk =
2
a

vk

MP
, (6.134)

such that we have for a single polarization

P (0)h (k) =
4

a2 M2
P

P (0)v (k) =
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P

k3

2⇡2 |yk|2 =
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a2 M2
P

k3

2⇡2

1

2<e⌦(0)k

. (6.135)

If we then insert the solution (6.111) we found for<e⌦(0)k and take the superhorizon
limit �k⌘ = ⇠! 0, i.e. equation (6.128), we obtain

P (0)h (k) =
4 H2⌘2

M2
P

k3

2⇡2

1
2k3⌘2 =

4 H2⇠2

M2
P k2

k3

2⇡2

1
2k⇠2 (6.136)

and the power spectrum for one polarization of the tensor perturbations reads

P (0)h (k) =
H2

⇡2 M2
P

. (6.137)

Since we have two polarizations for gravitational waves, we have to multiply the
previous expression by two, such that the final power spectrum for tensor perturba-
tions in the de Sitter case is given by

P (0)T (k) = 2P (0)h (k) =
2 H2

⇡2 M2
P

. (6.138)

We thus see that we recover the usual tensor-to-scalar ratio r

r(0) =
P (0)T (k)

P (0)S (k)
= 16✏ . (6.139)
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6.4.2 The slow-roll case

Since the pure de Sitter case is often too restrictive to make contact with observa-
tions, we shall now regard slow-roll inflation, for which we assume

�̇2⌧ V , �̈⌧ 3H�̇ . (6.140)

The first condition allows us to neglect the �-kinetic term in our Wheeler–DeWitt
equation. We use the slow-roll parameters

✏= � Ḣ
H2 = 1� H0

H2 (6.141)

and

� = ✏� ✏̇

2H✏
= � �̈

H�̇
. (6.142)

From the relation
ä
a
= H2 (1� ✏) , (6.143)

one can see that ✏ must be smaller than 1 in order for inflation to happen, for slow-
roll inflation the condition has to be further restricted to ✏⌧ 1 and �⌧ 1. In this
case, ✏ and � can also be expressed in terms of

✏V =
M2

P

2V2

✓
dV
d�

◆2

(6.144)

and

⌘V =
M2

P

V

Ç
d2V
d�2

å
(6.145)

as
✏= ✏V , � = ⌘V � ✏V . (6.146)

The conformal time can then be expressed as

⌘ = � 1
Ha


1

1� ✏ � 2✏ (✏��)
�
= � 1

Ha
(1+ ✏) +O

Ä
2nd

ä
, (6.147)

where we have introduced the short-hand notation

O
Ä

2nd
ä

:= O
Ä
✏2,�2,✏�

ä
. (6.148)

This relation means that we have to be careful when replacing ⌘ by the dimension-
less variable ⇠, which we continue to define as

⇠=
k

Ha
= �k⌘ (1+ ✏) , ⌘ = � ⇠

k
(1� ✏) . (6.149)
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We can realize a generic slow-roll model by using the auxiliary potential

V✏ =
1
2

m2
P H2 (1� ✏)2 . (6.150)

Neglecting the derivative with respect to �, our master Wheeler–DeWitt equation is
given by

1
2

®
e�2↵

ñ
1

m2
P

@ 2

@ ↵2 + e6↵ m2
P H2 (1� ✏)2

ô
� @

2

@ v2
k

+!2
k(⌘) v2

k

´
 (↵, vk) = 0 , (6.151)

where the quantity !2
k(⌘) reads for scalar perturbations (see e.g. [92])

S!2
k(⌘) = k2� 2+ 6✏� 3�

⌘2 (6.152)

and for tensor perturbations

T!2
k(⌘) = k2� 2+ 3✏

⌘2 . (6.153)

Setting � = ✏ converts the equation for scalar perturbations into the one for tensor
perturbations. Therefore we are going to perform all calculations here only for
scalar perturbations and afterwards move to tensor perturbations using this relation.

The Hamilton–Jacobi equation (6.71) is given by

✓
@ S0

@ ↵

◆2

� e6↵H2 (1� ✏)2 = 0 , (6.154)

such that its solution reads

S0(↵) = ±
1
3

e3↵H (1� ✏) . (6.155)

Using the negative solution, the WKB conformal time is – by construction – consis-
tent with (6.147)
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. (6.156)

We can subsequently write out the Schrödinger equation (6.77) for the scalar
modes, which is given by

i
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 (0)k =
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@ v2
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+
✓

k2� 2+ 6✏� 3�
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◆
v2

k

ô
 (0)k . (6.157)
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As it has been presented, for instance, in [92], such a slow-roll model can be
realized by considering a power-law inflation model, which is a a particularly
elegant way to analyze slow-roll inflation because it leads to analytically solvable
models.

Power-law inflation describes inflationary models whose scale factor behaves like

a(t) = a0 t p , (6.158)

where p is a constant, hence the name. This translates with the definition

1+ � =
p

1+ p
(6.159)

to
a = a0 |⌘|1+� . (6.160)

The slow-roll parameters are constant in this model

✏= � =
1
p

(6.161)

and the evolution of the universe is therefore exactly given by

a(⌘) = � 1
1� ✏

1
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(1+ ✏) +O

Ä
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ä
. (6.162)

We set
� := �2� 2✏+� , (6.163)

and require � Æ �2, such that we have

�(� + 1) = 2+ 6✏� 3�+O
Ä

2nd
ä

. (6.164)

In this way, our Schrödinger equation (6.157) becomes
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ô
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and we can follow the analysis presented in [86]. With the Gaussian ansatz (6.85)

 (0)k (⌘, vk) =N (0)
k (⌘)e

� 1
2 ⌦

(0)
k (⌘) v2

k , (6.166)

we find the following differential equation, which we have to solve

i⌦0(0)k (⌘) =
�
⌦(0)k (⌘)

�2� k2+
�(� + 1)
⌘2 . (6.167)
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Using again the ansatz

⌦(0)k (⌘) = � i
y 0(⌘)
y(⌘)

(6.168)

leads to the following equation for the scalar modes

y 00k (⌘) +
✓

k2� �(� + 1)
⌘2

◆
yk(⌘) = 0 . (6.169)

This equation can be solved in terms of the Bessel functions J⌫ as follows [86]

yk =
��k⌘

�1/2 îck,1 J�+1/2(�k⌘) + ck,2 J�(�+1/2)(�k⌘)
ó

. (6.170)

In order to obtain the Bunch–Davies vacuum for ⌘!1, we have to set

ck,1 = � ck,2 ei⇡(�+1/2), ck,2 =
i
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«
⇡
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e�i⇡/4�i⇡(�+1/2)/2
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. (6.171)

For ⌦(0)k (⌘), we then get then in the superhorizon limit �k⌘! 0 [86]
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(�k⌘)�2��2+ · · · , (6.172)

such that we obtain for the real part of ⌦(0)k (⌘)

<e⌦(0)k (⌘) =
k⇡22�+2

�2(�� � 1/2)
(�k⌘)�2��2 . (6.173)

Expressed in terms of the slow-roll parameters ✏ and �, this expression reads

<e⌦(0)k (⌘) =
k⇡2�2�4✏+2�

�2(3/2+ 2✏��) (�k⌘)4✏�2�+2 . (6.174)

For the inverse that appears in the expression for the power spectrum, we get
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We can expand the appearing Gamma function as follows [1]
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where b is the digamma function with

b
✓

3
2

◆
= 2� �E� 2 ln(2)' 0.03649 , (6.177)
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and �E ' 0.5772 is the Euler–Mascheroni constant. For 24✏�2�, we can write

24✏�2� = 1+ (2✏��)2 ln(2) . (6.178)

Hence, neglecting terms of second order in the slow-roll parameters we end up with
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Using
1
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, (6.180)

the power spectrum reads
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For (�k⌘)�4✏+2�, we can write
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Therefore we can write out the power spectrum of the scalar perturbations as
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(6.183)
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We can use this expression to define the spectral index nS of the scalar perturbations
by

nS� 1 :=
d lnP (0)S

d ln k
' �4✏+ 2� . (6.184)

Note that we get an equivalent form of the power spectrum by evaluating (6.183)
at the point k = Ha
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H2

8⇡2 M2
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�⇤����
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. (6.185)

In order to derive the power spectrum for the tensor modes, we make a shortcut via
the relation

P (0)T (k) = 16✏P (0)S (k)
��
�=✏ . (6.186)

Thus we immediately obtain from (6.183)
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which we can use to derive the spectral index for the tensor perturbations

nT� 1 :=
d lnP (0)T

d ln k
' �2✏ . (6.188)

Equivalently, we can write
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2 H2

⇡2 M2
P

⇥
1� 2✏+ ✏

�
4� 2�E� 2 ln(2)

�⇤����
k=Ha

. (6.189)

6.5 Quantum-gravitational corrections

6.5.1 The de Sitter case

In order to calculate quantum-gravitational corrections to the power spectra found
in the previous section, we have to solve the differential equation

i⌦0(1)k (⌘) = 2⌦(0)k (⌘)
✓
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In the de Sitter case, V (⌘) is given by

V (⌘) = e4↵H2 =
1

H2⌘4 . (6.191)
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Using our result (6.111), we obtain
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(6.192)
Expressed in terms of the dimensionless quantity ⇠= �k⌘, this leads to

d⌦(1)k

d⇠
=

2 i
k

✓
k⇠
⇠� i
� i k
⇠

◆Ç
⌦(1)k (⌘)�

3 H2⇠4

4 k4

ñ✓
k⇠
⇠� i
� i k
⇠

◆2

� k2
✓

1� 2
⇠2

◆ôå

= 2 i
✓
⇠

⇠� i
� i
⇠

◆Ç
⌦(1)k (⌘)�

3 H2⇠4

4 k2

ñ✓
⇠

⇠� i
� i
⇠

◆2

�
✓

1� 2
⇠2

◆ôå
.

(6.193)

This equation is actually analytically solvable, however, we now face a problem with
the boundary condition

⌦(1)k (⇠)! 0 for ⇠! 0 (6.194)

we have used in the previous chapter, because all solutions to equation (6.193) go
to zero for ⇠! 0. The general solution reads

⌦(1)k (⇠) =
3
2

H2

k2
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(1+ i⇠)2
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1+ i⇠+ e2i⇠
Ä
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äó
,

(6.195)
where the exponential integral Ei(a, z) is defined as in chapter 5

Ei(a, z) :=
Z 1

1

dt
e�tz

ta . (6.196)

We restrict ourselves here to the solution that is continuous on the imaginary axis
and therefore have (cf. [1], Sec. 5.1)

Ei(1, z)⌘ �(0, z)⌘ E1(z) . (6.197)

The quantity Ak is given by

Ak =
3
2

k2

H2 C , (6.198)

where C is an integration constant. Setting C to an arbitrary real value always
leads to a solution that fulfills the boundary condition (6.194), but exhibits an
oscillatory behavior if C 6= 0. Therefore we make the choice C = 0 in order to
obtain a non-oscillatory solution.

We define the dimensionless function e⌦(1)(⇠) via

⌦(1)k (⇠) =
H2

k2
e⌦(1)(⇠) . (6.199)
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Figure 6.1: Plot of the real and imaginary part of e⌦(1)(⇠).

In figure 6.1, a plot of the real and imaginary part of this function is shown. We see
that this function behaves similarly to the negative of the solution (5.115) (using
E1(x)) in the previous chapter, which is plotted in figure 5.2.

For the power spectrum of the scalar perturbations we then get
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Here we have used the superhorizon limit ⇠ ! 0 for <e⌦(0)k as before. However,
for <e⌦(1)k , taking this limit conflicts with the boundary condition. Therefore, we
evaluate <e⌦(1)k at the point of the horizon reentry of the modes, which is ⇠ = 1,
and we obtain

<e⌦̃(1)(1)' 0.32347 , (6.201)

such that we end up with

P (1)S (k) =
H2

4⇡2 M2
P✏

ñ
1� H2

m2
P

0.32347
k3 +O

Ç
H4

m4
P

åô
. (6.202)
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For the tensor perturbations, we can analogously infer

P (1)T (k) = 2P (1)h (k) =
8

a2 M2
P

P (1)v (k)

=
8

a2 M2
P

k3

4⇡2

Ç
<e⌦(0)k +

1
m2

P

<e⌦(1)k

å�1

=
8

a2 M2
P

k3

4⇡2

1

<e⌦(0)k
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1
m2

P

<e⌦(1)k

<e⌦(0)k

!�1

=
8⇠2 H2

k2 M2
P

k3

4⇡2

1
k⇠2

Ç
1+

H2

m2
P

1
k3 ⇠2 <e⌦̃(1)(⇠)

å�1

=
2 H2

⇡2 M2
P

ñ
1� H2

m2
P

1
k3 ⇠2 <e⌦̃(1)(⇠) +O

Ç
H4

m4
P

åô
(6.203)

Evaluating this expression at ⇠= 1 then gives

P (1)T (k) =
2 H2

⇡2 M2
P

ñ
1� H2

m2
P

0.32347
k3 +O

Ç
H4

m4
P

åô
. (6.204)

Thus we immediately see that the tensor-to-scalar ratio is not influenced by
quantum-gravitational corrections in the de Sitter case due to the fact that the scalar
and tensor perturbations are modified by exactly the same correction term:

r(1) =
P (1)T (k)

P (1)S (k)
=

P (0)T (k)

P (0)S (k)
= r(0) = 16✏ . (6.205)

This will no longer be the case in the slow-roll scenario, which we will discuss in the
following.

6.5.2 The slow-roll case

In order to consider the slow-roll, quasi-de Sitter case, we should insert the solution
(6.170) into equation (6.190) along with the respective expression for!2

k. However,
this leads to a highly intricate differential equation which is not analytically solvable.
We therefore restrict ourselves to the following approximation: For !2

k we use the
respective slow-roll expressions (6.152) and (6.153) for the scalar and tensor modes
and we also use the slow-roll expressions (6.150) for V and (6.162) for ⌘. However,
for ⌦(0)k we use the de Sitter solution (6.111).
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Scalar perturbations

In doing so, we obtain the following differential equation for the scalar modes

i⌦0(1)k,S (⌘) = 2

Ç
k2⌘

i+ k⌘
+

i
⌘

å 
⌦(1)k,S(⌘)�

3
4 V (⌘)

2
4
Ç

k2⌘

i+ k⌘
+

i
⌘

å2

�
✓

k2� 2+ 6✏� 3�
⌘2

◆3
5
!

.

(6.206)
Using (6.150) and (6.162), V (⌘) is given by

V (⌘) =
2

mP
e4↵ V✏ = e4↵H2(1� ✏)2 = (1� ✏)2

H2⌘4(1� ✏)4 =
1

H2⌘4(1� 2✏)
(6.207)

and we get

i⌦0(1)k,S (⌘) = 2

Ç
k2⌘

i+ k⌘
+

i
⌘

å
(6.208)

⇥
(
⌦(1)k,S(⌘)�

3 H2⌘4(1� 2✏)
4

2
4
Ç

k2⌘

i+ k⌘
+

i
⌘

å2

�
✓

k2� 2+ 6✏� 3�
⌘2

◆3
5
)

.

This equation is analytically solvable and the result is given by

⌦(1)k,S(⌘) =
3H2

8
(1� 2✏)⌘2

(1� ik⌘)2
h

4� 4ik⌘+ (6✏� 3�)(7� 6ik⌘+ 2k2⌘2) (6.209)

+ 4 e�2ik⌘
Ä

e2 Ei
�
1,2(1� ik⌘)

�
+ (1+ 6✏� 3�)Ei(1,�2ik⌘)

äi
.

Using (6.162) and the definition of ⇠ that we restate here in order to make clear
that we define ⇠ in terms of a and not of ⌘

⇠ :=
k

Ha
, (6.210)

we now replace ⌘ by

⌘ = � ⇠

k(1� ✏) ' �
⇠

k
(1+ ✏) (6.211)

with the intent to set ⇠= 1. We obtain

⌦(1)k,S(⇠) =
3
8

H2

k2

⇠2 (1� 2✏) (1+ ✏)2

(1+ i⇠ (1+ ✏))2
(6.212)

⇥
h

4+ 4i⇠ (1+ ✏) + (6✏� 3�)(7+ 6i⇠ (1+ ✏)� 2⇠2(1+ ✏)2)

+ 4e2i⇠
Ä

e2 Ei(1,2(1+ i⇠ (1+ ✏))) + (1+ 6✏� 3�)Ei(1,2i⇠ (1+ ✏))
äi

.

We have, of course, in principle to expand the terms containing the slow-roll param-
eters in the above equation and to keep only the terms of first order, but since we
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will evaluate this equation numerically for ⇠ = 1 anyways, we refrain from writing
out the resulting expression. We again define the dimensionless function ⌦̃(1)S (⇠) via

⌦(1)k,S(⇠) =
H2

k2 ⌦̃
(1)
S (⇠) (6.213)

and can evaluate this function numerically at the point ⇠= 1. This leads to

<e⌦̃(1)S (1)' 0.32347+ 4.5359✏� 2.4772� . (6.214)

Before we can determine the power spectrum, we have to express the inverse of
<e⌦(0)k in terms of ⇠

1

<e⌦(0)k,S

=
1

k3⌘2

⇥
1+ (2✏��)�4� 2�E� 2 ln(2)

�⇤
(�k⌘)�4✏+2� (6.215)

=
1

k⇠2 (1� 2✏)
⇥

1+ (2✏��)�4� 2�E� 2 ln(2)
�⇤
[1+ (�4✏+ 2�) ln (⇠)]

=
1

k⇠2

⇥
1� 2✏+ (2✏��)�4� 2�E� 2 ln(2)

�
+ (�4✏+ 2�) ln (⇠)

⇤
.

Using the definition

CS
✏,� := 1� 2✏+ (2✏��)�4� 2�E� 2 ln(2)

�
, (6.216)

we can write
1

<e⌦(0)k,S

=
1

k⇠2

î
CS
✏,� + (2�� 4✏) ln (⇠)

ó
. (6.217)

The power spectrum of the scalar perturbations in the slow-roll scenario then reads

P (1)S (k) = P (1)⇣ (k) =
1

2a2 M2
P✏

P (1)v (k) (6.218)

=
1

2a2 M2
P✏

k3

4⇡2

Ç
<e⌦(0)k,S+

1
m2

P

<e⌦(1)k,S

å�1

=
1

2a2 M2
P✏

k3

4⇡2

1

<e⌦(0)k,S

 
1+

1
m2

P

<e⌦(1)k,S

<e⌦(0)k,S

!�1

=
⇠2 H2

2k2 M2
P✏

k3

4⇡2

CS
✏,� + (2�� 4✏) ln (⇠)
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CS
✏,� + (2�� 4✏) ln (⇠)

k3 ⇠2 <e⌦̃(1)S (⇠)

!�1

=
H2

î
CS
✏,� + (2�� 4✏) ln (⇠)

ó

8⇡2 M2
P✏

2
41� H2

m2
P

CS
✏,� + (2�� 4✏) ln (⇠)

k3 ⇠2 <e⌦̃(1)S (⇠) +O
Ç

H4

m4
P

å3
5 .
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Now we have to evaluate this expression at the point of the horizon reentry of the
modes, ⇠= 1, and we obtain

P (1)S (k) =
H2 CS

✏,�

8⇡2 M2
P✏

2
41� H2

m2
P

CS
✏,�

k3 <e⌦̃
(1)
S (1) +O

Ç
H4

m4
P

å3
5
�����
k=Ha

, (6.219)

where <e⌦̃(1)S (1) is given by (6.214). We also have to evaluate the product of CS
✏,�

with <e⌦̃(1)S (1), for which we get

CS
✏,�<e⌦̃

(1)
S (1)

' ⇥
1� 2✏+ (2✏��)�4� 2�E� 2 ln(2)

�⇤
(0.32347+ 4.5359✏� 2.4772�)

' (1+ 0.9185✏� 1.4593�) (0.32347+ 4.5359✏� 2.4772�)

' 0.32347+ 4.8331✏� 2.9492�+O
Ä

2nd
ä

. (6.220)

Consequently, our final result for the quantum-gravitationally corrected power spec-
trum of the scalar perturbations in slow-roll inflation reads

P (1)S (k) =
H2 CS

✏,�

8⇡2 M2
P✏

ñ
1� H2

m2
P

1
k3 (0.32347+ 4.8331✏� 2.9492�) +O

Ç
H4

m4
P

åô�����
k=Ha

(6.221)
If we decompose the terms containing the slow-roll parameters as

4.8331✏� 2.9492� = �1.0653✏+ 2.9492 (2✏��) , (6.222)

we see that the contribution on ✏ originating from inserting (6.152) into (6.206)
is about five times larger than the contribution originating from replacing ⌘ by
(6.211).

We can write (6.221) using our result (6.185) for the uncorrected power spectrum
P (0)S as

P (1)S (k) = P (0)S (k)

ñ
1+�WDW

S;✏,�(k) +O
Ç

H4

m4
P

åô
, (6.223)

where the correction function

�WDW
S;✏,�(k) = �

H2

m2
P

1
k3 (0.32347+ 4.8331✏� 2.9492�)

����
k=Ha

(6.224)

has been introduced. The modification of the power spectrum originating from the
quantum-gravitational correction term in the Schrödinger equation (6.84) therefore
leads to a suppression of power on the largest scales.
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Tensor perturbations

For the tensor perturbations, we do not need to repeat all these calculations, because
we can also set � = ✏ to transform the above expressions from the scalar to the
tensor case. The differential equation we have to solve for the tensor perturbations
reads

i⌦0(1)k,T (⌘) = 2

Ç
k2⌘

i+ k⌘
+

i
⌘

å
(6.225)

⇥
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4
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Ç
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⌘
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)

and it is solved in terms of ⇠ by

⌦(1)k,T(⇠) =
3
8

H2

k2

⇠2 (1� 2✏) (1+ ✏)2

(1+ i⇠ (1+ ✏))2
(6.226)

⇥
h

4+ 4i⇠ (1+ ✏) + 3✏ (7+ 6i⇠ (1+ ✏)� 2⇠2(1+ ✏)2)

+ 4e2i⇠
Ä

e2 Ei(1,2(1+ i⇠ (1+ ✏))) + (1+ 3✏)Ei(1,2i⇠ (1+ ✏))
äi

.

Defining, as in the scalar case, the dimensionless function ⌦̃(1)T (⇠) via

⌦(1)k,T(⇠) =
H2

k2 ⌦̃
(1)
T (⇠) , (6.227)

we perform a numerical evaluation of this function at the point ⇠= 1 and obtain

<e⌦̃(1)T (1)' 0.32347+ 2.0587✏ . (6.228)

The inverse of <e⌦(0)k,T in terms of ⇠ is given by

1

<e⌦(0)k,T

=
1

k⇠2

⇥
1� 2✏+ ✏

�
4� 2�E� 2 ln(2)

�� 2✏ ln (⇠)
⇤

, (6.229)

such that we can define

CT
✏ := 1� 2✏+ ✏

�
4� 2�E� 2 ln(2)

�
(6.230)

and express (6.229) as

1

<e⌦(0)k,T

=
1

k⇠2

î
CT
✏ � 2✏ ln (⇠)

ó
. (6.231)
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For the power spectrum of the tensor perturbations in the slow-roll scenario we
subsequently get

P (1)T (k) = 2P (1)h (k) =
8

a2 M2
P

P (1)v (k) (6.232)
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P

åô
.

Evaluating this expression at the point of the horizon re-entry of the modes, ⇠ = 1,
yields

P (1)T (k) =
2H2 CT

✏

⇡2 M2
P

ñ
1� H2

m2
P

CT
✏

k3 <e⌦̃
(1)
T (1) +O

Ç
H4
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P

åô�����
k=Ha

, (6.233)

where <e⌦̃(1)T (1) has been given in (6.214). For the product of CT
✏ with <e⌦̃(1)T (1),

we then get

CT
✏ <e⌦̃

(1)
T (1)'

⇥
1� 2✏+ ✏

�
4� 2�E� 2 ln(2)

�⇤
(0.32347+ 2.0587✏)

' (1� 0.5407✏) (0.32347+ 2.0587✏)

' 0.32347+ 1.8838✏+O
Ä

2nd
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. (6.234)

Hence, we can write out our final result for the quantum-gravitationally corrected
power spectrum of the tensor perturbations in slow-roll inflation

P (1)T (k) =
2H2 CT

✏

⇡2 M2
P

ñ
1� H2

m2
P

1
k3 (0.32347+ 1.8838✏) +O

Ç
H4

m4
P

åô�����
k=Ha

(6.235)

Setting ✏ = � in (6.221) leads to the same result. Using the uncorrected power
spectrum P (0)T as given in (6.189), we obtain

P (1)T (k) = P (0)T (k)

ñ
1+�WDW

T;✏ (k) +O
Ç

H4

m4
P

åô
, (6.236)



104 6 Quantum-gravitational effects on scalar and tensor perturbations

where we have introduced the correction function

�WDW
T;✏ (k) = �

H2

m2
P

1
k3 (0.32347+ 1.8838✏)

����
k=Ha

. (6.237)

We thus see that also for the power spectrum of the tensor perturbations, the
quantum-gravitational correction term in the Schrödinger equation (6.84) causes a
suppression of power on the largest scales.

Finally, we can calculate the quantum-gravitationally corrected tensor-to-scalar
ratio r(1)

r(1) =
P (1)T (k)

P (1)S (k)
= 16✏
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✏
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✏,�

ñ
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åô
. (6.238)

The quotient CT
✏ /C

S
✏,� can be written up to the first order in the slow-roll parameters

as

CT
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CS
✏,�

=
1� 2✏+ ✏

�
4� 2�E� 2 ln(2)

�
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. (6.239)

For the quantum-gravitational part we get

�WDW
T;✏ (k)��WDW

S;✏,�(k) = �
H2

m2
P

1
k3 (1.8838✏� 4.8331✏+ 2.9492�)

= � H2

m2
P

1
k3 2.9492 (�� ✏) . (6.240)

Hence, we obtain for the tensor-to-scalar ratio

r(1) ' 16✏

ñ
1+ (�� ✏)

Ç
1.4593� 2.9492

H2

m2
P

1
k3

åô
. (6.241)

Since the uncorrected tensor-to-scalar ratio already contains a slow-roll parameter,
the correction term is, of course, of second order in the slow-roll parameters.

In the next chapter, we shall discuss whether the quantum-gravitational correc-
tions we have calculated in this chapter for the scalar and tensor perturbations could
be in principle measurable in the Cosmic Microwave Background.



7
Observability of the
quantum-gravitational corrections
and comparison with other
approaches

7.1 Observability of the corrections

We can combine the quantum-gravitationally corrected power spectra we found in
the previous chapters in the following form

P (1)(k) = P (0)(k)
ñ

1+�WDW
�,S,T(k) +O

Ç
H4

m4
P

åô
. (7.1)

For the scalar-field perturbations, the correction function �WDW
�,S,T(k) is given by

�WDW
� (k) =

H2

m2
P

eC(⇠)
k3 , (7.2)

where we choose the value eC(⇠ = 1) = 2.6387 from the continuous solution. We
set ⇠ = 1 here in order to make the result from chapter 5 compatible with chapter
6, where we have used the convention k = L�1. For the gauge-invariant scalar
perturbations, we have

�WDW
S;✏,�(k) = �

H2

m2
P

1
k3 (0.32347+ 4.8331✏� 2.9492�)

����
k=Ha

(7.3)

and finally for the tensor perturbations the correction term reads

�WDW
T;✏ (k) = �

H2

m2
P

1
k3 (0.32347+ 1.8838✏)

����
k=Ha

. (7.4)
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Scalar perturbations

We assume that we can treat the scalar-field perturbations on the same footing as the
gauge-invariant scalar perturbations and thus present both here at once. Following
[35], we can include the corrections given above in the expression for the spectral
index nS. Using the approximate formula

d
d log k

⇡ 1
H

d
dt

, (7.5)

we can write

nS� 1 :=
d logPS

d log k
⇡ 2�� 4✏� 3�WDW

S,� (k) . (7.6)

Furthermore, we can introduce the running of the spectral index, which is of the
second order in the slow-roll parameters, as

↵S :=
dnS

d log k
⇡ 2(5✏�� 4✏2�⌅2) + 9�WDW

S,� (k) , (7.7)

where the second-order slow-roll parameter ⌅ has been used, which is defined as

⌅2 :=
1

H2

d
dt
�̈

�̇
. (7.8)

In order to give an estimate for the correction term, we have to reinsert a reference
wave number k0 that corresponds to the length scale L we have neglected in the
previous two chapters. We thus have to replace

k! k
k0

. (7.9)

As reference wave number we can either use the largest observable scale, which is
[35]

kmin ⇠ 1.4⇥ 10�4 Mpc�1 , (7.10)

or one of the pivot scales used in the analysis of the CMB spectra. For WMAP this
scale has been chosen as [56]

k0 = 2⇥ 10�3 Mpc�1 . (7.11)

We can also give an upper bound on the ratio H/mP based on the relation [18]

V 1/4 ⇠
Å r

0.01

ã1/4

1016 GeV , (7.12)

which implies that
H
mP
Æ 3.5⇥ 10�6 (7.13)
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given that the observational bound on the tensor-to-scalar ratio has been measured
by Planck to be r Æ 0.11 [4]. The BICEP2 result of r ⇠ 0.2 [3] would, of course,
enhance this bound, however the validity of the BICEP2 result is not yet clear [2].

Hence, we find that for k! k/k0 the absolute value of the quantum-gravitational
correction is limited by

����WDW
S;✏,�=0(k0)

���Æ 4.0⇥ 10�12 ,
����WDW

� (k)
���Æ 3.2⇥ 10�11 . (7.14)

Using kmin instead of k0 as reference wave number, these limits are reduced by

✓
kmin

k0

◆3

' 3.4⇥ 10�4 (7.15)

and we obtain
����WDW

S;✏,�=0(k0)
���Æ 1.3⇥ 10�15,

����WDW
� (k0)

���Æ 1.1⇥ 10�14. (7.16)

If we compare these limits with the values of the spectral index nS and its running
↵S determined from the WMAP9 data, which are given by [56]

nS = 0.9608± 0.0080 and ↵S = �0.023± 0.011 , (7.17)

where the WMAP9+eCMB+BAO+H0 dataset was used in both cases, as well as with
the 2013 results of the Planck mission, whose values (using WMAP polarization
data) read [4]

nS = 0.9603± 0.0073 and ↵S = �0.013± 0.009 , (7.18)

we can conclude that the corrections we calculated are completely drowned out by
the statistical uncertainty in the WMAP and Planck data.

Cosmic Variance, which is the main source of statistical uncertainty on large
scales, implies that on the largest scales, there will not be any further improvements
of the statistics of the data by Planck and future satellite missions to measure the
CMB anisotropies. Therefore it is unlikely that one will ever be able to observe
effects of the magnitude we have obtained in the CMB anisotropies.

There is also a way to derive an upper bound on the energy scale of inflation
given by H from our corrections. If we assume that

����WDW
�,S (k0)

���< 0.05 , (7.19)
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which reflects the fact that the power spectrum should deviate less than about 5 %
from scale invariance, we obtain from the gauge-invariant scalar perturbations the
very weak limit

H Æ 0.4 mP ⇡ 1.06⇥ 1019 GeV (7.20)

and from the scalar-field perturbations

H Æ 0.14 mP ⇡ 3.71⇥ 1018 GeV. (7.21)

These constraints are, of course, much weaker than the observational limit of about
H Æ 1015 GeV from the tensor-to-scalar ratio, but at least we can be reassured that
the approach presented here is consistent with this limit.

Tensor perturbations

For the tensor perturbations, we have obtained

P (1)T (k) = P (0)T (k)

ñ
1+�WDW

T;✏ (k) +O
Ç

H4

m4
P

åô
, (7.22)

with

�WDW
T;✏ (k) = �

H2

m2
P

1
k3 (0.32347+ 1.8838✏)

����
k=Ha

. (7.23)

Analogously to the presentation above, we can write

nT :=
d lnP (0)T

d ln k
' �2✏� 3�WDW

T;✏ (k) . (7.24)

Given that the contribution of the slow-roll parameter ✏ can be neglected, we obtain
the same contraints as for the scalar perturbations, that is for the reference wave
vector k0 ����WDW

T;✏=0(k0)
���Æ 4.0⇥ 10�12 , (7.25)

while using kmin as reference we get
����WDW

T;✏=0(k0)
���Æ 1.3⇥ 10�15 . (7.26)

Since gravitational waves have not yet been unambiguously detected [2] and,
hence, nT is unknown, we cannot give an definite answer on the measurability of
the corrections, but the tiny magnitude indicates that the chances of detectability
are extremely low.
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7.2 Comparison with other approaches

Quantum-gravitational effects for primordial perturbations have also been investi-
gated in other approaches or using other methods. The study which is also based on
the Wheeler–DeWitt equation and that is most similar to our method was presented
in [59, 64]. Here, the authors use the semiclassical approximation method pre-
sented in [20]. The difference to our approach has been explained in the appendix
of [22]. The authors define the two-point function of the perturbations as

pk(⌘) := sh0|v̂2
k |0is = hv̂2

k i0 (7.27)

and find that scalar perturbations are modified in the following way

p ' 1
2k
(�k⌘)�2(1+2✏��)

ñ
1+

H2

M2
P k3

1
18

Ä
25� 7(�k⌘)�2(✏��)ä

ô
, (7.28)

while for the tensor perturbations the following modification was found

p ' 1
2k
(�k⌘)�2(1+✏)

ñ
1+

H2

M2
P k3

ô
. (7.29)

The result differs in some aspects from our findings, but the interesting similarity is
the common prefactor of

H2

M2
P k3 . (7.30)

One should investigate the origin of this k-dependence further, because it seems to
be a general feature.

In [96], the semiclassical approximation scheme of [75] was used to calculate
some form of the power spectrum of primordial gravitational waves. The result also
depends on the energy scale during inflation denoted here as � and the correction
is of the form

✏= 1� 2
�

M2
P

⇢
· · ·

�
, (7.31)

where the term in the brackets contains an complicated dependence on the
frequency of the gravitational waves.

In loop quantum cosmology, there are several types of corrections possible due
to the structure of the theory. Based on the discreteness of the theory, there are
inverse-volume correction that lead to an enhancement on large scales that can, in
principle, be measurable [23, 24].
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In considerations that take into account a loop-quantum-gravity-induced super-
inflation phase [109] or pre-inflationary phase [5, 6, 7], there also seems to be an
enhancement.

Certain non-quantum-gravitational inflationary models can also induce an en-
hancement [105]. A suppression is found in from considering a self-interacting
scalar field [79], a model of “just-enough inflation” [93], or if one takes into ac-
count non-commutative geometry [108].



8
The fate of type IV singularities
in quantum cosmology

In this chapter we investigate cosmological models that at the classical level include
a specific type of singularity called type IV within the framework of quantum
cosmology based on the Wheeler–DeWitt equation. Our aim is to see whether these
singularities can be avoided by quantization.

Type IV singularities are singularities that can appear in cosmological models
with a dark-energy-like matter component. They are of a mild nature in the sense
that at the singularity only higher derivatives of the Hubble parameter diverge
and that geodesics can be extended through the singularity. In this regard, they
are different than the singularities whose fate in quantum cosmology has been
investigated before. We shall see that this mild nature is reflected in how these
singularities are resolved after quantization.

This chapter is largely based on [30].

8.1 Singularities in dark-energy models

We know from the observation of light curves of distant supernovae of type IA that
the expansion of our universe is currently accelerating. In order to account for such
an acceleration, one can introduce a new type of matter, usually called Dark Energy,
whose barotropic index w in the equation of state

P = w⇢ (8.1)

takes the value

w < � 1
3

. (8.2)
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When investigating models of universes where such a type of matter is introduced,
for instance, as an ideal fluid or in the form of a scalar field, it was found that
some resulting models contain singularities of the form that one or more quantities
diverge at a certain time during the evolution of the universe.

In [88] a classification of the occurring singularities is given. We present this
classification here together with references where these singularities have been dis-
cussed, see also [47, 38, 46, 40] and references therein:

• Type I – “Big Rip”: for t ! tsing: a!1, ⇢!1, |P|!1. [36, 106, 37]

• Type II – “Big Brake”, “sudden singularity” or “Big Démarrage”:
for t ! tsing: a! asing, ⇢! ⇢sing, |P|!1. [14, 15, 51]

• Type III – “Big Freeze”: for t ! tsing: a! asing, ⇢!1, |P|!1. [88, 28, 27]

• Type IV – “Big Separation”: for t ! tsing: a ! asing, ⇢ ! ⇢sing, |P| ! Psing,
but the second and higher derivatives of the Hubble parameter H diverge.
[88, 12]

Additionally, one can define singularities, where the barotropic index w diverges,
as type V [39].

We see that the type IV singularity, which is also sometimes called “Big Separa-
tion” [40], is one of the mildest among these singularities. Here, at a finite scale
factor asing and at a finite cosmic time tsing, the second and higher derivatives of the
Hubble rate H diverge, while H and Ḣ stay finite at the singularity. Furthermore,
the singularity only appears in derivatives of curvature invariants, not in the invari-
ants themselves. Geodesics can be extended through the singularity, such that it is
not a singularity in the sense of the standard definition used in general relativity.

8.2 Singularity avoidance in quantum cosmology

As we have discussed in the introduction, it is generally expected that a theory of
quantum gravity should resolve singularities appearing in general relativity and,
hence, in cosmological models.

We focus here on canonical quantum cosmology with the Wheeler–DeWitt
equation as central equation. Since Wheeler–DeWitt quantum cosmology does not
resolve singularities in general, we have to specify and analyze a concrete model in
order to see what is the fate of singularities in this model. For the Wheeler–DeWitt
equation, this means to specify the form of the potential. This situation is similar to
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quantum mechanics, where classical singularities are also only resolved for specific
potentials like the Coulomb potential. There are, in fact, many other singular
potentials, whose singularities are not cured in the quantum theory [48]. The fact
that physically relevant potentials are singularity-free in quantum mechanics might
be carried over to quantum cosmology.

In Wheeler–DeWitt quantum cosmology, the general procedure to analyze the fate
of singularities is as follows. One considers a universe filled with an ideal fluid with
a certain equation of state

P = f (⇢) , (8.3)

which instead of the traditional form P = w⇢ mostly takes a more complicated form
like, for instance, that of a Chaplygin gas P = �A/⇢. Then one converts the fluid to
a minimally coupled scalar field � with potential V (�) using the relations

⇢
!=

1
2
�̇2+ V (�) , P !=

1
2
�̇2� V (�) . (8.4)

The resulting potential V (�) is then inserted into the Wheeler–DeWitt equation of
a Friedmann–Lemaître–Robertson–Walker model, which for a flat universe is given
by

~h2

2

Ç
2

6
@ 2

@ ↵2 �
@ 2

@ �2

å
 
�
↵,�

�
+ a6

0 e6↵ V (�) 
�
↵,�

�
= 0 (8.5)

and we have used the definition

2 := 8⇡G . (8.6)

In order to solve this differential equation, one uses a Born–Oppenheimer approx-
imation in the form of the assumption that one can decompose the wave function
 (↵,�) as follows

 (↵,�) = '(↵,�)C(↵) . (8.7)

One then requires the matter part described by '(↵,�) to obey

� ~h
2

2
@ 2'

@�2 + a6
0 e6↵V (�)' = E(↵)' , (8.8)

where E(↵) is an energy function. The gravitational part described by C(↵) then
obeys

Ċ'̇+ C'̈+

Ç
2

6
C̈ + 2E(↵)C

å
' = 0 , (8.9)

where the terms containing derivatives of ' are neglected. Now one has to find
a solution for '(↵,�) as well as for C(↵) and analyze it in the region where at
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the classical level the singularity is located. As a sufficient – but not necessary –
criterion for singularity avoidance, one can use the vanishing of the wave function
at this point, as it was already suggested by DeWitt in [43]. Another criterion
would be the breakdown of the semiclassical approximation, such that the wave
packets disperse.

We shall illustrate this procedure by two examples. In [61], the Big Brake,
i.e. type II singularity, is analyzed. It is found that this singularity can be described
by an anti-Chaplygin gas with equation of state

P =
A
⇢

, (8.10)

where A is a positive constant. This type of matter is realized as a scalar field � with
potential

V (�)/
î

sinh
Äp

3|�|
ä
� sinh�1

Äp
3|�|

äó
. (8.11)

In the proximity of the classical singularity this potential can be approximated by

V (�)/ 1
|�| , (8.12)

which leads to the Wheeler–DeWitt equation
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�
= 0 . (8.13)

This equation is actually analytically solvable after using the Born–Oppenheimer
approximation and one finds that all normalizable solutions vanish at the Big
Brake singularity and additionally at the initial Big Bang singularity. Thus both
singularities are avoided.

An example, where the second criterion for singularity avoidance is used, is
[41]. Here, one considers a universe filled with phantom matter, that is matter
with a negative energy density violating the null energy condition ⇢ + P > 0.
The motivation to study such an exotic type of matter is that if one wants to
describe the observed acceleration of the expansion of the universe by Dark Energy
with an equation of state P = w⇢, observationally even w Æ �1 cannot be excluded.

Such a phantom field leads to a Big Rip singularity at late times. The resulting
Wheeler–DeWitt equation of this model becomes elliptic because the sign in front
of the �-kinetic terms is positive if � is a phantom field. Including a cosmological
constant ⇤, we get the following Wheeler–DeWitt equation
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where F is a constant. One finds that the wave-packet solutions of this equation
disperse at the classical Big Rip singularity. Thus, the semiclassical approximation
breaks down at this point; time and the classical evolution come to an end and one
is left with a stationary quantum state. The classical Big Rip singularity is therefore
avoided.

To summarize, singularity avoidance in Wheeler–DeWitt quantum cosmology was
shown for models with a singularity of type I (Big Rip) [41, 13], type II (Big Brake
or Big Démarrage) [61, 31], and type III (Big Freeze) [31]. Reviews are given in
[67, 68] and [60]. We now turn to the analysis of type IV singularities in quantum
cosmology.

8.3 Classical model with a type IV singularity

In order to model a universe with a type IV singularity, we use a generalized Chaply-
gin gas (GCG), which is a perfect fluid with the equation of state [63, 19]

P = � A
⇢�

, (8.15)

where A and � are positive or negative constants. The original definition of the
Chaplygin gas reads [63]

P = � A
⇢

, A> 0 . (8.16)

The Chaplygin gas and its generalized form can be applied for various scenarios
[63, 21, 19, 29, 26, 25], such as to describe and unify different matter contents in
the universe.

In [27], it was shown that a GCG can model universes with almost all kinds of
singularities, in particular, also universes with a type IV singularity.

We use the conservation of the energy–momentum tensor of such a kind of fluid
leading to the equation

⇢̇+ 3H
�
⇢+ p

�
= 0 , (8.17)

which we can immediately solve after inserting (8.15) and obtain

⇢ =
✓

A+
B

a3(1+�)

◆ 1
1+�

, (8.18)

where B is an arbitrary real constant.
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8.3.1 Standard generalized Chaplygin gas

First of all, we consider a standard GCG that fulfills the null, strong and weak energy
conditions. As shown in [27], it can induce a type IV singularity in the future in the
following cases

A< 0 , B > 0 , and � 1
2
< � < 0 , where � 6= 1

2p
� 1

2
, (8.19)

and p is a positive integer. We can then express the energy density (8.18) and
pressure in the form

⇢ = |A|
1
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Åamax

a

ã3(1+�)
� 1

� 1
1+�

, P = |A|
1

1+�

Åamax

a

ã3(1+�)
� 1

�� �
1+�

, (8.20)

where we have introduced the maximum scale factor amax, which is given by

amax :=
����
B
A

����
1

3(1+�)

. (8.21)

From (8.20) we see that both the energy density and pressure go to zero for
a! amax. In spite of this, the universe described here faces a type IV singularity at
a = amax [27], as we will outline below.

Since we consider here a flat FLRW universe, we have to solve the Friedmann
equation for flat spatial sections with a GCG matter content. The resulting equations
can be integrated analytically and yield the solution
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=
p

3 |A|
1

2(1+�) (1+ �) t ,

where B[�,�] and B[x ,�,�] stand for the beta function and the incomplete beta
function, respectively (see section 6.2. in [1]). The time t stands for the time that
elapses from a given finite value of the scale factor to its maximum value amax. As
long as �1/2 < �  0 holds, t is finite. However, in the limiting case � !�1/2, it
becomes infinite. Using equation 15.1.20 in [1], one can rewrite (8.22) as
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Here, F[�,�;✏; x] denotes a hypergeometric function (see chapter 15 in [1]). This
expression directly shows that t stays finite for �1/2 < �  0, but becomes infinite
for � !�1/2.

At the maximum scale factor, a = amax, the n-th derivative of the Hubble parame-
ter H diverges in the case � 6= 1/(2p)� 1/2, p 2 N. One can express n as

n= 1+ E
Ä
(1+ 2�)�1

ä
(8.24)

using the integer value function E [27]. This implies that the (n� 1)-th derivative
of the scalar curvature diverges as well at a = amax and, hence, we have a type IV
singularity at a = amax.

We can describe a universe filled with this kind of GCG as dust-dominated at
small scale factors, which means that P/⇢⌧ 1, and there is a Big Bang singularity
at a = 0. In the cases � 6= 1/(2p)� 1/2, p 2 N, the universe expands up to amax,
where it assumes its maximum size and faces a type IV singularity. In the limiting
case � = �1/2, it takes the universe an infinite time to reach its maximum size,
therefore the Hubble parameter and all its cosmic time derivatives remain finite
and there is no type IV singularity.

As we have described before, we now have to implement this type of generalized
Chaplygin gas dynamically by a minimally coupled scalar field, for which the energy
density and pressure are given by

⇢� =
1
2
�̇2+ V (�) , P� =

1
2
�̇2� V (�) . (8.25)

Here, we have used a dot to denote derivatives with respect to cosmic time t. We
can consequently express the kinetic energy �̇2 and the potential V (�) of the scalar
field in terms of the scale factor as follows
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(8.26)
The relation between the scalar field and the scale factor is therefore given by
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2
p

3
3|1+ � | ln

2
4
Åamax

a

ã 3
2 (1+�)

+

rÅamax

a
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3
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where �max denotes the value � acquires at the maximum scale factor a = amax,
where the type IV singularity is located. We set �max = 0 for simplicity.
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Figure 8.1: Plot of the dependence of the kinetic energy �̇2 on the logarithmic scale
factor ↵= ln(a/amax) (left) and of the scalar field � on ↵ (right). In the
left figure, the value � = �

p
2/3 is chosen. The type IV singularity is

located at � = 0, where a = amax. From [30].

Figure 8.1 shows the dependence of the kinetic energy �̇2 on the logarithmic
scale factor ↵ as well as the dependence of the field � on ↵, which is the classical
trajectory in configuration space.

Finally, we can write down the potential of the scalar field

V (�) = V1

ñ
sinh

2
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Çp
3

2
 |1+ � ||�|

å
� sinh�

2�
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2
 |1+ � ||�|

åô
, (8.28)

where we have defined, analogously to [31],

V1 :=
|A|

1
1+�

2
. (8.29)

In figure 8.2, we present a plot of this potential for a typical value of � .

Note that near the singularity, a = amax, � = 0, the potential is negative and
finite, which reflects the fact that at a type IV singularity both the energy density
and the pressure remain finite.

The potential (8.28) has the form of a double-well potential and is regular
everywhere, in contrast to the cases discussed in [41, 61, 31]. The reason is the
mild nature of the type IV singularity, which will be reflected in the quantized
model later on.
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Figure 8.2: Plot of the potential defined in equation (8.28) as a function of the scalar
field � using the value � = �

p
2/3, which has been chosen to make

sure that � cannot be written as 1/(2p)� 1/2, p 2 N. The potential has
the form of a double-well potential widely used in quantum mechanics.
From [30].

Like it was done in [31], we can approximate the potential close to the type IV
singularity, a = amax, � = 0, as

V (�)' �V1

Çp
3

2
 |1+ � ||�|

å� 2�
1+�

. (8.30)

For the limiting case � = �1/2, we thus have an inverted harmonic oscillator in
this approximation.

On the other hand, for small scale factors, corresponding to large values of the
scalar field �, an approximation of the potential leads to the following exponential
form

V (�)' 2�
2

1+� V1 exp
Äp

3|�|
ä

. (8.31)

An exponential potential like this also occurs for a Big Rip with a phantom field [41]
and for the Big Bang in the model containing an anti-Chaplygin gas as presented in
[61], which also contains a Big Brake singularity. As we have discussed before, in
this model the big-bang singularity is avoided simultaneously with the big-brake
singularity for the normalizable solutions of the Wheeler–DeWitt equation. Also in
the model discussed in [31], where a big-freeze singularity is induced by a standard
generalized Chaplygin gas, but where the universe behaves dust-like (P/⇢ ⇠ 0) for
large rather than for small scale factors, one finds a similar expression to (8.31).
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8.3.2 Phantom generalized Chaplygin gas

Apart from the standard generalized Chaplygin gas, we also want to analyze a uni-
verse that contains a phantom generalized Chaplygin gas that, as we have mentioned
before, violates the null energy condition. According to [27], such a type of matter
can induce a type IV singularity in the past in the following cases

A> 0 , B < 0 , and � 1
2
< � < 0 , where � 6= 1

2p
� 1

2
, (8.32)

and p is again a positive integer. We can write the energy density (8.18) and the
pressure of the phantom GCG as
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In this model, the scale factor a has a minimum value amin instead of a maximum
value as for the standard GCG (8.21). This minimum value, where the type IV
singularity is located, is given by

amin :=
����
B
A

����
1

3(1+�)

. (8.34)

The cosmic time derivatives of the Hubble rate are of a similar form as the ones
of the previous subsection. We can thus see that there is a type IV singularity at
a = amin.

We can integrate the Friedmann equations analytically, which leads to (see section
6.2. in [1])
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Here, t denotes the time that has elapsed from the beginning of the expansion of
the universe at the minimum scale factor, a = amin, where the type IV singularity is
situated, until the universe has reached a given finite size a. For very large values of
the scale factor a, the universe asymptotically takes the form of a de Sitter universe.
The incomplete beta function used in (8.35) is well-defined even though it has the
value zero in its second argument.

Now we want to realize the phantom GCG by a minimally coupled scalar field.
Because of the phantom nature of this field, the kinetic terms in the expressions for
energy density and pressure change their sign compared to (8.25) and read

⇢� = �
1
2
�̇2+ V (�) , P� = �

1
2
�̇2� V (�) . (8.36)
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Figure 8.3: Plot of the dependence of the kinetic energy �̇2 on the logarithmic scale
factor ↵ = ln(a/amin) (left) and of the scalar field � on ↵ (right). In the
left figure, the value � = �
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2/3 is chosen. The type IV singularity is

located at � = 0, where a = amin. From [30].

We can then write out the kinetic energy �̇2 and the potential V (�) of the scalar
field in terms of the scale factor a and get

�̇2 = A
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. (8.37)

For the dependence of the scalar field � on the scale factor a, we therefore obtain

|� ��min|(a) =
2


p

3

1
1+ �

arccos

2
4
Åamin

a

ã 3(1+�)
2

3
5 . (8.38)

Here, we denote the minimum value of the scalar field at a = amin, where the
singularity is located, by �min. In the following we set �min = 0 for simplicity.
Figure 8.3 shows the absolute value of the kinetic energy of the scalar field �̇2 as
well as the dependence of the field � on the logarithmic scale factor ↵.

We can express the potential of the scalar field V (�) as

V (�) = V�1
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Çp
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2
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, (8.39)

where we have defined

V�1 :=
A

1
1+�

2
(8.40)

and we have to restrict the values the scalar field � can take to (cf. equation (21)
in [31])
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p
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 |1+ � | |�| ⇡

2
. (8.41)
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Figure 8.4: Plot of the potential defined in equation (8.39) as a function of the scalar
field � using the value � = �

p
2/3, which has been chosen to make sure

that � cannot be written as 1/(2p)� 1/2, p 2 N. While the potential is
periodic, the model we consider here corresponds to the range of values
of � between two consecutive maxima indicated by blue vertical lines.
From [30].

We see that near the location of the singularity, a = amin, � = 0, the potential is
positive and finite, which is again contrary to the situation presented in [31]. As
before, this can be attributed to the fact that at a type IV singularity both the energy
density and the pressure remain finite.

However, the potential (8.39) is periodic in �, which is a significant difference
compared to the standard field. Figure 8.4 displays the shape of the potential in
terms of the scalar field �. The branch we consider here is the expanding branch,
where the evolution of the universe starts from the type IV singularity � = 0. The
scalar field then rolls up the potential and for a!1 asymptotically reaches the top
of the potential, which is situated at

� =
⇡

p
3 (� + 1)

. (8.42)

The other parts of the potential displayed in figure 8.4, which are located outside
the maxima of the potential marked with vertical lines, correspond to different
classical solutions, which may have consequences for the quantized model.
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We add that one can approximate the potential V (�) close to the singularity by

V (�)' V�1

Çp
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2
|1+ � ||�|

å� 2�
1+�

. (8.43)

Now we will discuss the quantization of these classical models.

8.4 Analysis of the quantized models

In order to find out whether the type IV singularities are resolved after a canonical
quantization of the models discussed in the previous section, we have to find
a solution to the Wheeler–DeWitt equations describing these models in some
approximation. While the quantum cosmology of a generalized Chaplygin gas was
first discussed in [32], we will use here the methods presented in [41, 61, 31].

After the preparation done in chapter 3 and using the Laplace–Beltrami factor
ordering, we obtain the following Wheeler–DeWitt equation for the wave function
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Since we want to treat the cases of a standard and a phantom generalized Chaply-
gin gas, that is standard and phantom scalar field, at once, we have introduced a
parameter `, which takes the value ` = 1 for the standard case and ` = �1 for the
phantom case.

We set the reference scale factor a0 to the location of the type IV singularity,
i.e. a0 = amax for the model with the standard field and a0 = amin for the model with
the phantom field. The potential V (�) has to be taken from (8.28) for the standard
case and from (8.39) for the phantom case.

In order to find a solution to equation (8.44), we use the Born–Oppenheimer type
of ansatz that was first used in [66] and separate the wave function  

�
↵,�

�
in the

following way
 (↵,�) = 'k(↵,�)Ck(↵) , (8.45)

where we have introduced k as a general complex parameter. Furthermore, we
require that in the Born–Oppenheimer limit, the matter part 'k of the wave function
 satisfy the subsequent differential equation with an energy function Ek(↵)

� ` ~h
2

2
@ 2'k

@ �2 + a6
0 e6↵ V (�)'k = Ek(↵)'k . (8.46)
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8.4.1 Standard field

We start with the analysis of the case of a standard field, that means we have `= 1.
Furthermore, we set ~h= 1 from now on for simplicity.

Since it is difficult to solve equation (8.46) analytically for a general value of � ,
we have to choose a particular value for � . Our choice is

� = � 1
2

, (8.47)

which is strictly speaking a value where a type IV singularity does not occur, as it
lies outside the range �1/2 < � < 0, which was imposed in the previous section.
Nevertheless, since the form of the potential 8.2 remains the same for � = �1/2
and � = �1/2+ ✏, 0 < ✏ ⌧ 1 one can expect that the qualitative features of the
limiting case � = �1/2 are carried over to the more general case, where a type IV
singularity occurs.

Using � = �1/2, the differential equation of the matter part (8.46) reads
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'k = Ek(↵)'k . (8.48)

In order to simplify this equation, we introduce a new variable x as follows

x := sinh

Çp
3

4
�

å
. (8.49)

In figure 8.1 (right) the range x > 0 corresponds to the upper branch of the tra-
jectory, while the range x < 0 corresponds to the lower branch. From now on, we
will skip the index k in order to simplify the notation. Using the new variable x ,
equation (8.48) reads

Ä
1+ x2

ä @ 2'

@ x2 + x
@ '

@ x
� ⇠ x2 (x2� 1)' = �✏' , (8.50)

where we have introduced the parameters ⇠ and ✏, whose dependence on ↵ we do
not explicitly state and which are defined as

⇠ :=
32 V1 a6

0 e6↵

32 > 0 , ✏ :=
32 Ek(↵)

32 . (8.51)

The resulting equation (8.50) is symmetric under x 7! �x , such that we can treat
both branches on an equal footing.
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We now use the separation ansatz

' = exp
✓
�
p
⇠

2
x2
◆

H(x) (8.52)

and consequently find that the newly introduced function H(x) obeys the subse-
quent differential equation
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(8.53)

Note that we write an ordinary differential here, because we specify only the depen-
dence on the variable x . Using the transformation

z := �x2 , (8.54)

equation (8.53) takes the form
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This is one of the standard forms for the confluent Heun differential equation,
which is discussed in detail in [95]. The solutions to this differential equa-
tion are called confluent Heun functions and are denoted using five parameters as
Hc(u, v, w,�,⌘; z). Using these parameters, the canonical form of the confluent
Heun differential equation reads, see e.g. p. 59, eq. (13) in [42],
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A comparison of this general form with our equation (8.55) yields that we can write
the solution of (8.55) in the following form

H(z) =Hc
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and we immediately see that (8.53) is solved by

H(x) =Hc
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According to p. 61, proposition 2-1, in [42], we can write a linearly independent
solution of (8.53) as follows

H(x) = x Hc
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Note the sign change of the second parameter. Hence, we can write our solution for
' as the subsequent linear combination with constants c1 and c2
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Even though it is not known up to now what kind of Hilbert space one has to choose
in quantum gravity [69], we proceed here as for the normalizability condition in
quantum mechanics and require that the physically allowed wave functions '(x)
go to zero for large x .

The Heun function Hc that appears in our solution (8.60) has the property that it
is regular at the origin x = 0, see [95], p. 98,

Hc(·, ·, ·, ·, ·; 0) = 1 , (8.61)

and that it increases as a power for large x , see [95], p. 101. However, the decrease
due to the Gaussian factor appearing in (8.60) dominates over the increase as a
power due to Hc, such that the wave function '(x) in (8.60) goes to zero at infinity
and thus satisfies our requirement.

One can also see that in the first term of (8.60) the variable x appears only
quadratically, which makes this part of the wave function symmetric, whereas the
additional factor of x in the second term of (8.60) makes this part antisymmetric,
such that it assumes the value zero at the origin. Given that x = 0 corresponds to
the location of the type IV singularity at � = 0, we can conclude that this second
antisymmetric part fulfills the condition of singularity avoidance, while the first
symmetric part does not.

Since in the general case, where a type IV singularity is present, i.e. for
�1/2 < � < 0, � 6= 1/(2p) � 1/2, p 2 N, the equations take a much more
complicated form and are generally not analytically solvable, we restrict ourselves
to draw general conclusions from our solution for � = �1/2 without making
explicit calculations, using the following arguments.

As we have mentioned, a sufficient criterium for singularity avoidance is that the
wave function vanishes at the point where the classical singularity is located, which
in our case is at � = 0. The question we thus have to answer is whether we can
implement '(↵, 0) = 0. In ordinary quantum mechanics, double-well potentials
that take a similar form as the one displayed in figure 8.2 lead to a spectrum of
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infinitely many discrete bound states, where the ground state '0 has a symmetric
form, while the symmetry of the excited states 'n, which have n nodes, alternates
between antisymmetric and symmetric. If we consider two consecutive nodes of 'n,
we find that there is always a node of 'n�1 located between them. Hence, we can
conclude that the antisymmetric solutions vanish at � = 0, whereas the symmetric
ones do not.

Therefore, there is a crucial difference for the case discussed here when compared
to how singularities were resolved in the earlier articles [61] and [31]. In some of
the cases considered in these former papers, the requirement that the wave function
is normalizable with respect to the L2 inner product already enforces that the wave
function vanishes at the point of the classical singularity. This is not the case for type
IV singularities, were singularity-avoiding solutions are allowed, but not enforced.
We can therefore construct singularity-avoiding solutions using superpositions of
states of the form (8.45), where 'k is chosen to be an antisymmetric eigenstate
of (8.50), but solutions that do not vanish at the classical singularity are equally
allowed.

This argument is valid for general � fulfulling �1/2 < � < 0, � 6= 1/(2p)� 1/2,
p 2 N. The solutions for � = �1/2 presented above in terms of Heun functions
correspond to a special case where explicit solutions can be given.

Apart from the solutions for the matter part 'k, one also has to solve the grav-
itational part of the wave function (8.45). Plugging the ansatz (8.45) into the
Wheeler–DeWitt equation (8.44) leads to the following equation for Ck(↵),
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ä
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Ç
2

6
C̈k + 2 Ek(↵)Ck

å
'k = 0 , (8.62)

where we now use a dot to denote a derivative with respect to ↵. We now assume as
it is usually done in the Born–Oppenheimer approximation that Ck varies much more
rapidly with ↵ than with 'k and that one can neglect the backreaction of the matter
part 'k on the gravitational part Ck. This allows us to neglect the terms where ↵-
derivatives of 'k appear, i.e. Ċk'̇k and Ck'̈k [66]. Consequently, the matter part
influences the gravitational part only by contributing its energy via the term Ek(↵).
Hence, using this approximation, we end up with

Ç
2

6
C̈k + 2 Ek(↵)Ck

å
'k = 0 . (8.63)

Since the parameter ` does not appear in this equation, it can be used for both the
standard case and the phantom case.
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Since we cannot write out the exact expression for Ek(↵) due to the fact that
these are the eigenvalues of (8.46) and cannot be given in explicit form, we have to
solve (8.63) using a WKB approximation. This leads to the following approximate
solution
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3
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(8.64)
where b1 and b2 are constants. The function Ek(↵) is real because it is an eigen-
value of the Hermitian operator appearing in (8.48). The Ek(↵) are positive in
the classically allowed region, that is for a  amax, and negative in the classically
forbidden region, i.e. for a > amax.

We have to make sure that the wave functions Ck(↵) decrease exponentially
for ↵ ! 1, that is in the classically forbidden region, such that we respect the
correspondence to the classical limit [76]. This important consistency condition
then leads to a relation between the parameters b1 and b2 in (8.64) using standard
WKB connection formulae. Given the fact that all these solutions are regular, they
do not influence the conclusions we made on singularity avoidance.

In principle, one could get a solution to the Wheeler–DeWitt equation (8.44) that
vanishes at the type IV singularity by demanding that the functions Ck vanish at this
point, which would lead to a certain condition between the parameters b1 and b2.
However, this would mean that the resulting functions Ck would not decrease in the
classically forbidden region, which is why we do not consider this option.

8.4.2 Phantom field

In order to analyze the case of a phantom generalized Chaplygin gas, we can pro-
ceed largely analogously to the standard case discussed above, which is why we only
describe the main steps. If we choose `= �1, � = �1/2 and insert the potential for
the phantom scalar field (8.39), we obtain the following differential equation for
the matter part 'k
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In this case, we introduce the variable y defined as

y := sin
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å
, (8.66)
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such that we obtain the following equation for 'k, where we omit again the index
k from now on
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As before, we use the separation ansatz
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and we can infer that H(y) obeys the following differential equation
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which can be transformed into a standard form for the confluent Heun differen-
tial equation using the transformation z := y2. Consequently, equation (8.70) is
converted into the following form
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A comparison with the canonical form of the confluent Heun differential equation
given in (8.56) yields that equation (8.71) is solved by

H(z) =Hc
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from which we immediately see that the solution to (8.70) is given by

H(y) =Hc
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We see that the main difference to the case with a standard generalized Chaplygin
gas is the sign of the first argument of the Heun functions. Furthermore, y is a
periodic variable, which is why normalizability of the wave function is not required,
even though we still have to demand that the wave functions do not increase
exponentially for large values of y . Apart from this sign change, the solution for
'(y) is identical to the earlier solution '(x) in (8.60).

Hence, the arguments we presented for the standard case are still valid and we
conclude as before that type IV singularities in the phantom case are only avoided
for a subset of the solutions. We have already remarked that the solution for the
gravitational part does not depend on the parameter ` and is therefore given also
here by (8.64).



130 8 The fate of type IV singularities in quantum cosmology

8.5 Comparison with other approaches

Universes with a type IV singularity have also been studied in loop quantum
cosmology [101, 102]. Using a numerical investigation, it was found that type IV
singularities occurring in the past are only avoided for certain choices of parameters
in a closed universe. For type IV singularities occurring at late times, there is a
singularity resolution only if one considers a “baby universe”. In the context of
loop quantum gravity related theories, one can also avoid singularities due to a
maximum acceleration that appears in spinfoam theory [98]. This has, however,
not yet been applied to type IV singularities.

In a certain class of f (R, T ) gravity models, it was shown that type IV singularities
are not resolved by invoking quantum effects due to the conformal anomaly present
in these models [57].

If one applies a different formalism or a different interpretation like the one used
in [62], where the method of time-depending gauge fixing and reduction to physical
degrees of freedom instead of the Wheeler–DeWitt equation was used, one finds that
at the quantum level weak singularities like the Big Brake are not avoided, which
was claimed to hold for all kinds of weak singularities, hence, also for the ones of
type IV.



9
Conclusions and outlook

In the first part of this dissertation, we have derived quantum-gravitational correc-
tions to the power spectra of cosmological perturbations during the inflationary
phase of the universe. We considered first scalar-field perturbations in a de Sitter
model and then moved to gauge-invariant scalar and tensor perturbations, which
were investigated both for a pure de Sitter universe as well as for a quasi-de
Sitter model in the context of slow-roll inflation. In all cases, we performed a
canonical quantization of the respective model and obtained a Wheeler–DeWitt
equation. From a semiclassical Born–Oppenheimer type of approximation of this
equation, we derived a Schrödinger equation for the individual perturbation modes,
which we could use to calculate the power spectrum of the perturbations. At the
next order of the approximation, the Schrödinger equation was modified by a
quantum-gravitational correction term. Using a modified Gaussian ansatz, we were
able to give analytic solutions for the corrected Schrödinger equation in de Sitter
case and, after a suitable approximation, also for the slow-roll model.

We demanded that the quantum-gravitational corrections vanish for late times
in order to set our boundary condition. However, there remained an ambiguity in
the solution and in order to single out one solution, we had to use an additional
criterion like continuity of the imaginary part of the solution or minimal oscillatory
behavior.

After calculating the corrected power spectrum, we found that for the non-gauge-
invariant scalar-field perturbations there was an enhancement of the power on the
largest scales, while for both the gauge-invariant scalar and tensor perturbations
there is a suppression of the same order of magnitude. The slow-roll parameters
give a subdominant contribution that does not change this behavior if one con-
strains these parameters from observation. Furthermore, we found a correction to
the tensor-to-scalar ratio, which is, however, of the second order in the slow-roll
parameters.
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The significant qualitative change of the correction when going from non-
gauge-invariant scalar field perturbations to gauge-invariant perturbations can be
attributed to the fact that one multiplies the perturbation variables with the scale
factor a at the classical level. This rescaling causes that in the quantity ⌦(0)k used
to calculate the power spectrum, an additional imaginary term appears. This term
does not have an influence on the uncorrected power spectrum, because in order to
calculate it one has to take the real part of ⌦(0)k . However, in order to calculate the
quantum-gravitational correction of this quantity, one has to insert the full solution
of ⌦(0)k , which is then cubed and hence changes the differential equation one has
to solve. The qualitative change of the result might be unexpected, but one has to
consider that we multiply the perturbation variable with a background variable,
which is quantized as well. Thus we are dealing with a different quantum (gravity)
theory in the gauge-invariant case compared to the scalar-field case and can in
principle not expect that the results are identical. Deciding from within the theory,
which approach is the correct one, that is, which perturbation variables to choose,
might not be possible and would have to be decided by actual observation.

However, as we have seen, the corrections calculated here are several orders of
magnitude too small to be measurable in CMB anisotropies, especially because of
Cosmic Variance, and – in the case of CMB anisotropies – unavoidable statistical
uncertainty. For the large-scale structure of the universe, which can be investigated
by looking at the distribution of galaxies, Cosmic Variance is not present. Thus
it cannot be excluded that such a quantum-gravitational effect could be easier
measurable in this case. But this would have to be checked explicitly by relating the
corrected power spectrum of scalar fluctuations to the respective quantities used to
describe the large-scale structure, which we leave for further research.

The actual form of the quantum-gravitational corrections derived here is given by
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Ç
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å
,

where C is a numerical factor that depends on the nature of the perturbations
and can also include the slow-roll parameters. Such a k�3-dependence was also
found in [59] and [64] using a different semiclassical approximation method to the
Wheeler–DeWitt equation. One should investigate further, whether this dependence
is a generic prediction of Wheeler–DeWitt quantum cosmology.

With regard to extensions of the models used here, it seems unlikely that one
can go further using only analytic solutions of the equations. Our slow-roll model
covers every inflationary model where the slow-roll approximation can be applied.
In order to investigate any model beyond the slow-roll approximation, one would
have to express the quantity z00/z in terms of canonical momenta and convert these
to derivatives after quantization, which would complicate the resulting differential
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equation enormously and one would probably have to use numerics to analyze it,
which is beyond the scope of this work.

An interesting further model, which one could possibly investigate analytically
with regard to quantum-gravitational corrections is the so-called R2 inflation, which
is also known as the Starobinsky model of inflation [104]. Here one could also
study whether those quantum-gravitational corrections lead to new constraints on
the parameters of R2 inflation. But since this model predicts a very low tensor-
to-scalar ratio, it is only realistic if the polarization measurements of the Planck
satellite that have only been partly released at the writing of this dissertation [2]
dispute the claim by the BICEP2 measurements that r is of about 0.2 [3].

In the second part of the thesis, we have investigated whether type IV singulari-
ties are avoided in quantum cosmology. We modeled a universe containing such a
singularity using a generalized Chaplygin gas both as a standard scalar field as well
as a phantom scalar field. We could give an analytic solution to the matter part
of the Wheeler–DeWitt equation of this model after using a Born–Oppenheimer
approximation and found both for the standard and phantom field that only a
subclass of the allowed wave functions vanish at the point where the type IV
singularity is located, which we used as a criterion for singularity avoidance. This
is in contrast with the results found earlier for our types of singularities, where
imposing normalizability of the wave function already selected wave functions that
vanish at the classical singularities.

In loop quantum cosmology, it was also found that type IV singularities can only
be avoided in very specific models. One could therefore investigate whether this
is a general feature of mild singularities like the type IV singularity in canonical
quantum gravity.

Another further study that can be done with these models is to investigate
whether the type IV singularity can be avoided by tunneling, which in the case
of the standard scalar field is motivated by the double-well form of the potential. In
the phantom case, the potential is periodic and a branch between two maxima en-
tirely describes a classical solution, while the other branches describe different, but
equivalent, entirely independent classical solutions. Hence, in this case tunneling
between different branches would allude to concepts like the multiverse.
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Further analysis of the solution for the quantum-gravitational
corrections in the scalar-field case

We follow [22] and consider equation (5.114). When introducing the new variable
z defined as

z = 1+ i⇠, (0.1)

one can write (5.114) as

d⌦(1)k

dz
= 2

✓
1� 1

z

◆
⌦(1)k +

3
2

✓
7� 2 z � 9

z
+

5
z2 �

1
z3

◆
, (0.2)

whose solution is given by

⌦(1)k (z) = P1
e2z

z2 +
3

8 z2

î
4 z3� 8 z2+ 10 z � 5+ 4e2z Ei(1,2z)

ó
. (0.3)

The constant P1 is chosen such that ⌦(1)k (1) = 0.

In order to study it grafically, we introduce the complex polar representation for

z = ⇢ ei✓ (0.4)

and insert it into the definition of ⌦(1)k (z). We use the definitions

f⇢(✓ ) :=<e
h
⌦(1)k

�
⇢ei✓�i, g⇢(✓ ) := =m

h
⌦(1)k

�
⇢ei✓�i , (0.5)

and show the behavior of these functions in figures 0.1 and 0.2.
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Figure 0.1: Plots of f⇢(✓ ), ⇢ = 1, 2,3, 4. As ⇢ increases, the curves show two en-
hanced peaks at around ✓ = 0 and ✓ = 2⇡, from [22].

Figure 0.2: Plots of g⇢(✓ ), ⇢ = 1,2, 3,4. As ⇢ increases the curves show two en-
hanced peaks at around ✓ = 0 and ✓ = 2⇡, from [22].
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In order to study the deep quantum-gravity regime, one can consider the inverse of
⇠ as new variable

e⇠⌘ 1
⇠

. (0.6)

With this redefinition, we can write (0.2) as

d

de⇠
⌦(1)k =

2i
e⇠2

Ä
ie⇠� 1

ä ⌦(1)k +
3
2

Ä
ie⇠� 2

ä

e⇠3
Ä

1� ie⇠
ä3 . (0.7)

Defining again the complex variable

z := 1+
i
⇠

, (0.8)

we want to plot ⌦(1)k as a function of z and in order to do so, we introduce the
complex polar representation as above and plot in figures 0.3 and 0.4 the real and
imaginary part of the solution of (0.7). In order to compare this with figures 0.1 and
0.2, we plot the function when the amplitude ⇢ takes the same values considered
in figures 0.1 and 0.2.
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Figure 0.3: Plot of the real part of the solution of (0.7) when the amplitude ⇢ of the
complex variable z = 1+ i

⇠
takes the values 1,2, 3,4, from [22].

Figure 0.4: Plot of the imaginary part of the solution of (0.7) when the amplitude ⇢
of the complex variable z = 1+ i

⇠
takes the values 1,2, 3,4, from [22].



Bibliography

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office,
1964.

[2] R. Adam et al., Planck intermediate results. XXX. The angular power spec-
trum of polarized dust emission at intermediate and high Galactic latitudes,
arXiv: 1409.5738 (2014).

[3] P. A. R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales
by BICEP2, Phys. Rev. Lett. 112 (2014), 241101.

[4] P. A. R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron.
Astrophys. 571 (2014), A16.

[5] I. Agulló, A. Ashtekar, and W. Nelson, Quantum Gravity Extension of the In-
flationary Scenario, Phys. Rev. Lett. 109 (2012), 251301.

[6] I. Agulló, A. Ashtekar, and W. Nelson, Extension of the quantum theory of
cosmological perturbations to the Planck era, Phys. Rev. D 87 (2013), 043507.

[7] I. Agulló, A. Ashtekar, and W. Nelson, The pre-inflationary dynamics of loop
quantum cosmology: Confronting quantum gravity with observations, Class.
Quant. Grav. 30 (2013), 085014.

[8] J. Ambjørn, A. Gorlich, J. Jurkiewicz, and R. Loll, CDT - an Entropic Theory
of Quantum Gravity, (2010).

[9] R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of general relativity, in:
Gravitation: An Introduction to Current Research (edited by Louis Witten),
ch. 7, pp. 227–265, Wiley, 1962.

[10] A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett.
57 (1986), 2244–2247.

[11] A. Ashtekar, New Hamiltonian formulation of general relativity, Phys. Rev. D
36 (1987), 1587–1602.



140 Bibliography

[12] K. Bamba, S. Nojiri, and S. D. Odintsov, The Universe future in modified gravity
theories: Approaching the finite-time future singularity, JCAP 0810 (2008),
045.

[13] E. M. J. Barbaoza and N. A. Lemos, Does the Big Rip survive quantization?,
Gen. Rel. Grav. 38 (2006), 1609–1622.

[14] J. D. Barrow, G. J. Galloway, and F. J. Tipler, The closed-universe recollapse
conjecture, Mon. Not. R. Astro. Soc. 223 (1986), 835–844.

[15] J. D. Barrow, Sudden future singularities, Class. Quant. Grav. 21 (2004), L79–
L82.

[16] N. Bartolo, E. Komatsu, S. Matarrese, and A. Riotto, Non-Gaussianity from
inflation: Theory and observations, Phys. Rept. 402 (2004), 103–266.

[17] D. Baumann, TASI Lectures on Inflation, arXiv: 0907.5424 (2009).

[18] D. Baumann et al., CMBPol Mission Concept Study: Probing Inflation with CMB
Polarization, AIP Conf. Proc. 1141 (2009), 10–120.

[19] M. C. Bento, O. Bertolami, and A. A. Sen, Generalized Chaplygin gas, accel-
erated expansion and dark energy matter unification, Phys. Rev. D 66 (2002),
043507.

[20] C. Bertoni, F. Finelli, and G. Venturi, The Born-Oppenheimer approach to the
matter - gravity system and unitarity, Class. Quant. Grav. 13 (1996), 2375–
2384.
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