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Abstract 

This work describes the development of a novel enantioselective activation mode for 

carboxylic acids via self-assembly organocatalysis. In the first part, the heterodimerization 

between sterically congested chiral phosphoric acid catalysts and carboxylic acids is 

presented. Upon association, an exceptionally synergistic effect is observed: the acidity of 

the catalyst is enhanced and the nucleophilicity of the carboxylic acid is increased. 

Explorations on this catalytic system allowed to unlock the first enantioselective ring 

openings of aziridines and epoxides to 1,2-diols, 1,2-aminoalcohols and 1,2-thioalcohols in 

Brønsted acid catalysis. An unusual reaction mechanism was harnessed, in which the 

phosphoric acid primarily establishes an interaction with the nucleophile rather than with 

the electrophile. This apparent change of polarity of the catalytic cycle allowed to effectively 

override the instability of the acid organocatalyst towards an alkylative deactivation in the 

presence of highly reactive electrophiles. Thorough mechanistic investigations, including 

theoretical analysis on the heterodimeric species and kinetic studies on the catalytic cycle 

were conducted in order to allow the detailed codification of this new reaction mode. 

Kurzzusammenfassung 

Diese Arbeit beschreibt die Entwicklung eines neuen enantioselektiven Aktivierungsmodus 

von Carbonsäuren durch selbstorganisierte Organokatalyse. Im ersten Teil wird die 

Heterodimerisierung von sterisch anspruchsvollen chiralen Phosphorsäure-Katalysatoren 

und Carbonsäuren erläutert. Bei deren Wechselwirkung wurde ein synergistischer Effekt 

beobachtet: Sowohl die Azidität des Katalysators, als auch die Nukleophilie der Carbonsäure 

wurden erhöht. Untersuchungen des katalytischen Systems ermöglichten die erste 

Brønstedsäure-katalysierte enantioselektive Ringöffnung von Aziridinen und Epoxiden zu 

den entsprechenden 1,2-Diolen, 1,2-Aminoalkoholen und 1,2-Thioalkoholen. Hierfür wurde 

ein ungewöhnlicher Reaktionsmechanismus angewandt, bei dem die Phosphorsäure 

zunächst eine Wechselwirkung mit dem Nukleophil, anstelle des Elektrophils eingeht. Dieser 

offensichtliche Wechsel der Polarität im katalytischen Zyklus verhinderte eine Deaktivierung 

des Katalysators über eine mögliche Alkylierung durch hochreaktive Elektrophile. 

Mechanistische Studien, unter anderem theoretische Untersuchungen der Heterodimer-

Spezies sowie kinetische Studien zur Aufklärung des katalytischen Zyklus wurden 

durchgeführt um detaillierte Einblicke in diesen neuartigen Reaktionsmodus zu erhalten. 
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List of Abbreviations 

*   designating chiral element 
A   acid 
Ac   acyl 
ACDC   asymmetric counteranion-directed catalysis 
Alk   alkyl 
Ar   aryl 
Asp  aspartate 
aq.   aqueous 
B   base 
BINOL   1,1’-bi-2-naphthol 
Bn   benzyl 
Boc   tert-butyloxycarbonyl 
br   broad 
brsm   based on recovered starting material 
Bu   butyl 
calcd   calculated 
cat.   catalyst or catalytic 
chloranil tetrachloro-p-benzoquinone 
conc.   concentrated 
conv.   Conversion 
cy   cyclohexyl 
d   doublet or day(s) 
DCE  dichloroethane 
DCM   dichloromethane 
DFT   density functional theory 
DMAP   4-dimethylaminopyridine 
DOSY  diffusion ordered spectroscopy 
DMF  dimethylformamide 
DMSO   dimethylsulfoxide 
DPP  diphenyl phosphoric acid 
dppf  1,1′-Bis(diphenylphosphino)ferrocene 
d.r.   diastereomeric ratio 
E  electrophile 
Ea  activation energy 
ee  enantiomeric excess 
EI   electron impact ionization 
e.r.  enantiomeric ratio 
equiv.   equivalents 
Et   ethyl 
et al.   et alii/et aliae – and others 
ESI   electronspray ionization 
GC   gas chromatography (gas chromatography coupled with mass detection) 
h   hour(s) 
H8-BINOL  5,5’.6,6’,7,7’,8,8’-octahydro-1,1’-2-naphtol 
HOMO  highest occupied molecular orbital 
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HRMS   high resolution mass spectrometry 
HX*   designating chiral Brønsted acids, e.g. chiral phosphoric acid diesters 
i   iso 
L   ligand 
LUMO   lowest unoccupied molecular orbital 
m   meta 
m   multiplet 
M   molar or metal 
mCPBA  meta-chloroperbenzoic acid 
Me   methyl 
MS   mass spectrometry or molecular sieves 
MTBE   methyl tert-butyl ether 
MW   molecular weight 
n   normal 
NCS  N-chlorosuccinimide 
NBS   N-bromosuccinimide 
NMR   nuclear magnetic resonance (spectroscopy) 
NOE   nuclear Overhauser effect 
NuH/Nu  nucleophile 
o   ortho 
obs  observed 

P   product 
p   para 
PAA  p-anisaldehyde 
PG   protecting group 
Py   pyridine 
Ph   phenyl 
PMA   phosphomolybdic acid 
Pr   propyl 
quant.   quantitative 
quint   quintet 
rac   racemic 
r.t.   room temperature 
S   substrate or selectivity factor 
sat.   saturated 
sol.   Solution 
SOMO  singly occupied molecular orbital 
SPINOL  1,1’-spirobiindane-7,7’-diol 
STRIP   spiro-TRIP 
t   tert, tertiary 
t   triplet 
T   temperature 
TADDOL  α,α,α’,α’-tetraaryl-1,3-dioxolan-4,5-dimethanol 
TBCO  2,4,4,6-Tetrabromo-2,5-cyclohexadienone 
Tf   trifluoromethylsulfonyl 
THF   tetrahydrofuran 
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1. Introduction 

1.1. Chirality 

“I call any geometrical figure, or group of points, chiral, and say that it has chirality if its 

image in a plane mirror, ideally realized, cannot be brought to coincide with itself”
 

W. T. Kelvin, Robert Boyle Lecture, 1893  

Chirality, as defined by Lord Kelvin in 1893,1 is the geometrical property of any object 

which is not super-imposable upon its mirror-image. Molecules, if chiral, can occur in two 

chemically equivalent structures, termed enantiomers, which are specular to each other.2 

Early investigations in the 19th century by Biot
3 and Pasteur

4 pioneered the discovery of this 

concept, whereas the first rationalization about molecular chirality can be traced back to the 

theorizations on the tetravalency of carbon atoms by van’t Hoff
5 and LeBel

6. This three-

dimensional property represents a prominent feature of life and its consequences are of 

unique importance in both material and natural sciences.  

At the edge between biology and chemistry the “handedness” of enantiomers has 

enormous relevance. Besides rare exceptions, aminoacids, nucleotides, lipids and sugars are 

incorporated as single enantiomers in nature. Although the origins of this phenomenon are 

still debated,7 it is widely accepted that the defined chirality of life’s building blocks 

effectively translates in the formation of enantiomerically pure natural macromolecules (i.e. 

enzymes and nucleic acids). As a consequence, biological systems are mostly homochiral and 

they dissimilarly interact with enantiomers of chiral compounds, thus resulting in different 

physiological responses. Flavours, odours and drug responses are strongly affected by such 

biomolecular recognition, which found its primordial postulation in Fischer’s “lock and key 

principle” (Figure 1.1).8,9  

Arguably, one of the most important consequences of the handedness is found in the 

use of chiral compounds as medicinal agents, since the desired activity is usually displayed 

only by one of the enantiomers of chiral antibiotics and pharmaceutical drugs.10 In the past 

years, the vast majority of synthetic drugs has been marketed as racemic mixture and the 

potential side effects of the undesired mirror-image compound have been considerably 

overlooked until late 1950’s, when the “thalidomide tragedy” landmarked a change of 

attitude.11
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Figure 1.1. Bimolecular recognition and examples of bioactive chiral molecules. 

Such sorrowful experience induced a significant switch of paradigm for drug regulation 

and more structured rules were introduced aiming towards the prevention of undesired 

effects by the “wrong” mirror-image compound.12 Since then, most of the newly 

commercialized chiral medicinal compounds are single enantiomers and, very often, the 

previously marketed racemic drugs are reinvestigated in their enantiopure form.13 

Nowadays, the demand for chiral compounds as single enantiomers is a primary issue for 

chemical industries and chemical synthesis is no longer limited to producing racemic 

mixtures that contain undesired stereoisomers. Traditional strategies rely either on the 

exploitation of enantiopure reagents, often derived from nature’s chiral pool, or on 

resolution techniques for racemic mixtures. However, the requirement for stoichiometric 

amounts of the chiral precursor for the former approach and the usual waste of the 

undesired second enantiomer for the latter, are generally identified as major drawbacks for 

these processes.14 On the other hand, during the last decades, asymmetric catalysis has 

emerged as a complementary strategy with considerable advantages over the older 

techniques.15 The possibility to use a chiral catalyst, ideally in sub-stoichiometric amounts, 
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for the synthesis of large quantities of a desired product is arguably the most elegant 

approach to chiral enantiopure compounds. The catalyst is regenerated during the course of 

the reaction and therefore can theoretically promote the transformation with high efficiency 

and minimal amount of waste. 

      

1.2. Asymmetric catalysis 

Either thermodynamically favored or disfavored, chemical transformations generally 

require activation energy to occur. A highly energetic transition state is formed along the 

reaction coordinate and eventually evolves in the formation of the products. Catalysis is the 

chemical phenomenon of the acceleration of the rate of a given transformation by means of 

an additional substance, which is not consumed and can be recycled. Interacting with the 

reagents, the catalyst allows the same reaction to occur via a different less-energetic 

pathway. In other words, the potential barrier of the overall process is reduced and the 

reaction rate is increased (Figure 1.2).16      

 

Figure 1.2. Generic energy diagram of a catalyzed- and a related non-catalyzed process. 

If the catalyst is chiral (and enantiopure), stereogenic elements may be assembled in a 

selective fashion. Despite having the same absolute energy, the two mirror-image products 

are obtained through energetically non-equivalent reaction pathways: different activation 

energy is required due to the formation of diastereomeric transition states. This 

phenomenon accounts for a possible asymmetric induction and it is for this reason that the 

vast majority of bio-catalyzed transformations occur in an enantioselective fashion.  
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In analogy with the concept of biomolecular recognition, enantioselective enzyme 

catalysis has been long established; interestingly however, the potential of artificial 

enantiomerically pure catalysts was discovered more recently. Arguably, one of the most 

important breakthrough was represented by the investigations by Knowles at Monsanto 

Company in 1968.  A modest, but significant selectivity was reported for the reduction of α-

phenylacrylic acid with hydrogen gas catalyzed by a rhodium complex with a scalemic 

phosphine ligand (Scheme 1.1).17a  

 

Scheme 1.1. Knowles’ pioneering achievement in asymmetric catalysis 

“…The inherent generality of this method offers almost unlimited opportunities for matching 

substrates with catalysts in a rational manner and we are hopeful that our current effort will 

result in real progress towards complete stereospecificity”
 

W. S. Knowles, M. J. Sabacky, 1968 

The efficacy of this approach was immediately recognized by the scientific community 

and very soon the first industrial application of a similar catalytic system was developed by 

Monsanto for the highly enantioselective synthesis of L-DOPA.17b In recognition of his 

milestone achievements, Knowles shared the Nobel prize in 2001 with Noyori, also for 

asymmetric hydrogenation reactions, and Sharpless for his studies on asymmetric oxidation 

reactions.18   

Over the years, metal-based processes have dominated asymmetric catalysis with 

remarkable advances; however, shortly before the Nobel prize award, a new area emerged 

in this research field. In 2000, independent investigations by List
19

 and MacMillan
20 

introduced asymmetric organocatalysis as the “catalysis with small organic molecules, where 

an inorganic element is not part of the active principle”.21 The easy access to chiral organic 

catalysts, together with the remarkable stability and low toxicity exhibited with respect to 

chiral metal complexes, rendered this concept highly attractive to the scientific community. 

From its disclosure, organocatalysis has been increasingly investigated, finding wide 
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applications in synthetic chemistry on both academic and industrial scale. Complementing 

metal-catalysis and biocatalysis, organocatalysis is nowadays accepted as the third 

cornerstone for asymmetric synthesis.22 Today, this research area seems to be unlimited and 

continuous explorations are focused on the development of different activation modes, the 

disclosure of novel transformations and the design and preparation of highly active and 

selective catalysts.  

 In the following chapters an overview of organocatalysis is presented, with special focus 

on Brønsted acid catalysis, followed by the discussion of the investigations conducted during 

these doctoral studies. In particular, this work has been aimed at the development and the 

codification of a novel activation mode for carboxylic acid substrates in asymmetric 

organocatalysis.  
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2. Background 

2.1. Asymmetric organocatalysis 

2.1.1. Introduction and historical background 

Nature has always been a source of inspiration for the mankind and the development of 

asymmetric catalysis is not an exception.23 In biological systems, enzymes catalyze reactions 

with extraordinary activity and selectivity, thus allowing life-sustaining chemical processes. 

Such biocatalysts rely either on the activity of aminoacidic residues or on the role of 

cofactors and coenzymes, which are present in their active pockets.24  Surprisingly, although 

non-metallic proteins are about half of the known biocatalysts, chemists have rarely 

investigated the possibility to mimic their catalytic principles until recently. As a 

consequence the development of asymmetric organocatalysis has lagged significantly behind 

that of enantioselective metal-based catalysis and, before the year 2000, consisted only in a 

small collection of poorly understood transformations.25  

The possibility to promote chemical reactions by means of simple organic molecules 

may be traced back to more than hundred years ago to the pioneering findings by von 

Liebig
26

 and Bredig
27. However, the first significant example of chirality transfer was only 

observed in 1960 by Precejus in an asymmetric addition of methanol to ketenes catalyzed by 

a quinine-derived catalyst (Scheme 2.1).28  

 

Scheme 2.1. Precejus’ pioneering achievement in asymmetric organocatalysis 

Other isolated examples appeared later, such as the Julia-Colonna epoxidation and the 

enantioselective approach to the Wieland-Mischer ketone independently described by Hajos 

and Parrish and by Eder, Sauer and Wiechert.29 Nevertheless, the lack of a mechanistic 

rationalization hampered a general recognition of this type of asymmetric catalysis.  
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It was with the ground breaking works by List and MacMillan that the generality and 

the potential of the concept were realized and the field of asymmetric organocatalysis 

entered its modern era. Two complementary activation modes for carbonyl compounds by 

means of secondary amine catalysts were disclosed. List reported the enantioselective aldol 

reaction of acetone with aldehydes catalyzed by the aminoacid proline (Scheme 2.2.a).19 

Slightly later the same year, MacMillan reported that chiral imidazolidinone catalysts can 

promote the asymmetric Diels-Alder reaction between enals and dienes (Scheme 2.2.b).20 

Importantly, a detailed mechanistic rationalization supported the understanding of the 

catalytic principles of both transformations. It is evident that the activation of the substrates 

occurs in a chiral environment and the highly organized transition states allow the transfer 

of the stereochemical information held in the structure of the chiral catalyst. 

 

Scheme 2.2. List’ (equation a) and Mac Millan’s (equation b) seminal works 

These two reports triggered the development of the new research field, which has 

rapidly grown during the subsequent years. Impressively, the number of reported 

organocatalytic reactions has increased exponentially and, to date, over ten thousands 

scientific contributions have appeared demonstrating an exceptional interest both from the 

academic and the industrial chemical community.30 Currently, organocatalysis is among the 

most intensively investigated areas of organic chemistry and it is widely accepted as one of 

the main branches of enantioselective synthesis.31        
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2.1.2. Activation modes and establishment of modern organocatalysis 

The success of organocatalysis relies on the introduction and the detailed codification 

of various activation modes. Organic catalysts significantly affect the reactivity profile of 

basic functional groups through the formation of covalent adducts or the establishment of 

non-covalent interactions (hydrogen bonding or ion pairing). The frontier molecular orbitals 

of the reacting species are influenced by these associations and, when the activation occurs 

in a chiral microenvironment, enantioselective catalysis may take place.32 Simple moieties 

(aldehydes, ketones, imines, etc…) assemble with chiral catalysts in a highly defined manner 

thus facilitating a predictive understanding of the reactions.33 Today, a platform of different 

asymmetric catalytic modes is available and constitutes a useful and powerful tool for 

organic synthetic chemists.  

A key example can be found in the activation of carbonyl compounds and related 

substrates. A variety of asymmetric strategies have been reported and, therefore, the 

organocatalytic exploitation of these functional groups is well-established (Figure 2.1).  

 

Figure 2.1. Selected organocatalytic modes for carbonyl compounds and related substrates. 

As introduced in the previous paragraph, aminocatalysis can be useful both for nucleophilic 

and electrophilic activation. The α-functionalization can be obtained through enamine 

catalysis: these species have a higher-lying HOMO (highest occupied molecular orbital) than 
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the corresponding enols, resulting in being more reactive towards electrophilic reaction 

partners.19,34 On the other hand, iminium ion intermediates exhibit a low-lying LUMO 

(lowest unoccupied molecular orbital), thus being more available for incoming nucleophiles 

compared to the parent carbonyl substrate.20,35 In addition, the SOMO (singly occupied 

molecular orbital) activation can be unlocked by oxidation of enamine intermediates to 

radical cations, complementing enamine catalysis for the α-functionalization of aldehydes 

and ketones.36 Catalysis by carbenes can be exploited for nucleophilic reactions of 

aldehydes, due to the formation of chiral Breslow intermediates,37 while LUMO lowering 

activations are also successfully realized through hydrogen bonding or acid catalysis.38,39 

Finally, a recent asymmetric approach to electrophilic activation is represented by 

Asymmetric Counteranion Directed Catalysis (ACDC). This mode of catalysis exploits the 

formation of achiral cationic reactive intermediates (i.e. iminium ions, oxonium ions) in a 

coulombic ion pairing interaction with the chiral anion derived from the catalyst.40 

However, despite the broad success of the already investigated catalytic modes, 

many functional groups are not yet amenable to asymmetric organocatalysis. The 

introduction of novel activation strategies provides valuable alternatives in synthetic 

chemistry, especially for the enantioselective transformations of such elusive substrates.  

Aiming to an organization of the various activation modes and considering the huge 

number of reported organocatalytic transformations, Seayad and List have suggested a 

classification based on the role of the organic catalyst.41 Although any reaction exhibits 

peculiar mechanistic features, four distinct classes can be identified: Lewis base catalysis, 

Brønsted base catalysis, Lewis acid catalysis and Brønsted acid catalysis (Scheme 2.3).    

 

Scheme 2.3. Classification of organocatalytic transformations based on the role of the 

organic catalyst. 
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Lewis base catalysis, in which the catalyst promotes the reaction donating one (or 

more) electrons to the substrate, encompasses the majority of the reported transformations 

and both enamine and iminium ion catalysis, together with SOMO catalysis and carbene 

catalysis, operate through this type of mechanism.  

However, although this classification may appear rigid, it is worth to mention that 

several reactions simultaneously exploit multiple activation modes, possibly lying at the 

edges between two different mechanisms. Many organocatalysts have been proposed to 

play a bifunctional role, when the primary activation is assisted by a secondary interaction 

that tunes the reactivity of the reaction partner. Perhaps, one of the clearest examples of 

this phenomenon is represented by the above-mentioned proline-catalyzed aldol reaction. 

The enamine activation of acetone is assisted by the Brønsted acid activation of the 

aldehyde thus facilitating the transformation (Figure 2.1).42 

 

Figure 2.1. Proline as bifunctional catalyst: the List-Houk model for the asymmetric aldol 

reaction. 
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2.2. Asymmetric Brønsted acid catalysis 

The Brønsted-Lowry acid-base theory was independently introduced in 1923 by the 

two physical chemists aiming at the correction of the previously accepted paradigm, which 

had been postulated by Arrhenius.43 Their concept is based on the understanding that acidity 

and basicity are not absolute properties, but are better described as the relative features of 

two species when in interaction with each other. Accordingly, acids are defined as species 

capable of proton donation to bases, which are proton acceptors. The field of Brønsted acid 

catalysis is essentially based on this definition, since the activation of the substrates is 

realized via a preliminary acid-base equilibrium: the acidic catalyst donates a proton to the 

substrate which acts as a base.  

A strict affinity can be imagined with enantioselective Lewis acid catalysis, which 

combines metals or metalloid central atoms with chiral ligands. From this point of view, 

hydrogen can be imagined as the smallest centered element and the backbone of an organic 

catalyst may be the effective source of stereoselectivity (Figure 2.2).39a                 

 

Figure 2.2. Lewis acid activation and Brønsted acid activation. 

Asymmetric catalysis by Brønsted acids may be mechanistically divided into two 

different classes: general catalysis and specific catalysis.44 The former type of catalysis is 

promoted by catalysts which are not truly capable of donating protons and activates 

substrates via hydrogen bonding coordination. The latter activation relies instead on the real 

protonation of substrates and a more pronounced ion pair character is exhibited (Scheme 

2.4). Obviously, in both cases the Lewis acidity of the substrate is increased and the LUMO is 

lowered, thus being activated towards nucleophiles.  The distinction between these two 

mechanisms is subtle and it is based on the inherent acidity difference between the catalyst 

and the conjugated acid of the substrate. Nevertheless, in the majority of cases it is not 

possible to draw the line, a classification into hydrogen bonding catalysts and acid catalysts, 

which are relatively prone to protonation, is commonly accepted. 
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Scheme 2.4. General Brønsted acid catalysis and specific Brønsted acid catalysis 

    

2.2.1. General Brønsted acid catalysis: hydrogen bonding catalysts 

It is widely accepted that many enzymes exploit hydrogen bonding networks to 

facilitate their catalyzed transformations. Perhaps, one of the most noteworthy examples is 

represented by the importance of the “oxyanion hole” in the mechanism of the serine 

proteases. In the catalytic pocket, the amide substrate is coordinated to two N-H hydrogen 

bond donors, thus being more reactive for the incoming nucleophilic attack.45 After the 

advent of modern organocatalysis, chemists have successfully mimicked this natural 

activation strategy and intensively explored artificial chiral hydrogen bonding catalysts.  

The first catalytic system for enantioselective transformations was serendipitously 

discovered by the Jacobsen group. Catalyzed by chiral thiourea 16, which had been initially 

designed as ligand for metal catalysis, a highly enantioselective Strecker reaction between 

allyl-imines and hydrogen cyanide was reported (Scheme 2.5.a).46 Few years later, chiral 

diols were also identified as effective catalysts by the Rawal group. An enantioselective 

hetero Diels-Alder reaction between aldehydes and activated dienes was reported to be 

promoted by TADDOL 20 (Scheme 2.5.b).47  
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Scheme 2.5. (a) Strecker reaction catalyzed by a chiral thiourea and (b) hetero Diels-Alder 

reaction catalyzed by a chiral TADDOL. 

Interestingly, these catalysts operate via different binding systems. Thiourea catalysts 

promote transformations through a dual hydrogen bonding interaction, which may either 

activates electrophiles or act as binding site for anion nucleophiles. Conversely, it is accepted 

that the more flexible TADDOL acts as a single hydrogen donor. The intramolecular hydrogen 

bonding network increases the acidity of the alcohol moiety in a phenomenon which has 

been termed by Yamamoto “Brønsted acid assisted Brønsted acid catalysis”.48  

Today TADDOLs and thioureas, together with chiral ureas, squaramides, BINOLs and 

many other scaffolds, are intensively investigated and hydrogen bonding catalysis is among 

the most explored fields in organocatalysis.38 

 

2.2.2. Specific Brønsted acid catalysis: acid catalysts 

Catalysis by strong Brønsted acids has long been used in synthetic chemistry. The 

effect of mineral acids on the rate of certain organic reactions has been known to chemists 

since many centuries. In contrast, the exploration of this type of catalysis for asymmetric 

reactions only started in 2004. Seminal works by Akiyama and Terada proposed the use of 

chiral organic acids for the electrophilic activation of imines. The two research groups 

simultaneously introduced axially chiral BINOL-derived phosphoric acid diesters to promote 
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highly stereoselective Mannich reactions. Akiyama and coworkers reported the addition of 

silyl ketene acetals to aromatic imines catalyzed by phosphoric acid 24a (Scheme 2.6.a),49 

while a similar acid catalyst 24b, bearing a different substitution pattern at the 3-3’ position 

of the binaphthyl backbone, was introduced by the Terada group for the addition of β-

diketones to Boc-protected imines (Scheme 2.6.b).50a  

 

Scheme 2.6. (a) Akiyama’s enantioselective Mannich reaction catalyzed by phosphoric acid 

24a and (b) Terada’s enantioselective Mannich reaction catalyzed by putative phosphoric 

acid 24b. 

In 2010, reinvestigating the reaction by the Terada group, Ishihara and coworkers 

suggested that the actual catalyst was not the phosphoric acid, but the corresponding 

calcium salt formed as an impurity during the purification by silica gel chromatography.50b 

Despite this finding, these two Japanese groups share the prestige of the discovery of the 

potential of acid catalysis. After the disclosure of this concept the scientific community was 

extremely inspired and the design and tuning of novel catalysts has evolved with remarkable 

progress.39 

 

 



2. Background 

 

15 

 

Acid catalysts for asymmetric catalysis 

Due to the possible structure modulation, chiral phosphoric acid derivatives are the 

most exploited acid catalysts to date. A fine tuning of the electronic and steric properties can 

be achieved, thus facilitating the optimization of the catalytic performances for a large 

number of reactions (Figure 2.3).       

 

Figure 2.3. Modulation of phosphoric acid diesters and TRIP (24c), one of the most used 

organocatalysts.  

Introduced in 2004, BINOL-derived axially chiral phosphoric acid catalysts have been 

intensively investigated.51 Their success relies on two main aspects: the availability of chiral 

enantioenriched binaphthol and the possibility to easily access a library of relatively different 

catalysts. Chiral binaphtyl derivatives have been introduced in asymmetric catalysis by 

Noyori and several diverse functionalizations have appeared over the years.52 For example, a 

late stage cross coupling reaction at the 3-3´ position allows the synthesis of phosphoric 

acids with variously substituted binaphthyl moieties. Such modulation may significantly 

affect the structure of the catalytic pocket, hence influencing the catalytic properties. 

Limiting the number of possible less-selective isomeric transition states and increasing the 

steric hindrance of the catalyst active site often translates into higher selectivity. Despite not 

being a general phenomenon, this empirical rule is generally helpful for the design of novel 

catalysts. Introduced by the List group in 2006, TRIP 24c represents one of the most popular 

organic catalyst and, bearing a bulky 2,4,6-triisopropyl phenyl substituent, it is a noteworthy 

example of this concept (Figure 2.3).53  

The modification of the chiral backbone may also be particularly useful and has been 

thoroughly investigated. Next to the axially chiral binaphthyl-moiety, other stereogenic units 
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have been explored with the introduction of several other classes of catalysts.54 Phosphoric 

acid 29, bearing a hydrogenated H8-BINOL motif, was reported by the Gong group,54a while 

the first application of a VAPOL-derived phosphoric acid (30) in asymmetric catalysis was 

presented by Antilla and coworkers.54b 

   

Figure 2.4. Alternative backbones for phosphoric acid catalysts. 

A chiral biphenol backbone has also been developed by the Akiyama group (31), while the 

double axially chiral phosphoric acid 32 was identified by Du as the optimal catalyst for an 

asymmetric reduction of quinolines.54c,d
 Point and planar chiral scaffolds have also been 

explored and the corresponding catalysts were reported to exhibit significantly different 

performance profiles. In 2005 Akiyama developed the TADDOL-derived catalyst 33 for 

certain Mukayama-Mannich reactions,54e while in 2010 a novel class of chiral phosphoric 

acids bearing a SPINOL backbone was introduced independently by the List group and by Liu, 

Wang and coworkers. STRIP 34 was used for an efficient kinetic resolution of alcohols via 

transacetalization, while a related 1-naphtyl substituted catalyst was developed for a Friedel-

Crafts reaction.54f,g Catalysts 35 and 36, with planar chiral backbones have recently been 

introduced by the groups of Enders and Marinetti, however only preliminary explorations 

have been reported to date.54h,j    
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Since the acidity of catalysts often translates into their catalytic performances, the 

tuning of the acid moiety is largely investigated and it is of primary interest for synthetic 

purposes. The possibility to reduce the catalyst loading is always an ambitious target and, in 

addition, the desired reactivity is often unlocked only by adjusting the features of the active 

site.   

 

Figure 2.5. Overview of modifications to the phosphoric acid moiety. 

A phosphoric acid diamide catalyst 37 was reported by Terada, however, despite the 

introduction of a novel tunable site, limited success has been reported so far.55a 

Dithiophosphoric acids 38 were first introduced by the Blanchet group and later employed 

by Toste and coworkers for a highly enantioselective hydroamination of allenes.55b,c An 

important development was represented by the introduction of N-triflyl phosphoramides 39 

by Yamamoto in 2006. This class of catalyst have found several applications in 

organocatalysis, presumably due to their remarkable acidity, and also thio- and seleno-

derivatives have been developed.53d,e N-phosphinyl phosphoramide catalysts 40 have been 

recently reported by List and coworkers for an enantioselective N,O-acetalization reaction.55f 

Beyond phosphoric acid derivatives, different moieties have appeared, 

complementing the field of acid catalysis.56 In 2007, BINOL-derived dicarboxylic acids 41 

have been reported by the Maruoka group,56a while highly acidic axially chiral disulfonic 

acids 42 were initially introduced in 2008 by the List group and later utilized by Ishihara and 

coworkers, who investigated their pyridinium salts in enantioselective catalysis.56b,c Recently, 

List and coworkers reported the synthesis of chiral disulfonimide catalysts 43 for their 

applications as precatalysts in Lewis acid organocatalysis. Interestingly, this class of catalyst 

also found applications as strong Brønsted acid catalysts, as witnessed by an elegant and 
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straightforward approach to the enantioselective synthesis of estrone using an asymmetric 

Torgov cyclization as the key step.56d,e Very recently, the challenging stereocontrol of the 

reactions of small and structurally unbiased substrates prompted the List group to develop 

confined catalysts. For this reason, dimeric imidodiphosphoric acids 44 were designed and 

successfully utilized in acid catalyzed asymmetric acetalization and spiro-acetalization 

reactions, as well as in an elegant, highly selective sulfoxidation of thioethers.56f-h              

 

Figure 2.6. Overview of non-phosphoric acid chiral catalysts. 

In parallel to the use of chiral acid organocatalysts, a different approach to acid 

catalysis is represented by the combination of a strong achiral acid and a chiral base.57 

Depending on the pKa of the conjugated acid of the basic compound, this approach delivers 

moderately to strong acidic species. In other words, the chiral base operates as a proton 

shuttle, attenuating the overall reactivity thus allowing enantioselective catalysis. Two 

remarkable examples are the catalytic systems developed by Johnston and Jacobsen (Figure 

2.7). 

 

Figure 2.7. Combination of strong achiral acids with chiral bases. 

 The Johnston group developed chiral bisamidinium sulfonate catalyst 45 in 2004 and 

explored its activity over the years with multiple applications.57a The Jacobsen group 

designed a combination of a chiral urea-sulfoxide catalyst and sulfonic acids (46) and applied 
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this system to an asymmetric Povarov reaction between N-aryl imines and electron-rich 

alkenes.57b  

Clearly, the overview presented in this paragraph is not aimed at a comprehensive 

review of the field of Brønsted acid catalysis, but to broadly outline this intensively explored 

subject. The interest of the scientific community towards asymmetric acid catalysis is always 

growing and presumably any present description of this field is destined to be soon 

outdated. The concepts sketched here are continuously applied to new transformations and, 

additionally, a considerable interest is given to the broadening of the activation principles to 

previously unexplored compounds. One class of substrates, which has been elusive to 

asymmetric organocatalysis is represented by carboxylic acids.     
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2.3. Carboxylic acids 

The carboxylic acid moiety is among the most common functionalities in organic 

molecules, and it is abundantly incorporated in natural compounds.58 All aminoacids, lactic 

acid, mandelic acid and pyruvic acid, to name just a few, bear witness to the ubiquity of 

these substances among the molecules of life. Furthermore, carboxylic acid intermediates 

are considered linchpin raw materials for synthetic purposes as they are significantly stable 

compounds, easy to store and to handle and preparatively accessible by a variety of 

established routes.59 Presumably due to all these aspects, they are commercially available in 

a wide structural variety.  

 

     Figure 2.8. Naturally occurring carboxylic acids and dichotomous polarity of the moiety.  

The normal reactivity of this functional group is based on its peculiar dichotomous 

structure. In fact, two geminal oxygen atoms characterize the carboxylic moiety: the basic 

carbonyl moiety and the acidic hydroxyl group (Figure 2.8). Under basic conditions a 

deprotonation reaction delivers a reactive carboxylate anion which can be exploited for 

nucleophilic reactions. On the other hand, under acidic conditions the electrophilicity of the 

carbonyl group is enhanced and addition-elimination reactions may occur resulting in the 

substitution of the hydroxyl moiety with various nucleophiles. In addition, powerful routes 

towards α-functionalization reactions and decarboxylative transformations have been 

established.60  

Despite the importance of these compounds as versatile synthetic intermediates, the 

development of catalytic transformations is still rather limited. As a matter of fact, the 

conversion into carboxylic acid derivatives is usually required for their exploitation under 

catalytic conditions, while the possibility to avoid the additional derivatization step is often a 

desired, yet challenging, target.61 In recent years, various investigations in non-asymmetric 

metal-catalysis have actually made possible the direct use of carboxylic acid substrates, 
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however this exploitation has been generally elusive in enantioselective transformations 

(vide infra). 

 

Metal-based asymmetric catalysis with carboxylic acid substrates 

Interestingly, carboxylic acids were investigated at the very onset of metal-based 

asymmetric catalysis. The first asymmetric hydrogenation reaction disclosed by Knowles at 

Monsanto17a was later followed by several reports in which the catalytic system was 

modified, thus allowing high enantioselectivity. For example, Noyori reported the 

asymmetric reduction of α,β- and β,γ-unsaturated carboxylic acids catalyzed by a ruthenium 

complex with a chiral BINAP ligand (Scheme 2.7).62 This transformation proceeds via the 

formation of a metal-carboxylate intermediate, which facilitate the coordination of the 

olefin moiety and allows the following asymmetric hydrogenation reaction. A formal 

activation of the carboxylic acid moiety is not realized in this type of transformation, but the 

functional group effectively serves as directing group.  

 

Scheme 2.7. Carboxylic acid as directing group in Noyori’s hydrogenation reaction 

On the other hand, the formation of metal-carboxylates can also result in a direct 

activation and two main approaches have been proposed: the exploitation of the 

nucleophilicity of the organometallic intermediate towards activated electrophiles (mode A, 

Scheme 2.8) or a decarboxylative strategy for addition reactions (mode B, Scheme 2.8).61a 

Importantly, the first type of transformation involves a C-O bond formation giving ester 

products, while the second approach, after the extrusion of carbon dioxide, provides a C-C 

bond formation.  
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Scheme 2.8. Direct activation of carboxylic acids via metal-carboxylate. 

In 1997, the Jacobsen group reported an elegant approach to the desymmetrization 

of meso-epoxides with benzoic acid catalyzed by cobalt-SALEN complex 53 (Scheme 2.9).63 

Similarly to the later developed hydrolytic kinetic resolution of racemic epoxides (vide infra), 

the transformation exploits a double activation strategy. Catalyzed by an in-situ formed 

Co(III) species, the reaction involves the activation of benzoic acid as metal carboxylate 

(intermediate 54) and the concurrent Lewis acid activation of the epoxide substrate by a 

second catalyst molecule.64 

 

Scheme 2.9. Metal-mediated desymmetrization of meso-epoxides with benzoic acid. 

A similar strategy for the asymmetric halolactonization of alkenoic acids has also 

been explored. The Gao group reported an intramolecular iodocyclization reaction catalyzed 

by the same Co-catalyst 53 (Scheme 2.10.a),65 while palladium-BINAP complex 57 was 

developed by the Kim group for a related bromolactonization strategy (Scheme 2.10.b).66   
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Scheme 2.10. Metal-catalyzed enantioselective intramolecular iodolactonization. 

Despite being less investigated, decarboxylative reactions of carboxylic acids are also 

amenable to asymmetric catalysis. A remarkable example is represented by the asymmetric 

Mannich-type reaction with racemic cyanocarboxylic acids recently disclosed by Shibasaki 

and coworkers (Scheme 2.11).67 The reaction involves the decarboxylation of the copper-

carboxylate species I to deliver a metal-ketenimine intermediate II in which the stereocenter 

of the substrate is lost. The following nucleophilic addition to imines is controlled by chiral 

DTBM-SEGPHOS ligand 60.  

 

Scheme 2.11. Decarboxylative metal-catalyzed asymmetric Mannich reaction. 
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Asymmetric organocatalysis with carboxylic acid substrates 

The considerable acidity and the significant stability render the development of 

enantioselective transformations of carboxylic acids in organocatalysis quite challenging. 

Brønsted basic catalysts may generate a stable ion pairing associations, thus rendering 

difficult an efficient catalytic turnover; whereas the acidity of the substrates may interfere 

with acid catalysis. Actually, carboxylic acids can themselves be employed as catalysts and 

they have been applied to several asymmetric methodologies.56a For these reasons, prior to 

the investigations by our group, the use of carboxylic acids as substrates was seldom 

investigated and limited to certain specific intramolecular lactonization reactions. 

Using chiral hypervalent iodine species, Kita and coworkers reported a 

stereoselective dearomatizing spirolactonization reaction.68 Initially promoted by a 

stoichiometric amount of chiral reagent, this methodology was more recently reinvestigated 

in a catalytic fashion using mCPBA as terminal oxidant. The Kita group proposed the use of 

spirobiindane 64 as catalyst,68b while Ishihara et al. discovered that the reaction could be 

effectively catalyzed by iodoarene 65 (Scheme 2.12).68c         

 

Scheme 2.12. Kita‘ and Ishihara’s asymmetric spirolactonization. 

Intensive explorations have been focused on the development of intramolecular 

halolactonization reactions.69 Early attempts to induce this transformation were reported in 

phase-transfer catalysis, although only poor results were obtained.69a A significant interest of 

the scientific community was revealed in 2010, when four different enantioselective 

methodologies were disclosed (Scheme 2.13). All these reactions exhibit a common feature: 

they presumably occur via organized transition states in which the stabilization of the highly 
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reactive halonium species by a Lewis basic site is combined with the partial deprotonation of 

the carboxylic acid. 

  

Scheme 2.13. Asymmetric organocatalytic halolactonizations of alkenoic acids. 

Bohran reported a chloro-lactonization catalyzed by (DHQD)2PHAL 66,69b while chiral 

urea-tertiary amine catalyst was developed by the Jacobsen group for a iodo-cyclization 

reaction.70c Bromo-lactonization strategies were instead reported by the groups of Yeung 

and Fujioka: the former employed quinidine-derived thiocarbamate 68,69d while the latter 

used as catalyst chiral C3-symmetric tris-imidazoline 69.69e Importantly, the tuning of the 

reactivity of the halogen species was also facilitated by the judicious choice of the halogen 

source, which was identified as key parameter for all these reactions. These reports 

triggered the developments of other bifunctional catalysts for this type of cyclization but, 

despite such advances, the reported catalytic systems have found no further application 

towards different transformations.70  

In 2013, the group of Ishihara developed a kinetic resolution of racemic alkenoic 

carboxylic acids via a protolactonization reaction.71 The employed catalytic system consists 

of an elegant combination of chiral BINOL-derived Lewis base 70 and an achiral strong 

Brønsted acid (Scheme 2.14). The functionalization of unactivated olefins using this 
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phosphonium salt catalyst is remarkable; however the applicability of this system remains to 

be fully explored.  

 

Scheme 2.14. Ishihara’s protolactonization of alkenoic acids. 

An interesting strategy for the utilization of carboxylic acids in asymmetric Lewis base 

catalysis was disclosed by the Romo group.72 However, in order to circumvent the difficult 

activation of the acidic moiety, a preliminary in-situ conversion into ester derivatives is 

required, thus affecting the atom economy of the methodology.  

Arguably, asymmetric organocatalysis still lacks a well-defined activation strategy for 

carboxylic acids. Given the abundance of the carboxylate functional group in natural 

products and the undoubted synthetic utility of carboxylic acids, the development of general 

reaction modes for enantioselective transformations is desirable.    
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2.4. Epoxides and aziridines in organocatalysis 

Epoxides and aziridines, three membered heterocyclic compounds, exhibit an 

uncommon balance between stability and reactivity and are therefore considered linchpin 

intermediates for organic synthesis.73 Perhaps, the main feature of these structures is 

represented by the inherent ring strain, which makes them susceptible to nucleophilic ring 

opening with a variety of nucleophiles (oxirane strain energy = 26.3 kcal∙mol-1; aziridine 

strain energy = 26.7 kcal∙mol-1).74a These heterocycles are easily accessed from carbonyls or 

imines,75 but also directly obtained from the corresponding alkenes, providing intriguing 

possibilities for the functionalization of simple hydrocarbon fragments.76 In recognition of 

the high synthetic usefulness of such “spring-loaded intermediates”,74b their ring opening 

reactions have been even identified by Sharpless as important transformations for the 

development of the click chemistry approach.  

The development of novel synthetic routes and transformations assumes a 

prominent role in enantioselective catalysis due to the possibility to introduce two adjacent 

chiral centers. In particular, the Lewis acid activation towards stereoselective ring opening 

reactions has been intensively investigated in the field of metal-based catalysis,77,78 yet there 

is a surprising dearth of related approaches in asymmetric organocatalysis. Interestingly 

however, an activation of these heterocycles in Brønsted acid catalysis is textbook 

knowledge (Scheme 2.15).60  

 

Scheme 2.15. Metal-based Lewis acid catalysis and Brønsted acid catalysis for the ring 

opening of epoxides and aziridines.  
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A protonation of the heteroatoms may facilitate the bond-breaking event, thus 

inducing the attack of the incoming nucleophile.  Under these conditions, the transformation 

can occur either via a carbocation intermediate or through an asynchronous SN2 pathway. In 

both cases, even when a concerted mechanism is involved, the nucleophilic attack 

preferentially occurs at the most substituted carbon center due to the presence of a 

localized (partial) cationic charge.79 Remarkably, this activation mode has been significantly 

overlooked for asymmetric methodologies. Perhaps, the lack of developments may be 

ascribable to the instability of chiral phosphoric acid catalysts and their derivatives towards 

these compounds. Phosphoric acid diesters can effectively react with these electrophiles: a 

protonation of the substrates delivers an oxiranium or aziridinium intermediate which is 

prone to be opened by the phosphate counteranion (Scheme 2.16).80, 81 

 

Scheme 2.16. Alkylation of phosphoric acid diesters with epoxides and aziridines. 

Alkylation of catalysts, leading to the formation of catalytically inactive species, 

represents one of the main limitations for the exploitation of organic catalysts in 

combination with highly reactive substrates. It is a fact that the activation of epoxides and 

aziridines in the various branches of asymmetric organocatalysis has been significantly 

elusive.  

The Jacobsen group investigated the enantioselective hydrochlorination of aziridines, 

a valuable transformation due to the possible exploitation of β-chloro amine products.82  
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Scheme 2.17. Desymmetrization of meso-aziridines via activation of hydrochloric acid. 
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An elegant combination of chiral basic phosphine-thiourea catalyst 73 with a 

stoichiometric amount of hydrogen chloride (cf. paragraph 2.2.2) delivers an acidic species 

which activates the electrophilic substrate while directing nucleophilic attack of the chloride 

ion (Scheme 2.17).  

An interesting rearrangement of racemic tertiary epoxides to aldehydes was instead 

reported during our investigations.83 Catalyzed by SPINOL-derived N-triflyl phosphoramide 

catalyst 76, this reaction is proposed to involve a 1,2-hydride shift on the tertiary 

carbocation intermediate (Scheme 2.18). Nevertheless, despite representing an interesting 

approach to chiral aldehydes, the moderate selectivities achieved and the rather limited 

reaction scope limit the synthetic usefulness of this methodology.  

 

Scheme 2.18. Brønsted acid-catalyzed rearrangement of epoxides. 

Catalyzed by a phosphoric acid catalyst, a desymmetrization of meso-aziridines with 

silylated nucelophiles was proposed by the groups of Antilla and Della Sala.84
 However, the 

putative organic Lewis acid mechanism was later disproved and the reaction was described 

to be promoted by alkaline metals salt impurities of the organocatalyst.85  

Given the difficult activation of epoxides and aziridines in acid catalysis, the activation 

of nucleophilic compounds towards ring opening reactions has been attempted in Lewis 

base catalysis.86 An enantioselective desymmetrization of meso-epoxides towards chiral 

chlorohydrins was initially reported by the Denmark group in 1998.87 The association 

between catalyst 79 and silicon tetrachloride delivers a nucleophilic chloride species and a 

stabilized silicon cation which is presumably providing an additional Lewis acid activation of 

the epoxide. Notably, over the years different Lewis basic catalysts were reported to 
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promote this transformation with improved enantioselectivity and significantly broader 

reaction scope (Scheme 2.19).87       

 

Scheme 2.19. Desymmetrization of meso-epoxides to chlorohydrins. 

The ring opening of aziridines to 1,2-thioamines was also reported to some extent 

(Scheme 2.20). Owing to the large-sized valence orbitals, thiol substrates are highly 

nucleophilic species and their activation by base catalysis is well-established. Different 

catalytic systems have been studied to date, however, only chiral guanidine 87, developed 

by Huang, Tan and coworkers, exhibits a synthetically valuable stereocontrol combined with 

a wide scope of the reaction.88 

 

Scheme 2.20. Brønsted base-catalyzed thiolysis of aziridines 
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2.5. Asymmetric hydrolysis 

The asymmetric hydrolytic ring opening of epoxides is an important transformation in 

synthetic chemistry since chiral vicinal diols are valuable building blocks and represent a 

common motif in bioactive compounds and medicinal drugs.89 In nature this transformation 

occurs in the xenobiotic metabolism for the detoxification of exogenous substances in living 

organisms.90 Lipophilic compounds are generally converted into more hydrophilic ones, thus 

facilitating their excretion; hence chiral diols are also ubiquitous as secondary metabolites 

and very often incorporated into the scaffolds of natural products. In biological systems 

epoxides are formed from the cytochrome P-450 oxidation of alkenes and their conversion 

to diols is catalyzed by the epoxide hydrolase.91 Intriguingly, the hydrolysis reaction proceeds 

through a metal-free catalytic pathway and the active site is entirely characterized by 

aminoacidic residues. The mechanism occurs via two sequential transformations: the 

epoxide is activated by hydrogen-bonding and the nucleophilic attack of an aspartate 

residue delivers an enzyme bound intermediate, which is eventually subjected to ester 

hydrolysis giving the diol product (Scheme 2.21).92 

*
*

 

Scheme 2.21. Enzymatic mechanism of the epoxide hydrolase. 

Importantly, the epoxide hydrolase is also active in the conversion of aziridines to 1,2-

aminoalcohols, which presumably proceeds according to a similar mechanism.93  

 In non-enzymatic asymmetric catalysis the activation of the epoxide moiety and the 

concomitant enhancement of the typically moderate reactivity of oxygen nucleophiles 

render this reaction still challenging. The few successful catalytic systems have been 



2. Background 

 

32 

 

reported in the field of metal-promoted transformations. The Jacobsen group has 

importantly contributed with the development of a hydrolysis reaction catalyzed by cobalt-

SALEN complexes, which had been initially designed for the ring opening with carboxylic 

acids (cf. paragraph 2.3).94 An elegant kinetic resolution of terminal epoxides was reported 

to proceed with remarkably high selectivity (Scheme 2.22) and the same methodology could 

also later be applied to the desymmetrization of meso-epoxides. It is noteworthy that, over 

the years, this reaction has also found application on an industrial scale.  

 

Scheme 2.22. The hydrolytic kinetic resolution (HKR) of epoxides developed by Jacobsen. 

This kinetic resolution strategy has been also reinvestigated by the Berkessel group 

with a different catalytic system.95 Remarkably, in many cases, the designed chromium-

DIANANE-SALEN complex 90 was shown to outperform the benchmarked cobalt-SALEN 

system (Scheme 2.23). 

 

Scheme 2.23. The hydrolytic kinetic resolution of epoxides reported by Berkessel. 

A desymmetrizing asymmetric alcoholysis of meso-epoxides was reported by 

Shibasaki and coworkers.96 Catalyzed by the bimetallic gallium-lithium binaphtoxide complex 

92a, they reported an effective ring opening reaction with p-methoxy phenol 91, which was 

effective for alkyl substituted oxiranes (Scheme 2.24).    
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Scheme 2.24. Bimetallic Ga-Li complex for the desymmetrization of meso-epoxides. 

A complementary approach for the enantioselective alcoholysis of stilbene-derived 

epoxides was investigated by the Schneider group (Scheme 2.25).97 For this purpose 

scandium triflate was employed as catalyst together with chiral bipyridine ligand 94 

affording aromatic β-hydroxyethers in high enantiopurity. This catalytic system was also 

studied for the reactions of alkyl substrates, albeit only moderate selectivity was observed. 

94 (10 mol%)

Sc(OTf)3 (10 mol %)

CH2Cl2, r.t.

O HO OMe

93k, 81%, er = 96:4

MeOH

N

50k

N

OH HO

 

Scheme 2.25. Alcoholysis of stilbene-derived epoxides by a Sc-bipyridinyl complex. 

Although the activation of aziridines under metal-based Lewis acidic conditions has 

been explored with various nucleophiles, an asymmetric hydrolysis of this heterocycle has 

never been reported. Due to the robust and straightforward routes to access aziridines from 

the corresponding olefins, such methodology would provide a powerful route to introduce 

chiral β-aminoalcohol moieties in a large variety of molecular scaffolds.   

 

2.5.1. Asymmetric sulfhydrolysis 

Sulfur is a frequent constituent of bioactive molecules and medicinal compounds, 

therefore its selective incorporation into complex molecular frameworks is highly relevant in 

pharmaceutical chemistry.98 Despite the value of enantiopure thiols as building blocks for 

the synthesis of sulfurous compounds,99 the development of direct asymmetric approaches 
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to their preparations have been particularly challenging.100 Chiral β-hydroxythiol molecules 

are often associated with privileged bioactivity as illustrated with dihydrobenzoxathiins, 

cystenyl leukotrienes, or the marketed drugs diltiazem, emtricitabine and cevimeline (Figure 

2.9).101 Therefore the development of enantioselective routes to these chiral compounds is 

of  particular synthetic interest.     

 

Figure 2.9. Bioactive molecules that incorporate a β-hydroxythiol framework. 

An enantioselective ring opening of epoxides with hydrogen sulfide would arguably 

represent the most elegant and straightforward approach to this scaffold. Nevertheless, 

because of the difficult exploitation of H2S, an asymmetric sulfhydrolysis reaction remains 

elusive. Most investigated routes rely on the thiolysis of epoxides and have been developed 

using metal-based Lewis acid catalysis.102 The first attempts to this transformation can be 

traced back to the studies by Mukaiyama on zinc-tartrate complexes in the 1980’s.102a 

Despite several catalytic systems having been reported, these methodologies generally 

suffer from the difficulty of satisfying both substrate generality and high stereoselectivity. 

The best performing catalysts in the thiolysis of meso-epoxides were those developed by 

Shibasaki and by the groups of Schneider and Kobayashi (Scheme 2.26).102b-d The gallium-

lithium binaphtoxide complex 92b was found to promote the thiolysis of alkyl meso-

epoxides with high selectivity. Unfortunately, the use of hindered tertbutyl thiol is required 

in order to avoid a possible ligand exchange pathway, which results in non-asymmetric 

catalysis, thus significantly limiting the applicability of this process. Based on scandium or 

indium bipyridinyl complexes, the asymmetric thiolysis reported by Schneider and Kobayashi 
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is instead applicable to different thiols, although the reaction is specific for stilbene-derived 

epoxides thus limiting the utility of this methodology.  

 

Scheme 2.26. Metal-catalyzed asymmetric thiolysis of meso-epoxides. 

Very recently, during our studies, an organocatalytic approach to this transformation 

was reported by Sun and coworkers.103 Broadening the scope of the ring opening of 

oxetanes with 2-mercaptobenzothiazoles 95c, they reported a desymmetrization of meso-

epoxides which proceeds with moderate selectivity (Scheme 2.27).  

 

Scheme 2.27. TRIP-catalyzed thiolysis of epoxides with 2-mercaptobenzothiazoles. 

In addition to the substrates and nucleophiles limitations, thioether products are 

delivered in all these transformations and the conversion into the desired free thiols 

generally requires additional steps and typically harsh conditions. A general and 

straightforward access to β-hydroxy thiols is unprecedented; thus an enantioselective 

approach to the sulfhydrolysis reaction, which could directly give enantiopure thiol products, 

represents a challenging target. 
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3. Objectives 

The main objectives of the doctoral studies presented herein were: 

1. The identification and development of a novel activation mode for the exploitation of 

carboxylic acid compounds as substrates in asymmetric organocatalysis. 

2. The development of an organocatalytic, biomimetic, asymmetric hydrolysis of 

epoxides and aziridines utilising Brønsted acid catalysis, which would provide an 

enantioselective approach to 1,2-diols and 1,2-aminoacohols. 

3. The investigation towards an effective variant of the asymmetric sulfhydrolysis 

reaction for the synthesis of β-hydroxythiols. 

4. The design and the synthesis of novel, confined, chiral phosphoric acids. Catalysts 

bearing a congested active pocket may potentially provide a complementary tool for 

asymmetric Brønsted acid catalysis.    

 

3.1. Premise 

Carboxylic acids are characterized by the combination of a hydrogen-bond donor and 

a hydrogen-bond acceptor in a geminal relationship. The opposite polarity and the proximity 

of these moieties confer peculiar features to this class of compounds. Due to geometrical 

constraints, an intramolecular stabilization of the two groups is not possible and thus an 

intermolecular dimerization is commonly observed in apolar solvents and is accepted as a 

general phenomenon. A double hydrogen bonding interaction is established and a stable 

eight-membered non-covalent network is formed. Initially described by Sidgwick in 1933,104 

the tendency to self-associate has been intensively investigated and it is today known that 

both physical and chemical properties of carboxylic acids (i.e. boiling point, solubility, etc…) 

are influenced. Importantly, the capability to self-assembly in organic media also leads to an 

enhancement of the acidity of the carboxylic acid by itself, due to the so-called 

homoconjugation phenomenon.105 Upon deprotonation, the hydrogen bonding interaction 

accounts for a higher stabilization of the conjugate base of the dimer with respect to the 

monomeric carboxylate anion (Figure 3.1).106  
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Figure 3.1. Homodimerization equilibrium of carboxylic acids and its effect on the acidity. 

In the middle of the last century a similar tendency towards homodimeric self-

assembly was also observed for phosphoric acid diesters by Peppard et al..107 In fact, in strict 

analogy with carboxylic acids, these compounds have two groups with opposite polarity 

connected to the same phosphorous atom. For these species the association was found to 

be even stronger on account of the higher acidity and the concurrent large dipolar nature of 

the P=O bond. In 1996, studying the effect of these features on the binding constants, Anslyn 

suggested that the ylide-mesomeric structure (P+–O-) could even be more representative for 

the species.108 Notably, also in this case the effect of the homodimerization on the acid base 

equilibria could be observed (Figure 3.2). 

 

Figure 3.2. Homodimerization equilibrium of phosphoric acids and its effect on the acidity. 

It is noteworthy that, although chiral phosphoric acids dominate the field of 

asymmetric Brønsted acid catalysis, this type of association has neither been explored nor 

proposed. Presumably, the homo-association is sterically prevented for 3-3’ substituted 

BINOL-derived phosphoric acids, which, in contrast to their small congeners, are generally 

monomers in solution. However, in the solid state, the dimerization tendency of phosphoric 

acid catalysts is apparent. For example, in the crystal structure of TRIP phosphoric acid a 

molecule of water is incorporated in a hydrogen-bonding network to bridge within the 

heterodimer (Figure 3.3).53 Notably, a similar behavior is also displayed in the crystal lattice 

of other chiral hindered phosphoric acid catalysts.109   
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Figure 3.3. Crystal structure of (R)-TRIP phosphoric acid catalyst. 

On these bases, we hypothesized that a small-sized carboxylic acid molecule may, in 

solution, enter the pocket of the phosphoric acid catalyst, thus providing stabilization in the 

absence of large repulsive forces. Indeed, a beneficial effect from the use of achiral 

carboxylic acids as additive in phosphoric acid catalysis can be traced back in a report by 

Akiyama.110a The addition of a carboxylic acid significantly improved both the reactivity and 

the enantioselectivity of a TRIP-catalyzed aza-Diels-Alder reaction between imines and 

Danishefsky’s diene 97 (Scheme 3.1). A similar effect was also later observed by the groups 

of Rueping and Antilla.110b-d  

.    

Scheme 3.1. Acetic acid as additive in phosphoric acid catalysis: Akiyama’s report. 

“…At the present stage the role of the protic additive is not clear.”
 

T. Akiyama et al., 2006. 

 



3. Objectives 

 

39 

 

3.2. Studies towards heterodimeric self-assembly 

Despite homo-dimerization processes of carboxylic acids and phosphoric acids having 

been largely investigated and established, significantly less effort has been devoted to the 

study of mixed carboxylic-phosphoric acid dimers. However, it is reasonable that an 

association may occur as the homodimerization tendency of phosphoric acid diesters was 

observed to be significantly reduced in acetic acid.111 Nevertheless, a direct study on specific 

hetero-association equilibria or an investigation on the reactivity of heterodimeric species 

has never been reported.  

As mentioned earlier, bulky phosphoric acid catalysts cannot reach stabilization via 

homo-association in solution and, given to the unreleased stabilization energy, they could be 

formally considered “frustrated Brønsted pairs”. Therefore, an equilibrium towards a 

heterodimeric species with carboxylic might be energetically favored (Scheme 3.2).  

 

Scheme 3.2. Developing an activation mode for carboxylic acids in Brønsted acid catalysis. 

We were intrigued by this combination since no solid prediction on the reactivity of 

these designed species was possible at first sight. Nevertheless, based on the established 

heteroconjugation effect and on the previously reported findings, an increase of the overall 

acidity could be proposed. Our curiosity was especially aimed towards the effect of such self-

assembly on the frontier molecular orbital of the carboxylic acid molecule. The 

heterodimeric species would not be symmetrical and the two hydrogen bonding interaction 

could account for opposite effects. The acid moiety of the phosphoric acid may potentially 

increase the electrophilicity of the carbonyl group; whereas the highly basic P=O double 

bond, participating in a partial deprotonation, may raise the nucleophilicity of the 

carboxylate moiety. 
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A full physico-chemical investigation would establish the possibility to achieve a 

supramolecular heterodimeric self-assembly and provide further insights on this ambiguous 

“pull-push” effect. Due to the recognized importance of carboxylic acids in synthetic 

chemistry, we aimed at the exploration of this self-assembly as a novel activation mode. 

Given the difficult exploitation of these substrates in asymmetric catalysis, such 

development could significantly broaden the perspectives of organocatalysis both from the 

academic and the industrial point of view.  

 

3.3. Activation of carboxylic acids in asymmetric organocatalysis 

The synthesis of chiral 1,2-aminoalcohols and 1,2-diols from the corresponding 

alkenes is an ambitious target in synthetic chemistry. Indeed, such moieties are widely 

occurring in the scaffolds of natural products, pharmacologically active molecules and in 

chiral ligands for asymmetric catalysis.89, 112 Therefore, an asymmetric ring opening reaction 

of epoxides and aziridines with oxygen nucleophile in Brønsted acid catalysis would 

represent a valuable alternative to existing methodology.  

 

Scheme 3.3. Asymmetric ring opening of epoxides and aziridines to aminoalcohols and diols. 

However, the moderate reactivity of oxygen nucleophiles and the need to avoid the 

alkylative deactivation of the catalyst render this target significantly challenging in Brønsted 

acid asymmetric organocatalysis. The disclosure of an effective variant to the asymmetric 

hydrolysis reaction represents an objective of the present investigation. Intrigued by the 

previously discussed enzymatic mechanism of the epoxide hydrolase, we focused on the 

development of an enantioselective carboxylysis of epoxides and aziridines. If followed by a 

mild basic hydrolysis of the ester product, this methodology would represent an elegant 

biomimetic transformation.  
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The envisaged heterodimerization with confined phosphoric acid catalysts may 

potentially activate carboxylic acids towards nucleophilic reactions in Brønsted acid 

organocatalysis, thus providing a new catalytic mode for the targeted methodologies 

(Scheme 3.4). By favoring such hypothetical self-assembly over the direct interaction with 

the highly reactive electrophile, we aimed to prevent the alkylative deactivation of the acid 

catalyst. 

 

Scheme 3.4. A biomimetic, asymmetric hydrolysis via hetero-dimeric self-assembly. 

 

3.4. Asymmetric synthesis of β-hydroxythiols 

Although the thiolysis of epoxides has been investigated, the developed 

methodologies do not provide a facile approach to free β-hydroxythiols. In more general 

terms, the direct introduction of a thiol moiety in a hydrocarbon framework is still a 

challenging target. The investigations towards an organocatalytic variant of the 

sulfhydrolysis of epoxides are reported herein.  

 

Scheme 3.5. Design of an organocatalytic route to chiral O-protected β-hydroxythiols. 

Broadening the activation of carboxylic acid to its sulfur variant, the asymmetric ring 

opening of oxiranes with thio-carboxylic acids was targeted and an organocascade 
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transformation was envisioned. The asymmetric thiocarboxylsis of epoxides would yield a β-

hydroxythioester moiety that, under Brønsted acid catalysis, could undergo a 

thermodynamically favored acyl-transfer process. The designed transformation would 

directly deliver O-protected thiol products (Scheme 3.5); however, the possibility to 

interrupt the cascade sequence prior to the intramolecular transesterification is also 

desirable. Such orthogonal control would give the chance to access the same molecular 

scaffold protected either on sulfur or on oxygen, thus giving interesting perspectives in 

synthetic applications. Moreover, chiral 1,2-thioalcohols may be directly obtained upon in-

situ removal of the protecting group and, due to the safe and non-toxic conditions of the 

overall process, the methodology would be an ideal alternative to the sought after 

asymmetric sulfhydrolysis. 

 

3.5. Mechanistic investigation and codification of a novel activation mode 

Over the course of this doctoral work, all the developed transformations have been 

designed and explored using the hetero-dimeric self-assembly as central feature. The 

thermodynamically favored association between the phosphoric acid catalyst and carboxylic 

acids was found to override the unproductive catalyst deactivation. We proposed an 

unprecedented catalytic cycle, which relies on the direct activation of carboxylic acids as 

nucleophiles, thus reversing the usual polarity in Brønsted acid catalysis (Scheme 3.6).  

  

Scheme 3.6. Asymmetric approach to carboxylysis of epoxides and aziridines. 
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Given the wide applicability of this system, we ultimately aimed towards the detailed 

investigation of this reaction mode in organocatalysis. Therefore theoretical investigations 

on heterodimeric species, as well as kinetic studies on the reaction pathways and an analysis 

on the catalyst structure-selectivity relationship were targeted. We expected that this 

exploration should facilitate a predictive understanding, thus underpinning the development 

of further enantioselective transformations of carboxylic acids.   

 

 “In the middle of difficulties lies opportunity.”
 

A. Einstein 
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4. Results and Discussions 

4.1. Studies on heterodimeric self-assembly113 

The first part of this section describes the characterization of the interaction between 

carboxylic acids and chiral, hindered, phosphoric acids. Spectroscopic analyses were 

undertaken to gain evidence for a supramolecular non-covalent association, while X-ray 

crystallography elucidated the heterodimeric structure of the self-assembly. Based on these 

experiments, the structural properties were disclosed and some of the reactivity features 

could be predicted, thus igniting the synthetic investigations described in the following 

paragraphs.  

The spectroscopic investigations described in this section were performed in collaboration 

with M. Leuztsch, while the crystal structure determination of 99b by X-ray diffraction was 

performed by Dr. R. Goddard. 

 

4.1.1. Identification of the supramolecular association 

The hindered homodimerization of chiral phosphoric acids encouraged us to 

investigate whether a heterodimeric association with carboxylic acids could be 

thermodynamically favored in organic non-polar solvents. Spectroscopic measurements 

usually represent the most accessible techniques for the elucidation of supramolecular 

equilibria in solution and are based on the influence of the binding event on a defined 

observable.114 We hypothesized that the targeted association may provide a significant 

change of the electronic distribution from the phosphoric acid monomer, thus enabling an 

analysis by nuclear magnetic resonance. Therefore, at the onset of our studies we 

investigated the NMR spectra of mixtures of TRIP and acetic acid in deuterated 

dichloromethane (Figure 4.1). Indeed, comparing the proton and the phosphorous NMR 

spectra of the simple phosphoric acid (blue spectra) with a sample in which the two acids 

were simultaneously contained (ratio 1:6, red spectra), a sharp difference was observed. The 

presence of the carboxylic acid influenced both the shape and the chemical shift of the 

signals of the phosphoric acid molecule. The phosphorous peak in the 31P-NMR experienced 

a significant shift downfield (from 2.32 ppm to 4.64 ppm) and a similar shift towards lower 

field was also observed for all the proton signals of the phosphoric acid molecule in the 1H-
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NMR, hinting at the establishment of a different chemical environment. In addition, the 

coalescence of non-equivalent proton signals of the 3-3’ substituents resulted cleared 

(signals at 2.5-3.0 ppm and 6.9-7.1 ppm). These observations reinforced us in the belief that 

an equilibrium favoring the heterodimeric species with carboxylic acid was occurring.      

 

Figure 4.1. Association studies via 1D-NMR. 1H-NMR and 31P-NMR of TRIP (blue spectra) and 

a mixture 1:6 TRIP:AcOH (red spectra) in CD2Cl2 are shown.  

 On the one hand, the observed splitting of the proton signals suggested a lower 

rotational freedom of the 3-3’ aryl substituent, thus indicating the presence of the guest 

molecule in the catalyst pocket. On the other hand, the general downfield shift of the signals 

of TRIP in the proton NMR was intriguing and suggested an overall decrease of the electronic 

density on the phosphoric acid. The saturation of a solution of acetic acid with TRIP resulted 

in an upfield shift of the methyl signal revealing a higher electron density on the carboxylic 

acid molecule, thus confirming this hypothesis (see experimental section, cf. paragraph 
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7.2.1). This phenomenon is postulated to be caused by the double hydrogen bonding 

interaction which characterizes the TRIP∙AcOH complex.    

 

Scheme 4.1. Spectroscopic analysis of TRIP∙AcOH heterodimerization. 

 Prompted by these initial findings, a series of DOSY experiments (Diffusion-Ordered 

SpectroscopY) was performed in order to gain further evidence on the proposed 

heterodimerization.115 Based on the Stokes-Einstein equation, this analysis offers the 

possibility to investigate the molecular size of solute species in solution and could effectively 

be applied to our association studies. In supramolecular chemistry, the hydrodynamic 

volume of the solvated aggregates is larger than the corresponding monomeric species and 

therefore their diffusion rate is decreased. Applying the related pulse sequence to 1H-NMR, 

we independently measured the diffusion coefficients of TRIP (DTRIP = 8.3x10-10 m2s-1) and 

benzoic acid (DBzOH = 16.4x10-10 m2s-1) in deuterated dichloromethane and then we evaluated 

the same parameters in mixtures of the two components (Figures 4.2).  

 

Figure 4.2. Evaluation of diffusion coefficients by 1H-DOSY. 

This experiment provided full confirmation of the binding between the two acids: in 

an equimolar mixture, the diffusion coefficients of the two species were found to be 

significantly lowered with respect to their independent values. Upon self-assembly, the 
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relatively small benzoic acid experienced the highest variation of hydrodynamic volume 

(DBzOH = 9.2x10-10 m2s-1) but a significant influence was also observed on the phosphoric acid 

(DTRIP = 6.0x10-10 m2s-1).  

 

4.1.2. Evaluation of binding constants and structure elucidation 

Having obtained qualitative insights on the heterodimerization between TRIP catalyst 

and carboxylic acids in organic non-polar solvents, we targeted the evaluation of the binding 

strength and a more detailed elucidation of the supramolecular structure. Taking advantage 

of our previous investigations, we initially focused on the determination of the association 

constant by NMR spectroscopic analysis.116 In particular, the shift of the phosphorous signal 

was identified as a suitable physical observable for the quantitative study of the dimerization 

equilibrium. In fact, the observed chemical shift should be mathematically dependent on the 

mole fraction of the heterodimer in solution (equation 4.1). 
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Hence we preliminary confirmed the stoichiometry of the binding event using the 

method of continuous variations (Job’s method).117 Keeping constant the total concentration 

but varying the proportion between TRIP and acetic acid, several samples were measured. 

The curved plot obtained (∆δ*χTRIP VS χTRIP) showed a maximum for χTRIP = 0.5, thus revealing 

a 1:1 stoichiometry of the self-assembly (figure 4.3). 

 

Figure 4.3. Job plot for TRIP∙AcOH. 
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 With the the stoichiometry of our host-guest system determined, we investigated the 

binding isotherms for TRIP∙AcOH and TRIP∙BzOH heterodimers in order to obtain the 

equilibrium constants (Figure 4.4).  

Kaheterodimer

TRIP BzOH

TRIP AcOH

(3981 ± 98) M-1
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a) 31P-NMR titration experiment

ppm

O

O
R

O

O

P

O

O H

H

iPr
iPr

iPr

iPr

iPr
iPr

O

O
P

O

OH

iPr
iPr

iPr

iPr

iPr
iPr

R

O OH
Ka

24c

BzOH, AcOH

non-linear
regression

99

In
c
re

a
s
e

 c
a
rb

o
x
y
lic

 a
c
id

 c
o
n
c
e
n
tra

tio
n

 

Figure 4.4. Evaluation of association constants. a) Example of 31P-NMR titration experiment 

for TRIP∙AcOH. b) Binding isotherms of TRIP∙BzOH (magenta) and TRIP∙AcOH (blue) and 

association constants for the heterodimers. 
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Upon addition of carboxylic acid to a solution of the phosphoric acid in 

dichloromethane, the asymptotic approach to complete heterodimer formation was 

monitored following the shift of the phosphorous signal. Once the binding isotherms were 

obtained, a non-linear regression method was followed and, implementing the known 

equation for 1:1 complexes (equation 4.2; H=host, G=guest, HG=complex) together with 

equation 4.1, the association constants were successfully derived.116  
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 Two different sets of experiments have been performed for both heterodimeric 

systems, and the values were given as the mathematical average (TRIP∙BzOH Ka = (3981±98) 

M-1; TRIP∙AcOH Ka = (1948±26) M-1).  

These numerical values are remarkably high for supramolecular association and this 

highlights the thermodynamic favor of the process, which is considerable despite the steric 

hindrance of TRIP active pocket. The stronger association which is observed with benzoic 

acid rather than with acetic acid may be explained on the basis of the two-fold contribution 

of the aromatic ring, which concurrently increases the availability of the lone pairs on the 

carbonyl moiety and the acidity of the hydroxyl group. In other words, benzoic acid is 

preferred as binding partner due to being simultaneously a stronger hydrogen-bonding 

donor and hydrogen-bonding acceptor compared to acetic acid. In fact, the same 

considerations are applied to the homodimerization equilibria of benzoic acid and acetic 

acid.  

 

It is noteworthy that the obtained values significantly matched with our expectations, 

lying in between those of carboxylic acids (10-100 M-1) and phosphoric acid diester 

homodimers (>105 M-1) (Figure 4.5).118,108 
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Figure 4.5. Stability scale for dimeric self-assembly 

 A final unambiguous confirmation of the structure of the heterodimeric association 

was given by X-ray crystallography. A single crystal suitable for diffraction analysis was 

obtained by co-crystallyzing acetic acid and TRIP via slow evaporation of dichloromethane 

solvent. The isolation of TRIP∙AcOH heterodimer suggests that this interaction is not only 

favored in solution, but also in the solid state (Figure 4.6). In agreement with our 

spectroscopic observations, the species appears pseudo C2-symmetric and the molecule sits 

on a crystallographic 2-fold axis which passes through the phosphorous atom and the two 

carbon atoms of the acetic acid molecule. The hydrogen bonding network could be clearly 

identified and the relative short distance between the oxygen atoms accounts for such a 

strong interaction (2.565 Å).       

 

Figure 4.6. Crystal structure of TRIP∙AcOH. 

 This crystal structure represents the first reported example of a defined dimeric 

interaction between these two acidic moieties. 
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4.2. Asymmetric carboxylysis of aziridines113 

 As discussed in the introduction, prior to the studies presented in this thesis, an 

asymmetric catalytic conversion of aziridines into chiral 1,2-aminoalcohols was 

unprecedented. At the onset of our investigations we were particularly motivated in 

exploring the reactivity of the observed phosphoric-carboxylic acids mixed dimers. Due to 

the synthetic value of the transformation, we selected the carboxylysis of aziridines as 

testing ground for our investigations in organocatalysis.  

The work described in this section was performed in collaboration with B. Poladura and M. 

Diaz de los Bernardos. 

 

4.2.1. Reaction design and optimization 

 Due to the high reactivity of aziridines, the development of a carboxylysis reaction is 

particularly challenging in asymmetric Brønsted acid catalysis. This transformation faces two 

major difficulties in phosphoric acid catalysis: an alkylative deactivation of the organic 

catalyst and the possible background reaction (Scheme 4.2). On the one hand, aziridinium 

phosphate intermediates are short-lived species and they commonly decompose leading to 

the phosphate ester before being intercepted by external nucleophiles (i.e. water, 

alcohols…).81,119 On the other hand, the acidity of carboxylic acids may lead to the activation 

of the aziridine substrate in a non-asymmetric environment, giving the desired product 

through a racemic pathway.120  

 

Scheme 4.2. Major issues for an asymmetric carboxylysis reaction in phosphoric acid 

catalysis.  
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 However, having established the thermodynamic favor of the association between 

phosphoric acid catalysts and carboxylic acids, we hypothesized that this system may 

provide an effective solution to these limitations. In particular, we investigated a novel 

approach based on self-assembly organocatalysis, which involves the heterodimeric species 

as the crucial intermediate. Based on our heterodimerization studies, we envisioned a two-

fold beneficial effect due to association: both acidity of the catalyst and nucleophilicity of 

the carboxylic acid may be enhanced. Indeed, the spectroscopic analysis had suggested the 

significant role of the Lewis basic site of the catalyst in a partial deprotonation, thus 

revealing a possible activation of the carboxylic acid as nucleophile. We also expected an 

increased acidity of this species with respect to the free catalyst because of the established 

heteroconjugation (cf. paragraph 3.1), which may facilitate the activation of the aziridine. 

Furthermore, the direct formation of an aziridinium phosphate species could be prevented, 

thus avoiding the undesired catalyst alkylation pathway. 

Therefore, we began our exploration focusing on the development of a novel 

catalytic cycle in Brønsted acid catalysis, which intriguingly resembles, at first glance, a base 

catalyzed pathway (Scheme 4.3).41 The phosphoric acid catalyst primarily establishes a 

hydrogen-bonding interaction with the nucleophile and this heterodimeric intermediate 

eventually engages the reaction with the electrophilic species.  

 

Scheme 4.3. Carboxylysis of aziridines via heterodimer intermediate 
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Desymmetrization of meso-aziridines 

At the onset of our studies we focused our attention on a desymmetrization strategy 

for meso-aziridines. In the presence of TRIP phosphoric acid, the ring opening of differently 

protected cyclohexene derived aziridines 72 with benzoic acid was explored (Table 4.1).121 

Table 4.1. Preliminary screening of N-protecting group in the carboxylysis of aziridines.  

 

 Initial attempts confirmed the difficulties of the methodology under investigation. 

Presumably due to their significant basicity, unprotected or phenyl-protected substrates 

(72a and 72b) exhibited significant background reactivity: control experiments without the 

phosphoric acid catalyst showed similar conversion into the desired product (entries 1-2, 

Table 4.1). Under these conditions TRIP was also found to be prone to deactivation and its 

alkylated species was observed by NMR investigation of the reaction mixtures. Reducing the 

basicity of the aziridines by tuning the nitrogen protecting group, we made an interesting 

observation. While sulfonyl-protected substrate 72c was unreactive, the benzoyl-protected 

compound 72d gave a rapid alkylation of the catalyst, albeit significantly lowering the 

background reactivity. This last experiment suggested that the simple activation by the 

carboxylic acid is difficult with this protecting group and therefore we promptly explored 

substituted benzoyl-protecting group with electronically different properties. In particular, 
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we aimed at the identification of a protecting group in which the interaction with the simple 

phosphoric acid could also be suppressed, favoring the activation by the more acidic 

heterodimeric species.  The presence of an electron-donating substituent resulted again in 

the fast deactivation of the catalyst (entry 6, Table 4.1), while the basic nicotinic moiety was 

unsuitable as protecting group due to significant background reaction. Gratifyingly, electron-

poor benzamide moieties gave promising results (entry 7-9, Table 4.1). Next to the common 

degradation of the catalyst, these reactions showed the formation of a significant amount of 

product. In particular, aziridine 72i, bearing an o-nitro benzoyl protecting group, gave the 

desired protected 1,2 aminoalcohol product 100i in 23% yield and 78.5:21.5 enantiomeric 

ratio (entry 9, Table 4.1).  

 Encouraged by this result, aziridine 72i was selected as model substrate and, aiming 

at the improvement of both reactivity and selectivity, an evaluation of different chiral 

phosphoric acid catalyst was performed (Table 4.2). The structure of the catalyst was found 

to be crucial for the reaction outcome, however TRIP was still found to give the best results.   

 Table 4.2. Evaluation of chiral phosphoric acid catalysts in the carboxylysis of 72i.  
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Sterically less hindered phosphoric acids gave disappointing results, since these 

compounds underwent the deactivation reaction at a superior rate (entries 3,4 and 7, Table 

4.2). It is worth to mention that achiral diphenyl phosphoric acid was also ineffective for the 

transformation (entry 1, Table 4.2) and even the preparation of the racemic product for 

analytical purposes had to be performed using a 1:1 mixture of TRIP enantiomers.81c Catalyst 

24f, bearing a significantly hindered pocket, exhibited similar performances with respect to 

TRIP (entry 5, Table 4.2),122 while anthracenyl substituted catalyst 24g gave the desired 

product in lower yield and selectivity (entry 6, Table 4.2). Increasing the catalyst loading of 

TRIP from 4 to 8 mol% resulted both in a higher yield and higher enantioenrichment of the 

desired product (entry 9, Table 4.2). In this last experiment, the turnover number of the 

catalyst is presumably unchanged, while the higher selectivity observed may be due to the 

lower detrimental effect of the residual background reactivity.  

Aiming to decrease the formation of the aziridinium phosphate, thus limiting the 

catalyst loss, we investigated the effect of the loading of the carboxylic acid substrate on the 

reaction outcome. A large excess of benzoic acid may further promote the heterodimeric 

association and facilitate the desired reactivity through the inhibition of the decomposition 

pathway. As shown in Table 4.3, this parameter was found to be critical for the 

transformation. The rate of the catalyst deactivation was significantly lowered and a 

beneficial effect was observed on the yield of the desired product. When performing the 

reaction with 7 or 8 equivalents of benzoic acid with respect to the aziridine the desired 

product could be obtained in excellent yield and enantioselectivity (entries 7-8, Table 4.3). 

Under these conditions, an optimal balance between catalyst alkylation and background 

reactivity was achieved and therefore the excess of such inexpensive nucleophile was 

maintained during the optimization of the other reaction parameters.  

The effect of the reaction medium and temperature was then carefully evaluated. 

Performing the reaction at 0° C in dichloromethane, the selectivity was improved to 97.5:2.5 

enantiomeric ratio (entry 2, Table 4.4). However, further lowering the temperature was 

instead found to be detrimental (entires 3-4, Table 4.4). A little deviation in the selectivity 

was observed with organic non-polar solvents (entries 1, 5 and 7, Table 4.4), while in 

tetrahydrofuran the reactivity was completely suppressed (entry 6, Table 4.4). Presumably 

the presence of competing hydrogen-bond acceptors effectively impedes the self-assembly 
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with the catalyst. Finally, performing the reaction in chloroform at ambient temperature the 

desired product was obtained in quantitative yield and 98.5:1.5 enantiomeric ratio.   

Table 4.3. Screen of the carboxylic acid loading in the carboxylysis of 72i.  

 

Table 4.4. Screen of the solvents and temperature for the carboxylysis of 72i.  
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 Having established a suitable catalytic system for the enantioselective conversion of 

aziridine 72i into the corresponding protected aminoalcohol, we were curious to evaluate 

the effect of an even more electron-poor benzamide moiety as protecting group. To our 

delight, under optimized conditions cyclohexene-derived aziridine 102a, with nitro groups in 

the ortho and in the para position of the benzoyl moiety underwent the reaction in less than 

one hour with outstanding enantioselectivity (er = >99.5:0.5; Scheme 4.4). Moreover, the 

catalyst deactivation pathway was found to be completely prevented and the phosphoric 

acid could be almost quantitatively recovered by column chromatography.  

 

Scheme 4.4. Asymmetric carboxylysis of aziridine 102a under optimized conditions. 

Kinetic resolution of terminal aziridines 

 Chiral aziridines are considered linchpins for the synthesis of various building blocks 

such as 1,2-amino alcohols, 1,2-diamines and 1,2-thioamines.123 The remarkable results 

obtained in the desymmetrization of meso-aziridines encouraged us to further apply our 

catalytic system to a kinetic resolution strategy for racemic terminal aziridines. It is 

noteworthy that in this transformation both the product and the unreacted starting material 

would be potentially useful. Since in a kinetic resolution the catalytic system should 

discriminate between two enantiomeric starting materials rather than performing an 

asymmetric ring opening of an achiral substrate, we expected factors governing selectivity to 

be slightly different from our previous optimization. 

The aziridine derived from 1-octene with an ortho nitro-benzoyl protecting group was 

chosen as model system for a preliminary screening of chlorinated non-polar organic 

solvents (Table 4.5). Dichloromethane was found to be the most suitable solvent and the 

reaction proceeded with good selectivity (entry 1). Both starting material and product were 
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isolated in an enantioeniched form and by using the Kagan equation,124 the selectivity factor 

(kS/kR) was calculated to be 13.4 (entry 1, Table 4.5).    

Table 4.5. Preliminary solvent screening for the kinetic resolution of terminal aziridine 104a. 

 

Remarkably, the ring opening occurred at the internal carbon center with perfect 

regiocontrol. This observation suggests that a partial positive charge on the aziridine 

substrate is developed in the transition state, thus directing the reaction at the most 

substituted center. Two possible scenarios are in line with this experimental observation: 

SN1-type process or a concerted but asynchronous substitution (cf. paragraph 2.4). However, 

investigating the dependence of the product enantioerichement on the reaction progress, 

the involvement of a carbocationic intermediate could be excluded. 

Table 4.6. Dependence of the enantioenrichement on the reaction progress.  
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In an SN1-process, the reaction of both enantiomers of aziridine 104a would occur via 

the same carbocation intermediate, thus giving the desired product with same 

enantioselectivity. However, over the course of the reaction we observed an erosion of the 

enantiopurity of the protected aminoalcohol 105a, thus suggesting a borderline SN2 

transformation.79 

A final optimization of the reaction parameters revealed the beneficial effect of the 

loading of the carboxylic acid and excellent selectivity was observed by performing the 

reaction under cryogenic conditions (entry 3, Table 4.7). Given the positive influence 

observed upon introduction of a more electron-withdrawing protecting group in the 

desymmetrization reaction, we also attempted the kinetic resolution with aziridine 106a, 

with an ortho-para dinitro benzamide moiety. However, in this transformation a lower 

selectivity was observed (entry 4, Table 4.7). 

Table 4.7. Optimization of the kinetic resolution of terminal aziridines.  

 

 

4.2.2. Reaction scope  

Preparation of starting materials 

With the optimized conditions in hand, both for desymmetrization of meso-aziridines 

and kinetic resolution of terminal aziridines, we set out to explore the substrate scope of the 

novel asymmetric carboxylysis reaction. The starting materials 102 and 104 were prepared 
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from the corresponding epoxides 50 and 88 following a three-step protocol.84a The epoxides 

were first subjected to an azidolysis reaction, followed by a Staudinger reaction and 

acylation in a one-pot sequence (Blum aziridine synthesis).125 When not commercially 

available, epoxides 50 were prepared by Prilezhaev epoxidation of the corresponding olefin 

with m-CPBA (cf. paragraph 4.3.4).126 Notably, the reaction sequence could be performed in 

a straightforward fashion with a single purification step by silica gel chromatography.     

Table 4.8. Preparation of starting materials for the asymmetric carboxylysis.  
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Scope of the desymmetrization of meso-aziridines 

 With a selection of aziridines in hand, the enantioselective carboxylysis reaction, 

utilizing the previously optimized conditions, was studied (Scheme 4.5). To our delight, the 

corresponding products were generally obtained with excellent yields and 

enantioselectivities and the methodology seemed to be only minorly influenced by the steric 

features of the starting materials. Cyclic protected aminoalcohols were obtained with 

outstanding results regardless the ring size and the presence of sp2 centers (products 103a-c 

and 103e). Compound 101d, bearing a five-membered ring scaffold and only one nitro group 

on the benzamide moiety, was also readily reacted although lower temperature (-10° C) and 

more dilute conditions were required (96% yield, er = 98:2). Aziridines derived from acyclic 

substrates were also well tolerated although with a slight loss in stereocontrol. Protected 

amino alcohols 103i and 103j could be obtained in excellent yield and good enantiocontrol 

when the reaction was performed under more diluted conditions.  

Other carboxylic acids are also effective in this transformation. For example, we 

tested substrates 102a and 102i in the corresponding reaction with acetic acid and similar 

results were obtained (products 103ab and 103ib, Scheme 4.5). However, the acetolysis 

reaction required longer reaction time and therefore a higher loading of the carboxylic acid 

(10 equiv.) was required to further prevent catalyst alkylation.  
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Scheme 4.5. Scope of the desymmetrization of meso-aziridines 

An interesting observation was made while performing the catalytic carboxylysis on 

the challenging stilbene derived aziridine 102k (Scheme 4.6).127 Under the standard reaction 

conditions, the desired protected 1,2-aminoalcohol product 103k was effectively delivered 

(70% yield, er = 96:4) together with a significant amount of a rearranged cis-oxazoline 112 

(23% yield, er = 83:17). Such result is presumably due to the electronic features of the 

substrate, since the phenyl moiety may provide an additional stabilization to a localized 

cationic charge at the benzylic position. Product 103k was not observed to be converted into 

this byproduct; therefore, a double substitution process seems unlikely while a 

rearrangement occurring via carbocationic intermediate may be speculated.127b However, 

this compound was isolated with moderate enantioselectivity suggesting an important role 

of the chiral phosphoric acid catalyst in the process.  
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Scheme 4.6. Carboxylysis of stilbene derived aziridines 102k. 

The absolute configuration of compound 103i was determined by comparison of the 

optical rotation of the N-Boc aminoalcohol readily obtained by Boc-protection and basic 

hydrolysis, with a literature value (R,R). The configurations of other 1,2-aminoalcohol 

products were assigned by analogy.128 

 

Scope of the kinetic resolution of terminal aziridines 

 The investigation on the scope of the kinetic resolution of terminal aziridines further 

confirmed the potential of the developed asymmetric methodology. As shown in Table 4.9, 

not only linear chain aziridines 104a,c were suitable for the resolution, but even the 

branched compound 104d was found to be smoothly converted to product under optimized 

conditions. Rewardingly, all the substrates tested in the transformation were generally 

converted with excellent selectivity factors (from 37 to 51), affording both the ring opened 

products and the unreacted starting materials in high enantiopurity.  

Compound 105a was subjected to a straightforward Boc protection/hydrolysis 

sequence providing the corresponding N-Boc aminoalcohol. The comparison of the optical 

rotation with a literature value allowed the assignment of the absolute configuration (S) and 

the configurations of the other products were assigned by analogy.129 It is intriguing that the 

desymmetrization reaction gives enantioselectively the (R,R)-aminoalcohol while the kinetic 

resolution preferentially converts the (R)-aziridine (cf. paragraph 4.2.3).  

 



4. Results and Discussion 

 

64 

 

Table 4.9. Kinetic resolution of terminal aziridines. 

 

 

4.2.3. Discussion  

 The established asymmetric carboxylysis gives access to highly enantioenriched 

protected aminoalcohols and represents the first enantioselective ring opening of aziridines 

with an oxygen nucleophile. The key to the success of the methodology was the prevention 

of the phosphoric acid catalyst deactivation pathway via heterodimeric self-assembly. 

Fascinated by the mechanistic features of the methodology, we further investigated the 

reaction profile by NMR analysis in order to gain further insights on the new catalytic mode.  

 Our optimization studies revealed that the desired pathway could be unlocked by 

matching the electronic properties of protecting group of the nitrogen atom with a proper 

loading of the carboxylic acid nucleophile. In this way optimal conditions have been 

identified and the catalyst could be also recovered from the reaction mixture. We therefore 



4. Results and Discussion 

 

65 

 

decided to examine more carefully this fine tuning and we decided to monitor the alkylation 

of catalyst by 31P-NMR in the reaction with differently protected aziridines. In particular, we 

set out the investigation of the carboxylysis of 72d, 72i and 102a with benzoic acid and 

acetic acid (Table 4.10).    

Table 4.10. Comparative evaluation of the effect of the protecting group and carboxylic acid. 
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 As expected, these experiments showed a defined trend. A fast catalyst deactivation 

is obtained when employing more electron-rich aziridines in combination with acetic acid 

(up-left corner, Table 4.10), while the desired product is preferentially formed by utilizing 

benzoic acid and an electron-poor protecting group (right-down corner, Table 4.10). Taking 

into consideration the simple acid-base equilibrium for the formation of the aziridinium 

phosphate, lowering the affinity of the aziridine for the acidic catalyst by decreasing its 

basicity was found to exhibit a beneficial effect. We also realized that our evaluation of the 

binding constants of heterodimers had revealed a higher tendency for the association of 

TRIP with benzoic acid rather than with acetic acid. Therefore, confirming our initial 

hypothesis, our exploration suggested that favoring the formation of an aziridinium 

phosphate intermediate accelerates the alkylation of the catalyst, while a more stable self-

assembly with carboxylic acids favors the desired carboxylysis (Scheme 4.7). 
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Scheme 4.7. Generalised results of the effect of the basicity of the aziridine substrates and 

the heterodimerization strength on the reaction outcome. 

 Moreover, the heteroconjugation effect should increase the acidity of the dimeric 

species with respect to the simple phosphoric acid, thus allowing a selective activation for 

the heterocycle with lower Lewis basicity. From this point of view, TRIP∙BzOH heterodimer is 

more stable than TRIP∙AcOH but also presumably more acidic, due to the higher acidity of 

the carboxylic acid molecule. On this basis, the reactivity scale observed can also find a 

reasonable mechanistic support in the Bell-Evans-Polanyi principle.130    

 

Transition state model 

Based on the experimental results we speculate that the reaction might occur via an 

asynchronous SN2 pathway and that the heterodimeric complexation is a crucial 

intermediate along the reaction coordinate to avoid the direct degradation of the catalyst. 

The involvement of a carbocationic intermediate is unlikely because of the exclusivity of the 

anti-product in the desymmetrization, while the complete regioselectivity of the kinetic 

resolution suggests the presence of a localized δ+-charge at the reacting carbon center.  

The presence of two molecules of the catalyst in the transition state of the 

stereodiscriminating event would provide a very crowded arrangement and therefore is 

unlikely. However, in order to exclude this possibility we performed a study of non-linear 

effects by employing scalemic mixtures of TRIP as the catalyst in the ring opening of 102e 

(Table 4.11).131 The experiment shows a linear correlation between the enantioenrichment 

of the isolated product and the enantiopurity of the catalyst used, thus suggesting that in 
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the transition state one molecule of the catalyst simoultaneously interacts with both 

coupling partners. 

Table 4.11. Study of non-linear effects in the carboxylysis of 102e. 

 

Although a proper stereochemical rationalization is currently not available, the 

identification of the main parameters which contribute to enantioselective catalysis is of 

certain interest. Our speculations can be based on two assumptions: (1) the activation of the 

heterocycle may occur via the direct protonation of the nitrogen atom, due to the high s 

character of the corresponding lone pair and (2) both the trans- and cis-invertomers of the 

aziridine can engage the heterodimer.  

 

Figure 4.7. Transition state model for the carboxylysis of aziridines. 
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The benzamido moiety is the widest stereo-discriminating element of the substrate 

and thus it preferentially avoids the catalyst bulky substituent A (Figure 4.7). The reaction of 

the cis-invertomer (less thermodynamically favored) may further reduce the non-stabilizing 

interaction of the R-group with the catalyst, while the trans-invertomer would reduce the 

steric clash within the substrate.  

Possibly, the energetic difference between these competitive pathways results in the 

remarkable selectivity towards (R,R)-aminoalcohols in the desymmetrization protocol and in 

the selective transformation of the R-aziridine in the kinetic resolution.  
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4.3. Asymmetric hydrolysis of epoxides in organocatalysis132 

 The excellent reactivity shown by our catalytic system in the asymmetric ring opening 

of aziridines prompted us to investigate this novel concept in reactions with different 

electrophiles. Given the high synthetic interest of epoxide hydrolysis reactions, we aimed at 

the development of the first asymmetric metal-free approach by coupling a stereoselective 

carboxylysis with the mild hydrolysis of the formed ester product. This methodology would 

be particularly useful if applicable both to the desymmetrization of meso-epoxides and to 

the kinetic resolution of chiral racemic substrates. 

The work described in this section was performed in collaboration with Dr. S. Prévost. 

 

4.3.1. Reaction design and initial optimization 

 With respect to the carboxylysis of aziridines, the development of a related 

transformation on the epoxide ring system may encounter more difficulties (Scheme 4.8).  

 

Scheme 4.8. Envisioned issues for the asymmetric carboxylysis of epoxides. 

In fact, the undesired tendency towards catalyst alkylation was expected and the 

absence of a tunable protecting group for the oxygen heteroatom, in analogy with the 

aziridine protection, significantly increased the chance of catalyst deactivation.80 Moreover, 

next to a possible competing background reaction by means of carboxylic acid catalysis, the 

facile acid-catalyzed trans-acylation reaction on the obtained products would yield an 
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additional regioisomer, thus rendering the reaction profile more complex. Considering the 

possible asymmetric induction, we also hypothesized that the lack of the stereo-

discriminating protecting group of the aziridine in the transition state would presumably 

render enantioselective catalysis significantly challenging. 

 

Desymmetrization of meso-epoxides 

 Since the possible trans-acylation reaction is degenerative for monoesters derived 

from C2-symmetric diols,63 we initially focused our attention on the development of a 

desymmetrization strategy and we selected cyclohexene oxide 50a as the model substrate.  

 Confirming the instability of phosphoric acids with oxiranes previously described by 

Chan and Di Raddo,80 at the beginning of our exploration we verified a remarkable reactivity 

of TRIP catalyst towards the alkylative deactivation (entry 1, Table 4.12). As expected, this 

fast decomposition effectively hampers a possible catalyzed reaction with alcohol 

nucleophiles (entries 2-3, Table 4.12) whereas, to our delight, the approach via 

heterodimeric self-assembly was successful. Indeed, both the reactions with acetic acid and 

benzoic acid yielded the desired product in good yield and moderate selectivity (entries 4-5, 

Table 4.12). 

Table 4.12. Initial studies towards the ring-opening of 50a catalyzed by TRIP. 
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Despite the success of both carboxylic acid nucleophiles in this transformation, it is 

worth to mention that the reaction with acetic acid was found to be slower and the 

competing alkylation of TRIP occurred more significantly, thus confirming our previous 

expectations.  

The moderate selectivity observed in these initial studies encouraged us to evaluate 

different phosphoric acid catalysts (Table 4.13). Disappointingly however, all the common 

phosphoric acid catalysts, bearing less hindered catalyst pockets were found to exhibit a 

higher alkylation rate and the desired glycol monoester product was obtained always in 

residual amount and in very low enantiopurity. The catalyst 34 (STRIP), derived from a 

SPINOL backbone, was also found to be similarly selective to TRIP,54 however the product 

was obtained in lower yield (entry 10, Table 4.13).   

Table 4.13. Preliminary screen of phosphoric acid catalysts for the acetolysis of 50a. 

 

 Therefore TRIP was selected as the most promising catalyst and a careful evaluation 

of the other reaction parameters was undertaken. As shown in Table 4.14, the yield of the 
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reaction was significantly influenced by the concentration of the mixture, while the 

enantioselectivity was found to be essentially insensitive. Upon diluting the reaction mixture 

the rate of the transformation was decreased. Conversely, a concentration led to a 

significant degradation in yield due to the more effective catalyst deactivation. 

Table 4.14. Concentration screening for the acetolysis of 50a. 

 

With a clear optimization of the reaction concentration in hand, the nature of the 

solvent was investigated (Table 4.15). Notably, this study revealed that the level of 

enantioselectivity was maintained in all non-polar media tried. Using benzoic acid as  

nucleophile, the yield was always excellent, with the only exception of cyclohexane due to 

solubility issues (entry 5, Table 4.15). Polar aprotic solvents instead were not suitable for the 

reaction (i.e. tetrahydrofuran; entry 8, Table 4.15), presumably due to the interference with 

the establishment of hydrogen bonding assemblies. Lowering the temperature was found to 

have a beneficial influence on the selectivity of the transformation and, under cryogenic 

conditions the enantiomeric ratio was improved to 86:14, albeit with a detrimental effect on 

the reactivity (entry 11, Table 4.15). 

Hoping to further differentiate the energy of the diastereotopic transition states 

leading to the opposite enantiomers, we explored the effect of different carboxylic acid 

nucleophiles (Scheme 4.9). Variously substituted benzoic acids were reacted and the 

corresponding products were always obtained with excellent yields.  
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Table 4.15. Solvent and temperature evaluation in the carboxylysis of 50a. 

 

A low but non-negligible effect on the enantioselectivity was observed and curiously, 

the highest results were obtained when reacting ortho,ortho-disubstituted benzoic acids 51e 

and 51f, which have a significant torsional angle between the phenyl ring and the 

carboxylate moiety. 

 

Scheme 4.9. Evaluation of different carboxylic acids in the ring opening of 50a. 
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An additional temperature screening was also attempted for 2,4,6-trimethyl benzoic 

acid and 2,6-dichloro benzoic acid (Table 4.16). Upon lowering the temperature to -35° C the 

product 52af was obtained with 90.5:9.5 enantiomeric ratio but with reduced conversion 

(entry 3, Table 4.16). Instead, the transformation with dihalogenated benzoic acid showed a 

significantly improved reactivity and could be performed at -55° C obtaining excellent yield 

and 93:7 enantiomeric ratio (entry 9, Table 4.16). Presumably the high acidity of this 

carboxylic acid (pKaH2O = 1.82)133 further strengthen the heteroconjugation effect, thus 

explaining such remarkable reactivity.   

Table 4.16. Temperature screening with different carboxylic acids. 

 

Despite not yet being satisfactory, the good enantioselectivity obtained in this last 

transformation encouraged us in again evaluating the role of the phosphoric acid catalyst. 

The above-mentioned lack of stereo-controlling elements in the epoxide substrate rendered 

the optimization of the reaction quite challenging; however, upon modifying the steric 

properties of the nucleophile a noteworthy effect was identified. The beneficial effect given 

by ortho-substituents suggested that the selectivity might be improved by further crowding 

the transition state. Therefore, we decided to re-evaluate the organic catalyst, this time 

exploring a fine modulation of the highly hindered active site. In particular, BINOL-derived 

phosphoric acids with 2,6-diisopropyl aryl substituents were tested (Table 4.17).134       
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 Table 4.17. Re-evaluation of the phosphoric acid: screen of highly hindered catalysts. 
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Interestingly, catalyst 24m with unsubstituted para-position performed slightly better 

than TRIP (entry 2, Table 4.17),134a while 24n bearing a bulky adamanthyl moiety in that 

position was found to be less selective (entry 3, Table 4.17).134b The highest selectivity was 

obtained with catalyst 24o,134c however the product was formed with a lower conversion 

(entry 4, Table 4.17).  

Hoping to match the combination of the catalyst and the substituted carboxylic acids, 

we tried the reaction using 50e and 50f as nucleophiles under cryogenic conditions (entries 

6-9, Table 4.17). However, our expectations were not fulfilled and no improvement was 

obtained on the selectivity with respect to the corresponding TRIP-catalyzed 

transformations. 

 

4.3.2. Catalyst design and synthesis 

As the optimization process clearly revealed the requirement of even more sterically 

demanding phosphoric acids, we attempted the design and the synthesis of an optimal 
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catalyst. In fact, although hindered active sites are commonly useful in asymmetric catalysis 

(cf. paragraph 2.2.2), we surprisingly realized that this particular class of phosphoric acid 

catalysts, by contrast, was significantly underrepresented. Therefore, the development of 

novel types of bulky catalysts would not only be a possible solution for the carboxylysis 

reaction but at the same time the new catalysts may find applications in various 

methodologies. Our investigations were targeted towards two different goals (Scheme 4.10).  

 

Scheme 4.10. Design of confined chiral phosphoric acid catalysts. 

On the one hand, the introduction of even more sterically-demanding fragments in 

the ortho-position of the 3-3’ aryl substituent should result in an enlargement of the steric 

features. Such modification could potentially develop a higher van der Waals strain, thus 

affecting the torsional angle of the C-C bond between the phenyl ring and the binaphthyl 

backbone. On the other hand a combined ortho-meta substitution pattern had never been 
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explored. We wondered whether the additional presence of an alkyl fragments in the meta-

position could contribute to enantioselective transformations by introducing a secondary 

effect and by simultaneously providing a fine tuning of the primary effect of the ortho-

substituent.135  

Aiming towards the evaluation of our hypotheses, we designed and developed 

synthetic routes towards catalysts 114 and 115a-c. 

 

Synthesis of 114 

 Despite appearing as a simple member of the family of 3,3′-Bis(2,4,6-trisubstituted 

phenyl)-BINOL phosphoric acids, catalyst 114 has never previously been reported, 

presumably due to the significant difficulties encountered during the synthesis. In fact, a 

metal-catalyzed cross coupling reaction is usually exploited to assemble biaryl compounds; 

however, this type of transformation is challenging when the two coupling partners are 

relevantly hindered. As an example, the synthesis of TRIP has to be accomplished through a 

Ni-catalyzed Kumada reaction,53 while the robust Suzuki-Miyaura coupling is instead 

generally used for the preparation of less bulky catalysts.49,50 Nevertheless, similar protocols 

were found to be unsuccessful for the preparation of catalyst 114. More in general, the 

Schimdt group have so far reported the only example of cross coupling reaction with an 

ortho,ortho-ditertbutyl aryl fragment and this lack of methodologies further highlights the 

synthetic challenge of our goal.136 

Over the years, many attempts toward 114 have been tried in our laboratories, 

unfortunately without any significant breakthrough. Performing the Kumada-type coupling 

under various conditions resulted in no desired biaryl coupling. Furthermore, Suzuki-Miyaura 

conditions lead to disappointing results, as independently reported by the Buchwald 

group.137   

 Fascinated by such synthetic challenge, we focused our attention on the 

methodology described by Buchwald for the synthesis of bulky biaryl phosphine ligands.138 A 

completely novel route towards chiral binaphtyl phosphoric acids was designed aiming at 

the exploitation of the reactivity of aryne intermediates (Scheme 4.11).  
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Scheme 4.11. Access to hindered biaryl fragments: synthesis of phosphine ligands via aryne 

intermediates and designed approach to BINOL derivatives.  

 We hypothesized that a 1,2-dihalogenated aryl substrate may undergo a controlled 

lithium halogen exchange in the presence of an excess of a hindered aryl lithium species, 

thus generating in situ the corresponding aryne compound via elimination of lithium 

halide.139 This reactive intermediate may promptly react with the excess of the 

organolithium species, thus yielding a biaryl lithium species, which could be eventually 

trapped by an electrophilic oxygen reagent (i.e. TMS-peroxide).140 Indeed, this elegant one-

pot protocol was attempted using 1,2-dibromobenzene and 2,4,6-triisopropyl 

bromobenzene as model system and the isolation of the corresponding compound 

confirmed the feasibility of such synthetic plan (Scheme 4.12).  

 

Scheme 4.12. Model study for the synthesis of hindered biaryl compounds. 

 Encouraged by this preliminary result, we set out the synthesis of the targeted 

catalyst. Tetrahalogenated binaphthyl compound 122 was straightforwardly prepared by a 
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simple ortho-silylation followed by an ipso-desilylation/halogenation reaction (Scheme 

4.13).141, 142  The synthetic procedure was developed using racemic starting material due to 

the envisioned low racemization barrier for the chiral aryne intermediate, which may have in 

any case resulted in the deterioration of the enantioenrichment.  

 

Scheme 4.13. Preparation of compound 122. 

 We then attempted the simple one-pot protocol, which gave promising results in the 

model studies. Despite the poor solubility of 122 under the reaction conditions, the aryne 

intermediate was generated quantitatively due the mass action law and the biaryl coupling 

occurred as expected. However, to our surprise, the addition of TMS-peroxide was unfruitful 

and we isolated the iodinated species 123 instead of binaphtol compound 124. This outcome 

may be due to an unexpected lithium-halogen exchange from the organolithium 

intermediate; such reactive intermediate could effectively propagate a chain-type 

mechanism.139b Indeed, simply avoiding the final addition of the electrophilic oxygen 

reagent, product 123 was obtained in moderate yield (39%, Scheme 4.14). The conversion of 

compound 123 into the desired BINOL-derivative 124 was eventually achieved using the 

oxygenation procedure previously developed by Power and coworkers for the preparation of 

highly hindered phenols (Scheme 4.14).143  

 

Scheme 4.14. Preparation of binaphthol 124. 
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 Unexpectedly, the final formation of the phosphoric acid suffered from a remarkably 

slow formation of the phosphoryl chloride intermediate; nevertheless, the desired 

compound could be obtained and the racemic mixture was resolved by preparative HPLC on 

chiral stationary phase (Scheme 4.15). 

 

Scheme 4.15. Synthesis of catalyst 114: end-game. 

 This completely novel route to chiral phosphoric acids may provide a secure access to 

even more hindered catalysts and, given the importance of binaphtol ligands in asymmetric 

catalysis, could also find application for the preparation of chiral metal-based catalysts.52  

 

Synthesis of 115a-c 

The synthesis of the binaphtol scaffolds of catalysts 115a-c (Scheme 4.10) was 

instead possible via cross-coupling reaction using the Ni-catalyzed Kumada reaction usually 

applied to the synthesis of TRIP.53 However, in this case, the preparation of the required aryl 

bromides was challenging from the synthetic point of view. While tetra-isopropyl 

bromobenzene 116c was prepared by simple electrophilic aromatic bromination of the 

corresponding hydrocarbon compound (Scheme 4.16.a),135 the synthesis of complex 

architectures for polycyclic aryl-bromides 116d-e required more challenging routes.  

However, despite the need for a stepwise approach, compound 116d was prepared 

on multi-grams scale, thus highlighting the robustness of the developed procedure (Scheme 

4.16.b).144    
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Scheme 4.16 Preparation of aryl bromides 116c and 116d. 

 An initial Diels-Alder reaction followed by olefin reduction gave diketone 128 starting 

from benzoquinone and cyclohexandiene.145 This product was then converted into the 

corresponding hydroquinone through α-bromination/elimination sequence and subjected to 

triflation conditions in order to be eventually reduced in a Pd-catalyzed hydrogenolysis.146 

Due to solubility issues, the following electrophilic aromatic bromination could not be 

interrupted at the desired monobrominated product; nevertheless a clean dibromination 

reaction was carried out and product 116d was finally obtained after mono-lithiation and 

protonation.  

 A similar synthetic approach was not attempted for the preparation of pentiptycene 

bromide 116e, since the presence of five aromatic moieties discouraged us from planning a 

final electrophilic bromination. Synthetic routes towards pentiptycenes are significantly 

challenging and a long linear synthesis of dibromide 136 has been disclosed and previously 

reported in literature.147 However, we designed a much shorter route, which could be useful 

on a preparative scale. In the presence of p-chloranil as an oxidant, anthracene and 

benzoquinone were coupled in a double Diels-Alder reaction giving quinone compound 134 



4. Results and Discussion 

 

82 

 

and afterwards a simple reduction with zinc powder gave the corresponding hydroquinone 

135 (Scheme 4.17).148, 149     

 

Scheme 4.17. Preparation of hydroquinone 135. 

 We then developed a novel Appel-type transformation at elevated temperature (290° 

C), which provided a remarkably clean reaction profile and the dibrominated species 136 

was obtained in a single step and moderate yield. Intriguingly, the analysis of the reaction 

mixture allowed the identification of the bromo-pentiptycene compound 116e as a minor 

byproduct of the transformation. A final mono-lithiation/protonation sequence provided the 

desired product 116e in an overall four-step approach (Scheme 4.18).  

Notably, iptycene scaffolds are unique three-dimensional rigid structures and find 

promising applications in molecular machines, supramolecular chemistry, material science 

and coordination chemistry.150 Therefore, this novel and straightforward protocol could also 

provide an interesting novel entry to these highly investigated molecules.  

 

Scheme 4.18. Preparation of bromo pentiptycene 116e. 

 Having established reliable, multigram approaches, for the preparation of aryl 

bromides 116c-e, the synthesis of the corresponding phosphoric acid catalysts was 

performed. As mentioned above, the Kumada biaryl coupling allowed the synthesis of the 

complex binaphthyl scaffolds. Then a simple ether cleavage using boron tribromide gave the 

desired BINOL- derivatives, which were next converted under standard conditions into the 

corresponding phosphoric acids (Scheme 4.19).53   
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Scheme 4.19. Synthesis of catalysts 115a-c: end-game. 

 

4.3.3. Evaluation of novel catalysts and reaction optimization 

 Having synthesized the newly designed chiral phosphoric acids, we explored their 

catalytic performances in the carboxylysis of cyclohexane oxide with benzoic acid (Scheme 

4.20). Unexpectedly, increasing the size the ortho-substituents did not result in the desired 

effect: as a matter of fact, catalyst 114 showed lower selectivity than TRIP in the ring 

opening reaction (er = 69:31). Gratifyingly however, catalysts with ortho,meta-substituted 

aryl moieties outperformed the previously known catalysts, providing a two-fold beneficial 

effect. On one hand, confinement of the phosphate pocket reduced its nucleophilicity, thus 

further limiting the deactivation pathway. On the other hand, the steric demand enhanced 

the stereochemical communication within the interacting intermediates. In particular, 

catalyst 115a considerably improved the selectivity of the reaction (er = 89:11) and the 

conformationally constrained polycyclic catalyst 115b proved to be even more effective (er = 

90:10). Finally we investigated the iptycene-substituted organocatalyst 115c and we 

observed a detrimental effect on the reaction outcome (er = 73.5:26.5). Possibly, such active 

site is barely accessible due to the considerable steric features and relevant non-stabilizing 
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interactions also characterize the transition state leading to the favored product 

enantiomer.    

 

Scheme 4.20. Evaluation of novel catalysts in the carboxylysis of 50a. 

 Having finally identified 115b as the optimal catalyst for our transformation, we 

started evaluating the other reaction parameters. The transformation was observed to be 

essentially insensitive to the polarity of the reaction medium and similar results were 

obtained in a large variety of non-polar solvents (Table 4.18).  

Table 4.18. Screen of solvents for the carboxylysis of 50a catalyzed by 115b. 
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Presumably, due to the hindrance of the phosphoric acid moiety and the rigidity of its 

structure, solvent molecules cannot be intercalated inside the catalytic pocket in the 

transition state and the external solvation sphere does not significantly influence its well-

defined conformation. Toluene was chosen as the optimal solvent (er = 90.5:9.5; entry 3, 

Table 4.17), due to a small beneficial effect and low-toxicity with respect to dichloromethane 

(er = 90:10; entry 1, Table 4.18). 

The exploration of various carboxylic acids suggested a wide applicability of the 

methodology and only a minor contribution to the selectivity could be attributed to the 

nucleophile backbone. Both aliphatic and aromatic carboxylic acids were investigated and 

benzoic acid was found to slightly outperform the others (entry 1, Table 4.19). Intriguingly, 

the benefits provided by the 2,6-substitution pattern in the TRIP-catalyzed reaction were not 

observed in the transformation with catalyst 115b and the selectivity was reduced when 

using carboxylic acid 51e (entry 7, Table 4.19).        

Table 4.19. Screen of carboxylic acids for the ring opening of 50a catalyzed by 115b. 

50a 52

entry

4

2

1

AcOH

3

toluene (0.125 M)

rt, 18 h

(S)-115b (4 mol%)

er[a]

89.5:10.5

89:11

RCO2H (1.6 equiv.)
O HO O

O

R

6

5

89:11

RCO2H

CO2H

CO2H

CO2H

CO2H

Cl

entry er[a]

89.5:10.5

72.5:27.5

RCO2H

CO2H 90.5:9.5

CO2H

Cl

Cl89.5:10.5

7

a Determined by HPLC on chiral stationary phase  

 Remarkably, under cryogenic conditions, an excellent level of enantioselectivity was 

achieved. Lowering the temperature to -40° C, the chiral monoprotected 1,2-diol 52aa was 

quantitatively obtained in 96:4 enantiomeric ratio (entry 6, Table 4.19).  
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A final effort for the ultimate optimization of the catalyst led us to explore catalyst 

139, the tetra-hydrogenated variant of catalyst 115b.151 This catalyst, which was designed 

and prepared according to the same strategy showed in the previous paragraph, gave 

superior results under the optimized conditions and allowed the isolation of the product 

with 96.5:3.5 enantiomeric ratio (entry 7, Table 4.20).    

Table 4.20. Final optimization for the asymmetric carboxylysis of 50a. 

 

 

Structural rationalization of the catalyst design  

A comparison between catalysts 139 or 115b and TRIP helps to sketch out the 

achievements of our confinement-oriented catalyst synthesis. The experimental analysis of 

the catalytic performances highlighted a superior selectivity of the novel catalysts but a 

lower turnover frequency. Both these effects can be attributed to a less accessible catalytic 

site. Indeed, the analysis of the X-ray crystal structure of catalyst (R)-139 provides further 

insights and significant differences can be appreciated with respect to (S)-TRIP in the solid 

state (Figure 4.8).   
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Considering the closest carbon atoms to the phosphate group, a comparative analysis 

of the space diagonals reveals that catalyst 139 exhibits a tighter available space between 

the two hydrophobic substituents (TRIP: 10.40 Å and 9.00 Å; 139: 9.79 Å and 8.78 Å). The 

confined nature of the novel catalytic pocket appears even more evident when considering 

the Van der Waals surface through a space-filling model. While the active site of the 

previously known catalyst is relatively open, the less flexible substituents of the novel 

catalyst effectively translates into a more compact cavity, thus providing a more hindered 

moiety (front view, Figure 4.8). This analysis also suggests the importance of the meta-

substituents of the phenyl groups: the polycyclic framework provides an extended rigid 

structure which further reduces the exposition of the phosphoric acid (side view, Figure 4.8).  

 

Figure 4.8. Comparison between TRIP and catalyst 139. The crystal structure of (R)-139 has 

been flipped for clarity. 
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A theoretical exploration of the transition states of the transformation is presented in 

section 4.5.3, aiming at a rationalization of how these structural features translate into an 

effective stereochemical communication between the catalysts and the reaction partners. 

 

Kinetic resolution of racemic epoxides 

 Having identified optimal conditions for the asymmetric carboxylysis of meso-

epoxides, we wondered whether the scope of our methodology could also include a 

resolution strategy. Although chiral epoxides are recognized as important building blocks in 

stereoselective synthesis, the development of highly enantioselective epoxidation reactions 

of unactivated olefins is still in need.152 Racemic epoxides are inexpensively derived from the 

corresponding alkenes and thus the development of efficient resolution strategies is 

practically useful. Fascinated to contribute to this field, we turned our attention to the ring 

opening of non-symmetrical racemic epoxides.  

Employing styrene oxide 140a as model substrate and TRIP as the catalyst, we could 

verify that a highly selective kinetic resolution to O-benzoylated phenyl ethyleneglycol 141a 

was occurring (S = 19.8; entry 1, Table 4.21). As expected from our previous studies on 

aziridine substrates, the ring opening reaction selectively occurs on the internal carbon 

center and no regioisomer could be detected in the reaction mixture.  

Table 4.21. Kinetic resolution of styrene oxide 140a. 
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An optimization of the reaction conditions confirmed the superior selectivity of 

catalyst 139 (S = 45; entry 3, Table 4.21) and revealed that a substoichiometric amount of 

carboxylic acid could be used in this case to facilitate the control of the reaction progress. 

We also investigated the nature of the nucleophilic substitution in order to exclude 

the possibility of a SN1 reaction pathway with a carbocationic intermediate. As presented in 

Scheme 4.21, enantiopure (R)-styrene oxide was subjected to the ring opening reaction with 

the two enantiomers of TRIP catalyst and the same enantiomer of the product was obtained 

in both reactions, albeit at different rates. This outcome is consistent with an SN2 pathway, 

which proceeds with inversion of configuration at the chiral center. 

 

Scheme 4.21. Stereoselectivity study for the carboxylytic kinetic resolution of 140a. 

 

4.3.4. Reaction scope  

Preparation of starting materials 

Having identified conditions for both desymmetrization and kinetic resolution 

strategies, we set out to explore the substrate scope. When not commercially available, 

epoxides 50 and 140 were generally prepared according to a standard epoxidation protocol 

of the corresponding olefin by Prilezhaev reaction with m-CPBA (Table 4.22).126  
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Table 4.22. Preparation of epoxides starting materials. 
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Due to the instability of epoxide 140j under the acidic conditions of the epoxidation 

with peracids, this compound was prepared via a stepwise process. Bromohydrin 143 was 

obtained from indene 142j and the desired epoxide was then delivered through a base-

promoted intramolecular substitution reaction (Scheme 4.22).153  

 

Scheme 4.22. Synthesis of indene oxide 140j via bromohydrin intermediate 143. 

 

Desymmetrization of meso-epoxides 

Several meso-epoxides, cyclic and acyclic, were successfully transformed into the 

corresponding glycol monoesters with high levels of stereocontrol (Scheme 4.23).  

 

Scheme 4.23. Reaction scope for the desymmetrization of meso-epoxides to monoprotected 

1,2-diols. 
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Six-membered-ring substrates 50b and 50c reacted smoothly giving the desired 

products in good yields and very good enantioselectivity (respectively 52b: 86% yield, er = 

93.5:6.5 and 52c: 73% yield, er = 94.5:5.5). Monoprotected trans-diols bearing a five- or 

seven-membered-ring scaffold were obtained with excellent stereocontrol (52d and 52e; er 

= 95.5:4.5). Presumably, the presence of additional competing hydrogen-bonding acceptors 

was the reason for a lower reactivity observed when reacting epoxides with heteroatoms in 

the cyclic scaffold; however, the reactions proceeded smoothly at slight elevated 

temperature and the corresponding products 52f and 52g were also obtained with very good 

selectivity. The remarkable generality of the system was furthermore demonstrated when 

acyclic substrates 50h-j were investigated. It is notheworthy that even the small epoxide 50h 

was converted into the corresponding product 52h in excellent enantiomeric ratio (76% 

yield, er=95:5), highlighting the potential of our new sterically confined catalyst to handle 

small substrates. In case of epoxide 50i, both catalyst 139 and its fully aromatic version 115b 

gave the desired product enantioselectively, with the latter catalyst being slightly superior 

(er139=96:4, er115b=3.5:96.5; see the experimental section, cf. paragraph 7.4.3.1). The 

challenging cis-stilbene derived epoxide 50k was compatible with the reaction conditions 

and the desired product was isolated in high yield and good enantioselectivity (85% yield, er 

= 91:9). 

 

Kinetic resolution of racemic epoxides 

Under optimized conditions a variety of unsymmetric epoxides were investigated in 

the carboxylytic kinetic resolution and the results are collected in Table 4.23.  

The reaction generally proceeds with excellent selectivity (S from 29 to 93) and 

different substitution patterns on the phenyl ring of the starting epoxides are well tolerated. 

It is worth to notice that the reactivity of the different substrates was found to be related to 

the electronic properties and the position of the substituents. Rate acceleration due to the 

presence of electron-donating groups was observed and a qualitative correlation with the 

Hammett sigma constants was possible.154 For example, styrene oxide 140a reacted at -20° C 

(σ = 0.00; S = 44; entry 1, Table 4.23), its para-tertbutyl substituted congener 140f was found 

to be reactive even at -40° C (σ = -0.20; S = 73; entry 6, Table 4.23), while for the reaction of 

meta-methoxy styrene oxide 140h the temperature had to be raised at +4° C (σ = +0.12; S = 
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29; entry 8, Table 4.23). Halogenated epoxides 140b-d underwent the resolution with 

excellent selectivity factors (S = 48-50; entries 2-4, Table 4.23) and also the presence of an 

acetoyl-group in the starting material was effectively tolerated (140e, S = 46, entry 5, Table 

4.23). An influence on the reactivity due to the steric features of the epoxide was also 

observed. Presumably, due to the geometrically constrained structure, epoxides 140i and 

140j exhibited the highest reactivity and were resolved with outstanding selectivities (S = 93 

and S = 87) at -50° C with reduced catalyst loading (2 mol%, entries 9-10, Table 4.23). 

Table 4.23. Reaction scope for the carboxylytic kinetic resolution of racemic epoxides. 
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The rate accelerating effect of electron-donating substrates suggests the presence of 

a mesomeric stabilization of a localized cationic charge at the carbon center which 

undergoes the ring opening reaction. However, the presence of a carbocationic intermediate 

had been disproved and a concerted SN2 transformation was proposed. Therefore, an 

asynchronous reacting event can be hypothesized with the transient formation of cationic 

charge localized in an orbital with a partial p-character, thus benefitting from the resonance 

stabilization of the phenyl moiety (Scheme 4.24).  

 

Scheme 4.24. Mesomeric effect in the asynchronous SN2 ring opening of epoxides and 

current limitations of the kinetic resolution. 

This phenomenon is common in nucleophilic ring opening reactions occurring at a 

benzylic position.155 As a consequence, strong electron-withdrawing groups significantly 

decreases the reaction rate and substrates 140k-m (σ > +0.391) were found to be limitations 

of this methodology.      

 

4.3.5. Biomimetic, asymmetric anti-dihydroxylation strategy  

 With the optimal conditions for the asymmetric carboxylysis in hand, we reasoned 

that our reaction may be exploited for the development of an enantioselective anti-

dihydroxylation of unactivated alkenes. Although enantioselective syn-dihydroxylations of 

olefins are well developed,156-157 analogous non-enzymatic asymmetric anti-dihydroxylations 

are unknown. Therefore developing a catalytic dihydroxylation reaction which proceeds with 

such topicity is particularly interesting. We realized that the oxidation of alkenes with simple 

peracids (Prilezhaev reaction), delivers both an epoxide and a carboxylic acid, which is the 

exact combination of substrates for the asymmetric reaction under investigation. 
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Accordingly, adding catalyst 139 to this reaction mixture should directly furnish the 

corresponding monoprotected dihydroxylation product in an enantioenriched fashion 

(Scheme 4.25).  

 

Scheme 4.25. Developing an anti-dihydroxylation of simple olefins. 

To test this idea, we treated a variety of olefins 107 with perbenzoic acid in toluene 

and subjected the resulting reaction mixture to our desymmetrization conditions (Scheme 

4.26). The expected glycol monoester products were obtained in good yields and with 

enantioselectivities similar to those previously obtained for the simple ring opening reaction 

(Scheme 4.23). In these reactions, the catalyst was always added in solution together with 

additional benzoic acid to reach the previously optimized conditions (139 10 mol% and 

benzoic acid 3 equivalents).  

 

Scheme 4.26. Organocatalytic asymmetric dihydroxylation strategy. 



4. Results and Discussion 

 

96 

 

We also performed the reaction sequence with the commonly used meta-

chloroperbenzoic acid as oxidant. Remarkably, in this reaction the catalyst was added 

without additional carboxylic acid and the desired product was obtained in 71% yield and 

93.5:6.5 enantiomeric ratio (Scheme 4.27). It is noteworthy that the overall sequence of 

Prilezhaev epoxidation followed by carboxylysis exhibits perfect atom economy and the 

product obtained can be converted into the corresponding diols in under mild basic 

conditions. 

 

Scheme 4.27. Asymmetric dihydroxylation strategy using m-CPBA. 

 Fascinatingly, our designed overall anti-dihydroxylation of olefins, perfectly mimics 

the enzymatic biosynthetic pathway (Scheme 4.28). In the living organisms, epoxides are 

commonly delivered by the cytochrome P-450-mediated oxidation of olefins. Subsequently, 

an aspartate residue of an epoxide hydrolase performs a nucleophilic attack on the activated 

oxirane generating an enzyme-bound intermediate, which is sequentially hydrolyzed.23, 91 

 

Scheme 4.28. Organocatalytic, biomimetic dihydroxylation of cyclohexene 107a. 

In an analogous way, using our methodology, we explored the first biomimetic 

asymmetric synthesis of 1,2-cyclohexandiol 144a starting from cyclohexene 107a. In fact, a 
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three-step, one-pot protocol was devised including a final hydrolysis step, which terminates 

the epoxidation/desymmetrization sequence. According to such protocol, the desired diol 

product was straightforwardly obtained in good yield and excellent enantioselectivity (70% 

yield, er = 95.5:4.5; Scheme 4.28).  

 

“…a jumbo jet is not just a scaled-up pigeon. In biomimetic chemistry, we also take 

inspiration, but not blueprints, from natural chemistry”
 

R. Breslow (J. Biol. Chem. 2009) 
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4.4. Asymmetric synthesis of β-hydroxythiols158  

 Having successfully developed a catalytic system for the asymmetric ring opening of 

aziridines and epoxides towards 1,2-aminoalcohols and 1,2-diols, we investigated whether 

this approach could be applied to other nucleophiles. Due to the importance of chiral β-

hydroxythiol scaffolds,101 broadening the perspectives of our novel activation mode to a 

sulfur-variant could be of synthetic value. Intrigued by the possible heterodimer formation, 

we focused on thiocarboxylic acids. In particular, we aimed at the development of an 

organocascade strategy which directly delivers chiral thiols, thus representing a valuable 

alternative to the long sought-after asymmetric sulfhydrolysis reaction.159  

The work described in this section was performed in collaboration with Dr. S. Prévost. The 

density functional theory calculation presented in Figure 4.10 was performed in collaboration 

with Dr. D. Fazzi (AK Prof. Thiel, MPI Mülheim). The crystal structure determination of 147ab 

by X-ray diffraction was performed by Dr. R. Goddard. 

 

4.4.1. Reaction design and heterodimer studies 

 The exploration presented in the previous chapters revealed that the 

heterodimerization with carboxylic acids inhibits the alkylation of phosphoric acid catalysts 

in the presence of epoxides and aziridines, thus allowing an highly enantioselective 

carboxylysis of these substrates. Similarly to carboxylic acids, thiocarboxylic acids are 

capable of self-assembling through hydrogen-bonding interactions. However, mainly due to 

the moderate electronegativity of sulfur, this association is less pronounced.160 Thiol 

moieties are weaker hydrogen-bonding donors than hydroxyl groups and this translates in 

the formation of less stable homodimeric species. On this basis, we wondered whether a 

hypothetical heterodimeric self-assembly between hindered phosphoric acids and 

thiocarboxylic acids could be sufficiently stable to prevent the decomposition pathway in 

favor of the catalytic transformation.  

We designed a thiocarboxylysis ring opening reaction which may benefit from the 

high nucleophilicity associated with the large valence orbital of the sulfur atom. This 

reactivity should be extendable into an organocascade process: the initially generated β-

hydroxythioester may undergo an in situ Brønsted acid catalyzed intramolecular trans-
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esterification reaction to the thermodynamically more stable ester, thus giving direct access 

to the free thiol moiety. Given the significant challenge associated to the asymmetric 

synthesis of thiols,100 our transformation should provide a valuable and attractive alternative 

(Scheme 4.29). 

 

Scheme 4.29. Design of an asymmetric variant of the sulfhydrolysis of epoxides via 

heterodimeric association. 

  

At the onset of our investigation, we studied the proposed self-assembly between 

TRIP phosphoric acid and thiobenzoic acid. NMR spectroscopic analysis indeed supported 

our speculations, confirming that in mixtures of the two acids in organic non-polar media, an 

equilibrium towards an associative interaction exists. As shown in Figure 4.9, in accordance 

with our experiments with carboxylic acids (cf. paragraph 4.1), the interaction caused 

evident changes in both the 31P-NMR and in the 1H-NMR of the phosphoric acid upon 

addition of a large excess of thiocarboxylic acid. The phosphorous signal experienced a 

remarkable downfield shift (TRIP BzSH: 4.16 ppm; TRIP: 2.36 ppm) while in the proton 

spectrum the presence of the guest molecule in the catalyst pocket could be hypothesized 

due to resolution of the coalescence of the signals at 2.5-3.0 ppm and 6.9-7.1 ppm.  
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Figure 4.9. Qualitative investigation of self-assembly heterodimerization between TRIP and 

thiobenzoic acid (TRIP blue spectra; TRIP∙BzSH red spectra). 

Although the spectroscopic analysis confirmed the interaction, the definition of the 

structure was not trivial. The formation of two tautomeric species may be envisioned and 

therefore we also investigated the self-assembly by density functional theory calculations 

(Figure 4.10). In fact, both the thiol and the thione isomers of the thiocarboxylic acid may be 

suitable partners for the self-assembly with the phosphoric acid catalyst.161 The 

computational analysis predicted a higher stability of the thione tautomer 146b2 with 

respect to the thiol form 146b1 (ΔG = 0.9 kcal mol-1) and therefore we suggest that the 

former isomeric state is more populated than the latter. 

Nevertheless, this equilibrium should be relatively fast in solution since proton 

transfer in dimeric structures is usually characterized by low energy barriers and often 

affected by quantum tunneling.162   
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Figure 4.10. Models for heterodimer TRIP∙AcSH 146b. Structures of thiol isomer 146b1 and 

the thione tautomer 146b2 computed at B3LYP/cc-pTVZ level. 

 

4.4.2. Preliminary studies and optimization of reaction conditions 

 With the confirmation of the non-covalent association, we commenced exploring the 

reactivity of this novel heterodimeric species, and started the investigations on the proposed 

methodology choosing cyclohexene oxide 50a as model substrate (Scheme 4.30).  

 

Scheme 4.30. Preliminary investigation on the ring opening of 50a with thiobenzoic acid: 

evaluation of chiral phosphoric acid catalysts. 
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Indeed, the reaction catalyzed by TRIP gave full conversion of the starting material 

into ring opened product 147a with promising enantioselectivity, yet the expected acyl 

transfer product was not observed under these conditions (Scheme 4.30). Gratifyingly, the 

transformation was remarkably fast and only traces of catalyst degradation were observed. 

The enantioselectivity of the transformation was found to be affected by the steric 

hindrance of the catalyst pocket. In fact, our novel polycyclic chiral phosphoric acid 139 was 

found to again outperform TRIP (er = 86:14, Scheme 4.30). 

 Despite not having obtained the expected organocascade product, we next 

performed a screening of various reaction parameters to identify suitable conditions for the 

epoxide opening reaction (Table 4.24).  

Table 4.24. Optimization of conditions for the thio-carboxylysis of 50a. 

 

Extensive screening of solvent and temperature revealed that full conversion and 

excellent level of enantioselectivity can be achieved in toluene under cryogenic conditions 

(entry 11, Table 4.24). Remarkably, the reaction could be promoted by 1 mol% of catalyst 

giving the product in 89% yield and 97.5:2.5 enantiomeric ratio (entry 12, Table 4.24), while 



4. Results and Discussion 

 

103 

 

at room temperature 100 ppm of catalyst loading was found to be the threshold for this 

activity (entry 7, Table 4.24). Presumably the slight loss in enantioselectivity in this reaction 

(er = 85:15) is derived from a slow background reactivity and taking this phenomenon into 

account, the turnover number is 4320. 

Having established the conditions for the asymmetric thiocarboxylysis, we focused on 

the second step of the designed methodology in an effort to unlock the cascade 

transformation. We hypothesized that the in situ sequence had been hampered by a slow 

and rate-determining acyl transfer step. Therefore, mimicking the conditions at the end of 

the ring opening process, the fate of compound 147a was monitored. Indeed, after 

prolonged reaction time a significant amount of thiol product 148a was detected (60% yield; 

entry 1, Table 4.25). The catalytic role of the phosphoric acid catalyst in the transformation 

could be confirmed, since no relevant conversion was observed without. Intriguingly, the 

reaction was found to proceed more readily in the absence of thiocarboxylic acid. Two 

possible scenarios may explain this outcome: (1) the heterodimer is less active than the 

phosphoric acid monomer in this specific transformation or (2) the actual catalyst is the 

simple phosphoric acid and therefore the heterodimerization process inhibits its activity.  

Table 4.25. Investigation on trans-acylation step for towards 148a. 

 

 Consequently, we reinvestigated the reaction by simply elevating the reaction 

temperature upon full consumption of the epoxide. Indeed, these conditions proved to be 

suitable for the catalytic activation of the thioester moiety, and the free thiol product was 

selectively obtained in good yield and without erosion of the enantiopurity (86% yield, er = 

98:2, Scheme 4.31). 
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Scheme 4.31. Organocascade approach to thiol 148a. 

 

4.4.3. Reaction scope 

 It is noteworthy that our transformation can either directly deliver organocascade 

products 148 or can be interrupted giving intermediates 147. This reaction control enables 

isolation of the same 1,2-hydroxythiol scaffold either protected on sulfur or on oxygen. Due 

to the potential synthetic applicability of this divergence, we investigated both 

transformations.  

At first we focused on the simple ring opening reaction. As shown in Scheme 4.32, 

the transformation is rather general and a large variety of meso-epoxides 50a-k reacted with 

high level of stereocontrol.  Six-membered ring substrates 50a-c delivered the corresponding 

to S-benzoyl β-hydroxythiols 147a-c in good to outstanding yields and excellent 

enantioselectivities. It is noteworthy that the reaction outcome is essentially unaffected by 

the ring size of the starting materials as proven by the high yields and optical purity of 

products 147d,e. The presence of heteroatoms in the substrate scaffold is well tolerated 

(products 147f,g); however, a small influence on reactivity was detected and the reaction 

temperature had to be elevated to -10° C. Acyclic substrates also reacted smoothly, 

providing syn-hydroxythioesters 147h-j with excellent stereoselectivity. Notably, the 

isolation of product 147h in outstanding yield and enantioselectivity (99%, er = 97:3) gave 

further confirmation of the remarkable capability of catalyst 139 in controlling the 

enantioselective transformation of very small substrates. Furthermore, reacting cis-stilbene 

oxide 50k, the desired product 147k was obtained under mild conditions in good yield and 

moderate optical purity concurrently with a minor amount of its thiol isomer (147k: er = 

89:11; 148k: er = 87:13).     
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Scheme 4.32. Reaction scope of the asymmetric thiocarboxylysis of meso-epoxides. 

Remarkably the asymmetric carboxylysis could also be extended to the use of 

thioacetic acid. Under similar conditions, products 147ab and 147db were obtained with 

high levels of stereocontrol, albeit with slightly diminished reactivity. X-ray analysis of a 

suitable crystal of compound 147ab allowed the unambiguous assignment of the absolute 

configuration. As presented in Figure 4.11, in agreement with the related hydrolysis of 

epoxides, the compound exhibits (R,R)-stereochemistry.   
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Figure 4.11. X-ray analysis of 147ab showing (R,R) configuration. 

 We next focused on the cascade transformation and we reinvestigated all the 

previously tested substrates (Scheme 4.33).   

 

Scheme 4.33. Reaction scope of the organocascade reaction. 
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Six- and seven-membered ring substrates smoothly underwent the thiocarboxylysis-

acyl transfer cascade affording the desired thiols 148a-c,e in excellent yields and 

selectivities. Acyclic products 148h-j were also efficiently obtained in good yields and 

enantiopurity. In some cases the enantiomeric ratio was found to be slightly lower than that 

of isolated alcohols 147 shown above. This may be due to the conversion of residual amount 

of the epoxide at higher temperature during the second step. Notably, when the isolated 

compound showed only moderate enantiomeric ratio, a single recrystallization could 

significantly improve the optical purity. This procedure allowed the isolation of thiol 148k in 

70% yield and 98.5:1.5 enantiomeric ratio, although initially obtained in near quantitative 

yield but with moderate enantiopurity. 

 This designed reaction sequence was unsuccessful for five-membered ring epoxides. 

Despite various attempts, as shown in Scheme 4.34, the reaction provided the 

corresponding alcohol intermediate and no acyl transfer could be detected even at elevated 

temperature. This outcome can be rationalized with the requirement for a trans-fused 

bicyclooctane intermediate 149: presumably, the high energy associated with such species 

effectively prevents the intramolecular reaction.163 

 

 

Scheme 4.34. Organocascade approach to thiol 148a. 

 Finally, an in situ deprotection of the initially obtained products under mild 

conditions was also investigated. Coupling the asymmetric ring opening with an 

hydrazinolysis of the thioester functionality, enantioenriched 1,2-hydroxythiols were directly 
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obtained. The overall methodology constitutes an equivalent of the long sought after 

asymmetric sulfhydrolysis of epoxides. 

 

Scheme 4.35. Direct access to 1,2-thioalcohols. 
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4.5. Mechanistic investigations 

The study of the interaction between catalysts and substrate is often a crucial aspect 

for the development of asymmetric organocatalysis since it allows the codification and the 

establishment of novel activation modes.33 In all the methodologies presented in this thesis, 

the heterodimerizing self-assembly between a phosphoric acid catalyst and a carboxylic acid 

(or thiocarboxylic acid) has been proposed as a new concept in Brønsted acid catalysis. 

Exploiting this system, we have developed highly enantioselective ring openings of epoxides 

and aziridines using (thio)-carboxylic acids as nucleophiles.113, 132, 158 Detailed mechanistic 

investigations and theoretical analysis on heterodimeric species were undertaken to 

rationalize and establish the features and the principles of this novel catalytic mode.  

The kinetic studies by NMR analysis were performed in collaboration with M. Leutzsch. The 

theoretical investigations were performed in collaboration with Dr. D. Fazzi (AK Prof. Thiel, 

MPI Mülheim). 

 

4.5.1. Studies on heterodimeric activation 

The development of novel unprecedented transformations has been possible using 

the concept of the heterodimerization as a defined working model (Figure 4.12).  
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Figure 4.12. Heterodimerization as working model in Brønsted acid catalysis. 
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This idea was based on two main principles: on the one hand a favorable self-

assembly with the nucleophile could prevent the deactivation of the catalyst, while on the 

other hand the expected acidity enhancement (heteroconjugation) could further facilitate 

the activation of the electrophile. In addition, during our analytic experiments (cf. paragraph 

4.1), we observed an increased electron density on the carboxylate fragment and we 

speculated that its nucleophilicity may result enhanced. Aiming at a deeper understanding of 

the system, which could facilitate the exploitation of this reactivity, a theoretical 

investigation on the chemical properties of the heterodimeric species was performed. In 

particular, we evaluated the effects of the dimerization process on both the acidity of the 

species and on the frontier molecular orbitals using density functional theory calculations at 

the B3LYP/cc-pTVZ level. 

Interestingly, comparing the orbitals of an acetic acid molecule with those of the 

same molecule in association with TRIP, a HOMO raising effect was observed rather than the 

possibly more intuitive LUMO lowering (Figure 4.13).  

 

Figure 4.13. Evaluation of the effect of heterodimerization on the FMO of carboxylic acid. 

Structures computed at B3LYP/cc-pTVZ level. 
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Indeed, this outcome is in accordance with the reactivity observed, confirming an 

increase of the nucleophilic character of the carboxylic acid. Meaningfully, the observed 

upfield shift of the carboxylic acid protons signals in the titration experiments is in 

agreement with this finding. The phosphoric acid catalyst is both more acidic and more basic 

than acetic acid, and a “partial deprotonation” with concurrent HOMO raising is presumably 

the result of the overall pull-push effect.   

The investigation of the Brønsted acidity upon heterodimerization was performed, 

using pyridine as indicator, to compare the acid strength of TRIP and the heterodimer 

TRIP∙AcOH (Figure 4.14).  

 

 Figure 4.14. Evaluation of the effect of heterodimerization on Brønsted acidity using 

pyridine as sensor. Structures computed at B3LYP/cc-pTVZ level. 
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This analysis not only revealed that the trimeric species C is more stable than 

complex A (ΔG = -5.76 kcal mol-1), but also indicates that in this assembly the proton transfer 

is favored while in the absence of acetic acid it is not. In fact, complex D is more stable than 

C (ΔG = -6.49 kcal mol-1), while the corresponding species B is significantly disfavored with 

respect to A (ΔG = +3.10 Kcal mol-1).  Therefore, in agreement with the expected hetero-

conjugation effect, these calculations confirm a significant acidity enhancement upon 

association. 

 

Figure 4.15. Energetic overview of the study on the Brønsted acidity. 

 

4.5.2 Studies on the catalytic cycle 

 Having gained further insights on the reactivity of heterodimeric species we 

undertook a thorough investigation on the mechanism of the transformation to 

experimentally elucidate the catalytic cycle. Despite our knowledge on the instability of 

oxiranium phosphate species,80 which results in catalyst alkylation, competition experiments 

were initially performed to explore the possibility that the reactions involve a simple 

Brønsted acid activation of the epoxide substrates.39a, 44  

 As shown in Scheme 4.36, we performed the ring opening of cyclohexene oxide 50a 

in the presence of a combination of different carboxylic acids and thiocarboxylic acids and 

TRIP as the catalyst. Although the reaction with thiobenzoic acid was expected to be faster 

than the corresponding reaction with benzoic acid, in equimolar amount of the two acids the 

products ratio was in favor of compound 52a (entry 1, Table a, Scheme 4.36). Interestingly, 

by increasing the loading of both nucleophiles a remarkable effect was observed on the 

products distribution: with 5 equivalent of (thio)-carboxylic acids with respect to the epoxide 

substrate the product ratio favored 147a (entry 2, Table a, Scheme 4.36). This effect could 



4. Results and Discussion 

 

113 

 

also be observed when performing the experiments with mixtures of acetic and thioacetic 

acid (Table b, Scheme 4.36).  However, when similar experiments were performed using 

mixtures of benzoic and acetic acid, the product distribution was instead stable, and the 

benzoyl-protected diol 52a was predominantly formed (ratio = 2.3:1, Table c, Scheme 4.36).    

 

Scheme 4.36. Competition experiments for the ring opening of 50a. 

 Based on these experimental results, a preliminary rationalization of the mechanism 

is possible (Scheme 4.37). If a common mechanism via direct activation of the epoxide was 

occurring, the product distribution would reflect the ratio between the two kinetic constants 

for the ring opening reaction (k1 and k2) and no change in the relative amount of the 

products should be detected by increasing the loading of both nucleophiles. However, the 

experiments (a) and (b) shown above are not in line with such pathway and therefore this 

mechanism should be discarded. Contrarily, a different mechanism occurring via 

heterodimer intermediates would be in agreement with the experimental observations. If 

the favored heterodimeric species with benzoic acid represented the resting state of the 

catalyst in the mixture, the rate of the formation of protected glycol 52 would be not 

dependent on the concentration of the carboxylic acid. Conversely, in this case the 

formation of the protected β-hydroxythiol 147 should instead be kinetically dependent on 

the concentration on the thiocarboxylic acid 145. On the other hand, the competition 

experiment with carboxylic acids suggests that in such reaction mixture the two possible 

heterodimers are in equilibrium and none of them is selected as resting state. 



4. Results and Discussion 

 

114 

 

 

Scheme 4.37. Analysis of possible mechanisms for the competition experiments. 

 We then focused on the analysis of the kinetic reaction profile. The carboxylysis of 

epoxide 140i with benzoic acid was selected due to the high reactivity, and the reaction 

progress could be studied by in-situ 1H-NMR measurements (Figure 4.16). Following the 

analytical method described by Blackmond, different experiments were performed to 

estimate the kinetic law.164 The consumption of the epoxide was monitored during time and 

a mathematical fitting process was used to extrapolate the data. A linear relationship was 

observed between reaction rate and the concentration of the starting epoxide, thus 

suggesting a first-order reaction. Nevertheless, we performed three independent 

experiments employing different amounts of benzoic acid and an almost perfect overlay of 

the reaction profiles was obtained (Figure 4.16a). This result suggests that the carboxylic acid 

concentration does not influence the rate of the ring opening reaction. Next, using the 

method of the initial rates, we investigated the role of the epoxide in the kinetic law.165 The 

linear plot obtained in this experiment accounts for a first-order dependence of the reaction 

rate with respect to the concentration of epoxide 140i (Figure 4.16b). From this analysis the 

reaction rate equation of the carboxylysis reaction and the observed kinetic constant were 

experimentally derived (Kobs=0.295 M-1s-1).   



4. Results and Discussion 

 

115 

 

 

Figure 4.16. Kinetic studies on the ring opening of 140i. Experiments followed by 1H-NMR. 

 Aiming towards a more complete understanding of the system under investigation, 

we have also explored the deactivation pathway of the phosphoric acid catalyst in the 

absence of carboxylic acid. In this case we used 31P-NMR analysis to follow the alkylation of 

TRIP with epoxide 50a (Figure 4.17). The reaction was performed employing an excess (10 

equiv.) of the epoxide for two reasons: (1) to mimic catalytic conditions for the phosphoric 

acid compound and (2) to reach pseudo-zeroth order dependence with respect to that 

substrate. 

 

Figure 4.17. Kinetic studies on the deactivation pathway. Experiment followed by 31P-NMR. 
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 As shown in Figure 4.17, a linear relationship was observed between the 

decomposition rate and the concentration of TRIP, thus indicating a bimolecular reaction in 

which only one molecule of the phosphoric acid is involved in the reaction pathway. 

According to this kinetic analysis a reaction mechanism can be proposed (Scheme 

4.38). The interaction between the phosphoric acid catalyst and the epoxide leads to the 

direct alkylation of the catalyst. However, upon heterodimerization with carboxylic acids 

such undesired pathway is effectively prevented. The heterodimer then engages the 

asymmetric carboxylysis reaction due to the observed increased acidity and nucleophilicity, 

delivering the ring opening product and regenerating the “free” catalyst which is 

immediately associated again with another molecule of carboxylic acid. The resting state of 

the catalytic cycle is proposed to be the heterodimeric species (due to the observed zeroth 

order dependence on the carboxylic acid) while the ring opening reaction is the rate-

determining step (first-order with respect to the epoxide). 

 

Scheme 4.38. Proposed catalytic cycle 
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 The catalytic cycle was also investigated by computational analysis. Using density 

functional theory calculations at the B3LYP/cc-pTVZ level, we followed the sequence of the 

different intermediates with particular interest in the energetic reaction pathway (Figure 

4.18). We propose that the heterodimer resting state (II) is intercepted by the epoxide 

resulting in the formation of a trimolecular complex (III) in a reversible fashion. Next the SN2 

ring opening reaction occurs via a bifunctional transition state (IV) delivering a catalyst-

product complex (V) that gets eventually dissociated and the product gets replaced by a 

second molecule of carboxylic acid. The overall exothermicity of the reaction is in 

accordance with the release of the epoxide ring strain.  
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Figure 4.18. Theoretical plot of the catalytic cycle. Structures computed at B3LYP/cc-pTVZ 

level.  

According to this analysis, the heterodimeric association plays a crucial role in the 

reaction, which is based on the inherent dichotomy between stability and reactivity. The 

apparent change of the polarity of the mechanism, in which the phosphoric acid catalyst 

primarily establishes an interaction with the nucleophile rather than with the electrophile, is 

somewhat peculiar. This kind of unconventional strategy represents a core feature of our 

approach to carboxylic acid activation. 
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4.5.3. Investigations on the transition states 

 During these studies, a pronounced influence of the structure of the phosphoric acid 

catalyst on the reaction outcome was observed. Sterically hindered catalysts usually 

outperformed less bulky phosphoric acids with significant influence on both reaction rate 

and enantioselectivity of the transformations. This simple experimental observation was 

realized during the investigations on the ring opening of aziridines and turned out to be 

crucial when we were studying the reaction on the epoxide system. A moderate selectivity 

was obtained with TRIP, whilst catalyst 139, bearing rigid polycyclic substituents, was found 

to be optimal for the reaction. These results were similarly observed in the 

desymmetrization and kinetic resolution of epoxides with carboxylic acids and also in the 

reactions with thiocarboxylic acids. In order to understand the catalyst structure-selectivity 

relationship, we investigated the transition states for the ring opening of meso-epoxides 

using DFT calculations (structures at B3LYP/6-31G* level) both with (S)-TRIP and with 

catalyst (S)-139 (Figure 4.19 and 4.20 respectively). As mentioned before, the reaction is 

believed to be occurring through a bifunctional transition state in which both substrates are 

interacting with the phosphate moiety in the catalyst pocket. 

  

Figure 4.19. Transition states analysis for the carboxylysis of meso-epoxides with TRIP. 

Structures computed at B3LYP/6-31G* level.  
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 The diastereomeric structures computed for the reaction catalyzed by TRIP 

phosphoric acid are in agreement with the experimental outcome, showing a lower energy 

for the transition state leading to the experimentally favored (S,S)-product (ΔG = 0.74 kcal 

mol-1). The origin of the selectivity observed may be ascribed to a different spatial 

arrangement: the closer distance between the reacting carbon center and the catalyst 

scaffold suggests a more energetic pathway for the formation of the minor enantiomer of 

the product (5.11 Å vs. 4.78 Å). 

Similar considerations can be employed for the diastereomeric transition states for 

the reaction catalyzed by 139 (Figure 4.20).  

 

Figure 4.20. Transition states analysis for the carboxylysis of meso-epoxides with catalyst 

139. Structures computed at B3LYP/6-31G* level.  

We have previously qualitatively investigated the catalytic pocket of our novel 

catalyst by X-ray diffraction analysis (cf. paragraph 4.3) observing a significantly congested 

active site. Indeed, in agreement with the experimental data, the calculation reveals a higher 

energy difference between the two transition states with respect to the reaction catalyzed 

by TRIP (ΔG = 1.90 kcal mol-1). It is noteworthy that in the disfavored transition state (leading 

to R,R-product), the reacting center is mainly surrounded by aliphatic portions of the 
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polycyclic substituent, which will presumably not provide any significant stabilization to the 

polar, partially charged reaction center, which is indeed placed almost equidistantly from the 

four aliphatic groups. Notably, the closest methylene group to the epoxide center is in the 

meta-position of the aryl substituent (4.56 Å), confirming the importance of the ortho-meta 

substitution pattern in our designed class of catalysts. 

 Having witnessed the potential of confinement in phosphoric acid catalysis, we 

predict that this class of catalysts may significantly contribute to a further advancement of 

asymmetric Brønsted acid organocatalysis.  
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5. Summary 

5.1. Activation of carboxylic acids in asymmetric organocatalysis 

Brønsted acid catalysis has had an enormous impact in organic chemistry and great 

interest remains in the development of highly enantioselective methodologies. However, 

several substrates classes are not prone to established asymmetric activation strategies and 

therefore their transformations remain elusive in this field. For this reason, an active 

research program in our laboratory is aimed at the development of novel catalytic modes for 

such challenging classes. 

Due to the particular chemical features, the exploitation of carboxylic acid substrates 

in catalytic methodologies has been rather limited and this Ph.D. thesis describes the 

development of a new concept for the activation of this moiety in chiral Brønsted acid 

catalysis. Prior to this work, no general asymmetric system had been developed for the 

exploitation of carboxylic acids, whether organocatalytic or metal-based (cf. paragraph 2.3). 

In metal-free catalysis, the only successful methodologies were intramolecular lactonization 

reactions and the carboxylate moiety served only as nucleophilic handle to capture an 

electrophilic species, which had been generated in spatial proximity in an asymmetric 

fashion.68-71 Yet, due to their easy accessibility and their high stability, carboxylic acids are 

remarkably useful compounds in organic synthesis and their transformations are widely 

employed on an industrial scale.61 Focusing on the hampered homodimerization of chiral 

phosphoric acid catalysts, we developed a new activation strategy based on the 

heterodimerizing self-assembly with carboxylic acids.  

 

 

Scheme 5.1. Heterodimerizing self-assembly between TRIP phosphoric acid and acetic acid. 
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The features of this novel recognition were established by various analytical 

techniques, while the properties could be explored by both theoretical and synthetic  

investigations. Our analyses confirmed that a highly acidic and reactive species was formed 

upon association, and the study of the frontier molecular orbital of the carboxylic acid 

molecule revealed that its nucleophilicity was enhanced (HOMO activation).32 Exploiting this 

activation mode we investigated a novel catalytic mechanism, which exhibits an apparent 

reversed polarity from the usual Brønsted acid catalysis.39a In fact, the phosphoric acid 

catalyst primarily activates the nucleophile rather than directly interacting with the 

electrophilic partner (Scheme 5.2). 

 

Scheme 5.2. A novel catalytic cycle in asymmetric phosphoric acid catalysis. 

We have demonstrated that this self-assembly serves as useful tool in the 

organocatalysis of nucleophilic addition reactions of carboxylic acids with highly reactive, 

Lewis basic compounds. This association effectively overrides the instability of phosphoric 

acid catalysts towards aziridines and epoxides and was exploited for the asymmetric 

carboxylysis of these important electrophiles.    

As suggested in the introduction, the success of organocatalysis relies on the 

possibility to design novel transformations based on established activation modes.33 From 

this point of view, our investigation may open new perspectives by not only providing a 

general strategy for the reactions of carboxylic acids, but also promoting the development of 

different heterodimeric activations.  
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5.2. Highly enantioselective carboxylysis of aziridines113 

Molecules containing a vicinal amino alcohol moiety are interesting synthetic targets, 

due to their abundance in naturally occurring molecules, pharmacologically active 

compounds, and their application as chiral ligands, auxiliaries, or catalysts in asymmetric 

transformations.112 Stereoselective metal-based transformations of aziridines have been 

widely investigated in the last few years,78 but an asymmetric catalytic conversion that leads 

to amino alcohols has been entirely elusive. Organocatalytic asymmetric ring opening of 

aziridines are instead significantly rare and in phosphoric acid catalysis these 

transformations face the alkylative deactivation of the catalyst as the major challenge. 

Exploiting the novel activation of carboxylic acids, and tuning the reactivity of the aziridine 

substrates by the judicious choice of the nitrogen protecting group, their first asymmetric 

conversion into protected 1,2-aminoalcohols was disclosed (Scheme 5.3).      

 

Scheme 5.3. Highly enantioselective carboxylysis of aziridines 

 Catalyzed by TRIP phosphoric acid, a highly enantioselective desymmetrization of 

meso-aziridines was obtained and the desired products were generally isolated in excellent 

yields and enantioselectivities. Remarkably, this methodology was also successfully utilized 

for a kinetic resolution of terminal aziridines. Notably, in this transformation both products 

are synthetically valuable and could be obtained in excellent enantiopurity. The SN2 ring 

opening event occurs selectively at the most substituted carbon center, thus suggesting an 

asynchronous concerted mechanism.    



5. Summary 

 

124 

 

5.3. Asymmetric, biomimetic hydrolysis of epoxides132 

There is significant industrial interest in the asymmetric hydrolysis of epoxides as this 

transformation gives access to chiral 1,2-diol moieties,89 which are widespread in natural 

and medicinal compounds.77 Moreover, when applied to a kinetic resolution strategy, it 

provides enantiopure epoxides, which are considered linchpin intermediates in organic 

synthesis.152 Exploring the reactivity of our heterodimeric species, we discovered that, even 

in this case, the deactivation of the catalyst was inhibited and that our novel carboxylytic 

reaction could be used for the desymmetrization of meso-epoxides. Nevertheless, due to the 

absence of stereodiscriminating moieties in the substrate, the reaction catalyzed by TRIP 

was found only moderately enantioselective. Therefore, a novel confined phosphoric acid 

139 was designed and synthesized, providing a suitable asymmetric environment for the 

transformation. We disclosed the first asymmetric ring opening of epoxides with an oxygen 

nucleophile, which proceeds under metal-free conditions. Both a desymmetrization and a 

kinetic resolution strategy were developed, providing monoacylated 1,2-diols and chiral 

epoxides in high enantiopurity (Scheme 5.4).     

 

Scheme 5.4. Enantioselective carboxylysis of epoxides: desymmetrization and kinetic 

resolution  

 This asymmetric carboxylysis of epoxides could also be succesfully applied to the 

development of an organocatalytic anti-dihydroxylation of simple olefins. Although 

asymmetric syn-dihydroxylation strategies have been widely investigated for many years,157 
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a similar transformation proceeding with anti-selectivity had been entirely elusive. We 

realized that the Prilezhaev oxidation of an alkene yields the corresponding epoxide with a 

stoichiometric amount of carboxylic acid byproduct. By simply adding the phosphoric acid 

catalyst 139 to the reaction mixture, the asymmetric ring-opening is performed and a 

following hydrolysis under mild basic conditions delivers the desired chiral 1,2-diol.  

 

Scheme 5.5. First non-enzymatic asymmetric anti-dihydroxylation of unactivated olefins. 

Mimicking the natural bio-synthetic pathway of 1,2-diols, which is a key 

transformation in the xenobiotic metabolism of living organisms, this methodology 

constitutes an elegant biomimetic approach.23, 91  

 

5.4. Enantioselective organocascade approach to β-hydroxythiols 

The synthesis of enantiopure thiols is of significant interest for industrial and 

academic applications. However, direct asymmetric approaches to free thiols have 

previously been elusive.100 Despite having been intensively investigated, a straightforward 

and general asymmetric approach to the synthesis of chiral β-hydroxythiols was still not 

available.102-103 Broadening the activation of carboxylic acids to its sulfur variant, we studied 

the asymmetric ring opening of meso-epoxides (Scheme 5.6). We disclosed a novel 

organocascade reaction that is catalyzed by our confined catalyst 139 and furnishes O-

protected β-hydroxythiols with excellent enantioselectivities. The method relies on an 

asymmetric thiocarboxylysis of meso-epoxides, followed by an intramolecular trans-

esterification reaction. By varying the reaction conditions, the intermediate thioesters can 

also be obtained chemoselectively and enantioselectively. The opportunity to obtain the 

same scaffold either protected on sulfur or on oxygen by a simple modification is 

noteworthy and could open intriguing possibilities in synthetic medicinal chemistry. 
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Scheme 5.6. Asymmetric thio-carboxylysis of meso-epoxides and organocascade approach to 

β-hydroxythiols.  

In addition, the deprotection reaction can be performed in situ affording the free β-

hydroxythiol under mild conditions and, as such, the methodology is an attractive alternative 

to hypothetical asymmetric sulfhydrolysis of epoxides (Scheme 5.7). 

 

Scheme 5.7. Asymmetric variant to the sulfhydrolysis of meso-epoxides. 

 

5.5. Exploration of novel classes of confined phosphoric acid catalysts 

 Chiral phosphoric acids represent the most exploited class of catalyst for asymmetric 

Brønsted acid catalysis. As discussed in the introduction (cf. paragraph 2.2.2), one of the 

crucial aspects which contributes to their success is represented by the possible modular 

nature of the geometrical properties of the active site. Among others, TRIP is recognized as 

one of the most useful and versatile phosphoric acid and, being significantly more hindered 

than its congeners, it is usually preferred when the reaction substrates lack big 
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stereodiscriminating groups.53 The reduced size of the catalytic pocket limits the number of 

possible conformations in the transition states, thus reducing possible less-selective 

pathways. Nevertheless, the class of highly hindered catalysts is underrepresented and 

presumably this is due to challenging synthetic routes. 

 During our investigations on the hydrolysis of epoxides, in an effort towards the 

optimization of the selectivity of the reaction, we had the opportunity to further contribute 

to the field of asymmetric acid catalysis by developing a new family of chiral BINOL-derived 

phosphoric acids. We initially designed and synthesized catalyst 114 with bulky tert-butyl 

groups in the ortho-positions of the aryl substituents and then we introduced a novel class of 

catalysts (115a-c) characterized by a combined ortho-meta substitution pattern. All these 

catalysts bear the active phosphoric acid moiety in a congested environment and at the 

same time possess unique spatial arrangements. Although we observed a superior selectivity 

with the polycyclic catalyst 115b, we expect that all these catalysts to find application in 

different asymmetric methodologies.  

 

Figure 5.1. Designed novel confined phosphoric acid catalysts 

 As expected, modifying the axially chiral backbone of catalyst 115b, a fine tuning of 

the selectivity was obtained. Phosphoric acid 139, with a tetra-hydrogenated BINOL-scaffold, 

was found to be the optimal catalyst in both asymmetric transformations involving the ring 

opening of epoxides (Figure 5.2).  
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A combination of other chiral backbones (i.e. SPINOL, biphenol, etc.) and these newly 

introduced substituents can generate new successful entries to the class of confined 

phosphoric acids. 

 

Figure 5.2. Catalyst 139 and X-ray crystal structure. 

 

 

 

 

This work has been disclosed in part in the following publications: 

1) “Activation of Carboxylic Acids in Asymmetric Organocatalysis”; M. R. Monaco, B. 

Poladura, M. Diaz de los Bernardos, M. Leutzsch, R. Goddard, B. List, Angew. Chem. Int. Ed.  

2014, 53, 7063. 

2) “An Organocatalytic Asymmetric Hydrolysis of Epoxides”; M. R. Monaco, S. Prévost, B. List, 

Angew. Chem. Int. Ed. 2014, 53, 8142. 

3) “Catalytic Asymmetric Synthesis of Thiols”; M. R. Monaco, S. Prévost, B. List, J. Am. Chem. 

Soc. 2014, 136, 16982. 
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6. Outlook 

The establishment of a novel activation mode in organocatalysis usually provides a 

useful entry to a variety of novel transformations which were previously elusive. We believe 

that the concepts described in this thesis can be exploited for the asymmetric reactions of 

carboxylic acids and thiocarboxylic acids with a large variety of electrophiles. Moreover, 

hydroxyl and thiol moieties are widespread in nature and, since carboxylate compounds can 

be used as valuable precursors, applications of these methodologies to total synthesis of 

natural products can be predicted.    

 Beyond these possible developments, which would be difficult to enumerate and to 

encompass all, some related applications can be envisioned not only in the field of 

asymmetric catalysis. 

  

6.1. Enantioselective recognition of chiral carboxylic acids by heterodimerization. 

 Enantioselective recognition of the two enantiomers of chiral compounds is not only 

an important aspect in asymmetric catalysis, but it also holds an interesting potential for 

different applications in biology, material and pharmaceutical sciences.166 For this reason, 

the design of synthetic, chiral receptors has become an important and growing field in 

applied chemistry.  

Chiral carboxylic acids are important molecules in medicine.167 For instance, a large 

family of non-steroidal anti-inflammatory drugs is represented by chiral derivatives of 

propionic acids and chirality is known to strongly influence the bioactivity of these 

compounds. As presented in the introductory section, a notable example is naproxen: the 

(S)-enantiomer is used to treat arthritis pain, while the (R)-isomer causes liver poisoning (cf. 

paragraph 1.1).9c Therefore the development of selective synthetic receptors for chiral 

carboxylic acids or carboxylate is highly investigated.168  

 The heterodimeric self-assembly with phosphoric acids holds discrete potential in this 

context. The wide commercial availability of chiral phosphoric acids seems to be particularly 

suitable to tune the properties of a supramolecular recognition.169 Heterodimers of chiral 

phosphoric acids with the different enantiomers of carboxylic acids are diastereoisomeric 
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species and as such may exhibit significantly different stability and display different physico-

chemical properties (Figure 6.1). Next to the classical uses of enantioselective recognition for 

optical resolution strategy (crystallization, partition methods, separation) an interesting 

application of this phenomenon is represented by the enantiopurity determination by chiral 

shift reagents. NMR would represent a sensitive, fast and non-destructive technique for the 

analysis of a scalemic mixture. 

 

Figure 6.1. Enantioselective recognition of carboxylic acids via heterodimerization. 

Indeed, preliminary investigations on mixture of TRIP phosphoric acid and racemic 

mandelic acid 51x, confirms such opportunity (Table 6.1). The addition of the phosphoric 

acid to a solution of racemic carboxylic acid causes the split of the resonance signals of the 

enantiomers.   

 

Table 6.1. NMR investigation of diastereoisomeric heterodimers. 
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Intriguingly, the maximum gap between the signals is shown at an equimolar ratio 

between the two species (entry 3, Table 6.1) and upon saturation of the mandelic acid an 

overlap is obtained again (entry 4, Table 6.1). This observation suggests that the resonance 

splitting is due to a significant difference of binding constants rather than a different 

chemical shift of the complexes formed.  

Further investigations on this phenomenon may provide interesting advances for 

industrial and analytical purposes.  

 

6.2. Stereodivergent resolution of racemic carboxylic acids. 

 Notably, the disclosed asymmetric carboxylysis of epoxides (cf. paragraph 4.3) is 

characterized by a perfect atom economy. However, in order to isolate the chiral 1,2-diol, 

the mild basic hydrolysis regenerates a stoichiometric amount of carboxylic acid as 

byproduct. To overcome this synthetic issue, we used inexpensive benzoic acid as preferred 

nucleophile. Nevertheless, the possible recovery of the carboxylic acid could avoid any 

waste. 

 In a parallel process, the stereodivergent resolution of chiral carboxylic acids can be 

realized.170 The high enantiocontrol on the epoxide ring opening is presumably maintained 

when reacting both enantiomers of the nucleophile and a separable mixture of enantiopure 

diastereoisomeric products is expected (Scheme 6.1). Mild hydrolysis may eventually deliver 

at the same time the enantioenriched 1,2-diols and the resolved carboxylic acid 

enantiomers. 

 

Scheme 6.1. Stereodivergent resolution of carboxylic acids via epoxide carboxylysis. 
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 In this context a kinetic resolution of carboxylic acid via simple oxirane ring opening 

may also be hypothesized, although this reaction would face the ring opening at the 

methylene carbon as the major challenge (Scheme 6.2). 

 

Scheme 6.2. Kinetic resolution of carboxylic acids via epoxide carboxylysis. 

 

6.3. Regiodivergent, enantioconvergent dihydroxylation of unsymmetrical olefins. 

 The ring opening of epoxides, promoted by catalyst (R)-139 exhibited a strong 

preference for the nucleophilic attack on the (S)-chiral center of the meso-epoxides, thus 

favoring the (R,R)-product. A similar selectivity was observed for the kinetic resolution of 

racemic epoxides, which preferentially reacts (S)-epoxides. Performing the reaction on a 

disubstituted epoxide, derived from an unsymmetrical olefin, can result in the 

regiodivergent ring opening of the two enantiomers (Scheme 6.3).171 Notably, the two 

products would show the same absolute configuration (R,R) and the mild hydrolysis would 

therefore provide the same 1,2-diol. Such reaction design may be utilized to broaden the 

scope of our anti-dihydroxylation of olefin to a large variety of cis-alkenes. 

 

Scheme 6.3. Regiodivergent and enantioconvergent anti-dihydroxylation strategy. 

Indeed, a preliminary investigation on the carboxylysis of epoxide 151 using (R)-TRIP 

as the catalyst, confirmed that the catalytic regiodivergent process can be realized. 

Approaching full consumption of the epoxide starting material, the two regioisomers 152a,b 

were obtained in an equimolar amount and with significant enantioenrichment (Scheme 

6.4).    
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Scheme 6.4. Preliminary investigation on the regiodivergent carboxylysis of unsymmetrical 

epoxides. 

 

6.4. Towards other heterodimeric self-assemblies. 

“...One of the most useful properties of scientific theories is that they can be used to make 

predictions about natural events or phenomena that have not yet been observed”
 

United States National Academy of Sciences, 2008  

As we mentioned above, the activation via self-assembly heterodimerization may be 

applied to a variety of reactions of carboxylic acids and thiocarboxylic acids. Nonetheless, we 

expect that the catalytic principles investigated in this Ph.D. thesis may not be limited to 

these classes of nucleophiles. The formation of similar supramolecular entities could provide 

further intriguing possibilities in asymmetric organocatalysis.  

For instance, we hypothesized that in analogy with carboxylic acids, 2-pyridone 

compounds represent suitable association partners for chiral phosphoric acids. In an attempt 

to preliminary explore our speculation, we selected the ring opening of epoxide as model 

reaction with TRIP as the catalyst. The products obtained in such transformation would have 

medicinal interest since they have been found active against certain type of cellular cancer 

growth through the inhibition of prostaglandins-endoperoxide synthase.172  

Indeed, in this case we could not only observe the envisioned reactivity but once 

again verify the importance of the heterodimeric structure. While no reaction was observed 

with 4-pyridone, 2-pyridone smoothly gave the desired products in moderate 

enantioselectivity and no degradation of the phosphoric acid catalyst occurred (2 days, full 

conv., er = 72.5:27.5). Modifying the electronic properties of the pyridone nucleophile and 
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using 139 as the catalyst both reactivity and selectivity were improved (4 hours, full conv., er 

= 91.5:8.5). 

 

Scheme 6.5. Preliminary studies on 2-pyridones reactivity. 

Indeed, also in this case, the speculated interaction could be qualitatively confirmed 

by NMR analysis (Figure 6.2). 

 

Figure 6.2. Spectroscopic investigations on the interaction of TRIP phosphoric acid and 

pyridones. 
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 Given these results, it is presumable that the newly investigated catalytic mode also 

encompasses the asymmetric reactions of mercaptobenzothiazols, recently explored by the 

Sun group (cf. paragraph 2.5.1).173   
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7. Experimental Section 

7.1. General experimental conditions 

Solvents and reagents 

All solvents used in the standard procedures were purified by distillation. Absolute diethyl 

ether, tetrahydrofuran and toluene were obtained by distillation over sodium with 

benzophenone as indicator; absolute chloroform and dichloromethane were obtained by 

distillation over calcium hydride, and ethanol, isopropanol and methanol were dried by 

distillation over magnesium. Absolute 1,4-dioxane, MTBE and DCE were purchased from 

Sigma-Aldrich and used as received. Commercial reagents were obtained from various 

sources and used without further purification. 

Known Brønsted acid catalysts 

Chiral Brønsted acid catalysts in Tables 4.2, 4.13 and 4.17 and TRIP were kindly supplied by 

the coworkers from the List group and were prepared according to the literature 

procedures. VAPOL-derived phosphoric acid 30 was purchased from Sigma-Aldrich. 

Inert gas atmosphere 

Air and moisture sensitive reactions were conducted under an atmosphere of argon (Air 

Liquide, >99.5% purity). Unless otherwise stated, all organocatalytic reactions were 

performed under an ambient atmosphere without the exclusion of moisture or air.  

Thin layer chromatography (TLC) 

Reactions were monitored by thin layer chromatography on silica gel or aluminum oxide 

precoated plastic sheets (0.2 mm, Macherey-Nagel). Visualization was accomplished by 

irradiation with UV light at 254 nm and different staining reagents; phosphomolybdic acid 

(PMA) stain: PMA (10 g) in EtOH (100 ml); p-anisaldehyde (PAA) stain: p-anisaldehyde (3.5 

ml), glacial acetic acid (15 ml), EtOH (350 ml), conc. H2SO4 (50 ml); KMnO4 stain: KMnO4 

(1.5 g), K2CO3 (10 g) and NaOHaq. (10%, 1.25 mL) in H2O (200 mL). 
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Column chromatography 

Column chromatography was performed under elevated pressure on silica gel (60, particle 

size 0.040-0.063 mm, Merck) using a specified solvent mixture.  

High pressure liquid chromatography (HPLC)  

HPLC analyses on a chiral stationary phase were performed on a Shimadzu LC-2010C system 

equipped with a UV detector. Commercial HPLC-grade solvents were used, and 

measurements were conducted at 25 °C. The chiral stationary phase of the columns is 

specified in each experiment. The enantiomeric ratios were determined by comparing the 

samples with the appropriate racemic mixtures. 

Gas chromatography (GC) 

GC analyses on a chiral stationary phase were performed on HP 6890 and 5890 series 

instruments equipped with a split-mode capillary injection system and a flame ionization 

detector (FID) using hydrogen as a carrier gas. Detailed conditions are given in the individual 

experiment. The enantiomeric ratios were determined by comparing the samples with the 

appropriate racemic mixtures. 

Nuclear magnetic resonance spectroscopy (NMR) 

Proton, carbon, and phosphorus NMR spectra were recorded on Bruker AV-500 or Bruker 

AV-400 spectrometers in deuterated solvents at room temperature (298 K). Proton chemical 

shifts are reported in ppm (δ) relative to tetramethylsilane with the solvent resonance 

employed as the internal standard (CD2Cl2, δ 5.32 ppm; CDCl3, δ 7.24 ppm; (CD3)2SO, δ 2.50 

ppm; THF-d8, δ 3.58, 1.72 ppm). 31P chemical shifts are reported in ppm relative to H3PO4 as 

the external standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d 

= doublet, t = triplet, q = quadruplet, Q = quintuplet, sept = septuplet, m = multiplet), 

coupling constants (Hz) and integration. Slight shape deformation of the peaks in some cases 

due to weak coupling is not explicitly mentioned. 13C chemical shifts are reported in ppm 

from tetramethylsilane with the solvent resonance as the internal standard (CD2Cl2, 53.8 

ppm; CDCl3, δ 77.0 ppm; (CD3)2SO, δ 39.52 ppm; THF-d8, δ 67.21, 25.31 ppm). 
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Mass spectrometry (MS) 

Mass spectra were measured on a Finnigan MAT 8200 (70 eV) or MAT 8400 (70 eV) by 

electron ionization, chemical ionization or fast atom/ion bombardment techniques. 

Electrospray ionization (ESI) mass spectra were recorded on a Bruker ESQ 3000 

spectrometer. High resolution mass spectra were obtained on a Finnigan MAT 95 or Bruker 

APEX III FT-MS (7 T magnet). All masses are given in atomic units/elementary charge (m/z). 

Specific rotation 

Optical rotations were determined with Autopol IV automatic polarimeter (Rudolph 

Research Analytical) using a 50 mm cell with temperature control. The measurements were 

performed at 25 °C at a wavelength λ = 589 nm (sodium D-line). Concentrations (c) are given 

in g/100 ml. 
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7.2. Studies on heterodimeric self-assembly 

7.2.1. 1D-NMR studies 

NMR spectroscopic experiments on mixtures of TRIP and acetic acid in deuterated 

dichloromethane were performed to investigate the formation of heterodimeric species 99a. 

From these analyses some features of the non-covalent interaction could be appreciated.      

 

Experiment 1. A solution of TRIP in CD2Cl2 (0.0013 M) was prepared and analyzed by 1H-NMR 

and 31P-NMR (blue spectra). Next acetic acid (6 equiv.) was added to the solution. The 1H-

NMR and 31P-NMR of the heterodimeric species were measured (red spectra) and compared 

with the previous data.  

31P-NMR 

 

The phosphorous signal in the 31P-NMR shows a significant shift downfield, thus suggesting 

the establishment of a different chemical environment. 
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1H-NMR 

 

In the heterodimeric assembly, the proton signals of the phosphoric acid molecule are 

observed at lower fields, thus suggesting a lower electron density. In addition, the non-

equivalent protons of the 3-3’aryl substituents, which were overlapping in the spectrum of 

the phosphoric acid monomer, are resolved. Presumably, this phenomenon is due to the 

presence in the catalytic pocket of the carboxylic acid molecule, which reduces the 

rotational freedom of the aryl substituent.  

Experiment 2. Varying the relative ratio of the two components, mixtures of TRIP and acetic 

acid in deuterated dichlorometane were prepared and the chemical shift of the methyl 

group of the carboxylic acid was monitored in the 1H-NMR.  
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The establishement of the non-covalent interaction with the phosphoric acid causes an 

upfield shift of the proton signal of the methyl group of acetic acid. This outcome is in 

agreement with an increase of electron density on the carboxylic acid fragment. A shielding 

effect due to the ring current of the aryl substituent can also be hypothesized. However, the 

analysis of the crystal structure (vide infra) shows a significant distance (>7Å) between this 

group and the phenyl moiety and therefore, based on the Johnson-Bovey equation, a related 

influence should be minimal.174  

 

7.2.2. 2D-DOSY studies115 

This study was performed to evaluate the effect of the heterodimerization process on the 

diffusion coefficients of benzoic acid and TRIP.  

 

Three different DOSY experiments in deuterated dichloromethane were performed:  

1. benzoic acid,  

2. TRIP,  

3. mixture of TRIP and benzoic acid in a 1:1 ratio. 

Experiment 1. Benzoic acid in CD2Cl2. DBzOH = 1.64x10-9 m2/s 
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Experiment 2. TRIP in CD2Cl2. DTRIP = 8.30x10-10 m2/s. 

  

Experiment 3. Mixture 1:1 TRIP:BzOH in CD2Cl2. DBzOH = 9.21x10-10 m2/s; DTRIP = 5.97x10-10 

m2/s. 

 

The diffusion coefficients of the two acids decrease in the third experiment with respect to 

their independent values in experiment 1 and 2. Being the heterodimeric species more 

voluminous than the two monomers, the establishment of an associative interaction is in 

agreement with the experimental outcome. Under these conditions, the equilibrium rate is 
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presumably faster than the NMR timescale and therefore the obtained diffusion coefficients 

are average values between the monomers and the heterodimer 99b. 

7.2.3. Binding isotherm studies 

Determination of the stoichiometry of the complex by Job´s method117
 

This experiment was designed to evaluate the stoichiometry of the self-assembly. Two 

equimolar (0.69 mM) solutions of TRIP and benzoic acid in deuterated dichloromethane 

were prepared. Then 12 samples were prepared with defined volumes of the two solutions 

to give a total volume of 0.6 mL. The 31P-NMR spectra were measured referencing the peaks 

to an external standard (85% H3PO4 in H2O) and the Job plot (Δδ31P*XTRIPVS XTRIP) could be 

obtained [XTRIP = mole fraction of TRIP in the mixture].  

 

The plot showed a maximum for XTRIP=0.5, thus confirming the 1:1 stoichiometry of the 

binding event. 

 

Determination of association constants116 

The experiments were designed for the evaluation of the binding constants of the complexes 

TRIP∙AcOH and TRIP∙BzOH. The chemical shift of the phosphorous signal of TRIP was 

monitored upon addition of the carboxylic acid. An accurate determination of the ratio 

between the two components in solution was obtained by integration of the 1H-NMR signals. 
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The experimental data were plotted and, implementing equation 1, a non-linear regression 

approach was followed to obtain the binding isotherms and to determine the equilibrium 

constants (Origin 8.5 used as mathematical platform). All the experiments were performed 

twice and the average values are reported in the discussion section.  

Mathematical treatment. 

 
[H0]  = total concentration of TRIP. 
[G0]  = total concentration of carboxylic acid. 
[H] = concentration of free TRIP. 
[G]  = concentration of free carboxylic acid. 
[HG]  = concentration of the heterodimer. 
δH  = chemical shift of TRIP. 
δOBS  = chemical shift observed. 
δHG  = chemical shift of heterodimer.  
K  = binding constant. 
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Experiment 1.  Determination of the binding constant of TRIP∙AcOH. 
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Experiment 2. Determination of the binding constant of TRIP∙BzOH. 
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7.2.4. Crystal structure determination of TRIP∙AcOH  

 
 
The crystals were grown from a dichloromethane-acetic acid solution of TRIP by slow 

evaporation of the chlorinated solvent at room temperature. The molecular structure of 

TRIP∙AcOH was determined at room temperature because the crystals become modulated 

when cooled. The dimeric complex sits on a crystallographic 2-fold axis which passes through 

the P atom and the two C atoms of the acetic acid molecule. Probability ellipsoids are shown 

at the 50% level and H atoms are omitted for clarity.  

 

X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data 

Centre database (http://www.ccdc.cam.ac.uk/) under accession code CCDC 1023462. 

 

Crystal data and structure refinement. 

Identification code  8214 
Empirical formula  C52H61O6P 
Color  colourless 

Formula weight  812.97  g∙mol-1  
Temperature  296(2) K 
Wavelength  0.71073 Å 
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Crystal system  Tetragonal 
Space group  P 41 21 2,  (no. 92)  
Unit cell dimensions a = 12.807(2) Å α= 90°. 
 b = 12.807(2) Å β= 90°. 
 c = 28.916(5) Å γ = 90°. 

Volume 4743.1(17) Å3 
Z 4 

Density (calculated) 1.138  Mg∙m-3 

Absorption coefficient 0.105 mm-1 
F(000) 1744 e 

Crystal size 0.54 x 0.48 x 0.42 mm3 
θ range for data collection 1.739 to 28.521°. 
Index ranges -17 ≤ h ≤ 17, -17≤ k ≤ 17, -38≤ l ≤ 38 
Reflections collected 100675 
Independent reflections 6003 [Rint = 0.1037] 

Reflections with I>2σ (I) 4247 

Completeness to θ = 25.242° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7457 and 0.3860 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 6003 / 0 / 277 

Goodness-of-fit on F2 1.029 

Final R indices [I>2σ (I)] R1 = 0.0543 wR2 = 0.1278 

R indices (all data) R1 = 0.0824 wR2 = 0.1413 

Absolute structure parameter -0.02(19) 
Extinction coefficient 0 

Largest diff. peak and hole 0.228 and -0.217 e∙Å-3 

 

 

Atomic coordinates and equivalent isotropic displacement parameters (Å2). 

 Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z Ueq 

C(1) 0.5691(2) 0.4701(2) 0.2726(1) 0.049(1) 

C(2) 0.5035(2) 0.5197(2) 0.3027(1) 0.049(1) 

C(3) 0.5324(3) 0.5484(2) 0.3483(1) 0.052(1) 

C(4) 0.6316(3) 0.5245(2) 0.3613(1) 0.057(1) 

C(5) 0.7055(3) 0.4805(2) 0.3313(1) 0.053(1) 

C(6) 0.8101(3) 0.4632(3) 0.3448(1) 0.066(1) 

C(7) 0.8819(3) 0.4281(3) 0.3145(1) 0.073(1) 

C(8) 0.8537(3) 0.4084(3) 0.2688(1) 0.072(1) 



7. Experimental Section 

 

149 

 

C(9) 0.7534(3) 0.4204(3) 0.2548(1) 0.061(1) 

C(10) 0.6759(2) 0.4554(2) 0.2854(1) 0.051(1) 

C(11) 0.4589(3) 0.5998(2) 0.3816(1) 0.054(1) 

C(12) 0.3847(3) 0.5400(3) 0.4054(1) 0.057(1) 

C(13) 0.3267(3) 0.5877(3) 0.4401(1) 0.063(1) 

C(14) 0.3371(3) 0.6924(3) 0.4507(1) 0.064(1) 

C(15) 0.4086(3) 0.7499(3) 0.4255(1) 0.065(1) 

C(16) 0.4700(3) 0.7064(3) 0.3914(1) 0.058(1) 

C(17) 0.3710(3) 0.4248(3) 0.3952(1) 0.073(1) 

C(18) 0.4324(8) 0.3602(4) 0.4290(2) 0.198(4) 

C(19) 0.2585(5) 0.3913(5) 0.3932(2) 0.148(3) 

C(20) 0.2737(3) 0.7476(4) 0.4885(1) 0.085(1) 

C(21) 0.1836(4) 0.6886(5) 0.5064(2) 0.114(2) 

C(22) 0.3454(4) 0.7849(5) 0.5270(2) 0.121(2) 

C(23) 0.5488(3) 0.7743(3) 0.3660(1) 0.065(1) 

C(24) 0.5031(4) 0.8777(3) 0.3498(1) 0.081(1) 

C(25) 0.6445(4) 0.7945(4) 0.3957(1) 0.092(1) 

C(26) 0.1606(3) 0.8394(3) 0.2500 0.064(1) 

C(27) 0.0791(3) 0.9209(3) 0.2500 0.078(2) 

O(1) 0.4006(2) 0.5397(2) 0.2890(1) 0.056(1) 

O(2) 0.2689(2) 0.6000(2) 0.2347(1) 0.063(1) 

O(3) 0.1383(3) 0.7529(3) 0.2323(1) 0.079(1) 

P(1) 0.3774(1) 0.6226(1) 0.2500 0.054(1) 

 

 

Bond lengths [Å] and angles [°]. 

 

C(1)-C(2) 1.365(4) C(1)-C(10) 1.430(4)

C(1)-C(1)#1 1.488(5) C(2)-O(1) 1.400(4)

C(2)-C(3) 1.419(4) C(3)-C(4) 1.359(4)

C(3)-C(11) 1.499(4) C(4)-C(5) 1.403(4)

C(4)-H(4) 0.9300 C(5)-C(6) 1.413(5)

C(5)-C(10) 1.417(4) C(6)-C(7) 1.347(5)

C(6)-H(6) 0.9300 C(7)-C(8) 1.395(5)

C(7)-H(7) 0.9300 C(8)-C(9) 1.356(5)

C(8)-H(8) 0.9300 C(9)-C(10) 1.403(4)

C(9)-H(9) 0.9300 C(11)-C(12) 1.400(4)

C(11)-C(16) 1.402(5) C(12)-C(13) 1.390(4)

C(12)-C(17) 1.515(5) C(13)-C(14) 1.382(5)
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C(13)-H(13) 0.9300 C(14)-C(15) 1.384(5)

C(14)-C(20) 1.534(5) C(15)-C(16) 1.379(4)

C(15)-H(15) 0.9300 C(16)-C(23) 1.521(5)

C(17)-C(18) 1.502(7) C(17)-C(19) 1.505(7)

C(17)-H(17) 0.9800 C(18)-H(18A) 0.9600

C(18)-H(18B) 0.9600 C(18)-H(18C) 0.9600

C(19)-H(19A) 0.9600 C(19)-H(19B) 0.9600

C(19)-H(19C) 0.9600 C(20)-C(21) 1.474(6)

C(20)-C(22) 1.519(6) C(20)-H(20) 0.9800

C(21)-H(21A) 0.9600 C(21)-H(21B) 0.9600

C(21)-H(21C) 0.9600 C(22)-H(22A) 0.9600

C(22)-H(22B) 0.9600 C(22)-H(22C) 0.9600

C(23)-C(25) 1.519(6) C(23)-C(24) 1.521(5)

C(23)-H(23) 0.9800 C(24)-H(24A) 0.9600

C(24)-H(24B) 0.9600 C(24)-H(24C) 0.9600

C(25)-H(25A) 0.9600 C(25)-H(25B) 0.9600

C(25)-H(25C) 0.9600 C(26)-O(3)#1 1.253(4)

C(26)-O(3) 1.253(4) C(26)-C(27) 1.477(7)

C(27)-H(27A) 0.9599(17) C(27)-H(27B) 0.9598(17)

C(27)-H(27C) 0.9600(17) O(1)-P(1) 1.578(2)

O(2)-P(1) 1.486(3) O(2)-H(2) 0.69(7)

O(3)-H(3) 0.65(8) P(1)-O(2)#1 1.486(3)

P(1)-O(1)#1 1.578(2) P(1)-H(2) 1.84(7) 

 

C(2)-C(1)-C(10) 119.0(2) C(2)-C(1)-C(1)#1 120.6(2)

C(10)-C(1)-C(1)#1 120.37(18) C(1)-C(2)-O(1) 119.0(2)

C(1)-C(2)-C(3) 123.5(3) O(1)-C(2)-C(3) 117.4(2)

C(4)-C(3)-C(2) 116.3(3) C(4)-C(3)-C(11) 120.4(2)

C(2)-C(3)-C(11) 123.2(3) C(3)-C(4)-C(5) 123.3(3)

C(3)-C(4)-H(4) 118.4 C(5)-C(4)-H(4) 118.4   

C(4)-C(5)-C(6) 122.2(3) C(4)-C(5)-C(10) 119.4(3)

C(6)-C(5)-C(10) 118.4(3) C(7)-C(6)-C(5) 121.4(3)

C(7)-C(6)-H(6) 119.3 C(5)-C(6)-H(6) 119.3   

C(6)-C(7)-C(8) 120.0(3) C(6)-C(7)-H(7) 120.0   

C(8)-C(7)-H(7) 120.0 C(9)-C(8)-C(7) 120.5(3)

C(9)-C(8)-H(8) 119.8 C(7)-C(8)-H(8) 119.8  

C(8)-C(9)-C(10) 121.3(3) C(8)-C(9)-H(9) 119.4

C(10)-C(9)-H(9) 119.4 C(9)-C(10)-C(5) 118.3(3)

C(9)-C(10)-C(1) 123.7(2) C(5)-C(10)-C(1) 117.9(3)
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C(12)-C(11)-C(16) 120.2(3) C(12)-C(11)-C(3) 120.1(3)

C(16)-C(11)-C(3) 119.6(3) C(13)-C(12)-C(11) 118.4(3)

C(13)-C(12)-C(17) 120.4(3) C(11)-C(12)-C(17) 121.1(3)

C(14)-C(13)-C(12) 122.4(3) C(14)-C(13)-H(13) 118.8

C(12)-C(13)-H(13) 118.8 C(13)-C(14)-C(15) 117.5(3)

C(13)-C(14)-C(20) 123.8(3) C(15)-C(14)-C(20) 118.7(3)

C(16)-C(15)-C(14) 122.7(3) C(16)-C(15)-H(15) 118.7

C(14)-C(15)-H(15) 118.7 C(15)-C(16)-C(11) 118.7(3)

C(15)-C(16)-C(23) 119.5(3) C(11)-C(16)-C(23) 121.8(3)

C(18)-C(17)-C(19) 111.6(5) C(18)-C(17)-C(12) 110.4(3)

C(19)-C(17)-C(12) 113.3(4) C(18)-C(17)-H(17) 107.0

C(19)-C(17)-H(17) 107.0 C(12)-C(17)-H(17) 107.0

C(17)-C(18)-H(18A) 109.5 C(17)-C(18)-H(18B) 109.5

H(18A)-C(18)-H(18B) 109.5 C(17)-C(18)-H(18C) 109.5

H(18A)-C(18)-H(18C) 109.5 H(18B)-C(18)-H(18C) 109.5

C(17)-C(19)-H(19A) 109.5 C(17)-C(19)-H(19B) 109.5

H(19A)-C(19)-H(19B) 109.5 C(17)-C(19)-H(19C) 109.5

H(19A)-C(19)-H(19C) 109.5 H(19B)-C(19)-H(19C) 109.5

C(21)-C(20)-C(22) 112.3(3) C(21)-C(20)-C(14) 115.3(4)

C(22)-C(20)-C(14) 110.2(4) C(21)-C(20)-H(20) 106.1

C(22)-C(20)-H(20) 106.1 C(14)-C(20)-H(20) 106.1

C(20)-C(21)-H(21A) 109.5 C(20)-C(21)-H(21B) 109.5

H(21A)-C(21)-H(21B) 109.5 C(20)-C(21)-H(21C) 109.5

H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)-H(21C) 109.5

C(20)-C(22)-H(22A) 109.5 C(20)-C(22)-H(22B) 109.5

H(22A)-C(22)-H(22B) 109.5 C(20)-C(22)-H(22C) 109.5

H(22A)-C(22)-H(22C) 109.5 H(22B)-C(22)-H(22C) 109.5

C(25)-C(23)-C(16) 111.1(3) C(25)-C(23)-C(24) 109.7(3)

C(16)-C(23)-C(24) 113.0(3) C(25)-C(23)-H(23) 107.6

C(16)-C(23)-H(23) 107.6 C(24)-C(23)-H(23) 107.6

C(23)-C(24)-H(24A) 109.5 C(23)-C(24)-H(24B) 109.5

H(24A)-C(24)-H(24B) 109.5 C(23)-C(24)-H(24C) 109.5

H(24A)-C(24)-H(24C) 109.5 H(24B)-C(24)-H(24C) 109.5

C(23)-C(25)-H(25A) 109.5 C(23)-C(25)-H(25B) 109.5

H(25A)-C(25)-H(25B) 109.5 C(23)-C(25)-H(25C) 109.5

H(25A)-C(25)-H(25C) 109.5 H(25B)-C(25)-H(25C) 109.5

O(3)#1-C(26)-O(3) 124.7(5) O(3)#1-C(26)-C(27) 117.6(3)

O(3)-C(26)-C(27) 117.6(3) C(26)-C(27)-H(27A) 109.5(3)

C(26)-C(27)-H(27B) 109.5(3) H(27A)-C(27)-H(27B) 109.5(3)
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C(26)-C(27)-H(27C) 109.5(3) H(27A)-C(27)-H(27C) 109.5(3)

H(27B)-C(27)-H(27C) 109.5(3) C(2)-O(1)-P(1) 120.13(18)

P(1)-O(2)-H(2) 110(6) C(26)-O(3)-H(3) 117(8)

O(2)#1-P(1)-O(2) 116.8(2) O(2)#1-P(1)-O(1) 112.34(13)

O(2)-P(1)-O(1) 104.94(13) O(2)#1-P(1)-O(1)#1 104.94(13)

O(2)-P(1)-O(1)#1 112.34(13) O(1)-P(1)-O(1)#1 104.96(15)

O(2)#1-P(1)-H(2) 96(2) O(1)-P(1)-H(2) 116(2)

O(1)#1-P(1)-H(2) 121.7(19)  

 

 

 

Anisotropic displacement parameters (Å2)  

The anisotropic displacement factor exponent takes the form:  

 -2π2[h2a*2U22 + ... + 2 h k a* b* U12]. 

 

 U11 U22 U33 U23 U13 U12 

C(1) 0.061(2)  0.051(2) 0.035(1)  -0.003(1) -0.004(1)  0.008(1) 

C(2) 0.058(2)  0.052(2) 0.037(1)  -0.001(1) -0.004(1)  0.007(1) 

C(3) 0.071(2)  0.050(2) 0.033(1)  -0.001(1) 0.000(1)  0.005(1) 

C(4) 0.078(2)  0.057(2) 0.037(1)  -0.005(1) -0.010(1)  0.006(2) 

C(5) 0.066(2)  0.047(2) 0.045(1)  -0.003(1) -0.012(1)  0.005(1) 

C(6) 0.074(2)  0.061(2) 0.063(2)  -0.011(2) -0.022(2)  0.003(2) 

C(7) 0.065(2)  0.065(2) 0.090(2)  -0.019(2) -0.022(2)  0.009(2) 

C(8) 0.063(2)  0.070(2) 0.083(2)  -0.023(2) -0.004(2)  0.010(2) 

C(9) 0.065(2)  0.064(2) 0.053(2)  -0.014(1) -0.005(2)  0.008(2) 

C(10) 0.060(2)  0.049(2) 0.043(1)  -0.006(1) -0.005(1)  0.007(1) 

C(11) 0.070(2)  0.062(2) 0.029(1)  -0.001(1) 0.000(1)  0.005(2) 

C(12) 0.074(2)  0.064(2) 0.034(1)  0.001(1) -0.002(1)  -0.001(2) 

C(13) 0.072(2)  0.078(2) 0.040(1)  0.002(1) 0.004(1)  -0.006(2) 

C(14) 0.076(2)  0.076(2) 0.041(1)  -0.006(1) 0.006(1)  0.003(2) 

C(15) 0.088(2)  0.060(2) 0.048(2)  -0.007(1) 0.010(2)  0.007(2) 

C(16) 0.081(2)  0.058(2) 0.034(1)  -0.001(1) 0.004(1)  0.007(2) 

C(17) 0.099(3)  0.065(2) 0.056(2)  -0.002(2) 0.007(2)  -0.018(2) 

C(18) 0.346(12)  0.063(3) 0.186(6)  0.031(4) -0.134(8)  -0.020(5) 

C(19) 0.135(5)  0.132(5) 0.176(5)  -0.079(5) 0.046(4)  -0.051(4) 

C(20) 0.101(3)  0.102(3) 0.052(2)  -0.009(2) 0.019(2)  0.004(2) 

C(21) 0.094(3)  0.179(5) 0.070(2)  -0.030(3) 0.017(2)  0.001(3) 

C(22) 0.126(4)  0.162(5) 0.075(3)  -0.055(3) 0.029(3)  -0.017(4) 

C(23) 0.090(3)  0.060(2) 0.046(2)  0.001(1) 0.016(2)  0.004(2) 
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C(24) 0.122(3)  0.060(2) 0.061(2)  0.000(2) 0.011(2)  0.007(2) 

C(25) 0.097(3)  0.100(3) 0.079(2)  0.015(2) 0.014(2)  -0.015(3) 

C(26) 0.073(2)  0.073(2) 0.044(2)  0.007(2) 0.007(2)  0.012(3) 

C(27) 0.084(2)  0.084(2) 0.065(3)  0.015(2) 0.015(2)  0.024(3) 

O(1) 0.061(1)  0.069(1) 0.037(1)  0.000(1) 0.001(1)  0.011(1) 

O(2) 0.065(2)  0.065(2) 0.060(1)  -0.006(1) -0.011(1)  0.009(1) 

O(3) 0.084(2)  0.079(2) 0.073(2)  -0.004(1) -0.003(1)  0.015(2) 

P(1) 0.061(1)  0.061(1) 0.040(1)  -0.003(1) -0.003(1)  0.014(1) 

 

 

 

Hydrogen coordinates and isotropic displacement parameters (Å2)  

 x  y  z  Ueq 

H(4) 0.6514 0.5381 0.3917 0.069 

H(6) 0.8298 0.4764 0.3752 0.079 

H(7) 0.9503 0.4169 0.3242 0.088 

H(8) 0.9041 0.3868 0.2477 0.086 

H(9) 0.7355 0.4052 0.2244 0.073 

H(13) 0.2791 0.5477 0.4567 0.076 

H(15) 0.4156 0.8207 0.4318 0.078 

H(17) 0.4009 0.4120 0.3645 0.088 

H(18A) 0.4993 0.3919 0.4340 0.238 

H(18B) 0.4418 0.2911 0.4167 0.238 

H(18C) 0.3952 0.3562 0.4578 0.238 

H(19A) 0.2195 0.4277 0.4165 0.177 

H(19B) 0.2538 0.3175 0.3985 0.177 

H(19C) 0.2303 0.4075 0.3633 0.177 

H(20) 0.2450 0.8107 0.4742 0.102 

H(21A) 0.1406 0.6663 0.4811 0.171 

H(21B) 0.1435 0.7323 0.5267 0.171 

H(21C) 0.2079 0.6286 0.5232 0.171 

H(22A) 0.3703 0.7259 0.5442 0.181 

H(22B) 0.3077 0.8309 0.5472 0.181 

H(22C) 0.4037 0.8215 0.5138 0.181 

H(23) 0.5717 0.7359 0.3385 0.078 

H(24A) 0.4944 0.9234 0.3758 0.122 

H(24B) 0.4366 0.8655 0.3355 0.122 

H(24C) 0.5496 0.9093 0.3278 0.122 

H(25A) 0.6238 0.8291 0.4237 0.138 
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H(25B) 0.6927 0.8378 0.3791 0.138 

H(25C) 0.6773 0.7292 0.4032 0.138 

H(27A) 0.1096 0.9868 0.2582 0.093 

H(27B) 0.0260 0.9031 0.2721 0.093 

H(27C) 0.0486 0.9258 0.2197 0.093 

H(2) 0.239(5) 0.645(5) 0.236(2) 0.04(2) 

H(3) 0.175(6) 0.717(7) 0.233(3) 0.06(3) 
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7.3. Asymmetric carboxylysis of aziridines 

7.3.1. Preparation of starting materials78e  

When not commercially available, the starting epoxides 50 and 88 for the synthesis of 

aziridines 102 and 104 were prepared following the procedure reported in paragraph 7.4.2. 

 

Sodium azide (2 equiv.) and ammonium chloride (1.5 equiv.) were added to a stirred solution 

of the corresponding epoxide (5 mmol) in a mixture of MeOH and H2O (3:1) [0.25 M]. The 

reaction was heated to 60 °C and stirred for 12 h. When the epoxide was completely 

converted into the corresponding azido alcohol (TLC mixtures: hexanes:MTBE, 

p-anisaldehyde stain) the reaction was cooled to room temperature and the methanol was 

removed by evaporation. Then the solution was extracted with dichloromethane and the 

organic phase was washed with brine solution, dried over anhydrous Na2SO4, filtered, and 

the solvent was removed in vacuum. The azido alcohol obtained was then used in the 

following step without further purification.  

In a flame dried flask under argon, the desired benzoyl chloride was prepared by refluxing 

the corresponding benzoic acid (1 equiv.) in SOCl2 (10 equiv.) overnight. The excess of thionyl 

chloride was then removed in vacuum to afford the desired benzoyl chloride as yellowish oil. 

In a second flame dried flask a solution of the azido alcohol in acetonitrile [0.25 M] was 

degassed with argon (25-30 min), then triphenylphosphine (1 equiv.) was added and the 

mixture was stirred at 60 °C for 12 h. Then the reaction was cooled to -40 °C and 

triethylamine (1.2 equiv.) was added dropwise via syringe and then immediately a solution 

of the previously prepared benzoyl chloride in THF (5 ml) was slowly added to the mixture. 

The reaction was kept between -40 °C and -30 °C for 60 min and then the temperature was 

raised slowly to -10 °C and kept at this temperature for additional 30 min. Then water was 

added to the solution and the mixture was extracted with ethyl acetate. The organic layers 

were combined, washed with brine solution, and dried over anhydrous Na2SO4. The mixture 
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was filtered and the solvent was then removed by rotary evaporator. The crude product was 

purified immediately via flash column chromatography on silica gel [eluent: mixtures 

hexanes/AcOEt]. 

 

7-(2,4-dinitrobenzoyl)-7-azabicyclo[4.1.0]heptane (102a): Prepared from 5 mmol of 

cyclohexene oxide (812  mg, 2.5 mmol, 50% yield). Pale yellow solid.  

1H-NMR (500 MHz, CDCl3): δ 8.81 (d, J = 2.1 Hz, 1H), 8.54 (dd, 

J = 8.4, J = 2.1 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 3.05-2.95 (m, 

2H), 1.95-1.8 (m, 4H), 1.55-1.45 (m, 2H), 1.38-1.28 (m, 2H). 

13C-NMR (125 MHz, CDCl3): δ 176.0, 148.5, 147.7, 138.4, 

130.9, 128.1, 120.1, 38.1, 23.8, 19.9.  

HRMS (m/z) calcd for C13H13N3O5 [M] +Na: 314.0747, found: 314.0747. 

 

7-(2,4-dinitrobenzoyl)-7-azabicyclo[4.1.0]hept-3-ene (102b): Prepared from 5 mmol of 1,4-

cyclohexadiene (311 mg, 1 mmol, 24% yield). Pale yellow solid.  

 1H-NMR (500 MHz, CDCl3): δ 8.81 (d, J = 2.1 Hz, 1H), 8.53 (dd, 

J = 8.3, J = 2.1 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 5.53 (s, 2H), 

3.13 (s, 2H), 2.45 (cm, 4H).  

13C-NMR (125 MHz, CDCl3): δ 175.8, 148.6, 147.7, 138.3, 

131.0, 128.1, 122.1, 120.0, 37.2, 24.1.  

HRMS (m/z) calcd for C13H11N3O5 [M] +Na: 312.0591, found: 312.0591. 

 

1-(2,4-dinitrobenzoyl)-1a,2,7,7a-tetrahydro-1H-naphtho[2,3-b]aziridine (102c): Prepared 

from 5 mmol of 1,4-dihydronaphthalene (995 mg, 2.93 mmol, 59% yield). Red/brownish 

solid.  

1H-NMR (500 MHz, CDCl3): δ 8.80 (d, J = 2.1 Hz, 1H), 8.47 (dd, 

J = 8.4, J = 2.1 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.24-7.18 (m, 

2H), 7.10-7.02 (m, 2H), 3.39 (s, 2H), 3.26-3.12 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 175.4, 148.6, 147.7, 138.1, 

131.9, 131.0, 129.4, 128.1, 127.2, 120.0, 38.2, 29.4.  

HRMS (m/z) calcd for C17H13N3O5 [M] +Na: 362.0747, found: 362.0747. 
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6-(2-nitrobenzoyl)-6-azabicyclo[3.1.0]hexane (102d): In this reaction the temperature of the 

acylation was constantly kept below -30° C to avoid decomposition of the product. Prepared 

from 5 mmol of cyclopentane oxide (487.6 mg, 2.01 mmol, 42% yield). Yellow solid.  

1H-NMR (500 MHz, CDCl3): δ 7.90 (d, J = 8.5 Hz, 1H), 7.62-

7.58 (m, 2H), 7.57 (t, J = 8.5, 1H), 3.30 (s, 2H), 2.05-1.95 (m, 

2H), 1.75-1.55 (m, 3H), 1.50-1.35 (m, 1H).  

13C-NMR (125 MHz, CDCl3): δ 176.8, 147.7, 133.4, 132.9, 

130.9, 129.4, 124.2, 44.4, 27.1, 19.7.  

HRMS (m/z) calcd for C12H12N2O3 [M] +Na: 255.0740, found: 255.0742. 

 

8-(2,4-dinitrobenzoyl)-8-azabicyclo[5.1.0]octane (102e): Prepared from 3.5 mmol of 

cycloheptane oxide (510 mg, 1.67 mmol, 48% yield). Pale red solid.  

1H-NMR (500 MHz, CD2Cl2): δ 8.76 (d, J = 2.2 Hz, 1H), 8.53 

(dd, J = 8.5 J = 2.2, 1H), 7.93 (d, J = 8.5 Hz, 1H), 2.95 (cm, 2H), 

1.98-1.82 (m, 4H), 1.70-1.46 (m, 5H), 1.30-1.17 (m, 1H).  

13C-NMR (125 MHz, CD2Cl2): δ 176.2, 148.7, 148.0, 138.3, 

131.0, 128.3, 120.1, 43.2, 31.5, 28.9, 25.7.  

HRMS (m/z) calcd for C14H15N2O3 [M] +Na: 328.0904, found: 328.0905. 

 

cis-1-(2,4-dinitrobenzoyl)-2,3-diethylaziridine (102i): Prepared from 5 mmol of cis-3-hexene 

(403 mg, 1.44 mmol, 27% yield). Yellow solid.  

 1H-NMR (500 MHz, CD2Cl2): δ 8.83 (d, J = 2.1 Hz, 1H), 8.54 

(dd, J = 8.3, J = 2.1 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 2.74 (cm, 

2H), 1.65-1.48 (m, 4H), 0.95 (t, J = 7.5 Hz, 6H).  

13C-NMR (125 MHz, CD2Cl2): δ 176.4, 148.6, 147.4, 138.6, 

131.2, 128.4, 120.2, 45.1, 21.1, 11.8.  

HRMS (m/z) calcd for C13H15N3O5 [M] +Na: 316.0904, found: 316.0903.  
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cis-1-(2,4-dinitrobenzoyl)-2,3-dipropylaziridine (102j): Prepared from 5 mmol of cis-4-

octene (465 mg, 1.44 mmol, 29% yield). Yellow solid.  

 1H-NMR (500 MHz, CDCl3): δ 8.86 (d, J = 2.1 Hz, 1H), 8.54 (dd, 

J = 8.3, J = 2.1 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 2.82 (cm, 2H), 

1.59-1.28 (m, 8H), 0.91 (t, J = 7.3 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 171.4, 148.4, 147.1, 138.6, 

130.9, 128.1, 120.1, 43.3, 29.7, 20.9, 13.9.                           

HRMS (m/z) calcd for C15H19N3O5 [M] +Na: 344.1217, found: 344.1218.  

 

cis-1-(2,4-dinitrobenzoyl)-2,3-diphenylaziridine (102k): Prepared from 5 mmol of Z-stilbene 

(580 mg, 1.49 mmol, 30% yield). White solid.  

1H-NMR (500 MHz, CDCl3): δ 8.88 (d, J = 2.1 Hz, 1H), 8.54 (dd, 

J = 8.4 Hz, J = 2.1 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.20-7.15 

(m, 10H), 4.35 (s, 2H).  

13C-NMR (125 MHz, CDCl3): 176.2, 148.7, 147.5, 137.7, 132.7, 

130.6, 128.6, 128.6, 128.3, 128.1, 127.7, 120.3, 47.2.  

  

1-(2-nitrobenzoyl)-2-hexylaziridine (104a): Prepared from 10 mmol of 1,2-epoxyoctane 

(1.55 g, 5.6 mmol, 56% yield). Colorless liquid.  

1H-NMR (CDCl3, 500 MHz): δ 7.97 (dd, J = 8.1 Hz, J = 0.8 Hz, 

1H), 7.74-7.65 (m, 2H), 7.63-7.56 (m, 1H), 2.74 (dq, J = 6.0 Hz, 

J = 3.6 Hz, 1H), 2.63 (d, J = 6.0 Hz, 1H), 2.14 (d, J = 3.6 Hz, 1H), 

1.60-1.46 (m, 2H), 1.38-1.12 (m, 8H), 0.84 (t, J = 6.8 Hz, 3H). 

13C-NMR (CDCl3, 125 MHz): 177.9, 147.1, 133.6, 133.0, 130.8, 

129.4, 124.3, 38.9, 32.2 [two peaks overlapped], 31.8, 28.9, 26.9, 22.7, 14,2.  

HRMS (m/z) calcd for C15H20N2O3 [M]+Na: 299.1366, found: 299.1369. 
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1-(2-nitrobenzoyl)-2-butylaziridine (104b): Prepared from 5 mmol of 1,2-epoxyhexane (820 

mg, 3.3 mmol, 66% yield). Colorless liquid.  

1H-NMR (CD2Cl2, 500 MHz): δ 7.93 (dd, J = 8.2 Hz, J = 1.0 Hz, 

1H), 7.76-7.66 (m, 2H), 7.63-7.56 (m, 1H), 2.69 (dq, J = 6.2 Hz, 

J = 3.7 Hz, 1H), 2.59 (d, J = 6.2 Hz, 1H), 2.14 (d, J = 3.7 Hz, 1H), 

1.62-1.45 (m, 2H), 1.38-1.20 (m, 4H), 0.84 (t, J = 7.2 Hz, 3H). 

 13C-NMR (CD2Cl2, 125 MHz): 177.8, 147.7, 133.7, 132.9, 

131.2, 129.8, 124.4, 39.1, 32.3, 32.1, 29.2, 22.6, 14.1.  

 

1-(2-nitrobenzoyl)-2-phenethylaziridine (104c): Prepared from 5 mmol of but-3-en-1-

ylbenzene (1.06 g, 3.6 mmol, 72% yield). Yellow oil.  

1H-NMR (CDCl3, 500 MHz): δ 8.00 (dd, J = 8.3 Hz, J = 0.8 Hz, 

1H), 7.75-7.67 (m, 2H), 7.64-7.58 (m, 1H), 7.28-7.22 (m, 2H), 

7.20-7.15 (m, 1H), 7.10-7.05 (m, 2H), 2.80 (dq, J = 6.1 Hz, J = 

3.5 Hz, 1H), 2.77-2.68 (m, 1H), 2.64 (d, J = 6.1 Hz, 1H), 2.66-

2.56 (m, 1H), 2.13 (d, J = 3.5 Hz, 1H), 1.92-1.83 (m, 2H).  

13C-NMR (CDCl3, 125 MHz): 177.8, 147.2, 141.0, 133.7, 133.1, 

130.9, 129.4, 128.7, 128.5, 126.3, 124.4, 38.4, 34.1, 33.2, 32,2.  

HRMS (m/z) calcd for C17H16N2O3 [M]+Na: 319.1053, found: 319.1055. 

 

1-(2-nitrobenzoyl)-2-cyclohexylaziridine (104d): Prepared from 5 mmol of vinylcyclohexane 

(1.00 g, 3.65 mmol, 73% yield). Pale yellow oil.  

1H-NMR (CDCl3, 500 MHz): δ 8.02 (d, J = 8.2 Hz, 1H), 7.72-7.67 

(m, 2H), 7.66-7.54 (m, 1H), 2.61 (d, J = 6.1, 1H), 2.69-2.54 (m, 

1H), 2.18 (d, J = 3.6 Hz, 1H), 1.76-1.58 (m, 5H), 1.28-0.85 (m, 

6H).  

13C-NMR (CDCl3, 125 MHz): 178.2, 146.8, 133.8, 133.4, 130.6, 

129.4, 124.4, 43.8, 40.2, 30.9, 30.5, 29.7, 26.3, 25.8, 25.7 . 

 HRMS (m/z) calcd for C15H18N2O3 [M]+Na: 297.1209, found: 297.1207. 
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7-(2-nitrobenzoyl)-7-azabicyclo[4.1.0]heptane (72i): Prepared from 1 mmol of cyclohexene 

oxide (163  mg, 0.66 mmol, 66% yield). Pale yellow solid.  

1H-NMR (500 MHz, CDCl3): δ 7.94 (d, J = 8.1 Hz, 1H), 7.74-

7.64 (m, 2H), 7.60-7.54 (m, 1H), 2.94 (s, 2H), 1.94-1.75 (m, 

4H), 1.53-1.42 (m, 2H), 1.38-1.21 (m, 2H);  

13C-NMR (125 MHz, CDCl3): δ 178.4, 147.7, 133.6, 133.2, 

130.9, 129.6, 124.4, 37.6, 24.0, 20.1.  

HRMS (m/z) calcd for C13H14N2NaO3 [M]+Na: 269.0902, found: 269.0910. 

 

1-(2,4-dinitrobenzoyl)-2-hexylaziridine (106a): Prepared from 10 mmol of 1,2-epoxyoctane 

(1.33 g, 4.2 mmol, 42% yield). Colorless liquid.  

1H NMR (500 MHz, CDCl3): δ 8.84 (s, 1H), 8.55 (d, J = 8.35 Hz, 

1H), 7.94 (d, J = 8.35 Hz, 1H), 2.81 (m, 1H), 2.68 (d, J = 6.3 Hz, 

1H), 2.19 (d, J = 3.5 Hz, 1H), 1.59-1.53 (m, 2H), 1.37-1.20 (m, 

9H), 0.86 (t, J = 6.3 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 175.5, 148.5, 147.3, 138.3, 

130.9, 128.2, 120.0, 39.5, 32.4, 32.1, 31.8, 28.9, 26.9, 22.7, 14.2.  

HRMS (m/z) calcd for C15H19N3O5 [M]+Na: 344.1214, found: 344.1217. 

 

 

  

N

O

NO2

72i

Chemical Formula: C13H14N2O3

Molecular Weight: 246,2660
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7.3.2. General procedure for the desymmetrization of meso-aziridines 

 

To the corresponding aziridine (0.2 mmol) a solution of benzoic acid (1.4 mmol, 7 equiv.) and 

(S)-TRIP phosphoric acid (8 mol%) in chloroform was added. The mixture was stirred at room 

temperature until complete product formation (TLC eluent: hexanes/MTBE = 2:3). The 

reaction was then diluted in hexanes and directly purified by flash column chromatography 

[eluent: mixtures hexanes/MTBE]. The enantiomeric ratios of products were analyzed by 

HPLC on a chiral stationary phase. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

(R,R)-2-(2,4-dinitrobenzamido)cyclohexyl benzoate (103a): The reaction was performed at 

room temperature [conc. = 0.125M] and yielded the product as white solid. (81 mg, 98% 

yield, er > 99.5:0.5).  

1H-NMR (500 MHz, CDCl3): δ 8.76 (d, J = 2.2 Hz, 1H), 8.32 (dd, 

J = 8.4 Hz, 2.2 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.57 (t, J = 7.4 

Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 1H), 6.57 

(d, J = 8.3 Hz, 1H), 4.97 (td, J = 10.7 Hz, 4.6 Hz, 1H), 4.28-4.15 

(m, 1H), 2.42-2.30 (m, 1H), 2.22-2.10 (m, 1H), 1.95-1.78 (m, 

2H), 1.75-1.63 (m, 1H), 1.55-1.34 (m, 3H).  

13C-NMR (125 MHz, CDCl3): δ 167.9, 164.3, 148.2, 146.7, 138.1, 133,7, 130.2, 129.9, 129.8, 

128.7, 128.3, 120.2, 75.5, 54.2, 31.9, 31.4, 24.4, 24.3.  

HRMS (m/z) calcd for C20H19N3O7 [M]+Na: 436.1115, found: 436.1115.  

[α]D
25: +3.3° (c = 0.8, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel AD-3 

column: nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 18.0 min, τ2 = 27.5 min. 



7. Experimental Section 

 

162 

 

(R,R)-6-(2,4-dinitrobenzamido)cyclohex-3-en-1-yl benzoate (103b): The reaction was 

performed at room temperature [conc. = 0.125M] and yielded the product as white solid. 

(73.1 mg, 83% yield, er = 99:1).  

1H-NMR (500 MHz, CDCl3): δ 8.76 (d, 2.1 Hz, 1H), 8.32 (dd, J = 

8.3 Hz, J = 2.1 Hz, 1H), 7.98 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.4 

Hz, 1H), 7.44 (t, J = 7.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 1H), 6.59 

(d, J = 8.7 Hz, 1H), 5.68 (cm, 2H), 5.32-5.24 (m, 1H), 4.58-4.48 

(m, 1H), 2.86-2.82 (m, 1H), 2.68-2.57 (m, 1H), 2.55-2.46 (m, 

1H), 2.26-2.15 (m, 1H).  

13C-NMR (125 MHz, CDCl3): δ 167.7, 164.5, 148.3, 146.6, 138.0, 133,8, 130.2, 129.9, 129.6, 

128.8, 128.3, 124.7, 124.2, 120.2, 71.8, 50.3, 31.6, 31.1.  

HRMS (m/z) calcd for C20H17N3O7 [M]+Na: 434.0958, found: 434.0960.  

[α]D
25: -23.7° (c = 0.295, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel AD-3 

column: nHept:iPrOH = 80:20, flow rate 1 mL/min, τ1 = 10.5 min, τ2 = 13.8 min. 

 

(R,R)-3-(2,4-dinitrobenzamido)-1,2,3,4-tetrahydronaphthalen-2-yl benzoate (103c): The 

reaction was performed at room temperature [conc. = 0.125M] and yielded the product as 

white solid. (91 mg, 99% yield, er = 98.5:1.5).  

1H-NMR (500 MHz, CDCl3): δ 8.76 (d, J = 2.0 Hz,  1H), 8.32 

(dd, J = 8.2 Hz, J = 2.0 Hz, 1H), 8.01 (d, J = 7.6 Hz, 2H), 7.60 (t, 

J = 7.6 Hz, 1H), 7.50-7.40 (m, 3H), 7.22-7.05 (m, 4H), 6.70 (d, J 

= 8.3 Hz, 1H), 5.42 (td, J = 9.5 Hz, J = 5.9 Hz, 1H), 4.75-4.60 

(m, 1H), 3.50 (dd, J = 16.5 Hz, J = 5.8 Hz, 1H), 3.32 (dd, J = 

16.5 Hz, J = 5.8 Hz, 1H), 3.22 (dd, J = 16.5 Hz, J = 9.7 Hz, 1H), 

2.92 (dd, J = 16.5 Hz, J = 9.7 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 167.6, 164.6, 148.3, 146.7, 137.9, 133.9, 132.7, 132.6, 130.2, 

129.9, 129.5, 129.1, 129.0, 128.8, 128.3, 127.0, 127.0, 120.3, 71.9, 50.7, 34.6, 34.3.  

HRMS (m/z) calcd for C24H19N3O7 [M]+Na: 484.1115, found: 484.1115.  

[α]D
25: -13.4° (c = 1.0, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel OD-3 

column: nHept:iPrOH = 60:40, flow rate 1 mL/min, τ1 = 10.5 min, τ2 = 18.7 min. 

Chemical Formula: C20H17N3O7

Molecular Weight: 411.36

HNO

OO

NO2

NO2

103b
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(R,R)-2-(2-nitrobenzamido)cyclopentyl benzoate (101d): The reaction was performed at -

10 °C [0.1 mmol scale, conc. = 0.07M] and yielded the product as white solid. (34 mg, 96% 

yield, er = 98:2) 

1H-NMR (500 MHz, CDCl3): δ 8.05-8.00 (m, 3H), 7.63 (td, J = 

7.7 Hz, J = 1.0 Hz, 1H), 7.59-7.53 (m, 2H), 7.50 (td, J = 7.7 Hz, J 

= 1.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 6.44 (d, J = 7.6 Hz, 1H), 

5.32 (q, J = 6.8 Hz, 1H), 4.45 (q, J = 7.6 Hz, 1H), 2.53-2.42 (m, 

1H), 2.28-2.15 (m, 1H), 1,98-1,78 (m, 3H), 1.75-1.65 (m, 1H). 

13C-NMR (125 MHz, CDCl3): δ 167.4, 166.7, 146.6, 133.9, 133.4, 133.1, 130.6, 130.1, 130.0, 

128.9, 128.6, 124.7, 79.7, 57.5, 30.3, 29.7, 20.8. 

HRMS (m/z) calcd for C19H18N2O5 [M]+Na: 377.1108, found: 377.1104.  

[α]D
25: -17.0° (c = 0.550, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel OD-3 

column: nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 11.6 min, τ2 = 15.9 min. 

 

(R,R)-3-(2,4-dinitrobenzamido)-1,2,3,4-tetrahydronaphthalen-2-yl benzoate (103e): The 

reaction was performed at room temperature [conc. = 0.125M] and yielded the product as 

white solid. (84 mg, 99% yield, er = 98.5:1.5).  

1H-NMR (500 MHz, CDCl3): δ 8.81 (d, J = 2.1 Hz, 1H), 8.33 (dd, 

J = 8.3 Hz,  J = 2.1 Hz, 1H), 8.01 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 

7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz,  2H), 7.35 (d, J = 8.3 Hz, 1H), 

6.46 (d, J = 8.0 Hz, 1H), 5.25-5.10 (m, 1H), 4.45-4.32 (m, 1H), 

2.20-2.10 (m, 1H), 2.05-1.95 (m, 2H), 1.90-1.55 (m, 7H).  

13C-NMR (125 MHz, CDCl3): δ 167.6, 164.0, 148.3, 146.8, 

138.2, 133.8, 130.2, 129.9 (two peaks overlapping), 128.8, 128.2, 120.3, 78.1, 57.0, 31.7, 

31.1, 27.8, 24.4, 22.7.  

HRMS (m/z) calcd for C21H21N3O7 [M]+Na: 450.1272, found: 450.1272.  

[α]D
25: +17.8° (c = 1.0, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 

column: nHept:iPrOH = 80:20, flow rate 1 mL/min, τ1 = 7.4 min, τ2 = 10.7 min. 
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(R,R)-4-(2,4-dinitrobenzamido)hexan-3-yl benzoate (103i): The reaction was performed at 

room temperature [conc. = 0.025M] and yielded the product as white solid. (82 mg, 99% 

yield, er = 93.5:6.5).  

1H-NMR (500 MHz, CDCl3): δ 8.79 (d, J = 2.0 Hz, 1H), 8.38 (dd, 

J = 8.4 Hz, J = 2.0 Hz, 1H), 7.97 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 

7.6 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 7.6 Hz, 2H), 

6.59 (d, J = 9.6 Hz, 1H), 5.25-5.15 (m, 1H), 4.42-4.32 (m, 1H), 

1.92-1.80 (m, 2H), 1.80-1.68 (m, 1H), 1.65-1-50 (m, 1H), 1.07 

(t, J = 7.4 Hz, 3H), 1.03 (t, J = 7.4 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 166.8, 164.5, 148.3, 146.9, 138.2, 133.6, 130.2, 129.8, 129.8, 

128.7, 128.2, 120.3, 76.9, 54.1, 25.5, 25.0, 10.3, 10.0.  

HRMS (m/z) calcd for C20H21N3O7 [M]+Na: 438.1272, found: 438.1272.  

[α]D
25: -75.5° (c = 1.100, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel AS-3 

column: nHept:iPrOH = 70:30, flow rate 1 mL/min, τ2 = 8.0 min, τ2 = 13.9 min. 

 

(R,R)-5-(2,4-dinitrobenzamido)octan-4-yl benzoate (103j): The reaction was performed at 

room temperature [conc. = 0.025M] and yielded the product as white solid. (83 mg, 94% 

yield, er = 94:6).  

1H-NMR (500 MHz, CDCl3): δ 8.87 (s, 1H), 8.42 (d, J = 8.3 Hz, 

1H), 8.01 (d, J = 7.5 Hz, 2H), 7.62-7.52 (t, J = 7.5 Hz, 1H), 7.54 

(d, J = 8.3 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 6.04 (d, J = 9.5 Hz, 

1H), 5.30 (cm, 1H), 4.54-4.46 (m, 1H), 1.92-1.74 (m, 2H), 1.74-

1.62 (m, 1H), 1.62-1.42 (m, 5H), 1.02-0.95 (m, 6H).  

13C-NMR (125 MHz, CDCl3): δ 166.8, 164.4, 148.5, 147.1, 

138.2, 133.7, 130.3, 129.9, 129.9, 128.8, 128.2, 120.4, 75.9, 52.9, 34.7, 34.1, 19.1, 18.9, 14.2, 

14.1.  

HRMS (m/z) calcd for C22H25N3O7 [M]+Na: 466.1585, found: 466.1588.  

[α]D
25: -89.9° (c = 0.345, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel AD-3 

column: nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 13.8 min, τ2 = 17.0 min. 

HNO

OO

NO2

NO2

Chemical Formula: C20H21N3O7

Molecular Weight: 415.3966

103i



7. Experimental Section 

 

165 

 

(R,R)-2-(2,4-dinitrobenzamido)cyclohexyl acetate (103ab): The reaction was performed at 

room temperature [conc. = 0.025M] and yielded the product as white solid. (66 mg, 94% 

yield, er = 97.5:2.5).  

1H-NMR (500 MHz, CDCl3): δ 8.89 (d, J = 1.9 Hz, 1H), 8.50 (dd, 

J = 8.3 Hz, J = 1.9 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 6.32 (d, J = 

7.8 Hz, 1H), 4.74 (td, J = 10.8 Hz, J = 4.6 Hz, 1H), 4.10-4.00 (m, 

1H), 2.38-2.25 (m, 1H), 2.11 (s, 3H), 2.05-1.95 (m, 1H), 1.90-

1.74 (m, 2H), 1.64-1.52 (m, 1H), 1.48-1.20 (m, 3H).  

13C-NMR (125 MHz, CDCl3): δ 173.2, 164.2, 148.4, 146.9, 138.3, 130.3, 128.4, 120.4, 74.5, 

54.7, 32.2, 31.5, 24.3, 24.3, 21.5.  

HRMS (m/z) calcd for C15H17N3O7 [M]+Na: 374.0958, found: 434.0960.  

[α]D
25: +66.0° (c = 1.0, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel OD-3 

column: nHept:iPrOH = 80:20, flow rate 1 mL/min, τ1 = 7.6 min, τ2 = 10.2 min. 

 

(R,R)-4-(2,4-dinitrobenzamido)hexan-3-yl acetate (103ib): The reaction was performed at 

room temperature [conc. = 0.025M] and yielded the product as white solid. (62 mg, 88% 

yield, er = 92.5:7.5).  

1H-NMR (500 MHz, CDCl3): δ 8.89 (d, J = 1.7 Hz, 1H), 8.52 (dd, 

J = 8.2 Hz, J = 1.7 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 6.04 (d, J = 

9.0 Hz, 1H), 5.03-4.95 (m, 1H), 4.34-4.22 (m, 1H), 2.07 (s, 3H), 

1.78-1.50 (m, 4H), 1.05 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.4 Hz, 

3H).  

13C-NMR (125 MHz, CDCl3): δ 171.1, 164.5, 148.5, 147.0, 138.3, 130.3, 128.3, 120.4, 76.1, 

53.6, 25.7, 24.9, 21.2, 10.4, 10.0.  

HRMS (m/z) calcd for C15H19N3O7 [M]+Na: 376.1115, found: 376.1117.  

[α]D
25: -47.8° (c = 0.295, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel OD-3 

column: nHept:iPrOH = 85:15, flow rate 1 mL/min, τ1 = 15.3 min, τ2 = 19.3 min. 

 

HNO

OO

NO2

NO2

Chemical Formula: C15H17N3O7

Molecular Weight: 351.3114

103ab
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(R,R)-2-(2,4-dinitrobenzamido)-1,2-diphenylethyl benzoate (103k): The reaction was 

performed at room temperature and yielded the product as white solid. (72 mg, 70% yield, 

er = 96:4).  

1H-NMR (500 MHz, CD2Cl2): δ 8.78 (d, J = 2.2 Hz, 1H), 8.36 

(dd, J = 8.1 Hz, J = 2.2 Hz, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.61 (t, 

J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.40-7.20 (m, 11 H), 

7.02 (d, J = 8.3 Hz, 1H), 6.40 (d, J = 8.3 Hz, 1H), 5.73 (t, J = 8.3 

Hz, 1H).  

13C-NMR (125 MHz, CD2Cl2): δ 166.7, 164.1, 148.6, 147.0, 

137.9, 137.6, 137.0, 134.0, 130.5, 130.1, 129.8, 129.0 (two peaks overlapping), 129.0, 128.9, 

128.6, 128.5, 127.9, 127.6, 120.4, 78.4, 59.5.  

HRMS (m/z) calcd for C28H21N3O7 [M]+Na: 510.1307, found: 510.1307.  

[α]D
25: -19.8° (c = 1.050, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel IC-3 

column: nHept:EtOH = 85:15, flow rate 1 mL/min, τ1 = 8.1 min, τ2 = 8.9 min,  

 

2-(2,4-dinitrophenyl)-4,5-diphenyl-4,5-dihydrooxazole (112): This compound was isolated 

as byproduct of the ring opening of aziridine 102k (18 mg, 23% yield, er = 83:17) as a white 

solid.  

Based on NOE correlation and on the value of the coupling constant between the oxazoline 

protons, the relative configuration was found to be cis;175 the absolute stereochemistry was 

not assigned. 

1H-NMR (500 MHz, CD2Cl2): δ 8.72 (d, J = 2.3 Hz, 1H), 8.55 

(dd, J = 8.3 Hz, J = 2.3 Hz, 1H), 8.33 (d, J = 8.3 Hz, 2H), 7.15-

6.9 (m, 10H), 6.09 (d, J = 10.4 Hz, 1H), 5.80 (d, J = 10.4 Hz, 

1H).  

13C-NMR (125 MHz, CD2Cl2) [peaks overlapping]: δ 161.0, 

150.1, 149.6, 136.9, 135.6, 133.4, 128.5, 128.4, 128.3, 127.9, 127.1, 126.9, 120.0, 87.6, 75.2. 

The enantiomeric ratio was determined by HPLC analysis using a Daicel Chiralcel IC-3 

column: nHept:EtOH = 85:15, flow rate 1 mL/min, τ1 = 11.2 min, τ2 = 12.6 min,  
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(R,R)-2-(2-nitrobenzamido)cyclohexyl benzoate (101a): This product was obtained during 

the optimization of the reaction conditions (Table 4.4). The reaction was performed at room 

temperature on 0.1 mmol scale [conc. = 0.125M] and yielded the product as white solid. (35 

mg, 95% yield, er = 98.5:1.5).  

1H-NMR (500 MHz, CDCl3): δ 8.09-8.02 (m, 2H), 7.99-7.92 (m, 

1H), 7.62-7.53 (m, 1H), 7.53-7.40 (m, 4H), 7.19-7.11 (m, 1H), 

6.28 (d, J = 8.5 Hz, 1H), 4.99 (td, J = 10.8, 4.5 Hz, 1H), 4.30-

4.18 (m, 1H), 2.44-2.32 (m, 1H), 2.21-2.11 (m, 1H), 1.92-1.77 

(m, 2H), 1.69 (ddd, J = 15.8, 12.6, 3.8 Hz, 1H), 1.52-1.31 (m, 

3H).  

13C-NMR (125 MHz, CDCl3): δ 167.9, 166.5, 146.6, 133.9, 133.6, 133.3, 130.6, 130.5, 130.2, 

130.1, 128.8, 128.8, 128.7, 124.8, 75.5, 54.0, 32.1, 31.6, 24.6, 24.5.  

HRMS: (m/z) calcd for [C20H20N2O5] [M]+Na: 368.1372, found: 368.1372. 

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 12.0 min, τ2 = 15.5 min. 
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7.3.3. General procedure for the kinetic resolution of terminal aziridines 

 

To a stirred solution of benzoic acid (0.7 mmol, 7 equiv.) and (S)-TRIP phosphoric acid (4 

mol%) in CH2Cl2 (4.25 ml) at -30 °C a precooled solution of the aziridine (0.1 mmol) in CH2Cl2 

(2.0 ml) was added.  

When the conversion was close to 50% (reaction time was optimized through a preliminary 

investigation), the reaction was quenched with MTBE (4.0 ml) and directly purified by flash 

column chromatography [eluent: mixtures hexanes/MTBE]. Both the enantiomeric ratios of 

the products and of the unreacted starting materials were analyzed by HPLC on a chiral 

stationary phase. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

(S)-1-(2-nitrobenzamido)octan-2-yl benzoate (105a) : The product was obtained as colorless 

oil (19 mg, 48% yield, er = 92.5:7.5), while the starting material was recovered as colorless oil 

(11.5 mg, 42% yield, er = 98:2). Reaction time: 2.5 h. 

1H-NMR (500 MHz, CDCl3): δ 8.05-8.00 (m, 3H), 7.65-7.52 (m, 

3H), 7.48-7.42 (m, 3H), 6.40-6.30 (m, 1H), 5.34-5.25 (m, 1H), 

3.88-3.78 (m, 1H), 3.76-3.68 (m, 1H), 1.90-1.74 (m, 2H), 1.55-

1.20 (m, 8H), 0.83 (t, J = 6.7 Hz, 3H).  

13C-NMR (CDCl3, 100 MHz): δ 167.2, 166.7, 146.7, 133.9, 

133.5, 133.0, 130.7, 130.9, 129.9, 128.9, 128.7, 124.8, 74.4, 

44.2, 32.4, 31.8, 29.3, 25.5, 22.7, 14.2.  

HRMS (m/z) calcd for C22H26N2O5 [M]+Na: 421.1734, found: 421.1733.  

[α]D
25: +13.7° (c = 0.935, CHCl3). 
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The enantiomeric ratio was determined by HPLC analysis: 

(S)-105a - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 11.7 

min, τ2 = 21.3 min.  

(S)-1-(2-nitrobenzoyl)-2-hexylaziridine (104a) - Daicel Chiralcel AD-3 column: nHept:iPrOH = 

98:2, flow rate 1 mL/min, τ1 = 8.0 min, τ2 = 12.8 min. [α]D
25: -44.8° (c = 0.460, CHCl3). 

 

(S)-1-(2-nitrobenzamido)hexyl-2-yl benzoate (105b): The product was obtained as colorless 

oil (18 mg, 49% yield, er = 94:6), while the starting material was recovered as colorless oil 

(11.5 mg, 46% yield, er = 95.5:4.5).  Reaction time: 2.5 h. 

1H-NMR (500 MHz, CDCl3): δ 8.08-7.98 (m, 3H), 7.66-7.52 (m, 

3H), 7.50-7.40 (m, 3H), 6.26 (cm, 1H), 5.30 (m, 1H), 3.90-3.80 

(m, 1H), 3.78-3.70 (m, 1H), 1.95-1.72 (m, 2H), 1.50-1.32 (m, 

4H), 0.92 (t, J = 7.1 Hz, 3H).  

13C-NMR (CDCl3, 100 MHz): δ 167.3, 166.7, 146.7, 133.9, 

133.5, 133.0, 130.7, 130.1, 129.9, 128.9, 128.7, 124.8, 74.4, 

44.3, 32.1, 27.7, 22.7, 14.1. 

HRMS (m/z) calcd for C20H22N2O5 [M]+Na: 393.1421, found: 393.1422.  

[α]D
25: +3.3° (c = 1.100, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis: 

(S)-105b - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1 mL/min, τ1 = 11.7 

min, τ2 = 21.6 min.  

(S)-1-(2-nitrobenzoyl)-2-butylaziridine (104b) - Daicel Chiralcel AD-3 column: nHept:iPrOH = 

98:2, flow rate 1 mL/min, τ1 = 9.3 min, τ2 = 13.7 min. [α]D
25: -24.2° (c = 0.685, CHCl3). 

 

(S)-1-(2,4-dinitrobenzamido)-4-phenylbutan-2-yl benzoate (105c): The product was 

obtained as white solid (21.5 mg, 51% yield, er = 92.5:7.5), while the starting material was 

recovered as colorless oil (13 mg, 44% yield, er = 98.5:1.5). Reaction time: 12.5 h. 

 1H-NMR (500 MHz, CDCl3): δ 8.12-8.02 (m, 3H), 7.68-7.55 (m, 

3H), 7.54-7.45 (m, 3H), 7.38-7.28 (m, 2H), 7.27-7.21 (m, 3H), 

6.40 (cm, 1H), 5.35 (cm, 1H), 3.93-3.78 (m, 2H), 2.95-2.78 (m, 

2H), 2.32-2.12 (m, 2H).  
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13C-NMR (CDCl3, 100 MHz) [peaks overlapping]: δ 167.1, 166.8, 146.7, 141.0, 133.9, 133.6, 

132.9, 130.7, 129.9, 128.9, 128.8, 128.7, 128.6, 126.4, 124.8, 73.7, 44.1, 33.9, 31.8.  

HRMS (m/z) calcd for C24H21N2O5 [M]+Na: 441.1421, found: 441.1420.  

[α]D
25: -8.1° (c = 0.910, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis: 

(S)-105c - Daicel Chiralcel AD-3 column: nHept:iPrOH = 80:20, flow rate 1 mL/min, τ1 = 7.3 

min, τ2 = 12.3 min.  

(S)-1-(2-nitrobenzoyl)-2-phenethylaziridine (104c): Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1 mL/min, τ1 = 10.7 min, τ2 = 12.3 min. [α]D
25: -18.9° (c = 0.530, 

CHCl3). 

 

(S)-1-cyclohexyl-2-(2,4-dinitrobenzamido)ethyl benzoate (105d): The product was obtained 

as white solid (11 mg, 28% yield, er = 96:4), while the starting material was recovered as 

colorless oil (16 mg, 58% yield, er = 71.5:28.5).  Reaction time: 18.5 h. 

1H-NMR (500 MHz, CDCl3): δ 8.10-8.02 (m, 2H), 8.00-7.92 (dd, 

J = 8.2 Hz, J = 1.0 Hz, 1H,), 7.70-7.52 (m, 3H), 7.50-7.40 (m, 

3H), 6.32 (cm, 1H), 5.13 (cm, 1H), 3.90-3.78 (m, 1H), 3.75-

3.65 (m, 1H), 1.95-1.20 (m, 11H).  

13C-NMR (CDCl3, 125 MHz): δ 167.3, 166.7, 146.7, 133.9, 

133.5, 133.0, 130.7, 130.1, 129.9, 128.9, 128.7, 124.8, 74.4, 

44.3, 32.1, 27.7, 22.7, 14.1.  

[α]D
25: +4.8° (c = 0.800, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis: 

(S)-105d - Daicel Chiralcel AD-3 column: nHept:iPrOH = 80:20, flow rate 1 mL/min, τ1 = 8.9 

min, τ2 = 13.1 min.  

(S)-1-(2-nitrobenzoyl)-2-cyclohexylaziridine (104d): Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1 mL/min, τ1 = 7.3 min, τ2 = 10.0 min. [α]D
25: -5.0° (c = 0.800, 

CHCl3). 
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(S)-1-(2,4-dinitrobenzamido)octan-2-yl benzoate (107a): This product was obtained during 

the optimization of the reaction conditions (Table 4.7). Reaction time: 2.5 h.  

Conversion 52%, S = 40. 

1H-NMR (500 MHz, CDCl3): δ 8.77 (d, J = 2.1 Hz, 1H), 8.41 

(dd, J = 8.2 Hz, J = 2.1 Hz, 1H), 7.9 (m, 2H), 7.62 (d, J = 8.2 

Hz, 1H), 7.58 (m, 1H), 7.44 (m, 2H), 6.75 (m, 1H), 5.27 (m, 

1H), 3.81 (m, 1H), 3.68 (m, 1H), 1.86-7.72 (m, 2H), 1.49-

1.21 (m, 8H), 0.87 (t, J =  5Hz, 3H).  

13C-NMR (CDCl3, 125 MHz): δ 167.4, 164.7, 148.3, 146.8, 

137.9, 133.6, 130.4, 129.8, 128.7, 128.2, 120.2, 74.2, 44.5, 32.3, 31.7, 29.2, 25.4, 22.7, 14.2.  

HRMS (m/z) calcd for C22H25N3O7 [M]+Na: 466.1587, found: 466.1585.  

[α]D
25: +13.9° (c = 0.245, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis: 

(S)-107a - Daicel Chiralcel AS-3 column: nHept:iPrOH = 70:30, flow rate 1 mL/min, τ1 = 13.79 

min, τ2 = 20.64 min.  

(S)-1-(2,4-dinitrobenzoyl)-2-hexylaziridine (106a): The enantiomeric ratio was determined 

by HPLC analysis using Daicel Chiralcel AD-3 column: nHept:iPrOH = 95:5, flow rate 1 

mL/min, τ1 = 8.88 min, τ2 = 10.12 min. 
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Chemical Formula: C22H25N3O7

Molecular Weight: 443,4560
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7.3.4. Determination of the absolute configuration of products 

7.3.4.1. Determination of the absolute configuration of 103a 

 

Preparation of intermediate 156a 

To a stirred solution of 103a in THF (50 mg, 0.121 mmol in 0.5 mL of THF) was added Boc2O 

(238 mg, 1.09 mmol, 9 equiv.), triethylamine (18 µL, 0.133 mL, 1.1 equiv.) and DMAP (3 mg, 

0.0242 mmol, 0.2 equiv.). When the substrate was fully reacted (1 hour, followed by TLC) the 

mixture was diluted with hexane and directly purified by column chromatography (eluent: 

mixtures of hexane:MTBE from 20:1 to 8:1). The product was collected and the solvent was 

evaporated to afford quantitatively the desired intermediate 156a. 

Preparation of compound 157a 

The previously isolated compound was dissolved in a mixture MeOH/THF 1:1 (3 mL) and 1.5 

mL of a 3M aqueous solution of NaOH was added and the reaction was stirred for 20 hours 

at room temperature. Then dichloromethane was added and the organic phase was washed 

3 times with a 3 M aqueous solution of NaOH. The organic phase was then dried over Na2SO4 

and the solvent was evaporated. The product was purified by column chromatography 

(eluent: mixtures hexane:MTBE from 2:1 to 1:2). 21.1 mg of the product 157a were isolated 

as white solid (81% yield, 2 steps). The analysis of the optical rotation and the comparison 

with literature references allowed the assignment of the absolute configuration (R,R).128       

1H-NMR (500 MHz, CD2Cl2): δ 4.80-4.20 (sb, 1H), 3.30-3.00 

(m, 3H), 1.95-1.75 (m, 2H), 1.65-1.55 (m, 2H), 1.35 (s, 9H), 

1.30-1.00 (m, 4H). 

13C-NMR (125 MHz, CD2Cl2): δ 157.5, 79.9, 75.6, 56.9, 34.5, 

32.1, 28.4, 25.1, 24.4.  

HRMS (m/z) calcd for C11H21NO3Na [M]+Na: 238.1414, found: 238.1414.  

[α]D
25: -26.1° (c = 0.850, MeOH). 
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7.3.4.2. Determination of the absolute configuration of 105a 

 

Preparation of intermediate 156b 

To a stirred solution of 105a in THF (19 mg, 0.048 mmol in 0.5 mL of THF) was added Boc2O 

(94.3 mg, 0.432 mmol, 9 equiv.), triethylamine (7.2 µL, 0.052 mmol, 1.1 equiv.) and DMAP 

(1.2 mg, 0.01 mmol, 0.21 equiv.). When the substrate was fully reacted (1 hour, followed by 

TLC) the mixture was diluted with hexane and directly purified by column cromatography 

(eluent: mixtures of hexane:MTBE from 20:1 to 1:1). The product was collected and the 

solvent was evaporated to afford quantitatively the desired intermediate 156b. 

Preparation of compound 157b 

The previously isolated compound was dissolved in a mixture MeOH/THF 1:1 (1 mL) and 0.5 

mL of a 2 M aqueous solution of NaOH was added and the reaction was stirred for 20 hours 

at room temperature. Then dichloromethane was added and the organic phase was washed 

3 times with a 2 M aqueous solution of NaOH. The organic phase was then dried over Na2SO4 

and the solvent was evaporated. The product was purified by column chromatography 

(eluent: mixtures hexane:MTBE from 2:1 to 1:1). 6.2 mg of the product 157b were isolated 

(53% yield, 2 steps) as colorless oil. The analysis of the optical rotation and the comparison 

with literature references allowed the assignment of the absolute configuration (S).129       

1H-NMR (500 MHz, CDCl3): δ 5.00-4.65 (sb, 1H), 3.70-3.50 (m, 

1H), 3.35-3.10 (m, 1H), 3.00-2.85 (m, 1H), 2.30-2.10 (m, 1H), 

1.45-1.15 (m, 10H), 1.38 (s, 9H), 0.85-0.75 (m, 3H).  

13C NMR (125 MHz, CDCl3): δ 157.3, 79.8, 71.9, 46.9, 35.1, 

32.0, 29.5, 28.6, 25.7, 22.8, 14.3.  

HRMS (m/z) calcd for C13H27NO3Na [M]+Na: 268.1883, found: 268.1883.  

[α]D
25: +12.8° (c = 0.250, CHCl3).  
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7.3.5. Kinetic studies 

A comparative study for the evaluation of the protecting group of the aziridine and the 

carboxylic acid nucleophile was set out to investigate the influence of these parameters on 

the carboxylysis reaction and on the degradation of the catalyst. The ring opening reactions 

were performed in deuterated dichloromethane under optimized conditions and they were 

analyzed by NMR spectroscopy. The yield of the desired product was determined by 1H-NMR 

while the catalyst alkylation could be measured by 31P-NMR. 

Various protecting groups – benzoic acid   

 

31P-NMR 

 

 

 

2,4-dinitrobenzoyl protecting group – various carboxylic acids 
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31P-NMR 

 

 

These results highlight that reducing the basicity of the nitrogen protecting group the 

deactivation pathway is significantly lowered. On the other hand, using benzoic acid results 

in a double beneficial effect: the catalyst alkylation is lowered and the desired reactivity 

increased.  

The results are summarized in the table below. 

*

CATALYST DEGRADATIONDESIRED REACTIVITY
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This study suggests the TRIP degradation is reduced by preventing the formation of an 

aziridinium phosphate species and in addition shows the importance of the carboxylic acid 

molecule in the tuning of the properties of the heterodimeric self-assembly. 

 

7.3.6. Non-linear effect studies 

A non-linear effect investigation was performed to gain further insights on the transition 

state of the stereodiscriminating event. 

Eleven reactions for the carboxylysis of aziridine 102e were performed, under optimized 

conditions, in the presence of scalemic mixtures of TRIP phosphoric acid as the catalyst. As 

shown in the table below, the enantioenrichment of the product was found to linearly 

depend on the catalyst enantiomeric ratio.   

 

This experiment suggests that a single phosphoric acid molecule is involved in the 

enantioselective ring opening reaction.  
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7.4. Asymmetric hydrolysis of epoxides in organocatalysis 

7.4.1. Preparation of catalysts 

7.4.1.1 Preparation of 114 

Model study for the biaryl coupling via aryne coupling 

 

In a flame-dried round bottom flask, aryl bromide 116a (283 mg, 1 mmol, 3 equiv.) was 

dissolved under Argon atmosphere in anydrhous THF (2 ml) and the temperature was cooled 

to -78° C. Next a 2.5 M hexane solution of n-butyl lithium was slowly added (1.1 mmol, 3.3 

equiv.), then temperature was raised to 0° C and the reaction was stirred for 30 minutes. 

After having lowered again the temperature to -78° C a solution of dibromobenzene 117 (78 

mg, 0.33 mmol, 1 equiv.) in THF (2 ml) was added dropwise and the mixture was left 20 

minutes before the dropwise addition of a THF solution (1 ml) of TMS-peroxide (71.4 mg, 0.4 

mmol, 1.2 equiv.). The stirred reaction was allowed to warm up to room temperature and 

after 12 hours a solution of MeOH:HClconc (9:1, 10 ml) was added. MTBE was added and the 

organic phase was washed twice with water and then dried over Na2SO4. The organic solvent 

was evaporated in vacuo and next purification of the mixture was performed by flash 

chromatography on silica gel (eluent: hexane/DCM 4:1). The desired product 119 was 

isolated in 15% yield (14.5 mg, 0.049 mmol). 

2',4',6'-triisopropyl-[1,1'-biphenyl]-2-ol (119) –  

1H-NMR (500 MHz, CD2Cl2): δ 7.22-7.16 (m, 1H), 7.04 (s, 2H), 

6.99-6.92 (m, 1H), 6.90-6.82 (m, 2H), 4.66 (s, 1H), 2.86 (sept, 

J = 7.0 Hz, 1H), 2.48 (sept, J = 7.0 Hz, 2H), 1.20 (d, J = 7.0 Hz, 

6H), 1.02 (d, J = 7.0 Hz 6H), 0.97 (d, J = 7.0 Hz, 6H).  
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Synthesis of intermediate 122  

 

A round bottom flask, equipped with a reflux condenser, was charged with a solution of 

compound 121141 (2.250 g, 4.06 mmol, 1 equiv.) in 78 mL of a mixture AcOH/DCM 6:1. Next 

NCS (2.160 g, 4 equiv.) and NaI (2.435 g, 4 equiv.) were added at once and the resulting 

solution was stirred at 80 °C for 12 h (monitored by TLC to ensure full consumption of 

starting material. Eluent: hexane). Then DCM was added, the organic phase was washed 

with water, dried over Na2SO4 and the solvent was removed in vacuo. Column 

chromatography (eluent: hexane/DCM 3:2) afforded the desired compound in 87% yield.  

2,2'-dibromo-3,3'-diiodo-1,1'-binaphthalene (122) –  

1H-NMR (500 MHz, CD2Cl2): δ 8.57 (s, 2H), 7.77 (d, J = 8.1 Hz, 

2H), 7.45 (t, J = 8.1 Hz, 2H), 7.25 (t, J = 8.1 Hz, 2H), 6.89 (d, J = 

8.1 Hz, 2H).  

13C-NMR (125 MHz, CD2Cl2) [peaks overlapping]: δ 140.6, 

139.9, 134.1, 132.3, 128.6, 128.5, 127.7, 126.1, 99.1.  

HRMS (m/z) calcd for C20H10Br2I2 [M]: 661.7239, found: 

661.7243. 

 

Synthesis of intermediate 123  

i) BuLi,
THF

ii)

Br

Br

Br

I

I
122

123
Yield = 39%

I

I

tBu
tBu

tBu

tBu

tBu

tBu

 

A flame-dried round bottom two neck flask was charged with a solution of 2-bromo-1,3,5-tri-

tert-butylbenzene (2 g, 6.15 mmol, 5 equiv.) in dry THF (10.5 mL) under argon atmosphere. 

Br

Br

I

I

122

Chemical Formula: C20H10Br2I2
Molecular Weight: 663,9169
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The solution was cooled down to -78 °C and BuLi (2.5 M in hexane, 2.45 mmol, 5.2 equiv.) 

was added dropwise. The solution was then stirred at 0 °C for 1h. Next the reaction was 

cooled at -78 °C and a solution of intermediate 2 in THF (814 mg, 1.23 mmol, 1 equiv.) was 

added dropwise. [The color of the reaction turned orange and precipitation was observed 

(vigorous stirring is required)]. Next the reaction was left overnight allowing to reach rt, then 

DCM was added and the organic phase was washed with water, dried over Na2SO4 and the 

solvent was removed in vacuo. Column chromatography on silica gel (eluent: hexane/DCM 

10:1) afforded the desired compound in 39% yield.  

2,2'-diiodo-3,3'-bis(2,4,6-tri-tert-butylphenyl)-1,1'-binaphthalene (123) –  

1H-NMR (500 MHz, CD2Cl2): δ 7.99 (s, 2H), 7.83 (d, 2H), 7.52-

7.40 (m, 6H), 7.18 (t, 2H), 7.05 (d, 2H), 1.29 (s, 18H), 1.14 (s, 

36H).  

13C-NMR (125 MHz, CD2Cl2): δ 149.5, 147.8, 147.5, 146.1, 

145.8, 140.2, 132.6, 132.3, 131.8, 128.7, 127.2, 127.1, 127.0, 

124.1, 123.9, 114.5, 38.9, 38.8, 35.2, 35.0, 34.1, 31.6.  

HRMS (m/z) calcd for C56H68I2 [M]: 994.3410, found: 

994.3405.  

 

Synthesis of intermediate 124  

 

In a flame-dried round bottom two neck flask, a 0.007 M solution of 123 in dry diethyl ether 

was added under argon atmosphere. Then the stirred solution was cooled down to -78° C, n-

BuLi (2.5 M in hexane, 4 equiv.) was added dropwise and the reaction was stirred for 1h. 

Then the temperature was cooled down to -95 °C and a 2.8 M solution of nitrobenzene in 
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diethyl ether was added dropwise. After 30 min methanol was added (1:1 with the reaction 

solvent), the temperature was raised to rt and stirred for 2 additional hours. DCM was added 

and the organic phase was washed with water, dried over Na2SO4 and the solvent was 

removed in vacuo. Two purifications by column chromatography were needed (first eluent: 

pentane/MTBE, second eluent: mixtures hexane/DCM) to obtain the desired compound 124.  

3,3'-bis(2,4,6-tri-tert-butylphenyl)-[1,1'-binaphthalene]-2,2'-diol (124) – The reaction was 

performed on 0.25 mmol scale and the product was isolated in 43% yield.  

1H-NMR (500 MHz, CD2Cl2): δ 7.82-7.75 (m, 4H), 7.58-7.48 (m, 

4H), 7.29 (t, 2H), 7.20 (t, 2H), 7.10 (d, 2H), 4.89 (s, 2H), 1.29 

(s, 18H), 1.14 (s, 18H), 1.05 (s, 18H).   

13C-NMR (125 MHz, CD2Cl2): δ 152.8, 149.5, 149.5, 134.1, 

133.5, 132.4, 130.4, 128.3, 127.8, 126.6, 124.7, 123.7, 123.3, 

123.3, 113.1, 38.1, 38.0, 35.1, 33.1, 33.0, 31.4. 

HRMS (m/z) calcd for C56H70O2 [M]+Na: 797.5268, found: 

797.5269. 

 

Synthesis of 114  

 

In a flame-dried round bottom two neck flask, equipped with a reflux condenser, a 0.025 M 

solution of the binol intermediate 124 in dry pyridine was added under argon atmosphere. 

Then the stirred solution was cooled down to 0° C and 10 equiv. of POCl3 were added. The 

reaction was then heated up to 95 °C and 10 equiv. of POCl3 were added every 24 h until full 

consumption of starting material (TLC eluent: hexane/DCM 1:1). Then it was cooled to 0° C 

and 2.5 mL of water were added dropwise [careful: exothermic reaction]. Then the 
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temperature was raised to 100° C. After 3-4 hours the reaction was cooled to room 

temperature, DCM was added and the organic phase was washed with a 3 M HClaq solution, 

water and brine. Then the organic layer was dried over anhydrous Na2SO4 and the solvent 

evaporated in vacuo. Purification was accomplished by column chromatography (eluent: 

mixtures hexane:ethyl acetate). The isolated compound was then dissolved again in DCM 

and subjected to an acidic wash with a 6 M HClaq solution to remove salt impurities and 

deliver the desired phosphoric acid catalysts 114. 

The separation of the enantiomers was performed via preparative HPLC on chiral stationary 

phase (Chiralpak QN-AX, 5 μm, 150x29 mm; eluent: Methanol/ (0.1 M NH4OAc)aq: 80:20) 

3,3’-bis(2,4,6-triterzbutyl-phenyl)-BINOL-derived phosphoric acid (114) – The reaction was 

performed on 0.103 mmol scale and the product was isolated in 52% yield (72% brsm). 

 1H-NMR (500 MHz, CD2Cl2): δ 7.83 (s, 2H), 7.74 (d, J = 8.2 Hz, 

2H), 7.40-7.33 (m, 6H), 7.09 (t, J = 8.2 Hz, 2H), 6.87 (d, J = 8.2 

Hz, 2H), 6.32 (bs, 1H), 1.21 (s, 18H), 0.97 (s, 18H), 0.88 (s, 

18H).  

13C-NMR (125 MHz, CD2Cl2) [overlapping signals]: δ 149.3, 

149.0, 148.7, 148.5, 148.4, 135.7, 135.7, 135.3, 133.2, 130.4, 

130.3, 128.4, 127.6, 126.4, 125.9, 124.3, 123.5, 121.5, 38.9, 

38.5, 35.1, 34.3, 33.6, 31.6.  

31P NMR (202 MHz, CD2Cl2): δ -0.02 (s).  

HRMS (m/z) calcd for C56H69O4P [M]-H: 835.4861, found: 835.4861. 

 

7.4.1.2. Synthesis of catalysts 115a-c and 139 

Synthesis of 116c  

 

A flame-dried round bottom two neck flask, equipped with a reflux condenser was charged 

with a mixture of 1,2,4,5-tetraisopropyl benzene (1 g, 4 mmol), 8 ml of trimethyl phosphate 
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and 16 mL of hexane under argon atmosphere. The apparatus was then covered with 

aluminum foil to prevent light irradiation and a solution of Br2 (1 mL, 20 mmol, 5 equiv.) in 8 

mL of trimethyl phosphate was added dropwise at 0° C. Then the temperature was raised to 

55° C and the reaction was stirred until full consumption of the starting material (TLC eluent: 

hexane). Next the reaction was cooled to room temperature and hexane and water were 

added. The mixture was washed twice with 1 M NaOHaq and twice with Na2S2O3 to quench 

the unreacted bromine. The organic phase was then dried over Na2SO4 and the solvent was 

removed in vacuo. The compound was purified by column chromatography on silica gel 

(eluent: hexane) and then crystallized in acetonitrile to yield the desired bromide 116c. as 

white solid in 75% yield. 

3-bromo 1,2,4,5 tetraisopropyl benzene (116c) – Due to the presence of rotamers the 

spectra present a complicated pattern.  

1H-NMR (500 MHz, CDCl3): δ 7.11 (s, 1H), 4.30-3.10 (4 

multiplets due to rotamers, 4H), 1.55-1.18 (3 multiplets due 

to rotamers, 24H).  

13C-NMR (125 MHz, CDCl3): δ 147.2, 146.8, 145.8, 142.2, 

141.2, 129.4, 125.6, 123.7, 35.4, 33.5, 30.5, 29.7, 29.5, 24.9, 

24.3, 22.0, 20.7. (peaks of the major rotamer are in italic).  

HRMS (m/z) calcd for C18H29Br [M]: 324.1453, found: 324.1450. 

 
Synthesis of 116d  

Synthesis of hydroquinone 129  

 

In a flame-dried round bottom flask equipped with a pressure equalizing addition funnel, 

dodecahydro-1,4:5,8-diethanoanthracene-9,10-dione 128 (12.60 g, 46.32 mmol), prepared 

following reported procedures,145 was dissolved in 46 mL of chloroform. Then a solution of 

bromine (7.44 g, 46.5 mmol, 1.004 equiv.) in chloroform was added dropwise over a period 
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of 30 min at room temperature while argon was bubbled through the mixture to remove 

HBr. The resulted mixture was stirred for one additional hour and then cooled in an ice-

acetone bath. The precipitate was filtered in vacuo and washed with cold chloroform to 

afford the desired hydroquinone 129 as a white solid in 68% yield. 

octahydro-1,4:5,8-diethanoanthracene-9,10-diol (129) – 

1H-NMR (500 MHz, THFd8): δ 3.37 (bs, 4H), 1.69 (d, J = 7.2 Hz, 

8H), 1.29 (d, J = 7.2 Hz, 8H)  

13C-NMR (125 MHz, THFd8): δ 139.7, 128.0, 27.2, 26.7  

 

 

Synthesis of bis-triflate 130  

 

In a flame-dried round bottom flask hydroquinone 129 (8.7 g, 31.5 mmol) was dissolved in 

100 mL of dichloromethane. Argon was bubbled through the solution to remove oxygen. 

Then pyridine was added (7.46 g, 94.44 mmol, 3 equiv.) and the reaction was cooled at -10° 

C using an ice-acetone bath. To this stirred suspension was added dropwise a solution of 

Tf2O (21.33 g, 75.6 mmol, 2.4 equiv.) in 50 mL of dry chloroform. The reaction was allowed 

to reach room temperature and stirred for 12 h. Next the mixture was washed with water 

and 10% aqueous HCl and the desired compound was filtered off from the organic phase and 

isolated without further purification in 76% yield.  

octahydro-1,4:5,8-diethanoanthracene-9,10-diyl bis(trifluoromethanesulfonate) (130) – 

1H-NMR (500 MHz, CDCl3): δ 3.40 (bs, 4H), 1.90-1.70 (m, 8H), 

1.50-1.35 (m, 8H).  

13C-NMR (125 MHz, CDCl3): δ 137.7, 136.3, 118.8 (q, J = 320 

Hz), 28.8, 25.1,  

HRMS (m/z) calcd for C20H20O6F6S2Na [M] +Na: 557.0498, found: 557.0496. 
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Synthesis of intermediate 113  

 

A flame-dried round bottom flask was charged with bis-triflate 130 (9.7 g, 18.2 mmol), 100 

mL of DMF, 11 mL of formic acid (13.36 g, 290.4 mmol, 16 equiv.), 57 mL of dry triethylamine 

(44.08 g, 435.6 mmol, 24 equiv.) and 741 mg of Pd(dppf)Cl2 (0.9 mmol, 5 mol%). The reaction 

was stirred at 70° C for 48 h, then brine was added. Next the precipitate was filtered off and 

washed with water and cold ethyl acetate. Purification was then accomplished by a second 

filtration on silica gel using toluene as the eluent. The desired compound was isolated as 

white solid in 72% yield.  

octahydro-1,4:5,8-diethanoanthracene (131) – 

1H-NMR (500 MHz, CDCl3): δ 6.89 (s, 2H), 2.94 (bs, 4H), 1.80-

1.66 (m, 8H), 1.45-1.35 (m, 8H).  

13C-NMR (125 MHz, CDCl3): δ 141.5, 119.2, 34.2, 26.9.  

HRMS (m/z) calcd for C18H22 [M] : 238.1722, found: 238.1718. 

 

 

Synthesis of bis-bromide 132  

 

A flame-dried round bottom two neck flask, equipped with a reflux condenser was charged 

with a mixture of octahydro-1,4:5,8-diethanoanthracene 131 (2.5 g, 10.5 mmol), 20 mL of 

trimethyl phosphate and 100 mL of hexane under argon atmosphere. The apparatus was 

then covered with aluminum paper to prevent light irradiation and a solution of Br2 (2.7 mL, 

52.5 mmol, 5 equiv.) in 20 mL of trimethyl phosphate was added dropwise at 0° C. Then the 

temperature was raised to 55° C and the reaction was stirred until full consumption of the 

starting material (TLC eluent: hexane). Next the reaction was cooled to room temperature 
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and hexane and water were added. The mixture was washed twice with 1 M NaOHaq and 

twice with Na2S2O3 to quench the unreacted bromine. The organic phase was then dried 

over Na2SO4 and the solvent was removed in vacuo. The compound was purified by column 

chromatography on silica gel (eluent: hexane) to yield the desired bis-bromide 132 as white 

solid in 92% yield. 

9,10-dibromo-octahydro-1,4:5,8-diethanoanthracene (132) – 

1H-NMR (500 MHz, CDCl3): δ 3.62 (bs, 4H), 1.84-1.75 (m, 8H), 

1.44-1.30 (m, 8H).  

13C-NMR (125 MHz, CDCl3): δ 114.9, 116.9, 34.1, 25.4.  

HRMS (m/z) calcd for C18H20Br2 [M]: 393.9932, found: 

393.9932. 

 

Synthesis of arylbromide 116d  

 

A flame-dried round bottom flask was charged with a mixture of bis-bromide 132 (1.7 g, 4.3 

mmol) and 100 mL of dry diethyl ether under argon atmosphere. Then a 2.5 M solution of 

BuLi in hexane (1.72 mL, 4.3 mmol, 1 equiv.) was added dropwise at 0° C and the stirred 

mixture was allowed to reach room temperature. After 2 h, 20 mL of water were added to 

the suspension. The organic phase was separated, dried over Na2SO4 and concentrated in 

vacuo to afford compound 116d as a white solid in 97% yield.  

9-bromo-octahydro-1,4:5,8-diethanoanthracene (116d) – 

1H-NMR (500 MHz, CDCl3): δ 6.85 (m, 1H), 3.54 (m, 2H), 2.96 

(s, 2H), 1.80-1.70 (m, 8H), 1.50-1.30 (m, 8H).  

13C-NMR (125 MHz, CDCl3): δ 143.3, 139.8, 118.6, 117.3, 

34.6, 33.1, 26.1, 25.6.  

HRMS (m/z) calcd for C18H21Br [M]: 316.0827, found: 316.0826. 
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Synthesis of 116e 

Synthesis of quinone 134  

 

In a round bottom flask equipped with a reflux condenser, a mixture of anthracene 133 (7.13 

g, 40 mmol, 2 equiv.), p-benzoquinone (2.16 g, 20 mmol, 1 equiv.) and p-chloranil (9.84 g, 40 

mmol, 2 equiv.) were refluxed in acetic acid (240 ml) for 16 h. The resulting mixture was 

cooled at room temperature and the precipitate was filtered, washed with cold ether and 

dried under vacuo to give 8.34 g of the desired quinone 134 as a yellow solid (90% yield). 

tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-dione (134) – 

1H-NMR (500 MHz, CDCl3): δ 7.35-7.25 (m,  8H), 6.95-6.85 (m, 

8H), 5.68 (s, 4H).  

13C-NMR (125 MHz, CDCl3): δ 180.0, 161.0, 143.6, 125.5, 

124.3, 47.4.  

HRMS (m/z) calcd for C34H20O2 [M]+Na: 460.1463, found: 

460.1462. 

 

Synthesis of hydroquinone 135 

 

In a round bottom flask equipped with a reflux condenser, a mixture of quinone 134 (8.34 g, 

17.95 mmol, 1 equiv.) and zinc powder (7.05 g, 107.7 mmol, 6 equiv.) was refluxed in acetic 

acid (50 ml). After 5 h the hot mixture was filtered, then the acetic acid solution was cooled 

down in an ice-aceton to induce the precipitation of hydroquinone 135. The white solid was 

filtered off and dried under vacuo. The desired product was obtained in 94% yield (7.79 g) 
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and fast characterization via NMR was performed in deuterated chloroform, despite the 

tendency to re-oxidize into the starting material.  

tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-diol (135) – 

1H-NMR (500 MHz, CDCl3): δ 7.38-7.30 (m, 8H), 7.00-6.92 (m, 

8H), 5.65 (s, 4H).  

13C-NMR (125 MHz, CDCl3): δ 145.1, 139.8, 130.9, 125.2, 

123.6, 47.6.  

 

 

Synthesis of dibromo intermediate 136 

 

A flame-dried Schlenck-flask was purged with a suspension of hydroquinone 135 (2.0 g, 4.32 

mmol, 1 equiv.) in anhydrous acetonitrile (7 ml) under argon atmosphere and next 

triphenylphosphine dibromide (4.56 g, 10.81 mmol, 2.5 equiv.) was added at 0° C. The 

temperature was raised to 30° C and the mixture was vigorously stirred for 30 min and then 

the solvent was distilled out at 70° C under reduced pressure. The Schlenk-flask was then 

equipped with an exhaust connected to a saturated sodium bicarbonate solution and a 

continuous Argon flow was provided before heating the solid mixture to 290° C. A strong 

evolution of HBr was observed for approximately 2 h, then the reaction was cooled to room 

temperature, DCM was added and the organic mixture was washed with brine and then 

dried over sodium sulfate. Evaporation of the solvent in vacuo and column chromatography 

was performed (eluent: hexane/DCM 10:1) to isolate a 9:1 mixture of 136:116e. A final 

crystallization in THF/hexane gave the desired product (41% yield). 
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6,13-dibromo-tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene (136) – 

1H-NMR (500 MHz, CDCl3): δ 7.38-7.32 (m, 8H), 6.98-6.90 (m, 

8H), 5.85 (s, 4H).  

13C-NMR (125 MHz, CDCl3): δ 144.3, 144.0, 125.6, 124.0, 

116.0, 53.9.  

 

 

Synthesis of arylbromide 116e 

 

In a flame-dried round bottom two neck flask, dibromide 136 (1.025 g, 1.75 mmol, 1 equiv.) 

was dissolved in anhydrous THF (120 ml) and cooled to 0° C. Then a 2.5 M hexane solution of 

n-BuLi was added dropwise, the temperature was allowed to reach room temperature and 

the and stirred for 1 h (milky suspension observed). Then water was added (5 ml) and the 

resulting clear solution was diluted with DCM. The organic phase was washed with brine and 

the solvent evaporated in vacuo. Purification was performed by flash chromatography on 

silica gel (eluent: mixtures hexane/DCM) and the desired product 116e was be obtained in 

84% yield. 

6-bromo-tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene (116e) – 

1H-NMR (500 MHz, CDCl3): δ 7.32-7.26 (m, 5H), 7.25-7.20 (m, 

4H), 6.92-6.80 (m, 8H), 5.77 (s, 2H), 5.23 (s, 2H).  

13C-NMR (125 MHz, CDCl3): [overlapping signals] δ 145.2, 

144.8, 144.5, 141.8, 125.4, 125.3, 124.0, 123.5, 118.8, 54.3, 

53.3.  
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Catalysts 115a-c and 139 

Biaryl synthesis via Kumada cross-coupling reaction  

 

A flame-dried round bottom two neck flask, equipped with a reflux condenser, was charged 

with activated Mg turnings (10 equiv.) under argon atmosphere. A 0.315 M solution of the 

desired aryl bromide 116a-c (3.3 equiv.) in dry THF was prepared and 0.5 mL of it were 

immediately added in the reaction flask. Then 2 drops of dibromethane were added with a 

syringe to the mixture and the rest of the solution was slowly added while carefully heating 

with a heat gun to facilitate the reaction. The mixture was stirred at reflux temperature 

under argon atmosphere for 2.5-4 hours and was monitored by TLC (eluent: hexane). 

In a second flame-dried round bottom two neck flask, equipped with a reflux condenser, a 

0.1 M solution of (S)-3,3'-dibromo-2,2'-dimethoxy-1,1'-binaphthalene 137a (for catalysts 

115a-c) or the corresponding (R)-tetrahydrogenated compound 137b (for catalyst 139) in dry 

THF was prepared and then NiCl2(PPh3)2 was added under argon atmosphere. The warm 

solution (ca. 50° C) of the Grignard reagent prepared in the other flask was then added via 

syringe to this second flask and the reaction was stirred at reflux temperature under argon 

atmosphere for 12 h. Next the reaction mixture was cooled to room temperature and 

diluted with MTBE. The resulting solution was washed with water and brine and the organic 

phase was dried over anhydrous Na2SO4. The solvent was removed in vacuo and the product 

was purified by column chromatography (eluent: mixtures hexanes/DCM). 
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138a – Reaction performed on 0.29 mmol scale (49% yield).  

1H-NMR (500 MHz, CD2Cl2): δ 7.89 (d, J = 8.3 Hz, 2H), 7.67 (s, 2H), 7.50-7.38 (cm, 2H), 7.28-

7.35 (m, 6H), 3.58-3.40 (cm, 4H), 3.23 (s, 6H), 3.18-2.90 (m, 

4H), 1.40-1.10 (m, 48H).  

13C-NMR (125 MHz, CD2Cl2) [overlapping signals]: δ 155.1, 

145.7, 140.8, 138.1, 137.7, 134.1, 130.7, 130.0, 128.3, 126.3, 

125.8, 125.0, 124.2, 60.0, 32.4, 32.3, 29.7, 29.6, 25.0, 25.0, 

24.9, 24.8, 22.8, 22.7, 22.6, 22.5.  

HRMS (m/z) calcd for C58H74O2Na [M]+Na: 825.5581, found: 

825.5586. 

  

138b – Reaction performed on 0.81 mmol scale (91% yield).  

1H-NMR (500 MHz, CD2Cl2): δ 7.95 (d, J = 8.3 Hz, 2H), 7.82 (s, 2H), 7.50-7.40 (m, 2H), 7.40-

7.28 (m, 4H), 7.10 (s, 2H), 3.19 (s, 6H), 3.15-3.05 (m, 8H), 

2.00-1.10 (m, 32H).  

13C-NMR (125 MHz, CD2Cl2) [overlapping signals]: δ 155.8, 

141.7, 141.7, 139.8, 139.7, 134.0, 133.2, 131.8, 130.9, 129.8, 

128.4, 126.3, 126.0, 125.4, 125.0, 119.4, 60.5, 35.0, 31.7, 

31.4, 27.1, 27.1, 27.0, 26.9, 26.3. 

HRMS (m/z) calcd for C58H58O2Na [M]+Na: 809.4329, found: 

809.4333. 

  

138c – Reaction performed on 0.5 mmol scale (60% yield).  

1H-NMR (500 MHz, CDCl3): δ 8.10-7.92 (m, 2H), 7.83-7.75 (m, 4H), 7.58-7.52 (m, 4H), 7.47 (s, 

2H), 7.35-7.20 (m, 10H), 7.15-7.10 (m, 2H), 7.09-7.00 (m, 4H), 

6.95-6.80 (m, 10H), 6.78-6.70 (m, 4H), 6.62-6.57 (m, 2H), 5.47 

(s, 2H), 5.43 (s, 2H), 5.36 (s, 2H), 5.33 (s, 2H), 2.78 (s, 6H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 154.6, 

145.9, 145.7, 145.6, 145.3, 145.3, 145.2, 142.7, 142.7, 141.3, 

141.0, 134.2, 132.7, 130.8, 130.8, 130.4, 128.4, 126.6, 126.1, 

126.0, 125.4, 125.2, 125.0, 124.9, 124.9, 124.7, 124.2, 123.6, 

123.5, 123.3, 123.2, 119.5, 60.4, 54.4, 54.4, 52.0, 51.6. 

OMe

OMe

iPr

iPr
iPr

iPr

iPr

iPriPr
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138d – The reaction was performed on 0.945 mmol scale and the product was isolated in 

70% yield.  

1H-NMR (500 MHz, CDCl3): δ 6.91 (s, 2H), 6.80 (s, 2H), 3.06 (s, 

6H), 3.03-2.90 (m, 8H), 2.85-2.75 (m, 4H), 2.50-2.40 (m, 2H), 

2.30-2.20 (m, 2H), 1.80-0.80 (m, 40H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 154.0, 

141.2, 141.1, 139.4, 139.0, 135.5, 131.9, 131.5, 130.8, 130.2, 

128.9, 118.5, 59.9, 34.8, 31.2, 30.8, 29.7, 27.7, 27.0, 27.0, 

26.9, 26.8, 26.8, 26.7, 26.0, 23.5, 23.4, 22.8.  

HRMS (m/z) calcd for C58H66O2Na [M]+Na: 817.4955, found: 817.4954. 

 

Synthesis of catalysts 115a,c and 139  

 

In a flame-dried round bottom two neck flask, a 0.025 M solution of the intermediate 138a,d 

in DCM was added under argon atmosphere. Then the stirred solution was cooled down to -

78° C and a 1 M solution of BBr3 in DCM (6.25 equiv.) was added dropwise. The reaction was 

allowed to reach room temperature and stirred for additional 2-4 days until full conversion 

into the desired unprotected binol was obtained (TLC eluent: hexane:DCM 1:1). Then the 

reaction was cooled to 0° C and quenched with a saturated solution of NaHCO3. The organic 

phase was washed with water and brine and then dried over Na2SO4 and the solvent 

removed in vacuo. The compound was subjected to a fast filtration through silica gel and 

used directly for the following step without further purification. 

In a flame-dried round bottom two neck flask, equipped with a reflux condenser, a 0.025 M 

solution of the binol intermediate in dry pyridine was added under argon atmosphere. Then 

the stirred solution was cooled down to 0° C and 10 equiv. of POCl3 were added. The 

MeO

MeO

Chemical Formula: C58H66O2

Molecular Weight: 795,1640

138d
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reaction was left for 24-48 hours at 95° C and when the starting material is completely 

converted (TLC eluent: hexane/DCM 1:1) it was cooled to 0° C and 3-5 mL of water were 

added dropwise [careful: exothermic reaction]. Then the temperature was raised to 100° C. 

After 3-4 hours the reaction was cooled to room temperature, DCM was added and the 

organic phase was washed with a 3 M HClaq solution, water and brine. Then the organic layer 

was dried over anhydrous Na2SO4 and the solvent evaporated in vacuo. Purification was 

accomplished by column chromatography (eluent: mixtures hexane:ethyl acetate). The 

isolated compound was then dissolved again in DCM and subjected to an acidic wash with a 

6 M HClaq solution to remove salt impurities and deliver the desired phosphoric acid 

catalysts. 

 

115a – The reaction sequence was performed on 0.144 mmol scale and the product was 

isolated in 32% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.86 (d, J = 8.1 Hz, 2H), 7.69 (s, 

2H), 7.46 (t, J = 8.1 Hz, 2H), 7.30-7.20 (m, 2H), 7.20-7.10 (m, 

4H), 3.45-3.10 (m, 4H), 2.95-2.60 (m, 4H), 1.50-0.80 (m, 48H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 146.4 (d, 

JCP = 7.8 Hz), 145.6, 144.8, 141.5, 140.8, 135.7, 135.6, 132.3, 

131.8, 131.1, 128.2, 127.3, 126.5, 126.1, 125.6, 121.8, 32.2, 

32.0, 29.3, 25.0, 25.0, 24.8, 23.5, 22.6, 22.2.  

31P-NMR (202 MHz, CDCl3): δ 0.73 (s).  

HRMS (m/z) calcd for C56H68O4P [M]-H: 835.4861, found: 835.4853. 

 

115b – The reaction sequence was performed on 0.765 mmol scale and the product was 

isolated in 87% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.92 (d, J = 8.2 Hz, 2H), 7.75 (s, 

2H), 7.58-7.46 (m, 4H), 7.40-7.32 (m, 2H), 6.81 (s, 2H), 2.90-

2.60 (m, 8H), 1.80-0.60 (m, 32H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 146.4 (d, 

JCP = 8.7 Hz), 141.9, 140.7, 140.2, 140.0, 133.2, 132.3, 131.8, 

131.4, 128.3, 127.8, 126.2, 125.7, 122.6 (d, JCP = 1.9 Hz), 

119.2, 34.8, 34.6, 31.5, 30.8, 26.8, 26.8, 26.6, 26.2, 25.9, 25.4.  
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31P-NMR (202 MHz, CDCl3): δ 1.89 (s).  

HRMS (m/z) calcd for C56H52O4P [M]-H: 819.3609, found: 819.3605. 

 

115c – For compound 138d, the ether cleavage was found significantly slow and the reaction 

was performed with 12 equiv. of BBr3 in dichloroethane under reflux (2 days). The reaction 

sequence was performed on 0.28 mmol scale and the product was isolated in 56% yield.  

1H-NMR (500 MHz, (CD3)2SO): δ 8.23 (d, J = 7.9 Hz, 2H), 7.80-

7.72 (m, 6H), 7.70-7.65 (m, 2H), 7.63 (s, 2H), 7.47 (t, J = 6.5 

Hz, 4H), 7.39 (d, J = 7.2 Hz, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.32 

(d, J = 7.2 Hz, 2H), 7.16-7.06 (m, 6H), 7.03 (t, J = 7.7 Hz, 2H), 

6.95-6.85 (m, 6H), 6.84-6.75 (m, 6H), 6.66 (t, J = 7.5 Hz, 2H), 

5.64 (s, 2H), 5.61 (s, 2H), 5.48 (s, 2H), 5.19 (s, 2H).  

13C-NMR (100 MHz, (CD3)2SO): δ 146.7, 146.6, 146.5, 146.3, 

146.1, 145.6, 145.5, 145.2, 145.1, 145.0, 143.3, 142.3, 141.9, 

141.5, 133.4, 132.6, 131.3, 130.2, 130.2, 129.6, 129.5, 128.0, 

126.9, 126.7, 125.8, 125.7, 125.4, 125.3, 125.2, 125.2, 125.1, 125.0, 124.8, 124.8, 124.0, 

123.8, 123.7, 123.4, 123.1, 123.1, 123.0, 120.0, 53.4, 53.2, 51.8, 51.7.   

31P-NMR (202 MHz, (CD3)2SO): δ 1.96 (s).  

HRMS (m/z) calcd for C88H53O4P [M]-H: 1203.3598, found: 1203.3615. 

 

139 – The reaction was performed on 0.654 mmol scale and the product was isolated in 70% 

yield.  

1H-NMR (500 MHz, CDCl3): δ 6.88 (s, 2H), 6.79 (s, 2H), 2.95-

2.75 (m, 12H), 2.62 (bs, 2H), 2.50-2.35 (m, 2H), 2.00-1.00 (m, 

40H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 144.5 (d, 

JCP = 9.0 Hz), 141.5, 140.6, 139.7, 139.6, 136.3, 134.1, 133.0, 

129.0 (d, JCP = 3.3 Hz), 128.0, 127.2, 118.8, 34.9, 34.6, 31.2, 

30.9, 29.8, 28.1, 27.1, 27.0, 26.9, 26.5, 26.5, 25.6, 25.5, 23.2, 

23.1.   

31P-NMR (202 MHz, CDCl3): δ 0.75 (s).  

HRMS (m/z) calcd for C56H60O4P [M]-H: 827.4235, found: 827.4234. 
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Chemical Formula: C56H61O4P
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7.4.1.1. Crystallographic data of compound 139 

 
 
The crystals were grown from a dichloromethane-acetic acid solution of 139 by slow 

evaporation of the chlorinated solvent at room temperature. The structure contains 

disordered hydrogen bonded chains of alternating phosphoric and acetic acid. The 

hydrophobic region of the crystal lattice appears to be filled with disordered 

dichloromethane, which sits on a crystallographic two-fold axis. P-O and C-O distances 

indicate that the hydroxyl H atoms are disordered. Probability ellipsoids are shown at the 

50% level and H atoms are omitted for clarity. 

 

Crystal data and structure refinement. 

Identification code  MOA-MC-200-01 (9164) 
Empirical formula  C117H132Cl2O12P2 

Color  colourless 
Formula weight  1863.06  g∙mol-1  
Temperature  100 K 
Wavelength  1.54178 Å 
Crystal system  tetragonal 
Space group  P 43 21 2 (no. 96)  
Unit cell dimensions a = 12.9475(3) Å α = 90°. 
 b = 12.9475(3) Å β = 90°. 
 c = 57.4120(15) Å γ = 90°. 
Volume 9624.4(5) Å3 
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Z 4 
Density (calculated) 1.286  Mg∙m-3 
Absorption coefficient 1.434 mm-1 
F(000) 3976 e 
Crystal size 0.12 x 0.11 x 0.05 mm3 
θ range for data collection 3.079 to 67.663°. 
Index ranges -13 ≤ h ≤ 15, -13 ≤ k ≤ 15, -60 ≤ l ≤ 68 
Reflections collected 143460 
Independent reflections 8581 [Rint = 0.0651] 

Reflections with I>2σ(I) 7316 
Completeness to θ = 67.663° 98.9 %  
Absorption correction Gaussian 
Max. and min. transmission 0.95681 and 0.87519 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 8581 / 6 / 622 
Goodness-of-fit on F2 1.798 
Final R indices [I>2σ(I)] R1 = 0.0825 wR2 = 0.2231 

R indices (all data) R1 = 0.0957 wR2 = 0.2290 

Absolute structure parameter 0.063(6) 
Extinction coefficient 0 
Largest diff. peak and hole 0.683 and -0.903 e∙Å-3 

 

Atomic coordinates and equivalent isotropic displacement parameters (Å2). 

 Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z Ueq 

C(1) 0.6692(4) 0.0616(4) 0.3677(1) 0.026(1) 

C(2) 0.5787(4) 0.0248(4) 0.3575(1) 0.025(1) 

C(3) 0.5588(4) 0.0287(4) 0.3338(1) 0.024(1) 

C(4) 0.6336(4) 0.0746(4) 0.3199(1) 0.026(1) 

C(5) 0.7227(4) 0.1210(4) 0.3295(1) 0.030(1) 

C(6) 0.7991(5) 0.1723(5) 0.3132(1) 0.033(1) 

C(7) 0.8770(5) 0.2393(6) 0.3241(1) 0.048(2) 

C(8) 0.9155(5) 0.1923(5) 0.3468(1) 0.046(2) 

C(9) 0.8280(4) 0.1777(5) 0.3641(1) 0.032(1) 

C(10) 0.7387(4) 0.1160(4) 0.3535(1) 0.027(1) 

C(11) 0.4630(4) -0.0162(4) 0.3228(1) 0.027(1) 

C(12) 0.3936(5) 0.0483(4) 0.3109(1) 0.029(1) 

C(13) 0.3108(5) 0.0087(4) 0.2981(1) 0.032(1) 

C(14) 0.2944(5) -0.0993(4) 0.2975(1) 0.034(1) 

C(15) 0.3608(4) -0.1639(4) 0.3096(1) 0.029(1) 
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C(16) 0.4440(4) -0.1225(4) 0.3225(1) 0.028(1) 

C(17) 0.3962(5) 0.1661(5) 0.3099(1) 0.041(2) 

C(18) 0.2930(5) 0.2062(5) 0.3193(1) 0.043(2) 

C(19) 0.2013(5) 0.1582(5) 0.3059(1) 0.040(2) 

C(20) 0.2455(5) 0.0872(5) 0.2865(1) 0.040(2) 

C(21) 0.3131(5) 0.1543(5) 0.2703(1) 0.044(2) 

C(22) 0.4024(6) 0.1991(5) 0.2846(1) 0.047(2) 

C(23) 0.5075(5) -0.2065(5) 0.3340(1) 0.033(1) 

C(24) 0.4342(5) -0.2696(5) 0.3500(1) 0.036(1) 

C(25) 0.3439(4) -0.3147(5) 0.3353(1) 0.034(1) 

C(26) 0.3554(4) -0.2789(4) 0.3100(1) 0.030(1) 

C(27) 0.4566(4) -0.3225(4) 0.3006(1) 0.034(1) 

C(28) 0.5473(5) -0.2779(5) 0.3153(1) 0.038(2) 

C(29) 0.6852(4) 0.0440(4) 0.3934(1) 0.026(1) 

C(30) 0.6156(4) 0.0787(4) 0.4095(1) 0.029(1) 

C(31) 0.6317(5) 0.0732(4) 0.4337(1) 0.030(1) 

C(32) 0.7197(5) 0.0259(4) 0.4409(1) 0.033(1) 

C(33) 0.7904(4) -0.0189(4) 0.4254(1) 0.030(1) 

C(34) 0.8853(5) -0.0708(5) 0.4347(1) 0.038(2) 

C(35) 0.9667(5) -0.0923(5) 0.4167(1) 0.043(2) 

C(36) 0.9162(5) -0.1421(5) 0.3954(1) 0.040(2) 

C(37) 0.8445(4) -0.0663(5) 0.3837(1) 0.034(1) 

C(38) 0.7730(4) -0.0107(4) 0.4011(1) 0.026(1) 

C(39) 0.5590(5) 0.1250(5) 0.4504(1) 0.033(1) 

C(40) 0.5642(4) 0.2319(4) 0.4531(1) 0.026(1) 

C(41) 0.4986(4) 0.2830(4) 0.4685(1) 0.024(1) 

C(42) 0.4282(4) 0.2264(4) 0.4824(1) 0.029(1) 

C(43) 0.4245(5) 0.1214(5) 0.4801(1) 0.033(1) 

C(44) 0.4881(5) 0.0697(5) 0.4641(1) 0.039(2) 

C(45) 0.6378(4) 0.3036(4) 0.4414(1) 0.026(1) 

C(46) 0.5756(5) 0.3876(4) 0.4279(1) 0.032(1) 

C(47) 0.4987(5) 0.4395(5) 0.4444(1) 0.036(1) 

C(48) 0.5147(5) 0.3971(4) 0.4694(1) 0.031(1) 

C(49) 0.6264(5) 0.4190(5) 0.4769(1) 0.034(1) 

C(50) 0.7008(5) 0.3588(5) 0.4604(1) 0.032(1) 

C(51) 0.4643(8) -0.0446(5) 0.4640(1) 0.064(2) 

C(52) 0.3425(7) -0.0567(7) 0.4597(2) 0.071(3) 

C(53) 0.2828(6) -0.0068(6) 0.4784(1) 0.060(2) 

C(54) 0.3562(5) 0.0524(5) 0.4947(1) 0.045(2) 
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C(55) 0.4278(6) -0.0276(5) 0.5070(1) 0.049(2) 

C(56) 0.4893(8) -0.0851(6) 0.4885(2) 0.079(3) 

C(57) 0.3102(5) 0.3976(5) 0.3789(1) 0.036(2) 

C(58) 0.3180(5) 0.5002(5) 0.3907(1) 0.039(2) 

O(1) 0.3811(3) 0.1407(3) 0.3733(1) 0.035(1) 

O(2) 0.3805(3) 0.0000(3) 0.4046(1) 0.037(1) 

O(3) 0.5014(3) -0.0159(3) 0.3724(1) 0.028(1) 

O(4) 0.5254(3) 0.1278(3) 0.4015(1) 0.031(1) 

O(5) 0.3677(3) 0.3275(3) 0.3887(1) 0.037(1) 

O(6) 0.2522(3) 0.3785(4) 0.3625(1) 0.042(1) 

P(1) 0.4409(1) 0.0667(1) 0.3872(1) 0.030(1) 

Cl(1) 1.0095(5) -0.0550(6) 0.4988(1) 0.113(2) 

Cl(2) 0.7964(10) -0.1535(8) 0.4988(3) 0.187(6) 

C(59) 0.869(3) -0.002(6) 0.4948(11) 0.34(3) 

 

 

Bond lengths [Å] and angles [°]. 

 

C(1)-C(2) 1.396(8) C(1)-C(10) 1.405(8)

C(1)-C(29) 1.503(8) C(2)-C(3) 1.384(7)

C(2)-O(3) 1.417(6) C(3)-C(4) 1.390(7)

C(3)-C(11) 1.506(8) C(4)-C(5) 1.413(8)

C(4)-H(4) 0.9500 C(5)-C(10) 1.396(8)

C(5)-C(6) 1.516(8) C(6)-C(7) 1.471(9)

C(6)-H(6A) 0.9900 C(6)-H(6B) 0.9900

C(7)-C(8) 1.523(10) C(7)-H(7A) 0.9900

C(7)-H(7B) 0.9900 C(8)-C(9) 1.519(9)

C(8)-H(8A) 0.9900 C(8)-H(8B) 0.9900

C(9)-C(10) 1.532(8) C(9)-H(9A) 0.9900

C(9)-H(9B) 0.9900 C(11)-C(16) 1.399(8)

C(11)-C(12) 1.405(8) C(12)-C(13) 1.398(8)

C(12)-C(17) 1.526(8) C(13)-C(14) 1.415(8)

C(13)-C(20) 1.480(8) C(14)-C(15) 1.386(8)

C(14)-H(14) 0.9500 C(15)-C(16) 1.413(8)

C(15)-C(26) 1.490(8) C(16)-C(23) 1.514(8)

C(17)-C(22) 1.518(9) C(17)-C(18) 1.533(10)

C(17)-H(17) 1.0000 C(18)-C(19) 1.543(9)

C(18)-H(18A) 0.9900 C(18)-H(18B) 0.9900

C(19)-C(20) 1.556(9) C(19)-H(19A) 0.9900
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C(19)-H(19B) 0.9900 C(20)-C(21) 1.543(9)

C(20)-H(20) 1.0000 C(21)-C(22) 1.530(9)

C(21)-H(21A) 0.9900 C(21)-H(21B) 0.9900

C(22)-H(22A) 0.9900 C(22)-H(22B) 0.9900

C(23)-C(28) 1.508(8) C(23)-C(24) 1.555(8)

C(23)-H(23) 1.0000 C(24)-C(25) 1.555(8)

C(24)-H(24A) 0.9900 C(24)-H(24B) 0.9900

C(25)-C(26) 1.534(8) C(25)-H(25A) 0.9900

C(25)-H(25B) 0.9900 C(26)-C(27) 1.526(8)

C(26)-H(26) 1.0000 C(27)-C(28) 1.555(9)

C(27)-H(27A) 0.9900 C(27)-H(27B) 0.9900

C(28)-H(28A) 0.9900 C(28)-H(28B) 0.9900

C(29)-C(30) 1.369(8) C(29)-C(38) 1.412(8)

C(30)-C(31) 1.403(8) C(30)-O(4) 1.409(7)

C(31)-C(32) 1.359(8) C(31)-C(39) 1.502(8)

C(32)-C(33) 1.404(8) C(32)-H(32) 0.9500

C(33)-C(38) 1.413(8) C(33)-C(34) 1.501(8)

C(34)-C(35) 1.504(9) C(34)-H(34A) 0.9900

C(34)-H(34B) 0.9900 C(35)-C(36) 1.528(9)

C(35)-H(35A) 0.9900 C(35)-H(35B) 0.9900

C(36)-C(37) 1.507(8) C(36)-H(36A) 0.9900

C(36)-H(36B) 0.9900 C(37)-C(38) 1.541(8)

C(37)-H(37A) 0.9900 C(37)-H(37B) 0.9900

C(39)-C(40) 1.395(8) C(39)-C(44) 1.407(8)

C(40)-C(41) 1.394(8) C(40)-C(45) 1.490(7)

C(41)-C(42) 1.416(7) C(41)-C(48) 1.492(8)

C(42)-C(43) 1.367(8) C(42)-H(42) 0.9500

C(43)-C(44) 1.402(9) C(43)-C(54) 1.511(8)

C(44)-C(51) 1.512(9) C(45)-C(50) 1.541(8)

C(45)-C(46) 1.558(8) C(45)-H(45) 1.0000

C(46)-C(47) 1.528(8) C(46)-H(46A) 0.9900

C(46)-H(46B) 0.9900 C(47)-C(48) 1.553(8)

C(47)-H(47A) 0.9900 C(47)-H(47B) 0.9900

C(48)-C(49) 1.535(8) C(48)-H(48) 1.0000

C(49)-C(50) 1.558(8) C(49)-H(49A) 0.9900

C(49)-H(49B) 0.9900 C(50)-H(50A) 0.9900

C(50)-H(50B) 0.9900 C(51)-C(56) 1.535(12)

C(51)-C(52) 1.605(13) C(51)-H(51) 1.0000

C(52)-C(53) 1.473(11) C(52)-H(52A) 0.9900
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C(52)-H(52B) 0.9900 C(53)-C(54) 1.541(9)

C(53)-H(53A) 0.9900 C(53)-H(53B) 0.9900

C(54)-C(55) 1.557(10) C(54)-H(54) 1.0000

C(55)-C(56) 1.522(11) C(55)-H(55A) 0.9900

C(55)-H(55B) 0.9900 C(56)-H(56A) 0.9900

C(56)-H(56B) 0.9900 C(57)-O(6) 1.229(7)

C(57)-O(5) 1.301(7) C(57)-C(58) 1.496(9)

C(58)-H(58A) 0.9800 C(58)-H(58B) 0.9800

C(58)-H(58C) 0.9800 O(1)-P(1) 1.468(4)

O(1)-H(1) 0.8400 O(2)-P(1) 1.533(4)

O(2)-H(2) 0.8400 O(3)-P(1) 1.576(4)

O(4)-P(1) 1.577(4) O(5)-H(5) 1.10(16)

O(6)-H(6) 1.01(16) Cl(1)-C(59) 1.96(4)

Cl(2)-C(59) 2.18(7) C(59)-H(59A) 0.9900

C(59)-H(59B) 0.9900 

 

C(2)-C(1)-C(10) 117.6(5) C(2)-C(1)-C(29) 118.6(5)

C(10)-C(1)-C(29) 123.8(5) C(3)-C(2)-C(1) 124.0(5)

C(3)-C(2)-O(3) 118.4(5) C(1)-C(2)-O(3) 117.6(5)

C(2)-C(3)-C(4) 116.8(5) C(2)-C(3)-C(11) 123.3(5)

C(4)-C(3)-C(11) 119.9(5) C(3)-C(4)-C(5) 121.7(5)

C(3)-C(4)-H(4) 119.1 C(5)-C(4)-H(4) 119.1

C(10)-C(5)-C(4) 119.2(5) C(10)-C(5)-C(6) 122.3(5)

C(4)-C(5)-C(6) 118.5(5) C(7)-C(6)-C(5) 116.2(5)

C(7)-C(6)-H(6A) 108.2 C(5)-C(6)-H(6A) 108.2  

C(7)-C(6)-H(6B) 108.2 C(5)-C(6)-H(6B) 108.2

H(6A)-C(6)-H(6B) 107.4 C(6)-C(7)-C(8) 110.8(5)

C(6)-C(7)-H(7A) 109.5 C(8)-C(7)-H(7A) 109.5  

C(6)-C(7)-H(7B) 109.5 C(8)-C(7)-H(7B) 109.5

H(7A)-C(7)-H(7B) 108.1 C(9)-C(8)-C(7) 111.5(5)

C(9)-C(8)-H(8A) 109.3 C(7)-C(8)-H(8A) 109.3  

C(9)-C(8)-H(8B) 109.3 C(7)-C(8)-H(8B) 109.3

H(8A)-C(8)-H(8B) 108.0 C(8)-C(9)-C(10) 111.6(5)

C(8)-C(9)-H(9A) 109.3 C(10)-C(9)-H(9A) 109.3  

C(8)-C(9)-H(9B) 109.3 C(10)-C(9)-H(9B) 109.3

H(9A)-C(9)-H(9B) 108.0 C(5)-C(10)-C(1) 120.2(5)

C(5)-C(10)-C(9) 118.8(5) C(1)-C(10)-C(9) 120.9(5)

C(16)-C(11)-C(12) 117.7(5) C(16)-C(11)-C(3) 122.1(5)

C(12)-C(11)-C(3) 120.1(5) C(13)-C(12)-C(11) 122.0(5)
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C(13)-C(12)-C(17) 111.3(5) C(11)-C(12)-C(17) 126.7(5)

C(12)-C(13)-C(14) 119.4(5) C(12)-C(13)-C(20) 115.0(5)

C(14)-C(13)-C(20) 125.6(5) C(15)-C(14)-C(13) 119.4(6)

C(15)-C(14)-H(14) 120.3 C(13)-C(14)-H(14) 120.3

C(14)-C(15)-C(16) 120.4(5) C(14)-C(15)-C(26) 125.6(5)

C(16)-C(15)-C(26) 114.0(5) C(11)-C(16)-C(15) 121.0(5)

C(11)-C(16)-C(23) 127.2(5) C(15)-C(16)-C(23) 111.7(5)

C(22)-C(17)-C(12) 108.6(5) C(22)-C(17)-C(18) 106.7(6)

C(12)-C(17)-C(18) 107.8(5) C(22)-C(17)-H(17) 111.2

C(12)-C(17)-H(17) 111.2 C(18)-C(17)-H(17) 111.2

C(17)-C(18)-C(19) 111.0(5) C(17)-C(18)-H(18A) 109.4

C(19)-C(18)-H(18A) 109.4 C(17)-C(18)-H(18B) 109.4

C(19)-C(18)-H(18B) 109.4 H(18A)-C(18)-H(18B) 108.0

C(18)-C(19)-C(20) 108.2(5) C(18)-C(19)-H(19A) 110.1

C(20)-C(19)-H(19A) 110.1 C(18)-C(19)-H(19B) 110.1

C(20)-C(19)-H(19B) 110.1 H(19A)-C(19)-H(19B) 108.4

C(13)-C(20)-C(21) 109.5(5) C(13)-C(20)-C(19) 107.0(5)

C(21)-C(20)-C(19) 107.9(5) C(13)-C(20)-H(20) 110.8

C(21)-C(20)-H(20) 110.8 C(19)-C(20)-H(20) 110.8

C(22)-C(21)-C(20) 108.7(5) C(22)-C(21)-H(21A) 109.9

C(20)-C(21)-H(21A) 109.9 C(22)-C(21)-H(21B) 109.9

C(20)-C(21)-H(21B) 109.9 H(21A)-C(21)-H(21B) 108.3

C(17)-C(22)-C(21) 111.4(5) C(17)-C(22)-H(22A) 109.4

C(21)-C(22)-H(22A) 109.4 C(17)-C(22)-H(22B) 109.4

C(21)-C(22)-H(22B) 109.4 H(22A)-C(22)-H(22B) 108.0

C(28)-C(23)-C(16) 108.4(5) C(28)-C(23)-C(24) 108.0(5)

C(16)-C(23)-C(24) 107.7(5) C(28)-C(23)-H(23) 110.9

C(16)-C(23)-H(23) 110.9 C(24)-C(23)-H(23) 110.9

C(25)-C(24)-C(23) 109.5(4) C(25)-C(24)-H(24A) 109.8

C(23)-C(24)-H(24A) 109.8 C(25)-C(24)-H(24B) 109.8

C(23)-C(24)-H(24B) 109.8 H(24A)-C(24)-H(24B) 108.2

C(26)-C(25)-C(24) 109.1(5) C(26)-C(25)-H(25A) 109.9

C(24)-C(25)-H(25A) 109.9 C(26)-C(25)-H(25B) 109.9

C(24)-C(25)-H(25B) 109.9 H(25A)-C(25)-H(25B) 108.3

C(15)-C(26)-C(27) 108.9(5) C(15)-C(26)-C(25) 108.8(5)

C(27)-C(26)-C(25) 107.8(5) C(15)-C(26)-H(26) 110.4

C(27)-C(26)-H(26) 110.4 C(25)-C(26)-H(26) 110.4

C(26)-C(27)-C(28) 108.7(5) C(26)-C(27)-H(27A) 110.0

C(28)-C(27)-H(27A) 110.0 C(26)-C(27)-H(27B) 110.0
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C(28)-C(27)-H(27B) 110.0 H(27A)-C(27)-H(27B) 108.3

C(23)-C(28)-C(27) 110.8(5) C(23)-C(28)-H(28A) 109.5

C(27)-C(28)-H(28A) 109.5 C(23)-C(28)-H(28B) 109.5

C(27)-C(28)-H(28B) 109.5 H(28A)-C(28)-H(28B) 108.1

C(30)-C(29)-C(38) 118.7(5) C(30)-C(29)-C(1) 121.5(5)

C(38)-C(29)-C(1) 119.7(5) C(29)-C(30)-C(31) 123.8(5)

C(29)-C(30)-O(4) 118.1(5) C(31)-C(30)-O(4) 118.0(5)

C(32)-C(31)-C(30) 116.6(5) C(32)-C(31)-C(39) 122.1(5)

C(30)-C(31)-C(39) 121.1(5) C(31)-C(32)-C(33) 122.6(5)

C(31)-C(32)-H(32) 118.7 C(33)-C(32)-H(32) 118.7

C(32)-C(33)-C(38) 119.4(5) C(32)-C(33)-C(34) 119.4(5)

C(38)-C(33)-C(34) 121.2(5) C(33)-C(34)-C(35) 114.1(5)

C(33)-C(34)-H(34A) 108.7 C(35)-C(34)-H(34A) 108.7

C(33)-C(34)-H(34B) 108.7 C(35)-C(34)-H(34B) 108.7

H(34A)-C(34)-H(34B) 107.6 C(34)-C(35)-C(36) 109.3(5)

C(34)-C(35)-H(35A) 109.8 C(36)-C(35)-H(35A) 109.8

C(34)-C(35)-H(35B) 109.8 C(36)-C(35)-H(35B) 109.8

H(35A)-C(35)-H(35B) 108.3 C(37)-C(36)-C(35) 110.1(5)

C(37)-C(36)-H(36A) 109.6 C(35)-C(36)-H(36A) 109.6

C(37)-C(36)-H(36B) 109.6 C(35)-C(36)-H(36B) 109.6

H(36A)-C(36)-H(36B) 108.1 C(36)-C(37)-C(38) 112.7(5)

C(36)-C(37)-H(37A) 109.1 C(38)-C(37)-H(37A) 109.1

C(36)-C(37)-H(37B) 109.1 C(38)-C(37)-H(37B) 109.1

H(37A)-C(37)-H(37B) 107.8 C(29)-C(38)-C(33) 118.5(5)

C(29)-C(38)-C(37) 120.9(5) C(33)-C(38)-C(37) 120.5(5)

C(40)-C(39)-C(44) 118.3(5) C(40)-C(39)-C(31) 119.0(5)

C(44)-C(39)-C(31) 122.7(5) C(41)-C(40)-C(39) 120.9(5)

C(41)-C(40)-C(45) 112.4(5) C(39)-C(40)-C(45) 126.7(5)

C(40)-C(41)-C(42) 120.3(5) C(40)-C(41)-C(48) 114.0(5)

C(42)-C(41)-C(48) 125.7(5) C(43)-C(42)-C(41) 118.9(5)

C(43)-C(42)-H(42) 120.6 C(41)-C(42)-H(42) 120.5

C(42)-C(43)-C(44) 121.1(5) C(42)-C(43)-C(54) 123.7(5)

C(44)-C(43)-C(54) 115.2(5) C(43)-C(44)-C(39) 120.5(5)

C(43)-C(44)-C(51) 110.5(5) C(39)-C(44)-C(51) 128.9(6)

C(40)-C(45)-C(50) 107.8(4) C(40)-C(45)-C(46) 109.2(4)

C(50)-C(45)-C(46) 107.6(4) C(40)-C(45)-H(45) 110.7

C(50)-C(45)-H(45) 110.7 C(46)-C(45)-H(45) 110.7

C(47)-C(46)-C(45) 109.7(4) C(47)-C(46)-H(46A) 109.7

C(45)-C(46)-H(46A) 109.7 C(47)-C(46)-H(46B) 109.7
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C(45)-C(46)-H(46B) 109.7 H(46A)-C(46)-H(46B) 108.2

C(46)-C(47)-C(48) 109.2(5) C(46)-C(47)-H(47A) 109.8

C(48)-C(47)-H(47A) 109.8 C(46)-C(47)-H(47B) 109.8

C(48)-C(47)-H(47B) 109.8 H(47A)-C(47)-H(47B) 108.3

C(41)-C(48)-C(49) 108.9(5) C(41)-C(48)-C(47) 107.5(5)

C(49)-C(48)-C(47) 108.6(5) C(41)-C(48)-H(48) 110.6

C(49)-C(48)-H(48) 110.6 C(47)-C(48)-H(48) 110.6

C(48)-C(49)-C(50) 108.7(5) C(48)-C(49)-H(49A) 110.0

C(50)-C(49)-H(49A) 110.0 C(48)-C(49)-H(49B) 110.0

C(50)-C(49)-H(49B) 110.0 H(49A)-C(49)-H(49B) 108.3

C(45)-C(50)-C(49) 109.6(5) C(45)-C(50)-H(50A) 109.8

C(49)-C(50)-H(50A) 109.8 C(45)-C(50)-H(50B) 109.8

C(49)-C(50)-H(50B) 109.8 H(50A)-C(50)-H(50B) 108.2

C(44)-C(51)-C(56) 106.7(6) C(44)-C(51)-C(52) 107.3(7)

C(56)-C(51)-C(52) 108.4(7) C(44)-C(51)-H(51) 111.4

C(56)-C(51)-H(51) 111.4 C(52)-C(51)-H(51) 111.4

C(53)-C(52)-C(51) 111.1(6) C(53)-C(52)-H(52A) 109.4

C(51)-C(52)-H(52A) 109.4 C(53)-C(52)-H(52B) 109.4

C(51)-C(52)-H(52B) 109.4 H(52A)-C(52)-H(52B) 108.0

C(52)-C(53)-C(54) 109.8(6) C(52)-C(53)-H(53A) 109.7

C(54)-C(53)-H(53A) 109.7 C(52)-C(53)-H(53B) 109.7

C(54)-C(53)-H(53B) 109.7 H(53A)-C(53)-H(53B) 108.2

C(43)-C(54)-C(53) 108.4(5) C(43)-C(54)-C(55) 107.2(6)

C(53)-C(54)-C(55) 108.2(6) C(43)-C(54)-H(54) 111.0

C(53)-C(54)-H(54) 111.0 C(55)-C(54)-H(54) 111.0

C(56)-C(55)-C(54) 108.8(6) C(56)-C(55)-H(55A) 109.9

C(54)-C(55)-H(55A) 109.9 C(56)-C(55)-H(55B) 109.9

C(54)-C(55)-H(55B) 109.9 H(55A)-C(55)-H(55B) 108.3

C(55)-C(56)-C(51) 111.2(7) C(55)-C(56)-H(56A) 109.4

C(51)-C(56)-H(56A) 109.4 C(55)-C(56)-H(56B) 109.4

C(51)-C(56)-H(56B) 109.4 H(56A)-C(56)-H(56B) 108.0  

O(6)-C(57)-O(5) 122.7(6) O(6)-C(57)-C(58) 124.6(6)

O(5)-C(57)-C(58) 112.6(5) C(57)-C(58)-H(58A) 109.5

C(57)-C(58)-H(58B) 109.5 H(58A)-C(58)-H(58B) 109.5

C(57)-C(58)-H(58C) 109.5 H(58A)-C(58)-H(58C) 109.5

H(58B)-C(58)-H(58C) 109.5 P(1)-O(1)-H(1) 109.5  

P(1)-O(2)-H(2) 109.5 C(2)-O(3)-P(1) 115.2(3)

C(30)-O(4)-P(1) 121.3(3) C(57)-O(5)-H(5) 111(7)

C(57)-O(6)-H(6) 129(9) O(1)-P(1)-O(2) 116.9(2)
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O(1)-P(1)-O(3) 114.3(2) O(2)-P(1)-O(3) 102.9(2)

O(1)-P(1)-O(4) 108.6(2) O(2)-P(1)-O(4) 107.4(2)

O(3)-P(1)-O(4) 106.0(2) Cl(1)-C(59)-Cl(2) 94(3)  

Cl(1)-C(59)-H(59A) 112.9 Cl(2)-C(59)-H(59A) 112.9  

Cl(1)-C(59)-H(59B) 112.9 Cl(2)-C(59)-H(59B) 112.9

H(59A)-C(59)-H(59B) 110.3  

 

 

Anisotropic displacement parameters (Å2).  

The anisotropic displacement factor exponent takes the form:  
 -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. 

 
 U11 U22 U33 U23 U13 U12 

C(1) 0.028(3)  0.019(3) 0.029(3)  -0.001(2) 0.001(2)  0.000(2) 

C(2) 0.025(3)  0.028(3) 0.023(3)  -0.002(2) 0.003(2)  -0.005(2) 

C(3) 0.028(3)  0.021(3) 0.024(3)  -0.002(2) -0.001(2)  0.002(2) 

C(4) 0.032(3)  0.024(3) 0.023(3)  -0.003(2) -0.003(2)  0.001(2) 

C(5) 0.032(3)  0.028(3) 0.029(3)  -0.004(2) 0.003(3)  0.006(2) 

C(6) 0.034(3)  0.030(3) 0.035(3)  0.004(3) 0.005(3)  0.006(3) 

C(7) 0.046(4)  0.050(4) 0.048(4)  0.001(3) 0.010(3)  -0.011(3) 

C(8) 0.039(4)  0.040(4) 0.058(4)  -0.001(3) -0.003(3)  -0.006(3) 

C(9) 0.028(3)  0.029(3) 0.040(3)  -0.002(3) -0.003(3)  -0.004(2) 

C(10) 0.027(3)  0.025(3) 0.031(3)  -0.005(2) -0.002(2)  0.006(2) 

C(11) 0.030(3)  0.023(3) 0.027(3)  0.000(2) 0.002(2)  0.002(2) 

C(12) 0.038(3)  0.020(3) 0.030(3)  0.001(2) -0.005(3)  0.002(2) 

C(13) 0.044(4)  0.029(3) 0.023(3)  0.002(2) -0.005(3)  -0.001(3) 

C(14) 0.047(4)  0.029(3) 0.026(3)  -0.002(2) 0.000(3)  0.000(3) 

C(15) 0.034(3)  0.027(3) 0.026(3)  -0.003(2) 0.002(2)  0.005(2) 

C(16) 0.031(3)  0.030(3) 0.024(3)  0.000(2) 0.002(2)  0.001(2) 

C(17) 0.053(4)  0.023(3) 0.047(4)  -0.001(3) -0.013(3)  -0.002(3) 

C(18) 0.059(4)  0.020(3) 0.049(4)  -0.008(3) -0.020(3)  0.015(3) 

C(19) 0.049(4)  0.033(3) 0.038(4)  0.000(3) -0.012(3)  0.011(3) 

C(20) 0.053(4)  0.033(3) 0.035(3)  0.003(3) -0.011(3)  0.003(3) 

C(21) 0.058(4)  0.037(4) 0.038(4)  0.004(3) -0.006(3)  -0.004(3) 

C(22) 0.063(4)  0.032(3) 0.047(4)  0.012(3) -0.021(3)  -0.016(3) 

C(23) 0.036(3)  0.032(3) 0.031(3)  0.002(3) -0.003(3)  0.000(3) 

C(24) 0.043(3)  0.034(3) 0.031(3)  0.010(3) -0.002(3)  -0.003(3) 

C(25) 0.031(3)  0.035(3) 0.036(3)  0.010(3) 0.003(3)  0.003(3) 

C(26) 0.027(3)  0.034(3) 0.030(3)  0.000(3) -0.001(2)  -0.003(2) 
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C(27) 0.040(3)  0.024(3) 0.037(3)  -0.002(3) 0.002(3)  0.004(3) 

C(28) 0.033(3)  0.034(3) 0.048(4)  0.006(3) 0.007(3)  0.006(3) 

C(29) 0.031(3)  0.025(3) 0.023(3)  -0.008(2) -0.002(2)  -0.003(2) 

C(30) 0.030(3)  0.026(3) 0.031(3)  -0.003(2) -0.002(2)  -0.006(3) 

C(31) 0.046(4)  0.024(3) 0.019(3)  0.000(2) -0.002(3)  0.001(3) 

C(32) 0.043(4)  0.029(3) 0.027(3)  0.001(2) -0.007(3)  -0.006(3) 

C(33) 0.033(3)  0.022(3) 0.036(3)  0.004(2) -0.010(3)  -0.004(2) 

C(34) 0.039(3)  0.032(3) 0.043(4)  0.011(3) -0.010(3)  -0.003(3) 

C(35) 0.040(4)  0.026(3) 0.063(5)  0.009(3) -0.009(3)  0.001(3) 

C(36) 0.028(3)  0.027(3) 0.064(4)  0.002(3) 0.001(3)  0.001(3) 

C(37) 0.031(3)  0.030(3) 0.040(4)  0.000(3) 0.002(3)  -0.001(3) 

C(38) 0.030(3)  0.017(3) 0.031(3)  0.000(2) -0.002(2)  -0.002(2) 

C(39) 0.047(4)  0.033(3) 0.020(3)  -0.004(2) 0.005(3)  0.001(3) 

C(40) 0.029(3)  0.027(3) 0.021(3)  0.001(2) -0.005(2)  -0.005(2) 

C(41) 0.027(3)  0.022(3) 0.022(3)  -0.001(2) -0.002(2)  -0.005(2) 

C(42) 0.027(3)  0.036(3) 0.024(3)  0.002(2) 0.003(2)  -0.008(3) 

C(43) 0.039(3)  0.038(3) 0.023(3)  -0.005(3) 0.003(3)  -0.013(3) 

C(44) 0.066(4)  0.027(3) 0.024(3)  -0.002(3) 0.003(3)  -0.020(3) 

C(45) 0.030(3)  0.025(3) 0.023(3)  0.001(2) -0.001(2)  0.001(2) 

C(46) 0.041(3)  0.023(3) 0.031(3)  0.004(2) -0.001(3)  -0.002(3) 

C(47) 0.041(4)  0.035(3) 0.034(3)  0.008(3) -0.002(3)  0.005(3) 

C(48) 0.040(3)  0.029(3) 0.026(3)  0.000(2) 0.006(3)  0.000(3) 

C(49) 0.042(3)  0.030(3) 0.031(3)  0.002(2) -0.005(3)  -0.001(3) 

C(50) 0.031(3)  0.033(3) 0.033(3)  0.003(3) -0.006(2)  -0.010(3) 

C(51) 0.110(7)  0.031(4) 0.051(4)  -0.012(3) 0.033(4)  -0.011(4) 

C(52) 0.083(6)  0.068(5) 0.063(5)  -0.011(4) 0.019(5)  -0.042(5) 

C(53) 0.070(5)  0.057(5) 0.052(4)  0.001(4) 0.000(4)  -0.039(4) 

C(54) 0.058(4)  0.043(4) 0.033(4)  0.003(3) 0.003(3)  -0.024(3) 

C(55) 0.058(4)  0.043(4) 0.045(4)  0.008(3) 0.008(3)  -0.009(3) 

C(56) 0.115(8)  0.031(4) 0.092(7)  0.013(4) 0.036(6)  -0.007(5) 

C(57) 0.032(3)  0.043(4) 0.035(4)  -0.001(3) 0.009(3)  -0.007(3) 

C(58) 0.040(4)  0.032(3) 0.045(4)  -0.002(3) -0.002(3)  0.001(3) 

O(1) 0.030(2)  0.038(2) 0.036(2)  0.002(2) -0.005(2)  0.008(2) 

O(2) 0.035(2)  0.044(3) 0.031(2)  0.002(2) 0.009(2)  -0.005(2) 

O(3) 0.028(2)  0.030(2) 0.026(2)  -0.002(2) 0.006(2)  0.004(2) 

O(4) 0.030(2)  0.035(2) 0.026(2)  -0.003(2) -0.001(2)  0.003(2) 

O(5) 0.032(2)  0.036(2) 0.044(2)  0.001(2) -0.004(2)  0.005(2) 

O(6) 0.039(2)  0.049(3) 0.039(3)  -0.009(2) -0.002(2)  0.011(2) 

P(1) 0.030(1)  0.033(1) 0.028(1)  -0.002(1) 0.003(1)  0.002(1) 
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Cl(1) 0.140(5)  0.126(5) 0.074(3)  -0.032(4) -0.017(4)  0.030(4) 

Cl(2) 0.288(16)  0.160(8) 0.113(5)  -0.011(7) 0.080(12)  0.031(10) 

C(59) 0.11(3)  0.54(7) 0.36(6)  -0.03(5) -0.10(4)  0.04(4) 

 

 

Hydrogen coordinates and isotropic displacement parameters (Å2).  
 x  y  z  Ueq 

H(4) 0.6247 0.0747 0.3034 0.031 

H(6A) 0.8356 0.1175 0.3044 0.039 

H(6B) 0.7599 0.2140 0.3017 0.039 

H(7A) 0.8465 0.3080 0.3272 0.058 

H(7B) 0.9359 0.2488 0.3133 0.058 

H(8A) 0.9481 0.1247 0.3436 0.055 

H(8B) 0.9687 0.2380 0.3537 0.055 

H(9A) 0.8024 0.2461 0.3692 0.039 

H(9B) 0.8544 0.1410 0.3780 0.039 

H(14) 0.2383 -0.1273 0.2889 0.041 

H(17) 0.4556 0.1942 0.3191 0.049 

H(18A) 0.2906 0.2823 0.3178 0.051 

H(18B) 0.2871 0.1889 0.3360 0.051 

H(19A) 0.1583 0.2134 0.2990 0.048 

H(19B) 0.1577 0.1174 0.3167 0.048 

H(20) 0.1884 0.0536 0.2775 0.048 

H(21A) 0.3405 0.1118 0.2574 0.053 

H(21B) 0.2713 0.2109 0.2636 0.053 

H(22A) 0.4688 0.1755 0.2779 0.057 

H(22B) 0.4005 0.2754 0.2836 0.057 

H(23) 0.5658 -0.1761 0.3431 0.040 

H(24A) 0.4730 -0.3265 0.3575 0.043 

H(24B) 0.4063 -0.2244 0.3624 0.043 

H(25A) 0.3452 -0.3911 0.3360 0.041 

H(25B) 0.2770 -0.2907 0.3417 0.041 

H(26) 0.2958 -0.3037 0.3004 0.036 

H(27A) 0.4652 -0.3031 0.2840 0.041 

H(27B) 0.4561 -0.3988 0.3017 0.041 

H(28A) 0.5862 -0.3353 0.3225 0.046 

H(28B) 0.5951 -0.2396 0.3049 0.046 

H(32) 0.7340 0.0231 0.4571 0.040 

H(34A) 0.8649 -0.1369 0.4421 0.046 
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H(34B) 0.9156 -0.0265 0.4470 0.046 

H(35A) 1.0197 -0.1392 0.4232 0.052 

H(35B) 1.0009 -0.0270 0.4121 0.052 

H(36A) 0.9703 -0.1641 0.3843 0.048 

H(36B) 0.8769 -0.2040 0.4002 0.048 

H(37A) 0.8018 -0.1035 0.3721 0.040 

H(37B) 0.8861 -0.0143 0.3753 0.040 

H(42) 0.3844 0.2608 0.4932 0.035 

H(45) 0.6844 0.2648 0.4306 0.031 

H(46A) 0.6236 0.4399 0.4215 0.038 

H(46B) 0.5381 0.3554 0.4147 0.038 

H(47A) 0.4272 0.4252 0.4391 0.044 

H(47B) 0.5094 0.5152 0.4442 0.044 

H(48) 0.4648 0.4299 0.4804 0.038 

H(49A) 0.6370 0.3966 0.4932 0.041 

H(49B) 0.6406 0.4940 0.4759 0.041 

H(50A) 0.7503 0.4074 0.4532 0.039 

H(50B) 0.7406 0.3074 0.4695 0.039 

H(51) 0.5052 -0.0817 0.4518 0.077 

H(52A) 0.3241 -0.0251 0.4445 0.086 

H(52B) 0.3245 -0.1310 0.4590 0.086 

H(53A) 0.2444 -0.0597 0.4873 0.071 

H(53B) 0.2320 0.0417 0.4715 0.071 

H(54) 0.3165 0.0937 0.5064 0.054 

H(55A) 0.4754 0.0084 0.5178 0.059 

H(55B) 0.3857 -0.0769 0.5161 0.059 

H(56A) 0.4729 -0.1597 0.4893 0.095 

H(56B) 0.5640 -0.0766 0.4916 0.095 

H(58A) 0.2771 0.5512 0.3821 0.059 

H(58B) 0.3904 0.5221 0.3911 0.059 

H(58C) 0.2916 0.4945 0.4067 0.059 

H(1) 0.4216 0.1816 0.3666 0.052 

H(2) 0.3337 -0.0321 0.3975 0.055 

H(5) 0.341(11) 0.250(12) 0.384(2) 0.056 

H(6) 0.201(13) 0.426(13) 0.355(3) 0.064 

H(59A) 0.8569 0.0284 0.4792 0.402 

H(59B) 0.8483 0.0472 0.5072 0.402 
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7.4.2. Preparation of starting materials 

When not commercially available, the epoxides for the ring opening reaction were 

synthesized as described below, following literature procedures. 

 Procedure A 

 

 To  a solution of m-chloroperbenzoic acid ([70%], 1.2 equiv.) in dichloromethane was 

added the corresponding olefin in dichloromethane at 0 °C and the reaction was stirred at 

room temperature for 24 h. After the olefin was completely converted (TLC), the reaction 

was diluted with dichloromethane and the solution was washed with a saturated aqueous 

solution of Na2S2O3, a saturated aqueous solution of NaHCO3, water and brine. The 

recovered organic phase was dried over Na2SO4 and the solvent was removed with rotatory 

evaporator [for volatile epoxides the pressure was kept at 250 mBar and the temperature of 

the bath at 30 °C]. The crude product was purified by flash chromatography on silica gel 

(eluent: pentane/Et2O) to afford the desired epoxide. 

 

cis-1,2-Epoxy-4-cyclohexene (50b) – The reaction was performed on 5 mmol scale and the 

product was isolated in 61% yield.  

1H-NMR (500 MHz, CDCl3): δ 5.44 (s, 2H), 3.25 (s, 2H), 2.57 (d, 

J = 18.6 Hz, 2H), 2.44 (d, J = 18.5 Hz, 2H).  

13C-NMR (125 MHz, CDCl3): δ 121.8, 51.2, 25.2.  

HRMS (m/z) calcd for C6H8O [M]: 96.0575, found: 96.0574. 

 

cis-2,3-Epoxy-1,4-dihydronaphthalene (50c) – The reaction was performed on 5 mmol scale 
and the product was isolated in 75% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.17-7.11 (m, 2H), 7.08-7.01 (m, 

2H), 3.48 (s, 2H), 3.32 (d, J = 17.1 Hz, 2H), 3.20 (d, J = 17.6 Hz, 

2H).  

13C-NMR (125 MHz, CDCl3): δ 131.7, 129.5, 126.8, 52.0, 29.9.  

HRMS (m/z) calcd for C10H10O [M]: 146.0732, found: 146.0731. 
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6-Oxa-3-oxa-bicyclo[3.1.0]hexane (50f) – The reaction was performed on 5 mmol scale and 

the product was isolated in 58% yield.  

1H-NMR (500 MHz, CDCl3): δ 4.02 (d, J = 10.5 Hz, 2H), 3.78 (s, 

2H), 3.65 (d, J = 10.5 Hz, 2H).  

13C-NMR (125 MHz, CDCl3): δ 67.5, 56.1.  

HRMS (m/z) calcd for C4H6O2 [M]: 86.0368, found: 86.0368. 

 

Benzyl 6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (50g) – The reaction was performed 

on 2.5 mmol scale and the product was isolated in 79% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.39-7.28 (m, 5H), 5.13 (d, J = 

12.4 Hz, 1H), 5.09 (d, J = 12.4 Hz, 1H), 3.87 (dd, J = 24.5, J = 

12.8 Hz, 2H), 3.71-3.66 (m, 2H), 3.39 (ddd, J = 7.9, J = 4.8, J = 

0.8 Hz, 2H).  

13C-NMR (125 MHz, CDCl3): δ 155.5, 136.8, 128.7, 128.3, 128.2, 67.2, 55.7, 55.2, 47.6, 47.4. 

 HRMS (m/z) calcd for C12H13NO3 [M] +Na: 242.0788, found: 242.0785. 

 

cis-3,4-Epoxyhexane (50i) – The reaction was performed on 5 mmol scale and the product 

was isolated in 37% yield.  

1H-NMR (500 MHz, CDCl3): δ 2.91-2.85 (m, 2H), 1.63-1.44 (m, 

4H), 1.04 (t, J = 7.5 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 58.7, 21.2, 10.8.  

HRMS (m/z) calcd for C6H12O [M]: 100.0888, found: 100.0887. 

 

cis-4,5-Epoxyoctane (50j) – The reaction was performed on 5 mmol scale and the product 

was isolated in 63% yield.  

1H-NMR (500 MHz, CDCl3): δ 2.94-2.89 (m, 2H), 1.59-1.42 (m, 

8H), 0.98 (t, J = 7.2 Hz, 6H).  

13C-NMR (125 MHz, CDCl3): δ 57.2, 30.1, 20.1, 14.3.  

HRMS (m/z) calcd for C8H16O [M]: 128.1201, found: 128.1202. 
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4-(oxiran-2-yl)phenyl acetate (140e) – The reaction was performed on 5 mmol scale and the 

product was isolated in 75% yield.  

1H-NMR (500 MHz, CD2Cl2): δ 7.34-7.22 (m, 2H), 7.12-7.07 

(m, 2H), 3.89 (dd, J = 4.0 Hz, J = 2.8 Hz, 1H), 3.16 (dd, J = 5.5 

Hz, J = 4.0 Hz, 1H), 2.80 (dd, J = 5.5 Hz, J = 2.8 Hz, 1H), 2.32 (s, 

3H).  

13C-NMR (125 MHz, CD2Cl2): δ 169.4, 150.5, 135.2, 126.6, 121.7, 51.9, 51.2, 21.1.  

 

4-(tert-butyl)phenyl)oxirane (140f) – The reaction was performed on 5 mmol scale and the 

product was isolated in 28% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.42-7.38 (m, 2H), 7.25-7.20 (m, 

2H), 3.85 (dd, J = 4.1 Hz, J = 2.8 Hz, 1H), 3.14 (dd, J = 5.6 Hz, J 

= 4.1 Hz, 1H), 2.83 (dd, J = 5.6 Hz, J = 2.8 Hz, 1H), 1.33 (s, 9H).   

13C-NMR (125 MHz, CDCl3): δ 151.3, 134.5, 125.4, 125.3, 

52.3, 51.0, 34.6, 31.3.  

 

2-(m-tolyl)oxirane (140g) – The reaction was performed on 5 mmol scale and the product 

was isolated in 55% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.26-7.22 (m, 1H), 7.15-7.07 (m, 

3H), 3.84 (dd, J = 2.6 Hz, J = 4.1 Hz, J = 2.6 Hz, 1H), 3.15 (dd, J 

= 5.6 Hz, J = 4.1 Hz, 1H), 2.81 (dd, J = 5.6 Hz, J = 2.6 Hz, 1H), 

2.36 (s, 3H).  

13C-NMR (125 MHz, CDCl3): δ 138.2, 137.5, 128.9, 128.4, 126.0, 122.7, 52.4, 51.1, 21.3.  

 

2-(3-methoxyphenyl)oxirane (140h) – The reaction was performed on 5 mmol scale and the 

product was isolated in 84% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.28-7.24 (m, 1H), 6.94-6.89 (m, 

1H), 6.88-6.84 (m, 1H), 6.84-6.80 (m, 1H), 3.86 (dd, J = 4.1 Hz, 

J = 2.7 Hz, 1H), 3.82 (s, 3H), 3.14 (dd, J = 5.6 Hz, J = 4.1 Hz, 

1H), 2.79 (dd, J = 5.6 Hz, J = 2.7 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 159.9, 139.3, 129.6, 118.0, 113.9, 110.5, 55.2, 52.3, 52.1  
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1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene (140i) – The reaction was performed on 5 mmol 

scale and the product was isolated in 77% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.41 (dd, J = 8.0 Hz, J = 1.3 Hz, 

1H), 7.27 (td, J = 8.0 Hz, J = 1.3 Hz, 1H), 7.21 (tt, J = 8.0 Hz, J = 

1.3 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 3.86 (d, J = 4.3 Hz, 1H), 

3.77-3.72 (m, 1H), 2.80 (td, J = 6.7 Hz, J = 14.6 Hz, 1H), 2.57 (dd, J = 15.6 Hz, J = 5.6 Hz, 1H), 

2.43 (dddd, J = 14.6 Hz, J = 6.7 Hz, J = 2.7 Hz, J = 1.6 Hz, 1H), 1.78 (cm, 1H).  

13C-NMR (125 MHz, CDCl3): δ 136.7, 132.5, 129.5, 128.4, 128.4, 126.1, 55.1, 52.7, 24.4, 21.8.  

 

2-(4-nitrophenyl)oxirane (140k) – The reaction was performed on 5 mmol scale and the 

product was isolated in 84% yield.  

1H-NMR (500 MHz, CDCl3): δ 8.28-8.20 (m, 2H), 7.50-7.42 (m, 

2H), 3.99 (dd, J = 4.1 Hz, J = 2.6 Hz, 1H), 3.26 (dd, J = 5.6 Hz, J 

= 4.1 Hz, 1H), 2.80 (dd, J = 5.6 Hz, J = 2.6 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 145.2, 144.1, 126.2, 123.9, 

51.7, 51.5.  

 

2-(4-cyanophenyl)oxirane (140l) – The reaction was performed on 5 mmol scale and the 

product was isolated in 50% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.59-7.55 (m, 2H), 7.34-7.30 (m, 

2H), 3.84 (dd, J = 4.3 Hz, J = 2.6 Hz, 1H), 3.14 (dd, J = 5.4 Hz, J 

= 4.3 Hz, 1H), 2.69 (dd, J = 5.4 Hz, J = 2.6 Hz, 1H).  

13C-NMR (125 MHz, CDCl3) [overlapping signals]: δ 143.3, 

132.4, 126.1, 118.6, 119.9, 51.6.  

 

2-(3-bromophenyl)oxirane (140m) – The reaction was performed on 5 mmol scale and the 

product was isolated in 48% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.46-7.41 (m, 2H), 7.24-7.20 (m, 

2H), 3.83 (dd, J = 4.2 Hz, J = 2.5 Hz, 1H), 3.15 (dd, J = 5.4 Hz, J 

= 4.2 Hz, 1H), 2.77 (dd, J = 5.4 Hz, J = 2.5 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 140.0, 131.2, 130.1, 128.4, 

124.2, 122.7, 51.6, 51.3.  
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Procedure B 

 

In a round bottom flask, indene 142j (580.8 mg, 5 mmol, 1 equiv.) was added to a mixture of 

tetrahydrofuran (10 mL) and water (3 mL). The resulting solution was cooled at 0 °C and N-

Bromo succinimide (736.3 mg, 4.14 mmol, 0.83 equiv.) was added in portions. Next the 

reaction was allowed to reach room temperature and vigorously stirred for 20 h. 

Consumption of starting material was controlled by TLC and next ethyl acetate was added 

and the mixture was washed with brine. The resulting organic phase was dried over sodium 

sulfate and the solvent removed under vacuum. The obtained bromohydrin 143 (733 mg, 

white powder) was used without further purification in the following step.  

In a second round bottom flask, bromohydrin 143 (720 mg, 3.38 mmol, 1 equiv.) was 

dissolved in diethylether (10 mL). Next sodium hydroxide powder (338 mg, 8.45 mmol, 2.5 

equiv.) was added at once and the solution was stirred at room temperature for 12 h. Water 

was added to the mixture and the separated aqueous phase was washed three times with 

diethyl ether. The collected organic phases were dried over sodium sulfate and the solvent 

was removed in under vacuum. Fast purification on column chromatography (mixtures 

hexane/MTBE) yielded the desired epoxide 140j.  

 

1a,6a-dihydro-6H-indeno[1,2-b]oxirene (140j) – The reaction was performed on 5 mmol 

scale and the product was isolated in 59% yield.  

1H-NMR (500 MHz, CDCl3): δ 7.51 (d, J = 7.6 Hz, 1H), 7.30-

7.22 (m, 2H), 7.21-7.18 (m, 1H), 4.30-4.27 (m, 1H), 4.14 (t, J = 

2.90 Hz, 1H), 3.23 (d, J = 17.7 Hz, 1H), 3.00 (dd, J = 17.7 Hz, J = 

3.0 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 143.5, 128.5, 126.2, 126.0, 125.1, 59.1, 57.6, 34.6.  

 

  



7. Experimental Section 

 

212 

 

7.4.3. General procedure for the desymmetrization of meso-epoxides 

 

A solution of the starting epoxide 50 (0.1 mmol) in 0.4 mL of toluene was placed in a screw-

cap vial at the reaction temperature. To the stirred solution was added at once a pre-cooled 

solution of benzoic acid (0.3 mmol, 3 equiv.) and the catalyst (10 mol%) in toluene. The 

reaction was stirred for 4-6 days. Next 1 mL of MTBE was added to stop the reaction and the 

mixture was directly purified by flash column chromatography (eluent: mixtures 

hexane/MTBE). After purification the product was dissolved in DCM and submitted to an 

additional wash with 2 M NaOHaq to remove small impurities of benzoic acid. The 

enantiomeric ratios of products 52 were analyzed by HPLC on a chiral stationary phase. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

(R,R)-2-hydroxycyclohexyl benzoate (52aa) – The reaction was performed at –40° C and the 

product was isolated as a white solid in 85% yield and e.r. = 96.5:3.5.  

1H-NMR (500 MHz, CDCl3): δ 8.08-8.00 (m, 2H), 7.60-7.53 (m, 

1H), 7.48-7.42 (m, 2H), 4.90-4.81 (cm, 1H), 3.80-3.68 (cm, 

1H), 2.26 (bs, 1H), 2.20-2.05 (m, 2H), 1.85-1.70 (m, 2H), 1.50-

1.20 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 166.9, 133.3, 130.5, 129.9, 128.6, 78.9, 73.0, 31.2, 30.2, 24.1, 

23.9. HRMS (m/z) calcd for C13H16O3Na [M]+Na: 243.0992, found: 243.0992.  

[α]D
25: -48.0° (c=0.870, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98.5:1.5, flow rate 0.8 mL/min, τ1 = 16.9 min, τ2 = 18.2 min. 
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(R,R)-6-hydroxycyclohex-3-en-1-yl benzoate (52b) – The reaction was performed at –5° C 

and the product was isolated as a colorless liquid in 86% yield and e.r. = 93.5:6.5.  

1H-NMR (500 MHz, CDCl3): δ 8.10-8.02 (m, 2H), 7.62-7.55 (m, 

1H), 7.48-7.42 (m, 2H), 5.68-5.55 (m, 2H), 5.18-5.12 (m, 1H), 

4.12-4.02 (m, 1H), 2.78-2.58 (m, 2H), 2.30-2.15 (m, 3H).  

13C-NMR (125 MHz, CDCl3): δ 166.8, 133.4, 130.3, 129.9, 

128.6, 124.5, 124.0, 75.0, 69.2, 33.1, 30.4.  

HRMS (m/z) calcd for C13H14O3Na [M]+Na: 241.0835, found: 241.0833.  

[α]D
25: -106.2° (c = 0.795, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AS-3 column: 

nHept:iPrOH = 85:15, flow rate 1.0 mL/min, τ1 = 4.5 min, τ2 = 8.1 min. 

 

(R,R)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl benzoate (52c) – The reaction was 

performed at –5° C and the product was isolated as a colorless liquid in 73% yield and e.r. = 

94.5:5.5.  

1H-NMR (500 MHz, CDCl3): δ 8.10-8.02 (m, 2H), 7.62-7.55 (m, 

1H), 7.48-7.42 (m, 2H), 7.22-7.08 (m, 4H), 5.30 (dt, J = 8.3 Hz J 

= 8.5 Hz, J = 5.7 Hz, 1H), 4.30-4.22 (m, 1H), 3.42 (dd, J = 16.5 

Hz J = 5.7 Hz, 1H), 3.29 (dd, J = 16.5 Hz J = 5.7 Hz, 1H), 3.00 

(dd, J = 16.5 Hz J = 8.5 Hz, 1H), 2.95 (dd, J = 16.5 Hz J = 8.5 Hz, 1H), 2.44 (bs, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.9, 133.6, 133.5, 133.2, 130.1, 129.9, 129.1, 128.9, 128.7, 

126.8, 126.7, 75.5, 69.8, 36.3, 33.5.  

HRMS (m/z) calcd for C17H16O3Na [M]+Na: 291.0992, found: 291.0991.  

[α]D
25: -78.5° (c = 0.925, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AS-3 column: 

nHept:iPrOH = 85:15, flow rate 1.0 mL/min, τ1 = 4.6 min, τ2 = 8.9 min. 

 

  



7. Experimental Section 

 

214 

 

(R,R)-2-hydroxycyclopentyl benzoate (52d) – The reaction was performed at –20° C and the 

product was isolated as a colorless liquid in 64% yield and e.r. = 95.5:4.5.  

1H-NMR (500 MHz, CDCl3): δ 8.08-8.00 (m, 2H), 7.62-7.54 (m, 

1H), 7.48-7.42 (m, 2H), 5.08-5.0 (cm, 1H), 4.30-4.20 (cm, 1H), 

2.93 (s, 1H), 2.30-2.18 (m, 1H), 2.15-2.05 (m, 1H), 1.92-1.65 

(m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 167.8, 133.4, 130.2, 129.9, 128.6, 84.8, 78.6, 32.9, 30.4, 22.0.  

HRMS (m/z) calcd for C12H14O3Na [M]+Na: 229.0835, found: 229.0834.  

[α]D
25: +3.7° (c = 0.375, CHCl3). 

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 8.1 min, τ2 = 10.2 min. 

  

(R,R)-2-hydroxycycloheptyl benzoate (52e) – The reaction was performed at –5° C and the 

product was isolated as a colorless liquid in 78% yield and e.r. = 95.5:4.5.  

1H-NMR (500 MHz, CDCl3): δ 8.08-8.02 (m, 2H), 7.60-7.54 (m, 

1H), 7.48-7.42 (m, 2H), 5.00-4.94 (m, 1H), 3.96-3.88 (m, 1H), 

2.75 (bs, 1H), 2.00-1.30 (m, 10H).  

13C-NMR (125 MHz, CDCl3): δ 167.3, 133.3, 130.5, 129.9, 

128.6, 83.0, 76.3, 33.0, 30.6, 28.5, 23.3, 23.2.  

HRMS (m/z) calcd for C14H18O3Na [M]+Na: 257.1148, found: 257.1145.  

[α]D
25: -15.3° (c = 0.770, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 8.8 min, τ2 = 10.5 min. 

 

(R,R)-4-hydroxytetrahydrofuran-3-yl benzoate (52f) – The reaction was performed at 10° C 

and the product was isolated as a colorless liquid in 84% yield and e.r. = 95:5.  

1H-NMR (500 MHz, CDCl3): δ 8.06-8.00 (m, 2H), 7.62-7.56 (m, 

1H), 7.48-7.42 (m, 2H), 5.23 (cm, 1H), 4.48-4.42 (m, 1H), 4.26 

(dd, J = 10.6 Hz J = 5.1 Hz, 1H), 4.12 (dd, J = 9.9 Hz J = 5.1 Hz, 

1H), 4.00 (dd, J = 10.6 Hz J = 2.3 Hz, 1H), 3.81 (dd, J = 9.9 Hz J 

= 2.8 Hz, 1H), 2.69 (bs, 1H).  



7. Experimental Section 

 

215 

 

13C-NMR (125 MHz, CDCl3): δ 166.9, 133.7, 129.9, 129.5, 128.7, 81.8, 76.7, 73.8, 71.4.  

HRMS (m/z) calcd for C11H12O4Na [M]+Na: 231.0628, found: 231.0629.  

[α]D
25: -20.3° (c = 0.620, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 9.1 min, τ2 = 10.4 min. 

 

(R,R)-benzyl 3-(benzoyloxy)-4-hydroxypyrrolidine-1-carboxylate (52g) – The reaction was 

performed at room temperature and the product was isolated as a white solid in 83% yield 

and e.r. = 94:6.  

1H-NMR (500 MHz, CDCl3): δ 7.98 (d, J = 7.6 Hz, 2H), 7.58 (t, J 

= 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.40-7.27 (m, 5H), 5.34-

5.26 (m, 1H), 5.20-5.13 (m, 2H), 4.42 (cm, 1H), 4.00-3.92 (m, 

1H), 3.82-3.55 (m, 3H), 3.20 (bs, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.3, 166.2, 155.3, 155.3, 136.8, 136.7, 133.8, 129.9, 129.4, 

128.7, 128.7, 128.2, 128.1, 78.4, 78.0, 73.9, 73.0, 67.3, 67.3, 52.5, 52.0, 49.7, 49.7 (8 

additional peaks due to the presence of rotamers).  

HRMS (m/z) calcd for C19H19NO5Na [M]+Na: 364.1155, found: 364.1156.  

[α]D
25: +24.4° (c = 1.230, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AS-3 column: 

nHept:iPrOH = 85:15, flow rate 1.0 mL/min, τ1 = 9.1 min, τ2 = 11.2 min. 

 

(R,R)-3-hydroxybutan-2-yl benzoate (52h) – The reaction was performed at –20° C and the 

product was isolated as a colorless liquid in 76% yield and e.r. = 95:5.  

1H-NMR (500 MHz, CDCl3): δ 8.08-8.02 (m, 2H), 7.60-7.55 (m, 

1H), 7.48-7.42 (m, 2H), 5.03 (Q, J = 6.4 Hz, 1H), 3.91(Q, J = 6.4 

Hz, 1H), 1.85 (bs, 1H), 1.35 (d, J = 6.4 Hz, 3H), 1.26 (d, J = 6.4 

Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 166.5, 133.3, 130.5, 129.8, 128.6, 75.7, 70.4, 19.3, 16.5.  

HRMS (m/z) calcd for C11H14O3Na [M]+Na: 217.0835, found: 217.0833.  

[α]D
25: -39.3° (c = 0.605, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 99:1, flow rate 1.0 mL/min, τ1 = 13.5 min, τ2 = 15.4 min. 
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(S,S)-4-hydroxyhexan-3-yl benzoate (52i) – The reaction promoted by catalyst 115b was 

performed at –5° C and the product was isolated as a colorless liquid in 85% yield and e.r. = 

3.5:96.5.  

1H-NMR (500 MHz, CDCl3): δ 8.09-8.04 (m, 2H), 7.60-7.55 (m, 

1H), 7.49-7.43 (m, 2H), 5.06 (cm, 1H), 3.73-3.62 (m, 1H), 1.90-

1.40 (m, 5H), 1.01 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.5 Hz, 3H). 

13C-NMR (125 MHz, CDCl3): δ 166.7, 133.3, 130.4, 129.9, 

128.6, 78.4, 74.1, 25.9, 24.0, 10.3, 10.1.  

HRMS (m/z) calcd for C13H18O3Na [M]+Na: 245.1148, found: 245.1148.  

[α]D
25: -10.1° (c = 0.390, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 99:1, flow rate 1.0 mL/min, τ1 = 8.7 min, τ2 = 9.7 min. 

 

(R,R)-5-hydroxyoctan-4-yl benzoate (52j) – The reaction was performed at –5° C and the 

product was isolated as a colorless liquid in 55% yield and e.r. = 95:5.  

1H-NMR (500 MHz, CDCl3): δ 8.08-8.03 (m, 2H), 7.60-7.55 (m, 

1H), 7.49-7.43 (m, 2H), 5.12 (Q, J = 4.1 Hz, 1H), 3.74 (Q, J = 4.1 

Hz, 1H), 1.85-1.30 (m, 9H), 0.94 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 

7.4 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 166.6, 133.3, 130.4, 129.9, 128.6, 77.3, 72.8, 36.1, 33.1, 19.1, 

19.0, 14.2.  

HRMS (m/z) calcd for C15H22O3Na [M]+Na: 273.1461, found: 273.1460.  

[α]D
25: +9.8° (c = 0.615, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98.5:1.5, flow rate 1.0 mL/min, τ1 = 4.9 min, τ2 = 6.1 min. 

 

(R,R)-2-hydroxy-1,2-diphenylethyl benzoate (52k) – The reaction was performed at room 

temperature and the product was isolated as a white solid in 85% yield and e.r. = 91:9.  

1H-NMR (500 MHz, CDCl3): δ 8.14-8.06 (m, 2H), 7.62-7.56 (m, 

1H), 7.50-7.43 (m, 2H), 7.26-7.15 (m, 10H), 6.11 (d, J = 7.3 Hz, 

1H),  5.10 (d, J = 7.3 Hz, 1H), 2.63 (bs, 1H).  
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13C-NMR (125 MHz, CDCl3): δ 166.0, 139.2, 137.0, 133.5, 130.2, 130.0, 128.7, 128.5, 128.4, 

128.4, 128.3, 127.5, 127.3, 80.8, 77.4.  

HRMS (m/z) calcd for C21H18O3Na [M]+Na: 341.1148, found: 341.1150.  

[α]D
25: +64.2° (c = 1.275, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 6.8 min, τ2 = 7.7 min. 

 

(S,S)-2-hydroxycyclohexyl acetate (52ab) – This product was obtained during the 

optimization of the reaction conditions (Table 4.19).  

1H-NMR (500 MHz, CDCl3): δ 4.58-4.42 (m, 1H), 3.55-3.45 (m, 

1H), 2.03 (s, 3H), 2.02-1.95 (m, 2H), 1.71-1.60 (m, 2H), 1.35-

1.10 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 171.4, 78.4, 72.9, 33.1, 30.0, 

23.9, 23.8, 21.4.  

The enantiomeric ratio was determined by GC analysis using BGB 178/BGB 15 G 615 column 

[Gas: Hydrogen 0.50 bar, Temperature: 80 1,2/Min 140 18/Min 220 5 Min iso. τ1 = 30.3 min, 

τ2 = 33.0 min.] 

 

(S,S)-2-hydroxycyclohexyl 4-(tert-butyl)benzoate (52ac) – This product was obtained during 

the optimization of the reaction conditions (Table 4.19). 

1H-NMR (500 MHz, CDCl3): δ 7.98-7.86 (m, 2H), 7.45-7.35 (m, 

2H), 4.82-4.73 (m, 1H), 3.75-3.63 (m, 1H), 2.15-2.00 (m, 2H), 

1.75-1.65 (m, 2H), 1.27 (s, 9H), 1.42-1.10 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 166.8, 156.8, 129.6, 127.5, 

125.4, 78.6, 72.9, 35.1, 32.9, 31.1, 30.0, 23.9, 23.8.  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 7.1 min, τ2 = 11.4 min. 
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(S,S)-2-hydroxycyclohexyl 3,5-dimethylbenzoate (52ad) – This product was obtained during 

the optimization of the reaction conditions (Table 4.19). 

1H-NMR (500 MHz, CDCl3): δ 7.59 (s, 2H), 7.13 (s, 1H), 4.82-

4.71 (m, 1H), 3.75-3.62 (m, 1H), 2.29 (s, 6H), 2.15-2.00 (m, 

2H), 1.78-1.65 (m, 2H), 1.50-1.10 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 167.1, 138.1, 134.7, 130.1, 

127.4, 78.7, 72.9, 33.0, 30.0, 24.0, 23.8, 21.2.  

The enantiomeric ratio was determined by HPLC analysis 

using Daicel Chiralcel OD-3 column: nHept:iPrOH = 99:1, flow rate 1.0 mL/min, τ1 = 17.4 min, 

τ2 = 19.6 min. 

 

(S,S)-2-hydroxycyclohexyl 2,6-dichlorobenzoate (52ae) – This product was obtained during 

the optimization of the reaction conditions (Table 4.19). 

1H-NMR (500 MHz, CDCl3): δ 7.30-7.20 (m, 3H), 4.88-4.80 (m, 

1H), 3.68-3.60 (m, 1H), 2.26-2.18 (m, 1H), 2.10-2.00 (m, 1H), 

1.75-1.65 (m, 2H), 1.50-1.20 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 164.5, 133.7, 131.7, 130.9, 

127.9, 80.7, 72.3, 32.4, 29.6, 23.9, 23.7.  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 8.0 min, τ2 = 8.9 min. 

 

(S,S)-2-hydroxycyclohexyl 2,4,6-trimethylbenzoate (52af) – This product was obtained 

during the optimization of the reaction conditions (Scheme 4.9). 

1H-NMR (500 MHz, CDCl3): δ 6.79 (s, 2H), 4.85-4.75 (m, 1H), 

3.65-3.54 (m, 1H), 2.24 (s, 6H), 2.21 (s, 3H), 2.18-2.13 (m, 

1H), 2.06-1.95 (m, 1H), 1.75-1.65 (m, 2H), 1.50-1.20 (m, 4H). 

 13C-NMR (125 MHz, CDCl3): δ 170.3, 139.4, 134.9, 131.1, 

128.4, 78.9, 72.8, 33.2, 30.1, 24.0, 23.8, 21.1, 19.7.  

The enantiomeric ratio was determined by HPLC analysis 

using Daicel Chiralcel OD-3 column: nHept:iPrOH = 98.5:1.5, flow rate 0.8 mL/min, τ1 = 10.8 

min, τ2 = 11.4 min. 
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(S,S)- 2-hydroxycyclohexyl 2-iodobenzoate (52ag) – This product was obtained during the 

optimization of the reaction conditions (Scheme 4.9). 

1H-NMR (500 MHz, CDCl3): δ 7.92 (dd, J = 7.7 Hz, J = 1.2 Hz, 

1H), 7.72 (dd, J = 7.7 Hz, J = 1.7 Hz, 1H), 7.35 (td, J = 7.7 Hz, J 

= 1.2 Hz, 1H), 7.09 (td, J = 7.7 Hz, J = 1.7 Hz, 1H), 4.84-4.75 

(m, 1H), 3.74-3.66 (m, 1H), 2.24-2.25 (m, 1H), 2.10-2.00 (m, 

1H), 1.75-1.65 (m, 2H), 1.50-1.17 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 166.7, 141.1, 135.8, 132.6, 131.1, 128.0, 93.7, 80.0, 72.6, 32.9, 

29.9, 23.9, 23.8.  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 17.1 min, τ2 = 19.4 min. 

 

(S,S)- 2-hydroxycyclohexyl 1-naphthoate (52ah) – This product was obtained during the 

optimization of the reaction conditions (Scheme 4.9). 

1H-NMR (500 MHz, CDCl3): δ 8.82 (d, J = 8.5 Hz, 1H), 8.11 (dd, 

J = 7.3 Hz, J = 1.2 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.82 (d,  J = 

8.2 Hz, 1H), 7.58-7.52 (m, 1H), 7.50-7.40 (m, 2H), 4.95-4.85 

(m, 1H), 3.78-3.68 (m, 1H), 2.28-2.18 (m, 1H), 2.15-2.02 (m, 

1H), 1.80-1.70 (m, 2H), 1.50-1.20 (m, 4H).  

13C-NMR (125 MHz, CDCl3): δ 167.8, 133.8, 133.4, 131.3, 130.0, 128.6, 127.8, 127.5, 126.3, 

125.8, 124.5, 78.9, 73.0, 33.2, 30.1, 24.0, 23.8.  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 20.4 min, τ2 = 24.1 min. 

 

(S,S)-2-hydroxycyclohexyl 2-naphthoate (52ai) – This product was obtained during the 

optimization of the reaction conditions (Scheme 4.9). 

1H-NMR (500 MHz, CDCl3): δ 8.55 (s, 1H), 8.00 (dd, J = 8.6 Hz, 

J = 1.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.82 (m, 2H), 7.56-7.51 

(m, 1H), 7.50-7.46 (m, 1H), 4.90-4.82 (m, 1H), 3.78-3.68 (m, 

1H), 2.20-2.02 (m, 2H), 1.78-1.68 (m, 2H), 1.50-1.20 (m, 4H). 

13C-NMR (125 MHz, CDCl3): δ 167.0, 135.6, 132.5, 131.2, 

129.4, 128.3, 128.2, 127.8, 127.5, 126.7, 125.3, 78.9, 73.0, 33.1, 30.1, 24.0, 23.8.  
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The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 18.0 min, τ2 = 23.5 min. 

 

(S,S)-2-hydroxycyclohexyl isobutyrate (52aj) – This product was obtained during the 

optimization of the reaction conditions (Table 4.19). 

1H-NMR (500 MHz, CDCl3): δ 4.58-4.45 (m, 1H), 3.55-3.46 (m, 

1H), 2.50 (sept, J = 7.1 Hz, 1H), 2.05-1.90 (m, 2H), 1.70-1.60 

(m, 2H), 1.38-1.20 (m, 4H), 1.12 (d, J = 7.1 Hz, 3H), 1.11 (d, J = 

7.1 Hz, 3H).  

13C-NMR (125 MHz, CDCl3): δ 177.5, 77.9, 72.9, 34.2, 33.0, 

29.9, 23.9, 23.8, 19.1, 19.0. 

The enantiomeric ratio was determined by GC analysis using Hydrodex BTBDAC G 625 

column [Gas: Hydrogen 0.40 bar, Temperature: 115 40 min iso, 18/Min 220 5 Min iso. τ1 = 

28.5 min, τ2 = 29.3 min.] 
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7.4.3.1. Scope of the desymmetrization of meso-epoxide with catalyst (S)-115b 

In order to explore the catalytic activity of phosphoric acid 115b, we investigated the scope 

of the desymmetrization of meso-epoxides with benzoic acid. The same procedure described 

in paragraph 7.4.3. was used and the results are showed in the scheme below.   

 

 

Compared to 139, phosphoric acid 115b was found similarly active in the carboxylysis 

reaction. However, with the only exception of product 52i, catalyst 115b generally afforded 

the desired products in reduced enantiopurities with respect to 139.  
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7.4.4. General procedure for the kinetic resolution of racemic epoxides 

 

In a screw-cap vial epoxide 140 (0.1 mmol) was dissolved in 0.4 mL of toluene and was 

cooled to the reaction temperature. Then a pre-cooled solution of benzoic acid (0.06 mmol, 

0.6 equiv.) and catalyst 139 (4 mol%) in 0.4 mL of toluene was added and the reaction was 

stirred for 1-5 days. Next NaHCO3 (20 mg) was added to quench the reaction. The reaction 

mixture was then analyzed by NMR spectroscopy with internal standard and product 141 

and unreacted starting material were isolated by preparative thin layer chromatography for 

the determination of the enantiomeric ratio. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

(R)-2-hydroxy-1-phenylethyl benzoate (141a) – The reaction was performed at –20 °C.  

Product: 40% yield, e.r. = 95.7:4.3 

Starting material: 55% yield, e.r. = 82.6:17.4. 

S = 43.7; convcalc= 41.6% 

1H-NMR (500 MHz, CDCl3): δ 8.15-8.10 (m, 2H), 7.65-7.55 (m, 

1H), 7.52-7.44 (m, 4H), 7.42-7.37 (m, 2H), 7.36-7.31 (m, 1H), 

6.13 (dd, J = 7.5 Hz, J = 3.8 Hz, 1H), 4.05 ((dd, J = 12.1 Hz, J = 

7.5 Hz, 1H), 3.96 (dd, J = 12.1 Hz, J = 3.8 Hz, 1H), 2.04 (bs, 

1H).  

13C-NMR (125 MHz, CDCl3): δ 166.1, 137.0, 133.2, 129.9, 129.7, 128.7, 128.5, 128.4, 126.6, 

77.4, 66.1.  

HRMS (m/z) calcd for C15H14O3Na [M]+Na: 265.0835, found: 265.0835.  

The enantiomeric ratio was determined by HPLC analysis: 
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141a - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 7.7 

min, τ2 = 13.9 min.  

(R)-2-phenyloxirane (140a) - Daicel Chiralcel OD-3 column: nHept:iPrOH = 99.5:0.5, flow rate 

1.0 mL/min, τ1 = 5.2 min, τ2 = 5.7 min. 

 

(R)-1-(4-fluorophenyl)-2-hydroxyethyl benzoate (141b) – Reaction performed at –20 °C.  

Product: 50% yield, e.r. = 93.3:6.7 

Starting material: 46% yield, e.r. = 96.7:3.3. 

S = 47.9; convcalc= 51.9% 

1H-NMR (500 MHz, CDCl3): δ 8.08-8.04 (m, 2H), 7.58-7.54 (m, 

1H), 7.45-7.38 (m, 4H), 7.07-7.00 (m, 2H), 6.15 (dd, J = 7.5 Hz, 

J = 3.9 Hz, 1H), 4.00 (dd, J = 12.0 Hz, J = 7.5 Hz, 1H), 3.90 (dd, 

J = 12.0 Hz, J = 3.9 Hz, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.0, 162.7 (d, J = 247.2 Hz), 133.3, 133.0 (d, J = 3.4 Hz), 

129.8, 129.7, 128.5, 128.5 (d, J = 8.3 Hz), 115.7 (d, J = 22.3 Hz), 76.7, 66.0.  

HRMS (m/z) calcd for C15H13FO3Na [M]+Na: 283.0741, found: 283.0741.  

The enantiomeric ratio was determined by HPLC analysis: 

141b - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 7.3 

min, τ2 = 11.3 min.  

(R)-2-(4-fluorophenyl)oxirane (140b) - Daicel Chiralcel IA column: nHept:iPrOH = 99.5:0.5, 

flow rate 1.0 mL/min, τ1 = 6.4 min, τ2 = 6.9 min. 

 

 (R)-1-(4-chlorophenyl)-2-hydroxyethyl benzoate (141c) – Reaction performed at –20 °C.  

Product: 30% yield, e.r. = 96.9:3.1 

Starting material: 61% yield, e.r. = 73.5:26.5. 

S = 49.8; convcalc= 33.4% 

1H-NMR (500 MHz, CDCl3): δ 8.08-8.04 (m, 2H), 7.56-7.52 (m, 

1H), 7.46-7.38 (m, 2H), 7.37-7.27 (m, 4H), 6.03 (dd, J = 7.5 Hz, 

J = 4.1 Hz, 1H), 3.98 (dd, J = 12.2 Hz, J = 7.5 Hz, 1H), 3.89 (dd, 

J = 12.2 Hz, J = 4.1 Hz, 1H), 2.31 (bs, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.0, 135.6, 134.3, 133.4, 129.7, 129.6, 128.9, 128.5, 128.0, 

76.6, 65.9.  
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HRMS (m/z) calcd for C15H13ClO3Na [M]+Na: 299.0445, found: 299.0446.  

The enantiomeric ratio was determined by HPLC analysis: 

141c - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 7.8 min, 

τ2 = 12.1 min.  

(R)-2-(4-chlorophenyl)oxirane (140c) - Daicel Chiralcel AS-3 column: nHept:iPrOH = 99:1, 

flow rate 1.0 mL/min, τ1 = 6.3 min, τ2 = 7.9 min. 

 

(R)-1-(4-bromophenyl)-2-hydroxyethyl benzoate (141d) – Reaction performed at –20 °C.  

Product: 28% yield, e.r. = 97.0:3.0 

Starting material: 51% yield, e.r. = 71.0:29.0. 

S = 48.9; convcalc= 30.9% 

1H-NMR (500 MHz, CDCl3): δ 8.06-8.03 (m, 2H), 7.58-7.52 (m, 

1H), 7.51-7.40 (m, 4H), 7.32-7.26 (m, 2H), 6.01 (dd, J = 7.4 Hz, 

J = 4.1 Hz, 1H), 3.98 (dd, J = 12.2 Hz, J = 7.4 Hz, 1H), 3.90 (dd, 

J = 12.2 Hz, J = 4.1 Hz, 1H), 1.99 (bs, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.0, 136.2, 133.4, 131.9, 129.7, 129.7, 128.5, 128.3, 122.5, 

76.7, 65.9.  

HRMS (m/z) calcd for C15H13BrO3Na [M]+Na: 342.9940, found: 342.9941.  

The enantiomeric ratio was determined by HPLC analysis: 

141d - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 8.8 

min, τ2 = 14.3 min.  

(R)-2-(4-bromophenyl)oxirane (140d) - Daicel Chiralcel AS-3 column: nHept:iPrOH = 99:1, 

flow rate 1.0 mL/min, τ1 = 6.4 min, τ2 = 8.2 min. 

 

(R)-1-(4-acetoxyphenyl)-2-hydroxyethyl benzoate (141e) – Reaction performed at –20 °C.  

Product: 46% yield, e.r. = 93.4:6.6 

Starting material: 45% yield, e.r. = 95.8:4.2. 

S = 45.6; convcalc= 51.4% 

1H-NMR (500 MHz, CDCl3): δ 8.13-8.08 (m, 2H), 7.62-7.54 (m, 

1H), 7.50-7.42 (m, 4H), 7.14-7.06 (m, 2H), 6.10 (dd, J = 7.5 Hz, 

J = 4.0 Hz, 1H), 4.02 (dd, J = 12.2 Hz, J = 7.5 Hz, 1H), 3.93 (dd, 

J = 12.2 Hz, J = 4.0 Hz, 1H), 2.29 (s, 3H).  
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13C-NMR (125 MHz, CDCl3): δ 169.4, 166.0, 150.6, 134.7, 133.3, 129.8, 129.7, 128.5, 127.9, 

121.9, 76.7, 66.0, 21.1.  

HRMS (m/z) calcd for C17H16O5Na [M]+Na: 323.0890, found: 323.0889.  

The enantiomeric ratio was determined by HPLC analysis: 

141e - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 12.7 

min, τ2 = 17.8 min.  

(R)-4-(oxiran-2-yl)phenyl acetate (140e) - Daicel Chiralcel OD-3 column: nHept:iPrOH = 99:1, 

flow rate 1.0 mL/min, τ1 = 9.5 min, τ2 = 10.3 min. 

 

(R)-1-(4-(tert-butyl)phenyl)-2-hydroxyethyl benzoate (141f) – Reaction performed at –40 °C.  

Product: 50% yield, e.r. = 95.3:4.7 

Starting material: 47% yield, e.r. = 97.2:2.8. 

S = 73.2; convcalc= 51% 

1H-NMR (500 MHz, CDCl3): δ 8.13-8.07 (m, 2H), 7.60-7.54 (m, 

1H), 7.48-7.42 (m, 2H), 7.41-7.35 (m, 4H), 6.11 (dd, J = 7.6 Hz, 

J = 4.0 Hz, 1H), 4.05 (dd, J = 12.1 Hz, J = 7.6 Hz, 1H), 3.95 (dd, 

J = 12.1 Hz, J = 4.0 Hz, 1H), 1.31 (s, 9H).  

13C-NMR (125 MHz, CDCl3): δ 166.2, 151.4, 133.9, 133.2, 130.0, 129.7, 128.4, 126.4, 125.6, 

77.3, 66.2, 34.6, 31.3.  

HRMS (m/z) calcd for C19H22O3Na [M]+Na: 321.1461, found: 321.1461.  

The enantiomeric ratio was determined by HPLC analysis: 

141f - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 5.7 min, 

τ1 = 7.8 min.  

(R)-2-(4-(tert-butyl)phenyl)oxirane (140f) - Daicel Chiralcel OJ-H column: nHept:iPrOH = 

99:1, flow rate 1.0 mL/min, τ1 = 8.2 min, τ2 = 8.9 min. 
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(R)-2-hydroxy-1-(m-tolyl)ethyl benzoate (141g) – Reaction performed at –20 °C.  

Product: 47% yield, e.r. = 94.3:5.7 

Starting material: 44% yield, e.r. = 97.5:2.5. 

S = 61.3; convcalc= 51.7% 

1H-NMR (500 MHz, CDCl3): δ 8.13-8.07 (m, 2H), 7.62-7.55 (m, 

1H), 7.50-7.42 (m, 2H), 7.30-7.23 (m, 3H), 7.17-7.12 (m, 1H), 

6.07 (dd, J = 7.6 Hz, J = 4.0 Hz, 1H), 4.04 (dd, J = 12.0 Hz, J = 

7.6 Hz, 1H), 3.94 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.36 (s, 3H), 

2.03 (bs, 1H).  

13C-NMR (125 MHz, CDCl3): δ 166.1, 138.4, 136.9, 133.2, 130.0, 129.7, 129.3, 128.6, 128.4, 

127.3, 123.6, 77.5, 66.2, 21.4. 

HRMS (m/z) calcd for C16H16O3Na [M]+Na: 279.0992, found: 279.0991.  

The enantiomeric ratio was determined by HPLC analysis: 

141g - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 6.9 min, 

τ2 = 15.5 min.  

(R)-2-(m-tolyl)oxirane (140g) - Daicel Chiralcel OD-3 column: nHept:iPrOH = 99.5:0.5, flow 

rate 1.0 mL/min, τ1 = 4.9 min, τ2 = 5.2 min. 

 

(R)-2-hydroxy-1-(3-methoxyphenyl)ethyl benzoate (141h) – Reaction performed at 4 °C.  

Product: 48% yield, e.r. = 91.2:8.8 

Starting material:45% yield, e.r. = 93.2:6.8. 

S = 28.7; convcalc= 51.2% 

1H-NMR (500 MHz, CDCl3): δ 8.14-8.08 (m, 2H), 7.62-7.55 (m, 

1H), 7.50-7.42 (m, 2H), 7.30 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 7.7 

Hz, 1H), 6.99 (cm, 1H), 6.87 (dd, J = 7.7 Hz, J = 2.7 Hz, 1H), 

6.08 (dd, J = 7.6 Hz, J = 4.0 Hz, 1H), 4.03 (dd, J = 12.1 Hz, J = 

7.6 Hz, 1H), 3.95 (dd, J = 12.1 Hz, J = 4.0 Hz, 1H), 3.81 (s, 3H).  

13C NMR (125 MHz, CDCl3): δ 166.1, 159.7, 138.6, 133.2, 129.9, 129.8, 129.7, 128.4, 118.8, 

113.6, 112.5, 77.3, 66.2, 55.2.  

HRMS (m/z) calcd for C16H16O4Na [M]+Na: 295.0941, found: 295.0941.  

The enantiomeric ratio was determined by HPLC analysis: 
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141h - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 10.9 

min, τ2 = 17.0 min.  

(R)-2-(3-methoxyphenyl)oxirane (140h) - Daicel Chiralcel AS-3 column: nHept:iPrOH = 99:1, 

flow rate 1.0 mL/min, τ1 = 10.9 min, τ2 = 17.0 min. 

 

(R,R)-2-hydroxy-1,2,3,4-tetrahydronaphthalen-1-yl benzoate (141i) – Reaction performed 

at -50 °C. Catalyst loading = 2 mol% 

Product: 45% yield, e.r. = 98:2 

Starting material: 55% yield, e.r. = 81.2:18.8. 

S = 93.1; convcalc= 39.4% 

1H-NMR (500 MHz, CDCl3): δ 8.13-8.08 (m, 2H), 7.62-7.57 (m, 

1H), 7.49-7.43 (m, 2H), 7.34-7.15 (m, 4H), 6.16 (d, J = 6.5 Hz, 

1H), 4.28-4.16 (m, 1H), 3.05-2.92 (m, 2H), 2.88 (bs, 1H), 2.31-

2.22 (m, 1H), 2.08-1.95 (m, 1H).  

13C-NMR (125 MHz, CDCl3): δ 167.6, 137.0, 133.4, 133.0, 129.9, 129.8, 128.8, 128.5, 128.5, 

128.1, 126.4, 77.1, 70.8.  

HRMS (m/z) calcd for C17H16O3Na [M]+Na: 291.0992, found: 291.0990.  

The enantiomeric ratio was determined by HPLC analysis: 

141i - Daicel Chiralcel AD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 8.4 min, 

τ2 = 9.0 min.  

(1aS,7bR)-1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene (140j) - Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 3.2 min, τ2 = 3.6 min. 

 

(R,R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl benzoate (141j) – Reaction performed at -50 °C. 

Catalyst loading = 2 mol%   

Product: 53% yield, e.r. = 94.1:5.9 

Starting material: 44% yield, e.r. = 99.6:0.4. 

S = 86.5; convcalc= 52.9% 

1H-NMR (500 MHz, CDCl3): δ 8.11-8.06 (m, 2H), 7.62-7.57 (m, 

1H), 7.49-7.39 (m, 3H), 7.36-7.22 (m, 3H), 6.10 (d, J = 5.1 Hz, 

1H), 4.70-4.62 (m, 1H), 3.92 (bs, 1H), 3.42 (dd, J = 16.1 Hz, J = 

7.9 Hz, 1H), 3.01 (dd, J = 16.1 Hz, J = 7.2 Hz, 1H).   
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13C-NMR (125 MHz, CDCl3): δ 168.4, 140.4, 137.9, 133.5, 129.9, 129.5, 129.3, 128.5, 127.3, 

125.0, 125.0, 87.3, 79.5, 38.4. HRMS (m/z) calcd for C16H14O3Na [M]+Na: 277.0835, found: 

277.0835.  

The enantiomeric ratio was determined by HPLC analysis: 

141j - Daicel Chiralcel OD-3 column: nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 5.4 min, 

τ2 = 6.2 min.  

(1aR,6aS)-1a,6a-dihydro-6H-indeno[1,2-b]oxirene (140j) - Daicel Chiralcel OJ-H column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 13.9 min, τ2 = 16.4 min. 

 
 
 

7.4.5. General procedure for the anti-dihydroxylation strategy 

 

A solution of the starting olefin 107 (0.1 mmol) in 0.4 mL of toluene was placed in a screw-

cap vial. To the stirred solution 1 equiv. of peracid (70% in weight, 30% of related carboxylic 

acid) was added and the reaction was left 24 h to obtain full conversion into the desired 

epoxide intermediate. Next the reaction was cooled to reaction temperature and a pre-

cooled toluene solution (0.4 mL) of the catalyst (10 mol%) and of the desired carboxylic acid 

(1.6 equiv.) was added at once. The reaction was stirred for additional 4-6 days and then 1 

mL of MTBE was added to stop the reaction and the mixture was directly purified by flash 

column chromatography (eluent: mixtures hexane/MTBE). After purification the product was 

dissolved in DCM and submitted to an additional wash with 2 M NaOHaq to remove small 

impurities of carboxylic acid. The enantiomeric ratios of products were analyzed by HPLC on 

a chiral stationary phase. 
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(1R,2R)-2-hydroxycyclohexyl 3-chlorobenzoate (52ak) – For this reaction no additional 

carboxylic acid was added after the epoxidation step. The ring opening step was performed 

at -20 °C and the product was isolated as a white solid in 71% yield and e.r. = 93.5:6.5.  

1H-NMR (500 MHz, CDCl3): δ 8.02 (cm, 1H), 7.96-7.92 (m, 1H), 

7.56-7.51 (m, 1H), 7.39 (t, J = 7.9 Hz, 1H), 4.89-4.81 (m, 1H), 

3.78-3.68 (m, 1H), 2.19-2.06 (m, 3H), 1.82-1.74 (m, 2H), 1.50-

1.20 (m, 4H). 13C-NMR (125 MHz, CDCl3): δ 166.0, 135.0, 

133.5, 132.5, 130.2, 130.2, 128.3, 79.6, 73.3, 33.6, 30.5, 24.4, 

24.2.  

HRMS (m/z) calcd for C13H15O3Na [M]+Na: 341.1148, found: 341.1150.  

[α]D
25: -49.1° (c = 0.550, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 99:1, flow rate 1.0 mL/min, τ1 = 17.7 min, τ2 = 21.1 min. 

 

7.4.6. Synthesis of trans-diol 144a via organocatalytic biomimetic sequence 

 

A solution of the starting olefin 107a (0.1 mmol) in 0.4 mL of toluene was placed in a screw-

cap vial. To the stirred solution 1 equiv. of peracid (70% in weight, 30% of related carboxylic 
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acid) was added and the reaction was left 24 h to obtain full conversion into the epoxide 

intermediate. Next the mixture was cooled to -40° C and a pre-cooled solution of catalyst 

139 (10 mol%) and benzoic acid (1.6 equiv.) was added at once. The reaction was stirred for 

additional 4 days and then the temperature was allowed to reach room temperature. Next 2 

mL of THF, 100 mg of KOH and 0.1 mL of MeOH were added and the reaction was stirred for 

12 h. Ethyl acetate was added and the organic phase was washed with a 2 M solution of 

NaOHaq. The water phase was extracted three times more with ethyl acetate and the 

combined organic phase was dried over Na2SO4. The solvent was removed in vacuo and the 

diol was isolated in 70% yield and e.r. = 95.5:4.5 as a colorless crystalline solid.  

 

(1R,2R)-cyclohexane-1,2-diol (144a)– The product was isolated as a white solid in 70% yield 

and e.r. = 95.5:4.5.  

1H-NMR (500 MHz, CDCl3): δ 3.40-3.24 (m, 2H), 2.84-2.55 (m, 

2H), 2.02-1.90 (m, 2H), 1.75-1.62 (m, 2H), 1.35-1.20 (m, 4H). 

13C-NMR (125 MHz, CDCl3): δ 76.0, 33.0, 24.5.  

The enantiomeric ratio was determined by GC analysis using 

IVADEX 7OV1701 G 573 column [Gas: Hydrogen 0.40 bar, 

Temperature: 100 1/Min 125 12/Min 220 2 Min iso. τ1 = 16.5 min, τ2 = 16.9 min.] 
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7.5. Asymmetric synthesis of β-hydroxythiols 

7.5.1. Heterodimer studies 

7.5.1.1. 1D-NMR studies 

This experiment was designed to investigate the hypothesized heterodimerization between 

chiral phosphoric acid catalysts and thiocarboxylic acids.  

The effect of the addition of thiobenzoic acid (8.3 mg, 30 equiv.) to a solution of TRIP in 

deuterated dichloromethane (1.5 mg, 0.005 M) was analyzed by 1H-NMR and 31P-NMR 

spectroscopy (TRIP: blue spectra; 146a: red spectra).  

 

 

31P-NMR 

 

The phosphorous signal in the 31P-NMR shows a significant downfield shift, thus suggesting 

the establishment of a different chemical environment. 
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1H-NMR 

 

The presence of thiobenzoic acid affects the chemical shift and the shape of the proton 

signals of the phosphoric acid molecule, thus suggesting the establishment of a new 

chemical environment. In particular, the non-equivalent protons of the 3,3’-aryl 

substituents, which were overlapping in the spectrum of the phosphoric acid monomer, are 

resolved. These data are in agreement with the previously investigated self-assembly of TRIP 

with carboxylic acids (cf. paragraph 7.2.1.). 

 

7.5.1.2. Theoretical investigation on heterodimer 146a by DFT calculation 

This study was performed to evaluate the relative stability of the two possible tautomeric 

structures: thiol isomer 146b1 and thione isomer 146b2. 

Optimized geometries (B3LYP/cc-pVTZ, Cartesian coordinates in Å) and total electronic 

energy (E). 

- 146b1 

 

   

C          4.257031    0.239247   -1.073365 

C          3.756124    0.357846    0.240416 

C          4.243317   -0.491894    1.254089 

C          5.221307   -1.431731    0.927371 
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C          5.730098   -1.565968   -0.357581 

C          5.230424   -0.718829   -1.341261 

C          2.755822    1.427575    0.561000 

C          1.405980    1.358534    0.125447 

C          0.485132    2.370482    0.310930 

C          0.862604    3.478171    1.140394 

C          2.209916    3.567250    1.598554 

C          3.128249    2.550108    1.257239 

C         -0.049938    4.476372    1.563666 

C          0.355178    5.516692    2.359852 

C          1.697591    5.624593    2.773909 

C          2.601526    4.666253    2.401640 

C         -0.861228    2.303098   -0.324198 

C         -1.680022    1.210135   -0.124973 

C         -3.029158    1.139745   -0.558799 

C         -3.509793    2.209483   -1.271499 

C         -2.694931    3.307473   -1.625946 

C         -1.345821    3.358351   -1.166190 

C         -3.190765    4.350155   -2.446232 

C         -2.384392    5.386853   -2.832776 

C         -1.038887    5.418348   -2.415847 

C         -0.535052    4.435435   -1.603204 

C         -3.910926   -0.025820   -0.230360 

C         -4.276094   -0.943893   -1.233838 

C         -5.139961   -1.987785   -0.901782 

C         -5.648619   -2.158609    0.378685 

C         -5.270638   -1.239757    1.352777 

C         -4.414560   -0.177238    1.078273 

C         -3.776852   -0.836725   -2.670819 

C         -4.891864   -0.356103   -3.614920 

C         -4.084507    0.802089    2.199200 

C         -3.421901    0.111978    3.401077 

C         -6.582675   -3.314642    0.692285 

C         -7.970013   -2.830946    1.140515 

O         -1.187956    0.129421    0.604586 

P         -0.052541   -0.815374   -0.030975 

O         -0.460538   -1.740728   -1.107628 

O          1.032168    0.230133   -0.598863 

C          3.760914   -0.412265    2.699416 

C          4.791860    0.297901    3.594456 

C          6.797731   -2.601881   -0.665309 

C          8.112064   -1.952672   -1.124255 

C          3.805674    1.151976   -2.208219 

C          3.201002    0.368227   -3.383101 

C          3.413885   -1.784628    3.295972 

C          4.950324    2.062376   -2.682684 

C          6.313141   -3.643961   -1.684231 

O          0.520210   -1.469742    1.273575 

C         -5.327601    1.595313    2.634514 

C         -5.977175   -4.279813    1.722514 

C         -3.163567   -2.147652   -3.184590 

S          0.351470   -4.876427   -1.247845 

C          1.013353   -4.982226    0.386145 

C          1.501115   -6.355638    0.773552 

O          1.085991   -4.050847    1.169758 

H         -4.541332    2.203788   -1.597607 

H         -4.220921    4.302477   -2.775628 

H         -2.771388    6.173327   -3.466566 

H         -0.395254    6.223812   -2.743377 

H          0.499654    4.475794   -1.299814 

H         -5.656471   -1.348537    2.358319 

H         -5.424879   -2.697288   -1.668467 

H         -3.369127    1.527549    1.815768 

H         -5.773183    2.125789    1.792094 

H         -5.063273    2.330594    3.397038 

H         -6.091481    0.939278    3.055491 

H         -3.137070    0.852061    4.151379 

H         -2.525059   -0.426798    3.098210 

H         -6.716433   -3.872641   -0.238346 

H         -5.008781   -4.654435    1.389663 

H         -6.636873   -5.134851    1.882412 

H         -5.830624   -3.788991    2.686260 

H         -7.911118   -2.272383    2.076302 

H         -8.639198   -3.678289    1.301824 

H         -8.421510   -2.179070    0.391930 

H         -2.983846   -0.090912   -2.693879 

H         -3.907790   -2.941667   -3.263897 

H         -2.364209   -2.481219   -2.526778 
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H         -2.742654   -1.994951   -4.180301 

H         -4.098549   -0.597473    3.880146 

H         -5.713793   -1.073892   -3.648364 

H         -4.508886   -0.239257   -4.630554 

H         -5.304752    0.602025   -3.297933 

H          0.709710   -2.442690    1.184468 

H          4.156407    2.654983    1.575806 

H          3.631664    4.725356    2.729336 

H          2.005957    6.455121    3.394482 

H         -0.364533    6.259761    2.676285 

H         -1.083683    4.409834    1.261827 

H          5.614401   -0.799025   -2.350076 

H          5.599141   -2.085512    1.702894 

H          3.024178    1.806192   -1.826731 

H          5.353476    2.653071   -1.859107 

H          4.596244    2.751191   -3.452175 

H          5.770681    1.482213   -3.108398 

H          2.829287    1.056434   -4.144593 

H          2.369567   -0.253948   -3.054696 

H          7.003870   -3.129996    0.269753 

H          5.399508   -4.132268   -1.344018 

H          7.072905   -4.412238   -1.840495 

H          6.102365   -3.184504   -2.651386 

H          7.981737   -1.419985   -2.067840 

H          8.883899   -2.709886   -1.274967 

H          8.476724   -1.237264   -0.386489 

H          2.846929    0.179778    2.713138 

H          4.303591   -2.399608    3.442022 

H          2.723336   -2.337505    2.663193 

H          2.946575   -1.655533    4.273695 

H          5.727621   -0.263598    3.629242 

H          4.415874    0.385226    4.615718 

H          5.022286    1.300106    3.234304 

H          3.941184   -0.277859   -3.858158 

H          0.918641   -6.698835    1.629652 

H          2.540627   -6.277915    1.092089 

H          1.415856   -7.075845   -0.035899 

H          0.021820   -3.549840   -1.206913 

 

Energy = -3135.04743245 Hartree 

 

- 146b2 

 
C         4.273893   -0.848852    1.160041 

C         3.862156    0.095104    0.199094 

C         4.359483    0.018647   -1.118622 

C         5.255723   -0.995301   -1.443575 

C         5.681465   -1.936742   -0.511987 

C         5.177748   -1.840495    0.778328 

C         2.939651    1.212105    0.582270 

C         1.585333    1.251723    0.162340 

C         0.730360    2.307920    0.401509 

C         1.182770    3.346815    1.281119 

C         2.535869    3.326162    1.731056 

C         3.386972    2.272650    1.329769 

C         0.337216    4.376670    1.763386 

C         0.811826    5.345115    2.610221 

C         2.160691    5.345995    3.017480 

C         3.000625    4.354274    2.587110 
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C        -0.616303    2.359149   -0.234754 

C        -1.508665    1.315410   -0.095712 

C        -2.856434    1.358196   -0.538463 

C        -3.259114    2.495914   -1.192017 

C        -2.370771    3.553939   -1.484564 

C        -1.023565    3.487738   -1.021758 

C        -2.791891    4.671651   -2.245873 

C        -1.915963    5.671128   -2.574021 

C        -0.573068    5.587749   -2.156089 

C        -0.140139    4.529559   -1.399109 

C        -3.819292    0.239925   -0.278116 

C        -4.255630   -0.584097   -1.334886 

C        -5.193565   -1.580257   -1.062420 

C        -5.709057   -1.794579    0.208843 

C        -5.262339   -0.968074    1.234911 

C        -4.331069    0.044062    1.021771 

C        -3.760519   -0.419344   -2.768507 

C        -3.312703   -1.743594   -3.404905 

C        -3.937567    0.930563    2.198107 

C        -5.124622    1.783721    2.674765 

C        -6.722831   -2.898018    0.457500 

C        -6.178754   -3.972926    1.410441 

O        -1.106284    0.168724    0.589432 

P         0.020740   -0.814106    0.012126 

O        -0.515983   -1.509436   -1.283692 

O         1.123384    0.175578   -0.599633 

C         3.980064    1.027166   -2.197416 

C         5.189121    1.877096   -2.621557 

C         6.660831   -3.037551   -0.881015 

C         6.092843   -3.976680   -1.955618 

C         3.782720   -0.822240    2.603630 

C         3.280371   -2.190150    3.087822 

O         0.467574   -1.728654    1.089912 

C         3.323712    0.357755   -3.414543 

C         8.025356   -2.474998   -1.307065 

C         4.868079   -0.286856    3.553306 

C        -3.332240    0.129334    3.360543 

C        -8.066161   -2.346437    0.958341 

C        -4.824523    0.254081   -3.652782 

S        -0.608888   -4.618445   -1.013784 

C        -0.156209   -5.069774    0.524588 

C        -0.145196   -6.506688    0.952015 

O         0.219193   -4.272435    1.484586 

H         4.421229    2.294423    1.645844 

H         4.034052    4.330702    2.908603 

H         2.524012    6.121232    3.678491 

H         0.142457    6.113806    2.972558 

H        -0.700572    4.391198    1.468197 

H         5.635202   -1.046711   -2.456072 

H         5.498108   -2.568383    1.512691 

H         3.247107    1.714053   -1.777766 

H         5.631456    2.390532   -1.766991 

H         4.888018    2.630822   -3.351704 

H         5.966564    1.262968   -3.079081 

H         3.004383    1.113327   -4.134862 

H         2.449877   -0.222096   -3.120267 

H         6.820550   -3.633091    0.021868 

H         5.141983   -4.407395   -1.640745 

H         6.787530   -4.794290   -2.157087 

H         5.922908   -3.446997   -2.894539 

H         7.939585   -1.874637   -2.214468 

H         8.728707   -3.284685   -1.510733 

H         8.452033   -1.841944   -0.528349 

H         2.934972   -0.140396    2.654652 

H         4.090483   -2.917114    3.164679 

H         2.522010   -2.587974    2.417868 

H         2.836666   -2.092538    4.080250 

H         4.016972   -0.311755   -3.926214 

H         5.741615   -0.941650    3.555605 

H         4.488571   -0.232003    4.575441 

H         5.204381    0.709094    3.264882 

H        -0.544598   -2.508775   -1.191675 

H        -4.287414    2.579732   -1.516685 

H        -3.821646    4.712230   -2.577404 

H        -2.246468    6.515866   -3.163157 

H         0.125083    6.364399   -2.438213 

H         0.893486    4.483798   -1.093330 

H        -5.654916   -1.109539    2.233604 
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H        -5.533223   -2.216664   -1.869529 

H        -3.170860    1.624627    1.858443 

H        -5.528407    2.388777    1.862019 

H        -4.813772    2.456774    3.476234 

H        -5.934113    1.160692    3.058877 

H        -2.998820    0.804443    4.150932 

H        -2.474268   -0.455254    3.031130 

H        -6.907018   -3.379671   -0.506562 

H        -5.247226   -4.397075    1.034879 

H        -6.899898   -4.784296    1.526659 

H        -5.981165   -3.559997    2.401233 

H        -7.959724   -1.867922    1.933444 

H        -8.796737   -3.150781    1.062618 

H        -8.471202   -1.606565    0.267190 

H        -2.888557    0.232860   -2.747715 

H        -4.151464   -2.421798   -3.566470 

H        -2.580057   -2.253858   -2.783638 

H        -2.856995   -1.552771   -4.377996 

H        -5.720933   -0.365113   -3.722175 

H        -4.442343    0.403928   -4.664386 

H        -5.124710    1.225007   -3.259076 

H        -4.059941   -0.555008    3.799808 

H         0.867119   -6.780434    1.256267 

H        -0.481238   -7.161541    0.156335 

H        -0.785526   -6.624250    1.828350 

H         0.254597   -3.295802    1.241455 

 

Energy = -3135.04887310 Hartree
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7.5.2. General procedure for the thiocarboxylysis of meso-epoxides 

 

In a screw-cap vial, epoxide 50 (0.1 mmol) was dissolved in 0.4 mL of toluene and was cooled 

to the reaction temperature. Then a pre-cooled solution of thiocarboxylic acid 145 (0.16 

mmol, 1.6 equiv.) and catalyst 139 (4 mol%) in 0.4 mL of toluene was added and the reaction 

was stirred for 2-5 days. Next, 1 mL of MTBE was added to the reaction and the cold mixture 

was directly purified by flash column chromatography (eluent: mixtures hexane/MTBE). The 

enantiomeric ratios of products 147 were measured by HPLC on a chiral stationary phase. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

S-((R,R)-2-hydroxycyclohexyl) benzothioate (147a) – The reaction was performed at –78° C 

and the product was isolated as a white solid in 95% yield and e.r. = 98:2.  

1H-NMR (300 MHz, CD2Cl2): δ 8.00-7.92 (m, 2H), 7.65-7.55 

(m, 1H), 7.52-7.42 (m, 2H), 3.70-3.42 (m, 2H), 2.37 (d, 1H, J = 

4.6 Hz), 2.20-2.05 (m, 2H), 1.85-1.68 (m, 2H), 1.50-1.20 (m, 

4H).  

13C-NMR (75 MHz, CD2Cl2): δ 192.6, 137.5, 133.9, 129.0, 127.7, 73.4, 50.7, 35.6, 32.6, 26.3, 

24.6.  

HRMS (m/z) calcd for C13H16O2SNa [M]+Na: 259.0763, found: 259.0762.  

[α]D
25: -39.6° (c = 1.050, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 13.0 min, τ2 = 17.5 min. 
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S-((R,R)-6-hydroxycyclohex-3-en-1-yl) benzothioate (147b) – The reaction was performed at 

–40° C and the product was isolated as a colorless liquid in 99% yield and e.r. = 96.5:3.5.  

1H-NMR (300 MHz, CDCl3): δ 8.05-7.92 (m, 2H), 7.64-7.55 (m, 

1H), 7.50-7.42 (m, 2H), 5.75-5.60 (m, 2H), 4.05-3.82 (m, 2H), 

2.78-2.55 (m, 2H), 2.45-2.18 (m, 3H).  

13C-NMR (75 MHz, CDCl3): δ 192.5, 137.1, 133.8, 128.8, 

127.6, 125.3, 125.0, 69.6, 45.8, 34.1, 31.2.  

HRMS (m/z) calcd for C13H14O2SNa [M]+Na: 257.0607, found: 257.0606.  

[α]D
25: -43.5° (c = 1.200, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 13.4 min, τ2 = 15.1 min. 

 

S-((R,R)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl) benzothioate (147c) – The reaction 

was performed at –40° C and the product was isolated as a colorless liquid in 86% yield and 

e.r. = 96.5:3.5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.05-7.92 (m, 2H), 7.68-7.56 

(m, 1H), 7.52-7.42 (m, 2H), 7.22-7.08 (m, 4H), 4.20-4.05 (m, 

2H), 3.50-3.22 (m, 2H), 3.10-2.88 (m, 2H), 2.48 (bd, J = 3.5 Hz, 

1H).  

13C-NMR (75 MHz, CD2Cl2): δ 192.1, 137.3, 134.4, 134.2, 

134.0, 129.5, 129.1, 128.6, 127.6, 126.8, 126.5, 70.1, 46.4, 37.5, 34.2.  

HRMS (m/z) calcd for C17H16O2SNa [M]+Na: 307.0763, found: 307.0763.  

[α]D
25: -64.8° (c = 1.225, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 22.7 min, τ2 = 25.9 min. 

 

S-((R,R)-2-hydroxycyclopentyl) benzothioate (147d) – The reaction was performed at –40° C 

and the product was isolated as a colorless liquid in 99% yield and e.r. = 97:3.  

1H-NMR (300 MHz, CD2Cl2): δ 8.00-7.90 (m, 2H), 7.65-7.54 

(m, 1H), 7.52-7.43 (m, 2H), 4.25-4.15 (m, 1H), 3.72 (td, J = 8.1 

Hz, J = 4.5 Hz, 1H), 2.91 (bs, 1H), 2.40-2.22 (m, 1H), 2.10-1.58 

(m, 5H).  
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13C-NMR (75 MHz, CD2Cl2): δ 194.5, 137.4, 133.9, 129.1, 127.6, 80.9, 51.4, 34.3, 30.8, 23.5.  

HRMS (m/z) calcd for C12H14O2SNa [M]+Na: 245.0607, found: 245.0607.  

[α]D
25: +37.5° (c = 1.100, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 10.5 min, τ2 = 11.8 min. 

 

S-((R,R)-2-hydroxycycloheptyl) benzothioate (147e) – The reaction was performed at –40° C 

and the product was isolated as white solid in 86% yield and e.r. = 96.5:3.5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.04-7.90 (m, 2H), 7.65-7.56 

(m, 1H), 7.52-7.42 (m, 2H), 3.95-3.70 (m, 2H), 2.48 (bs, 1H), 

2.15-1.40 (m, 10H).  

13C-NMR (75 MHz, CD2Cl2): δ 192.9, 137.6, 133.8, 129.0, 

127.6, 76.3, 53.6, 35.3, 32.1, 28.7, 26.9, 22.7.  

HRMS (m/z) calcd for C14H18O2SNa [M]+Na: 273.0920, found: 273.0919.  

[α]D
25: -28.2° (c = 0.985, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 13.4 min, τ2 = 16.8 min. 

 

S-((R,R)-4-hydroxytetrahydrofuran-3-yl) benzothioate (147f) – The reaction was performed 

at –10° C and the product was isolated as a colorless liquid in 78% yield and e.r. = 95.5:4.5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.00-7.90 (m, 2H), 7.68-7.58 

(m, 1H), 7.55-7.45 (m, 2H), 4.48-4.32 (m, 2H), 4.08-3.92 (m, 

2H), 3.80-3.70 (dd, J = 9.8 Hz J = 4.1 Hz, 2H), 2.78 (bd, J = 3.4 

Hz, 1H).  

13C-NMR (75 MHz, CD2Cl2): δ 192.8, 137.0, 134.2, 129.2, 127.6, 79.3, 74.6, 71.3, 50.7.  

HRMS (m/z) calcd for C11H12O3SNa [M]+Na: 247.0399, found: 247.0340.  

[α]D
25: +11.5° (c = 0.850, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 97:3, flow rate 1.0 mL/min, τ1 = 24.7 min, τ2 = 26.6 min. 

 



7. Experimental Section 

 

240 

 

(R,R)-benzyl 3-(benzoylthio)-4-hydroxypyrrolidine-1-carboxylate (147g) – Reaction 

performed at –10° C. Product isolated as a colorless liquid in 63% yield and e.r. = 95.5:4.5.  

1H-NMR (300 MHz, CDCl3): δ 7.95-7.88 (m, 2H), 7.65-7.57 (m, 

1H), 7.52-7.43 (m, 2H), 7.42-7.27 (m, 5H), 5.17 (s, 2H), 4.44-

4.35 (m, 1H), 4.18-4.00 (m, 2H), 3.92-3.36 (m, 3H), 2.80 (bs, 

1H).  

13C-NMR (75 MHz, CDCl3): δ 191.0, 154.9, 136.8, 136.6, 134.2, 129.0, 128.7, 128.3, 128.2, 

127.6, 76.5, 75.3, 67.3, 52.7, 52.2, 49.1, 48.6 (additional peaks due to rotamers).  

HRMS (m/z) calcd for C19H19NO4SNa [M]+Na: 380.0927, found: 380.0928.  

[α]D
25: +53.4° (c = 0.700, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OD-3 column: 

nHept:iPrOH = 85:15, flow rate 1.0 mL/min, τ1 = 12.2 min, τ2 = 15.7 min. 

 

S-((R,R)-3-hydroxybutan-2-yl) benzothioate (147h) – The reaction was performed at –40° C 

and the product was isolated as a colorless liquid in 99% yield and e.r. = 97:3.  

1H-NMR (300 MHz, CD2Cl2): δ 8.10-7.95 (m, 2H), 7.65-7.52 

(m, 1H), 7.52-7.42 (m, 2H), 4.00-3.89 (m, 1H), 3.83 (dq, J = 7.0 

Hz, J = 4.6 Hz, 1H), 1.96 (bs, 1H), 1.43 (d, J = 7.2 Hz, 3H), 1.26 

(d, J = 6.2 Hz, 3H).  

13C-NMR (75 MHz, CD2Cl2): δ 191.9, 137.7, 133.8, 129.0, 127.6, 71.1, 46.8, 20.8, 18.0.  

HRMS (m/z) calcd for C11H14O2SNa [M]+Na: 233.0607, found: 233.0606.  

[α]D
25: -26.6° (c = 1.175, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 7.9 min, τ2 = 8.9 min. 

 

S-((R,R)-4-hydroxyhexan-3-yl) benzothioate (147i) – The reaction was performed at –40° C 

and the product was isolated as a colorless liquid in 94% yield and e.r. = 95.5:4.5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.04-7.95 (m, 2H), 7.64-7.55 

(m, 1H), 7.52-7.43 (m, 2H), 3.83-3.70 (m, 2H), 2.00-1.40 (m, 

5H), 1.04 (t, J = 7.4 Hz, 3H), 0.98 (t, J = 7.4 Hz, 3H).  
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13C-NMR (75 MHz, CD2Cl2): δ 192.2, 137.7, 133.7, 129.0, 127.7, 75.4, 52.5, 28.4, 26.1, 12.0, 

10.4.  

HRMS (m/z) calcd for C13H18O2SNa [M]+Na: 261.0920, found: 261.0921.  

[α]D
25: -17.9° (c = 1.050, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 95:5, flow rate 1.0 mL/min, τ1 = 8.0 min, τ2 = 8.6 min. 

 

S-((R,R)-5-hydroxyoctan-4-yl) benzothioate (147j) – The reaction was performed at –40° C 

and the product was isolated as a colorless liquid in 82% yield and e.r. = 95:5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.02-7.96 (m, 2H), 7.64-7.55 

(m, 1H), 7.52-7.43 (m, 2H), 3.88-3.76 (m, 2H), 1.90-1.30 (m, 

9H), 0.98-0.88 (m, 6H).  

13C-NMR (75 MHz, CD2Cl2): δ 192.0, 137.6, 133.7, 128.9, 

127.6, 73.9, 50.8, 37.5, 34.9, 20.8, 19.5, 14.1, 14.0.  

HRMS (m/z) calcd for C15H22O2SNa [M]+Na: 289.1232, found: 289.1232.  

[α]D
25: +19.6° (c = 1.100, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OJ-H column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 11.0 min, τ2 = 12.1 min. 

 

S-((R,R)-2-hydroxy-1,2-diphenylethyl) benzothioate (147k) – The reaction was performed at 

–10° C and the product was isolated as a mixture 8.5:1 of compound 147k and 148k (white 

solid) in 72% yield and e.r.147k = 89:11, e.r.148k = 87:13.  

1H-NMR (300 MHz, CD2Cl2): δ 8.08-8.00 (m, 2H148k), 7.90-7.80 

(m, 2H147k), 7.58-7.45 (m, 1H147k + 1H148k), 7.45-7.32 (m, 

2H147k + 2H148k), 7.26-7.08 (m, 10H147k + 10H148k), 6.13 (d, J = 

8.5 Hz, 1H148k),  5.08-4.98 (m, 2H147k), 4.50 (dd, J = 8.5 Hz J = 

5.2 Hz, 1H148k), 2.72 (bs, 1H147k), 2.28 (d, J = 5.2 Hz, 1H148k).  

13C-NMR (75 MHz, CD2Cl2, compound 3k): δ 191.2, 141.7, 139.8, 137.2, 134.0, 129.1, 129.0, 

128.8, 128.4, 128.2, 127.9, 127.7, 127.1, 77.6, 56.7.  

HRMS (m/z) calcd for C21H18O2SNa [M]+Na: 357.0920, found: 341.0919.  
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The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 85:15, flow rate 1.0 mL/min, τ1 = 13.2 min, τ2 = 15.4 min. 

S-((R,R)-2-hydroxycyclohexyl) ethanethioate (147ab) – The reaction was performed at –40° 

C and the product was isolated as a mixture 15:1 of compound 147ab and 148ab in 75% 

yield and e.r.147ab = 95:5.  

1H NMR (500 MHz, CD2Cl2): δ 3.35-3.20 (m, 2H), 2.25 (s, 3H), 

2.17 (d, J = 4.5 Hz, 1H), 2.05-1.86 (m, 2H), 1.70-1.55 (m, 2H), 

1.40-1.15 (m, 4H).  

13C-NMR (125 MHz, CD2Cl2): δ 196.8, 73.2, 50.6, 35.4, 32.4, 

31.1, 26.2, 24.5.  

HRMS (m/z) calcd for C8H14O2SNa [M]+Na: 197.0607, found: 197.0608.  

The enantiomeric ratio was determined by GC analysis using BGB-177/BG-15 column 30 m 

(60 min at 140 °C, 10 °C/min until 220°C, 3 min at 220 °C, 0.4 bar H2), τ1 = 24.7 min, τ2 = 25.4 

min. 

 

S-((R,R)-2-mercaptocyclopentyl acetate (147db) – The reaction was performed at –10° C 

and the product was isolated as colorless liquid in 63% yield and e.r. = 93.5:6.5.  

1H-NMR (500 MHz, CD2Cl2): δ 4.05-3.95 (m, 1H), 3.43 (td, J = 

8.0 Hz, J = 4.5 Hz, 1H), 2.73 (bs, 1H), 2.24 (m, 3H), 2.18-2.05 

(m, 1H), 1.92-1.80 (m, 1H), 1.78-1.65 (m, 1H), 1.62-1.50 (m, 

2H), 1.48-1.35 (m, 1H).  

13C-NMR (125 MHz, CD2Cl2): δ 198.7, 80.7, 51.2, 34.0, 30.6, 30.4, 23.2.  

HRMS (m/z) calcd for C7H12O2SNa [M]+Na: 183.0456, found: 183.0448.  

[α]D
25: +81.1° (c = 0.375, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 5.1 min, τ2 = 5.4 min. 
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7.5.2.1. Crystallographic data of compound 147ab  

 

Crystallization occurred by change of phase from a neat liquid state at room temperature. 

There are three independent molecules in the asymmetric unit, which differ only slightly in 

the conformation of the methyl carbonyl group attached to the sulfur atoms (Scheme 

below).  

 

The Flack parameter is -0.004(4) and the absolute structure (R,R) is therefore correct with a 

large degree of certainty.176 

Crystal data and structure refinement. 
 
Identification code  9133 
Empirical formula  C8H14O2S 
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Color  colourless 

Formula weight  174.25  g∙mol-1  
Temperature  100 K 
Wavelength  1.54178 Å 
Crystal system  orthorhombic 
Space group  P 21 21 21,  (no. 19)  
Unit cell dimensions a = 5.2483(2) Å α= 90°. 
 b = 21.9303(7) Å β= 90°. 
 c = 22.8444(7) Å γ = 90°. 

Volume 2629.32(15) Å3 
Z 12 

Density (calculated) 1.321  Mg∙m-3 

Absorption coefficient 2.878 mm-1 
F(000) 1128 e 

Crystal size 1.28 x 0.040 x 0.030 mm3 
θ range for data collection 2.793 to 67.904°. 
Index ranges -6 ≤ h ≤ 5, -26 ≤ k ≤ 26, -26 ≤ l ≤ 27 
Reflections collected 116370 
Independent reflections 4701 [Rint = 0.0809] 

Reflections with I>2σ(I) 4556 
Completeness to θ = 67.679° 98.7 %  
Absorption correction Gaussian 
Max. and min. transmission 0.91982 and 0.30765 

Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 4701 / 0 / 313 

Goodness-of-fit on F2 1.153 

Final R indices [I>2σ(I)] R1 = 0.0257 wR2 = 0.0655 

R indices (all data) R1 = 0.0270 wR2 = 0.0662 

Absolute structure parameter -0.004(4) 
Extinction coefficient 0 

Largest diff. peak and hole 0.162 and -0.317 e∙Å-3 

 

Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

 Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 x y z Ueq 

C(1) 0.8118(4) 0.7015(1) 0.3765(1) 0.014(1) 

C(2) 0.8245(4) 0.7577(1) 0.4160(1) 0.014(1) 

C(3) 0.6072(4) 0.8009(1) 0.4009(1) 0.016(1) 

C(4) 0.6084(5) 0.8193(1) 0.3363(1) 0.017(1) 

C(5) 0.6014(5) 0.7631(1) 0.2972(1) 0.018(1) 
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C(6) 0.8204(5) 0.7202(1) 0.3119(1) 0.017(1) 

C(7) 0.9362(5) 0.5800(1) 0.3667(1) 0.016(1) 

C(8) 1.1152(5) 0.5264(1) 0.3678(1) 0.023(1) 

C(9) 0.9079(5) 0.3328(1) 0.3664(1) 0.014(1) 

C(10) 0.9142(5) 0.3244(1) 0.4328(1) 0.013(1) 

C(11) 1.1316(5) 0.2825(1) 0.4499(1) 0.017(1) 

C(12) 1.1187(5) 0.2206(1) 0.4190(1) 0.018(1) 

C(13) 1.1066(5) 0.2294(1) 0.3528(1) 0.018(1) 

C(14) 0.8854(5) 0.2709(1) 0.3358(1) 0.018(1) 

C(15) 0.7570(5) 0.4114(1) 0.2781(1) 0.016(1) 

C(16) 0.5810(5) 0.4577(1) 0.2514(1) 0.019(1) 

C(17) 0.4267(4) 0.4741(1) 0.5878(1) 0.014(1) 

C(18) 0.4172(5) 0.4739(1) 0.5209(1) 0.015(1) 

C(19) 0.6289(5) 0.5142(1) 0.4965(1) 0.017(1) 

C(20) 0.6136(5) 0.5794(1) 0.5200(1) 0.021(1) 

C(21) 0.6199(5) 0.5788(1) 0.5866(1) 0.018(1) 

C(22) 0.4077(4) 0.5393(1) 0.6116(1) 0.016(1) 

C(23) 0.2740(5) 0.4157(1) 0.6895(1) 0.016(1) 

C(24) 0.0897(5) 0.3791(1) 0.7257(1) 0.020(1) 

O(1) 0.8030(4) 0.7415(1) 0.4764(1) 0.019(1) 

O(2) 0.7182(3) 0.5764(1) 0.3497(1) 0.021(1) 

O(3) 0.9502(3) 0.3813(1) 0.4624(1) 0.019(1) 

O(4) 0.9571(3) 0.3954(1) 0.2566(1) 0.023(1) 

O(5) 0.4502(4) 0.4137(1) 0.4981(1) 0.019(1) 

O(6) 0.4744(3) 0.4347(1) 0.7079(1) 0.022(1) 

S(1) 1.0723(1) 0.6490(1) 0.3927(1) 0.016(1) 

S(2) 0.6454(1) 0.3831(1) 0.3465(1) 0.016(1) 

S(3) 0.1681(1) 0.4270(1) 0.6163(1) 0.016(1) 

 

Bond lengths [Å] and angles [°] 

 

C(1)-C(2) 1.529(3) C(1)-C(6) 1.531(3)

C(1)-S(1) 1.825(2) C(1)-H(1) 1.0000

C(2)-O(1) 1.430(3) C(2)-C(3) 1.522(3)

C(2)-H(2) 1.0000 C(3)-C(4) 1.530(3)

C(3)-H(3A) 0.9900 C(3)-H(3B) 0.9900

C(4)-C(5) 1.522(3) C(4)-H(4A) 0.9900

C(4)-H(4B) 0.9900 C(5)-C(6) 1.524(3)

C(5)-H(5A) 0.9900 C(5)-H(5B) 0.9900
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C(6)-H(6A) 0.9900 C(6)-H(6B) 0.9900

C(7)-O(2) 1.211(3) C(7)-C(8) 1.507(3)

C(7)-S(1) 1.774(2) C(8)-H(8A) 0.9800

C(8)-H(8B) 0.9800 C(8)-H(8C) 0.9800

C(9)-C(10) 1.530(3) C(9)-C(14) 1.531(3)

C(9)-S(2) 1.823(2) C(9)-H(9) 1.0000

C(10)-O(3) 1.432(3) C(10)-C(11) 1.516(3)

C(10)-H(10) 1.0000 C(11)-C(12) 1.531(3)

C(11)-H(11A) 0.9900 C(11)-H(11B) 0.9900

C(12)-C(13) 1.524(3) C(12)-H(12A) 0.9900

C(12)-H(12B) 0.9900 C(13)-C(14) 1.525(3)

C(13)-H(13A) 0.9900 C(13)-H(13B) 0.9900

C(14)-H(14A) 0.9900 C(14)-H(14B) 0.9900

C(15)-O(4) 1.211(3) C(15)-C(16) 1.501(3)

C(15)-S(2) 1.780(2) C(16)-H(16A) 0.9800

C(16)-H(16B) 0.9800 C(16)-H(16C) 0.9800

C(17)-C(18) 1.529(3) C(17)-C(22) 1.534(3)

C(17)-S(3) 1.827(2) C(17)-H(17) 1.0000

C(18)-O(5) 1.431(3) C(18)-C(19) 1.524(3)

C(18)-H(18) 1.0000 C(19)-C(20) 1.531(3)

C(19)-H(19A) 0.9900 C(19)-H(19B) 0.9900

C(20)-C(21) 1.523(3) C(20)-H(20A) 0.9900

C(20)-H(20B) 0.9900 C(21)-C(22) 1.522(3)

C(21)-H(21A) 0.9900 C(21)-H(21B) 0.9900

C(22)-H(22A) 0.9900 C(22)-H(22B) 0.9900

C(23)-O(6) 1.207(3) C(23)-C(24) 1.504(3)

C(23)-S(3) 1.780(2) C(24)-H(24A) 0.9800

C(24)-H(24B) 0.9800 C(24)-H(24C) 0.9800

O(1)-H(2A) 0.89(4) O(3)-H(1A) 0.88(4)

O(5)-H(5) 0.82(4) 

 

C(2)-C(1)-C(6) 110.58(18) C(2)-C(1)-S(1) 110.88(16)

C(6)-C(1)-S(1) 110.00(16) C(2)-C(1)-H(1) 108.4  

C(6)-C(1)-H(1) 108.4 S(1)-C(1)-H(1) 108.4 

O(1)-C(2)-C(3) 108.34(18) O(1)-C(2)-C(1) 111.47(17)

C(3)-C(2)-C(1) 109.58(18) O(1)-C(2)-H(2) 109.1  

C(3)-C(2)-H(2) 109.1 C(1)-C(2)-H(2) 109.1  

C(2)-C(3)-C(4) 112.35(18) C(2)-C(3)-H(3A) 109.1  

C(4)-C(3)-H(3A) 109.1 C(2)-C(3)-H(3B) 109.1  
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C(4)-C(3)-H(3B) 109.1 H(3A)-C(3)-H(3B) 107.9  

C(5)-C(4)-C(3) 110.58(18) C(5)-C(4)-H(4A) 109.5  

C(3)-C(4)-H(4A) 109.5 C(5)-C(4)-H(4B) 109.5  

C(3)-C(4)-H(4B) 109.5 H(4A)-C(4)-H(4B) 108.1  

C(4)-C(5)-C(6) 110.65(19) C(4)-C(5)-H(5A) 109.5  

C(6)-C(5)-H(5A) 109.5 C(4)-C(5)-H(5B) 109.5  

C(6)-C(5)-H(5B) 109.5 H(5A)-C(5)-H(5B) 108.1  

C(5)-C(6)-C(1) 110.88(19) C(5)-C(6)-H(6A) 109.5  

C(1)-C(6)-H(6A) 109.5 C(5)-C(6)-H(6B) 109.5  

C(1)-C(6)-H(6B) 109.5 H(6A)-C(6)-H(6B) 108.1  

O(2)-C(7)-C(8) 122.9(2) O(2)-C(7)-S(1) 122.94(19)

C(8)-C(7)-S(1) 114.15(18) C(7)-C(8)-H(8A) 109.5  

C(7)-C(8)-H(8B) 109.5 H(8A)-C(8)-H(8B) 109.5  

C(7)-C(8)-H(8C) 109.5 H(8A)-C(8)-H(8C) 109.5

H(8B)-C(8)-H(8C) 109.5 C(10)-C(9)-C(14) 110.34(18)

C(10)-C(9)-S(2) 109.70(16) C(14)-C(9)-S(2) 111.41(16)

C(10)-C(9)-H(9) 108.4 C(14)-C(9)-H(9) 108.4  

S(2)-C(9)-H(9) 108.4 O(3)-C(10)-C(11) 107.96(18)

O(3)-C(10)-C(9) 111.48(17) C(11)-C(10)-C(9) 110.12(18)

O(3)-C(10)-H(10) 109.1 C(11)-C(10)-H(10) 109.1  

C(9)-C(10)-H(10) 109.1 C(10)-C(11)-C(12) 112.68(18)

C(10)-C(11)-H(11A) 109.1 C(12)-C(11)-H(11A) 109.1

C(10)-C(11)-H(11B) 109.1 C(12)-C(11)-H(11B) 109.1

H(11A)-C(11)-H(11B) 107.8 C(13)-C(12)-C(11) 110.33(18)

C(13)-C(12)-H(12A) 109.6 C(11)-C(12)-H(12A) 109.6

C(13)-C(12)-H(12B) 109.6 C(11)-C(12)-H(12B) 109.6

H(12A)-C(12)-H(12B) 108.1 C(12)-C(13)-C(14) 111.06(19)

C(12)-C(13)-H(13A) 109.4 C(14)-C(13)-H(13A) 109.4

C(12)-C(13)-H(13B) 109.4 C(14)-C(13)-H(13B) 109.4

H(13A)-C(13)-H(13B) 108.0 C(13)-C(14)-C(9) 110.76(18)

C(13)-C(14)-H(14A) 109.5 C(9)-C(14)-H(14A) 109.5

C(13)-C(14)-H(14B) 109.5 C(9)-C(14)-H(14B) 109.5

H(14A)-C(14)-H(14B) 108.1 O(4)-C(15)-C(16) 124.4(2)

O(4)-C(15)-S(2) 122.66(18) C(16)-C(15)-S(2) 112.90(17)

C(15)-C(16)-H(16A) 109.5 C(15)-C(16)-H(16B) 109.5

H(16A)-C(16)-H(16B) 109.5 C(15)-C(16)-H(16C) 109.5

H(16A)-C(16)-H(16C) 109.5 H(16B)-C(16)-H(16C) 109.5

C(18)-C(17)-C(22) 110.77(18) C(18)-C(17)-S(3) 109.31(16)

C(22)-C(17)-S(3) 110.68(15) C(18)-C(17)-H(17) 108.7
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C(22)-C(17)-H(17) 108.7 S(3)-C(17)-H(17) 108.7  

O(5)-C(18)-C(19) 108.22(18) O(5)-C(18)-C(17) 111.25(18)

C(19)-C(18)-C(17) 109.90(18) O(5)-C(18)-H(18) 109.1

C(19)-C(18)-H(18) 109.1 C(17)-C(18)-H(18) 109.1

C(18)-C(19)-C(20) 112.02(19) C(18)-C(19)-H(19A) 109.2

C(20)-C(19)-H(19A) 109.2 C(18)-C(19)-H(19B) 109.2

C(20)-C(19)-H(19B) 109.2 H(19A)-C(19)-H(19B) 107.9

C(21)-C(20)-C(19) 109.90(19) C(21)-C(20)-H(20A) 109.7

C(19)-C(20)-H(20A) 109.7 C(21)-C(20)-H(20B) 109.7

C(19)-C(20)-H(20B) 109.7 H(20A)-C(20)-H(20B) 108.2

C(22)-C(21)-C(20) 111.37(19) C(22)-C(21)-H(21A) 109.4

C(20)-C(21)-H(21A) 109.4 C(22)-C(21)-H(21B) 109.4

C(20)-C(21)-H(21B) 109.4 H(21A)-C(21)-H(21B) 108.0

C(21)-C(22)-C(17) 110.47(18) C(21)-C(22)-H(22A) 109.6

C(17)-C(22)-H(22A) 109.6 C(21)-C(22)-H(22B) 109.6

C(17)-C(22)-H(22B) 109.6 H(22A)-C(22)-H(22B) 108.1  

O(6)-C(23)-C(24) 123.7(2) O(6)-C(23)-S(3) 123.38(18)

C(24)-C(23)-S(3) 112.90(17) C(23)-C(24)-H(24A) 109.5

C(23)-C(24)-H(24B) 109.5 H(24A)-C(24)-H(24B) 109.5

C(23)-C(24)-H(24C) 109.5 H(24A)-C(24)-H(24C) 109.5

H(24B)-C(24)-H(24C) 109.5 C(2)-O(1)-H(2A) 108(3)

C(10)-O(3)-H(1A) 111(2) C(18)-O(5)-H(5) 108(3)

C(7)-S(1)-C(1) 99.71(11) C(15)-S(2)-C(9) 100.46(11)

C(23)-S(3)-C(17) 100.46(11)  

 

 

Anisotropic displacement parameters (Å2)  

The anisotropic displacement factor exponent takes the form:  

 -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ]. 

 
 U11 U22 U33 U23 U13 U12 

C(1) 0.010(1)  0.014(1) 0.018(1)  0.000(1) -0.001(1)  0.001(1) 

C(2) 0.014(1)  0.017(1) 0.011(1)  0.001(1) 0.002(1)  -0.003(1) 

C(3) 0.016(1)  0.015(1) 0.016(1)  0.001(1) 0.002(1)  0.002(1) 

C(4) 0.018(1)  0.017(1) 0.017(1)  0.002(1) 0.001(1)  0.002(1) 

C(5) 0.015(1)  0.022(1) 0.016(1)  0.001(1) -0.003(1)  0.003(1) 

C(6) 0.014(1)  0.021(1) 0.016(1)  -0.002(1) 0.000(1)  0.000(1) 

C(7) 0.016(1)  0.016(1) 0.017(1)  0.001(1) 0.002(1)  -0.001(1) 

C(8) 0.019(1)  0.018(1) 0.033(1)  -0.001(1) 0.003(1)  0.001(1) 
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C(9) 0.011(1)  0.014(1) 0.016(1)  0.001(1) 0.001(1)  0.001(1) 

C(10) 0.014(1)  0.009(1) 0.016(1)  -0.003(1) 0.000(1)  -0.003(1) 

C(11) 0.018(1)  0.015(1) 0.017(1)  -0.001(1) -0.001(1)  0.001(1) 

C(12) 0.019(1)  0.013(1) 0.022(1)  0.000(1) 0.000(1)  0.001(1) 

C(13) 0.018(1)  0.015(1) 0.021(1)  -0.004(1) 0.002(1)  0.002(1) 

C(14) 0.015(1)  0.020(1) 0.017(1)  -0.005(1) -0.002(1)  0.001(1) 

C(15) 0.016(1)  0.014(1) 0.018(1)  -0.001(1) -0.003(1)  -0.002(1) 

C(16) 0.019(1)  0.016(1) 0.021(1)  0.002(1) 0.001(1)  0.002(1) 

C(17) 0.010(1)  0.012(1) 0.019(1)  0.000(1) 0.001(1)  -0.001(1) 

C(18) 0.014(1)  0.012(1) 0.019(1)  -0.003(1) 0.000(1)  0.001(1) 

C(19) 0.014(1)  0.018(1) 0.020(1)  0.001(1) 0.003(1)  -0.002(1) 

C(20) 0.019(1)  0.015(1) 0.029(1)  0.004(1) 0.002(1)  -0.002(1) 

C(21) 0.015(1)  0.011(1) 0.028(1)  -0.002(1) 0.001(1)  -0.002(1) 

C(22) 0.014(1)  0.013(1) 0.021(1)  -0.003(1) 0.002(1)  0.001(1) 

C(23) 0.017(1)  0.012(1) 0.021(1)  0.000(1) 0.002(1)  0.004(1) 

C(24) 0.022(1)  0.015(1) 0.022(1)  0.001(1) 0.003(1)  -0.003(1) 

O(1) 0.021(1)  0.024(1) 0.012(1)  0.002(1) 0.000(1)  0.001(1) 

O(2) 0.015(1)  0.019(1) 0.028(1)  -0.001(1) -0.002(1)  -0.001(1) 

O(3) 0.019(1)  0.015(1) 0.022(1)  -0.007(1) -0.002(1)  0.001(1) 

O(4) 0.017(1)  0.028(1) 0.023(1)  0.005(1) 0.005(1)  0.007(1) 

O(5) 0.018(1)  0.016(1) 0.023(1)  -0.008(1) 0.002(1)  -0.002(1) 

O(6) 0.018(1)  0.023(1) 0.025(1)  0.003(1) -0.004(1)  -0.006(1) 

S(1) 0.011(1)  0.015(1) 0.023(1)  0.000(1) -0.002(1)  0.001(1) 

S(2) 0.012(1)  0.019(1) 0.018(1)  0.004(1) 0.002(1)  0.004(1) 

S(3) 0.013(1)  0.016(1) 0.018(1)  0.000(1) 0.001(1)  -0.004(1) 

 

Hydrogen coordinates and isotropic displacement parameters (Å2)  

 
 x  y  z  Ueq 

H(1) 0.6470 0.6800 0.3840 0.017 

H(1A) 0.803(7) 0.3970(17) 0.4737(16) 0.048(11) 

H(2) 0.9905 0.7790 0.4095 0.016 

H(2A) 0.957(8) 0.7444(19) 0.4924(18) 0.053(11) 

H(3A) 0.6211 0.8380 0.4254 0.019 

H(3B) 0.4430 0.7809 0.4102 0.019 

H(4A) 0.4585 0.8453 0.3279 0.021 

H(4B) 0.7638 0.8433 0.3277 0.021 

H(5A) 0.6140 0.7758 0.2557 0.021 

H(5B) 0.4373 0.7416 0.3026 0.021 
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H(5) 0.309(7) 0.4004(17) 0.4893(16) 0.045(11) 

H(6A) 0.9845 0.7407 0.3035 0.021 

H(6B) 0.8093 0.6833 0.2870 0.021 

H(8A) 1.1362 0.5104 0.3281 0.035 

H(8B) 1.0449 0.4944 0.3931 0.035 

H(8C) 1.2812 0.5393 0.3831 0.035 

H(9) 1.0712 0.3523 0.3539 0.017 

H(10) 0.7497 0.3058 0.4459 0.016 

H(11A) 1.1277 0.2759 0.4927 0.020 

H(11B) 1.2952 0.3025 0.4401 0.020 

H(12A) 1.2710 0.1962 0.4292 0.022 

H(12B) 0.9660 0.1981 0.4324 0.022 

H(13A) 1.0854 0.1892 0.3336 0.022 

H(13B) 1.2685 0.2474 0.3389 0.022 

H(14A) 0.7224 0.2513 0.3469 0.021 

H(14B) 0.8850 0.2769 0.2929 0.021 

H(16A) 0.6311 0.4652 0.2107 0.028 

H(16B) 0.5912 0.4958 0.2736 0.028 

H(16C) 0.4059 0.4422 0.2525 0.028 

H(17) 0.5927 0.4562 0.6006 0.016 

H(18) 0.2487 0.4902 0.5078 0.018 

H(19A) 0.6169 0.5150 0.4533 0.021 

H(19B) 0.7961 0.4964 0.5071 0.021 

H(20A) 0.7588 0.6035 0.5048 0.025 

H(20B) 0.4539 0.5989 0.5063 0.025 

H(21A) 0.7867 0.5630 0.6000 0.022 

H(21B) 0.6014 0.6210 0.6014 0.022 

H(22A) 0.2403 0.5570 0.6010 0.019 

H(22B) 0.4203 0.5386 0.6549 0.019 

H(24A) -0.0822 0.3958 0.7211 0.029 

H(24B) 0.1396 0.3810 0.7670 0.029 

H(24C) 0.0917 0.3365 0.7126 0.029 
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7.5.3. General procedure for the organocascade synthesis of thiols 148. 

 

In a screw-cap vial, epoxide 50 (0.1 mmol) was dissolved in 0.4 mL of toluene and was cooled 

to the reaction temperature. Then a pre-cooled solution of thiocarboxylic acid 145 (0.16 

mmol, 1.6 equiv.) and catalyst 139 (4 mol%) in 0.4 mL of toluene was added and the reaction 

was stirred for 2-5 days. Next, the temperature was raised to room temperature and 

subsequently to 40 °C and the mixture was stirred for 1-2 days. The reaction mixture was 

directly purified by flash column chromatography (eluent: mixtures hexane/MTBE). The 

enantiomeric ratios of products were measured by HPLC on a chiral stationary phase. 

For analytical purpose, the racemic samples were prepared on 0.05 mmol scale using (RS)-

TRIP as the catalyst. 

 

(R,R)-2-mercaptocyclohexyl benzoate (148a) – The reaction was performed at –78° C and 

the product was isolated as a colorless liquid in 86% yield and e.r. = 98:2.  

1H-NMR (300 MHz, CDCl3): δ 8.12-8.02 (m, 2H), 7.62-7.53 (m, 

1H), 7.52-7.40 (m, 2H), 4.95-4.80 (cm, 1H), 3.15-2.95 (m, 1H), 

2.30-2.10 (m, 2H), 1.92-1.68 (m, 2H), 1.73 (d, J = 1.73 Hz, 1H), 

1.62-1.20 (m, 4H).  

13C-NMR (75 MHz, CDCl3): δ 166.1, 133.1, 130.7, 129.9, 128.6, 79.0, 42.4, 35.1, 31.6, 25.6, 

24.2.  

HRMS (m/z) calcd for C13H16O2SNa [M]+Na: 259.0763, found: 259.0762.  

[α]D
25: -89.7° (c = 0.925, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 4.5 min, τ2 = 5.0 min. 
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(R,R)-6-mercaptocyclohex-3-en-1-yl benzoate (148b) – The reaction was performed at –40° 

C and the product was isolated as a colorless liquid in 98% yield and e.r. = 96:4.  

1H-NMR (300 MHz, CD2Cl2): δ 8.00-7.92 (m, 2H), 7.55-7.45 (m, 

1H), 7.42-7.32 (m, 2H), 5.58 (cm, 2H), 5.10-5.00 (m, 1H), 3.32-

3.18 (m, 1H), 2.78-2.58 (m, 2H), 2.25-2.05 (m, 2H), 1.77 (d, J = 

7.1 Hz, 1H).  

13C-NMR (75 MHz, CD2Cl2): δ 166.1, 133.4, 130.8, 129.9, 128.8, 124.9, 124.3, 74.6, 37.6, 33.7, 

30.0.  

HRMS (m/z) calcd for C13H14O2SNa [M]+Na: 257.0607, found: 257.0607.  

[α]D
25: -145.6° (c = 1.100, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 4.2 min, τ2 = 4.6 min. 

 

 (R,R)-3-mercapto-1,2,3,4-tetrahydronaphthalen-2-yl benzoate (148c) – Reaction  

performed at –40° C. Product isolated as a colorless liquid in 97% yield and e.r. = 95:5.  

1H-NMR (300 MHz, CDCl3): δ 8.10-8.02 (m, 2H), 7.65-7.54 (m, 

1H), 7.50-7.40 (m, 2H), 7.25-7.08 (m, 4H), 5.37 (cm, 1H), 3.62-

3.40 (m, 3H), 3.08-2.92 (m, 2H), 1.84 (d, J = 7.0 Hz, 1H).  

13C-NMR (75 MHz, CDCl3): δ 166.1, 133.4, 133.3, 133.0, 130.4, 

129.9, 129.3, 128.9, 128.7, 126.9, 126.7, 74.9, 38.0, 36.7, 33.1.  

HRMS (m/z) calcd for C17H16O2SNa [M]+Na: 307.0763, found: 307.0763.  

[α]D
25: -132.2° (c = 1.325, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 8.0 min, τ2 = 9.3 min.  

 

(R,R)-2-mercaptocycloheptyl benzoate (148e) – The reaction was performed at –40° C and 

the product was isolated as a colorless liquid in 80% yield and e.r. = 96:4.  

1H-NMR (300 MHz, CDCl3): δ 8.15-8.00 (m, 2H), 7.64-7.54 (m, 

1H), 7.52-7.40 (m, 2H), 5.09 (dt, J = 7.8 Hz, J = 3.1 Hz, 1H), 

3.38-3.25 (m, 1H), 2.20-2.00 (m, 2H), 1.95-1.50 (m, 9H).  

13C-NMR (75 MHz, CDCl3): δ 165.9, 133.2, 130.7, 129.8, 128.6, 

81.9, 44.6, 33.8, 31.7, 28.0, 25.3, 22.4.  
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HRMS (m/z) calcd for C14H18O2SNa [M]+Na: 273.0919, found: 273.0920.  

[α]D
25: -76.2° (c = 0.900, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 98:2, flow rate 1.0 mL/min, τ1 = 5.0 min, τ2 = 5.5 min.  

 

(R,R)-3-mercaptobutan-2-yl benzoate (148h) – The reaction was performed at –40° C and 

the product was isolated as a colorless liquid in 81% yield and e.r. = 97:3.  

1H NMR (300 MHz, CDCl3): δ 8.13-8.05 (m, 2H), 7.65-7.55 (m, 

1H), 7.50-7.42 (m, 2H), 5.19 (dq, J = 6.2 Hz, J = 4.6 Hz, 1H), 

3.19 (dQ, J = 7.2 Hz, J = 4.6 Hz, 1H), 1.65 (d, J = 7.2 Hz 1H), 

1.42 (cm, 6H).  

13C-NMR (125 MHz, CDCl3): δ 166.0, 133.2, 130.6, 129.8, 128.6, 75.2, 39.3, 20.9, 16.8.  

HRMS (m/z) calcd for C11H14O2SNa [M]+Na: 233.0607, found: 233.0609.  

[α]D
25: -39.4° (c = 0.350, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OJ-H column: 

nHept:iPrOH = 99.5:0.5, flow rate 0.5 mL/min, τ1 = 14.6 min, τ2 = 15.5 min. 

 

(R,R)-4-mercaptohexan-3-yl benzoate (148i) – The reaction was performed at –40° C and 

the product was isolated as a colorless liquid in 74% yield and e.r. = 93.5:6.5.  

1H-NMR (300 MHz, CD2Cl2): δ 8.10-7.90 (m, 2H), 7.55-7.45 (m, 

1H), 7.42-7.32 (m, 2H), 5.09 (cm, 1H), 2.84 (cm, 1H), 1.88-

1.64 (m, 3H), 1.54-1.35 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H), 0.86 

(t, J = 7.4 Hz, 3H).  

13C-NMR (75 MHz, CD2Cl2): δ 166.3, 133.3, 130.9, 129.9, 128.8, 78.4, 46.0, 29.1, 25.1, 12.3, 

10.2.  

HRMS (m/z) calcd for C13H18O2SNa [M]+Na: 261.0920, found: 261.0921.  

[α]D
25: +12.0° (c = 0.750, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OJ-H column: 

nHept:iPrOH = 99.5:0.5, flow rate 0.5 mL/min, τ1 = 11.6 min, τ2 = 12.3 min. 
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(R,R)-5-mercaptooctan-4-yl benzoate (148j) – The reaction was performed at –40° C and the 

product was isolated as a colorless liquid in 82% yield and e.r. = 94:6.  

1H-NMR (300 MHz, CDCl3): δ 8.15-8.03 (m, 2H), 7.65-7.55 (m, 

1H), 7.52-7.43 (m, 2H), 5.28 (cm, 1H), 3.08-2.95 (m, 1H), 1.95-

1.30 (m, 9H), 0.96 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H).  

13C-NMR (75 MHz, CDCl3): δ 166.3, 133.2, 130.5, 129.9, 128.6, 

77.0, 44.0, 37.8, 33.9, 20.8, 19.1, 14.1, 13.9.  

HRMS (m/z) calcd for C15H22O2SNa [M]+Na: 289.1233, found: 289.1233.  

[α]D
25: +15.4° (c = 0.350, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel OJ-3R 

column: CH3CN:H2O = 50:50, flow rate 1.0 mL/min, τ1 = 17.6 min, τ2 = 18.6 min. 

 

(R,R)-2-mercapto-1,2-diphenylethyl benzoate (148k) – The reaction was performed at –10° 

C and the product was isolated as a white solid in 99% yield and e.r. = 87:13. Single 

recrystallization in pentane afforded the product in 70% yield and e.r. = 98.5:1.5.  

1H-NMR (300 MHz, CDCl3): δ 8.25-8.08 (m, 2H), 7.68-7.56 (m, 

1H), 7.55-7.43 (m, 2H), 7.38-7.10 (m, 10H), 6.27 (d, J = 8.4 Hz, 

1H),  4.59 (dd, J = 8.4 Hz J = 5.0 Hz, 1H), 2.31 (d, J = 5.0 Hz 

1H).  

13C-NMR (75 MHz, CDCl3): δ 165.5, 139.4, 138.0, 133.4, 130.2, 130.0, 128.7, 128.7, 128.5, 

128.4, 128.3, 128.0, 127.4, 80.7, 49.7.  

HRMS (m/z) calcd for C21H18O2SNa [M]+Na: 357.0920, found: 357.0921.  

[α]D
25: -2.7° (e.r. = 87:13; c = 0.450, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 85:5, flow rate 1.0 mL/min, τ1 = 6.0 min, τ2 = 9.0 min. 
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(R,R)-2-mercaptocyclohexyl acetate (148ab) – The reaction was performed at –40° C and 

the product was isolated as a colorless liquid in 86% yield and e.r. = 95:5.  

1H-NMR (500 MHz, CD2Cl2): δ 4.47 (td, J = 4.4 Hz, J = 10.0 Hz, 

1H), 2.80-2.70 (m, 1H), 2.06-1.90 (m, 2H), 1.97 (s, 3H), 1.70-

1.58 (m, 2H), 1.62 (d, J = 6.1 Hz, 1H), 1.43-1.15 (m, 4H).  

13C-NMR (125 MHz, CD2Cl2): δ 170.5, 78.5, 42.6, 35.5, 31.9, 

25.9, 24.5, 21.3.  

HRMS (m/z) calcd for C8H14O2SNa [M]+Na: 197.0607, found: 197.0608.  

[α]D
25: -53.8° (c = 0.520, CHCl3).  

The enantiomeric ratio was determined by GC analysis using BGB-177/BG-15 column 30 m 

(80 °C, 0.5 °C/min until 120 °C, 10 °C/min until 220 °C, 3 min at 220 °C, 0.4 bar H2), τ1 = 64.0 

min, τ2 = 65.6 min. 

 

(R,R)-2-mercapto-1,2-diphenylethyl acetate (148kb) – The reaction was performed at 10 °C 

and the product was isolated as a colorless liquid in 63% yield and e.r. = 86:14.  

1H-NMR (500 MHz, CD2Cl2): δ 7.20-7-00 (m, 10H), 5.87 (d, J = 

8.90 Hz, 1H), 4.31 (dd, J = 8.9 Hz, J = 5.1 Hz, 1H), 2.27 (d, J = 

5.1 Hz, 1H), 2.03 (s, 3H).  

13C-NMR (125 MHz, CD2Cl2): δ 170.1, 139.7, 138.4, 128.8, 

128.5, 128.4, 128.4, 128.1, 127.5, 80.3, 49.4, 21.2.  

HRMS (m/z) calcd for C16H16O2SNa [M]+Na: 295.0769, found: 295.0775.  

[α]D
25: -59.5° (c = 0.740, CHCl3).  

The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralcel AD-3 column: 

nHept:iPrOH = 90:10, flow rate 1.0 mL/min, τ1 = 5.6 min, τ2 = 6.0 min. 
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7.5.4. One-pot synthesis of 1,2-thioalcohols 150 

 

In a screw-cap vial, thiobenzoic acid (0.32 mmol, 1.6 equiv.) and catalyst 139 (4 mol%) were 

dissolved in 0.8 mL of toluene and cooled to the appropriate reaction temperature (50a: -78° 

C, 50d: -40 °C). Then a pre-cooled solution of epoxide 50 (0.2 mmol) in 0.8 mL of toluene was 

added and the reaction was stirred for 2-3 days. Next, the reaction temperature was slowly 

raised to room temperature and a solution of hydrazine hydrate (100 mg, 2 mmol, 10 equiv.) 

in 0.5 mL of dichloromethane was added dropwise and the mixture was stirred for 2h at 

room temperature. The mixture was diluted with dichloromethane and the 1,2-thioalcohols 

were directly purified by column chromatography on silica gel (eluent: dichloromethane).  

 

(1R,2R)-2mercaptocyclohexanol (150a) – Isolated in 91% yield (24 mg) and 98:2 er. Upon 

comparison with previous literature reports, the absolute configuration was confirmed to be 

R,R.103 

1H-NMR (500 MHz, CD2Cl2): δ 3.08 (m, 1H), 2.55 (d, J = 2.70 

Hz, 1H), 2.47-2.35 (m, 1H), 2.10-1.87 (m, 2H), 1.73-1.52 (m, 

2H), 1.42 (d, J = 8.7 Hz, 1H), 1.34-1.05 (m, 4H).  

13C-NMR (125 MHz, CD2Cl2): δ 76.9, 48.0, 36.8, 34.5, 26.9, 

25.1.  

HRMS (m/z) calcd for C6H12OS [M]: 132.0609, found: 132.0609.  

[α]D
25: -73.3° (c = 0.410, CHCl3). 

The enantiomeric ratio was determined by GC analysis using BGB-178-BG-15 column 30 m 

(115 min at 75 °C, 10 °C/min until 220 °C, 4 min at 220 °C, 0.5 bar H2), τ1 = 99.9 min, τ2 = 

103.2 min. 
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(1R,2R)-2mercaptocyclopentanol (150d) – Isolated in 83% yield (19.5 mg) and 95.5:4.5 er. 

1H-NMR (500 MHz, CD2Cl2): δ 3.80 (c, 1H), 2.83 (Q, J = 7.1 Hz, 

1H), 2.18-2.05 (m, 1H), 2.02-1.92 (m, 1H), 1.86 (d, J = 3.8 Hz, 

1H), 1.75-1.60 (m, 2H), 1.52 (d, J = 7.1 Hz, 1H), 1.45-1.38 (m, 

2H).  

13C-NMR (125 MHz, CD2Cl2): δ 82.1, 46.4, 33.9, 32.6, 21.1.  

HRMS (m/z) calcd for C5H9OS [M]-H: 117.0380, found: 117.0379.  

[α]D
25: -45.5° (c = 0.440, CHCl3). 

The enantiomeric ratio was determined by GC analysis using BGB-177/BGB-15 column 25 m 

(40 min at 100 °C, 10 °C/min until 220 °C, 3 min at 220 °C, 0.4 bar H2), τ1 = 29.9 min, τ2 = 30.7 

min.
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7.6. Mechanistic investigations 

7.6.1. Molecular orbitals energies of acetic acid  

This study was performed to investigate the effect of the heterodimerizing self-assembly on 

the energies of the frontier molecular orbitals of acetic acid (AcOH).  

The geometries of acetic acid monomer and of the heterodimer TRIP∙AcOH were optimized 

at the B3LYP/cc-pVTZ level. 

The energies of the molecular orbitals were obtained from single-point calculations of the 

AcOH monomer, both in its optimum geometry and in the geometry adopted in the 

heterodimer complex.  

 

Optimized (B3LYP/cc-pVTZ) geometry of 

acid acetic monomer. 

C        0.000000    0.155924    0.000000 

O        0.186291    1.344228    0.000000 

O       -1.243419   -0.385331    0.000000 

H       -1.869140    0.354139    0.000000 

C        1.063305   -0.905988    0.000000 

H        2.043075   -0.439671    0.000000 

H        0.951630   -1.542630    0.877792 

H        0.951630   -1.542630   -0.877792 

 

HOMO energy = -0.287108 Ha (-7.81 eV) 

LUMO energy = -0.000608 Ha (-0.02 eV) 

B3LYP/cc-pVTZ geometry of acetic acid as 

extracted from the heterodimer. 

C         -1.376743   -0.174484   -0.000723 

C          0.099866    0.100302   -0.000531 

O          0.830484   -0.990683    0.001157 

O          0.550790    1.242042    0.000350 

H         -1.634882   -0.786828   -0.864564 

H         -1.930393    0.758345   -0.022584 

H         -1.639960   -0.745733    0.889705 

H          1.816308   -0.791561   -0.007084 

 

HOMO energy = -0.277791 Ha (-7.56 eV) 

LUMO energy = +0.002263 Ha (+0.06 eV) 
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7.6.2. Brønsted acidity of TRIP∙AcOH heterodimer 

This study aimed at elucidating the effect of self-assembly on the acidity of the species. The 

stability of acid-base association complexes was evaluated using pyridine as indicator.  

The following species were considered: 

1) TRIP/AcOH/pyridine: the three molecules do not interact (i.e. they are at infinite 

distance). The energies of all other structures investigated presently are given 

relative to the reference energy of this non-interacting system. 

2) TRIP-AcOH/pyridine: TRIP-AcOH heterodimer, no interaction with pyridine. 

3) TRIP-AcOH-pyridine: complex between TRIP-AcOH and pyridine (with hydrogen 

bonding between neutral species). 

4) (TRIP-AcOH)--pyridinium: complex between TRIP-AcOH anion and pyridinium ion 

(with hydrogen bonding between ion pairs). 

5) TRIP-pyridine/AcOH: TRIP-pyridine complex (with hydrogen bonding between neutral 

species), no interaction with AcOH. 

6) TRIP--pyridinium/AcOH: complex between TRIP anion and pyridinium ion (with 

hydrogen bonding between ion pairs), no interaction with AcOH. 

  



7. Experimental Section 

 

260 

 

Gibbs free energies (G) computed at the B3LYP/cc-pVTZ (PCM, toluene) level for each system 

(1-6). 

(1)

(2)

(3)

(4)

(5)

(6)
-17

-13

+3.10

-1.76

-6.49

G

(Kcal/mol)

0

1) TRIP/AcOH/Py

2) TRIP-AcOH/Py

3) TRIP-AcOH-Py

4) (TRIP-AcOH)--Pyridinium+

5) TRIP-Py/AcOH

6) TRIP--Pyridinium+/AcOH

-3060.46076803

-3060.48789122

-3060.49070734

-3060.50104359

-3060.48177568

-3060.47684770

G (Hartree)Complex

 

 

The computational results highlight the increase of the overall acidity of the species upon 

heterodimeric association, in line with the expected heteroconjugation effect. They reveal 

not only that the trimeric species 4 is more stable than complex 5 (ΔG = -12.25 kcal mol-1), 

but also indicate that in this assembly the proton transfer is favored, yielding a stabilization 

compared with complex 3 (ΔG = -6.49 kcal mol-1). On the other hand, proton transfer is not 

favored for “free” TRIP and the ion pair complex 6 is found less stable than complex 5 with a 

standard hydrogen bonding interaction (ΔG = +3.10 kcal mol-1). 
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Optimized structures (Cartesian coordinates, Å) 

 
(2) TRIP-AcOH/pyridine 

C          -4.677659    0.946715   -4.487945 

C          -4.712616   -0.283129   -3.799808 

C          -3.629075   -1.179696   -3.914038 

C          -2.544011   -0.830293   -4.712571 

C          -2.486849    0.375688   -5.403494 

C          -3.563653    1.243054   -5.274062 

C          -5.915718   -0.667717   -2.993382 

C          -5.888890   -0.721773   -1.574740 

C          -6.947831   -1.151740   -0.800395 

C          -8.199581   -1.402291   -1.454129 

C          -8.254741   -1.352154   -2.878140 

C          -7.091606   -1.020415   -3.607299 

C          -9.403008   -1.660708   -0.751426 

C         -10.578539   -1.890731   -1.418807 

C         -10.619108   -1.884250   -2.827211 

C          -9.479769   -1.617360   -3.537766 

C          -6.793892   -1.330694    0.670533 

C          -6.337458   -0.294066    1.458126 

C          -6.310201   -0.323190    2.875850 

C          -6.708897   -1.490097    3.478861 

C          -7.068894   -2.638102    2.738336 

C          -7.101456   -2.574679    1.313755 

C          -7.382313   -3.857410    3.387359 

C          -7.681451   -4.982636    2.667109 

C          -7.673754   -4.933996    1.258952 

C          -7.395919   -3.763503    0.601018 

C          -5.904827    0.868153    3.688551 

C          -4.672992    0.879585    4.371154 

C          -4.360709    1.983011    5.165858 

C          -5.210795    3.072161    5.302045 

C          -6.417967    3.040072    4.610774 

C          -6.784904    1.964233    3.808059 

C          -3.671330   -0.267698    4.290336 

C          -2.258737    0.203531    3.913347 

C          -8.146060    1.998374    3.121845 

C          -9.290228    1.921761    4.146019 

C          -4.817092    4.257575    6.166300 

C          -4.580028    5.519922    5.322733 

O          -5.928745    0.886579    0.833261 

P          -4.544883    0.883013    0.016371 

O          -3.275469    0.859119    0.748852 

O          -4.686372   -0.391222   -0.954115 

C          -3.618772   -2.542242   -3.230151 

C          -3.715573   -3.681239   -4.258667 

C          -1.301681    0.738433   -6.281372 

C           0.015915    0.778899   -5.493892 

C          -5.816643    1.960446   -4.426812 

C          -5.335207    3.389037   -4.132333 

C          -2.400978   -2.727746   -2.312572 

C          -6.647196    1.948257   -5.722007 

C          -1.187400   -0.193380   -7.497768 

O          -4.797244    2.184666   -0.875322 

C          -8.307708    3.218874    2.203355 

C          -5.831623    4.526994    7.286824 

C          -3.640001   -1.072586    5.600837 

O          29.905076   18.565453   -1.574971 
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C          30.621586   18.570233   -0.608709 

C          32.081406   18.925023   -0.591738 

O          30.175292   18.241681    0.629363 

H          -7.140837   -1.025830   -4.687800 

H          -9.500405   -1.589582   -4.619801 

H         -11.551227   -2.076666   -3.341083 

H         -11.484834   -2.075333   -0.857741 

H          -9.395332   -1.666276    0.327529 

H          -1.720671   -1.527155   -4.800657 

H          -3.532489    2.185027   -5.806822 

H          -4.503482   -2.612971   -2.600443 

H          -4.607928   -3.580995   -4.877865 

H          -3.760027   -4.648327   -3.754158 

H          -2.849706   -3.691426   -4.922662 

H          -2.465770   -3.683949   -1.790132 

H          -2.347465   -1.936770   -1.565769 

H          -1.486819    1.747493   -6.659785 

H          -0.051913    1.459294   -4.644579 

H           0.834498    1.113679   -6.133669 

H           0.280015   -0.207605   -5.109390 

H          -0.992149   -1.222109   -7.189788 

H          -0.367899    0.120128   -8.147261 

H          -2.106421   -0.190974   -8.084728 

H          -6.475791    1.674038   -3.608716 

H          -4.746913    3.799780   -4.953893 

H          -4.726115    3.423660   -3.231026 

H          -6.192193    4.048003   -3.983720 

H          -1.466937   -2.725418   -2.876817 

H          -6.037663    2.244835   -6.577700 

H          -7.482873    2.646653   -5.647578 

H          -7.052477    0.959300   -5.933724 

H          -6.726330   -1.544789    4.559216 

H          -7.365251   -3.885599    4.469399 

H          -7.910255   -5.910614    3.173522 

H          -7.884631   -5.830144    0.690879 

H          -7.390008   -3.748759   -0.477963 

H          -7.100098    3.875364    4.703145 

H          -3.416187    1.996507    5.694775 

H          -8.230531    1.115127    2.491334 

H          -9.207054    1.027533    4.764916 

H         -10.256899    1.894653    3.639157 

H          -9.286465    2.786961    4.810938 

H          -9.265141    3.174581    1.680769 

H          -7.515020    3.254006    1.456855 

H          -3.866755    3.999380    6.641193 

H          -3.831371    5.341896    4.550257 

H          -4.233712    6.343935    5.949625 

H          -5.498555    5.841030    4.828054 

H          -6.802016    4.820725    6.882839 

H          -5.485225    5.336177    7.932574 

H          -5.982336    3.640880    7.904249 

H          -3.997359   -0.941751    3.499612 

H          -1.824101    0.840653    4.685458 

H          -2.269425    0.748385    2.971980 

H          -1.601096   -0.660204    3.796851 

H          -3.300441   -0.453069    6.433153 

H          -2.954664   -1.917633    5.512537 

H          -4.624786   -1.462035    5.861087 

H          -8.283819    4.153200    2.766517 

H          32.251672   19.761563    0.086047 

H          32.403807   19.185584   -1.594443 

H          32.662899   18.081824   -0.218673 

H          29.235338   18.026833    0.537496 

H          -3.986265    2.700832   -0.952074 

N          29.692147  -13.371780    0.706619 

C          28.733463  -14.292825    0.601820 

C          28.923518  -15.637595    0.899166 

C          30.177451  -16.049881    1.329140 

C          31.184836  -15.101463    1.442551 

C          30.891945  -13.781123    1.120465 

H          27.765792  -13.938836    0.263702 

H          28.107202  -16.339156    0.795013 

H          30.365472  -17.087689    1.570663 

H          32.177728  -15.374112    1.773071 

H          31.656917  -13.016447    1.198545 

 

Energy = -3060.48789122 Hartree 
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(3) TRIP-AcOH-pyridine 

 

C     0.000000     0.000000     0.000000 

C     0.000000     0.000000     1.410818 

C     1.220855     0.000000     2.111969 

C     2.410997     0.013380     1.384581 

C     2.437836     0.018874    -0.003501 

C     1.218269     0.007577    -0.673124 

C    -1.301501     0.099153     2.148408 

C    -2.216657    -0.982137     2.232812 

C    -3.481894    -0.878564     2.774297 

C    -3.822131     0.335083     3.458212 

C    -2.907633     1.428225     3.417045 

C    -1.686805     1.285709     2.721323 

C    -3.235670     2.636314     4.079549 

C    -4.402826     2.758619     4.784788 

C    -5.291701     1.667906     4.859408 

C    -5.012313     0.491819     4.211960 

O    -1.824795    -2.187365     1.654383 

P    -1.631077    -3.523866     2.519096 

O    -2.842523    -3.484189     3.584836 

C    -4.138865    -3.259287     3.122289 

C    -4.458433    -1.998248     2.661673 

C    -5.750927    -1.804242     2.073433 

C    -6.697096    -2.869729     2.127475 

C    -6.334956    -4.090156     2.739856 

C    -5.069462    -4.325925     3.217247 

C    -6.123907    -0.615499     1.398096 

C    -7.368055    -0.479535     0.837849 

C    -8.314079    -1.520085     0.927323 

C    -7.980870    -2.689183     1.557157 

C    -4.731326    -5.636913     3.860585 

C    -4.562224    -6.794332     3.076986 

C    -4.341099    -8.011584     3.721659 

C    -4.270603    -8.124420     5.103665 

C    -4.429250    -6.964431     5.855396 

C    -4.658274    -5.724127     5.266678 

C    -4.621716    -6.771974     1.553493 

C    -3.427333    -7.487842     0.905512 

C    -4.051965    -9.477206     5.759467 

C    -2.830274    -9.489570     6.689643 

C    -4.846921    -4.513222     6.174177 

C    -6.094952    -4.657257     7.059838 

C     1.293786    -0.009059     3.634929 

C     2.223116    -1.106538     4.175080 

C     3.759186     0.025587    -0.752654 

C     3.976202    -1.277147    -1.537860 

C    -1.284632     0.029682    -0.820256 

C    -1.455288     1.378881    -1.538233 

O    -0.380640    -3.270586     3.421127 

O    -1.611155    -4.710560     1.640255 

C    -5.943602    -7.364297     1.035997 

C    -3.598029    -4.228596     7.022269 

C    -5.310964    -9.955742     6.499989 

C     1.714166     1.362653     4.189605 

C     3.902402     1.249731    -1.668974 

C    -1.372351    -1.138970    -1.813133 

N     0.871392    -5.372734     4.486092 

C     1.156199    -5.458048     5.788807 

C     1.816136    -6.542697     6.345635 
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C     2.199792    -7.585017     5.510507 

C     1.907280    -7.500201     4.157119 

C     1.239873    -6.377667     3.682880 

O    -0.443193    -5.417720    -0.680726 

C     0.594008    -6.249921    -0.609020 

C     1.102908    -6.641656    -1.973586 

O     1.060574    -6.671442     0.427500 

H    -7.080311    -4.870385     2.818238 

H    -8.691869    -3.503398     1.616445 

H    -9.294705    -1.396648     0.487836 

H    -7.624176     0.433986     0.318075 

H    -5.410935     0.190249     1.313351 

H    -4.381628    -7.025179     6.935112 

H    -4.213118    -8.905178     3.124231 

H    -5.009982    -3.640392     5.544643 

H    -6.988733    -4.826168     6.458105 

H    -6.250269    -3.752262     7.650471 

H    -5.999246    -5.493905     7.753927 

H    -3.743060    -3.328326     7.622606 

H    -2.724353    -4.077705     6.389374 

H    -3.855340   -10.189716     4.953919 

H    -1.932179    -9.162677     6.165125 

H    -2.653183   -10.495070     7.075997 

H    -2.976068    -8.829028     7.545912 

H    -5.565277    -9.279492     7.318282 

H    -5.156133   -10.949884     6.924033 

H    -6.168920   -10.002227     5.828597 

H    -4.578210    -5.731777     1.234145 

H    -3.451816    -8.563556     1.088238 

H    -2.485921    -7.093545     1.280574 

H    -3.448425    -7.339906    -0.175539 

H    -3.383352    -5.051621     7.706021 

H    -6.043499    -8.411090     1.329675 

H    -5.982007    -7.317608    -0.053999 

H    -6.808871    -6.828158     1.426375 

H    -1.028512     2.141328     2.651421 

H    -2.535669     3.460546     4.027425 

H    -4.639731     3.683472     5.293263 

H    -6.202138     1.757530     5.436814 

H    -5.704656    -0.332591     4.286347 

H     1.211755     0.011062    -1.755336 

H     3.352458     0.016345     1.919401 

H    -2.126544    -0.071268    -0.138427 

H    -1.445616     2.208388    -0.829928 

H    -2.402767     1.406800    -2.079958 

H    -0.653821     1.548510    -2.259374 

H    -2.333380    -1.122032    -2.330560 

H    -1.277808    -2.097857    -1.305060 

H     4.548919     0.088133     0.000992 

H     3.921415    -2.146538    -0.882170 

H     4.954509    -1.276500    -2.022551 

H     3.219764    -1.399101    -2.315105 

H     3.157604     1.237592    -2.466515 

H     4.888070     1.264666    -2.137940 

H     3.777678     2.178294    -1.110902 

H     0.295918    -0.225341     4.013741 

H     3.267705    -0.912970     3.926225 

H     1.953263    -2.081901     3.775251 

H     2.152008    -1.151848     5.263633 

H     2.719534     1.627450     3.856576 

H     1.716399     1.349761     5.281374 

H     1.039689     2.154577     3.864266 

H    -0.591027    -1.081826    -2.572659 

H     0.498967    -7.472750    -2.343308 

H     2.135763    -6.969428    -1.900579 

H     1.004963    -5.820922    -2.680730 

H    -0.796017    -5.205168     0.220441 

H     0.841195    -4.624347     6.404497 

H     2.022767    -6.565589     7.406242 

H     2.717968    -8.446687     5.910152 

H     2.185946    -8.283742     3.467378 

H     0.996982    -6.283940     2.631703 

H     0.051045    -4.030535     3.793452 

 

Energy = -3060.49070734 Hartree 
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(4) (TRIP-AcOH)—-pyridinium+ 

 

C      -0.169499   -4.474755   -2.548321 

N      -0.217975   -3.820775   -1.381092 

C      -0.158357   -4.459373   -0.207269 

C      -0.048394   -5.839667   -0.173114 

C       0.003753   -6.540925   -1.369074 

C      -0.056440   -5.849549   -2.576915 

O      -0.483584   -4.132973    2.818349 

C      -0.583871   -3.267491    3.668338 

O      -0.341100   -1.982574    3.462176 

C      -1.004885   -3.546895    5.089330 

O      -0.463476   -1.302897   -1.358232 

P       0.019472   -0.582518   -0.118880 

O       0.485903   -1.411287    1.034439 

O      -1.116196    0.430867    0.462416 

C      -1.465556    1.598765   -0.186857 

C      -0.555351    2.637399   -0.246890 

C      -0.912059    3.808175   -0.995313 

C      -2.236182    3.920373   -1.513156 

C      -3.151902    2.865276   -1.307094 

C      -2.793067    1.695728   -0.686021 

C       0.001444    4.853089   -1.284652 

C      -0.381472    5.952679   -2.009219 

C      -1.702652    6.077882   -2.482348 

C      -2.606360    5.078474   -2.239370 

C       0.770406    2.529537    0.425089 

C       1.612254    1.470812    0.142478 

C       2.964095    1.409243    0.575777 

C       3.408954    2.418073    1.392638 

C       2.558915    3.452243    1.844313 

C       1.216029    3.512687    1.368195 

C       3.015390    4.424886    2.766726 

C       2.177144    5.401434    3.234574 

C       0.837979    5.440132    2.797939 

C       0.372108    4.525649    1.888311 

C       3.896992    0.328706    0.118573 

C       4.336889   -0.664185    1.015024 

C       5.267531   -1.604299    0.571166 

C       5.769356   -1.606642   -0.723157 

C       5.308432   -0.625337   -1.595070 

C       4.386415    0.341589   -1.204731 

C       3.843136   -0.750710    2.454560 

C       4.923415   -0.291892    3.448470 

C       3.969444    1.396911   -2.223383 

C       3.290325    0.774628   -3.453133 

C       6.784876   -2.649050   -1.158713 

C       8.120746   -2.015576   -1.574827 

O       1.154714    0.449804   -0.669734 

C      -3.789192    0.589888   -0.515263 

C      -4.179085   -0.192821   -1.618513 

C      -5.159002   -1.169203   -1.435069 

C      -5.761637   -1.401385   -0.206102 

C      -5.356527   -0.617882    0.870202 

C      -4.384773    0.370849    0.744464 

C      -3.590250   -0.003180   -3.012551 

C      -4.604711    0.654460   -3.963009 

C      -6.829982   -2.470843   -0.058867 

C      -8.192681   -1.874043    0.324561 

C      -4.042786    1.221219    1.962605 
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C      -3.629123    0.379576    3.178092 

C      -3.063140   -1.314208   -3.614377 

C      -5.201621    2.169230    2.314202 

C      -6.415386   -3.572005    0.928498 

C       5.155476    2.283390   -2.637057 

C       6.238498   -3.557709   -2.270472 

C       3.340472   -2.155152    2.819727 

H       4.440204    2.416787    1.720044 

H       4.041602    4.371444    3.107861 

H       2.534302    6.133960    3.945977 

H       0.169123    6.196015    3.187621 

H      -0.658801    4.568093    1.571579 

H       5.683753   -0.602479   -2.610298 

H       5.612492   -2.364812    1.260353 

H       3.237842    2.050898   -1.753650 

H       5.612978    2.761745   -1.770214 

H       4.824721    3.067123   -3.321434 

H       5.929236    1.704442   -3.144161 

H       2.952400    1.557370   -4.135195 

H       2.424723    0.181866   -3.160558 

H       6.980766   -3.281495   -0.288404 

H       5.308679   -4.037914   -1.963478 

H       6.959930   -4.338639   -2.519376 

H       6.035930   -2.990681   -3.180852 

H       8.000176   -1.379045   -2.453172 

H       8.853178   -2.786676   -1.822149 

H       8.531713   -1.401158   -0.773220 

H       2.993502   -0.077790    2.555718 

H       4.149323   -2.888266    2.825850 

H       2.575108   -2.485272    2.120659 

H       2.901808   -2.142811    3.818908 

H       3.976629    0.129753   -4.005425 

H       5.801011   -0.939951    3.401150 

H       4.539924   -0.322376    4.470210 

H       5.254817    0.726450    3.243950 

H      -4.163957    2.980274   -1.672611 

H      -3.620304    5.151710   -2.612209 

H      -1.994456    6.954563   -3.044933 

H       0.340038    6.730187   -2.222497 

H       1.019322    4.776681   -0.935272 

H      -5.814886   -0.774535    1.838088 

H      -5.467570   -1.770039   -2.281861 

H      -3.189792    1.847058    1.707933 

H      -5.463710    2.804786    1.467416 

H      -4.927543    2.815358    3.150610 

H      -6.095494    1.612205    2.601079 

H      -3.325919    1.031108    3.999747 

H      -2.789565   -0.271996    2.940265 

H      -6.944292   -2.938937   -1.040627 

H      -5.464266   -4.021317    0.641134 

H      -7.168997   -4.361301    0.964212 

H      -6.302439   -3.176048    1.939172 

H      -8.155489   -1.404200    1.308964 

H      -8.958931   -2.651217    0.356804 

H      -8.506960   -1.116179   -0.393744 

H      -2.736756    0.666695   -2.926097 

H      -3.865578   -2.031862   -3.794388 

H      -2.329741   -1.764684   -2.949057 

H      -2.579795   -1.115322   -4.573267 

H      -5.483688    0.020748   -4.096612 

H      -4.158445    0.820447   -4.945601 

H      -4.947082    1.616727   -3.582087 

H      -4.451447   -0.240577    3.539728 

H      -0.227057   -3.214730    5.777105 

H      -1.189336   -4.608534    5.220950 

H      -1.905669   -2.979639    5.324632 

H      -0.049593   -1.800230    2.519491 

H      -0.224779   -3.865443   -3.438403 

H      -0.017388   -6.366439   -3.523949 

H       0.090335   -7.619017   -1.366567 

H      -0.008130   -6.333036    0.786013 

H      -0.197465   -3.858711    0.691835 

H      -0.313773   -2.704696   -1.371825 

 

Energy = -3060.50104359 Hartree 

 



7. Experimental Section 

 

267 

 

 
(5) TRIP-pyridine / AcOH 

 

C       -4.234486    3.568402   -1.764112 

C       -4.974666    2.618827   -1.028360 

C       -5.717155    3.031275    0.095705 

C       -5.709521    4.381390    0.446550 

C       -4.990253    5.333869   -0.262658 

C       -4.257392    4.901160   -1.363265 

C       -5.019188    1.191141   -1.481922 

C       -3.901879    0.321636   -1.360584 

C       -3.877680   -0.964699   -1.865191 

C       -5.102359   -1.512550   -2.371771 

C       -6.240963   -0.662745   -2.491562 

C       -6.147242    0.683729   -2.076599 

C       -7.450555   -1.186477   -3.009797 

C       -7.553644   -2.505116   -3.363188 

C       -6.444081   -3.358994   -3.204327 

C       -5.252686   -2.876567   -2.726490 

O       -2.756793    0.844903   -0.778641 

P       -2.151771    0.277722    0.610019 

O       -2.341778   -1.321924    0.451466 

C       -1.901991   -1.948615   -0.707939 

C       -2.615666   -1.756666   -1.873843 

C       -2.096659   -2.327109   -3.082880 

C       -0.962559   -3.188623   -3.004856 

C       -0.356766   -3.429387   -1.751781 

C       -0.775010   -2.805350   -0.603090 

C       -2.629011   -2.045475   -4.365811 

C       -2.095645   -2.610651   -5.495734 

C       -1.002480   -3.495375   -5.409614 

C       -0.448601   -3.772250   -4.188581 

C       -0.078827   -3.049623    0.700286 

C        1.209597   -2.526537    0.924554 

C        1.851283   -2.823282    2.127384 

C        1.267938   -3.607163    3.113333 

C       -0.007928   -4.106687    2.870826 

C       -0.694053   -3.846653    1.688244 

C        1.940999   -1.658203   -0.093888 

C        2.418583   -0.325083    0.501888 

C        2.007235   -3.901131    4.407084 

C        1.280946   -3.320173    5.629498 

C       -2.070462   -4.472139    1.492178 

C       -1.980295   -6.003709    1.390733 

C       -6.535782    2.063032    0.943655 

C       -6.232919    2.191182    2.444089 

C       -5.007444    6.791949    0.162445 

C       -3.618609    7.277309    0.603899 

C       -3.436549    3.197898   -3.008999 

C       -4.032485    3.843608   -4.270884 

O       -3.182759    0.583089    1.744428 

O       -0.777250    0.772333    0.798559 

C        3.116524   -2.417077   -0.732843 

C       -3.065764   -4.048130    2.582609 

C        2.277821   -5.402085    4.589838 

C       -8.044131    2.227715    0.692517 

C       -5.589772    7.705424   -0.926397 

C       -1.945268    3.538234   -2.866222 

N       -2.130204    1.832235    3.816531 

C       -2.777127    2.051951    4.963967 

C       -2.183871    2.682441    6.046866 
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C       -0.864471    3.100956    5.929703 

C       -0.190916    2.872055    4.738090 

C       -0.859133    2.232708    3.702816 

O       34.472339    2.398988   -0.280247 

C       35.141560    1.696318   -0.991242 

C       36.642742    1.663589   -1.042425 

O       34.594710    0.816305   -1.866617 

H        0.483881   -4.109079   -1.706342 

H        0.405467   -4.432895   -4.109578 

H       -0.596367   -3.940814   -6.307812 

H       -2.516152   -2.370990   -6.463283 

H       -3.462427   -1.365901   -4.455044 

H       -0.483704   -4.724627    3.621569 

H        2.843120   -2.425937    2.304149 

H       -2.470692   -4.118930    0.543703 

H       -1.307578   -6.307045    0.587622 

H       -2.964153   -6.432009    1.188863 

H       -1.609945   -6.443749    2.318314 

H       -4.054761   -4.459946    2.372215 

H       -3.153819   -2.963543    2.630220 

H        2.977196   -3.401389    4.335958 

H        1.120712   -2.247298    5.518548 

H        1.862653   -3.486373    6.538441 

H        0.305192   -3.788821    5.769676 

H        1.346882   -5.963813    4.684750 

H        2.866025   -5.580568    5.492157 

H        2.826591   -5.809575    3.740213 

H        1.239294   -1.411512   -0.888406 

H        3.164825   -0.474694    1.284341 

H        1.580393    0.232570    0.913944 

H        2.881114    0.283776   -0.277769 

H       -2.762224   -4.409013    3.566897 

H        3.870334   -2.673392    0.014138 

H        3.598166   -1.801673   -1.495121 

H        2.791365   -3.345186   -1.204310 

H       -7.005317    1.327800   -2.215364 

H       -8.300816   -0.523267   -3.106864 

H       -8.484989   -2.896336   -3.750050 

H       -6.533643   -4.406774   -3.458364 

H       -4.416947   -3.548612   -2.606972 

H       -3.688673    5.623522   -1.934667 

H       -6.282379    4.703681    1.307160 

H       -3.504970    2.120777   -3.147452 

H       -5.080292    3.568977   -4.399382 

H       -3.485897    3.519154   -5.158526 

H       -3.976992    4.932640   -4.226599 

H       -1.395852    3.202350   -3.747741 

H       -1.514283    3.051749   -1.992423 

H       -5.667815    6.859229    1.031537 

H       -3.219217    6.652471    1.403328 

H       -3.667244    8.305941    0.966696 

H       -2.908414    7.250543   -0.224250 

H       -4.966290    7.701623   -1.822107 

H       -5.652377    8.735826   -0.571117 

H       -6.590637    7.384287   -1.216617 

H       -6.261094    1.050877    0.651971 

H       -6.577804    3.144342    2.848477 

H       -5.164524    2.106777    2.632254 

H       -6.741555    1.398414    2.995943 

H       -8.380328    3.228121    0.972083 

H       -8.612359    1.506145    1.282940 

H       -8.297594    2.076553   -0.356582 

H       -1.786824    4.613877   -2.770697 

H       36.999594    0.660371   -0.809058 

H       37.046255    2.377601   -0.332048 

H       36.984426    1.903115   -2.049468 

H       33.633706    0.895730   -1.775755 

H       -3.803106    1.709181    5.009697 

H       -2.745182    2.839136    6.956851 

H       -0.370507    3.596293    6.754881 

H        0.836359    3.179940    4.605870 

H       -0.385166    2.019422    2.752863 

H       -2.780107    1.079095    2.552499 

 

Energy = -3060.48177568 Hartree 
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(6) TRIP—-pyridinium / AcOH 

 

C     0.000000     0.000000     0.000000 

N     0.000000     0.000000     1.338628 

C     1.137276     0.000000     2.045520 

C     2.360699     0.000078     1.409072 

C     2.390948     0.001362     0.017237 

C     1.197380     0.001158    -0.694421 

O    -2.255782    -0.044745     2.417504 

P    -3.357484    -0.199439     1.371114 

O    -2.974145    -0.232831    -0.061697 

O    -4.486135     0.963289     1.545087 

C    -5.289771     1.036804     2.665014 

C    -5.108612     2.169700     3.504411 

C    -5.922002     2.268785     4.605008 

C    -6.845550     1.257157     4.954080 

C    -7.011051     0.130761     4.094219 

C    -6.257348     0.073237     2.873280 

C    -7.595970     1.335126     6.152592 

C    -8.449611     0.328725     6.518270 

C    -8.582848    -0.805989     5.694116 

C    -7.886598    -0.901160     4.516176 

C    -4.106986     3.239207     3.196397 

C    -4.293548     4.082654     2.081584 

C    -3.386757     5.113716     1.852410 

C    -2.297457     5.342938     2.687097 

C    -2.126096     4.491483     3.770656 

C    -2.997138     3.435370     4.040836 

C    -5.481210     3.937633     1.137735 

C    -5.043243     3.682703    -0.312379 

C    -2.725445     2.561236     5.260524 

C    -3.009703     3.315352     6.569809 

C    -1.321836     6.479458     2.432981 

C    -2.005399     7.853617     2.490028 

C    -6.500528    -0.988983     1.856115 

C    -5.452924    -1.763482     1.390653 

C    -5.635941    -2.877059     0.524254 

C    -6.912299    -3.149441     0.100108 

C    -8.008785    -2.326320     0.436897 

C    -7.808428    -1.216322     1.309609 

C    -9.298292    -2.573674    -0.094294 

C   -10.349773    -1.743545     0.188739 

C   -10.147588    -0.620345     1.014745 

C    -8.914758    -0.364526     1.558431 

O    -4.185237    -1.518643     1.867795 

C    -4.493496    -3.754682     0.116841 

C    -4.025341    -3.736768    -1.211975 

C    -2.992418    -4.604010    -1.570410 

C    -2.406003    -5.481858    -0.669371 

C    -2.882608    -5.479428     0.637920 

C    -3.911234    -4.638195     1.051626 

C    -4.601598    -2.813490    -2.280025 

C    -5.452781    -3.601794    -3.289937 

C    -1.284159    -6.407521    -1.108306 

C    -1.667854    -7.888425    -0.970773 

C    -4.400469    -4.741418     2.491342 

C    -3.288030    -4.448346     3.508878 

C    -3.522019    -1.987748    -2.994734 
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C     0.029754    -6.110648    -0.370005 

C    -5.055119    -6.105900     2.762669 

C    -1.300612     1.989841     5.271461 

C    -0.560670     6.299869     1.110748 

C    -6.423472     5.149519     1.227204 

O    -4.605041    -9.909744   -34.307655 

C    -3.455519    -9.595361   -34.955454 

C    -3.482874   -10.061191   -36.383541 

O    -2.549389    -9.015820   -34.416780 

H    -7.086323    -4.005084    -0.539200 

H    -9.432621    -3.427606    -0.746434 

H   -11.328650    -1.938124    -0.228732 

H   -10.971649     0.050902     1.217493 

H    -8.781245     0.505838     2.182118 

H    -2.446583    -6.159011     1.359278 

H    -2.629539    -4.593628    -2.590893 

H    -5.171317    -3.988544     2.640640 

H    -5.875242    -6.295189     2.068941 

H    -5.454854    -6.141981     3.778057 

H    -4.336794    -6.921223     2.658527 

H    -3.690133    -4.469511     4.523721 

H    -2.855017    -3.463786     3.337602 

H    -1.112050    -6.213061    -2.170605 

H     0.324323    -5.068251    -0.497941 

H     0.836626    -6.742708    -0.747003 

H    -0.067423    -6.299409     0.700612 

H    -1.838998    -8.157895     0.072803 

H    -0.872119    -8.531042    -1.353221 

H    -2.580385    -8.110538    -1.524693 

H    -5.260451    -2.103223    -1.785283 

H    -2.829225    -2.621341    -3.552183 

H    -2.962650    -1.392555    -2.275365 

H    -3.989624    -1.307342    -3.709559 

H    -2.489207    -5.190894     3.456715 

H    -4.853609    -4.332311    -3.837582 

H    -5.914148    -2.931946    -4.018286 

H    -6.251753    -4.150557    -2.790273 

H    -5.841242     3.137787     5.245089 

H    -7.468936     2.204805     6.785155 

H    -9.011122     0.395451     7.440568 

H    -9.237757    -1.612873     5.995346 

H    -7.997910    -1.781970     3.903199 

H    -3.541122     5.758900     0.996806 

H    -1.275804     4.651218     4.422612 

H    -6.056062     3.069056     1.452386 

H    -6.770554     5.307027     2.249230 

H    -7.298488     4.998429     0.591887 

H    -5.929006     6.065553     0.898715 

H    -5.916940     3.521380    -0.946797 

H    -4.408524     2.800343    -0.378707 

H    -0.584687     6.448637     3.240423 

H    -0.041015     5.341366     1.083695 

H     0.178671     7.092802     0.979537 

H    -1.238818     6.333064     0.256385 

H    -2.745219     7.960637     1.694983 

H    -1.272971     8.654669     2.371104 

H    -2.517271     7.998963     3.441728 

H    -3.400621     1.709381     5.215608 

H    -0.547105     2.771216     5.393448 

H    -1.110128     1.452581     4.345010 

H    -1.186598     1.289608     6.101467 

H    -2.356418     4.184170     6.673631 

H    -2.842021     2.665150     7.430875 

H    -4.039404     3.670424     6.612858 

H    -4.493313     4.532859    -0.720819 

H    -3.628947   -11.140867   -36.418327 

H    -2.550542    -9.795101   -36.870583 

H    -4.322659    -9.603381   -36.906449 

H    -4.510619    -9.581561   -33.401285 

H     1.035012     0.000587     3.121130 

H     3.266632    -0.000885     1.995479 

H     3.337632     0.001537    -0.505612 

H     1.181748    -0.000032    -1.773356 

H    -0.983300    -0.009662    -0.459518 

H    -0.891191    -0.007658     1.809567 

 

Energy = -3060.47684770 Hartree 



7. Experimental Section 

 

271 

 

7.6.3. Studies on the catalytic cycle 

7.6.3.1. Competition experiments  

These experiments were designed to gain further insight on the mechanism of the 

asymmetric carboxylysis of epoxides. In the presence of TRIP phosphoric acid, cyclohexene 

oxide was exposed to mixtures of different carboxylic acids and thiocarboxylic acids. The 

reaction mixture was directly analyzed by 1H-NMR spectroscopy in order to determine the 

product ratio.   

Experiment a. Two different reactions were performed with mixtures of benzoic acid and 

thiobenzoic acid. Results are summarized in Table a in the following Scheme. 

Reaction a1. A dichloromethane solution (0.4 ml) of benzoic acid (19.5 mg, 0.16 mmol, 1.6 

equiv.), thiobenzoic acid (24.5 mg, 0.16 mmol, 1.6 equiv.) and TRIP (3 mg, 0.004 mmol, 4 

mol%) was added to a stirred solution (0.4 ml) of cyclohexene oxide (9.8 mg, 0.1 mmol, 1 

equiv.). After full consumption of the starting material (2 h) an aliquot of the reaction was 

diluted in deuterated dichloromethane and analyzed by NMR.     

Reaction a2. Using 5 equivalents of benzoic and thiobenzoic acid, the above-mentioned 

protocol for reaction a1 was used.  

Experiment b. Two different reactions were performed with mixtures of acetic acid and 

thioacetic acid. Results are summarized in Table b in the following Scheme. 

Reaction b1. A dichloromethane solution (0.2 ml) of acetic acid (4.8 mg, 0.08 mmol, 1.6 

equiv.), thioacetic acid (6.1 mg, 0.08 mmol, 1.6 equiv.) and TRIP (1.5 mg, 0.002 mmol, 4 

mol%) was added to a stirred solution (0.2 ml) of cyclohexene oxide (4.9 mg, 0.05 mmol, 1 

equiv.). After full consumption of the starting material (2 h) an aliquot of the reaction was 

diluted in deuterated dichloromethane and analyzed by NMR.     

Reaction b2. Using 5 equivalents of acetic and thioacetic acid, the above-mentioned protocol 

for reaction b1 was used.  

Experiment c. Two different reactions were performed with mixtures of acetic acid and 

benzoic acid. Results are summarized in Table c in the following Scheme. 
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Reaction c1. A deuterated chloroform solution (0.8 ml) of acetic acid (4.8 mg, 0.08 mmol, 1.6 

equiv.), benzoic acid (9.8 mg, 0.08 mmol, 1.6 equiv.) and TRIP (1.5 mg, 0.002 mmol, 4 mol%) 

was added to a stirred solution (0.7 ml) of cyclohexene oxide (4.9 mg, 0.05 mmol, 1 equiv.). 

After 15 h an aliquot of the reaction was analyzed by NMR.     

Reaction c2. Using 3.2 equivalents of acetic and thioacetic acid, the above-mentioned 

protocol for reaction c1 was used.  

 

As discussed in paragraph 4.5.2 these results suggest that a classical, direct activation of the 

epoxide moiety by the simple phosphoric acid catalyst is not involved in the transformation. 

The proposed mechanism via carboxylic acid activation is instead in agreement with these 

experimental data.  

 
 

7.6.3.2. Kinetic studies  

Carboxylysis of epoxides 140i.  

A series of kinetic experiments was performed to study the reaction mechanism of the ring 

opening reaction.  

Experiment 1. This experiment was designed to evaluate the order dependence of the rate 

law with respect to the carboxylic acid. 
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Epoxide 140i (0.025 mmol, 1 equiv.), (RS)-TRIP (0.0005 mmol, 2 mol%) and benzoic acid 

(three different reactions. 1a: 1.42 equiv.; 1b: 2.24 equiv.; 1c: 3.21 equiv.) were dissolved in 

CD2Cl2 (0.6 mL) and the reaction was monitored using 1H-NMR spectroscopy.  

The conversion was plotted as function of time and a 9th order polynomial function was used 

to fit the curve (see pictures below). 

 

The calculated reaction rate (Δconc/Δt) was plotted as a function of the epoxide 

concentration (see graph below).  

Rate VS [Epoxide] 

 

As shown above, the plots obtained from the three different experiments are linear and an 

almost perfect overlay is observed. This outcome is in accordance with a first order kinetic 

for the reaction and confirms that the concentration of the carboxylic acid does not 

influence the rate. This outcome suggests that the non-covalent self-assembly between the 

phosphoric acid and the carboxylic acid is the resting state of the catalytic cycle.  
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Experiment 2. This experiment was designed to evaluate the order dependence of the rate 

law with respect to the epoxide. 

 

RacTRIP (0.0005 mmol, 0.67 mol%), benzoic acid (0.075 mmol, 1 equiv.) and epoxide 140i 

(three different experiments. 2a: 0.31 equiv.; 2b: 0.48 equiv.; 2c: 0.64 equiv.) were dissolved 

in CD2Cl2 (0.6 mL) and the reaction was monitored using 1H-NMR spectroscopy.  

The conversion was plotted as function of time and a 9th order polynomial function was used 

to fit the curve. 

 

Catalyst degradation affected the three experiments differently (the deactivation rate 

depends on the epoxide concentration [vide infra]). Nevertheless, the initial concentration of 

the catalyst was not affected by such phenomenon and therefore the method of the initial 

rates was used for the analysis. 

Rate VS [Epoxide]°  
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A linear plot is obtained, thus accounting for a first-order dependence of the reaction rate 

with respect the the concentration of the epoxide. According to this result and based on 

experiment 1, the rate law is found to be:  

� =
∆�

∆�
= ���	
��������� 

In addition we could estimate the reaction constant k in these conditions: 

� = 0.295	������ 

 

Deactivation of TRIP catalyst.  

This experiment was designed to evaluate the order dependence of the rate law with 

respect to the phosphoric acid catalyst in the degradation pathway. A large excess of the 

epoxide (10 equiv.) was used to reach a pseudo-zero order behavior and to mimic catalytic 

conditions.  

iPr

iPr

iPr

O

O
P

O

OH

(RS)-TRIP

iPr

iPr

iPr

O

50a

(10 equiv.)

CD2Cl2, -20° C

iPr

iPr

iPr

O

O
P

O

O

iPr

iPr

iPr

HO

 

(RS)-TRIP (0.005 mmol, 1 equiv.) and epoxide 50a (0.05 mmol, 10 equiv.) were dissolved in 

CD2Cl2 (0.6 mL) and the reaction was monitored during time by 31P-NMR spectroscopy.  

The conversion was plotted as function of time and a 9th order polynomial function was used 

to fit the curve (see picture below).  
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Then the calculated reaction rate (Δconc/Δt) was plotted as a function of TRIP concentration 

(see graph below).  

Rate VS [TRIP] 

 

To evaluate the order of the phosphoric acid in the degradation reaction we examined the 

plots two following plots. 

Rate/[TRIP] VS [TRIP]       Rate/[TRIP]2 VS [TRIP] 

 

The first plot was found to be linear and constant, while the second appeared to be function 

of the TRIP concentration. This result suggests that TRIP degradation occur via the 

decomposition of the intermediate oxiranium phosphate and not with the nucleophilic 

attack of a second molecule of phosphoric acid (see scheme below).   
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7.6.3.3. Theoretical investigation on the catalytic cycle  

The objective of this study was to examine the sequence of events in the catalytic cycle for 

the reaction between epoxide 50h and AcOH catalyzed by TRIP towards product 52hb. 

 

The following species were considered: 

(I) TRIP/AcOH/50h: the three molecules do not interact (i.e. they are at infinite 

distance). The energies of all other structures investigated are given relative to the 

reference energy of this non-interacting system. 

(II) TRIP-AcOH/50h: TRIP-AcOH heterodimer, no interaction with the epoxide. 

(III) TRIP-AcOH-50h: TRIP, AcOH and epoxide in a trimolecular complex. 

(IV) Transition state (TS). 

(V) TRIP-52hb: complex between TRIP and product. 

(VI) TRIP/52hb: no interaction between TRIP and product. 
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Optimized structures (Cartesian coordinates, Å) 
 
(I) TRIP/AcOH/50h 
 

C         7.794399   -1.920059    3.895177 

C         7.377610   -0.582147    3.733290 

C         6.278168   -0.095897    4.467308 

C         5.630934   -0.959746    5.351171 

C         6.023034   -2.279407    5.529649 

C         7.108363   -2.736971    4.788743 

C         8.134871    0.327318    2.814864 

C         8.049990    0.211733    1.403924 

C         8.789898    0.967744    0.517813 

C         9.567342    2.049171    1.049582 

C         9.663326    2.196119    2.465107 

C         8.968917    1.299669    3.307545 

C        10.213747    3.012261    0.235555 

C        10.939029    4.036130    0.788655 

C        11.066723    4.153105    2.186985 

C        10.438141    3.252288    3.004057 

C         8.764019    0.666319   -0.941326 

C         7.568444    0.599515   -1.628533 

C         7.470803    0.453419   -3.037661 

C         8.647703    0.334705   -3.733827 

C         9.903354    0.276375   -3.090089 

C         9.972917    0.418612   -1.672962 

C        11.092092    0.054428   -3.827584 

C        12.301209   -0.063198   -3.196504 

C        12.367802    0.030477   -1.792223 

C        11.238123    0.268366   -1.052232 

C         6.150604    0.451165   -3.746444 

C         5.413561    1.648357   -3.866718 

C         4.204891    1.631493   -4.556443 

C         3.696022    0.474187   -5.136883 

C         4.442487   -0.690165   -5.012930 

C         5.658517   -0.734450   -4.330153 

C         5.913865    2.976616   -3.310623 

C         4.914394    3.621177   -2.339051 

C         6.410057   -2.061485   -4.269358 

C         7.066105   -2.392925   -5.621235 

C         2.369400    0.469103   -5.876303 

C         2.371044    1.420192   -7.081971 

O         6.374875    0.760416   -0.929134 

P        5.856502   -0.319536    0.143022 

O         4.731408    0.202216    0.924405 

O         7.201502   -0.774169    0.895005 

C         5.771281    1.337605    4.347442 

C         6.128044    2.159451    5.597941 

C         5.278568   -3.184740    6.495817 

C         6.189238   -3.718173    7.611351 

C         8.995865   -2.497949    3.155303 

C         8.626633   -3.728774    2.313553 

C         4.263329    1.412212    4.064082 

C        10.148089   -2.816628    4.122407 

C         4.568462   -4.335787    5.766782 

O         5.566823   -1.674326   -0.652946 

C         5.526773   -3.234443   -3.817875 

C         1.193097    0.774561   -4.936138 

C         6.287216    3.946001   -4.444736 

O       -38.774951  -22.887630   -1.217418 

C       -39.219871  -24.209017   -0.875709 

C       -38.173807  -25.219832   -0.498255 

C       -39.609992  -23.049324   -0.061045 

C       -39.023801  -22.694164    1.276357 

O       -40.319807   27.428161    0.528307 

C       -40.421609   28.607070    0.744811 

C       -41.706087   29.366868    0.917874 

O       -39.342650   29.420616    0.863083 

H         9.079881    1.404613    4.378535 

H        10.509859    3.342861    4.080413 

H        11.648422    4.961125    2.609702 

H        11.414040    4.764085    0.144672 

H        10.123832    2.944633   -0.837624 

H         7.436073   -3.761118    4.912349 

H         4.785580   -0.590664    5.917890 

H         9.365823   -1.741446    2.465354 
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H        10.445268   -1.933117    4.688671 

H        11.020375   -3.176408    3.573089 

H         9.862950   -3.589485    4.838099 

H         9.493877   -4.073611    1.747130 

H         7.830889   -3.495731    1.607054 

H         4.506012   -2.573030    6.969426 

H         3.885966   -3.957480    5.005213 

H         3.992633   -4.940465    6.470213 

H         5.286140   -4.993478    5.272862 

H         6.973639   -4.362083    7.209746 

H         5.613967   -4.306482    8.328644 

H         6.671934   -2.902403    8.150516 

H         6.272254    1.799864    3.498344 

H         3.674254    1.025759    4.897547 

H         4.008589    0.854768    3.165327 

H         3.967508    2.452157    3.912191 

H         8.291763   -4.558171    2.938609 

H         5.639073    1.753939    6.485810 

H         5.801636    3.194499    5.480528 

H         7.202088    2.163923    5.787208 

H         8.615955    0.255563   -4.812069 

H        11.022767   -0.035590   -4.904193 

H        13.201611   -0.240989   -3.768845 

H        13.319280   -0.089949   -1.291788 

H        11.311479    0.332269    0.022343 

H         3.646289    2.554224   -4.645349 

H         4.061067   -1.596584   -5.465795 

H         6.826517    2.787687   -2.748813 

H         7.032289    3.508170   -5.110280 

H         6.699240    4.870578   -4.035966 

H         5.416085    4.207693   -5.047901 

H         5.340156    4.529571   -1.908754 

H         4.666815    2.944167   -1.522723 

H         2.225908   -0.544549   -6.260487 

H         1.163711    0.074860   -4.100282 

H         0.244104    0.705259   -5.471235 

H         1.269386    1.781858   -4.522989 

H         2.484957    2.459247   -6.768431 

H         1.431639    1.342569   -7.632330 

H         3.186630    1.187600   -7.767369 

H         7.205760   -1.962733   -3.532801 

H         4.746666   -3.461874   -4.545337 

H         5.049417   -3.025662   -2.862343 

H         6.133618   -4.133562   -3.698645 

H         6.311623   -2.523938   -6.399155 

H         7.640239   -3.318865   -5.551988 

H         7.740783   -1.602124   -5.948288 

H         3.987278    3.901351   -2.841821 

H       -41.726985   29.839807    1.899811 

H       -42.546480   28.688649    0.812953 

H       -41.770218   30.161147    0.174082 

H       -38.560182   28.862944    0.741232 

H       -40.621036  -22.675813   -0.213891 

H       -38.639003  -26.088497   -0.027193 

H       -37.650365  -25.566491   -1.391022 

H       -37.433666  -24.808212    0.184282 

H       -39.649895  -23.086906    2.080483 

H       -38.015538  -23.083463    1.398442 

H       -38.980268  -21.609418    1.388664 

H       -39.977082  -24.590283   -1.558610 

H         4.620002   -1.857173   -0.668848 

Energy = -3043.584409 Hartree 
 
 
 
(II) TRIP-AcOH / 50h 
 
C        -4.049120    2.951386   -0.693215 
C        -5.121050    3.067319    0.214536 
C        -5.956859    4.203358    0.169491 
C        -5.701437    5.193207   -0.774719 
C        -4.645800    5.105495   -1.676541 

C        -3.837712    3.978451   -1.613674 
C        -5.344969    2.022514    1.264796 
C        -6.457589    1.141577    1.232808 
C        -6.760380    0.244293    2.236840 
C        -5.799505    0.062752    3.285596 
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C        -4.663141    0.922445    3.333637 
C        -4.494768    1.908504    2.336662 
C        -5.901834   -0.960259    4.260791 
C        -4.954881   -1.100850    5.242638 
C        -3.855637   -0.222186    5.312011 
C        -3.714969    0.765139    4.373943 
C        -8.046309   -0.507856    2.223451 
C        -8.411682   -1.265009    1.129243 
C        -9.541961   -2.122113    1.098010 
C       -10.337992   -2.140166    2.216085 
C       -10.100317   -1.300625    3.326594 
C        -8.952022   -0.454786    3.334104 
C        -8.788092    0.433400    4.426177 
C        -9.685198    0.456308    5.462853 
C       -10.794425   -0.412533    5.472837 
C       -10.995822   -1.268542    4.423663 
O        -7.591769   -1.250578    0.000707 
P       -7.488331    0.063950   -0.913899 
O        -8.643850    0.354237   -1.798172 
C        -9.850179   -2.992926   -0.081367 
C        -9.068564   -4.140192   -0.333490 
C        -9.402782   -4.962447   -1.405524 
C       -10.484374   -4.692752   -2.238741 
C       -11.237684   -3.558047   -1.970403 
C       -10.947353   -2.695747   -0.912970 
C        -7.894127   -4.537526    0.553510 
C        -6.581653   -4.664108   -0.233999 
C       -10.844372   -5.602717   -3.400426 
C       -11.295171   -6.990418   -2.918551 
C       -11.839921   -1.477169   -0.701510 
C       -13.220890   -1.883235   -0.159554 
O        -7.326485    1.257285    0.148271 
C        -7.109601    4.413538    1.145142 
C        -8.458625    4.577565    0.429089 
C        -4.371754    6.199639   -2.693575 
C        -3.995771    7.528161   -2.019948 
C        -3.098813    1.758219   -0.703577 
C        -1.740783    2.117955   -0.076461 
C        -8.196643   -5.826950    1.334905 
C        -9.704191   -5.718596   -4.422498 
C       -11.988989   -0.627009   -1.971938 
O        -6.126164   -0.171602   -1.637249 
C        -6.835918    5.599010    2.085727 
C        -5.542726    6.389805   -3.668909 
C        -2.888496    1.172775   -2.108603 
O        -6.287731    0.241974   -4.185213 
C        -7.258496    0.577456   -4.857485 
O        -8.463591    0.781890   -4.377969 

C        -7.165468    0.794888   -6.340682 
H       -11.194826   -2.800188    2.240695 
H       -11.855525   -1.926290    4.408050 
H       -11.489631   -0.390556    6.301199 
H        -9.541872    1.151429    6.279252 
H        -7.949097    1.111838    4.436180 
H        -8.802243   -5.843737   -1.589813 
H       -12.080651   -3.331910   -2.611028 
H        -7.746763   -3.751568    1.292234 
H        -9.103535   -5.723638    1.932001 
H        -7.372302   -6.067717    2.009091 
H        -8.336122   -6.675797    0.663314 
H        -5.753934   -4.882714    0.443304 
H        -6.351086   -3.740532   -0.763380 
H       -11.694161   -5.140510   -3.909589 
H        -9.403301   -4.737042   -4.790037 
H       -10.014534   -6.322094   -5.277698 
H        -8.824548   -6.193629   -3.984646 
H       -10.485627   -7.510424   -2.403093 
H       -11.605188   -7.610377   -3.761943 
H       -12.134407   -6.914058   -2.226444 
H       -11.368558   -0.843462    0.047892 
H       -12.514810   -1.166159   -2.761764 
H       -11.016364   -0.320793   -2.350326 
H       -12.566396    0.272916   -1.751592 
H        -6.628297   -5.471591   -0.966474 
H       -13.757700   -2.504714   -0.878892 
H       -13.829399   -0.998171    0.035874 
H       -13.140421   -2.449706    0.768739 
H        -6.184474   -0.015759   -2.635521 
H        -3.652428    2.582388    2.414713 
H        -2.864297    1.434015    4.403556 
H        -3.120520   -0.338811    6.096857 
H        -5.051148   -1.896835    5.968864 
H        -6.733637   -1.646884    4.223169 
H        -6.343962    6.063973   -0.799262 
H        -3.013870    3.895698   -2.311055 
H        -7.188797    3.528624    1.773600 
H        -5.902039    5.462947    2.632542 
H        -7.643066    5.703026    2.813424 
H        -6.763436    6.537040    1.532836 
H        -9.266149    4.657700    1.159328 
H        -8.667738    3.724577   -0.214988 
H        -3.507944    5.875757   -3.280577 
H        -5.791278    5.455420   -4.173027 
H        -5.292380    7.131348   -4.429909 
H        -6.438527    6.736568   -3.150920 
H        -4.826224    7.921769   -1.431206 
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H        -3.734675    8.279040   -2.768195 
H        -3.143334    7.404014   -1.351346 
H        -3.543942    0.971120   -0.096645 
H        -2.338428    1.857672   -2.755643 
H        -3.835095    0.940656   -2.591585 
H        -2.307698    0.251149   -2.043406 
H        -1.236811    2.893891   -0.655788 
H        -1.088711    1.242765   -0.050353 
H        -1.849359    2.487990    0.942902 
H        -8.480475    5.479723   -0.184404 
H        -7.844996    0.112522   -6.851576 
H        -6.147771    0.631110   -6.679270 
H        -7.484660    1.808664   -6.582015 
H        -8.512933    0.624082   -3.386313 
O        80.126865   -0.195855   -0.087762 

C        81.293491   -0.196880    0.748124 
C        81.593457   -1.451091    1.520261 
C        81.411831   -0.052641   -0.710280 
C        81.853209   -1.136607   -1.652836 
H        81.592741    0.955599   -1.078680 
H        82.613177   -1.422142    1.910089 
H        80.914766   -1.537115    2.370727 
H        81.478773   -2.344071    0.909976 
H        82.920788   -1.044784   -1.863583 
H        81.661169   -2.129716   -1.252881 
H        81.318423   -1.047809   -2.600137 
H        81.398024    0.717191    1.329907 
 
Energy = -3043.616440 Hartree

 
 
(III) TRIP-AcOH-50h 

 
 

C         4.324202   -0.776538    1.130107 
C         3.940658    0.212189    0.203404 
C         4.462137    0.185233   -1.107047 
C         5.358003   -0.821021   -1.456634 
C         5.760928   -1.802433   -0.556402 
C         5.229628   -1.757798    0.725519 
C         3.031232    1.328134    0.619470 
C         1.687533    1.419046    0.173277 
C         0.857592    2.489284    0.438086 
C         1.315545    3.477233    1.371234 
C         2.655348    3.399082    1.853198 
C         3.487938    2.341689    1.424517 
C         0.486368    4.509831    1.875722 
C         0.965078    5.427435    2.775251 
C         2.302252    5.372127    3.216162 
C         3.125659    4.375998    2.764386 
C        -0.469100    2.606990   -0.230170 
C        -1.397697    1.587648   -0.153740 
C        -2.732663    1.699996   -0.624241 
C        -3.078968    2.875000   -1.243414 

C        -2.147204    3.909874   -1.476574 
C        -0.816337    3.778226   -0.982406 
C        -2.509274    5.069154   -2.205232 
C        -1.591072    6.048674   -2.472551 
C        -0.263848    5.902788   -2.022675 
C         0.111861    4.802546   -1.295583 
C        -3.751513    0.619360   -0.424416 
C        -4.202139   -0.144451   -1.518760 
C        -5.209841   -1.086145   -1.308542 
C        -5.781638   -1.302769   -0.062312 
C        -5.314848   -0.540750    1.004092 
C        -4.313018    0.413585    0.853387 
C        -3.643445    0.024723   -2.927965 
C        -4.624964    0.785142   -3.836047 
C        -3.903383    1.241231    2.066235 
C        -3.510688    0.375985    3.272234 
C        -6.877215   -2.338947    0.116312 
C        -8.202914   -1.703690    0.562277 
O        -1.053357    0.405680    0.494903 
P         0.073328   -0.594205   -0.072534 
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O         0.476921   -1.532681    0.994775 
O         1.212151    0.390550   -0.639114 
C         4.110997    1.239837   -2.150830 
C         3.464670    0.625324   -3.401706 
C         6.747080   -2.889256   -0.948490 
C         8.119557   -2.312303   -1.326930 
C         3.797931   -0.814780    2.560624 
C         4.872810   -0.368558    3.566178 
C         5.335653    2.091023   -2.524875 
C         3.240980   -2.192868    2.946960 
C         6.200831   -3.787403   -2.068531 
O        -0.426978   -1.217994   -1.416887 
C        -5.005686    2.246004    2.442021 
C        -6.455555   -3.463718    1.073721 
C        -3.257078   -1.312819   -3.577338 
O        -1.131108   -3.731093   -1.371251 
C        -0.947808   -4.820134   -2.310068 
C        -0.210610   -4.529292   -3.585222 
C        -0.334206   -4.885765   -0.975310 
C         1.120769   -4.668538   -0.689072 
O        -0.640921   -4.647430    2.215047 
C        -0.945626   -3.927813    3.140242 
C        -1.630256   -4.408282    4.394899 
O        -0.718007   -2.613341    3.173208 
H         4.514891    2.321828    1.763962 
H         4.149385    4.309426    3.110089 
H         2.669186    6.107757    3.919172 
H         0.307849    6.198843    3.153770 
H        -0.542765    4.566050    1.556032 
H         5.759133   -0.831094   -2.462075 
H         5.529701   -2.517544    1.435871 
H         3.379807    1.918612   -1.715730 
H         5.771783    2.564798   -1.644605 
H         5.053499    2.876857   -3.228194 
H         6.112453    1.486358   -2.995986 
H         3.169380    1.410774   -4.100161 
H         2.576065    0.051657   -3.141253 
H         6.889406   -3.518851   -0.066071 
H         5.246310   -4.232391   -1.785937 
H         6.901051   -4.595295   -2.289333 
H         6.045876   -3.221995   -2.989173 
H         8.051938   -1.679821   -2.213820 
H         8.827620   -3.114190   -1.544852 
H         8.529849   -1.707433   -0.517688 
H         2.970178   -0.110802    2.630745 
H         4.026420   -2.948671    2.999913 
H         2.490700   -2.521988    2.231701 
H         2.770360   -2.141342    3.930211 

H         4.155772   -0.037659   -3.925087 
H         5.728686   -1.046218    3.551116 
H         4.468355   -0.363606    4.580150 
H         5.242498    0.633367    3.346198 
H        -4.096529    3.009272   -1.584727 
H        -3.527995    5.158681   -2.560548 
H        -1.876297    6.926039   -3.037235 
H         0.467690    6.664808   -2.256105 
H         1.134350    4.709737   -0.963965 
H        -5.746755   -0.688499    1.985295 
H        -5.562232   -1.675379   -2.145730 
H        -3.024871    1.824556    1.797128 
H        -5.249019    2.899489    1.603242 
H        -4.685905    2.871975    3.277529 
H        -5.921887    1.732949    2.739970 
H        -3.139111    1.007363    4.081418 
H        -2.727946   -0.336146    3.014373 
H        -7.045861   -2.791572   -0.864683 
H        -5.529044   -3.934614    0.744331 
H        -7.229133   -4.232096    1.128823 
H        -6.293932   -3.083383    2.083853 
H        -8.109645   -1.245518    1.548465 
H        -8.990821   -2.457171    0.620158 
H        -8.523774   -0.929225   -0.135200 
H        -2.732899    0.617841   -2.856807 
H        -4.134722   -1.916460   -3.813317 
H        -2.612080   -1.896504   -2.924206 
H        -2.725139   -1.131933   -4.513157 
H        -5.562354    0.235551   -3.941051 
H        -4.200458    0.917880   -4.833192 
H        -4.863673    1.771437   -3.438837 
H        -4.362199   -0.184122    3.662433 
H        -1.049620   -4.119718    5.270938 
H        -1.746939   -5.486951    4.361446 
H        -2.607530   -3.932775    4.484192 
H        -0.282098   -2.306488    2.339375 
H        -0.848076   -5.472775   -0.223693 
H         0.065651   -5.466816   -4.072083 
H        -0.849440   -3.973933   -4.273321 
H         0.693149   -3.948802   -3.416329 
H         1.626671   -5.635506   -0.648532 
H         1.611034   -4.052317   -1.439847 
H         1.227625   -4.190942    0.282582 
H        -1.867034   -5.383294   -2.445407 
H        -0.653931   -2.194412   -1.382582 
 
Energy = -3044.63202009 Hartree
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(IV) Transition State (TS) 

 
 
C          4.343245   -0.962696    0.922203 
C          3.959004    0.104511    0.086800 
C          4.444359    0.165077   -1.236673 
C          5.299030   -0.835530   -1.690423 
C          5.696730   -1.896213   -0.882782 
C          5.206117   -1.935177    0.415444 
C          3.089055    1.205969    0.612662 
C          1.744128    1.375248    0.185263 
C          0.955867    2.447250    0.559477 
C          1.454128    3.330699    1.572887 
C          2.794124    3.167053    2.032612 
C          3.586536    2.125187    1.502231 
C          0.665137    4.342304    2.175766 
C          1.181090    5.161958    3.146611 
C          2.518943    5.024341    3.567015 
C          3.303910    4.044342    3.020898 
C         -0.373868    2.667659   -0.076393 
C         -1.327884    1.667854   -0.076440 
C         -2.662007    1.858981   -0.527472 
C         -2.983755    3.091587   -1.037340 
C         -2.027317    4.120400   -1.182608 
C         -0.696115    3.909972   -0.716325 
C          0.256213    4.934246   -0.947771 
C         -0.096157    6.105333   -1.568376 
C         -1.423077    6.325977   -1.987914 
C         -2.364458    5.349703   -1.799840 
O         -1.005255    0.434642    0.460474 
P         0.043820   -0.559420   -0.293484 
O          1.241630    0.454662   -0.716995 
C         -3.697527    0.781143   -0.423377 
C         -4.170788    0.134741   -1.582498 
C         -5.176607   -0.824021   -1.450583 
C         -5.727561   -1.167124   -0.222876 
C         -5.242457   -0.516042    0.907379 
C         -4.242536    0.450100    0.835258 
C         -3.648741    0.457599   -2.978961 

C         -4.679211    1.269360   -3.782804 
C         -6.834567   -2.203867   -0.134376 
C         -8.161585   -1.583124    0.329234 
C         -3.815329    1.155907    2.117277 
C         -3.348252    0.178292    3.205290 
C          4.101581    1.309452   -2.183626 
C          3.394203    0.818838   -3.455899 
C          6.638365   -2.975218   -1.388840 
C          8.024459   -2.411946   -1.737186 
C          3.863176   -1.095899    2.363369 
C          4.986846   -0.773283    3.362859 
O          0.488468   -1.543264    0.756838 
O         -0.511607   -1.091776   -1.583176 
C         -3.225821   -0.792338   -3.764066 
C         -4.933100    2.071938    2.643125 
C         -6.449215   -3.397288    0.751747 
C          5.346680    2.143248   -2.528354 
C          6.045853   -3.749617   -2.575638 
C          3.268194   -2.480514    2.659583 
O         -0.560018   -2.776758    2.717745 
C         -0.761989   -4.063220    2.648935 
O         -0.575131   -4.775639    1.659961 
C         -1.269463   -4.650364    3.939468 
C         -0.154898   -4.303101   -0.458871 
C         -1.505572   -4.000151   -0.939956 
C         -2.483862   -5.099727   -1.252529 
C          0.558405   -5.575146   -0.722998 
O         -0.776094   -3.547510   -2.105782 
H          4.615208    2.042101    1.827163 
H          4.327983    3.914716    3.347825 
H          2.916716    5.683295    4.327133 
H          0.553198    5.919464    3.596606 
H         -0.363226    4.461522    1.871073 
H          5.670784   -0.777245   -2.705401 
H          5.507342   -2.754523    1.056251 
H          3.410181    1.976305   -1.672665 
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H          5.824600    2.531086   -1.627736 
H          5.074961    2.991358   -3.159836 
H          6.087059    1.550465   -3.068335 
H          3.107735    1.667422   -4.080276 
H          2.492373    0.259726   -3.210693 
H          6.772700   -3.686831   -0.569264 
H          5.077678   -4.181708   -2.320012 
H          6.711759   -4.560169   -2.878497 
H          5.900635   -3.099666   -3.440241 
H          7.966756   -1.703416   -2.565312 
H          8.703653   -3.213875   -2.033333 
H          8.463427   -1.891872   -0.885166 
H          3.065756   -0.371274    2.517326 
H          4.025557   -3.265569    2.620106 
H          2.482027   -2.719837    1.946702 
H          2.834833   -2.493406    3.661400 
H          4.043148    0.175590   -4.053042 
H          5.813179   -1.479948    3.263812 
H          4.616533   -0.832786    4.388323 
H          5.389545    0.227863    3.208269 
H         -0.612429   -2.539090   -1.968991 
H         -3.997888    3.279619   -1.364050 
H         -3.383329    5.496473   -2.135601 
H         -1.689881    7.257915   -2.468021 
H          0.653756    6.865904   -1.740781 
H          1.279175    4.784463   -0.638844 
H         -5.662217   -0.756876    1.875686 
H         -5.548377   -1.319220   -2.339011 
H         -2.967792    1.796667    1.883535 
H         -5.234517    2.800250    1.889302 
H         -4.595750    2.617769    3.526435 
H         -5.817846    1.497493    2.923704 

H         -2.985894    0.729722    4.074993 
H         -2.537654   -0.454490    2.846799 
H         -6.990027   -2.586267   -1.146974 
H         -5.526217   -3.863735    0.404834 
H         -7.236338   -4.153659    0.742285 
H         -6.298244   -3.090134    1.788051 
H         -8.079707   -1.190365    1.344331 
H         -8.959657   -2.328244    0.323951 
H         -8.459631   -0.760869   -0.321862 
H         -2.757978    1.073018   -2.867306 
H         -4.072895   -1.446917   -3.977261 
H         -2.475217   -1.358708   -3.217836 
H         -2.792819   -0.499250   -4.722307 
H         -5.590227    0.690922   -3.949111 
H         -4.273450    1.541997   -4.758931 
H         -4.962127    2.187185   -3.267151 
H         -4.161036   -0.466878    3.543879 
H         -0.169937   -2.326293    1.885247 
H         -1.971579   -3.164115   -0.424126 
H          0.400774   -3.447033   -0.108587 
H         -2.855319   -5.538912   -0.326240 
H         -3.328488   -4.687877   -1.802967 
H         -2.030297   -5.882909   -1.857602 
H          0.906547   -5.573729   -1.757069 
H          1.427980   -5.651367   -0.075569 
H         -0.083790   -6.440171   -0.574725 
H         -1.442320   -5.715851    3.828258 
H         -0.541081   -4.469870    4.730057 
H         -2.191582   -4.146906    4.229577 
 
Energy = -3044.60079443 Hartree 
Nimag = 1 (293i) 

 
 
(V) TRIP-52hb 

 
 

C         4.295235   -0.447368    1.262311 
C         3.883160    0.469806    0.275948 

C         4.417302    0.386777   -1.026906 
C         5.352515   -0.604065   -1.310908 
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C         5.782030   -1.516293   -0.352090 
C         5.238664   -1.417092    0.921719 
C         2.928528    1.571376    0.622266 
C         1.586884    1.587886    0.159692 
C         0.710205    2.631259    0.379858 
C         1.119512    3.677659    1.270722 
C         2.459355    3.679191    1.759037 
C         3.336774    2.638177    1.383448 
C         0.245120    4.695709    1.726495 
C         0.680498    5.673447    2.583724 
C         2.016872    5.695607    3.029908 
C         2.883469    4.715660    2.626115 
C        -0.621647    2.659138   -0.288154 
C        -1.502584    1.604043   -0.158431 
C        -2.845533    1.635594   -0.617832 
C        -3.246551    2.760801   -1.293776 
C        -2.362523    3.822759   -1.585310 
C        -1.025529    3.776393   -1.092077 
C        -2.778878    4.927433   -2.367825 
C        -1.907204    5.933929   -2.686164 
C        -0.573776    5.871393   -2.235366 
C        -0.146221    4.825865   -1.457996 
C        -3.822492    0.534056   -0.334615 
C        -4.370112    0.404846    0.959126 
C        -5.344029   -0.563618    1.186646 
C        -5.801279   -1.408024    0.180077 
C        -5.238823   -1.269669   -1.081931 
C        -4.255162   -0.321940   -1.366449 
C        -3.968397    1.316934    2.113031 
C        -5.142015    2.200025    2.567085 
C        -3.706506   -0.241893   -2.787443 
C        -3.295993   -1.612858   -3.345795 
C        -6.883892   -2.442337    0.436628 
C        -6.441791   -3.502057    1.456555 
O        -1.093364    0.462966    0.528046 
P        0.046182   -0.504039   -0.066429 
O         1.162380    0.519263   -0.624094 
C         4.041866    1.371218   -2.128971 
C         5.233931    2.263716   -2.512095 
C         6.810359   -2.587121   -0.674871 
C         6.306016   -3.566612   -1.744864 
C         3.762907   -0.416982    2.691220 
C         3.237200   -1.782400    3.156830 
C         3.458069    0.671132   -3.365290 
C         4.821867    0.113989    3.672363 
C         8.163986   -1.982771   -1.077688 
O        -0.548426   -1.099894   -1.384750 
O         0.506755   -1.453105    0.966383 

C        -4.708681    0.434110   -3.739012 
C        -8.210295   -1.792690    0.859058 
C        -3.376833    0.533907    3.295016 
O         0.626650   -3.333067   -1.983577 
C         0.575363   -4.338624   -1.291787 
C         1.815367   -5.154241   -1.053273 
O        -0.622224   -4.702471   -0.830387 
C        -0.950952   -5.554001    0.307704 
H        -2.009075   -5.741408    0.126495 
C        -0.819586   -4.722141    1.604952 
O         0.472441   -4.150245    1.685848 
C        -1.933756   -3.693367    1.746491 
H        -4.271545    2.833850   -1.631527 
H        -3.801384    4.952883   -2.722699 
H        -2.233751    6.768657   -3.291636 
H         0.121366    6.654060   -2.508314 
H         0.880274    4.795206   -1.127040 
H        -5.766793   -0.650461    2.179410 
H        -5.580875   -1.924081   -1.873522 
H        -3.190258    1.990024    1.758136 
H        -5.537800    2.788178    1.738203 
H        -4.819519    2.890485    3.348881 
H        -5.960311    1.601096    2.970355 
H        -3.043443    1.221100    4.074912 
H        -2.520793   -0.062058    2.981094 
H        -7.059996   -2.956379   -0.512215 
H        -5.524634   -3.996437    1.135030 
H        -7.213954   -4.263804    1.580871 
H        -6.254029   -3.056852    2.435155 
H        -8.111405   -1.277264    1.815911 
H        -8.991636   -2.547307    0.968161 
H        -8.543580   -1.062294    0.121207 
H        -2.807665    0.372246   -2.762723 
H        -4.160693   -2.254477   -3.522477 
H        -2.620226   -2.131442   -2.669334 
H        -2.785659   -1.486384   -4.302078 
H        -4.113030   -0.137210    3.740831 
H        -5.632602   -0.143824   -3.805956 
H        -4.288853    0.511615   -4.743811 
H        -4.970347    1.438157   -3.406070 
H         4.360250    2.674131    1.732006 
H         3.907653    4.708465    2.976894 
H         2.349461    6.477660    3.699078 
H        -0.010571    6.433010    2.924083 
H        -0.784000    4.693879    1.401794 
H         5.762772   -0.658168   -2.311233 
H         5.559932   -2.123243    1.676847 
H         3.267718    2.032204   -1.743621 
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H         5.620864    2.800852   -1.645270 
H         4.934506    2.999308   -3.261258 
H         6.052277    1.675877   -2.931415 
H         3.135025    1.411058   -4.100069 
H         2.598084    0.057794   -3.100165 
H         6.968596   -3.159377    0.243254 
H         5.367599   -4.031107   -1.440422 
H         7.037514   -4.358319   -1.918200 
H         6.132884   -3.059770   -2.695647 
H         8.080784   -1.405885   -2.000369 
H         8.903095   -2.768953   -1.243748 
H         8.544277   -1.316750   -0.302547 
H         2.918298    0.269668    2.717418 
H         4.037244   -2.519836    3.239737 
H         2.484416   -2.165599    2.472649 
H         2.779781   -1.687632    4.143483 
H         5.691468   -0.545265    3.704936 
H         4.410723    0.173878    4.681932 

H         5.172736    1.107488    3.391959 
H         4.195134    0.028370   -3.849327 
H         2.623210   -4.693987   -1.612863 
H         1.682073   -6.183744   -1.378246 
H         2.054365   -5.148008    0.007542 
H        -0.175088   -1.992717   -1.656092 
H        -2.903766   -4.187600    1.815948 
H        -1.785311   -3.105669    2.651357 
H        -1.957920   -3.012703    0.897169 
H        -0.899780   -5.438384    2.430412 
H         0.432986   -3.202754    1.453043 
C        -0.245985   -6.900722    0.370673 
H        -0.807825   -7.533835    1.058803 
H        -0.243321   -7.396119   -0.599987 
H         0.771453   -6.830792    0.744933 
 
Energy = -3044.63202009 Hartree

 
 
(VI) TRIP/52hb 
 
 
C         16.041715   -3.530721    1.030699 
C         17.146452   -3.487499    0.158128 
C         17.011236   -3.943389   -1.169794 
C         15.779929   -4.434839   -1.592927 
C         14.674546   -4.492329   -0.749560 
C         14.832833   -4.036697    0.552045 
C         18.476278   -3.002165    0.647536 
C         19.017355   -1.754511    0.244488 
C         20.271303   -1.302450    0.601691 
C         21.003115   -2.060836    1.574407 
C         20.480151   -3.316420    2.003342 
C         19.242497   -3.766223    1.492071 
C         22.205905   -1.603580    2.168225 
C         22.868295   -2.359588    3.100862 
C         22.372138   -3.620132    3.488289 
C         21.201039   -4.083288    2.951229 
C         20.833101   -0.063385   -0.005470 
C         20.134955    1.127189    0.038705 
C         20.665116    2.372913   -0.389254 
C         21.934743    2.362625   -0.910641 
C         22.665224    1.168817   -1.097185 
C         22.106841   -0.070157   -0.665639 
C         23.933690    1.180233   -1.727486 
C         24.614223    0.015774   -1.961710 
C         24.044551   -1.214947   -1.579459 

C         22.828408   -1.257095   -0.947264 
C         19.897648    3.653664   -0.265990 
C         19.686111    4.231261    1.004154 
C         19.014696    5.447219    1.090321 
C         18.541933    6.117435   -0.033527 
C         18.762210    5.530620   -1.272395 
C         19.428393    4.313578   -1.420376 
C         20.211534    3.599496    2.288159 
C         21.352706    4.436555    2.890434 
C         19.636151    3.769633   -2.831153 
C         18.334641    3.701846   -3.644243 
C         17.813841    7.445580    0.076797 
C         16.496132    7.316278    0.855734 
O         18.864286    1.147521    0.607817 
P        17.608275    0.392566   -0.052219 
O         18.244246   -0.971238   -0.615787 
C         18.177410   -3.956648   -2.152322 
C         18.608951   -5.394128   -2.486775 
C         13.334959   -5.029053   -1.222892 
C         12.734662   -4.167971   -2.344605 
C         16.110267   -3.060989    2.480190 
C         15.014430   -2.040449    2.823617 
C         17.874723   -3.159851   -3.429976 
C         16.064356   -4.252188    3.452511 
C         13.418242   -6.503178   -1.645908 
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O         17.309232    1.104179   -1.451253 
O         16.475829    0.333650    0.876665 
C         20.692051    4.587735   -3.594609 
C         18.704208    8.542063    0.680459 
C         19.100779    3.356781    3.320732 
O       -104.035989   -0.667842   -1.901986 
C       -105.108854   -0.529214   -1.376443 
C       -106.121633   -1.647544   -1.308664 
O       -105.418029    0.710673   -0.903183 
C       -106.336121    1.091661    0.148459 
H       -106.361864    2.176099    0.028219 
C       -105.706425    0.809701    1.524070 
O       -105.555878   -0.596215    1.739756 
C       -104.393306    1.549007    1.734733 
H         22.386198    3.296795   -1.216484 
H         24.348720    2.131347   -2.035854 
H         25.578735    0.035181   -2.450871 
H         24.569759   -2.136829   -1.790432 
H         22.408450   -2.210922   -0.667913 
H         18.864370    5.886888    2.067733 
H         18.404034    6.042633   -2.156662 
H         20.633191    2.627213    2.041047 
H         22.167031    4.568423    2.176760 
H         21.756702    3.947904    3.779122 
H         21.005014    5.428370    3.184203 
H         19.504610    2.839096    4.192759 
H         18.302356    2.744424    2.904072 
H         17.562469    7.753409   -0.941869 
H         15.845314    6.564120    0.408902 
H         15.960277    8.267266    0.865190 
H         16.675809    7.026486    1.892449 
H         18.977310    8.307843    1.710848 
H         18.182249    9.500733    0.686194 
H         19.626240    8.660049    0.110387 
H         20.009040    2.750344   -2.747860 
H         17.919893    4.692453   -3.835808 
H         17.579999    3.110888   -3.128772 
H         18.522669    3.233395   -4.611808 
H         18.663522    4.293622    3.670094 
H         20.361720    5.618553   -3.735130 
H         20.871467    4.156330   -4.581267 
H         21.642631    4.617322   -3.062072 
H         18.875043   -4.735353    1.802399 

H         20.796918   -5.040264    3.255884 
H         22.909502   -4.210360    4.218227 
H         23.778603   -1.982087    3.547061 
H         22.600038   -0.638134    1.890761 
H         15.685171   -4.787537   -2.611860 
H         13.980392   -4.073133    1.218460 
H         19.029497   -3.476955   -1.673898 
H         18.871594   -5.947797   -1.584514 
H         19.478471   -5.389340   -3.146996 
H         17.810438   -5.941060   -2.990973 
H         18.754552   -3.131444   -4.075742 
H         17.594072   -2.134071   -3.194123 
H         12.654377   -4.972448   -0.369058 
H         12.640272   -3.126982   -2.034270 
H         11.743263   -4.532371   -2.620734 
H         13.358403   -4.193380   -3.239948 
H         14.069011   -6.630869   -2.512763 
H         12.430537   -6.882132   -1.915417 
H         13.811675   -7.123519   -0.839991 
H         17.064690   -2.557512    2.625621 
H         14.017842   -2.481423    2.764731 
H         15.058989   -1.182783    2.155858 
H         15.151012   -1.681497    3.845708 
H         15.120315   -4.793270    3.364589 
H         16.156353   -3.906616    4.483910 
H         16.869647   -4.962482    3.261085 
H         17.062242   -3.610410   -4.002050 
H       -105.694464   -2.506742   -1.816555 
H       -107.049941   -1.360687   -1.800065 
H       -106.347565   -1.905227   -0.276790 
H         16.470886    1.579470   -1.412665 
H       -104.535428    2.627053    1.651943 
H       -103.998228    1.333838    2.727574 
H       -103.657437    1.253764    0.985245 
H       -106.431640    1.145265    2.271374 
H       -104.646298   -0.839934    1.541782 
C       -107.768354    0.587426    0.023212 
H       -108.399796    1.193766    0.674370 
H       -108.134696    0.708767   -0.995603 
H       -107.881834   -0.449604    0.325094 
 
Energy = -3043.606960 Hartree
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7.6.3.4. Theoretical investigation on the transition states  

The analysis aimed at characterizing the transition state for the desymmetrization of meso-

epoxide 50h in the ring opening with benzoic acid catalyzed by (S)-TRIP or by (S)-139. 

Optimized transition state structures, total electronic energies (E), thermal corrections (Tc) 

at 300 K, Gibbs free energies (G), and the number of imaginary frequencies (Nimag) are 

reported for the following cases: 

- (S)-TRIP:  (1): Reaction towards products (S,S)-52h (exp. favored)  

(2): Reaction towards products (R,R)-52h (exp. disfavored) 

- (S)-139:  (3): Reaction towards products (S,S)- 52h (exp. favored)  

(4): Reaction towards products (R,R)- 52h (exp. disfavored) 

 

We considered the effects arising from the use of different DFT functionals, empirical 

dispersion corrections, and solvent treatments. The TS structures obtained at different levels 

of theory are similar. Averaging over all the bond lengths leads to RMS deviations of less 

than 0.001Å compared to the B3LYP/6-31G* structures. The available experimental data 

indicate that the energy difference between the two diastereotopic transition states is 

higher for catalyst (S)-139 than for TRIP. This result is in close agreement with the theoretical 

results obtained in vacuum at the B3LYP/6-31G* level. This may be due to the fact that the 

catalyst pocket is sterically congested, which could make it difficult for solvent molecules to 

access the pocket. 
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Optimized transition state structures (B3LYP/6-31G*): 

(S)-TRIP 
 
(1) - (S,S)-52h (exp. favored) 

 
 
 C    -3.435531    -1.974840     1.917636 
 C    -2.981046    -2.176791     0.592671 
 C    -3.754150    -1.706269    -0.496742 
 C    -4.964581    -1.055510    -0.239998 
 C    -5.440535    -0.852860     1.058251 
 C    -4.657720    -1.318085     2.115351 
 C    -1.714510    -2.941115     0.332299 
 C    -0.525147    -2.296256    -0.117323 
 C     0.639283    -2.977329    -0.444290 
 C     0.701459    -4.387913    -0.163484 
 C    -0.482056    -5.056941     0.287311 
 C    -1.671232    -4.310710     0.487547 
 C    -0.440728    -6.453704     0.545605 
 C     0.727098    -7.166137     0.402539 
 C     1.908558    -6.500944    -0.000432 
 C     1.896080    -5.151674    -0.277995 
 O    -0.576971    -0.923191    -0.313854 
 P     0.264400     0.062666     0.697553 
 O     1.730580    -0.663633     0.738222 
 C     2.321884    -1.127797    -0.426764 
 C     1.793921    -2.249615    -1.050729 
 C     2.381466    -2.671572    -2.295303 
 C     3.576293    -2.025761    -2.751101 
 C     4.125382    -0.960153    -1.993592 
 C     3.509496    -0.469240    -0.861485 
 C     1.813322    -3.680883    -3.121330 
 C     2.411010    -4.052766    -4.305541 
 C     3.614289    -3.442323    -4.730169 
 C     4.179262    -2.447271    -3.966922 
 C     4.079023     0.701565    -0.114842 
 C     4.680993     0.510783     1.153416 

 C     5.231496     1.611730     1.815801 
 C     5.216868     2.896591     1.266568 
 C     4.627752     3.057771     0.013116 
 C     4.050253     1.993706    -0.691275 
 C     4.789278    -0.863637     1.813842 
 C     4.094200    -0.905913     3.187820 
 C     5.787927     4.094087     2.015044 
 C     7.257507     3.892717     2.426056 
 C     3.417635     2.283361    -2.053430 
 C     4.490164     2.608120    -3.112150 
 C    -3.340004    -1.933160    -1.950436 
 C    -3.272091    -0.621969    -2.755052 
 C    -6.775799    -0.167760     1.320302 
 C    -7.955922    -0.987416     0.763990 
 C    -2.663035    -2.474636     3.139722 
 C    -3.311691    -3.748404     3.720357 
 O     0.318580     1.400518    -0.016501 
 O    -0.254660     0.014929     2.110993 
 C     6.259523    -1.316409     1.919468 
 C     2.365757     3.406356    -1.983875 
 C     4.915592     4.451587     3.234820 
 C    -4.267945    -2.957477    -2.633834 
 C    -6.805992     1.274248     0.780264 
 C    -2.518591    -1.408543     4.240878 
 O    -1.382021     2.575433    -1.514220 
 C    -1.936751     3.681902    -1.090541 
 O    -1.811404     4.166568     0.051336 
 C    -0.986255     3.392677     1.869530 
 C    -2.098340     2.538364     2.326418 
 C    -3.350691     3.133548     2.925959 
 C    -2.776562     4.374206    -2.107495 
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 C    -2.903726     3.863375    -3.407589 
 C    -3.694937     4.530402    -4.340521 
 C    -4.360021     5.705948    -3.983497 
 C    -4.234386     6.217388    -2.689006 
 C    -3.445166     5.554318    -1.753176 
 C    -0.634708     4.697029     2.499866 
 O    -1.149612     2.097771     3.326436 
 H     5.047193    -0.498103    -2.337139 
 H     5.092313    -1.952628    -4.290027 
 H     4.079932    -3.750735    -5.662229 
 H     1.950072    -4.820111    -4.921759 
 H     0.887017    -4.153625    -2.816597 
 H     5.688927     1.457599     2.790043 
 H     4.611259     4.051760    -0.428696 
 H     4.280816    -1.591561     1.175840 
 H     6.741648    -1.332909     0.935418 
 H     6.319957    -2.325272     2.345538 
 H     6.841647    -0.647062     2.564107 
 H     4.142370    -1.918996     3.605658 
 H     3.041434    -0.622252     3.101720 
 H     5.755135     4.949654     1.326187 
 H     3.876266     4.624062     2.933087 
 H     5.286616     5.357092     3.730419 
 H     4.916685     3.639485     3.971551 
 H     7.365841     3.067333     3.139291 
 H     7.651365     4.797038     2.905538 
 H     7.884362     3.666566     1.556554 
 H     2.893046     1.381902    -2.381045 
 H     2.812302     4.371586    -1.716273 
 H     1.596304     3.161777    -1.247717 
 H     1.881418     3.528698    -2.960471 
 H     4.575414    -0.230918     3.905945 
 H     5.049617     3.513236    -2.845951 
 H     4.026129     2.777305    -4.091587 
 H     5.214434     1.792503    -3.216951 
 H    -0.704110     1.263676     2.935561 
 H    -2.569827    -4.838204     0.795870 
 H    -1.352364    -6.946360     0.875639 
 H     0.748714    -8.232307     0.611043 
 H     2.837395    -7.058354    -0.086958 
 H     2.812707    -4.656960    -0.576717 
 H    -5.558874    -0.709317    -1.082164 

 H    -5.017404    -1.171867     3.131217 
 H    -2.334498    -2.361856    -1.956755 
 H    -4.272179    -3.910169    -2.092373 
 H    -3.937870    -3.151693    -3.661737 
 H    -5.301694    -2.593799    -2.676583 
 H    -2.902839    -0.820834    -3.768600 
 H    -2.596765     0.096917    -2.281155 
 H    -6.901247    -0.112693     2.410600 
 H    -5.994393     1.874036     1.207496 
 H    -7.756711     1.761773     1.028062 
 H    -6.696278     1.295032    -0.310454 
 H    -7.903037    -1.069162    -0.328145 
 H    -8.912015    -0.513174     1.017136 
 H    -7.958907    -2.003129     1.174080 
 H    -1.651039    -2.731312     2.814638 
 H    -3.483372    -1.148084     4.692986 
 H    -2.058810    -0.498636     3.849925 
 H    -1.877827    -1.790961     5.044226 
 H    -4.331249    -3.544888     4.070537 
 H    -2.731251    -4.119991     4.573540 
 H    -3.371170    -4.550728     2.977483 
 H    -4.258286    -0.151581    -2.851603 
 H    -0.748280     2.102901    -0.854874 
 H    -2.329158     1.733009     1.626039 
 H    -0.240381     2.876372     1.274417 
 H    -3.952185     3.597003     2.136998 
 H    -3.939382     2.338765     3.393746 
 H    -3.124968     3.884828     3.687239 
 H     0.446286     4.778158     2.642483 
 H    -0.949430     5.496415     1.820931 
 H    -1.137164     4.838574     3.458431 
 H    -2.383463     2.950460    -3.674174 
 H    -3.792640     4.133291    -5.346914 
 H    -4.976096     6.223787    -4.713815 
 H    -4.751291     7.131669    -2.411315 
 H    -3.335631     5.936851    -0.744211 
 
Energy = -3235.33620956 Hartree 
Tc = 1.075241 
G = -3234.260969 Hartree 
Nimag = 1 (279i) 
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(2) - (R,R)-52h (exp. disfavored) 

 
 
 C    -2.534303    -4.251660     3.415888 
 C    -2.691346    -4.531227     2.050537 
 C    -3.495439    -5.606086     1.646759 
 C    -4.138895    -6.392756     2.598403 
 C    -3.982024    -6.110976     3.958202 
 C    -3.180169    -5.041587     4.364719 
 C    -2.012281    -3.704576     1.013305 
 O    -1.337640    -2.689857     1.494355 
 O    -2.115127    -4.001245    -0.191225 
 C    -1.896662    -2.841495    -2.010515 
 C    -0.541561    -3.208720    -2.442491 
 C    -0.272295    -4.542165    -3.094041 
 O    -0.802123    -2.159001    -3.419510 
 C    -3.156783    -3.366990    -2.609707 
 O    -0.279772    -0.013821    -2.109775 
 P     0.226239    -0.058641    -0.689001 
 O     1.678298     0.698734    -0.713157 
 C     2.247055     1.169917     0.460359 
 C     3.447248     0.539908     0.902498 
 C     4.033036     1.031313     2.050238 
 C     3.446881     2.074453     2.811239 
 C     2.246181     2.699205     2.341954 
 C     1.685929     2.274634     1.085897 
 C     4.021231     2.497307     4.040318 
 C     3.423991     3.474312     4.802361 
 C     2.216023     4.064649     4.362864 
 C     1.645026     3.690683     3.166218 
 C     4.072407    -0.591821     0.139777 
 C     4.710421    -0.341545    -1.100188 
 C     5.328812    -1.400550    -1.770738 
 C     5.347784    -2.699884    -1.256561 
 C     4.715362    -2.920998    -0.033631 
 C     4.069531    -1.900676     0.676596 
 C     4.785180     1.054155    -1.719609 
 C     6.239777     1.562183    -1.777534 

 C     3.396078    -2.250852     2.004267 
 C     2.398677    -3.416355     1.866062 
 C     6.024493    -3.843406    -2.001662 
 C     5.312459    -4.155261    -3.331876 
 C     0.525091     2.983426     0.469088 
 C    -0.622812     2.282770     0.126734 
 C    -1.821062     2.908532    -0.325641 
 C    -1.800149     4.278994    -0.478595 
 C    -0.625736     5.045269    -0.266914 
 C     0.564571     4.396040     0.195037 
 C     1.743791     5.180641     0.326382 
 C     1.735424     6.530741     0.052723 
 C     0.547175     7.175819    -0.362852 
 C    -0.606110     6.443198    -0.521341 
 O    -0.649757     0.908069     0.311589 
 O     0.290006    -1.399146     0.010910 
 C     4.438925    -2.554107     3.098431 
 C     7.525250    -3.582581    -2.228276 
 C     4.121170     1.108776    -3.108443 
 C    -3.840503     1.638154     0.500335 
 C    -3.420350     1.847781     1.954931 
 C    -4.358204     2.847273     2.661249 
 C    -5.048266     0.982982     0.242083 
 C    -5.531705     0.795442    -1.055786 
 C    -6.864067     0.105296    -1.319305 
 C    -6.868971    -1.353247    -0.824733 
 C    -4.755786     1.274487    -2.111257 
 C    -3.534671     1.932458    -1.912233 
 C    -2.761983     2.429927    -3.134782 
 C    -2.586217     1.342053    -4.210279 
 C    -3.328700     0.524406     2.737061 
 C    -8.045454     0.892163    -0.720500 
 C    -3.428374     3.680047    -3.744478 
 H     4.962893     0.590621     2.400135 
 H     4.939025     2.018734     4.374008 
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 H     3.868190     3.783967     5.744425 
 H     1.730212     4.817868     4.977396 
 H     0.714643     4.147709     2.850071 
 H     5.818929    -1.199939    -2.720495 
 H     4.721759    -3.927035     0.380119 
 H     4.235359     1.745274    -1.074989 
 H     6.698063     1.569316    -0.782073 
 H     6.273368     2.583724    -2.175372 
 H     6.860625     0.931698    -2.425127 
 H     4.147406     2.132524    -3.501484 
 H     3.075920     0.791160    -3.053754 
 H     5.939142    -4.736283    -1.366799 
 H     4.253272    -4.383232    -3.168082 
 H     5.775211    -5.016918    -3.828604 
 H     5.366551    -3.303735    -4.020570 
 H     7.685721    -2.711912    -2.875066 
 H     8.000034    -4.445853    -2.710233 
 H     8.041478    -3.393322    -1.280797 
 H     2.818893    -1.380803     2.329276 
 H     2.897360    -4.354322     1.593500 
 H     1.646343    -3.186506     1.107823 
 H     1.883438    -3.584164     2.819761 
 H     4.639247     0.465430    -3.829952 
 H     5.047581    -3.427631     2.834719 
 H     3.944546    -2.766703     4.054287 
 H     5.121674    -1.710702     3.251025 
 H    -0.507737    -1.272813    -2.991982 
 H    -1.522587     6.920657    -0.860205 
 H     0.552240     8.242780    -0.568343 
 H     2.652955     7.104491     0.152127 
 H     2.665384     4.701190     0.634668 
 H    -5.635354     0.622713     1.083466 
 H    -5.118216     1.135553    -3.127246 
 H    -2.421160     2.290703     1.962490 
 H    -4.380198     3.808412     2.135340 
 H    -4.023235     3.029640     3.689707 
 H    -5.386264     2.468043     2.705947 
 H    -2.960575     0.711796     3.753073 

 H    -2.642099    -0.175868     2.251489 
 H    -7.005123     0.082566    -2.408818 
 H    -6.058806    -1.928989    -1.287223 
 H    -7.818156    -1.844856    -1.070292 
 H    -6.737085    -1.407460     0.262349 
 H    -7.979549     0.938350     0.372956 
 H    -8.999419     0.415514    -0.977002 
 H    -8.065094     1.920701    -1.096658 
 H    -1.758154     2.711890    -2.805535 
 H    -3.542090     1.050952    -4.662726 
 H    -2.111650     0.453383    -3.788778 
 H    -1.945646     1.717113    -5.017262 
 H    -4.441401     3.453082    -4.099215 
 H    -2.847404     4.046358    -4.599566 
 H    -3.507658     4.494402    -3.016379 
 H    -4.306714     0.036166     2.827859 
 H    -0.764155    -2.168574     0.819693 
 H    -1.957115    -1.936084    -1.421679 
 H     0.226762    -2.912329    -1.728959 
 H    -3.064999    -4.408992    -2.922413 
 H    -3.964040    -3.279528    -1.879448 
 H    -3.419905    -2.754629    -3.478416 
 H    -0.300868    -5.332174    -2.336347 
 H    -1.003181    -4.769204    -3.875131 
 H     0.722689    -4.532174    -3.549028 
 H    -1.908740    -3.419992     3.719443 
 H    -3.057599    -4.823716     5.421911 
 H    -4.484057    -6.725398     4.700891 
 H    -4.761801    -7.224886     2.282402 
 H    -3.603303    -5.810605     0.587042 
 H    -2.705796     4.791416    -0.792061 
 C    -3.076540     2.126992    -0.587843 
 
Energy = -3235.33440882 Hartree 
Tc = 1.074619 
G =  -3234.259790 Hartree 
Nimag = 1 (311i) 
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(S)-139 
 
(3) - (S,S)-52h (exp. favored) 

 
 
 C     2.206990     6.578202     0.821116 
 C     1.827550     5.347142     1.373927 
 C     2.048820     5.095817     2.735848 
 C     2.646975     6.069883     3.532824 
 C     3.024511     7.295179     2.978046 
 C     2.803548     7.548727     1.621578 
 C     1.193173     4.324642     0.494611 
 O     0.988626     4.569186    -0.707528 
 O     0.897208     3.202612     1.106026 
 C     0.498482     3.257210    -2.378639 
 C    -0.125065     4.321076    -3.213647 
 C     1.820149     2.661678    -2.627081 
 O     1.049836     1.832288    -3.534395 
 C     2.911143     3.437318    -3.324188 
 O    -0.433073     1.405010    -0.148585 
 P    -0.090387     0.009597    -0.635305 
 O     0.582045    -0.138218    -1.979374 
 O     0.779106    -0.675278     0.577822 
 C     0.947598    -2.058515     0.581534 
 C     2.209891    -2.585296     0.273945 
 C     2.324577    -3.977123     0.278170 
 C     1.236847    -4.824777     0.509421 
 C    -0.021246    -4.272838     0.811746 
 C    -0.150603    -2.865241     0.918204 
 C     1.461261    -6.328483     0.448099 
 C     0.179754    -7.125978     0.187486 
 C    -0.927772    -6.651876     1.131239 
 C    -1.248659    -5.172066     0.890049 
 C     3.387902    -1.724535    -0.054862 
 C     3.969131    -1.760331    -1.338180 
 C     5.108285    -0.985734    -1.628763 
 C     5.677049    -0.165736    -0.656023 
 C     5.112983    -0.126550     0.618324 

 C     3.978039    -0.899464     0.922249 
 C    -1.430784    -2.213387     1.347411 
 C    -2.055927    -1.287050     0.493252 
 C    -3.307275    -0.716725     0.764266 
 C    -3.907112    -1.060666     1.982698 
 C    -3.270229    -1.883122     2.910357 
 C    -2.027021    -2.463859     2.602080 
 C    -3.880467    -2.205868     4.255125 
 C    -3.783108    -3.717745     4.532735 
 C    -2.322469    -4.230047     4.448509 
 C    -1.367120    -3.248594     3.718167 
 O    -1.412732    -0.952982    -0.695692 
 C    -3.989405     0.215813    -0.184790 
 C    -4.389716    -0.212722    -1.466454 
 C    -5.070201     0.660060    -2.334475 
 C    -5.361704     1.965752    -1.943863 
 C    -4.972239     2.401453    -0.679241 
 C    -4.290666     1.538459     0.198945 
 H    -4.887513    -0.651342     2.214883 
 H     0.792559     0.993431    -2.993455 
 H     3.296288    -4.415346     0.060705 
 H     0.410374     2.497156     0.541386 
 H     2.197729     2.076879    -1.786278 
 H    -0.138491     2.690475    -1.706965 
 H     3.313656     4.197319    -2.646417 
 H     3.720446     2.757669    -3.607601 
 H     2.544265     3.926141    -4.230630 
 H    -0.786529     3.853106    -3.950305 
 H    -0.741409     4.949738    -2.566124 
 H     0.605334     4.944481    -3.732634 
 H     1.751580     4.141647     3.155673 
 H     2.818686     5.873402     4.587376 
 H     3.490538     8.052784     3.602551 
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 H     3.096250     8.501987     1.190374 
 H     2.026285     6.756519    -0.233451 
 C     3.559122    -0.767362     2.372315 
 C     5.637150     0.670236     1.790634 
 C     3.261022     0.724557     2.673931 
 C     4.501878     1.590304     2.309106 
 C     6.002040    -0.327154     2.922737 
 C     4.758980    -1.202648     3.257683 
 C     5.610307    -1.149667    -3.044785 
 C     3.508063    -2.577249    -2.529662 
 C     4.467542    -0.750069    -4.013571 
 C     3.211057    -1.615730    -3.711146 
 C     5.935212    -2.649213    -3.276839 
 C     4.676117    -3.507182    -2.955188 
 H     6.561302     0.428254    -0.884817 
 H     4.803641    -0.885865    -5.049392 
 H     4.240947     0.315601    -3.890099 
 H     2.350829    -0.993145    -3.456643 
 H     2.931772    -2.212634    -4.588591 
 H     6.780304    -2.943366    -2.644597 
 H     6.251244    -2.792976    -4.317843 
 H     4.891434    -4.225499    -2.155747 
 H     4.368373    -4.090778    -3.831925 
 H     6.500164    -0.534030    -3.222525 
 H     2.617462    -3.165186    -2.297973 
 H     2.380003     1.043533     2.111278 
 H     3.015556     0.827324     3.738871 
 H     4.861772     2.151431     3.180993 
 H     4.246461     2.328947     1.541083 
 H     4.973597    -2.263838     3.090069 
 H     4.481012    -1.096461     4.313894 
 H     6.844436    -0.951288     2.604850 
 H     6.335910     0.233793     3.804999 
 H     2.683632    -1.380172     2.599821 
 H     6.514288     1.263419     1.505825 
 C    -4.208536    -1.592979    -2.065056 
 C    -5.440252     0.035919    -3.660037 
 C    -3.410171    -1.458139    -3.389177 
 C    -4.140894    -0.466976    -4.341031 
 C    -6.346009    -1.192611    -3.382759 
 C    -5.614582    -2.158442    -2.405452 
 C    -3.937336     2.214907     1.509516 
 C    -5.204110     3.784833    -0.117137 
 C    -3.064306     3.460314     1.199689 
 C    -3.823863     4.404811     0.224064 

 C    -6.011008     3.649401     1.200604 
 C    -5.249829     2.705116     2.177066 
 H    -5.890916     2.637282    -2.619083 
 H    -7.010090     3.258291     0.978934 
 H    -6.149209     4.643320     1.644818 
 H    -5.743834     4.416614    -0.832532 
 H    -5.872850     1.845444     2.449551 
 H    -5.003278     3.226312     3.110716 
 H    -3.252400     4.552595    -0.699833 
 H    -3.971279     5.397176     0.669261 
 H    -2.835954     3.976434     2.140886 
 H    -2.114619     3.127850     0.773751 
 H    -3.396867     1.544493     2.180975 
 H    -7.300534    -0.858817    -2.960929 
 H    -6.574842    -1.693952    -4.331700 
 H    -6.191274    -2.288793    -1.482929 
 H    -5.501313    -3.153774    -2.853227 
 H    -3.690363    -2.269098    -1.381583 
 H    -5.958700     0.755795    -4.304479 
 H    -4.394586    -0.949397    -5.293618 
 H    -3.498838     0.388428    -4.579095 
 H    -2.394692    -1.119798    -3.167168 
 H    -3.324327    -2.449020    -3.852901 
 H     1.894894    -6.661045     1.404204 
 H     2.215474    -6.553899    -0.315989 
 H    -0.143260    -6.982126    -0.853215 
 H     0.373443    -8.198042     0.315216 
 H    -1.838327    -7.248648     0.996860 
 H    -0.604684    -6.799652     2.172305 
 H    -1.783423    -5.078730    -0.068306 
 H    -1.951916    -4.814306     1.643590 
 H    -4.924591    -1.874183     4.290394 
 H    -3.353011    -1.656973     5.051233 
 H    -4.214568    -3.950930     5.513246 
 H    -4.400194    -4.235801     3.788657 
 H    -1.923018    -4.405852     5.454344 
 H    -2.307696    -5.202451     3.943066 
 H    -0.475986    -3.774769     3.369616 
 H    -1.009646    -2.512356     4.454175 
 
Energy = -3466.38995502 Hartree 
Tc = 1.185107 
G = -3465.204848  Hartree 
Nimag = 1 (295i) 
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(4) - (R,R)-52h (exp. disfavored)  

 
 
C     2.002237     6.513703     0.861648 
 C     1.228454     5.426437     1.290812 
 C     0.613709     5.461875     2.550889 
 C     0.777364     6.575457     3.372099 
 C     1.550592     7.656465     2.941483 
 C     2.162077     7.624899     1.685272 
 C     1.072755     4.245628     0.394824 
 O     1.603526     4.246171    -0.733610 
 O     0.366485     3.272059     0.907421 
 C     2.126243     2.641268    -2.049054 
 C     1.021590     2.685734    -3.021024 
 C     0.950288     3.770604    -4.068333 
 C     3.519761     3.093137    -2.315090 
 O     1.640310     1.471560    -3.521237 
 O    -0.449896     1.373278    -0.551799 
 P    -0.081232    -0.074544    -0.809392 
 O     0.581417    -0.414111    -2.121000 
 O    -1.359081    -1.087627    -0.680114 
 C    -1.978081    -1.234686     0.558848 
 C    -1.302373    -1.956517     1.561302 
 C    -1.873954    -1.991998     2.851049 
 C    -3.140799    -1.419220     3.066175 
 C    -3.828297    -0.826597     2.009095 
 C    -3.258707    -0.694652     0.735899 
 C    -1.153262    -2.495725     4.085927 
 C    -2.039804    -3.330237     5.050547 
 C    -3.530542    -2.913205     5.032877 
 C    -3.722203    -1.497701     4.459243 
 C    -0.002786    -2.627423     1.232893 
 C     1.056809    -1.856411     0.734558 
 C     2.333949    -2.386029     0.499456 
 C     2.497425    -3.752766     0.729339 
 C     1.441805    -4.584692     1.118976 
 C     0.173907    -4.027975     1.364350 
 C     1.706636    -6.080538     1.216708 

 C     0.577492    -6.867739     1.888994 
 C    -0.773506    -6.397250     1.345996 
 C    -1.004626    -4.926389     1.713922 
 C     3.469813    -1.538759     0.022097 
 C     4.021570    -0.542210     0.851595 
 C     5.098786     0.245524     0.408690 
 C     5.639092     0.054740    -0.863766 
 C     5.111388    -0.938401    -1.688154 
 C     4.037401    -1.738295    -1.251739 
 O     0.834423    -0.503812     0.492838 
 C    -4.013465    -0.020319    -0.365282 
 C    -4.424801    -0.736756    -1.507037 
 C    -5.193745    -0.112597    -2.506010 
 C    -5.566637     1.224637    -2.383439 
 C    -5.162356     1.944835    -1.261760 
 C    -4.386952     1.334162    -0.258637 
 H    -4.828231    -0.432402     2.175108 
 H     1.207883     0.682633    -3.026580 
 H     0.132820     2.485754     0.277251 
 H     1.980523     1.952304    -1.227697 
 H     0.056706     2.479714    -2.557050 
 H     3.599948     3.732449    -3.195439 
 H     3.877056     3.641714    -1.439587 
 H     4.162239     2.214552    -2.433675 
 H     0.666994     4.718269    -3.598761 
 H     1.902532     3.900797    -4.589735 
 H     0.190503     3.507891    -4.810647 
 H     0.016001     4.617043     2.873623 
 H     0.301271     6.600823     4.348251 
 H     1.676192     8.523817     3.584170 
 H     2.762437     8.465961     1.349905 
 H     2.467992     6.472375    -0.117032 
 H     3.480486    -4.190362     0.568259 
 C     3.628119    -0.233873     2.282476 
 C     5.595995     1.230343     1.442250 
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 C     3.244557     1.264367     2.391683 
 C     4.416727     2.143536     1.866120 
 C     4.875233    -0.471897     3.177885 
 C     6.049466     0.427540     2.691191 
 C     3.636328    -2.777376    -2.280872 
 C     5.602092    -1.284891    -3.074685 
 C     4.414700    -1.142832    -4.063180 
 C     3.247566    -2.061608    -3.600795 
 C     6.051870    -2.770324    -3.070407 
 C     4.878267    -3.663863    -2.570877 
 H     6.482043     0.657937    -1.200278 
 H     6.358893     1.127911     3.477236 
 H     6.927278    -0.177792     2.440172 
 H     6.426732     1.829932     1.051455 
 H     4.616913    -0.244565     4.219768 
 H     5.155552    -1.530325     3.143090 
 H     4.096552     2.751399     1.011294 
 H     4.759809     2.844261     2.637630 
 H     2.324635     1.449241     1.830987 
 H     3.026910     1.498791     3.441255 
 H     2.798899    -0.860240     2.619596 
 H     4.752241    -1.411460    -5.072318 
 H     4.087907    -0.097782    -4.104238 
 H     3.029646    -2.823336    -4.360136 
 H     2.328680    -1.493701    -3.441783 
 H     6.931826    -2.886491    -2.428095 
 H     6.357448    -3.056504    -4.084661 
 H     5.166441    -4.211493    -1.666062 
 H     4.611990    -4.414205    -3.325548 
 H     6.433782    -0.635389    -3.373528 
 H     2.802904    -3.391319    -1.932856 
 C    -4.158847    -2.196610    -1.813494 
 C    -5.555321    -1.024657    -3.655362 
 C    -3.408674    -2.284440    -3.169481 
 C    -4.241246    -1.569657    -4.273691 
 C    -6.357684    -2.225443    -3.089393 
 C    -5.525336    -2.916663    -1.970677 
 C    -5.475595     3.397990    -0.990218 
 C    -4.012964     2.301383     0.847427 
 C    -4.136419     4.170684    -0.871146 
 C    -3.245414     3.489228     0.207138 
 C    -6.207782     3.490029     0.374283 
 C    -5.315231     2.857067     1.482182 

 H    -6.167231     1.701769    -3.157001 
 H    -6.096876     3.824227    -1.786767 
 H    -7.171307     2.972788     0.307143 
 H    -6.425451     4.541652     0.600430 
 H    -5.851620     2.053971     2.000634 
 H    -5.050833     3.603076     2.242372 
 H    -3.631702     4.181472    -1.843679 
 H    -4.345523     5.215801    -0.608486 
 H    -2.317489     3.111615    -0.228632 
 H    -2.970442     4.203162     0.994011 
 H    -3.389161     1.826611     1.608093 
 H    -6.144526    -0.492423    -4.411563 
 H    -3.572192    -2.678658    -1.028252 
 H    -4.485094    -2.259140    -5.092043 
 H    -3.673786    -0.741976    -4.713257 
 H    -2.418148    -1.833432    -3.065429 
 H    -3.255812    -3.341477    -3.422053 
 H    -7.319618    -1.874254    -2.699728 
 H    -6.580067    -2.927445    -3.903067 
 H    -5.346906    -3.971860    -2.213226 
 H    -6.063436    -2.896083    -1.016384 
 H    -3.225370    -0.768533     5.119008 
 H    -4.784367    -1.227249     4.444465 
 H    -4.101330    -3.609078     4.406110 
 H    -3.957218    -2.976855     6.040846 
 H    -1.961091    -4.394765     4.802400 
 H    -1.629345    -3.224972     6.061867 
 H    -0.245792    -3.045393     3.827378 
 H    -0.811570    -1.603381     4.632402 
 H    -1.907927    -4.548222     1.222215 
 H    -1.210061    -4.873652     2.790891 
 H    -0.791023    -6.518306     0.253706 
 H    -1.592906    -7.006906     1.745805 
 H     0.604689    -6.710294     2.976765 
 H     0.720859    -7.942050     1.721535 
 H     2.656525    -6.247530     1.741440 
 H     1.855787    -6.474700     0.200037 
 
Energy = -3466.38847500 Hartree 
Tc = 1.186656 
G = -3465.201819  Hartree 
Nimag = 1 (309i) 
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