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Abstract 

 

Plants have evolved intracellular NLR receptors to recognize pathogen effectors and trigger 

a robust immune response (ETI). The Arabidopsis NLR gene pair RPS4 (Resistance to 

Pseudomonas syringae 4) and RRS1 (Resistance to Ralstonia solanacearum 1) cooperates 

genetically and physically to recognize, amongst others, the Pseudomonas syringae 

effector AvrRps4. A second RPS4/RRS1-like gene pair (RPS4b/RRS1b) contributes to 

AvrRps4 recognition.  

 Transient or stable overexpression of RPS4, but not RRS1 induces immunity, and 

RPS4, but not RRS1 depends on a canonical ATP-binding pocket for its function. Also, 

RRS1 interacts with both RPS4 and pathogen effectors, suggesting a model where RRS1 

as a sensor recognizes effectors and conveys the information to the executor RPS4, 

releasing it from RRS1 negative regulation to trigger immunity. However, RRS1 

contributes to effector-independent autoimmunity in RPS4 overexpressing Arabidopsis, 

indicating an additional positive regulatory function apart from the suggested effector 

sensing.  

 The work presented here re-evaluates the role of RRS1 in RPS4 induced signaling. 

In the absence of both RRS1a and RRS1b, RPS4 autoimmunity such as plant stunting and 

transcriptional reprogramming is decreased. Also, RPS4 protein accumulation is 

substantially reduced without RRS1, suggesting RRS1 positively contributes to RPS4 

induced signaling by stabilizing RPS4 to allow sufficient immune complex formation.  

 To gain insight into these RPS4-associated immune complexes and to connect RPS4 

activation with defense outputs like cell death and transcriptional reprogramming, RPS4 

co-purified proteins in pre- and post-activation complexes were analyzed by mass-

spectrometry. Identified candidates are involved in processes such as protein synthesis and 

stability control, redox regulation and secretion. Their potential roles in immunity are 

discussed in this study.  

 For several NLR receptors, nuclear localization is necessary for defense activation, 

and recently direct interactions between NLRs and transcription factors were reported, 

pointing at a close connection of these NLRs, including RPS4, to the chromatin. RRS1 

contains a C-terminal WRKY transcription factor domain, and disruption of its DNA 

binding causes autoimmunity in the Arabidopsis slh1 mutant. To unravel the importance 

and dynamics of RRS1 DNA-association in plant immunity, transgenic RRS1 lines were 
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characterized and used for chromatin-immunoprecipitation (ChIP). To allow conclusive 

evaluation of ChIP results, targeted mutations were inserted into RRS1 to generate loss- or 

gain-of-function alleles as ChIP controls.  

 Summarizing published information and data obtained from this work, a new model 

of RPS4 and RRS1 interaction is discussed where distinct immune complexes are formed 

in different cellular compartments to mediate cell death in the cytoplasm and transcriptional 

reprogramming in the nucleus. 
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Zusammenfassung 

 

Pflanzen besitzen intrazelluläre Rezeptoren, die von Pathogenen injizierte Effektoren 

wahrnehmen und eine starke Immunreaktion auslösen. Ein gekoppeltes Rezeptorenpaar in 

Arabidopsis, RPS4 (Resistance to Pseudomonas syringae 4) und RRS1 (Resistance to 

Ralstonia solanacearum 1), kooperiert genetisch und physisch bei der Abwehr eines 

bakteriellen Pathogens, Pseudomonas syringae, das den Effektor AvrRps4 produziert. Ein 

zweites, ähnliches Rezeptorenpaar (RPS4b und RRS1b) trägt ebenfalls zur Erkennung von 

AvrRps4 bei. 

Überexpression von RPS4, aber nicht RRS1 induziert pflanzliche Immunreaktionen. 

Für die Funktion von RPS4, aber nicht RRS1 ist eine intakte ATP-Bindetasche nötig. RRS1 

interagiert sowohl mit RPS4, als auch mit Effektoren von Pathogenen. Aus diesen Daten 

wurde ein Modell entwickelt, bei dem RRS1 als Sensor Effektoren wahrnimmt und diese 

Information an den Exekutor RPS4 weiterleitet. Dadurch löst sich RPS4 aus der Inhibition 

durch RRS1 und stimuliert die pflanzliche Abwehr. Darüber hinaus trägt RRS1 auch zur 

Effektor-unabhängigen Induktion des pflanzlichen Immunsystems durch Überexpression 

von RPS4 bei. Dies deutet, neben der Funktion als Sensor für Effektoren, auf eine 

zusätzliche positive Rolle von RRS1 hin. 

In der vorliegenden Arbeit wurde der Beitrag von RRS1 zu RPS4-induzierten 

Immunreaktionen genauer untersucht. Das Fehlen von sowohl RRS1a, als auch RRS1b 

verringert die Stärke RPS4-induzierter Autoimmunreaktionen, wie Zwergwuchs und die 

Expression von Abwehrgenen. Zudem ist ohne RRS1 der Gehalt an RPS4 Protein deutlich 

reduziert. RRS1 könnte demnach für die Stabilisierung von RPS4 in Immunkomplexen 

nötig sein.  

Um diese Immunkomplexe genauer zu erforschen und die Verbindung zwischen 

der Aktivierung von RPS4  und der Induktion von Abwehrreaktionen wie Zelltod und 

veränderter Genexpression herzustellen, wurden RPS4-enthaltende Immunkomplexe vor 

und nach Aktivierung des Immunsystems aufgereinigt und analysiert. Die dabei 

detektierten Komponenten, unter anderem aus Proteinsynthese und –stabilitätskontrolle, 

Redoxregulation und Sekretion, werden in dieser Arbeit vorgestellt und ihre mögliche 

Funktion im pflanzlichen Immunsystem diskutiert. 

Einige intrazelluläre Rezeptoren lösen nur eine effektive Immunreaktion aus, wenn 

sich zumindest ein Teil ihres zellulären Proteinvorrats im Zellkern befindet. Zudem wurden 
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für mache Rezeptoren Interaktionen mit Transkriptionsfaktoren gezeigt, was auf eine enge 

Verbindung dieser Rezeptoren, darunter auch RPS4, mit Chromatin hindeutet. RRS1 

beinhaltet eine DNA-bindende WRKY-Domäne, die typischerweise in WRKY 

Transkriptionsfaktoren vorkommt, und gestörte DNA-Bindung ruft Autoimmunreaktionen 

in der Arabidopsis RRS1-Mutante slh1 hervor. Um die Relevanz und die Dynamik von 

RRS1-DNA-Assoziationen in pflanzlichen Abwehrreaktionen besser zu verstehen, wurden 

RRS1-produzierende transgene Linien charakterisiert und für Chromatin-

Immunoprezipitation genutzt. Als Kontrollen für die Spezifität möglicher identifizierter 

RRS1 Chromatin-Bindestellen wurde RRS1 gezielt mutiert, um Allele mit erhöhter oder 

verringerter Aktivität herzustellen.  

Zusammenfassend werden publizierte und in dieser Arbeit generierte Daten in ein 

neues Modell für die Zusammenarbeit von RPS4 und RRS1 integriert, in dem je nach 

zellulärer Lokalisation verschiedene Immunkomplexe gebildet werden, welche wiederum 

Zellkompartment-spezifische Immunantworten vermitteln.
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1. Introduction 

 

Plants are continuously exposed to a wide range of microbial pathogens such as viruses, 

bacteria, fungi and oomycetes that can damage plant health and impair quality and amount 

of yield (Dangl and Jones, 2001; Jones and Dangl, 2006). Even though pathogens attack 

with a variety of different strategies, sickness is the exception rather than the rule as plants 

successfully fend off most pathogens by their sophisticated multi-layered innate immunity. 

In contrast to the mammalian immune system, plant immunity lacks an adaptive branch  

but relies on two major layers of innate immunity: Pattern-triggered immunity (PTI) is 

effective against non-adapted pathogens and is induced by pattern-recognition receptors 

(PRR) on the cell surface upon recognition of conserved microbe-associated molecular 

patterns (MAMPs) (Jones and Dangl, 2006). To suppress PTI, virulent pathogens deliver 

many effector proteins into plant cells to interfere with host defense pathways and promote 

infection (Jones and Dangl, 2006). Certain plant genotypes protect themselves from 

virulent pathogens by effector recognition through intracellular resistance (R) proteins, 

thereby converting effector-mediated disease susceptibility to effector-triggered immunity 

(ETI), a strong defense response leading to plant resistance (Dodds and Rathjen, 2010). 

While a lot is known about the initiation and the outputs of plant resistance responses, 

research is just starting to unravel the detailed signaling mechanisms and interconnections 

between different layers of plant immunity. 

 

 

1.1. Effector-triggered immunity (ETI) 

 

R proteins are encoded by the most divergent gene family in plants (Meyers et al., 2003; 

Jacob et al., 2013). Still, most R proteins share a canonical modular domain structure 

consisting of a central nucleotide binding (NB) and a C-terminal leucine-rich repeat (LRR) 

domain, and are therefore referred to as NLR proteins. Two main R protein classes have 

been subdivided based broadly on their N-terminal domain of either a coiled coil (CC) or 

Toll/Interleukin-1 receptor like (TIR) domain into CNLs and TNLs, respectively. In a 

current model, activation of TNLs and CNLs by direct or indirect effector recognition 

causes an ATP-dependent conformational change rendering the NLR open for altered or 

additional interaction (Qi and Innes, 2013). This leads to resistance activation culminating 
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in defense gene reprogramming and local programmed cell death often referred to as 

hypersensitive response (HR) (Lamb et al., 1989; Jones and Dangl, 2006; Dodds and 

Rathjen, 2010).  

This study focusses on the Arabidopsis TNL gene pair RPS4 (Resistance to 

Pseudomonas syringae 4) and RRS1 (Resistance to Ralstonia solanacearum 1, see section 

1.4), which acts cooperatively to confer resistance to the leaf-infecting bacterium 

Pseudomonas syringae pv. tomato DC3000 expressing the effector AvrRps4 (Pst AvrRps4), 

the soil-borne bacterial pathogen Ralstonia solanacearum expressing the effector PopP2 

(R.s. PopP2) and the hemibiotrophic fungus Colletotrichum higginsianum (C.h.) delivering 

an unknown effector (Birker et al., 2009; Narusaka et al., 2009a; Narusaka et al., 2009b).  

 

 

1.2. Structure of TNLs 

 

 Toll-/interleukin-1 receptor domain 

By analogy with known functions in mammalian innate immunity, the TIR domains of 

plant NLRs have been implicated in the mediation of downstream signaling responses. 

Most information available in plants comes from analysis of the flax L6 flax rust resistance 

protein TIR domain structure. It forms a compact globular structure consisting of a five-

stranded parallel -sheet surrounded by five -helices (Bernoux et al., 2011). The L6 TIR 

domain includes an additional -helix compared to animal TIR domains, the D3-helix 

(Bernoux et al., 2011). Moreover, the L6 TIR domain self-associates, and transiently 

expressed L6 TIR induced cell-death in tobacco, as was shown for other TIR domains 

(Frost et al., 2004; Michael Weaver et al., 2006; Swiderski et al., 2009; Krasileva et al., 

2010; Bao et al., 2014), implicating TIR domains function in immune signaling leading to 

cell death. 

More recently, the crystal structures of the Arabidopsis RPS4 and RRS1 TIR 

domains were solved as homo- and heterodimers, revealing a common interaction interface 

used for homo- and heterodimerization (Williams et al., 2014). Multiple sequence 

alignment of 150 plant TIR domains showed the conservation of several amino acid 

residues also found to be important for RPS4 and RRS1 dimerization events (Williams et 

al., 2014). The conserved amino acid patch includes an SH- (serine-histidine)-motif in the 

A-helix which formes stacking interactions and hydrogen-bonds in the RPS4-RRS1 
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homo- and heterodimers (Williams et al., 2014). Mutations in the SH-motif disrupted TIR 

dimerization and abolished RPS4 TIR-induced effector-independent cell death in tobacco 

as well as effector-triggered cell death by transiently expressed RPS4 with RRS1 full-

length proteins (Williams et al., 2014). 

 

 Nucleotide-binding domain 

Plant NLR receptors belong to the superfamily of STAND (signal transduction ATPases 

with numerous domains) ATPases. Their nucleotide-binding domain consists of three 

subdomains: (1) the NB catalytic core forming a classical NTPase fold of a five-stranded 

parallel -sheet surrounded by seven -helices, (2) the four-helix-bundle ARC1 (APAF-1, 

R proteins and CED-4) functioning as a scaffold for intramolecular interactions with the 

LRR domain and (3) the ARC2 forming a winged-helix fold, working as a regulatory 

element interacting with the LRR domain and transducing pathogen perception by ARC2 

dislocation and thus subdomain reorganization (Takken et al., 2006; van Ooijen et al., 2008; 

Lukasik and Takken, 2009; Bonardi et al., 2012; Takken and Goverse, 2012).  

The NB-ARC domain is thought to be the molecular switch for NLR activation, 

with its ADP-bound form being inactive while ATP binding causes a conformational 

change and thereby activates the NLR. Support for this model came from tomato NLR I2, 

which was shown to bind and hydrolyse ATP in vitro (Tameling et al., 2002). I2 autoactive 

alleles are preferentially bound to ATP, while native I2 bound to ADP was more stable than 

the ATP-bound form and thus likely represents the inactive state of the protein (Tameling 

et al., 2006). Also, an autoactive mutant of flax rust NLR M co-purified with more ATP 

than ADP, while the wildtype M mostly bound ADP (Williams et al., 2011). Crystallization 

of the mouse NLR NLRC4 (NLR family, CARD containing 4) revealed its structure in an 

ADP-bound, closed conformation and showed that ADP-mediated interactions in the NB-

ARC subdomains stabilized the inactive conformation (Hu et al., 2013).  

The NB-ARC subdomains contain numerous conserved, well-characterized motifs 

that are involved in nucleotide binding and NLR activation, some of which are discussed 

in detail below. In the NB domain, the Walker A (P-loop) motif GxxxxGKS/T includes a 

conserved, positively charged K (lysine) which binds the -/-phosphate of ADP or ATP, 

respectively. The adjacent S (serine) or T (threonine) binds a magnesium ion (Mg2+) which 

is needed as a co-factor for ATP hydrolysis (Takken et al., 2006; van Ooijen et al., 2008; 

Bonardi et al., 2012; Takken and Goverse, 2012). In the Walker B motif hhhhDD/E, the 
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invariant D (aspartic acid) is involved in indirect coordination of Mg2+, whereas the second 

acidic residue D or E (glutamic acid) is the catalytic module for ATP hydrolysis (Takken 

et al., 2006; Tameling et al., 2006; van Ooijen et al., 2008; Bonardi et al., 2012; Takken 

and Goverse, 2012). The NB domain RNBS-B (Sensor I) motif hhhhToR is thought to 

interact via the conserved R (arginine) with the ARC2 MHD motif (see below) to support 

the closed, ADP-bound NB-ARC conformation. In Caenorhabditis CED4 (Cell death 

protein 4), interaction of the conserved positive R with the negative charge of the ATP -

phosphate transmits to the other protein parts, causing protein activation (Yan et al., 2005; 

Takken et al., 2006). Apart from the described motifs in the NB subdomain, the ARC2 

contains a highly conserved MHD motif hxhHD. The basic H (histidine) is localized in the 

ADP-binding pocket and binds and positions the -phosphate of ADP, stabilizing the 

compact ADP-bound (closed) conformation of the NB-ARC domain (Takken et al., 2006; 

van Ooijen et al., 2008; Bonardi et al., 2012).  

 

 Leucine-rich repeats (LRRs) 

The LRR domain is the most variable part of NLRs, containing many hypervariable amino 

acids which are under positive selection (Takken and Goverse, 2012). It is highly irregular, 

being comprised of varying numbers and lengths of repeats, sometimes also including non-

canonical LRR motifs. Generally, a plant LRR consists of 24 to 28 residues with a core set 

of 14 amino acids sharing the consensus sequence LxxLxxLxLxxC/Nxx forming a -strand, 

which then forms a horseshoe-like superhelical parallel -sheet together with the other 

LRRs which are connected through more variable amino acid sequences (Kobe and Kajava, 

2001; Enkhbayar et al., 2004; van Ooijen et al., 2007; Padmanabhan et al., 2009). 

LRR domains are considered to carry out a dual function: NLR autoinhibition is 

mediated by an N-terminal cluster of positively charged residues which cover the signaling 

competent NB-ARC through electrostatic interactions, which was shown for the potato 

NLR Rx and is supported by analysis of the mouse NLRC4 crystal structure (Rairdan and 

Moffett, 2006; Hu et al., 2013; Slootweg et al., 2013; Takken and Goverse, 2012). Pathogen 

recognition specificity is often determined via the LRR C-terminus which in a folded NLR 

protein lies in close proximity of the NLR N-terminal domain (i.e. TIR) and is able to sense 

changes in the environment due to pathogen effector disruptions of host proteins or direct 

effector binding (Takken and Goverse, 2012). For example, flax L receptors L5 and L6 

directly interact with their cognate AvrL5 and AvrL6 effectors, respectively, and the 
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effector recognition specificity is determined by the L5 and L6 LRR domains (Dodds et al., 

2006; Ravensdale et al., 2012). Interestingly, while flax L6 and L11 differ only in the LRR, 

L6 and L7 differ in their TIR domains only, but yet all show different effector recognition 

specificities (Ellis et al., 1999), thus supporting a role of both the TIR and LRR domains in 

effector recognition.  

 

 

1.3. NLR modes of action 

 

 Gene-for-gene hypothesis 

Based on studies of the genetic inheritance of resistance and susceptibility in flax 

interactions with flax rust fungus (Melampsora lini), Harold Flor proposed the gene-for-

gene hypothesis in which one plant R gene is necessary and sufficient to confer resistance 

to a pathogen carrying one specific avirulence (Avr) gene (Flor, 1971). The gene-for-gene 

complementary described in this model suggested direct R protein interaction with its 

respective avirulence protein. However, direct interaction of NLRs with effectors was 

reported for a few cases only (Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006; 

Krasileva et al., 2010; Kanzaki et al., 2012; Ravensdale et al., 2012). Also, the presence of 

~150 R genes in Arabidopsis (Meyers et al., 2003) would be unlikely to combat the plethora 

of multiple and rapidly evolving effectors from different pathogens (Deslandes and Rivas, 

2012).  

 

 Guard hypothesis 

The guard hypothesis was developed to explain indirect NLR-mediated effector recognition. 

In the guard model, an NLR is guarding a plant protein, the guardee. Interference with the 

guardee structure or function by one or several pathogen effectors is recognized by the NLR, 

causing its activation and triggering of immunity (van der Hoorn and Kamoun, 2008). 

Extending this model, a guardee constitutively associated with its NLR guard can function 

as a bait to draw over effectors and facilitate their recognition by the NLR (Collier and 

Moffett, 2009). Because effectors are delivered to promote pathogen virulence, their 

targeting of host proteins implies that the guardee plays a role in plant basal resistance or 

PTI. This was described for Arabidopsis host protein RIN4 (RPM1 interacting protein 4), 
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a negative regulator of basal immunity (Kim et al., 2005; Liu et al., 2009). RIN4 is guarded 

by the two CNLs RPM1 (Resistance to P. syringae pv. maculicola 1) and RPS2 (Resistance 

to P. syringae 2) against interference by Pseudomonas effectors AvrRpm1, AvrRpt2 and 

AvrB, which then triggers ETI (Axtell and Staskawicz, 2003; Mackey et al., 2003; Kim et 

al., 2005; Liu et al., 2009). 

 

 Decoy model 

In some cases of ETI, the guardee is not (or no longer) involved in plant immunity. In other 

words, NLRs can monitor decoy proteins that are not actively involved in defense, but share 

similarity with active defense components to intercept effector virulence activities (van der 

Hoorn and Kamoun, 2008). Supporting this model, Arabidopsis protein kinase PBS1 

(AvrPphB susceptible 1) has no known function in immunity (Zhang et al., 2010a), but is 

cleaved by the Pseudomonas effector AvrPphB, which then activates a PBS1-guarding 

NLR, RPS5 (Ade et al., 2007). Interestingly, other PBS1-like plant protein kinases are 

AvrPphB operational targets (Zhang et al., 2010a), among which the kinase BIK1 (Botrytis-

induced kinase 1) positively regulates PTI (Kadota et al., 2014; Li et al., 2014b). In this 

model, while the real effector target is involved in host defense (i.e. BIK1) and might 

change structurally to enhance its resistance function or avoid pathogen interference, the 

decoy (PBS1) can still intercept effector tampering with the host cell and trigger resistance 

through its NLR guard. 

 

 Paired NLR functions 

An emerging plant resistance strategy is the action of paired NLR receptors. The first 

published example of two NLR genes functioning cooperatively in plant resistance to the 

oomycete Hyaloperonospora arabidopsidis was the TNL pair RPP2A (Resistance to 

Peronospora parasitica 2A) and RPP2B, encoded by closely linked genes orientated in a 

head-to-tail manner with an intergenic spacer of about 3kb only (Sinapidou et al., 2004). In 

rice, a number of NLR pairs cooperate genetically to confer resistance to rice blast disease 

(Magnaporthe oryzae) (Ashikawa et al., 2008; Lee et al., 2009; Okuyama et al., 2011; Zhai 

et al., 2011; Kanzaki et al., 2012; Césari et al., 2014; Zhai et al., 2014). Recently, two 

studies on paired rice CNLs provided important insights into the molecular functions of 

paired NLR receptors. For the NLR gene pair Pikh-1 and Pikh-2, it was shown that Pikh-1 

interacts with both the recognized M. oryzae effector AvrPik-h and with Pikh-2 through its 
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CC domain (Zhai et al., 2014). Pikh-2 (but not Pikh-1) triggered cell death when transiently 

overexpressed in tobacco independently of both AvrPik-h and Pikh-1, whereas in native 

promoter studies in rice protoplasts all three proteins were needed to trigger cell death (Zhai 

et al., 2014). Similarly, the head-to-head oriented NLR pair RGA4 (R gene analog 4) and 

RGA5 is required for recognition of Avr-Pia and Avr-PiCO39 rice blast effectors (Okuyama 

et al., 2011; Cesari et al., 2013). While RGA4 encodes a classical CNL, the CNL-like RGA5 

N-terminus is dissimilar to other known domains and the protein comprises an additional 

C-terminal RATX1 (Related to ATX1) domain with significant homology to a heavy-

metal-associated domain containing copper chaperone ATX1 (Anti-Oxidant 1) from yeast 

(Okuyama et al., 2011). RGA5 associated with the effectors Avr-Pia or Avr-PiCO39 via its 

C-terminal RATX1 domain, with two RGA5 alternate splicing variants showing different 

affinities to each effector (Cesari et al., 2013). No effector association was detected for 

RGA4 (Cesari et al., 2013). RGA4 and RGA5 were shown to localize to the cytoplasm and 

were able to form homomeric and heteromeric complexes (Césari et al., 2014). RGA5 

suppressed the effector-independent cell death induced by overexpressed RGA4 in 

transient tobacco assays, and this RGA5 inhibitory effect was released by co-expression of 

Avr-Pia (Césari et al., 2014). RGA4 resistance and cell death-triggering activity depended 

on a functional nucleotide-binding pocket (Césari et al., 2014). Moreover, the usually 

highly conserved MHD motif is degenerated in RGA4, and this degeneration was necessary 

for RGA4 cell death inducing activities (Césari et al., 2014). This suggests that RGA4 

carries a gain-of-function mutation in its MHD motif, allowing enhanced ATP binding and 

leading to RGA4 autoactivity in tobacco (Césari et al., 2014). By contrast, RGA5 repressive 

function on RGA4 activity, as well as the effector-triggered release of this RGA5 repression 

was independent of a functional nucleotide-binding or MHD motif (Césari et al., 2014). 

Taken together, these data suggest a new model of paired NLR action (compare Figure 1). 

An “executor” protein responsible for downstream signaling activation (here: RGA4) is 

held in check by the effector-sensing “sensor” protein (here: RGA5). A conformational 

change upon effector recognition by the sensor releases or activates the executor for defense 

activation.  

The close linkage of functional NLR pairs and a frequent arrangement in head-to-

head orientation on the chromosome suggests shared promoter elements and thus tightly 

linked regulation and well-matched gene expression (Li et al., 2006; Chen et al., 2010; 

Chen et al., 2014). However, Pikh-1 and Pikh-2 transcripts showed distinct expression 

patterns upon pathogen treatment, because Pikh-2 transcript levels increased compared to 
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the mock control whereas Pikh-1 levels did not (Zhai et al., 2014). The same trend was 

described for another rice CNL gene pair, Pi5-1 and Pi5-2, where only the former 

responded to pathogen challenge (Lee et al., 2009). Certainly, regulation of closely linked 

R gene pairs in plants requires more detailed research. If not for equal expression of NLR 

pairs, the conserved close linkage might protect functionally interdependent R genes from 

recombination or genome re-arrangement events that might cause the loss of one signaling 

partner, leading to a loss of resistance or autoimmunity impairing plant growth. 

 

 

1.4. RPS4 and RRS1 

 

 Together we stand… a functional TNL receptor pair in Arabidopsis immunity 

The Arabidopsis TNL pair RRS1 and RPS4 cooperates genetically to confer resistance to 

the Pst AvrRps4, R.s. PopP2 and C.h. (Birker et al., 2009; Narusaka et al., 2009a; Narusaka 

et al., 2009b). This study focusses on the interaction of Arabidopsis RPS4 and RRS1 with 

Pst AvrRps4. However, knowledge on PopP2 recognition and functions will be integrated 

in the evaluation of generated data. 

RPS4 was mapped based on Pst AvrRps4 resistance and HR induction in a cross of 

Arabidopsis resistant ecotype Ws-0 with the susceptible ecotype RLD, and segregated as a 

single dominant locus in the F2 generation (Hinsch and Staskawicz, 1996). RPS4 encodes 

a classical TNL protein with TIR, NB-ARC and LRR domains, while a 318 amino acid 

C-terminal extension shows no homology to other known proteins (Gassmann et al., 1999). 

RPS4 alternative splicing variants were induced upon AvrRps4 recognition and required 

for RPS4-mediated resistance to Pst AvrRps4, and RPS4 splicing variants code for potential 

truncated proteins correspond mainly to the TIR-NB portion of the protein (Gassmann et 

al., 1999; Zhang and Gassmann, 2003). RPS4 localization is mainly endomembrane-

associated in the cytoplasm, but nuclear accumulation of an RPS4 sub-pool driven by a 

bipartite nuclear localization signal (NLS) in the C-terminal extension was necessary to 

confer Pst AvrRps4 resistance (Wirthmueller et al., 2007).  

RRS1 was identified as the recognition determinant for R.s. PopP2 in resistance of 

Arabidopsis ecotype Niederzenz (Nd-1) compared to susceptible Columbia (Col-5) 

(Deslandes et al., 1998). The alleles RRS-R (in Nd-1, resistant) or RRS1-S (in Col-5, 

susceptible) were named in accordance with their contrasting responses to R.s. PopP2 
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(Deslandes et al., 2002). Notably, both RRS1-R and RRS1-S interacted directly with PopP2, 

indicating that effector binding is not sufficient to trigger immunity (Deslandes et al., 2003). 

The same allele specific resistance described for R.s. PopP2, in which only RRS1-R confers 

resistance, holds true for immunity towards C. higginsianum, whereas both RRS1-R and 

RRS1-S are functional in conferring resistance to Pst AvrRps4 (Birker et al., 2009; 

Narusaka et al., 2009a; Narusaka et al., 2009b). Interestingly, a cross between Nd-1 and 

Col-5 resulted in a susceptible F1 generation, and segregation in the F2 generation was 

consistent with RRS1-R inheritance as a recessive resistance locus (Deslandes et al., 1998). 

By contrast, transgenic expression of RRS1-R in Col-5 established R.s. resistance, while 

resistant Nd-1 expressing transgenic RRS1-S retained R.s. resistance, supporting a 

dominant role of RRS1-R independent of transgene expression levels (Deslandes et al., 

2002).  

RRS1 is an atypical TNL protein carrying a C-terminal WRKY domain (Deslandes 

et al., 2002) which defines a large plant-specific family of WRKY transcription factors. 

The WRKY domain forms a 4- to 5-stranded antiparallel -sheet structure and is able to 

directly bind DNA at a cognate DNA sequence C/TTGACT/C, the W-box (Yamasaki et al., 

2012; Yamasaki et al., 2013). WRKY DNA binding is mediated by the highly conserved 

N-terminal WRKYGQK motif and a C-terminal zinc finger signature (Yamasaki et al., 

2012; Yamasaki et al., 2013). Even though RRS1-R and RRS1-S share 98% nucleotide 

sequence identity and the WRKY domain is complete in both allelic forms, the difference 

in pathogen recognition between RRS1-R and RRS1-S suggests disparate modes of actions 

(Deslandes et al., 2002). These might be due to distinct properties of the respective C-

termini, which differ by a 90 amino acid extension of RRS1-R compared to RRS1-S 

(Deslandes et al., 2002). An amino acid insertion in the conserved WRKY domain of 

RRS1-R in the slh1 (sensitive to low humidity 1) mutant disrupted RRS1-R W-box binding 

in gel filtration assays and caused an in vivo autoactive phenotype in Arabidopsis Nd-1, 

which was associated with plant growth inhibition, cell death and necrotic lesion 

development, accumulation of SA and activation of defense genes (Noutoshi et al., 2005). 

These data suggest that RRS1-R is bound to the DNA in its resting state and disruption or 

alteration DNA binding initiates a resistance response. In line with its predicted function at 

the chromatin, RRS1 contains a predicted NLS (Deslandes et al., 2002) and could be 

detected upon co-expression with PopP2 both in the cytoplasm and the nucleus (Deslandes 

et al., 2003). 
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Like the rice CNL gene pairs described above, RPS4 and RRS1 are tightly linked at the 

chromosome and arranged in a head-to-head orientation with an intergenic region of only 

254bp in Col-0 (Gassmann et al., 1999). Strikingly, their cooperative resistance function is 

not only achieved in Arabidopsis (Birker et al., 2009; Narusaka et al., 2009a; Narusaka et 

al., 2009b), but also in other plant genera or families. Co-expression of RPS4 and RRS1-R 

conferred resistance to R. s. PopP2 in tomato (Solanum lycopersicum) and japanese 

mustard spinach (Brassica rapa var. perviridis) or resistance to C. higginsianum in 

japanese mustard spinach and rapeseed (Brassica napus) or C. orbiculare in cucumber 

(Narusaka et al., 2013b, a; Narusaka et al., 2014). This indicates a conservation of RPS4 

and RRS1 downstream signaling mechanisms among the different plant taxonomic groups. 

Since resistance is achieved only by co-expression of RPS4 and RRS1-R, this supports the 

idea that genetic NLR linkage is due to functional co-dependency of NLR pairs as 

introduced above (see section 1.3.4).  

Besides their genetic cooperation in resistance, RPS4 and RRS1 TIR domains 

formed homomeric and heteromeric dimers as recombinant proteins purified from E. coli 

and in yeast-two-hybrid (Y2H) (Williams et al., 2014). Full length RPS4 and RRS1 proteins 

interacted in tobacco transient expression independently of an intact TIR domain 

dimerization interface, suggesting the involvement of other domains in the dimerization 

(Williams et al., 2014). However, disruption of the TIR-TIR dimerization interface 

abolished RPS4 and RRS1 immune functions. Most notably, overexpression of RPS4 TIR 

alone in tobacco induced cell death, and this was abolished in the TIRH24A dimerization-

disabled mutant. Also, RRS1 TIR suppression RPS4 TIR-induced cell death depended on 

a genuine heterodimerization interface, as it was lost in the RRS1 TIRH26A heterodimer-

disabled mutant. Furthermore, expression of full length RRS1-R in Arabidopsis Col-0 stable 

transgenic lines conferred PopP2 recognition and induction of HR, while expression of the 

TIR-dimerization disabled RRS1-RS25A/H26A allele did not (Williams et al., 2014). Based on 

these data, RRS1 was proposed to negatively regulate RPS4 defense induction by 

preventing the formation of a signaling-competent RPS4 TIR homodimer. The repression 

of RPS4 by RRS1 is released upon effector sensing by RRS1 (Figure 1). 
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Figure 1: Current model of pairwise NLR activation. 

(A) Domain structure of RPS4 and RRS1. TIR, Toll-/interleukin-1 receptor; NB, nucleotide-binding; LRR, 

leucine-rich repeat; WRKY, transcription factor DNA binding domain. (B) In a pre-activation complex, RPS4 

activity is repressed by RRS1. Effector recognition of the sensor RRS1 induces conformational changes to 

allow executor RPS4 homodimerization and downstream signaling activation. Modified from Nishimura and 

Dangl, 2014.  

 

In accordance with this model, besides RRS1 direct interaction with PopP2 both RRS1-S 

and RRS1-R were found to co-immunoprecipitate (coIP) with AvrRps4 in tobacco leaf 

extracts (Williams et al., 2014), supporting the role of RRS1 as a sensor modifying activity 

of its executor partner RPS4.  

However, instead of releasing RRS1 inhibitory effects on RPS4, disruption of the 

RPS4-RRS1 TIR-TIR interface in RRS1-RS25A/H26A prevented PopP2-induced cell death 

(Williams et al., 2014). Interestingly, the full length RRS1-RS25A/H26A still associated with 

RPS4 in planta (Williams et al., 2014), thus forming interaction surfaces that potentially 

enable proper complex formation. While in this complex RRS1S25A/H26A-RPS4 TIR-TIR 

interaction would be disabled, the proposed signaling active RPS4 TIR homodimeric 

interaction should be retained to initiate defense signaling. The RRS1-RS25A/H26A loss of 

PopP2-induced cell death therefore indicates that an intact RPS4-RRS1 TIR domain 

interface is indispensable for their resistance function.  

Also, if RRS1 acted only as a negative regulator of RPS4 by inhibiting RPS4 TIR homo-

dimerization, a knock-out mutation of RRS1 would release RPS4 inhibition and lead to an 
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autoimmune phenotype. This was reported for the rice CNL pair RGA4 and RGA5, in which 

silencing of RGA5 in rice protoplasts caused effector-independent RGA4-induced cell death 

(Césari et al., 2014). By contrast, the rrs1 null mutant impaired defense to the same extent 

as rps4 (Birker et al., 2009; Narusaka et al., 2009a), suggesting a positive contribution of 

RRS1 to RPS4 immunity.  

Notably, a K (lysine) to A (alanine) mutation in the conserved RRS1 P-loop motif 

(K185A) did not alter effector-dependent RPS4-RRS1-mediated cell death induction in 

tobacco (Williams et al., 2014). This points towards an RRS1 function independent of ATP 

binding and/or hydrolysis, usually a crucial step in NLR activity control (Qi and Innes, 

2013). The same ATP-independent function holds true for RGA5 in rice as well (Césari et 

al., 2014), thus pointing towards a novel mechanism of sensor NLRs acting in cooperation 

with a paired signaling partner to induce or regulate plant immunity.  

 

 One for all, all for one: Arabidopsis RPS4b and RRS1b 

Single or double mutations of RPS4 and RRS1 enhanced Arabidopsis susceptibility to Pst 

AvrRps4, but retained RPS4/RRS1-independent resistance (RRIR) (Wirthmueller et al., 

2007; Birker et al., 2009). Recently this RRIR was cloned and revealed a second NLR gene 

pair on chromosome 5, which is arranged in a head-to-head orientation with an intergenic 

spacer of 232bp and contributes to Pst AvrRps4 resistance in addition to RPS4 and RRS1 

(Saucet, 2013). This NLR pair was designated RPS4b and RRS1b due to its highly similar 

gene architecture with shared exon/intron and domain structures, and a high amino acid 

identity of TNL RPS4b and TNL-WRKY RRS1b to RPS4 and RRS1, respectively (Saucet, 

2013). As with RRS1, transiently expressed RRS1b interacted with both AvrRps4 and 

PopP2 in co-IPs from tobacco (Saucet, 2013). Interestingly, the TIR domains of the four 

NLRs were able to self- and cross-associate with each other in planta (Saucet, 2013), so 

that in principle the formation of hetero-complexes assembled by combinations of all four 

NLRs is possible. With the emerging role of NLR pairs in disease resistance, the 

involvement of a further NLR pair in AvrRps4 recognition and resistance signaling opens 

up new opportunities to unravel the complexity of NLR receptor interactions and resistance 

signaling mechanisms. 
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 Know your enemy: the effectors AvrRps4 and PopP2 

Many bacterial effectors are delivered directly into the host cell via the bacterial type-III-

secretion system (TTSS) (Alfano and Collmer, 2004; Burkinshaw and Strynadka, 2014), 

where some have been shown to mediate virulence functions by suppressing host immune 

responses (Guo et al., 2009; Deslandes and Rivas, 2012). AvrRps4 and PopP2 are TTSS-

secreted effectors and can be recognized by the plant depending on the presence of the 

respective RPS4 and RRS1 alleles discussed above (see sections 1.4.1, 1.4.2). 

R. solanacearum effector PopP2 belongs to the conserved YopJ/AvrRxv effector 

family (Deslandes et al., 2003; Lewis et al., 2011). PopP2 is targeted to the plant nucleus 

by an N-terminal NLS, where it interacted with and stabilized both RRS1-S and RRS1-R, 

likely by inhibiting their proteasome-mediated degradation (Deslandes et al., 2003; Tasset 

et al., 2010). Besides its effects on RRS1, PopP2 was reported to re-localize the Arabidopsis 

cysteine protease RD19 (Responsive to dehydration 19) involved in RRS1-R-mediated 

resistance from vacuole-associated vesicles/lytic vacuole to the nucleus, where they 

physically interacted (Bernoux et al., 2008). PopP2 is a functional acetyl-transferase with 

autoacetylation activity, and both effector enzymatic function and effector recognition by 

the resistant allele RRS1-R are necessary for resistance (Tasset et al., 2010). 

AvrRps4 is a TTSS-secreted effector originally identified in P. syringae pv pisi 

(Hinsch and Staskawicz, 1996). It is a 221 amino acid protein cleaved in the plant cell 

between two glycines G133 and G134 just before the KRVY motif (Sohn et al., 2009). 

Recognition of AvrRps4 by RPS4/RRS1 activated ETI, whereas in recognition-deficient 

Arabidopsis backgrounds AvrRps4 promoted Pst DC3000 growth and suppressed PTI 

outputs (Sohn et al., 2009). While the KRVY motif is required for both AvrRps4 virulence 

and avirulence functions, AvrRps4 virulence, but not its avirulence function depends on 

the in planta processing, even though the cleaved C-terminal part of AvrRps4 is sufficient 

for ETI activation (Sohn et al., 2009). For this defense activation, nuclear accumulation of 

the nucleo-cytoplasmic proteins RPS4 and AvrRps4 together with the key immune 

regulator EDS1 (Enhanced disease susceptibility 1, see section 1.5.1) is necessary 

(Wirthmueller et al., 2007; Heidrich et al., 2011). 

Although defense activation by both AvrRps4 and PopP2 requires cooperative 

function of RPS4 and RRS1, there need to be distinct mechanisms for effector recognition 

due to differential requirements of RRS1a-S and RRS1a-R for PopP2 recognition as well as 

contribution of RPS4b and RRS1b to AvrRps4, but not PopP2 recognition. Elucidation of 
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these differences in effector sensing and signaling activation mechanisms will help to gain 

a detailed comprehension of cooperative NLR functions. 

 

 

1.5. Components of TNL-mediated resistance 

 

 EDS1 – PAD4 – SAG101 

The nucleo-cytoplasmic lipase-like protein EDS1 interacts with its nucleo-cytoplasmic 

signaling partner PAD4 (Phytoalexin deficient 4) to confer basal resistance against virulent 

pathogens (Jirage et al., 1999; Feys et al., 2001; Rietz et al., 2011), while EDS1 heterodimer 

formation with its signaling partners PAD4 and nuclear SAG101 (Senescence associated 

gene 101) is required for TNL-mediated ETI including transcriptional defense gene 

reprogramming and localized cell death (Wiermer et al., 2005; Wirthmueller et al., 2007; 

García et al., 2010; Rietz et al., 2011; Wagner et al., 2013). Opposing former beliefs 

attributing CNL and TNL downstream signaling to either NDR1 (Non race specific disease 

resistance 1) (Knepper et al., 2011) or EDS1, respectively, EDS1 also contributed to 

resistance mediated by CNLs (Venugopal et al., 2009). EDS1 interacted with autoactivated 

overexpressed RPS4 in Arabidopsis and other TNLs (Bhattacharjee et al., 2011; Heidrich 

et al., 2011; Kim et al., 2012). Also, association of EDS1 with AvrRps4 and another Pst 

effector, HopA1, was shown (Bhattacharjee et al., 2011; Heidrich et al., 2011). Together 

with the lack of direct interaction between RPS4 and AvrRps4, this led to the hypothesis 

that EDS1 is a TNL guardee due to its functions in basal resistance and acts as a molecular 

bridge between effector and TNL to allow effector recognition and facilitate downstream 

signaling (Heidrich et al., 2011; Bhattacharjee et al., 2011).  

 

 SRFR1 

The tetratricopeptide repeat (TPR) domain containing protein SRFR1 (Suppressor of rps4-

RLD 1) was identified as a recessive negative regulator of Pst AvrRps4 resistance in the 

susceptible Arabidopsis accession RLD, since mutation of srfr1 could partially restore 

resistance to Pst AvrRps4 compared to Col-0 (Kwon et al., 2004; Kwon et al., 2009; Li et 

al., 2010). SRFR1 localization is nucleo-cytoplasmic/endomembrane-asscociated and its 

TPR domain has sequence similarities to transcriptional repressors in other eukaryotes 
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(Kim et al., 2009; Kwon et al., 2009; Kim et al., 2010; Bhattacharjee et al., 2011). In RLD, 

apart from AvrRps4-triggered resistance, mutations in SRFR1 enhanced Pst HopA1 

resistance in the absence of TNL RPS6 (Kim et al., 2009), whereas srfr1 alleles in Col-0 

caused constitutive immune activation revealed by plant stunting, constitutive PR1 

(Pathogenesis related 1) gene expression, SA (salicylic acid) accumulation and enhanced 

resistance to virulent and avirulent pathogens (Kim et al., 2010; Li et al., 2010). These 

immune outputs in Col-0 are dependent on the presence of the TNL SNC1 (Suppressor of 

npr1, constitutive 1, see below) (Kim et al., 2010; Li et al., 2010). SRFR1 associated with 

the TNLs RPS4, SNC1 and RPS6 and the immune regulator EDS1, but also with SGT1a 

and SGT1b, which are involved in NLR stabilization and degradation (see section 1.6; Kim 

et al., 2010; Li et al., 2010; Bhattacharjee et al., 2011). Intriguingly, srfr1 mutants 

accumulated higher levels of SNC1, RPS4 and RPS2 proteins, and SNC1 protein amounts 

were also increased in sgt1b (Li et al., 2010). Together with the enhanced disease resistance 

phenotypes in srfr1 mutants, this suggests a negative regulatory role of SRFR1 in TNL 

mediated resistance likely by facilitating proteasome-mediated TNL degradation. 

Furthermore, the association of SRFR1 with EDS1, as well as EDS1-RPS4 and EDS1-

RPS6 interactions at the endomembrane were disrupted upon co-expression of effectors 

AvrRps4 and HopA1 in transient tobacco assays (Bhattacharjee et al., 2011), whereas 

RPS4-EDS1 complexes were found in the soluble cytoplasmic fraction upon RPS4 

activation (Heidrich et al., 2011). This led to a model in which SRFR1 retains TNLs at the 

endomembranes in preformed inactive complexes with EDS1 and potentially other plant 

immunity components, and restricts TNL activity by promoting their degradation. Upon 

recognition of pathogen effectors, active signaling complexes are released for 

relocalization and immune signaling. However, a subpool of nuclear SRFR1 was required 

for its function, because nuclear excluded transgenic SRFR1 fails to complement the srfr1 

phenotype of enhanced Pst AvrRps4 resistance in RLD (Kim et al., 2014). Moreover, 

SRFR1 interacted with TCP (Teosinte branched1/cycloidea/PCF) transcription factors 

which positively contribute to ETI mediated by several NLRs, including RPS4 (Kim et al., 

2014). These results suggest another layer of SRFR1 negative defense regulation by 

antagonizing positive functions of TCP at the chromatin.  
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 SNC1 

SNC1 is a TNL identified in a forward genetic screen for NPR1 (Non-expressor of PR 

genes 1)- independent resistance (Li et al., 2001). A mutation in the linker region between 

NB and LRR domains of snc1 led to EDS1- and PAD4-dependent constitutive 

autoimmunity causing plant stunting, expression of PR genes, accumulation of SA and 

enhanced pathogen resistance, including Pst AvrRps4 (Li et al., 2001; Zhang et al., 2003; 

Kim et al., 2010). Mutation of the conserved P-loop motif abolished snc1 autoimmune 

phenotypes (Xu et al., 2014a). The stunted growth phenotype of snc1 rendered these plants 

an excellent tool for suppressor screens to identify components of TNL signaling, which 

has extensively been done resulting in MOS (Modifier of snc1) genes involved in the 

regulation of transcription, RNA processing, protein modification and nucleo-cytoplasmic 

trafficking (Johnson et al., 2012; Copeland et al., 2013; Xia et al., 2013).  

Interestingly, SNC1 associates with the transcriptional co-repressor TPR1 (Topless-

related 1) via its TIR domain (Zhu et al., 2010b). TPR1 targets and represses two negative 

defense regulator genes, DND1 (Defense no death 1) and DND2, and mutations of TPR1 

and its homologs impaired snc1 autoimmunity as well as basal and TNL-mediated 

resistance (Zhu et al., 2010b). Two SRFR1-interacting TCP transcription factors were 

identified as interactors of TPL (Topless) family proteins in a high throughput Y2H study 

(Causier et al., 2012), hinting at a complex, sophisticated interaction network of positive 

and negative defense regulators in the nucleus to fine-tune plant defense activation and 

balance pathogen resistance against plant growth and development. 

 

 NLR-transcription factor interactions – a direct link to defense gene expression? 

Various NLR-induced ETI outputs such as ROS (reactive oxygen species) burst, calcium 

signaling and MAP (mitogen-activated protein) kinase cascade activation, SA (salicylic 

acid) production and transcriptional reprogramming of defense genes have been 

characterized (Buscaill and Rivas, 2014). However, little is known about immediate NLR 

downstream signaling processes in defense. Besides EDS1 and NDR1, NLR downstream 

components remain elusive, suggesting a short NLR signaling pathway. Several NLRs need 

to be localized to the nucleus for the activation of defense responses, including Arabidopsis 

RPS4 and SNC1, but also tobacco TNL N and the CNLs MLA10 (Mildew A locus 10) or 

Pb1 (Panicle blast 1) from barley and rice, respectively (Shen et al., 2007; Wirthmueller et 

al., 2007; Cheng et al., 2009; Bai et al., 2012; Inoue et al., 2013; Padmanabhan et al., 2013).  
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Notably, several interactions of NLRs with transcription factors have been reported, 

providing increasing evidence for a close connection between NLRs and events at the 

chromatin: Tobacco TNL N interacted with the SPL6 (Squamosa promoter binding 

protein 6) transcription factor which was needed for N-mediated resistance to tobacco 

mosaic virus (TMV), and an Arabidopsis SPL6 ortholog contributed to RPS4/RRS1 

resistance to Pst AvrRps4 (Padmanabhan et al., 2013). Barley powdery mildew resistance 

was antagonistically regulated by the repressive transcription factors WRKY1 and WRKY2 

and the activating transcription factor MYB6. The CNL MLA10 interacted with all three 

transcription factors and was shown to release MYB6 from WRKY1 suppression to allow 

defense gene expression (Chang et al., 2013). Furthermore, WRKY46 is a component of 

rice blast defense. Interaction with rice CNL Pb1 protected WRKY46 from proteasome-

mediated degradation, thereby allowing its accumulation (Inoue et al., 2013). Interaction 

of SRFR1 with TCP transcription factors and of SNC1 with the transcriptional co-repressor 

TPR1 has been described already (see section 1.5.2; Zhu et al., 2010b; Kim et al., 2014). 

Moreover, SNC1 and RPS4 associated with the bHLH84 (basic helix-loop-helix) 

transcriptional activator which contributed to both snc1 induced autoimmunity and Pst 

AvrRps4 resistance (Xu et al., 2014b).  

Taken together, these data suggest that a number of NLRs reside in nuclear 

complexes with transcription factors and other immune signaling components. Upon 

pathogen recognition, recruitment of new proteins or rearrangements within these 

complexes might be the switch between their inactive and active states, allowing 

appropriate and coordinated transcriptional reprogramming and defense activation. 

 

 

1.6. NLR stability control 

 

NLR accumulation needs to be tightly regulated, as overexpression of NLRs can lead to 

constitutive immune activation at the expense of plant fitness  (Alcázar and Parker, 2011). 

Increasing evidence emphasizes the importance of NLR stability control for plant immunity 

(Trujillo and Shirasu, 2010; Furlan et al., 2012; Duplan and Rivas, 2014). SGT1 

(suppressor of the G2 allele of skp1), together with its interactor RAR1 (required for Mla12 

resistance), is involved in R gene mediated defenses (Austin et al., 2002; Liu et al., 2002; 

Muskett et al., 2002; Peart et al., 2002; Schornack et al., 2004). Both proteins interacted 
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with HSP90 (heat shock protein 90) and worked as co-chaperones to influence R protein 

accumulation and signaling (Tornero et al., 2002; Hubert et al., 2003; Takahashi et al., 

2003; Bieri et al., 2004; Liu et al., 2004; Zhang et al., 2004; Holt et al., 2005; Azevedo et 

al., 2006; Botër et al., 2007). Although HSP90, RAR1 and SGT1 were mainly implicated 

in stabilization of R proteins through their chaperone function, SGT1 was attributed an 

additional negative regulatory role (Holt et al., 2005). Indeed, SGT1 interacted with SKP1, 

a component of the SCF (SKP1-CULLIN-F-box)-type E3 ubiquitin ligase complex, and 

the COP9 signalosome, both involved in proteasome-mediated protein degradation (Austin 

et al., 2002; Azevedo et al., 2002; Liu et al., 2002), and with several R proteins (Bieri et al., 

2004; Leister et al., 2005). This suggests that SGT1 negative regulatory function is exerted 

through stimulation of NLR degradation. Consistent with this idea, a loss-of-function 

mutation of Arabidopsis SGT1b caused increased SNC1 protein levels (Li et al., 2010). 

Similarly, missense mutations of HSP90 rescued decreased NLR accumulation in rar1 

(Hubert et al., 2009), and a recent publication by Huang and co-workers reports that HSP90 

allelic forms are involved in the turnover of NLRs, since specific missense mutations in 

two cytosolic HSP90s allow accumulation of NLRs SNC1, RPS4 and RPS2 (Huang et al., 

2014a). Furthermore, mutations in these HSP90s both positively and negatively affected 

NLR-mediated resistance and suppressed the temperature-sensitive autoimmunity of an 

RPP4 gain-of-function mutant (Bao et al., 2014; Huang et al., 2014a), further supporting a 

negative regulatory role of HSP90s on NLR stability and function in addition to their 

traditional positive contributions to immunity. Establishing a potential link to SKP1-

interacting SGT1, the F-box protein CPR1 (constitutive PR gene expression, 1) interacted 

with Arabidopsis SKP1-like (ASK) proteins (Gou et al., 2009). Like SGT1, CPR1 

negatively regulated stability of autoactive snc1 and the CNL RPS2 as well as immunity 

mediated by these two and other R proteins in a plant 26S proteasome-dependent manner 

(Cheng et al., 2011; Gou et al., 2012). Recently, the E4 ubiquitin ligase MUSE3 (Mutant, 

snc1-enhancing 3) was implicated in CPR1-dependent NLR polyubiquitination, promoting 

NLR proteasome-dependent degradation (Huang et al., 2014b). Taken together, SGT1 and 

HSP90 might not only be involved in NLR folding, but also facilitate assembly and function 

of a SCFCPR1 E3 ligase complex to regulate NLR steady state accumulation by controlled 

NLR ubiquitination and proteasome degradation. 

Moreover, mutation of the ubiquitin-activating E1 enzyme UBA1 (ubiquitin 

activating 1) partially suppressed snc1 autoactivity and reduced basal as well as several R 

protein mediated defense responses (Goritschnig et al., 2007). Also, the 26S proteasome 
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subunits RPN1a, RPT2a and RPN8 were required for certain Arabidopsis immune 

responses (Yao et al., 2012), further supporting the importance of NLR stability control in 

immunity. 

 

 

1.7. Temperature-dependency of plant defense 

 

It is evident that plant physiology and fitness depends on the environmental conditions they 

are grown in. For optimal growth and efficient reproduction, plants have adapted to their 

environment, including temperature conditions. One major determinant of plant fitness is 

its health, but active pathogen defense imposes plant fitness costs, suggestedly due to its 

energy requirements (Tian et al., 2003; Penfield, 2008; McClung and Davis, 2010; Hua, 

2013; Wigge, 2013). Thus, appropriate regulation of defense is essential for optimal plant 

performance. PTI and ETI responses are regulated antagonistically depending on 

temperature, with ETI being more effective at low and PTI at high growth temperatures 

(Cheng et al., 2013). This is plausible because bacterial secretion of effectors is suppressed, 

whereas bacterial proliferation is enhanced by high temperature (van Dijk et al., 1999; 

Smirnova et al., 2001). In line with this, several R gene mediated resistance responses are 

sensitive to high temperature (Alcázar and Parker, 2011). Resistance to tobacco mosaic 

virus (TMV) mediated by the TNL N was abolished above 28°C (Samuel, 1931; Whitham 

et al., 1996), and likewise high temperature suppressed resistance or cell death mediated by 

tomato Mi-1, Cf4 and Cf-9 and Arabidopsis RPW1 (Resistance to powdery mildew 8; 

Hwang et al., 2000; de Jong et al., 2002; Xiao et al., 2003).  

Furthermore, snc1 dwarfism and constitutive defense activation in Col-0 at 22°C 

was suppressed at 28°C (Yang and Hua, 2004). Interestingly the temperature-sensitivity of 

snc1 was abolished by an E640K mutation in the LRR domain. Similarly, tobacco N heat-

sensitivity was suppressed by analogous mutations of its LRR (Zhu et al., 2010a). SNC1 

and N immune activity correlated to their nuclear accumulation (Cheng et al., 2009; 

Padmanabhan et al., 2013), which was reduced at high temperature (Zhu et al., 2010a; 

Mang et al., 2012). Unlike its temperature-sensitive alleles, the snc1E640K heat-stable protein 

remained nuclear at high temperatures (Zhu et al., 2010a). Taken together, these data 

suggest that NLRs are temperature-sensing immune components and their activity is 

modulated through subcellular localization. Restriction of NLRs to or from certain 
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compartments might restrict downstream signaling through the presence or absence of NLR 

interactors in different cellular compartments.  

Notably, RPS4-mediated resistance to Pst AvrRps4 was sensitive to high 

temperature, and SNC1 contributed to this resistance in a temperature-dependent manner 

(Wang et al., 2009; Kim et al., 2010). Temperature sensitivity was also observed in transient 

assays, but interestingly high temperature suppression of SNC1 or RPS4 induced cell death 

was removed by enhancing their nuclear accumulation through the inhibition of abscisic 

acid (ABA) synthesis (Mang et al., 2012). Also, constitutive defense activation and stunted 

plant growth in stable transgenic Arabidopsis lines overexpressing RPS4 was suppressed 

at 28°C (Wirthmueller et al., 2007; Heidrich et al., 2011; Heidrich et al., 2013). This 

inspired establishing a temperature-shift (T-shift) system in which RPS4 overexpressing 

plants were grown at 28°C to suppress phenotype development and a shift to 19°C allowed 

synchronous and massive activation of RPS4-induced immunity (Heidrich et al., 2011; 

Heidrich et al., 2013). This provided a potentially powerful tool to analyze activated RPS4 

pathways by circumventing the problem of low (active) RPS4 protein levels in a natural 

infection systems where only a subset of cells per leaf likely responds to pathogen attack. 

Notably, even in the context of RPS4 induced effector-independent autoimmunity, its 

signaling outputs after T-shift were partially dependent on RRS1, further pointing to a 

positive role of RRS1 in RPS4-mediated resistance signaling (Heidrich et al., 2013). 

 

 

1.8. Study aims 

 

Recent research improved our understanding of the regulation and possible functions of 

NLR proteins in plant defense. However, more mechanistic knowledge is needed for a 

detailed dissection of NLR signaling which ultimately might enable well-conceived and 

safe application of this knowledge in agronomical plants in the field. This is especially true 

in the light of successful transfer of NLRs from Arabidopsis into crop plants or vice versa 

(Maekawa et al., 2012; Narusaka et al., 2013b; Narusaka et al., 2014), indicating the 

existence of conserved signaling pathways and thus illustrating the potential of Arabidopsis 

research to be transferred to other plant lineages. 

My study focusses on the Arabidopsis NLR pair RPS4 and RRS1 as an example of 

an emerging new class of paired immune receptors working cooperatively in plant 
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immunity to repel multiple pathogens. More and more components participating in 

RPS4/RRS1 signaling are uncovered, revealing an increasingly detailed view of a complex 

regulatory network summarized in Figure 2.  

Nevertheless, many questions remain unanswered regarding RPS4/RRS1 regulation, 

downstream signaling and especially the mechanisms by which paired NLRs operate to 

transduce effector sensing to defense activation. To this end, this study was conceived to 

(1) examine the genetic and molecular interplay of RPS4 and RRS1 and their 

interdependency, (2) develop a system to monitor RRS1 chromatin associations, (3) discern 

RRS1 domain functions through targeted mutations and (4) detect RPS4 interacting 

proteins in pre- and post-activation complexes.  

(1) Given the interaction of RPS4 and RRS1 via their TIR domains and additional 

parts of the proteins (Williams et al., 2014), and the partial RRS1-dependency of RPS4-

mediated transcriptional outputs after temperature shift (Heidrich et al., 2013), I propose a 

positive regulatory function of RRS1 on RPS4 signaling apart from a suggested sensor role. 

With the new data and material of the RPS4b and RRS1b NLR pair, transgenic RPS4 

overexpressing plants in an rrs1a rrs1b double mutant background were created to 

circumvent a potential complementation of RRS1a function by RRS1b. Characterization of 

these lines allowed further clarification of RRS1 involvement in RPS4-mediated immunity. 

 (2) RRS1 WRKY domain and the finding that disrupted DNA binding leads to an 

activation of immune responses (Deslandes et al., 2002; Noutoshi et al., 2005) indicated 

negative regulatory functions of inactive RRS1 at the chromatin. To reexamine this 

hypothesis, transgenic lines expressing HA-/flag-tagged RRS1 under its native promoter 

were characterized and subsequently used for chromatin-immunoprecipitation to obtain an 

overview of RRS1-targeted genes. Gained information would also be useful to dissect if 

RRS1 functions as a sensor by using its WRKY domain as a decoy to trap pathogen effector, 

or if its WRKY domain actively targets and regulates defense genes and can thus be seen 

as a guardee of RPS4 and RRS1 TNL protein parts. 

(3) Analyses of single NLR domains, their activities and requirements for NLR 

protein functions have been a valuable tool for modeling the intramolecular processes 

connected to NLR activation (Qi and Innes, 2013). Similar to rice RGA5, a functional ATP-

binding pocket is dispensable for RRS1 function (Césari et al., 2014; Williams et al., 2014). 

For a deeper insight into requirements of the distinct domains for functionality of this 

atypical NLR protein, targeted mutations were introduced in a full length protein context 

with the aim to monitor their effects on RRS1 functions in resistance to Pst AvrRps4. 
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(4) To gain further insight into RPS4 downstream signaling, RPS4 interactors were co-

purified from both uninduced and temperature-shift activated 35S:RPS4-HS plant tissue 

and samples subsequently analyzed by mass-spectrometry. Detection of RPS4 interacting 

proteins in pre- and/or post-activation complexes will help to understand the sophisticated 

regulation of NLR complexes, which is needed to achieve fast and efficient activation while 

preventing excessive activity at the expense of plant growth.  

In conclusion, I suggest that RRS1 is more than an effector sensor and I will test the 

dependency of RPS4 immune activation on RRS1. A major question to pin down RRS1 

immune functions remains its association with chromatin: Does RRS1 bind to defense-

related genes? Is the RRS1 chromatin association dynamic, and where does is bind before 

and after defense activation? I claim that RPS4 and RRS1 assemble in distinct complexes 

depending on their activation state, and thus I will analyze autoactivated RPS4 complexes 

to identify biologically relevant components involved in RPS4/RRS1 defense signaling. 

 

 

 

 

 

Figure 2: Model of RPS4 and RRS1 regulation. 

(A) In the absence of pathogen recognition, SRFR1 restrains RPS4 – possibly in a pre-activation complex 

with EDS1 and RRS1 – at endomembranes in the cytoplasm and facilitates NLR degradation via the 

proteasome. Constituting a possible link, SGT1 interacts with both SRFR1 and the E3 ligase complex 

component SKP1. Both the F-box protein CPR1 and an E4 ligase MUSE3 are involved in proteasomal NLR 

degradation. While HSP90 and SGT1 contribute to NLR degradation, they also positively regulate NLR 

stability through their chaperon function together with RAR1. Besides repressive effects on TCP transcription 

factors, nuclear SRFR1 might intercept nuclear NLRs to eliminate unintendedly active complexes to prevent 

autoimmunity. (B) Pathogen effectors can disrupt endomembrane associations of SRFR1 with NLRs and 

EDS1. Effector recognition might stimulate the release of NLR complexes into the cytosol and the de-

repression of nuclear NLR complexes and transcription factors, allowing for example TCPs and – through 

repression of negative regulators DND1 and DND2 – TPR1 positive regulatory functions in plant defense. 

AvrRps4-activated EDS1-RPS4-RRS1 complexes might undergo different re-arrangements. While in the 

cytosol, RPS4 TIR domain homo-dimeric interactions could trigger cell death, hetero-dimeric TIR 

interactions of RPS4 and RRS1 in the nucleus might be needed for defense gene activation through 

interactions with transcription factors (TF) like WRKYs, RPS4-interacting bHLH84, or SPL6 which is 

required for Pst AvrRps4 resistance 
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2. Results 

 

This study is divided into four parts. The aim of section 2.1 was to elucidate the contribution 

of RRS1a (Resistance to Ralstonia solanacearum 1a) and RRS1b to RPS4 (Resistance to 

Pseudomonas syringae 4)-mediated immunity. For this, the effect of the rrs1a/b double 

mutation on autoimmunity induced by RPS4 overexpression was examined by measuring 

immune outputs like plant stunting and transcriptional reprogramming and relating them to 

RPS4 transcript and protein amounts. Section 2.2 describes the characterization of 

transgenic Arabidopsis plants expressing RRS1-S, which were subsequently used for 

chromatin-immunoprecipitation to identify RRS1-S target genes and dissect RRS1-S 

rearrangements at the chromatin before and after pathogen recognition. To clarify the 

requirement of RRS1-S domain integrity for its function and especially its chromatin-

association, a targeted mutagenesis was performed to generate gain- and loss-of-function 

alleles of RRS1-S (section 2.3). In section 2.4, RPS4 pre- and post-activation protein 

complexes were purified and analyzed to acquire a concept of dynamic remodeling of 

RPS4-comtaining immune complexes during defense activation. 

 

 

2.1. RRS1 contributes to RPS4-induced autoimmunity 

 

Overexpression of RPS4 full length protein in stable transgenic Arabidopsis caused 

constitutive defense activation and stunted plant growth at low to normal growth 

temperatures but could be suppressed at high temperatures (Heidrich et al., 2013). RPS4 

like other TNLs (TIR-NB-LRR receptors) depends on the key immune regulator EDS1 

(Enhanced disease susceptibility 1) for its function, as displayed by wildtype (wt)-like 

growth of eds1-2 mutant plants overexpressing HA-StrepII-tagged RPS4 (35S:RPS4-HS, 

referred to as OE-RPS4-HS) at low growth temperature (Wirthmueller et al., 2007; Heidrich 

et al., 2013).  

Making use of the RPS4 temperature dependency (see section 1.7), a temperature 

shift (T-shift) system has been established for RPS4 activation: RPS4 overexpressing plants 

were grown at high temperature (28°C) to suppress autoimmunity and allow healthy and 

uniform plant growth. For a simultaneous activation of RPS4-dependent defense outputs, 

plants were shifted to low temperature (19°C). This released the inhibitory effects of high 
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growth temperature on RPS4 and triggered strong and homogenous defense signaling 

(Heidrich et al., 2013). Notably, OE-RPS4-HS autoimmune outputs partially depend on its 

signaling partner RRS1, as the growth phenotype of OE-RPS4-HS at 22° was partially 

suppressed in a rrs1a mutant background, and so was the transcriptional induction of a 

subset of genes induced after T-shift (Heidrich et al., 2013). The recent discovery of a 

second RPS4-RRS1 related NLR gene pair, designated RPS4b and RRS1b, involved in 

Arabidopsis resistance to Pseudomonas syringae p.v. tomato DC3000 (Pst) expressing 

AvrRps4, and the generation of rps4a/b and rrs1a/b double mutant lines (Saucet, 2013) 

raised our interest to further elucidate the interplay of RPS4 and RRS1. To clarify the role 

of RRS1 for RPS4-triggered defense outputs, Arabidopsis lines overexpressing either 

OE-RPS4-HS or YFP-tagged RPS4 (35S:RPS4-YFP, referred to as OE-RPS4-YFP) in the 

rrs1a/b double mutant background were generated and characterized.  

 

 RPS4b and RRS1b contribute to Pst AvrRps4 resistance 

To test the role of RPS4b and RRS1b in AvrRps4 recognition (Saucet, 2013), plants were 

syringe-infiltrated with Pst AvrRps4 and pathogen growth in leaves was monitored 3 days 

later (3dpi). In agreement with the detection of RPS4b and RRS1b as additional NLR gene 

pair working in AvrRps4 recognition (Saucet, 2013), both rps4a/b and rrs1a/b showed 

increased susceptibility to Pst AvrRps4 compared with the intermediate pathogen growth 

on rps4a and resistant Col-0 (Figure 3 A). Notably, both rps4a/b and rrs1a/b did not display 

hypersusceptibilty to Pst AvrRps4, whereas the eds1-2 mutant did (Figure 3 A). Therefore, 

the double mutant lines retain basal resistance. 

Indeed, when infiltrated with virulent Pst DC3000, bacterial growth in rps4a/b and 

rrs1a/b is similar to Col-0 and rps4a at 3dpi (Figure 3 B), showing that loss of both alleles 

of RPS4 or RRS1 does not compromise basal immunity to this pathogen. Taken together, 

these results indicate that RPS4 and RRS1 a and b alleles function additively in Pst AvrRps4 

resistance. Still, residual Pst AvrRps4 resistance of rps4a/b and rrs1a/b compared to the 

hypersusceptible eds1-2 raises the question if yet another NLR or NLR pair is involved in 

AvrRps4 recognition, or if this difference is merely due to eds1-2, but not rrs1a/b or 

rps4a/b defects in basal resistance.  
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Figure 3: RPS4b and RRS1b contribute to resistance towards Pst AvrRps4. 

Pathogen performance was monitored on Col-0, eds1-2, rps4a, rps4a/b and rrs1a/b double mutants. Bacterial 

growth quantification on 5-week-old plants at 3 days after bacterial infiltration (3dpi) of (A) avirulent Pst 

AvrRps4, OD600=0.0001, or (B) virulent Pst DC3000, OD600=0.0001. Values are means +/- standard errors 

(n ≥ 5). ANOVA followed by a post-hoc Tukey’s test was performed to group genotypes depending on 

significant differences as indicated by letters (p<0.05). Bacterial growth experiments were repeated 

independently at least three times with similar results. cfu = colony forming unit. 

 

 OE-RPS4-mediated dwarfism partially depends on RRS1 a and b 

As both RRS1 paralogs a and b mediated AvrRps4 recognition (see section 2.1.1) and 

autoimmunity caused by RPS4 overexpression was partially suppressed by the mutation of 

RRS1a (Heidrich et al., 2013), the effect of a complete RRS1 knock out (rrs1a/b) on RPS4 

induced autoimmunity was analyzed further. For that, either 35S:RPS4-HS or 

35S:RPS4-YFP construct was crossed into the rrs1a/b double mutant background and 

homozygous T3 plants were selected for each transgene. 

To quantify the RPS4-induced growth phenotype, OE-RPS4-HS or OE-RPS4-YFP 

overexpressing plants in different genetic backgrounds and Col-0 wt plants were 

germinated at 28°C, transferred to 19°C after one week and plant morphology and fresh 

weight were determined at different plant age for a qualitative and quantitative readout of 

plant growth at 19°C. Both OE-RPS4-HS (Col-0) and OE-RPS4-YFP (rsp4a) plants were 

severely stunted, while plant growth was restored to Col-0 wt-like growth in OE-RPS4-HS 

eds1-2 or OE-RPS4-YFP eds1-2 (Figure 4). In contrast to eds1-2, the rrs1a/b only partially 

rescued plant dwarfism caused by OE-RPS4-HS or OE-RPS4-YFP overexpression, 

allowing intermediate growth compared to Col-0 wt.  

To validate that the measured growth phenotype of OE-RPS4-YFP plants is due to 

functional RPS4, the non-functional RPS4 P-loop mutant was included as additional 
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control (Zhang et al., 2004; Wirthmueller et al., 2007). The P-loop region is a highly 

conserved motif in NLR NB domains and includes a conserved lysine that binds the -/-

phosphate of ADP or ATP, respectively (Takken et al., 2006; van Ooijen et al., 2008; 

Bonardi et al., 2012). Mutations of this conserved lysine in RPS4 resulted in a loss-of-

function allele (Zhang et al., 2004; Wirthmueller et al., 2007), probably due to reduced ATP 

binding. Indeed, the OE-RPS4P-loop-YFP rps4a line grew Col-0 wt-like (Figure 4 A), 

suggesting that phenotypes observed with overexpressed native RPS4 are resulting from its 

NLR function rather than being an artifact of protein over-accumulation.  

 

 

Figure 4: The rrs1a/b double mutation partially suppresses RPS4 autoimmunity. 

OE-RPS4-YFP or OE-RPS4-HS plants in different genetic backgrounds, as well as inactive 

OE-RPS4P-loop-YFP and/or Col-0 were grown at 19°C to allow growth phenotype development. 5.5-week-old 

plants were harvested. (A, B) Growth phenotype was determined via plant fresh weight and morphology. 

ANOVA followed by a post-hoc Tukey’s test was performed to group genotypes depending on significant 

differences as indicated by letters (p<0.05). (C, D)  RPS4-YFP and RPS4-HS accumulation was monitored 

by western blot using GFP and HA antibody, respectively. Ponceau S staining indicated equal protein 

loading and transfer to the membrane. 

 

Since RPS4 overexpressing plants grown at moderate temperatures constitutively show 

effector-independent activation of immunity, the proposed RRS1 sensor function (see 

section 1.3.4) should be dispensable for the manifestation of plant dwarfism. The fact that 

both rrs1a and rrs1a/b suppress RPS4-induced growth reduction suggests RRS1 is an 

active part of RPS4-mediated defense initiation and signaling, rather than merely a sensor 
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for pathogen effectors. Interestingly, the suppressive effect of rrs1a/b double mutant on 

plant dwarfism was significantly higher than that of the rrs1a single (Figure 4 B), indicating 

a contribution of both RRS1 alleles to RPS4 autoimmune signaling and the ability of RRS1b 

to partially compensate for the loss of RRS1a in RPS4-overexpressing plants. However, in 

both RPS4 overexpression lines tested the RPS4 protein levels at 19°C were reduced in 

rrs1a/b compared to rps4 or Col-0 backgrounds (Figure 4 C, D). The partial suppression 

of dwarfism might therefore be due to reduced RPS4 steady state accumulation, and RRS1 

impact through the stabilization of RPS4 rather than RRS1 active participation in defense 

signaling.  

 

 

 RPS4 protein levels are reduced in rrs1a/b independent of growth conditions 

As described above, RPS4-YFP and RPS4-HS protein amounts were lower in rrs1a/b 

compared to rps4a or Col-0 backgrounds, respectively, when plants are grown at 19°C and 

immunity is activated by autoactive RPS4. To elucidate if the rrs1a/b effect of reducing 

RPS4 protein accumulation is a general one or if it is connected to RPS4 protein activity at 

19°C, RPS4 protein levels were monitored at 28°C where RPS4 autoactivity is suppressed. 

Furthermore, a time course experiment monitoring RPS4-YFP amounts after T-shift of 

plants grown at 28° was performed. Similar to RPS4 protein accumulation pattern at 19°C, 

RPS4 protein levels in plants grown constantly at 28°C were diminished in rrs1a/b 

compared to both rps4a and eds1-2 (Figure 5 A). Moreover, RPS4 protein accumulation 

was slightly decreased in rrs1a/b and eds1-2 when plants were exposed to moderate 

temperature of 19°C (Figure 5 B).  

A possible reason for the decrease of RPS4 protein amounts after T-shift might be 

enhanced degradation of activated NLR receptors. Plants might sense a conformational 

change of NLRs upon activation and try to avoid excessive defense activation due to 

misregulation of these critical signaling components. Only RPS4 over-expressing plants in 

the rps4a or Col-0 background were capable of triggering defense responses, thus initiating 

a positive feedback loop leading to increased RPS4 expression and defense outputs. This 

is feasible even though RPS4 is expressed not under its own promoter carrying its specific 

regulatory elements but under the cauliflower mosaic virus 35S-promoter, because this 

constitutive promoter is responsive to salicylic acid (Qin et al., 1994; Redman et al., 2002), 
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the plant hormone induced upon and involved in regulation of defense responses to 

biotrophic pathogens (An and Mou, 2011). 

 

 

Figure 5: RPS4-YFP protein levels are reduced in rrs1a/b and further decrease after T-shift. 

OE-RPS4-YFP lines in different genetic backgrounds were grown at 28°C to suppress autoimmune phenotype. 

Inactive OE-RPS4P-loop-YFP and Col-0 wt plants were grown alongside as controls. RPS4-YFP accumulation 

in 3.5-week-old plants was monitored at 0, 8 and 24 hours (h) after T-shift or in plants grown continuously 

at 28°C by western blot using GFP antibody. (A) RPS4-YFP accumulation in plants shifted to 19°C to 

activate RPS4-mediated autoimmunity. (B) RPS4-YFP accumulation in plants grown continuously at 28°C. 

Each sample contained leaf discs of 3 different plants, respectively. Ponceau S staining indicated equal protein 

loading and transfer to the membrane. 

 

For several NLR receptors, including RPS4, defense activation requires their nuclear 

localization (see section 1.5.4; Shen et al., 2007; Wirthmueller et al., 2007; Cheng et al., 

2009; Bai et al., 2012; Inoue et al., 2013; Padmanabhan et al., 2013), and temperature 

sensitivity of SNC1, RPS4 and tobacco N is related to their nuclear accumulation (see 

section 1.7; Cheng et al., 2009; Padmanabhan et al., 2013; Zhu et al., 2010a; Mang et al., 

2012). To test whether the partial recovery of plant growth in OE-RPS4-YFP rrs1a/b is due 

to a changed localization of the RPS4-YFP protein, plants were examined by confocal 

microscopy to monitor protein localization at 28°C and after T-shift to 19°C (Figure 6). As 

described above (see section 2.1.2), RPS4-YFP signal was lower in rrs1a/b compared to 

rps4a. Still, for all lines tested, nuclear RPS4-YFP signal could be visualized both with and 

without T-shift (Figure 6).  
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Figure 6: RPS4-YFP localization is not obviously altered in rrs1a/b. 

Pictures were taken of 2.5-week-old plants grown continuously at 28°C or shifted to 19°C for 8h. RPS4-YFP 

localization was monitored under consistent microscopy conditions for all genotypes tested. Col-0 was 

included as an autofluorescence background control. Scale bar represents 20µm. Excited at 514nm, emission 

measured for YFP at 515-558nm and chlorophyll autofluorescence 650-720nm. Experiment was performed 

only once. 

 

This result contrasts the published nucleo-cytoplasmic localization of RPS4 (Wirthmueller 

et al., 2007), but the lack of cytoplasmic RPS4 signal might be due to the overall low 

RPS4-YFP fluorescence in this experiment and the difficulty to detect RPS4 protein in the 

cytoplasm, potentially due to a dilution effect in the cytoplasm. However, since nuclear 

RPS4 is crucial for triggering immune responses (Wirthmueller et al., 2007) and nuclear 

RPS4-YFP could be detected in rrs1a/b, the suppression of dwarfism is likely not caused 

by aberrant subcellular localization. 

To conclude, RRS1a and RRS1b contribute to RPS4 stability both in uninduced 

conditions at 28°C and after induction of RPS4 autoimmunity at 19°C without obviously 

affecting RPS4 localization.  

 

 RPS4 transcripts are reduced in rrs1a/b only after T-shift 

Besides the effect of RRS1 on RPS4 stability at the protein level discussed above, another 

potential reason for reduced RPS4 protein amounts in rrs1a/b could be silencing of the 

RPS4 transgene, leading to lower mRNA expression and thus lower protein accumulation. 

Although the RPS4 transgenes are stably expressed in other genetic backgrounds, the 

consequence of the rrs1a/b double mutant on RPS4 transcripts was evaluated to exclude 

transgene silencing. For this, RNA samples were collected at 0, 8 and 24h after T-shift and 
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analyzed by qPCR. Because alternative splicing of RPS4 mRNA is induced upon infection 

with Pst AvrRps4 (Zhang and Gassmann, 2007), and RPS4 alternative transcripts are 

essential for its resistance function against Pst AvrRps4 (Zhang and Gassmann, 2003), 

several RPS4 primer pairs were tested to monitor RPS4 expression throughout the gene 

(Figure 7 A).  

 

Figure 7: Abundance of RPS4 mRNA in OE-RPS4-YFP transgenic lines upon T-shift. 

OE-RPS4-YFP plants in different genetic backgrounds were grown at 28°C together with Col-0 wt controls. 

RPS4 expression in 3.5-week-old plants before (0h) and at 8h and 24h after T-shift was analysed by qPCR. 

(A) Primer alignment to RPS4 and nomenclature used in (B). (B) Normalized fold expression was calculated 

by relating sample values to the geometric mean of two reference genes (GAPDH and expressed protein) and 

normalizing to the OE-RPS4-YFP rps4 uninduced (0h) sample. Replicates contained leaf discs of 3 different 

plants, respectively. 
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Starting amounts of RPS4 transcript (0h, before T-shift) were higher in eds1-2, but similar 

in OE-RPS4-YFP rps4a and rrs1a/b for all primer pairs tested (Figure 7 B), suggesting an 

unvaried RPS4 expression in rrs1a/b compared to rps4 and thus arguing against a possible 

silencing of the transgene in rrs1a/b. At 8h and 24h after T-shift, RPS4 mRNA levels were 

decreased in rrs1a/b compared to rps4a and eds1-2. Thus, reduced RPS4 transcript 

accumulation due to lower transgene expression or transcript stability might be one of the 

mechanisms leading to reduced RPS4 protein amounts in the rrs1a/b double mutant after 

T-shift. 

 

 RPS4-induced defense gene activation is partially suppressed in rrs1a/b 

Suppression of plant growth leading to dwarfism is an easy measurable trait and is generally 

connected to uncontrolled enhanced induction of plant immunity as reported in 

autoimmune mutants (Alcázar and Parker, 2011). To test whether the suppression of plant 

growth, which was used before as an output for RPS4 immune signaling (see section 2.1.2), 

correlated with immune-related transcriptional reprogramming in RPS4 over-expressing 

plants, the levels of defense gene expression in various lines after RPS4 activation by 

T-shift were analyzed. Several defense marker genes known to display EDS1-dependent 

regulation during RPS4-RRS1 mediated resistance towards Pst AvrRps4 (García et al., 

2010) were tested by qPCR: PR1, ICS1 and PBS3, FMO1 and EDS1 itself were chosen as 

examples for EDS1-dependent gene induction, and DND1 and ERECTA for EDS1-

dependent repression (Figure 8).  

Defense gene induction in OE-RPS4-YFP rrs1a/b was 10-100fold lower for the 

genes tested than in OE-RPS4-YFP rps4a and completely absent in OE-RPS4-YFP eds1-2 

(Figure 8 A). The defense-induced repression of genes was not detected in both eds1-2 and 

rrs1a/b compared to rps4a mutant background (Figure 8 B). This demonstrated that the 

partial suppression of RPS4-mediated dwarfism in rrs1a/b is also reflected in reduced 

RPS4-induced immune activation in rrs1a/b measured by the transcriptional 

reprogramming of several defense marker genes. Together with the results on RPS4 protein 

and mRNA accumulation, it is likely that the suppression of effector-independent, T-shift 

induced RPS4 signaling outputs in the absence of RRS1 is due to reduced RPS4 

accumulation both at the mRNA and protein levels. This suggests that RRS1 has a 

stabilizing effect on RPS4. 

 



Results 

 

33 

 

 

Figure 8: T-shift-induced regulation of defense-related genes in OE-RPS4-YFP is partially suppressed 

in rrs1a/b. 

OE-RPS4-YFP plants in different genetic backgrounds were grown at 28°C to suppress autoimmune 

phenotype. Col-0 wt plants were grown alongside as controls. Transcriptional reprogramming of EDS1-

dependent (A) induced and (B) repressed genes in 3.5-week-old plants before (0h) and at 8h and 24h after T-

shift was analysed by qPCR. Normalized fold expression was calculated by relating sample values to the 

geometric mean of two reference genes (GAPDH and expressed protein) and normalizing to the OE-RPS4-

YFP rps4 uninduced (0h) sample. Replicates contained leaf discs of 3 different plants, respectively.  
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 Growth suppression by RPS4 overexpression depends both on RPS4 protein 

amounts and genetic background 

To tackle the question whether suppression of RPS4-mediated autoimmunity in rrs1a/b is 

due to reduced RPS4 protein accumulation or due to impaired RPS4 signaling by removal 

of RRS1a and b, the OE-RPS4-YFP phenotyping experiments described above (see 2.1.2) 

were repeated including two additional lines with low levels of RPS4-YFP protein: (1) A 

35S:RPS4-YFP rps4a line designated CP-OE-RPS4-YFP which had reduced protein 

amounts and wt-like growth at 22°C and (2) a transgenic rps4a line expressing RPS4-YFP 

under its native promoter, designated pRPS4:RPS4-YFP, with very low protein expression 

levels (both lines kindly provided by Chunpeng Yao, Parker lab). The inactive 

OE-RPS4P-loop-YFP and the low expression line pRPS4:RPS4-YFP showed normal growth 

which was not discriminable from Col-0 or signaling inactive OE-RPS4-YFP eds1-2. This 

indicates that a certain threshold of active RPS4 is required for the development of a 

dwarfed growth phenotype (Figure 9 A, B). Interestingly, when grown at 19°C, the 

CP-OE-RPS4-YFP also had reduced protein levels and a less severe, but not significantly 

reduced dwarfism compared to the original OE-RPS4-YFP rps4a line used before (Figure 

9 A, B). This further emphasizes the correlation between protein amounts and growth 

impairment in RPS4 overexpressing plants. Even though the protein amounts in 

CP-OE-RPS4-YFP were lower than in OE-RPS4-YFP rrs1a/b (Figure 9 B), the stunting 

was not: fresh weight of CP-OE-RPS4-YFP rps4a was not significantly different from the 

original OE-RPS4-YFP rps4a line, whereas there was a significant difference between 

OE-RPS4-YFP in rps4a and rrs1a/b (Figure 9 A). This suggests that not only reduced RPS4 

protein amounts are responsible for the partial suppression of RPS4-dependent defense 

outputs in rrs1a/b, but also the genotypic background influences RPS4 functions. Hence, 

RRS1 might have an additional role in RPS4 signaling beyond pathogen sensing and RPS4 

stabilization.  
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Figure 9: OE-RPS4-YFP plant growth phenotype depends on both RPS4 protein amounts and genetic 

background. 

Different RPS4-YFP transgenic lines together with Col-0 wt were grown at 19°C to allow autoimmunity and 

harvested when 5.5 weeks old. (A) Growth phenotype was determined by measuring plant fresh weight and 

recording morphology of 15 individual plants per line. ANOVA followed by a post-hoc Tukey’s test was 

performed to group genotypes depending on significant differences as indicated by letters (p<0.05). (B)  

RPS4-YFP accumulation was monitored by western blot using GFP antibody. Ponceau S staining indicated 

equal protein loading and transfer to the membrane. Each sample contained leaf material of 3 different plants. 

This experiment was performed only once.  

 

 Inhibition of the 26S proteasome induces increased RPS4 protein accumulation 

I have established that RRS1 is required for RPS4 protein accumulation, but the reason for 

lower RPS4 protein accumulation in rrs1a/b compared to the other genetic backgrounds 

remains elusive. There is increasing evidence for a role of 26S proteasome in the regulation 

of plant immunity by NLR degradation (see section 1.6). To test whether 26S proteasome-

mediated protein degradation is responsible for the decreased RPS4 levels in rrs1a/b, the 

effect of the proteasome inhibitor MG132 on RPS4 stability was examined. Plants were 
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grown in MS liquid medium in sterile 24-well-plates at 19°C to allow constitutive 

activation of RPS4-triggered outputs. After 2.5 weeks, the medium was exchanged to MS 

with MG132 or DMSO as a mock control, and protein samples were harvested at different 

time points after treatment. Inhibition of the 26S proteasome led to an increase in 

RPS4-YFP protein amounts in OE-RPS4-YFP rps4a and eds1-2, and in inactive RPS4P-loop 

protein compared to the mock control at 8h post treatment (Figure 10 A). Similarly, an 

increase of RPS4-YFP protein was detected in the rrs1a/b genetic background when treated 

with MG132, even though total RPS4-YFP amounts remained lower compared to the other 

genotypes and the trend was not so clear among different replicates (Figure 10 A, data not 

shown).  Thus, RPS4-YFP is degraded via the plant 26S proteasome in all genotypes tested, 

including rrs1a/b. Similarly, in OE-RPS4-HS transgenic lines, RPS4 accumulated in all 

genotypes tested. However, in OE-RPS4-HS plants the RPS4 accumulation was much more 

pronounced in rrs1a and rrs1a/b than in Col-0 or eds1-2 (Figure 10 B). Thus, although 

RPS4 degradation depends on the plant proteasome, no conclusive effect of the rrs1a/b 

mutation could be established. 

 

 

Figure 10: RPS4 is degraded via the plant 26S proteasome independent of the genetic background. 

OE-RPS4-YFP or OE-RPS4-HS plants in different genetic backgrounds and Col-0 wt plants were grown in 

sterile liquid cultures in 24-well plates at 19°C. RPS4 protein accumulation in 2.5-week-old plants treated 

with 60µM MG132 proteasome inhibitor or DMSO (mock) was monitored at 8h post treatment. Each sample 

represented one well with several individual plants. Ponceau S staining indicated equal protein loading and 

transfer to the membrane. Experiment was performed twice independently with three technical replicates each. 
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2.2. Transgenic RRS1-S is functional in Arabidopsis 

 

RRS1 is a unusual NLR protein not only because of its cooperative function with RPS4 

against different pathogens (Birker et al., 2009; Narusaka et al., 2009a; Narusaka et al., 

2009b), but also due to its C-terminal WRKY transcription factor DNA-binding domain 

(Deslandes et al., 2002). RRS1a is present in Arabidopsis ecotypes in different isoforms 

distinguishable by their ability to confer resistance to Ralstonia solanacearum expressing 

PopP2, named RRS1-R (for resistant) originally discovered in the ecotype Niederzenz Nd-1 

and RRS1-S (for susceptible) found in Col-5 (Deslandes et al., 1998; Deslandes et al., 2002). 

Furthermore, RRS1-R but not RRS1-S induced cell death upon resistance signaling 

activation by PopP2 and AvrRps4, indicating not only possibly different ways of immune 

signaling, but also a greater signaling potency of RRS1-R compared to RRS1-S (Deslandes 

et al., 2002; Noutoshi et al., 2005), even though NLR triggered cell death could be 

uncoupled from disease resistance activation (Bendahmane et al., 1999; Gassmann, 2005; 

Heidrich et al., 2011; Bai et al., 2012). Because Col-0 remains the ecotype preferentially 

used in Arabidopsis research and Col-0 RRS1-S together with RPS4 is fully functional in 

conferring resistance to Pst AvrRps4, I focused on the Col-0 allele of RRS1. Since Col-0 

confers this resistance without inducing cell death, the Col-0/Pst AvrRps4 patho-system is 

of special interest since it allows the analysis RPS4 and RRS1-S cooperative resistance 

functions uncoupled from cell death response. 

 

 3FTH-RRS1-S confers resistance to Pst AvrRps4 without increasing basal 

resistance to Pst DC3000 

Arabidopsis Col-0 rrs1a mutant lines expressing RRS1-S, the Col-0 allele of RRS1a, with 

an N-terminal triple-flag and triple-HA tag connected by a TEV cleavage site (3FTH) under 

its own promoter (hereafter named 3FTH-RRS1-S, kindly provided by Laurent Deslandes) 

were characterized. After selection and propagation of homozygous lines, the ability of 

transgenic 3FTH-RRS1-S to confer resistance to Pst AvrRps4 was tested in bacterial growth 

assays (Figure 11). Since both rrs1a and rps4a displayed the same intermediate 

susceptibility towards Pst AvrRps4 compared to wt (Heidrich et al., 2013), only rps4a 

single mutant was included as a control for pathogen growth. Compared to resistant Col-0 

and hypersusceptible eds1-2, rps4a allowed intermediate pathogen growth (Figure 11 A). 

All three independent transgenic 3FTH-RRS1-S lines were indistinguishable from Col-0, 



Results 

 

38 

 

showing no macroscopic disease symptoms at 4 days post infection (data not shown). Pst 

AvrRps4 proliferation was similar to Col-0 wt and statistically different from the 

intermediate susceptible rps4a mutant in all three 3FTH-RRS1-S lines (Figure 11 A). Thus, 

3FTH-RRS1-S can complement the rrs1a mutant background and is functional in mediating 

AvrRps4-triggered resistance.  

 

 

Figure 11: Transgenic RRS1-S confers resistance to Pst AvrRps4 without increasing basal immunity 

to Pst DC3000.  

Pathogen performance was monitored on Col-0, eds1-2, rps4a and three independent 3FTH-RRS1-S 

transgenic lines. Bacterial growth quantification 3 days post syringe infiltration with (A) avirulent Pst 

AvrRps4, OD600=0.0001 of 4.5-week-old plants, or (B) with virulent Pst DC3000, OD600=0.0001 of 5-week- 

old plants. ANOVA followed by a post-hoc Tukey’s test was performed to group phenotypes depending on 

significant differences (p<0.05). Bacterial growth experiments were repeated at least three times with similar 

results. 

 

Due to the close linkage of RPS4 and RRS1 on the chromosome and the short intergenic 

spacer of only 254bp in Col-0 (Gassmann et al., 1999), the own promoter fragment used 

for the generation of RRS1 transgenic lines carried a substantial portion of the RPS4a gene: 

1902bp of the RPS4 coding region, covering exons 1 and 2 coding for the TIR-NB part of 

RPS4. Expression of RPS4 induced effector-independent cell death in transient assays in 

tobacco (Zhang et al., 2004). This cell death inducing character of RPS4 was specifically 

mediated by the N-terminal part consisting of the TIR domain and parts of the NB domain 

(Swiderski et al., 2009). Also, overexpression of RPS4 mediated enhanced resistance to Pst 

DC3000 and Pst AvrRps4 in Arabidopsis (Heidrich et al., 2013). To rule out that wt-like 

resistance to Pst AvrRps4 determined in 3FTH-RRS1-S is due to autoimmunity of 

ectopically expressed RPS4 from the cloned promoter element of RRS1-S, the transgenic 

lines were tested for basal resistance to Pst DC3000. Compared to hypersusceptible eds1-2 
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compromised in basal resistance, growth of Pst DC3000 was reduced in susceptible Col-0 

and rps4a (Figure 11 B). Neither of the 3FTH-RRS1-S lines showed increased basal 

resistance to Pst DC3000 compared to Col-0 (Figure 11 B), demonstrating that the 

resistance phenotype to Pst AvrRps4 described above is unlikely to be due to RPS4 

autoimmunity.  

The accumulation of 3FTH-RRS1-S protein in the transgenic lines both in the 

absence and presence of Pst AvrRps4 was analyzed by western blot. While the different 

transgenic lines accumulated 3FTH-RRS1-S to various degrees, in all lines tested the 

3FTH-RRS1-S protein levels were similar in untreated and Pst AvrRps4 spray inoculated 

leaf tissue (Figure 12). Hence, 3FTH-RRS1-S accumulates to detectable levels and is 

unaffected by AvrRps4 recognition.  

 

 

Figure 12: 3FTH-RRS1-S protein accumulation is unaltered upon Pst AvrRps4 infection. 

Protein samples of healthy or Pst AvrRps4 spray-inoculated (OD600=0.2, harvest at 8hpi) 4-week-old 3FTH-

RRS1-S, Col-0 and rrs1a were analyzed by western blot. Numbers denote independent transgenic lines. 

Ponceau S staining indicated equal protein loading and transfer to the membrane. 

 

For future experiments, 3FTH-RRS1-S line #5 was chosen as it consistently showed strong 

resistance to Pst AvrRps4 and had a high 3FTH-RRS1-S protein level. 

 

 RRS1-S localizes predominantly to the nucleus 

RRS1-R and RRS1-S interact with the Ralstonia effector PopP2, and upon transient co-

expression in Arabidopsis protoplasts, both PopP2 and RRS1 proteins could be detected in 

the nucleus by confocal laser microscopy (Deslandes et al., 2003). However, when a 

nuclear localization signal of the effector was deleted and the effector localized to the 

cytoplasm, both RRS1-R and RRS1-S co-localized to the cytoplasm as well (Deslandes et 
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al., 2003). As the requirement of nuclear localization for functionality had been 

demonstrated for several NLR proteins including RRS1 (Deslandes et al., 2003; Burch-

Smith et al., 2007; Shen et al., 2007; Wirthmueller et al., 2007; Cheng et al., 2009; Bai et 

al., 2012; Inoue et al., 2013; Padmanabhan et al., 2013), the nuclear localization of 

transgenic 3FTH-RRS1-S was tested in biochemical assays. For all three independent 

3FTH-RRS1-S transgenic lines, RRS1-S was detected predominantly in the nuclei-enriched 

fraction and partly in the cytoplasm, validating the expected localization of the transgenic 

fusion protein (Figure 13). RPS4 with reported nucleo-cytoplasmic distribution 

(Wirthmueller et al., 2007) was included as a control in fractionation experiments using 

T-shift activated OE-RPS4-HS leaf material. Purity of obtained fractions was determined 

by detecting the cytoplasmic marker PEPC or the nuclear histone H3 (Figure 13). It can 

therefore be concluded that in uninduced leaf tissue RRS1-S is localized mainly to the 

nucleus and partly to the cytoplasm. 

 

 

Figure 13: RRS1-S localizes partly to the cytoplasm and predominantly to the nucleus.  

3.5-week-old healthy 3FTH-RRS1 plants was harvested and used for nuclear fractionation. Numbers denote 

independent transgenic lines. Temperature-shift activated OE-RPS4-HS (8h) was included as a control. 

3FTH-RRS1 and RPS4-HS were detected with HA antibody. Cytosolic PEPC and nuclear Histone H3 serve 

as localization markers and controls for efficient nuclei enrichment as well as loading controls. 

 

To test if RRS1-S localization changes after triggering immune signaling by the AvrRps4 

effector, nuclear fractionation was repeated using healthy and Pst AvrRps4 spray-infected 

leaf tissue. 3FTH-RRS1-S could be detected in the nucleus both before and after infection, 

whereas protein amounts were too low for detection in the input or nuclei-depleted fractions 

(Figure 14). Still, as both healthy and infected samples allowed 3FTH-RRS1-S detection 

in the nucleus, its localization is not obviously changed upon defense activation with Pst 

AvrRps4. 
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Figure 14: RRS1-S nuclear localization is independent of Pst AvrRps4 infection. 

3.5-week-old 3FTH-RRS1 plants (line #5) were spray-inoculated with Pst AvrRps4 OD600=0.4 (+) or mock-

treated with 10mM MgCl2 (–). Leaf tissue was harvested at 6hpi and used for nuclear fractionation. T-shift 

activated OE-RPS4-HS (8h) was included as a control. 3FTH-RRS1 and RPS4-HS were detected with HA 

antibody. Cytosolic PEPC and nuclear Histone H3 serve as localization markers and controls for efficient 

nuclei enrichment as well as loading controls. 

 

 Defense gene regulation comparable in Col-0 and 3FTH-RRS1-S 

To further elucidate whether transgenic RRS1 is able to trigger wt-like transcriptional 

reprogramming, regulation of defense-related genes was tested by qPCR at different time 

points after syringe infiltration with Pst AvrRps4. Besides Col-0 as a positive control, the 

rrs1a/b double mutant was included which was impaired in recognition of AvrRps4. 

Generally the difference between Col-0 as a positive control and rrs1a/b as a negative 

control for AvrRps4 recognition was difficult to define as rrs1a/b was still responding to 

the bacterial treatment due to active PTI signaling, leading to gene expression changes 

similar to the ones detected in AvrRps4-triggered ETI. However, subtle differences could 

be observed since in rrs1a/b (PTI) several genes were upregulated later than in Col-0 and 

3FTH-RRS1-S (ETI) due to bacterial suppression of PTI in the AvrRps4 non-recognizing 

background rrs1a/b (Figure S1), indicating (but not proving) a proper signaling function of 

3FTH-RRS1-S in terms of transcriptional defense outputs. 

 

 Approaches for RRS1 chromatin-immunoprecipitation (ChIP) 

I could demonstrate that the 3FTH-RRS1-S line (1) shows nuclear localization (Figure 14), 

(2) complements the rrs1a disease resistance phenotype towards Pst AvrRps4 (Figure 11) 

and (3) induces wt-like transcriptional reprogramming after Pst AvrRps4 infection (Figure 

S 1). Moreover, the biochemical nuclear fractionation method described above leads to 
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leakage of nucleoplasmic proteins (García et al., 2010; Parker group, unpublished), 

suggesting that 3FTH-RRS1-S showing a nuclear signal is closely linked to or even 

physically associated with chromatin. RRS1-R nuclear localization and in-vitro association 

with W-boxes-containing DNA has been published (Deslandes et al., 2002; Noutoshi et al., 

2005). Disruption of the in-vitro DNA binding by an amino acid insertion in the WRKY 

domain immediately after the highly conserved WRKYGQK motif caused an in-vivo 

autoactive immune phenotype associated with stunting, activation of defense marker genes 

and cell death (Noutoshi et al., 2005). These observations suggest that RRS1 functions at 

the chromatin to repress defense gene activation, while disruption of DNA binding leads to 

de-repression of defense related genes and thus allows defense activation. Based on these 

data, the described 3FTH-RRS1-S line was used in a ChIP-sequencing (ChIP-seq) approach 

with the aim to identify RRS1 DNA binding sites to gain fundamental insight into RRS1 

location at the chromatin. For a trial ChIP-seq experiment healthy 3FTH-RRS1-S leaf 

material was used, with the expectation that RRS1 is bound to the chromatin exerting a 

repressive effect on defense gene expression in unchallenged plants. As a negative control 

for unspecific background binding Col-0 plants were included, and as a positive control for 

the ChIP procedure the WRKY18 transcription factor stably expressed in Arabidopsis 

(op:WRKY18-HA, Rainer Birkenbihl) was processed. However, for a dynamic view of 

RRS1 location and function at the chromatin, proposedly in complexes together with RPS4 

and other proteins such as EDS1 and transcription factors, further ChIP-seq experiments 

including different time points after Pst AvrRps4 challenge should reveal not only location 

of resting RRS1 at the chromatin, but also potential repositioning of RRS1-containing 

complexes after defense activation to induce or facilitate defense gene reprogramming.  

 For the trial ChIP-seq, chromatin was extracted after formaldehyde crosslinking of 

proteins with nearby other proteins and DNA. DNA was disrupted by ultrasonication and 

tagged RRS1-S and WRKY18 immunoprecipitated with HA-antibody. The immuno-

precipitated DNA was purified after reversing the crosslinking. WRKY18 samples were 

positively tested in qPCR for enrichment of target gene promoter fragments. For 

3FTH-RRS1 and Col-0 input and HA-ChIP samples, linear DNA amplification (LinDA) 

was performed before barcoding samples during library preparation for sequencing. 

Barcoded ChIP-seq libraries were PCR-amplified and fragments of ~200-400bp selected. 

Samples were sequenced by the Max Planck genome center using the Illumina HiSeq2500. 

Sequencing reads were processed and compared using the peak calling programs MACS 
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(Zhang et al., 2008), QuEST (Valouev et al., 2008) and peakzilla (Bardet et al., 2013). 

Around 200 genes could be identified as enriched in RRS1-S but not Col-0 HA-ChIP 

samples (Barbara Kracher). Although the peaks in the RRS1-S HA-ChIP samples were 

detected in the peak calling programs, closer inspection of individual peaks showed no 

strong enrichment of ChIP-seq reads in RRS1 compared to Col-0 (Figure 15).  

 

 

Figure 15: ChIP-seq alignment in integrative genome viewer (IGV) illustrates scarce/insufficient 

enrichment of DNA sequences in RRS1 compared to Col-0 samples.  

Healthy leaf tissue of 3-week-old 3FTH-RRS1 or Col-0 plants was used for ChIP-seq analysis. Sequencing 

reads were aligned and peak-calling performed with three different programs, formally resulting in ~200 

RRS1-enriched genes detected by the MACS peak-calling program. Presentation in IGV revealed that peaks 

identified by peak-calling did not show strong enrichment in RRS1 HA-ChIP samples.  

  

Since the decision to use healthy plant material for the trial ChIP was based on the 

assumption rather than experimental proof that only inactive RRS1 is bound to the DNA, 

the ChIP was repeated including Pst AvrRps4 infected leaf tissue for a more dynamic view 

of RRS1-DNA associations during pathogen defense. For this, 3-week-old 3FTH-RRS1-S 

as well as Col-0 were spray-inoculated with Pst AvrRps4 (OD600=0.4) or mock-treated with 

10mM MgCl2 and leaf tissue was harvested at 8hpi. Mock-treated WRKY18-HA leaf tissue 

was included as positive ChIP control. Pst AvrRps4 induced defense gene activation was 

monitored by qPCR analysis of ICS1 as an early induced defense marker gene, and protein 

levels of 3FTH-RRS1-S were monitored by western blot to ensure sufficient and 

comparable protein expression in both infected and mock-treated plants (Figure 16). All 
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samples were passed through the ChIP procedure described above. 3FTH-RRS1-S and 

Col-0 input and HA-ChIP samples are currently analyzed at the Max Planck genome 

center.  

 

 

Figure 16: Defense gene induction and RRS1-S protein levels after Pst AvrRps4 infection in ChIP-seq 

material.  

3-week-old 3FTH-RRS1 or Col-0 plants were spray-inoculated with Pst AvrRps4 (OD600=0.4) or mock-

treated with 10mM MgCl2. Leaf tissue of several plants was harvested at 0, 4 and 8h post treatment in three 

replicates and used to monitor defense gene activation and protein accumulation. (A) qPCR analysis revealed 

induction of ICS1 in Pst AvrRps4 infected, but not mock treated samples. (B) RRS1 protein levels were 

detected by western blot probing with aHA antibody. Equal loading and protein transfer to membrane was 

monitored by ponceau-S staining. Despite of low blot quality, no effect of time and treatment was detected 

for 3FTH-RRS1-S protein accumulation. 

 

 

2.3. RRS1-S domain function and activity – a targeted mutational analysis 

 

The canonical structure of TNL proteins has been introduced above (see section 1.2). In 

summary, they share a conserved domain structure consisting of an N-terminal TIR, a 

central NB-ARC and a C-terminal LRR domain (Takken et al., 2006; Eitas and Dangl, 

2010; Bonardi et al., 2012). RRS1 additionally carries a WRKY transcription factor DNA-

binding domain at its C-terminus (Deslandes et al., 2002). For a better insight into the 

domain functions of this unusual NLR protein, several targeted mutations were introduced 

into the genomic RRS1-S sequence to generate predicted gain-of-function (GOF) or loss-

of-function (LOF) alleles of RRS1-S and test those mutated proteins for modified activity 

in planta. 

A
. 

B
. 



Results 

 

45 

 

 Toll-/interleukin-1 receptor (TIR) domain 

Because the TIR domain is proposed to be important for downstream signaling activation 

in plant TNLs (Frost et al., 2004; Michael Weaver et al., 2006; Swiderski et al., 2009; Chan 

et al., 2010; Krasileva et al., 2010) and the function of RPS4 and RRS1 depends on the 

integrity of the TIR domain dimerization interface (Williams et al., 2014), for the 

mutational study of RRS1 function several mutations in the TIR domain (R20A, H26A, 

Y101A) were chosen due to their ability to disrupt heterodimer formation with RPS4 while 

maintaining RRS1 TIR homodimerization in Y2H experiments (Williams et al., 2014). 

Since the A-helix is part of the dimerization interface and contains the SH (serine-

histidine)-motif (RRS1 S25H26) which is of critical importance for RPS4-RRS1 TIR 

association (Williams et al., 2014), later experiments were focused on the RRS1 H26A 

mutation. 

 

 Nucleotide-binding (NB-ARC) domain 

For canonical NLRs, the NB-ARC domain is a major determinant of their activity, being 

responsible for the switch of the inactive ADP-bound to the active ATP-bound 

conformation (Qi and Innes, 2013). It consists of the three subdomains of (1) the NB 

catalytic core forming a classical NTPase fold, (2) the ARC1 establishing inhibitory 

intramolecular interactions with the LRR and (3) the ARC2 regulating the intramolecular 

interaction to transduce pathogen perception (van Ooijen et al., 2008; Lukasik and Takken, 

2009). To study the importance of NB-ARC in RRS1 function, conserved motifs in these 

subdomains have been targeted for mutations. The P-loop ATPase motif with a conserved 

K (lysine) is of central relevance for ATP binding and hydrolysis, and P-loop mutations 

cause reduced ATP binding and frequently lead to loss-of-function (LOF) alleles in NLR 

proteins (Dinesh-Kumar et al., 2000; Tao et al., 2000; Howles et al., 2005; Ade et al., 2007; 

Wirthmueller et al., 2007; Williams et al., 2011; Bai et al., 2012). TO test RRS1-S 

functional dependency on ATP binding, the RRS1-S K185A P-loop mutation was included. 

Mutations of an invariant D (aspartate, in RRS1-S: D254) in the Walker B motif involved 

in indirect coordination of Mg2+, a co-factor for ATP binding, might lead to reduced Mg2+ 

positioning and thus LOF (Dinesh-Kumar et al., 2000), whereas mutations in the second 

acidic residue D (in RRS1-S: D255) catalyzing ATP hydrolysis can lead to reduced ATP 

hydrolysis causing gain-of-function (GOF) alleles (Takken et al., 2006; Tameling et al., 

2006; van Ooijen et al., 2008; Bonardi et al., 2012; Takken and Goverse, 2012). The 
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conserved R (arginine, in RRS1-S: R283) in the RNBS-B motif is thought to interact with 

the ARC2 MHD motif and to sense the ATP -phosphate, leading to protein activation. 

Mutations of this sensor amino acid can lead to LOF phenotypes (Dinesh-Kumar et al., 

2000; Tao et al., 2000; Bendahmane et al., 2002; Yan et al., 2005; Takken et al., 2006; van 

Ooijen et al., 2008). The basic H in the highly conserved MHD motif binds and positions 

the -phosphate of ADP, stabilizing the compact ADP-bound closed NLR conformation 

(Takken et al., 2006; van Ooijen et al., 2008; Bonardi et al., 2012). Mutations in the MHD 

motif often cause NLR autoactivity (Bendahmane et al., 2002; Howles et al., 2005; 

Tameling et al., 2006; van Ooijen et al., 2008; Kawano et al., 2010; Gao et al., 2011; Bai 

et al., 2012; Maekawa et al., 2012), probably due to the disruption of H ionic interaction 

which destabilizes the closed NB-ARC conformation, favoring ADP to ATP exchange and 

leading to NLR conformational change and activity. Although RRS1 deviates from the 

canonical MHD motif, comprising LHK instead (van Ooijen et al., 2008), the central H442 

in RRS1-S is conserved and was mutated to achieve an RRS1-S GOF allele. However, the 

adjacent change from D (aspartate) to lysine (K443) inverts the negative charge which is 

thought to stabilize an -helix in contact to RNBS-B (Sensor I) (Takken et al., 2006; van 

Ooijen et al., 2008). Thus, the function of RRS1-S LHK motif might be impaired in its 

wildtype allele already. 

 

 Leucin-rich repeat (LRR) 

The variable LRR domain consisting of diverse numbers and lengths of leucine-rich repeats 

carries out a dual function of NLR autoinhibition and pathogen recognition. Although 

mutations in this part of RRS1 could be very interesting to test effector recognition 

specificities, due to the high variability of the LRR domain and the technical limitations for 

introducing and testing targeted amino acid exchanges, no mutations were included in this 

domain.  

 

 WRKY domain 

Both RRS1-S and RRS1-R carry a conserved WRKY domain at their C-terminus, but the 

two proteins differ by a 90 amino acids extension in RRS1-R compared to RRS1-S 

(Deslandes et al., 2002). Disruption of RRS1-R in vitro DNA binding led to an in vivo 

autoactive phenotype in the Arabidopsis ecotype Nd-1 (Noutoshi et al., 2005). To study the 
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functional relevance of RRS1-S WRKY domain and its ability to bind to DNA, the same 

insertion mutation described for RRS1-R (Noutoshi et al., 2005) as well as a mutation of 

the highly conserved lysine K1215 in the WRKY motif, both predicted to disrupt DNA 

binding, were introduced into RRS1-S expecting GOF alleles.  

 

 Evaluating modified RRS1-S activities 

According to the explanations given above, the own promoter construct of RRS1-S with an 

N-terminal triple flag and triple HA tag connected by a TEV-cleavage site (3FTH-RRS1-S) 

was modified by site-directed mutagenesis to implement a certain set of predicted loss- and 

gain-of-function mutations summarized in Table 1. 

 

Table 1: Overview on planned mutations in RRS1-S 

 

Red – predicted loss-of-function (LOF) mutations; green - predicted gain-of-function (GOF) mutations. 

 

In order to rapidly screen for RRS1-S LOF or GOF alleles, transient assays were performed. 

Agrobacterium-mediated transient co-expression of RPS4 and RRS1 led to effector-

dependent cell death in tobacco Nicotiana (N.) benthamiana or N. tabacum, respectively 

(Narusaka et al., 2013b; Williams et al., 2014). Expressing the mutated versions of RRS1-S 

in tobacco should then lead to loss of effector-dependent cell death response for LOF or 

gain of effector-independent cell death for GOF alleles. However, the positive control for 

RPS4- and RRS1-mediated effector-dependent cell death did not succeed. Unlike 

previously published (Williams et al., 2014), no clear cell death phenotype could be 

observed in any experimental setup despite of the use of different tobacco cultivars 

(N. benthamiana and N. tabacum) and various construct dilution combinations (data not 

shown).  
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Because of the unclear cell death phenotype in my hands, the transient expression system 

was not applicable to screen the functionality of the mutant RRS1-S constructs. Thus, 

several RRS1-S constructs were chosen to generate stable transgenic lines in Arabidopsis 

Col-0 (Table 2). After Agrobacterium-mediated transformation of Col-0 rrs1a, T1 plants 

were grown and selected based on their 3FTH-RRS1-S protein expression. Selected lines 

were propagated to obtain T2 generation. T2 with a 3:1 segregation ratio for the transgene, 

indicating a single insertion, were grown and again probed for protein levels. For all T2 

plants evaluated, no obvious growth phenotype could be observed (data not shown) as 

would be expected for an autoimmune variant of an NLR as observed in the autoimmune 

mutant allele snc1 or RPS4 over-expressing plants (Li et al., 2001; Zhang et al., 2003; 

Wirthmueller et al., 2007; Heidrich et al., 2013).  

 

Table 2: RRS1-S constructs used for creating stable Arabidopsis transformants  

  

Red – predicted loss-of-function (LOF) mutations; green - predicted gain-of-function (GOF) mutations  

 

In line with these findings was the observation that 3FTH-RRS1-S over-expressed under 

the constitutive 35S-promoter did not show any obvious growth phenotype in various Col-0 

genetic backgrounds (wt, rrs1a/b, rps4a/b, eds1-2) independent of the levels of transgenic 

protein (data not shown), which is in accordance with an hypothesized negative regulatory 

role of RRS1 in Arabidopsis before defense activation (Noutoshi et al., 2005; Williams et 

al., 2014). 

For the mutated 3FTH-RRS1-S alleles, T3 generations of single T2 plants were 

obtained and homozygous lines for the transgenes selected. Examination of protein levels, 

growth and defense phenotype of these homozygous lines is currently ongoing. 
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2.4. RPS4 pull-down reveals putative interactors  

  

Although the immune outputs of NLR activation such as ROS burst, calcium signaling and 

MAP kinase cascade activation, SA production and transcriptional reprogramming of 

defense genes are well characterized, not much is known about direct NLR downstream 

signaling processes and their exact mode of action in defense. To improve the 

understanding of direct NLR downstream actions, the association of RPS4-HS in pre- and 

post-activation complexes was examined by StrepTactin-mediated pull-down analyses.  

As both sufficient protein levels and efficient protein activation are critical for this 

analysis, OE-RPS4-HS plants in different genetic backgrounds were used in the T-shift 

system described above (see section 2.1), allowing a strong and simultaneous activation of 

RPS4-dependent immunity outputs. For this, plants were grown at 28°C to suppress 

autoimmune activity of RPS4-HS, while RPS4-dependent immunity was activated by 

shifting plants to 19°C. At 8h post T-shift, plants were harvested to examine post-activation 

RPS4-protein associations, whereas pre-activation complexes were determined using 

immune-suppressed control plants grown continuously at 28°C. For the post-activation 

analysis, OE-RPS4-HS in Col-0, eds1-2 and rrs1a genetic backgrounds were used to 

evaluate the requirements of EDS1 and RRS1a for RPS4 complex assembly. As EDS1 

expression and protein accumulation was suppressed by high growth temperature (Yang 

and Hua, 2004; Heidrich et al., 2013; Peine, 2013), and thus the OE-RPS4-HS Col-0 line 

already fails to accumulate considerable amounts of this key immune regulator at 28°C, the 

OE-RPS4-HS eds1-2 mutant line was not included for pre-activation analysis, which was 

done in the OE-RPS4-HS Col-0 line only. 

In signaling competent OE-RPS4-HS overexpression lines, a strong transcriptional 

reprogramming is induced after temperature shift (Heidrich et al., 2013) which probably 

leads to a re-composition of plant proteome, changing abundance of certain proteins and 

thus changing the probability to capture induced proteins due to their cellular abundance 

by unspecific background binding to the matrix. To enable discrimination of unspecific 

background and specific RPS4-HS-mediated binding, OE-RPS4-YFP plants were included 

as a control in which RPS4-mediated defense was induced after T-shift but RPS4-YFP 

could not bind to the matrix. StrepTactin-mediated RPS4-HS pull-down was done in four 

independent biological replicates using whole leaf extracts, thus including the sum of 

endomembrane-asscociated and nuclear RPS4 fractions (Wirthmueller et al., 2007).  

Biotin-eluted fractions were analyzed by LC/MS using Easy nLC1000/QExactive MS by 
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the Protein Mass Spectrometry Service at the Max Planck Institute for Plant Breeding 

Research.  

The total number of proteins identified varied between samples, with some 

replicates showing a much lower number of identified proteins, but for a common set of 

identified proteins good consistency was found (Figure S 2). Pull-down efficiency of RPS4 

was evaluated by western blot and showed variable RPS4 protein amounts in the eluate 

fractions of the various OE-RPS4-HS, but not OE-RPS4-YFP samples after biotin elution 

(Figure 17).  

 

Figure 17: RPS4-HS, but not RPS4-YFP can be pulled down with and specifically eluted from 

StrepTactin beads.   

OE-RPS4-HS and OE-RPS4-YFP plants in different genetic backgrounds were grown at 28°C to suppress 

autoimmunity. 3-week-old plants were shifted to 19°C to induce RPS4-dependent signaling and tissue was 

harvested 8h after T-shift. For pre-activation complexes, OE-RPS4-HS plants continuously grown at 28°C 

were harvested at the same time. Whole leaf extracts were used for StrepTactin-mediated protein pull-down. 

RPS4-YFP or RPS4-HS was monitored by western blot using GFP or HA antibody, respectively. 

Ponceau S staining indicated equal protein loading and transfer to the membrane. In eluate fractions, 

background protein bands were missing due to previous purification steps. 

 

However, detected label-free quantification (LFQ) values for RPS4 by the sensitive mass-

spectrometry approach ranged from 25.5 to 27, describing differences in RPS4-HS amounts 

ranging from not significantly different (OE-RPS4-HS Col-0 and rrs1a, T-shift) to a 2.5 to 

2.7 fold higher detection in OE-RPS4-HS Col-0 after T-shift compared to uninduced 

samples or OE-RPS4-HS eds1-2, respectively. Although these differences were classified 

as statistically significant by student’s t-test (Iris Finkemeier), RPS4-HS was detected in 

all samples in considerable amounts allowing a between-sample comparison of the 

identified proteins. Most of the proteins identified during pull-down were detected in one 

condition, but not in another, thus rendering the comparison of protein hits qualitative and 

not quantitative. 
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Between different samples, the total number of detected proteins varied between 425 and 

474. For further analysis, proteins identified in at least two replicates of the respective OE-

RPS4-HS samples, but completely absent in the OE-RPS4-YFP sample were taken into 

account.  

 

 70% of identified proteins are shared among RPS4 pre- and post-activation 

complexes  

Comparison of proteins associated with RPS4 before (pre-activation) and after (post-

activation) T-shift revealed a core set of 40 proteins shared between inactive and active 

RPS4, while 8 and 10 proteins were identified only in the pre- or post-activated states of 

RPS4, respectively (Figure 18, Table S 3). 

 

Figure 18: Pre- and post-activation complexes share ~70% of RPS4 interactors.  

Venn diagram summarizing total number of specific RPS4 co-purified protein hits detected in pre-activation 

(plants permanently grown at 28°C) versus post-activation (plants shifted to 19°C for 8h) complexes. Protein 

hits designated as RPS4-HS specific were detected in at least 2 independent biological replicates and with at 

least 2 unique peptides in pre- and/or post-activation samples, but were absent in OE-RPS4-YFP. 

 

Most of the proteins identified in RPS4 pre- and post-activation complexes were shared 

between both samples, and the number of hits unique for each sample was in a range not 

suitable for bioinformatical enrichment analysis. Thus, gene-ontology (GO-) term 

enrichments were determined for the complete dataset of RPS4 co-purified proteins using 

agriGO (http://bioinfo.cau.edu.cn/agriGO/analysis.php) to gain insight into the functional 

relevance and cellular distribution of identified proteins. As summarized in Table 3A, 

significant GO term enrichment was found for stress response, more specifically response 
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to temperature, abiotic stimulus and defense response, which is in agreement with the 

applied treatment of the T-shift and concomitant RPS4 defense activation. Moreover, 

proteins involved in amino acid and protein metabolism/translation, as well as protein 

folding were enriched in the RPS4 pull-down samples, hinting at an implication of RPS4 

in these processes.  

 

Table 3: Chosen GO-terms enriched in RPS4-HS co-purified proteins based on agriGO  

A.  

# input # reference p-value FDR-corrected GO-term 

response to stress 16 2320 2.2·10-7 1.2·10-5 

metabolic process 32 10614 8.5·10-6 1.7·10-4 

response to temperature stimulus 7 485 9.1·10-6 1.7·10-4 

response to abiotic stimulus 11 1471 1.1·10-5 1.8·10-4 

protein folding 5 275 6.6·10-5 0.0009 

cellular protein metabolism 15 3487 1.6·10-4 0.0017 

cellular nitrogen compound metabolism 5 506 0.001 0.0076 

cellular amino acid and derivative 

metabolism 5 682 0.0037 0.022 

defense response 5 766 0.0061 0.032 

translation 7 1445 0.006 0.032 

     

B.  

# input # reference p-value FDR-corrected GO-term 

cytoplasm 37 6822 8.6·10-15 1.4·10-12 

chloroplast stroma 10 249 6.2·10-12 1.5·10-10 

organelle 35 8155 1.0·10-10 1.7·10-9 

intracellular organelle part 20 2561 4.6·10-10 6.4·10-9 

chloroplast 20 2740 1.5·10-9 1.9·10-8 

cytosol 10 912 1.1·10-6 9.4·10-6 

thylakoid 7 376 1.8·10-6 1.5·10-5 

macromolecular complex 13 2180 1.8·10-5 1.2·10-4 

ribosome 5 524 0.0012 0.0063 

protein complex 8 1443 0.0014 0.0072 
 

p-value – probability value; FDR – false discovery rate 

 

The enrichment of GO terms in protein metabolism and stability might be due to the 

temperature stress plants have been exposed for the activation of RPS4, inducing a heat 

stress response accompanied by the reorganization of protein synthesis and production of 

HSPs. Enrichment in protein folding components can be caused by the overexpression of 

RPS4 which requires as effective regulation as possible to contain autoactivity. Also, as 

http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0006950
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0008152
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0009266
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0009628
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0006457
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0044267
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0034641
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0006519
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0006952
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0006412
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0005737
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0009570
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0043226
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0044446
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0009507
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0005829
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0009579
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0032991
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0005840
http://bioinfo.cau.edu.cn/agriGO/termDetail.php?session=594301752&GO=GO:0043234
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mentioned above, highly abundant proteins might be detected independent of RPS4 

interaction. However, the absence of these proteins in the OE-RPS4-YFP T-shifted control 

sample suggests their specific identification in the pull-downs of RPS4-HS.  

Notably, regarding their localization proteins were enriched mostly for chloroplast 

stroma and thylakoids as well as cytosol, but also enrichment for ribosome and protein 

complexes was displayed (Table 3 B), former supporting the finding of functions in protein 

metabolism.  

Apart from GO term analysis, manual scrutiny of the protein list revealed a couple 

of interesting candidates involved in processes such as transcription (RNA binding protein 

47A (RBP47A), Decapping 5 (DCP5)), translation (ribosomal proteins At1G59359, 

At3G09500, At5G24490, At5G27700, At5G60670, an Elongation factor P (EF-P) family 

protein and the Ribosome recycling factor RRF), redox processes (Thioredoxin 3 (TRX3)), 

proteasome (proteasome regulatory particle Hapless 15 (HAP15), 26S proteasome 

regulatory complex subunit Rpn2), secretion (ARF-GAP domain 9 (AGD9)) and immunity 

(Binding partner of ACD11 1 (BPA1)) which will be discussed below (see section 3.4). 

 

 RPS4 post-activation complex partners depend on EDS1 and partly on RRS1a 

Apart from the comparison of RPS4 pre- and post-activation complexes, the analysis was 

intended to establish the dependency of RPS4 co-purified proteins on its signaling partners 

EDS1 and RRS1a. For this purpose, T-shifted samples of OE-RPS4-HS in Col-0, eds1-2 

and rrs1a backgrounds were compared, revealing an almost complete dependency of 

RPS4-HS co-pulled down proteins on EDS1 and a partial dependency on RRS1a (Figure 

19 A, Table S 1). While the RPS4 quantification values were similar in OE-RPS4-HS Col-0 

and rrs1a, they were lower in the eds1-2 mutant background. However, RPS4 quantities 

were similarly lower in the OE-RPS4-HS pre-activation compared to the post-activation 

sample, but still majority of the identified proteins were shared among both samples. Thus, 

absence of EDS1 probably led to the loss of interactions independent of the lower RPS4 

quantity in eds1-2. 

As illustrated in Figure 19 B, all proteins identified in OE-RPS4-HS Col-0 were 

absent in eds1-2, except RPS4 which was detected in all genotypes and two other protein 

hits, namely RBP47A and CP12 (Figure 19 B, cluster 1, 2). Only a small subset of 12 out 

of 44 proteins identified in OE-RPS4-HS Col-0, including RPS4 itself, were present in the 

rrs1a mutant background, suggesting that the other 32 are RRS1-dependent (19 B, 
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cluster 3). Interestingly, some proteins could be detected in OE-RPS4-HS rrs1a only, 

creating a cluster (4) of proteins enriched in the rrs1a mutant background (Figure 19 B) 

containing another ribosomal protein (AT3G47370), the 26S proteasome regulatory 

subunit Rpn7, a cysteine synthase (CYCS1) and the eukaryotic translation initiation factor 

4g (EIF4G). 

 

 

Figure 19: Genotype comparison shows detected proteins almost completely depend on eds1-2 and 

partially on rrs1a.  

Proteins detected in at least 2 independent biological replicates with at least 2 unique peptides in T-shifted 

OE-RPS4-HS Col-0, eds1-2 or rrs1a, but absent in OE-RPS4-YFP rps4 were compared. (A) Venn diagram 

summarizing total number of specific protein hits detected in different genetic backgrounds. (B) Alignment 

of RPS4-HS co-purified proteins among Col-0, eds1-2 and rrs1a background revealed four main clusters of 

(1) EDS1-independent, (2) EDS1-dependent, (3) RRS1a-dependent RPS4-HS interactors and (4) RPS4-HS 

interactors enriched in rrs1a. Red – detected in RPS4-HS pull-downs at least two replicates. Black – not 

detected or detected only in one replicate. 

 

In summary, proteins identified with the RPS4-HS pull-down approach are almost 

completely dependent on EDS1 and partially depend on the presence of RRS1a. Since the 

proteins identified mostly overlap with shared and post-activation hits in section 2.4.1 

above, they will be discussed together. 

 

 

A. B. 



Discussion 

 

55 

 

3. Discussion 

 

The presented study aimed at extending current knowledge on plant NLR-mediated 

immunity by examining the paired TNL receptors RPS4 and RRS1. NLR regulation is 

sophisticated and multi-layered: from (1) the modulation of gene expression, to (2) RNA 

processing and transport, through to (3) positive and negative regulation of NLR 

degradation via the plant proteasome and (4) control of NLR localization, manifold 

surveillance mechanisms play a role in NLR-mediated immune responses (Kadota et al., 

2010; Johnson et al., 2012; Copeland et al., 2013; Xia et al., 2013; Duplan and Rivas, 2014).  

Nonetheless, little is known about the signaling leading to resistance conditioned 

by NLR receptors, including Arabidopsis RPS4 and RRS1. Recent publications linking 

RPS4 and other nuclear NLRs to transcription factors suggest a short downstream pathway 

for some NLRs, leading to transcriptional reprogramming of host cells for defense (Zhu et 

al., 2010b; Chang et al., 2013; Inoue et al., 2013; Padmanabhan et al., 2013; Kim et al., 

2014; Xu et al., 2014b). Uncoupling of cell death initiation from transcriptional 

reprogramming and defense (Heidrich et al., 2011; Bai et al., 2012) indicates differential 

NLR signaling mechanisms in the nucleus and in the cytoplasm. However, the precise 

nature of these defense pathways remains elusive. In this study, the interplay of RPS4 and 

RRS1 as well as their protein or chromatin associations were examined to identify novel 

NLR downstream components. 

A fascinating feature of RPS4/RRS1 and RPS4b/RRS1b is their head-to-head linkage 

in the genome, which is correlated with functional cooperativity. A main open question is 

how these two or even four TNLs are interconnected on a molecular basis. Although a 

sensor-executor interaction was suggested for RPS4 and RRS1, this model fails to explain 

the entirety of available information on RRS1 contribution to RPS4-induced autoimmunity. 

Investigation of paired NLR functions as a plant mechanism to broaden effector recognition 

capacities will help to understand how plants stand up to a plethora of rapidly evolving 

pathogens. 
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3.1. RRS1 contributes to RPS4-induced autoimmunity  

 

To explore the interdependency of RPS4/RRS1 and RPS4b/RRS1b, rrs1a/b double mutants 

overexpressing RPS4 were characterized. I showed that Arabidopsis immune outputs 

induced by RPS4 overexpression, such as dwarfism and transcriptional reprogramming of 

defense genes, partially depend on RRS1 a and b (Figures 4, 8). RPS4 protein accumulation 

and post-activation RPS4 mRNA levels were reduced in rrs1a/b (Figures 5, 7), but the 

underlying mechanism remain elusive. Although I showed that RPS4 is degraded by the 

26S proteasome, the effect of rrs1a/b on RPS4 degradation remains unclear, since different 

quantitative results were obtained using different tagged versions of RPS4 (Figure 10). This 

might be due to differing RPS4 activity or steric hindrances due to different tag sizes. 

Supporting the role of the 26S proteasome in RPS4 stability control and immunity, 

the HSP90 mutant allele hsp90.3-1 allowed increased RPS4 accumulation, but showed 

increased susceptibility to Pst AvrRps4 (Huang et al., 2014a). Notably, this uncouples NLR 

accumulation and resistance activity. hsp90.3-1 might be impaired in its chaperone function,  

thus preventing proper folding of RPS4 and causing enhanced Pst AvrRps4 susceptibility 

due to conformational hindrances in the NLR. The increased RPS4 accumulation could be 

a side-effect of the conformational hindrance, which might prevent interactions needed to 

target RPS4 for proteasomal degradation, for example with SRFR1 (Li et al., 2010). 

However, misfolding of proteins usually stimulates rather than prevents their degradation 

(Liu and Li, 2014). Thus the increased RPS4 accumulation observed in hsp90.3-1 implies 

an active contribution of HSP90s to RPS4 folding and stability control. Which other 

translational or posttranslational mechanisms influence RPS4 accumulation and stability, 

particularly in the rrs1a/b double mutant background, remains unclear.  

Besides decreased RPS4 protein amounts, lower RPS4-YFP mRNA levels were 

observed in rrs1a/b compared to Col-0 and eds1-2 after T-shift activation of immunity 

(Figure 7), suggesting a transcriptional or posttranscriptional regulation of RPS4 in 

dependence of RRS1. One obvious idea is that disruption of RRS1a (and RRS1b) in a native 

genomic context negatively influences RPS4 transcription due to the close linkage and 

shared bidirectional promoter of the genes. In animals and humans, head-to-head 

arrangement of genes is commonly associated with their co-expression and regulation by a 

common set of transcription factors, and further co-regulation has been observed between 

pairs of head-to-head genes (Li et al., 2006; Chen et al., 2010; Chen et al., 2014). However, 
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the rice cooperative CNL gene pairs Pikh-1/Pikh-2 and Pi5-1/Pi5-2 are differentially 

expressed upon pathogen recognition (Zhai et al., 2014; Lee et al., 2009).  

An effect of the rrs1a/b mutation on native RPS4 transcription cannot be ruled out, 

but in my study the effect of rrs1a/b on transcripts of RPS4 expressed under the constitutive 

35S promoter was determined. T-DNA insertions can exert a silencing effect on 35S-

promoter driven constructs (Daxinger et al., 2008), but since RPS4-YFP mRNA resting 

levels were equal in rrs1a/b and Col-0 and changed only after T-shift activation of 

immunity, post-transcriptional processes might be involved in reducing RPS4 mRNA 

stability in rrs1a/b.  

There is increasing evidence for the importance of RNA-based regulation in plant 

immunity (Staiger et al., 2013). One process involved specifically in TNL-mediated defense 

is nonsense-mediated RNA decay (NMD), a surveillance mechanism to degrade aberrant 

mRNAs resulting from mutations, transcription errors or alternative splicing (Gloggnitzer 

et al., 2014). Upon bacterial infection, plant cells inhibit NMD to allow increased TNL 

transcript accumulation, and impairing NMD caused autoimmunity through TNL gene 

deregulation (Riehs-Kearnan et al., 2012; Gloggnitzer et al., 2014). These data raised the 

question if decreased RPS4 mRNA accumulation in rrs1a/b might depend on its 

degradation via the NMD pathway. However, in an RNA sequencing dataset generated by 

Gloggnitzer and coworkers, no significant change in transcript accumulation could be 

detected for RPS4a, RPS4b, RRS1a or RRS1b in NMD deficient plants compared to the 

control (Gloggnitzer et al., 2014). Despite the facts that RPS4 alternative splicing is induced 

upon pathogen challenge and its alternative transcripts are necessary for defense (Zhang 

and Gassmann, 2003, 2007), RPS4 is unlikely to be targeted by NMD. However, it would 

be interesting to examine the levels of alternative RPS4 transcripts in rrs1a/b as one 

measure of the effects of rrs1a/b on RPS4 mRNA processing.  

What other RNA-related regulatory mechanisms could be involved in the control of 

RPS4 transcripts in the presence or absence of RRS1? Plant endogenous microRNAs 

(miRNA) and small interfering RNA (siRNA) cause transcript degradation or silencing 

(Staiger et al., 2013). Both miRNA and siRNAs were shown to impact plant immunity by 

post-transcriptional regulation of CNL genes (Shivaprasad et al., 2012; Boccara et al., 2014). 

Although to date no role of miRNAs or siRNAs in RPS4/RRS1-mediated resistance has 

been reported, certain TNL transcripts might be regulated by these endogenous regulatory 

RNAs. Indeed, cosuppression of TNL transcripts from the Col-0 RPP5 locus was reported 

upon SNC1 overexpression (Yi and Richards, 2007). To test if RNA silencing induced by 
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aberrant RRS1 mRNA in rrs1a/b could potentially affect RPS4 mRNA stability, RPS4 and 

RRS1 genomic or cDNA sequences were aligned by ClustalW2 (www.ebi.ac.uk/Tools/msa/ 

clustalw2/) or Blast (www.ncbi.nlm.nih.gov/blast/Blast.cgi). However, no nucleotide 

overlap between both genes in a range needed for co-silencing of RPS4 with RRS1 was 

detected. 

Another unsolved issue is whether decreased RPS4 protein accumulation in rrs1a/b 

is the cause for the weakened growth phenotype of overexpressed RPS4 (Figure 4), or if 

disruption of RPS4 functionality by the absence of RRS1 causes a reduction of both RPS4 

protein levels and phenotype severity. RRS1 protein might be necessary for the assembly 

of a functional RPS4 pre-activation complex, thus stabilizing RPS4 and supporting its 

function even in the context of overexpression. While in an rrs1a single mutant background 

the highly similar RRS1b might be able to complement for the loss of RRS1a, the complete 

absence of RRS1 a and b in rrs1a/b would impede proper complex formation and leave 

RPS4 vulnerable for degradation.  

This would also explain the suppressive effect of rrs1a/b on RPS4-induced 

transcriptional outputs after T-shift (Figure 8). A specific effect of RRS1a on RPS4-

mediated T-shift-induced transcriptional outputs was reported previously, with only a 

subset of all RPS4-regulated, EDS1-dependent genes being quantitatively affected by the 

absence of RRS1a (Heidrich et al., 2013). Moreover, promoters of those genes were 

enriched for W-boxes, constituting a putative link to the RRS1 WRKY domain (Heidrich 

et al., 2013). By contrast, the rrs1a/b double mutant constitutes a strong – though not 

complete – suppressive effect on all RPS4-induced genes tested, including selected rrs1a-

dependent genes from the microarray analysis by Heidrich and coworkers (data not shown). 

This suggests a general rather than specific influence of rrs1a/b on RPS4-induced gene 

expression changes upon T-shift, probably due to decreased RPS4 protein accumulation in 

rrs1a/b.   
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3.2. Towards the detection of RRS1-S chromatin association sites in Arabidopsis  

 

Both NLR receptors and WRKY transcription factors are well-known components of plant 

immunity, but a combination of NLR and WRKY domains in a single protein is rare. Only 

three genes (RRS1a, RRS1b and At4G12020) encoding for these of chimeric proteins have 

been predicted in Arabidopsis (Saucet, 2013). Immune activation by disruption of RRS1-R 

WRKY DNA binding suggested negative regulatory functions at the chromatin (Noutoshi 

et al., 2005). Thus, I performed ChIP to test RRS1-S chromatin binding and to identify its 

target genes. 

I showed that transgenic N-terminally 3FTH-tagged RRS1-S is fully functional in 

Pst AvrRps4 defense without affecting basal defense to Pst DC3000 (Figure 11). 

Predominantly nuclear localization was detected for 3FTH-RRS1-S (Figure 14), supporting 

a nuclear function. Several ChIP-qPCR approaches testing for RRS1-S enrichment at 

selected promoter regions (data not shown) as well as ChIP-seq aimed to obtain a genome-

wide view of RRS1-S DNA associations did not identify convincing RRS1-S binding sites 

at the chromatin. Since the ChIP protocol was optimized for WRKY transcription factors, 

and enrichment of WRKY18 promoter regions could be detected in the positive ChIP 

control pWRKY18:WRKY18-HA (Rainer Birkenbihl, unpublished), RRS1 ChIP was 

repeated with both Pst AvrRps4 and mock treated samples to improve sample replication 

and provide a broadened view on RRS1 chromatin association dynamics in Arabidopsis 

defense signaling.  

Before approaching further ChIP-seq experiments, RRS1-S chromatin-binding 

capacities in general should be evaluated, since to date DNA binding was reported for 

RRS1-R only (Noutoshi et al., 2005). The C-terminal extension of RRS1-R compared to 

RRS1-S might not only differentiate PopP2 recognition (Deslandes et al., 2002; Deslandes 

et al., 2003), but also their DNA binding capacities. Although transgenic 3FTH-RRS1-S is 

functional in Pst AvrRps4 resistance (Figure 11), the N-terminal 3FTH-tag could disturb 

DNA binding without affecting AvrRps4-triggered resistance. To test for general DNA 

binding ability of 3FTH-RRS1-S, an in-vitro W-box binding assay should be performed, 

as was done for RRS1-R (Noutoshi et al., 2005). Also, a DNA adenine methyltransferase 

identification (DamID) approach (Germann et al., 2006; Orian, 2006) might prove useful 

to generally demonstrate RRS1-S DNA binding, and furthermore could be used to identify 

RRS1-S DNA binding sites by sequencing of obtained DNA fragments. 
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A ChIP-seq repeat experiment is currently under analysis, and general RRS1-S DNA-

binding capacities can be further tested. However, the relatively small protein levels in the 

3FTH-RRS1-S lines might be too low for efficient immunoprecipitation, and thus not allow 

enrichment of chromatin above background. Markedly higher RRS1-S protein amounts in 

generated 35S-promoter driven overexpression lines could tip the balance to enable 

sufficient chromatin enrichment in 35S:3FTH-RRS1-S versus control samples, but also 

entail the risk of unspecific DNA binding artefacts due to excessive protein accumulation 

in the nucleus. 

The identification of RRS1 chromatin binding sites to provide a dynamic view of 

RRS1 DNA association before and after effector activation would advance current 

knowledge on the mode of RPS4/RRS1 action in plant immunity, which is particularly 

meaningful in the light of conserved NLR signaling pathways among different plant 

families (Maekawa et al., 2012; Narusaka et al., 2013b, a; Narusaka et al., 2014).  

 

 

3.3. Requirement of domain integrity for RRS1-S function and activity 

 

To dissect the requirement of distinct RRS1-S domains for its function in RPS4/RRS1 

defense activation and signaling, several targeted point mutations were introduced into the 

RRS1-S genomic construct. A transient screening for gain- or loss-of-function alleles of 

RRS1-S was not useful as the reported read-out of cell death induction in N. tabacum upon 

co-expression of RPS4, RRS1 and AvrRps4 (Williams et al., 2014) could not be reproduced 

under our conditions. While the published cell death phenotype was obtained with 

RPS4/RRS1 overexpression, I was working with own promoter constructs and could hardly 

detect RPS4 and RRS1 protein accumulation in tobacco (data not shown). The use of 

different vector backbones and Agrobacterium strains for infiltration might further 

influence construct expression. Most crucially, I used the Col-0 RRS1-S allele, while the 

cell death assays described by Williams and coworkers were using RRS1-R (Williams et 

al., 2014). In Arabidopsis, RRS1-R in Ws-0 triggered a strong HR after AvrRps4 

recognition, while Col-0 RRS1-S restricted Pst AvrRps4 growth without cell death 

(Heidrich et al., 2011). Thus, RRS1-S might lack cell death inducing capacities which are 

present in RRS1-R, and thus fail to induce cell death in Arabidopsis and tobacco. Stable 

transgenic expression of RRS1-R in Arabidopsis Col-0 conferred the capacity to induce cell 
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death upon PopP2 recognition (Williams et al., 2014), substantiating the idea that not 

genetic background, but intrinsic characteristics of RRS1-S and RRS1-R are responsible for 

the difference in RRS1 cell death induction. The Col-0 RRS1-R transgenic lines could be 

used to compare RRS1-R and RRS1-S characteristics independent of plant genetic 

background. For example, testing the dynamics of RRS1-R and RRS1-S chromatin 

associations with or without cell death induction after effector recognition might help to 

unravel the molecular framework for RRS1-R and RRS1-S distinct recognition specificities 

and outputs. 

 The number of RRS-S variants was narrowed down to test their functionality in 

stable transgenic Arabidopsis Col-0 rrs1a. No obvious growth phenotype could be detected 

in T1 and T2 generations. Testing of homozygous T3 generations for plant growth at low 

temperatures and for Pst AvrRps4 resistance should reveal the functionality of RRS1-S 

alleles and improve our understanding of RRS1-S domain functions. Potential gain- or loss-

of-function alleles would constitute excellent tools to further explore RRS1-S functions, 

for example by extending analyses such as ChIP or CoIP/pulldowns to differentiate 

between DNA or protein associations of active, native or inactive RRS1-S.  

For example, a mutation in the conserved RRS1 P-loop motif (K185A) did not 

impair effector-triggered RPS4-RRS1-induced cell death in transient tobacco expression 

(Williams et al., 2014). Also, the usually highly conserved MHD motif in the ARC2 

subdomains deviates in RRS1 compared to other NLRs (van Ooijen et al., 2008). These 

data support an ATP-independent non-canonical function of RRS1. 

In contrast to this, RPS4 function depends on the integrity of its nucleotide binding 

pocket, as mutation of its P-loop motif suppressed RPS4 defense inducing capacities 

(Zhang et al., 2004; Wirthmueller et al., 2007). Interestingly, the same was shown for the 

rice CNL pair RGA4 and RGA5, where the executor RGA4, but not the sensor RGA5 relied 

on an intact ATP binding pocket and a functional MHD motif for its function (Césari et al., 

2014). 

RRS1-S P-loop (K185A), MHD (H442A) and Walker B motif (D255E) variants 

created in this study are expected to impact RRS1-S ATP binding and hydrolysis and will 

be functionally characterized in stable transgenic Arabidopsis. Despite conservation of 

defense signaling pathways across plant lineages (Maekawa et al., 2012; Narusaka et al., 

2013b; Narusaka et al., 2014), studies in the native RPS4 and RRS1 plant background 

Arabidopsis, rather than transient assays in tobacco will help to draw a conclusive model 
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of the molecular functions and the complex interplay of the two RPS4/RRS1 TNL pairs 

during effector recognition and pathogen resistance.  

RRS1 WRKY domain was proposed to be an effector virulence target guarded by 

the canonical NLR part of the protein, because an amino acid insertion in the WRKY 

domain constitutively activated resistance (Noutoshi et al., 2005). Besides RRS1 direct 

interaction with the effectors AvrRps4 and PopP2 (Deslandes et al., 2003; Williams et al., 

2014), it was shown recently that PopP2 acetylation targets RRS1 WRKY domain and 

several WRKY transcription factors, many of them implicated in Arabidopsis defense 

responses (Laurent Deslandes, personal communication). PopP2 acetylation activity is 

required for its avirulence function (Tasset et al., 2010), and actetylation disrupted RRS1 

DNA binding (Laurent Deslandes, personal communication). Taken together, these data 

suggest that RRS1 is a sensor for PopP2 virulence function. Surrogating a variety of WRKY 

transcription factors, RRS1 might be guarded by the executor RPS4 to intercept effector 

functions on these essential transcriptional regulators. RRS1 might thus constitute either a 

guardee or a decoy (see section 1.3). The rrs1a/b double mutation retains basal resistance 

to virulent Pst DC3000 (Figure 3), negating a role of RRS1 in basal resistance and 

substantiating its role as a decoy. Pathogen perturbance of RRS1 WRKY domain could be 

conveyed to its guard and signaling partner RPS4 independent of RRS1 canonical NLR 

functions. Subsequent release of RRS1 inhibitory constraints on RPS4 would then allow 

downstream signaling activation (compare Figure 1).  

The Arabidopsis RRS1-SK1215A allele is predicted to lose DNA binding (Marco 

Llorca et al., 2014) and cause autoimmunity in accordance to the slh1 phenotype (Noutoshi 

et al., 2005). Analysis of Pst AvrRps4 resistance in this plant line might help to unravel the 

importance of the RRS1-S DNA binding during AvrRps4 recognition. The mutated 

conserved K is not only crucial for WRKY function, but also a potential PopP2 acetylation 

site. Thus, RRS1-SK1215A together with native RRS1-S could potentially be used to test if 

PopP2 acetylation of K1215 alters RRS1-S capabilities to confer Pst AvrRps4 resistance.  

Notably, RRS1 sensor function alone does not explain the impact of rrs1a or rrs1a/b 

on effector-independent autoimmunity by overexpressed RPS4 (Heidrich et al., 2013; 

Figures 4, 8). An additional positive contribution of RRS1 in defense responses might be 

illuminated by the RRS1-SH26A allele that is predicted to disrupt RPS4 and RRS1 TIR 

heterodimerization (Williams et al., 2014). RRS1 TIR domain suppressed RPS4 TIR-

induced cell death in tobacco, whereas RRS1 TIRH26A did not (Williams et al., 2014). Full 

length RRS1-RH26A misses TIR domain heterodimerization capacity, but still interacts with 
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RPS4 (Williams et al., 2014). Thus, RRS1-RH26A should be able to form intact signaling 

complexes with RPS4, and even facilitate RPS4 TIR domain homodimerization through 

the loss of TIR heterodimerization. Nonetheless, PopP2 recognition is impaired in the 

RRS1-RH26A mutant (Williams et al., 2014), indicating the requirement of RRS1-RPS4 TIR 

heterodimers rather than RPS4 homodimer for defense activation. This should be further 

tested for Pst AvrRps4 defense in Col-0 expressing RRS1-SH26A.  

Integrating currently available information on RRS1 and RPS4, I propose that full 

length RPS4 and RRS1 assemble in a pre-activation complex where TIR domain 

dimerization is prevented by NLR autoinhibitory effects or auxiliary proteins, or preformed 

TIR dimers are buried in the complex to prevent downstream signaling (Figure 20 C).  

 

 

Figure 20: RPS4 and RRS1 domain structure and their rearrangements upon activation. 

(A) Domain structure of RPS4 and RRS1. TIR, Toll-/interleukin-1 receptor; NB, nucleotide-binding; LRR, 

leucine-rich repeat; WRKY, transcription factor DNA binding domain. (B) Model for RPS4 and RRS1 three-

dimensional (3D) conformation in their inactive state. LRR domain is covering and thus inhibiting TIR and 

NB for downstream signaling. (C) Proposed arrangement of a pre-activation RPS4-RRS1 hetero-tetramer. 

TIR interactions might be pre-formed but buried in the 3D structure of the complex. (D, E) Activation through 

effector recognition causes rearrangements to allow either TIR homodimeric (D) or heterodimeric (E) 

interactions depending on distinct recruitment of downstream components, thereby triggering compartment-

specific defense responses.  

 

RRS1 sensing of effector perturbations induces conformational changes, allowing either 

formation of new TIR dimers or release of preformed TIR dimers to form new interaction 
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interfaces (Figure 20 D, E). Homodimerization of RPS4 TIR domains might be necessary 

to trigger cell death in the cytoplasm, whereas nuclear RPS4/RRS1 TIR heterodimers might 

allow induction of transcriptional reprogramming and trigger pathogen resistance. I suggest 

that differentiation between RPS4 TIR homomeric and RPS4/RRS1 TIR heteromeric 

interactions might be assisted by distinct interaction partners in different cellular 

compartments. 

 

 

3.4. RPS4 pulldown reveals interactors in defense-related pathways 

 

Plant immune outputs after PTI and ETI induction are well characterized and include ROS 

burst, calcium signaling and MAP kinase cascade activation, SA production and 

transcriptional reprogramming of defense genes (Buscaill and Rivas, 2014). Still, direct 

NLR downstream signaling components remain elusive, suggesting a short signaling 

pathway or high levels of redundancy. To illuminate the elaborate regulation network of 

NLR downstream signaling, I analyzed RPS4 protein associations in pre- and post-

activation complexes. 

RPS4-associated immune complexes were purified from uninduced and T-shift 

activated OE-RPS4-HS leaf tissue and analyzed by mass-spectrometry. A large overlap of 

detected proteins in OE-RPS4-HS samples and the OE-RPS4-YFP background control hints 

at a high proportion of unspecifically bound proteins. To apply stringency for further 

analysis, only RPS4-HS co-purified proteins detected in at least two replicates with at least 

two unique peptides, but absent in the OE-RPS4-YFP control are discussed. 

Meta-analysis of the identified proteins revealed enrichment for chloroplast-

localized and cytosolic proteins (Table 3). The strong enrichment of chloroplast proteins 

was surprising given a nucleo-cytoplasmic localization of RPS4 (Wirthmueller et al., 

2007). T-shift activated RPS4-HS was detected weakly in soluble and strongly in 

microsomal fractions (Heidrich et al., 2011), while transiently expressed RPS4 was 

detected in microsomal, but not soluble cell fractions in tobacco (Bhattacharjee et al., 

2011). A chloroplastic localization of RPS4 – though not specifically tested – is very 

unlikely, as no chloroplastic signal could be detected in confocal analysis performed to 

date.  
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Although annotated protein localization might not always represent the true or 

exclusive localization of a protein, the enrichment of chloroplastic proteins in the RPS4 

pull-down might reflect contaminations rather than actual RPS4 interactors. However, for 

a couple of defense-related proteins a change of localization has been reported upon certain 

stimuli. Most interestingly, the nucleo-cytoplasmic tobacco TNL N resistance function to 

tobacco mosaic virus (TMV) depends on the N receptor interacting protein 1 (NRIP1), 

which is normally localized to the chloroplast stroma (Caplan et al., 2008). Interaction with 

the TMV effector p50 redirects NRIP1 to the nucleo-cytoplasmic compartments, where it 

can associate with N only in complex with p50 to induce cell death (Caplan et al., 2008). 

Also, the relocalization of potato CNL R3a from cytoplasm to the endosomal compartment 

upon recognition of its cognate effector AVR3aKI, as well as AVR3aKI recruitment to the 

endosomes is necessary for HR induction (Engelhardt et al., 2012). The rice pattern 

recognition receptor XA21 confers broad-spectrum resistance to Xanthomonas by detecting 

the MAMP Ax21. Upon activation, XA21 is cleaved and releases its intracellular kinase 

domain for translocation to the nucleus, a step crucial for its immune function (Park and 

Ronald, 2012). Arabidopsis Accelerated Cell Death 2 (ACD2), a chloroplastic protein 

involved in cell death regulation upon infection with virulent and avirulent Pseudomonas, 

shifts localization to chloroplasts, mitochondria and cytosol after pathogen challenge (Yao 

and Greenberg, 2006). 

Even though no chloroplast-localized NLR receptor was reported so far, the 

chloroplast as a site of SA and ROS production plays important roles in plant defense 

signaling (Padmanabhan and Dinesh-Kumar, 2010). Notably, chloroplasts are targeted by 

several Pseudomonas effectors, further substantiating an important role of chloroplastic 

proteins in plant immunity (Jelenska et al., 2007; Jelenska et al., 2010; Rodríguez-Herva et 

al., 2012). Strikingly, one of those effectors is AvrRps4, which targets chloroplasts through 

an N-terminal chloroplast transit peptide to allow its virulence function, while its avirulence 

function was retained in an AvrRps4 form disabled for chloroplast import (Li et al., 2014a). 

This suggests that AvrRps4 virulence targets are located in the chloroplast, and hints at a 

role of chloroplastic proteins in RPS4/RRS1-mediated resistance to Pst AvrRps4.  

 Besides chloroplast localization, RPS4 co-purified proteins were enriched for the 

cytosol. This is not surprising, as activated RPS4 was detected in the soluble fraction 

(Heidrich et al., 2011). The analysis of cytoplasmic interactors can be very interesting as 

distinct functions of nucleo-cytoplasmic RPS4 have been reported, with nuclear RPS4 

mediating translational reprogramming and resistance to Pst AvrRps4, and cytoplasmic 
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RPS4 triggering cell death upon effector recognition (Heidrich et al., 2011). Analysis of 

cytoplasmic RPS4 interactors could reveal mechanisms involved in the onset of cell death 

upon RPS4 activation. Although Arabidopsis ecotype Col-0 does not induce HR upon Pst 

AvrRps4 recognition, the downstream signaling components in Col-0 and cell death-

inducing Ws-0 ecotype are likely conserved. I suggest that immune complexes and 

signaling cascades are similar among different Arabidopsis ecotypes, but more efficient in 

some (i.e. Ws-0) compared to others (i.e. Col-0) due to minor protein changes like the ones 

described for RRS1-R and RRS1-S. Indeed, expression of RRS1-R in Col-0 mediates 

resistance to Pst expressing PopP2 and triggers HR upon PopP2 delivery via Pseudomonas 

fluorescence (Williams et al., 2014), suggesting that RRS1-R signaling pathways for HR 

initiation are conserved in Col-0. 

Since transcriptional reprogramming of defense gene and Pst AvrRps4 resistance is 

determined by nuclear RPS4, its interactions in the nucleus would be of greatest interest. 

However, meta-analysis of the achieved data revealed neither enrichment of RPS4 co-

purified proteins in the nucleus, nor involvement in transcriptional processes. Also, neither 

of the described RPS4 interactors EDS1, RRS1 or bHLH84 (Heidrich et al., 2011; Williams 

et al., 2014; Xu et al., 2014b) was detected. Potentially, subpools of RPS4 are assembled 

into complexes with different proteins. The interactions with EDS1, RRS1 and bHLH84 

might be too weak or transient to allow efficient co-purification with RPS4. This is 

plausible especially in the context of overexpression, which floods the cells with RPS4 

protein and disturbs protein stoichiometry. Also, incomplete leaf tissue homogenization 

insufficient to disrupt nuclei and release nuclear proteins at the beginning of the pull-down 

could explain the absence of nuclear interactors. The use of isolated nuclei rather than 

whole leaf tissue samples for pull-down experiments should allow the identification of 

nuclear RPS4 interacting proteins to facilitate an insight into RPS4 nuclear functions. 

Nevertheless, close examination of identified RPS4-HS interactors gave rise to a 

number of interesting candidates. The interaction with RPS4 should be verified by 

alternative methods such as Y2H, in planta bimolecular fluorescence complementation 

(BiFC) or coIPs, particularly since overexpressed RPS4 might unspecifically aggregate 

with proteins due to its high abundance. If interaction with RPS4 can be confirmed, further 

studies of protein functions and impact on resistance responses to Pst AvrRps4 should be 

conducted. In the following sections, chosen candidate hits will be discussed regarding their 

biological functions and relevance in plant immunity. 
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 Transcription and translation 

Nuclear RNA binding protein 47A (RBP47A) was detected in the pull-down of all 

OE-RPS4-HS samples. Though missing genotype dependency might be a concern of 

unspecific binding, RBP47 was not detected at all in the OE-RPS4-YFP samples, ruling out 

its detection was due to stickiness to the beads. RBP47 consists of three RNA-recognition 

motifs (RRMs) and a glutamine-rich, prion-related N-terminus (Lorković et al., 2000). It 

binds poly(A)+-mRNA and has a binding specificity for oligouridylates usually highly 

enriched in intronic sequences and 3’UTRs found in pre-mRNAs (Lorković et al., 2000). 

RBP47 is structurally related to RBP45 and UBP1 (Oligouridylate binding protein 1), latter 

functioning in nuclear pre-mRNA maturation (Lorković et al., 2000). Although so far no 

discrete RNA-modulating function could be detected for RBP45 or RBP47, they are still 

presumed to play a role in RNA maturation processes due to their structural and 

biochemical properties (Lorković et al., 2000; Lorković and Barta, 2002). This is further 

supported by the involvement of nuclear RBP47 in the formation of cytoplasmic stress 

granules (SG) upon heat stress (Weber et al., 2008). SGs are large aggregates of 

untranslated mRNPs (messenger-ribonucleoprotein particles) that form under stress 

conditions, when translation is stalled to re-evaluate which mRNAs are targeted for 

translation, storage or degradation (Weber et al., 2008). This further supports a role for 

RBP47 in the regulation of post-trancriptional mRNA processing. 

An EDS1- and RRS1-dependent RPS4-interacting protein found in pre- and post-

activation samples is DCP5 (Decapping 5). Decapping of mRNAs irreversibly triggers their 

degradation. DCP5 interacts with DCP1 and DCP2, components of the Arabidopsis 

decapping complex, and was required for the formation of processing bodies (P bodies), 

the sites of mRNA storage and decapping (Xu and Chua, 2009). Disruption of P bodies in 

a dcp5 mutant led to stabilization and overaccumulation of certain mRNAs (Xu and Chua, 

2009), and adaptation to dehydration stress by stress-induced decapping depended on 

DCP5 (Xu and Chua, 2012). Interestingly, the decapping complex also plays a role in the 

accumulation of miRNAs (Motomura et al., 2012; Boccara et al., 2014).  

 Since post-transcriptional RNA regulation generally impacts plant immunity 

(section 0; Staiger et al., 2013), and SNC1, which contributes to Pst AvrRps4 resistance 

(Kwon et al., 2004; Kim et al., 2010), is targeted for post-transcriptional gene silencing (Yi 

and Richards, 2007), both RBP47A and DCP5 are worth further examination.  

Besides proteins involved in post-transcriptional regulation, the RPS4 pull-down 

identified a couple of ribosomal proteins (At1G59359, At3G09500, At5G24490, 
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At5G27700, At5G60670), as well as the chloroplast ribosome recycling factor (RRF) and 

an elongation factor P (EF-P) family protein, all involved in mRNA translation. Not much 

is known about the role of translation in plant defense. However, it constitutes an additional 

layer of regulation to fine-tune the synthesis and accumulation of defense-induced proteins. 

The specificity of these protein hits has to be scrutinized, though, because the T-shift 

treatment might induce a plant heat stress response. This might lead to changed 

transcriptional and translational emphases and increased recruitment or synthesis of 

ribosomes.  

 

 Redox processes 

Thioredoxin 3 (TRX3) was found in both pre- and postactivation complexes of RPS4, but 

was absent in eds1-2 or rrs1a. TRX3 belongs to the cytoplasmic group of thioloxido-

reductases involved in cellular redox processes. TRX proteins can buffer cellular redox 

changes and store redox power to catalyze reduction of disulfide bridges in their target 

proteins (Meyer et al., 2012). Reduction of intermolecular disulfide bridges disrupts 

covalent protein-protein linkage, releasing the reduced interaction partners. TRX3 and its 

closest homolog TRX5 interacted with NPR1 (non-expressor of PR genes 1) (Tada et al., 

2008), a crucial component of SA-mediated defense responses and systemic acquired 

resistance (SAR). In the absence of pathogen infection, NPR1 resides mainly in the 

cytoplasm in homo-oligomers formed by intermolecular disulfide bridges (Mou et al., 

2003). SA accumulation during plant defense responses led to a change in cellular redox 

conditions, releasing NPR1 monomers for translocation to the nucleus through its reduction 

by TRX5 and TRX3 (Mou et al., 2003; Tada et al., 2008). Nuclear localization of NPR1 

was needed for defense gene activation (Kinkema et al., 2000; Zhang et al., 2010b), likely 

through NPR1 direct interaction with plant TGA transcription factors (Zhang et al., 1999; 

Després et al., 2000; Zhang et al., 2003; Rochon et al., 2006; Boyle et al., 2009). Thus, 

TRX3 together with its homolog TRX5 plays an important role in NPR1-mediated defense 

gene activation.  

Apart from its reductase activity, TRX3 enhanced Arabidopsis heat-shock tolerance 

by functioning as a molecular chaperone at high temperatures (Park et al., 2009). Whether 

its identification in the RPS4 pull-down can be assigned to its thioloxidoreductase function 

in plant resistance, or to heat stress induced chaperone function caused by the T-shift 

treatment needs to be evaluated.  
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 Protein stability and degradation 

Stability control and the regulation of degradation are important switches to fine-tune NLR 

mediated immunity. Besides the role of chaperones for NLR stability and degradation 

control, involvement of ubiquitinating complexes and components of the plant 26S 

proteasome in plant immunity has been shown (section 1.6; Kadota et al., 2010; Furlan et 

al., 2012; Duplan and Rivas, 2014). Interestingly, 26S proteasome-mediated degradation 

of TRX3-regulated NPR1 (see above) was facilitated by SA-induced nuclear translocation 

and phosphorylation of NPR1, and its turnover promoted transcriptional activity of NPR1 

target genes (Spoel et al., 2009), suggesting that degradation of immune components can 

also positively contribute to their defense outputs. 

A couple of proteasome components were identified in the RPS4 pull-down: 

(1) HAP15, a proteasome regulatory particle in the lid subcomplex, associates with RPS4 

in pre-activation complexes, (2) the 26S proteasome regulatory complex subunit Rpn2 is 

found in both pre- and post-activation complexes and (3) 26S proteasome regulatory 

subunit Rpn7 was co-purified with RPS4 in the rrs1a mutant background only. Together 

with the published data of the rpn1a proteasome mutant displaying increased susceptibility 

to Pst AvrRps4 (Yao et al., 2012), these RPS4 interactors constitute an interesting link to 

the plant 26S proteasome. It is possible that in analogy to the positive effect of the 

proteasome on NPR1 transcriptional outputs discussed above, timely and spatially 

coordinated and tightly regulated degradation of RPS4 via the plant proteasome might be 

required for a full immune response. To test this, Pst AvrRps4 resistance after inhibition of 

the plant proteasome or in several proteasome mutants should be tested, if possible 

alongside other effector-triggered defense responses to rule out general effects of the 

proteasome on disease resistance. 

 Notably, two HSP70 family chaperone proteins as well as a HSP40 co-chaperone 

were identified in pre- and/or post-activation OE-RPS4-HS samples, but not in eds1-2 or 

rrs1a background. HSP40 is a co-chaperone of HSP70, and an isoform in soybean was 

induced upon soybean rust infection and involved in virus resistance (Liu and Whitham, 

2013). Overexpression of the soybean HSP40 in tobacco induced cell death, further 

supporting its function in disease resistance (Liu and Whitham, 2013). HSP70 interacts 

with SGT1 (Noël et al., 2007), an HSP90 co-chaperone involved in the regulation of 

multiple resistance responses (see section 1.6). Overexpression of an HSP70 isoform in 

Arabidopsis impaired both basal resistance and ETI, including resistance to Pst AvrRps4 

(Noël et al., 2007). BIP, one of the identified HSP70 family proteins, formed complexes 
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with the positive cell death regulator ACD6 (accelerated cell death 6), suggestedly targeting 

it for proteasomal degradation (Zhang et al., 2014). As ACD6 associated with and 

facilitated plasmamembrane-accumulation of the PTI receptors FLS2 (flagellin sensing 2) 

and BAK1 (BRI1-asscociated receptor kinase 1), HSP70 proteins might be involved in the 

regulation of resistance receptor folding, accumulation and localization (Zhang et al., 2014). 

Also, the Pseudomonas effector HopI1 has a typical plant co-chaperone domain and it 

interacted with different HSP70 isoforms to induce their ATP-hydrolysis activity (Jelenska 

et al., 2007; Jelenska et al., 2010). Interestingly, HSP70 was recruited to the chloroplast by 

HopI1 and was essential for HopI1 virulence function in a temperature-dependent manner 

(Jelenska et al., 2007; Jelenska et al., 2010). Which role the interaction of RPS4 with 

HSP70 has in the context of Pst AvrRps4 resistance remains to be solved. However, HSP70 

importance in resistance responses as well as the targeting of HSP70 by HopI1, which is 

chloroplast-localized just like AvrRps4, suggests its possible involvement in plant 

responses to Pst AvrRps4. 

 It is worth mentioning that AvrRps4 is not only targeted to the chloroplast by its 

N-terminal signal peptide, but also its processed form could be detected exclusively inside 

chloroplasts, suggesting it is cleaved by a chloroplast peptidase (Li et al., 2014a). One 

EDS1- and RRS1a-dependent RPS4 co-purified protein detected in both pre- and post-

activation complexes is CLPP4 (Chloroplast protease P4), a nuclear-encoded chloroplast 

protease which might be interesting to explore further.  

 

 Secretion and vesicle trafficking 

Plant secretory pathways are important for plant resistance. Not only the secretion of 

antimicrobial compounds to the extracellular space, but also the correct localization of 

membrane-bound pathogen receptors rely on a functional plant secretory network (Wang 

and Dong, 2011; Kwon and Yun, 2014). 

 The ARF-GAP domain 9 (AGD9) protein was detected as an EDS1- and RRS1-

dependent post-activation hit in the RPS4 pull-down. AGD9 is a GTPase-activating protein 

involved in recruitment of ADP-ribosylation factor 1 (ARF1) to the Golgi apparatus (Min 

et al., 2013). ARF small GTP-binding proteins help forming coat protein complex 1 (COPI) 

vesicles at the Golgi, which is essential for Golgi-to-ER retrograde membrane trafficking 

(Brandizzi and Barlowe, 2013). ARFs are regulated by activating ARF guanine nucleotide 

exchange factors (GEFs) stimulating GDP to GTP exchange, and inactivating ARF 
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GTPase-activating proteins (GAPs) stimulating ARF GTPase activity to hydrolyse ARF-

bound GTP to GDP (Brandizzi and Barlowe, 2013). Notably, ARFs are involved in 

Pseudomonas resistance. The ARF-GEF AtMIN7 (Arabidopsis thaliana HopM 

interactor 7) was targeted for proteasome-mediated degradation by the Pst DC3000 effector 

HopM1, which was blocked during ETI to allow AtMIN7 accumulation (Nomura et al., 

2006; Nomura et al., 2011). A knock-out of AtMIN7 increased plant susceptibility to 

virulent and avirulent Pst (Nomura et al., 2006; Nomura et al., 2011). This emphasizes an 

important role of vesicle trafficking and secretory pathways in plant immunity, which has 

been discussed previously (Wang and Dong, 2011; Kwon and Yun, 2014). 

 AGD9 targeted ARF1 is involved in virus resistance in Arabidopsis. Viral auxiliary 

replication protein p27 from Red clover necrotic mosaic virus (RCNMV) interfered with 

the cellular secretion pathway (Hyodo et al., 2014). Also, p27 targeted ARF1 and 

mislocalized it to the site of viral replicase complex formation (Hyodo et al., 2013), and 

ARF1 silencing resulted in decreased accumulation of viral RNA, suggesting a positive 

function of ARF1 in RCNMV replication (Hyodo et al., 2013). Besides, a positive role in 

plant immunity was described for ARF1. Overexpression of ARF1, but not an inactive 

ARF1 GDP-locked form induced cell death in tobacco, whereas silencing of ARF1 

increased tobacco susceptibility to the non-host pathogen P. cichorii and impaired 

N-mediated ETI to tobacco mosaic virus (TMV) (Coemans et al., 2008).  

Taking together ARF1 involvement in pathogen resistance, the important role of 

secretory pathways and RPS4 endomembrane association as a potential site of interaction, 

AGD9 together with its targeted ARF1 are interesting candidates for further exploration of 

their roles in RPS4-mediated resistance. 

 

 Plant metabolism 

The most prominent purpose of plant primary metabolism is the allocation of compounds 

needed for plant growth and development. However, primary metabolism is important for 

plant defense responses as well, suggestedly both through provision of energy and 

substrates needed for defense activation and through direct involvement of primary 

metabolism components in defense responses to pathogens (Rojas et al., 2014).  

OASA1 (O-acetylserine (thiol) lyase isoform A1) is an EDS1-dependent RPS4 

interactor detected in pre-and post-activation samples independently of RRS1a. 

O-acetylserine (thiol) lyases (OASTLs) are cysteine synthesizing enzymes, and a mutation 
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in OASA1 reduced its OASTL activity in vitro and caused auto-necrosis in specific 

Arabidopsis accessions depending on the RPP1-like NLR cluster (Tahir et al., 2013). Lack 

of functional OASA1 impaired resistance to virulent and avirulent pathogens, and HR 

induction upon avrRpm1 recognition depended on cytosolic cysteine, emphasizing the 

importance of OASA1 in immunity and cell death (Álvarez et al., 2012; Tahir et al., 2013). 

 PAL2 (phenylalanine ammonia-lyase) is another EDS1-dependent, RRS1a-

independent RPS4 interactor in pre-and post-activation samples. PALs catalyzes the 

deamination of phenylalanine, working as a switch between plant primary and secondary 

metabolism. It produces cinnamic acid as a substrate for the phenylpropanoid pathway 

(Rohde et al., 2004; Huang et al., 2010) as a first step of flavonoid synthesis. Flavonoids 

exert diverse functions, and some are involved in pathogen defense (Rohde et al., 2004; 

Ferrer et al., 2008). Moreover, PAL-produced cinnamic acid is a precursor for SA synthesis. 

Although the majority of pathogen-induced SA is produced by ICS1 (isochorismate 

synthase 1), inhibition of PAL activity reduced pathogen-induced SA accumulation and 

rendered Arabidopsis susceptible to powdery mildew Hyaloperonospora arabidopsidis 

(Hpa) (Mauch-Mani and Slusarenko, 1996; Chen et al., 2009). 

Ribose-5-phosphat isomerase is an EDS1- and RRS1a-dependent RPS4 interactor 

in pre-and post-activation complexes. It is one of several proteins involved in sugar 

metabolism whose transcripts accumulate upon infection with Pst AvrRpt2, presumably 

increasing the accumulation of soluble sugars and thus providing accessible energy to 

mount an adequate defense response (Bolton, 2009; Rojas et al., 2014).  

 

 Cell death and NLR association 

One highly interesting EDS1- and RRS1a-dependent, activation-independent RPS4 

interacting candidate is BPA1 (Binding partner of ACD11), which associates with ACD11 

(accelerated cell death 11) (Petersen et al., 2009). Stunningly, the auto-necrotic phenotype 

of acd11 depends on the RPS4-like NLR receptor LAZ5 (Lazarus 5) and is suppressed by 

laz5 mutations in the P-loop and LRR regions (Palma et al., 2010). Interestingly, the LAZ5 

locus is targeted by the histone lysine methyltransferase SDG8 (SET domain group 8), and 

decreased trimethylation of histone 3 lysine 36 (H3K36me3) in sdg8 correlates with 

decreased LAZ5 expression and suppression of acd11 autoimmunity (Palma et al., 2010). 

Despite of the high homology of RPS4 and LAZ5, sgt8 mutation had neither an effect on 

RPS4 expression, nor did it impair resistance to Pst AvrRps4 (Palma et al., 2010). However, 
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due to its co-purification with RPS4 and its interactions with ACD11, the functions of 

BPA1 and possibly ACD11 in Pst AvrRps4 resistance should be examined closer. 

 

 

3.5. Summary and conclusions 

 

Immense progress has been made in the understanding of paired NLR receptors in the last 

years and allowed further reshaping and refining of the classical models for NLR actions 

in plant immunity. The latest theory for paired NLRs suggests their action as an executor 

which is regulated by the sensor (compare Figure 1). Direct interaction with the resting 

sensor represses executor activity. Effector recognition by direct binding of the sensor leads 

to either complex rearrangements or release of the executor from sensor interaction, which 

then allows homodimerization of executor N-terminal domains and downstream signaling 

activation (Césari et al., 2014; Nishimura and Dangl, 2014).  

Advancing this model for RPS4 and RRS1, I suggest that upon NLR activation, 

distinct interfaces formed by homo- and heteromeric TIR interactions are exposed 

(compare Figure 20). While RPS4 TIR homodimers might participate in cytoplasmic events 

triggering cell death upon effector recognition, RPS4-RRS1 TIR heterodimeric interactions 

could be needed in the nucleus for transcriptional reprogramming and defense induction 

(Figure 21).  

Unraveling the functions of compartment-specific NLR-containing immune 

complexes will be a major challenge for future research:  What are the differences between 

cytoplasmic and nuclear immune complexes? How does their composition change upon 

pathogen recognition? Are proteins released from or recruited to immune complexes to 

fulfil their function, or are dynamic rearrangements within a preformed complex 

determining its functionality? How are NLRs connected to effector-induced transcriptional 

reprogramming? Do they stimulate defense gene expression indirectly through 

transcription factor activation, or are they directly associated with chromatin, potentially 

through interactions with transcription factors? If so, does activation change immune 

complex localization at the chromatin and/or enhance transcription factor activity?  
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Figure 21: Extended model of RPS4 and RRS1 cooperative function. 

Inactive RPS4 and RRS1 are assembled in pre-activation complexes together with positive and negative 

defense regulators such as EDS1 and SRFR1. Effector recognition releases active complexes for the induction 

of cell death in the cytoplasm, possibly through interactions via the RPS4 TIR homodimeric interface. 

Activation of nuclear complexes involves disruption of RRS1 DNA binding and conformational changes, 

allowing the formation of an RRS1-RPS4 TIR heterodimeric interface. Recruitment and activation of 

transcription factors either indirectly or through direct interaction then induces transcriptional reprogramming 

and leads to pathogen resistance.  

 

Furthermore, the recent characterization of RPS4b and RRS1b as additional contributors to 

Pst AvrRps4 resistance (Saucet, 2013) suggests a more complicated interplay between 

these four TNL receptors. The TIR domains of all four TNL can interact with each other, 

and RRS1b interacts with PopP2 and AvrRps4 as RRS1a does (Saucet, 2013). Elaborate 

research is needed to unravel their synergistic or antagonistic interactions in hetero-

complexes, potentially assembled of different portions of a and b pair TNLs. Deslandes’ 

observations about RRS1-R segregating as a recessive locus in a cross between Nd-1 and 

Col-5, but behaving as a dominant trait upon transgenic expression (Deslandes et al., 1998; 

Deslandes et al., 2002) could be explained by the incompatibility of the RPS4b-RRS1b pairs 

in a cross of Nd-1 and Col-5, while upon transgenic expression only one native b pair is 
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present. It would be interesting to test RRS1-R resistance phenotype segregation in crosses 

of other resistant and susceptible Arabidopsis accessions while comparing their genetic 

features regarding both RPS4 and RRS1 a and b pairs. Also, examination of chimeric 

RPS4a/RPS4b and RRS1a/RRS1b proteins currently performed in the group of Jonathan 

Jones will illuminate the domain functions and interdependencies of these four TNL 

receptors.  

 

In line with Ralph W. Sockman’s observation “The larger the island of knowledge, the 

longer the shoreline of wonder”, the accumulating knowledge on RPS4 and RRS1 probably 

raises more questions than it solves.  

The differences in AvrRps4 and PopP2 recognition are striking: While RRS1-R is 

capable of recognizing both effectors and inducing a strong HR, RRS1-S confers cell-death 

independent resistance to Pst AvrRps4 only (Deslandes et al., 1998; Birker et al., 2009; 

Narusaka et al., 2009a; Narusaka et al., 2009b). Adding another layer of complexity, RPS4b 

and RRS1b contribute to Pst AvrRps4, but not R.s. PopP2 defense (Saucet, 2013). 

Furthermore, all of these TNL proteins differ to various degrees in different Arabidopsis 

accessions, as do the pathogen recognition capacities.  

However, these differences not only pose a big challenge for future research, but 

also a big chance to uncover detailed structural requirements and interdependencies of these 

TNL receptors for their distinct immune functions towards Pst AvrRps4 and R.s. PopP2. 

Connecting structural properties of RPS4a/b and RRS1a/b in different Arabidopsis 

accessions with their functionalities in immunity will allow the dissection of their modes 

of action. Together with the proven functional transferability of RPS4 and RRS1 into other 

plant families, detailed understanding of NLR pairwise immune regulation could facilitate 

the application of basic research in crop plants to establish new ways of disease control. 
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4. Materials and Methods 
 

4.1. Materials 

 Plant material 

All Arabidopsis thaliana plants used in this study were in the Columbia (Col-0) accession. 

Mutant and wt plants are listed in Table 4, transgenic plants in Table 5. 

 

Table 4: Arabidopsis wt and mutant lines 

name description reference/source 

Col-0 wildtype J. Dangl 

eds1-2 mutant/FN Bartsch et al., 2006 

rps4-2 (rps4a) mutant/T-DNA Wirthmueller et al., 2007 

rrs1-11 (rrs1a) mutant/T-DNA Birker et al., 2009 

rrs1a/b (rrs1-3/rrs1b) mutant/T-DNA Simon Saucet, unpublished 

rps4a/b mutant/T-DNA Simon Saucet, unpublished 

FN – fast neutron mutagenesis; T-DNA – transfer-DNA mutagenesis 

 

Table 5: Arabidopsis transgenic lines 

name background  construct reference/source 

3FTH-RRS1 Col-0 rrs1a 
pRRS1:3FLAG-TEV-

3HA-RRS1-S (RRS1a) 

Laurent Deslandes, 

unpublished 

WRKY18-HA Col-0 wrky18 pWRKY18:WRKY18-HA 
Rainer Birkenbihl, 

unpublished 

OE-RPS4-HS Col-0 35S:RPS4a-HA-Strep Wirthmueller et al., 2007 

OE-RPS4-HS 

eds1-2 
Col-0 eds1-2 35S:RPS4a-HA-Strep Wirthmueller et al., 2007 

OE-RPS4-HS  

rrs1a 
Col-0 rrs1a 35S:RPS4a-HA-Strep Heidrich et al., 2013 

OE-RPS4-HS 

rrs1a/b 
Col-0 rrs1a/b 35S:RPS4a-HA-Strep 

crossed from 

OE-RPS4-HS eds1-2 

OE-RPS4-YFP Col-0 rps4a 35S:RPS4a-YFP 
Baufumé et al., 

submitted 
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Table 5: Arabidopsis transgenic lines (continued) 

OE-RPS4-YFP 

eds1-2 
Col-0 eds1-2 35S:RPS4a-YFP 

Baufumé et al., 

submitted 

OE-RPS4-YFP 

rrs1a/b 
Col-0 rrs1a/b 35S:RPS4a-YFP 

crossed from OE-RPS4-

YFP eds1-2 

RPS4P-loop-YFP Col-0 rps4a 35S:RPS4aP-loop-YFP 
Baufumé et al., 

submitted 

CP-OE-RPS4-YFP 

rps4a 
Col-0 rps4a 35S:RPS4a-YFP 

Chunpeng Yao, 

unpublished 

pRPS4:RPS4-YFP 

rps4a 
Col-0 rps4a pRPS4:RPS4a-YFP 

Chunpeng Yao, 

unpublished 

 

 Pathogens 

Pseudomonas syringae pv tomato strain DC3000 (Pst) carrying an empty vector control 

(pVSP61) and Pst expressing the P. syringae pv. pisi effector AvrRps4 (Pst AvrRps4) were 

used for Arabidopsis infections in this study. They were obtained from R. Innes (Indiana 

University, Bloomington USA) and grown as described (Hinsch and Staskawicz, 1996). 

For stable transformation of Arabidopsis or transient protein expression in tobacco, 

Agrobacterium tumefaciens strain GV3101 was used (Koncz and Schell, 1986).  

 

 Oligonucleotides 

Primers used in this study were purchased from Sigma-Aldrich and resuspended in H2O to 

a concentration of 100µM. Working solutions were further diluted to 10µM. Primers are 

summarized in Table 6. 
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Table 6: Primers 

purpose gene direction/name primer sequence (5’ to 3’) 

q
P

C
R

 

actin 

(At3G18780) 

fw ATGGAAGCTGCTGGAATCCAC 

rev TTGCTCATACGGTCAGCGATA 

GAPDH 

(At1G13440) 

fw TTGGTGACAACAGGTCAAGCA 

rev AAACTTGTCGCTCAATGCAATC 

expressed protein 

(At4g26410) 

fw GAGCTGAAGTGGCTTCCATGAC 

rev GGTCCGACATACCCATGATCC 

EDS1 

(At2G48090) 

fw TTTATGGGCTTGACACTTTGG 

rev AGATTATTCAGGTGATCGAGCA 

ICS1 

(At1G74710) 

fw TTCTGGGCTCAAACACTAAAAC 

rev GGCGTCTTGAAATCTCCATC 

PR1 

(At2G14610) 

fw TTCTTCCCTCGAAAGCTCAA 

rev AAGGCCCACCAGAGTGTATG 

PBS3 

(At5G13320)  

fw ACACCAGCCCTGATGAAGTC 

rev CCCAAGTCTGTGACCCAGTT 

FMO1 

(At1G19250)  

fw GTTCGTGGTTGTGTGTACCG 

rev TGTGCAAGCTTTTCCTCCTT 

DND1 

(At5G15410)  

fw CTCCCATGGTGGTTCCTCTA 

rev ATCGATCCCAGTCGTTTGTC 

ERECTA 

(At2G26330) 

fw CATGGCCCTACGAAGAAAAA 

rev TGGACGACTTCACGTCTCTG 

RRS1_NB 

(At5G45260) 

fw AGCTGCTGGAGATTGAAAACA 

rev CAAGAAGCATCAAAGGCGCT 

RPS4_1 

(At5G45250)  

LW4_fw AATACCACCGGAGGGAAGTC 

LW14_rev TCACGATCCAACTTCTCTTCCA 

RPS4_2 

(At5G45250) 

SB94_fw TGGAGTTGGATCGCTTGCCTCA 

SB93_rev CCCTGCTTCCCTCCTTACCCTCC 

RPS4_3 

(At5G45250) 

LW6_fw AGCCCCAGCCCTAATATTGT 

PM110_rev GAGAGATTTGACTGCACTCATT 

RPS4_4 

(At5G45250) 

LW11_fw CCACATTGGCATGACAAGAA 

LW21_rev ACAAGCGGCTGACTTGATCT 

RPS4_5 

(At5G45250) 

A007_fw GGGCAACTGGTGTATCCAAT 

A006_rev TTGACCCCCAAGATCAAGTC 

RPS4-YFP 

(At5G45250) 

A015_fw GACGGCCAAAGAAGAAGCAG 

AG8_rev GAACTTCAGGGTCAGCTTGC 
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Table 6: Primers (continued) 

purpose gene name/direction primer sequence (5’ to 3’) 
g

en
o

ty
p

in
g

 

rrs1-3 

mutant 

wt 

C90_LP AAGTGGTGCCACAAAATCAAC 

C91_RP ACTCGGAGAAGCTTCCTATGC 

CV10 ATTTTGCCGATTTCGGAAC 

rrs1b 

mutant 

wt 

C79_LP TATTTCAGAAAACCGAGTGCG 

C80_RP ACCCTGGATAGTCTCGAGCTC 

CV10 ATTTTGCCGATTTCGGAAC 

rps4-2 

mutant 

wt  

PM109_LP TTGTCCAAGTTAAACCATCCT 

PM110_RP GAGAGATTTGACTGCACTCATT 

CV10 ATTTTGCCGATTTCGGAAC 

rps4b 

mutant 

wt 

C83_LP GCTGAGTTGATCTTGGCTGTC 

C84_RP CACCAGTCTTAAAATGGGTCG 

CV10 ATTTTGCCGATTTCGGAAC 

eds1-2 

mutant 

and wt 

105/E2 ACACAAGGGTGATGCGAGACA 

EDS4 GGCTTGTATTCATCTTCTATCC 

EDS6 GTGGAAACCAAATTTGACATTAG 

rrs1-11 

mutant 

KH71 TGTAGAAGAGATTGTGAGAGATGT 

KH72 CTGGGAATGGCGAAATCAAGGCATC 

rrs1-11 

wt 

KH125 GTTTGACTGGCTAGGACCCGGAAG 

KH126 CTGCAGATCAAATCTTAAGTTTGATGTGTCTAGA 

purpose mutation name/direction primer sequence (5’ to 3’) 

R
R

S
1

 m
u

ta
g

en
es

is
 

R20A C40_fw GCGTAGAAGAGGTAGCGTACTCTTTCGTGAG 

R20A C41_rev CTCACGAAAGAGTACGCTACCTCTTCTACGC 

Y101A C42_fw TGGTTTCAGTGTTGGCCGGTGACAGTCTATT 

Y101A C43_rev AATAGACTGTCACCGGCCAACACTGAAACCA 

K185A C44_fw TGCCTGGCATAGGAGCGACAACACTTGCTAA 

K185A C45_rev TTAGCAAGTGTTGTCGCTCCTATGCCAGGCA 

D254A C46_fw TTCTTGTTGTTCTCGCTGACGTGCGCAATGC 

D254A C47_rev GCATTGCGCACGTCAGCGAGAACAACAAGAA 

D255E C48_fw TTGTTGTTCTCGATGAGGTGCGCAATGCTCT 

D255E C49_rev AGAGCATTGCGCACCTCATCGAGAACAACAA 

R283G C50_fw TCATCATAACCTCTGGAGATAAACAAGTGTTTTGC 

R283G C51_rev GCAAAACACTTGTTTATCTCCAGAGGTTATGATGA 

H442A C52_fw ACCGAGTTTGGTTGGCTAAGCTGACCCAGGA 

H442A C53_rev TCCTGGGTCAGCTTAGCCAACCAAACTCGGT 

K1215A C54_fw TATGGACTTGGCGAGCGTACGGTCAAAAAGA 

K1215A C55_rev TCTTTTTGACCGTACGCTCGCCAAGTCCATA 
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Table 6: Primers (continued) 

purpose mutation name/direction primer sequence (5’ to 3’) 

R
R

S
1

 m
u

ta
g

en
es

is
 L1222_G

1223insL C56_fw CGGTCAAAAAGACATCTTACTGGGTTCTCGTTTTCC 

L1222_G

1223insL C57_rev GGAAAACGAGAACCCAGTAAGATGTCTTTTTGACCG 

H26A C71_fw ACTCTTTCGTGAGCGCCCTCTCTGAAGCTCT 

H26A C72_rev AGAGCTTCAGAGAGGGCGCTCACGAAAGAGT 

 

 Enzymes 

Restriction enzymes were purchased from New England Biolabs (NEB; Frankfurt, 

Germany) unless otherwise stated. NEB Enzymes were supplied with 10x reaction buffer 

which was used for restriction digests. 

Standard PCR reactions were performed using home-made Taq DNA polymerase. 

For genotyping using the DNA extraction method II, PCR reactions were performed using 

commercially available Phire II polymerase. To achieve high accuracy when PCR products 

were generated for cloning, Phusion or Pfu polymerases were used. 

 Nucleic acid modifying enzymes and their suppliers are listed below: 

Taq DNA polymerase    home-made 

Phire Hot Start II DNA Polymerase  Thermo Scientific (Schwerte, Germany) 

Phusion DNA Polymerase   NEB (Frankfurt, Germany) 

PfuTurbo DNA Polymerase    Stratagene (Heidelberg, Germany) 

PrimeStar DNA Polymerase  Takara Clontech (Saint-Germain-en-Laye, 

France) 

Kappa HiFi DNA Polymerase   PEQLAB (Erlangen, Germany) 

SuperScript II Reverse Transcriptase  Invitrogen (Karlsruhe, Germany) 

Gateway LR Clonase Enzyme mix   Invitrogen (Karlsruhe, Germany) 

 Chemicals 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich 

(Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

Invitrogen™ (Karlsruhe, Germany), Serva (Heidelberg, Germany), and Gibco™ BRL® 

(Neu Isenburg, Germany) unless otherwise stated. 
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 Antibiotics stock solutions 

Ampicillin (Amp)  100 mg/ml in ddH2O 

Carbenicillin (Carb) 50 mg/ml in ddH2O 

Gentamycin (Gent)  15 mg/ml in ddH2O 

Kanamycin (Kan)  50 mg/ml in ddH2O 

Rifampicin (Rif)  100 mg/ml in DMSO 

Spectinomycin  10 mg/ml in ddH2O 

Tetracycline (Tet)  10 mg/ml in 70 % ethanol 

Stock solutions (1000x; 100x for Spectinomycin) stored at -20° C. Aqueous solutions were 

sterile filtrated. 

 

 Media 

Media were sterilised by autoclaving at 121° C for 20 min. For the addition of antibiotics 

and other heat labile compounds the solution or media were cooled to 55° C. Heat labile 

compounds were filter-sterilised prior to use. 

Escherichia coli medium: Luria-Bertani (LB) broth or agar plates 

Pseudomonas syringae medium: Nutrient-Yeast-Glycerol (NYG) broth or agar plates 

Agrobacterium tumefaciens media: Yeast Extract broth (YEB) or LB broth or agar plates 

Arabidopsis thaliana medium: liquid Murashige and Skoog (MS) or MS agar plates 

 

 Antibodies 

Listed below are primary and secondary antibodies used for immunoblot detection. 

 

Table 7: Primary antibodies 

Antibody Source Dilution Reference 

-HA 3F10 rat monoclonal 1:5000 Roche (Mannheim, Germany) 

-GFP mouse monoclonal 1:5000  Roche (Mannheim, Germany) 

-EDS1 rabbit polyclonal 1:500 S. Rietz, J. Parkera 

-Histone H3 rabbit polyclonal 1:5000 ab1791, Abcam (Cambridge, UK) 

-PEPC rabbit polyclonal 1:5000 Rocklands, Gilbertsville, PA, USA 

aMax-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany 
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Table 8: Secondary antibodies 

Antibody Feature Dilution Reference 

goat anti-rabbit IgG-HRP conjugated 1:5000 Santa Cruz (Santa Cruz, USA) 

goat anti-mouse IgG-HRP conjugated 1:5000 Santa Cruz (Santa Cruz, USA) 

goat anti-rat IgG-HRP conjugated 1:5000 Santa Cruz (Santa Cruz, USA) 

 Buffers and solutions 

General buffers and solutions are displayed in the following listing. Buffers and solutions 

not displayed here are described in the corresponding methods. All buffers and solutions 

were prepared using Milli-Q water. Buffers and solutions for molecular biological 

experiments were autoclaved or filter-sterilised. 

 

Molecular biology work: 

 

DNA extraction buffer I Tris-HCl, pH 7.5 200 mM 

NaCl   250 mM 

EDTA   25mM 

SDS   0.5% 

 

DNA extraction buffer II Tris-HCl, pH 7.5 50mM 

    NaCl   300mM 

    Sucrose  300mM 

 

DNA gel loading dye (6x)  Sucrose  4g 

EDTA (0.5 M) 2ml 

Bromphenol blue 25mg 

H2O to 10 ml 

 

PCR reaction buffer (10x)  Tris-HCl, pH 9.0 100mM 

KCl   500mM 

MgCl2   15mM 

Triton X-100  1% 
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TE buffer    Tris-HCl pH 8.0 10mM 

EDTA   1mM 

 

SDS-PAGE: 

 

Laemmli buffer (2x)   Tris-HCl pH 6.8 0.125M 

SDS   4% 

Glycerol  20% (v/v) 

Bromphenol blue 0.02% 

Dithiothreitol (DTT) 0.2M 

 

SDS running buffer (10x)  Tris   30.28g 

Glycine  144.13g 

SDS   10g 

H2O to 1000 ml 

 

Western blotting: 

 

Transfer buffer (10x)   Tris   58.2g 

Glycine  29.3g 

SDS (10 %)  12.5mL 

adjust pH tp 9.2; H2O to 1000 mL 

Before use dilute 100mL 10x buffer with 700ml H2O and add 

200mL methanol. 

 

Ponceau S staining Ponceau S working solution was prepared by dilution of ATX 

Ponceau S concentrate (Sigma-Aldrich) 1:5 in H2O. 

 

TBST buffer    Tris-HCl pH 7.5 10mM 

NaCl   150mM 

Tween 20  0.05% 
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4.2. Methods 

 Plant growth 

Arabidopsis seeds were germinated on moist soil after 2 days of vernalisation at 4°C. Plants 

were grown in controlled growth chambers under a 10/14h day/night cycle (150–200 

μE/m2s) and ~65% relative humidity at 22°C. For temperature-shift experiments, plants 

were grown in chambers under a 12/12h day/night cycle (150–200 μE/m2s) and ~65% 

relative humidity at 28°C and shifted in the morning to 19°C for 8h. To obtain progeny 

plants were transferred to long day conditions (16h photoperiod) and flowering tissue was 

enclosed in a paper bag until seeds ripened. 

 

 Crossing Arabidopsis plants 

Individual flowers with immature stamina were emasculated with fine tweezers. Stigmas 

were pollinated by tapping three to four donor stamens from different flowers onto them. 

Mature siliques containing F1 seeds were harvested and allowed to dry. F1 seeds were 

grown and allowed to self-pollinate. Produced F2 seeds were sown and used for genotyping. 

 

 Bacterial growth assays 

For Pseudomonas spray infections, Pst and Pst AvrRps4 strains were grown for 24h at 

28°C on NYGA solid medium supplemented with the corresponding antibiotics. 4- to 

5-week-old plants were spray-inoculated with bacterial suspensions at 1x108cfu/ml in 

10mM MgCl2 containing 0.04% (v/v) Silwet L-77 (Lehle seeds, USA) or syringe infiltrated 

with bacterial suspensions at 5x104cfu/ml in 10mM MgCl2. In planta bacterial titers were 

determined shortly after inoculation (day 0) and 2-4 days post infection (dpi) by shaking 

leaf discs in 10mM MgCl2 with 0.01% Silwet L-77 at 28°C for 1h, as described (Tornero 

and Dangl, 2001; García et al., 2010). Infected plants were kept in a growth cabinet with a 

10/14 h day/night cycle at 23°C. Means and standard errors were calculated from at least 

three (day 0) or five (day 3) biological replicates per experiment. Bacterial numbers were 

compared between lines using ANOVA (analysis of variance) followed by a post-hoc 

Tukey test. Genotypes with significant differences (p<0.05) were assigned to different 

groups indicated by letters (a,b,c) whereas genotypes showing no significant differences 

belong to the same group. 
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 Arabidopsis total protein extraction 

For comparable starting amounts, leaf tissue was harvested using a cork borer, then frozen 

in liquid nitrogen and homogenized 2x30sec using a Mini-Bead-Beater-8 (Biospec 

Products) and 1.2 mm stainless steel beads (Roth). Equal amounts of 2xLaemmli sample 

buffer was added to each tube, samples were boiled for 5-10min in a heating block and 

used directly for  western blot analysis or frozen at -20°C. 

 

 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Polyacrylamide gels for SDS-PAGE were prepared by pouring first the resolving gel 

followed by the stacking gel containing a comb to produce slots for sample loading. 

Composition of gels is listed in Table 9. 

 

Table 9: Composition of polyacrylamide gels 

 6% resolving 8% resolving 5% stacking 

H2O 53 mL 46.4 mL 20.4 mL 

30% Acrylamide/Bis solution 29:1 (BioRad) 20 mL 26.6 mL 5.1 mL 

Tris-HCl pH 8.8 25 mL 25 mL - 

Tris-HCl pH 6.8 - - 3.9 mL 

10% SDS 1 mL 1 mL 300 µL 

10% ammonium persulfate (APS) 1 mL 1 mL 300 µL 

TEMED (BioRad) 80 µL 60 µL 30 µL 

 

Total protein extracts from Arabidopsis leaves were prepared as described above (4.2.4) or 

2xLaemmli sample loading buffer was added to protein samples followed by sample 

boiling to denature proteins. Gels were placed into electrophoresis tanks submerged in 1x 

SDS running buffer. A prestained protein ladder (PageRuler Prestained Protein Ladder, 

Thermo Scientific) was loaded alongside with the denatured protein samples and samples 

were separated at 80-120V. 

 

 Western blot and immunodetection of proteins 

Proteins separated by SDS-PAGE were electro-blotted onto Hybond-ECL-nitrocellulose 

membranes (Amersham Biosciences) for 75min at 100V. Equal protein transfer was 

monitored by staining membranes with Ponceau S (Sigma-Aldrich). Destained membranes 
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were blocked for 1h in 5% milk in TBST (Tris buffered saline with Tween20) before 

incubation in 2% milk in TBST containing primary antibody overnight. The appropriate 

horseradish peroxidase (HRP)-conjugated secondary antibody was applied and proteins 

were detected using Enhanced Chemiluminiscence Reagent (ECL; Pierce Thermo 

Scientific) either by exposure on a photographic film (BioMax light film, Kodak) or by 

using the ChemiDoc MP imaging system (BioRad). 

 

 Nuclear fractionation 

Nuclear fractionation of Arabidopsis leaf tissue was performed as previously described 

(Kinkema et al., 2000). Briefly, 2g leaf tissue of 3-week-old plants was ground in liquid 

nitrogen for homogenization, resuspended in Honda buffer (2.5% Ficoll400, 5% Dextran 

T40, 0.4M Sucrose, 25mM Tris-HCl pH7.4, 10mM MgCl2, 5mM DTT, proteinase 

inhibitors) and then filtered through nylon mesh. After addition of Triton X-100 to a final 

concentration of 0.5% and incubation on ice, the solution was centrifuged at 1500g for 5 

min, and the pellet washed with Honda buffer containing 0.1% Triton X-100. The pellet 

was resuspended gently in Honda buffer and centrifuged at 100g for 5 min to pellet starch 

and cell debris. The supernatant was centrifuged subsequently at 1800g for 5 min to pellet 

the nuclei. Nuclei-enriched fractions were 30× more concentrated than nuclei-depleted 

fractions based on the final volume of each fraction. For immunoblot analysis, cytoplasmic 

marker PEPC (phosphoenolpyruvate carboxylase) and nuclear marker Histone H3 were 

included. Following antibodies were used: α-HA (3F10; Roche), α-PEPC (Rockland), α-

Histone H3 (Abcam). 

 

 Strep-tag mediated protein pulldown 

2g leaf tissue of 3,5-week-old plants was homogenized in liquid nitrogen before adding 

3mL of lysis buffer (50mM Tris-HCl pH 8; 1mM EDTA; 150mM NaCl; 10% glycerol, 

5mM DTT; 0,05% Triton X-100; proteinase inhibitors), centrifuged to remove cell debris 

and incubated with StrepTactin superflow sepharose beads (IBA) rotating at 4°C for 1h. 

Samples were loaded on a spin column, washed four times with wash buffer (50mM Tris-

HCl pH 8; 1mM EDTA; 150mM NaCl; 10% glycerol, 5mM DTT) and eluted with biotin 

elution buffer (20mM Tris-HCl pH 8, 150mM NaCl, 2mM DTT). Samples were analysed 

by western blot. Subsequent proteomic analysis was performed at the Protein Mass 

Spectrometry Service of the Max Planck Institute for Plant Breeding Research. After in 
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solution digest and label-free quantification, RPS4 co-eluted proteins were identified on an 

Easy nLC1000 liquid chromatograph coupled to a QExactive mass spectrometer 

(ThermoFisher Scientific). Data was evaluated using MaxQuant. 

 

 Arabidopsis genomic DNA extraction I and PCR 

Leaf material was harvested into Corning® 96well PP 1.2 mL cluster tubes (8-tube strip) 

and homogenized in liquid nitrogen using a Mini-Bead-Beater-8 (Biospec Products) and 

stainless steel beads. After addition of 400µL DNA extraction buffer I samples were 

centrifuged and 300 µL supernatant transferred to new tubes containing 300µL icecold 

isopropanol. After pelleting precipitated DNA by centrifugation, supernatant was discarded 

and pellet washed 1-2x with 70% EtOH. Dried pellet was resolved in 100µL H2O and 2µL 

used for PCR in the following PCR conditions: 

 

PCR reaction composition: 

Component volume per 20µL reaction (µL) 

home-made Taq Polymerase 0.5 

10x PCR buffer 2 

2.5mM dNTPs 2 

10µM primer (forward) 1 

10µM primer (reverse) 1 

H2O 11.50 

DNA solution 2 

 

PCR thermal conditions: 

Stage Temperature (°C) Duration (sec) N° of cycles 

Initial denaturation 94 120 1 

Denaturation 94 20 

35 Annealing 55 20 

Elongation 72 60 per kb 

Final extension 72 300 1 
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Amplified PCR products were loaded onto an agarose gel containing ethidiumbromide for 

DNA staining. After electrophoretic separation of DNA fragments, resulting bands were 

monitored under UV light to evaluate PCR results. 

 

 Arabidopsis genomic DNA extraction II and PCR 

Leaf material was harvested into Corning® 96well PP 1.2 mL cluster tubes (8-tube strip) 

and homogenized in 200µL DNA extraction buffer II using a Mini-Bead-Beater-8 (Biospec 

Products) and stainless steel beads. Immediately boil samples in a water bath at 95°C for 

10min, followed by incubation on ice for 30min. Use 1 µL of DNA sample in the following 

PCR conditions: 

 

PCR reaction composition: 

Component volume per 20µL reaction (µL) 

Phire Hot Start II DNA Polymerase 0.2 

Phire or Phusion 5x buffer 4 

2.5mM dNTPs 0.4 

10µM primer (forward) 1 

10µM primer (reverse) 1 

H2O 12.4 

DNA solution 1 

 

PCR thermal conditions: 

Stage Temperature (°C) Duration (sec) N° of cycles 

Initial denaturation 98 30 1 

Denaturation 98 10 

35 Annealing 60 15 

Elongation 72 10-15 per kb 

Final extension 72 300 1 

 

Amplified PCR products were loaded onto an agarose gel containing ethidiumbromide for 

DNA staining. After electrophoretic separation of DNA fragments, resulting bands were 

monitored under UV light to evaluate PCR results. 
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 Site-directed mutagenesis  

Plasmid pDONR207 containing pRRS1:3FTH-RRS1-S genomic sequence was used for 

PCR with proof-reading polymerases Phusion, Pfu, PrimeStar or Kappa HiFi using 

primers designed to insert basepair changes at required positions (see Table 6).  

 

Phusion PCR reaction composition: 

Component volume per 20µL reaction (µL) 

Phusion DNA Polymerase 0.2 

Phusion 5x HF buffer 4 

2.5mM dNTPs 2 

5µM primer (forward) 0.5 

5µM primer (reverse) 0.5 

H2O 10.8 

Plasmid (~20ng/µL) 2 

 

Phusion PCR thermal conditions: 

Stage Temperature (°C) Duration  N° of cycles 

Initial denaturation 98 1 min 1 

Denaturation 98 10 sec 

18 Annealing 60 20 sec 

Elongation 72 6 min 

Final extension 72 15 min 1 

 

Pfu PCR reaction composition: 

Component volume per 20µL reaction (µL) 

Pfu DNA Polymerase 0.4 

Pfu 10x buffer 2 

2.5mM dNTPs 2 

5µM primer (forward) 0.5 

5µM primer (reverse) 0.5 

H2O 12.6 

Plasmid (~20ng/µL) 3 
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Pfu PCR thermal conditions: 

Stage Temperature (°C) Duration  N° of cycles 

Initial denaturation 98 1 min 1 

Denaturation 98 10 sec 

18 Annealing 60 20 sec 

Elongation 72 14 min 

Final extension 72 15 min 1 

 

PrimeStar PCR reaction composition: 

Component volume per 20µL reaction (µL) 

PrimeStar DNA Polymerase 0.5 

PrimeStar 5x buffer 4 

2.5mM dNTPs 4 

10µM primer (forward) 0.5 

10µM primer (reverse) 0.5 

H2O 12.9 

Plasmid (~2ng/µL) 2 

 

PrimeStar PCR thermal conditions: 

Stage Temperature (°C) Duration  N° of cycles 

Initial denaturation 98 2 min 1 

Denaturation 98 30 sec 

18 Annealing 60 15 sec 

Elongation 72 13 min 

Final extension 72 20 min 1 
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Kappa HiFi PCR reaction composition: 

Component volume per 20µL reaction (µL) 

Kappa HiFi DNA Polymerase 0.5 

Kappa HiFi 5x buffer 5 

10mM dNTPs 0.75 

10µM primer (forward) 0.75 

10µM primer (reverse) 0.75 

H2O 14.75 

Plasmid (~2ng/µL) 2.5 

 

Kappa HiFi PCR thermal conditions: 

Stage Temperature (°C) Duration  N° of cycles 

Initial denaturation 95 4 min 1 

Denaturation 98 30 sec 

18 Annealing 60 15 sec 

Elongation 72 7 min 

Final extension 72 10 min 1 

 

PCR reactions were digested by incubation with 0.5µL DpnI restriction enzyme for 1h at 

37°C to remove methylated original plasmid DNA and subsequently heat-shock 

transformed into E. coli DH10b for amplification. Plasmids were purified from overnight 

cultures and sequenced at the Max Planck genome center to verify mutations.  

Mutated pRRS1:3FTH-RRS1-S fragments were cloned into the plant expression vector 

pAM-PAT using the Gateway LR Clonase II enzyme mix in the following conditions: 

 

Component volume per 20µL reaction (µL) 

Entry clone (pDONR207-RRS1-S, 75ng/µL) 0.5 

Destination vector (pAM-PAT, 75ng/µL) 0.5 

TE buffer, pH 8.0 1 

LR clonase II enzyme mix 0.5 

Incubate overnight at 25°C.  
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To terminate the reaction, incubate with 0.5µL Proteinase K at 37°C for 10min. Plasmids 

were heat-shock transformed into E. coli DH10b for amplification. Correct insertions were 

verified by sequencing at the Max Planck genome center. pAM-PAT vectors including 

mutated pRRS1:3FTH-RRS1-S sequences were transformed into Agrobacterium 

tumefaciens GV3101 PMP90 RK (hereafter Agrobacteria) by electroporation for delivery 

into plants. 

 

 Transient protein expression in tobacco 

Agrobacteria carrying pAM-PAT pRRS1:3FTH-RRS1-S, as well as pRPS4:RPS4-HS and 

35S:AvrRps4-YFP were grown for 2 days on selective YEB or LB plates at 28°C and 

incubated for 3-5h in infiltration medium (10mM MES pH 5.6, 10mM MgCl2, 0.15mM 

acetosyringone) at OD600=1. 3-week-old to 4-week-old tobacco Nicotiana benthamiana or 

N. tabacum plants were syringe-infiltrated with different v/v mixes of the prepared 

Agrobacteria strains. Leaf samples to monitor protein expression were taken 2 days after 

infiltration. Macroscopic HR symptoms (necrosis) were monitored at several consecutive 

days after infiltration. 

 

 Agrobacterium-mediated Arabidopsis transformation: 

Arabidopsis flowers were dipped into transformation solution containing Agrobacteria 

grown for 2 days on YEB plates (30mL liquid YEB medium with Agrobacteria, 120mL 

5% sucrose, 0.03% Silwet L-77) for 10-30 sec under gentle agitation. Plants were kept 

under high humidity for 48h, then grown under long day conditions until seed maturity to 

obtain T1 generation. 

 

 qPCR analysis of Arabidopsis gene expression 

Leaf material of Arabidopsis plants was harvested (i.e. 4.5-week-old plants syringe 

infiltrated with Pst AvrRps4 or 10mM MgCl2 (mock) as described above (4.2.3), or 

3-week-old RPS4-overexpressing plants after temperature-shift at different time points 

after treatment). Plant tissue was homogenized using a Mini-Bead-Beater-8 (Biospec 

Products) and stainless steel beads. Total RNA was extracted using the RNeasy Plant 

Minikit (Qiagen) according to the manufacturer's protocol. 1ug of total RNA was used for 

reverse transcription with SuperScript II enzyme (Invitrogen) using the following protocol: 
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cDNA synthesis reaction setup: 

Component volume per 20µL reaction (µL) 

0.5µg/µL Oligo dT 1 

2.5mM dNTPs 4 

1µg RNA  2µL of 0.5µg/µL 

RNase-free H2O 5 

Incubate for 5min at 65°C. 

 

Prepare following master mix and add 8µL to each sample: 

Component volume per 20µL reaction (µL) 

5x First Strand Buffer  4 

0,1M DTT  2 

RNase Out (40 units/µL) 1 

SuperScript II (Reverse transcriptase) 1 

Incubate for 60min at 42°C, then heat-inactivate enzyme for 15min at 70°C. 

 

cDNA was diluted 1:20 and 4µL each were used for quantitative RT-PCR (qPCR). 

 

qPCR reaction composition: 

Component volume per 25µL reaction (µL) 

H2O 14.5 

10x PCR buffer 2.5 

EVAgreen 1.25 

2.5mM dNTPs 1 

10µM primer (forward) 0.5 

10µM primer (reverse) 0.5 

home-made Taq polymerase 0.75 

cDNA dilution 4 
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qPCR thermal conditions: 

Stage Temperature (°C) Duration (sec) N° of cycles 

Initial denaturation 95 180  

Denaturation 95 10 

55 Annealing 58 10 

Elongation 72 15-30 

Denaturation 95 60  

Renaturation 55 60  

Melting Curve 55 10 81 

 

Results were analysed using the BioRad iQ5 software and Microsoft Office Excel. 

 

 Chromatin-immunoprecipitation (ChIP) 

3-week-old plants were harvested either untreated or 6h after spray inoculation with Pst 

AvrRps4 (OD600=0.4) or 10mM MgCl2 mock treatment, respectively. ChIP samples were 

processed according to Gendrel et al. (2005) and Birkenbihl et al. (2012) with 

modifications. In short, leaf material was cross-linked by three subsequent 5min vacuum 

infiltrations of 1% formaldehyde solution. Tissue was frozen and ground in liquid nitrogen. 

Nuclei were extracted from 2g of leaf material. Nuclei were disrupted by sonication on an 

UP50H sonicator (Hielscher) ten times for 30sec each with 30sec break. Sheared chromatin 

was diluted to reduce SDS concentration. Input samples were set aside. After chromatin 

solutions were pre-clearing with protein A agarose beads (Sigma), they were incubated 

with rabbit polyclonal HA antibody (Sigma, H6908) overnight at 4°C on a rotator. 

Immune complexes were collected with protein A agarose beads. After washing, eluted 

immune complexes and input samples were incubated at 65°C overnight to reverse the 

cross-linking. Proteins were digested and DNA extracted with phenol/chloroform and 

resolved in 50µL nuclease-free H2O. 2µL of pWRKY18:WRKY18-HA samples was used 

to test enrichment of targeted gene promoters by qPCR. 

 For 3FTH-RRS1 and Col-0 input and HA-ChIP samples, linear DNA amplification 

(LinDA) was performed according to Shankaranarayanan et al. (2012), but with an 

additional repeat of the in vitro transcription for enhanced DNA amplification. Eluted DNA 

was barcoded using the NuGene “Ovation Ultralow Library Systems” kit and amplified by 

15-16 cycles of PCR during library preparation. DNA of approximately 200-400bp length 
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was extracted from an agarose gel. Samples were sequenced on the Illumina HiSeq2500 by 

the Max Planck genome center. Sequencing reads were processed and mapped to the 

Arabidopsis genome (Barbara Kracher): Remaining LinDA adapters were removed from 

the sequencing data using cutadapt (Martin, 2011), then poly-A and poly-T tails and low 

quality ends were trimmed. Reads with low quality or with less than 36 bases remaining 

after trimming were removed using PRINSEQ lite (Schmieder and Edwards, 2011). 

Remaining high quality reads were mapped to the Arabidopsis thaliana reference genome 

TAIR10 (http://www.arabidopsis.org) using Bowtie (Langmead et al., 2009). To identify 

genomic DNA regions enriched in sequencing reads in the RRS1-S ChIP sample, 

sequencing reads of all samples were compared using the peak calling programs MACS 

(Zhang et al., 2008), QuEST (Valouev et al., 2008) and peakzilla (Bardet et al., 2013). 
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6. Supplementary 

 

Figure S 1: Regulation of defense-related genes upon Pst AvrRps4 infection is wt-like in 3FTH-RRS1 

plants. 

Transcriptional reprogramming in 4.5-week-old 3FTH-RRS1, Col-0 and rrs1a/b syringe-infiltrated with Pst 

AvrRps4 was analysed by qPCR. Normalized fold expression was calculated by relating sample values to the 

geometric mean of three reference genes (actin, GAPDH and expressed protein) and normalizing to the Col-

0 untreated sample. Experiment was repeated twice with similar results. (A) Regulation of defense-induced 

genes. (B) Regulation of defense-repressed genes.  
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Figure S 2: Pulldown replicates show high consistency of a core set of detected proteins.  

Strep-tag-mediated RPS4-pulldown was performed in four replicates. Heatmap allows comparison of LFQ 

values of proteins detected among different replicates and samples (compare figure legend; gray – not 

detected). As protein detection in several single replicates was very low, the threshold for consideration of 

RPS4 co-identified proteins was set to two instead of three replicates. 
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Table S 1: RPS4-HS interactors in pre- and post-activation complexes and genotype dependency of 

post-activation protein hits 

A. Pre-activation protein hits 

u
n

iq
u

e 

p
ep

ti
d

es
 in post-activation 

OE-RPS4-HS… 

Protein ID Fasta header Col-0 rrs1a eds1-2 

AT1G20200 
EMB2719, HAP15 | PAM domain (PCI/PINT associated 

module) protein 
5     

  

AT1G45201 ATTLL1, TLL1 | triacylglycerol lipase-like 1 3       

AT2G14880 SWIB/MDM2 domain superfamily protein 2       

AT4G33030 SQD1 | sulfoquinovosyldiacylglycerol 1 5       

AT1G79930 HSP91 | heat shock protein 91 9       

AT2G47390 Prolyl oligopeptidase family protein 4       

AT4G34200 EDA9 | D-3-phosphoglycerate dehydrogenase 3       

AT5G38430 
Ribulose bisphosphate carboxylase (small chain) family 

protein 
3     

  
       

B. Shared protein hits 

u
n

iq
u

e 

p
ep

ti
d

es
 in post-activation 

OE-RPS4-HS… 

Protein ID Fasta header Col-0 rrs1a eds1-2 

AT5G45250 RPS4 | Disease resistance protein (TIR-NBS-LRR class) 31       

AT3G62410 CP12-2, CP12 | CP12 domain-containing protein 2 2       

AT1G49600 ATRBP47A, RBP47A | RNA-binding protein 47A 8       

AT3G04790 Ribose 5-phosphate isomerase, type A protein 2       

AT1G03600 PSB27 | photosystem II family protein  2       

AT1G16080 unknown protein 7       

AT2G26080 AtGLDP2, GLDP2 | glycine decarboxylase P-protein 2 6       

AT5G45390 CLPP4, NCLPP4 | CLP protease P4 4       

AT3G63190 
RRF, HFP108, cpRRF, AtcpRRF | ribosome recycling 

factor, chloroplast precursor 
6     

  

AT5G42020 BIP, BIP2 | Heat shock protein 70 (Hsp 70) family protein  11       

AT5G27700 Ribosomal protein S21e 3       

AT2G32730 
26S proteasome regulatory complex, non-ATPase 

subcomplex, Rpn2/Psmd1 subunit 
4     

  

AT5G24490 30S ribosomal protein, putative 2       

AT4G14880 OASA1 | O-acetylserine (thiol) lyase (OAS-TL) isoform A1 9       

AT3G02520 GRF7, GF14 NU | general regulatory factor 7 4       

AT3G57610 ADSS | adenylosuccinate synthase 4       

AT3G29360 UDP-glucose 6-dehydrogenase family protein 4       

AT2G40490 HEME2 | Uroporphyrinogen decarboxylase 3       

AT1G59359 Ribosomal protein S5 family protein 1       

AT3G09500 Ribosomal L29 family protein 4       

AT1G70310 SPDS2 | spermidine synthase 2 2       

AT3G26450 
Polyketide cyclase/dehydrase and lipid transport 

superfamily protein 
4   

    

AT3G48990 AMP-dependent synthetase and ligase family protein 2       

AT5G64130 cAMP-regulated phosphoprotein 19-related protein 3       
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Table S 1: continued 

       

B. Shared protein hits 

u
n

iq
u

e 

p
ep

ti
d

es
 in post-activation 

OE-RPS4-HS… 

Protein ID Fasta header Col-0 rrs1a eds1-2 

AT3G53260 PAL2, ATPAL2 | phenylalanine ammonia-lyase 2 5       

AT1G26110 DCP5 | decapping 5  2       

AT2G42530 COR15B | cold regulated 15b 7       

AT2G20420 ATP citrate lyase (ACL) family protein 4       

AT1G08520 ALB1, ALB-1V, V157, PDE166, CHLD | ALBINA1  4       

AT3G24430 HCF101 | ATP binding 2       

AT3G25530 
GHBDH, ATGHBDH, GLYR1, GR1 | glyoxylate 

reductase 1 
2   

    

AT5G16840 BPA1 | binding partner of acd11 1 3       

AT2G03420 unknown protein 2       

AT5G42980 
ATTRX3, ATH3, ATTRXH3, TRXH3, TRX3 | 

thioredoxin 3 
2   

    

AT3G01480 CYP38, ATCYP38 | cyclophilin 38 6     

AT3G08740 elongation factor P (EF-P) family protein 3     

AT4G10340 LHCB5 | light harvesting complex of photosystem II 5 2     

AT4G31990 ASP5 | aspartate aminotransferase 5 4     

AT4G39960 Molecular chaperone Hsp40/DnaJ family protein 5     

AT5G63310 
NDPK2, NDPK1A, NDPK IA IA, NDPK IA, ATNDPK2 | 

nucleoside diphosphate kinase 2 
4   

  
       

C. Post-activation protein hits 

u
n

iq
u

e 

p
ep

ti
d

es
 in post-activation 

OE-RPS4-HS… 

Protein ID Fasta header Col-0 rrs1a eds1-2 

AT5G60670 Ribosomal protein L11 family protein 2       

AT5G16050 GRF5, GF14 UPSILON | general regulatory factor 5 3       

AT3G25230 ROF1, ATFKBP62, FKBP62 | rotamase FKBP 1 5       

AT2G24850 TAT3, TAT | tyrosine aminotransferase 3 3       

AT1G65960 GAD2 | glutamate decarboxylase 2  5       

AT2G41530 ATSFGH, SFGH | S-formylglutathione hydrolase 2       

AT2G37690 
phosphoribosylaminoimidazole carboxylase, putative / AIR 

carboxylase, putative 
4     

  

AT3G48000 
ALDH2B4, ALDH2, ALDH2A | aldehyde dehydrogenase 

2B4 
3     

  

AT5G02490 Heat shock protein 70 (Hsp 70) family protein 3       

AT5G46750 AGD9 | ARF-GAP domain 9 5       
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Table S 1: continued 

D. Post-activation protein hits enriched in rrs1a 

u
n

iq
u

e 

p
ep

ti
d

es
 

in post-activation 

OE-RPS4-HS… 

Protein ID Fasta header Col-0 rrs1a eds1-2 

AT4G15545 unknown protein 2       

AT4G24820 
26S proteasome, regulatory subunit Rpn7;Proteasome 

component (PCI) domain  
3 

  
  

  

AT3G47370 Ribosomal protein S10p/S20e family protein 2       

AT3G61440 
ATCYSC1, ARATH;BSAS3;1, CYSC1 | cysteine synthase 

C1 
5 

  
  

  

AT3G60240 EIF4G, CUM2 | eukaryotic translation initiation factor 4G  7       

 

(A) Pre-activation protein hits = significantly enriched before shift (B) Shared protein hits = proteins 

identified in both samples (C) Post-activation protein hits = significantly enriched after shift. (D) Post-

activation protein hits enriched in rrs1a. Protein ID colored green – detected in 3 or 4 replicates.  
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