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1 Introduction

In the �eld of solid state physics many exciting phenomena emerge from the interac-
tions between individual particles and from the competition of processes with similar
energy scales. Some of them are only understood by taking into account the quantum
nature of matter. Due to the high complexity of interacting quantum many-body sys-
tems, often it is more instructive to identify the relevant processes in a simpli�ed model
system. A transfer of the gained fundamental insights to more involved systems is the
key for the design of new materials. One exemplary �eld, where the joint theoretical
and experimental e�orts have led to the development of new methods and materials,
is that of low-dimensional spin systems. The fundamental research in this �eld is com-
monly motivated by its relation to the physics of high-temperature superconductors
that reveal a huge potential for application.
Reducing the dimension, quantum e�ects are enhanced and in some cases the ground
state can be derived analytically. In some one-dimensional spin chains the ground state
changes non-analytically as a function of a non-thermal control parameter, known as
a quantum phase transition. Prominent examples are the Ising-spin chain compounds
LiHoF4 and CoNb2O6, where a quantum phase transition arises as a function of the
transverse magnetic �eld [1, 2]. In these systems close to the critical �eld quantum �uc-
tuations are dominant and the �nite-temperature dynamics is governed by the strong
entanglement of the ground state.
Another type of models, where quantum criticality is induced by the magnetic �eld are
the easy-plane type XXZ models. Here, the rotational symmetry around z is broken
by an applied magnetic �eld in the transverse direction, i. e., perpendicular to z and
within the easy planes. However, experimental realizations of this type are comparably
rare. A promising candidate is the e�ective spin-1/2 chain compound Cs2CoCl4 that
is isostructural to the intensely studied Cs2CuCl4, but with an additional easy-plane
anisotropy of the magnetism. In Cs2CoCl4, a crystal �eld anisotropy of the order of 7K
splits the spin-3/2 states of the magnetic Co2+ into Kramers doublets and at low tem-
perature a description in terms of an e�ective spin-1/2 arises. Several thermodynamic
properties indicate a strongly one-dimensional magnetism of the easy-plane type below
about 2K [3�7]. However, the in�uence of symmetry-breaking magnetic �elds on the
one-dimensional magnetism of Cs2CoCl4 has not been investigated previously. Below
TN ' 0.22 K antiferromagnetic order is reported and a spin-liquid phase is suggested
to arise close to 2T based on a single study of the magnetic order for �elds along the
a axis [8]. Field directions other than a are not covered in literature and the presence
of a spin-liquid state has not been con�rmed by other means.
To address the question if there is a quantum phase transition in Cs2CoCl4 and if
the one-dimensional magnetism is fully described by the XXZ model, in this thesis
measurements of thermodynamic properties at temperatures down to 50mK and in
magnetic �elds up to 4T are compared to numerical calculations of the XXZ model
in a transverse �eld. Furthermore, the application of an e�ective spin-1/2 model to the
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compound is revised and the contribution of the parent spin-3/2 states on the magnetism
is analyzed. The in�uence of magnetic �elds on the low-temperature phases is studied
for �elds applied along the di�erent crystallographic axes as well as along non-principal
directions. The magnetic phase diagrams are derived and possible microscopic origins
of the various observed phases are discussed.

The magnetic exchange in Cs2CoCl4 is mediated by chlorine ions via superexchange.
Thus, a change of the magnetism is expected when exchanging the chlorine ions in
Cs2CoCl4 with bromine. In the isostructural Cs2CuCl4 the doping is site-selective,
resulting in a non-linear change of the low-temperature properties as a function of
the doping and in magnetic frustration [9]. In this thesis, in analogy crystals of the
Cs2CoCl4−xBrx series are synthesized and characterized with respect to their structure
and low-temperature magnetism.

Among the numerous spin chain models the isotropic spin-1/2 Heisenberg model stands
out due its intriguing low-temperature characteristics and the exact solubility. As a
function of an applied magnetic �eld, it also shows a quantum phase transition at
hc = 2 J , where J is the exchange constant between spins. It ranges from a few Kelvin to
several thousands of Kelvin among the known compounds. Thus, within the magnetic-
�eld range accessible with standard laboratory magnets, quantum criticality may be
investigated only in systems with coupling constants of few Kelvin and at low temper-
atures T � J . Most corresponding compounds which realize the Heisenberg model in
a wide temperature range base on the isotropic magnetism of copper ions in a crys-
tal �eld. They are comparably rare due to the tendency of spin-1/2 chains to either
perform a Spin-Peierls transition or to show long-range magnetic order due to �nite
interchain couplings. One established compound with an adequate coupling constant
of about 10K and an absence of magnetic order down to 107mK is the semi-organic
copper pyrazine dinitrate, Cu(C4H4N2)(NO3)2 [10, 11]. Several individual investiga-
tions of the system indicate quantum critical behavior and a high level of agreement
with the Heisenberg model [12�17]. Yet, the thermodynamics of CuPzN have not been
quantitatively compared to the model in the full quantum critical regime. Here, ex-
act results of the Heisenberg model are compared to several thermodynamic properties
measured in a temperature range from 0.25K to 30K and in magnetic �elds up to 17T.
The quantum criticality of CuPzN is investigated by analyzing the �nite-temperature
signatures.

The thesis is structured as follows. In Chapter 2 the employed theoretical methods
and concepts are outlined, with special focus on the properties of spin models and
the numerical simulation of their thermodynamics. In the next introductory Chapter 3
the experimental techniques and the developed setups are presented. The established
properties of Cs2CoCl4 are summarized in the �rst part of Chapter 4, followed by the
results on the one-dimensional magnetism and the magnetic order of Cs2CoCl4. The
crystal growth of the mixed systems Cs2CoCl4−xBrx as well as structural and thermo-
dynamic investigations are discussed in Chapter 5. The thermodynamic properties of
Cu(C4H4N2)(NO3)2 are compared to the spin-1/2 Heisenberg model and analyzed with
respect to quantum criticality in Chapter 6.
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2 Theory

2.1 Crystal electric �eld . . . . . . . . . . . . . . . . . . . 7

2.2 Magnetic exchange . . . . . . . . . . . . . . . . . . . . 8

2.3 Spin models . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 E�ective spin models . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Model systems . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . 15

2.4 Quantum phase transitions . . . . . . . . . . . . . . . 25

2.5 Magnetic order . . . . . . . . . . . . . . . . . . . . . . 27

In this chapter some basic concepts and models are introduced that are employed in the
discussion of the experimental results on Cs2CoCl4 and Cu(C4H4N2)(NO3)2 in Chap-
ters 4 and 6. Starting from the physics of isolated local moments described by the
crystalline electric �eld, the concept of magnetic exchange is introduced which leads
to the formation of more complex interacting systems. After the derivation of an e�ec-
tive spin-1/2 model for the application to the compound Cs2CoCl4, the thermodynamic
properties of di�erent one-dimensional models are compared and the �nite-size e�ects
of numerical simulations of the models are estimated. Selected simulation results are
compared to experimental data. Last, the concepts of quantum phase transitions and
magnetic order in low-dimensional systems are summarized.

2.1 Crystal electric �eld

In 1929 Bethe introduced a theory [18] to describe how the degenerate energy levels
of a free atom split upon placing it in a crystal environment consisting of electrically
charged ions. The splitting depends on the shape of the electric �eld generated by the
surrounding ions. Applying group theory it was found that the type of splitting is deter-
mined by the potential's symmetry and thus, very general statements of the electronic
and associated magnetic properties can be deduced for di�erent coordinations.

In the following, a summary of the theoretical treatment of the interaction of a tran-
sition metal's d and f -electrons with the surrounding ligands is given. More detailed
introductions and discussions exceeding an e�ective electrostatic �point charge model�
are found in text books [19, 20]. In the Hamiltonian of a free atom,

H0 =
∑
i

p2
i

2m
− Ze2

ri
+
∑
i,j

1

2

e2

| ri − rj |
, (2.1)
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the �rst two terms account for the kinetic energy and the Coulomb interaction of the
ion's electrons with the nucleus of charge Ze. The last term describes the electron-
electron interaction between more than one single electron in a shell. Considering in-
teractions only within s, p, d or f -orbitals they can be expressed by the numerically
calculated Slater integrals [21]. In addition the spin-orbit coupling of strength ζ and
the potential of the crystal �eld enter in the full crystal �eld Hamiltonian,

H = H0 + ζ
∑
i

li · si + VCF . (2.2)

As the eigenfunctions of the undisturbed Hamiltonian H0 are commonly expressed in
terms of spherical harmonics Y`m it is convenient to rewrite the crystal �eld potential
VCF in this basis, as well. A general solution to the Laplace equation ∇2VCF = 0,
describing the electrostatic potential of point charges distributed in space, relates to
the spherical harmonics

Y m
` (ϑ, φ) =

√
(2`+ 1)(`−m)!

4π(`−m)!
· Pm

` (cosϑ) · eimφ (2.3)

with the Legendre polynomials Pm
` (x). Thus a general crystal �eld potential is charac-

terized by the crystal �eld coe�cients ak,m,

VCF =
∞∑
k=0

k∑
m=−k

ak,m

√
4π

2k + 1
rkY m

k (ϑ, φ). (2.4)

The number of di�erent coe�cients ak,m contributing is restricted by the symmetry of
the crystal environment around the central ion. The non-vanishing coe�cients ak,m and
their symmetry relations can be derived by solving the eigenvalue equation RVCF =
VCF , where R represents a rotational or mirror symmetry at the atom's site. In this
thesis aMathematica notebook written by M. Haverkort [22, 23] was employed which
provides de�nitions of the crystal �eld Hamiltonian and the operators in a basis suitable
for a full diagonalization.

2.2 Magnetic exchange

In the context of complex materials with multiple degrees of freedom like spin, charge
and orbitals especially the competition between them leads to interesting phenomena.
A prominent example is the �eld of multiferroics, where a coupling of two ferroic prop-
erties yields a high potential for possible application in electronics. Responsible for the
emerging collective phenomena are the interactions between the contained charged or
magnetic particles. Di�erent theories were developed to understand for example the
spontaneous ordering of magnetic moments in a ferromagnet. One important concept,
introduced in 1908 by P. Weiss, is that of an exchange (or mean-)�eld which is pro-
portional to the macroscopic magnetization. Due to a gain of internal energy by the
coupling of individual moments to the exchange �eld, a spontaneous magnetization
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arises below a critical temperature TC and the well-known Curie-Weiss law for the
susceptibility,

χ(T ) =
C

T − TC
, (2.5)

can be derived, that successfully describes many simple magnets. However, the micro-
scopic origin and the coupling to the exchange �eld was not covered by these early
descriptions.

Dipolar interactions between magnetic moments arise from the potential energy of
two magnetic dipoles in their mutual magnetic �eld. In some materials with large
magnetic moments, like the spin-ice compounds [24�26], they rule the low-temperature
magnetism. However, in most solid state materials they are very small due to the cubic
dependence of the energy on the inverse distance between the dipoles.

The magnetism of most materials is explained only by the quantum nature of electrons
and the overlap of their wave functions. In a simple system of just two electrons the
product wave function of the spatial and the spin part must be antisymmetric to ful�ll
the Pauli principle, which leads to the formation of a singlet and a triplet state described
by the wave functions ΨS and ΨT , which can be written as products of the spatial parts
ψa(r), ψb(r) of electron a and b and the singlet and triplet spin states χS and χT ,

ΨS =
1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS (2.6)

ΨT =
1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1))χT . (2.7)

The di�erence between the singlet and triplet energy,

J =
ES − ET

2
=

∫
ψ∗a(r1)φ∗b(r2)Hφa(r2)φb(r1)dr1dr2 , (2.8)

is given by integration over the spatial wave functions, where H is the Hamiltonian of
the two-electron system. The integral can be understood as the matrix element between
two states that only di�er in the exchange of the two particle's coordinates and, thus,
is referred to as the exchange integral. It describes the electrostatic interaction of the
electrons and allows to formulate an e�ective Hamiltonian for their spins,

H̄ =
1

4
(Es + 3Et)− (Es − Et)S1 · S2 (2.9)

= const.− 2JS1 · S2. (2.10)

Depending on the geometry and the resulting integrals the e�ective coupling J between
spins can be either positive or negative. In case of a positive (negative) value the
interaction leads to a ferromagnetic (antiferromagnetic) ground state with spins parallel
(antiparallel). Furthermore, the results can be generalized also to systems with many
electrons, described by the Hamiltonian of the Heisenberg model,

H = −
∑
i,j

Ji,j Si · Sj, (2.11)
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where Ji,j is the exchange integral between spins i and j. Its precise value depends on
microscopic details like the shape of orbitals and the crystal structure.

Various exchange mechanisms between two spins can be e�ectively expressed in the
exchange constant. A direct overlap of the electronic wave functions like in the textbook
example of a covalent bond, namely the H2 molecule [27], cannot account for the
magnetism, e. g., of the strongly localized 4f or most 3d moments. In these systems
the exchange often is mediated by an intermediate non-magnetic ion and thus referred
to as superexchange. Hopping of electrons from the magnetic ion to the unoccupied
states of the intermediate ion allows them to lower their kinetic energy in second order
perturbation theory and depending on the geometric and orbital details a ferro- or
antiferromagnetic spin alignment is favored [28, 29].

2.3 Spin models

The magnetism of many insulating transition-metal and rare-earth compounds can be
related to the physics of spin models. In some copper-based systems the electronic
properties of Cu2+ allow a description in terms of isotropic spin-1/2 models similar to
that of Eqn. (2.11). The anisotropic magnetism, e. g., of Co2+, arises from the spin-
orbit coupling of crystal-�eld states. Due to an anisotropy of the crystal �eld degenerate
orbital states may split. The details of the splitting depends on the symmetry of the
crystal �eld and can be analyzed in detail by considering the full interacting electron
system by crystal �eld theory, which typically, however, does not account for magnetic
exchange (cf. Chapter 4.1.2). Irrespective of the electronic details, a lifting of the orbital
degeneracy may lead to a population of only a subset of states at low temperatures.
Neglecting the high-energy states thus yields a simpli�ed description within a subspace
of the parent Hamiltonian by an e�ective spin system. In the following the derivation of
an e�ective spin-1/2 system is demonstrated, followed by a discussion of di�erent one-
dimensional spin models and their thermodynamic properties as obtained by numerical
simulations.

2.3.1 E�ective spin models

Crystal �eld e�ects are responsible for the magnetic anistropy of the Co2+ ions in
Cs2CoCl4. According to Hund's rules the orbital ground state of Co2+ (3d7) has S = 3/2
and L = 3. In a cubic tetrahedral crystal �eld the orbital moment is quenched due
to fully occupied t2 and e levels and the electrons couple to a four-fold degenerate
spin state with |Sz = ±3/2,±1/2〉. Their splitting by the crystal �eld can be e�ectively
described by the single-ion Hamiltonian using the spin-3/2 operator S,

Hs.i. = D
[
S2
z −

1

3
S(S + 1)

]
, (2.12)

with the crystal �eld anisotropy D. The four-fold degeneracy is lifted by the anisotropy
D and according to the Kramers theorem two doublets remain [30]. They correspond
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to states Sz = ±3/2 and Sz = ±1/2, which have energies that di�er by 2D in energy due
to the di�erent S2

z expectation values. At low temperatures T � D one can restrict
to the lower-lying states, which gives rise to a simpli�ed representation of the system
by an e�ective spin 1/2. In extension to the single-ion problem, the reduced basis has
consequences for the exchange of spins as well. This can be demonstrated for two spin
3/2 interacting via an exchange J by considering the pair Hamiltonian

H3/2 = J ~S1 · ~S2 +D(S2
1,z + S2

2,z). (2.13)

In the limit of D � J and D > 0 the non-vanishing matrix elements of H3/2 can be
given explicitely for the lower-lying |S1,z = ±1/2,S2,z = ±1/2〉 =: |↑/↓↑/↓〉 states.

H3/2 |↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉
〈↑↑| 1/4(J + 2D)
〈↑↓| 1/4(−J + 2D) 2J
〈↓↑| 2J 1/4(−J + 2D)
〈↓↓| 1/4(J + 2D)

(2.14)

Neglecting an energy shift of D/2 the eigenvalues of H3/2 can be calculated by diago-
nalization of H3/2.

J

4
,

J

4
,
−9J

4
,

7J

4
(2.15)

The two-fold energy corresponds to states |↑↑〉 , |↓↓〉 with parallel spins, while the others
are the mixed states |↓↑〉 ∓ |↑↓〉. The low-energy Hamiltonian and the energies can be
reproduced by an e�ective spin-1/2 system with anisotropic couplings Jxy and Jz. In
the spin-1/2 Hamiltonian

H1/2 = Jxy (S1,xS2,x + S1,yS2,y) + JzS1,zS2,z

= Jxy
2

(S1,−S2,+ + S1,+S2,−) + JzS1,zS2,z

(2.16)

the operators Si di�er from the previous spin-3/2 operators S in Eqn. (2.13) by having
Sz = ±1/2, only. Furthermore, the anisotropy D does not appear in this model any
longer, but is represented by the di�erent values of the in- and out-of-plane couplings.
The matrix form in the same four-state basis

H1/2 =


Jz/4 0 0 0

0 −Jz/4 Jxy/2 0
0 Jxy/2 −Jz/4 0
0 0 0 Jz/4

 (2.17)

reveals the same shape and symmetry as H3/2. The eigenvalues

Jz
4
,

Jz
4
,
−2Jxy − Jz

4
,

2Jxy − Jz
4

(2.18)
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reproduce those of H3/2 when choosing the couplings Jz and Jxy in relation to the
spin-3/2 coupling J,

Jz = J, Jxy = 4 J. (2.19)

In general, the technique to obtain an e�ective Hamiltonian for the low-energy states
is known as Schrie�er-Wol� transformation [31, 32]. The same results presented above
for two interacting spins are also obtained via this technique for a spin chain with an
in�nite number of spins. The resulting transformation of the exchange constants can be
illustrated in a semiclassical picture. Due to the anisotropy terms ∝ DS2

z in Eqn. (2.13)
the z component of the primary spin 3/2 is suppressed. Thus, a spin orientation within
the xy plane is favored. In consequence more energy can be gained by a coupling of
the x and y components, which illustrates the increase of Jxy over Jz by increasing
D. Interestingly, Jz remains �nite even though D → ∞, which is due to the �nite
�uctuations of the z component. As a function of D a full suppression of Jz therefore
can not be realized, but only the limit of Jz/Jxy = 1/4.

In the opposite case of large negative crystal �eld anisotropies D → −∞ one obtains
the Ising model as an e�ective spin model, where only the z components of the spins
are coupled and Jz = 9J, Jxy = 0. The ratio Jz/Jxy is often referred to as anisotropy
parameter ∆ = 1/ε, which allows to �nally rewrite the e�ective spin Hamiltonian in
di�erent ways.

HXXZ = J
∑
i

(
SixS

i+1
x + SiyS

i+1
y + ∆SizS

i+1
z

)
(2.20)

= J
∑
i

(
ε(SixS

i+1
x + SiyS

i+1
y ) + SizS

i+1
z

)
(2.21)

2.3.2 Model systems

Many linear spin chains can be written in the general form of Eqn. (2.20) and depending
on the value of ∆ di�erent anisotropies are realized. The resulting models are generally
referred to as depicted in Fig. 2.1. In case of ∆ = 0 only the x and y components of
the spins are coupled, which is known as the XY model. Values of 0 < ∆ < 1 are still
considered as easy-plane type anisotropies, but due to the additional coupling of Sz
the model often is referred to as XXZ model. If ∆ = 1 the exchange is isotropic in
spin space, which yields the famous Heisenberg model. Values of ∆ larger than 1 lead
to Ising-type models where the exchange along z is largest. This case may be depicted
as ∆→∞ or as ε = 0.

The fundamentals of these spin models are theoretically investigated since the evolution
of quantum theory about a century ago. A very comprehensive overview of the prop-
erties with reference to thermodynamics will be given in the following. For simplicity,
only the zero-�eld properties are discussed.

None of the models shows magnetic order at �nite temperature. However, most systems
can be solved exactly and in the following the results are summarized. In Fig. 2.2
the dispersion of excitations and selected thermodynamic properties of the XY, the
Heisenberg and the Ising model are plotted for comparison.
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Figure 2.1: Spin chain models as a func-
tion of the anisotropy parameters ∆ and ε. 1
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The XY model is obtained from Eqn. (2.20) by considering only the exchange of the
x and y component of the spin,

HXY = J
∑
i

(SixS
i+1
x + SiyS

i+1
y ). (2.22)

The algebra of spin operators allows to rewrite the Hamiltonian in terms of the ladder
operators S± = Sx ± iSy,

HXY =
J

2

∑
i

(Si−S
i+1
+ + Si+S

i+1
− ). (2.23)

Via a Jordan-Wigner transformation the model is mapped to that of spinless fermions
hopping on a chain and is solved exactly [33, 34]. In contrast to �nite ∆, in the XY
model the fermions are free and do not interact. The magnetic excitations form a cosine
dispersion ε(k, h) = J cos k−h and can be understood as the creation and annihilation
of fermions. At k = ±π/2 the excitations are gapless at zero �eld, which is also re�ected
in the linear speci�c heat and the �nite value of the susceptibility at low temperature
as described by the analytic solutions, plotted in Fig. 2.2 (a).

C

R
=

1

π

(
J

2kBT

)2
π∫

0

cos2 ω

cosh2
(

J
2kBT

cosω
)dω T�J

≈ π

3

T

J
(2.24)

kBχz
Ng2µ2

B

=
1

π

1

T

π∫
0

dω

cosh2
(

J
2kBT

cosω
) . (2.25)

The transverse susceptibility χxy can be calculated exactly as well [35]. However, no
simple analytic form can be given. The transverse susceptibility, i. e., for the �eld within
the XY plane, is about half as large as the longitudinal susceptibility.

XXZ and Heisenberg models

The XXZ models, obtained for intermediate 0 < ∆ < 1, show properties very similar to
that of the XY model. The excitations remain gapless [36]. The thermodynamic quan-
tities, like the speci�c heat plotted in Fig. 2.2 (a.1), continuously evolve with increasing
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Figure 2.2: Heat capacity and magnetic susceptibilities of selected one-dimensional antifer-
romagnetic spin models. The longitudinal (black lines) and transverse susceptibilities (gray
lines) are calculated assuming g = 2.

∆. In the Heisenberg model (∆ = 1) the exchange is isotropic. The fundamental exci-
tations of the Heisenberg model are described by the dispersion ε(k) = π

2
J |sin k| [37].

Just like in the XXZ models they form an excitation continuum [38] which is intensely
studied in Heisenberg systems [12, 39]. Although the Heisenberg model is exactly solv-
able via the Bethe ansatz [40], the �nite temperature properties have been subject of
many theoretical works [37, 38, 41�44] and show surprisingly complex details like a
logarithmic correction in the temperature dependence of the susceptibility [45],

χ =
1

π2J

(
1 +

1

2 ln(T0/T )
+ ...

)
, (2.26)

which is not described by a simple analytical equation in the full temperature range.
The speci�c heat, shown in Fig. 2.2 (b.1), was calculated based on a method described
in Ref. 46. The in�uence of a magnetic �eld on the thermodynamic properties is dis-
cussed in Chapter 6 by a comparison to experimental results on the Heisenberg system
Cu(C4H4N2)(NO3)2.

Ising models

Increasing ∆ > 1 an easy axis is established and the magnetic excitations develop a
gap. In the limit of ε = ∆−1 = 0, the dispersion is constant. Starting from a Néel
state, �ipping a single spin always costs an energy ∝ J . For �nite anisotropies ε a
continuum,

ω(k) = J (1− 2ε cos k cos(k + Φ)) , −π < Φ ≤ π, (2.27)
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evolves due to the propagation of two domain walls that develop from a single excitation
due to the transverse spin operators [47]. The speci�c heat in consequence of the gapped
excitation shows an exponential temperature dependence at low temperature and a
shift of the maximum position to smaller temperature than in the XXZ models, see
Fig. 2.2 (c.2). The analytical expression was derived in the original work of Ising [48]
and translates to the present convention of Eqn. (2.21) as

C

R
=

(
J

4kBT

)2
1

cosh2
(

J
4kBT

) . (2.28)

A strong anisotropy arises between the longitudinal susceptibility [49],

kBχz
Ng2µ2

B

=
1

kBT
· e−

J
2kBT , (2.29)

and the transverse susceptibility [50],

kBχxy
Ng2µ2

B

=
1

2T

(
1

cosh2 J
4kBT

+
tanh J

4kBT

J
4kBT

)
. (2.30)

As plotted in Fig. 2.2 (c.3), χz goes to zero with the formation of a Néel type ground
state for T → 0, while the transverse susceptibility χxy shows a temperature dependence
similar to a Curie-Weiss law.

2.3.3 Numerical simulations

Some of the spin chain models introduced in the previous chapter can be solved exactly
and analytical expressions can be given for the �nite-temperature properties. Models
that additionally show a phase transition as a function of a model parameter other than
the temperature, i. e., a quantum phase transition, are of special interest. Two textbook
examples of this kind are the transverse �eld Ising model (TFIM) and the XY model
in a longitudinal magnetic �eld. The existence of analytical functions, for example,
allows to directly obtain information on the magnetic correlations from a comparison
to experimentally obtained data. Yet, the complexity of most real quantum magnets
which show new and exciting phenomena, some of them with a potential for commercial
application, extends above these simpli�ed models [51�56]. For example, already a tilt
of the magnetic �eld in the XY model to the transverse direction, i. e., into the XY
plane, yields a model whose ground state at �nite �eld is not explicitly known. Many
techniques have been developed to �nd approximate solutions by considering systems
of reduced size.

The Alps (Algorithms and Libraries for Physics Simulations) project [57] allows to
perform calculations based on various of these methods. It is an open source project
that provides libraries and a common framework to simulate strongly correlated elec-
tron systems. The source code as well as binary packages and pre-con�gured virtual
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machines are available on the web page of the project [58]. One main concept of the
project lies in the separation of the lattice from the model and the algorithm.

The geometry of the system is de�ned based on a �nite size lattice using a unit cell that
is repeated in one or more dimensions. Within each unit cell an arbitrary number of
sites can be de�ned. Interactions between the sites can be de�ned within a single unit
cell, or extend to sites in neighboring cells. For each site and interaction a type number
can be given, which allows to model also complex systems with di�erent interaction
types and inequivalent sites. The full geometry is then represented by a �nite graph of
vortices and edges of di�erent types. A large number of common lattices is included in
the project. Custom graphs can be de�ned in an XML �le, as given in Appendix A for
the magnetic lattice of Cs2CoCl4.

On each vortex of the graph one of the available models is placed. The edges represent
the interactions between the sites. In addition to the default models (spin, bosonic
and fermionic Hubbard models) custom models can be de�ned. For the calculations
performed during this thesis the spin model was extended to include fully anisotropic
couplings and anisotropies, see the code listings in Appendix A. Finally, the system can
be analyzed using one of the implemented algorithms: Monte Carlo methods (classical,
looper [59], directed loop [60], QWL [61]), DMRG [62], diagonalization (full and sparse
[63]). For each method a varying number of parameters can be given.

In the following, results on the thermodynamic quantities of some selected models are
shown. A comparison of experimental data of Cs2CoCl4 and Cu(C4H4N2)(NO3)2 to
model calculations will be drawn in Chapters 4 to 6. In the following, the main focus
lies on the analysis of �nite-size e�ects, the magnetic anisotropy of an e�ective spin
system and on the calculation of the thermal expansion and the magnetostriction.

Finite size e�ects

Due to the �nite system size, the thermodynamic data obtained from the numerical
calculations do not represent the true properties of the considered models, which in
most cases are de�ned based on an in�nitely large number of sites. Thus, numerical
data have to be carefully analyzed in how far they are in�uenced by the �nite size of
the system. Only in few cases, like the segmentation of spin chains by non-magnetic
impurities, the properties with reduced system sizes are of experimental relevance. In
most cases one, however, strives to minimize the �nite size e�ects by either increasing
the system size within the computational limits, or by restricting to a temperature range
where they are negligible. In most spin systems, the correlation length decreases with
increasing the temperature. Therefore, the high-temperature properties are dominated
by single sites and hardly depend on the system size or the boundaries of the system.
The scaling behavior of systems also is subject of more involved techniques like the
renormalization group [64].

In the following the �nite size e�ects in the exact diagonalization results for the XXZ
model in transverse �eld are analyzed. This model is compared to experimental data
in Chapter 4 for di�erent values of the anisotropy parameter ∆ = Jz/Jxy. Here, an
exemplary value of ∆ = 1/4 is assumed, which represents a strong XY anisotropy. For
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L 6 8 10 14 16 18 20

spin-1/2
number of states 64 256 1024 16384 65536 262144 1048576
memory consumption 4 kB 64 kB 1 MB 256 MB 4 GB 65 GB 1 TB

spin-3/2
number of states 4096 65536 1048576 268435456
memory consumption 16 MB 4 GB 1 TB 65 PB

Table 2.1: Scaling of the number of states and the estimated memory required to store the
full Hamiltonian of a spin-1/2 and a spin-3/2 chain of size L.

simplicity, the temperature and the magnetic �eld hx are given in units of the exchange
constant J = 1. The Hamiltonian of the system,

H =
L∑
i=1

[
SixS

i+1
x + SiyS

i+1
y +

SizS
i+1
z

4
− hxSix

]
, (2.31)

cannot be solved exactly for L → ∞ due to the non-commuting transverse �eld term
and the �nite coupling of Siz. Yet, for �nite system sizes L the full Hamiltonian can be
diagonalized. Due to the exponential growth of the number of states, a full diagonal-
ization without symmetry-based simpli�cations is possible only up to L = 16 in case
of spin-1/2. In that case a total number of 216 = 65536 product states enter the wave
function of the system. The Hamiltonian describing this system consists of 2162 matrix
elements. Assuming that each element requires 1 byte of storage, a total of 4 GB of
memory is required to treat the full system. In Tab. 2.1 the scaling of the number of
states and the approximate memory requirements are given for spin-1/2 and spin-3/2

systems. Due to the larger number of states per site in the spin-3/2 system, here only
up to 8 sites can be solved by a simple-minded full diagonalization. In case the system
reveals certain symmetries, associated with a conserved quantity, the Hamiltonian can
be described by a block matrix. Then, the diagonalization process is simpli�ed and
may be extended to larger L. In the present case H at zero �eld (hx = 0) reveals a
rotational symmetry around z, respectively a conserved quantum number Sz. Thus,
system sizes up to L = 18 can be realized using a standard workstation.

In Fig. 2.3 (a) the speci�c heat, calculated by exact diagonalization of Eqn. (2.31),
is shown. The system size L was varied from 9 to 18 sites. The high-temperature
behavior is identical for all chain lengths. For comparison, at zero �eld also Quantum
Monte Carlo (QMC) simulations of the speci�c heat were performed for a chain length
L = 100, shown as green symbols in Fig. 2.3 (a). Although the QMC results show
an increasing noise at low temperature, they con�rm the overall shape of the speci�c
heat calculated by the full diagonalization method. Due to the long computation time
of about 50 hours for the temperature dependence at a �xed �eld via QMC, this
method could not be applied for the magnetic-�eld dependence using the available
desktop computers. Instead, full diagonalization is used which takes less than one hour
to complete. As discussed in the following, the �nite size e�ects are comparably small
in the temperature range of interest. At zero �eld (hx = 0) all simulations show a
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Figure 2.3: Finite size analysis of the speci�c heat of the XXZ model (∆ = 1/4). The main
panel shows exact diagonalization results for di�erent chain lenghts L at zero �eld and at the
critical �eld of the spin chain. The striped area marks the estimated error due to �nite size
e�ects below T/J . 0.4. Symbols represent Quantum Monte Carlo results for a system size
L = 100. In (b) the �eld dependence of cv is displayed. Panel (c) shows how the speci�c heat
peak at zero �eld scales with the inverse system size 1/L.

maximum between 0.3 and 0.4T/J . Yet, the exact position and the height depend
on the chain length L. A systematic di�erence between chains with even and odd
number of sites is seen. This is explained by the possible formation of a singlet ground
state in systems with even L, whereas in systems with odd L a two-fold degeneracy
remains, illustrated as an excited state at one site in a classical picture [65]. Thus, for
antiferromagnetic spin chains even numbers of sites are more advisable to approximate
the true ground state of the in�nite system. Yet, in the limit of L→∞ both even- and
odd-sized systems should approach each other. As the main comparison to experimental
data is to be drawn close to the maximum (cf. Chapter 4), the scaling is analyzed by
plotting the speci�c heat peak height versus the inverse chain length 1/L in Fig. 2.3 (b).
In this representation the in�nite chain limit is realized for 1/L = 0. As indicated by
the converging lines for odd and even sites, the expected change of the peak speci�c
heat for L > 18 of below 1% is negligible. At lower temperature the �nite size e�ects
strongly increase as approximated by the di�erence between the results for L = 17 and
for L = 18, shown as striped area in Fig. 2.3 (a). In fact, the QMC data lie within this
area with a slight tendency towards the diagonalization results for L = 18. Down to
0.2T/J the �nite size errors are in a range from 5 to 10 % and strongly increase for
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smaller T/J . Thus, the calculations cannot be quantitatively compared to experiment
below that temperature and are cut o� at T/J ≈ 0.2.

In a �nite transverse magnetic �eld the rotational symmetry of the model is broken
and, thus, the calculations can only be performed up to L = 16. However, the single-
site magnetic �eld term reduces the signi�cance of spin correlations and introduces a
gap in the excitation spectrum [66]. In consequence, the �nite size e�ects are reduced,
which overcomes the reduced system size. The �eld dependence of the speci�c heat,
shown in Fig. 2.3 (c) for two selected temperatures, indicates the critical �eld of the
spin chain, hc/J = 1.604 in case of ∆ = 1/4 [67], by a double peak structure around hc.
As the correlation length ξ in general diverges when approaching the quantum critical
point, one may expect that the �nite size e�ects at the critical �eld arise similar to
those at zero �eld. As shown in Fig. 2.3 (a) for hx = hc the calculations surprisingly
reveal no signi�cant �nite size e�ects down to T/J = 0.2. This may be explained by a
di�erent temperature dependence of ξ(T ) at zero �eld and at the critical �eld. While
at zero �eld the coupling J de�nes the dominant energy scale, in contrast the physics
at the critical �eld is governed by quantum �uctuations.

E�ective spin-1/2 chain

Many striking properties of spin models originate from the quantum nature of the spins
that is most prominent in spin-1/2 systems. Fortunately, these are easier to treat with
numerical methods than systems with a larger spin quantum number. Most compounds
with correlated spin-1/2 moments are based on Cu2+. In a crystal �eld the angular mo-
mentum of the 3d7 electron system is suppressed and the magnetism in most cases is
highly isotropic. Experimental realizations of anisotropic spin-1/2 Ising systems instead
usually base on the splitting of the states of a spin with a higher quantum number and
on the application of an e�ective spin-1/2 model as outlined in Chapter 2.3.1. Often these
compounds contain Co2+ with a spin 3/2 that in an anisotropic crystal �eld can give rise
to a description as an e�ective spin 1/2. Nevertheless, the true parent system remains
a spin-3/2 system and at a temperature of the order of the crystal �eld anisotropy the
e�ective spin-1/2 system fails to describe its properties. In the following the formation
of an e�ective spin system is discussed by the example of the compound BaCo2V2O8.
Spin-1/2 and spin-3/2 model calculations are compared to experimental data at di�er-
ent temperature, particularly with regard to magnetic anisotropies emerging in the
calculations.

The compound BaCo2V2O8 at low temperature can be described as an antiferromag-
netic e�ective spin-1/2 Ising chain compound with an anisotropy parameter ∆−1 = ε =
0.46 [68�74]. The susceptibility of the compound is reported in Refs. 75 and 73. Here,
it is compared to the exact diagonalization results for a spin-1/2 chain's susceptibility,
shown in Fig. 2.4 (a). It was obtained numerically from the expectation values 〈Sz〉
and 〈Sx〉 calculated for small magnetic �elds along z, respectively along x. The nu-
merical output is given as an energy χJ in units of g2µ2

BNA/kB ' g2 · 1.5 emu mol−1

and thus scales with the coupling constant and with the g factor which is �xed to
2 in the Alps code. Close to 0.5T/J both parallel and perpendicular susceptibilities
show a broad peak that is typical for one-dimensional magnetism. The perpendicular
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Figure 2.4: (a) Suscepti-
bilities of an antiferromag-
netic spin-1/2 chain with
an Ising anisotropy ε =
0.46 parallel and perpen-
dicular to the Ising axis.
(b) The experimental data
of BaCo2V2O8 are com-
pared to a spin-1/2 (blue
lines) and to a spin-3/2

chain (black lines).

susceptibility, i. e., where the �eld is applied perpendicular to the easy axis z, exceeds
the parallel susceptibility in the whole temperature range. In the experimental data,
shown in Fig. 2.4 (b) as symbols, this order is inverted. The origin of this inversion
lies in the anisotropy of the g factor. In the spin-1/2 calculations, an isotropic electronic
g factor of 2 is assumed. Upon the application of an e�ective spin-1/2 system, the g
factors in the spin-1/2 basis, however, become highly anisotropic. For a comparison of
the model to the data, therefore the anisotropy of the g factor has to be considered by
using di�erent values g‖ for the longitudinal and g⊥ for the transverse susceptibility
when �tting the data by

χ‖,⊥(T ) =
[χJ ]calc(T/J)

J
·
g2
‖,⊥ · 1.5 emu mol−1

4
· 2 . (2.32)

Here, (g‖,⊥/2)2 transforms the g factor and the factor 2 takes into account that the
experimental data are given per formula unit, each containing two cobalt ions. The
�t, shown as solid blue lines in Fig. 2.4 (b), yields an exchange constant J/kB =
65 K and the g factors g‖ = 7, g⊥ = 3.8, exactly matching with the value of the
exchange constant and close to the g factors g‖ = 6.3, g⊥ = 3.2 derived from the
low-temperature magnetization in Ref. 75. It gives a reasonable description close to
the maximum of the susceptibility. The high-temperature behavior, however, is hardly
reproduced. While the experimental data show the tendency to merge, the calculations
for high temperature extrapolate to the ratio of g‖/g⊥.

This fundamental di�erence originates from the neglected spin-3/2 states of the parent
Co2+. At high temperature, i. e., when kBT is comparable to the crystal �eld anisotropy
D, the e�ective spin-1/2 model is no more applicable (cf. Chapter 4.2) and �nally a
continuous crossover to an almost isotropic spin-3/2 magnetism is in fact expected. To
investigate the emergence of the e�ective spin system simulations of the susceptibility of
spin-3/2 chains with di�erent anisotropies D from -40 to 40 have been performed. Exact
diagonalization was applied to system sizes up to L = 6. The results are summarized
in Fig. 2.5. Due to the small size, severe �nite size e�ects arise at low temperature,
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Figure 2.5: Susceptibility and speci�c heat of a spin-3/2 chain with 6 sites calculated for dif-
ferent single ion anisotropies D. In (a) positive D are used that lead to an XY type anisotropy.
The dashed line in (a.3) represents a S=3/2 free ion's susceptibility. In (b) Ising anisotropies
are formed by D < 0. Black (red) lines in panels (a) and (b) refer to the susceptiblities parallel
(perpendicular) to the anisotropy axis z. In (c) the respective speci�c heat is shown. In (a.1)
and (c.1) the calculations for smaller system sizes L = 4, 5 are shown as blue lines.

as shown exemplary for D = 0 in panel (a.1) and (c.1) by comparing the results for
L = 6 (red and black lines) to those for L = 5 and L = 4, shown as thin blue lines.
Nevertheless, the overall splitting of the parallel and the perpendicular susceptibilities
by the anisotropy D can be resolved. In the Ising case of D < 0, shown in the panels
(b) of Fig. 2.5, the parallel susceptibility increases, explaining the g factor anisotropy
discussed above. In the easy-plane systems withD > 0, instead the susceptibility within
the XY plane is larger than the out-of-plane susceptibility. Note, that the magnetic
anisotropy follows from the full inclusion of the crystal �eld acting on the spin-3/2

system without any further assumptions.

Another consequence of fully considering the spin of 3/2 concerns the high-temperature
behavior. Irrespective of the anisotropy D, all susceptibilities approach a simple Curie
Law at high temperature, shown as a dashed green line for a selected anisotropy in
Fig. 2.5 (a.3). This explains the deviation of the e�ective spin-1/2 model from the exper-
imental data in the high-temperature range. Instead, the susceptibility of BaCo2V2O8

above 100K can be well understood on a basis of spin 3/2. Fitting both longitudinal and
transverse susceptibilities with the spin-3/2 calculations yields a reasonable description
of the high-temperature data, shown in Fig. 2.4 (b) by black lines. The �t yields an
isotropic spin-3/2 exchange constant J3/2/kB = 8 K, an anisotropy D/kB = −142 K and
an isotropic g factor of 2.65. As expected the exchange constant is smaller than for the
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Figure 2.6: Calculated spe-
ci�c heat divided by tempera-
ture (black lines) and the en-
tropy S (red lines) of a spin-
3/2 chain (L = 6) for two dif-
ferent anisotropies D = −30
and D = −14 (light colors).
Dashed lines mark the en-
tropies expected from a spin-
1/2 and a spin-3/2.

spin-1/2 system. In the Ising limit a ratio of J1/2/J3/2 = 9 is found (cf. Chapter 2.3.1).
However, here the anisotropy is only Ising-like, characterized by ε = 0.46, explaining
the slightly smaller ratio J1/2/J3/2 ≈ 8. While the high-temperature regime is convinc-
ingly described by these calculations, the agreement becomes worse with decreasing
the temperature. The position of the maximum of the susceptibility is reproduced, but
the absolute value is not. This may originate from the small system size of the spin-3/2

calculations of only 6 sites. Approaching the maximum the �nite size e�ects increase.
Yet, their approximate size is smaller than the deviation from the data. In addition,
neither of the present calculations takes into account that the true structure of the
compound reveals an alternating tilt of the easy axes which strongly in�uences the
low-temperature magnetism [72, 73, 76].

The di�erent temperature regimes of predominantly one-dimensional magnetism and of
local paramagnetic behavior are also re�ected in the speci�c heat, shown in panels (c)
of Fig. 2.5. For D/J = 30 the splitting 2D of the spin-3/2 states (cf. Chapter 2.3.1) is
large enough to induce a separation of the speci�c heat into a low-temperature feature
of the one-dimensional magnetism and a high-temperature Schottky-like contribution.
This separation is also re�ected in the temperature dependence of the entropy, shown
in Fig. 2.6 together with the speci�c heat divided by temperature. The dashed lines
represent the expected full entropy R log 2 of a two-level system, respectively R log 4
of the four states of a spin-3/2. For D = −30 a step-like increase of S(T ) to these two
values arises. Yet, the shape is strongly broadened, which suggests that despite the
large D the spin-3/2 states contribute in a wide temperature range. Similar conclusions
are drawn for the e�ective spin-1/2 system applied to Cs2CoCl4 in Chapter 4.
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Thermal expansion and magnetostriction

In Chapter 4 the magnetism of the compound Cs2CoCl4 is compared to a spin-1/2

model. Besides the common thermodynamic quantities of speci�c heat, magnetization
and energy, that are straightforwardly obtained from numerical simulations, also the
thermal expansion and the magnetostriction are analyzed. In statistical physics the
volume expansion coe�cient,

β =
1

V

∂2G

∂T∂p
, (2.33)

relates to the Gibbs free energy G, which apart from temperature may depend on
various other parameters, G = G(T, x1, x2, ..). In case of a spin system the additional
parameters are the exchange constants Jα between spins. Assuming that each of them
depends on the pressure p, the pressure derivative of them enters in Eqn. (2.33) via1

β =
1

V

∂

∂T

∂G

∂Jα
· ∂Jα
∂p

. (2.34)

In a microscopic theory, which also concerns uniaxial pressure, the interaction of the
magnetic system with the lattice has to be included, as shown in Refs. 77, 78 and
outlined in the following. In real systems, the exchange constant between spins is de-
termined from the exchange integral over the electronic wave functions. Thus, a change
of the underlying lattice, i. e., a change of the inter-atomic distance u, induces a change
of the coupling constants Jα in the Hamiltonian H of the spin system. Here, the XXZ
model in a magnetic �eld is considered. In this system, besides the exchange constants
Jxy and Jz, also the g factor can depend on u. As a function of the displacement u the
energy density of the magnetic subsystem

Em(u) =
〈H(u)〉
N VS

, (2.35)

where VS is the volume per spin, may be reduced. However, displacing the ions by a
distance u from their equilibrium position u0 costs elastic energy Ee proportional to
the Young's modulus E along the axis of distortion,

Ee =
E

2

(
u− u0

u0

)2

. (2.36)

Minimizing the sum of Ee and Em yields a �nite expansion of the lattice,

u− u0

u
=
u0

E

dJα
du
Sα . (2.37)

Here, the magnetoelastic coupling enters via the temperature- and �eld-dependent
functions Sα. In case of the XXZ model in a transverse magnetic �eld these functions

1In condensed matter physics the Gibbs free energy may be well approximated by the free energy F
which is usually calculated in theory, similar to the common approximation of cp ≈ cv. Thus, in
the following the free energy is considered instead of G.
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can be identi�ed with the derivatives of the free energy density FXXZ, namely the
spin-spin correlation functions and the magnetization,

Sxy =
∂FXXZ

∂Jxy
=

1

NVS

N∑
i

〈Sxi Sxi+1 + Syi S
y
i+1〉, (2.38)

Sz =
∂FXXZ

∂Jz
=

1

NVS

N∑
i

〈Szi Szi+1〉, (2.39)

SH =
∂FXXZ

∂g
= −µ0µBHb

NVS

N∑
i

〈Sxi 〉. (2.40)

By further translating the derivatives of the coupling constants in Eqn. (2.37) to pres-
sure derivatives, the relative length change of the axis i can be expressed as

δLi(T,H) =
∑
α

∂Jα
∂pi
Sα(T,H). (2.41)

The experimentally observable relative length change ∆Li
Li

as a function of temperature
and of magnetic �eld, the thermal expansion coe�cient α and the magnetostrictive
coe�cient λ can be related to δLi(T,H):

∆Li(T )

Li
= δLi(T,H = const) , (2.42)

∆Li(H)

Li
= δLi(T = const,H)− δLi(T = const, 0) , (2.43)

α(T ) =
∂ δLi(T,H)

∂T

∣∣∣∣
H

, (2.44)

λ(H) =
∂ δLi(T,H)

∂H

∣∣∣∣
T

. (2.45)

From the numerical simulations the correlators Sα can be obtained in two ways. Either
the expectation values of the respective spin-spin correlations of Eqns. 2.38, 2.39 and
2.40 are calculated explicitly or the free-energy derivatives are performed numerically.
Here, the latter method was used because it is applicable to arbitrary models and the
free energy is easily obtained from all kind of calculations in the Alps code. For a
�xed set of model parameters Jxy, Jz and g the free energy is calculated as a function
of temperature at a constant magnetic �eld. Then, the calculation is repeated with
one parameter changed by a su�ciently small value ε and the respective derivative is
obtained from the di�erence quotient

∂F
∂Jα
' 1

NVS

F (Jα + ε)− F (Jα)

ε
. (2.46)

The resulting derivatives at �xed temperature and magnetic �eld are interpolated by
multivariate splines of second order using Mathematica [23]. The numerical error
becomes negligible by choosing su�ciently small values both for the temperature and
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the magnetic-�eld steps as well as for ε. In Chapter 4.2.2 the correlators and the length
change of Cs2CoCl4 as a function of temperature and magnetic �eld are compared to
model calculations obtained in this way.

2.4 Quantum phase transitions

The quantum nature of matter plays a crucial role in the understanding of some all-
day properties of materials that appear simple at �rst sight. For example the ferro-
magnetism of iron at room temperature and above is a purely quantum phenomenon.
In the classical theories of phase transitions the change of a system's state is usually
considered as a function of temperature. However, the ground state may also depend
on other parameters like pressure, magnetic �eld or the electron density. Tuning one
of these parameters to a critical value g = gc a transition of the system may arise,
re�ected in a change of the character of the wave function describing the ground state.
The fact that the transition is driven not by temperature and by thermal �uctuations,
but by another parameter g that introduces quantum �uctuations in the system, gives
rise to the description as a �quantum phase transition�. Introductions into this wide
�eld are given, e. g., in Refs. 79�82 and the basic concepts are outlined in the following.
Both �rst- and second-order transitions as a function of g may arise, yet the continuous
second-order case is more common. In this case, there is a characteristic energy ∆ of
the �uctuations, which for example may be the energy of the lowest excitations above
the ground state,

∆ ∝ J |g − gc|zν , (2.47)

that vanishes when approaching the critical point gc, according to the exponent zν that
mostly is universal, i. e., it does not depend on microscopic details of the model.

Close to the transition, on a characteristic length scale ξ, the system resembles the
properties of the critical point. Approaching gc the length diverges with another expo-
nent ν,

ξ ∝ |g − gc|−ν . (2.48)

The ratio z of the exponents of Eqn. (2.47) and Eqn. (2.48) is called the dynamical
critical exponent. It relates the energy scale ∆ to the length scale ξ,

∆ ∝ ξ−z. (2.49)

A famous example for a quantum phase transition is the ferromagnetic one-dimensional
Ising spin chain in a transverse magnetic �eld. Due to the ferromagnetic coupling a
parallel alignment of spins is favored. At zero �eld there are two ground states with
parallel spins between sites,

|⇑〉 =
∏
k

|↑〉k , and |⇓〉 =
∏
k

|↓〉k . (2.50)

In real crystals one of them is selected as the true ground state, which breaks the
spin-inversion symmetry and leads to a �nite ferromagnetic moment that in a classical
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Figure 2.7: Quantum critical regime at �nite
temperature above a quantum critical point at
g = gc. The energy ∆ is a characteristic of the
ground state and kBT is the size of thermal
�uctuations. Depending on their ratio classical
(∆ > kBT ) or quantum critical behavior arises.
Dashed lines indicate crossover lines between
these regimes. The shaded area and the thin
line mark a possible classical phase transition
line.

way is only destroyed by thermal �uctuations. Magnetic �elds hx perpendicular to the
Ising axis, i. e., along the x axis, favor another state with the moments along the �eld
direction. The ground state in the limit of hx →∞,

|⇒〉 =
∏
k

|→〉k with |→〉k =
|↑〉k + |↓〉k√

2
(2.51)

di�ers from the zero-�eld state in ful�lling the spin-inversion symmetry and in a vanish-
ing ferromagnetic moment. In between these two extrema the ground state properties
must change in a non-analytic way. The point where the ferromagnetic moment van-
ishes and the inversion symmetry is established de�nes the quantum critical point at
g = gc. This model was found applicable to the compounds LiHoF4 [1] and CoNb2O6

[2]. Another model where quantum criticality arises as a function of the magnetic �eld
in a similar way is the XY model [34]. The closely related XXZ model also shows a
quantum phase transition in a transverse �eld, i. e., with the magnetic �eld in the XY
plane and is compared to experimental data of Cs2CoCl4 in Chapter 4.

Although the phase transition as a function of g is most prominent in the change of the
ground-state wave function at zero temperature, the presence of the critical point gc
has consequences on the properties at �nite temperature as well. In general the range
of g where the critical point gc in�uences a system's �nite temperature properties is
referred to as the quantum critical regime, depicted in Fig. 2.7.

De�ning the quantum critical regime the dynamics of a system at �nite temperature is
considered. The thermal equilibration time τeq characterizes the time a system requires
to recover its equilibrium state after perturbing it,

τeq = C
~
kBT

. (2.52)

This equation in fact represents the shortest time τeq that describes the equilibration
due to quantum e�ects in the critical regime and only depends on the temperature and
the universal constant C. In the classical regime, ∆ > kBT , long equilibration times

τeq �
~
kBT

(2.53)
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are found. Here, thermal �uctuations are stronger than quantum �uctuations. Thus,
the in�uence of quantum e�ects in this range is small and the system can be described
classically.

In the quantum critical regime, on the contrary, quantum �uctuations characterized by
∆ and thermal �uctuations of size kBT are equally important, kBT > ∆. In this range
τeq becomes small,

τeq ≈
~
kBT

, (2.54)

and the dynamics of the system is understood only by including quantum e�ects.
Within the quantum critical regime on short time scales and at small length scales
the system looks similar to the ground state at the critical point gc. At �nite distance
|g − gc| from the critical point this resemblance of the critical point is restricted to the
typical length scale ξ. If thermal �uctuations arise before the system discovers its �nite
ξ, the properties are governed by the physics of the critical point gc. With increasing
temperature the thermal �uctuations become more relevant and thus the range of values
g, where critical behavior is found, increases. This explains the rather counter-intuitive
opening of the boundary between the classical and the critical regime in Fig. 2.7. The
dashed lines in this sketch do not indicate phase transitions, but crossovers that follow
a temperature dependence T ∝ |g − gc|zν .

2.5 Magnetic order

Based on the Mermin-Wagner theorem, in systems where ordering would break a con-
tinuous symmetry there is no long-range order in one and two dimensions at any �nite
temperature [83]. Thus, the antiferromagnetic Heisenberg and XXZ models discussed
in this thesis are not expected to show magnetic order at all. Yet, in real crystals with
quasi one-dimensional magnetism often magnetic order is found when su�ciently low-
ering the temperature. This discrepancy is explained by deviations from the perfectly
one-dimensional exchange assumed in the models. There are �nite couplings of mo-
ments in all spatial directions. For example, in case of Cs2CoCl4 (cf. Chapter 4) the
ratio J ′/J ≈ 0.05 of magnetic exchange between to that within spin chains is small
and the one-dimensional magnetism is hardly in�uenced by it. Nevertheless, J ′ induces
magnetic order at a temperature of about 0.1 J . Even though J ′ is small in compari-
son to the dominant intrachain coupling, the energy gain from interchain couplings is
obtained not only for a single pair of spins, but for �nite segments of the spin chain.
The length of these segments is characterized by the correlation length ξ. Assuming ξ
is given in terms of a number of lattice sites, thus an energy ξ · J ′ is gained by aligning
spins between chains. The temperature where magnetic order is induced depends on
the size of J ′ and on how correlations decay. The temperature dependence of ξ typi-
cally is such that the correlation length becomes large at low temperature T � J in
a non-linear way, explaining the sudden onset of magnetic order and the rather small
in�uence of the interchain couplings on the high-temperature properties.
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As a function of an external parameter, like magnetic �eld or pressure, the formation of
magnetic order may be in�uenced and eventually be fully suppressed at a critical value.
In Fig. 2.7 the phase-transition line of magnetic order is sketched as a gray line and the
temperature range where thermal �uctuations rule the phase transition is shaded in
yellow. Here, the precise position of this line in the phase diagram, however, is chosen
more or less arbitrarily. The critical point where the zero-temperature ground state
changes and the classical phase boundary of magnetic order not necessarily have to
merge at the same value gc. Likewise, the dashed crossover line is not to be confused
with the phase transition line of magnetic order. In the study of the magnetic order
of Cs2CoCl4 in Chapter 4 in fact two di�erent critical �elds are found, similar to the
obervations in other materials [84, 85].
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The in�uence of magnetic subsystems on the macroscopic properties of a crystal are
usually most pronounced at temperatures of the same order as the associated magnetic
exchanges. For the compounds studied in this work, the magnetic exchange constants
range from about 1 K to more than 10 K. Thus, measurements of several thermody-
namic properties were carried out close to liquid helium temperatures or even lower.
In order to cool samples down to these temperatures di�erent cooling methods were
employed which are explained in Chapter 3.1. The thermodynamic properties analyzed
in this thesis as well as the experimental techniques to measure them are introduced
in the subsequent chapters.

3.1 Cryogenic setups

The Heliox VL system is a versatile 3He cryostat that allows custom sample holders
to be operated in a high vacuum chamber and in a temperature range from 0.25K
to about 30K. The cryostat allows one-shot cooling using 3He in a closed system. As
depicted in Fig. 3.1 the vapor pressure of 3He in comparison to that of 4He allows to
cool to reasonably lower temperatures by pumping on the vapor of 3He.

Via a sliding seal, the cryostat (Fig. 3.2) is slowly inserted into a conventional bath
dewar. First, 4He is evaporated by pumping through the 4He pipe. The main cooling
power is obtained at the λ-plate. Here, a typical temperature of about 1.8K is reached.
Gaseous 3He stored in the reservoir then condenses and gathers in the pot at the lower
cryostat's end. Subsequent pumping of 3He is accomplished by the 3He sorb that acts as
a cryo pump. Cooling power is provided as long as the liquid 3He is not fully evaporated.
Thus, the base temperature of 250mK can be maintained for a limited time of about
20 h, depending on the heat load during the measurement. Afterwards, the 3He sorb
has to be heated such that the adsorbed gas can liquify again, which is, however,
accompanied by a rise of the sample holder's temperature to about 2K. Subsequent
cooling of the sorb by the λ-plate then allows to reach again a base temperature of
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Figure 3.1: Vapor pressure of 3He
and 4He, adopted from Ref. 86.

∼ 250 mK. Higher temperatures up to about 30K can be reached by either slightly
heating the 3He sorb, which changes the vapor pressure of the closed 3He system, or
at temperatures above about 2 K by directly heating the 3He pot against the cooling
power of the λ-plate. Due to the change of the heating mode and the anomalies of 4He
at low temperature and low pressure, the temperature stability of the system strongly
varies. Close to 2K the temperature stability does not su�ce to carry out heat capacity
measurements. Thus, the o�set heating method described in Chapter 3.2.3 is imperative
to obtain meaningful data in this temperature range.

3He-4He dilution refrigerators are the most common method to cool solid matter below
250mK. They provide a continuous cooling down to temperatures as low as ≈ 5 mK.
Due to high-frequency or heat radiation in typical measurement setups, however, the
base temperature is raised by a few millikelvin. In a dilution fridge the remarkable
physical properties of a mixture of the two helium isotopes 3He and 4He are utilized for
cooling. A schematic drawing of a dilution fridge is given in Fig. 3.3. At temperatures
below 0.87K a mixture of at least 6.6% 3He in 4He separates into two phases. Within
the mixing chamber the 3He-rich (concentrated) phase �oats on top of the 4He-rich
phase (shown as dotted areas in Fig. 3.3). The lower (dilute) 4He-phase has an almost
temperature-independent solubility of 3He of 6.6%. Via an osmotic pressure 3He is
removed from this phase by pumping on the �still� which has a temperature of about
0.7K. At that temperature the vapor pressure of 3He is much larger than that of 4He
and in a range accessible with vacuum pumps. This allows to selectively extract 3He
from the dilute phase. The induced loss of 3He from the dilute phase is compensated by
a �ow of 3He from the concentrated phase across the phase boundary. As the speci�c
heat of pure 3He is larger than that of a dilution of it in 4He, cooling is provided by the
enthalpy di�erence of the two phases. To obtain a continuous cycle, the pumped gas is
�rst precooled and condensed at a temperature of 1.5K that is provided by conventional
pumping of 4He. The main impedance makes sure that the pressure is high enough for
the incoming 3He gas to condense and to enter the next stages as a liquid. The liquid
3He is then cooled further by the still or via heat exchangers by the dilution traveling
towards the still. Besides many other subtle construction details the design of the heat
exchangers is crucial for the total performance of the refrigerator. Due to the increasing
impact of thermal contact resistances at low temperatures, mechanical links, e. g., of the
sample holder to the cryostat and the thermometers to the sample, have to be carefully
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Figure 3.2: Individual components of the Heliox VL cryostat used in a temperature range
from 0.25K to 30K. A custom sample holder that spans the distance to the center of a
magnetic �eld in a dewar (185mm in the present case) can be attached to the lower end of
the 3He pot.

optimized. More details on the principle of dilution refrigerators and the fundamentals
of cryogenic setups are given, e. g., in Ref. 86.

The measurements of thermodynamic quantities below 300mK, discussed in this the-
sis, were acquired using a Kelvinox 300 by Oxford Instruments, which is a common
instrument in the �eld of dilution fridges. Several optimizations of the existing setup
were employed. A software based on LabVIEW [87] was developed to automatize the
remote instrument control and monitoring. The 24-wire cabling of the mixing cham-
ber's user port with a room temperature socket were renewed. Prior to this work it
consisted of copper wire, which was replaced by low thermal-conductivity manganin
wire (100µm) to minimize heat conduction. The previous control of the temperature
based on a resistance bridge (AVS-47B by Picowatt) and a separate temperature con-
troller in some cases caused disturbing temperature jumps or even full breakdowns of
the 3He circulation caused by a change of the measurement range. Thus, these instru-
ments were replaced by adapting a new AC resistance bridge (Lakeshore 370S) to the
system. By careful shielding of heat radiation within the inner vacuum chamber the
base temperature of the dilution fridge was approximately halved to 23mK.

Figure 3.3: Schematic drawing of
3He-4He dilution refrigerator. Red la-
bels specify the parts, blue labels indi-
cate the temperature at di�erent sites
during operation, green labels give the
respective phase name and percentage
of 3He concentration.
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3.2 Speci�c heat

In statistical physics the speci�c heat at constant volume V , respectively at constant
pressure P relates to the thermodynamic potentials,

� the internal energy E = E(S, V ),

� the free energy F = F (T, V ) = E − TS,

� the enthalpy W (S, P ) = E + PV ,

� the Gibbs free energy G = G(T, P ) = E − TS + PV

and to the entropy S via

SP,V = −∂F
∂T

∣∣
V

= − ∂G
∂T

∣∣
P

,

CV = ∂E
∂T

∣∣
V

= T ∂S
∂T

∣∣
V

= −T ∂2F
∂T∂T

∣∣∣
V
,

CP = ∂W
∂T

∣∣
P

= T ∂S
∂T

∣∣
P

= −T ∂2G
∂T∂T

∣∣∣
P
.

(3.1)

While in solid-state experiments usually the pressure can be kept constant quite easily
and thus Cp is measured, most theoretical considerations give the speci�c heat for con-
stant volume CV . The di�erence between both relates to the volume thermal expansion
β = 1

V
∂V
∂T

and the compressibility κ = − 1
V
∂V
∂P

via

CP − CV = V T
β2

κ
. (3.2)

In this thesis several comparisons between experimental data and model calculations
will be performed. Due to the small thermal expansion of solids the di�erence CP −CV
in these comparisons is safely negligible.

Being the temperature derivative of the thermodynamic potentials the heat capacity
indicates the change of the energy of a system upon changing the temperature. Thus,
from the temperature dependence of the heat capacity the energetic structure of excita-
tions in a system can be probed. In principle all types of excitations, for instance lattice,
electronic or magnetic excitations as well as phase transitions contribute and thus can
be probed. At the same time the separation of these contributions often complicates
the analysis. For example, the large lattice heat capacity of solids often overlaps with
the other contributions.

The heat capacity C of a sample can be deduced by various experimental methods.
Common to all of them is that heat is applied to the sample and that the temperature
evolution as a function of time is monitored. Repeating this process at various base
temperatures single C(T ) data points are obtained. Usually they are given normalized
either to the mass of the sample or to the number of particles. In the following two
methods which are common in low-temperature physics are discussed that are realized
in the developed experimental setups presented afterwards.
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Figure 3.4: Schematic drawing of the ex-
perimental setup to measure the speci�c
heat. Keeping the bath temperature Tb
stable, a heating power is applied to the
heater, which leads to a change of the sam-
ple platform's temperature Tplatform as a
function of time. The sample is attached
to the platform via a �nite thermal con-
ductance K2. The measured heat capacity
C = C0+Csample consists of the empty sam-
ple holder's and the sample's contribution.

K1

K2

bath

thermometer
sample platform

sample

heater
Tplatform , C0

Tb

Tsample , Csample

3.2.1 Quasi-adiabatic heat pulse method

The quasi-adiabatic heat pulse method represents a rather intuitive approach to the
heat capacity. A certain amount of heat ∆Q is applied to a system. Under adiabatic
conditions, the heat capacity Cp is directly obtained from the resulting temperature
change ∆T ,

Cp =
∆Q

∆T
.

In experiments true adiabatic conditions, however, cannot be realized, giving rise to
the description of the method as quasi-adiabatic. The experimental setup is shown
in a schematic view in Fig. 3.4. It consists of a sample platform on which a resistive
thermometer and a heater are mounted. The thermal link between the sample platform,
the thermometer and the heater is assumed to be ideal. The sample is attached to the
platform usually by a small amount of grease which (in case of the low-temperature
grease Apiezon N) solidi�es upon cooling below room temperature. The respective
thermal link K2 of the sample to the platform in the ideal case is in�nite. However,
due to the increasing e�ect of thermal contact resistances at low temperature and the
relatively small thermal conductivity of the grease a �nite K2 can manifest in the raw
data as discussed below. In most setups the platform is held in place by nylon strings
or sometimes by the leads of the thermometer and the heater itself. Thus the thermal
conductance K1 between the platform and the experimental environment is not zero as
in a true adiabatic scenario. Actually, a �nite K1 > 0 is required to provide the cooling
of the sample by the environment, respectively by the cryostat that provides the bath
temperature Tb. Due to the �nite K1 and the radiation of heat, the lowest achieved
platform temperature, however, lies above Tb.

Assuming ideal adiabatic conditions, the heat capacity is measured by applying heat,
∆Q = RI2t, to the system, where R is the resistance of the heater and t the time for
which a current I is driven through the heater. The heat capacity is obtained by dividing
∆Q by the induced temperature rise ∆T . Due to the quasi-adiabatic conditions, the
temperature as a function of time, however, di�ers from a simple step-like increase in
several points. A schematic heat pulse is shown in Fig. 3.5. The heater is switched on at
the time t0 for a typical length of 2-3 s. Shorter times would reduce the error introduced
by heat �owing to the sample environment during the heat pulse, yet the length of
the current pulse then was increasingly important, which can become experimentally
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Figure 3.5: Schematic time dependence of the sample temperature in the quasi-adiabatic
heat pulse method. Extrapolating the external relaxation to a virtual time tid as de�ned by the
equal-areas method the internal relaxation can be taken into account. From the temperature
rise ∆T at tid the heat capacity is calculated.

challenging due to the time constants of the electronics and the natural limit for the
required increase of the current I. As the heater is attached to the platform, in �rst
place the platform is heated. If the coupling of the sample K2 is �nite, during the
heat pulse the platform temperature can exceed the sample temperature. In the T (t)-
data this is re�ected by an overshoot of the measured platform temperature and an
equilibration of the platform and the sample by the so called internal relaxation after
switching o� the heater at t1. This typically fast temperature relaxation, characterized
by a time constant τ2, is followed by another relaxation to the temperature of the bath,
caused by the non-zero K1. The temperature rise ∆T , thus, is not directly obtained
from the measured temperature after switching o� the heater, but by considering the
heat �ow equations of the system. The heat transfer Qoff from the platform to the bath
can be calculated by integrating the measured temperature Tplatform(t),

Qoff(t) = K1

t∫
0

(Tplatform(t′)− T0) dt′.

Here, T0 is the equilibrium temperature before the application of the heat pulse. In the
limit t→∞ the total area under the temperature curve Qoff(t→∞) equals the total
applied heat ∆Q induced by the heater. This result is independent of the shape of T (t)
and holds true also for an idealized system without internal relaxation e�ects. For such
an ideal system with equal heat capacities, with the same K1, but with K2 →∞, the
time dependence of the temperature is given by

Tid(t)− T0 ∝ e−t/τ1 .

Here, τ1 is the time constant of the external relaxation. It relates to the sum of the
platform's and the sample's heat capacity C0 + Csample via τ1 = K1(C0 + Csample).
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However, in general K1 is not known and τ1 is rather obtained by �tting the measured
temperature data by an exponential. Such, Tid(t) represents the extrapolation of the
external relaxation data points to previous times. The temperature rise ∆T is now read
o� from Tid at a time tid. In general tid does not equal one of the true heater switching
times, but is obtained from claiming that the total applied heat of the idealized system
equals the experimental value,

Qoff(t→∞) = ∆Q =

∞∫
tid

(Tid(t)− T0) dt.

This claim translates into the area below the experimental data and the Tid(t) curve
being equal. In the sketch of Fig. 3.5 this is ful�lled if the yellow shaded areas are equal.
From the temperature rise ∆T = Tid(tid)− T0 the heat capacity is calculated bia

Cp =
∆Q

∆T
=

RI2t

Tid(tid)− T0

.

Using the equal areas method, internal relaxation e�ects can be corrected for. Besides
the comparably simple analysis of the data, one drawback of the method, is the rather
subtle dependence of the resulting ∆T and thus the heat capacity on the �t boundaries
of Tid(t) to the data. In cases where τ1 comes close to τ2, separating the external from
the internal relaxation can become di�cult. In the application of the method to the
low-temperature data of Cs2CoCl4 (Chapter 4.3.2) this uncertainty is re�ected in a
systematic error of the data of about 10%. Secondly, the demanded small thermal
link K1 lengthens the cooldown times in the experiment and renders the system quite
vulnerable to mechanical vibrations and all kind of parasitic radiation.

3.2.2 Relaxation time method

The experimental setup for the relaxation time method di�ers from the heat pulse
method in a reasonably larger coupling to the bath via K1 > 0. Instead of a short heat
pulse the exponential time dependence of the temperature after switching the heater
is analyzed. A sketch of the typical time dependence during a heat pulse is shown in
Fig. 3.6. Initially the system is in equilibrium with the temperature bath, respectively
the cryostat that provides the cooling. In experiment, the sample temperature T0,
however, is not equal to the bath temperature Tb due to �nite radiation of heat and
high-frequency noise. These e�ects are considered by a �nite o�set power P0 to the
system. Actually, an intentional increase or even a control of the sample temperature
between heat pulses yields a reasonably faster temperature control and can lower noise.
For any �nite value of P0, realized via an o�set current through the heater, the following
analysis remains una�ected [88].

At time t1 the heating power P is raised by ∆P by applying a current to the heater.
Due to the increased power, the sample temperature rises with an exponential time
dependence. At time t2 the heater is switched o� and again an exponential decay is
observed. The time constant of both relaxation processes relates to the heat capacity
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Figure 3.6: Schematic draw-
ing of a heat pulse in the
relaxation time method. At
time t1 the heating power is
increased by ∆T . From the
exponential rise of the tem-
perature the thermal conduc-
tance K1 is obtained. After
switching o� the heater at t2
the sample temperature re-
laxes back to T0 with a time
constant τ = C/K̄1.

as shown in the following. For simplicity an in�nite K2 = ∞ is assumed in the �rst
place, which allows to describe the system by analytic expressions. Later the numerical
analysis of data which are slightly modi�ed by τ2 e�ects will be discussed. If K2 =∞
only a single temperature T = Tsample = Tplatform and a single heat capacity C =
C0 + Csample has to be considered. Based on the �rst law of thermodynamics,

∆Q = C dT

the heat change of a system is re�ected in a temperature change scaled by the heat
capacity. Here, ∆Q consists of two contributions,

∆Q = ∆Qheat + ∆QK1 ,

where ∆Qheat =
∫

∆P dt > 0 is the heat applied to the system via the heater and
∆QK1 < 0 is the heat �ow from the sample to the environment via the �nite con-
ductance K1. In the experiment K1 is realized for example by a platinum wire that is
connected to the sample platform. During a heat pulse the platform temperature T (t)
changes as a function of time. Thus, the thermally conducting wire experiences di�er-
ent temperatures at its endpoints and the heat �ow has to be calculated by integration.
In lowest order the conductance can be approximated by an average value K̄1, which
allows to describe the heat �ow by a simple di�erential equation,

C dT = ∆P dt− K̄1(T − T0) dt.

For the heating curve with ∆P > 0 at times t > t1 one obtains the solution

Theat(t) = T0 +
∆P

K̄1

(
1− e−(t−t1)/τ

)
, where τ =

C

K̄1

.

In analogy the relaxation of the sample temperature after switching o� the heater at
t = t2 is given by

Trelax(t) = T0 +
∆P

K̄1

e−(t−t2)/τ .
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From �tting of the experimental curves, thus, the thermal conductance K̄1 and the heat
capacity C are obtained. The thermal conductance also follows from extrapolating the
heating curve. The temperature rise ∆T induced by a constant heating power ∆P in the
limit of t→∞ relates to the conductance via the steady-state equation ∆T = ∆P/K̄1.
The curvature of the relaxation secondly determines τ , from which then C = τ · K̄1 is
calculated. The statistics of C can be optimized by averaging over the time constant τ
obtained from the heating curve and that from the cooling curve.

The advantage of the relaxation time method lies in the automatizeable analysis of the
data in case of negligible τ2 e�ects and the low achievable base temperature. The noise
of the data can be lower than in case of the quasi-adiabatic heat pulse method, because
more data points contribute to the �nal heat capacity C. The required measurement
time for a single heating curve is approximately 2τ which su�ces to extract τ by
�tting. Thus, for a given heat capacity of the sample the thermal conductance K̄1

is to be chosen adequately. In case of strongly di�erent samples, like large magnetic
contributions on the one hand and purely phononic heat capacities on the other hand,
a single setup cannot be used for both, but the conductance K̄1 has to be changed. In
turn this can require lengthy calibrations of the systems after changing the conductance.
Another drawback of the method is its inapplicability to measure sharp �rst order phase
transitions with latent heat that occur within the temperature range of a single heat
pulse. In the previous analysis the heat capacity C was assumed constant during a heat
pulse, which is not ful�lled in case of the diverging heat capacity of systems with latent
heat.

Besides the two methods presented above, a variety of other common methods exists
to obtain the heat capacity of a sample. Among these are AC methods, di�erential
scanning calorimetry (DSC), often in combination with thermogravimetrical analysis
(TGA), and the continuous heating method, or others that rely on the numerical in-
terpretation of the data, like the heat �ow method (HFM) that was developed during
this thesis for the application to the slow dynamics of spin ice compounds [89] (see e. g.
Ref. 90 for a review of various methods).

A particular curve �tting method (CFM) to analyze the response of a system to applied
heat is described in Ref. 91 for calorimeter setups like that sketched in Fig. 3.6. It
can be applied both to quasi-adiabatic heat-pulse raw data and to the relaxation-
time based data. Using this method the whole temperature response of the system,
including τ2 e�ects can be described. This allows a fully automated data analysis as
performed by the heat-capacity option of the commercial PPMS setup by Quantum
Design. Instead of analytic solutions of the heat �ow equations, the authors show that
a least squares �t of a sum of functions, numerically obtained from the raw data, yields
all conductances as well as the time-dependent sample and platform temperature. The
details of the analysis are, however, rather technical and are given in Ref. 91 in detail.
A Mathematica notebook [23] was developed in order to analyze the raw data based
on this method. The heat capacity data of Cs2CoCl4 discussed in Chapter 4.2 were
obtained from this analysis.
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3.2.3 Experimental setup

Two di�erent calorimeters were constructed and optimized during this thesis. Both
follow the scheme shown in Fig. 3.4. They di�er due to the di�erent dimensions of the
3He cryostat and the dilution refrigerator they are operated in and due to the varying
requirements in the two temperature regimes. Both sample holders were manufactured
from copper due to its non-magnetic properties and the high thermal conductivity at
low temperature. Only reasonably below 0.1 K and in strong magnetic �elds above 1T
the use of copper can become problematic due to a nuclear Schottky anomaly and the
associated low thermal conductivity. These e�ects could be avoided by using compo-
nents made of silver, at the cost of the mechanical stability. The sample platform in
both cases consists of a thin (≈ 100 µm) sapphire (Al2O3) plate. Sapphire stands out
among many other insulating materials due to its high thermal conductivity at around
liquid helium temperature that is essential for a fast thermal equilibration. Further-
more, it has a purely phononic heat capacity which reduces the empty holder's signal.
Similarly, the heater, the thermometer and all other materials are chosen with respect
to their properties at cryogenic temperatures. Comprehensive data of the speci�c heat
and the thermal conductivity of various materials are given, e. g., in Refs. 92 and 86. In
case of the quasi-adiabatic heat pulse method, materials with low thermal conductivity
should be used for the wires and to �x the sample platform. For a versatile setup, the
required larger thermal conductivity for the relaxation time based method can be re-
alized using identical materials, but connecting the platform to the temperature bath
with an additional wire of high thermal conductivity, for example with a platinum
wire.

The �rst setup, shown in Fig. 3.7 (a), is constructed from di�erent parts. The main
part (1) consists of a solid copper tube that is screwed into the lower end of the
cryostat's 3He pot and that spans the distance to the �eld center. At the lower end
a yoke serves as a pin plate for the thermal anchoring of the leads. Further, it allows
to rotate the spherical frame (2) around an axis perpendicular to the magnetic �eld.
The sample platform (3) is �xed with nylon strings (sketched as red lines) which are
clamped using the ring (4). On top a thin plate (5) is mounted for the measurements. It
acts as radiation shield and prevents the loss of the sample in case it detaches from the
platform. From the back side four mounting screws and a sealing screw (6) are inserted.
The mounting screws �t respective bores in the sapphire plate and are inserted during
the attachment of the sample to stabilize the platform. The sealing screw covers a
larger bore through which the backside of the platform is accessible. The leads for the
thermometer and the heater are fed through another bore in the spherical frame. To
avoid thermal links of the wires at that point the bore is additionally �lled with a nylon
spacer. From below the platform, four screws are inserted that can be risen to support
the sample platform upon sample installation.

The low-temperature calorimeter, Fig. 3.7 (b), was designed aiming at an easier assem-
bly and a more comfortable access to the internal wirings. Due to the smaller sample
space a more sophisticated layout was chosen. The main frame (1) has a small rect-
angular plate on the front that is designed to hold eight connector pins to which the
thermometer and heater wires are attached. Four brass cylinders (2) are inserted from
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Figure 3.7: Drawing of the constructed calorimeter frames. The setup for the 3He cryostat
(a) consists of the primary connector to the cryostat (1) which �ts the sliced spherical main
frame (2). The sample platform (3) is held in place by strings (sketched in red) that are �xed
with the clamping ring (4). The radiation shield (5) is �tted on top of the ring. From the
other side four mounting screws and a larger sealing screw (6) can be inserted. The dilution
refrigerator setup (b) consists of only a single frame (1). Four cylinders (2) can be inserted
into the frame and the strings holding the platform (3) are tightened via turning the cylinders
and �xing them with the lock screws (4).

top. Again, nylon wires are used to suspend the sample platform (3). The nylon strings
are �xed to the cylinders and then tightened by turning the cylinders and locking them
by the lock screws (4).

In Fig. 3.8 the assembled setups are shown before mounting a sample and connecting
them to the cryostat. All copper parts were coated with gold in advance by electroplat-
ing, which explains the slightly yellow color of the components. While the 3He setup
(a) is designed to be attached to the cryostat directly, the low-temperature calorimeter
is mounted to an existing universal sample holder with the various bores on all sides,
as shown in Fig. 3.8 (b). After mounting the sample both calorimeters are covered by
a customized radiation shield.

Heaters

In setup (a) a standard 27 kW SMD chip heater is used. The temperature dependence
of the chosen chip is tiny and it increases to only 28 kW at a temperature of 250mK. A
strongly temperature dependent resistance should be avoided, because then the applied
heat could not be calculated by R · I2 · t any longer, but the voltage drop at the heater
had to be measured as well. This would increase the required data transfer during heat
pulses, which lead to a lower time resolution and complications for short heat pulses.
Commonly, thin (. 100 µm) manganin or constantan wires are used for wiring the
heater due to the low thermal conductivity, respectively the temperature-independent
properties. The heater is connected in a pseudo 4-wire sensing: one of the voltage
contacts is not attached directly to the heater chip but to the pin plate which serves



40 3 Experimental

1
2

3

(a) (b)

Figure 3.8: Photographs of the assembled heat capacity setups for the 3He cryostat (a) and
the 3He-4He dilution refrigerator setup (b). In the 3He-4He setup the calorimeter frame (1)
is adapted to an existing sample holder and its pin plate (2). During the measurements the
frame is covered by a radiation shield (3).

as a thermal bath. Such, the resistance of one of the current-carrying wires is assigned
to the heating resistance. This partly compensates the e�ect that half of the resistive
heat in both current leads �ows to the bath and the other to the sample platform. A
heater resistance much larger than that of the wires, thus, is advisable, because then
Joule heating arises mainly in the heater and not in the wires and the latter e�ect is
negligible.

In the low-temperature setup (b) instead of a chip heater a sapphire plate coated
with a gold meander is used. Because of the lattice mismatch between sapphire and
gold, chromium is deposited �rst as a bu�er layer. The advantage of this heater lies
in a low temperature dependence at T < 1 K, as only the residual resistance of gold
contributes, and in a good thermal contact with the sample platform. On the other
hand, the resistance of typical sputtered layers is rather low. The heater of the sapphire
plate used here shows a residual resistance of ≈ 23W below 1K. It is connected to the
pin plate using 100µm manganin wire of about 15mm length with a resistance of about
1W each.

Thermometers

In the high-temperature setup (a) a thin �lm resistance cryogenic temperature sensor is
used (CX-1030-BC, Lakeshore). The bare chip version has a size of only 0.7×1×0.2 mm3.
The thermometer was calibrated in magnetic �elds up to 17T previously [93]. Another
type of temperature sensor is used in the low-temperature setup. The ruthenium ox-
ide thick �lm sensor (RX-102A-B, Lakeshore) is speci�ed for temperatures down to
≈ 50 mK. As a drawback, the chip is considerably larger (1.5×1.3×0.3 mm3) and
above & 0.5 K the sensitivity is strongly decreased. A calibration of the sensor was
performed before attaching it to the platform using a general purpose sample holder
previously calibrated in another work [94]. The measured resistance versus the tem-
perature is shown in Fig. 3.9. At low temperature . 70mK the slope of the curve
deviates from the high-temperature trend. This behavior arises from a bad thermal
coupling of the sensor to be calibrated. As the data at higher temperature can be well
described by scaling a calibration generic for the type of sensor to the data, the scaled
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Figure 3.9: Temperature
sensor calibration of the
low-temperature calorimeter.
Open symbols represent
the resistance of the RuO2

sensor (RX-102A-B, RuO58 )
as measured. Data points
connected with solid lines
contain extrapolated values
at low temperature, see text.
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generic calibration was used to extend the data to low temperature. As shown by solid
lines the extrapolation yields a reasonable continuation of the slope. As measurements
are performed at temperatures T > 90mK, only, this extrapolation is not relevant for
the data presented here, but allows for later measurements that might extend to lower
temperature.

The calibration data are interpolated using Chebyshev polynomials, de�ned by

log T =
N∑
k=0

Ak cos

(
k · arccos

(logR− ZL)− (ZU − logR)

ZU − ZL

)
. (3.3)

Here, ZU and ZL are chosen adequately to map the logarithmized data points to the
interval [0, 1]. Care should be taken to obtain a smooth �rst derivative of T (R) as
otherwise artifacts in the �nal data can arise [93].

Addenda calibration

The total measured heat capacity C consists of three contributions, irrespective whether
the relaxation time method or the heat pulse method is applied,

C = C0 + Cgrease + Csample.

Here, C0 is the heat capacity of the sample platform including the heater and the
thermometer. Cgrease stems from the grease which is used to attach the sample to the
platform. From literature [95, 96] the temperature dependent speci�c heat cgrease of
the commonly used Apiezon N grease is known, such that the absolute value of the
greases' heat capacity can be calculated from the mass of the applied grease. The heat
capacity of the sample Csample is obtained by subtracting these two contributions from
the measured total heat capacity. Typically, the molar heat capacity is given, which is
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Figure 3.10: Addenda
of the dilution fridge
calorimeter. Solid lines
are �ts of the data
(open symbols) using
Chebyshev polynomials.
Data for 1.5T have been
recorded only at lowest
temperature.

calculated using the mass m of the sample, the molar mass mmol of the sample and the
mass mgrease of the grease,

cp = (C − C0 −mgrease cgrease) ·
mmol

m
.

The heat capacity of the empty sample holder C0, often referred to as addenda, is
measured by two possible methods. In case of the quasi-adiabatic heat pulse method,
the external relaxation without a sample on the platform might be too strong to apply
the method. In this case, instead either the relaxation method can be employed or
two pieces of the same reference material, but with di�erent masses m1 and m2 are
measured in two separate runs. From the obtained heat capacities C1 = C0 + m1 · cref

and C2 = C0 +m2 · cref , the speci�c heat of the reference cref and the addenda C0 can
be deduced. Accounting for the grease by C0, one �nds

C0 =
m2C1 −m1C2

m2 −m1

, cref =
C2 − C1

m2 −m1

.

In a setup based on the relaxation time method, the thermal conductance is usually
chosen such that the relaxation time of the sample platform without a sample is in a
range accessible with the used instruments. Standard AC resistance bridges (Lakeshore
370S, AVS-47B by Picowatt) give about 10 readings per second, such that a relaxation
time of the order of a second can be resolved. Using other instrumentation also faster
acquisition rates could be realized. However, the typical time constant of the internal
relaxation and the response times of the commonly used ruthenium oxide temperature
sensors lie in the range of a second as well. Thus, faster relaxations of the sample plat-
form are not advisable for low-temperature setups. The analysis of heating and cooling
curves during the addenda measurements is performed identical to that described in
Chapter 3.2.2.

In Fig. 3.10 the addenda signal of the dilution fridge calorimeter (cf. Fig. 3.7 (b) ) is
shown. The data were obtained using the relaxation method and show a moderate
scattering due to noise in the temperature acquisition that could be reduced in subse-
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quent experiments. The overall size of the addenda lies in the typical range of a few
µJmol−1 K−1. Below 0.1K a strong increase is found that probably arises from nuclear
Schottky anomalies of the manganin wires in the setup. It is shifted to a slightly higher
temperature by increasing the magnetic �eld, while the overall heat capacity is sup-
pressed up to a factor of about 2. As from 1.5T to 3T no signi�cant change of C(T ) is
found, the �eld dependence is su�ciently described by interpolation. The data are �t-
ted by low-order Chebyshev polynomials, in analogy to Eqn. (3.3), are used. As shown
by solid lines in Fig. 3.10, the polynomials give a reasonable description of the data.
As the typical samples of Cs2CoCl4 investigated with this setup have heat capacities
that are about three orders of magnitude larger than the addenda (see Chapter 4.3),
the relevance of the addenda calibration is, however, very small.

O�set heating

In some temperature ranges especially the 3He cryostat (Heliox VL, Oxford Instru-
ments) shows strong temperature �uctuations. Close to the liquid helium temperature
of 4.2K the abrupt changes of the thermal conductance and the heat capacity leads to
variations of the cryostat temperature as shown by the dashed line in Fig. 3.11 (a) for
an exemplary heat pulse at about 4K. The sample temperature (red symbols) follows
these �uctuations, but with a smaller amplitude due to damping by the sample's heat
capacity. The very heat pulse starting at t = 60 s is seen only vaguely. Instead cooling
the cryostat to 0.7K and heating the platform via an o�set power P0 to the target
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Figure 3.11: Heat pulse acquired without (a) or with (b) the application of the o�set heating
method. The dashed line indicates the temperature of the cryostat. Symbols are the sample
temperature acquired synchronously.
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temperature results in a far lower data noise, see Fig. 3.11 (b). Fluctuations of the
cryostat temperature the less in�uence the sample temperature the larger the tempe-
rature di�erence is. Secondly, inherent cryostat issues can be avoided by choosing the
cryostat temperature at will. As pointed out in Refs. 88 and91, the heat �ow equations
can be extended to include the o�set power and the analysis of heat pulses is preserved.
In most cases the temperature control using the o�set heating method additionally is
faster than changing the temperature of the more massive cryostat. Details on the in-
strumentation and the automated temperature control and data acquisition are given
in Ref. 93.

3.3 Magnetocaloric e�ect

In this chapter, the thermodynamics of the magnetocaloric e�ect is introduced, followed
by the description of an experimental technique that allows to directly measure the
entropy change as a function of the magnetic �eld. The magnetocaloric e�ect was �rst
discovered in an experiment with iron rods that changed temperature in a varying
magnetic �eld [97]. Nowadays, the main interest in the magnetocaloric e�ect derives
from its potential application for a sustainable room temperature refrigeration [98, 99].
In thermodynamics [100, 101], the change of a system's entropy with changing the
magnetic �eld relates to the change of the magnetization as a function of temperature
via the Maxwell relation,

∂S

∂H

∣∣∣∣
T

=
∂M

∂T

∣∣∣∣
H

. (3.4)

Combined with the di�erential dS of the entropy,

dS =
CH
T
dT +

∂M

∂T

∣∣∣∣
H

dH , (3.5)

the temperature change ∆Tad during an adiabatic (dS = 0) change of the magnetic
�eld from H0 to H1 is given by

∆Tad = −
H1∫
H0

T

CH

∂M

∂T

∣∣∣∣
H

dH. (3.6)

Here, CH = T ∂S
∂T

∣∣
H
is the heat capacity at constant �eld H in analogy to the heat

capacity at constant pressure. In solid-state physics, cH ≈ cp ≈ cV can be assumed
due to the typically small volume expansion of samples. The integration of Eqn. (3.6),
however, is rather complex, as T changes during the �eld sweep due to the adiabatic
conditions. In turn, CH is not constant either. The temperature change ∆Texp measured
in experiments under adiabatic conditions is referred to as the adiabatic magnetocaloric
e�ect (MCE). The relation of ∆Texp to the integrands of Eqn. (3.6), however, is not
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trivial. In an isothermal process (dT = 0), the di�erential dS simpli�es and instead the
entropy change ∆S is obtained,

∆S =

H1∫
H0

∂M

∂T

∣∣∣∣
H

dH. (3.7)

In simple magnetocaloric materials like ferromagnets the magnetization typically de-
creases with temperature, ∂M

∂T

∣∣
H
< 0. Thus, with increasing �eld, the temperature

change ∆Tad > 0 is positive and the entropy decreases, ∆S < 0. If instead the mag-
netization increases with increasing temperature, ∂M

∂T

∣∣
H
> 0, the signs are opposite,

∆Tad < 0 and ∆S > 0.

Some materials show both signs, depending on the magnetic �eld strength. In the spin-
chain compound copper pyrazine dinitrate, discussed in Chapter 6, the latter case is
realized in magnetic �elds of a few Tesla. Increasing the �eld, due to quantum e�ects,
the sign of ∂M

∂T

∣∣
H
eventually changes to negative and leads to a maximum of ∆S close

to the critical �eld Hc. This e�ect arises from a quantum critical point of the one-
dimensional magnetism at T = 0 and H = Hc. Another interesting parameter in the
context of quantum criticality is the Grüneisen ratio Γ that conventionally describes
the proportionality of the thermal expansion and the speci�c heat [102],

Γ =
α

cp
=

1

VmT

∂S
∂p

∣∣∣
T

∂S
∂T

∣∣
p

(3.8)

In case a system is described by a single energy scale E, the value of Γ does not depend
on temperature, but only on the pressure dependence of E. At a quantum critical
point induced by pressure Γ diverges. If the external control parameter is not given by
pressure but by the magnetic �eld, a similar de�nition of the Grüneisen ratio can be
given [103],

ΓH = −
∂M
∂T

∣∣
H

CH
= − 1

T

∂S
∂H

∣∣
T

∂S
∂T

∣∣
H

=
1

T

∂T

∂H

∣∣∣∣
S

. (3.9)

According to this de�nition ΓH is not normalized, but has units of J−1. The magnetic
Grüneisen parameter can be determined in expriment from the temperature derivative
of the magnetization and the speci�c heat. A large number of temperature-dependent
measurements ofM at di�erent magnetic �elds are required to numerically approximate
∂M/∂T from this data. This lengthy process also involves a certain numerical error
due to the derivation of the data. Alternatively, based on the last equality of Eqn. (3.9)
the change of the sample temperature as a function of the magnetic �eld can be mea-
sured. However, the demanded adiabatic conditions require a thermal decoupling of
the sample from the measurement environment. In consequence, during a �eld sweep
the temperature T substantially changes if the sample shows a magnetocaloric e�ect.
Technically, it is not possible to acquire ΓH as a function of the magnetic �eld at a
constant temperature using this setup, but instead arbitrary lines in the temperature
versus �eld space are scanned during the �eld sweep.
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Figure 3.12: Schematic drawing of
the setup to measure the magne-
tocaloric e�ect while continuously
sweeping the magnetic �eld. The sam-
ple temperature T is kept constant via
controlling the power P .

To avoid these experimental issues a new technique has been developed that is sketched
in Fig. 3.12. It is based on a standard calorimeter used for measurements of the speci�c
heat by the relaxation time method. The sample is mounted on a platform together
with a thermometer and a heater. An external magnetic �eld is provided by a super-
conducting magnet and is varied with a constant rate as a function of time. During the
magnetic �eld sweep the temperature T of the sample is kept constant via a PID con-
troller. The thermometer is connected to a resistance bridge (Lakeshore 370S) which
provides the input for a software PID controller operated on a computer running Lab-
VIEW [87]. The PID output controls a current source that is connected to the heater.
An extremely fast and accurate temperature control is required to realize isothermal
conditions in the experiment. This requires a precise tuning of the control parameters
P, I and D. These parameters depend on the heat capacity of the sample and on the
�nite thermal conductance K between the platform and the bath. However, changing
the magnetic �eld, these quantities also change. Thus, choosing the control parameters
a compromise between a fast control and a universal applicability of them has to be
found. For the present measurements the temperature dependent parameters listed in
Tab. 3.1 were used.

Simultaneously to the temperature control the voltage drop at the heater is measured
to calculate the power P = U · I that is required to keep the temperature constant.
The measurement is repeated both for increasing and decreasing the magnetic �eld.
As shown below, the antisymmetric contribution to the �eld dependence of the power
P (H) relates to valuable physical quantities.

In the standard heat �ow equations of a calorimeter the internal energy E = E(S, V )
is changed by the application of heat to the system. In its di�erential dE = T dS =
T ∂S

∂T

∣∣
V
dT = CV dT the heat capacity is found. In general the entropy S = S(T,H)

depends on the temperature and on the magnetic �eld. Thus, the di�erential of the
entropy,

dS =
∂S

∂T

∣∣∣∣
H

dT +
∂S

∂H

∣∣∣∣
T

dH, (3.10)

contains two terms, where the latter usually vanishes because of the constant magnetic
�eld during the experiment. However, in the present setup, the temperature is �xed
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and instead the magnetic �eld H is changed as a function of time. Thus, the di�erential
of the internal energy E(S, V,N) at constant volume takes the form,

dE = T dS = T
∂S

∂H

∣∣∣∣
T

dH. (3.11)

In the experiment the sample temperature T is kept constant by adjusting the power
P applied to the heater. This temperature in general is not equal to the bath tempe-
rature T0, but exceeds it by ∆T > 0. During the magnetic �eld sweep the power P is
continuously adjusted to keep ∆T constant. The heat applied to the sample together
with the heat �ow to the temperature bath via the conductance K equals the change
of the internal energy,

P (H) dt−K(H)∆T dt = dE. (3.12)

Combining Eqns. (3.12) and (3.11), the heating power P can be related to the change
of the entropy as a function of the magnetic �eld,

P (H)−K(H)∆T

γ
= T

∂S

∂H

∣∣∣∣
T

, (3.13)

with the sweep rate γ = dH
dt

of the magnetic �eld. The heating power P (H) can be
decomposed into a symmetric and an antisymmetric term with respect to the sweep
direction by rewriting Eqn. (3.13) for increasing (P↑) and decreasing (P↓) the magnetic
�eld,

P↑,↓(H) = K(H)∆T ± |γ|T ∂S

∂H

∣∣∣∣
T

. (3.14)

The �rst term is the symmetric contribution to P (H) and accounts for the heating of
the sample platform to build up the constant temperature di�erence ∆T = T − T0.
Ideally, this contribution does not depend on the magnetic �eld at all. However, the
conductance K(H) may have a �nite �eld dependence. Yet, it does not depend on the
sweep direction. Further e�ects that may be absorbed in the symmetric contribution of
P are measurement artifacts like the inductive heating of the platform due to eddy cur-
rents, which also arises irrespective of the sweep direction. In contrast, the second term
changes sign upon reversing the sweep direction, such that the quantity ∂S/∂H can

T (K) P I D Imax (A)

0.4 190 0.25 0.003 3× 10−5

0.7 140 0.2 0.004 3× 10−5

1 110 0.15 0.009 3× 10−5

2 90 0.1 0.01 3× 10−5

5 70 0.08 0.01 5× 10−5

Table 3.1: PID parameters of the magnetocaloric-e�ect setup. The �rst column indicates the
maximum temperature T up to which the respective parameters are used. The PID control
output ranges from 0 to 1 and is multiplied with the maximum current before sending to the
current source.
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be obtained from the di�erence of the experimental data for increasing and decreasing
the �eld,

∂S

∂H

∣∣∣∣
T

=
P↑ − P↓
2 |γ|T

. (3.15)

By integration the �eld dependence of the entropy can be deduced. To calculate the
molar entropy Sm additionally the mass m and the molar mass mmol of the sample
have to be known,

Sm(H)− Sm(0) =
mmol

2m |γ|T

H∫
H′=0

[P↑(H
′)− P↓(H ′)] dH ′. (3.16)

Assuming that only the entropy of the sample's magnetic subsystem changes as a func-
tion of the magnetic �eld, but not that of the sample holder or of other phonon systems,
this result is independent of geometric details and does not require a previous calibra-
tion of the empty holder's signal. Especially, this process inherently separates phononic
and magnetic contributions. Furthermore, using Eqn. (3.9) and approximating cH ≈ cp
the Grüneisen parameter ΓH is obtained in case the �eld dependence of the speci�c
heat at the given temperature T is known,

ΓH(H) = −
∂S
∂H

∣∣
T

CH
= − 1

2 |γ|T
P↑(H)− P↓(H)

cp(H) m
mmol

. (3.17)

Here, the factor of m
mmol

converts from the molar heat capacity to the extensive quantity
CH . If γ is given in units of T s−1, ΓH is obtained in units of T−1. As the setup used
for this measurements is identical to that of a speci�c heat calorimeter based on the
relaxation method, the required cp(H) can be measured using the same setup. This
minimizes possible errors due to a remounting of the sample in another setup or a
mismatch of di�erent thermometers.

3.4 Thermal expansion

The uniaxial thermal-expansion coe�cient αi of a solid can be obtained in experiment
by measuring the length change ∆Li of a crystal along the axis i. An established
method to detect small relative length changes is the capacitance dilatometry. Various
setups based on the original design of Ref. 104 have been developed previously for
di�erent applications and cryostats [105�107]. Commonly, they consist of a �xed frame
and a movable part as shown in a schematic drawing in Fig. 3.13. Opposing capacitor
plates with a radius r are mounted electrically insulated from the frames. The movable
part is suspended via two copper beryllium (CuBe) springs. The sample is clamped
via a �xing screw in between both frames in such a way that a length change of
the sample is converted into a change ∆d of the gap between the capacitor plates.
Further e�ort in the construction of the capacitor is put into the minimization of stray
�elds, the coplanar alignment of the plates and the geometry of the suspension via the
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Figure 3.13: Schematic drawing of a capacitance
dilatometer used to measure the thermal expansion of
a sample. The sample (blue) is mounted in between
two frames, where one is �xed (hatched area) and the
other is movable (light blue). A length change of the
sample translates into a change ∆d of the spacing
between the capacitor plates (orange areas).

24 mm

Figure 3.14: Low-temperature
capacitance dilatometer made of
copper. The sample (marked in
red) is clamped between the
�xed frame and the movable ca-
pacitor plate via �xing the screw
from below.

springs. Details are given elsewhere [104, 105]. Apart from the design of the thermal-
expansion cell, the measurement environment has to be optimized with respect to
mechanical vibrations and the shielding of leads. Coaxial cables are used to measure the
capacitance. It is obtained with high precision by using a commercial AC capacitance
bridge (AH2550/AH2500 by Andeen Hagerling) that operates at a �xed frequency of
1 kHz. Two dilatometers constructed in the same way were used in this thesis. While one
can be adapted to the 3He cryostat, the other is mechanically designed for the dilution
refrigerator. Each setup is equipped with a suitable resistive thermometer calibrated
in magnetic �elds. In Fig. 3.14 the dilution refrigerator setup is shown. The capacitor
plates are contained in the center area. From above the coaxial cables (CC-SS series,
Lakeshore) are fed through respective bores. A sample of Cs2CoCl4 is mounted in the
area marked in red. The radius of the lower capacitor plate of 8.1mm allows to exploit
almost the full resolution of the capacitance bridges. From the measured capacitances
C1 and C2 before and after the expansion of the sample the length change ∆L can be
calculated,

∆L = ε0πr
2

(
1

C1

− 1

C2

)
. (3.18)

Here, ε0 is the vacuum permittivity and r is the radius of the smaller capacitor plate.
Due to the strongly increasing capacitance for small distances between the plates and
thanks to the high sensitivity of the capacitance bridges, depending on the geometry of
the sample and on the plate radius r, length changes down to 10−10 m can be resolved.
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From the measured length change ∆L the thermal expansion coe�cient is obtained
numerically,

αi =
1

Li,0

∂∆Li(T )

∂T
. (3.19)

In analogy, the magnetostrictive coe�cient λ is obtained from the measured length
change ∆Li(H) as a function of the magnetic �eld H.

3.5 Thermal conductivity

In general the thermal conductivity κ is a second-rank tensor which indicates the heat
current j induced by a temperature gradient ~∇T in a material,

j = −κ~∇T. (3.20)

In the isotropic case, respectively by considering one-dimensional transport, κ becomes
a scalar κ and Eqn. (3.20) simpli�es to

P

A
= κ

∆T

∆x
. (3.21)

To obtain a homogeneous heat current described by Eqn. (3.21), the ideally shaped
sample for measurements should have one long and two shorter axes as shown in the
schematic drawing of Fig. 3.15. It is attached with the lower end to a heat sink and a
heater is mounted on top. Either SMD chips or wound manganin wires can be used for
heating. The heating power P establishes a heat current perpendicular to the cross-
sectional area A of the sample. In a steady state the temperature gradient is constant
and can be probed by measuring the temperature di�erence ∆T between two points
on the sample in a distance ∆x. Two methods can be applied to measure ∆T . De-
pending on the temperature range either a thermocouple consisting of chromel and
gold-iron alloys is used, or two individual suitable resistive thermometers are attached
to the sample. Due to the reduced sensitivity of thermocouples below liquid helium
temperature, depending on the temperature range both techniques were applied in this
thesis.

P

A
heater

sample

   heat
sink

∆T, ∆xj

Figure 3.15: Schematic drawing of
the setup to measure the thermal con-
ductivity by the steady-state method.
Applying a power P to the heater a
heat current j to the sink is estab-
lished, represented by a color gradi-
ent within the sample. The dashed
line indicates the cross section A of
the sample. The temperature gradi-
ent ∆T is measured at level positions
in a distance ∆x from each other.
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During the acquisition of the �eld-dependent data discussed in Chapter 4.2.1 special
emphasis was put on the sample temperature stability. In the experiment, the tempe-
rature gradient ∆T lifts the average sample temperature above that of the heat sink,
respectively the cryostat. Depending on the thermal conductivity κ itself, this leads to
a deviation of the target temperature. In a strongly temperature-dependent regime of
κ reliable data were acquired only by iteratively adjusting the base temperature of the
heat sink and the power P , such that ∆T and the average sample temperature remain
constant. More details on the choice of wires, adhesives and on the further experimental
procedure are given for example in Refs. 94 and 86.
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The synthesis and crystal structure of the chlorine based salt Cs2CoCl4 (Dicesium
tetrachlorocobaltate) was �rst reported by Porai-Koshits in 1956. High-quality single
crystals of centimeter size can be grown by slow evaporation of the constituents [108].
Another study in the midst of the 20th century that involved Cs2CoCl4 aimed at
some fundamental questions in crystal chemistry by comparing the crystal structures
of a variety of salts [109]. By relating the cation element, its coordination and the
anion/acido complex, Porai-Koshits strove for a methodology in the formation of such
�complex compounds�.

In 1964 Cs2CoCl4 was revisited for its anisotropic magnetic properties [4, 110]. While
magnetic exchange was included in this analysis of susceptibility on a mean-�eld level,
a quantitative comparison of the speci�c heat to a spin model in the temperature range
where short-range correlations arise was carried out �rst by Algra et al. in 1976 [3].
Comparing their data to numerical results for antiferromagnetic spin chains of di�erent
anisotropies (obtained by Blöte in 1975 [111]), they found a good agreement with the
XY -like model including an anisotropy parameter ∆ = 1/4. However, all these studies
restricted to zero magnetic �eld and mainly focused on temperatures T > TN. The
magnetic order that arises at TN ≈ 0.2 K was discussed in few studies only [7, 8].
Especially, the magnetic ordering was discussed only in case of a magnetic �eld applied
along a, but not for any other �eld direction. In this thesis, the thermodynamics of
Cs2CoCl4 is investigated for magnetic �elds applied along di�erent crystallographic
axes and for temperatures both above and below TN.

After introducing the structure and the known magnetic properties of Cs2CoCl4 in
Chapter 4.1, the experimental �ndings for temperatures above the magnetic ordering
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temperature TN ' 0.22 K are presented in Chapter 4.2. By a combined analysis of
speci�c heat and thermal expansion/magnetostriction and the inclusion of virtual ex-
citations in the applied e�ective spin model, it is found that the compound is closer
to the XY model than previously assumed in literature. Furthermore, the measured
speci�c heat and thermal expansion of Cs2CoCl4 in magnetic �elds up to 4T reveal
signatures of quantum criticality and will be compared to numerical calculations of
the model. In Chapter 4.3 thermodynamic properties in the magnetically long-range
ordered temperature regime are discussed. Upon applying magnetic �elds in di�erent
directions, drastically di�erent phases arise. Their relation to the one-dimensional mag-
netism as well as models for their microscopic origin are presented.

4.1 Introduction

4.1.1 Structure

Crystals up to centimeter-size of Cs2CoCl4 can be grown by slow evaporation from an
aqueous solution with a stoichiometric ratio of 1:2 of the educts CoCl2 ·6H20 and CsCl.
They have a slightly transparent and dark blue appearance. A large single crystal grown
during this thesis is shown in Fig. 4.1. As the crystals are water-soluble and rather
brittle, they have to be treated with some caution. As part of my diploma thesis [93]
initial test measurements of the speci�c heat of Cs2CoCl4 in magnetic �elds were carried
out using samples grown by R. Müller. In the course of the present thesis it turned out
that these crystals exhibited a porous inner structure. Not only unknown enclosures
within the hollows, but also di�erently oriented crystallites might be embodied in
the crystals, leading to experimental uncertainties especially upon applying magnetic
�elds in di�erent crystallographic directions. Interestingly, the crystals did not show
any re�ections upon various attempts of Laue di�raction. In Ref. 112 it is pointed
out that the strong X-ray absorption properties of the crystal complicate the structure
determination. The X-ray linear attenuation coe�cient1 of Cs2CoCl4

µCs2CoCl4 = 11mm−1

was determined using Mo-Kα radiation (λ = 0.71Å, E ≈ 17 keV). This value probably
originates from the absorption properties of the heaviest contained element cesium,
which at this wavelength has a similar attenuation coe�cient [113],

µCs ≈ 11.6mm−1.

Another possible reason might be given by the slight hygroscopic nature of Cs2CoCl4
which partly leads to a reconstruction of the crystal surfaces. Samples stored in air for
some months show the tendency to accumulate microscopic crystallites at the surface

1The coe�cient µ can be understood as a penetration depth and describes the attenuation of X-ray
radiation with a primary intensity I0 via the relation I = I0e

−µd. Here, I is the remaining intensity
after the X-rays have passed the material of a thickness d.
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Figure 4.1: Single crystal of
Cs2CoCl4 (sample 3-2 ). Crystal
facets were identi�ed using single
crystal di�raction.
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that lead to a brighter appearance of the sample surface. The same happens to crystals
that are taken from solution and where excess solution was not su�ciently rinsed
from the grown surfaces. This surface imperfectness might lead to the suppression of
Laue re�ections. However, the de�nite reason could not be clari�ed. At least, one can
state that both Laue and single crystal di�raction are not in�uenced by the mentioned
impurities embedded in the crystals, as the X-rays penetrate only few µm into the
crystal. Instead of orientation via Laue images, some of the grown crystals were oriented
based on the morphology. Others were successfully analyzed by using a single crystal
di�ractometer (Bruker APEX). Up to 1 cm size crystals were mounted on top of a
0.1mm glass capillary and centered with an edge in the incident beam. In most cases
re�ections could be gathered and it was possible to identify the facets of the crystals,
as indicated by the labels in Fig. 4.1. As reported in Ref. 93, the measured speci�c
heat of the �rst batch of crystals scattered several percent from specimen to specimen,
which might be due to the imperfect crystal quality. Therefore, these crystals were not
used within this thesis.

The large high-quality single crystals used in this thesis were provided by Prof. L.
Bohatý and Prof. P. Becker from the Institute of crystallography, University of Cologne.
Their inner structure did not reveal any of the defects named above. All samples were
prepared from the original crystal by sawing along the crystallographic axes. Typical
sample sizes were about 2× 2× 3mm3 with a weight of a few tens of mg.

The crystal structure of Cs2CoCl4 was �rst described by Porai-Koshits in 1956 with
the orthorhombic space group Pnma. In some subsequent work [4�6] the structure was
referred to as Pnam, which di�ers from Pnma simply by interchanging of b and c. In
this work the description in terms of the original space group Pnma (D16

2h, No. 62) is
chosen, which translates to the following de�nition of the lattice parameters.

a = 9.720(3)Å
b = 7.313(3)Å
c = 12.822(2)Å.

Not only two choices of the space group are found in literature, but also two di�erent
origins are used. In the publications of Figgis et al. relative atomic coordinates for
the Cs1, Cs2 and Co1 are 1/4. Algra et al. and Kenzelmann et al. decided to shift
the unit cell by (0, 0.5, 0.5), such that those positions are 3/4. Following the latter
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Figure 4.2: Schematic drawing of the unit cell of
Cs2CoCl4 and of selected coordinated CoCl4 tetrahe-
dra based on structure data from Ref. 112, but with
the unit cell shifted by (0, 0.5, 0.5) in consistency with
Refs. 3 and 8. Checker-board planes denote magnetic
easy planes that appear in two orientations at sites
(1 & 3) and (2 & 4). Dominant magnetic exchange paths
are indicated by red bars. Gray shaded planes indicate
bc planes on which chains of Co are coupled frustat-
edly via interchain couplings Jbc depicted in green. Non-
frustrated interlayer couplings Jac are dashed blue. Fur-
ther frustrated couplings Jab and J ′ab between every sec-
ond bc layer are sketched in curled yellow lines and thin
black dashed double lines.

Figure 4.3: Simpli�ed
schematic representation of
the structure of Cs2CoCl4
projected along the chain
direction b. Black dots indi-
cate the position of Co atoms
with crystallographic positions
y/a = 1/4, gray dots stand for
Co atoms with y/a = 3/4.

publications the description with a shifted unit cell was chosen for this work. In Tab. 4.1,
the relative atomic coordinates for both origins are given. A pictorial representation
including selected atoms of neighboring unit cells is given in Fig. 4.2. The main building
blocks are CoCl4 tetrahedra that form one-dimensional chains along the b axis (sketched
transparently green in Fig. 4.2). The cobalt ions are approximately located on bc planes
(indicated by the slightly buckled gray sheets in Fig. 4.2). These sheets are separated by
the non-magnetic Cs− ions. Their very position is of minor importance. Nevertheless,
their occurrence mainly in between the sheets of Co2+ can be argued as a hint towards
reduced dimensionality upon discussing the magnetism of the cobalt ions. Two cobalt
atoms in the unit cell are located at y/a = 0.25 (sketched by black dots in Fig. 4.3)
and two others occupy positions with y/a = 0.75 (gray dots in Fig. 4.3).
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. origin chosen in Ref. 112

origin chosen here
and in Refs. 3, 8
with the unit cell shifted by (0, 0.5, 0.5)

x y z x y z

Cs1 4c 1 0.359 87(3) 0.25 0.100 74(3) 0.359 87(3) 0.75 0.600 74(3)
Cs2 4c 1 0.022 24(2) 0.25 −0.173 63(2) 0.022 24(2) 0.75 0.326 37(2)
Co1 4c 2 −0.235 14(5) 0.25 0.077 72(4) −0.235 14(5) 0.75 0.577 72(4)
Cl1 4c -1 −0.003 72(10) 0.25 0.099 93(9) −0.003 72(10) 0.75 0.599 93(9)
Cl2 4c -1 −0.312 34(1) 0.25 −0.088 80(7) −0.312 34(1) 0.75 0.411 20(7)
Cl3 8d -1 −0.325 97(9) 0.501 78(13) 0.152 83(8) −0.325 97(9) 0.001 78(13) 0.652 83(8)

Table 4.1: Crystal structure of Cs2CoCl4. Relative atomic coordinates based on X-ray di�rac-
tion [112]. In analogy to Refs. 3 and 8 a shift of the unit cell is considered.

The magnetic properties of Co2+ are primarily a�ected by the tetrahedral coordination
by Cl− ions. However, the coordination does not reveal the fully tetrahedral symmetry,
but is described by only one single mirror plane (cf. Fig. 4.8), which leads to a pro-
nounced anisotropy of the easy-plane type that is discussed from the electronic point
of view in Chapter 4.1.2. Due to the presence of 2-fold screw axes in the space group,
all four tetrahedra within the unit cell are of equal type, but di�er in their respective
orientation around the cobalt atom. Their appearances are labelled by red numbers
(1 to 4) in Fig. 4.2. The tetrahedral coordinations at positions 1 and 3 transform into
each other by a rotation of 180° around b. The same applies to positions 2 and 4. How-
ever, transforming a tetrahedron with odd numbering to an even numbered involves an
in�ection. Thus, with respect to the macroscopic magnetic properties, sites 1 cannot
be distinguished from sites 3. Again, the same applies to sites 2 and 4. This holds true
as long as the magnetic anisotropy is treated as a single in-plane/out-of-plane type
anisotropy (D) only. An additional in-plane anisotropy was previously discussed, but
could not be reliably extracted from the susceptibility data [4].

The direction of the anisotropy D de�nes a quantization axis for the spin (usually
called z-axis). As D is given by the positions of the ligands local to each site, both z
and the perpendicular x and y axes do not necessarily point along the crystallographic
axes and can be in principle di�erent at each site. In Cs2CoCl4, the relation of the local
coordinate system x, y, z (often referred to as molecular) to the crystallographic axes
is limited by symmetry. Possible orientations can be visualized as shown in Fig. 4.4
for a single tetrahedron, formed by the chlorine ions shown in green. In panel (a) only
the mirror plane that intersects the cobalt site in each tetrahedron is sketched by a
red area. At least one molecular axis is con�ned to the ac plane due to the mirror
plane. This axis is chosen as z. The other two axes can either lie each out of the ac
plane by an angle of 45◦ (panel (b) of Fig. 4.4) or one of the other axes lies within
the mirror plane as well with the third perpendicular to the mirror-plane (panel (c) of
Fig. 4.4). In the �rst case, the molecular g tensor necessarily is of tetragonal symmetry
as indicated by the square checker-board plane in Fig. 4.4 (b) which can be identi�ed
with the magnetic easy plane of the tetrahedron. An additional in-plane anisotropy
is excluded by symmetry in this con�guration. In the second case, gx may di�er from
gy, opening the possibility of an in-plane anisotropy which is depicted by a non-square
plane perpendicular to z in panels (c) and (d). The relation between x, y, z and a, b, c,
however, is not fully determined by symmetry. The angle β between z and c is not
restricted by one of the symmetry operations. Di�erent values |β| = 38.8◦, 19.4◦ were
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(a) (b)

(c) (d)

Figure 4.4: Sketch of the symmetry-allowed relations between the molecular (blue) and the
crystallographic (green) coordinate system in one CoCl4 tetrahedron. In (a) only the 4c site's
mirror-plane (shaded red area) through the cobalt (black sphere) and the Cl-positions (green
balls) are shown. In addition, in panels (b-d) the easy planes (checker-boards), spanned by
the x and y axis, are shown. The angle β between the local z axis and the crystallographic c
axis may be either −38.8◦ (b,c) or 19.4◦ (d).

proposed in literature [4, 8, 110]. The case of β = 38.8◦ corresponds to the situation in
which z bisects the largest Cl-Co-Cl angle in the tetrahedron. This scenario is depicted
in Fig. 4.4 (b) and (c) for the two possible rotations of the molecular axes x and y.
The second proposed value of β = 19.4◦ re�ects the situation in which z is along the
vector that connects the cobalt atom with the chlorine ion which shows the largest tilt
away from one of the crystallographic axes, shown in Fig. 4.4 (d) for the orthorhombic
choice of x and y.

Due to the low site symmetry and the consequently large number of crystal �eld pa-
rameters, it was not possible to determine β by crystal �eld theory (Chapter 4.1.2). For
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a discussion of the magnetic properties in the temperature range where no magnetic
order arises, the value of this angle is not relevant. However, it might be of importance
for long-range order as it a�ects the e�ciency of interchain couplings.

More decisive is the sign of the anisotropy D, because it determines whether easy-
plane or easy-axis magnetism arises. In case of Cs2CoCl4 the value of the anisotropy
D is positive, which leads to magnetic easy planes. In Fig. 4.2 they are sketched by
checker-board planes and by blue lines in the schematic representation of the mag-
netic structure of Fig. 4.3. The easy planes are tilted away from the c axis by the
angle β whose sign alternates between sites (1&3) and (2&4). Due to the rotational
symmetries, these planes have the b axis in common. Thus, a magnetic �eld applied
along this crystallographic axis is within all magnetic easy planes, i. e., perpendicular
to all local quantization axes z at once. Upon the application of an e�ective spin model
to the magnetic subsystem, magnetic �elds Hx along this high-symmetry direction,
thus, can be treated equivalently for all Co sites by introducing a magnetic �eld term
∝ gµBµ0HxS

i
x in the Hamiltonian.

4.1.2 Magnetism

Magnetic exchange

In Cs2CoCl4 the magnetic Co2+ ions interact with each other via superexchange that
involves two non-magnetic Cl− ions. Due to the symmetry of the Co1 site, three di�erent
Co-Cl bond lengths are found per tetrahedron that each connect the central cobalt
with a surrounding chlorine ligand. As their lengths (2.261, 2.267, 2.258 Å) are very
similar, the di�erent magnitude of magnetic interactions via the possible superexchange
paths is mainly determined by the chlorine-chlorine bond angles and the distances.
As the overlap of orbitals is an exponential function of the distance, the interactions
are, in a �rst approximation, ruled by the exchange paths with the shortest Cl-Cl
distances up to a size of a few Å. In the unit cell, a shortest Cl-Cl distance of ∼ 3.63Å
and three longer distances close to 4Å are found. One further Cl-Cl distance of 4.4Å

Cl sites Connected
Co2+ sites

lCl−Cl
[Å]

d
[x/a, y/b, z/c]

coupling
constant

DM
allowed

Cl3/Cl3 1-1, 2-2, 3-3, 4-4 3.63 (0, 1, 0) J X
Cl1/Cl3 3-4, 2-1 4.05 (.5, 0,−.34) Jac X
Cl2/Cl3 2-3, 1-4 4.01 (.03,−.5, .5) Jbc X
Cl2/Cl3 1-3, 2-4 4.04 (.53, .5, .15) Jab
Cl1/Cl1 1-3, 2-4 4.46 (−.47, .5, .15) J ′ab

Table 4.2: Superexchange paths in Cs2CoCl4 along chlorine sites at distances lCl−Cl between
Co2+ as labeled according to Fig. 4.2. The relative distance d between cobalt atoms that are
connected via the respective exchange path accounts for the naming of the coupling constant.
The possible contribution of Dzyaloshinskii-Moriya (DM) interactions is given by the non-
existence of an inversion symmetry of the bond.
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distance might be considered for the magnetism, although its impact on the magnetic
properties is probably small. All paths considered here are listed in Tab. 4.2 and Fig. 4.5.
The shortest Cl-Cl distance is found between the Cl3 sites of di�erent tetrahedra.
The respective distance d between two connected cobalt atoms is given for all bonds
in Tab. 4.2 in units of the lattice constants. It indicates the spatial direction of the
coupling. In case of the Cl3/Cl3 bond, d has a component along b only. In the other
cases it always has one small component and two larger ones, which indicates that
each of the bonds contributes to a magnetic coupling along one of the crystallographic
axes or a diagonal between two of them. This will allow for the representation of the
magnetic lattice in a more illustrative way later. The exchange integrals for the di�erent
paths are labeled as Jij with i and j indicating the two largest components of d.

The exchange paths together with their bond lengths and angles are given in a schematic
view in Fig. 4.5. Color codes and line styles are identical to the unit cell representation
in Fig. 4.2. Most bonds are found not only in the orientation presented in Fig. 4.5, but
also in con�gurations related by the rotational symmetries. The bond J (panel (a) of
Fig. 4.5) stands out not only due to the small inter-chlorine distance, but also as it
involves the largest bond angles and a mirror-plane perpendicular to b that intersects
the Cl-Cl bond. From the thermodynamic properties presented in Chapter 4.1.3 it is
known that this primary coupling is strongest and governs the magnetic properties

[010]

J

Jbc
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~[101]
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~[11
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Figure 4.5: Sketch of the superexchange paths found in Cs2CoCl4. Spheres within the tetra-
hedra indicate Co2+ atoms. Magnetic exchange is via two chlorine ions (green spheres) in
di�erent directions as indicated by the black arrows for each pair of cobalt atoms. Cl-Cl
distances are given in Å.
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down to ∼ 220 mK. All the other exchange paths might be considered as secondary,
as their respective Cl-Cl distances are at least 0.4Å longer and as they involve rea-
sonably smaller Co-Cl-Cl angles that additionally di�er from one tetrahedron to the
other. The coupling Jbc di�ers from the other exchanges as it is found in the crystal
structure to connect one cobalt atom to two others that di�er in their b coordinate,
see Fig. 4.5 (b). With the �rst path along [011], the second is along a respective [01̄1]
direction. In combination with an antiferromagnetic J this triangular con�guration
leads to magnetic frustration. In case of Jac, depicted in Fig. 4.5 (c), two identical
Cl-Cl distances lead to a �two-fold� exchange path that is asymmetric with respect
to the angles in di�erent tetrahedra. This exchange connects cobalt atoms along the
approximate {101} directions, i. e., along [101], [1̄01], [101̄], [1̄01̄]. The next coupling Jab
is found between Co sites along the approximate [110] directions (Fig. 4.5 (d) ). Here,
in total four Cl− ions are involved in the exchange between two sites. Within each
tetrahedron two di�erent angles are formed by the Co-Cl-Cl-Co paths. Furthermore,
this coupling is found between one site and two neighboring sites that di�er in their b
component. Thus, this coupling is frustrated, too (not shown in Fig. 4.5 for simplicity).
Additionally, this coupling is special as it is found only between sites 1 and 3 within the
unit cell. The previously discussed couplings connect Co2+ within the unit cell as well
as to those in neighboring unit cells. For example, Jbc connects sites 1 to site 4 within
the unit cell as well as to site 4 in the unit cell neighboring along the −c direction (see
green bars in Fig. 4.2). In contrast, Jab does for example not connect the cobalt atom
at site 3 to the one at site 1 in the neighboring unit cell in the a direction, which is due
to the particular orientation of tetrahedra. Nevertheless, there is yet another possible
exchange path J ′ab forming this missing bond. It is sketched by thin dashed lines in
Fig. 4.5 (e). However, it has Cl-Cl distances of ≥ 4.46Å and almost orthogonal angles,
which probably renders it at least another order of magnitude smaller than the other
secondary couplings.

In compounds where spin-orbit coupling contributes to the magnetism, antisymmetric
(Dzyaloshinskii-Moriya type) exchange might be considered for the explanation of non-
collinear spin structures. The corresponding energy of two spins i and j

HDM = D · (Si × Sj) (4.1)

depends on the size of the Moriya vector D. In a simple superexchange path via an
ion that is displaced by a vector x from the center of the spins i and j which are in a
relative distance r, the vector D is given as

D ∝ r× x. (4.2)

Even though the size of Dzyaloshinskii-Moriya (DM) interactions cannot be quanti�ed
a priori, the exchange paths can be analyzed if they allow for this type of exchange by
symmetry. In general D vanishes only if the crystal �elds of the associated spins are
related to each other via an inversion. Necessarily, the inversion center must coincide
with the center point of the two magnetic ions, because only then the very magnetic ions
are transformed to each other. In the previous example a non-displaced ion, i. e., x = 0
in Eqn. (4.2), leads to an inversion center in between spins and thus to a vanishing D.
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In Cs2CoCl4 the orientation of the tetrahedra involved in the couplings J , Jbc, Jac are
such that no inversion center exists between them. Thus, DM interactions are possible
for these bonds. In contrast, both for Jab and J ′ab there is an inversion center at half
of the cobalt distance such that antisymmetric exchange is forbidden by symmetry for
these couplings.

Magnetic Structure Model

The previously identi�ed exchange paths are more illustratively represented by a sim-
pli�ed magnetic lattice. It is obtained from the original lattice by a continuous trans-
formation of the lattice while preserving the coupling between sites. Slightly shift-
ing the original Co1 position from (−0.235, 0.75, 0.577) to the commensurate position
(−0.25, 0.75, 0.5) and translating every second bc plane by c/2 along c leads to cobalt
positions con�ned to bc layers which are stacked along a as shown in Fig. 4.6 (a). In
each layer two types of sites with di�erent easy-plane orientations are present. The type
of the site alternates along c and a, but not along the b direction. The coupling J acts
within the layers between sites of equal type along b. As discussed later, this coupling
de�nes the primary spin chains and is the dominant coupling. Within each layer the
magnetic sites are shifted by half of a lattice constant along -b for increasing c.

The further couplings between sites in the following are classi�ed as �rst- and higher
order. Apart from the primary J the rank of the other couplings does not imply a
statement about its ab initio unknown strength. The classi�cation rather follows the
steps by which the full lattice is constructed. Adding the �second-order� couplings
between the chains leads to the magnetic lattice shown in Fig. 4.6 (b). Within the bc
planes an anisotropic triangular lattice is formed by J and Jbc. Due to the triangular
arrangement, the coupling Jbc is frustrated. In contrast to J , which couples sites of equal
type, Jbc connects each site of one type to four sites of the other type. Additionally,
layers are coupled non-frustratedly via Jac along a. Jac connects each site to two sites
of di�erent type.

In Fig. 4.6 (c) the �third-order� interchain couplings Jab and J ′ab are indicated by zig-
zag and thin dashed lines, respectively. For the structural reasons discussed above, Jab
connects sites in every second bc layer only. This leads to an unconventional appearance
of Jab in the magnetic lattice and an enlargement of the magnetic unit cell. While the
coupling is present between sites 1 and two sites 3 shifted along +c in the next bc layer,
the equivalent sites 3 shifted along −c are not linked. Sites 2 are equivalently connected
to sites 4 in the next layer, however only to sites 4 along −c. Last, the coupling J ′ab is
discussed. Although it di�ers from the previously discussed couplings in a Cl-Cl distance
that is yet another 0.4Å larger, one may consider it for completeness. Namely, J ′ab arises
in a similar fashion as Jab and completes the inter-layer couplings missing from Jab.
In Fig. 4.6 (d) the projection of all couplings on an ac plane is shown. Essentially,
the couplings Jab and J ′ab add a frustrated inter-layer coupling between equal types of
sites to the second-order couplings Jbc and Jac. In contrast the second-order frustrated
coupling Jbc and the second-order inter-layer coupling Jac both exclusively couple sites
with di�erent easy plane orientations.
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Figure 4.6: Magnetic lattice of Cs2CoCl4. Spin sites are approximately located on bc planes
(shaded in gray). Di�erent types of easy plane orientation are indicated by open and full
symbols. The numbering of sites corresponds to the 4 unit cell sites in anology to Fig. 4.2. In
(a) only the primary coupling J is displayed with red bars, in (b) further the frustrated in-
plane interchain couplings Jbc (solid green lines) and the non-frustrated inter-plane couplings
Jac (dashed blue lines) are shown. In (c) next-order couplings are depicted as dashed yellow
lines (Jab) and as thin dashed black lines (J ′ab) that frustratedly couple bc planes. In (d) a
projection of the full lattice along b is shown.

From the presented magnetic lattice potentially interesting magnetic phases may emerge.
Depending on the ratio of the coupling constants one may expect very di�erent prop-
erties like one-dimensional, two-dimensional, frustrated two-dimensional or even frus-
trated three-dimensional magnetism. Usually the individual coupling strengths may
be obtained from a comparison of equilibrium properties to theory or a probing of
the excited states which are exclusively sensitive to individual couplings. However,
the magnetic lattice including �rst and second order couplings is already su�ciently
complex to engage a large number of theoretical works about its ground state as a
function of a magnetic �eld. The intensely studied compound Cs2CuCl4 is isostruc-
tural to Cs2CoCl4 and shows diverse magnetic phases at low temperatures [114�118].
The magnetic lattice including �rst-order interchain couplings of both compounds is
identical and consists of anisotropic triangular layers within bc planes that are stacked
along a. In Cs2CuCl4, the exchange constants Jbc and J within the triangular layers are
of comparable magnitudes [119]. In contrast, the interchain interactions of Cs2CoCl4
are at least one order of magnitude smaller than the dominant intrachain interaction J
[7, 120]. Thus, Cs2CoCl4 is close to the spin-chain limit and magnetic order is observed
at lower temperatures than in Cs2CuCl4. Another important di�erence between both
compounds arises from the di�erent electronic con�gurations of copper and cobalt.
In case of Cu2+(3d9) the orbital momentum is quenched by the crystal electric �eld,
which leads to an almost fully isotropic Heisenberg magnetism. In contrast, the orbital
momentum of Co2+(3d7) is �nite and spin-orbit coupling causes strongly anisotropic
magnetic properties of the easy-plane type in Cs2CoCl4. As the leading interchain
couplings in Cs2CoCl4 are between sites of di�erent easy-plane orientations, probably
di�erent mechanisms are relevant for the magnetic order than in Cs2CuCl4. On the one
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hand, the appearance of easy planes renders the model more complex. On the other
hand, it partly reduces the degrees of freedom per site and, hence, might suppress the
formation of non-collinear phases.

Another interesting consequence of the di�erent magnetic anisotropies for di�erent spin
chains is that the signi�cance of symmetric and antisymmetric interchain interactions
depends on the relative angle between the anisotropy axes. This is easily seen for
interchain couplings between two chains in case of a strong easy axis anisotropy. In case
of a parallel alignment of the easy axes the symmetric part of the interchain coupling
(denoted J ′) tends to align spins collinear to each other, which is easily ful�lled while
obeying the easy axes. In contrast, the perpendicular spin alignment favored by DM-
type interactions (∝ D) has to overcome the anisotropy energy. However, in case of
easy axes tilted by β the energy gain by symmetric exchange J ′S1 · S2 ∝ J ′ cos β is
even reduced to 0 in the limit of β = π/2, whereas DM interactions yield an energy
proprtional to − |D| in that case. One might thus argue, that Heisenberg exchange is
suppressed for spin chains with perpendicular easy axes while DM interactions gain in
importance.

In Cs2CoCl4 the magnetic anisotropy, however, is of easy-plane type. For an easy-plane
anisotropy the situation is more complex due to the additional degree of freedom. In
case of parallel planes (β → 0) symmetric exchange can bene�t from collinear spins
within the plane along any direction or from �uctuations as long as they are correlated.
Similarly, for every given spin orientation in site 1 there is a con�guration at site 2 which
is perpendicular, such that an energy of the order |D| can be gained by antisymmetric
exchange between chains. However, in case of planes tilted by an opposing angle ±β, in
terms of symmetric exchange now there remains a single state with an energy −J ′ only,
which is the collinear spin alignment along the rotation axis of the planes. This fact can
be understood as an e�ective Ising anisotropy arising from the symmetric interchain
couplings between spin chains which reveal a �nite angle between their respective XY
planes. The impact of an additional antisymmetric interchain interaction on this state
now depends on the rotation β in a non-trivial way. In Cs2CoCl4, the actual ordering of
magnetic moments might derive from symmetric and antisymmetric exchange combined
with in- and out-of-plane anisotropies (see Chapter 4.3.1).

E�ective spin model

Following the discussion in Chapter 2.3.1, the magnetism of Co2+ can e�ectively be
characterized by a spin-1/2 model with anisotropic couplings due to the splitting of the
four-fold orbital S = 3/2 state by the crystal �eld D as described by the single-ion
Hamiltonian

Hsi = D
[
S2
z −

1

3
S(S + 1)

]
− hxSx. (4.3)

An additional magnetic �eld hx is considered perpendicular to the quantization axis
z, which corresponds to the experimental situation for Cs2CoCl4 in case of magnetic
�elds applied along the crystallographic b axis. At zero magnetic �eld two doublets
remain separated by 2D, leading to the application of the e�ective spin-1/2 model. In
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an applied magnetic �eld, the doublets are split as shown in Fig. 4.7 and the energies
of the four non-degenerate states are

E1,2 =
5D
4
∓ hx

2
−
√
D2 + h2

x ±Dhx, (4.4)

E3,4 =
5D
4
∓ hx

2
+
√
D2 + h2

x ±Dhx. (4.5)

It depends on the sign of D which of the doublets is lower in energy. In Cs2CoCl4 the
sign of D is positive [4, 110] such that the |±1/2〉 states are lower. In the limit of low
temperatures (kBT � D) and small magnetic �elds hx � D (shown as shaded area
in Fig. 4.7) the higher-lying |±3/2〉 states are hardly populated such that they can be
neglected and an e�ective spin-1/2 model can be applied to the states as marked in red in
Fig. 4.7. An additional magnetic �eld not only enters the e�ective spin system, but also
the parent spin-3/2 system. The splitting of the 4 single-ion spin-3/2 states as a function
of the magnetic �eld hx di�ers from a Zeeman-like splitting in two aspects. First, the
splitting is non-linear. While the upper two states are almost independent on small
magnetic �elds, E2 is initially enhanced such that in a simple picture the gap between
the two doublet states is reduced. Second, in a magnetic �eld the 4 eigenstates are not
pure |Sz = ±3/2〉, |Sz = ±1/2〉 states, but the magnetic �eld leads to an intermixing of
them and establishes a new quantization axis x. The high-�eld states are, therefore,
better characterized by quantum numbers Sx = −3/2, ..,+3/2. The magnetic �eld hx
acting on Sx, thus, leads to a Zeeman-like linear splitting of the x-quantized spin states
with slopes ±1/2,±3/2 at high �elds, shown as dashed lines in Fig. 4.7. These straight
lines extrapolate to E/D = ±1/2 at hx = 0. In other words, they reveal a constant shift
that is lower by D for the Sx = ±3/2 states. This is due to the �nite expectation values
〈Sx = ±1/2|S2

z |Sx = ±1/2〉 − 〈Sx = ±3/2|S2
z |Sx = ±3/2〉 = D, which can be understood

as the residual �uctuation of the z component of the spin.

As the gap between the lower-lying states with the energies E1,2 and the higher-lying
states 3 and 4 remains �nite in a magnetic �eld, an e�ective spin-1/2 system can be
applied to the lower |Sz = ±1/2〉 states in analogy to the zero-�eld mapping of the
exchange interactions outlined in Chapter 2.3.1. Yet, due to the intermixing of |Sz = 3/2〉
states by the magnetic �eld and by temperatures of the order of D, the applicability
of the e�ective spin-1/2 model is limited in both. Therefore, an agreement with the
Hamiltonian derived from the parent spin-3/2 in the limit of large anisotropy,

HXXZ =
∑
i

[
J(SixS

i+1
x + SiyS

i+1
y + ∆SizS

i+1
z )− gµBµ0HxS

i
x

]
(4.6)

=
∑
i

[
Jxy
(
SixS

i+1
x + SiyS

i+1
y

)
+ JzS

i
zS

i+1
z − gµBµ0HxS

i
x

]
(4.7)

is only expected for a restricted �eld-/temperature range. As the limit of large anisotropy
seems to be reasonably realized in Cs2CoCl4 at �rst sight, in literature a value of 1/4 for
the anisotropy parameter ∆ = Jz/Jxy has been taken for granted [3�5, 7, 8]. However,
in Chapter 4.2.2 it will be shown that due to the unique combination of the magnetic
exchange and D in Cs2CoCl4 the excited Sz = ±3/2 states contribute in such a way
that the system is e�ectively more XY -like, i. e., ∆ < 1/4.
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Figure 4.7: Splitting of the single-ion spin-3/2 states in a magnetic �eld hx = gxµBµ0Hx

perpendicular to the quantization axis z. At hx = 0 the low-lying states (marked in red) form
an e�ective spin-1/2 system. Labels refer to D > 0. Reversing the sign of D leads to the same
dependences, but with an opposing order of the Sz states. Dashed straight lines have slopes
1/2 and 3/2 and intersect the y axis at ±0.5/D.

Easy-plane anisotropy

The magnetism of Co2+ with an electron con�guration of 3d7 and a Hund's ground
state of S = 3/2 and L = 3 is likely to show anisotropies due to spin-orbit coupling. In
case of an environment of full tetrahedral symmetry Td (4̄3m) the orbital 3d levels split
into the lower lying two-fold degenerate e levels and the three-fold degenerate t2 levels,
see Fig. 4.8 (a). Thus, a single energy scale (∆CF ) su�ces to describe the impact of
the crystal �eld on the level splitting. Filling these levels with 7 electrons according to
Hund's rule results in the e levels completely �lled up by 4 electrons and the t2 levels
�lled half by 3 electrons, i. e., e4t32. Thus, the orbital moment is quenched and in �rst
order no anisotropy is expected.

As visualized in Fig. 4.8 (b), an additional tetragonal distortion of the tetrahedron
along the (001)-direction, i. e., the direction of a line connecting the midpoints of two
opposing edges of the tetrahedron, lifts the 3-fold symmetry axis [111]. The resulting
tetragonal tetrahedron is described by the point group D2d (4̄2m). The t2 and e levels
are split further by the distortion depending on its sign. In case of a compression (elon-
gation) those orbitals oriented within the xy-plane (dxy, dx2−y2) are lowered (raised) in
energy, while those perpendicular to the xy-plane (dxz, dyz,dz2) are raised (lowered).
In a simpli�ed electron picture this additional splitting enables a gain of angular mo-
mentum and thus in second order a gain of energy by intermixing of e3t42 states. The
quantum mechanical origin of the resulting easy-plane or easy-axis anisotropy lies in the
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Figure 4.8: Illustrations of the tetrahedral symmetries Td, D2d and Cs and the splitting of
the orbital 3d states by a crystal �eld of corresponding symmetry. Edge diagrams indicate
tetrahedron edges of equal length by equal color. In Cs2CoCl4, the coordination of Co2+ is
of Cs symmetry. The dashed blue arrow in (c) indicates the direction along which one of the
ions is shifted.

o�-diagonal matrix-elements of the spin-orbit coupling that enables transitions from
the e4t32 ground state, described by Hund's rules, to these excited states [121].

In case of Cs2CoCl4, the local site-symmetry of the Co1 (4c) site in the space group
Pnma (see [122]) is Cs (m), which is even lower than the symmetry resulting from
the tetragonal distortion described before. The actual Cl− positions can be visualized
best starting from the D2d symmetry by shifting only one of the corners along the
corresponding [110] direction. That way, the only symmetry left is a mirror plane
spanned by this translation vector and the [001] direction, see Fig. 4.8 (c). The resulting
crystal �eld is accordingly more anisotropic than in the D2d case and also lifts the
degeneracy within the t2. Due to only one single remaining mirror-plane, the number
of crystal �eld coe�cients ak,m that are involved in a theoretical description in terms
of crystal �eld theory is huge, compared to the famous case of d orbitals surrounded by
ions sitting at the corners of an elongated or compressed octahedron. The coe�cients
calculated by solving the eigenpotential (cf. Chapter 2.1) of the corresponding point
groups D4h and Cs are listed in Tab. 4.3.

Whilst only three coe�cients translating to the e�ective parameters 10Dq,∆eg and
∆t2g are needed in case of D4h, the local site symmetry of the 4c site in Cs2CoCl4
is so low, that 13 independent crystal �eld coe�cients have to be considered. Thus,
an understanding of the electronic states and the origin of the magnetic anisotropy of
Cs2CoCl4 is hardly obtained ab initio, but by considering the more illustrative higher
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D4h 4/mmm Cs m

tetragonal distorted octahedron Cs2CoCl4: Co2+ (4c site) coordination

a−1,1 = a1,1, a1,0

a2,0 a2,−2 = a2,2, a2,−1 = a2,1, a2,0

a3,−3 = a3,3, a3,−2 = a3,2, a3,−1 = a3,1, a3,0

a4,0, a4,4 = a4,−4 a4,−4 = a4,4, a4,−3 = a4,3, a4,−2 = a4,2, a4,0

3 independent 13 independent

Table 4.3: Crystal �eld coe�cients ak,m for d orbitals in D4h and Cs symmetries. The large
number of parameters in case of Cs2CoCl4 complicates the application of crystal �eld theory.

symmetry group D2d of a compressed tetrahedron, see Fig. 4.8 (b). In crystal �eld
theory, instead of the tetrahedrally coordinated 3d7 system often the octahedrally co-
ordinated 3d3 is considered, see [121, p. 470]. In the octahedral case, the energies of the
e and t2 levels are inverted. By switching from an electron picture to a hole picture,
however, both systems can be analyzed equivalently. As the magnetic anisotropy can
be understood in that context, the real coordination in Cs2CoCl4, described by an even
lower symmetry, shall provide an even improved anisotropy e�ect. Most probably, the
mechanism introducing the anisotropy is similar, although the true ground state might
di�er in details.

4.1.3 Literature results

Thermodynamics

After the �rst reports of the crystal growth of Cs2CoCl4 by Porai-Koshits in 1956, the
anisotropic behavior of the magnetic susceptibility of the compound in a temperature
range from 80 to 300K was investigated by Figgis et al. [110]. The local directions K1

to K3 were de�ned, as shown in Fig. 4.9, and related the orientation of the molecular
magnetic ellipsoid to the crystallographic axes. The direction K3 was chosen such that
it bisects the largest Cl-Co-Cl angle in the tetrahedron. This choice is not unique
and it leads to an alternating rotation angle of magnetic easy planes β = ±38◦ as
discussed in Chapter 4.1.1. Due to di�erently rotated tetrahedra within the unit cell,
the local anisotropies are re�ected by the di�erences between the susceptibilities along
the crystallographic axes. From a comparison to crystal �eld theory, several parameters
(in addition to previous spectroscopic results [123, 124]) have been derived, e. g., the
crystal �eld anisotropy 10Dq = −3200 cm−1 and the parameter ∆ = −1000 cm−1 which
gives the splitting of the free ion's 4F (3d7) ground term into the 4T2 term and the
lowest-lying 4A2. This study, however, focuses on the spectroscopic point of view and
only partially discusses magnetic exchange as a possible origin of the observed Weiss
constant θ.

In the �rst study of the one-dimensional magnetism the speci�c heat as a function
of temperature is investigated [3]. Four di�erent contributions are seen in the data as
shown in Fig. 4.10. At high temperatures the speci�c heat is dominated by phonons.
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Figure 4.9: Relation of the local
molecular coordinate system Ki to
the crystallographic axes in a CoCl4
tetrahedron of Cs2CoCl4. The choice
of K3 is free and only restricted
by a mirror symmetry. (Taken from
Ref. 110)

Figure 4.10: Heat capacity of Cs2CoCl4 as a
function of temperature at zero �eld [3]. Dif-
ferent contributions to the total heat capacity
(d) are seen: the magnetic speci�c heat of the
one-dimensional spin chain (a), a Schottky-like
contribution due to excited crystal �eld states
(b) and an approximation of the phonon heat
capacity by the Debye model (c).

They are treated by the low-temperature limit cp ∝ T 3 of the Debye model, even though
the applicability of the T 3 approximation might be questionable in this temperature
range. Around 5K a hump is seen in the data. It is ascribed to a thermal population
of the excited crystal states that evolve from the splitting of the S=3/2 states of Co2+

by the crystal �eld anisotropy D. According to the Kramers theorem [30], two doublet
states result that are split by an energy ∆E = 2D. By a comparison of the data around
5K to the speci�c heat of a two level system with an energy gap ∆E,

cSchottky = NAkB
∆E2

kBT 2

e∆E/kBT

(1 + e∆E/kBT )2
, (4.8)

generally referred to as Schottky contribution, similar values of ∆E are obtained in
di�erent studies (13.5 ± 1 K [3], 16.0 ± 0.4 K [4]). Algra et al. compare the maximum
of the speci�c heat around 1K to numerical data of the XXZ model as given by the
Hamiltonian

HXXZ = −2
∑
i

J
(
SixS

i+1
x + SiyS

i+1
y + ∆SizS

i+1
z

)
. (4.9)

They compare di�erent anisotropies ∆ = 0, 1/4, 1/2, 1 and �nd the best agreement using
a value of ∆ = 1/4. They work out a coupling constant J/kB = −1.4 K. Using the
convention of this thesis which di�ers by dropping the prefactor −2 in Eqn. (4.9), this
value translates to J/kB = 2.8 K. The impact of an additional perpendicular magnetic
�eld on the splitting of the spin-3/2 states was calculated for a single ion in Ref. 5. In
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magnetic �elds which are small in comparison to D the e�ective spin-1/2 model is argued
to be applicable. However, this has not been veri�ed by experiment in literature.

In Ref. 4 the magnetic susceptibility in a temperature range from 1.5K to 20K is
analyzed. While at higher temperatures the susceptibility obeys a typical Curie-Weiss
law with constants from '4 to 15 K [110], the measurements at temperatures below
20K, see Fig. 4.11, reveal a deviation from the Curie Weiss behavior by an increasing
anisotropy of the susceptibility on decreasing the temperature. The largest magneti-
zation is found along the chain direction (i. e., the c axis in the convention used in
Ref. 110), which can be understood from the fact that all easy-plane orientations in
the unit cell have this axis in common. Thus, spins are most easily aligned along this
direction in comparison to the other crystallographic axes for which at least the spins
in one type of chain have to leave their easy plane. The data are compared to the
spin-3/2 single-ion Hamiltonian

H = D(S2
z − 5/4) + E(S2

x − S2
y) + µB(gxHxSx + gyHySy + gzHzSz), (4.10)

with in- (E) and out-of-plane (D) anisotropies. Due to the small e�ect of magnetic
exchange in the paramagnetic region, i. e., kBT � D � J , the analysis is extended
to include magnetic exchange in a mean-�eld approximation. The single-ion princi-
pal axes x, y and z of Eqn. (4.10) relate to the crystallographic axes by a rotation
which determines the mixing of the calculated molecular susceptibilities for the dif-
ferent crystallographic axes. In contrast to Ref. 110, the relation between molecular
and crystallographic axes is not arbitrarily �xed in Ref. 4, but based on the cobalt
ion's site symmetry (m) two possible orientations (see Chapter 4.1.1 for a discussion of
them) of the molecular axes are tested. As the cobalt ion is located on a mirror plane
one molecular axis has to lie within this plane. From the other two perpendicular axes
either one may lie in the mirror plane as well, resulting in an orthorhombic g tensor,
or they both lie rotated by 45◦ out of the mirror plane, rendering gx and gy equal.

However, both situations are reported not to describe the experimental data properly.
The �t, shown in Fig. 4.11, was obtained allowing arbitrary rotations of the molecular
axes and by using the parameters

D/kB = 6.94 K, E/kB = 0.73 K, J/kB = 2.7 K, gx = 2.65, gy = 2.71, gz = 2.51.

The molecular coordinate system was rotated by about 60◦ about z starting from the
symmetry-proposed orthorhombic con�guration shown in Fig. 4.4 (b). The resulting
orientation is described as well by an angle β = 38◦, but due to the arbitrary rotation
the in-plane directions x and y are not symmetry-related, which is re�ected by the
di�erent values of gx and gy. However, the authors state that a wide range of param-
eters and rotation angles are allowed for a similar description of the data, such that
the anisotropies D and E are not well-�xed from the high-temperature data. Yet, the
authors point out that a non-negligible value of the in-plane anisotropy E was found
in all �ts. They argue that the orientation of the molecular coordinate system di�erent
from the allowed positions might hint at further distortions of the CoCl4 tetrahedra
below room temperature similar to those observed in other compounds of the R2CoX4

series [125, 126]. The speci�c heat of Cs2CoCl4 is analyzed as well in Ref. 4. The data
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Figure 4.11: Magnetic susceptibility of Cs2CoCl4 as a function of temperature for all crys-
tallographic axes. Solid lines are �ts of a spin-3/2 model including in- and out-of-plane an-
isotropies, the exchange constant J and the principal g values gx, gy, gz. Due to a di�erent
notation, the crystallographic axes b and c are interchanged in comparison to the convention
used in this thesis and in other works. (Taken from Ref. 4)

are of rather poor quality and depending on the �t parameters approximate values of
the coupling constant J ≈ 3.4 K, similar to those of Ref. 3, are deduced.

From the high-temperature susceptibility, similar values of the isotropic spin-3/2 g fac-
tor g3/2 = 2.4 were derived [4, 5, 110]. The resultant expected saturation-magnetization
of g3/2 µB S = 2.4 · 3/2µB = 3.6µB was in fact observed in pulsed-�eld magnetiza-
tion measurements [5]. The ordered moment that was found by neutron scattering at
T = 80 mK, however, is 1.6µB only. This reduction is explained by strong quantum
�uctuations in the ground state [8].

The susceptibility of Cs2CoCl4 in the low-temperature regime shows a maximum as a
function of temperature around 1.5K (cf. Fig. 4.12 [6, 7]). It indicates the presence of
short range correlations and is a typical �ngerprint of one-dimensional magnetism. In
a large temperature range the susceptibility along the chain direction (i. e., the c axis
in the convention of [7]) is largest just as in the previously discussed high-temperature
data. An anomaly signals the onset of long-range order at about 0.3K where the sus-
ceptibility along the chain direction drops below those of the other directions. This is
understood by an antiferromagnetic order with spins mainly oriented along this axis
as observed by neutron scattering (see Chapter 4.1.3). The �rst theoretical work, mo-
tivated by the experimental data of Ref. 6, concerns the transverse susceptibility as
calculated via exact diagonalization of �nite systems [6]. Due to �nite size e�ects this
comparison is limited to relatively high temperatures. Chatterjee tries to �t the data
by calculations of the XY model based on the TMRG technique, i. e., DMRG at �nite
temperature [127]. In contrast to exact diagonalization, TMRG gives resilient data in
a broader temperature range and for very long system sizes. As shown in Fig. 4.12, a
moderate agreement within about 15% is achieved between the calculated transverse
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Figure 4.12: Susceptibility of
Cs2CoCl4 from ' 0.05 K to 4 K in
comparison to TMRG results for
the XY model. The crystallographic
axes b and c are interchanged in
comparison to the convention in this
thesis. (Taken from Ref. 7)

susceptibility, i. e., for magnetic �elds within the XY planes, and the data for the chain
direction c at temperatures larger than ' 0.3 K by using a coupling constant J between
2.6K and 2.8K. At low temperature close to TN, calculations and data even approach
each other, whereas the description around the maximum is rather poor. This might
be related to the fact that Cs2CoCl4 does not feature the full XY anisotropy that was
assumed in the calculations. In fact, a reduced anisotropy would be re�ected in a con-
vergence of transverse (χx) and longitudinal (χz) susceptibilities, which in consequence
would lead to a lower and more broadened χx. The order parameter as a function of
temperature, as measured by the spontaneous magnetization [8], is compared to an an-
alytic expression derived for the spontaneous magnetization I in the two-dimensional
Ising model [128, 129]

I =

(
1−

[
2x

(1− x2)

]4
) 1

8

, x = e−2J ′/kBT . (4.11)

In the context of magnetic order the Ising model is justi�ed as the relative tilt of the
magnetic easy planes and the presence of interchain couplings renders the system Ising
like. From a �t of Eqn. (4.11) to the data, the interchain coupling J ′ ' 0.095 K is
estimated.

In another theoretical work, the XXZ Hamiltonian with an anisotropy parameter ∆ =
1/4 is concerned in the full transverse magnetic �eld range using the Lanczos-method
[66]. However, the results are not quantitatively compared to experimental data. By an
inclusion of interactions between chains the experimental �eld versus temperature phase
diagram is reproduced and the ratio of interchain couplings J ′ ' 0.00458 · J ' 0.01 K
is deduced.

From a comparison of the incommensurability of quasi-elastic neutron scattering to a
model of coupled spin chains in Ref.120 the ratio between interchain (J ′) and intrachain
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Figure 4.13: Magnetic order domains of Cs2CoCl4 at zero magnetic �eld. Solid and open
circles represent Co2+ at approximate a-positions 0.25 and 0.75. Dashed lines indicate the
chain direction. Couplings are depicted as lines. Sites k in unit cells n = 1, .., 4 are numbered
as k + n with k de�ned in analogy to Chapter 4.1.1. (Taken from Ref. 8)

(J) interactions was determined to J ′ = (0.0471 ± 0.016) · J ≈ 0.14 K. The spin-
wave excitations at T = 0.3 K were measured via inelastic neutron scattering and an
antiferromagnetic coupling constant JSW/kB = 3.5± 0.5 K was obtained assuming the
1D XY model.

Summing up, there is consensus in literature on the one-dimensionality of the mag-
netism of Cs2CoCl4 and on the primary coupling constant which in average is given as
J = 3± 0.4 K. Concerning the strength of interchain interactions J ′/J , di�erent values
are published. They range from 0.01 to 0.14. Due to the di�erent applied models and
approaches, an evaluation of the results is di�cult. Nevertheless, they indicate that
interchain interactions are at least one order of magnititude smaller than the primary
coupling J .

Magnetic order

The magnetic order at T < TN is analyzed by Kenzelmann et al. [8]. Cooling below
217mK at zero magnetic �eld, magnetic re�ections are observed at the commensurate
reciprocal positions (0, n + 0.5,m + 0.5), which indicates long-range magnetic order.
From group theory and a comparison of di�erent models to the integrated intensities
the ordered moments are found to be con�ned to the bc plane forming four possible
domains with an enlarged unit cell as shown in Fig. 4.13. The structure can be under-
stood as antiferromagnetic ordered chains along b with di�erent relative orientations of
neighboring spin chains. The di�erent domains are transformed to each other by either
�ipping the sign of the b or the c components of the spins or by changing the phase
between chains 1 and 3 and between 2 and 4 by π. A small tilt of moments away from
the b axis by ≈ 15◦ and an equal population of A and B domains is found.

An increase of the antiferromagnetic intensities by small magnetic �elds applied along
a precedes a steep decrease of the intensity close to Hc = 2.10 T. From the identical
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�eld dependence of di�erent magnetic intensities, it is concluded that the magnetic
structure remains unchanged in small magnetic �elds H < Hc and that the moments
cant into the �eld direction a as seen from an increasing ferromagnetic moment, i. e.,
the magnetization that was derived from the intensities of magnetic re�ections at dif-
ferent temperatures T < TN (Fig. 4.14). It shows an increasing slope for small magnetic
�elds, that can be understood by the canting of spins but also resembles the magneti-
zation of the one-dimensional XXZ model (cf. Chapter 2.3.3). At the critical �eld Hc,
where magnetic order disappears, the slope is maximal, but saturates at the reason-
ably larger crossover-�eld Hm. Because of the transversal components of the magnetic
�eld the higher-lying |Sz = ±3/2〉 states are intermixed and lead to a superimposed
linear increase of the magnetization. From the absence of re�ections in the bc plane for
magnetic �elds H = 3 T > Hc and the saturation of the magnetization at a magnetic
�eld Hm ' 2.5 T > Hc, a disordered spin-liquid state is suggested for magnetic �eld
Hc < H < Hm. The authors summarize their �ndings in the phase diagram shown in
Fig. 4.15.

Figure 4.14: Magnetization of
Cs2CoCl4 at di�erent temperatures
T < TN for magnetic �elds applied
along a. (Taken from Ref. 8)

Figure 4.15: Magnetic �eld versus tempera-
ture phase diagram of Cs2CoCl4 as proposed
in Ref. 8. Closed symbols indicate the onset of
antiferromagnetic Bragg peaks in neutron scat-
tering. Open symbols are the saturation �eld
extracted from the magnetization.
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4.2 One-dimensional magnetism

In this chapter the one-dimensional magnetism of Cs2CoCl4 is analyzed by a comparison
of thermal expansion and speci�c heat data to calculations of the spin-1/2 XXZ model.
As this model treats isolated spin chains, (complex) magnetic order phenomena cannot
be understood from it. Thus, a comparison is valid only in a restricted temperature
range. In Fig. 4.16 the di�erent regimes of Cs2CoCl4 as known from literature [3, 4, 8],
are sketched. At temperatures below TN = 0.22 K magnetic long-range (3D) order is
found. The physical quantities determining this phase transition are the interchain
coupling J ′ and the correlation length ξ of the spin chain. At higher temperatures
in the �1D� phase the interaction between spins of the order J leads to short-ranged
correlations. Due to a non-population of higher spin states in this phase an e�ective
spin-1/2 is formed. Beginning with temperatures T ≈ 2 K the spin-3/2 states start to
contribute and a diminishing correlation length leads to a crossover to an uncorrelated
�paramagnetic� regime at temperatures of the order of the anisotropy D.

Two di�erent experimental setups were employed to measure the thermodynamic prop-
erties of Cs2CoCl4. The 3He cryostat (Heliox VL, Oxford Instruments) provides tem-
peratures down to ≈ 250 mK with comparably small e�ort. Due to the coincidence
that TN = 0.22 K lies only slightly below the base temperature of the 3He cryostat
(see Fig. 4.16), this cryostat was merely used for the investigation of the magnetically
non-ordered Cs2CoCl4 as presented in this chapter. The results from the measurements
at lower temperatures, obtained using a dilution refrigerator (Kelvinox 300, Oxford In-
struments), will be discussed in Chapter 4.3. In the following, selected data are shown
for all thermodynamic quantities. The �ts of the theoretical models, the phase diagrams
and the further analysis, however, is based on the full data sets shown in Appendix B.

Temperature

Energy

0.22K 2K0

long
range
order

dilution
refrigerator 3He

cryostat

effective spin-1/2 anisotropic spin-3/2

1D “paramagnetic”3D

J’
≈0.01K

J
≈1K

D
≈7K

Figure 4.16: Temperature regimes and energy scales of Cs2CoCl4 in comparison to the ex-
perimental temperature ranges of the used setups. The shaded region around 2K indicates
a smooth crossover from a low-temperature regime dominated by the lowest Kramers dou-
blet to a free-ion like regime where correlations can be neglected. By no means there is a
thermodynamic phase transition at 2K.



76 4 The spin-1/2 XXZ chain Cs2CoCl4

4.2.1 Experimental results

Speci�c heat

The speci�c heat of Cs2CoCl4 (sample 212a) was measured using the relaxation time
method and the home-built setup described in Chapter 3.2.3. The measurements were
performed using a SMD platform heater (27 kW) wired with 50µm manganin and a
sample thermometer connected by 33µm manganin wire. The sample platform was
suspended to �shing line. The heat capacity of the addenda was measured in a separate
run in zero �eld and in an applied magnetic �eld of 10T. No signi�cant �eld dependence
of the addenda down to 250mK was found. Therefore, it was assumed to be independent
of the magnetic �eld. The sample with a mass of 8.21mg and approximate dimensions
of 1×3×1 mm3 was attached to the platform with a small amount of 0.44mg Apiezon
N grease. The grease was slightly heated by focusing a cold light-source on the sample
platform. Such, the grease becomes less viscous and �ows around the sample and out of
the gap between sample and platform. In former measurements it turned out that the
internal relaxation (τ2) can be minimized with this technique. The sample holder was
rotated such that the magnetic �eld aligns with the sample's b axis. All data presented
in this chapter were acquired with the magnetic �eld H ‖ b.

In the whole temperature range from 250mK to ' 20 K the relaxation method proofs
very reliable. Exemplary raw data are shown in the lower panels of Fig. 4.17 for three
di�erent temperatures. In all curves the baseline was measured for 15 s before switching
on the heater. The fact that the baseline does not show a sizable slope proves the
temperature stability of the setup. In few of the curves acquired at temperatures well
below 1K a small τ2 e�ect arises, which is re�ected in a steep slope close to the switching
times of the heater at 15 s and at about half of the time axis. Although the values of
τ2 obtained at di�erent temperatures are comparable, the e�ect is seen clearest in
the raw data at lowest temperature. Due to a dominating external relaxation and a
decreasing data quality at elevated temperature, τ2 e�ects are not directly identi�ed
in the raw data obtained above ' 1 K. The raw data were �t based on the numerical
method described in Chapter 3.2.2. The resulting time constants and the calculated
time dependence of the platform temperature is shown as red lines. The measured total
heat capacity exceeds the signal of the addenda by at least two orders of magnitude
at the lowest temperature. The contribution of the grease to the heat capacity is lower
by another two orders of magnitude. Thus, the speci�c heat of the sample can be
determined with high precision as small errors of the addenda heat capacity or of the
mass of the grease are safely negligible.

The obtained speci�c heat of Cs2CoCl4 agrees with literature data within a few percent
(see open symbols and green squares in Fig. 4.18). It shows the same four features
already discussed in literature [3]:

� Phonons dominate at high temperatures T & 10 K.

� A hump around 5K is attributed to the thermal population of the second
crystal-�eld Kramers doublet. In comparison to Ref. 3, the present data contain
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Figure 4.17: Contributions to the measured total heat capacity of Cs2CoCl4 in the one-
dimensional regime. The sample holder was previously measured in a separate run. The heat
capacity of the grease was calculated from the measured weight using literature data [96].
Exemplary raw data (black lines) at three di�erent temperatures are shown in the lower
panels together with �ts of the temperature dependence, shown as red lines. The �t yields the
external relaxation time τ1 and the internal relaxation time τ2 that is re�ected in the steep
�anks of T (t) at the lowest temperatures.

more information on the phonon background and the Schottky anomaly around
5K due to an increased density of points.

� Themaximum around 1K is found at an identical temperature, the maximum
value however exceeds the results of Ref.3 by about 7%. This di�erence may arise
from the digitization of the literature data or from systematical di�erences in the
experiments. Furthermore, a comparable spread for lower-quality samples was
found previously [93].

� Magnetic order is indicated by a sharp peak at TN = 228 mK. The low-temperature
data (gray triangles in Fig. 4.18) were obtained with a di�erent setup in the dilu-
tion refrigerator. They con�rm the absolute value of the high-temperature data
and the magnetic order temperature found in Ref. 3. Beyond that, the peak
shape in the present data is much sharper. The magnetic order transition will be
discussed in Chapter 4.3.
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Figure 4.18: Heat capacity of Cs2CoCl4 measured using two di�erent setups (3He cryostat:
open symbols, 3He/4He dilution refrigerator: gray triangles) in comparison to literature data
of Ref. 3 (green squares). The shaded areas mark the approximate temperature regimes of the
magnetic order (3D), the one-dimensional magnetism (1D) and of the �paramagnetic� range
where correlations are negligible.

As shown in Fig. 4.19, in applied magnetic �elds the broad maximum around 1K is
strongly in�uenced. In a magnetic �eld of 1T it is broadened and shifted to lower
temperature. A peak close to 0.3K arises due to a positive �eld dependence of TN
in magnetic �elds of 1 and 2T. This e�ect is not of interest here, but will be dis-
cussed in the context of the magnetic order in Chapter 4.3. Increasing the magnetic
�eld further suppresses the heat capacity, until the temperature dependence funda-
mentally changes at 3T as is best seen by plotting cp/T versus T (inset of Fig. 4.19).
Despite the magnetic order anomalies at 1 and 2T, a residual γ value is found for small
�elds. This indicates a linear temperature dependence of the speci�c heat as expected
from one-dimensional spin chains at low temperature [130]. In large magnetic �elds,
γ = cp/T (T → 0, H ≥ 3 T) seems to approach zero, which can be understood from the
exponential temperature dependence of cp in a gapped state.

In contrast, the speci�c heat at higher temperatures & 4 K hardly depends on the
magnetic �eld. In Fig. 4.19 the shaded area marks the approximate temperature range
where the speci�c heat is dominated by phonons. Up to about 2 T the measured heat
capacity in this temperature range matches the zero-�eld data. Only by further increas-
ing the magnetic �eld, small deviations occur. Although magnetostriction can lead to
�eld-dependent phonon branches, this e�ect is probably small in comparison to the
�eld-induced shift of entropy to higher temperature. Comparing the data for 3T and
4T the tendency of a shift of the heat capacity to higher temperatures is seen. Thus, the
rise of cp in the phonon range probably is due to an increased magnetic heat capacity
at high temperatures in large magnetic �elds.
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Figure 4.19: Speci�c heat
of Cs2CoCl4 in the 1D-regime
at di�erent magnetic �elds
applied along b. In the in-
set cp/T is shown on a lin-
ear scale versus temperature.
The shaded gray area marks
the approximate tempera-
ture range where phonons
dominate.
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Thermal expansion and magnetostriction

The thermal expansion and the magnetostriction of Cs2CoCl4 was measured using the
home-built capacitance dilatometer described in Chapter 3.4. The sample (Boh-2-2-
2, m = 58.14 mg) of dimensions 3.35×2.8×2.1 mm3 was mounted in a longitudinal
con�guration, i. e., such that the length change ∆L is measured parallel to the applied
magnetic �eld H ‖ b. All temperature-dependent data were collected in a �eld-cooled
mode with the magnetic �eld applied at approximately 2K before cooling to 250mK
and subsequently measuring with increasing temperature followed by the measurement
with decreasing temperature. Below 2K the temperature was changed with a slow sweep
rate of 10mKmin−1, data above 2K were obtained with a sweep rate of 0.1Kmin−1.
Tiny hysteresis e�ects were observed below 1K (see Fig. B.2 for all acquired data)
that, however, might be of experimental origin. In comparison to the main signal these
e�ects are very small and, thus, in Fig. 4.20 (a) only data with increasing temperature
are shown. All measured length changes ∆L/L0 were shifted such that they match
the magnetostriction measured at 2K. The relative length change features a broad
maximum around 3K that is �rst shifted to lower temperatures by magnetic �elds
of up to ' 2 T. Close to this magnetic �eld ∆L/L0 is almost constant as a function
of temperature. By further increasing the magnetic �eld, the low-temperature slope
changes to a negative sign. At higher temperature T & 4 K, the length is almost
independent of the magnetic �eld. The �eld dependence is more directly seen from the
thermal-expansion coe�cient, shown in panel (b) of Fig. 4.20. It was obtained from
the measurements by numerical derivation (αi = 1

L0

∂∆Li
∂T

). At zero magnetic �eld a
maximum arises around 1K, similar to that seen in the speci�c heat, which is plotted
for comparison with gray open symbols in Fig. 4.20 (b). The alikeness of the thermal
expansion and the speci�c heat around 1K can be understood from the Grüneisen
scaling (see Chapter 4.2.2). At higher temperatures the thermal expansion coe�cient



80 4 The spin-1/2 XXZ chain Cs2CoCl4

� � �

� � �

�

� �

� �

� �

� �

� �

�

� �

� �

� � �

�

� �

�

� � � � � 

� � � � � 

� � � � � 

� � � 	 � 

� � � � � 

� � � � � 

� � � � � 

� � � � � 

� � � 	 � 

� � � 
 � 

� � � � � 

�∆
�

��
�
��

�
�

��

�

� � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � �

�∆
	

�	
�
��

�
�

��

�

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � 	 � �

� � �

� � �

�

� � � � �

α�
��

�
��

��
��

�

� � � � �

� � � �

�

� �

� �

� �

� � �

 λ
��

�
�

��

�

��

�

µ
�
� � � � � �

�

�

�

�
�
��

�
�

�
���

��
��

�



�

��
	

�

�

�
�

Figure 4.20: Thermal expansion and magnetostriction of Cs2CoCl4 of the b axis for di�erent
magnetic �elds H ‖ b. Solid (dashed) lines are measurements with increasing (decreasing)
temperature/�eld. The data in (a) and (c) were shifted with respect to the magnetostriction
measured at 2 K. Open symbols in (c) are interpolated from the thermal expansion. The inset
between panels (c) and (d) shows the di�erence between the sample holder temperature and
the cryostat's temperature.

becomes negative and shows a minimum around 6K. This minimum is associated with
the thermal population of the second crystal-�eld doublet in analogy to the Schottky
anomaly of the speci�c heat at that temperature. Similarly, in an applied magnetic
�eld this feature is hardly in�uenced, whereas the zero-�eld maximum is shifted to
lower temperature. At about 1.9T the sign of α changes to negative in the whole
measurement range. Also the low-temperature tail of α switches its sign from positive
to negative below about 0.5 K at a magnetic �eld of ' 2 T. By further increasing the
magnetic �eld a new maximum evolves around 2K that is shifted to a slightly higher
temperature ' 2.5 K in a magnetic �eld of 3T.

The magnetostriction, shown in panel (c) and (d) of Fig. 4.20, was measured after
cooling in zero magnetic �eld with a �eld sweep rate of 0.1Tmin−1. Due to experimental
issues with �ux jumps of the superconducting magnet, at low magnetic �eld . 2 T the
length change ∆L reveals several spikes re�ected as noise in the numerically derived
magnetostriction coe�cient. The curves obtained at 0.3K and 0.5K with increasing
and decreasing magnetic �eld coincide at small �elds, but deviate with increasing the
magnetic �eld above 1.5T. In this range the length gradually saturates as indicated
by an in�ection point in ∆L and a corresponding broad peak of λ at 2.06T in the
up measurements. Although hardly visible in ∆L, two anomalies are found in λ with
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decreasing �eld at 2.26T and 1.88T. At 0.5K the measurements also show a small
dependence on the sweep direction. However, here only one transition is signaled and
the maximum of λ lies at slightly higher magnetic �elds for sweeping the magnetic
�eld downwards. The di�erences between the up and down measurements at both 0.3K
and 0.5K, do not show a typical hysteretic behavior as expected, for example, in the
vicinity of a �rst-order phase transition. This atypical behavior and the appearance of
two anomalies in one of the curves might be of experimental origin. In the inset between
panels (c) and (d) of Fig. 4.20 the temperature di�erence To�set = Tsample−Tcryo between
the sample and the cryostat in case of the measurement at 0.3K is plotted as a function
of the magnetic �eld. There is an overall �nite di�erence between these temperatures
due to the imperfect thermal coupling of the sample holder to the cryostat and due to
eddy currents induced by sweeping the magnetic �eld which lead to a heating of the
holder by about 10mK at small magnetic �elds. Several anomalies below ≈ 1.5 T are
induced by the �ux jumps of the cryomagnet as discussed above. They are typically
present only at small magnetic �elds of approximately 1T and are not signi�cant
here. Interestingly, To�set gradually increases up to about 20mK at �elds & 2 T. This
rise might stem from the magnetocaloric e�ect (MCE) of the sample. Indications for
a magnetocaloric e�ect of Cs2CoCl4 are also given by a strong sample temperature
change while charging and discharging the magnetic �eld in between of heat capacity
measurements. Although a temperature variation of 10mK does not su�ce to explain
the sizable hysteresis e�ects, one has to keep in mind that the sample temperature
is measured with a thermometer not attached to the sample itself, but to the copper
dilatometer with a signi�cantly larger mass than the sample, such that the actual
sample temperature o�set might be higher. Furthermore, the thermal conductivity of
the sample drops in applied magnetic �elds quite substantially such that the thermal
equilibration is slowed down. Comparing the �eld dependence of the magnetostriction
coe�cient λ to the data acquired at lower temperature in the magnetic order regime (see
Chapter 4.3 and Fig. 4.53) the two-peak structure strongly resembles the data acquired
at. 0.2 K and the peak positions coincide surprisingly well with the two critical �elds of
a low-temperature magnetic order transition. This additionally supports the proposed
strong MCE of Cs2CoCl4 that leads to a sizable cooling of the sample upon decreasing
the �eld.

The magnetostriction at 2K does not show any hysteresis e�ects. Due to the elevated
temperature, magnetocaloric e�ects are reasonably smaller. Thus, this curve was used
to shift all temperature-dependent data with respect to it. Such, the magnetostriction
can be extracted for discrete magnetic �elds at arbitrary temperature also by interpo-
lating the thermal expansion. The resulting interpolated magnetostriction is shown by
open symbols in Fig. 4.20 (c). Concerning the presence of the two anomalies seen in λ
at 0.3K, no statement is possible due to the low point density. Yet, the interpolated
data coincide with the �eld-dependent data at small �elds, but deviate from the data
for both sweep directions at �elds & 2.2 T while being closer to ∆L acquired with
decreasing �eld. Therefore, the �eld-dependent data at lowest temperature and around
2T should be treated with some caution.

The speci�c heat and the thermal-expansion coe�cient, altogether show a similar struc-
ture. In a surface plot of all data, see Fig. 4.21, the typical thermodynamic signatures



82 4 The spin-1/2 XXZ chain Cs2CoCl4

of low-dimensional spin chains are seen (cf. Chapter 2.3). While a valley arises in the
speci�c heat around the critical �eld of about 2T, the thermal expansion shows a sign
change close to this �eld. At zero �eld cp and α are related via the Grüneisen scal-
ing and both show a similar maximum as a function of temperature. Above 1K, the
the thermal expansion coe�cient α becomes negative, whereas cp increases, which is
explained by an opposite sign of the respective pressure dependence.

Figure 4.21: Speci�c heat and thermal-expansion coe�cient of Cs2CoCl4 as a function of
magnetic �eld and temperature. The surface is interpolated from the measured data points
(red dots).

Thermal conductivity

The thermal conductivity of Cs2CoCl4 was measured using the steady-state method.
For the temperature-dependent data above 30K a thermocouple was used to measure
the temperature gradient of the sample. The data at low temperature were acquired in a
di�erent setup by measuring the temperature gradient with two resistive thermometers
calibrated in magnetic �elds. The samples of typical dimension of 3×1×1 mm3 were
attached to the heat sink, i. e., the copper sample holder, with small amounts of silver
glue. In some measurement runs the sample did not withstand the applied magnetic
�elds and scattered into pieces. Thus, various samples were used to obtain the full data
set presented here. The quantitative agreement in the overlapping temperature range
indicates the reliability of the data and the experimental procedure.

In Fig. 4.22 (a) the temperature dependence of the thermal conductivity is presented.
Around 10K it shows the typical phonon maximum. The absolute value of only few
Wm−1 K−1 indicates the generally rather low thermal conductivity of Cs2CoCl4. Below
the phonon maximum at zero �eld, κ(T ) approximately follows a power-law dependence
κ ∝ Tα. Depending on the considered temperature range, values of α range from 2.5
to 3, as found typically also for other compounds with phonon heat transport. Below
1K, however, an unconventional upturn of the thermal conductivity arises in case the
heat current is directed along the crystallographic b axis. The data κa(T ) obtained in
the perpendicular con�guration with j ‖ a, shown as gray lines in Fig. 4.22 (a), do not
reveal a comparable anomaly at low temperature. This suggests a magnetic origin of the
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Figure 4.22: Thermal conductivity of Cs2CoCl4 as a function of temperature (a) and of
magnetic �elds (b) applied along the b axis. The heat current is directed along the spin
chains, i. e., j ‖ b (open circles in both panels) and perpendicular to them along a, shown as
lines in (a) and with closed triangles in (b).

increased low-temperature heat conductivity. In Cs2CoCl4 spin chains run along b, i. e.,
the direction along which the thermal conductivity is enhanced by a factor of about 10
in comparison to the perpendicular direction. In applied magnetic �elds up to 1T the
low-temperature feature is gradually suppressed. The kink at about 320mK in the data
measured at 1T probably stems from the onset of magnetic order due to the initial
enhancement of TN by small magnetic �elds (see Chapter 4.3). The �eld dependence
of κ with the heat current perpendicular to the spin chains is reasonably smaller and
up to 2T only small changes in the low-temperature range are found. Increasing the
magnetic �eld further, besides a slight suppression of the phonon maximum around
10K, in κb another low-temperature contribution arises starting at 2T that evolves
into an additional broad maximum around 1.5K at 4T.

The �eld dependence of κ, shown in Fig. 4.22 (b), consistently re�ects the anisotropy of
the thermal conductivity in a nearly �eld-independent κa and a more structured �eld
dependence for heat currents j ‖ b. At zero �eld a conductivity of about 0.1Wm−1 K−1

is found. Increasing the �eld, κb is continuously reduced and approaches the respective
value for j ‖ a in magnetic �elds of approximately 1T. Up to 2T the thermal conductiv-
ity is almost constant for both heat current directions and only by increasing the �eld
further κb increases in form of a broadened step function. At about 3T a saturation
value is reached that increases in absolute value with increasing the temperature. A
smaller rise is also seen in κa in this �eld range. In the context of a magnetic heat trans-
port along the spin chains parallel to b, the small �eld-induced e�ects for j ‖ a can be
explained either by a small misalignment of the sample, by a possible �eld dependence
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Figure 4.23: Low-temperature part of the thermal conductivity of Cs2CoCl4 that shows an
additional contribution below 1K for heat currents along b. By subtracting the scaled tempe-
rature dependence for j ‖ a (gray line), the magnetic heat conductivity κmag(T ) is obtained.
The pink line in panel (b) represents the thermal conductivity of the XXZ chain using the
parameters extracted in Chapter 4.2.2 and a constant scattering time τmag = 5 ns.

of the phonon-magnon scattering or by percolative processes in the perpendicular heat
transport as sketched in Fig. 4.22 (b). The circles connected with lines indicate the spin
chains along b, the red line denotes a sketch of a spinon hopping between spin chains
with an intermediate propagation of it along the chain, which then could explain the
appearance of signatures of κb in the data of κa.

The strongly anisotropic low-temperature heat transport, seen in both the temperature-
and the �eld-dependent data, suggests a possible magnetic contribution κmag to the
thermal conductivity. As electronic heat transport can be excluded in the insulating
Cs2CoCl4, only phonons are to be considered as a background. For the temperature-
dependent data, the phonon contribution is approximated from the measured κa. At
temperatures above 1K, where supposedly κmag is small, the data of κa and κb, how-
ever, do not agree quantitatively. This may be caused by anisotropic phonon branches
and geometry errors. For compensation the data are scaled by a factor a de�ned by
a · κa = κb in a temperature range of approximately 1 K < T < 4 K. As shown in
Fig. 4.23 (a), one obtains a reasonable extrapolation of the background to low tem-
perature, which allows to extract κmag from the di�erence of the data. Repeating the
process in applied magnetic �elds yields an estimate of κmag, as shown in Fig. 4.23 (b).
Due to the uncertainty induced by the extrapolation and the decreasing weight of the
magnetic signal in applied magnetic �elds, the data above 0.5T and for T > 0.7 K are
to be treated with some caution. In zero �eld a maximum is seen in κmag(T ) at about
0.4K.

In theory, the thermal conductivity of XXZ spin chains is usually considered in terms
of the Drude weight of the dynamics of magnetic excitations [131, 132]. Due to a
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�nite zero-frequency weight, the intrinsic heat conductivity of integrable spin chains
is expected to diverge [133�136]. In real systems, however, the thermal conductivity
becomes �nite due to extrinsic scattering. The experimental thermal conductivity κmag

relates to the thermal Drude weight Dth via

κmag = Dth · τmag ·NS. (4.12)

Here, the factor NS = 4
a·c with the lattice constants a and c takes into account that 4

spin chains running along b contribute per unit cell. The scattering time τmag relates
to the mean free path lmag and the velocity v of the quasiparticles via

lmag = v · τmag. (4.13)

At low temperature T � J the Drude weight Dth approaches a linear temperature
dependence [134, 135, 137, 138] and in theory usually is derived with kB set to 1.
Converting to the experimental experimental units of WmK−1 s−1, one obtains

Dth =
(πkB)2

3~
vT, (4.14)

where v is the spinon velocity. In the present temperature range of κmag(T ), however,
the low-temperature limit is not ful�lled and the full temperature dependence of Dth

has to be considered instead. In Refs. 134 and 137 the Drude weight Dth(T/J) is
calculated for selected values of the anisotropy ∆. Using the established values of the
primary coupling constant J/kB ≈ 3 K and of the anisotropy ∆ ≈ 0.12 from literature
[3, 139] and from Chapter 4.2.2, one obtains the expected temperature dependence of
κmag ∝ Dth. As described by Eqn. (4.12), the absolute value of the thermal conductivity
additionally is proportional to the relaxation time τmag, which is not known a priori and
depends on the contributing scattering mechanisms. First, a constant value τmag = 5 ns
is chosen such that the experimental zero-�eld data κexp

mag at the lowest temperature of
about 0.3K are matched. The resulting thermal conductivity κmag = Dth τmag NS of
the XXZ spin chain is shown as a solid line in Fig. 4.23 (b).

The clear disagreement of the peak position and the overall shape does not exclude
the presence of magnetic heat transport, but suggests that it is strongly in�uenced by
e�ects beyond the pure XXZ model. One explanation could be given by the in�uence
of interchain interactions on the heat transport. Small perturbations like interactions
between chains are known to signi�cantly a�ect the heat conductivity in spin-1/2 Heisen-
berg models [140, 141]. However, no theory results for the present case of T . J are
available. Another interpretation of the deviations of the experimental κmag from the
expectations can be given by considering external scattering mechanisms. The theory
result solely concerns the intrinsic properties of the spin chain via the calculation of
the �nite-temperature Drude weights. Extrinsic scattering of magnons with phonons
and/or with defects may become dominant with increasing temperature and explains
the observed deviation from the intrinsic thermal conductivity of the spin chain. In
analogy to the analysis of some cuprate spin-1/2 chains that show an extraordinarily
large magnetic contribution to the heat transport [142�145], the temperature depen-
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Figure 4.24: Relaxation time τmag

extracted from the thermal conductiv-
ity of Cs2CoCl4 at zero �eld based on
the Drude weight of the XXZ spin
chain. The solid line represents a �t of
Eqn. (4.16) to the data.

dence of the relaxation time τmag of the magnetic excitations can be derived from the
experimental data κexp

mag via

τmag =
π κexp

mag

NS Dth

. (4.15)

In this context usually the mean free path is discussed, which relates to τmag via the
spinon velocity v. However, v is a property of the linear low-temperature regime, which
is left here. Thus, the scattering time τmag is analyzed instead of the mean free path in
the following.

In Fig. 4.24 the resulting relaxation time is shown as extracted from the zero-�eld data
of κmag. At low temperature (T . 0.5 K) a relaxation time of few nanoseconds is found.
While for low temperature the data show a slight tendency towards a saturation, τmag

is strongly reduced by increasing the temperature and tends towards zero for T & 1 K.
In other systems a similar dependence of the mean free path is found and a low-
temperature saturation is explained by defect scattering, while the suppression with
increasing temperature is attributed to umklapp scattering with phonons [142�147].
Considering these two e�ects, according to Matthiesen's rule τmag can be decomposed
into a temperature independent defect scattering time τ0 and a temperature dependent
term describing the scattering with phonons [53, 148],

τ−1
mag = τ−1

0 +

(
eT
∗/T

AT

)−1

. (4.16)

The solid line in Fig. 4.24 represents a �t of Eqn. (4.16) to the τmag(T ) data. It yields
a reasonable description using the parameters

τ0 = 5.0 ns, T ∗/kB = 2.9 K, A = 3.4× 1010 K−1 s−1. (4.17)

The low-temperature defect contribution τ0 can be related to the mean free path of
spinons at low temperature by using Eqn. (4.13) and the spinon velocity v. In the limit
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of kBT � J , which is ful�lled for the defect scattering, only spinons in a small region
of the Brillouin zone contribute and the spinon velocity,

v =
b

~
π

2
J

sin arccos ∆

arccos ∆
, (4.18)

is a constant [138, 142, 147]. Here b = 7.313Å is the lattice constant along the chain
direction and ∆ is the anisotropy of the spin chain. The obtained defect contribution
to the mean free path,

l0 = 1.5 µm, (4.19)

is in a common range, yet about twice as large as observed in other spin chain systems
with magnetic heat transport [145�147]. This suggests a rather low defect concentration
in the samples. Dividing by the nearest neighbor distance, i. e., the lattice constant of
the b axis, along which spin chains run, yields a scattering length of about 2000 unit
cells.

The temperature T ∗ is the characteristic temperature of the phonon system, where
umklapp scattering arises, and typically lies in the range of the Debye temperature
ΘD. In Cs2CoCl4 a Debye temperature of about 70K was found [3, 4, 93]. Yet, the
�t results in a signi�cantly smaller value of about 3K. Even though the temperature-
dependent suppression of the intrinsic thermal conductivity is explained by the model,
one still may question the phononic origin of the scattering due to the mismatch of
ΘD and T ∗. Another possible scattering mechanism is given by the excited crystal �eld
states of Cs2CoCl4. The crystal �eld anisotropy D ≈ 7 K in fact is much closer to the
characteristic temperature T ∗. At present, however, no expression for the respective
contribution to the mean free path is available to quantify the in�uence of the spin-3/2

states on the thermal conductivity. A calculation of the Drude weight of the spin-3/2

chain with an out-of-plane anisotropy could give further insight.

In applied magnetic �elds, an overall suppression of κmag to lower absolute values, re-
spectively a shift to lower temperature is observed, shown in Fig. 4.23 (b). As presently
no calculations of the XXZ model's Drude weight in transverse magnetic �elds are avail-
able, these data cannot be analyzed in analogy to the zero-�eld thermal conductivity.
At 1T, essentially no magnetic contribution is found on top of the phonon background.
Increasing the �eld further, at 2T a new signal arises that by coincidence lies close to the
0.75T data. The high-�eld increase, yet, is better analyzed from the �eld-dependent
data. Here, the magnetic heat transport is approximated simply from the di�erence
of the thermal conductivities measured with di�erent directions of the heat current,
κmag = κb− κa. As shown in Fig. 4.25 (a), the magnetic contribution closely resembles
κb. The �nite zero-�eld conductivity is suppressed by a �eld of about 1T and the rise
at 2T, seen above in the temperature dependence becomes more pronounced with in-
creasing temperature. In the inset the �eld dependence of the magnetic speci�c heat
is shown for two exemplary temperatures of 0.4K and 0.5K. It is interpolated from
the temperature-dependent data cp(T ) presented above for various �elds along b by
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Figure 4.25: Field dependence of the magnetic contribution to the thermal conductivity
κmag(H) of Cs2CoCl4 at low temperature T < 2 K (a) estimated from the anisotropy of κ.
The di�usion constant D = κ/cp, shown in (b), is calculated based on the �eld dependence
of the speci�c heat, shown in the inset of (a), which is interpolated from the temperature-
dependent data presented above.

subtracting the non-magnetic contributions (cf. Chapter 4.2.2). Although this process
involves a certain error, it allows to estimate the magnetic di�usion coe�cient Dmag,

Dmag =
κmag

cmag

. (4.20)

In the kinetic gas theory the di�usion coe�cient D relates to the mean velocity v and
the mean free path l of the heat-conducting particles via D = v l and thus can be
understood as the mobility of the particles. In Fig. 4.25 (b) the �eld dependence of
Dmag is shown. While in the low-�eld regime the suppression of κmag is accompanied
by an analogous reduction of Dmag, interestingly above 2T the data for the di�erent
temperatures concurrently increase by about one order of magnitude. This indicates a
strongly increasing mobility at high �elds that in comparison to the low-�eld region
only weakly depends on temperature.

Summarizing, the �eld- and temperature-dependent thermal conductivity can be inter-
preted as follows. At zero �eld extrinsic scattering mechanisms lead to a reduction of
κmag. In addition to defect scattering, characterized by a mean free path l0 = 1.5µm, a
second scattering mechanism with a characteristic energy scale of about 3K contributes.
Applying a magnetic �eld within the easy plane of spins leads to a suppression of κmag.
This reduction can be understood as an intrinsic property of the spin chain arising
from the opening of a gap in the magnon dispersion by the transverse magnetic �eld.
At a �eld of about 1T no indication for a magnetic contribution to κ is found. Further
increasing the �eld, the gap in the magnon dispersion becomes again smaller and at
the critical �eld of about 2T excitations are gapless like in zero �eld. One may, thus,
expect a maximum of κmag around the critical �eld and a reduction for larger �elds due
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to the increasing spin gap. The experimental data show a rise of κb, but in contrast to
the expectation not at the critical �eld, but for �elds H > 2 T, i. e., larger than the
critical �eld. A simple explanation of the high-�eld thermal conductivity in terms of
an increased phonon contribution due to the suppression of magnon-phonon scattering
can be ruled out from the anisotropy of κ also in this �eld range. Instead, the data
suggest a magnetic origin of the �eld dependence. Due to the lack of theory results on
the intrinsic properties of the XXZ spin chain in a transverse magnetic �eld, the true
origin, however, cannot be clari�ed at present. From the indications for a low-energy
scattering mechanism, maybe due to excited crystal �eld states, in the zero-�eld data,
a �eld-induced contribution of the spin-3/2 states might consistently explain the rise of
κ and of the di�usion coe�cient Dmag above 2T. A quanti�cation of this suggestion
requires a calculation of the dynamical properties of a spin-3/2 chain in a transverse
magnetic �eld.

4.2.2 Comparison to the 1D XXZ model

Fixed anisotropy Jz/Jxy = 1/4

In previous studies the magnetic speci�c heat and the susceptibility of Cs2CoCl4
was compared to the XXZ model assuming an anisotropy of the magnetic exchange
∆ = Jz/Jxy = 1/4. In this chapter, it will be shown that �tting the whole magnetic
�eld dependence of the speci�c heat and the thermal expansion, assuming this very
same anisotropy, leads to inconsistencies that can be resolved only by extending the
theoretical description to higher-order e�ects and relaxing the assumption of ∆ = 1/4.

In analogy to the discussion in Ref.3, three main contributions to the total heat capacity
can be identi�ed in the data (Fig. 4.26). At temperatures above ' 10 K the speci�c
heat is dominated by phonons. The data can be described phenomenologically by a
Debye model using a Debye temperature ΘD and a scaling factor aD,

cv = aD · 9R
(
T

ΘD

)3
ΘD/T∫
0

x4ex

(ex − 1)2 dx, R = NAkB. (4.21)

Although in the analyzed temperature range up to 30K optical phonons might con-
tribute as well and, thus, the Debye model might be over-simpli�ed to describe the data,
the very choice of the phonon background a�ects only marginally the determination of
the low-temperature (magnetic) contributions. Even in the simplest approximation of a
T 3-dependence, as done in Ref. 3, the phonon heat capacity cph is lower than the other
contributions by at least one order of magnitude or even fully negligible below ' 2 K.
It rather provides a smooth background for the �tting of the second contribution: the
higher-lying |Sz = ±3/2〉 doublet state leads to a Schottky contribution around 5K on
top of the phonon heat capacity. The speci�c heat of a corresponding system with two
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equally degenerate energy levels separated by an energy gap ∆E = 2D, where D is the
crystal �eld anisotropy, is given by

cSchottky = R

(
∆E

kBT

)2
e∆E/kBT

(1 + e∆E/kBT )
2 . (4.22)

In the limit of low temperature (T � ∆E) the speci�c heat cSchottky is small due to
the dominating exponential terms. At higher temperature (T & ∆E) it approaches a
square dependence cSchottky ∝ T−2. In Fig. 4.26 the temperature dependence is shown
as blue dashed-dotted line for ∆E = 13.9 K as extracted from the data in the further
analysis below. Up to about 6K, cSchottky exceeds the phonon heat capacity and, due
to the broad high-temperature tail, remains sizable up to T ≈ ∆E. The di�erence
between the measured data cp and the latter two contributions is attributed to the
magnetic speci�c heat

cmag = cp − (cph + cSchottky). (4.23)
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Figure 4.26: Contributions to the heat capacity of Cs2CoCl4: (i) phonons (cph, yellow dashed
line) dominating at T & 5 K as approximated by the Debye model; (ii) thermal population of
the second Kramers doublet giving rise to a Schottky anomaly (cSchottky, blue dashed-dotted
line) around 5K and (iii) the magnetic heat capacity cmag (closed red symbols) as obtained
by subtracting cph + cSchottky from the data. The shaded area marks the approximate error
in the determination of cmag. In the inset the measured data, the non-magnetic background
and the extracted magnetic heat capacity is shown as c/T versus temperature together with
the magnetic entropy Smag =

∫ cmag

T dT (blue line, right scale).
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Figure 4.27: Three exemplary magnetic heat capacities cmag (a-c) resulting from the pa-
rameters θD and aD of the Debye model and from the energy gap ∆E. The parameters were
obtained by �tting cph + cSchottky to the data as a function of the lower �t boundary (d-e).
The upper �t boundary was �xed to 15K. The dashed line marks the values used for the
determination of cmag as shown in Fig. 4.26.

Close to the maximum around 1K it is nearly una�ected by the choice of the non-
magnetic background. The �high-temperature� tail of the magnetic heat capacity above
2K, however, is di�cult to quantify due to the strongly increasing speci�c heat of the
Schottky anomaly. Here, small changes of ∆E lead to a similar description of the non-
magnetic heat capacity at T � 2 K, but to a more pronounced change of cmag. In
Fig. 4.27 the parameters θD, aD,∆E and three selected calculated magnetic heat ca-
pacities cmag are shown as obtained by �tting cph + cSchottky to the data in a restricted
temperature range. The upper �t range was �xed to 15K. This temperature was se-
lected due to the decreasing data quality above this temperature and the increasing
uncertainties introduced by applying the Debye model at temperatures where the sim-
pli�cations of the model do not hold any more. The lower �t boundary varied from 3K
to 10K. All �tted parameters signi�cantly depend on the chosen �t boundary. In con-
sequence, di�erent magnetic heat capacities are obtained as shown for three di�erent
boundaries in Fig. 4.27 (a-c). Choosing a low �t boundary of 3K leads to a substantial
in�uence of the broad maximum around 1K on the Schottky anomaly resulting in a
rapid drop of cmag above 2K. In contrary a high �t boundary of 10K (Fig. 4.27 (c) )
neglects the largest part of the hump around 5K and leads to an overestimate mag-
netic heat capacity that is almost constant above 2K. Reasonable boundaries are to
be found in between. A moderate temperature of 6K as used in Fig. 4.27 (b) seems
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Figure 4.28: Low-temperature
tail of the speci�c heat of
Cs2CoCl4 above TN (open sym-
bols) in comparison to exact
results for the XY model (solid
line). The negative y-intercept
of the extrapolation of the data
(dashed line) and the kink in
the calculation reveals that the
asymptotic linear temperature
dependence of cp is not realized
above TN.

appropriate to include data points that inherit valuable information on ∆E, but not
on the to-be-extracted magnetic heat capacity itself and leads to

∆E = 13.9 K, aD = 2.2, ΘD = 67 K. (4.24)

The resulting magnetic heat capacity, as shown in Fig. 4.26, coincides with the mea-
sured data around 1K. Above 3K, the error by subtracting non-magnetic contributions
(approximately indicated by the gray shaded area) becomes too large to extract mean-
ingful values for cmag. Plotting cmag/T (inset of Fig. 4.26) a constant value seems to
be approached at low temperature, cmag/T ≈ 3.5 Jmol−1 K−2 for T → 0. One might
be tempted to infer a linear temperature dependence of the speci�c heat data below
. 0.5 K as is in fact expected in the low-temperature limit (T � J) of the antiferro-
magnetic spin-chain models with an easy-plane anisotropy,

C

R
= A

kBT

J
. (4.25)

Here, the slope A = 2
3

arccos(∆)√
1−∆2 depends on the anisotropy ∆ < 1. The value of A

ranges from Axy = π/3 ≈ 1.05 in case of the XY model (∆ = 0) to AH = 2/3 for the
Heisenberg model [130]. From the experimental slope, the coupling constant J could
be derived. However, the easy-plane type models show peculiarities in thermodynamic
properties even at very low temperature, e. g., due to signi�cant low-temperature cor-
rections in the Heisenberg model [42, 44, 45]. Thus, Eqn. (4.25) only applies to the data
at very low temperature (T/J < 0.1), which is a prerequisite that might be questioned
here. Exact solutions that extend to these temperatures are available only for the XY
model [50] and for the Heisenberg model [46]. In Fig. 4.28 the data are plotted together
with the speci�c heat of the XY model using an exchange constant J = 3 K as adopted
from literature and close to the value derived below. Despite slight deviations from the
data, probably due to the �wrong� anisotropy, the true low-temperature linearity of
cp sets in just below the experimental data. In the plot of cmag/T (inset of Fig. 4.28)
this is re�ected in signi�cantly suppressed values for the calculation below ≈ 0.5 K.
Therefore, the limit of T � J is not ful�lled for the experimental data & 0.3 K and the
coupling constant cannot be derived via Eqn. (4.25). Extrapolating the experimental
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data (dashed orange line) furthermore yields a negative y-intercept, which addition-
ally argues against a true linear temperature dependence of cp and shows that the
low-temperature limit is not realized in the experiment.

Integrating cmag/T gives the entropy gain of the magnetic system Smag(T )−Smag(0.26 K),
(blue line, right axis in Fig. 4.26). The expected value of R ln 2 of a spin-1/2 system is
not obtained within the experimental range. Nevertheless, a further gain of the miss-
ing entropy can be expected �rst at lower temperature and second due to the fact
that Smag(T ) is not saturated at 3K. The deviation of cSchottky + cph (green line in
Fig. 4.26) from the data above 20K illustrates that the applied phonon model is purely
phenomenological and that the obtained parameters should not be regarded as sample
properties.

Summarizing, the non-magnetic contributions to the heat capacity could be well sep-
arated and despite some uncertainties above 2K the magnetic heat capacity can be
deduced quite reliably from cmag = cp − cSchottky − cph. In analogy to Ref. 3 the mag-
netic heat capacity is now compared to the XXZ model,

HXXZ =
∑
i

[
Jxy
(
SixS

i+1
x + SiyS

i+1
y

)
+ JzS

i
zS

i+1
z − gµBµ0HbS

i
x

]
. (4.26)

Exact diagonalization of HXXZ was performed using the Alps code [57]. For spin-1/2

systems with arbitrary on-site and interaction terms approximately 4 GB of memory
su�ce to solve a system consisting of 16 sites. Thus, the calculations can be performed
using a standard desktop computer. Increasing the system size leads to an exponential
growth of the memory consumption. Therefore, they cannot be analyzed using this
code and require more sophisticated methods. At zero �eld the model reveals a ro-
tational symmetry and Sz is preserved. Using this symmetry, the calculations can be
extended to system size of up to L = 18 sites at zero �eld. In all calculations, periodic
boundary conditions were used. First, the onset of �nite-size e�ects at low tempera-
ture was analyzed by calculating the thermodynamic quantities for various system sizes
(cf. Chapter 2.3). Finite size e�ects are negligible in the temperature range of interest
here.

In Fig. 4.29 (a) the calculated zero-�eld heat capacity cXXZ is shown as a function
of the reduced temperature T/J for di�erent values of the anisotropy ∆ = Jz/Jxy =
0, 0.25, 0.5, 1.0. With increasing ∆ the curves shift to higher temperature and increase
in their maximum value while essentially preserving their general shape. Finite size ef-
fects are negligible above T/J & 0.1, which approximately corresponds to the magnetic
order temperature TN/J ≈ 0.3/3, below which the model is not appropriate anyway. In
Fig. 4.29 (b) the calculated speci�c heat is shown together with the extracted magnetic
heat capacity cmag. By adjusting the coupling constant J , the overall shape and the
peak position of the experimental data around 1K can be described using any of the
anisotropies. The peak height, however, is determined by ∆ and the best match is ob-
tained for ∆ = 1, which would correspond to the special case of the Heisenberg model.
This correspondence is misleading and ∆ = 1 can certainly be excluded. Because in
the Heisenberg limit, no magnetic anisotropy would be present and, thus, the Co2+

spin S = 3/2 would not be split, which in turn would lead to a completely di�erent



94 4 The spin-1/2 XXZ chain Cs2CoCl4

� � �

� � � � �
�

� � � � � � � �
�

� � � � � � � � � 	 � � 	 � � � �
� � � � � � � � � �  

� � � � � � � � � � � 
 �
� � � � � � � � � � � � � � � � 	 � � 	 � � 	  


� � � � �

�
             ∆� � � � � � � �

�
� � �

� � � � �

� � � � � � � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

�
             ∆� � � � � �

� � � � � � � � �
� � � � � � � �
� � � � � � � � �
� � � � � � � � �

	 �
�

����
��

�
��

��
��

�

� � � �

� � �

� � � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � ⋅� �
� � �

� � � � �

� � �

	 �
�


���
��

�
��

��
��

�

� � � � �

� � � � � � � � � 	 � � � � � � � � � � �
� � � � � � � � � �  � � � � � � � � 

� � � � � � � � � � � 
  � � � � � � � 	
� � � � � � � � � � � � � � � � � � � � �

�
             ∆� � � � � � � � � � � � � � � � �

Figure 4.29: Exact diagonalization results (a) of the XXZ model, given by Eqn. (4.26), for
�nite rings of up to 18 spins assuming di�erent values of the anisotropy ∆ = Jz/Jxy. The onset
of �nite size e�ects is indicated as a shaded gray area. In (b) the calculations are compared
to the magnetic heat capacity (open symbols) by adjusting the coupling constant J . In (c) an
additional scaling factor a is included.

scenario where the e�ective spin-1/2 system was not applicable at all. Instead, the re-
sulting ∆ rather depends severely on the measured absolute value of the heat-capacity
peak. Therefore, an additional scaling factor was allowed to compensate for the exper-
imental uncertainty which is typically in a range of a few percent. In Fig. 4.29 (c) the
�t results and parameters are shown including a scaling factor a. For all anisotropies
the data are reproduced in the whole temperature range. The strong resemblance of
all �ts shows that ∆ cannot be unambiguously extracted from the magnetic heat ca-
pacity. An anisotropy ∆ = 1/4 is expected from theory in the limit of a strong crystal
�eld anisotropy (see Chapter 4.1.2) and in literature this value was taken for granted.
The present comparison to various anisotropies, however, shows that this assumption
is not justi�ed upon considering the speci�c heat, only. Nevertheless, assuming the
anisotropy ∆ = 1/4 as in literature, the speci�c heat can indeed be described using the
parameters

Jxy/kB = ∆−1Jz/kB = 2.76 K, a = 1.03, ∆E = 13.9 K.

These values are close to those reported in literature [3, 4]. However, this simply shows
that under the assumption of ∆ = 1/4 a description of cmag is obtained that is consis-
tent with literature. Using strongly di�erent models and coupling constants, an almost
identical description of the data is possible as well.
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Thermal expansion

Next, the thermal expansion αb (abbreviated as α in the following) along the b axis
is considered. It relates to the free energy F of the system via α = 1

NVS

∂2F
∂pb∂T

, where
N is the number of sites in the calculation and VS the volume per spin. Excluding
interactions between the subsystems, the free energy can be approximated as a sum
F = Fph(ΘD) +FSchottky(∆E) +FXXZ(Jxy, Jz) of independent potentials that depend
on di�erent energy scales ΘD, ∆E and Jxy,z. Thus, the thermal expansion also linearly
decomposes into α = αph + αSchottky + αXXZ . The phonon free energy Fph and the
Schottky anomaly as described by FSchottky both depend only on a single energy scale
and, thus, the Grüneisen relations

αph/cph =(1/Vm)
∂ ln ΘD

∂pb
, (4.27)

αSchottky/cSchottky =(1/Vm)
∂ ln ∆E

∂pb
, (4.28)

are obeyed with the molar volume Vm = NAVs and the volume VS = 235Å per spin,
as obtained by dividing the unit cell volume by the number of spins per unit cell.
As the XXZ model's free energy depends already at zero �eld on the two coupling
constants Jxy and Jz, the Grüneisen scaling does not hold for the magnetic subsystem.
Considering magnetoelastic interactions on a mean-�eld level the pressure dependence
of the energy scales, on which the thermodynamic potential depends (i. e., the coupling
constants Jxy, Jz and the electronic g factor), enter the theoretical description as shown
in Chapter 2.3.3 and in Refs. 77, 78. Thus, the thermal expansion of the XXZ chain is
given by the second derivatives of the free energy with respect to the temperature and
to Jxy, Jz and g, scaled by the respective pressure dependences,

Vm · αXXZ =

(
∂2FXXZ
∂T∂Jxy

)
∂Jxy
∂pb

+

(
∂2FXXZ
∂T∂Jz

)
∂Jz
∂pb

+

(
∂2FXXZ
∂T∂g

)
∂g

∂pb
. (4.29)

The parenthesized terms can be identi�ed with the temperature derivatives of the
spin-spin correlators

∂2FXXZ
∂T∂Jxy

=
1

NVS

∂

∂T

∑
i

〈SixSi+1
x + SiyS

i+1
y 〉 , (4.30)

∂2FXXZ
∂T∂Jz

=
1

NVS

∂

∂T

∑
i

〈SizSi+1
z 〉 , (4.31)

∂2FXXZ
∂T∂g

= −µ0µBHb

NVS

∂

∂T

N∑
i

〈Six〉, (4.32)

and were obtained numerically by performing exact diagonalization of HXXZ with
J = 1 = Jxy = ∆−1Jz using the Alps code [57] and assuming the literature value of
∆ = 1/4. The last term (4.32) is proportional to the T -derivative of the magnetization
along x times the magnetic �eld and, thus, only contributes for Hb 6= 0. Repeating
the calculation for Jxy → Jxy + ε and for Jz → Jz + ε, where ε is a su�ciently small
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number, the di�erence quotient can be calculated. The temperature derivative is then
performed numerically from the interpolation of the temperature dependence which
can be extracted with arbitrary precision from the diagonalization results.

The absolute value of the calculated bond correlator 〈SizSi+1
z 〉 of the z component of

the spin, shown in Fig. 4.30 (a), is smaller than that of the x and y components by
about a factor of three which is due to the easy-plane anisotropy and the fact that two
correlators contribute to 〈SixSi+1

x + SiyS
i+1
y 〉. As expected, both correlators tend to zero

at high temperature and increase in absolute value with decreasing temperature. The
negative signs arise from the antiferromagnetic interaction. The data are shown down
to T/J = 0.1, where �nite-size e�ects set in. In case of long-range order a value of −1/4

would be expected for a single correlator, respectively −1/2 for the sum of two. These
values are not achieved as the one-dimensional XXZ model does not show long-range
order. The Sz correlator of spins in the ground state is known to be −0.101 for the
XY model from the exact result by Katsura (indicated by a red line) [50]. The present
correlation slightly exceeds this value, which is plausible due to the �nite coupling
of the Sz components of the spin in case of the assumed anisotropy Jz/Jxy = 1/4. In
Fig. 4.30 (b) the temperature derivatives of the bond correlators are shown. Scaled by
the respective pressure dependence of the coupling constant Jxy, respectively Jz, their
sum forms the magnetic contribution αXXZ to the thermal expansion. Although the
derivative of the Sz correlator is smaller than that of the Sx and Sy correlator, the
shape of both curves is very similar. They only di�er in their high-temperature tail,
opening the possibility to identify their individual contribution to αXXZ .

In the �t of the data by αXXZ the coupling constant was �xed to J = 2.76 K and
the Debye temperature to ΘD = 67 K as previously determined from the speci�c heat.
Given that ∆ = 1/4, the peak position of cp directly �xes J with a higher precision than
the thermal expansion. The experimental zero-�eld data (obtained with increasing
temperature) are �tted by

α = αph +αSchottky +αXXZ

= V −1
m

(
cph

∂ ln ΘD
∂pb

+ cSchottky
∂ ln ∆E
∂pb

)
+
(
∂2FXXZ
∂T∂Jxy

)
∂Jxy
∂pb

+
(
∂2FXXZ
∂T∂Jz

)
∂Jz
∂pb
,

(4.33)
which leads to

∆E/kB = 15.7 K,
∂∆E

∂pb
= −1.1KGPa−1,

∂ΘD

∂pb
= 2.7KGPa−1 (4.34)

∂Jxy
∂pb

= 0.2KGPa−1,
∂Jz
∂pb

= 1.2KGPa−1. (4.35)

In Fig. 4.30 (c) the di�erent contributions are shown separately. The phonon back-
ground (dashed yellow line) is much smaller than in the speci�c heat due to a small
pressure dependence of the Debye temperature. The Schottky anomaly around 5K,
here, is of opposite sign than in the speci�c heat (dashed-dotted line) due to the neg-
ative pressure dependence of ∆E, which reduces by ≈ 1 K per applied pressure of
1GPa.
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Figure 4.30: (a) Bond correlators of the di�erent spin components for the XXZ model
(∆ = 1/4, Hb = 0) calculated by exact diagonalization for 16 sites using periodic boundary
conditions. Panel (b) shows the temperature derivatives that - scaled by the respective pressure
dependence of J∗ - contribute to the thermal expansion of the one-dimensional model. (c)
The thermal expansion coe�cient measured with increasing temperature is �tted by a sum of
the phonon contribution αph (yellow dashed line), the Schottky contribution αSchottky (blue
dashed-dotted line) and the magnetic contribution αXXZ (dashed green line). The solid red
line shows the sum of these contributions using the parameters given in (4.34). Fixing ∂pbJxy =
4∂pbJz causes some deviation from the maximum around 1K (dashed orange line).

The thermal expansion of the one-dimensional magnetism around 1K is treated using
two di�erent approaches. First, both pressure dependencies ∂pbJz and ∂pbJxy are �tted
simultaneously and independently. From the anisotropy ∆ = Jz/Jxy = 1/4, however, the
relative strength of ∂pbJz and ∂pbJxy is in principal already �xed and in a second �t the
ratio of 1/4 is kept constant. Fitting both ∂pbJz and ∂pbJxy independently one obtains the
calculated thermal expansion αXXZ shown as dashed green line in Fig. 4.30 (c). It peaks
close to 1K and the resulting overall sum of the contributions (red line) gives a good
description of the data in the whole temperature range. Especially the data close to
the maximum around 1K are very well-described. The resulting pressure dependencies
∂pbJz = 1.2KGPa−1 and ∂pbJxy = 0.2KGPa−1 are, however, not in agreement with
the anisotropy ∆ = Jz/Jxy = 1/4, from which one would expect ∂pbJxy = 4 ∂pbJz.

Instead enforcing the ratio of 1/4 by �xing ∂pbJxy = 4∂pbJz during the �t and keeping the
non-magnetic parameters constant results in a slightly di�erent pressure dependence
of Jxy,

∂Jxy
∂pb

= 0.7KGPa−1. (4.36)
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The �t yields a very similar description of the high-temperature data (dashed orange
line). Yet, the match with the data close to the maximum is poorer. Even though the
di�erence between both �ts is small, together with the big discrepancy of the ratio of the
pressure dependencies from the expected 1/4 these results suggest that the anisotropy
∆ is di�erent from 1/4 as will be shown below. From the heat capacity analyzed in
several previous studies this could not be detected due to the small dependence of cp
on ∆.

Extended description

Motivated by the inconsistencies encountered in the previous chapter and the indica-
tions for a deviation of ∆ from the value of 1/4 the derivation of the e�ective spin-1/2

system as outlined in Chapter 2.3.1 is reviewed in the following.

According to Hund's rules the orbital ground state of the magnetic Co2+ in Cs2CoCl4
has S = 3/2. Neglecting interchain interactions, the magnetism is thus primarily de-
scribed in terms of a spin-3

2
system with magnetic exchange JH,

H3/2 =
∑
i

[
JH
~Si ~Si+1 +D(Szi )2 − g3/2µBµ0HbSxi

]
. (4.37)

Here, ~S is a spin-3/2 operator, JH is the Heisenberg exchange and Hb is an external
magnetic �eld applied along b. The orbital ground state (S = 3/2) is split by the
crystal-�eld anisotropy D into Kramers doublets separated by an energy gap ∆E.
At low temperature kBT � ∆E, when the thermal population of the higher-energy
doublet is exponentially small, a description of the low-energy |±1/2〉-doublet in terms
of an e�ective spin-1/2 XXZ chain arises,

HXXZ =
∑
i

[
Jxy(S

x
i S

x
i+1 + Syi S

y
i+1) + JzS

z
i S

z
i+1 − gµBµ0HbS

x
i

]
. (4.38)

Upon the projection of spin interactions on the low-energy doublet, the isotropic spin-3/2

magnetic exchange JH is replaced by the anisotropic spin-1/2 couplings Jz and Jxy. The
previously assumed ratio of ∆ = Jz/Jxy = 1/4 is derived in the limit of a large crystal-
�eld anisotropy JH/D � 1 by fully neglecting the |±3/2〉 states. Instead performing a
Schrie�er-Wol� transformation1 on the Hamiltonian H3/2 up to �rst order in 1/D, one
obtains, in the limit of small �elds g3/2µ0µBHb � D, the relations

Jxy = 4JH, Jz = JH

(
1− 39

8

JH

D

)
, g = 2g3/2

(
1− 3

2

JH

D

)
. (4.39)

The technique known as Schrie�er-Wolf transformation dates back to a paper by
J. Schrie�er and P. Wol� and subsequently was applied in many di�erent �elds of the-
oretical physics including quantum many-body systems [31, 32]. In the present case,
besides the thermal activation of the higher-energy doublet |±3

2
〉, which leads to the

1The Schrie�er-Wol� transformation on Eqn. (4.37) has been performed by M. Garst and E. Sela
during the work on a common publication (Ref. 139).
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Schottky anomaly around 5K, the transformation takes also virtual excitations of these
states into account that give rise to corrections of Jz and g. In the limit JH/D → 0 these
corrections are negligible and an anisotropy Jz/Jxy = 1/4 follows. Although the value
of JH/D is assumed to be small, multiplied by the large numeric prefactor 39/8 the
relative strength of the coupling Jz/JH may be signi�cantly reduced. A second conse-
quence of the extended transformation concerns the Schottky anomaly and the crystal
�eld anisotropy D. In the previous chapter and in literature the Schottky anomaly was
treated as a secondary, unfortunately overlapping e�ect and it was subtracted from the
data to obtain the net magnetic contribution of the one-dimensional spin-1/2 system.
However, both contributions actually derive from the same parent Hamiltonian H3/2

and are closely related. The anisotropy of the spin chain (∆) and of the crystal �eld
(D) are not independent parameters, but by virtue of the introduced additional term
−39

8
JH
D in Eqn. (4.39) the size of D determines the anisotropy of the magnetic exchange

in such a way that Jz/Jxy in general deviates from 1/4.

The overall dependence of the longitudinal coupling Jz on D is sketched in Fig. 4.31. In
the limit of in�nitely large positive values of D the derivation outlined in Chapter 2.3.1
yields a longitudinal exchange that is 1/4 of the parent spin-3/2 coupling JH, respectively
9 · JH in case of a negative sign of D, shown as red dots and horizontal dashed lines
in Fig. 4.31. For �nite anisotropies D <∞, the coupling Jz is linearly reduced in �rst
order as given by Eqn. (4.39) and sketched with the red line in Fig. 4.31. In principle Jz
could become arbitrarily small for decreasing D such that the XY model is approached
even further. Yet, the present mapping to the e�ective spin-1/2 model assumes the limit
of JH/D � 1, where the coupling of spins is minor to the splitting of the spin states by
the anisotropy. Leaving this limit, the spin-3/2 physics is recovered gradually. One may,
thus, expect an increase of Jz towards the isotropic case upon further decreasing D.
However, there is no general formula for Jz(D) and the red line only indicates a guess
for an approximate dependence in the e�ective spin-1/2 regime. Anyway, approaching
D → 0 the initial assumptions for the application of an e�ective spin-1/2 model are no
longer ful�lled as indicated by the shaded areas in Fig. 4.31.

The fact that, according to Eqn. (4.39), the system becomes more XY -like for initially
decreasing the anisotropy D < ∞ is rather surprising, because one might expect that
the increasing contribution of all of the |Sz = ±3/2〉 states leads to a more isotropic
system. The origin probably lies in the dependence of quantum �uctuations on the spin
quantum number. Considering a single ion with an anisotropy DS2

z the expectation
value 〈Sz〉 is non-zero for S = 1/2 (leading to the residual value of Jz/JH = 1/4 in
the limit of D → ∞) and decreases with increasing S. Thus, the decrease of Jz may
be understood as an increased e�ciency of the anisotropy in the virtually excited
|Sz = ±3/2〉 states. In analogy to the resulting minimum of Jz for large positive D
(sketched with the solid red line in Fig. 4.31) one may ask whether corrections also
apply in the Ising limit of D → −∞ and if they lead to a similar extremum of Jz/JH.
However, in this case, the corresponding virtual excitations contribute in an even higher
third order of JH/D and are expected to reduce Jz/JH below a value of 9, but not to
increase the e�ective longitudinal coupling [149].

The speci�c heat and the thermal expansion are now again compared to model calcu-
lations of HXXZ including the corrections to the longitudinal coupling. According to
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D

Jz/JH

1/4

9

-∞ ∞0

eff. spin-1/2
XY-like

eff. spin-1/2
Ising-like

spin-3/2

Figure 4.31: Sketch of the dependence of the e�ective spin-1/2 longitudinal coupling Jz/JH

on the crystal �eld anisotropy D. For large positive (negative) anisotropy the XY (Ising) limit
is approached (marked by red dots and horizontal dashed lines), for D → 0 the spin-3/2 physics
is recovered (white shaded area). The solid red line represents the qualitative dependence of
Jz for intermediate anisotropies D > 0 based on Eqn. (4.39). The dashed blue line depicts the
corresponding dependence in the Ising case.

Eqn. (4.39) the pressure dependence of Jxy directly relates to the one of the Heisenberg
exchange JH, whereas ∂pbJz additionally depends on the pressure dependence of D,

∂Jxy

∂pb
= 4

∂JH

∂pb
, (4.40)

∂Jz
∂pb

=

(
1− 39

4

JH

D

)
∂JH

∂pb
+

39

8

(
JH

D

)2
∂D

∂pb
. (4.41)

Thus, the thermal expansion at Hb = 0 is fully determined by the pressure depen-
dencies of the Debye temperature ΘD, of the single-ion anisotropy D and by that of
the isotropic spin-3/2 Heisenberg exchange JH. The individual pressure dependencies
of the longitudinal and transverse couplings follow from Eqns. (4.40),(4.41) and by
construction are consistent with the anisotropy

∆ =
1

4
− 39

32

JH

D
. (4.42)

Again, the maximum of the Schottky anomaly in temperature basically �xes D. The
pressure dependence ∂pbD is given by the strength of the anomaly around 5K in α and
the low-energy peak then essentially determines the last remaining parameter JH and
its pressure dependence ∂pbJH.

As the correlators and thermodynamic properties of the spin-chain are calculated via
exact diagonalization for discrete values of JH and D, the �tting of the data cannot
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Figure 4.32: Fit of the spe-
ci�c heat (a) and the ther-
mal expansion (b) by the spin-
1/2 XXZ model extended to
include virtual excitations of
the |Sz = ±3/2〉 states. The
yellow, blue and green lines
represent the individual con-
tributions of the phonons,
the thermal population of the
Sz = ±3/2 doublet and the
magnetic contribution of the
spin chain. The �t parameters
(Eqn. (4.44)) are obtained by
numerical minimization (see
text).
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be performed analytically. Instead, the exact diagonalization results are interpolated
using multi-dimensional splines and the �cost function�

K[ccalcXXZ , cSchottky, cph] =
∑
i

[
ccalcXXZ(Ti, JH,D)

+ cSchottky(Ti,D) + cph(Ti, θD)− cmeasp (Ti)
]2

+
∑
j

[
αcalcXXZ(Tj, JH,D, ∂pbJH,D, ∂pbD)

+ V −1
m

(
∂ lnD
∂pb

cSchottky(Tj,D) +
∂ ln θD
∂pb

cph(Tj, θD)

)
−αmeas(Tj)]2 (4.43)

is minimized by re�ning the parameters in a metropolis-like algorithm. In each step
a random subset of all parameters is chosen and changed by a random real number
∈ (−0.1, 0.1). Using adequate starting values, a convergence of the parameters is ob-
tained within about 1000 steps. The phonon background is adopted from the previous
analysis with a Debye temperature �xed to 67K. As the numerical calculation of the
spin correlators is rather time-consuming and has to be repeated for every exchange
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anisotropy (given by the values of JH and D), �rst JH/kB ' 0.74 K and D/kB ' 6.9 K
were approximated by minimizing K only for the zero-�eld speci�c heat data. Sub-
sequently, all correlators were calculated and both the speci�c heat and the thermal
expansion were �tted by re�ning JH,D, ∂pbJH, ∂pbD and ∂pbΘD. The resulting Heisen-
berg exchange JH/kB = 0.743 K and the anisotropy D/kB ' 7.04 K remained essentially
unchanged. The spin correlators were recalculated for these values and from the �nal
simultaneous best �t to the measured speci�c heat and the thermal expansion one
obtains

JH/kB = 0.743K, D/kB = 7.04K,
∂ ln JH

∂pb
= 0.77GPa−1,

∂ lnD
∂pb

= −0.63GPa−1,

∂ ln ΘD

∂pb
= 0.01GPa−1. (4.44)

The sums of all contributions to the speci�c heat and to the thermal expansion (shown
as red lines in Fig. 4.32) yield a good description of the data in the whole temperature
range using these parameters. The phonons only add a small background αph (yellow
dashed line) to the thermal expansion in the present temperature range, which is due
to the comparably small relative pressure dependence of ΘD of only 0.01GPa−1. In
other words, the measured thermal expansion is almost entirely of magnetic origin and
the anisotropy D can be determined with a high precision from the Schottky anomaly.
Due to the large negative pressure dependence ∂pbD, the Schottky anomaly is seen as
a minimum of the thermal expansion around 5K. The negative sign of ∂pbD indicates
that upon applying uniaxial pressure along the b axis, the lattice is distorted such that
the anisotropy and, in consequence, the splitting of the doublet states is lowered. As
previously discussed, a slight reduction of D leads to an increase of the XY anisotropy.
This is in line with the obtained pressure dependence of the individual longitudinal
and perpendicular couplings which relate to that of JH via Eqns. (4.40),(4.41),

∂Jxy
∂pb

= 2.3KGPa−1,
∂ ln Jxy
∂pb

= 0.8GPa−1, (4.45)

∂Jz
∂pb

= −0.26KGPa−1,
∂ ln Jz
∂pb

= −0.7GPa−1. (4.46)

From the limit JH/D � 1 one might expect that ∂pbJz is mainly determined by ∂pbJH

and that both bond correlators, Eqn. (4.30) and Eqn. (4.31), contribute with a sim-
ilar weight to αXXZ . However, the large value of ∂pbD compensates the small factor
(JH/D)2 ≈ 0.01 and signi�cantly reduces ∂pbJz ≈ −0.1 ∂pbJxy. Therefore the longitudi-
nal bond correlator 〈SzSz〉 rarely contributes to αXXZ .

From these results a magnetic anisotropy ∆ = Jz/Jxy ≈ 0.12 follows, which is about
half of the previously assumed value of 1/4. Thus Cs2CoCl4 realizes the XY limit to
a greater extent than thought before. This result is mainly based on the extension of
the Schrie�er-Wol� transformation to the �rst order of 1/D and the combined analysis
of the speci�c heat and the thermal expansion. In previous studies only single ther-
modynamic quantities, like the speci�c heat in Ref. 3, were analyzed, which did not
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unveil the increased magnetic anisotropy. Translating to the notion of this thesis, a
coupling constant JH/kB = 0.68K and an anisotropy D/kB = 6.8K were derived under
the assumption of Jz/Jxy = 1/4 in Ref. 3. Plugging these numbers into Eqn. (4.39), one
obtains an anisotropy 0.13, which by itself is inconsistent with the assumed value of 1/4

and close to the value obtained here.

Due to the negative pressure dependence of Jz under uniaxial pressure along the b axis,
Jz/Jxy would decrease and Cs2CoCl4 would approach the XY limit even further. From
the pressure dependence of the anisotropy ∆,

∂∆

∂pb
=

∂Jz
∂pb

Jxy
− Jz

(Jxy)
2 ·

∂Jxy
∂pb

≈ −0.18GPa−1,

a pressure to realize ∆ = 0 of about 0.7GPa can be estimated which lies in a range that
is accessible in experiments. However, one has to keep in mind that in experiments typ-
ically hydrostatic pressure is applied, whereas the pressure dependencies derived here
from the thermal expansion assume uniaxial pressure. The huge magnetic contribution
to the heat capacity around 1K, which is larger than the typical phonon contribution
by several magnitudes, might open the possibility to investigate the critical properties
of Cs2CoCl4 also by measurements of the speci�c heat or other thermodynamic quan-
tities as a function of the applied pressure, respectively as a function of Jz. However,
one has to keep in mind that the obtained pressure dependencies derive from a linear
theory for small applied pressures and that the anisotropy D would be signi�cantly
lowered under pressure, leading to a gradual recovery of the spin-3/2 properties. At a
pressure of 0.7GPa required to fully suppress the longitudinal coupling the anisotropy
D would be lowered to ≈ 4K. At the same time JH would increase to ≈ 1.1 K, such
that the description of the system as an e�ective spin-chain degrades. As a function
of pressure one might thus rather expect to observe a crossover from an anisotropic
e�ective spin-1/2 chain to an isotropic spin-3/2 chain.

Summarizing, the simultaneous �t of the speci�c heat and the thermal expansion reveals
that Cs2CoCl4 approaches the XY limit, as described by the anisotropy parameter
∆ ≈ 0.12, to an even greater extent than previously assumed in literature. From
the extended mapping of the interactions to the e�ective spin-1/2 system a consistent
description of the thermodynamics is possible.

Magnetic �eld along b

As the zero-�eld data could be well described by the XXZ model, one may ask if the
magnetic �eld dependence is explained by the model as well. The transverse magnetic
�eld direction dictated by the crystal symmetry is of fundamental interest as it breaks
the rotational symmetry of the model and induces a quantum phase transition at a
critical �eld gµBµ0H

cr
b = hc. The dependence of the critical �eld of the XXZ chain on

the anisotropy ∆ is known from di�erent theoretical approaches [67, 150, 151] and in
a mean-�eld approximation given by hc/J =

√
2(1 + ∆). In Fig. 4.33 both the mean-

�eld and the DMRG results of Ref. 67 are shown. For small values of ∆ they slightly
di�er. For the previously obtained anisotropy ∆ ≈ 0.1 a critical �eld hc/J ≈ 1.5 can be
read o� from the black line, representing the DMRG result. Close to criticality peaks
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Figure 4.33: Critical transverse magnetic
�eld of the XXZ chain as a function of the
anisotropy ∆. The classical line Hcl(∆) =√

2(1 + ∆) is obtained from a mean-�eld
Hamiltonian [151]. (Taken from Ref. 67)

are expected in the thermodynamic properties at �nite temperature from very general
considerations [103, 152, 153].

In Fig. 4.34 the measured speci�c heat and the thermal expansion are shown as cp
T
and

α
T
versus T , respectively. In both quantities, a maximum, respectively a minimum, is

seen which shifts as a function of the magnetic �eld. Below ' 2.5 T the extrema are not
resolved within the temperature range of the experiment. Plotting the peak position
as a function of the magnetic �eld reveals a characteristic scaling T ∼ |Hb − Hcr

b |νz,
with νz = 1 (shown as dotted lines in Fig. 4.33 (c) ) as expected for Ising criticality,
that yields Hcr

b ≈ 2 T. From the experimentally observed critical �eld Hcr
b the g factor

can be estimated as

1.5 ≈ hc
J

=
gµBµ0H

cr
b

J
⇒ g ≈ 3.3.

As the extrapolation of the peak scaling is based on only few data points and as hc/J
is not exactly known but digitized from Fig. 4.33, the introduced error is relatively
large. Another way to determine the g factor is given via comparison of the full speci�c
heat data set in magnetic �elds to the Hamiltonian HXXZ . In analogy to the zero-�eld
case, exact diagonalization of HXXZ has been performed for �nite rings of 16 spins
including the magnetic-�eld term ∝ gµBµ0HbS

i
x. Concerning the speci�c heat, solely

g enters in addition to the parameters already �xed by the zero-�eld data. Keeping
the phonon background and the gap of the Schottky anomaly constant, the best �t is
obtained using g = 3.27 (shown as solid lines in Fig. 4.35 (a) ). This value con�rms the
previous result obtained by extrapolating the critical �eld Hcr

b . For the e�ective spin-1/2

model it agrees nicely with the estimated ordered magnetic moment gµB · 1
2
≈ 1.6µB

that was inferred from neutron di�raction [8]. Via Eqn. (4.39) the obtained g factor
also relates to that of the underlying spin-3/2 and one obtains g3/2 = 1.9. Similar to the
observations in Ref. 8, this value is, however, signi�cantly smaller than 2.4 as obtained
from a Curie-Weiss �t of the high-temperature susceptibility [4, 5, 110]. In lowest order
the isotropic g3/2 = 2.4 translates to the anisotropic spin-1/2 g-values gxy and gz via
gxy = 2g3/2, gz = g3/2 [3]. Therefore a magnetic moment of 2.4µB would be expected
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Figure 4.34: Extrema of
cp(T )/T and α(T )/T scale
linearly with the applied
magnetic �eld. The extrapo-
lation for T → 0 yields a crit-
ical �eld Hcr
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from the high-temperature susceptibility. The reduction of the ordered moment from
this value is attributed to strong quantum �uctuations in the ground state [8].

So far only the speci�c heat in magnetic �elds was discussed. Concerning the thermal
expansion αXXZ of the spin chain according to Eqn. (4.29) additionally the pressure
dependence of the g factor contributes as scaling factor to ∂gFXXZ . This term, however,
appears to be negligible, as the �ts to the thermal expansion data, shown by the solid
lines in Fig. 4.35 (b), result in a vanishing ∂pbg ≈ 0. From Eqn. (4.39) one can relate
∂pbg to the zero-�eld pressure dependence of the parent spin-3/2 g factor g3/2,

∂g

∂pb
=

(
2− 3JH

D

)
∂g3/2
∂pb
− 3g3/2

(
1

D
∂JH

∂pb
− JH

D2

∂D
∂pb

)
. (4.47)

Solving Eqn. (4.47) one obtains ∂ ln g 3
2
/∂pb ≈ 0.26/GPa. In contrast to the essentially

pressure-independent g the value of g3/2 in the spin-3/2 framework increases as a function
of pressure, which is mainly based on the large negative pressure dependence of D. The
reason for the di�erent values of g obtained from the high-temperature data and from
the correlations of the spin chain, might lie in the peculiar single-ion level splitting
as described by Eqn. (4.3). The eigenvalues, plotted in Fig. 4.7 as a function of the
magnetic �eld, show the typical Zeeman splitting in the limit of large �elds, respectively
small anisotropies D. The splitting of the lower-lying |Sz = ±1/2〉 states with energies
E1 and E2 is characterized by a di�erent slope gxy in the limit of zero �eld,

E1 − E2 = 2hx = 2gxyhx ·
1

2
, (4.48)
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Figure 4.35: Speci�c heat cp(T ) (a) and thermal expansion α(T ) (b) of Cs2CoCl4 in magnetic
�elds applied along b in comparison to the XXZ model with an anisotropy ∆ = 0.12 (solid
lines).
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Figure 4.36: Field dependence of the gap
between the two lowest single-ion states.
Plotted is the e�ective g factor obtained by
diagonalization of Eqn. (4.3) and express-
ing the splitting of the lowest Kramers dou-
blet as a Zeeman-splitting of a spin-1/2.

where gxy = 2 is also obtained via the application of the e�ective spin-1/2 model in
lowest order. However, the single-ion energies E1 and E2 depend non-linearly on the
magnetic �eld, such that the splitting E1−E2 is non-trivial, but in a simple model can
be rewritten by introducing an �e�ective� �eld-dependent g factor ge�(hx), such that

[E1 − E2](hx) = hx −
√
h2
x − hxD +D2 +

√
h2
x + hxD +D2 = 2ge�(hx)hx ·

1

2
. (4.49)

While in the limit of zero �eld, ge�(B → 0) the value of gxy = 2 is recovered, at a �nite
�eld ge� is reduced and approaches 0.5 gxy in the limit of large �elds (see Fig. 4.36).
Thus, necessarily the �real� zero-�eld gxy factor is underestimated from a measure of
the gap E1−E2 at �nite �eld. Finally, the apparent reduction of the g factor, however,
is an artifact that originates from a �nite entanglement of the spin states due to the
transverse magnetic �eld, such that the eigenstates in �nite �eld are no longer pure
|Sz = ±1/2,±3/2〉 states. In the limit of hx → ∞ the states are rather classi�ed by the



4.2 One-dimensional magnetism 107

Figure 4.37: Magnetostriction
of Cs2CoCl4 in comparison to
exact diagonalization of the
XXZ model with an anisotropy
∆ = 0.12. Symbols represent
measurements with increasing
�eld. Solid lines are calculations
for di�erent �xed temperatures
using the parameters given in
Tab. 4.4. Curves are o�set by
25 · 10−6 for each temperature. � � � �
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quantum number |Sx = ±1/2,±3/2〉. Therefore, the applied transverse magnetic �eld
naturally borders the applicability range of the e�ective spin-1/2 system.

This is also re�ected in the magnetostriction as compared to the exact diagonalization
results in Fig. 4.37. The magnetostriction ∆L

L0
(H) of the XXZ spin chain is calculated

based on the �eld dependence of the spin-spin correlators and the magnetization as
described in Chapter 2.3.3. The respective pressure dependences were �xed to those
obtained from the temperature dependence of the speci�c heat and the thermal expan-
sion. The calculated length change was shifted such that it agrees with the data at zero
�eld. A reasonable description of the overall shape is obtained, shown in Fig. 4.37 for
selected temperatures. In general, the deviations between the calculation and the data
seem to increase with increasing the magnetic �eld, which again shows the �eld-induced
mixing of states. This is seen clearest at a temperature of 0.3K, where the calculated
length change saturates at high magnetic �elds H & 2 T, whereas the measurements,
reveal a �nite slope even at 3T. This may arise from the intermixing of the crystal
�eld states by the transverse �eld, in analogy to the �nite slope of the magnetization
in that �eld range (cf. Ref. 8). In addition to the speci�c heat that is well described by
the theory up to 3T, but not at 4T, the magnetostriction indicates that the applica-
bility range of the XXZ model is not limited by a sharp boundary, but that starting in
between of 2 and 3T the excited crystal �eld states start to contribute to the physics.

4.2.3 Conclusion

Measurements of the thermal expansion and the speci�c heat have been compared
to numerical results of the XXZ model. A good description of the experimental data
is obtained in a broad temperature and �eld range using the �t parameters given in
Tab. 4.4. While the main coupling constant is close to that obtained previously in
literature, the inclusion of virtual excitations of the spin-3/2 states shines a new light
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on the anisotropic magnetism of Cs2CoCl4 at low temperature. Based on the higher-
order transformation of the coupling constants, the crystal �eld anisotropy D, re�ected
by the Schottky anomaly around 5K, is correlated to the one-dimensional magnetism.
Together with the dominant coupling constant, the anisotropy D �xes the anisotropy of
the spin chain. This relation has not been known previously and the anisotropy ∆ = 1/4

was assumed based on the limit D → ∞. As shown here, the anisotropy ∆ ≈ 0.12 of
the spin chain, however, is signi�cantly smaller. This result is not speci�c for Cs2CoCl4,
but may be of general importance for compounds where e�ective spin-1/2 models are
applied. From Eqn. (4.39) one may expect signi�cant corrections to the e�ective model
in case that 39

8
JH
D is not negligible. Due to the large prefactor of 39

8
this is the case even

in system where the crystal �eld anisotropy is about one order of magnitude stronger
than the correlations between magnetic moments.

The critical �eld of the spin chain Hcr
b ' 2 T not only manifests in the signatures in the

thermodynamic quantities that scale linearly as a function of the magnetic �eld, but
also in a sign change of the thermal expansion at lowest temperature close to 2T, which
is related to the accumulation of entropy near the critical �eld and is a characteristic
signature of quantum phase transitions [152, 154, 155].

There are visible deviations between theory and experiment, especially for the thermal
expansion at �nite �eld. Yet, these di�erences are expected, because the description of
Cs2CoCl4 in terms of a one-dimensional XXZ chain is restricted to a certain tempe-
rature and �eld range. At lowest temperature long-range order sets in. The transition
temperature TN is mainly determined by the strength of interchain couplings and by
the correlation length of the spin chain. The purely one-dimensional XXZ model does
not cover magnetic order, establishing a lower bound in temperature for its applicabil-
ity of about 300mK upon considering the �eld dependence of TN. At high temperature
kBT/D & 2 the second doublet states are populated and the system is rather described
by a spin-3/2 system. Similarly, high magnetic �elds lead to an entanglement of states

pressure dependence / GPa−1

parameter value relative absolute

JH 0.743K 0.77 0.6K
D 7.04K -0.63 −4.4K

ΘD 67K 0.01 0.7K
g 3.27 0 0

following from above:

∆ 0.12 -0.7 -0.18
Jxy 2.97K 0.8 2.3K
Jz 0.36K -0.7 −0.26K
g3/2 1.9 0.26 0.5

Table 4.4: Parameters of the one-dimensional spin-1/2 XXZ chain as obtained by �tting the
temperature dependence of the speci�c heat and thermal expansion in magnetic �elds applied
along the b axis. The pressure dependencies are given for uniaxial pressure along b.
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Figure 4.38: Phase diagram of Cs2CoCl4 showing the temperature- and magnetic �eld-
range in which the one-dimensional spin-1/2 XXZ model is applicable (white area). In the
blue shaded region an entanglement of higher-lying states results in a crossover to spin-3/2

physics. The extrema of speci�c heat and thermal expansion (closed symbols) extrapolate to
the critical �eld of the spin chain Hcr

b ' 2 T.

that are not part of the e�ective spin-1/2 model. As seen in Fig. 4.35 (a), the curve
at 4T fails to describe the experimental data, whereas at 3T a reasonable match is
obtained. A �nite entanglement is also present at lower �elds, as seen from the splitting
of the ground-state doublet discussed above. Yet, the speci�c heat seems to be widely
una�ected from an entanglement of states at small �elds, whereas the deviations seen in
the thermal expansion at small magnetic �elds could be related to a more pronounced
relative change of the individual correlators that contribute to αXXZ .

From these considerations the applicability range of the one-dimensional e�ective spin-
1/2 system can be sketched as shown in Fig. 4.38. The blue shaded region indicates the
range where spin-3/2 states are intermixed. In the white area, the 1D XXZ model is well
suitable to describe the thermodynamic properties of Cs2CoCl4. For a consistent picture
the inclusion of virtual excitations of the higher-lying crystal �eld states is essential. In
the speci�c heat and the thermal expansion maxima are seen that scale linearly as a
function of the magnetic �eld, shown as symbols in Fig. 4.38. They extrapolate to the
critical �eld of the spin chain close to 2T and represent the typical manifestations of
quantum critical behavior in the �nite-temperature thermodynamic quantities. From
these �ndings Cs2CoCl4 appears like an ideal model system representing a spin-1/2 chain
with a nearly full XY anisotropy and the prospect of quantum criticality induced
by magnetic �elds applied along the b axis. In the following chapter the analysis of
Cs2CoCl4 is extended to lower temperature, which involves approaching the possible
quantum critical point at ' 2 T.
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4.3 Magnetic order

In Chapter 4.2 the thermodynamic properties of Cs2CoCl4 were discussed considering a
temperature range where the magnetism is governed by a dominant exchange coupling
of the spins along the b axis. Due to �nite couplings between spin chains magnetic
order arises upon cooling at a temperature TN of about 0.22 K as indicated by the
speci�c heat [3]. From neutron scattering investigations the magnetic order is known
to be antiferromagnetic with the magnetic moments lying in the bc planes (Fig. 4.39).
In Ref. 8 the in�uence of a magnetic �eld, applied along the a axis, on the ground state
properties has been investigated. Besides a slightly �eld-dependent antiferromagnetic
phase boundary a spin-liquid state is proposed to arise close to 2T. Magnetic �eld
directions other than a are not discussed in literature. In this chapter, the analysis of
Cs2CoCl4 will be extended to low temperatures of about 50mK and the in�uence of
magnetic �elds applied along various directions will be discussed. In case of H ‖ b, a
rich low-temperature phase diagram is found. Based on an analysis of the magnetic
lattice and the respective exchange interactions, models for the magnetic order in the
di�erent phases are presented.

The orientation of the ordered moments of Cs2CoCl4 as reported in Ref. 8 reveals an
intriguing detail whose far-reaching consequences are discussed at the beginning of this
chapter, preceding the analysis of the thermodynamic data in the following chapters.

4.3.1 Zero-�eld magnetic order mechanism

From neutron scattering at zero �eld the magnetic moments are known to lie within
bc planes in the ordered phase forming a small angle α ≈ 15◦ with the b axis. One
of the four antiferromagnetic domains is shown in Fig. 4.39 together with the mag-
netic exchange paths discussed in Chapter 4.1.2, shown as colored lines. Along the
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Figure 4.39: Ordered mag-
netic moments in the bc plane
of the A1 domain of Cs2CoCl4
(adopted from Ref. 8). The
dashed lines indicate the pri-
mary spin chains. Solid and
open symbols depict the two
di�erent positions of spins along
a in the unit cell at about 0.25
and 0.75, respectively. Spins are
tilted away from the b axis by an
angle α ≈ 15◦. Colored lines in-
dicate the intra- and interchain
couplings.
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spin chains, the moments are collinear. Neighboring spin chains coupled via the non-
frustrated coupling Jac reveal a phase shift of π, i. e., for example the moment at site 1
is anti-parallel to that at site 2. Spins belonging to di�erent chains that are coupled in
a frustrated way via Jbc are not collinear, but reveal a relative angle of ±2α, with the
sign depending on the considered domain. These relations hold for all four magnetic
domains (see Fig. 4.13).

At �rst glance the tilt of spins away from the b axis by the angle α is surprising. For
simplicity, consider a single pair of chains with a non-frustrated coupling J ′ between
them and with easy-plane orientations that di�er from chain to chain in a rotation
around the b axis. An antiferromagnetic order with spins collinear to b would ful�ll
both the main coupling J , the interchain coupling J ′ and at the same time would
not cost any anisotropy energy as the spins lie within the XY planes. The observed
structure in contrast reveals a tilt of the moments within the bc planes away from the
b axis. As spins are still collinear within the chains along b, the primary coupling J is
ful�lled nevertheless. However, the �nite angle between spins in neighboring chains is
disfavored by the interchain coupling Jbc. Furthermore, the tilt requires all moments to
leave their local easy planes, which costs an energy that is proportional to the anisotropy
energy D. To stabilize the observed state, another interaction must contribute which
bene�ts from the tilt. One interaction that is often considered in case of non-collinear
moments is the antisymmetric Dzyaloshinskii-Moriya (DM) interaction D · (Si × Sj),
which favors a perpendicular orientation of the spins. As spins within one chain are
collinear, antisymmetric exchange within the chains can not be responsible for the tilt
α. Thus, it must stem from DM interactions between chains. The responsible interaction
can be identi�ed from the observed magnetic order at zero magnetic �eld (Fig. 4.13).
As the primary coupling J already was ruled out, only the further interchain couplings
Jac, Jbc and Jab must be considered. Jab can be ruled out as well because it does not
allow for DM interactions by symmetry (cf. Chapter 4.1.2). In the actual magnetic
structure Jac is found only between spins that are collinear. Thus, DM interactions of
Jac can not account for the magnetic ground state. Finally, the frustrated coupling Jbc
exclusively connects spins that have a �nite angle to each other and it is allowed by
symmetry. Thus, an energy gain by DM interactions on the Jbc bonds might explain the
tilt of the moments away from the b axis within bc layers. The full magnetic structure
could then be explained by the addition of the non-frustrated and symmetric inter-layer
coupling Jac which induces an antiferromagnetic order along a.

Dzyaloshinskii-Moriya interactions between chains

For a quantitative understanding how the magnetic order pattern is stabilized by an
antisymmetric coupling along Jbc bonds, now a model system is considered that can
explain the tilt of spins away from b. As Jbc (for simplicity Jbc = J ′ in the following) is
between sites of di�erent easy-plane orientations only (see Chapter 4.1.2), the consid-
ered model is that of a pair of two spins at sites which belong to di�erent chains. Here,
sites 4 and 5 from the magnetic unit cell (Fig. 4.13) are chosen for a classical analysis
of DM interactions as a perturbation of the antiferromagnetic ground state.
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Figure 4.40: Sketch of a model system to explain the tilt of moments in the zero-�eld
magnetic order of Cs2CoCl4 by Dzyaloshinskii-Moriya interactions. Chains are depicted by
shaded red bars. The normal to the easy planes ni and the in-plane directions mi and m⊥i
di�er in the sign of a rotation ±β around b. Spins interact via the interchain coupling Jbc in
the bc plane. Site numbers (shown in red) are given identical to Fig. 4.39. A small out-of-plane
tilt angle ξ away from the b axis is considered as a perturbation of the antiferromagnetic state
with spins along b (black arrows). Minimizing the energy yields ξD,E(β) as shown in (b) for
E = 0.

In Fig. 4.40 the easy planes of the sites 4 and 5 are shown as shaded planes. Site 5 and
the neighboring site 13 belong to the same chain, depicted by red bars, and have the
same easy plane orientation. In the following, however, only the energy between the
two non-equivalent sites 4 and 5 is considered. Their easy planes di�er by an opposing
rotation

Rα
y =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (4.50)

of their local anisotropies by an angle α = ±β around the y (= b) axis. The normals
to the planes

n1 = Rβ
y ·

0
0
1

 =

 cos β
0

− sin β

 , n2 = R−βy ·

0
0
1

 =

cos β
0

sin β
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de�ne the direction of the out-of-plane anisotropy. For completeness an additional in-
plane anisotropy that favors one in-plane axis mi over the perpendicular direction m⊥i
is considered as well.

m1 = m2 =

0
1
0

 , m⊥1 =

sin β
0

cos β

 , m⊥2 =

− sin β
0

cos β


The antiferromagnetic state with all spins lying in their respective easy planes would
correspond to

S4 = (0, 1, 0) , S5 = (0,−1, 0)

and is represented by black arrows in Fig. 4.40. In Cs2CoCl4, this state is not the
ground state at zero �eld, but it is perturbed by a small rotation ±ξ around the a axis,
such that

S4 = (0, cos ξ, sin ξ) , S5 = (0,− cos ξ, sin ξ).

The opposing angle of the rotation yields a state with canted moments, which corre-
sponds to the actual situation. The total energy E of two spins of neighboring chains
can be calculated as the sum of the symmetric exchange J ′, the Dzyaloshinskii-Moriya
interaction (∝ D = (Da, Db, Dc)) and the anisotropy terms for the out-of-plane (D > 0)
and the in-plane (E > 0) anisotropy.

E = J ′ (S4 · S5)
+ D · (S4 × S5)
+ D [(n1 · S4)2 + (n2 · S5)2]
+ E

[
(m1 · S4)2 − (m⊥1 · S4)2 + (m2 · S5)2 − (m⊥2 · S5)2

] (4.51)

For small values of ξ one �nds the approximation

E = J ′ [(2ξ2 − 1) +O(ξ3)]
+ 2Da [ξ +O(ξ3)]
+ 2D

[
ξ2 sin2 β +O(ξ3)

]
+ 2E

[(
1− ξ2 sin2 β

)
+O(ξ3)

]
.

(4.52)

The symmetric coupling leads to a quadratic energy loss as a function of ξ, which is
due to the cosine dependence of S4 · S5 on the angle 2ξ between the spins. The linear
term ∝ Da derives from the sine dependence of the vector product of the spins on ξ.
The quadratic anisotropy terms arise from the tilt with respect to the local anisotropy
axes. Here, additionally the tilt β of the easy planes enters.

Due to the summation of linear and quadratic dependencies on ξ, a minimum at a �nite
canting results that depends on the easy plane rotation β. Minimizing Eqn. (4.52) in
lowest order yields the canting angle

ξD,E =
−Da

2 [J ′ +D − 3E − (D + E) cos 2β]
. (4.53)

It linearly depends on the strength of Dzyaloshinskii-Moriya interactions Da that favor
a rotation of spins in the bc plane as observed by neutron scattering. The dependence
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of the tilt angle on the other model parameters is seen more easily in case of a vanishing
in-plane anisotropy (E = 0), where a simpler relation is obtained,

ξD,E=0 =
−Da

2
(
J ′ +D sin2 β

) . (4.54)

The tilt angle is reduced for increasing the anisotropy D and for increasing the angle
β between the easy-plane anisotropies, because then the spins have to leave their easy
planes upon tilting. The dependence of ξD,E=0 on β is schematically shown in Fig. 4.40.
The �nite tilt angle for β = 0 is known as weak ferromagnetism in antiferromagnets
[156]. Using Eqn. (4.53) and the observed tilt angle α = 15◦, the other parameters of
the model can be deduced. The exchange constant J ′ may be estimated to J ′/kB ≈
0.1· 1

6
·3 K, with 0.1 being the approximate size of the interchain interactions (as given in

Ref.7) relative to the established primary exchange constant J/kB ≈ 3 K, and using the
factor 1

6
, as here only one of a total of 6 interchain couplings per site contributes. Using

further values of D/kB ≈ 7 K obtained above and β = 38◦ the size of Dzyaloshinskii-
Moriya interactions can be estimated in dependence of a possible in-plane anisotropy
E ,

Da/kB = −1.4 K + 0.8 · E/kB. (4.55)

Assuming that the in-plane anisotropy E is zero, as suggested from the XXZ magnetism
in the one-dimensional regime, an antisymmetric exchange Da/kB = −1.4 K follows
that is approximately one order of magnitude larger than the symmetric interchain
coupling J ′. As antisymmetric interactions typically arise as small corrections propor-
tional to the parent symmetric coupling, this value seems unphysically large. However,
smaller values of Da could be realized for �nite values of the in-plane anisotropy E > 0.
This might hint at the importance of an in-plane anisotropy for the magnetic ordering
of Cs2CoCl4. As introduced here, the in-plane anisotropy favors a state with spins not
along b but along the local m⊥i directions. In consequence, smaller DM interaction
strengths su�ce to explain the observed tilt angle α = 15◦. For a rough estimate of the
in-plane anisotropy one may postulate that Da is one order of magnitude smaller than
the estimated interchain coupling, i. e., Da ≈ J ′/10 ≈ −0.02 K. This value of Da then
requires that

E/kB ≈ 1.8 K.

In comparison to the largest energy scale of the out-of-plane anisotropy D ≈ 7 K,
this value seems reasonable, albeit too large to be fully neglected in favor of D. In
literature, an in-plane anisotropy was discussed previously in Ref. 4, but could not be
reliably determined from high-temperature data. The �ts typically resulted in E . 1 K,
which is signi�cantly smaller than deduced here.

Summarizing, the tilt of moments out of the magnetic easy planes in Cs2CoCl4 can
be explained by Dzyaloshinskii-Moriya interactions between chains as shown here for
one pair. Reasonable values of the interaction strength, however, require a sizable in-
plane anisotropy. Comparing the derived value of E ≈ 1.8 K to the established out-of-
plane anisotropy D = 7 K, an anisotropic magnetism would follow that is far from the
easy-plane type. Yet, discussing this value, one should keep in mind that the present
results are obtained in a purely classical description. More involved techniques (see
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e. g. Ref. 157) might lead to corrections of Da as well as of E and could give a full
quantitative modeling of Cs2CoCl4. Furthermore, as the angle 2β between easy-plane
orientations enters in the absolute value of Da, �xing E , e. g., by ESR, might help to
answer the question whether β = −38.8◦ or β = 19.4◦ (as proposed in Ref. 110) by a
comparison to a thorough theory of the magnetic ground state. However, at present no
theory is available that fully accounts for the complex magnetic lattice of Cs2CoCl4.

In-plane anisotropy E in the one-dimensional spin chain

The comparatively large in-plane anisotropy E derived above is in contradiction to
the established XY -like anisotropy of the one-dimensional spin chain magnetism of
Cs2CoCl4 at elevated temperature. Although corrections are expected from a more
detailed theory, the large value might be justi�ed by other means. In case the thermo-
dynamic properties of the one-dimensional magnetism are hardly a�ected by a �nite
E , it might be simply undiscovered from the high-temperature data and still drive
the observed magnetic order. To model the impact of an in-plane anisotropy E on the
one-dimensional magnetism the Alps code was used [57]. The spin-3/2 Hamiltonian

H3/2
D,E =

∑
i

[
JH ~S i · ~S i+1 +D(S iz)2 + E

(
(S ix)2 − (S iy)2

)]
(4.56)

gives the full description of the splitting of the spin-3/2 states by the the in-plane
anisotropy E and the out-of-plane anisotropy D. It has been implemented in the Alps
code as an individual spin model. The isotropic coupling of Heisenberg type JH = 0.74 K
and the anisotropy D = 7 K are �xed to the values derived in Chapter 4.2. Exact
diagonalization of a chain lattice could be performed here only up to 8 sites, using
periodic boundary conditions.

The calculated speci�c heat as a function of temperature for di�erent values E is shown
in Fig. 4.41 (a). The broad maxima at about 6K arise from the splitting of the spin-
3/2 states by the anisotropies D and E . They represent the analogon to the Schottky
contribution seen in Cs2CoCl4 around 5K, but with the inclusion of an additional
in-plane anisotropy. Small values E . 1 K have very little in�uence on the Schottky
contribution. The shift of the Schottky anomaly for increasing E can be understood as
well by neglecting the interaction JH and instead considering the splitting of the spin-
3/2 states both by the in- and out-of-plane anisotropies as described by the single-ion
Hamiltonian

HD,Esi = DS2
z + E(S2

x − S2
y). (4.57)

Diagonalization of Hs.i.
D,E yields the gap between the Sz = ±3/2 and Sz = ±1/2 states

which linearly depends on D and E :

∆E = 2 |D + E| . (4.58)

As shown in Fig. 4.41 (a) the Schottky anomaly around 5K is thus simply shifted
to slightly higher temperature by increasing E . The decrease of the absolute value
of the speci�c heat at the maximum is explained by the increasing separation of the
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low-temperature correlated regime from the Schottky anomaly by increasing E . As the
apparent gap ∆E of the Schottky anomaly only depends on the sum of E and D, both
quantities cannot be obtained simultaneously from the speci�c heat at high tempera-
tures which remains a simple Schottky-like contribution. At temperatures comparable
to the correlations more pronounced changes are expected due to the anisotropy of the
exchange constants Jx, Jy and Jz which is induced by E . Resilient data are obtained
from H3/2

D,E , however, only at temperatures T � JH, i. e., above T ≈ 2 K. The numerical
e�ort in exact diagonalization limits the system size to 8 sites such that at low tem-
perature T . 2 K, where correlations dominate, the speci�c heat is strongly in�uenced
by �nite size e�ects (shown as shaded area in panel (a) of Fig. 4.41). For the inclusion
of an in-plane anisotropy also in this temperature range, instead the e�ective spin-1/2

Hamiltonian is considered,

H1/2
XY Z =

∑
i

(
Jx(S

i
xS

i+1
x ) + Jy(S

i
yS

i+1
y ) + Jz(S

i
zS

i+1
z )

)
. (4.59)

Here S is a spin-1/2 operator and the in-plane anisotropy is re�ected by the three
individual couplings Jx, Jy and Jz. In comparison to the XXZ Hamiltonian derived in
Chapter 2.3.1, also the couplings of the x and y components of the spin di�er,

Jz = Jz,0, Jy = Jy,0 − δ, Jx = Jx,0. (4.60)
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Figure 4.41: Speci�c heat of a spin-3/2 (a) and a spin-1/2 chain (b) with di�erent in-plane
anisotropies. Exact diagonalization of Eqns. (4.56) and (4.59) was performed for system sizes
L = 8 and L = 16, respectively, using periodic boundary conditions. Open symbols indicate
the magnetic contribution cmag extracted from the measured speci�c heat (cf. Chapter 4.2.2).
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The constants Jx,0 = Jy,0 = 2.96 K and Jz,0 = 0.359 K were �xed to the values derived
in Chapter 4.2.2. An in-plane anisotropy E is re�ected in a reduction of Jy by δ. The
calculated speci�c heat is shown in Fig. 4.41 (b) for di�erent values δ. The translation
from δ to the anisotropy energy E is not obvious and probably non-linear due to
the breaking of a rotational symmetry by E . By a comparison of the overlap of the
calculated speci�c heat of both models one may, however, roughly estimate that a
range of δ = 0 � 2 corresponds to values E = 0 � 2 K. With increasing δ the maximum
position of the speci�c heat peak shifts to lower temperatures and the absolute value
of the speci�c heat increases. As Jx becomes the sole dominant coupling for increasing
δ, the Ising model (shown as dashed line) is approached. Due to the small, but �nite
value of Jz it will, however, not be fully realized even in the limit of Jy → 0.

To answer the question if in-plane anisotropies can possibly be realized in the disor-
dered phase of Cs2CoCl4, the numerical results are compared to experimental data in
the following. The Schottky-anomaly at temperatures ∼ 5 K provides only little infor-
mation. It could incorporate both an in- and out-of-plane anisotropy as they enter the
zero-�eld gap in the same way. Assuming that the gap of 7 K, which was extracted in
Chapter 4.2.2 actually consists of a sum D′ + E = 7 K, an anisotropy E = 1.8 K re-
quires a strongly renormalized primary anisotropy D′ = 5.2 K. In turn, the magnetism
in the correlated temperature regime T ≈ J should be in�uenced signi�cantly. The
calculations for δ = 0 (shown as solid lines in Fig. 4.41 (b) ) coincide with the magnetic
speci�c heat which is obtained from the measured cp by subtracting the phononic and
the Schottky contribution as modeled in Chapter 4.2.2. The speci�c heat, calculated
for δ = 0.5, could be roughly matched with the data as well by adjusting the coupling
constants. The absolute value cp(Tmax) of the speci�c heat peak at approximately 1K,
indicated by a dotted line in Fig. 4.41 (b), however, is not changed by adjusting J ,
and is reproduced best for δ = 0. Values δ > 0.5 completely fail to describe cp(Tmax).
Finally, a sizable in-plane anisotropy in the one-dimensional regime of the order of 2 K
can be ruled out by these calculations. A smaller anisotropy E . 1 K may possibly be
hidden in an e�ective apparent gap at high temperature and a slight renormalization
of the main coupling J . This result is in agreement with a study of the anisotropic
susceptibility in the one-dimensional regime [4], which claims a small, but �nite value
of E . 1 K to describe the data. However, the authors confess that the analyzed data
provides only little information on E .

The fact that only small in-plane anisotropies E . 1 K might be possibly realized
in Cs2CoCl4 questions the previously derived phenomenological of the magnetic-order
pattern, which asked for a comparably large E ≈ 2 K. Nevertheless, the model could
be applicable if the magnetic order was accompanied by a structural distortion that
induces or enlarges the demanded anisotropy within the magnetic easy planes.

Symmetry of Dzyaloshinskii-Moriya interactions

Although a tilt of moments away from the magnetic easy plane can be qualitatively
explained by the model system discussed in Chapter 4.3.1, a further complication arises
from the a priori unknown components of the Moriya vectors Dij for di�erent bonds.
In principle Dij can di�er for every coupling between sites i and j. As Dij has to ful�ll
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Figure 4.42: Magnetic order of spins (black arrows) in one (A1-domain) of the four domains
of Cs2CoCl4. Besides the symmetric interchain couplings Jbc (green lines) and Jac (solid blue
line), the components of the Dzyaloshinskii-Moriya vectors are shown as small blue arrows in
two neighboring bc layers. Sites are numbered equivalent to Fig. 4.13. (Based on the results
of Refs. 8 and 116)

the space-group symmetry, one can, however, derive relations between Dij for di�erent
sites i and j. Thus, for a given magnetic structure, the Dzyaloshinskii-Moriya energy

EDM =
∑
i,j

Dij · Si × Sj (4.61)

might be simpli�ed due to symmetry. For a well-de�ned relation one furthermore has
to use a convention which spin comes �rst in the vector product Si × Sj. In analogy
to Ref. 116, the convention used here is that the �rst spin in the product is the one
with the smaller c component. In Fig. 4.42 the symmetry relations of Dij are shown
for the Jbc couplings as blue arrows. They were adopted from a symmetry analysis of
the isostructural compound Cs2CuCl4 [116]. Along b and along c the components Db,
respectively Dc are preserved. Along a all components of D change the sign from one
layer to another. To analyze whether the observed ordered state (shown as black arrows
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in Fig. 4.42) can bene�t from DM interactions one can calculate the total energy EDM
by antisymmetric exchange for the given magnetic order using the named convention
for the vector product. As spins coupled via Jac are antiparallel from one layer n to
the next and as the Moriya vectors Dn

i,j of layer n change sign from layer n to n+ 1 as
well, the total energy can be deduced from that of a single layer:

EDM =
∑
n

∑
i,j

Dn
i,jS

n
i × Snj =

∑
n

∑
i,j

(
(−1)nD1

i,j

)
((−1)nS1

i )×
(
(−1)nS1

j

)
=

∑
n

(−1)nE1
DM

= 0.

(4.62)

Thus, no net energy gain results from any type of Dzyaloshinskii-Moriya interaction
in the bc planes. This questions the applicability of the previously presented model.
Although the model can explain the magnetic ordering of two isolated chains1, it cannot
account for the full magnetic order of Cs2CoCl4 due to the crystal symmetry.

As discussed in the context of the possibly �nite in-plane anisotropy E , another mech-
anism might resolve this issue. If the long-range magnetic order was accompanied by
a lowering of crystal symmetry in such a way that Da did not cancel for the whole lat-
tice, the model could become reasonable again. In other words, Dzyaloshinskii-Moriya
contributions to the frustrated coupling Jbc could then help to lift the frustration that
one would experience for a pure triangular antiferromagnetic lattice. At the same time,
this distortion could induce the in-plane anisotropy E that was discussed above, which
enabled even small DM interactions to stabilize an order with moments not collinear to
b. Such a structural distortion upon magnetic ordering and an accompanied lowering
of symmetry is known from other frustrated systems like BaCo2V2O8 [72], CuFeO2

[158] or some pyrochlore antiferromagnets [159]. Also for several compounds of the
R2CoX4 series [125, 126] structural transitions have been found, although they arise at
higher temperatures between ∼200K to 300K and are independent of magnetic order.
However, similar distortions of the CoCl4 tetrahedra could in�uence the magnetism
of Cs2CoCl4 at temperatures T . TN. However, the present data (cf. Chapter 4.3.2)
do not give a microscopic evidence for such a distortion. In the thermal expansion
at zero �eld a �rst-order transition is found accompanied by a sudden change of the
lattice constants. Yet, this does not proof a change of the structure. The single study
of the magnetic order by neutron scattering in Ref. 8 mainly focuses on the magnetic
intensities and nuclear re�ections have not been analyzed in detail. This question may
be answered by other di�raction techniques at low temperature focusing on a possible
structural change or by spectroscopy probing the crystal-�eld states above and below
the magnetic order transition.

1Considering a single pair of chains only the component Da, which alternates along b, cancels with
the antiferromagnetically ordered spins within chains.
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4.3.2 Experimental results

The magnetic order of Cs2CoCl4 was investigated by measurements of the thermal
expansion and the speci�c heat. Magnetic �elds were applied along di�erent crystal-
lographic and non-principal axes. In this chapter, �rst, experimental details are given
before discussing the obtained thermodynamic data.

The heat capacity was measured using the home-built calorimeter introduced in Chap-
ter 3.2.3. The samples with a typical weight of 10-30mg were �xed to the sample
platform by a small amount of Apiezon N grease. Although in most measurements the
grease's contribution to the total heat capacity is negligible due to the large magnetic
contribution of the sample it was weighed and subtracted based on an extrapolation of
literature data available for higher temperature [95]. The addenda heat capacity was
measured in a separate run and was subtracted as well. Its contribution is signi�cantly
larger than that of the grease, yet about two orders of magnitude smaller than the
sample's signal (see Fig. 4.43 (a) ).

In a �rst test run, the relaxation based method was employed. It was successfully
applied at higher temperature and allows cooling to very low base temperatures due to
the comparably strong thermal link. Selected raw data from a �rst test run using this
method is shown in Fig. 4.43 (b). For this measurement two additional platinum wires
(50µm) were �xed to the sample holder and the sample platform as thermal links. For
several reasons an analysis of the data is di�cult. An increased internal relaxation time
(τ2) leads to a non-exponential time dependence, best seen by the �anks at t = 30 s and
t ≈ 160 s where the heater was switched on and o�, respectively. As di�erent sample
shapes as well as di�erent surface preparation did not signi�cantly reduce the internal
relaxation, the large τ2 probably arises from a small thermal conductivity of Cs2CoCl4
at low temperatures. As the wanted sample's heat capacity is hidden in the small
curvature related to the time constant τ1, a signi�cant error is introduced. Furthermore,
the required long heating times induce further problems. As seen in Fig. 4.43 (b), the
temperature does not relax back to the base line temperature, but to a higher value.
Due to the strong thermal link and the troublesome heating dynamics via contact
resistances, a part of the heat might �ow to the sample holder leading to an elevated
virtual bath temperature and nonphysically large heat capacities. These e�ects could
be reduced by using shorter heating times and measuring smaller samples . However,
then τ1 and τ2 would approach each other, rendering the extraction of the relevant τ1

even more complex. Moreover, the rather strong coupling of the sample platform to
the measurement environment adds noise to the data due to the limited temperature
stability of the cryostat. In magnetic �elds along a and b the magnetic order transition of
Cs2CoCl4 turned out to be of �rst order with a substantial latent heat. Relaxation-time
based methods are inappropriate to measure this kind of transitions, where the heat
capacity strongly changes within a single heat pulse [91]. As the heat capacity, even of
small samples of only few milligrams weight, is exceptionally large, the quasi-adiabatic
heat-pulse method seems more appropriate instead. It allows a determination of cp also
in the vicinity of �rst-order transitions by a rather simple analysis with the drawback
that the lowest reached temperature may be slightly higher due to the reduced thermal
link. For the measurements by the quasi-adiabatic method the Pt-wire thermal links
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were completely removed and the sample platform was suspended using small diameter
nylon �shing wire. Such, only the heater leads (100µmmanganin) and the thermometer
leads (50µm manganin) provide the cooling of the platform. Typical cooldown times
from 1K to ≈ 90 mK are in the range of six or more hours due to the long external
relaxation. The thermal equilibration after applying a heat pulse of 2 s length to the
sample is, thus, well described by a simple linear �t, shown as red lines in Fig. 4.43 (c)
and (d). The internal relaxation time τ2 nevertheless dominates the shape of the curve
and leads to the temperature overshoot around the switching time of the heater at
t = 30 s. The relative size of the overshoot reduces at higher temperature, as seen in
Fig. 4.43 (c), while the slope of the external relaxation slightly increases.

In some of the raw data acquired close to a phase transition, an additional anomaly
is observed, as shown exemplary in Fig. 4.43 (e) for a di�erent sample in an applied
magnetic �eld of 1.5T. In comparison to the total temperature range of the data, the
temperature rise ∆T is tiny, which indicates the strongly increased heat capacity at the
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Figure 4.43: Exemplary raw data obtained in the magnetic order regime of Cs2CoCl4. Panel
(a) shows the di�erent contributions to the total measured heat capacity (open symbols). The
sample holder contribution (green line) and the grease's heat capacity (blue line) are smaller
by at least two orders of magnitude. Panel (b) and (c) show raw data acquired at ≈ 0.1 K
and at ≈ 0.95 K using the quasi-adiabatic heat-pulse method. The green line is a linear �t to
the baseline, the red line is a �t to the data range where the external relaxation dominates.
A trial measurement using the relaxation method (d) is dominated by the internal relaxation
τ2. Some heat pulses in the vicinity of a phase transition (e) show an anomalous step-like
relaxation.
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phase boundary. Furthermore, at t & 35 s the temperature shows a modi�ed relaxation
which is not seen in other curves (e. g. Fig. 4.43 (c) and (d)). The thermal equilibration
after switching o� the heater is in�uenced by the small thermal conductivity of the
sample and by the high contact resistances. After switching o� the heater, the sample
platform is reasonably warmer than the sample such that some parts of the sample may
pick up more heat than others. In the vicinity of a phase transition, thus, a fraction
of the sample volume might undergo the transition during heating as well as during
the relaxation. These e�ects are re�ected in the shape of the measured temperature
of the sample platform by a large overshoot and by a non-trivial relaxation process.
Moreover, possible temperature hystereses of cp are suppressed by these dynamics due
to the partial crossing of TN during a single heat pulse even below TN. The absolute
values of cp close to the transition temperature should, therefore, be treated with some
caution. Due to the small width of the magnetic order peaks in the low-�eld range
(< 0.2 T), the transition temperature is �xed by only few data points and the peak
shape is not fully resolvable. Yet, the appearance of latent heat indicates the �rst-order
type of these transitions. In the analysis of the heat pulses, as described in Ref.160 and
Chapter 3.2.1, the internal relaxation and the non-homogeneous thermalization induce
a systematic error of approximately 10% to the absolute value of the heat capacity due
to the dependence of the obtained ∆T on the �t boundaries (cf. Chapter 3.2.1). The
following conclusions, however, rarely depend on the exact absolute values of the heat
capacity. Especially the obtained phase diagrams are hardly in�uenced by the present
τ2 e�ect.

Thermal expansion and magnetostriction were measured using a home-built capaci-
tance dilatometer [105]. The capacitance was measured with an AC capacitance bridge
(AH2550A, Andeen Hagerling). At low temperatures of . 0.1 K the thermalization
of the sample holder and the sample itself have to be considered, as demonstrated
by the odd relaxation phenomena in the speci�c heat raw data. First, thermal con-
tact resistances and material properties are strongly in�uenced at low temperature,
and secondly magnetocaloric e�ects can be more pronounced. To exclude these ef-
fects, very slow magnetic-�eld sweep rates down to 1mTmin−1 were used for the
measurements. All data were acquired with the magnetic �eld applied parallel to the
crystallographic axes along which the length change ∆L was measured. The uniaxial
thermal-expansion coe�cient αi and the magnetostriction coe�cient λi were obtained
numerically, (αi, λi) = 1

Li

∂∆Li
∂(T,µ0H)

.

Zero-�eld speci�c heat

The speci�c heat of Cs2CoCl4 measured without an external magnetic �eld is shown
in Fig. 4.44 in comparison to the digitized literature data of Ref. 3. Both data show an
anomaly at TN = 220± 5 mK that indicates the transition from the high-temperature
paramagnetic to the ordered antiferromagnetic phase. A similar transition tempera-
ture was found by neutron scattering [8]. Below the transition temperature, however
deviations of the present data from the literature results are found. While the present
measurement signals the magnetic order by an extremely sharp anomaly, the literature
data of Algra et al. rather show a broad λ type anomaly that may be interpreted as
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Figure 4.44: Speci�c heat cp of
Cs2CoCl4 below 0.5K at zero �eld
in comparison to the literature
data of Ref. 3. The pink line is
the calculated speci�c heat of the
XXZ model as described in Chap-
ter 4.2.2. The brown dashed line is
a �t of a power-law c(T ) = A · Tα
to the experimental data (open
symbols).
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an indication of a second order phase transition. From the present observation of a
large latent heat in the raw data, as discussed above, and from the hystereses in the
thermal-expansion data, shown below, the transition, however, is very likely to be of
�rst order. The deviation of the data by Algra et al. probably arises from similar issues
in the experiment that partially have been encountered here. In case of too large heat
pulses that induce excessive heating of the sample up to or even above TN, signatures
of the phase transition can be induced in the data also below TN which explains the
enhanced speci�c heat below the transition. Above TN, these issues are less severe and
both data match each other. The temperature dependence of the molar speci�c heat for
T > TN is well described by the XXZ model as shown by the pink line which represents
the zero-�eld exact diagonalization result discussed in Chapter 4.2.2.

Below TN the temperature dependence of the present speci�c heat data resembles
that of a power law cp ∝ Tα with α ' 3.5, shown by a dashed line in Fig. 4.44.
As the phonon heat capacity can be neglected in this temperature range, the power-
law dependence must stem from the ordered magnetic subsystem. In the simplest case
of an ordered antiferromagnet, one expects a temperature dependence of the speci�c
heat cp ∝ T d/n from spin wave theory. Here, d is the dimension of the system and
n the leading exponent of the magnon dispersion relation ω(k) ∝ kn. In case of an
antiferromagnet (d = 3, n = 1) one expects a power-law ∝ T 3 which di�ers from the
experimental �nding of α = 3.5. This deviation might be explained by deviations of
the magnon dispersion from the pure isotropic three-dimensional case. In an idealized
three-dimensional system each spin interacts with z neighbors (z = 6 in case of a
simple cubic lattice) in the same manner. In Cs2CoCl4, however, a strong interaction is
found within chains along the b axis, whereas the interchain interactions are reasonably
smaller by a factor γ. In addition, �nite magnetic anisotropies may open a gap DA in
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Figure 4.45: Dispersion ε(k) (cf. Eqn. (4.63)) plotted as a function of ky (a) and as a
function kx and ky (b). The assumed anisotropy gap DA/(2JS) = 0.1 leads to a deviation
of the dispersion from that of a pure antiferromagnet (dashed line) and at k→ 0. In (b) the
dispersion is plotted assuming γ = 0.05.

the spin wave dispersion at zero momentum. Identifying y with the chain direction, the
classical magnon dispersion can, thus, be rewritten to account for these e�ects:

ε(k) =

√
[2JS (sin ky + γ(sin kx + sin kz))]

2 +DA2. (4.63)

As shown in Fig. 4.45 (a), the introduced anisotropy gap DA leads to a deviation of the
magnon dispersion (red line) at small momenta from the pure case (dashed line) where
excitations at k → 0 are gapless. Along the reciprocal axes x and z the dispersion
depends on γ. For a value of γ = 0.05 the dispersion along kx is shallow as shown for
�xed kz = 0 in Fig. 4.45 (b).

Exploiting the symmetry of ε(k), the molar speci�c heat can be calculated from the
internal energy for arbitrary dispersions by numerical integration

U =
∑
i

εi f(εi) −→ U =
8

π3

π/2y

0

ε(k)f(ε(k)) dkx dky dkz, (4.64)

cp ≈ cv = NAkB

π/2y

0

ε(k)
d

dT
f(ε(k)) dkx dky dkz. (4.65)

Here, f either stands for the Fermi- or for the Bose-Einstein distribution function,

fFermi(E) =
1

1 + eE/kBT
, fBose(E) =

1

eE/kBT − 1
.
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Figure 4.46: Molar heat capacity calculated for di�erent dispersion relations ε(k)
(Eqn. (4.63)) by varying the relative size γ of interchain couplings and the anisotropy gap
DA (solid lines). In case of DA = 0, both Bose- and Fermi statistics were applied (black,
respectively gray line). All other lines were calculated using a fermionic distribution func-
tion. The coupling constant J was �xed to the spin-1/2 value derived at elevated temperature
(cf. Chapter 4.2.2). The dashed orange line is a �t to the experimental data (open symbols)
below TN ≈ 220 mK. In the encircled data range the seeming power law is reproduced by the
calculation for DA = 0.55 K and γ = 0.05.

Magnetic excitations in three dimensions (magnons) are bosons, while in antiferromag-
netic spin chains excitations fractionalize into fermionic spinons. As shown in Fig. 4.46
for values of γ = 1 and DA = 0 (black and gray line) the low-temperature heat capacity
is essentially una�ected by the choice of the statistics and deviations only occur above
1K which is not the temperature range of interest here. Due to the fermionic charac-
ter of the excitations in one-dimensional spin chains, thus, the fermi distribution was
used for the further calculations. In the isotropic case (DA = 0, γ = 1) below ≈ 0.5 K
the heat capacity follows the T 3 dependence expected for an antiferromagnet, which is
re�ected by cp(T ) forming a straight line in the double-logarithmic plot of Fig. 4.46.
Finite values of DA lead to an exponential suppression of the heat capacity at low tem-
perature T . DA due to the introduced gap (plotted for a value DA = 0.5 K as a red
line). Additionally changing the ratio γ between interchain couplings and the coupling
along b leads to an increase of cp at intermediate temperatures T ≈ DA due to the
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increasing number of low-energy modes. The experimental data in the ordered phase
(encircled open symbols) can be matched with the calculation using the parameters

J/kB = 3 K , γ = 0.05, DA/kB = 0.55 K. (4.66)

Here, J was �xed to the high-temperature value obtained in Chapter 4.2.2 and the
relative strength of the interchain coupling γ was inferred from neutron scattering data
[120]. Within the restricted temperature range T < TN, where data points are avail-
able, the plotted blue line yields a reasonable description of the data. In this con�ned
range the temperature dependence is well approximated by a power-law cp(T ) ∝ T 3.5,
shown as a dashed orange line. The experimentally observed power law, therefore, is not
a universal scaling law, but originates from an anisotropic magnon dispersion which
e�ectively generates an approximate power-law dependence in the restricted experi-
mental temperature range. A similar description of the data is possible using slightly
di�erent values of γ and J , which in turn yields di�erent but �nite gaps DA. Thus, for
a quantitative analysis of DA microscopic studies, e. g., by electron spin resonance or
inelastic neutron scattering are required.

The match of the experimental data by the model above TN is striking, given that
the �t of Eqn. (4.65) was performed to data points cp(T < TN) only. However, this is
partly by coincidence. In contrast to the assumed, gapped dispersion ε(k) the magnetic
excitations of the XXZ model at zero �eld are gapless. Yet, the size of the gap DA is
negligible above TN as seen by comparing the speci�c heat for DA = 0.1 K, shown as
a green line in Fig. 4.46, which equals the blue curve for T > TN. Nevertheless, the
assumptions, the classical spin wave theory is based on, are only partially ful�lled above
TN. In spin wave theory a static order is assumed and only small deviations from this
state are considered. Above TN, the XXZ spin chain, however, is ordered only on short
ranges and quantum �uctuations are strong due to the small spin. Deviations from the
�ordered� state are small only at low temperature T � J . In analogy to the discussion
of the seemingly linear temperature dependence of cp(T & TN) in Chapter 4.2.2 the
low-temperature limit T � J is, however, not realized above TN. Nevertheless, the
good agreement of the calculated speci�c heat with the data above TN, is explained by
comparing the dispersion relation ε(k) of Eqn. (4.63) to that of the XXZ spin chain.
In the limit of the exactly solvable XY model, the dispersion εXY (k) of magnetic
excitation is known [130, 161],

εXY (k) = 2J · cos k − hz. (4.67)

Here, a longitudinal magnetic �eld hz leads to a linear shift of the dispersion and
induces a transition at a critical �eld hc = 2J . At zero �eld, εXY follows a simple
cosine dependence. Expanding εXY at k = π/2 in lowest order gives a linear dispersion
with a slope of 2J , identical to the spin wave dispersion ε(ky) in case of a vanishing
anisotropy gap DA = 0. At �nite temperature T > DA the anisotropy gap is negligible
and the speci�c heat is mainly determined by that slope. The match of the calculated
speci�c heat also for T > TN, thus, is explained by the similar k dependence of the
classical spin wave dispersion and the magnetic excitations of the one-dimensional XY -
like spin chain.
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Figure 4.47: Speci�c heat of Cs2CoCl4 for magnetic �elds applied along c (left) and a (right).
Curves are o�set with respect to each other by 2, 2, 1, 4, and 10 J mol−1 K−1 in panels (a) �
(e), respectively.

Speci�c heat in magnetic �elds along a and c

Figure 4.47 displays the speci�c heat of Cs2CoCl4 in magnetic �elds applied along a
or c. Up to 1.0T, the temperature dependence of cp in the ordered phase remains well
described by the same power law cp ∝ Tα with α = 3.5 as in zero �eld (see Fig. 4.48).
Apart from this, the peak which indicates magnetic order shifts to higher temperatures
with increasing �eld. This enhancement of TN can be understood as a suppression of
�uctuations by small magnetic �elds and is also seen as an increase of the ordered
moment as a function of the �eld [8]. For magnetic �elds applied along a, a maximum
transition temperature TN ' 330 mK is obtained at 1.0T. The �eld dependence of TN
explains the appearance of peaks around 0.3K in some of the high-temperature data
presented in Chapter 4.2. Further increasing the magnetic �eld, TN shifts back to lower
temperatures and the power-law exponent gradually changes from α = 3.5 to an even
larger value of α ' 4.5 at 2.0T (green symbols in Fig. 4.48). As in zero �eld, the
seeming power-law dependence in a restricted temperature range could derive from a
dispersion which becomes increasingly gapped by magnetic �elds. In a small adjacent
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Figure 4.48: Speci�c heat of Cs2CoCl4
for selected magnetic �elds applied along
c. In this double-logarithmic plot straight
lines represent a power-law temperature
dependence cp ∝ Tα. The shaded area rep-
resents α = 3.
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Figure 4.49: Speci�c heat of Cs2CoCl4
in magnetic �elds applied along a. The
experimental data (symbols) are �tted by
the sum of a Schottky contribution (solid
line) and a nuclear contribution (dashed
line).

�eld range (2.0 T < µ0H ‖ a < 2.2 T) the peak position hardly depends on the magnetic
�eld, see Fig. 4.48 (e). In case of 2.1 T < µ0H ‖ c < 2.3 T even a slight increase of
the peak position is observed due to the higher data quality of these measurements. A
fundamental change of the ground state properties is also signaled by a change of the
temperature dependence of cp in this �eld range from that at 2T (α = 4.5) as shown
in Fig. 4.48 for the �eld applied along c. If a description by a power law is appropriate
at all, due to the small temperature range, a value of α, however, is hardly obtained
from the data. At a magnetic �eld µ0H ‖ c = 2.15 T instead of the previous single
peak even a splitting into two distinct features is found. The lower-temperature peak
resembles the previous single peaks at lower magnetic �elds in shape and it follows
an extrapolation of the peak position's �eld dependence. The additional upper peak
is similar to those found at magnetic �elds larger than 2.15T. Further increasing the
magnetic �eld, both transitions are suppressed to lower temperatures. Finally, above
2.5T a gap-like behavior of the speci�c heat arises for both �eld directions.

Nuclear contribution to the speci�c heat at high �elds

The data in the high-�eld range for H ‖ a are shown in Fig. 4.49 in more detail. With
increasing �eld the speci�c heat is suppressed, corresponding to the opening of a gap
by the magnetic �eld. At 3T the gap is large enough to neglect any dispersions and
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to phenomenologically describe the data by a simple two-level systems with an energy
gap ∆E, yielding a Schottky contribution to the speci�c heat,

c∆E
p (T )

R
=

(
∆E

kBT

)2
e∆E/kBT

(1 + e∆E/kBT )
2 . (4.68)

A �t of c∆E
p (T ) (solid line in Fig. 4.49) yields the �eld-induced gap ∆E/kB ' 1.9 K. An

additional low-temperature contribution arises at T . 0.2 K which might stem from
hyper�ne interactions. The thermal population of the split nuclear spin states leads
to another Schottky anomaly in the speci�c heat. Typically, in experiments only the
high-temperature tail of this contribution is seen due to the small size of the splitting.
In the high-temperature approximation of the heat capacity,

cNp (T )

R
=
I + 1

3I

(µNµ0He�)2

(kBT )2
, (4.69)

the e�ective �eld He� at the nucleus, the nuclear magneton µN = e~/2mp and the
nuclear spin I = 7/2 (in case of cobalt) enter the temperature dependence. Fitting cNp
to the low-temperature data yields an e�ective �eld µ0He� ' 64 T. This value lies in
the typical range obtained for metals, but exceeds the value of about 20T reported for
pure cobalt [162, 163].

Thermal expansion and magnetostriction

Figure 4.50 shows the thermal expansion and the magnetostriction ∆L/L ‖ a as a
function of temperature and magnetic �eld. In general, the �eld dependence of the order
transitions resembles that extracted from the speci�c heat. Increasing the temperature
at zero magnetic �eld a drop of approximately 2 · 10−6 in ∆L/L signals the magnetic
order. The obtained transition temperature of 240mK is higher than the TN = 220 mK
found in the speci�c heat, marked by a dashed line in Fig. 4.50 (a). In addition, the
transition shows a strong temperature hysteresis which is roughly centered around
the transition temperature TN obtained from the speci�c heat. The di�erence between
both methods arises from the experimental issues during the acquisition of the speci�c
heat data. A strong τ2 e�ect, apparent in the speci�c heat raw data as discussed in
Chapter 4.3.2, leads to a reduction of the hysteresis e�ects of cp in comparison to
the thermal expansion. In contrast to the step-wise acquisition of the speci�c heat,
the thermal-expansion data are obtained while slowly, but continuously heating and
cooling the sample. In addition, the average sweep rate is larger than in the speci�c-heat
measurement which requires a lengthy temperature stabilization.

Before further discussing the data at �nite magnetic �eld, the mechanism behind the
hysteresis of the magnetic order transition at TN is analyzed in more detail. The thermal
expansion measurements with ∆L/L ‖ b were repeated at di�erent sweep rates from
1mK/min up to 50mK/min (Fig. 4.51). Decreasing the sweep rate, the transition
sharpens and at the smallest sweep rate a step-like anomaly arises, which is a typical
indication for a �rst-order transition. The width of the hysteresis, however, does not
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Figure 4.50: Thermal expansion (left) and magnetostriction (right) of Cs2CoCl4 in magnetic
�elds applied along a. The ∆L/L curves in panels (a) and (b) are o�set with respect to each
other by 4 · 10−6. The values of α and λ in panels (c) and (d) are o�set by 2 · 10−6/K and
5 ·10−5/T, respectively. Bold (thin) lines represent measurements with increasing (decreasing)
temperature or �eld (indicated by arrows) acquired with rates of 3 mK/min or 5 mT/min,
respectively.

remain �nite in the limit of a vanishing sweep rate Γs → 0. As plotted in the inset of
Fig. 4.51, the dependence of the hysteresis width on Γs is rather �tted by a power-law
with an exponent of 0.52. Due to the strong thermal coupling by clamping of the sample
during the measurements, experimental origins for the narrowing of the hysteresis can
be excluded. Instead, a simple model for the dynamics of domain walls at the phase
transition can give an explanation for the observed square root dependence [164]. In
this model the transition is assumed to be of �rst order and the motion of domain walls
is supposed to be the driving mechanism of the transition rather than the nucleation of
domains. At the Néel temperature TN the ordered and the non-ordered phases in the
system have the same energy. The di�erence of the free energy densities ∆f between
two phases is approximately linear in T − TN for a �rst-order transition and can be
identi�ed with a pressure on the domain wall. Moving a domain wall with an area A
by a distance ∆r leads to an energy gain

∆F = ∆f A∆r. (4.70)
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Figure 4.51: Temperature hys-
teresis of the Néel transition of
Cs2CoCl4 in zero magnetic �eld.
The thermal expansion ∆L(T ) ‖ b
was measured while continuously
increasing or decreasing the tem-
perature (indicated by arrows)
with di�erent sweep rates. Inset:
The hysteresis width is a square
root function of the sweep rate Γs.
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Due to friction, the velocity v of a domain wall is proportional to the force, v ∝ ∆f ·A ∝
T − TN. During the temperature sweep T − TN changes with time as de�ned by the
sweep rate Γs,

T − TN = Γst. (4.71)

The distance ∆r that a domain wall has moved after time t therefore is given by

∆r = v · t ∝ Γst
2. (4.72)

Due to the increasing force as a function of time, ∆r is a quadratic function of t. If
after a time ts a domain wall has traveled by a distance ∆rs which is of the order of
the distance between nucleation centers of domains, the phase transition is completed.
From Eqn. (4.72) one obtains the time ts ∝ 1/

√
Γs. The width of the hysteresis expressed

in temperature, therefore, is given by

Γsts ∝
√

Γs (4.73)

as observed in the experiment. Given that a latent heat was observed in the speci�c-
heat raw data, the transition is inferred to be of �rst order and mainly driven by the
motion of domain walls.

Upon the application of magnetic �elds the hysteretic character of the transition is
maintained and the transition temperature is shifted to higher temperature. A maxi-
mum transition temperature is reached at 1.5T as indicated by peaks of the thermal
expansion coe�cient α centered around 320 mK (Fig. 4.50 (c) ). Similar to the results
for the speci�c heat, larger magnetic �elds lead to a suppression of the critical tempera-
ture. However, no anomalies are present in the thermal expansion above 2.1T, whereas
clear peaks were observed in cp(T ) at these �elds. This contradiction is resolved by the
fact that the thermal expansion αi of the axis i is proportional to the uniaxial pressure
dependence of the transition temperature, αi ∝ ∂Tc

∂pi
. In case of a second-order phase

transition this derives from the Ehrenfest relation

dTc
dpi

= TcVm
∆αi
∆c

(4.74)
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and in case of a �rst-order transition from the Clausius-Clapeyron relation

dTc
dpi

=
∆Li/L

∆S/Vm
. (4.75)

The absence of anomalies in α does not exclude a phase transition, but only indicates
that the transition temperature has a small pressure dependence. From Eqn. (4.75)
one can, furthermore, deduce the pressure dependence of the critical temperatures
by analyzing the sign of the anomalies of ∆Li at the transition. Such, the evolution
of phase diagrams as a function of pressure can be inferred as will be discussed in
Chapter 4.3.3.

The magnetostriction in panels (b) and (d) of Fig. 4.50 at temperatures T > 250 mK
shows two anomalies as a function of the magnetic �eld H ‖ a. Due to a maximum of
TN(H) at about 1.5T, the phase boundary between the paramagnetic and the ordered
phase is crossed twice as a function of the �eld. These transitions are accompanied by
a sizable hysteresis that narrows by decreasing the temperature. In case of the upper
transition, the hysteresis even completely vanishes at the lowest temperature of 71mK.
The critical �eld is �xed by a sharp anomaly of λ at Hc,1 = 2.1 T. Additionally, a
second transition appears at low temperature, which is seen as a kink in ∆L/L and as
a small maximum in λ at a slightly larger magnetic �eld Hc,2 = 2.4 T which is almost
independent of the temperature up to 157mK. No hysteresis is found at Hc,2 in any of
the measurements which indicates that the transition at Hc,2 is of second order.

Magnetic �eld along b

A magnetic �eld along the b axis of Cs2CoCl4 is unique for the symmetry of the crystal,
as it is the only �eld direction which lies within both types of magnetic easy planes
(cf. Chapter 4.1.1). This fact gives rise to the description of the one-dimensional mag-
netism by the XXZ model in transverse �elds, i. e., �elds perpendicular to the local
quantization axes of the spins. Concerning the magnetic order of Cs2CoCl4 this �eld
direction is also special. As in the zero-�eld Néel-state the magnetic moments are ori-
ented mainly along b, the application of magnetic �elds collinear to the ordered spins
might give rise to spin-�op transitions.

The speci�c heat for H ‖ b (Fig. 4.52) indeed di�ers from those measured in magnetic
�elds applied along a and c. Instead of an enhancement of TN by small �elds, as in
case of magnetic �elds applied along a and c, here a suppression of the transition
temperature by small magnetic �elds is found. An additional small anomaly is seen
around 130 mK in the 0.2T-data, which indicates a more complex dependence of the
ground state on the magnetic �eld. This anomaly is, however, only present at 0.2T and
not observed at 0.25T, where again only a single peak is found. Starting above 0.4T the
single peak splits into two (marked by arrows in Fig. 4.52). The upper peak is shifted to
higher temperatures in magnetic �elds and reaches a maximum temperature of 0.35K
at a magnetic �eld of 1.5T. The dependence of the lower peak on the magnetic �eld is
more complex. First it is shifted to a minimum temperature of 117mK at 0.75T. Then
it is shifted to higher temperature again and reaches a maximum of about 0.2K at 1.5T.
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Figure 4.52: Speci�c heat of
Cs2CoCl4 for di�erent magnetic
�elds H ‖ b. Curves are o�set with
respect to each other. Two dis-
tinct phase transitions are present
in a �eld range from 0.5 to 1.8 T
(marked by arrows).
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Increasing the magnetic �eld further, it is rapdily shifted to lower temperatures and
cannot be observed any longer at 1.9T. From 1.5T to 1.9T the upper transition has
a comparably small dependence on the magnetic �eld before it is also shifted towards
T → 0 in magnetic �elds larger than 2.2T. At 3T an overall suppression of cp arises
and the gap-like temperature dependence of the speci�c heat indicates the opening of
a gap in the fully polarized phase.

Similarly, a rich magnetic-�eld dependence arises in the measurements of the thermal
expansion and the magnetostriction (Fig. 4.53). The relative length change ∆L(T )/L
at zero magnetic �eld shows a step-like anomaly close to TN that is shifted to lower
temperatures by increasing the magnetic �eld. As discussed above, the hysteresis of the
transition depends on the temperature sweep rate. In contrast to the drop of ∆L/L
upon increasing the temperature for H ‖ a, here, ∆L/L increases with increasing tem-
perature, which indicates the contrary dependence of the transition temperature on
pressures along b. Between 0.5T and 1.3 T, the thermal expansion ∆L/L ‖ b is com-
parably featureless and does not show sharp anomalies as they are seen in the speci�c
heat. Only above 1.5T, at about 0.2K a kink of ∆L/L reappears which shifts towards
lower temperatures by increasing the magnetic �eld. Similar to the speci�c heat, two
anomalies appear again at a �eld of 1.9T which then are shifted to lower temperature
by further increasing the �eld. Finally, both anomalies vanish at about 2.3T. The mag-
netostriction data (Fig. 4.53 (c) ) give further evidence for multiple phase transitions
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Figure 4.53: Thermal expansion (left) and magnetostriction (right) of Cs2CoCl4 in magnetic
�elds along b. In (a) the ∆L(T )/L curves for di�erent magnetic �elds are shifted according to
the measured magnetostriction ∆L(H)/L at T = 50 mK shown in (c). The other curves in (c)
are o�set by 10−5 and by 5 · 10−5/K in (b). In all panels, only data obtained with increasing
temperature or �eld are shown.

as a function of the magnetic �eld. A saturation of ∆L/L sets in at magnetic �elds
µ0H > 2.3 T, similar to the magnetization, which for H ‖ a is known to be saturated in
this �eld range as well [8]. At the lowest temperature of 50mK, three main features are
found in the data. Two anomalies at 0.26 T and at 1.9 T are re�ected as sharp peaks
in λ, see Fig. 4.53 (d). Prior to the saturation an in�ection point with an increased
slope is found in ∆L which gives rise to a third peak of λ at about 2.3T. Moreover,
additional anomalies show up as small step-like increases of ∆L/L at 0.22, 0.43, and
0.67 T. However, they cannot be resolved when increasing the temperature to 200mK.
From the other dominant anomalies the upper two are broadened by increasing the
temperature and can still be observed as maxima of λ at 200mK. The lower transition
remains sharp and is shifted to slightly smaller �elds at that temperature. At 400mK
only a single, broad maximum of λ(H) around 2T remains, originating from the one-
dimensional magnetism in the paramagnetic phase. In contrast to the magnetostriction
data for �elds along a no sizable �eld-induced hysteresis is found at any temperature
in the data.
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4.3.3 Phase diagrams

All phase transitions that were observed in the �eld- and temperature-dependent mea-
surements of the thermal expansion and the speci�c heat are plotted in Fig. 4.54 as
�eld versus temperature phase diagrams for the three principal magnetic �eld direc-
tions. In case of H ‖ c only speci�c heat measurements were performed. For the other
�eld directions the phase boundaries extracted from di�erent techniques agree with
each other within the bounds of hysteresis e�ects. As discussed above, the transition
temperatures measured by the speci�c heat approximately bisect the hysteresis width
seen in the thermal expansion. In general the phase diagrams for H ‖ a and H ‖ c
closely resemble each other. The critical �elds for H ‖ a are slightly larger which can
be explained by small anisotropies of the g tensor. The zero-�eld Néel temperature
TN ' 220 mK is initially enhanced by magnetic �elds along a and c up to 1.5T. Fur-
ther increasing the �eld, the hysteresis is continuously narrowed and TN is suppressed
to zero temperature. From the combined observations by the di�erent methods, an
additional phase adjacent to the antiferromagnetic phase is revealed that is well de-
�ned by the speci�c heat data and also con�rmed by the magnetostriction. The entry

Figure 4.54: Phase
diagrams of the low-
temperature ordered phases
of Cs2CoCl4 in the H − T
plane for magnetic �elds
along all three crystal-
lographic axes. Symbols
indicate anomalies in dif-
ferent thermodynamic
properties. Shaded areas are
guides to the eye. The �eld
dependence of the speci�c
heat (red lines, right scale)
was measured at a constant
temperature of 0.11K. In
case of H ‖ b it indicates the
presence of two spin-�op
phases, SF1 and SF2. Within
phase II cp(H) is strongly
enhanced. HC,XXZ marks
the critical �eld of the
one-dimensional XXZ chain
derived in Chapter 4.2.
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of this phase, referred to as phase II in the following, is accompanied by a step-like
increase of the speci�c heat (red line, right scale of Fig. 4.54) in-between the critical
�elds µ0Hc,1 ' 2.1 T and µ0Hc,2 ' 2.4 T. In a study of the ordered phases of Cs2CoCl4
in �elds along a, an identical critical �eld Hc,1 was found [8]. In magnetic �elds larger
than Hc,1 no signature of magnetic order were identi�ed by Kenzelmann et al. and a
spin-liquid state was proposed for magnetic �elds Hc,1 < H < Hm, where Hm is the
saturation �eld of the magnetization. In addition to the neutron results of Kenzelmann
et al., both the speci�c heat and the magnetostriction, however, clearly indicate a phase
transition at a second critical �eld Hc,2 and as a function of the temperature for �elds
Hc,1 < H < Hc,2. This extension of the literature phase diagram gives good reason to
doubt the conclusions of Kenzelmann et al. which are mainly based on a crossover line
that was extracted from the magnetization.

The phase diagram for magnetic �elds applied along b is more complex. Considering
the similarities �rst, as a function of the magnetic �eld at lowest temperature a change
of the ground state at magnetic �elds & 2 T is indicated by the magnetostriction
and by the heat capacity. The heat capacity in this �eld range is enhanced in the
same way as for the entry of phase II for the other �eld directions. As, furthermore,
the �tted power-law dependencies of cp(T ) for Hc,1 < H < Hc,2 are almost identical
for all three magnetic �eld directions (see Fig. 4.55 and Tab. 4.5), the phase II is
concluded to arise irrespective of the magnetic �eld direction. Yet, it is most favored
by a magnetic �eld along b as demonstrated by the wide extension of the phase in the
H − T plane at �nite temperature. From the speci�c heat data a maximum transition
temperature around 1.5T is found which represents an even larger enhancement of
the zero-�eld TN than for the other �eld directions. Moreover, phase II extends down
to a small �eld of about 0.3T where it merges with the antiferromagnetic phase and
another low-temperature phase (SF1) in a triple point. The appearance of two peaks
as a function of temperature in some of the speci�c heat data can be explained by
additional low-temperature spin-�op phases. Di�ering from the other principal �eld
directions, in case of H ‖ b further low-temperature phases arise. According to Ref. 8
the magnetic order at zero �eld is characterized by moments mainly collinear to b,
forming a small alternating angle of ≈ ±15◦ with the b axis. Neglecting this tilt the
geometries with H ‖ a and H ‖ c are symmetry equivalent. In both cases an applied
magnetic �eld is perpendicular to the ordered moments and leads to a canting of
moments into the �eld direction. Due to the suppression of �uctuations by small �elds,

α

Phase H||a H||b H||c
AF (< 0.25 T) 3.5 3.5 3.5
SF1 (0.25-0.7T) - 3.02 -
SF2 (0.7-2T) - complex -
II (≈2-2.4T) 2.68(15) 2.63(4) 2.69(7)

Table 4.5: Exponents α of the power-law dependence of the speci�c heat cp ∝ Tα of Cs2CoCl4
for di�erent magnetic �eld directions. The spin-�op phases SF1 and SF2 only arise in case of
H ‖ b.
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Figure 4.55: Selected temperature dependences of cp in di�erent low-temperature phases of
Cs2CoCl4 in magnetic �elds along b. Shaded labels indicate the respective low-temperature
phase at the given magnetic �eld. Dashed lines are �ts of cp(T )/R = A · Tα.

in addition, the total ordered moment initially increases before the antiferromagnetic
order re�ections disappear at Hc,1. This gives rise to the denomination of this phase as
a canted antiferromagnet (CAF). The case of H ‖ b, however, di�ers by the �eld having
a large collinear component to the ordered moments. Such a con�guration typically
induces spin-�op transitions. The speci�c heat and the magnetostriction in fact indicate
a transition at a small magnetic �eld µ0HSF1 ' 0.25 T. While cp strongly increases
at HSF1, the magnetostriction ∆L/L(H) shows a step-like anomaly, respectively the
magnetostriction coe�cient λ shows a sharp peak. The temperature dependence of cp,
that is described by a power-law with an exponent α = 3.5 at zero �eld, also abruptly
changes at HSF1 to a lower power of 3.0 (see Fig. 4.55), which clearly di�ers from
the observation of a constant α in case of H ‖ c < 0.5 T (Fig. 4.48). Up to HSF2 ‖ b '
0.7 T the exponent α remains constant. At HSF2 the magnetostriction coe�cient shows
another peak and the speci�c heat is strongly reduced again. At higher �elds the
temperature dependence of cp is no more described by a simple power law. These
�ndings are summarized in Tab. 4.5 and Fig. 4.55.

Further weak anomalies are seen at small magnetic �elds in the magnetostriction data
(Fig. 4.56), in both the data acquired with increasing and decreasing the magnetic
�eld. At the lowest temperature of 50mK, besides the two anomalies at HSF1 and
HSF2, that coincide with the rise of the heat capacity, small additional features occur
which are marked by gray arrows in Fig. 4.56 and in case of the upper anomaly by
symbols located within the phase SF1 in the phase diagram for H ‖ b in Fig. 4.54. The
upper anomaly close to 0.45T, is hardly resolved at 100mK and vanishes completely by
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Figure 4.56: Low-temperature magnetostriction of Cs2CoCl4 in magnetic �elds along b at
selected constant temperatures. Labelled arrows mark the critical �elds HSF1 and HSF2 that
are in consensus with the sudden rise of the speci�c heat. Gray arrows indicate additional
features in the data that might be related to domain e�ects. The data are o�set by 5·10−7.

increasing the temperature to 150mK. The lower anomaly at about 0.21T is present up
to 150mK and suggests a two-step character of the transition. At present the origin of
these anomalies remains unsolved, although they might be related to domain e�ects.

Due to the mentioned geometry of the magnetic �eld being collinear to the ordered
moments, an explanation of the transitions at HSF1 and HSF2 as a two-stage spin-�op
transition arises. This kind of transition may develop from DM interactions between
spins of neighboring chains. The symmetry of the Co-Cl-Cl-Co superexchange paths
between spin chains in Cs2CoCl4 is indeed low enough to allow for DM interactions (see
Chapter 4.1.2). As these interactions favor a perpendicular alignment of spins, they can
stabilize a state where a spin-�op is performed only in every second neighboring chain.
In an intermediate �eld range HSF1 < H < HSF2 the energy gain by DM interactions
overcomes the Zeeman energy of the non-�ipped spin chain (see Fig. 4.57). Above
HSF2, �nally, a fully spin-�opped state evolves. Such two-stage spin-�op transitions
have previously been observed in other compounds with easy-plane magnetism, e. g.,
in BaCu2Si2O7 [165].

In analogy to the textbook example of a spin-�op transition it can be shown from
a classical calculation that by including DM interactions two phase transitions as a
function of the magnetic �eld ~h = (0, hy, 0) can emerge. In the geometry depicted in
Fig. 4.57 the interaction terms can be explicitly calculated assuming classical spins
parametrized by

S1 =

sinα1

cosα1

0

 , S2 =

sinα2

cosα2

0

 . (4.76)
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Figure 4.57: Schematic drawing of the magnetic ordered phases of Cs2CoCl4 as a function
of the magnetic �eld H ‖ b. Arrows of di�erent color represent spins of di�erent chains with
di�erent easy-plane orientations. In the AF phase all spins are nearly antiparallel to each
other and collinear to the �eld. In SF1 only half of the chains perform a spin-�op transition.
SF1 is stabilized by Dzyaloshinskii-Moriya interactions between spins of di�erent chains. In
SF2, the DM energy is overcome by the �eld and a spin-�op is performed in all chains. Phase
II could be an incommensurate or a nematic phase. In the saturated phase spins are aligned
along the �eld direction.

The total energy of an arbitrary state with both spins in the x, y-plane, as de�ned by
the angles α1 and α2, consist of �ve contributions:

intrachain: EJ = −J
(∑

Si1 · Si+1
1 + Si2 · Si+1

2

)
DM: EDM = −D · S1 × S2 = −Dz sin(α1 − α2)

Zeeman: EZ = −h · (S1 + S2) = −hy(cosα1 + cosα2)

interchain: EJ ′ = −zJ ′S1 · S2 = −zJ ′ cos(α1 − α2)

anisotropy: EA = −DA
[
(S1 · ey)2 + (S2 · ey)2] = −DA(cos2 α1 + cos2 α2).

In the term EJ ′ describing the interchain interactions z stands for the number of neigh-
boring chains to consider. The anisotropy DA de�nes the axis of the antiferromagnetic
order at zero �eld and can be understood in analogy to the anisotropy gap in the
magnon dispersion derived above. In the term EDM the index i denotes the site along
the chain 1, respectively 2. DM interactions are considered only within the x, y-plane,
i. e., only the z-component Dz of the Moriya vector D contributes, weighted by the
relative angle between the spins. Symmetric interactions J ′ between spins of di�erent
chains contribute by a cosine-dependence on the relative angle between them. Using
the geometry sketched in Fig. 4.57 the energy of the spin con�gurations in the phases
AF, SF1 and SF2 are given by

EAF = −2J −zJ ′ −2DA
ESF1 = −J(1− cos ξ1) −Dz cos ξ1 −hy sin ξ1 −DA

(
sin2 ξ1 + 1

)
ESF2 = −2J cos ξ2 −Dz sin 2ξ2 −2hy sin ξ2 −zJ ′ cos 2ξ2 −2DA sin2 ξ2

(4.77)

In the AF state all spins are collinear with the �eld. Thus, neither DM interactions nor
the magnetic �eld term contribute. In the phase SF1 the intrachain exchange J is fully
gained in one half of the chains and is lowered in the other with increasing the tilt angle
ξ1. In this state the interchain coupling J ′ cancels due to the alternating y-component
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of spins in chain 2. In phase SF2 the intrachain coupling is further reduced by the tilting
of all spins into the �eld direction, whereas at the same time more Zeeman energy is
gained by tilting. The tilt angles ξ1 and ξ2 are found by minimizing ESF1 and ESF2. In
second order of ξ1,2 one �nds that

ξ1 =
hy

J +Dz − 2DA
, ξ2 =

Dz + hy
J + 2zJ ′ − 2DA

. (4.78)

In turn, one obtains rather complex dependences of ESF1 and ESF2 on the magnetic
�eld that in the present form only allow for numerical predictions. Neglecting the
Dzyaloshinskii-Moriya term in phase SF2, simpler relations follow that agree well with
the exact numerical results in the �eld range of interest. Phase SF2 is mainly deter-
mined by the large magnetic �eld and the in�uence of Dz is comparably small as it
linearly enters Eqn. (4.77) scaled by sin ξ2, where ξ2 is additionally assumed to be small.
Therefore, DM interactions can be neglected in SF2, i. e., Dz = 0. Such, the energies
of the spin-�op phases in second order of hy are given by

ESF1 = −2J −DA −Dz −
h2
y/2

J +Dz − 2DA
, (4.79)

ESF2 = −2J − zJ ′ −
h2
y

J + 2zJ ′ − 2DA
. (4.80)

Comparing the energies at zero �eld (hy = 0) one �nds that the AF phase is the ground
state if Dz < zJ ′ + DA, which means that DM interactions are small in comparison
to the interchain coupling and the anisotropy which both favor a collinear order along
b. If on the contrary zJ ′ + DA < Dz the phase SF1 becomes the ground state at zero
�eld. Given that in the present de�nition DA > 0 this translates into the condition
that the antisymmetric part of the interchain interaction would have to be reasonably
larger than the parent symmetric one, which then forced spins to align perpendicular
to neighboring chains. As antisymmetric exchange mostly arises as a correction to
the primary interaction this case is unlikely to happen in real systems. For any �nite
positive value of DA the phase SF2 cannot become the ground state at all. Thus, the
present model correctly yields an antiferromagnetic ground state in zero �eld. Both
phases SF1 and SF2, however, can be favored by a �nite magnetic �eld. Depending
on the ratios of the contributing interactions the half-spin-�op state SF1 eventually
cuts the AF state at a smaller magnetic �eld than SF2 does. In second order of hy the
transition �elds hy,SF1 from the AF phase to SF1 and hy,SF2 from the phase SF1 to
SF2 are given by

hy,SF1 =
√

2(Dz − 2DA + J)(DA −Dz + zJ ′), (4.81)

hy,SF2 =
√

2(DA +Dz − zJ ′)/ (2(J − 2DA + 2zJ ′)−1 − (J +Dz − 2DA)−1). (4.82)

(4.83)

Due to the complex analytical form of hy,SF1 and hy,SF2 the �eld dependence is ana-
lyzed easier by plotting the �eld dependence of EAF , ESF1 and ESF2 for �xed values of
the various constants. Fixing the anisotropy DA = 0.55 K to the value borrowed from
the analysis of the power-law dependence of cp above and assuming further constants
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Figure 4.58: Energies of the
phases AF (dashed green line),
SF1 (red line) and SF2 (thin black
lines) as a function of the mag-
netic �eld calculated from a clas-
sical model of interacting spin
chains for di�erent strengths of
the DM interaction Dz using ap-
proximations of the further con-
stants, see text. Orange circles
mark the two-stage spin-�op tran-
sition �elds that arise in case of
an intermediate DM interaction
strength. � � � � � � � � � � � �
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from Chapter 4.2.2 like J = 3 K, J ′ = γJ = 0.05J and g = 3.27, the dependence of the
energies on the external �eldH is calculated which is related to hy via hy = gµBµ0/kBH.
The interchain couplings are assumed to form a square lattice of chains (z = 4). Yet,
the results hardly depend on the choice of z. As shown in Fig. 4.58 the energy of the
antiferromagnetic state does not depend on the magnetic �eld at all and the �eld de-
pendence of SF2 does not change for di�erent values of the DM interaction Dz. For
Dz = 0 the energy of state SF1 is larger than that of SF2 which yields the classical
spin-�op transition at the crossing of ESF2 and EAF . For very large values of Dz, the
phase SF1 is strongly shifted downwards in energy and eventually can become the
ground state at zero �eld. In Fig. 4.58 this scenario is represented by the line for a very
large DM coupling Dz = 2. For intermediate values of Dz, an interesting case emerges.
For an exemplary value of Dz = 1 K two changes of the ground state as a function
of the �eld arise. The critical �elds are encircled in orange in Fig. 4.58 and given the
simplicity of the model they agree reasonably well with the experimentally observed
critical �elds in Cs2CoCl4 of 0.25T and 0.7T. The scenario of a two-stage spin-�op
transition in Cs2CoCl4 thus seems plausible and can be explained by a simple classical
model. Nevertheless the value of Dz = 1 K seems slightly too large as it exceeds that of
the symmetric counterpart J ′ = 0.15 K. Further improvements of the model should ac-
count for the tilt of moments also in the AF ground state and include quantum e�ects.
Further considering the di�erent anisotropy planes in neighboring chains could help to
extract physically meaningful properties like the coupling constants from a comparison
to the phase diagrams and might even give hints at the nature of phase II that is
preceded by SF2 in case of H ‖ b.

Pressure dependence of the phase diagrams

The anomalies of the thermal expansion at a phase transition according to the Clausius-
Clapeyron relation in case of a �rst order transition, dTc/dpi = TcVm∆αi/∆c, and
according to the Ehrenfest relation in case of a second order transition, dTc/dpi =
Vm

∆Li
L
/∆S, are proportional to the uniaxial pressure dependence of the transition
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temperature. For the pressure dependence of the critical �eld Hc(p) the magnetic ver-

sions of these equations can be derived using the Maxwell relation ∂S
∂p

∣∣∣
T,H

= − ∂V
∂T

∣∣
p,H

and S = −∂G
∂T

in case of a second order transition by equating the entropy of two
phases:

S1 (Hc(p), p, T = const) = S2 (Hc(p), p, T = const) (4.84)

⇒ ∂S1

∂H

∣∣∣∣
p

· dHc

dp
+
∂S1

∂p

∣∣∣∣
H

=
∂S2

∂H

∣∣∣∣
p

· dHc

dp
+
∂S2

∂p

∣∣∣∣
H

(4.85)

⇒ − ∂2G1

∂H∂T

∣∣∣∣
p

· dHc

dp
− ∂V1

∂T

∣∣∣∣
p

= − ∂2G2

∂H∂T

∣∣∣∣
p

· dHc

dp
− ∂V2

∂T

∣∣∣∣
p

(4.86)

⇒dHc

dp
=

V∆α

∆(∂M/∂T )
(4.87)

For uniaxial pressure pi along the axis i one obtains

dHc

dpi
=

V∆αi
∆(∂M/∂T )

. (4.88)

In case of a �rst order transition one obtains another expression for the pressure de-
pendence of the critical �eld from the equality of the Gibbs free energy at the critical
�eld:

G1 (Hc(p), p, T = const) = G2 (Hc(p), p, T = const) (4.89)

⇒ ∂G1

∂H

∣∣∣∣
p

· dHc

dp
+
∂G1

∂p

∣∣∣∣
H

=
∂G2

∂H

∣∣∣∣
p

· dHc

dp
+
∂G2

∂p

∣∣∣∣
H

(4.90)

⇒−m1
dHc

dp
+ V1 = −m2

dHc

dp
+ V2 (4.91)

⇒dHc

dp
=

∆V

∆m
=

∆V/V

∆M
(4.92)

Here, mi is the extensive magnetic moment of the system which relates to the experi-
mentally observed magnetization density Mi via mi = MiVi. For uniaxial pressure one
�nds in analogy that

dHc

dpi
=

∆Li/L

∆M
. (4.93)

The step-like increase of ∆L/L at zero �eld measured along b for heating above TN
for instance indicates a rising Néel temperature if pressure was applied along the b
axis of the crystal. The pressure dependence of the critical �eld is more complex due
to the contribution of the magnetization that is known in magnetic �elds along a
from Ref. 8, but only for a single �xed temperature. Thus, only the magnetic version
of the Ehrenfest relation, Eqn. (4.93), can be applied to the phase boundary of the
antiferromagnetic phase. Collecting the anomalies in all data measured along the a
and the b axis the pressure dependence of the whole phase diagrams can be estimated.
The approximate size of the respective anomalies at the various phase boundaries are
sketched by arrows in Fig. 4.59. In case of H ‖ a, a consistent picture is obtained from
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Figure 4.59: Modi�cations
of the low-temperature phase
boundaries of Cs2CoCl4 in mag-
netic �elds and under pressure
applied collinear to the �eld
direction. Red arrows indicate
the approximate size and sign
of anomalies in the thermal
expansion measurements, while
blue arrows relate to the mag-
netostriction. The change of the
phase boundaries under pressure
is pictured qualitatively by the
dashed green lines.
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the thermal expansion and the magnetostriction data. The absence of features in case of
magnetic �elds H ‖ b around 1.5T indicates a constant phase boundary as a function
of pressure (shown by the dots in the intermediate �eld range). At the critical �eld
HSF1 ‖ b of the antiferromagnetic phase of about 0.25T the magnetostriction ∆Lb is
increased step-like. In the scenario of a two-stage spin �op the magnetization should
increase as well, which in turn, based on Eqn. (4.93), suggests an enhancement of
the critical �eld by pressure. For both magnetic �eld directions H ‖ a and H ‖ b the
antiferromagnetic phase is in�uenced most by applying pressure. The physical meaning
of the transformed phase boundaries is hard to identify due to the interplay of the
orbital-, lattice- and spin-degrees that all may contribute to the formation of magnetic
phases and all may change di�erently under pressure. One possible interpretation of
the opposing pressure dependence of the (C)AF phase could be that in case of pressure
applied along the chain direction b, an increased intrachain coupling (as consistently
observed in Chapter 4.2) leads to an enhancement of the critical temperature and
the critical �eld. This explanation, however, is in opposition to the decrease of TN for
pressures applied along a for which one might speculate about an enhancement of the
non-frustrated interlayer coupling, which in turn should increase TN as well. Yet, the
sheer size of interchain couplings typically plays only a minor role for the magnetic
ordering temperature and other e�ects may overcome its increase. From the absence of
clear anomalies at the spin-�op �eld HSF1, a vanishing pressure dependence of HSF1

can be deduced. This might be understood from the fact that the transition at HSF1

into a state with perpendicular spins is mainly triggered by the antisymmetric couplings
between chains and not by the intrachain coupling that one may expect to change most
under pressure along b. Yet, the true origin of the overall pressure dependences of the
phase diagrams might be hidden in more subtle properties of the electronic systems.
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4.3.4 Non-principal �eld directions
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Figure 4.60: Low-temperature phase diagrams of Cs2CoCl4 for di�erent magnetic-�eld direc-
tions H ‖ (sinα cosα 0) as obtained from di�erent thermodynamic quantities. Red triangles
represent features of the thermal expansion, blue triangles stem from the magnetostriction,
open (closed) symbols are extracted from the temperature- (�eld-)dependence of the speci�c
heat. Solid orange lines are guides to the eye, dotted lines are approximate crossover lines.

From the identical power-law dependence of the speci�c heat and the similar values of
the critical �elds Hc,1 and Hc,2 for di�erent magnetic �eld directions it was concluded
that phase II arises by a similar mechanism for all �eld geometries. In case of H ‖ b,
phase II, however, encloses a substantially larger H−T phase space than for the other
directions, such that one might question the similarity of these phases. In order to iden-
tify the di�erent occurrences of phase II measurements of the low-temperature speci�c
heat have been performed for non-principal �eld directions in between the crystallo-
graphic axes a and b. Magnetic �elds were applied along (sinα cosα 0) where α = 30◦

and 60◦. The phase diagrams were obtained from the anomalies of the speci�c heat
data (see full data sets, shown in Appendix B). In Fig. 4.60 the results are compared
to the phase diagrams for α = 0◦, i. e., H ‖ (0 1 0), and for α = 90◦, i. e., H ‖ (1 0 0).
For α = 30◦ the main features of the phase diagram are identical to those for H ‖ b. The
low-�eld spin-�op transitions are observed at similar critical �elds as for α = 0◦. The
boundaries of phase II are only slightly modi�ed and a small shift towards larger �elds
is found, that can be explained by an increasing contribution of the larger g factor of
the a axis. In the �eld dependence of the speci�c heat (Fig. 4.61), phase II is indicated
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Figure 4.61: Speci�c heat cp(H)
measured for di�erent �eld direc-
tions H ‖ (sinα cosα 0). Solid
(dashed) lines represent data ac-
quired with increasing (decreas-
ing) the �eld. Data for α = 60◦

are interpolated from the tempe-
rature dependence cp(T ) result-
ing in a lower data quality. Data
for α = 90◦ were acquired at a
constant temperature of 102mK.
Measurements for α < 90◦ were
performed at 110mK.
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by the same plateau-like increase in between the two critical �elds. The absolute value
of the plateau is, however, decreased by about half in comparison to α = 0◦. The sig-
natures of the spin-�op transitions at small �elds are strongly broadened upon tilting.
Thinking of the applied �eld as a superposition, the component along a at α = 30◦

already is half of the external �eld and may lead to an increasing collinear moment
along a concurring with the spin-�op physics for �elds along b. The spin-�op transitions
thus may change their character to a continuous evolution of ordered moments that is
rather described as a crossover. In Fig. 4.60 (b) the crossover �elds as extracted from
the maximum slope of cp(H) are indicated by dotted lines in the low-�eld region.

Increasing the tilt angle α to 60◦ leads to a further modi�ed phase diagram, see
Fig. 4.60 (c). Phase II no more merges with other phases at small �elds in a tri-
critical point, but rather resembles the shape for H ‖ a. In the �eld dependence of cp
no signatures of spin-�op transitions are found at small �elds. Yet, this may partly
originate in the lower point density for this �eld direction. The initial �eld dependence
of TN shows a negative slope and a kink at ' 0.5 T similar to the spin-�op scenarions at
smaller α and di�erent from the phase boundary for H ‖ a. This suggests that a similar
continuous change of the ground state is present for α = 60◦ than for α = 30◦ that
is not resolved in the low-temperature speci�c heat. The suggested crossover region is
indicated by a dotted line in Fig. 4.60 (c). The associated critical �eld is larger than for
smaller α which could be understood from the small e�ective �eld along b that triggers
the spin-�op transition and that is reduced by half for α = 60◦. However, the present
data cannot proof this claim. Concerning the primary question on the identical nature
of phase II for di�erent α, the obtained phase diagrams do not give a uniform pic-
ture. Comparing α = 90◦ with α = 60◦ only a slight enhancement of phase II towards
the shape at smaller α is seen. While the low-temperature spin-�op phases transform
continuously, phase II, in contrast, seems to be rather stable upon variations of the
tilt angle α away from the principal axes. On the plus side, this allows for extended
microscopic studies of Cs2CoCl4 also by methods like neutron scattering where the
accuracy of the magnetic �eld alignment might be lower than the ±2◦ in the present
experiments.
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4.3.5 Phase II

While the low-�eld phases AF, SF1 and SF2 could be successfully modeled by classical
theories, the nature of phase II is still open. From the thermodynamic quantities it
was found to arise in a restricted �eld range before saturation. The direction of the
magnetic �eld seems to be important only at �nite temperature. In the following,
three possible scenarios are discussed: (i) a spin-liquid phase as proposed in Ref. 8, (ii)
an incommensurate phase similar to that in Cs2CuCl4 [116, 117] and (iii) a nematic
phase.

Due to the lack of antiferromagnetic re�ections in the neutron scattering data for H ‖ a
within the bc plane and due to the non-saturation of the magnetization Kenzelmann
et al. propose that phase II is a spin-liquid state. A spin-liquid state is characterized by
the absence of magnetic order in the ground state. In quantum spin liquids the mag-
netic order is destroyed by quantum �uctuations and although a variety of compounds
are discussed to be spin liquid candidates, amongst others, the prediction of a spin
liquid state in the isotructural Cs2CuCl4 has recently been questioned [116]. The con-
fusion about spin liquids partly arises from the lack of a universal theory and a de�nite
experimental indication for it [166]. Although there are rare examples for �nite tempe-
rature transitions into a spin liquid state [167], one would typically expect a continuous
evolution of thermodynamic properties as a function of temperature with no indication
of magnetic order transitions down to zero temperature. The clear presence of peaks
in the present data, however, indicates a thermodynamic phase transition and suggests
that in the magnetic �eld range of Hc,1 < H < Hc,2 not a disordered spin-liquid state
is realized, but rather that another type of so far unidenti�ed order occurs in phase II
of Cs2CoCl4.

Another possible scenario for phase II is an incommensurate magnetic state. For the
isostructural Cs2CuCl4 it was shown that at high �elds the consequence of frustration
is magnetic order at incommensurate momentum [116]. The copper ions in Cs2CuCl4
show an almost complete isotropic Heisenberg magnetism, whereas the magnetism in
Cs2CoCl4 is strongly anisotropic with magnetic easy planes alternating from chain to
chain. Yet, both compounds are described by the same space group Pnma and share
the same magnetic lattice of linearly coupled, frustrated triangular layers (Fig. 4.6).
The symmetry-based arguments of Ref. 116, therefore, apply to Cs2CoCl4 as well. The
consequence of the magnetic frustration is a shift of the minima of the gapped magnon
excitations at high �elds from the commensurate value of π to an incommensurate
value. This can be understood from the fact that the frustrated coupling does not ben-
e�t from antiferromagnetic order, but from an incommensurate state. The tilt angle
arises from the competition of the interaction within the chains, tending to align the
spins collinear, with the frustrated coupling that linearly bene�ts from a state where
neighboring spins along the chains tilt by a small angle from one site to the next.
Reducing the �eld from the fully polarized state at reasonably low temperature the
emerging incommensurate order can be thought of as a condensate of magnons at in-
commensurate momentum. This state could be further stabilized by DM interactions
that also favor non-collinear spins. A further complication, however, arises from the
magnetic easy planes in Cs2CoCl4 as noted in Ref. 8. At small magnetic �elds, the
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presence of two easy-plane orientations establishes an e�ective Ising anisotropy along
b due to interchain-couplings as this direction is the only common direction of easy
planes. Depending on the angle 2β between the planes the formation of an incom-
mensurate helical state, thus, becomes less e�ective and even is degenerate with the
antiferromagnetic state if the planes are orthogonal (2β = π/2). In Cs2CuCl4 an incom-
mensurate ordering wave vector along b was reported [117] and expected from theory
[116]. In neutron scattering on Cs2CoCl4 [8], however, no signals of magnetic order
were detected within the bc plane. Therefore, the ordering vector is either not within
the bc plane due to additional non-discovered mechanisms or another phase comes into
play.

The absence of magnetic order signals in phase II supports the explanation of the
phase by a third scenario. In pnictide superconductors a nematic state arises from
magnetic frustration depending on the electron doping [168]. As the magnetic lattice
of Cs2CoCl4 also decomposes into two non-frustrated sublattices that are coupled in a
frustrated way, similar arguments might hold. Denoting the magnetization of the non-
frustrated pairs of chains (sites 1 and 2) byMA and that of sites 3 and 4 byMB, the free
energy of the system does not contain a term ∝MAMB linear in both magnetizations.
Bond-terms between a site in the subsystem A and a second site in B cancel with
its frustrated counterpart in case of antiferromagnetic correlations. A quadratic term
(MAMB)2, however, is allowed in the free energy. Although both systems can have
zero magnetization, i. e., 〈MA〉 = 〈MB〉 = 0, in a nematic state the �uctuations of
both systems are correlated, such that 〈MAMB〉 6= 0. Due to the free energy term
(MAMB)2 the frustration is lifted and a nematic state with correlated �uctuations
may be stabilized. As discussed in Ref. 168, the resulting nematic state requires a
large correlation length within the subsystems A and B, as realized, here, due to the
increasing correlation length of the XY -type spin chains at low temperature [161, 169].
In this case the nematic phase should evolve as soon as the low-temperature transition
is of second order. This agrees with the present experimental observations for Cs2CoCl4.
The transition into the AF or CAF phase is of �rst order, whereas the transition into
phase II always is of second order.

Although the scenario of a nematic phase is compatible with the experimental obser-
vations in this work and in literature, the present data cannot give evidence for its
existence and a further analysis by microscopic methods is required.

4.3.6 Conclusion

From the combination of speci�c-heat and thermal-expansion data the magnetic �eld
versus temperature diagrams of the ordered phases of Cs2CoCl4 were derived. In a
small �eld range of about 0.3T width a well-de�ned phase (II) bordering the antifer-
romagnetic phase is found. Two possible scenarios for its physics were proposed: (i)
incommensurate magnetic order, (ii) a nematic phase characterized by correlated �uc-
tuations. For magnetic �elds applied along the crystallographic b axis, in addition, two
further �eld-induced transitions arise. They can be understood as a two-stage spin �op
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transition arising from DM interactions between spin chains that stabilize an intermedi-
ate state with perpendicular moments. This kind of transition may be explained by a
simpli�ed microscopic model which yields an estimate of the order of the asymmetric
exchange of about 1K. An analysis of the symmetric and antisymmetric interactions
between spin chains consistently yields an explanation of the tilt of moments in the
zero-�eld ordered state. Similar sizes of DM interactions as those that trigger the two-
stage spin �op transition, however, require an in-plane anisotropy of about 3K. Yet, no
signatures of a sizable in-plane anisotropy are seen in the thermodynamic data above
the magnetic ordering temperature. Furthermore, due to symmetry, DM interactions
should cancel for the whole lattice. Both issues may be resolved by a small structural
distortion accompanying the magnetic order.

Given the complex magnetic ordering phenomena at low temperature, one may ask
for the relation of these to the one-dimensional magnetism and whether signatures of
the 3D order manifest also in the 1D regime and vice versa. In the study of the one-
dimensional magnetism of Cs2CoCl4 in Chapter 4.2 a good agreement of the speci�c
heat and the thermal expansion with the one-dimensional XXZ model in transverse
magnetic �elds was found. Due to the non-commuting magnetic �eld term, the rota-
tional symmetry of the model is broken and a quantum phase transition emerges at
a critical �eld which depends on the anisotropy of the chain. The critical behavior
is indeed seen in the experiment as maxima of the thermodynamic quantities which
scale linearly with the reduced �eld |H −HC,XXZ | (see Chapter 4.2.3). The compli-
ance with the theory suggests a quantum phase transition in Cs2CoCl4 at a critical
�eld HC,XXZ ' 2.0 T. Due to �nite interchain couplings, below a certain tempera-
ture magnetic order arises in real crystals. Applied magnetic �elds H instead favor a
fully polarized state and thus suppress the antiferromagnetic order, re�ected in a �eld
dependence of TN. One might expect that the magnetic �eld where the antiferromag-
netic order is suppressed to zero temperature coincides with HC,XXZ such as in other
text-book examples for quantum criticality like LiHoF4 [1], CoNb2O6 [2], YbRh2Si2
[170]. Cooling down at the critical �eld, the speci�c heat, in contrast, clearly indicates
a �nite-temperature transition into phase II. Furthermore, HC,XXZ does not match
with any of the zero temperature critical �elds Hc,1 or Hc,2, but rather lies within the
phase II (see Fig. 4.54). The rather complex shape of the low-temperature phases of
Cs2CoCl4 begs for the question how the magnetic order relates to the seeming quan-
tum critical behavior at elevated temperature and whether the �eld dependence of the
ordered states bears any resemblance with that of the one-dimensional chain.

In Ref. 8, the zero temperature phases of the XY model in a transverse �eld are
discussed in prospect of a spin-liquid ground state proposed from neutron data. Quoting
an early numerical study of the XY model [171], the authors build on the distinction
between a �eld of

√
2J , where the ground state is said to be the classical Néel state,

and a second �eld of 1.5J where the order breaks down and a quantum phase transition
takes place. However, the conclusions of Ref. 171 are based on calculations for rather
small systems of only 10 sites. In further theoretical analyses of the model, only a single
critical �eld of the chain is discussed and obtained with high precision [67, 172]. The
mean-�eld result in fact is

√
2J for the XY model, respectively

√
2(1 + ∆) for the

XXZ model, while a slightly larger critical �eld of ≈ 1.5J is found by DMRG for the
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Figure 4.62: Sketch of the Néel type
ground state of the XXZ model. At the
critical �eld, the spins (red arrows) lie
within their respective magnetic easy plane
(shaded squares) and form an angle γ with
the magnetic �eld direction.

Magnetic
Field chain direction

γ −γ

i ii+1

XY model, which might explain the confusion about the two di�erent critical �elds in
Ref.8. The Néel-type ground state at the critical transverse �eld, however, should not be
confused with the classical Néel state with collinear antiferromagnetic spins along the
primary quantization axis z. It rather equals the strongly entangled high-�eld ground
state in the famous transverse �eld Ising model. There, the magnetic �eld intermixes
spin-up and spin-down states, such that at large �elds the wave function is a product
of the quantum mechanical superpositions of Ising-spin states |→〉k = (|↑〉k + |↓〉k)/

√
2

at each site k. In analogy, the transverse �eld in the XXZ models induces a spin-�op
type state. At the critical �eld the ground state |ΨNéel〉 factorises into single-site states
on two sub-lattices [172],

|ΨNéel〉 =
∏
i

|ψi〉 , (4.94)

|ψ2i+1〉 = a1 |↑2i+1〉+ b1 |↓2i+1〉 , (4.95)

|ψ2i〉 = a2 |↑2i〉+ b2 |↓2i〉 , (4.96)

where the coe�cients a1, a2, b1, b2 can be identi�ed with the spatial orientation of the
vector (〈Six〉 , 〈Siy〉 , 〈Siz〉) of the spin components expectation values at odd (2i+1) and
even (2i) sites. At the critical �eld, the coe�cients take such values that the spins lie
within the easy planes and form a spin-�op type state with an angle 2γ between the
two sublattices. This con�guration is depicted in Fig. 4.62. According to Ref. 172, the
angle γ relates to the anisotropy ∆ = Jz/Jxy of the spin chain,

cos γ =

√
1 + ∆

2
. (4.97)

In the XY limit (∆ = 0), neighboring spins are orthogonal, i. e., γ = 45◦. For �nite
anisotropies (0 < ∆ < 1 the angle reduces and becomes zero in case of the Heisenberg
model (∆ = 1). The resulting alternation of expectation values perpendicular to the
�eld for ∆ < 1 resembles the Néel state. From the perspective of the one-dimensional
system only a single critical �eld of about 2.0T is indicated at which the ground state
is of a �spin-�opped� Néel-type. In the context of the proposed two-stage spin-�op
transition the spin con�guration in the phase SF2 actually resembles this state. Thus,
one may argue that the state SF2 is favored close to the critical �eld of the one-
dimensional spin chain and an extension of SF2 across the critical �eld could be well
explained. However, as clearly resolved within the experimental resolution, the upper
critical �eld of SF2 is about 0.1T smaller than the critical �eld of the spin chain. This
might be explained by the various interchain couplings that favor phase II over SF2.
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As shown in Ref. 172, the Néel-type ground state emerges in XXZ chains irrespective
of the �eld direction at a critical �eld

hc/Jxy =

√
2(1 + ∆)2

2 cos2 Θ + (1 + ∆) sin2 Θ
. (4.98)

Here, Θ is the angle of the external �eld ‖ (sin Θ, 0, cos Θ) with respect to the local
z axis. In a magnetic �eld applied to Cs2CoCl4 not along the crystallographic b axis,
thus, a di�erent critical �eld of the spin chain arises. Therefore, one may expect the
occurrence of the 1D Néel type ground state in the low-temperature phases for H ‖ a
and H ‖ c as well, but at a slightly di�erent magnetic �eld, as described by Eqn. (4.98).
For magnetic �elds applied to Cs2CoCl4 not along the crystallographic axes, but along
arbitrary directions, the two di�erent types of easy plane orientations have to be consid-
ered and in principal two di�erent critical �elds can emerge. In case of H ‖ c, however,
the critical �eld for both types of spin chains is identical due to symmetry. Assuming
a rotation angle π/2− Θ = β = 38◦ of the easy planes with respect to the c axis, the
critical �eld upon application of the external �eld along c is given by

h|β|=38◦

c /J ≈ 1.2 + 0.93∆. (4.99)

The critical �eld is about 15% smaller than that in case of a transverse magnetic �eld,
i. e., within the XY plane (Θ = 0). Assuming the same g factor as for H ‖ b, one obtains
a critical �eld Hc,XXZ ‖ c ≈ 1.7 T using the anisotropy ∆ ≈ 0.12 derived for Cs2CoCl4.
In the low-temperature data, however, no features are present at this �eld. Even more,
the boundaries of the phase CAF, respectively of phase II, are rather shifted to larger
magnetic �elds. One explanation might be given by the fact that the antiferromagnetic
ground state with spins mainly along b already represents the spin-�op state for �elds
applied along a and c. In that sense small magnetic �elds just support the ordered state
and the only other state favored upon increasing the �eld eventually is phase II.

The microscopic origin of phase II could not be fully clari�ed. Yet, the formation of
an additional phase as a consequence of competing energy scales is a well established
phenomenon that is also known from other �elds of solid state physics. In di�erent
unconventional superconductors [173�178]., heavy fermion systems [179] and in organic
materials [180], for example, a superconducting phase emerges close to magnetic order.
In analogy to the strong magnetic �uctuations in some of these systems, in Cs2CoCl4
strong quantum �uctuations are induced by applied magnetic �elds which have non-
commuting components for all spatial directions due to the orientations of magnetic
easy planes.

The magnetism of the isostructural Cs2CuCl4 has been subject of many experimental
and theoretical studies (see exemplary Refs. 114�119, 181). As Cs2CoCl4 represents
the easy-plane analogon to Cs2CuCl4 and shows a similarly complex and previously
unknown low-temperature phase diagram for magnetic �elds along b, it might be worth
including Cs2CoCl4 in the discussions of various incommensurate and exotic phases in
the future. From the fundamental side, the physics of phase II might go beyond a pure
description of another low-temperature phase, but relate to more general phenomena
like the emergence of superconductivity from a nematic phase in the pnictides [168].
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The analysis of the thermodynamic properties of Cs2CoCl4 discussed in Chapter 4 re-
veals an easy-plane type magnetism and a rich low-temperature phase diagram of the
compound. The di�erences to the isostructural Cs2CuCl4 mainly arise from the addi-
tional magnetic anisotropy of the Co2+ in a crystal �eld in contrast to the isotropic
Cu2+. In addition, the magnetism of Cs2CuCl4 is two-dimensional with frustrated in-
plane couplings of the same order of magnitude [119, 182]. The coordination of copper
by chlorine ions has a low symmetry (m). In Ref. 9 it is suggested that therefore an
exchange of chlorine with the larger bromine is site-selective. Depending on the doping
level x in the series Cs2CuCl4−xBrx thus distinct couplings are in�uenced and two crit-
ical concentrations are deduced, namely xc1 = 1 and xc2 = 2. At these concentrations
the site-selective replacement of one type of chlorine sites is completed and another sets
in. From the larger ionic radius of bromine, a change of the coupling constants and in
consequence an increase of frustration for xc2 = 2 is suggested. In between the critical
concentrations interestingly crystals of di�erent symmetry can be grown [183]. From
a solution kept at 50◦C orthorhombic crystals are obtained for all x. At a solution
temperature of 24◦C crystals belonging to the tetragonal space group I4/mmm grow.
By heating or mechanical stress, e. g., due to milling, the tetragonal crystals trans-
form to the more stable orthorhombic phase. Inspired by these �ndings, crystals of the
cobalt-based series Cs2CoCl4−xBrx were synthesized. In literature no mixed crystals of
this series are reported. Only few studies [184�186] concern the endmember Cs2CoBr4,
but not in the context of a possible low-dimensional magnetism.

5.1 Sample preparation

Single crystals have been grown from an aqueous solution. A stoichiometric solution of
the educts CsCl, CoCl2·6H2O and CsBr2 was weighed in according to

2 CsCl +
2− x

2
CoCl2 +

x

2
CoBr2 → Cs2CoCl4−xBrx.
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~ 1 cm

(a) (b) (c)

Figure 5.1: Crystal growth of Cs2CoCl4−xBrx by evaporation of the mother solution (purple
liquid) in an Erlenmeyer �ask (a). Many small crystallites form in case of too fast evaporation
or wrong ambient conditions (b). In (c) a large single crystal of Cs2CoCl4 obtained under
optimized growth conditions is shown.

Depending on the available materials, some solutions were prepared in analogy with
CsBr and CoCl2. A small excess (3-5%) of the bromide salt was used in analogy to
the excess chloride usually taken for the synthesis of the undoped Cs2CoCl4. The so-
lution was �lled into an Erlenmeyer �ask and covered by a lid. After initial heating of
excess water, crystallites of approximately millimeter size formed from the saturated
solution by slow evaporation at room temperature for about two weeks. Few crystals
were selected by hand and allowed to grow in a separated part of the solution, others
remained in the mother solution. In Fig. 5.1 (a) a �ask containing the mother solution
for x = 3 is shown. In this case, two small and two larger inter-grown crystals formed
after about three months of slow evaporation. The growth results, however, strongly
depend on the environmental conditions and on the evaporation rate. In Fig. 5.1 (b) a
large number of small crystallites resulting from a less successful growth attempt are
seen. Reducing the evaporation rate, in some cases crystals with well de�ned surfaces
and of large size were obtained, as shown in Fig. 5.1 (c) for the undoped Cs2CoCl4.

At various points in time crystals of suitable size for experiments were extracted both
from the mother solution as well as from the separated crystals to check for a possible
change of the composition in the solution as a function of time. No indications for
a change of stoichiometry among samples from the same solution were found in the
di�raction data or in the speci�c heat data presented below. Solutions with substitution
levels x = 1, 1.5, 2, 2.5, 3, 4 were prepared. For reference, an undoped (x = 0) solution
was set up as well. Figure 5.2 displays selected grown crystals of the series. Up to
x = 2.5 crystals of high optical quality and centimeter-size with well evolved facets
were obtained. The largest one in case of x = 2 is about 2.5 cm long and weighs 7.8 g.
For larger x ≥ 3 the growth was more tempting. First, transparent crystallites formed in
the solution. They probably consist of CsBr and intially grow due to the excess bromine.
After further evaporation of the solution blueish crystallites formed. In comparison to
lower doping levels they are, however, of lower optical quality (cf. Fig. 5.2). Still crystal
facets are seen, but they show rough surfaces. Furthermore, the color of these crystals
di�ers from the slightly transparent blue of the crystals for smaller x in a more turquoise
color.
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x= 0 1 2 3 4

Figure 5.2: Grown single crystals of Cs2CoCl4−xBrx for values of x = 0, 1, 2, 3, 4 (left to
right). For x ≤ 2 only representative specimen, selected from a large number of single crystals,
are shown. For larger x smaller crystals with rougher surfaces and slightly di�erent color are
obtained.

5.2 Structure determination

For all doping levels x one or two crystals were selected and ground for a structural
investigation. Powder di�raction was performed with a Bruker D5000matic di�rac-
tometer in a Bragg-Brentano geometry using a copper anode (λ(Kα1)=1.540 593Å,
λ(Kα2)=1.544 427Å). The powder was �xed to an object slide using di�elen oil and
the data were acquired at room temperature from 2θ = 12◦ to 122◦. Di�ractograms of
powder of the same x, but obtained from two di�erent crystals extracted from the so-
lution at a di�erent time, strongly resemble each other. In Fig. 5.3, thus, only selected
di�ractograms are shown for each x. In the displayed range of small angles 2θ < 35◦

the di�ractograms (black solid lines) for x = 0, 1, 1.5 show about 20 peaks which shift
to smaller angles upon increasing x. This shift is indicated by a dashed orange line
in the upper three panels of Fig. 5.3. For x ≥ 2 the number of observed re�ections
is approximately halved and no resemblance with the di�ractograms for smaller x is
seen. From x = 2 to x = 4 again a shift of peaks to smaller angles is found. The shift
of peaks is expected due to the larger ionic radius of the bromine atoms introduced in
the structure. They cause an increase of the lattice constants, respectively a decrease
of the di�raction angle of the corresponding peak. The discontinuous change of the
di�raction pattern at x = 2, however, is not expected from a symmetry-preserving
doping series and suggests that the crystal structure of the parent Cs2CoCl4 is not
stable upon exchanging half of the chlorine by bromine, but that a di�erent structure
is more stable under the given growth conditions. The results of Le Bail �ts to the
di�raction data (red lines in Fig. 5.3) using JANA2006 [187] con�rm that crystals of
di�erent structure grew from the solution. Therefore, in the following x is referred to as
nominal, meaning that it corresponds to the doping level in the series Cs2CoCl4−xBrx
only for x ≤ 1.5, but rather to the weighed in target stoichiometry for larger x. For
x = 0 an excellent �t of the di�raction data is obtained by re�ning the lattice constants
based on the structure data for Cs2CoCl4 of Refs. 108, 112. The di�erence between the
observed and the calculated intensity, shown as blue line in Fig. 5.3, mainly represents
the experimental noise. The resulting lattice constants and the unit cell volume are
displayed in Fig. 5.4. For x = 0 they are very close to the literature data (orange stars)
of Cs2CoCl4 from Ref. 108. The deviation of the lower-lying literature data of Ref. 112
might be related to the lower temperature of 140K of that investigation. For �nite
doping levels x < 2 all di�ractograms are successfully described by the orthorhom-
bic structure of Cs2CoCl4 with re�ned the lattice constants. A slight increase of the
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Figure 5.3: Powder di�raction
data of Cs2CoCl4−xBrx at small
angles 2θ for various nominal dop-
ing levels x. The data are normal-
ized to the respective maximum
intensity. Bold black lines are the
acquired data. Thin red lines are
obtained from the Le Bail method
using an orthorhombic symmetry
for x ≤ 1.5 and a tetragonal struc-
ture for x ≥ 2. Blue lines give the
di�erence between observed and
calculated intensity. Dashed or-
ange lines indicate a shift of simi-
lar peak structures as a function
of x. Green circled peaks prob-
ably stem from the intergrowth
of small phases of di�erent x as
marked by arrows. The goodness
of �t (GOF) is output by the
employed crystallographic system
JANA2006 [187] and equals the
statistical �Chi squared�.

goodness of �t as a function of x may be caused by imperfect grinding of the powder
or by impurity phases in the crystals. A detailed comparison of the x dependence of
the di�ractograms reveals that signatures of other nominal x are contained in some
di�ractograms. As marked exemplarily for x = 1.5 and x = 2.5 by green circles and
arrows in Fig. 5.3 a small fraction of the x ≥ 2-patterns seems to be contained in the
x = 1.5 pattern. Respective peaks at 24.2◦ and 26.6◦ for example may stem from a
small phase of nominal x = 2. Vice versa, peaks of an x = 1.5 phase are recognizable
in the di�ractogram for x = 2.5. From a comparison of the relative intensities one may
estimate the ratio of the impurity phase to a maximum of about 20% for the extreme
case of the nominal x = 2.5. In Ref.184 the crystal growth of Cs2CoBr4 is reported and
a large phase of about 45% of Cs3CoBr5 is found. In fact, the present data for x ≥ 2
are convincingly described based on the tetragonal symmetry of Cs3CoBr5 that belongs
to the space group I4/mcm and whose structure has previously been solved [188, 189].
An excellent agreement is achieved for the nominal x = 2 and for x = 4, while for
intermediate values impurity phases seem to be more pronounced. The re�ned lattice
constants for the nominal x = 4 are very close to the literature data (pink triangles in
Fig. 5.4). An approximately linear dependence of the lattice constants upon decreasing
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x from 4 to 2 is found. It roughly extrapolates to the lattice constants of the chlorine
based Cs3CoCl5 expected at a nominal x = 0 [190, 191]. However, due to the initial
growth of CsBr from the solution, the nominal x cannot be directly converted to a dop-
ing level y ∈ [0, 5] in terms of the composition Cs3CoCl5−yBry. Nevertheless, bromine
seems to be exchanged by chlorine also in the Cs3CoCl5−yBry series as evidenced by
the change of the lattice constants and the speci�c heat data presented below. From
the optical quality of the crystals with nominal x = 2 the change of symmetry and
crystal structure at this x is rather surprising since they grow in the same quality and
size as the orthorhombic crystals for smaller nominal x.

Summarizing, two classes of doped crystals have grown from the di�erent solutions.
For nominal bromine contents x = 0, 1, 1.5 crystals of Cs2CoCl4−xBrx are obtained.
For x = 2, 2.5, 3, 4 the tetragonal Cs3CoClyBr5−y has grown from the solution, where
y depends on x in a way that cannot be extracted from the present data. Yet, a
comparison to the known lattice constants of Cs3CoCl5 [190, 191] suggests that y maps
to x linearly. Due to the water solubility and the insulating behavior of the crystals a
precise composition analysis by EDX was not successful. For a similar synthesis, the
di�erences between the Br/Cl ratio in the solution and that of EDX estimates are
reported to be negligible [183]. Thus, the nominal x probably provides a good estimate

Figure 5.4: Lattice con-
stants and the unit cell
volume of the doping series
Cs2CoCl4−xBrx, where x
is the nominal Br-content.
Lines are guides to the eye.
Below x = 2 the parame-
ters are obtained from the
di�raction data using the
orthorhombic space group
Pnma. For x ≥ 2 the tetrag-
onal space group I4/mcm
was used. Literature values
[108, 112] for x = 0 are
shown as orange stars. Pink
triangles indicate the lattice
constants of Cs3CoBr5 as
reported in Ref. 188. Crystals
obtained for a nominal x ≥ 2
(shaded area) belong to the
Cs3CoClyBr5−y series and
have tetragonal symmetry.
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Figure 5.5: Relative change of the lattice constants li−l0l0
in the doping series Cs2CoCl4−xBrx

from the value for x = 0, respectively in the chlorine-doped Cs3CoBr5 with respect to the
constants obtained for the nominal x = 4. Dashed lines are guides to the eye.

of the true composition for x < 2. Due to the lack of additional chemical data, it
is used to identify crystals for larger x as well. Small intergrowth of the respective
other structure are indicated by the di�raction data, especially for large x, and might
explain the less distinct crystal facets. It could be possible to optimize the growth of
the Cs2CoCl4−xBrx phase by varying the temperature of the solution in analogy to the
results for the mixed systems Cs2CuCl4−xBrx based on copper [183].

The two systems grown here behave similar upon doping. In Fig. 5.5 (a) the normal-
ized relative change li−l0

l0
of the lattice constants as a function of the nominal x is

displayed. A non-linear and anisotropic change of the lattice constants arises. The in-
�uence of doping on the a axis is about twice as large as on the other axes, which could
be interpreted in favor of a site-selective substitution, in analogy to the isotructural
Cs2CuCl4−xBrx discussed in Ref. [183], There, the exchange of chlorine by bromine is
not random among all chlorine position in the structure, but the Cl1 site is favored.
This site, shown as red balls in Fig. 5.6, has the largest Co-Cl bond length in each
tetrahedron. In analogy to the doping of Cs2CuCl4 it is predominantly occupied by
bromine up to a critical concentration xc1 = 1. At this concentration statistically every
Cl1 site is occupied by bromine. For entropic reasons the in�uence of doping on the
Cl1 site occupation might extend slightly above xc1. At reasonably larger x the other
sites Cl2 and Cl3 are then occupied as well. As they also di�er in symmetry, the doping
in this regime may be site-selective as well. From the speci�c heat discussed below one
may conclude that the Cl3 sites are occupied for x > xc1. The Cl1 site contributes to
the interlayer coupling Jac, but not to the frustrated coupling Jbc between chains or to
the primary coupling J , see Figs. 4.6, 5.6 and Tab. 4.2. From the larger ionic radius of
bromine one may thus expect an increase of the coupling between layers for increasing
x, respectively an enhanced ratio of Jbc/J , i. e., an increasingly two-dimensional mag-
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Figure 5.6: Crystal structure of Cs2CoCl4
with the highlighted position of the Cl1 sites
(striped red balls) that are involved in a site-
selective exchange of chlorine by bromine in the
Cs2CoCl4−xBrx series for x ≤ 1. Magnetic ex-
change paths within bc planes Jbc are sketched
with green lines, those between layers (Jac) are
shown as dashed lines. The dominant exchange
J along b is not in�uenced by an exchange of
chlorine at the Cl1 site.

Figure 5.7: Unit cell of the tetrago-
nal crystal Cs3CoBr5 of space group
I4/mcm, based on the structure data
of Ref. 189. Shaded tetrahedra indi-
cate the coordination of the magnetic
Co2+ by Br4. Square lattices of CoBr4
in the ab plane are separated along c
by layers of cesium and bromine.

netism. A microscopic proof of a site-selective substitution could be given for example
by identifying superstructure re�ections via single-crystal di�raction of Cs2CoCl3Br.

The tetragonal crystals of the bromine-reach side also show a strong di�erence of the
lattice constant's change as a function of the nominal x, see Fig. 5.5 (b). Here, the c axis
is in�uenced strongly by replacing bromine with chlorine, whereas the a axis hardly
changes from x = 4 to x = 3 and only then for even smaller x decreases similar to the
c axis. In the structure of Cs3CoBr5 (shown in Fig. 5.7) also tetrahedra of CoBr4 are
found. In contrast to Cs2CoCl4, however, they are formed by a single site (Br2) and have
full tetrahedral symmetry. The four Co-Br bond lengths within each tetrahedron are
identical, such that no indication for a preferential substitution within the tetrahedra
is given. Yet, there is a second non-equivalent Br site in Cs3CoBr5. One �fth of the
total bromine occupies the Br1 site which is located in between the ab layers of CoBr4
tetrahedra. The bonding character of these atoms to the cesium also contained in the
layer probably di�ers from that of the CoBr4 tetrahedra. Thus, one may speculate that
the substitution of bromine and chlorine in the Cs3CoClyBr5−y series is site-selective
as well.
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5.3 Thermodynamic properties

5.3.1 Cs2CoCl4−xBrx

The speci�c heat of crystals with various nominal x has been measured using the re-
laxation time method in a temperature range of 0.25K to 20K. For the doping levels
x = 2, 3, 4 each two crystals, extracted from the mother solution at di�erent stages of
the growth process, were measured to check for a possible degradation of the solution
by non-stoichiometric growth. Very similar results were obtained for these crystals,
which suggests that the crystals have grown with a constant stoichiometry. As shown
in Fig. 5.8 (a) the speci�c heat of Cs2CoCl3Br1 very closely resembles that of Cs2CoCl4.
Close to 1K the same broad maximum is observed. Its position coincides with that of
the undoped compound. Yet, the Schottky anomaly around 5K which is seen as a
hump in the data of Cs2CoCl4 (magenta symbols) is reduced signi�cantly. This may be
the consequence of an increased crystal �eld anisotropy D induced by the introduced
bromine. In turn, the Schottky anomaly is shifted to higher temperature and thus
merges with the larger phonon background at higher temperature. This e�ect is even
more pronounced in Cs2CoCl2.5Br1.5, see Fig. 5.8 (b). If the anisotropy D increases
one may expect that the magnetism of Co2+ in the doped systems at low tempera-
ture is still described as an e�ective spin-1/2. Nevertheless, small modi�cations of the
low-temperature speci�c heat suggest that the magnetism is in�uenced in details. For
x = 1.5 the broad maximum of magnetic origin is shifted to a slightly larger tempe-
rature of 1.18K. This shift could be explained by an increased intrachain coupling in
Cs2CoCl2.5Br1.5. The proposed site-selective exchange of Cl1 atoms by bromine statis-
tically is completed at x = 1 and for the given x = 1.5 further chlorine atoms in the
tetrahedra are exchanged by bromine as well. Due to the stronger overlap of orbitals
for the larger bromine the magnetic exchange along the b axis might be enhanced.

The change of the spin-chain magnetism and of the crystal �eld anisotropy can be
modeled in analogy to Chapter 4.2.2 by �tting the sum of the speci�c heat of the
XXZ model cXXZ , a Schottky anomaly cSchottky and a phonon background cph to the
data. The phonon background is assumed identical to that of Cs2CoCl4 with a debye
temperature θD = 67 K. The Schottky anomaly and the spin-1/2 chain are analyzed
based on the extension of the Schrie�er-Wol� transformation to �rst order as introduced
in Chapter 4.2.2. Fitting the data one obtains the spin-3/2 Heisenberg exchange JH and
the anisotropy D. From these the anisotropy ∆ and the e�ective spin-1/2 couplings
follow. A reasonable �t of the data for x = 1 and x = 1.5 is obtained as shown by red
lines in Fig. 5.8. In panel (c) the individual contributions to the total speci�c heat are
displayed. In comparison to the undoped Cs2CoCl4, the Schottky anomaly is shifted
to higher temperature and thus is the leading contribution only in a very restricted
temperature range. In Tab. 5.1 the results for x = 1 and x = 1.5 are summarized and
compared to those of the undoped Cs2CoCl4. For Cs2CoCl3Br1 only a tiny change of JH

from the value of 0.74K is found that lies within the experimental and the numerical
errors during the �t. The anisotropy D, however, is increased from 7.0K to 8.1K.
Both dependencies are explained by a site-selective substitution that does not involve
a cobalt ligand which mediates the dominant magnetic exchange along the b axis. Due
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Figure 5.8: Speci�c heat of Cs2CoCl4−xBrx with x = 1 (a) and x = 1.5 (a-d). For comparison
the speci�c heat of the undoped Cs2CoCl4 is shown by magenta symbols in panels (a-c). The
maxima temperatures in (a) and (b) are obtained from a power-law �t. In (c) the individual
contributions to the speci�c heat are shown as resulting from a �t of the XXZ model (dashed
green line), a Schottky anomaly (dash-dotted blue line) and a phonon background (yellow
dashed line) to the data. The sum of all contributions cXXZ + cSchottky + cph is shown as a
solid red line for x = 1 in (a) and for x = 1.5 in (c). In (d) the �eld dependence is compared
to the data of Cs2CoCl4 for 2T (pink symbols).

to the larger ionic radius of Br a change of the crystal �eld even for small x, however, is
plausible. The increase of JH to 0.88K for x = 1.5 can be understood by a substitution
of Cl atoms that contribute to superexchange paths along b for doping levels x larger
than the critical concentration xc1 = 1. The anisotropy D increases approximately
linear as a function of x. The anisotropy of the spin chain ∆ only weakly changes, but
remains well below the value of 0.25 previously assumed in literature and close to 0.12
as derived for Cs2CoCl4 in Chapter 4.2.

Besides the broad anomaly around 1K, interestingly, an additional broad, yet smaller,
feature arises at about 430mK in Cs2CoCl2.5Br1.5, but not in Cs2CoCl3Br1. Two pos-
sible scenarios can be thought of to explain this anomaly: (i) a magnetic order transi-
tion, (ii) a more unconventional Berezinskii-Kosterlitz-Thouless (BKT) transition. In
the �rst scenario, below 430mK one may expect an antiferromagnetic order similar to
that of the undoped compound. The size of TN is mainly determined by the correlation
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Compound x JH/kB (K) D/kB (K) ∆ Jxy/kB (K) Jz/kB (K)

Cs2CoCl4 0 0.74 7.0 0.12 2.96 0.36
Cs2CoCl3Br1 1 0.76 8.1 0.14 3.04 0.41
Cs2CoCl2.5Br1.5 1.5 0.88 8.7 0.13 3.52 0.44

Table 5.1: Magnetic exchange constants and the crystal �eld anisotropy of the doped com-
pounds Cs2CoCl4−xBrx for x = 0, 1, 1.5.

length of the spin chain and by the interchain coupling. The increased value of TN in
comparison to Cs2CoCl4 may arise from a stronger coupling between the spin chains
and from an increased correlation length due to the larger JH. The broadening could
be caused by disorder. On this basis, the fact that for x = 1 no comparable anomaly
is found in the data, then indicates that the increase of the correlation length is the
more e�cient mechanism to raise TN in comparison to the increase of the interlayer
coupling. Namely, for x = 1 the interchain coupling JH is not changed, but the coupling
between chains is expected to be larger due to the introduced bromine in the same way
JH is increased from x = 1 to x = 1.5. The scenario (ii) of a BKT transition is based
on the assumption that by doping the coupling between chains becomes so strong
that Cs2CoCl2.5Br1.5 approaches a two-dimensional system while preserving the XY
anisotropy. In two-dimensional systems with a continuous rotational symmetry, e. g.,
the classical 2D XY model, a unique transition was identi�ed by Berezinskii, Kosterlitz
and Thouless [192, 193]. In the low-temperature phase correlations are long-ranged and
decay with a power-law, whilst the high-temperature disordered phase is characterized
by exponentially decaying correlations. A rather sharp peak of the speci�c heat is ex-
pected from Monte-Carlo simulations at the critical temperature T S=∞

BKT · kB/J ≈ 0.70,
where the decay of the correlation function changes [194]. For the quantum spin-1/2 XY

model this transition also arises [195], but at a lower temperature T S=1/2
BKT ·kB/J ≈ 0.34,

where J is the exchange constant of spins on a square lattice. Models of the XXZ type
as well show the transition, but with T S=1/2

BKT reduced further. Up to ∆ = 0.5, however,
the additional suppression of T S=1/2

BKT is negligible [196]. Yet, the expected transition
temperature 0.34 · Jxy/kB ≈ 1.2 K is reasonably larger than the observed ' 0.4 K and
the present data show a strong broadening of the transition. As discussed in Ref. 197
bond disorder in the 2D XY model leads to a broadening and suppresses the transi-
tion to lower temperature. Nevertheless, the large anomaly around 1K speaks against a
purely two-dimensional magnetism in Cs2CoCl2.5Br1.5. Crystals with higher doping lev-
els x > 1.5 could be of interest to observe a possible reduction of the one-dimensional
signatures around 1K. An increase of weight of the anomaly around 0.4K in these
crystals could give evidence for a smooth transition to a 2D magnetism upon doping.
From the present data, a dimensional crossover, however, cannot be stated.

Last, the �eld dependence of the speci�c heat of Cs2CoCl2.5Br1.5, shown in Fig. 5.8 (d),
is discussed. Due to experimental issues with the orientation of the crystals the crys-
tallographic direction along which the �eld is applied cannot be given. The anomaly
around 430mK has vanished at the smallest �eld of 1T. An overall suppression of the
heat capacity by the magnetic �eld is seen, which is in analogy to the �eld dependence
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of Cs2CoCl4 discussed in Chapter 4.2. Even though, the in�uence of applied magnetic
�elds is comparably small. The di�erence to the 2T-data of Cs2CoCl4, shown by ma-
genta data points in Fig. 5.8 (d), can be explained by a change of the primary energy
scale JH in the system and by a possibly increased coupling between spin chains.

Crystals with doping levels x > 1.5 could be of large interest. In the present work,
however, they could not be grown from the solutions at room temperature. The crys-
tal growth of Cs2CoBr4 has been reported in literature [184, 185], but the magnetic
properties were not investigated.

5.3.2 Cs3CoCl5−yBry

For nominal x > 1.5, crystals of di�erent stoichiometry, but with similar structural
motifs have grown from the solution. For completeness the speci�c heat of these crystals
will be discussed in the following. The data are normalized using the molar masses under
the assumption that the nominal doping 0 ≤ x ≤ 4 maps linearly to 0 ≤ y ≤ 5, i. e.,
y = 5x

4
.

Both endmembers Cs3CoCl5 and Cs3CoBr5 share the same tetragonal space group
I4/mcm (No. 140) [191, 198, 199]. The lattice constants of the bromine compound are
larger by about 4%. In the crystal structure of both compounds (Fig. 5.7) the magnetic
Co2+ are surrounded by tetrahedra, similar to the coordination in Cs2CoCl4, but here
the tetrahedra are highly symmetric. The crystal �eld strength is similar to that of
Cs2CoCl4 (DCl4 ≈ 7.0 K). For Cs3CoCl5 an anisotropy DCl5 ≈ −6.2 K was found,
respectively DBr5 ≈ −7.7 K for Cs3CoBr5 by ESR [188, 200]. The larger anisotropy for
the bromine compound goes along with the observation of an increase of the anisotropy
by doping Cs2CoCl4 with bromine. Yet, the sign of the anisotropy is opposite here.
Thus, the Kramers doublets are inverted and instead of easy planes an easy axis is
established in the compounds. Due to the high symmetry in comparison to Cs2CoCl4
only a single local easy axis follows, which is along the crystallographic c axis. Within
the ab plane, the Cl5/Br5 tetrahedra form a square lattice. Along c the layers are
separated by layers of CsBr. From susceptibility [201] and speci�c heat data [188] both
compounds are known as Ising systems. While in Cs3CoCl5 the magnetic exchange
seems to be three dimensional, for Cs3CoBr5 a dominantly two-dimensional magnetism
was proposed. The mixed systems thus could be of high interest to investigate a possible
transition from 2D to 3D magnetism. Magnetic order arises at TN(Cl5) = 0.523 K for
Cs3CoCl5 and at TN(Br5) = 0.282 K for Cs3CoBr5. The di�erence of the transition
temperatures is partly explained by the di�erent dimensionality [56]. In case of the
chlorine compound, G-type antiferromagnetic order along c was found [202].

Based on the literature data of the endmembers the present speci�c heat data (Fig. 5.9)
for x = 2, 2.5, 3, 4, respectively y = 2.5, 3.125, 3.75, 5 can be understood as follows. For
y = 5 the temperature dependence as expected equals that of Cs3CoBr5. In Fig. 5.9 (a)
the speci�c heat of two individual samples (black and red symbols) are compared to
the results on Cs3CoBr5 of Ref. 188 (green line). Only the high-temperature tail of the
magnetic order transition at 282mK is seen in the present data. Due to the extremely
large heat capacity of even small samples at this temperature and the following long
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Figure 5.9: Speci�c heat of the Cs3CoCl5−yBry series for doping levels y = 5, 3.75, 3.125, 2.5,
calculated from the nominal doping x = 4, 3, 2.5, 2, see text. In (a-d) the respective zero-�eld
speci�c heat is shown. Black and red symbols stem from samples of di�erent batches. The green
line in (a) and (c) display the speci�c heat of the compounds Cs3CoBr5 and Cs4CoCl5 digitized
from Ref. 188. The dashed blue line in (a) represents a Schottky anomaly with an energy gap
of 15.4K. The speci�c heat of Cs3CoCl2.5Br2.5 (d) shows a power-law dependence (shaded
area) cp(T ) ∝ T 3. The speci�c heat in magnetic �elds applied parallel and perpendicular to
the Ising axis are shown in panels (c.1) and (c.2) for y = 3.125 and in (d.1) for y = 2.5. Panel
(d.2) shows the �eld dependence of cp for y = 2.5. Circles in the phase diagram (e) for the
perpendicular �eld direction are obtained from the temperature dependence of cp, triangles
from the �eld dependence. Lines are guides to the eye.

cool-down times the present measurements were started only at about 300mK. The
bump in the data around 5K is described quantitatively by a Schottky anomaly as-
suming a gap of 2 |DBr5| ≈ 15.4 K as probed by ESR [200]. Reducing y to 3.75 or
3.125 very similar speci�c heat curves are obtained (symbols in Fig. 5.9 (b) and (c) ).
They only di�er from the latter by an increase of TN to about 410mK, similar for both
doping levels. The fact that almost no change is observed from y = 3.75 to y = 3.125
may be explained again by a site-selective doping. The di�erent changes of the lattice
constants a and c for large y (Fig. 5.5 (b) ) suggest that from y = 5 to y = 3.75 mainly
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one type of bromine is exchanged by chlorine and an isotropic evolution of the lattice
constants arises for smaller y. This is in agreement with the strong increase of TN start-
ing from y = 5 and almost no dependence on y between y = 3.75 and y = 3.125. Thus,
a large part of the transition from the 2D magnetism of the Br5 compound to a three-
dimensional system seems to arise in the range from y = 5 to y = 3.75 by an exchange
of the bromine at the inter-layer site Br1 with chlorine, see Fig. 5.7. Nevertheless a
further increase of TN for y < 3.125 is expected from a comparison to the literature
data of Cs3CoCl5, shown as green line in Fig. 5.9 (c), which reveal a similar structure,
but a shift of the low-temperature part by another 100mK.

However, upon reducing y further, the expected evolution towards the data of Cs3CoCl5
is not found. Instead, the data obtained for y = 2.5 stand out in that the magnetic or-
der temperature with 1.2K lies well above that of both endmembers of the series. The
Schottky anomaly around 5K is still seen, which indicates that the individual tetra-
hedral coordinations are preserved. Below 1.2K the temperature dependence of cp(T )
follows a power law with an exponent 3 as expected from an ordered antiferromagnet
in three dimensions. Unfortunately, crystals of the tetragonal Cs3CoBr5 structure with
smaller y were not obtained from the solutions. Yet, they might be interesting to ob-
serve the further evolution of cp for smaller y. Finally, at y = 0 the known properties of
Cs3CoCl5 (green line in Fig. 5.9 (c) ) should be recovered. Based on the present data,
the de�nite reason for the exceptional properties of the y = 2.5 crystals cannot be clar-
i�ed. Interestingly, these crystals could be grown in size and quality inferior to those
for larger nominal x. Similar to the mixed systems of Cs2CuCl4−xBrx, possibly di�erent
structures of varying thermal stability could coexist for distinct doping levels x, which
maybe was not be revealed here and requires a further analysis of the y = 2.5-crystals
e. g. by TDA/TGA. Another possibility is a more complex disorder e�ect induced by
the random distribution of Br/Cl atoms within the tetrahedra in the ab layers.

In applied magnetic �elds the strong Ising anisotropy of the system becomes evident.
In Fig. 5.9 (c.1) the speci�c heat in case of y = 3.125 is shown for di�erent magnetic
�elds applied collinear to the Ising axis c. In a small �eld of 0.1T the magnetic order
transition is still resolved. At 0.25T it is suppressed below the temperature range of the
experiment. Starting at 0.6 T, an increasing gap is signaled by the strong suppression of
cp at low temperature and an exponential temperature dependence in case of 0.6T and
1T. At higher �elds the exponential behavior does not precisely hold and a kink is seen
below 1K. When the �eld is applied perpendicular to the Ising axis of the spins a much
smaller �eld dependence is found, see Fig. 5.9 (c.2). Up to 0.5T the magnetic order
temperature remains almost unchanged. In comparison to H ‖ c, a reasonably smaller
change of cp is seen upon increasing the �eld further. While for the parallel direction the
speci�c heat is reduced by about three orders of magnitude at 2T, for the perpendicular
direction the g factor seems to be reduced by a factor of about 8 as approximated from
the coarse similarity of the curves for H‖ = 0.25 T and H⊥ = 2 T. This emphasizes
the Ising character of the system. In Cs3CoCl2.5Br2.5 the �eld dependence of cp, shown
in Fig. 5.9 (d.1) and (d.2), in general is comparable to the case of H ⊥ c for smaller
y, but it extends over a wider �eld range. The crystal orientation for y = 2.5 could
not be unambiguously identi�ed. Nevertheless, a �eld direction H ⊥ c is suggested by
the small �eld dependence of the magnetic order temperature. Up to 3T the zero-�eld
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anomaly at 1.2K is shifted to a slightly lower temperature of about 0.9K. The �eld
dependence cp(H) at the lowest temperature of 0.3K indicates a transition at about
4T. For an estimate of the relevant energy scales the data points of TN(H ⊥ c) obtained
for the compounds with y = 2.5 and y = 3.125 are plotted in the phase diagram of
Fig. 5.9 (e) with open symbols. Data points extracted from the �eld dependence of
cp(H) are shown as triangles. In the y = 2.5 system, the stability of magnetic order is
larger by a factor of about three.

Model systems where a magnetic �eld can be applied perpendicular to the Ising axis of a
spin system are of fundamental interest due to the possible emergence of quantum crit-
icality, see e. g. Refs. 1, 2, 81, 82. From the experimental point of view Cs3CoCl2.5Br2.5
is a promising candidate for further investigations as the transition temperatures lie in
an easily accessible temperature range. However, the mechanism by which the crystals
of this doping level separate from the others should be resolved by extensive structural
investigations and the extension of the series to lower y.

5.4 Conclusion

Aqueous solutions have been set up to grow crystals of the Cs2CoCl4−xBrx series. As
revealed consistently by structural investigations and measurements of the speci�c heat
at low temperature, up to a nominal concentration x = 1.5 of bromine single crystals
isostructural to the orthorhombic Cs2CoCl4 have been grown. No di�erences of the
lattice constants or the speci�c heat data between samples of di�erent batches have
been detected. This indicates a stoichiometric growth of the crystals from the solution.
The change of the lattice constants as a function of x is anisotropic. In analogy to the
mixed systems Cs2CuCl4−xBrx, this suggests a site-selective exchange of bromine and
chlorine [9, 183], in good agreement with the x dependence of the coupling constant
JH and the crystal �eld anisotropy D extracted from the speci�c heat. While D is
continuously enhanced by increasing x, the magnetic exchange remains unchanged
from x = 0 to x = 1 and then increases by about 15% for x = 1.5. This dependence
is explained by an exchange of chlorine by bromine predominantly at the Cl1 site up
to x = 1 and a subsequent exchange of Cl− ions at site Cl3 that contributes to the
dominant magnetic exchange. The expected increasingly two-dimensional magnetism
is not indicated by the speci�c heat data that only show a slight shift of the maximum
around 1K known from the undoped Cs2CoCl4. At x = 1.5 an increased magnetic order
temperature is found that can be explained simplest by the larger primary coupling
constant for this doping level. From the theory point of view, the appearance of a BKT
transition, expected in two-dimensional XY -like systems, could be of large interest.
Magnetic compounds showing a transition of the BKT type are rare, but the nature
of the transition may be related to the physics of high-temperature superconductors
that are based on two-dimensional magnetism as well [203, 204]. Increasing the present
doping level x > 1.5 may open the possibility to alter the couplings between the chains
further and eventually suppress the one-dimensional magnetism in favor of a 2D XY
system.
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From the solutions set up for various doping levels, Cs2CoCl4−xBrx crystals with x > 1.5
could not be grown. Altering the growth conditions, e. g., by a controlled evaporation at
temperatures above room temperature, could help to extend the doping series to larger
x. At present, however, crystals of a di�erent structure were obtained for x = 2, 2.5, 3
and 4. From powder di�raction they could be identi�ed as chlorine-doped variants of
Cs3CoBr5, which also contain tetrahedra formed by CoBr4, but the magnetism shows
an Ising anisotropy, in contrast to the easy-plane magnetism in Cs2CoCl4. The Ising
magnetism is re�ected in the speci�c heat data acquired with magnetic �elds parallel
and perpendicular to the Ising axis. In Cs3CoBr5, the onset of magnetic order at about
280mK is seen as a peak of the speci�c heat that is well described by the Ising model.
As a function of the doping y in the series Cs3CoCl5−yBry the peak shifts to higher
temperature, consistent with the end value of 523mK known for Cs3CoCl5 [188]. The
change of the order temperature can be explained by a change of the coupling along c
by an analogous site-selective doping in between the tetrahedra that are located on ab
layers. At y = 2.5 interestingly, an exceptionally large magnetic order temperature is
found. It may be explained either by a subtle disorder e�ect, or at y = 2.5, respectively
x = 2, a structural variant grows from the solution that is similarly unstable as in case
of Cs2CuCl2Br2 [183]. Crystals extending the Cs3CoCl5−yBry series to y ≤ 2.5 may
give further insight into the possibly interesting properties arising in between the two
known endmembers.
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Copper pyrazine dinitrate is a model system for the isotropic spin-1/2 Heisenberg chain.
The magnetic Cu2+ ions form well separated spin chains along the a axis. In compari-
son to the intrachain coupling constant of about 10K, the magnetic order temperature
TN ≈ 0.1 K is extremely low. This allows to study the system in a wide temperature-
and magnetic-�eld range and to compare it to the rich magnetism that arises from the
one-dimensional Heisenberg model, which is a textbook example for a low-dimensional
spin chain. In this chapter, measurements of the speci�c heat, the thermal expansion
and the magnetization up to the critical �eld of the spin chain are compared to high-
precision calculations of the Heisenberg model.

6.1 Introduction

In the �eld of low-dimensional spin systems the Heisenberg model stands out due to
both its simplicity on the one hand and its intriguing diversity of theoretical aspects on
the other hand. Up to date, a wide �eld of research concerns the physics emerging from
di�erent model hamiltonians. A large number of theoretical techniques were employed
to investigate the physical properties for di�erent lattices and coupling scenarios. For
example, the correlations of quantum spins on a two-dimensional lattice are considered
as a key aspect for the understanding of cuprate-based high-temperature supercon-
ductors. In this context, quantum critical phenomena, i. e., the emergence of di�erent
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ground states as a function of a non-thermal control parameter, play an important
role. One of the plainest models, where quantum criticality can be observed, is the
one-dimensional antiferromagnetic Heisenberg spin-1/2 chain,

H = J
∑
i

Si · Si+1 + hSiz. (6.1)

Here, a quantum phase transition arises as a function of the �eld h. At zero magnetic
�eld the ground state at T = 0 is given by the Bethe-Ansatz and the magnetic excita-
tions form a gapless two-spinon continuum [40]. Applying a magnetic �eld the spatial
isotropy is broken and a �nite magnetization arises. Finally, the ground state character
changes at the critical �eld hc = 2J . Signatures of this transition can be observed
in macroscopic properties also at �nite temperature. However, model crystals of this
type are quite rare. Not only an isotropic magnetism is asked for, but as well a unique
crystal structure is required that supports a magnetic exchange of a one-dimensional
character.

One compound with a high degree of one-dimensionality and no magnetic order down to
a very low temperature TN = 107 mK is the antiferromagnetic spin-1/2 chain compound
copper pyrazine dinitrate (CuPzN, short for Cu(C4H4N2)(NO3)2). In this compound,
the coupling of the magnetic Cu2+ ions reveals a strong spatial anisotropy. Although
the copper ions are separated by a comparably large distance of 6.7Å along the a
axis, the superexchange by the intermediate C4H4N2 rings along that axis is relatively
large as characterized by the coupling constant J/kB ' 10 K, derived consistently from
di�erent methods [13, 205�207]. Interchain couplings were estimated to be three or-
ders of magnitude smaller [11], which renders the compound an ideal model system
for the analysis of �eld-induced quantum criticality in a one-dimensional magnet. The
Heisenberg model was successfully applied to describe the speci�c heat [13], the mag-
netization [17] and the thermal conductivity [208] of CuPzN. However, most of these
studies do not cover the regime of quantum criticality at low temperatures close to
the quantum critical �eld gµBµ0Hc = 2J (i. e., T < 1 K, H ≈ 14 T). In this chapter,
measurements of the thermal expansion, the magnetostriction, the speci�c heat and
the magnetization in the full magnetic �eld range, where quantum critical behavior is
expected, are compared to the Heisenberg model.

6.1.1 Structure

Crystals of the cupric nitrate-pyrazine complex Cu(C4H4N2)(NO3)2 were �rst grown
by slow evaporation in 1970 and the orthorhombic crystal structure of space group
Pmna, shown in Fig. 6.1, was solved via X-ray analysis [209]. The lattice parameters
and the atomic coordinates are summarized in Tab. 6.1. The magnetic Cu2+ ions are
linked along the crystallographic a axis via aromatic rings of C4N2H4 (pyrazine), shown
in Fig. 6.1 (b). Each copper ion is surrounded by two nitrate groups, that lie in planes
perpendicular to the chain axis a. Due to the electronic con�guration of Cu2+ (3d9),
which implies a quenching of the orbital momentum in the local environment of 2/m
symmetry, one expects only weak magnetic anisotropies. A large spacing of Cu ions in
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Cu
C
H
N
O

(a) (b)

(c)

1.98 Å

180 °

2.6°

Figure 6.1: Sketch of the crystal structure of Cu(C4H4N2)(NO3)2 (CuPzN), based on struc-
ture data of Ref. 209. In (a) the unit cell is shown together with shaded planes that indicate the
two non-equivalent Cu sites that di�er by a rotation ±2.6 ◦ around the a axis from one chain
to the neighboring along c. In (b) a single copper ion together with the neighboring pyrazine
ring that mediates the dominant exchange along a is shown. In (c) the planar coordination of
Cu in two selected chains is depicted by the blue and red shaded planes.

the b and c direction combined with a short copper to pyrazine-nitrogen distance of
1.98Å in the a direction gives rise to one-dimensional magnetism via superexchange
paths Cu-pyrazine-Cu along a.

A close analysis of the structure reveals that the copper sites are not fully symmetry-
equivalent. The planar coordination of copper is given by two pyrazine nitrogens and
two nitrate oxygens which are closest to the center copper. This coordination is de-
scribed by the site symmetry 2/m and arises in two orientations in the crystal structure
that di�er in a rotation by an opposing angle of ±2.6 ◦ around the a axis away from
the ac plane [207]. The two types of coordination are depicted as blue and red shaded
planes in Fig. 6.1 (a) and (c). The rotation of the planes, shown as a dashed green line
in Fig. 6.1 (a) alternates along the c direction, but not along the chain direction a. As a
consequence, the g factors along the crystallographic axes (ga = 2.2053, gb = 2.265 and
gc = 2.063, measured in Ref.16 by ESR) are a superposition of the individual molecular
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Cu(C4H4N2)(NO3)2, space group Pmna (No. 53)
a=6.712(1)Å, b=5.142(1)Å c=11.732(2)Å

atomic coordinates

Atom site symmetry x/a y/b z/c

Cu1 2a 2/m.. 0 0 0
C1 8i 1 0.396 66(56) 0.166 49(83) −0.064 76(35)
H1 8i 1 0.324(12) 0.288(14) −0.1064(57)
N1 4e 2.. 0.295 66(55) 0 0
N2 4h m.. 0 0.262 58(102) 0.193 56(42)
O1 4h m.. 0 0.017 67(87) 0.171 11(31)
O2 4h m.. 0 0.413 83(100) 0.110 29(42)
O3 4h m.. 0 0.333 53(106) 0.292 26(40)

Table 6.1: Positions and atomic coordinates of Cu(C4H4N2)(NO3)2 in the space group Pmna
obtained from X-ray di�raction [209].

g factors. The deviation of the g factor from the value of 2, expected for the spin-only
magnetism of Cu2+ (3d9), is explained by �nite crystal anisotropies and higher-order
e�ects that recover part of the angular momentum quenched by the crystal �eld. Due
to the fact that the molecular and the crystallographic coordinate systems only di�er
in a rotation around the chain direction a, applied magnetic �elds do not induce stag-
gered �elds within a single spin chain. Above the magnetic order temperature, where
spin chains can be treated as well isolated from each other, thus, a single spin chain
in a magnetic �eld is su�ciently described by a magnetic �eld term ∝ hSiz as given in
Eqn. (6.1).

6.1.2 Literature

In one of the �rst studies of the magnetism of Cu(C4H4N2)(NO3)2, the one-dimensional
magnetism of the compound due to superexchange has been identi�ed [205]. Using
powder samples the susceptibility down to 2.9K is compared to the Ising model. From
a slight mismatch to the data, it is assumed that the Heisenberg model may be more
appropriate. In another study of the susceptibility [206], single crystals are investigated
by measurements of the susceptibility parallel and perpendicular to the chain direction
a. From a Curie-Weiss �t of the high-temperature data from 20 to 60K the g factors
g‖ = 2.04 and g⊥ = 2.11 and a Weiss constant of about 5K is found. A comparison
of the low-temperature susceptibility data, shown in Fig. 6.2, to the one-dimensional
Heisenberg model (solid lines) yields an exchange constant J/kB = 10.6 K and similar
g factors. The Ising model, assumed in Ref. 205, is shown not to describe the data.

In a zero-�eld study of the speci�c heat in Ref.10 below 10K a broad maximum on top
of the phonon background and a linear low-temperature dependence is found, shown
in Fig. 6.3. Using a coupling constant J/kB = 10.4 K an excellent agreement with
the Heisenberg model is obtained. Close to 10K small deviations are found that are
accounted either to a Schottky contribution of pyrazine impurities in the sample or to
a phonon background cph that is not described by a simple power law cph ∝ T 3.

The g factors along the crystallographic axes show a small anisotropy due to a �nite
angular momentum and have been evaluated by ESR [207, 210],

ga = 2.05, gb = 2.27, gc = 2.07. (6.2)
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Figure 6.2: Susceptibility of CuPzN, measured
parallel to the chain axis a and perpendicular to
it, �tted by the 1D Heisenberg model with J/kB =
10.6 K, g‖ = 2.03, g⊥ = 2.10. (Taken from Ref. 206)

Figure 6.3: Zero-�eld speci�c
heat of CuPzN, measured us-
ing powder and microcrystalline
samples in comparison to the 1D
Heisenberg model with J/kB =
10.4 K. (Taken from Ref. 10)

In these early studies, the in�uence of magnetic �elds on the system has not been
studied. The quantum phase transition of the Heisenberg chain at gµBµ0Hc = 2J is
not discussed in any of the analyses of the thermodynamic properties in literature.
In the thermal transport a magnetic contribution arises and in the quantum critical
regime signatures of the quantum critical �eld of about 15T are seen [208]. In a zero-
�eld muon-spin relaxation experiment a very low magnetic order temperature TN =
107 mK has been found [11]. Comparing this temperature to Monte Carlo results on
the ordering temperature TN of the Heisenberg model on a square lattice [211], the
ratio J ′/J = 4.4× 10−3 between inter- and intrachain couplings is derived.

The low-temperature magnetization of CuPzN, shown in Fig. 6.4, has been analyzed up
to the critical �eld of the spin chain [17, 212]. Based on the exact solution by the Bethe
ansatz for T = 0 a coupling constant J/kB = 10.8 K and a g factor of 2.3 is derived.
Although the temperature of 80mK is below TN = 107 mK, no indication for magnetic
order is found. From the derivative ∂M/∂H a critical �eld of 13.97T is derived. At the
critical �eld, a power law of the magnetization M ∝ 1/

√
T is found.

The magnetic excitations of the Heisenberg chain form a two-spinon continuum, which
has been resolved in detail in CuPzN by inelastic neutron scattering [13, 15]. Excitations
extending the creation of two spinons are investigated with great success in the related
compound CuSO4·5D2O [12]. The advantage of that compound lies in the availability of
large single crystals and the smaller saturation �eld of about 5T. The energy scale that
determines the saturation �eld is the primary coupling constant and in both systems
it is reasonably smaller than in most other realizations of the Heisenberg model. In
many copper compounds the exchange constants are in the range of 1000K [213, 214].
In these systems, magnetic �elds accessible in laboratory equipment, do not su�ce to
severely in�uence the spin chain.
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Figure 6.4: Magnetization of CuPzN,
measured as a function of the magnetic
�eld applied along b at 80mK (red dots)
in comparison to zero-temperature results
using the Bethe ansatz (open squares).
(Taken from Ref. 17)

In CuPzN the saturation �eld of about 14T lies in a range that is accessible in ex-
periments. The thermodynamic properties of the compound, however, have been in-
vestigated only at reasonably smaller magnetic �elds. In Ref. 13 the speci�c heat is
analyzed, but only up to 9T. Apart from a small change in the low-temperature slope
of cp(T ), that is related to a renormalization of the spinon velocity, true quantum
critical signatures are not discussed.

6.2 Experimental results

Large single crystals of copper pyrazine dinitrate have been provided by Mark M. Turn-
bull (Carlson School of Chemistry and Biochemistry, Clark University, USA). They
grow in a typically needle-shaped geometry with the crystallographic c axis as the
longest axis and with b as the shortest axis. The crystals are rather brittle and may
cleave if not treated carefully. They have a slightly transparent, blue color. The as-
grown crystals have rather rough surfaces. Thus, from the available crystals a single
suitable sample of adequate geometry was selected and used for the measurements of
all thermodynamic quantities presented in the following.

The speci�c heat, the magnetization and the magnetocaloric e�ect were measured us-
ing a sample of CuPzN of about 7mg weight with the approximate dimensions of
5×2×0.5mm3. The speci�c heat was measured using the home-built 3He calorimeter
described in Chapter 3.2.3 by the relaxation-time method. Down to the base tempe-
rature of the cryostat of 250mK no internal relaxation e�ects were observed. In the
whole temperature range the external relaxation time was of the order of a few seconds,
which allowed to robustly determine the speci�c heat by the relaxation method. The
addenda heat capacity was measured in a separate run including a small dependence
on applied magnetic �elds up to 15T. The in�uence of the addenda's heat capacity
on the obtained speci�c heat, however, is small as the sample's signal exceeds the ad-
denda's contribution by about one order of magnitude at low temperature T < 10 K.
The magnetocaloric e�ect was measured in the same run using the experimental tech-
nique described in Chapter 3.3. For comparison the speci�c heat was also measured
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using the heat capacity option of the commercial PPMS setup (Physical Properties
Measurement System, Quantum Design).

For the magnetization measurements an existing capacitance magnetometer was used,
described in more detail in Refs. 106, 215. A new sample holder was adapted to the
magnetometer which allows to mount the sample with the b axis along the magnetic
�eld. In contrast to the conventional method, where the magnetometer is placed in
a magnetic �eld gradient by positioning it 5 cm o� from the magnetic �eld center of
the superconducting magnet, here, it was placed in a distance of only 2 cm. Such, the
magnetic �eld at the sample position is maximized to a �eld of 15.4T in an external �eld
of 17T, su�ciently high to reach the saturation �eld of the system. As the magnetic
moment of the available CuPzN sample at small �elds is comparable to that of the
empty sample holder, in advance a calibration of the sample holder was performed for
both distances of 5 cm and 2 cm from the magnetic �eld center.

The thermal expansion and the magnetostriction of the a axis have been measured
by J. Rohrkamp. Here, the data taken from Ref. 216 are compared to precise results
of the Heisenberg spin chain. The data were acquired using a home-built capacitance
dilatometer in a temperature range from 250mK to 20K. The dilatometer was mounted
in a perpendicular con�guration, i. e., with the magnetic �eld of up to 17T applied
along the b axis, while the relative length change ∆La/L0 was measured along a. The
thermal expansion coe�cient αa and the magnetostrictive coe�cient λa were obtained
by numerical derivation, (αa, λa) = 1

L0

∂∆La
∂(T,H)

. For simplicity, the subscript a is dropped
in the following for all three quantities.

The slightly larger value of gb in comparison to the other axes was utilized in all
experiments to maximize the magnetic �eld range accessible in the experiment. All
data shown below were acquired with the magnetic �eld H applied along b. In most
cases selected data is shown, see Appendix B for the full data sets of thermodynamic
quantities.

6.2.1 Thermal expansion and magnetostriction

The length change of CuPzN was measured along the chain direction a in magnetic
�elds applied along b. The crystallographic a axis was chosen for the measurements
because the largest contribution of the spin chain magnetism to the length change
has been found for this axis [217]. In Fig. 6.5 the relative length change as a function
of temperature and magnetic �eld together with its respective derivatives is shown.
The data of ∆L/L0 were shifted according to the magnetostriction acquired at 0.25K
and to the thermal expansion measured at zero �eld. All temperature-dependent data
show a common behavior for temperatures T > 15 K, where the lattice contribution
dominates. Below 10 K an additional contribution arises that is best analyzed from the
thermal expansion coe�cient α, shown in Fig. 6.5 (b). Around 5K it reveals a broad
maximum that shifts to lower temperature with increasing the magnetic �eld. At 13T
a strong divergence-like increase of the low-temperature tail arises that changes its
sign by increasing the �eld to 14T. For even larger magnetic �elds a new minimum
of α(T ) arises at about 1K. The change of the sign of α is a typical �ngerprint of a
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Figure 6.5:

Thermal ex-
pansion and
magnetostric-
tion of CuPzN
measured along
the a direction
with magnetic
�elds applied
along the b axis.

quantum phase transition at the critical �eld of the spin chain [152, 154, 155]. The
critical �eld is also re�ected in the magnetostriction, plotted in Fig. 6.5 (c) and (d).
At low temperature T . 1 K the length change ∆L(H) saturates at about 14T, also
re�ected in a peak of λ. With increasing the temperature, the features broaden and
above 4K a rather featureless �eld dependence arises. The overall size of the ther-
mal expansion and the magnetostriction of about 10−5 is rather small in comparison
to Cs2CoCl4 (cf. Chapter 4.2) or to other low-dimensional spin compounds [77]. The
origin of the small lattice expansion lies in a small magnetoelastic coupling of the
system and to some degree is consistent with the fact that CuPzN does not form a
non-magnetic ground state via a Spin-Peierls transition [218], which is the alternative
to magnetic ordering commonly discussed in the �eld of one-dimensional systems for
spin-1/2 chains [219]. Systems with a large thermal expansion like CuGeO3 [220�222]
and several other spin-1/2 chain compounds [223�225] show a Spin-Peierls transition.
However, in Cu(C4H4N2)(NO3)2 the magnetoelastic coupling is so small that instead
magnetic order is stabilized. The size of interchain interactions in addition is very small,
which explains the low Néel temperature.

6.2.2 Speci�c heat

In Fig. 6.6 selected data of the speci�c heat cp are shown. At zero �eld the temperature
dependence above 10K is dominated by phonons. The speci�c heat measured with the
home-built setup and with the commercial setup lie on top of each other, see inset of
Fig. 6.6 (a). As expected from the Debye model, at low temperature T . 30 K the
speci�c heat approximately follows a power law cp ∝ T 3, shown by an orange line in
Fig. 6.6 (a). Although there are deviations above 20K, the extrapolation of the phonon
speci�c heat to low temperature reveals an additional magnetic contribution to cp in
form of a maximum around 5K which exceeds the phonon signal by at least one order
of magnitude. Below about 1K a linear temperature dependence arises as expected
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Figure 6.6: Speci�c heat of CuPzN as a function of temperature at di�erent constant mag-
netic �elds applied along b. In (a) straight lines indicate power laws cp ∝ T (pink) and cp ∝ T 3

(orange). In the inset the data obtained with two di�erent setups are compared.

for various one-dimensional spin chains [130]. In magnetic �elds applied along b the
low-temperature speci�c heat changes, while the phonon background above about 10K
remains essentially unchanged. Up to about 13T the zero-�eld maximum reduces in
absolute value and shifts to lower temperature. At 12.48T two main features can be
identi�ed in the data, marked by green arrows in Fig. 6.6 (a). The broad maximum
around 0.8K continuously evolves from the zero-�eld maximum. The additional upper
maximum lies close to the temperature of the zero-�eld maximum at about 5K, but is
reduced in absolute value. It is found as well in all data acquired at larger magnetic �eld.
From 13.52T to 14.56T, shown in panel (b) of Fig. 6.6, the temperature dependence of
cp below 1K fundamentally changes and for even larger magnetic �elds an increasing
spin gap is indicated by the strong suppression and a redistribution of the speci�c heat
to higher temperature.

The strong dispersion of the low-temperature speci�c heat is more clearly seen in the
�eld dependent data cp(H), plotted in Fig. 6.7 for di�erent constant temperatures from
0.3 to 2.5K. All data show a well-de�ned minimum at about 14T that slightly shifts
to larger �elds with decreasing the temperature. Below 1K a double-peak structure
of cp(H) is resolved. At elevated temperature only the low-�eld maximum is resolved
within the experimental �eld range. This universal �eld dependence arises from the
increasing entropy close to quantum critical points [152].

6.2.3 Magnetocaloric e�ect

The magnetocaloric e�ect was analyzed by keeping the sample temperature �xed while
sweeping the magnetic �eld. The required large magnetic �elds of more than 14T
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Figure 6.7: Speci�c heat of CuPzN as
a function of the magnetic �eld applied
along the b direction. Around 14T a
double peak structure evolves.

restricted the experiments to a single dewar with a suitable superconducting magnet
that easily reaches up to 15T. However, this magnet shows unwanted superconducting
�ux jumps below about 2T. They induce non-continuous jumps of the magnetic �eld
at the sample position, which in turn excessively heat the sample platform due to
induction. These jumps are also re�ected in the magnetocaloric raw data, shown in
Fig. 6.8. In the �eld range shaded in gray, the power P applied to the heater strongly
�uctuates. In the inset an exemplary oscillation of P close to 2T is shown. Here, upon
decreasing the �eld a �ux jump occurs and the power is reduced to compensate the
inductive heating, followed by the typical oscillations of a PID control loop. Although
these e�ects are completely unwanted, they cannot be avoided in this magnet. Yet, the
fast recovery of P and the shape of the oscillations indicate that the control parameters
are well tuned.

Above 3T the magnet does not show discontinuities. Up to 13T the temperature
stability, indicated by the relative change (Tsample−T )/T in Fig. 6.8 (b), is below 0.2%,
which is about the noise level of the temperature acquisition. In the power P small kinks
are found at 4 and 6 T. They stem from the interpolation of the magnetoresistance
of the sample thermometer and cancel by anti-symmetrizing during the data analysis.
Above 10T the power shows a dependence on the �eld sweep direction. In this range,
the sample temperature is slightly less stable. Still, the deviations are below 1% and,
thus, safely negligible. Due to the sudden change of the sweep direction at the maximum
�eld at about 15.5T the temperature control starts to oscillate, but recovers quite fast
at about 15.3T.

In the analysis of the raw data the low-�eld and the high-�eld region where experimental
artifacts arise, are excluded. Using Eqns. (3.16) and (3.17) the entropy change ∆S =
S(H) − S(4 T) with respect to the entropy at 4T and the magnetic Grüneisen ratio
ΓH(H) is calculated from the antisymmetric contribution of P (H). The obtained ∆S
curves, shown in Fig. 6.9 (a), are shifted with respect to each other according to the
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Figure 6.8: Raw data of the magnetocaloric-e�ect measurements. In (a) the power P applied
to the heater as a function of the magnetic �eld is shown both for increasing and decreasing
the �eld. Arrows indicate the sweep direction. In (b) the relative deviation of the sample
temperature from the target temperature is shown.

linear low-temperature dependence of the entropy change S(T, 4 T) − S(0.32 K, 4 T),
obtained from the speci�c heat at 4T by integration and plotted in the inset (1) of
Fig. 6.9 (a). Such, a single entropy o�set remains for all data, which here is chosen such
that ∆S(0.32 K, 0) = 0. The overall temperature and �eld dependence of ∆S reveals
some irregularities that are probably of experimental origin. For example, ∆S(0.32 K)
intersects ∆S(0.4 K) twice. Also the curve at 0.8K does not follow the general trend
of the others. These deviations may arise from small experimental uncertainties in the
raw data that come to light due to integrating the data. While the sample temperature
of 0.32K marks the lower border of the possible temperature range in the experimental
setup, the data at 0.8K are possibly in�uenced by other experimental issues. Thus,
the absolute values at these two temperatures are not very reliable. Nevertheless, all
measurements consistently show a maximum of the entropy between 13 and 14T.
Decreasing the temperature, the maximum narrows and shifts to larger �elds. Below
0.6K the shift of the maximum is well described by a linear �t, shown in the inset (2)
of Fig. 6.9 (a), which extrapolates to a zero-temperature critical �eld of about 13.8T.

The magnetic Grüneisen ratio ΓH , plotted in Fig. 6.9 (b) versus the magnetic �eld,
apart from constants, relates to ∆S via derivation. At small �elds H . 10 T it takes
small negative values of about −0.1T−1, indicating a positive temperature dependence
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Figure 6.9: Entropy change ∆S (a) and the magnetic Grüneisen ratio ΓH (b) as a function
of the magnetic �eld applied along b. The entropy change is given in relation to the entropy
at 0.32K and 4T, based on the temperature-dependent change of the entropy (inset 1). Inset
2 displays the temperature dependence of the peak of ∆S(H).

of the magnetization ∂M/∂T . At high �elds ΓH > 0 re�ects the thermal reduction of the
saturated magnetization similar to a free ion's magnetism. Approaching a �eld of about
13.8T, the data become increasingly temperature dependent and remind of a broadened
pole. Both below and above the critical �eld the absolute values of |ΓH(T → 0)| seem
to diverge with decreasing the temperature. Consistent with the maximum of ∆S in
between ΓH becomes zero.

6.2.4 Magnetization

The magnetization as a function of the magnetic �eld is shown in Fig. 6.10. The Fara-
day magnetometer used for these measurements requires a sizable magnetic moment
of the sample and a �eld gradient to obtain signi�cant data. Below about 3T the mag-
netic moment of the sample is comparably small. Thus, the magnetization cannot be
determined with high precision in this �eld range. The most structure in the data arises
at larger �elds, anyway. Up to 10T the magnetization increases with a rising slope.
Depending on the temperature an in�ection point is found between 13 and 14T that is
re�ected in a maximum of the derivative dM/dH, shown on the right scale of Fig. 6.10.
At 0.3K a maximum of dM/dH at 13.6T is found. Increasing the temperature, the
data broaden and the in�ection point shifts to larger �elds as plotted in the inset of
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Figure 6.10: Magnetization of
CuPzN measured as a function of
the magnetic �eld applied along b
at di�erent constant temperature.
For two selected temperatures the
derivative dM/dH is shown (right
scale). � � � � 	 � � � � � � � �
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Fig. 6.10. A linear �t of the temperature dependence yields a zero-temperature critical
�eld of about 13.8T, similar to the critical �elds observed in the other quantities.

6.3 Comparison to the Heisenberg model

During the long history of the Heisenberg spin-chain model in the �eld of condensed
matter physics, a large number of theoretical and experimental works have concerned
its fundamental properties and manifestations in model crystals. Despite the simple
form of the Hamiltonian,

H = J
∑
i

Si · Sj − gµBµ0HS
z
i , (6.3)

and the exact solubility based on the Bethe ansatz [40], the calculation of thermody-
namic properties of the model at arbitrary temperature for a long time pose a challenge
for theory. Especially at low-temperature (T � J), signi�cant corrections arise, which
for example are re�ected in a large slope of the susceptibility. In this chapter the ex-
perimental data are compared to calculations that are based on a formalism laid out in
Ref. 46 which yields high-precision results for thermodynamic quantities based on the
exact solution. The author A. Klümper has provided a Fortran code that calculates the
free energy F and its derivatives S (entropy), C (heat capacity), M (magnetization),
as well as the spin-spin correlator 〈Si · Si+1〉 for �xed values of the temperature and the
magnetic �eld h. The calculations have been repeated in a dense mesh for temperatures
T/J from 0.001 to 10 with 250 steps and for magnetic �elds h/J from 0 to 6 with 600
steps. Using a standard desktop computer the total of 150.000 calculations completed
in about one week. In Fig. 6.11 selected computation results are shown as density plots,
where blue (yellow) colors indicate small (large) values. The heat capacity at zero �eld
has a maximum at about 0.5T/J and shows the typical minimum around the critical
�eld 2h/J . At the critical �eld the low-temperature weight of the entropy is signi�-
cantly increased. The magnetization saturates at 2h/J and continuously broadens with
increasing the temperature. In case of the spin-spin correlation 〈SiSi+1〉 blue colors do



180 6 The Heisenberg spin chain Cu(C4H4N2)(NO3)2

Figure 6.11: Calculated thermodynamic quantities of the spin-1/2 Heisenberg chain as a
function of the reduced magnetic �eld h/J and temperature T/J . The colors indicates the
value of the respective quantity from low (blue) to high (yellow).

not indicate 0 as in case of the previous quantities, but the zero-�eld low-temperature
limit of the correlator of about −0.4431, while yellow indicates the value of 0.25 in the
fully polarized state.

For comparisons to experimental data at arbitrary temperature and magnetic �eld, the
calculated thermodynamic quantities at �xed temperature and �eld are interpolated
by multivariate splines of third order using Mathematica [23]. This allows to obtain
any experimental quantity Ω for an arbitrary coupling constant J and a magnetic �eld
H by interpolating and scaling the calculated ω,

Ω = A · ω(
T

J
, g
µB

kB

H

J
). (6.4)

Here, the factor µB
kB
≈ 0.671 is introduced and takes into account that J is given in

units of Kelvin and H in units of Tesla. Further constants A are required to convert to
the experimental units. For example in case of the speci�c heat, A = NAkB converts
from the heat capacity per site to Jmol−1 K−1.

In the following the experimental data are compared to the Heisenberg model. For each
thermodynamic quantity the experimental data x(Ti, Hi) are �tted simultaneously by
numerically minimizing the cost function

∆(ξ1, ξ2, ..) =
∑

[x(Ti, Hi)− Ω(Ti, Hi, ξ1, ξ2, ..)]
2 (6.5)

with respect to the model parameters ξi using a metropolis-like algorithm that con-
verges within a few hundred steps. As the �eld dependence of the Heisenberg model
(Eqn. 6.3) depends on the ratio g/J , both quantities are hardly obtained simultane-



6.3 Comparison to the Heisenberg model 181

Figure 6.12: Zero-�eld speci�c
heat of CuPzN in comparison to
theory. The dashed yellow line
represents the phonon contribu-
tion approximated from a De-
bye model. The blue line is the
speci�c heat of the Heisenberg
model using J/kB = 10.6 K, the
green line represents the expected
low-temperature limit. The sum
of both contributions (red line)
matches with the experimental
data (open symbols). In the in-
set the low-temperature data are
shown divided by temperature. � � �
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ously from the data. Thus, in all �ts the g factor was �xed to the established literature
value for the b axis of gb = 2.27 [207, 210].

6.3.1 Speci�c heat

At zero �eld, the measured speci�c heat is well described by a sum of a Debye model
and the calculated speci�c heat of the Heisenberg model. Although the applicability
of the Debye model above 20K might be questioned, a phenomenological description
of the data is possible in this temperature range using a Debye temperature of 153K
and a scaling constant of 3.5, as shown by the dashed yellow line in Fig. 6.12. Below
10K the extrapolation of the model essentially follows a T 3 dependence and provides
an estimate of the phonon background for the �t of the magnetic low-temperature
contribution by the Heisenberg model. The blue line represents the speci�c heat of the
Heisenberg model using an exchange constant J/kB = 10.6 K. At low temperature the
model calculation approaches the linear temperature dependence

CH = γH · T =
π

3
R
kBT

vs(H)
, (6.6)

with the spinon velocity vs(H), as expected for the Heisenberg spin chain in the limit of
low temperature T � J from the Bethe ansatz [43, 226, 227]. The linear temperature
dependence of the speci�c heat arises from the linear dispersion ε(k) of spinons at low
energy. At zero �eld the velocity vs = ∂ε

∂k
= πJ/2 is determined by the coupling constant

J . The green line in Fig. 6.12 represents CH(T ) assuming J/kB = 10.59 K. The match
of the model calculations with the exact result on the low-temperature limit con�rms
the high precision of the calculations. The sum of the magnetic contribution of the
Heisenberg model and of the approximated phonon contribution, shown as a red line,
matches the experimental data within a few percent in the whole temperature range.
Yet, there are small deviations in the low-temperature tail as seen in the speci�c heat
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Figure 6.13: Temperature (a) and �eld (b) dependence of the speci�c heat in comparison
to the Heisenberg model. Open symbols are the experimental data, solid lines are �ts to the
data. Curves in (a) are o�set from each other by 1 Jmol−1K−1.

divided by temperature, plotted in the inset of Fig. 6.12. In this representation the
slope of the linear temperature dependence is represented by a �nite y intersect. The
green line marks the value γH ' 0.522 Jmol−1 K−2 expected from Eqn. (6.6). While
the calculations continuously decrease with decreasing temperature and approach γH ,
the experimental data increase below about 1K. In a plot of cp(T ) this deviation is
re�ected in a mismatch of the absolute values of about 5%. Below 1K the typical error
of the speci�c heat measurements is of the same order. A true physical origin for the
deviation therefore cannot be stated from this comparison.

Extending the comparison to include the speci�c heat at �nite magnetic �elds, the
simultaneous �t of all data results in a very similar coupling constant

J/kB = 10.59 K (6.7)

and a somewhat larger Debye temperature of 178K. As shown in Fig. 6.13 (a), the
overall �eld dependence at low temperature is well reproduced by the calculations.
The suppression of the zero-�eld maximum from about 5K to lower temperature as
well as the high-�eld exponential temperature dependence are consistently found in the
calculations. However, at �elds larger than about 8T the calculations do not reproduce
the reduced values of the experimental data between 2K and 4K. Also, starting at
about 6K the speci�c heat is overestimated by the theory. In this temperature range
the speci�c heat is possibly dominated by phonons, which suggest that the Debye model
fails here. Yet, in the zero-�eld data these issues do not arise. In principle, the phonon
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speci�c heat might also depend on the magnetic �eld, but typically these e�ects are
reasonably smaller.

Similarly, the �eld dependence of cp is well described by the Heisenberg model, but
only on a semi-quantitative level, see Fig. 6.13 (b). The double peak structure and its
broadening by temperature are fully re�ected by the calculations. However, the absolute
values are not described by a single set of model parameters in the full temperature
and �eld range. While at small �elds only the high-temperature calculations are o�set
form the data, increasing the �eld the deviations increase further. Close to the critical
�eld the calculations di�er from the experimental data by about 10%. This result is
not due to a wrong modeling of the phonon background. Below 1K the phonon speci�c
heat, extrapolated from the high-temperature data, is smaller by about two orders
of magnitude than the magnetic contribution. For example at 0.3K phonons are fully
negligible, but nevertheless the Heisenberg model cannot account for the absolute value
of cp around 14T at that temperature.

A strict consequence of the mismatch would be to question the applicability of the
Heisenberg model to CuPzN. In analogy to the discussion of possibly di�erent aniso-
tropies in Cs2CoCl4, one may ask whether the deviations arise from a magnetism of
CuPzN that is not fully isotropic as assumed in the Heisenberg model. As seen from
the slight anisotropy of the g factor for di�erent crystallographic axes, the magnetism
apparently is in�uenced by a �nite angular momentum. Due to spin-orbit coupling in
second order a small fraction of the quenched orbital moment in a crystal �eld may
be recovered, leading to a factual anisotropy of the magnetism. A rough estimate of
the anisotropy is obtained from the di�erence of the g factors ga = 2.05 and gc = 2.07
in comparison to gb = 2.27. The two smaller g factors in comparison to the single
larger one suggest an easy axis anisotropy. In analogy to the square dependence of the
anisotropy parameter ∆ in the XXZ Hamiltonian on the ratio of the g factors [3], one
may estimate that Cu(C4H4N2)(NO3)2 in fact has a small Ising anisotropy ∆ ≈ 1.01.
In consequence a small, yet �nite gap of the order of 0.01 J ≈ 0.1 K in the excitation
spectrum would follow and the low-temperature speci�c heat should be strongly in-
�uenced. The temperature range of the experiment, however, exceeds the estimated
gap size by a factor of three. Thus, even if there is a �nite gap, it hardly contributes
to the present data. Only the zero-�eld speci�c heat divided by temperature (inset of
Fig. 6.12) vaguely suggests the onset of a low-temperature feature below about 0.8K.
Yet, from the present data the scenario of a �nite anisotropy of the magnetism of
CuPzN cannot be quanti�ed. To observe an eventually exponential temperature de-
pendence of the speci�c heat measurements well below 100mK are required, which
is not only an experimental challenge, but �nally also magnetic order occurs in this
temperature range.

Several other possible in�uences on the speci�c heat in magnetic �elds that could
explain the deviations have been analyzed. Due to the imperfect sample shape, demag-
netization e�ects could play a role. Yet, even assuming a demagnetization factor of 1,
they are safely negligible in the full �eld range due to the small magnetization density
of Cu(C4H4N2)(NO3)2. The coupling constant may depend on temperature and on the
magnetic �eld due to magnetoelastic coupling. To test this hypothesis, in the �ts a
coupling constant J(T,H) = J0 + δ · 〈SiSi+1〉 changing as a function of the spin-spin
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Figure 6.14: Zero-�eld speci�c heat of
CuPzN measured at a temperature of 2K
using a home-built calorimeter with a 3He
cryostat (black circles) and a commer-
cial setup based on a 4He cryostat (gray
squares) in comparison to theory. The blue
line indicates cmag of the Heisenberg model.
An additional phonon background cph con-
tributes to the red line.

correlator was assumed, where δ is a tunable parameter. However, the �ts do not in-
dicate a systematic �eld dependence of J . Due to the presence of two non-equivalent
copper sites and the small anisotropy of the g factor also staggered �eld e�ects could be
taken into account. A di�erence of the g factor by a small value ∆g between two types
of spin chains translates into a di�erence of the e�ective �eld from the external �eld H
by ∆H = ∆g ·H. Thus, the total speci�c heat can be modeled as a superposition,

cp(T,H) =
cp(T,H + ∆H) + cp(T,H −∆H)

2
. (6.8)

The calculations for various ∆g, however, only di�er from the non-staggered speci�c
heat in a small rounding of the �eld-dependent maxima at low temperature and do not
give an improved description of the data.

Another explanation of the inconsistencies is given by experimental issues at high �elds.
For comparison the speci�c heat has been measured as a function of the magnetic �eld
also using the heat capacity option of a commercial setup based on a 4He cryostat
(PPMS, Quantum Design). The drawback of this setup is the restricted temperature
range of 1.8K lowest and the maximum �eld of 14T. At zero �eld both setups yield a
consistent temperature dependence of the speci�c heat, see Fig. 6.6. In Fig. 6.14 the
�eld dependence of cp at 2K, obtained with the home-built 3He setup (black symbols),
is compared to that measured with the commercial 4He setup (gray symbols). Up to 5T
the data match each other within the noise level, but not with the calculated speci�c
heat. The phonon contribution is negligible at that temperature, as seen by comparing
the very similar purely magnetic contribution cmag of the Heisenberg model, shown as
a blue line. Even fully neglecting phonons, the zero-�eld data are signi�cantly lower.
Around the critical �eld, the experimental data additionally di�er from each other by
about 10%. In this �eld range, the absolute values of the 4He setup data are slightly
closer to the model calculations. However, the �eld range in this experiment is too small,
respectively the temperature too high to resolve the double peak structure of cp(H)
and to perform a meaningful �t. From the fact that the experimental data di�er by up
to 10% between the two setups and that the deviations from the theory are of the same
order, a physical origin of the discrepancies is hard to argue for. Instead, they might be
induced by an imperfect calibration of the temperature sensors in large magnetic �elds.
Other quantities like the magnetization or the magnetostriction are less sensitive to the
sample thermometer's calibration. Using the relaxation or the quasi-adiabatic method



6.3 Comparison to the Heisenberg model 185

Figure 6.15: Magnetization of
CuPzN measured with the mag-
netic �eld along b (symbols)
in comparison to the Heisenberg
model (solid lines). In the inset
a zoom of the high-�eld range is
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the absolute value of the speci�c heat, however, directly relates to the temperature
derivative of the temperature sensor's calibration curve T (R). Improving the magnetic
�eld calibration of the sensors may help to resolve these issues. At zero �eld, where
the sensor calibration is straightforward and the present data agree with each other,
nevertheless, the absolute value of cp cannot be explained by the Heisenberg model.

6.3.2 Magnetization

Above 14T the magnetization saturates to a value of 1.08µB. For the spin-1/2 of Cu2+
this saturation value translates into a g factor of 2.16, which is slightly smaller than
the established literature value of 2.27. The slightly larger saturation value of 1.15µB

found in Ref. 17, instead would consistently yield gb = 2.3. This deviation of about 6%
lies within the experimental uncertainty of the present experiment.

From the model calculations the thermal expectation value of Sz is obtained. It relates
to the experimental magnetization along the b axis via

M = a · gb µB〈Sz〉. (6.9)

Here, the experimental factor a compensates for experimental uncertainties of the sam-
ple weighing and the magnetometer calibration. Fixing the g factor to the literature
value of gb = 2.27 a simultaneous �t of all data yields a coupling constant

J/kB = 10.58 K and a = 0.95. (6.10)

The factor of 0.95 is of the same order than the deviation of the saturation value from
that reported in Ref. 17. In contrast to the data of Ref. 17 that are scaled to high-
temperature SQUID data, here the pristine data are presented as obtained directly from
the low-temperature measurements. Figure 6.15 displays the �ts of the magnetization
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versus the �eld at temperatures from 0.3 to 2.0K. In the inset a zoom of the high-�eld
range is shown. The saturation moment and the thermal broadening of the data is
well described by the model calculations. The coupling constant closely resembles that
obtained from the other thermodynamic quantities.

6.3.3 Thermal expansion

In the thermal expansion not only the one-dimensional magnetism of the spin chain
is seen, but also phonons contribute, scaled by the pressure dependence of the Debye
temperature, as understood from the Grüneisen scaling [102]. Above 15K the phonon
contribution to α(T ) exceeds the magnetic contribution of the Heisenberg chain. Thus,
only the low-temperature data for T < 6 K are considered for a comparison to the
model calculations. The thermal expansion and the magnetostriction are calculated
from the spin-spin correlator 〈SiSi+1〉 as described in Chapter 2.3.3. The value of the
coupling constant is mainly �xed by the peaks of the magnetostrictive coe�cient λ
at the critical �eld. Besides J the only other �t parameter is the uniaxial pressure
dependence ∂J/∂pb. Simultaneously �tting all temperature and �eld dependent data
of α(T < 6 K) and λ(H) yields

J/kB = 10.60 K,
∂J

∂pb
= 0.25KGPa−1,

∂ ln J

∂pb
= 2.3%GPa−1. (6.11)

In Fig. 6.16 the calculations are shown as solid lines. The relative length change ∆L/L0,
shown in Fig. 6.16 (a) for di�erent magnetic �elds, compares well to the Heisenberg
model. A single constant was used to shift all calculations such that the the zero-�eld
data at the lowest temperature are matched. The �eld-induced change of the low-
temperature slope as well as the overall curvature is well reproduced by the model.
Yet, there are deviations at 0 and 5T of about 10 to 15%. As seen by comparing the
thermal expansion coe�cient, they are not described by a simple shift of ∆L by a
constant. While the broad maximum of the experimental α(T ), shown in Fig. 6.16 (b)
is well reproduced, the absolute value is overestimated by about 10%. Yet, in this
low-�eld and low-temperature range, the measurements seem to be in�uenced by ex-
perimental issues. This is re�ected in a crossing of the 0T and the 5T data at about 7K,
inconsistent with the monotonic increase of the magnetostriction at low temperature
(cf. Fig. 6.5). Increasing the �eld the deviations reduce. At 12 and 13T the calculations
are in excellent agreement with the data and consistently yield a sign change of α by
increasing the �eld to 14T. Concerning the magnetostriction the agreement between
experiment and theory is even more striking. The calculated length change ∆L(H),
shown in Fig. 6.16 (c) for selected temperatures, lies on top of the data. Consistently,
the magnetostrictive coe�cient is also in quantitative agreement with the model calcu-
lations, see Fig. 6.16 (d). Both the position and the absolute value of the peak close to
14T, as well as the broadening by temperature is captured by the Heisenberg model.
Below 4T the measurements vaguely suggest an additional small anomaly. However,
from the Heisenberg spin chain no unique features are expected in this �eld range.



6.3 Comparison to the Heisenberg model 187

�

�

� �

∆

�


����
���

� � � �

�

�

� �� � �

∆

�


����
���

�

� � � � 	 � �

� �

� �

�

�

� � 	 � � � � � � � � � � 

� � � � � � � �
� � � � 
 � �
� � � � � �
� � � � � �
� � � � � �
� � � 	 � �
� � � 
 � �

� � �

α�
��

���
�	

��
�

� � � � �
� � � � 	 � � � � � � � �

�

�

�

�

�

�� � 	 � � � � � � � � � � 

� � � � � 
 � � � � � � �
� � � � 	 � � � � � � � �
� � � � � � � � � � � � �
� � � � � 
 � �
� � � � � � � �
� � 	 � � 
 � �
� �  � � � � �

� � �

λ�
��

���
��

��
�

µ� �� � � � �� � � � �

Figure 6.16: Thermal expansion and magnetostriction of CuPzN (symbols) in comparison
to the Heisenberg model (solid lines).

6.3.4 Magnetocaloric e�ect

The absolute value of the entropy S(T,H) at arbitrary temperature and �eld is ob-
tained directly from the calculations. However, in experiment only the change of the
entropy with respect to a certain temperature and magnetic �eld can be measured, but
not the absolute value of the entropy. Comparing the experimental data to the calcu-
lations, therefore, an o�set has to be considered for each measurement at a constant
temperature. If in addition to the �eld dependence of S also the temperature depen-
dence is known, the number of o�sets reduces to a single overall constant. Due to the
inconsistencies encountered above when comparing ∆S(H) obtained from the magne-
tocaloric e�ect to ∆S(T ) extracted from the speci�c heat, here, the model calculations
are taken as a reference of the entropy's temperature dependence. The experimental
data are shifted according to the calculated maximum entropy close to the critical
�eld of about 14T. This allows to plot the absolute value of the entropy, shown in
Fig. 6.17 (a) for a coupling constant J/kB = 10.59 K, obtained by �tting the experi-
mental magnetocaloric-e�ect data.

At high �elds the experimentally observed entropy change and the model calculations
agree within few percent. Above 15T and at low temperature S becomes zero due to
the non-degenerate ground state selected by the magnetic �eld. The data obtained at
0.8K might be in�uenced by experimental issues and solely deviate from the theory in
this �eld range. Below 10T some of the measured entropy changes signi�cantly di�er
from the model results and even cross each other. Most possibly, these are experimental
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Figure 6.17: (a) Entropy of CuPzN as a function of the magnetic �eld applied along b in
comparison to the Heisenberg model. Dotted lines are the experimental data, shifted by a
constant each. Solid lines represent the calculated entropy of a Heisenberg spin chain. (b)
Entropy change ∆S with respect to the entropy at 3T normalized to

∫
∆S(H) dH

artifacts. The lowest sample temperature of 0.32K is at the verge of the possible exper-
imental range. At the highest temperature of 1.0K the experimental signal comes close
to the noise level and small errors increasingly contribute due to the integration of the
data. Nevertheless, these data con�rm that the developed experimental procedure in
fact gives direct access to the entropy as a function of the magnetic �eld. Yet, further
e�ort may be put into the optimization of the temperature stability while sweeping the
�eld and into improving the resolution of the power measurement.

The temperature dependence of the entropy is illustrated more clearly by normalizing
the entropy change ∆S = S(H)− S(3 T) to the total entropy change

∫ 16 T

3 T
∆S(H) dH

in the experimental �eld range. The resulting distribution function can be understood
as the entropy weight as a function of the magnetic �eld. As shown in Fig. 6.17 (b),
decreasing the temperature the entropy accumulates close to the critical �eld of the
spin chain, as expected close to quantum critical points based on very general state-
ments [103].

Besides the entropy change also the magnetic Grüneisen ratio ΓH has been measured.
It mainly relates to the entropy change via derivation with respect to the magnetic
�eld. Thus, no o�sets like in case of the entropy have to be considered. According to
Eqn. (3.9) the magnetic Grüneisen ratio relates to the magnetization and the speci�c
heat as

ΓH = −
∂M
∂T

∣∣
H

CH
. (6.12)

Both the temperature dependence of the magnetization as well as the speci�c heat at a
constant magnetic �eld are obtained from the output of the model calculations either
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Figure 6.18: Magnetic
Grüneisen ratio ΓH of CuPzN
at di�erent temperatures
from 0.32K (thin blue line)
to 1.0K (thin red line) in
comparison to calculations
for the Heisenberg chain
(bold lines from blue to red).
The black lines represent the
expected zero-temperature
�eld dependence of ΓH . The
dashed orange line marks the
critical �eld µ0Hc = 13.90 T. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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by numerical derivation of the calculated magnetization or directly in case of the heat
capacity. Converting to the experimental units, the data can be compared quantita-
tively to the Heisenberg model. The experimental data, shown as thin lines in Fig. 6.18,
are well described by including an overall constant a ·ΓH to compensate for systematic
experimental errors like the weighing of the sample, o�sets in the measurements of the
heater power and other deviations from the ideal isothermal conditions assumed in the
derivation of ΓH from the experimental raw data. Similar to the entropy data the curve
for 0.8K stands out and possibly is in�uenced by experimental issues. From the �t of
the data a = 0.87 and a coupling constant J/kB = 10.59 K is deduced that translates
into a critical �eld of the Heisenberg spin chain of

µ0Hc =
2J

gµB

' 13.90 T. (6.13)

In Fig. 6.18 this �eld is marked by a vertical orange line. Far from the critical �eld
H � Hc both the experimental and the calculated Grüneisen ratio come close to zero.
Approaching the critical �eld from below the temperature dependence increases and
extrapolates to a divergence with a pole at Hc as described by ΓH ∝ 1

H−Hc . Above
the critical �eld ΓH increases to large positive values with decreasing the temperature.
At 0.32K a maximum value of 2T−1 is obtained. This value indicates a large magne-
tocaloric e�ect of the Heisenberg chain, similar to that of XXZ spin chains [228]. It
can be pictured as a change of the system's temperature by 200%/Tesla. However, this
is true only in a small �eld range, and ΓH rapidly drops with increasing the �eld fur-
ther. The temperature dependence of ΓH(H > Hc) extrapolates to a zero-temperature
scaling similar to that for H < Hc, but with a constant twice as large.

The measured value of ΓH at the critical �eld is plotted in the inset of Fig. 6.18 versus
the temperature. The data can be described by ΓH(T,H = Hc) = 0.7

T
, shown as a

dashed line. Both the �eld dependence of ΓH , as well as the divergence for T → 0 are
expected close to quantum critical points as will be discussed in the next section.
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6.4 Quantum criticality

One remarkable property of the Heisenberg spin-1/2 chain is the emergence of a quan-
tum phase transition as a function of the magnetic �eld. In literature a quantum critical
behavior of copper pyrazine dinitrate has been suggested based on various experimen-
tal techniques [13�17, 212, 229]. However, only few studies concern the thermodynamic
properties up to the critical �eld of the spin chain or above it. In the previous chapter
several measurements of thermodynamic properties were compared to calculations of
the Heisenberg model. The generally good agreement between the data and the calcu-
lations is in favor of a quantum phase transition in CuPzN at a critical �eld of about
13.90T. Further evidence is given by the analysis of the data with respect to the critical
behavior in the following.

Finite-temperature signatures

The critical �eld is also re�ected in the �nite-temperature scaling of the signatures in
the thermodynamic quantities. In Fig. 6.19 all speci�c heat data are combined in a
temperature versus magnetic �eld color plot. Close to 14T the minimum of cp(H) is
seen as a green to yellow area extending to �nite temperatures of up to 3K. On top the
temperature and �eld dependent extrema of all previously discussed thermodynamic
properties are plotted by symbols. With a high precision they all follow linear �eld
dependences,

Tmax,min ∝ |H −Hc| , (6.14)

with slightly varying slopes. Fits to the data, shown as dashed lines, extrapolate to a
common critical �eld µ0Hc = 13.87(12)T. This representation strongly resembles the
typical phase diagrams and the characteristic �nite-temperature scaling of thermody-
namic quantities close to quantum critical points [81, 82].
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Figure 6.19: Density
plot of the speci�c heat
of CuPzN. Symbols
represent the extrema of
the speci�c heat cp(H),
the magnetization, the
entropy change ∆S and
the magnetostriction λ.
Dashed lines are linear
�ts to the extrema. The
shaded gray area marks
the temperature range
that is not accessible in
the experiment.
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Figure 6.20: (a) Speci�c heat of CuPzN divided by temperature as a function of temperature
at di�erent constant magnetic �elds below the critical �eld. Dashed lines are linear �ts to the
data. (b) Comparison of the extrapolated γ values and the spinon velocity vs at di�erent �elds
to the expectations for the Heisenberg model, calculated in Ref. 13. In (c) the divergence of
cp/T close to the critical �eld and the high-�eld behavior is compared to the Heisenberg
model.

Low-temperature behavior of the speci�c heat

Another drastic change of the magnetism of CuPzN as a function of the magnetic
�eld arises in the low-temperature speci�c heat. Approaching the critical �eld the
low-temperature asymptotics of cp strongly changes. According to Eqn. (6.6) the low-
temperature slope γH of the speci�c heat changes at �nite magnetic �eld and is inversely
proportional to the spinon velocity vs(H) which is renormalized when by increasing the
�eld. In Ref. 13 the velocity vs is calculated from the Bethe ansatz by a set of integral
equations for magnetic �elds up to the critical �eld and is compared to experimental
data extracted from the speci�c heat. However, only magnetic �elds up to 9T are
applied. Here, the calculations are compared to the experimental γ values obtained from
cp/T by extrapolating the data below 0.6K. Magnetic �elds up to the critical �eld are
included. In Fig. 6.20 (a) the �ts of cp/T at low temperature are shown as dashed lines
for selected magnetic �elds. At small �elds the linear low-temperature dependence of cp
is re�ected in an almost constant value of cp/T below 1K and the extrapolation of the �t
to zero temperature yields γH with a high precision. The corresponding values of γH and
the spinon velocity vs/J , related via Eqn. (6.6), are shown in Fig. 6.20 (b). At zero �eld
they are very close to the expected theory results from Ref.13 of γH ≈ 0.52 Jmol−1 K−2

and vs/J = π/2. Increasing the �eld γH is expected to increase and vs to approach zero
at the critical �eld, as shown by solid lines in Fig. 6.20 (b). Although the overall �eld
dependence of both quantities in fact follows the expectation, there are quantitative
deviations between the calculations and the data. Partly, this originates from the non-
linear temperature dependence of the speci�c heat which develops below about 0.6T
when approaching the critical �eld and from the restricted temperature range of the
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Figure 6.21: Low-
temperature speci�c heat
of CuPzN close to the
critical �eld (symbols) in
comparison to the Heisen-
berg model (solid line)
and the low-temperature
power-law dependence
cp ∝ T

1
2 at the critical

�eld (dashed line).

experiment. While the data for �elds below about 10T are reasonably extrapolated to
zero temperature by a linear function, the extrapolation of the data above 10T becomes
more questionable. In fact, at the critical �eld a non-linear temperature dependence
of cp ∝ T

1
2 of the speci�c heat is expected due to the quadratic dispersion of ε(k) ∝

cos k ≈ k2 for small energies [13]. In consequence, at the critical �eld, cp/T ∝ T−0.5

diverges and the extrapolation of γH from the data involves an increasing uncertainty
in the vicinity of the critical �eld.

Therefore, the data close to the critical �eld are compared to the �nite-temperature
results for the Heisenberg model instead, see Fig. 6.20 (c). Here, a coupling constant
J/kB = 10.6 K and g = 2.27 are assumed as consistently derived from the thermody-
namic data above. At 13.83T, very close to the critical �eld, the experimental data as
well as the calculations strongly increase with decreasing the temperature, re�ecting
the expected divergence of cp/T at the critical �eld. In the high-�eld phase (H > Hc)
a gapped behavior is represented by a strong suppression of the calculated cp/T below
0.25K, in agreement with the data.

The temperature dependence of the speci�c heat in the close vicinity of the critical �eld
is analyzed in further detail in Fig. 6.21. In this double-logarithmic plot the power-law
dependence cp ∝ T

1
2 is represented by a straight dashed line. The �nite-temperature

calculations of the Heisenberg model for H = Hc (solid line) follow this power-law
dependence for T < 1 K. At high temperature T > 2 K the data for three selected
�elds close to the critical �eld agree with each other, and are in coarse agreement with
the Heisenberg model (cf. previous discussion of the deviations in Chapter 6.3.1). Yet,
below 1K the speci�c heat strongly disperses. Both the experimental data acquired
at 13.52T and at 14.04T, i. e., away from the critical �eld by about 3% each, do not
follow the power law of cp ∝ T

1
2 at low temperature, but show strongly increased

values. Indeed, this behavior is expected and relates to the minimum of cp(H) close to
the critical �eld. At 13.83T, which is the data set closest to the critical �eld of 13.90T
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available, the expected power law holds in a broader temperature range. Still, there are
deviations, which can be explained by the �nite distance to the critical �eld. Thus, it
seems likely that upon tuning the magnetic �eld more precisely, the critical behavior
of the speci�c heat can be observed.

Divergence of the magnetocaloric e�ect

Besides the quantitative agreement of several thermodynamic properties to the model
calculations also other more general features are found in the data that con�rm the
quantum critical behavior of CuPzN. Close to magnetic-�eld-induced quantum critical
points certain properties are expected to show critical behavior [103, 152]. For example,
the magnetic analogon to the Grüneisen ratio, i. e., the magnetocaloric e�ect ΓH is
expected to change its sign at �nite temperature above the quantum critical point.
The zero temperature limit

ΓH,cr(T → 0, H) = −Gr
1

H −Hc

, Gr =
ν(d− y0z)

y0

(6.15)

is universal in the sense that the dimensionlessGr does not depend on model parameters
like the coupling constant or on details of the crystal structure, but only on the nature
of the system. Here, ν = 0.5 is the exponent that describes the divergence of the
correlation length ξ ∝ |(H −Hc)/Hc|−ν when approaching the critical �eld, d is the
dimension of the system and y0 is the exponent of the power-law behavior of the speci�c
heat C ∝ T y0 . The parameter z is the �dynamical critical exponent� that relates the
correlation time ξτ ∝ ξz to that of the correlation length. In the present case of a one-
dimensional antiferromagnet these constants add up to Gr = −0.5 for the free-fermion
case (d = 1, z = 2, y0 = 1) at �elds H < Hc and to Gr = −1 in the polarized phase
(y0 →∞) for H > Hc [149].

At the critical �eld Hc, the temperature dependence of ΓH is determined by νz = 1
and by another prefactor GT that depends on nonuniversal parameters and evaluates
to GT ' 0.527043 gµB

kB
[103, 149]. Using g = 2.27 the expected temperature dependence

of the magnetocaloric e�ect at the critical �eld is given by

ΓH,cr(T,H = Hc) = −GT T
− 1
νz ' 0.802

T
. (6.16)

In Fig. 6.18 the expected �eld dependence of ΓH,cr(T → 0, H) is compared to the
experimental data using the critical �eld Hc ' 13.90 T, consistently obtained from
all thermodynamic quantities above. In analogy to the scaling of the model calcula-
tions ΓH,cr is multiplied by a constant a = 0.87 to compensate for small errors in the
normalization of the data. The zero-temperature ΓH,cr is consistent with the model
calculations and the experimental data. At �elds H . 13 T the calculated ΓH and the
experimental data at the lowest temperature of 0.32K match with ΓH,cr. Also at high
�elds H & 15 T the temperature dependence of the calculated and the experimental
ΓH extrapolates to ΓH,cr. In the inset of Fig. 6.18 the experimental values at the crit-
ical �eld are plotted versus the temperature. The data follow an inverse temperature
dependence as suggested by Eqn. (6.16) upon correcting the prefactor GT = 0.802 with
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the same experimental constant a. This illustrates the expected divergence of ΓH when
approaching the quantum critical point.

Universality

The consistent description of both the magnetic �eld and the temperature dependence
of ΓH arises from the universality close to quantum critical points. Universality refers to
the fact that the scaling of system properties does not depend on the microscopic details
of the model. In the vicinity of the quantum critical point, where the universality holds,
the properties of the system can be written in terms of a universal scaling function that
only depends on dimensionless parameters [79]. In case of the magnetocaloric e�ect ΓH
that depends on the inverse distance (H−Hc)

−1 from the critical point the temperature
dependence is expected to be described by a universal function Φ

(
H−Hc
T

)
which only

depends on the ratio of the �eld and the temperature and allows to rewrite ΓH in terms
of a scaling law [103, 149],

ΓH =
1

H −Hc

Φ

(
H −Hc

T

)
. (6.17)

Here, Φ is a function that describes the evolution of ΓH for �nite temperatures and
magnetic �elds away from the quantum critical point. Plotting ΓH · (H −Hc), thus all
experimental data are expected to collapse to the scaling function Φ. In fact the exper-
imental data con�rm the universal scaling. In Fig. 6.22 a plot of Φ = ΓH · µ0(H −Hc)
versus the dimensionless ratio of �eld and temperature δ = µBµ0(H − Hc)/(kBT ) is
shown. Here the constants µ0 and kB are introduced to take into account the experi-
mental units of Tesla and Kelvin. Apart from the data for T = 0.8 K that are possibly
in�uenced by experimental issues, all curves collapse and for −0.2 < δ < 0.4 are de-
scribed by a straight line with a slope of 1. This dependence illustrates that ΓH is
suppressed for large temperatures T due to Φ(δ → 0) = 0. In the limit of low tempe-
rature and at large negative �elds, i. e., δ → −∞, the data approximately approach
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Figure 6.22: Universal
scaling of the magne-
tocaloric e�ect ΓH of
CuPzN at temperatures
T = 0.32, 0.4, 0.5, 0.6,
0.7, 1.0 K (from blue to
red). The experimental
data of ΓH multiplied by
the reduced �eld H−Hc

are shown versus the ra-
tio δ of temperature and
magnetic �eld. The gray
line represents Φ(δ) = δ.
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the value of 0.5 expected from the prefactor Gr in Eqn. (6.15). For the high �eld range
δ →∞ one expects Φ = 1 instead. In fact the data seem to approach this value, how-
ever it is not reached within the range of the experiment and the experimental noise
strongly increases for |δ| > 1. Nevertheless, the expected asymmetry of Φ is clearly re-
solved and the obeyed universal scaling law once more con�rms that a quantum phase
transition arises in CuPzN as a function of the magnetic �eld.

6.5 Conclusion

The spin-1/2 chain compound copper pyrazine dinitrate was analyzed with respect to its
thermodynamic properties in a temperature range from 0.25 to 30K and in magnetic
�elds up to about 16T applied along the b axis. The speci�c heat, the magnetiza-
tion, the length change and the magnetocaloric e�ect were compared to analytical
calculations of the one-dimensional antiferromagnetic Heisenberg model. The coupling
constants J , individually obtained from �ts to the experimental data of each quantity,
match with a high precision, see Tab. 6.2. The mean value of

J/kB = 10.59 K (6.18)

translates into a critical �eld Hc = 2J/gbµBµ0 of the spin chain of Hc = 13.89 T, as-
suming gb = 2.27. The speci�c heat at zero �eld agrees with the model calculations
on a quantitative level. The low-temperature slope of cp increases as a function of the
magnetic �eld and the related spinon velocity in consistence with theory is strongly
reduced when approaching the critical �eld. At low temperature the speci�c heat shows
a double peak structure as a function of the magnetic �eld. Due to experimental issues
with the thermometry at high �elds a quantitative comparison of the speci�c heat to
the calculations is possible only within the experimental error of about 10%. The mea-
sured magnetization as well as the thermal expansion are described by the Heisenberg
model with a high accuracy. From the �t of the thermal expansion an increasing cou-
pling constant ∂ ln J/∂pb = 2.3%GPa−1 under uniaxial pressure is derived, which is
signi�cantly smaller than in Cs2CoCl4, where a value of 77%GPa−1 is found, and than
in other spin chain systems [77, 154]. In CuPzN the magnetic exchange is mediated by
pyrazine (C4H4N2) rings along the chain direction a. In contrast to the superexchange,

speci�c heat magnetization thermal expansion MCE

J/kB 10.59 K 10.58 K 10.60 K 10.59 K
g 2.27 2.27 2.27 2.27
ΘD 178 K
∂J/∂pb 0.25KGPa−1

∂ ln J/∂pb 2.3%GPa−1

scaling factor 0.95 0.87

Table 6.2: Parameters of the Heisenberg model obtained from �ts of the experimental data
of di�erent methods. The g factor was �xed during the �ts.
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e. g., in Cs2CoCl4 via ionic bonds cobalt and chlorine, here one may expect a di�erent
dependence on pressure due to the covalent π bonds in the organic pyrazine. A small
dependence of J on the inter-atomic distance actually explains why CuPzN does not
form a non-magnetic ground state via a Spin-Peierls transition.

All thermodynamic quantities show �nite-temperature signatures of a quantum phase
transition. They linearly depend on the magnetic �eld |H −Hc| and consistently ex-
trapolate to the critical �eld Hc. Further evidence for the quantum criticality of CuPzN
is given by the magnetocaloric e�ect that conforms with the Heisenberg model and
shows the typical �eld and temperature dependence expected in the vicinity of quan-
tum critical points. Reducing the temperature an increasing relative weight of the
entropy at the critical �eld is evidenced by the measurements of the entropy. The
temperature dependence of the magnetic Grüneisen ratio extrapolates to a divergence
described by Gr |H −Hc|−1, where Gr is a universal prefactor. The �nite temperature
scaling of the magnetocaloric e�ect is described by a universal scaling law. The simul-
taneous agreement of various thermodynamic properties of copper pyrazine dinitrate
to the numerical results, clearly reveals that the Heisenberg model is realized in this
compound to a high degree. The wide temperature and �eld range where the model is
applicable renders the compound a textbook example for one-dimensional magnetism
and quantum criticality. Part of this success originates from the small interchain cou-
plings in comparison to the dominant magnetic exchange via the organic constituents
in the compound. Also the elastic properties of the organics in the compound may play
an important role for its macroscopic properties. In other �elds of physics the input of
organic chemistry gave birth to exciting developments like organic light emitting diodes
[230, 231] or organic superconductors [232]. As demonstrated by the unique proper-
ties of CuPzN, combining the complex physics of the magnetic transition metals with
an organic component potentially yields systems with intriguing properties, extending
those found in the classical �eld of inorganic compounds.
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7 Summary

In this thesis the low-temperature magnetism of the two spin-chain compounds Cs2CoCl4
and Cu(C4H4N2)(NO3)2 was investigated. In both cases the thermodynamic proper-
ties of single crystals were measured and compared to calculations of the spin-1/2 XXZ
model and the isotropic spin-1/2 Heisenberg model, respectively. Special emphasis was
put on signatures of quantum critical behavior that is expected from both model sys-
tems. In case of Cs2CoCl4, the in�uence of magnetic �elds on the magnetically ordered
phases was examined. Further, the change of the crystal structure and of the thermo-
dynamic properties when partly substituting chlorine by bromine were studied.

The crystal structure of Cs2CoCl4 consists of distorted CoCl4 tetrahedra that form
chains along the b axis. The spin-3/2 states of the magnetic Co2+ are split by the
anisotropic crystal �eld and at low temperatures an e�ective spin-1/2 chain model
is applicable. In literature, commonly an anisotropy parameter ∆ = 1/4 is assumed
[3�5, 7]. In this thesis, the in�uence of a symmetry-breaking magnetic �eld on the
one-dimensional magnetism of Cs2CoCl4 has been investigated for the �rst time. The
thermal expansion, the speci�c heat and the thermal conductivity of Cs2CoCl4 were
measured in a temperature range from 0.05 to 30K and in magnetic �elds up to 4T
using di�erent cryostats and custom setups. Numerical simulations of spin chains were
performed using exact diagonalization and Quantum Monte Carlo methods for �nite
rings of spins. From the comparison of the data to the numerical results of the XXZ
model it was found that signi�cant corrections apply to the e�ective spin-1/2 XXZ
model. A consistent and precise description of the thermodynamics of Cs2CoCl4 at
temperatures above the magnetic order temperature is possible only upon the inclu-
sion of virtual excitations of the parent spin-3/2 states in the mapping of the coupling
constants to the e�ective spin-1/2 system. By virtue of the contributing higher-order
terms, the anisotropy of the spin chain is determined from the full temperature depen-
dence of the speci�c heat and the thermal expansion including the Schottky anomaly
around 5K that is characteristic for the crystal �eld strength. The results can be
generalized to spin-3/2 systems with an easy-plane type magnetism, where the parent
spin-3/2 coupling is not more than one order of magnitude smaller than the crystal �eld
anisotropy. From a �t of the experimental data, it was found that the anisotropic mag-
netism of Cs2CoCl4 approaches the XY limit even further than previously believed.
This is re�ected in an anisotropy ∆ ≈ 0.12 of the spin chain that is reasonably smaller
than the value of 1/4 assumed in literature. Among others, the constants extracted
from the data are the spin-3/2 coupling constant JH = 0.743 K, the g factor of 3.27,
the crystal �eld anisotropy D ' 7 K and the respective uniaxial pressure dependences
∂ ln JH
∂pb

= 0.77GPa−1, ∂ lnD
∂pb

= −0.63GPa−1 and ∂ ln ΘD

∂pb
= 0.01GPa−1. The speci�c heat

as well as the thermal expansion are described by the XXZ model in a transverse mag-
netic �eld with a high precision. The range where the description holds, is limited by
the thermal population of excited crystal �eld states starting at about 2K and by a
�eld-induced entanglement of them for magnetic �elds larger than 3T. Magnetic �elds
induce a quantum phase transition, re�ected in a sign change of the thermal expansion
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coe�cient and in �nite-temperature signatures that linearly scale to a critical �eld of
about 2T.

The one-dimensional magnetism of Cs2CoCl4 is also evident in the low-temperature
thermal conductivity. Below about 1K a magnetic contribution to the heat transport
along the spin chains has been identi�ed. A comparison to the intrinsic thermal con-
ductivity of the XXZ spin-1/2 chain yields a large mean free path in the micrometer
range below 0.3K and a strong suppression of the magnetic heat transport with in-
creasing temperature due to a scattering process that is characterized by an energy
scale of about 3K. In applied magnetic �elds the magnetic contribution to the heat
transport is suppressed due to the opening of a gap by the transverse �eld. At �elds
larger than the saturation �eld of about 2T, the thermal conductivity along the spin
chains again strongly increases. Both the zero-�eld low-temperature heat transport as
well as the magnetic �eld dependence may relate to the contribution of spin-3/2 states.
Yet, a quanti�cation of these results requires a calculation of the transport properties
of the spin-3/2 and the spin-1/2 chain in a transverse magnetic �eld.

Due to �nite interactions between spin chains antiferromagnetic order arises at TN '
0.22 K. A �eld-induced spin-liquid state has been proposed in literature [8]. Magnetic
�elds applied along other directions than a have not been considered previously. In this
thesis, the magnetic order of Cs2CoCl4 was studied by measuring the thermal expan-
sion and the speci�c heat in magnetic �elds applied along di�erent crystallographic and
non-principal directions. The emerging low-temperature phases were discussed based on
classical microscopic models. The zero-�eld magnetic order pattern with non-collinear
moments tilted out of their respective magnetic easy planes could be explained by
Dzyaloshinskii-Moriya interactions, but only in case of a sizable in-plane anisotropy of
the magnetism of about 2K. The absence of signatures of a �nite in-plane anisotropy
in the thermodynamic properties of the one-dimensional magnetism suggests that the
magnetic order in Cs2CoCl4 could be accompanied by a small structural distortion.
In magnetic �elds the antiferromagnetic order is suppressed. Before saturation an ad-
ditional phase (II) emerges in a �eld range from about 2 to 2.4T, bordering the an-
tiferromagnetic phase. The revealed indications for a thermodynamic phase transition
in this �eld range strongly suggest that this phase is not a spin-liquid phase as previ-
ously proposed in literature. While phase II arises irrespective of the �eld direction, in
case of magnetic �elds along b a more complex phase diagram was found that di�ers
from those for other �eld directions in a widely extending phase II and in additional
low-�eld transitions at 0.25T and 0.7T. These transitions can be understood as a
two-stage spin-�op transition that is stabilized by Dzyaloshinskii-Moriya interactions
between spin chains.
The thermodynamics of the one-dimensional XXZ magnetism suggest a quantum crit-
ical point in Cs2CoCl4. However, the associated critical �eld is not re�ected in the
low-temperature phases. Instead, reducing the temperature at the critical �eld of the
spin chain, phase II arises. Two possible scenarios for phase II, an incommensurate mag-
netic order and nematicity, were discussed. In analogy to the formation of novel states
as a consequence of competing interactions in other systems, the physics of phase II
may be of general interest and a study of its properties by a microscopic method are
asked for.
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Mixed systems of the Cs2CoCl4−xBrx series were synthesized to investigate the in�uence
of an exchange of chlorine by bromine on the crystal structure and on the magnetism.
X-ray di�raction and thermodynamic data suggest that the exchange of ions is site-
selective, re�ected in a non-trivial change of the lattice constants and the magnetism
as a function of the doping level x. Up to x = 1 only the crystal �eld anisotropy is
in�uenced, whereas for larger x the dominant coupling constant additionally increases.
For nominal x ≥ 2 the crystal growth resulted in large single crystals of another series,
Cs3CoCl5−yBry. The replacement of bromine by chlorine in this system most likely is
site-selective as well and the magnetism is of the Ising type, evidenced by magnetic
order peaks in the speci�c heat at about 0.3K and a strong anisotropy with respect
to the magnetic-�eld direction. As a function of y the magnetism non-continuously
evolves from two-dimensional in Cs3CoBr5 to three-dimensional in Cs3CoCl5. Crystals
with an intermediate doping level of y = 2.5 stand out due to a comparably large Néel
temperature of about 1.2K and a critical �eld of 4T where magnetic order is sup-
pressed. Crystals of this series open the �eld for further studies of a possible quantum
phase transition as a function of the transverse magnetic �eld in an Ising system with
tunable dimension.

The second system investigated in this thesis, Cu(C4H4N2)(NO3)2, is an established
example for a spin-1/2 Heisenberg chain. The crystal structure consists of copper ions
linked along the a axis via pyrazine rings. Due to a very small interaction between
the spin chains, magnetic order arises far below the common experimental range at
about 0.1K. From the Heisenberg model a quantum phase transition is expected as
a function of an external �eld. However, comparably little has been known about the
thermodynamics of the compound in the vicinity of the critical �eld. In this thesis,
several thermodynamic properties of Cu(C4H4N2)(NO3)2 were measured at tempera-
tures down to 0.25K and in magnetic �elds up to 17T. They were compared to exact
results of the Heisenberg model including magnetic �elds up to and above the critical
�eld of the spin chain. Within the experimental resolution all data are well described
by the Heisenberg model in the full temperature- and magnetic-�eld range. A coupling
constant of 10.6K and a critical �eld of 13.90T are consistently derived from the spe-
ci�c heat, the magnetization, the thermal expansion and the magnetocaloric e�ect. The
magnetocaloric e�ect was measured using a novel approach, which allows to acquire
the data in a continuous way using a single setup. Several indications for a quantum
criticality were found. All investigated quantities show �nite-temperature signatures
that linearly extrapolate to the critical �eld. The speci�c heat approaches the expected
power-law dependence of cp ∝ T 0.5 close to the critical �eld. The magnetocaloric e�ect
shows the temperature and �eld dependence that is expected in the vicinity of quantum
critical points and it obeys a scaling law, con�rming the universality in the quantum
critical regime. These results illustrate that Cu(C4H4N2)(NO3)2 is a textbook exam-
ple of a model system for a quantum phase transition, where the �nite-temperature
properties are in a quantitative agreement with theory.
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A Models, lattices and code written for the
Alps project

Anisotropic spin model with in- and out-of-plane terms

In the standard library of the Alps code a spin model already is included. Yet, it
neither includes arbitrary magnetic �eld directions and couplings of spins along x, y
and z, nor anisotropy terms other than along z. The following model de�nition realizes
the hamiltonian

H =
∑
i

JxS
i
xS

j
x + JyS

i
yS

j
y + JzS

i
zS

j
z −

(
hxS
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)
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for arbitrary spin by introducing further terms in addition to the standard spin model.
All calculations shown in Chapter 4 were performed based on this model.

1 <MODELS>
2 <SITEBASIS name="spin">
3 <PARAMETER name="loca l_sp in " de f au l t="

local_S"/>
4 <PARAMETER name="local_S" de f au l t="1/2"/>
5 <QUANTUMNUMBER name="S" min="loca l_sp in "

max="loca l_sp in"/>
6 <QUANTUMNUMBER name="Sz" min="−S" max="S

"/>
7 <OPERATOR name="Splus " matrixelement="

sq r t (S*(S+1)−Sz *( Sz+1) )">
8 <CHANGE quantumnumber="Sz" change="1"/>
9 </OPERATOR>
10 <OPERATOR name="Sminus" matrixelement="

sq r t (S*(S+1)−Sz *( Sz−1) )">
11 <CHANGE quantumnumber="Sz" change

="−1"/>
12 </OPERATOR>
13 <OPERATOR name="Sz" matrixelement="Sz"/>
14 </SITEBASIS>
15
16 <BASIS name="spin">
17 <SITEBASIS r e f="sp in">
18 <PARAMETER name="loca l_sp in " value="

local_S#"/>
19 <PARAMETER name="local_S#" value="

local_S"/>
20 <PARAMETER name="local_S" value="1/2"/>
21 </SITEBASIS>
22 <CONSTRAINT quantumnumber="Sz" value="

Sz_total"/>
23 </BASIS>
24
25 <SITEOPERATOR name="Sx" s i t e="x">
26 1/2*( Splus (x )+Sminus (x ) )
27 </SITEOPERATOR>
28
29 <SITEOPERATOR name="Sy" s i t e="x">
30 −( I /2) *( Splus (x )−Sminus (x ) )
31 </SITEOPERATOR>
32
33 <BONDOPERATOR name="exchange_x" source="x"

ta rg e t="y">
34 1/2*( Splus (x )+Sminus (x ) ) *1/2*( Splus (y )+

Sminus (y ) )
35 </BONDOPERATOR>
36
37 <BONDOPERATOR name="exchange_y" source="x"

ta rg e t="y">
38 −(1/2) *( Splus (x )−Sminus (x ) ) *(1/2) *( Splus (

y )−Sminus (y ) )
39 </BONDOPERATOR>
40
41 <BONDOPERATOR name="exchange_xy" source="x"

ta rg e t="y">

42 1/2*( Splus (x ) *Sminus (y )+Sminus (x ) *Splus (y
) )

43 </BONDOPERATOR>
44
45 <BONDOPERATOR name="b iquadra t i c " source=" i "

t a rg e t="j">
46 ( exchange_xy ( i , j )+Sz ( i ) *Sz ( j ) ) *(

exchange_xy ( i , j )+Sz ( i ) *Sz ( j ) )
47 </BONDOPERATOR>
48
49 <HAMILTONIAN name="sp in">
50 <PARAMETER name="J0" de f au l t="0"/>
51 <PARAMETER name="J" de f au l t="J0"/>
52 <PARAMETER name="Jz" de f au l t="J"/>
53 <PARAMETER name="Jy" de f au l t="J"/>
54 <PARAMETER name="Jx" de f au l t="J"/>
55 <PARAMETER name="Jz0" de f au l t="Jz"/>
56 <PARAMETER name="Jx0" de f au l t="Jx"/>
57 <PARAMETER name="Jy0" de f au l t="Jy"/>
58 <PARAMETER name="J1" de f au l t="0"/>
59 <PARAMETER name="J '" d e f au l t="J1"/>
60 <PARAMETER name="Jz ' " d e f au l t="J'"/>
61 <PARAMETER name="Jx '" d e f au l t="J'"/>
62 <PARAMETER name="Jy '" d e f au l t="J'"/>
63 <PARAMETER name="Jz1" de f au l t="Jz '"/>
64 <PARAMETER name="Jx1" de f au l t="Jx '"/>
65 <PARAMETER name="Jy1" de f au l t="Jy '"/>
66 <PARAMETER name="hz" de f au l t="0"/>
67 <PARAMETER name="hy" de f au l t="0"/>
68 <PARAMETER name="hx" de f au l t="0"/>
69 <PARAMETER name="Dz" de f au l t="0"/>
70 <PARAMETER name="Ex" de f au l t="0"/>
71 <PARAMETER name="K" de f au l t="0"/>
72 <BASIS r e f="sp in"/>
73 <SITETERM s i t e=" i ">
74 <PARAMETER name="hz#" de f au l t="hz"/>
75 <PARAMETER name="hy#" de f au l t="hy"/>
76 <PARAMETER name="hx#" de f au l t="hx"/>
77 <PARAMETER name="Ex#" de f au l t="Ex"/>
78 <PARAMETER name="Dz#" de f au l t="Dz"/>
79 −hz#*Sz ( i )−hx#*Sx ( i )−hy#*Sy ( i )+Dz#*Sz ( i

) *Sz ( i )+Ex#*(Sx ( i ) *Sx ( i )−Sy ( i ) *Sy ( i
) )

80 </SITETERM>
81 <BONDTERM source=" i " t a rg e t="j">
82 <PARAMETER name="J#" de f au l t="0"/>
83 <PARAMETER name="Jz#" de f au l t="J#"/>
84 <PARAMETER name="Jx#" de f au l t="J#"/>
85 <PARAMETER name="Jy#" de f au l t="J#"/>
86 <PARAMETER name="K#" de f au l t="0"/>
87 Jz#*Sz ( i ) *Sz ( j )+Jx#*exchange_x ( i , j )+Jy

#*exchange_y ( i , j )+K#*b iquadra t i c ( i ,
j )

88 </BONDTERM>
89 </HAMILTONIAN>
90 </MODELS>
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De�nition of the full lattice of Cs2CoCl4

The magnetic lattice of Cs2CoCl4 is described as stacked anisotropic triangular layers.
For testing of algorithms it has been implemented in the Alps code [57] using the
following de�nition.
1 <LATTICEGRAPH name = " ccc">
2 <FINITELATTICE>
3 <LATTICE r e f="s imple cubic l a t t i c e "/>
4 <PARAMETER name="W" de f au l t="L"/>
5 <PARAMETER name="H" de f au l t="W"/>
6 <EXTENT dimension="1" s i z e="L"/>
7 <EXTENT dimension="2" s i z e="W"/>
8 <EXTENT dimension="3" s i z e="H"/>
9 <BOUNDARY type="pe r i o d i c "/>
10 </FINITELATTICE>
11 <UNITCELL name="ccc u n i t c e l l " dimension="3" v e r t i c e s="4">
12 <VERTEX id="1" type="0"><COORDINATE> 0.5 0 0</COORDINATE></VERTEX>
13 <VERTEX id="3" type="0"><COORDINATE> 0 0 .5 0.5</COORDINATE></VERTEX>
14 <VERTEX id="2" type="1"><COORDINATE> 0 0 0.5</COORDINATE></VERTEX>
15 <VERTEX id="4" type="1"><COORDINATE> 0.5 0 .5 0</COORDINATE></VERTEX>
16
17 <EDGE type="0"><SOURCE vertex="1" o f f s e t ="0 0 0"/><TARGET vertex="1" o f f s e t ="1 0 0"/></EDGE>
18 <EDGE type="0"><SOURCE vertex="4" o f f s e t ="0 0 0"/><TARGET vertex="4" o f f s e t ="1 0 0"/></EDGE>
19 <EDGE type="0"><SOURCE vertex="2" o f f s e t ="0 0 0"/><TARGET vertex="2" o f f s e t ="1 0 0"/></EDGE>
20 <EDGE type="0"><SOURCE vertex="3" o f f s e t ="0 0 0"/><TARGET vertex="3" o f f s e t ="1 0 0"/></EDGE>
21
22 <EDGE type="1"><SOURCE vertex="1"/><TARGET vertex="4"/></EDGE>
23 <EDGE type="1"><SOURCE vertex="4" o f f s e t ="0 0 0"/><TARGET vertex="1" o f f s e t ="0 1 0"/></EDGE>
24 <EDGE type="1"><SOURCE vertex="2" /><TARGET vertex="3" /></EDGE>
25 <EDGE type="1"><SOURCE vertex="3" o f f s e t ="0 0 0"/><TARGET vertex="2" o f f s e t ="0 1 0"/></EDGE>
26
27 <EDGE type="2"><SOURCE vertex="1"/><TARGET vertex="2"/></EDGE>
28 <EDGE type="2"><SOURCE vertex="1" o f f s e t ="0 0 0"/><TARGET vertex="2" o f f s e t ="1 0 0"/></EDGE>
29 <EDGE type="2"><SOURCE vertex="1" o f f s e t ="0 0 0"/><TARGET vertex="2" o f f s e t ="0 0 −1"/></EDGE>
30 <EDGE type="2"><SOURCE vertex="1" o f f s e t ="0 0 0"/><TARGET vertex="2" o f f s e t ="1 0 −1"/></EDGE>
31 <EDGE type="2"><SOURCE vertex="4"/><TARGET vertex="3"/></EDGE>
32 <EDGE type="2"><SOURCE vertex="4" o f f s e t ="0 0 0"/><TARGET vertex="3" o f f s e t ="1 0 0"/></EDGE>
33 <EDGE type="2"><SOURCE vertex="4" o f f s e t ="0 0 0"/><TARGET vertex="3" o f f s e t ="0 0 −1"/></EDGE>
34 <EDGE type="2"><SOURCE vertex="4" o f f s e t ="0 0 0"/><TARGET vertex="3" o f f s e t ="1 0 −1"/></EDGE>
35 </UNITCELL>
36 </LATTICEGRAPH>

Exact diagonalization

The following code implements a full diagonalization of a spin-3/2 chain with 8 sites, a
coupling constant J = 0.743 K and an out-of-plane anisotropy Dz = 7 K. The calcula-
tion is repeated for values of the in-plane anisotropy Ex from 0 to 4. The previously
listed de�nition of the model is referenced via the parameter �MODEL_LIBRARY� in
line 5. After the exact diagonalization algorithm has completed, the thermodynamic
quantities have to be evaluated by the command given in line 27. Using the command
line tool plot2text selected quantities are extracted from the XML output �les.

1 import os
2 import pyalps
3 import matp lo t l ib . pyplot as p l t
4 import pyalps . p l o t
5 from pylab import *

6
7 ExVals =[0 ,1 ,2 , 3 , 4 ]
8 for Ex in ExVals :
9 parms = [ ]
10 parms . append (
11 {
12 'MODEL_LIBRARY' : " inplanemodel . xml" ,
13 'LATTICE ' : " chain l a t t i c e " ,
14 'MODEL' : " sp in " ,
15 ' local_S ' : 1 . 5 ,
16 ' J ' : 0 .743 ,
17 'L ' : 8 ,
18 'Dz ' : 7 ,
19 'Ex ' : Ex ,
20 }
21 )
22 # write parameter f i l e and run the

simulation

23 parmf i l e="parm_Ex%f " % (Ex)

24 inpu t_ f i l e = pyalps . w r i t e I npu tF i l e s (
parmf i l e , parms )

25 r e s = pyalps . runAppl icat ion ( ' f u l l d i a g ' ,
i nput_f i l e , Tmin=5)

26
27 # evaluate the re su l t s

28 data = pyalps . eva luateFul ld iagVersusT (
pyalps . g e tRe su l tF i l e s ( p r e f i x=parmf i l e
) ,DELTA_T=0.01 , T_MIN=0.01 , T_MAX=20)

29
30 #extract the entropy , the free energy and

the spec i f i c heat

31 cmd = ' p l o t 2 t ex t '+parmf i l e+' . task1 . p l o t .
entropy . xml | awk "{ pr in t \$1 , \ $2}" >
' + "S_Ex%f " % (Ex)

32 os . system (cmd)
33
34 cmd = ' p l o t 2 t ex t '+parmf i l e+' . task1 . p l o t .

f ree_energy . xml | awk "{ pr in t \$1 , \ $2
}" > ' + "F_Ex%f " % (Ex)

35 os . system (cmd)
36
37 cmd = ' p l o t 2 t ex t '+parmf i l e+' . task1 . p l o t .

s p e c i f i c_hea t . xml | awk "{ pr in t \$1 , \
$2}" > '+"cp−per−site_Ex%f " % (Ex)

38 os . system (cmd)
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Quantum Monte Carlo

The susceptibility and the speci�c heat of Heisenberg spin chains with large spin num-
bers has been calculated using the looper code [59]. These calculations are motivated by
the isotropic susceptibility of SrMn2V2O8 [233]. The following code runs a simulation
of a spin-5/2 Heisenberg chain with 80 sites. In contrast to exact diagonalization, the
calculation has to be repeated for every temperature, as performed here in logarithmi-
cally spaced steps. After completion of all simulations the temperature dependence of
the susceptibility and the speci�c heat is collected and written to the output �les sus-
ceptibility and cp as a tab-separated �le. The typical computing time using a desktop
computer for the full temperature range lies in the range of one or two days with the
thermalization and sweep parameters given below.

1 import pyalps
2 import matp lo t l ib . pyplot as p l t
3 import pyalps . p l o t
4 from pylab import *

5
6 parms = [ ]
7 for t in l og space ( log10 (0 . 001 ) , log10 (80) ,500) :
8 parms . append (
9 {
10 'LATTICE ' : " chain l a t t i c e " ,
11 'MODEL' : " sp in " ,
12 ' local_S ' : 2 . 5 ,
13 'T ' : t ,
14 ' J ' : 1 ,
15 'THERMALIZATION' : 15000 ,
16 'SWEEPS' : 70000 ,
17 'L ' : 80 ,
18 'ALGORITHM' : " loop "
19 }
20 )
21
22 inpu t_ f i l e = pyalps . w r i t e I npu tF i l e s ( 'parmH ' , parms )
23 pyalps . runAppl icat ion ( ' loop ' , i npu t_ f i l e )
24
25 data = pyalps . loadMeasurements ( pyalps . g e tRe su l tF i l e s ( p r e f i x='parmH ' ) , ' S u s c e p t i b i l i t y ' )
26 s u s c e p t i b i l i t y = pyalps . co l lectXY ( data , x='T ' , y=' S u s c e p t i b i l i t y ' )
27 f=open( ' s u s c e p t i b i l i t y ' , 'w ' )
28 for index in range ( len ( s u s c e p t i b i l i t y [ 0 ] . x ) ) :
29 f . wr i t e ( str ( s u s c e p t i b i l i t y [ 0 ] . x [ index ] ) + "\ t " + str ( s u s c e p t i b i l i t y [ 0 ] . y [ index ] ) + "\n" )
30 data = pyalps . loadMeasurements ( pyalps . g e tRe su l tF i l e s ( p r e f i x='parmH ' ) , ' S p e c i f i c Heat ' )
31 cp = pyalps . co l lectXY ( data , x='T ' , y=' S p e c i f i c Heat ' )
32 f=open( ' cp ' , 'w ' )
33 for index in range ( len ( cp [ 0 ] . x ) ) :
34 f . wr i t e ( str ( cp [ 0 ] . x [ index ] ) + "\ t " + str ( cp [ 0 ] . y [ index ] ) + "\n" )
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Custom measurements in exact diagonalization

In the Ising-like e�ective spin-1/2 systems ACo2V2O8 the high-temperature suscep-
tibility is anisotropic [72, 73]. To investigate the relation of the anisotropy to the
crystal-�eld in�uence on the parent S = 3/2 system, the magnetization of the spin
system was calculated by exact diagonalization. Here, the de�nition of the parame-
ter �MEASURE_AVERAGE� is essential to measure the thermal expectation value
of an operator. Using command line tools, the susceptibility is calculated numerically
by dividing the thermal average expectation values of Sz and Sx by the applied small
�eld. The Quantum Monte Carlo codes could not be applied to this model as in the
present implementation they cannot measure the expectation value of o�-diagonal ma-
trix elements. The susceptibilities calculated with the following code are discussed in
Chapter 2.3.3.

Longitudinal (χ‖)

1 import pyalps
2 import matp lo t l ib . pyplot as p l t
3 import pyalps . p l o t
4 from pylab import *

5 import os
6
7 for D in l i n s p a c e (−15 ,−10 ,6) :
8 parms = [ ]
9 h = 0.01
10 Gamma=0
11 parms . append (
12 {
13 'LATTICE ' : " chain l a t t i c e " ,
14 'MODEL' : " sp in " ,
15 ' local_S ' : 1 . 5 ,
16 'D ' : D,
17 ' J ' : 1 ,
18 'L ' : 8 ,
19 'h ' : h ,
20 'Gamma ' : Gamma,
21 'MEASURE_AVERAGE[ Sz ] ' : ' Sz ' ,
22 'MEASURE_AVERAGE[ Sx ] ' : ' Sx ' ,
23 }
24 )
25 t i t l e = ' para−D_%f−J_%f−L_%f ' % (D, J ,L

)
26 i npu t_ f i l e = pyalps . w r i t e I npu tF i l e s (

t i t l e , parms )
27 pyalps . runAppl icat ion ( ' f u l l d i a g ' ,

i npu t_ f i l e )
28 data = pyalps . eva luateFul ld iagVersusT (

pyalps . g e tRe su l tF i l e s ( p r e f i x=
t i t l e ) ,DELTA_T=0.01 , T_MIN=0.1 ,
T_MAX=200.0)

29 os . system ( ' p l o t 2 t ex t '+t i t l e+' . task1 .
p l o t . s p e c i f i c_hea t . xml | awk "(NF
==2) { pr in t \$1 , \ $2 *8.314}" > '+
t i t l e+' . cp ' )

30 os . system ( ' p l o t 2 t ex t '+t i t l e+' . task1 .
measurements . Sz . p l o t . xml | awk "(
NF==2) { pr in t \$1 , \ $2/ ' + str (h)
+' }" > '+t i t l e+' . ch i ' )

Transverse (χ⊥)

1 import pyalps
2 import matp lo t l ib . pyplot as p l t
3 import pyalps . p l o t
4 from pylab import *

5 import os
6
7 for D in l i n s p a c e (−15 ,−10 ,6) :
8 parms = [ ]
9 h = 0
10 Gamma=0.01
11 parms . append (
12 {
13 'LATTICE ' : " chain l a t t i c e " ,
14 'MODEL' : " sp in " ,
15 ' local_S ' : 1 . 5 ,
16 'D ' : D,
17 ' J ' : 1 ,
18 'L ' : 8 ,
19 'h ' : h ,
20 'Gamma ' : Gamma,
21 'MEASURE_AVERAGE[ Sz ] ' : ' Sz ' ,
22 'MEASURE_AVERAGE[ Sx ] ' : ' Sx ' ,
23 }
24 )
25 t i t l e = ' perp−D_%f−J_%f−L_%f ' % (D, J ,L

)
26 i npu t_ f i l e = pyalps . w r i t e I npu tF i l e s (

t i t l e , parms )
27 pyalps . runAppl icat ion ( ' f u l l d i a g ' ,

i npu t_ f i l e )
28 data = pyalps . eva luateFul ld iagVersusT (

pyalps . g e tRe su l tF i l e s ( p r e f i x=
t i t l e ) ,DELTA_T=0.01 , T_MIN=0.1 ,
T_MAX=200.0)

29 os . system ( ' p l o t 2 t ex t '+t i t l e+' . task1 .
p l o t . s p e c i f i c_hea t . xml | awk "(NF
==2) { pr in t \$1 , \ $2 *8.314}" > '+
t i t l e+' . cp ' )

30 os . system ( ' p l o t 2 t ex t '+t i t l e+' . task1 .
measurements . Sx . p l o t . xml | awk "(
NF==2) { pr in t \$1 , \ $2/ ' + str (
Gamma) +' }" > '+t i t l e+' . ch i ' )
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Figure B.1: Speci�c heat of Cs2CoCl4 measured in applied magnetic �eld H ‖ b at T >
TN. The magnetic heat capacity was estimated by subtracting a �eld-independent phononic
background (θD = 67 K) and a Schottky anomaly with an energy gap ∆E = 13.9 K.

Figure B.2: Thermal
expansion of Cs2CoCl4
in the one-dimensional
temperature regime.
Bold (thin) lines repre-
sent measurements with
increasing (decreasing)
temperature. � � � � � � �
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Figure B.3: Speci�c heat of Cs2CoCl4 for
H ‖ a and T ≤ 0.5 K.
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Figure B.4: Speci�c heat of Cs2CoCl4 for
H ‖ (sin 30, cos 30, 0) and T ≤ 0.5 K.
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Figure B.5: Speci�c heat of Cs2CoCl4 for
H ‖ (sin 60, cos 60, 0) and T ≤ 0.5 K.
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Figure B.6: Speci�c heat of Cs2CoCl4 for
H ‖ b and T ≤ 0.5 K.
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Figure B.7: Speci�c heat of Cs2CoCl4 for
H ‖ c and T ≤ 0.5 K.
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Figure B.8: Thermal expansion of
Cs2CoCl4 for H ‖ a and T ≤ 0.6 K. Bold
(thin) lines represent measurements with
increasing (decreasing) temperature.
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Figure B.9: Thermal expansion coe�cient
of Cs2CoCl4 for H ‖ a and T ≤ 0.6 K. Full
(open) symbols represent data acquired with
increasing (decreasing) temperature. Curves
are o�set by 60K−1.
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Figure B.10: Magnetostriction of Cs2CoCl4 for H ‖ a and T . TN. The magnetostrictive
coe�cient λ was numerically obtained from the data. Bold (thin/dashed) lines represent data
acquired with increasing (decreasing) �eld.
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Figure B.11: Thermal expansion of
Cs2CoCl4 for H ‖ b and T . 0.8 K. The
data are shifted according to the magne-
tostriction. Solid (dashed) lines represent
data acquired with increasing (decreasing)
temperature.
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Figure B.12: Thermal expansion coe�cient
of Cs2CoCl4 for H ‖ b and T ≤ 0.6 K. Full
symbols (dashed lines) represent data ac-
quired with increasing (decreasing) tempera-
ture. The data are o�set by 5× 10−4 K−1.
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Figure B.13: Magnetostriction of Cs2CoCl4 for H ‖ b and T . TN. In the insets the low-
temperature data close to 0.25T and 1.9T are shown.
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Figure B.14: Speci�c heat of copper pyrazine dinitrate measured as a function of temperature
at various constant magnetic �elds. In the inset of (b) the low-temperature range of cp close
to the critical �eld of ≈ 14 T is shown.
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Kurzzusammenfassung

In dieser Arbeit werden die thermodynamischen Eigenschaften der Spin-1/2-Ketten
Systeme Cs2CoCl4 und Cu(C4H4N2)(NO3)2 untersucht. Messungen der spezi�schen
Wärme, thermischen Ausdehnung, Magnetisierung und des magnetokalorischen E�ek-
tes in einem Temperaturbereich von 0.25 bis 30K und in Magnetfeldern von bis zu 17T
werden mit Modellrechnungen verglichen. In Cs2CoCl4 führt eine Kristallfeldanisotro-
pie von etwa 7K zu einer Aufspaltung der Spin-3/2 Zustände der magnetischen Co2+ Io-
nen in Kramers Doubletts. Es wird gezeigt, dass die höherliegenden Kristallfeldzustände
bei der Anwendung eines e�ektiven Spin-1/2 XXZ Modells notwendigerweise berück-
sichtigt werden müssen, um die Thermodynamik von Cs2CoCl4 konsistent beschreiben
zu können. Die Anisotropie ∆ ≈ 0.12 der Spinkette ist kleiner als zuvor in der Lit-
eratur angenommen. Unterhalb von 2K und in Magnetfeldern von bis zu 4T ist der
Magnetismus von Cs2CoCl4 in guter Übereinstimmung mit dem XXZ Modell in einem
transversalen Magnetfeld. Die thermodynamischen Messgröÿen zeigen ein Quanten-
phasenübergang bei einem Feld von 2.0T an.
Unter TN ' 0.22 K tritt magnetische Ordnung auf. Aus den experimentellen Daten
werden Phasendiagramme für verschiedene Magnetfeldrichtungen abgeleitet und die
mikroskopischen Ursprünge der beobachteten Phasen diskutiert. An die antiferromag-
netische Phase grenzt eine weitere Tieftemperaturphase, die vermutlich keine Spin�üs-
sigkeitsphase ist, wie zuvor in der Literatur vermutet. In einem Magnetfeld entlang der
kristallographischen b Achse tritt zudem ein zweistu�ger Spin-Flop Übergang auf.
Für die gemischten Systeme Cs2CoCl4−xBrx und Cs3CoCl5−yBry deuten strukturelle
und thermodynamische Untersuchungen auf einen platz-selektiven Austausch der Ionen
hin. In der ersten Dotierungsreihe weist der Magnetismus, ähnlich zur Muttersubstanz,
eine XY -artige Anisotropie auf. In Cs3CoCl5−yBry herrscht eine Ising-Anisotropie vor
und die Tieftemperatureigenschaften entwickeln sich unstetig als Funktion von y.
Der Magnetismus von Cu(C4H4N2)(NO3)2 ist in hohem Maÿe isotrop und sehr gut
durch eine Spin-1/2 Heisenberg Kette beschrieben, die einen Quantenphasenübergang
als Funktion des Magnetfeldes aufweist. In dieser Arbeit werden thermodynamische
Eigenschaften von Cu(C4H4N2)(NO3)2 mit exakten Ergebnissen für das Heisenberg
Modell verglichen, unter Berücksichtigung von Magnetfeldern bis über das kritische
Feld hinaus. Alle untersuchten Eigenschaften sind mit hoher Genauigkeit durch das
Modell beschrieben und lassen eindeutig auf einen Quantenphasenübergang schlieÿen.
Es ergibt sich eine Kopplungskonstante von 10.60K und ein kritisches Feld von 13.90T.
Nahe des kritischen Feldes zeigt die spezi�sche Wärme das erwartete Potenzgesetz, der
magnetokalorische E�ekt divergiert und ein universelles Skalierungsverhalten ist er-
füllt.





231

Abstract

In this thesis the thermodynamic properties of the spin-1/2 chain compounds Cs2CoCl4
and Cu(C4H4N2)(NO3)2 (CuPzN) are investigated. Measurements of the speci�c heat,
the thermal expanison, the magnetization and the magnetocaloric e�ect in a tempera-
ture range from 0.25 to 30K and in magnetic �elds up to 17T are compared to model
calculations. In Cs2CoCl4 a crystal �eld anisotropy of about 7K leads to a splitting of
the orbital spin-3/2 states of the magnetic Co2+ into Kramers doublets. It is shown that
the inclusion of excited crystal �eld states in the application of a spin-1/2 XXZ model to
the system is essential for a consistent description of the thermodynamics of Cs2CoCl4.
The anisotropy ∆ ≈ 0.12 of the spin chain is smaller than previously assumed in liter-
ature. Below 2K and for magnetic �elds smaller than 4T the magnetism of Cs2CoCl4
is well described by the XXZ model in a transverse magnetic �eld. Signatures of a
quantum phase transition at 2.0T are found in the thermodynamic data.
Below TN ' 0.22 K magnetic order arises. The magnetic phase diagrams for di�erent
�eld directions are derived from the experimental data and the microscopic origins of
the appearing phases are discussed. Bordering antiferromagnetism a low-temperature
phase is identi�ed that possibly is not a spin-liquid phase as previously suggested in
literature. For �elds along the crystallographic b axis an additional two-stage spin-�op
transition arises.
In the mixed compounds Cs2CoCl4−xBrx and Cs3CoCl5−yBry a site-selective doping is
indicated by structural and thermodynamic investigations. While in the �rst system
an easy-plane type magnetism, similar to the parent compound is found, the latter
shows an easy-axis anisotropy and a non-continuous evolution of the low-temperature
magnetism.
The magnetism of Cu(C4H4N2)(NO3)2 is highly isotropic and well described by the
spin-1/2 Heisenberg chain, which shows a quantum phase transition as a function of an
external �eld. In the thesis, the thermodynamics of Cu(C4H4N2)(NO3)2 are compared
to exact results of the Heisenberg model including magnetic �elds up to and above
the critical �eld of the spin chain. All investigated thermodynamic quantities are de-
scribed by the model with a high precision and show clear signatures of a quantum
phase transition. A coupling constant of 10.60K is found and all data consistently in-
dicate a critical �eld of the spin chain of 13.90T. Approaching the critical �eld, the
speci�c heat acquires the expected power law, the magnetocaloric e�ect diverges and
a universal scaling law is obeyed.
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