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Chapter 1  

 

Introduction 

 

1.1.   Motivation - Supply Chain Visibility and Random Yield 

This dissertation focuses on inventory systems with supply uncertainty due to random 

yields. A common assumption in such systems is that the yield of an order is observable only 

upon arrival of this order. The rapid dissemination of sensor, communication, and control 

technologies, such as RFID and GPS tracking, throughout all stages of the supply chain 

provides an increasing amount of data in real time. Our main interest is the determination of 

the value of real time information in the context of random yields as well as in the development 

of algorithms for its proper use. We want to contribute with our work to make real time control 

of supply chains possible in the near future. 

A significant portion of freight (e.g. food and pharmaceutical products) is perishable 

and therefore subject to yield uncertainty. Damage in transit and pilferage can also contribute 

to a reduction of the replenishment quantity. Estimates vary between 20 % and 30 % of food 

lost, wasted or discarded in the supply chain (Dobbs et al., 2011, p. 93, Green and Johnston, 

2004, p. 35, Gustavsson et al., 2011, p. 6). These numbers exclude food waste at consumer 

stage. About 25 % of all vaccine products spoil before reaching their destinations. This loss is 

most often due to broken cold chains during distribution (White and Cheong 2012). 
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Pharmaceutical regulatory officials in the UK state that 36 % of all major and critical findings 

during inspections in 2003/2004 are related to the control and monitoring of temperature during 

shipping and distribution (Bishara 2006). We show in Chapter 3 and 4 of this thesis that the 

ability to observe the yield of in-transit products in real time leads to significant cost reductions.  

There are also a variety of production processes (e.g. in semiconductor manufacturing 

and chemical production) that produce a significant and random percentage of unusable 

products. A semiconductor supply chain produces 30-50 % unusable items. In addition, usable 

items have random quality levels. Long lead times (3-12 months), short product life cycles, and 

restricted capacities add further to the complexity of the semiconductor production system 

(Gavirneni 2004; Han, Dong, and Shao 2011; Taouil et al. 2012). Other examples for 

production processes with random yield include the production of pharmaceuticals where the 

concentration of the active ingredients follows a random distribution or the coating of metal 

where the thickness of different layers is subject to uncertainty. It is challenging to make lot 

sizing decisions that take into account that the output of useable products is only randomly 

related to the input quantity. In Chapter 5 we model a semiconductor production system in such 

a context and focus on the value of in-process inspections. In-process inspections can reveal 

the current yield of products and are in that sense another application of real time yield 

information.  

Many new information technologies suffer from the so called “credibility gap” (Lee 

and Özer 2007). This is the gap between the proclaimed benefits of the new information and 

the understanding of how these benefits can actually be realized. We are motivated to close this 

gap for real time yield information by developing optimal and heuristic inventory policies and 

identifying conditions under which real time yield information is particularly beneficial.  
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1.2.   Outline 

This section describes the general structure and the research focus of this thesis. The 

thesis consists of three main chapters which are preceded by an introduction and a chapter on 

the foundations of inventory management under random yield. In the last chapter we conclude 

and summarize the key results.  

The three main chapters share the overall common topic of real time yield information. 

However, they represent mostly independent research and can be read independently. The 

structure of these chapters is similar. The first section consists of an abstracts that provides an 

overview of the chapter. The second section in each chapter introduces the problem, motivates 

its relevance and provides the connection to existing literature. The proceeding section 

develops the mathematical model, which is followed by optimal and heuristic solution 

approaches if applicable. The next section provides a numerical analysis and a discussion of 

the main findings. Each chapter is completed by a conclusion that provides a summary of the 

results. A brief overview of each chapter follows. 

Chapter 2 provides the basic knowledge to understand the key issues of inventory 

planning under random yield. Different types of yield risk require different yield models which 

are addressed in Chapter 2.1. The main challenge when dealing with inventory systems under 

random yield is that myopic solutions are no longer optimal. This key insight is elaborated in 

Chapter 2.2. The effects on cost modeling in inventory system under random yield are 

discussed in Chapter 2.3. 

Chapter 3 analyzes the value of real time yield information in a periodic review 

inventory system.* The inventory model is developed as a dynamic program and structural 

 
* This chapter is joint work with Prof. Ulrich W. Thonemann and was published as:  

Dettenbach, M., and Thonemann, U. W. (2015). The value of real time yield information in multi-stage inventory 

systems – Exact and heuristic approaches. European Journal of Operational Research, 240(1) 
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properties are provided. Using these properties an optimal and two heuristic solution 

approaches are developed. Numerical results evaluate the performance of the heuristics and 

provided insight on the dependency between the value of real time yield information and the 

system’s parameters. In an extension the effect of fixed order costs is analyzed.  

Chapter 4 extends the base case of Chapter 3 by introducing costs for real time yield 

information and by modeling tracking as a decision variable on an order-by-order basis.† The 

mathematical model is developed and the structure of the objective function is evaluated. An 

optimal solution approach is used to elaborate on conditions under which real time yield 

information with flexible tracking is particularly beneficial and to identify the key drivers for 

the tracking decision. 

Chapter 5 is motivated by the production system of a global semiconductor 

manufacturer.‡ Semiconductor production has two main features: the first feature is random 

yield, the second feature is co-production. Products of different quality levels are produced 

simultaneously at random yield rates. Products must be tested in dedicated test processes to 

observe their quality level. These test processes are capacity restricted. This led to the idea of 

pre-testing products to make more efficient use of limited test capacities. The pre-test is an 

inexpensive and quick process that discloses preliminary yield information. That is, the final 

quality of products is detected with some probability. This makes it, for example, possible to 

avoid testing products for a high quality level that most likely fail this test. Building up on 

structural results of the mathematical model, an optimal and a heuristic solution approach are 

developed. They are used to evaluate the value of preliminary yield information and its 

dependencies. 

 
† This chapter benefited from discussions with Prof. Ulrich W. Thonemann and Michael Völkel, M.Sc. 
 
‡ This chapter benefited from discussion with Prof. Candace A. Yano and Prof. Ulrich W. Thonemann 
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Chapter 6 summarizes the key results of this thesis and provides a general outlook for 

future research in the field of inventory management under random yield. 

 

1.3.   Contribution 

A piece of research can contribute to the literature, for instance, because it deals with a 

new and innovative problem, models and solves a real problem, or contains an innovative 

solution approach. The topic of Chapter 3 and 4, real time yield information in inventory 

management, is rather new and connected to recent advances in information technology. 

Especially the RFID technology and the progress of concepts like “the internet of things” are 

enabler for the kind of supply chain visibility that is considered in this thesis. Much research 

has been done on real time information in different contexts but to the best of our knowledge 

White and Cheong (2012) are the only authors that address real time yield information in the 

same context as we do. Their work is mainly focused on vehicle routing decisions, whereas our 

work focuses on inventory management. 

Another driver for real time yield information is supply chain collaboration and, in this 

context, information sharing between supplier and customer. A supplier that shares in-process 

production yields in real time with its customer can significantly improve supply chain 

performance. Upstream information sharing has received much less attention in literature than 

downstream information sharing (e.g. a retailer shares point-of-sale data with its supplier). To 

our best knowledge, Hyun-cheol Paul Choi et al. (2008) is the only paper that considers sharing 

of real time yield information in inventory management. However, their analysis is limited to 

one heuristic solution and does not consider the cost of information sharing. 

The problem in Chapter 5 is motivated by a production process of a global 

semiconductor manufacturer. We add to the existing literature on semiconductor 

manufacturing by developing a model that differentiates between the production process and 
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the test process. Because we treat both processes individually, our model allows for multiple 

test runs while in parallel a production run is in progress. Our model reflects the industry 

practice more accurately and enables the analysis of parameter and process changes with higher 

precision than existing models that consider production and testing as a single step. In this 

context we introduce and analyze the concept of preliminary yield information as a mean to 

enable more efficient use of limited test capacity. Although the semiconductor production 

problem is not new, we model it in a new way, solve a real world problem and analyze the 

potential advantages of (preliminary) real time yield information.  

For all models we develop optimal solution approaches and implement them to perform 

numerical analysis. To solve larger problems we propose several new heuristics and elaborate 

on their performances. These heuristics facilitate the transfer of our research into real world 

applications.  
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Chapter 2  

 

Foundations of Inventory Management under 

Random Yield 

 

2.1.   Modeling of Random Yield 

The way random yield is modeled depends on the analyzed random yield process. Next 

we describe the six most prominent approaches: Bernoulli process, proportional yield, additive 

yield, decreasing yield, increasing yield, and random capacity. Most research focuses on one 

of the first two processes. These processes are therefore discussed in greater detail. 

The most intuitive yield process is a Bernoulli process. Each unit has an all-or-nothing 

yield rate of 𝑢. The yield rate coefficient 𝑢 is independent of the order quantity 𝑂. Placing an 

order of 𝑂 units yields in expectation 𝐸[𝑄] = 𝑢𝑂 with a variance of   𝑉𝑎𝑟[𝑄] = 𝑂𝑢(1 − 𝑢). 

The assumption for this process is that the yield of each unit is independent of the yield of all 

other units, i.e. the yield rates are not correlated between units within one batch (and also not 

between batches). Note, that the variance of the fraction of good units decreases in 𝑂. Due to 

the law of large numbers, the more units ordered the more likely it is to get a result close to the 

expected value 𝐸[𝑄]. 
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Examples for this process are the transportation of containers with cooling units or raw 

materials with imperfections. Under the assumption that the risk for a failure of an individual 

cooling unit is only depending on the state of this cooling unit, like age or time since last 

inspection, the number of containers with working cooling units follows a Bernoulli process. 

Another yield process that resembles a Bernoulli process is the processing of raw materials 

with imperfections, like a cavity in a metal, stone or wood. If the cavity becomes observable 

during production, e.g. during cutting, it makes the product useless. The risk for cavities is not 

correlated among raw material units. Articles that feature this kind of yield process include 

Hadjinicola (2010), Shang, Tsung, and Zou (2013), and Tang (1990). 

The yield model, most commonly analyzed in literature on inventory management 

under random yield, is the proportional yield model. A yield process with proportional yield is 

described by a random yield rate 𝑢 that is independent of batch size 𝑂. The yield expectation 

is 𝐸[𝑄] = 𝐸[𝑢]𝑂 and the variance is 𝑉𝑎𝑟[𝑄] = 𝑉𝑎𝑟[𝑢]𝑂2. Note, that the variance is quadratic 

in the order quantity which is kind of a worst case scenario. This reflects the underlying 

assumption that the yield of units within on order is perfectly correlated. That means each unit 

is spoiled or good to the same degree. E.g. the observation that 80 % of the units within an 

order are fresh, means that each individual unit is 80 % fresh and 20 % spoiled.  

Examples for this process are all processes that endure a systemic risk. Recall the 

example of transporting containers with cooling units. This time we consider the units within 

one container. These units have all the same temperature risk. If the temperature deviates from 

the optimal range, all units decay to the same degree. A production process with proportional 

yield can be found e.g. in semiconductor manufacturing. Due to the complex production 

processes and high quality requirements in semiconductor production systems, the resulting 

yield is often a random fraction of the input quantity. Articles that feature this kind of yield 
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process include Federgruen and Yang (2014), Huang and Song (2010), and White and Cheong 

(2012). 

The expected output under additive yield is  𝐸[𝑄] = 𝑂 + 𝐸[𝑢] with variance 𝑉𝑎𝑟[𝑄] =

𝑉𝑎𝑟[𝑢], where 𝑢 is a random variable independent of batch size 𝑂. Note, that in contrast to the 

previous yield processes the variability of the replenishment quantity 𝑄 is independent of batch 

size. Because 𝐸[𝑢]  ≠ 0 results in a simple shift of the order quantity, 𝐸[𝑢] can be set to zero, 

without loss of generality. Examples for this yield process are handling errors that lead to 

inventory inaccuracies. Imagine, for instance, a supplier that ships 9 instead of 6 units, because 

of a type error in the order document. Theft of units during transportation can also be modeled 

with such a yield process. Additive yield is similar to modeling a system with two random 

demand streams. The articles by Graves, Meal, Dasu, and Qui (1986) and Rekik, Sahin, and 

Dallery (2009) are examples for considering an additive yield process. 

The next three yield processes are no longer independent of the batch size. For 

decreasing yield rates the fraction of expected good units decreases in batch size. This pattern 

is applicable for production processes that have an increasing failure rate the longer they run. 

Examples are processes with deteriorating production equipment, like tools that get less precise 

or have a higher probability to break the longer they are used. Sample articles for this yield 

process include Glock and Jaber (2013), Lee (1992), and Zhu, Zhang, and Tsung (2007). 

The opposite of the aforementioned is a process with increasing yield rates. This pattern 

can be observed when the production process needs to be calibrated in the beginning, e.g. in a 

trial-and-error fashion. Until the process is calibrated the risk for defective units is higher 

compared to the risk after the calibration is completed. Examples are finding the correct setting 

for milling machines or the correct temperature to provoke a chemical reaction. Learning curve 

effects can also be modeled by increasing yield rates. The modeling of settings with increasing 
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yield rates can be done similar to models with decreasing yield rate.  Literature on models with 

increasing yield rates is extremely scarce. 

In processes with random capacity the output is the minimum of the input quantity and 

the random capacity. The chosen input quantity influences the yield distribution by defining an 

upper limit for the yield. Examples are production processes where some machinery is not 

available for a random period of time due to unplanned maintenance. Articles that feature this 

kind of yield process include Fu, Sun, Lai, and Leung (2014), Hwang and Singh (1998), and 

Iida (2002). 

2.2.   Implications of Random Yield on Inventory Management 

Our objective is to explain the implications of random yield as intuitively as possible. 

We refer the reader to the cited references for a more thorough analysis of this topic. We start 

by recalling the principals of periodic inventory management with perfect yield, random 

demand and zero lead time. Then we point out the differences that are caused by the presence 

of random yield. We proceed from one period models to multi period models. 

Under certain yield the sequence of events is as follows. At the beginning of each period 

an order of quantity 𝑂 is placed. This order arrives instantaneously. After order arrival demand 

𝑑 is realized. Demand is satisfied from on hand inventory 𝑌 = 𝐼𝐿 + 𝑂 that is the sum of 

inventory level 𝐼𝐿 and order quantity 𝑂. Unsatisfied demand is backordered. Based on the net 

inventory at the end of the period, backorder cost 𝑏 or inventory holding costs ℎ are charged.  

The first observation is that the optimal policy can be found by focusing solely on one 

period. The key sufficient condition for a myopic optimum is that given the current action, the 

current state has no influence on the next state (Heyman and Sobel, 1984, p. 84). At the 

beginning of the current period the system is in state 𝐼𝐿. The decision about the order quantity 

𝑂 is in fact a decision about the on hand inventory 𝑌 for the current period, since 𝑌 = 𝐼𝐿 + 𝑂. 
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Because an arbitrary order can be placed, 𝑌 depends only on 𝑂. In theory even negative orders 

are possible, but not needed in this case.§ Therefore the decision about 𝑂 can be substituted by 

a decision about 𝑌. The inventory level in the next period depends only on this decision (and 

an independent demand distribution). This myopic nature of the problem simplifies the analysis 

significantly. The objective function for one period is  

min
𝑂≥0

 𝐸𝑑[𝐶(𝐼𝐿 + 𝑂 − 𝑑)] = 𝐸𝑑[ℎ[𝐼𝐿 + 𝑂 − 𝑑]
+ + 𝑏[𝑑 − 𝐼𝐿 − 𝑂]+] 

     = min
𝑌≥0

 𝐸𝑑[𝐶(𝑌 − 𝑑)] 
(1) 

with [𝑥]+ = max(0, 𝑥). It is well established that this resembles the basic newsvendor model 

with  𝜃∗ = 𝐼𝐿 + 𝑂∗ = 𝐹−1(𝑏 (𝑏 + ℎ⁄ )) as optimal solution, where 𝐹−1 denotes the inverse 

cumulative probability distribution of the demand over one period. The resulting optimal policy 

is an order-up-to policy: If 𝐼𝐿 is below the order threshold 𝜃∗, then an order is placed with 𝑂∗ =

𝜃∗ − 𝐼𝐿. Else 𝑂∗= 0.  

Next, we focus on the implications of random yield on a single period model. We 

analyze the case of proportional yield, because this case is most relevant in literature and in 

this thesis. The conclusions also hold for all other yield models introduced in the previous 

section. We focus on the order threshold first. Using the order threshold under certain yield 𝜃∗, 

we analyze if it can still be applied under uncertain yield. Assume 𝐼𝐿 ≥ 𝜃∗. Using the optimal 

results from the certain yield model we know that for 𝐼𝐿 ≥ 𝜃∗, 𝐸𝑑[𝐶(𝐼𝐿 + 𝑢𝑂 − 𝑑)] ≥

𝐸𝑑[𝐶(𝐼𝐿 + 0 − 𝑑)] for any yield realization of 𝑢. It is more costly to order than not to order. 

Therefore, it cannot be optimal to order when 𝐼𝐿 ≥ 𝜃∗.  

Next we consider 𝐼𝐿 < 𝜃∗ and compare the decision to order the order-up-to quantity 

𝑂 = 𝜃∗ − 𝐼𝐿 with the decision not to order, 𝑂 = 0. Using the same logic as before we 

 
§ Intuitively, the inventory level at the beginning of the period will not be higher than the optimal value for Y, because this would cause 

unnecessary holding costs. 
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get 𝐸𝑑[𝐶(𝐼𝐿 + 0 − 𝑑)] ≥ 𝐸𝑑[𝐶(𝐼𝐿 + 𝑢(𝜃
∗ − 𝐼𝐿 ) − 𝑑)], because (𝜃∗ − 𝐼𝐿 ) ≥ 𝑢(𝜃∗ − 𝐼𝐿 ) ≥

0 for any realization of 𝑢. From this reasoning we can conclude that in the one period model 

with random yield an order threshold 𝜃∗ exists and that it is the same as under certain yield. A 

more formal proof of this fact is provided in Corollary 1 from Henig and Gerchak (1990).  

It is intuitive that if 𝜃∗ is the same for certain and uncertain yield the optimal policy 

cannot be of an order-up-to type. Under random yield there is an additional source of 

uncertainty and using an order-up-to policy that ignores this fact cannot be optimal. Therefore 

the order quantity under random yield must be larger than the order quantity under certain yield 

(see also Henig and Gerchak, 1990, Corollary 2). The computation of 𝑂 is rather complex and 

there exists no closed form solution. To summarize the single period case: The optimal policy 

is not of an order-up-to type as for certain yield. The order threshold is the same as for certain 

yield but the order quantity is a complex function that cannot be solved analytically. 

In the multi period case we lose another important feature. In the case of certain yield 

we observed a myopic optimum. Under random yield the stochastic independence between 

states in consecutive periods is lost. Given the state 𝐼𝐿 and the decision about the order 

quantity 𝑂, the available inventory level for the current period is defined as: 𝑌 = 𝐼𝐿 + 𝑢𝑂. 𝑌 is 

a random variable with mean 𝐸[𝑦] =  𝐼𝐿 + 𝐸[𝑢]𝑂 and variance 𝑉𝑎𝑟[𝑦] = 𝑉𝑎𝑟[𝑢]𝑂2. Because 

the uncertainty is caused only by the order quantity (and not by 𝐼𝐿 + 𝑂) we can no longer 

substitute the decision about 𝑂 by a decision about 𝑌. The inventory level of the next period 

depends stochastically on both, the order quantity and the current inventory level. Example 2-1 

illustrates this fact for normal distributed random variables. This kind of problem typically 

requires dynamic programming. The recursive cost function 𝑉 for the infinite horizon under 

random yield is 

𝑉(𝐼𝐿)   = min
𝑂≥0

{𝐸𝑢𝐸𝑑[𝐶(𝐼𝐿 + 𝑢𝑂 − 𝑑) +  𝛾𝑉(𝐼𝐿 + 𝑢𝑂 − 𝑑)]}  (2) 
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𝛾 denotes the discount factor. Henig and Gerchak (1990) show that for this infinite 

horizon problem a stable optimal policy exists. This policy consists of an order threshold 

(which is larger than 𝜃∗) and of an order quantity 𝑂(𝐼𝐿) that depends on the inventory level. 

For both values an analytical solution is not available.  

 

  

Example 2-1 Illustration of loss of condition for myopic optimum under random yield 

Idea:  The state of the system is defined by the current inventory level 𝐼𝐿. We consider two different states 

for the current period: 𝐼𝐿𝑎 ≠ 𝐼𝐿𝑏 and analyze their impact on the probability distribution for the state 

in the next period 𝐼𝐿+. If a myopic optimum exists, the probability distribution for the state in the 

next period 𝑁(𝜇𝐼𝐿+,  𝜎𝐼𝐿+) is not depending on the state in the current period.  

Given: 𝐼𝐿𝑎 ≠ 𝐼𝐿𝑏 ,  𝑂𝑎 ≠ 𝑂𝑏 , random demand 𝐷 = 𝑁(𝜇𝑑,  𝜎𝑑),  random yield rate 𝑈 = 𝑁(𝜇𝑢,  𝜎𝑢) 

Wanted: Probability distribution for the inventory level in the next period 𝐼𝐿+ = 𝑁(𝜇𝐼𝐿+ ,  𝜎𝐼𝐿+) 

For certain yield we get 

Current state = 𝐼𝐿𝑎: 𝐼𝐿
+ = 𝐼𝐿𝑎 + 𝑂𝑎 − 𝑁(𝜇𝑑,  𝜎𝑑) = 𝑌 − 𝑁(𝜇𝑑 ,  𝜎𝑑) = 𝑁(𝑌 − 𝜇𝑑,  𝜎𝑑) = 𝑁1(𝜇𝐼𝐿+ ,  𝜎𝐼𝐿+) 

Current state = 𝐼𝐿𝑏: 𝐼𝐿
+ = 𝐼𝐿𝑏 + 𝑂𝑏 −𝑁(𝜇𝑑,  𝜎𝑑) = 𝑌 − 𝑁(𝜇𝑑,  𝜎𝑑) = 𝑁(𝑌 − 𝜇𝑑 ,  𝜎𝑑) = 𝑁2(𝜇𝐼𝐿+,  𝜎𝐼𝐿+) 

𝑵𝟏(𝝁𝑰𝑳+ ,  𝝈𝑰𝑳+) = 𝑵𝟐(𝝁𝑰𝑳+ ,  𝝈𝑰𝑳+) 

For uncertain yield we get 

Current state = 𝐼𝐿𝑎: 𝐼𝐿
+ = 𝐼𝐿𝑎 + 𝑈𝑂𝑎 − 𝑁(𝜇𝑑 ,  𝜎𝑑) = 𝑁(𝐼𝐿𝑎 + 𝜇𝑢𝑂𝑎 , 𝜎𝑢𝑂𝑎) − 𝑁(𝜇𝑑,  𝜎𝑑)

= 𝑁 (𝐼𝐿𝑎 + 𝜇𝑢𝑂𝑎 − 𝜇𝑑, √𝜎𝑑
2 + 𝜎𝑢

2𝑂𝑎) = 𝑁3(𝜇𝐼𝐿+ ,  𝜎𝐼𝐿+) 

Current state = 𝐼𝐿𝑏: 𝐼𝐿
+ = 𝐼𝐿𝑏 + 𝑈𝑂𝑏 − 𝑁(𝜇𝑑 ,  𝜎𝑑) = 𝑁(𝐼𝐿𝑏 + 𝜇𝑢𝑂𝑏 , 𝜎𝑢𝑂𝑏) − 𝑁(𝜇𝑑,  𝜎𝑑)

= 𝑁 (𝐼𝐿𝑏 + 𝜇𝑢𝑂𝑏 − 𝜇𝑑, √𝜎𝑑
2 + 𝜎𝑢

2𝑂𝑏) = 𝑁4(𝜇𝐼𝐿+,  𝜎𝐼𝐿+) 

𝑵𝟑(𝝁𝑰𝑳+ ,  𝝈𝑰𝑳+) ≠ 𝑵𝟒(𝝁𝑰𝑳+ ,  𝝈𝑰𝑳+) 

Conclusion: For the certain yield case the probability distribution for the next state is the same for both 

current states, 𝐼𝐿𝑎 and 𝐼𝐿𝑏. This is not true for the uncertain yield case. 
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2.3.   Implications of Random Yield on Cost Modeling 

With very few exceptions (e.g. Bitran and Leong 1992) the minimization of expected 

cost is the objective in literature on inventory management with random yields. We therefore 

discuss in this section the cost modeling under random yield. The influence of random yield on 

costs depends on the analyzed process and the underlying yield model. As each process and 

each yield model requires a special cost modeling approach, we cannot discuss all possibilities 

in detail and concentrate on the commonly used cost modeling approaches that are relevant in 

the context of this thesis. Typically variable unit cost, cost of handling defective units, 

inspection cost and inventory holding cost are effected by random yield. 

The modeling of variable unit cost depends on whether or not the decision maker has 

to pay the cost for defective units. In inventory settings where the quantity received is not equal 

to the quantity ordered, the customer usually pays for good units only and rejects all defective 

units. This assumes that at some point in time the customer can observe the yield of each unit. 

Examples for this type of cost modeling are the models in Chapter 3 and 4 and models studied 

by Yigal Gerchak (1992) and Huh and Nagarajan (2010). In production processes variable unit 

costs are typically charged on the input quantity. The assumption is that raw material costs and 

production costs have to be paid independently of the yield outcome. Examples for such cost 

modeling can be found in Chapter 5, Federgruen and Yang (2014), and Han, Dong, and Shao 

(2012). 

The costs for handling defective units include scraping costs and costs for rework. In 

some cases defective units might have a salvage value. These costs can either be modeled 

explicitly or can be included in the calculation for costs of producing one good unit. For a 

detailed discussion see e.g. Hadjinicola (2010). In this thesis we follow the commonly used 

assumption that defective units are discarded at no cost (e.g. Bollapragada and Morton 1999; 

Choi, Blocher, and Gavirneni 2008; Ferrer and Ketzenberg 2004).  
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In some cases determining the quality of a unit can be costly. These costs are referred 

to as inspection costs. The modeling of inspection costs depends on the yield model and the 

production process. For instance, under binomial yield inspection costs are modeled as cost per 

inspected unit. The correct modeling approach under proportional yield is a fixed cost for 

inspecting an entire batch independent of its quantity (see e.g. Chapter 4 or White and Cheong 

2012). 

The possibility to inspect units influences the modeling of holding costs. If the yield of 

all units is observable defective units can be returned to the supplier or discarded. In this case 

holding cost is only charged on good units (Chapters 3 and 4). If inspection is not possible or 

the inspection process is imperfect, holding costs are also charged on defective units until they 

are identified and discarded. An example for such an imperfect inspection process is the pre-

test, implemented in the semiconductor production process that is analyzed in Chapter 5. 
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Chapter 3  

 

The Value of Real Time Yield Information in 

Multi-State Inventory Systems 

Chapter 3 was published as: 
 
Dettenbach, M., and Thonemann, U. W. (2015). The value of real time yield information in 
multi-stage inventory systems – Exact and heuristic approaches. European Journal of 
Operational Research, 240(1), 72–83. doi:10.1016/j.ejor.2014.06.028 
 

3.1.   Abstract 

We consider a random yield inventory system, where a company has access to real time 

information about the actual yield realizations. To contribute to a better understanding of the 

value of this information, we develop a mathematical model of the inventory system and derive 

structural properties. We build on these properties to develop an optimal solution approach that 

can be used to solve small to medium sized problems. To solve large problems, we develop 

two heuristics. We conduct numerical experiments to test the performances of our approaches 

and to identify conditions under which real time yield information is particularly beneficial. 

Our research provides the approaches that are necessary to implement inventory control 

policies that utilize real time yield information. The results can also be used to estimate the cost 

savings that can be achieved by using real time yield information. The cost savings can then be 

compared against the required investments to decide if such an investment is profitable. 

Keywords: inventory management; random yield; value of information  
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3.2.   Introduction and Literature Review 

We consider an inventory system, where replenishment orders are subject to random 

yield. Random yields are an important issue in many procurement, production, and assembly 

processes (Yano and Lee 1995). In the food or chemical cold chain, for instance, products are 

shipped over long distances in refrigerated containers. If the temperature of the product leaves 

a certain range, the product is spoiled and must be re-ordered. Another example is the 

semiconductor industry, where production steps are subject to random yield (Wang 2009).  

Recently, technologies have been developed that collect and transmit data about the 

state of a product in the order pipeline. In cold chains, smart sensors are used to monitor the 

temperature of products and to inform customers immediately if the temperature leaves a pre-

defined range (Zacharewicz et al. 2011). White and Cheong (2012), for instance, consider a 

food supply chain that requires this type of supply chain visibility. They quantify the benefit of 

observing the quality of a perishable product that is processed in multiple steps from origin to 

destination. At each step during the journey the decision has to be made whether or not to 

inspect the quality of the product at a certain cost and whether or not to continue the transport. 

More application examples of technologies that enable real time yield information sharing in 

this context can be found in Hsueh and Chang (2010).  

Real time yield information is also relevant in production processes. Consider a supplier 

that manufactures a product in several production steps, where each step has random yields. 

The customer of the supplier considers this risk when placing orders with the supplier and 

therefore determines the input quantity for the supplier’s first production step. The supplier 

holds no inventory (except work in progress) and shares yield information after each production 

step with the customer. Gavirneni (2004), Inderfurth and Vogelgesang (2013), and Wang 

(2009) provide details of such a process in the semiconductor industry. Choi et al. (2008), for 
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instance, consider real time yield information sharing in such a context. However, collecting 

and transmitting real time yield information requires investments in information technology. 

To decide whether or not such investments are profitable, the value of using real time yield 

information must be quantified and we address this topic in this paper.  

Research on random yield inventory models can be traced back to Karlin (1958). Karlin 

(1958) considers a single period inventory system where the yield of an order is a random 

variable with a known distribution and where order decisions are binary. The structure of the 

optimal random yield policy for inventory systems with zero lead time has been derived by 

Gerchack et al. (1988) and Henig and Gerchak (1990). Gerchack et al. (1988) analyze a finite 

horizon periodic review problem and show that the optimal policy is complex and not myopic. 

They determine the optimal solution by dynamic programming. Henig and Gerchak (1990) 

derive structural results for the finite and infinite horizon problems and show that there exists 

a threshold for each period, such that an order is placed if and only if the on-hand inventory is 

below the threshold value. They show that the threshold is higher under stochastic yield than 

under deterministic yield. An overview of periodic review systems with random yield can be 

found in Yano and Lee (1995).   

Because large problems cannot be solved optimally in reasonable time, research has 

also addressed the development of random yield heuristics. Many of these heuristics rely on 

myopic linear inflation policies (Huh and Nagarajan 2010). These policies use an order 

threshold and an inflation factor: If the inventory level is below the order threshold, then the 

difference between the order threshold and the inventory level multiplied by an inflation factor 

is ordered. A seminal article in this area is by Bollapragada and Morton (1999). They develop 

three myopic heuristics that are based on the solution of a newsvendor model with random 

yield. For a discounted cost model, Li et al. (2008) develop upper and lower bounds for the 
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optimal order threshold and the order quantity. They use these bounds in a heuristic that 

outperforms the heuristics of Bollapragada and Morton (1999). Huh and Nagarajan (2010) 

show how the optimal order threshold of a linear inflation policy can be computed for a given 

inflation factor.  

The existing literature on optimal and heuristic solutions considers models with zero 

lead time, an assumption under which real time yield information sharing is not an issue. In 

inventory systems with positive lead times, real time yield information sharing can improve 

performance. To our best knowledge, Choi et al. (2008) is the only article that analyzes the 

value of real time yield information sharing in settings with positive lead times. They consider 

a supply chain with a single supplier and a single manufacturer. The supplier uses a 

manufacturing process with two processing steps with random yields. Translated to a supply 

chain setting, their model corresponds to an inventory model with a lead time of three periods, 

where the first two periods are subject to random yield. To solve the model, Choi et al. (2008) 

modify one of the heuristics of Bollapragada and Morton (1999). 

We also consider a model with positive lead time and allow for an arbitrarily long lead 

time. Unlike previous research, we derive structural properties of the objective function and 

prove the existence of a stationary optimal policy for the infinite horizon problem. We show 

that the objective function is convex and build on this property to optimally solve small and 

medium sized problems. To solve large problems, we develop two heuristic solution 

approaches based on linear inflation policies. The first heuristic builds on the MULT-heuristic 

that was first proposed by Ehrhardt and Taube (1987). The second heuristic is based on the 

work of Huh and Nagarajan (2010). We provide numerical results that indicate that our 

heuristics perform well in a variety of settings and we identify conditions under which real time 

yield information is particularly beneficial.  
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Related to our research is the research on RFID. For a comprehensive literature review 

we refer to Lee and Özer (2007), Ngai et al.  (2008), and Sarac et al. (2010). For a literature 

review on applications of RFID technology we refer to Zhu et al. (2012). To analyze the value 

of increased supply chain transparency few analytical models have been developed. Our paper 

derives an analytical model and quantifies the value of real time yield information and we 

contribute to the filling of the frequently cited credibility gap of the value of RFID (H. Lee and 

Özer 2007; Sari 2010). 

The remainder of the paper is organized as follows. In Section 3.3, we develop a 

dynamic program for a periodic review inventory system with random yields. In Section 3.4, 

we discretize the state space and use a Markov decision process to compute the optimal 

solution. In Section 3.5, we develop heuristic solution approaches. In Section 3.6, we provide 

numerical results. In Section 3.7, we discuss the value of real time yield information in detail. 

In Section 3.8, we extend our analysis for the case where fixed order cost is charged. In Section 

3.9, we conclude. All proofs can be found in the Appendix. 

3.3.   Model Formulation 

We first consider a supply chain with real time yield information sharing (Subsection 

3.3.1) and analyze the finite horizon version and the infinite horizon of the problem. We 

consider both versions of the problem, because each version has properties beneficial in our 

analyses. For the finite horizon version, we prove the convexity of the value function. We build 

upon this property to derive the stationary optimal policy for the infinite horizon version, which 

allows us to compute the optimal expected cost with arbitrary accuracy. One of our objectives 

is to analyze the value of using real time yield information, which requires us to compare the 

cost of a supply chain that utilizes real time yield information with the cost of a supply chain 

that does not utilize this information. Therefore, we also analyze a supply chain without real 
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time yield information (Subsection 3.3.2), again for both the finite horizon version and the 

infinite horizon version of the problem. 

3.3.1.   Model with Real Time Yield Information 

Consider a single manufacturer who places orders with a single supplier. The demand 

𝑑𝑡 of the product is stochastic and i.i.d. across periods. We denote the order quantity in period 

𝑡 by 𝑂𝑡 and orders arrive after a lead time of periods. In each lead time period, orders are 

subject to random yields. The yield rate of lead time period 𝑟 (𝑟 = 1,… , 𝜆) in period 𝑡 is 𝑢𝑟,𝑡. 

Order 𝑂𝑡−𝜆 placed in period 𝑡 − 𝜆 experiences 𝜆random yields and the replenishment quantity 

𝑄𝑡−𝜆 in period 𝑡 is 𝑄𝑡−𝜆 = 𝑢𝜆,𝑡−1 𝑢𝜆−1,𝑡−2 𝑢1,𝑡−𝜆𝑂𝑡−𝜆. The yield rates 𝑢𝑟,𝑡 are i.i.d. over time 

and can be arbitrarily distributed. For ease of presentation, we will drop the index 𝑡 in 𝑢𝑟,𝑡 

whenever it is appropriate. This yield model is commonly used to analyze the random yield 

inventory problem, e.g. Choi et al. (2008), Ehrhardt and Taube (1987), and Gerchack et al. 

(1988). 

 

The sequence of events in each period is as follows: First, the manufacturer observes 

the current state of the inventory system 𝑧𝑡 = (𝐼𝐿𝑡, 𝑄𝑡−𝜆, … , 𝑄𝑡−1), which consists of the 

inventory level 𝐼𝐿𝑡 and the current yield of the 𝜆 outstanding orders (Figure 3-1). Then, the 

manufacturer decides on the order quantity of the current period and orders, 𝑂𝑡. Next, the 

manufacturer receives the order that was placed 𝜆 periods ago, 𝑄𝑡−𝜆. The manufacturer satisfies 

demand and backorders excess demand. Based on the net inventory 𝐼𝐿𝑡+1 at the end of period 

Figure 3-1 Information set at the beginning of period t with real time yield information 
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𝑡, backorder or inventory holding costs are charged. With this sequence of events, there are 

𝜆 +1 state variables. The intricate dynamics make it impossible to reduce the state to a single 

variable. All notation is summarized in Appendix 3.A. 

Finite horizon model 

We formulate the finite horizon version of the optimization problem as a dynamic 

program. Given the current state zt, the objective is to determine the order quantities for the 

current and all future periods, such that the sum of expected inventory holding and backorder 

costs is minimized: 

 

𝑉𝑡(𝑧𝑡) =  min
𝑂𝑡≥0

 𝐻𝑡(𝑧𝑡, 𝑂𝑡),    

with 𝐻𝑡(𝑧𝑡, 𝑂𝑡) = 𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡)] +  𝛾𝐸𝑢1,𝑡⋯𝐸𝑢𝜆,𝑡𝐸𝑑𝑡[𝑉𝑡+1(𝑧𝑡+1)]. 

(3) 

𝛾 denotes the discount factor. Without loss of generality, we assume that 𝑉𝑇+1(𝑧𝑇+1)  = 0. The 

total cost function 𝐻𝑡(𝑧𝑡, 𝑂𝑡) is the sum of the expected cost of the current period 

 𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡)] and the minimum expected cost from periods 𝑡 + 1 to 𝑇, 

𝐸𝑢1,𝑡⋯𝐸𝑢𝜆,𝑡𝐸𝑑𝑡[𝑉𝑡+1(𝑧𝑡+1)]. The cost of the current period is 𝐶(𝑥) = ℎ[𝑥]+ + 𝑏[−𝑥]+, with 

[𝑥]+ = max(0, 𝑥). Because 𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡)] is not affected by the current order 

decision, the dynamic program can be written as 

𝑉𝑡(𝑧𝑡) = 𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 +𝑄𝑡−𝜆 − 𝑑𝑡)] + min𝑂𝑡≥0
𝛾𝐸𝑢1,𝑡⋯𝐸𝑢𝜆,𝑡𝐸𝑑𝑡[𝑉𝑡+1(𝑧𝑡+1)]. (4) 

The transition function is 

𝑧𝑡+1 = 𝑓𝑧(𝑧𝑡, 𝑂𝑡, 𝑑𝑡 , 𝑢1,𝑡, ⋯ , 𝑢𝜆,𝑡) = (𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡, 𝑢𝜆,𝑡𝑄𝑡+1−𝜆,⋯ , 𝑢1,𝑡𝑂𝑡). (5) 

Theorem 3-1 states that the total cost function  𝐻𝑡(𝑧𝑡, 𝑂𝑡) and the minimal cost function 

𝑉𝑡(𝑧𝑡) are convex. The proof is by induction and can be found in Appendix 3.B. 
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Theorem 3-1. 𝐻𝑡(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1, 𝑂𝑡) is convex in 𝐼𝐿𝑡, 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆, and 𝑂𝑡. 

𝑉𝑡(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1) is convex in 𝐼𝐿𝑡 and 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆.  

In the next subsection, we use the results of Theorem 3-1 to show that there exists a 

stationary optimal policy for the infinite horizon model and we utilize the convexity in the 

solution algorithm. 

Infinite horizon model 

We analyze the infinite horizon model by analyzing the finite horizon problem for 𝑇 →

∞. For the infinite horizon model, the state variable is 𝑧 = (𝐼𝐿, 𝑄−𝜆, … , 𝑄−1), where 𝑄−𝑖 is the 

current yield of the order placed i periods ago. The recursive cost function V(z) is the limiting 

function of Equation (3) as 𝑇 → ∞. 𝑉(𝑧) is defined as  

𝑉(𝑧) = 𝑉(𝐼𝐿, 𝑄−𝜆, … , 𝑄−1) = 

min
𝑂≥0

{𝐸𝑑[𝐶(𝐼𝐿 + 𝑄−𝜆 − 𝑑)] +  𝛾𝐸𝑢1⋯𝐸𝑢𝜆𝐸𝑑[𝑉(𝐼𝐿 + 𝑄−𝜆 − 𝑑, 𝑢𝜆𝑄−𝜆+1, ⋯ , 𝑢1𝑂)]}. 
(6) 

We next show in Lemma 3-1 that for each 𝑧 𝜖 𝑍,  𝑉𝑡(𝑧) converges to 𝑉(𝑧) as 𝑇 → ∞. 

Building on this result, we prove in Theorem 3-2 that the limit function is the unique solution 

of Equation (6).  

Lemma 3-1. For each 𝑧 𝜖 𝑍 there exists a limit function 𝑉(𝑧)= 𝑙𝑖𝑚
𝑇→∞

𝑉𝑡(𝑧). 

To prove the existence of an optimal stationary policy in Theorem 3-3, we require the 

limit function of Lemma 3-1 to solve the functional equation of the dynamic program. This is 

proven in Theorem 3-2. 

Theorem 3-2. For each 𝑧 𝜖 𝑍 the limit function 𝑉(𝑧)= 𝑙𝑖𝑚
𝑇→∞

𝑉𝑡(𝑧) satisfies Equation (6). 

Theorem 3-3. For each 𝑧 𝜖 𝑍 there exists an optimal stationary policy 𝑂∗(𝑧)= 𝑙𝑖𝑚
𝑇→∞

𝑂𝑡(𝑧) and 

𝑉(𝑧) is its return function. 
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We have shown that a stationary optimal policy exists and in Section 3.4 we 

demonstrate how it can be computed. Because of the stochastic nature of the demand and the 

yield rate distribution, the structure of the optimal policy is too complex to obtain further 

analytical results. 

3.3.2.   Model without Real Time Yield Information 

Without real time yield information, the manufacturer observes in period 𝑡 the current 

inventory level ILt  and the open order quantities 𝑂_(𝑡 − 𝜆), … , 𝑂𝑡−1. We denote the state by 

𝑠𝑡 = (𝐼𝐿𝑡, 𝑂𝑡−𝜆, … , 𝑂𝑡−1). The objective function of the finite horizon model is  

𝑉𝑡(𝑠𝑡) = min
𝑂𝑡≥0

 𝐻𝑡(𝑠𝑡, 𝑂𝑡) = 

min
𝑂𝑡≥0

{𝐸𝑢1⋯𝜆,𝑡𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 + 𝑢1⋯𝜆,𝑡𝑂𝑡−𝜆 − 𝑑𝑡)] + 𝛾𝐸𝑢1⋯𝜆,𝑡𝐸𝑑𝑡[𝑉𝑡+1(𝑠𝑡+1)]}, 

(7) 

where 𝑢1⋯𝜆,𝑡 denotes the yield rate over the lead time that is observed in period t with pdf 

𝑣(𝑢1⋯𝜆). We assume that 𝑉𝑇+1(𝑠𝑇+1) = 0.  

The transition function is 

  𝑠𝑡+1  = 𝑓𝑠(𝑠𝑡, 𝑂𝑡, 𝑑𝑡, 𝑢1⋯𝜆,𝑡) = (𝐼𝐿𝑡 + 𝑢1⋯𝜆,𝑡𝑂𝑡−𝜆 − 𝑑𝑡, 𝑂𝑡+1−𝜆, ⋯ , 𝑂𝑡). (8) 

For the infinite horizon model, the state is 𝑠 = (𝐼𝐿, 𝑂−𝜆, … , 𝑂−1), where 𝑂−𝑖 is the order 

placed 𝑖 periods ago. Then,  

𝑉(𝑠) = 𝑉(𝐼𝐿, 𝑂−𝜆, … , 𝑂−1) = 

min
𝑂≥0

{𝐸𝑢1⋯𝜆𝐸𝑑[𝐶(𝐼𝐿 + 𝑢1⋯𝜆𝑂−𝜆 − 𝑑)] + 𝛾𝐸𝑢1⋯𝜆𝐸𝑑[𝑉(𝐼𝐿 + 𝑢1⋯𝜆𝑂−𝜆 − 𝑑,𝑂−𝜆+1, ⋯ , 𝑂)]}.  
(9) 

The results of Lemma 3-1 and Theorems 3-1 to 3-3 also hold for the model without real 

time yield information, because it features the same structure as the model with real time yield 

information. The proofs are very similar and therefore omitted. We note that this model derives 
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the optimal policy for the setting without real time yield information. If the decision maker 

chooses a conservative approach and takes an expectation over the yield rates conditionally, 

for example over the 95th percentile of the yield rates to hedge against the uncertainty in the 

yield rates, this would result in increased order quantities and inventory holding costs and 

reduced backorder costs. However, it would increase expected total cost. 

3.4.   Optimal Solution Approach for the Infinite Horizon Model with Discrete and 

Finite State Space 

To obtain the optimal policy and minimal expected cost for the infinite horizon model, 

we model the system as a discounted Markov decision process. Because Lemma 3-1 and 

Theorems 3-2 and 3-3 also hold for finite state spaces (Heyman and Sobel 1984, Proposition 

8-2), we can determine the optimal policy and the minimal expected cost for each state via 

value iteration combined with MacQueen extrapolation (MacQueen 1966). 

We next show how the optimal solution can be computed for the model that utilizes 

real time yield information (Subsection 3.4.1). The approach is very similar for the model 

without real time yield information and we will only describe the differences between the 

solution approaches in Subsection 3.4.2. 

3.4.1.   Solution Approach with Real Time Yield Information 

Let the state space of the Markov decision process be defined by Z with truncated 

inventory level (𝐼𝐿min ≤ 𝐼𝐿 ≤ 𝐼𝐿max)  and order quantity (0 ≤ 𝑂 ≤ 𝑂max). 𝑍 has  

(𝐼𝐿max − 𝐼𝐿min + 1)(𝑂max + 1)𝜆 states. The action space is  𝐴 = {0, 1, 2, … , 𝑂max} .  

Given state 𝑧 𝜖 𝑍, we compute for every order decision 𝑂 the transition probabilities 

from 𝑧 to �̃� 𝜖 𝑍, 𝑝𝑧,𝑧(𝑂). For state 𝑧, let 𝑄𝑧
𝑟 be the current yield of an order after lead time 
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period r, with  𝑟 =  0, … , 𝜆 and 𝑄𝑧
0 ≡ 𝑂. The transition probability from 𝑧 = (𝐼𝐿𝑧, 𝑄𝑧

𝜆, … , 𝑄𝑧
1) 

to �̃� = (𝐼𝐿𝑧 , 𝑄𝑧
𝜆, … , 𝑄𝑧

1) is 

𝑝𝑧,𝑧(𝑂) = 𝑃(�̃�|𝑧, 𝑂) = 𝑃(𝐷 = 𝐼𝐿𝑧 + 𝑄𝑧
𝜆 − 𝐼𝐿𝑧) ∙∏𝑔(𝑄𝑧

𝑟−1)

𝜆

𝑟=1

, 

with 𝑔(𝑄𝑧
𝑟−1) = {

1, for 𝑄𝑧
𝑟−1 = 0 and 𝑄𝑧

𝑟 = 0

𝑃(𝑢𝑟 = 𝑄𝑧
𝑟 𝑄𝑧

𝑟−1⁄ ), for 𝑄𝑧
𝑟−1 > 0

0, for 𝑄𝑧
𝑟−1 = 0 and 𝑄𝑧

𝑟 ≠ 0.

 

 

(10) 

The value iteration algorithm can be found in Appendix 3.F. It can be used to calculate 

the optimal policy with and without real time yield information and provides the minimal 

expected cost 𝑉(𝑧) and the optimal order decision 𝑂(𝑧) for each state.  

Using the optimal policy 𝑂(𝑧), we calculate the steady state distribution and then 

determine the minimal expected cost. Proposition 3-1 states that the state probabilities have a 

unique stationary distribution. Define 𝑌min(𝑂) as the minimal yield over lead time of order 

quantity 𝑂. 

Proposition 3-1. For any discrete i.i.d. demand distribution with 𝑃(𝐷𝑡 = 𝑑𝑡 ) >  0 for 

𝑌min(𝑂max) + 1 ≥ 𝑑𝑡 ≥  0 and any 𝜆 discrete i.i.d yield distributions, the finite state space Z 

has a unique essential class and therefore has a unique stationary distribution. 

The steady state probabilities 𝑝(𝑧) can be calculated using power iteration. The minimal 

expected cost for the infinite horizon model is ∑ 𝑝(𝑧)𝑉(𝑧).𝑧  

3.4.2.   Solution Approach without Real Time Yield Information 

Without real time yield information, the transition probabilities differ and the expected 

one period cost is calculated according to Equation (7). Beside these differences, the approach 

described above can be used. To calculate the transition probability from 𝑠 ∈ 𝑆 to state �̃� ∈ 𝑆, 
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it is sufficient to know the probability distribution of demand and of the yield rate over the lead 

time 𝑣(𝑢1⋯𝜆). The state variable 𝑠 contains the information about the order 𝑂𝑠
𝜆 placed 𝜆 periods 

ago. This order quantity is used to calculate a set of potential replenishment quantities 𝑄 and 

their probabilities 𝑝𝑄 = 𝑃(𝑢1⋯𝜆 = 𝑄 𝑂𝑠
𝜆⁄ ). Given the order quantity 𝑂, the transition 

probabilities are calculated as 

𝑝𝑠,�̃�(𝑂)  = 𝑃(�̃�|𝑠, 𝑂) = {
𝑃(𝐷 = 𝐼𝐿𝑠 + 𝑄 − I𝐿�̃�) ∙ 𝑝𝑄 ,  for 𝑂�̃�

𝑟 =  𝑂𝑠
𝑟−1 with 𝑟 = 1,… , 𝜆 

0,  else.
 (11) 

The optimal solution approaches can be used to solve small and medium sized 

problems. To solve large problems, heuristics can be used. We introduce two heuristics in the 

next section. 

3.5.   Heuristic Solution Approaches 

Heuristics that belong to the class of linear inflation policies have proven to perform 

well for solving problems such as the one that we consider (Bollapragada and Morton 1999; 

Hsueh and Chang 2010; Inderfurth and Transchel 2007; Li, Xu, and Zheng 2008; Zipkin 2000). 

These policies require the specification of two parameters, 𝜃 and 𝛽. 𝜃 is the order threshold 

value that triggers an order as soon as the inventory position is below 𝜃. 𝛽 is an inflation factor 

by which the difference between the order threshold and the inventory position (𝜃 − 𝐼𝑃𝑡) is 

multiplied.  

The resulting order quantity is  

 𝑂𝑡(𝐼𝑃𝑡) = {
𝛽(𝜃 − 𝐼𝑃𝑡),  for 𝐼𝑃𝑡 <  𝜃
                    0,  else.

 (12) 

Because not all yield realizations are known when the order quantity is determined, the 

inventory position must be estimated as the sum of the current inventory level 𝐼𝐿𝑡 and the 
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expected replenishment quantities. With real time yield information, the expected inventory 

position is estimated by 

 𝐸[𝐼𝑃𝑡(𝑧𝑡)]  =  𝐼𝐿𝑡 + 𝑄𝑡−𝜆 + �̅�𝜆𝑄𝑡+1−𝜆 + �̅�𝜆�̅�𝜆−1𝑄𝑡+2−𝜆 +⋯+∏�̅�𝑟

𝜆

𝑟=2

∙ 𝑄𝑡−1, (13) 

where �̅�𝑟 denotes the expected yield rate for lead time period 𝑟. 

Without real time yield information, the current inventory position 𝐼𝑃𝑡(𝑠𝑡) cannot be 

estimated as accurately as with real time yield information, because the estimates for the 

expected replenishment quantities are based solely on expected yield rates rather than on a mix 

of expected and observed yield rates. Therefore the expected inventory position is estimated 

by 

 𝐸[𝐼𝑃𝑡(𝑠𝑡)]  =  𝐼𝐿𝑡 + (𝑂𝑡−𝜆 +⋯+ 𝑂𝑡−1)∏�̅�𝑟

𝜆

𝑟=1

= 𝐼𝐿𝑡 + (𝑂𝑡−𝜆 +⋯+ 𝑂𝑡−1)�̅�1⋯𝜆. (14) 

Next, we introduce two heuristics that differ by how they determine the inflation 

factor 𝛽 and the order threshold 𝜃. The first heuristic is the MULT-heuristic. This heuristic is 

most often applied in practice. The idea for this heuristic was first mentioned in Ehrhardt and 

Taube (1987). The second heuristic is the OPT-heuristic. This heuristic is based on the work 

of Huh and Nagarajan (2010) and currently one of the best perfoming heuristics for the random 

yield problem. We modify the Huh and Nagarajan (2010) approach to allow for non-zero lead 

times and different yield rate distributions in different lead time periods. 
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3.5.1.   MULT-Heuristic 

The MULT-heuristic assumes perfect yield and calculates the order threshold value 𝜃 

as 

 𝜃 = 𝐹𝜆+1
−1 (𝑏 (𝑏 + ℎ⁄ )), (15) 

where 𝐹𝜆+1
−1  denotes the inverse cumulative probability distribution of the demand over 𝜆 + 1 

periods. 𝛽 is set equal to the reciprocal of the total expected yield rate: 

 𝛽 =
1

∏ �̅�𝑟
𝜆
𝑟=1

=
1

�̅�1⋯𝜆
. (16) 

3.5.2.   OPT-Heuristic 

Huh and Nagarajan (2010) show how an optimal order threshold 𝜃∗(𝛽) can be 

computed for a given inflation factor 𝛽. Consequently, the choice of 𝛽 defines the performance 

of the heuristic. Huh and Nagarajan (2010) test several choices of 𝛽 for an inventory system 

with zero lead time and show that the approach outperforms existing linear inflation policies.   

We propose a heuristic that allows for non-zero lead times. We set  

 𝛽 =
1

2
(
1

�̅�1⋯𝜆
+ sup {𝑛 ∶ 𝐸 [𝑢1⋯𝜆 ∙ 𝕀 [

1

𝑛
≤ 𝑢1⋯𝜆]] ≤

𝑏

𝑏 + ℎ
�̅�1⋯𝜆}). (17) 

The first term corresponds to the choice of 𝛽 for the MULT-heuristic and ignores yield 

variability. It is the best choice when the yield rate is deterministic. Then, the first term has the 

same value as the second term. The second term considers the yield rate distribution over lead 

time and the ratio of 𝑏 and ℎ. It is motivated by the fact, that for the single period random yield 

problem with deterministic demand and zero lead time, the optimal order quantity is determined 

by max{𝑛(𝐷 − 𝐼𝐿), 0} (Huh and Nagarajan 2010, Proposition 4), when 𝑛 is computed 

according to the second term of Equation (17). Huh and Nagarajan (2010) show that 𝛽, 
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computed according to Equation (17), delivers better results than other choices of 𝛽 under the 

zero lead time assumption and over a wide range of parameter settings.   

𝜃∗(𝛽) can be computed by minimizing the cost function 𝐶(𝜃, 𝛽) for a given 𝛽. It is 

difficult to calculate 𝜃∗(𝛽) analytically, because an analytic expression for the cost function is 

not available. However, 𝜃∗(𝛽) can be computed efficiently by first simulating the system over 

T periods for 𝜃 = 0 and then computing 𝜃∗(𝛽) as (Huh and Nagarajan 2010) 

 𝜃∗(𝛽)  = inf { 𝜃:
1

𝑇
∑𝑃 [𝐼𝐿𝑡+1

(0,𝛽)
+  𝜃 ≤ 0]

𝑇

𝑡=1

≤
ℎ

𝑏 + ℎ
} , (18) 

where 𝐼𝐿𝑡+1
(0,𝛽)

 denote the simulated inventory levels. 

3.6.   Computational Results 

In Subsection 3.6.1, we use the optimal solution approach from Section 3.4 and provide 

numerical results on the value of real time yield information for small and medium sized 

problems. In Subsection 3.6.2, we analyze the heuristics. We use the MULT- and the OPT-

heuristic to solve the same test cases that we solved by the optimal solution approach. The main 

purpose is to analyze the performance gap between optimal and heuristic solutions. Then, we 

apply the MULT- and the OPT-heuristic to larger problems to analyze the difference in 

performance for a wider range of parameter settings. 

3.6.1.   Optimal Solutions 

For our numerical analysis of the optimal solutions, we use Poisson distributed demand 

with a mean of 2, Geometric distributed demand with a mean of 2 and a variance of 6, and 

Binomial distributed demand with a mean of 12 and variance of 6 (Table 3-1). We use lead 

times of 𝜆 = 1, 2, 3, and 4 periods and a Bernoulli distributed yield rate with expected yields 

of 𝑢 = 0.9, 0.94, and 0.98. Unless stated otherwise, only the first lead time period has random 
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yield. We vary the lead time period with random yield and discuss the effects in Section 6. 

Without loss of generality, we set unit inventory holding cost to ℎ = 1 and choose unit 

backorder costs 𝑏 that result in critical ratios (CR = 𝑏/(𝑏 + ℎ)) of 0.85, 0.90, 0.95, and 0.99. 

We use a discount factor 𝛾 of 0.9. This results in 288 test cases. The value iteration is conducted 

with an accuracy of 𝜀 = 0.001. 

Table 3-1 Discrete demand distributions 

𝐷 Parameter 𝜇𝐷 𝜎2 

Poisson 𝜇 = 2.0 2 2 

Geometric 𝑝 = 1 3⁄  2 6 

Binomial 𝑛 = 24, 𝑞 = 0.5 12 6 

 

We truncate demand at 6, 12, and 18, for Poisson, Geometric, and Binomial 

distributions, respectively. The truncated probability mass is at most 0.5 %. For Poisson and 

Geometric distributed demand we limit inventory levels to ±50 and order quantities to 15, limits 

that are essentially never binding. This creates a state space with 101 ∙ 16
𝜆
 states. For Binomial 

distributed demand we set the limit to ±120 for the inventory level and 36 for the order quantity, 

creating a state space of 241 ∙ 37
𝜆
 states. 

Table 3-2 Average run times of optimal solution approach (minutes) 

𝐷 yield information 𝜆 = 1 𝜆 = 2 𝜆 = 3 𝜆 = 4 

Poisson 
with < 0.1 2.0 48 1126 

without < 0.1 1.7 34 823 

Geometric 
with < 0.1 3.1 75 1710 

without < 0.1 2.3 51 1206 

Binomial 
with 4.7 92.5 4192 257,000* 

without 3.5 72.2 3186 203,000* 

* estimated based on duration of the first ten iterations and the average number of iterations for lead time = 3 
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All algorithms were implemented in C++ and all experiments were conducted on a PC 

with eight Intel 3.06 GHz processors and 8 GB of RAM. Table 3-2 shows average run times 

using all eight processors. Run times increase exponentially in lead time, because the state 

space increases exponentially in lead time, which limits the applicability of the optimal solution 

approach to small and medium size problems. 

The costs of the solutions are shown in Table 3-3. The column labeled as value of real time 

yield information shows the relative cost difference of a system with real time yield information 

versus a system without real time yield information. The results show that substantial savings 

can be achieved if yield information can be utilized. Over all test cases, yield information 

reduces cost by 6.8 % for Poisson demands, 2.8 % for Geometric demands, and 22.9 % for 

Binomial demands. The results indicate that savings are particularly high when yield variability 

is high, demand variability is low, and lead time is long. When average demand and, as a 

consequence average order quantity are high, yield information is particularly beneficial, 

because yield variability increases over-proportionally in the order quantity. Because we 

consider small, discrete problems, some values in Table 3-3 do not follow a monotone trend. 

We discuss the effect of the parameters on the value of real time yield information in more 

detail in Section 3.7. 
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Table 3-3 Cost with and without real time yield information for optimal solution 

   

Cost with 

real time yield information 

Cost without 

real time yield information 

Value of  

real time yield information 

(Percent) 

𝐷 𝑢 𝜆 

CR CR CR 

0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 

P
o

is
so

n
 

0.9 

1 35.6 40.7 49.6 69.3 38.5 44.4 54.2 75.1 7.6 8.4 8.5 7.7 

2 41.6 48.2 58.0 78.5 46.2 53.2 64.3 87.5 9.9 9.3 9.7 10.4 

3 46.9 53.6 64.3 87.4 52.8 60.5 72.8 98.2 11.2 11.4 11.7 11.0 

4 52.0 59.2 71.0 94.3 58.5 67.0 80.3 107.7 11.0 11.6 11.6 12.5 

0.94 

1 33.8 39.0 47.2 64.9 35.9 41.1 49.9 68.5 5.8 5.2 5.4 5.2 

2 40.6 46.3 55.6 74.7 43.2 49.7 59.8 80.8 5.9 6.9 7.1 7.5 

3 45.8 52.5 62.5 83.2 49.6 56.7 68.1 91.2 7.7 7.6 8.2 8.8 

4 50.9 57.8 69.4 91.4 55.0 62.9 75.3 100.5 7.5 8.0 7.8 9.1 

0.98 

1 32.4 37.6 45.2 58.8 33.0 38.2 46.1 61.0 1.9 1.5 2.0 3.7 

2 39.8 44.7 53.3 70.3 40.5 46.1 55.2 73.5 1.7 3.1 3.5 4.3 

3 44.9 51.5 61.1 80.2 46.1 52.8 62.9 83.7 2.6 2.3 2.9 4.2 

4 49.9 56.8 67.7 89.3 51.6 58.7 70.2 92.6 3.3 3.3 3.6 3.6 

G
eo

m
et

ri
c
 

0.9 

1 62.5 73.1 89.9 125.5 64.6 75.7 92.9 129.2 3.3 3.4 3.3 2.9 

2 73.2 85.1 104.0 143.7 76.6 89.1 108.9 150.2 4.4 4.5 4.5 4.3 

3 82.3 95.6 116.3 160.1 86.8 100.5 122.3 167.7 5.2 4.8 4.9 4.5 

4 90.7 104.7 127.4 174.0 95.7 110.6 134.2 183.0 5.2 5.3 5.0 4.9 

0.94 

1 61.4 71.7 88.2 121.4 62.6 73.2 89.9 124.5 1.9 2.1 1.9 2.5 

2 72.1 84.0 102.5 141.1 74.4 86.3 105.5 145.4 3.0 2.7 2.8 3.0 

3 81.4 94.4 115.1 157.5 84.3 97.6 118.8 162.7 3.4 3.2 3.1 3.2 

4 89.8 103.7 126.2 172.2 93.0 107.5 130.5 177.9 3.4 3.5 3.3 3.2 

0.98 

 

1 60.1 70.6 86.5 118.2 60.7 71.1 87.2 119.4 0.9 0.6 0.8 1.0 

2 71.2 83.0 101.3 139.0 72.0 83.8 102.2 140.5 1.2 1.0 0.9 1.0 

3 80.7 93.4 113.9 155.5 81.6 94.7 115.3 157.7 1.1 1.4 1.1 1.4 

4 89.0 102.9 125.0 170.3 90.3 104.3 126.8 172.8 1.4 1.3 1.4 1.4 

B
in

o
m

ia
l 

0.9 

1 99.2 124.5 164.0 251.2 133.3 157.0 193.3 283.8 25.5 20.7 15.2 11.5 

2 105.6 129.1 168.9 255.7 155.4 180.7 223.0 320.6 32.0 28.6 24.3 20.2 

3 111.6 134.2 174.2 260.4 174.0 202.4 250.1 351.0 35.8 33.7 30.3 25.8 

0.94 

1 79.8 98.8 135.2 205.1 104.2 129.2 163.2 231.5 23.4 23.5 17.2 11.4 

2 88.5 106.3 140.1 212.0 127.1 150.9 185.8 265.4 30.4 29.5 24.6 20.1 

3 96.1 114.2 145.9 218.5 143.8 168.2 206.4 293.0 33.2 32.1 29.3 25.4 

0.98 

1 61.4 72.1 92.2 156.1 69.8 84.1 113.1 175.6 12.0 14.3 18.5 11.1 

2 72.6 83.9 104.5 161.4 87.0 104.2 135.5 196.5 16.5 19.5 22.9 17.9 

3 81.8 94.3 115.2 168.7 101.0 119.8 152.2 215.7 19.0 21.2 24.3 21.8 
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3.6.2.   Heuristic Solutions 

The heuristic solutions have negligible run times and can be used to solve large 

problems. However, they are not necessarily optimal. The performance and the effect of real 

time yield information on this performance are analyzed before we focus on the performance 

comparison of the MULT- and the OPT-heuristics when applied to large problems. 

Heuristics vs. Optimal solution 

We evaluate the accuracy of the MULT- and the OPT-heuristic by applying them to the 

same problems that we solved optimally. For both heuristics, we compute 𝛽 according to 

Equation (16), because for Bernoulli distributed yield rates the second term of Equation (17) is 

not meaningful. The threshold 𝜃 for the MULT-heuristic is calculated by Equation (15). To 

compute the threshold 𝜃∗(𝛽) for the OPT-heuristic, we follow Huh and Nagarajan (2010) and 

simulate the inventory system over 𝑇 = 7000 periods (with an initial transient of 𝑇0 = 2000 

periods) and replicate the simulation 𝑁 = 2000 times. We select the threshold value 𝜃∗(𝛽)  

according to Equation (18) using 10 million simulated inventory levels. We compute the 

expected cost of the heuristics, using the same approach as for the optimal solution: We first 

calculate the order quantities 𝑂(𝑧) for every state and then use the order quantities to calculate 

the steady state probabilities and expected cost for every state using power iteration.  

Table 3-4 reports the accuracy of the heuristics and shows the percentage error of the 

heuristics versus the optimal solution. On average, the error of the OPT-heuristic is 1.6 % for 

treatments without real time yield information and 0.03 % for treatments with real time yield 

information. The corresponding errors of the MULT-heuristic are 14.8 % and 4.3 %. As 

mentioned in Section 3.5.1, the MULT-heuristic ignores yield variability and therefore 

performs worse for larger order quantities under Binomial demand with a mean of 12, due to 
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the fact that yield variability increases quadratic in order quantity. In these cases yield 

information is particularly beneficial. 

We have compared the performances of the heuristics with the optimal solution for 

small and medium sized problems and discrete demand distributions, for which we know the 

optimal solution. Real time yield information largely improves the accuracy of heuristics. For 

the relatively small test problems analyzed so far the OPT-heuristic clearly outperforms the 

MULT-heuristic. For larger problems, the optimal solution is not known, but we can still 

compare the performances of the heuristics. 
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Table 3-4 Cost of heuristics above optimal solution (percent) 

   MULT-heuristic vs. optimal solution OPT-heuristic vs. optimal solution 

   

with real time yield 

information 

without real time yield 

information 

with real time yield 

information 

without real time yield 

information 

𝐷 𝑢 𝜆 

CR CR CR CR 

0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 

P
o

is
so

n
 

0.9 

1 0.2 0.7 6.6 5.4 2.1 2.0 11.6 18.8 0.1 0.1 0.1 0.1 0.8 1.7 2.8 4.4 

2 3.3 0.0 0.7 2.6 4.9 4.0 6.9 17.4 0.1 0.0 0.0 0.0 1.9 2.0 3.5 5.3 

3 0.3 0.5 0.3 0.0 2.1 2.5 4.5 14.6 0.1 0.1 0.1 0.0 1.9 2.4 3.7 5.8 

4 0.1 0.2 0.8 0.2 3.3 3.9 8.3 12.1 0.0 0.1 0.0 0.1 2.5 2.9 3.7 5.8 

0.94 

1 0.0 0.0 3.3 0.0 0.5 0.6 8.3 9.2 0.0 0.0 0.0 0.0 0.4 0.1 0.4 2.0 

2 1.7 0.0 0.0 0.0 4.7 2.6 4.2 9.1 0.0 0.0 0.0 0.0 0.2 0.6 0.9 2.9 

3 0.0 0.0 0.0 0.0 1.3 1.6 2.1 6.3 0.0 0.0 0.0 0.0 1.2 1.2 1.5 3.1 

4 0.0 0.0 0.0 0.0 1.4 1.5 3.4 4.1 0.0 0.0 0.0 0.0 0.6 0.9 1.9 3.0 

0.98 

1 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 

2 0.0 0.0 0.0 0.0 1.7 0.0 0.1 0.7 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.7 

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

4 0.0 0.0 0.0 0.0 0.1 0.0 1.0 0.4 0.0 0.0 0.0 0.0 0.1 0.0 0.5 0.3 

G
eo

m
et

ri
c
 

0.9 

1 0.5 1.4 1.2 0.0 1.8 2.8 3.1 3.4 0.2 0.2 0.2 0.0 0.8 1.1 1.3 2.1 

2 0.1 0.7 1.0 1.6 1.7 2.7 3.7 6.9 0.1 0.1 0.1 0.1 1.4 1.6 2.0 2.7 

3 0.3 0.0 0.6 0.0 1.7 2.3 3.8 4.7 0.1 0.0 0.1 0.0 1.7 1.8 2.2 3.0 

4 0.0 0.2 0.2 0.3 2.2 2.2 3.6 5.6 0.0 0.1 0.1 0.0 1.9 2.1 2.5 3.2 

0.94 

1 0.0 0.9 0.5 0.1 0.9 1.9 1.8 1.4 0.0 0.0 0.0 0.0 0.3 0.3 0.5 1.1 

2 0.1 0.3 0.5 1.0 0.7 1.6 2.1 3.8 0.0 0.0 0.0 0.0 0.7 0.6 0.8 1.5 

3 0.1 0.0 0.2 0.0 0.9 1.1 2.0 2.2 0.0 0.0 0.0 0.0 0.7 0.8 1.0 1.5 

4 0.0 0.1 0.0 0.0 1.0 1.0 1.7 2.6 0.0 0.0 0.0 0.0 0.8 1.0 1.1 1.7 

0.98 

1 0.0 0.2 0.0 0.0 0.0 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1 

2 0.0 0.0 0.0 0.3 0.0 0.4 0.6 1.3 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 

3 0.0 0.0 0.0 0.0 0.1 0.1 0.6 0.3 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 

4 0.0 0.0 0.0 0.0 0.1 0.1 0.4 0.6 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.4 

B
in

o
m

ia
l 

0.9 

1 0.3 3.9 15.6 118.5 3.1 18.4 45.7 216.5 0.2 0.1 0.0 0.0 0.4 1.4 3.9 5.3 

2 1.3 3.6 11.6 99.6 11.0 24.5 51.8 245.1 0.2 0.1 0.0 0.0 1.8 3.3 5.6 5.7 

3 0.8 2.7 8.4 64.7 12.0 24.9 52.6 225.4 0.3 0.2 0.0 0.0 2.9 4.1 5.4 6.7 

0.94 

1 0.5 0.3 2.2 67.4 0.0 5.5 22.4 150.4 0.0 0.0 0.0 0.0 0.0 0.1 1.3 6.0 

2 0.2 0.9 2.3 54.5 3.3 11.1 30.7 168.5 0.0 0.1 0.0 0.0 0.3 1.1 2.8 5.8 

3 0.2 0.2 2.0 31.0 4.3 12.7 31.9 142.0 0.1 0.0 0.0 0.1 0.9 1.8 3.5 5.4 

0.98 

1 0.0 1.3 0.0 12.6 0.9 1.8 1.1 45.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 

2 0.4 0.9 0.0 14.5 0.0 0.5 2.3 55.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.4 

3 0.0 0.0 0.0 6.5 0.1 1.3 5.1 48.2 0.0 0.0 0.0 0.0 0.1 0.1 0.6 2.7 
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MULT-heuristic vs. OPT-heuristic 

Our test cases are based on Bollapragada and Morton (1999), Huh and Nagarajan 

(2010), and Inderfurth and Transchel (2007). Demand and yield rates are both Normal 

distributed. We use demand distributions with mean 20 and coefficients of variation 𝜌𝐷 = 0.2 

and 0.4. The left tail of the demand distribution is truncated below 0, which slightly increases 

the mean and slightly decreases the standard deviation. For the yield rate distributions, we use 

a mean of 0.5 and coefficients of variation of  𝜌𝑢 = 0.1, 0.2, 0.3, and 0.4. We limit the yield 

rates, such that they are in the range between 0 and 1. The set of critical ratios is 0.85, 0.9, 0.95, 

and 0.99. We analyze lead times of λ = 1, 5, 10, and 30 periods. This results in 128 test cases 

for the heuristics. We use both heuristics to determine order thresholds and inflation factors. 

Then, we use the threshold levels and inflation factors and determine the actual cost of this 

solution using the same approaches as Huh and Nagarajan (2010, page 248) and Choi et al. 

(2008, page 619). The numerical results are calculated with 𝑇 = 7000 and 𝑇0 = 2000 and 

averaged over all 𝑁 = 2000 simulation runs. The average half-width of the 95% confidence 

interval over all simulations is 0.3 % with a maximum at 2 %. Optimal solutions are not 

available for these large problems. 

Results are shown in Table 3-5. They show that the OPT-heuristic clearly outperforms 

the MULT-heuristic. In 122 of 128 cases with real time yield information and in all 128 cases 

without real time yield information, the OPT-heuristic has lower cost than the MULT-heuristic. 

However, real time yield information largely reduces the distance between the heuristics and 

therefore the disadvantage of using less sophisticated heuristics, like the MULT-heuristic, 

which is often applied in practice. 

Both results are as expected. Note, that both heuristics would be optimal solutions if 

the yield rate would be deterministic. As discussed in Section 3.5, the OPT-heuristic considers 
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yield randomness far more efficient than the MULT-heuristic which explains the better 

performance. However, real time yield information mitigates the effects of improper 

consideration of random yield. Over all test cases without real time yield information the 

MULT-heuristic has 12.7 % higher cost than the OPT-heuristic. With real time yield 

information the cost difference is reduced to 2.6 %. Real time yield information reduces the 

yield risk and therefore the negative effect of ignoring yield variability for the MULT-heuristic. 

The OPT-heuristic still performs better than the MULT-heuristic, because real time yield 

information does not completely mitigate the yield risk. 

Table 3-5 Cost of MULT-heuristic above OPT-heuristic (percent) 

  𝜌𝐷 = 0.2 𝜌𝐷 = 0.4 

  with yield information without yield information with yield information without yield information 

𝜌𝑢 𝜆 

CR CR CR CR 

0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 

0.1 

1 0.2 0.4 0.8 2.3 0.7 1.1 2.1 5.5 0.0 0.0 0.1 0.6 0.1 0.1 0.3 1.1 

5 0.0 0.1 0.1 0.4 0.7 1.2 2.1 5.0 0.1 0.1 0.1 0.3 0.3 0.3 0.5 1.0 

10 0.0 0.0 0.1 0.2 0.8 1.2 2.1 4.9 0.3 0.3 0.3 0.4 0.5 0.6 0.8 1.3 

30 0.0 0.0 0.0 0.1 0.8 1.3 2.2 4.9 0.9 0.9 0.9 1.0 1.3 1.5 1.7 2.4 

0.2 

1 2.2 3.6 6.5 16.2 4.9 7.9 13.9 30.5 0.3 0.4 0.8 2.2 0.7 1.2 2.1 4.7 

5 0.4 0.6 1.1 2.5 5.1 8.1 14.1 30.7 0.2 0.2 0.2 0.1 1.2 1.6 2.6 5.3 

10 0.1 0.2 0.4 0.7 5.2 8.2 14.3 31.0 0.3 0.3 0.3 0.2 1.6 2.1 3.2 6.1 

30 0.0 0.0 0.1 0.1 5.3 8.3 14.3 31.0 0.9 0.9 0.9 0.9 2.8 3.6 4.9 8.5 

0.3 

1 5.5 9.0 16.5 38.2 10.1 15.9 26.5 48.5 0.9 1.6 3.0 7.6 2.3 3.6 6.2 11.8 

5 1.4 2.2 4.1 9.5 10.8 16.7 27.9 52.1 0.3 0.3 0.4 -0.1 3.0 4.5 7.2 13.8 

10 0.5 0.8 1.4 2.6 11.0 17.1 28.4 53.1 0.3 0.3 0.2 -0.4 3.6 5.2 8.3 15.6 

30 0.0 0.1 0.1 -0.4 11.2 17.4 28.8 53.9 0.9 0.9 0.8 0.5 5.3 7.3 10.8 19.6 

0.4 

1 8.2 13.5 24.2 51.5 13.5 20.8 33.1 58.0 1.7 3.0 5.8 14.8 3.9 6.1 10.1 21.2 

5 2.5 4.2 7.8 18.7 14.5 22.1 35.4 59.7 0.4 0.5 0.7 0.2 4.9 7.4 11.9 20.9 

10 0.9 1.6 2.9 6.2 14.9 22.7 36.2 60.7 0.3 0.3 0.2 -1.1 5.8 8.4 13.3 22.9 

30 0.1 0.1 0.1 -0.8 15.3 23.2 36.9 62.4 0.9 0.9 0.7 -0.1 7.7 10.8 16.3 28.2 
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3.7.   Value of Real Time Yield Information 

One of the key objectives of our research is to quantify the monetary benefits that can 

be achieved by utilizing real time yield information as opposed to relying on average yield 

rates. We are also interested in identifying conditions under which real time yield information 

is particularly beneficial. In this section, we use the OPT-heuristic to address these issues. We 

use the same test cases as in Subsection 3.6.2 and add test cases for 𝜌𝐷 = 0.1 and 𝜌𝐷 = 0.3 to 

cover a wider range of parameter values. 

 

Figure 3-2 shows how the value of real time yield information (VRTYI) depends on the 

key problem parameters. The results show that substantial savings can be achieved for most 

parameter settings, but that the magnitude of the savings depends on the values of the 

parameters: The value of real time yield information is increasing in yield variability (𝜌𝑢), 

decreasing in demand variability (𝜌𝑑), increasing in the lead time (𝜆), and increasing in the 

critical ratio (CR).  

Yield variability. The left graph of Figure 3-2 shows how the value of real time yield 

information is increasing in yield variability 𝜌𝑢. This result is intuitive, because real time yield 

information reduces uncertainty about the state of the open orders more if yield variability is 

high than if it is low.  
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Figure 3-2 Value of real time yield information (VRTYI) 
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Figure 3-3 provides more details and shows the effect of yield variability on the 

inflation factor (𝛽), the order threshold (𝜃), the average inventory level (IL), the average 

backorder level (BO), and the average cost per period for the test case 𝜆 = 10, CR = 0.9, and 

𝜌𝑑= 0.2. The results are similar to the other test cases that we analyzed.  

With and without real time yield information, the inflation factor 𝛽 is increasing in yield 

uncertainty (see Equation (17)). For a given inflation factor 𝛽, the OPT-heuristic computes the 

optimal threshold value 𝜃. With real time yield information, increases in the inflation factor 𝛽 

are sufficient to compensate increases in yield uncertainty and the order threshold 𝜃 is 

essentially unaffected by yield uncertainty. However, without real time yield information, 

increasing yield variability is not sufficiently compensated by an increase in the inflation factor 

𝛽, and an increase in the order threshold 𝜃 is required.  

With real time yield information, the actual state of the inventory system can be more 

accurately evaluated and supply can be better matched with demand than without real time 

yield information. Consequently, average inventory levels, average backorder levels, and 

Figure 3-3 Effect of yield variability on heuristic parameters and performance measures 

 for test case 
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average cost increase less in yield variability and are lower with real time yield information 

than without real time yield information.  

Demand variability. The graphs of Figure 3-2 show that the value of real time yield 

information decreases as demand variability increases. At a first glance, this result might seem 

surprising, but it can be explained by risk pooling. In our model, inventory is used for hedging 

against demand uncertainty and against yield uncertainty. The inventory used for hedging 

against yield uncertainty is higher without real time yield information than with real time yield 

information. If demand uncertainty increases, there is a larger pool of existing inventory 

available to hedge against the increased uncertainty in an inventory system without real time 

yield information than in an inventory system with real time yield information. Therefore, 

inventory increases less in demand uncertainty in an inventory system without real time yield 

information than in an inventory system with real time yield information.  

Figure 3-4 provides details for the same test case that we used for Figure 3-3 for 

𝜌𝑢 =  0.2. Obviously the inflation factor 𝛽 is unaffected by demand uncertainty and increases 

in demand uncertainty are compensated by increases in the order threshold 𝜃. Inventory and 

backorder levels are also increasing in demand uncertainty and consequently expected costs 

are increasing in demand uncertainty. The increase in the performance measures is higher with 

real time yield information than without.  
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Figure 3-4 Effect of demand variability on heuristic parameters and performance measures  

for test case 

 

Lead time. The center graph of Figure 3-2 shows that the value of real time yield 

information is increasing in the lead time. Without real time yield information, longer lead time 

results in higher transit stock and consequently in higher uncertainty about the state of the open 

orders. Therefore, the value of resolving this uncertainty by using real time yield information 

is higher for longer lead time than for shorter.  

In our main numerical experiments, only the first lead time period is exposed to yield 

uncertainty and the remaining periods have no yield uncertainty. Figure 3-5 shows numerical 

results for our test case (𝜆 = 10), where we shifted the yield risk to later lead time periods. The 

figure shows that the closer the yield risk is to the delivery period, the lower is the value of real 

time yield information.  

If the yield uncertainty is in lead time period 1, then the risk materializes in the first 

period after an order has been placed. If an order is placed to compensate a yield loss, this order 

arrives only one period later than the original order. Additionally, at the time an order is placed, 

all previous orders have passed the yield risk and their final yield is known. Therefore, real 
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time yield information is very valuable. In our example, the expected cost is 25.0 with real time 

yield information and 34.6 without real time yield information. 

 

If the yield uncertainty is in yield risk period 10, then the risk materializes one period 

before the order arrives. If an order is placed to compensate a yield loss, this order arrives only 

one period faster than the regular lead time. In addition, at the time an order is placed, only one 

order has passed the yield risk and revealed its final yield and the final yields of all other orders 

are unknown. Therefore, real time yield information is not very valuable. In our example, the 

expected cost is 33.4 with real time yield information and 34.6 without real time yield 

information.  

Our analyses show that the value of real time yield information is substantial for a wide 

range of parameter values, but that it is particularly high in settings with high yield uncertainty, 

long lead times with yield risk in early periods and low demand variability. We note that our 

model can also be used to analyze production systems, where different production stages have 

different production times and different yield rates and where the yield realization can only be 

observed at the end of production stage. For production systems with two production stages, 
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Figure 3-5 Effect of lead time period with yield risk on heuristic parameters and performance measures 

for test case 
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the yield risk period of Figure 3-5 corresponds to the duration of the first production stage. 

Other production settings can be analyzed analogously. For instance, assume we have a three 

stage production system with production times of 1, 2, and 3 periods (total production time of 

6 periods) and Bernoulli distributed yield rates with expected yields of 0.80, 0.90, and 0.95. 

Using our test case we set 𝜆 = 6, 𝑢1 = 0.80, 𝑢3 = 0.90, and 𝑢6 = 0.95. For this example, we 

obtain expected cost per period of 96.5 without real time yield information and of 67.2 with 

real time yield information, which results in a value of real time yield information of 30.4 %. 

3.8.   Extension: Fixed Order Cost 

In this section we extend our analysis for the case where fixed order cost is charged 

independent of the order size. From Scarf (1960) and Iglehart (1963), we know that an (𝑠,𝑆) 

policy is optimal under the perfect yield assumption. An order of 𝑆 − 𝐼𝑃 is placed 

whenever 𝐼𝑃 ≤  𝑠. The optimal determination of the reorder point 𝑠 and the order-up-to level 

𝑆 is by dynamic programming and many approximately optimal policies have been discussed 

in the literature (e.g. Schneider and Ringuest 1990; Tijms and Groenevelt 1984; Zied Babai et 

al. 2010). A heuristic that performs quite well is the Modified Continuous Review (MRC)-

heuristic introduced by Porteus (1985). The MCR-heuristic is a modification of the continuous 

review method of Hadley and Whitin (1963). Through approximations it avoids iteration and 

adapts the parameters to the periodic review inventory model. 

To analyze periodic review inventory systems with random yield and fixed order cost, 

we introduce the MCR-MULT-heuristic that combines the MCR-heuristic and the MULT- 

heuristic. The parameters 𝑠 and 𝑆 are determined by the MCR-heuristic, assuming perfect yield. 

The order quantity is calculated as  

 𝑂𝑡(𝐼𝑃𝑡) = {
𝛽(𝑆 − 𝐼𝑃𝑡),  for 𝐼𝑃𝑡 ≤  𝑠
                    0,  else,

 (19) 
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where the inflation factor 𝛽 is set equal to the reciprocal of the total expected yield rate 

(Equation (16)).  

To analyze the effect of fixed order cost, we use the simulation approach described in 

Section 3.6.2 and apply the MCR-MULT-heuristic to test cases with Normal distributed 

demand, (mean = 20, 𝜌𝐷 = 0.2) and Normal distributed yield rates (mean = 0.5, 𝜌𝑢 = 0.3). We 

set  𝜆 = 1, h = 1, 𝑏 = 19, and fixed order cost 𝑘 = 50, 75, 100, 125, and 150.  

 

The left graph in Figure 3-6 shows the effect of fixed order cost on the value of real 

time yield information. It shows that the value of real time information is decreasing in fixed 

order cost. Real time yield information leads to a quantifiable benefit if it results in an action 

before the order arrives. After the order arrived the advantage of early information is elapsed. 

The right graph in Figure 3-6 shows the percentage of periods for which real time yield 

information caused a different action than without real time yield information. If order cost and 

thus order quantities are large and sufficient for filling the demand of various periods it is less 

likely that yield rates are so low that their observation has an immediate effect. Potential future 

stock outs can often be avoided by placing an order after the current order has arrived. Real 

time yield information allows for faster responses to observed yield realizations, but its value 

is smaller if order quantities are large than if they are small.  

Figure 3-6 Effect of fixed order cost for test case 
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3.9.   Conclusion 

We analyzed a periodic review, random yield problem with stochastic demand and 

positive lead time. We modeled the problem with and without real time yield information. We 

proved that the cost function is convex and that a stationary optimal solution for the infinite 

horizon problem exists. Based on these properties, we developed an optimal solution approach. 

The algorithm is applicable for discrete state spaces and small to medium sized problems. To 

solve large problems, we developed two heuristics. We conducted numerical experiments that 

show that real time yield information is of significant value for a wide range of problem 

parameter values. 

Our research provides the algorithms that are necessary to utilize real time yield 

information. Companies who decide to use real time yield information can use our heuristics 

to compute close-to-optimal solutions with low computation times. Companies can also use the 

results of our research to determine whether or not it is beneficial to invest in using real time 

yield information. They can use our algorithms to quantify the cost savings that can be achieved 

by using real time yield information and compare these with the necessary investments.  

Our model is built on two assumptions. We have assumed that yield information is 

perfect and free. In some applications, these assumptions might not hold. If yield information 

is not perfect, for instance, because of noisy sensor signals, then the stochastic nature of the 

information must be taken into account. If yield information is not free, the cost of collecting 

the information can be incorporated in the model by implementing a second decision variable 

beside order quantity. The second decision that has to be made is whether or not to receive real 

time yield information. The decision can be made for the whole order or for each order item 

individually. We leave the analysis of both extensions to future research. 
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Appendix 3.A Summary of Notation 

𝑑𝑡 demand in period 𝑡 

𝐷 random variable for demand 

𝑂𝑡 order quantity in period 𝑡 

𝑄𝑡 yield of order placed in period 𝑡 

𝑂max upper bound for order quantity 

𝐼𝐿𝑡 on hand inventory at the beginning of  period 𝑡 before replenishment arrives 

𝐼𝐿min upper bound for backorders 

𝐼𝐿max upper bound for inventory level 

𝑦𝑡 on hand inventory in period 𝑡 after replenishment and before demand is satisfied 

𝑢𝑟,𝑡 random yield rate in period 𝑡 for lead time period 𝑟; 𝑟 = 1,… , 𝜆 

�̅�𝑟,𝑡 expected yield rate in period 𝑡 for lead time period 𝑟; 𝑟 = 1,… , 𝜆 

𝑢1⋯𝜆,𝑡 random yield rate over all lead time periods in period 𝑡 

�̅�1⋯𝜆,𝑡 expected random yield rate over all lead time periods in period 𝑡 

ℎ inventory holding cost per unit per period (> 0) 

𝑏 cost for backordered units per unit per period (> 0) 

𝜆 lead time 

𝛾 discount factor with 0 ≤ 𝛾 < 1 

𝜇 mean 

𝜎2 variance 

𝜌 coefficient of variation 

𝜃 order threshold 

𝛽 inflation factor 

𝑧 state variable with yield information 

𝑠 state variable without yield information 

𝑍𝑡 set of all feasible states 𝑧 in period 𝑡 

𝑆𝑡 set of all feasible states s in period 𝑡 

𝑇 Number of considered periods for the finite horizon problem and for simulations 

𝐶(𝑥) inventory cost of the current period  

𝑉𝑡(𝑧𝑡) minimal expected cost from period 𝑡 to period 𝑇, given the current state. 

𝐻𝑡(𝑧𝑡, 𝑂𝑡) total cost function in period 𝑡 depending on the current state and the order quantity 

  

 

𝕀[∗] Indicator function. Returns 1 if the expression in brackets is true and 0 else. 
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Appendix 3.B Proof of Theorem 3-1 

Proof Because 𝐸𝑑𝑡[𝐶(𝑥 − 𝑑𝑡)] is convex in x (Heyman and Sobel 1984, Proposition B-2), 

𝐸𝑑𝑡[𝐶(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡)] is convex in 𝐼𝐿𝑡 and 𝑄𝑡−𝜆 (Rockafellar 1970, Theorem 5.7). By 

assumption, 𝑉𝑇+1(𝐼𝐿𝑇+1, 𝑄𝑇+1−𝜆, ⋯ , 𝑄𝑇) = 0 is convex. We continue with induction. Suppose 

that 𝑉𝑡(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1) is convex in 𝐼𝐿𝑡 and 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆. From Theorem 5.7 of 

Rockafellar (1970) it follows that 𝑉𝑡(𝐼𝐿𝑡 +𝑄𝑡−𝜆 − 𝑑𝑡−1, 𝑢𝜆,𝑡−1𝑄𝑡+1−𝜆,⋯ , 𝑢1,𝑡−1𝑂𝑡) is convex 

in 𝐼𝐿𝑡, 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆, and 𝑂𝑡. The expectation conserves convexity (Heyman and Sobel 

1984, Proposition B-2). 

Thus, 𝐸𝑢1,𝑡−1⋯𝐸𝑢𝜆,𝑡−1𝐸𝑑𝑡−1[𝑉𝑡(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡−1, 𝑢𝜆,𝑡−1𝑄𝑡+1−𝜆, ⋯ , 𝑢1,𝑡−1𝑂𝑡)] is convex in 

𝐼𝐿𝑡, 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆, and 𝑂𝑡. Because the sum of convex functions is convex, 

𝐻𝑡−1(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1, 𝑂𝑡−1) = 𝐸𝑑𝑡−1[𝐶(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡−1)] + 

𝛾𝐸𝑢1,𝑡−1⋯𝐸𝑢𝜆,𝑡−1𝐸𝑑𝑡−1[𝑉𝑡(𝐼𝐿𝑡 + 𝑄𝑡−𝜆 − 𝑑𝑡−1, 𝑢𝜆,𝑡−1𝑄𝑡+1−𝜆, ⋯ , 𝑢1,𝑡−1𝑂𝑡)] is convex in 

𝐼𝐿𝑡, 𝑄𝑡−𝑟 , 𝑟 = 1,⋯ , 𝜆, and 𝑂𝑡. The minimization also conserves convexity and therefore 

𝑉𝑡−1(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1) =  min
𝑂𝑡≥0

 𝐻𝑡−1(𝐼𝐿𝑡, 𝑄𝑡−𝜆, ⋯ , 𝑄𝑡−1, 𝑂𝑡) is convex in 𝐼𝐿𝑡 and 𝑄𝑡−𝑟 , 𝑟 =

1,⋯ , 𝜆. ∎ 

 

Appendix 3.C Proof of Lemma 3-1 

Proof. 𝑉𝑡(𝑧) is monotone increasing in 𝑇, because the single-period cost function is non-

negative and 𝑉𝑇+1(𝑧)  = 0  for all 𝑧. Therefore, it suffices to show that 𝑉𝑡(𝑧) is bounded from 

above. Denote the current period by 𝑡 =  1 and consider a stationary policy where nothing is 

ordered, i.e. 𝑂∞(𝑧) =  0 for all 𝑧. Denote the initial inventory level by 𝐼1 and the cumulative 

demand from period 1 to period 𝑡 by 𝑥𝑡. Without loss of generality, we assume that no order is 

outstanding in period 1. The inventory at the end of period 𝑡 is 𝐼1 − 𝑥𝑡 and the expected cost in 

period 𝑡 is 𝐸𝑥𝑡[𝐶(𝐼1 − 𝑥𝑡)] ≤ 𝐸𝑥𝑡[(𝑏 + ℎ)|𝐼1 − 𝑥𝑡|] ≤ (𝑏 + ℎ)𝐸𝑥𝑡[|𝐼1| + 𝑥𝑡] = (𝑏 + ℎ)[|𝐼1| +

𝜇𝑡]. Where 𝜇 is the expected one period demand. If we apply our stationary policy for an 

infinite number of periods, the total discounted expected cost is bounded by ∑ 𝛾𝑡−1[∞
𝑡=1 (𝑏 +

ℎ)[|𝐼1| + 𝜇𝑡]] = (𝑏 + ℎ) (
|𝐼1|

1−𝛾
+

𝜇

(1−𝛾)2
) < ∞. We have shown that there exists a stationary 

policy for which the expected present value is < ∞ for 𝑇 → ∞ and for all initial values of 𝑧. 

This proves the existence of the limit function 𝑉(𝑧) for each 𝑧 𝜖 𝑍, according to Theorem 8.13 

of Heyman and Sobel (1984). ∎ 
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Appendix 3.D Proof of Theorem 3-2 

Proof. Similarly as Henig and Gerchak (1990), we show that the four conditions of Theorem 

8-14 of Heyman and Sobel (1984) are satisfied to prove Theorem 3-2. 

Condition a) requires that for each 𝑧, there exists a limit function 𝑉(𝑧)= 𝑙𝑖𝑚
𝑇→∞

𝑉𝑡(𝑧), which is 

proven by Lemma 3-1.  

Condition b) requires that the reward function is non-negative, which is obviously the case in 

our setting, with 𝐶(𝑥) = ℎ[𝑥]+ + 𝑏[−𝑥]+. 

Condition c) requires that for all 𝑧 the action space is a compact set. From the proof of Lemma 

3-1, we know that for 𝑂 = 0 the discounted expected cost can be bounded from above for each 

𝑧. If the order quantity goes to infinity, for all 𝑧 the discounted expected one period cost goes 

to infinity, i.e. 𝛾𝜆𝐸[𝐶(𝐼+𝜆 + 𝑢1⋯𝜆𝑂 − 𝑑+𝜆)] → ∞, for 𝑂 → ∞. 𝐸[𝐶(𝐼+𝜆 + 𝑢1⋯𝜆𝑂 − 𝑑+𝜆)] is 

convex in 𝑂. Therefore we can restrict the search of the optimal order quantity 𝑂 to values that 

correspond to cost that is below the bound for the discounted expected cost of 𝑂∞(𝑧) =  0 for 

𝑇 → ∞. Thus there exists for each 𝑧 a finite �̃�(𝑧), such that the search for 𝑂 is limited to 

compact interval [0, �̃�(𝑧)].  

Condition d) requires that 𝐻𝑡(𝑧, 𝑂) is continuous on the action space for each 𝑧. From Theorem 

3-1, we know that 𝐻𝑡(𝑧, 𝑂)  is convex in 𝑂 for all 𝑧. Therefore 𝐻𝑡(𝑧, 𝑂) is continuous in 𝑂 

which implies the continuity on the actions space for all 𝑧. (Rockafellar 1970, Theorem 10.1). 

∎ 

 

Appendix 3.E Proof of Theorem 3-3 

Proof. The limit functions 𝑉(𝑧)= 𝑙𝑖𝑚
𝑇→∞

𝑉𝑡(𝑧) and 𝐻(𝑧, 𝑂)= 𝑙𝑖𝑚
𝑇→∞

𝐻𝑡(𝑧, 𝑂) are limits over 

convex functions as proven in Theorem 3-1 and therefore convex (Rockafellar 1970, Theorem 

10.8). The convexity of 𝐻(𝑧, 𝑂) together with the satisfaction of the conditions of Theorem 8-

14 satisfy the conditions of  Theorem 8-15 of Heyman and Sobel (1984). ∎ 

Algorithm for value iteration 

The following value iteration algorithm can be applied to calculate the optimal policy with and 

without real time yield information: 
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1. Select accuracy 𝜀 > 0. For each 𝑧 𝜖 𝑍, calculate the expected one period cost 𝐸[𝐶(𝑧)] 

according to Equations (3). Set 𝑛 =  1 and compute the minimal expected cost 𝑉0(𝑧) =

𝐸[𝐶(𝑧)] ,   ∀ 𝑧 𝜖 𝑍. 

2. Compute the cost vector 𝑉𝑛(𝑧) =  min
0≤𝑂≤𝑂max

𝐸[𝐶(𝑧)]  + 𝛾 ∑ 𝑝𝑧,𝑧(𝑂)𝑉𝑛−1(�̃�)𝑧𝜖𝑍  and store the 

optimal order decision 𝑂(𝑧), ∀ 𝑧 𝜖 𝑍. 

3. If [𝛾 (1 − 𝛾) ⁄ ] [sup
𝑧𝜖𝑍
{𝑉𝑛(𝑧) − 𝑉𝑛−1(𝑧)} − inf

𝑧𝜖𝑍
{𝑉𝑛(𝑧) − 𝑉𝑛−1(𝑧)}] < 2𝜀, then stop. Else, 

repeat step 2 with 𝑛 =  𝑛 + 1. 

4. For each 𝑧 𝜖 𝑍, compute the minimal expected cost 

 𝑉(𝑧) = 𝑉𝑛(𝑧) +
1

2
[𝛾 (1 − 𝛾) ⁄ ] [sup

𝑧𝜖𝑍
{𝑉𝑛(𝑧) − 𝑉𝑛−1(𝑧)} + inf

𝑧𝜖𝑍
{𝑉𝑛(𝑧) − 𝑉𝑛−1(𝑧)}]. 

After termination of the algorithm, the optimal policy O(z)  has been computed in the 

last iteration of step 2. 

 

Appendix 3.F Proof of Proposition 3-1 

Proof. Every finite Markov chain has at least one essential class (Levine et al. 2009, p. 16). If 

there would be more than one essential class on 𝑍 it would be possible to separate the state 

space into at least two disjoint essential classes, each of which consists of a communicating set 

of essential states but with the property that passage between different classes is impossible 

(Shiryaev 1996, p. 570).  

We demonstrate that this separation of essential states on 𝑍 is not possible. To do this 

we focus on the inventory level dimension. Let the system be in an arbitrary state 𝑧𝑎𝜖 𝑍 with 

inventory level 𝐼𝐿𝑎. There is a positive probability to reach a state with 𝐼𝐿min as inventory level, 

because all demands 𝑌min(𝑂max) + 1 ≥ 𝑑 ≥  0 have a strict positive probability.  

We have shown that from any inventory level the minimal inventory level can be 

reached. Next we show that there is an interval [𝐼𝐿min, 𝐼�̅�] for which all inventory levels are 

communicating and that all states with an inventory level greater than IL̅ are inessential. 

Applying the optimal policy and starting from a state with ILmin as inventory level the 

inventory level can be increased up to a certain limit 𝐼𝐿min ≤ 𝐼�̅� ≤ 𝐼𝐿max. E.g. demand is 0 and 

yield rates are maximal for a sufficiently long time. Starting from 𝐼�̅�, all inventory levels 

between 𝐼�̅� and 𝐼𝐿min can be reached, because there is a positive possibility to reduce the 

inventory level by 1 every period until 𝐼𝐿min is reached.  
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Starting in any state with inventory level less or equal to 𝐼�̅�, there is no possibility to 

reach states with an inventory level greater than 𝐼�̅�. Starting from any state with an inventory 

level greater than 𝐼�̅�  there is positive probability to reduce the inventory level to 𝐼�̅�. Once this 

happened there is no possibility to return to a state with inventory level greater than 𝐼�̅�.  

Therefore, all essential states have an inventory level in [𝐼𝐿min, 𝐼�̅�] and the state space 

cannot be separated into two non-communicating classes of essential states. Therefore a unique 

essential class exists which leads the existence of a unique steady state distribution (Levin et 

al. 2009, p. 17). ∎  
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4.   The Value of Supply Chain Visibility when Visibility is Costly 

 

 

Chapter 4  

 

The Value of Supply Chain Visibility when 

Visibility is Costly 

 

4.1.   Abstract 

We consider a random yield inventory system, where items are exposed to yield risk during 

transit or in production. Order batches can be tracked to get access to real time information 

about the actual yield realizations. Tracking induces fixed costs per order and the decision 

maker can decide for each order whether or not to obtain yield information. To contribute 

to a better understanding of the value of this information and its use, we develop a 

mathematical model of the inventory systems. We derive structural properties and derive 

the optimal policy. We conduct numerical experiments to quantify the benefits of a flexible 

tracking system vs. systems that track all orders or do not track any order. We identify 

conditions under which real time yield information with flexible tracking is particularly 

beneficial and identify the key drivers for the tracking decision. Our research provides the 

approaches that are necessary to implement inventory control policies that utilize real time 

yield information on an order-by-order basis. 

 

Keywords: inventory management; random yield; value of information; RFID  
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4.2.   Introduction and Literature Review 

The practical importance of considering random yields in inventory management has 

been highlighted by many authors. Random yields can be found in procurement processes as 

well as in production and assembly processes (Grosfeld-Nir and Gerchak 2004; Inderfurth and 

Clemens 2012; Yano and Lee 1995). A prominent field where random yields is applicable is 

the semi-conductor industry (Gavirneni 2004; Uzsoy, Lee, and Marting-Vega 1992; Wang 

2009). Random yields are also characteristic of many other processes, e.g., electronics 

manufacturing and chemical production processes (Choi et al. 2008).  

Usually the yield is observable upon arrival of an order or after the production process 

is finished. In this article we focus on real time yield information. Real time yield information 

is available prior to order arrival or end of production. It becomes available, e.g., by tracking 

orders while in transit or by accessing information on current production yields while 

production is still in progress. Analyzing the proper use and the value of this information has 

attracted attention in recent years (e.g. Choi et al. 2008; Dettenbach and Thonemann 2015; 

White and Cheong 2012). We contribute to this stream of literature by analyzing an inventory 

system where tracking the yield of an order incurs a fixed cost per order and a decision about 

whether or not to track an order can be made when an order is placed. This allows for an order 

pipeline with tracked and not tracked orders, which is applicable to transportation processes 

where each order must be equipped with a sensor or to production processes where order 

inspection is costly. We consider the tradeoff between incurring the tracking cost for an order 

versus accepting the additional risk that a not tracked order adds to the inventory system. 

The most common approach to model yield risk is the proportional yield model 

(Bollapragada and Morton 1999; Henig and Gerchak 1990; Huh and Nagarajan 2010; Yano 

and Lee 1995). Under proportional yield, all items of an order are affected in the same way by 
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realized yield rates, i.e., the yield of all items is perfectly correlated. Information on the yield 

of one item reveals the yield of all items. Examples for these systemic risks include products 

in transit that are affected by a temperature change. It reduces the tracking decision to whether 

or not to track an order.  

This work builds on the literature on inventory systems with random yield and 

information sharing. For a review of random yield literature, we refer to Dettenbach and 

Thonemann (2015) and focus on discussing literature on information sharing. When yield is 

random, it can be reasonable to acquire yield information, so that yield uncertainty is reduced. 

Choi (2010) presents a brief summary of papers that examine upstream information sharing as 

well as downstream information sharing. Upstream information sharing means that upstream 

members of a supply chain share their information with downstream members. Choi (2010) 

concludes in his review on information sharing that upstream information sharing is rarely 

examined. Furthermore, to our best knowledge there are only two papers that consider sharing 

of yield information (Choi, Blocher, and Gavirneni 2008; Dettenbach and Thonemann 2015) 

in inventory management. All of these papers do not consider the costs of yield information. 

Without including these costs, the decision on whether or not to acquire yield information is 

trivial. 

To the best of our knowledge White and Cheong (2012) are the only authors that 

consider the cost of tracking and model tracking as a decision variable. Their modeling 

approach of yield risk and yield information is similar to ours. They consider a single order 

that is transported from origin to destination through multiple stages. Items can deteriorate 

during transit. At each stage the decision maker can chose to continue or abort the 

transportation process. If the transportation is continued, the decision maker can decide 

whether or not the order is inspected upon arrival at the next stage. An inspection reveals the 
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current yield of the order and induces inspection cost. Their system is modeled as a partially 

observed Markov decision process and they derive the optimal inspection policy. The focus of 

their model is on transportation decisions. Our focus is on inventory control. We contribute to 

the existing research by analyzing the value of real time yield information when acquiring this 

information is costly. In addition, we model access to this information as a decision variable 

for each individual order. 

The remainder of the paper is organized as follows. In Section 4.3, we develop the 

inventory models and derive structural properties. In Section 4.4, we provide numerical results 

on the value of a flexible tracking policy and elaborate on the influencing factors for the 

tracking decision. In Section 4.5, we conclude. 

4.3.   Model  

Consider a single manufacturer who places orders with a single supplier. The 

manufacturer uses a periodic review inventory policy. The decision variables in each period 

are the order quantity 𝑂 and the decision 𝛹 whether or not to track this order. Tracking an order 

causes tracking cost c that is independent of the ordered quantity. The yield of all items in a 

tracked order is observable in real time. The lead time is 𝜆 periods and each lead time period 𝑟 

has a yield risk of 𝑢𝑟. The yield rates 𝑢𝑟 and the demand rate 𝑑 are i.i.d. across periods and can 

be arbitrarily distributed. The state of the inventory system in period 𝑡 is defined by the 

inventory level 𝐼𝐿 and 𝜆 orders in transit and modeled as 𝑧 = (𝐼𝐿, 𝑅𝜆(𝑂𝜆, 𝛹𝜆), ⋯ , 𝑅1(𝑂1, 𝛹1)), 

where 

𝑅𝑖(𝑂𝑖, 𝛹𝑖) = {
𝑂𝑖                            , for 𝛹𝑖 = 0
𝑄𝑖 = 𝑢1𝑢2⋯𝑢𝑖𝑂𝑖 , for 𝛹𝑖 = 1.

 (20) 
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The state space consists of a mix of tracked and not tracked orders. For a tracked order 

(𝛹𝑖 = 1) all yield rate realization 𝑢1, … , 𝑢𝑖 up to period 𝑖 are observable and the current yield 

𝑄𝑖 is known. For not tracked orders only the order quantity 𝑂𝑖 is known.  

The sequence of events in each period is as follows: First, the manufacturer observes 

the current state of the inventory system 𝑧. Then, the manufacturer decides on 𝑂 and 𝛹. Next, 

the manufacturer receives the order 𝑂𝜆. Demand is satisfied from on-hand inventory and any 

unsatisfied demand is backordered. Based on the net inventory at the end of period, backorder 

costs 𝑏 or holding costs ℎ are charged per unit and period. 

Our objective is to minimize total expected cost over an infinite horizon. To obtain the 

optimal policy, we model the system as a dynamic program:   

𝑉(𝑧) = min
𝑂≥0,𝛹∈{0,1} 

𝐻(𝑧, 𝑂,𝛹) 

= ℎ[ 𝐽(𝑧)]+ + 𝑏[−𝐽(𝑧)]+ + min
𝑂≥0,𝛹∈{0,1} 

{𝛹𝑐 + 𝛾[𝑉(�̃�)]}, 
(21) 

where 

 𝐽(𝑧) = {
𝐸𝑢𝜆𝐸𝑑[𝐼𝐿 + �̅�𝜆𝑂𝜆 − 𝑑] , for 𝛹𝜆 = 0

𝐸𝑑[𝐼𝐿 + 𝑄𝜆 − 𝑑]           , for 𝛹𝜆 = 1
 

(22) 

is the function for the net inventory at the end of the period and [𝑥]+ = max(0, 𝑥). 𝛾 < 1 

denotes the discount factor. In case 𝛹𝜆 = 1 the yield of the arriving order is known. For  

𝛹𝜆 = 0 the total yield risk over lead time �̅�𝜆 = 𝑢1𝑢2⋯𝑢𝜆 has to be considered to estimate the 

replenishment quantity for the current period. 

The transition function from state 𝑧 to state �̃� is  

�̃� = 𝑓(𝑧, 𝑂,𝛹, 𝑑, 𝑢1, ⋯ , 𝑢𝜆) = ( 𝐽(𝑧), 𝐸𝑢𝜆[𝑅𝜆(𝑂𝜆−1, 𝛹𝜆−1)],⋯ , 𝐸𝑢1[𝑅1(𝑂,𝛹)]). (23) 

Theorem 4-1 states that for a given tracking decision 𝛹 the objective function 𝑉(𝑧) is convex 

in the order decision 𝑂.  
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Theorem 4-1. 𝐻(𝑧, 𝑂, 𝛹) is convex in 𝑧 and 𝑂 and 𝑉(𝑧) is convex in 𝑧 for fixed 𝛹 and any 

convex terminal function.    

The proof can be found in Appendix 4.A. Theorem 4-1 reduces the effort to find the optimal 

decision [𝑂∗, 𝛹∗] because the optimal order quantity 𝑂∗(𝛹) can be determined by convex 

optimization. This reduces the decision to the two options: [𝑂∗(0),𝛹 = 0] and [𝑂∗(1), 𝛹 = 1]. 

The optimal decision [𝑂∗, 𝛹∗]  is found by selecting the option with lower expected costs. 

These costs have already been obtained when 𝑂∗(0) and 𝑂∗(1) were determined. Figure 4-1 

provides an illustrative example for the convexity by plotting 𝑉(𝑧) for different order quantities 

and fixed tracking decision. For this example 𝑂∗(0) has lower cost than 𝑂∗(1) resulting in the 

optimal decision [𝑂∗ = 8,𝛹∗ = 0]. 

Figure 4-1 Illustrative sample plot of  𝑽(𝒛) as a function of order quantity for fixed tracking decision 

 

Next, we show that a solution for the infinite-horizon problem exists. 

Theorem 4-2. 𝑉(𝑧) = lim
𝑡→∞

𝑉𝑡(𝑧) exists for every 𝑧.  

The proof can be found in Appendix 4.B. Applying standard Markov decision process 

arguments, an optimal stationary policy exists for any system with a finite number of states and 

actions (Heyman and Sobel 1984). Any Markov decision process solution method can be 
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applied to solve Equation (21) for the optimal policy. We use MacQueen extrapolation 

(MacQueen 1966) and exploit the results from Theorem 4-1. 

4.4.   Computational Results 

4.4.1.   The Value of a Flexible Tracking Policy 

 

A very important parameter in our model is tracking cost 𝑐. Intuitively, for tracking cost 

of zero the optimal decision is to always track all orders. From the same reasoning follows that 

if tracking cost is very high, the optimal decision is to never track an order. To enable a 

comparison between test cases we evaluate all test cases at tracking cost for which the decision 

maker would be indifferent between the tracking policies: “always track all orders” and “never 

track any order”.  Figure 4-2 uses a sample case** to illustrate how the cost of the optimal 

solution depends on the tracking cost for three tracking policies: always track, never track, and 

flexible tracking. The optimal cost for the flexible tracking model behaves as expected and can 

never be higher than the lower cost of the other two policies. Interesting test cases arise at 

tracking cost of 𝑐∗. At this point the benefit ∆𝑉 of a flexible tracking policy reaches its 

maximum compared to the two static policies. In our numerical results we analyze 𝑐∗ and ∆𝑉 

for varying lead times, yield risks and critical ratios.  

For our numerical analysis of the optimal solutions, we use lead times of 𝜆 = 1, 2, 3, 

and 4 periods. We use a Bernoulli distributed yield rate with expected yields of 𝑢 = 0.8, 0.85, 

and 0.9. Unless stated otherwise, only the first lead time period has random yield. To 

concentrate all yield risk in one lead time period reduces the computational effort. For a 

discussion on the effect of varying the yield risk positions over different lead time periods we 

refer to Dettenbach and Thonemann (2015, Section 6). Without loss of generality, we set unit 

 
** Test case:  𝜆 = 1, 𝑢 = 0.9 (Bernoulli distributed), CR = 0.85 
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inventory holding cost to ℎ = 1 and choose unit backorder costs 𝑏 that result in critical ratios 

(CR = 𝑏/(𝑏 + ℎ)) of 0.85, 0.90, 0.95, and 0.99. We use a discount factor 𝛾 of 0.9 and 

deterministic demand of 2. This results in 48 test cases. To compute the optimal solution we 

use McQueen extrapolation and the value iteration is conducted with an accuracy of 𝜀 = 0.001. 

Figure 4-2 Example for cost of optimal solution for different tracking policies under proportional yield 

 

We consider a discrete state space and limit inventory levels to ±30 and order quantities 

to 10, limits that are essentially never binding. This creates a state space with 61 ∙ 21𝜆 states. 

All algorithms were implemented in C++ and all experiments were conducted on a PC with 

eight Intel 3.06 GHz processors and 8 GB of RAM. Table 4-1 shows average run times in 

minutes using all eight processors. 

Table 4-1 Average run times of optimal solution approach (minutes) 

yield model 𝜆 = 1 𝜆 = 2 𝜆 = 3 𝜆 = 4 

proportional < 0.1 0.6 16 425 

 

Run times increase exponentially in lead time, because the state space increases 

exponentially in lead time, which limits the applicability of the optimal solution approach to 
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small and medium size problems. Note that computations times would be much longer if 

demand was stochastic. The results for the test cases are shown in Table 4-2. To facilitate the 

analysis Figure 4-3 and Figure 4-4 provide averaged results for the three parameters: yield risk, 

critical ratio and lead time. 

Table 4-2 Analysis of optimal solution for proportional yield model 

   𝒄∗ ∆𝑽 in % 

𝑢 𝜆 

CR CR 

0.85 0.9 0.95 0.99 0.85 0.9 0.95 0.99 

0.80 1 0.6 0.8 0.7 0.7 13.4 9.1 6.6 4.4 

 2 1.2 1.4 1.4 1.4 14.2 13.0 13.8 9.1 

 3 1.6 1.9 2.0 2.3 16.9 14.1 15.0 13.4 

 4 2.0 2.4 2.5 2.8 17.1 16.5 17.2 10.6 

0.85 1 0.3 0.5 0.8 0.7 7.7 11.9 5.7 5.2 

 2 0.7 1.1 1.4 1.6 15.9 12.2 10.7 7.3 

 3 1.2 1.6 1.9 2.1 15.9 15.9 13.9 10.7 

 4 1.5 1.9 2.4 2.7 18.1 14.1 15.2 14.4 

0.90 1 0.7 0.2 0.5 0.2 12.3 5.6 9.0 3.1 

 2 0.9 0.6 1.1 0.8 8.3 14.0 9.1 11.1 

 3 1.2 0.9 1.6 1.3 12.1 13.6 14.7 12.2 

 4 1.5 1.4 1.8 1.9 14.1 13.2 9.9 16.7 

 

Figure 4-3 𝒄∗ for proportional and binomial yield model 

 

Figure 4-4 Value of flexibility (∆𝑽) for proportional yield model  
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The results show that flexible tracking results in significant cost savings. The optimal 

policy at tracking cost 𝑐∗ is a mix of tracked and not tracked orders. The flexible tracking policy 

is superior to the two strict policies (see also Figure 4-2 for an illustration). 

 As the yield rate decreases, the tracking cost threshold 𝑐∗ increases. Using Bernoulli 

distributed yield rates; a decreasing yield rate increases the yield variability which peaks at a 

yield rate of 0.5. This result is intuitive, because real time yield information reduces uncertainty 

about the state of the open orders more if yield variability is high than if it is low. Therefore a 

higher price for order tracking can be established. Changing yield risks have minor effects on 

the value of flexibility ∆𝑉.  

The tracking cost threshold 𝑐∗ increases in lead time. As lead time increases, a not 

tracked order adds more uncertainty to the system. Therefore the value of tracking increases 

and so does the tracking cost threshold 𝑐∗. The value of flexibility ∆𝑉 increases in lead time. 

Multiple lead time periods create states with multiple outstanding orders. The flexible tracking 

policy makes states with a mix of tracked and not tracked orders accessible which results in 

cost savings. These states are not accessible when a static policy is applied which is 

increasingly disadvantageous as lead time increases. 

Increasing critical ratios have a minor effect on the tracking cost threshold 𝑐∗. Costs 

under the always track and the never track policy increase by a similar amount. This results in 

an upward shift of both cost functions (see also Figure 4-2) which has no effect on the tracking 

cost threshold 𝑐∗. An interesting result is the decreasing value of flexibility ∆𝑉 as critical ratios 

increase. Higher critical ratios bring the flexible policy closer to the two strict policies. If 

critical ratios are higher it is optimal to track every order for higher tracking cost values. As 

the flexible tracking theory deviates later (in the sense of higher tracking costs) from the always 

track policy the difference at the tracking cost threshold 𝑐∗ decreases. 
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4.4.2.   Influences on Tracking Decision 

To develop heuristics it is useful to understand the key factors that influence the 

tracking decision. There exist multiple heuristics on order quantities under random yield (e.g. 

Bollapragada and Morton 1999; Dettenbach and Thonemann 2015). These heuristics cannot be 

applied directly to our model because the tracking decision and the order decision have to be 

made simultaneously. Our intention is to understand the connection between current state of 

the inventory system, order quantity and tracking decision. The current state of the system can 

be quantified by the expected inventory position and the variance of the expected inventory 

position.  

The analysis of the effects of expected inventory position and order quantity on tracking 

decision is connected because higher expected inventory positions result in lower order 

quantities (see also Figure 4-6). To make the effects observable, we have to analyze the optimal 

decisions for individual states. We focus on the test case with 𝜆 = 2, CR = 85 and u = 0.8. The 

results are similar to the other test cases that we analyzed.  

For each state we compute the expected inventory position. Figure 4-5 shows the 

percentage of tracked orders depending on the expected inventory position of the current state. 

Up to an expected inventory position of 3 all orders are tracked. For expected inventory 

positions larger than 3 the percentage of tracked orders is decreasing. 
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Figure 4-5 Percentage of tracked orders depending on the expected inventory position 

 

To show the connection between expected inventory position and order quantity we analyze 

the average order quantity per inventory position in Figure 4-6. Not surprisingly the order 

quantity is decreasing in inventory position.  

Figure 4-6 Average Order Quantity per expected inventory position. 

 

To test whether or not the decrease in tracking is due to the increase in expected inventory 

position and/or due to decreasing order quantities we control for the expected inventory 
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position and analyze the tracking decision for different order quantities. According to Figure 

4-5 the expected inventory positions of interest are 4, 5, and 6. In Figure 4-7 we see that smaller 

order quantities result in less tracking. At the same time the expected inventory position 

influences the tracking decision, too. When the inventory position is decreasing smaller order 

quantities are tracked with a higher probability. Concluding from the analyzed data we make 

the following observations.  

Observation 1:  Tracking is less beneficial when the expected inventory position 

is higher.  

Observation 2:  Tracking is more beneficial for higher order quantities.  

Figure 4-7 Percentage of tracked orders depending on order quantity for different inventory positions 

 

To analyze the effect of the variance of the inventory position we have to control for 

expected inventory position and order quantity. This results in four interesting test cases that 

are indicated by black circles in Figure 4-7. Analyzing the expected inventory position’s 

standard deviation for each state we get the following data as shown in Table 4-3. 
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Table 4-3 Percentage of tracked orders depending on standard deviation of inventory position 

exp. inventory position 5                                  6 

order quantity 3 4 4 5 

std. dev. of inv. pos. 1 2 4 2 3 4 2 3 4 2 3 4 

number of orders 37 2 6 26 3 4 12 21 27 9 1 1 

nbr. of tracked orders 22 0 0 25 1 0 1 0 0 9 1 0 

% of tracked orders 59% 0% 0% 96% 33% 0% 8% 0% 0% 100% 100% 0% 

 

Table 4-3 can be read in following way. For an expected inventory position of 5 and an 

order quantity of 3 we found test cases with standard deviations of 1, 2, and 4. 37 test cases 

with standard deviation of 1, order quantity of 3 and expected inventory position of 5 exist. For 

22 (59 %) of these 37 test cases the order has been tracked. The data shows that the percentage 

of tracked orders is decreasing in variability of the inventory position. To add a not tracked 

order to a state with low variability is causing more cost than adding the same not tracked order 

to a state that already has a high variability. The data leads to the following observation. 

Observation 3:  Tracking is more beneficial when the variance of the inventory 

position is lower.  

This discussion provides first insights on the influential factors of the tracking decision. 

The observations can be used to develop heuristic solutions approaches. 

4.5.   Conclusion 

 

We analyzed a periodic review, random yield problem with positive lead time and 

tracking cost. We modeled the problem with two decision variables: order quantity and 

tracking. We proved that the cost function is convex for a given tracking decision and that a 

solution for the infinite horizon problem exists. Based on these properties we applied an 

optimal solution approach for discrete state spaces. We conducted numerical experiments that 

show that a flexible tracking policy can create significant value. Further analysis provided 

insights on the influential factors for the tracking decision. 
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Since the optimal solution approach can only be applied to small and medium problem 

instances there is a need for heuristics. This would be the intuitive extension to this work. 
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Appendix 4.A  Proof of Theorem 4-1 

Proof Clearly 𝑅𝑖(𝑂𝑖, 𝛹𝑖),  𝐽(𝑧), and ℎ[ 𝐽(𝑧)]+ + 𝑏[−𝐽(𝑧)]+ are convex in 𝐼𝐿 and  𝑅𝑖(𝑂𝑖, 𝛹𝑖) 

for 𝑖 = 1,⋯ , 𝜆 (Rockafellar 1970, Theorem 5.7, Heyman and Sobel 1984, Proposition B-2). 

For fixed 𝛹 the only decision variable is the order quantity 𝑂 and the term Ψc becomes a 

constant. The proof then follows the reasoning of the proof of Theorem 3-1. By assumption, 

the terminal function 𝑉𝑇+1(𝑧) is convex. We continue with induction. Suppose that 𝑉𝑡(𝑧) is 

convex in 𝑧. From Theorem 5.7 of Rockafellar (1970) it follows that 

𝑉𝑡(𝐽(𝑧), 𝑅𝜆(𝑂𝜆−1, 𝛹𝜆−1),⋯ , 𝑅1(𝑂,𝛹)) is convex in 𝐼𝐿, 𝑅𝑖(𝑂𝑖, 𝛹𝑖), 𝑖 = 1,⋯ , 𝜆, 𝑂, and 𝛹. 

Because the expectation conserves convexity and the sum of convex functions is a convex 

function 𝐻𝑡−1(𝑧, 𝑂, 𝛹) = 𝐸𝑑 , 𝐸𝑢1 , … , 𝐸𝑢𝜆 [ℎ[ 𝐽(𝑧)]
+ + 𝑏[−𝐽(𝑧)]+ +min

𝑂≥0 
{𝛹𝑐 +

𝛾𝑉𝑡(𝐽(𝑧), 𝑅𝜆(𝑂𝜆−1, 𝛹𝜆−1),⋯ , 𝑅1(𝑂, 𝛹))}] is convex in 𝑧 and 𝑂 for fixed 𝛹. The minimization 

also conserves convexity and therefore 𝑉𝑡−1(𝑧) =  min
O≥0

 𝐻𝑡−1(z, 𝑂,𝛹) is convex in 𝑧 and 𝑂 for 

fixed 𝛹.  ∎ 

 
 
Appendix 4.B Proof of Theorem 4-2 

Proof Let the zero order policy: [𝑂 = 0,𝛹 = 0]∞(𝑧) for all 𝑧 denote a stationary policy and  

𝑉∞(𝑧) be its expected present value. We apply Theorem 8.13 of Heyman and Sobel (1984), 

which states that if  𝑉∞(𝑧) < ∞ for all 𝑧, then 𝑉(𝑧) = lim
𝑡→∞

𝑉𝑡(𝑧) exists.  Clearly the single 

period costs are bounded, and since 𝛾 < 1 we have 𝑉∞(𝑧) < ∞ for all 𝑧, and the result 

follows. ∎  
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5.   Co-Production and Partial Supply Chain Visibility in Semiconductor 

Manufacturing 

 

 

Chapter 5  

 

Co-Production and Partial Supply Chain 

Visibility in Semiconductor Manufacturing 

 

5.1.   Abstract 

We consider a two-stage production system which produces a hierarchy of multiple grades of 

outputs. In the first stage, a single type of input is used to produce products of different quality 

levels with random yield rates. In the second stage, products are tested for their quality level. 

Test capacity is limited. This setting is motivated by the production process of a global 

semiconductor manufacturer. We develop a mathematical model of the production system and 

derive structural properties for the one and two-period case. Building up on these properties 

we provide two solution approaches that are close to optimal. In addition we analyze the value 

of implementing a pre-test that partially reveals a product’s quality level after first stage 

production is completed. We show how this preliminary yield information can be used to make 

more efficient use of limited test capacities at the second stage. We conduct numerical 

experiments to evaluate the accuracy of our solution approaches and to identify conditions 

under which preliminary yield information at the first stage is particularly beneficial.  

 

Keywords: inventory management; co-production; random yield; value of information  
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5.2.   Introduction 

Semiconductor production processes are subject to random yield and co-production. A 

single input is used to produce simultaneously products of different quality levels at random 

yield rates. Most previous research models the semiconductor production process as a one step 

process. The production process of the big semiconductor manufacturing company that 

motivated our research consists of multiple steps and is typical for the whole industry. In an 

aggregated and simplified form the process can be described as follows. After initial wafer 

production, wafers are sliced into chips. Then, chips go through a test process to determine 

their quality level. A chip’s quality level refers to features like speed, memory capacity and 

heat resistant. A detailed overview of the semiconductor production process can be found in 

Gavirneni (2004), Han, Dong, and Shao (2012) and Taouil and Hamdioui (2012).  

We develop a model that differentiates between the production process and the test 

process. This is motivated by two observations. First, the bottleneck in semiconductor 

manufacturing and in the researched company is often test capacity (Freed et al. 2007; Lin et 

al. 2004; Tai et al. 2012). By differentiation between production and testing we can model the 

test capacity constraint explicitly and without affecting the production process. Second, the 

production process takes much longer (several weeks) than the test process (one week) (Freed, 

Doerr, and Chang 2007; Gavirneni 2004; Han, Dong, and Shao 2012). Because we treat both 

processes individually, our model allows for multiple test runs while in parallel a production 

run is in progress. Our decision model reflects the industry practice more accurately and 

enables the analysis of parameter and process changes with higher precision than a one step 

process model could achieve.   

In the described process products would enter the test stage with unknown quality. We 

introduce and analyze the concept of preliminary yield information as a mean to enable more 

efficient use of limited test capacity. At the end of the production stage chips are pre-tested for 
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their quality levels and sorted into so called “soft bins”. The pre-test is a fast and inexpensive 

process that indicates the quality of each chip to a certain extent, i.e., the test result is not a 

prediction of final quality and the quality level of a chip after pre-testing can differ from the 

quality level after final testing. Figure 5-1 illustrates the two stage process for two quality 

levels. The process consist of a single production opportunity that is followed by 𝑇 periods of 

testing and demand fulfilment. 

Figure 5-1 Overview of the two-stage semiconductor production system 

 

The results of our research can be used to improve the efficiency of semiconductor 

manufacturing. We extend previous research by providing a model that distinguishes between 

production and test processes. We allow for up- and downgrading at the test stage and include 

random yield rates and co-production in the model. Unlike previous research, we consider 

limited test capacity. We develop a finite horizon model and provide an approach that finds 

solutions that are close to optimal. Using this solution approach, we quantify the value of 

preliminary yield information. This information is provided by a pre-test after first stage 

production is completed. We also introduce a heuristic, which builds on structural properties 

of the one- and two-period problem and can be applied to solve larger problems efficiently. 

Our numerical results indicate that the heuristic performs well for a variety of parameter 
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settings. The results also indicate that substantial profit improvements can be achieved by 

taking advantage of preliminary yield information. 

 The remainder of the paper is organized as follows. In Section 5.3, we review the 

related literature. In Section 5.4, we develop a two-stage dynamic program for a periodic 

review inventory system with random yields and co-production. In Section 5.5, we provide 

structural results for the one- and two-period model. In Section 5.6, we develop an arbitrary 

close to optimal solution approach and use the analysis of the one- and two-period model as 

building blocks to introduce a heuristic solution approach. In Section 5.7, we provide numerical 

results. In Section 5.8, we conclude. 

5.3.   Related Literature 

Our problem belongs to the class of random yield problems with co-production. Bitran 

and Dasu (1992) were among the first to address random yield problems with co-production. 

They formulate a two-stage dynamic program where the first stage determines the production 

quantity and the second stage the allocation quantities for products of different quality to 

customer demands. Because the optimal solution is computational intractable, a decomposition 

heuristic is introduced. Bitran and Leong (1992) provide deterministic approximations for the 

finite horizon version of the same problem and develop a heuristic. Bitran and Gilbert (1994) 

formulate a nested dynamic program for a finite horizon problem with deterministic demand 

and derive a lower bound on the cost of the optimal solution. They develop a production 

quantity heuristic that is designed to satisfy the demand for a given number of periods with a 

certain probability.  

Gerchak, Tripathy, and Wang (1996) consider a single period problem with 

deterministic demand and two quality levels. They prove joint concavity of the objective 

functions and derive optimality conditions. Hsu and Bassok (1999) also consider the single 
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period case and provide a decomposition approach to calculate optimal solutions. Gerchak and 

Grosfeld-Nir (1999) consider a single period make-to-order process. Production happens in 

multiple sequential production runs until all demand is satisfied. The objective is to determine 

lot sizes that minimize total set up and production cost. Numerical results are provided for the 

two-product case. Murr and Prékopa (2000) consider the process of manufacturing optical 

fibers which features the same characteristics as semiconductor production. They develop a 

chance constraint stochastic program with the objective to minimize production cost. Programs 

of this class are still largely intractable because they require multidimensional integration and 

have a non-convex feasible region. The authors apply a two-period solution on a rolling horizon 

basis to plan multi-period scenarios. Duenyas and Tsai (2000) model the same system as Bitran 

and Dasu (1992) as a queueing system with the extension of uncertain demands and production 

times. In the case of two product classes, they characterize the structure of the optimal policy 

and develop a heuristic that can be applied to problems with an arbitrary number of product 

classes. Gallego, Katircioglu, and Ramachandran (2006) develop an infinite horizon cost 

minimization model with service level constraints. They propose two heuristics that use the 

concept of a critical part as decision driver and show that a single period allocation scheme 

does not result in inventory performance deterioration when applied to the stationary infinite 

horizon case. Han et al. (2011, 2012) introduce a model that has a single production opportunity 

prior to the first period, which is followed by multiple periods of demand allocation decisions. 

This is motivated by the fact that wafer production at the first production stage has a much 

longer lead time than demand periods. We also cover this fact in our article. Han et al. (2012) 

show that the objective function is concave in the production quantity. 

The above literature considers co-production systems with direct upward substitution 

of demands. More recently, semiconductor manufacturers adopted the approach of downgrade 

production where higher quality products are intentionally disabled to resemble a lower quality 
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product and satisfy lower quality demand. Downgrade production is done to protect profit 

margins and to prevent opportunistic customer behavior. Hsu, Li, and Xiao (2005) compare 

direct substitution with downgrade production for a generic setting with downgrading cost, 

deterministic demand, independent yield rates and finite planning horizon. They state that the 

problem is NP-hard and provide algorithms that find optimal solutions in polynomial time if 

the number of products is fixed. Ng and Fowler (2007) use robust optimization to solve a finite 

horizon problem under service level constraints. In their problem setting, inventory can be held 

either as semi-finished products before downgrade production or as finished products after 

downgrade production. Huang and Song (2010) consider a semiconductor production problem 

similar to ours. The first stage of their two-stage production system is equal to the first stage of 

our model, where a single input quantity is determined. At the second stage semi-finished 

products are transformed to finished products. At this stage downgrading is allowed and all 

yield rates are deterministic which as a consequence eliminates co-production. They show that 

some parts of the model follow a renewal process and use this property to develop two 

heuristics.  

Unlike previous literature, we consider a setting that differentiates between production 

and testing, which allows for modeling different lead times for production and testing as well 

as limited test capacity. Our model also allows for up- and downgrades and considers random 

yield and co-production for all processes. Motivated by the production system of a global 

semiconductor manufacturer, we introduce and analyze the concept of preliminary yield 

information.  
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5.4.   Model 

We consider a model with a single production opportunity that is followed by T testing 

periods. In the first stage, the decision variable is the production quantity 𝑄. After the products 

have been produced, they are pre-tested and assigned to soft bins. The second stage consists of 

𝑇 periods of testing from soft bin inventory into bin inventory.  

The per unit production cost is 𝑐. The first stage production process yields two quality 

levels with yield coefficients 𝑌 = {𝑌1, 𝑌2}. Quality level 1 is superior to quality level 2. 𝑌1 and 

𝑌2 are correlated random variables with 0 ≤ 𝑌1 + 𝑌2 ≤ 1. Products with unusable quality are 

produced with a yield rate of 1 − 𝑌1 − 𝑌2 and discarded at no cost. Products that are not 

discarded are sorted into soft bins according to their quality level revealed by the pre-test. 

At the second stage, products from a soft bin are selected as inputs for the two testing 

processes. The decision variables for the second stage are summarized in the following matrix: 

𝑋 = (
𝑋11 𝑋12
𝑋21 𝑋22

), where 𝑋𝑖𝑗 is the input quantity from soft bin 𝑖 for test process 𝑗. Test process 𝑗 

reveals if the product is at least of quality 𝑗 or if it is of a specific lower quality level 𝑘 < 𝑗 (co-

production). 𝑈𝑖𝑘𝑗 is the yield rate coefficient of product 𝑘 from soft bin 𝑖 that is tested with test 

process 𝑗. The yield rate coefficients matrixes are 𝑈1 = (
𝑈111 𝑈121
𝑈211 𝑈221

)  and 𝑈2 = (
𝑈122
𝑈222

). 

There are multiple dependencies between these yield rate coefficients and we will discuss in 

Section 5.5.1 how the distributions of 𝑌, 𝑈1 and 𝑈2 can be determined. 

The unit costs for testing depend on the test processes. It is more costly to test for a 

higher quality than for a lower quality. E.g., it consumes more time and energy to test for a 

higher heat resistance than for a lower heat resistance. The unit testing cost for quality level j 

is 𝑟𝑗, with 𝑟1 ≥ 𝑟2 and unit capacity consumption for quality level 𝑗 is 𝑣𝑗 , with 𝑣1 ≥ 𝑣2. We 

denote the total test capacity per period by V.  
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Inventory in soft bin 𝑖 is denoted by 𝑆𝑖 and inventory in bin 𝑖 by  𝐼𝑖. Unit inventory 

holding cost is ℎ𝑆𝑖 for soft bin inventory and ℎ𝐼𝑖 for bin inventory, with ℎ𝐼𝑖 ≥ ℎ𝑆𝑖. Unsatisfied 

demand is backordered at backorder cost 𝑏𝑖 for quality level 𝑖 with 𝑏1 ≥ 𝑏2. Products from bins 

with higher quality are sold at a higher price, i.e., 𝑝1 ≥ 𝑝2. The demands of the products 𝐷 =

{𝐷1, 𝐷2} are stochastic and i.i.d. across products and periods. 

The sequence of events is as follows: In the beginning of the first stage, the 

manufacturer observes the current state of the inventory system, which consists of the bin 

inventory levels 𝐼𝑡 = {𝐼1,𝑡, 𝐼2,𝑡} and soft bin inventory levels 𝑆𝑡 = {𝑆1,𝑡, 𝑆2,𝑡}. The manufacturer 

decides on the input quantity 𝑄. The production output replenishes the soft bins according to 

the pre-test results. At the beginning of each period 𝑡, 𝑡 ∈ {1,… , 𝑇} of the second stage, the 

manufacturer observes the demands 𝑑𝑡 = {𝑑1,𝑡, 𝑑2,𝑡} for the current period together with the 

current state of the inventory system and decides on the input quantities 𝑋 for the two test 

processes. Test outputs replenish bin inventories which are used to satisfy demand.  

The model is formulated as a nested dynamic program. The objective is to maximize 

the profit over a finite horizon of 𝑇 periods.  

 

1st Stage 

𝐹(𝐼0, 𝑆0) =  max
𝑄
𝐸𝐷 𝐸𝑌𝐸𝑈1𝐸𝑈2[𝐺1(𝐼0, 𝑆1)] − 𝑐𝑄 (24) 

s.t.  𝑆1 = 𝑆0 + 𝑦𝑄 (25) 

 𝑄 ≥ 0 (26) 
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2nd Stage 

𝐺𝑡(𝐼𝑡, 𝑆𝑡) = max 
𝑋

𝐸𝐷𝐸𝑈1𝐸𝑈2 [𝐺𝑡+1(𝐼𝑡+1, 𝑆𝑡+1)] −∑∑𝑟𝑗𝑋𝑖𝑗

2

𝑗=1

2

𝑖=1

−∑[ℎ𝑆𝑖𝑆𝑖,𝑡+1 + ℎ𝐼𝑖[𝐼𝑖,𝑡+1]
+
+ 𝑏𝐼𝑖[−𝐼𝑖,𝑡+1]

+
]

2

𝑖=1

+∑𝑝𝑖min

2

𝑖=1

(𝑑𝑖 + [−𝐼𝑖,𝑡]
+
, [𝐼𝑖,𝑡]

+
+∑∑𝑢𝑗𝑖𝑘𝑋𝑗𝑘

𝑖

𝑘=1

2

𝑗=1

) 

(27) 

s.t.   𝑆𝑖,𝑡+1 = 𝑆𝑖,𝑡 − ∑ 𝑋𝑖𝑗
2
𝑗=1     ∀ 𝑖 = 1, 2 (28) 

 𝐼𝑖,𝑡+1 = 𝐼𝑖,𝑡 + ∑ ∑ 𝑢𝑗𝑖𝑘𝑋𝑗𝑘
𝑖
𝑘=1

2
𝑗=1 − 𝑑𝑖    ∀ 𝑖 = 1, 2 (29) 

 ∑ (𝑣𝑗 ∑ 𝑋𝑖𝑗
2
𝑖=1 )2

𝑗=1 ≤ 𝑉  (30) 

 𝑆𝑖,𝑡+1, 𝑋𝑖𝑗 ≥ 0    ∀ 𝑖 = 1, 2 and ∀ 𝑗 = 1, 2  (31) 

with [𝑥]+ = max(0, 𝑥). Equations (25), (28), and (29) are inventory balancing constraints. 

Equation (30) is the test capacity constraint. Without loss of generality, we assume that 

𝐺𝑇+1(𝐼𝑇+1, 𝑆𝑇+1) = 0. After period 𝑇 the whole planning cycle starts again and any excess 

inventories or back orders will be carried over to the next cycle. Since the first stage production 

quantity 𝑄 is not constraint and all parameters are kept constant between cycles there is no 

advantage from early production for use in future cycles. We must specify two first stage 

production yield distributions and six second stage test yield distributions that are correlated 

between products. The randomness of demands and the nested nature of the problem further 

complicate solving the problem optimally.  
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5.5.   Structural Results 

In Sections 5.5.1 and 5.5.2 we analyze the one- and two-period models analytically. We 

obtain structural results that are of some interest in their own rights and that we use as building 

blocks for the general heuristic introduced in Section 5.6.2.  

5.5.1.   Single-Period Analysis 

Consider a single period problem for the second stage. Our goal is to derive equations 

for the optimal input quantities for the two test processes from each soft bin and to understand 

the structure of the optimal policy.  

We follow the approach by Gerchak et al. (1996) and Bitran and Gilbert (1994) to model 

the yield rate coefficients and their dependencies as a combination of independent random 

variables. Consider soft bin 𝑖. A random fraction 𝛽𝑖2 of the products have at least quality 2. 

Products that achieve quality level 1 constitute a random fraction  𝛽𝑖1 of products that have at 

least quality level 2. The yield rate coefficients for both test processes can be calculated as 

𝑈1 = (
𝑈111 𝑈121
𝑈211 𝑈221

) = (
𝛽11𝛽12 𝛽12(1 − 𝛽11)
𝛽21𝛽22 𝛽22(1 − 𝛽21)

)  and 𝑈2 = (
𝑈122
𝑈222

) = (
𝛽12
𝛽22

). 

The fractions 𝛽𝑖𝑗 are independent and arbitrary distributed random variables over [0, 1] 

with known pdf. The yield rate coefficients for the first stage can be modeled analogously. The 

total yields of quality level 1 and 2 products are 𝑃1 = 𝑋11𝛽11𝛽12 + 𝑋21𝛽21𝛽22 and  

𝑃2 = 𝑋11𝛽12(1 − 𝛽11) + 𝑋12𝛽12 + 𝑋21𝛽22(1 − 𝛽21) + 𝑋22𝛽22, respectively. For the profit 

function 𝜋1, we have to distinguish four mutually exclusive and collectively exhaustive cases.  

𝜋1(𝑋) = −𝑟1(𝑋11 + 𝑋21) − 𝑟2(𝑋12 + 𝑋22) + ℎ𝑆1(𝑋11 + 𝑋12) + ℎ𝑆2(𝑋21 + 𝑋22)

+

{
 

 
𝑝1𝑑1 + 𝑝2𝑑2 − ℎ1(𝑃1 − 𝑑1) − ℎ2(𝑃2 − 𝑑2)

𝑝1𝑑1 + 𝑝2𝑃2 − ℎ1(𝑃1 − 𝑑1) − 𝑏2(𝑑2 − 𝑃2)

𝑝1𝑃1 + 𝑝2𝑑2 − 𝑏1(𝑑1 − 𝑃1) − ℎ2(𝑃2 − 𝑑2)

𝑝1𝑃1 + 𝑝2𝑃2 − 𝑏1(𝑑1 − 𝑃1) − 𝑏2(𝑑2 − 𝑃2)

 
(32) 
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if
(𝑑1 − 𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄ ≤ 𝛽11 and  

(𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22) (𝑋11(1 − 𝛽11) + 𝑋12) ≤ 𝛽12⁄
 

if
(𝑑1 − 𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄ ≤ 𝛽11 and   

(𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22) (𝑋11(1 − 𝛽11) + 𝑋12) > 𝛽12⁄
 

if
(𝑑1 − 𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄ > 𝛽11 and  

(𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22) (𝑋11(1 − 𝛽11) + 𝑋12) ≤ 𝛽12⁄
 

if
(𝑑1 − 𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄ > 𝛽11 and  

(𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22) (𝑋11(1 − 𝛽11) + 𝑋12) > 𝛽12⁄
 

s.t.  𝑋11 + 𝑋12 ≤ 𝑆1  (33) 

 𝑋21 + 𝑋22 ≤ 𝑆2  (34) 

 𝑣1(𝑋11 + 𝑋12) + 𝑣2(𝑋21 + 𝑋22) ≤ 𝑉  (35) 

 Non-negativity constraints 
 

For notational convenience, we define 𝑊1 = (𝑑1 − 𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄  and 𝑊2 =

(𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22) (𝑋11(1 − 𝛽11) + 𝑋12)⁄ . From Equations (32), (33), (34), 

(35) we obtain the expected profit function  

�̂�1(𝑋) = −𝑟1(𝑋11 + 𝑋21) − 𝑟2(𝑋12 + 𝑋22) + ℎ𝑆1(𝑋11 + 𝑋12) + ℎ𝑆2(𝑋21 + 𝑋22) 

 ∫ ℎ(𝛽22)∫𝑘(𝛽21)�̃�1(𝑋11, 𝑋12, 𝑋21, 𝑋22, 𝛽22, 𝛽21)𝑑𝛽21𝑑𝛽22

1

0

1

0

 

s.t. Equations (33)-(35) and non-negativity constraints with 

 

(36) 

�̃�1 (𝑋, 𝛽22, 𝛽21) = 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃1 + 𝑝2𝑃2 − 𝑏1(𝑑1 − 𝑃1) − 𝑏2(𝑑2 − 𝑃2)]
𝑊1

0

𝑊2

0

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1𝑑1 + 𝑝2𝑃2 − ℎ1(𝑃1 − 𝑑1) − 𝑏2(𝑑2 − 𝑃2)]
1

𝑊1

 𝑑𝛽11𝑑𝛽21 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃1 + 𝑝2𝑑2 − 𝑏1(𝑑1 − 𝑃1) − ℎ2(𝑃2 − 𝑑2)]
𝑊1

0

1

𝑊2

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1𝑑1 + 𝑝2𝑑2 − ℎ1(𝑃1 − 𝑑1) − ℎ2(𝑃2 − 𝑑2)]
1

𝑊1

 𝑑𝛽11𝑑𝛽21. 

(37) 

Our objective is finding the optimal quantities 𝑋∗ = (
𝑋11
∗ 𝑋12

∗

𝑋21
∗ 𝑋22

∗ ) that maximize the 

expected profit �̂�1(𝑋). 
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Theorem 5-1. �̂�1(𝑋) is jointly concave in 𝑋11 ≥ 0, 𝑋12 ≥ 0, 𝑋21 ≥ 0, and 𝑋22 ≥ 0. 

The proof can be found in Appendix 5.A. From the proof of Theorem 5-1 it is easy to 

see that the use of soft bin inventory follows a greedy approach. Soft bin 1 is fully utilized 

before soft bin 2 is used because the expected profits of units from soft bin 1 are always higher 

than those of units from soft bin 2. This myopic behavior is not necessarily optimal in the multi-

period setting that we analyze next. 

5.5.2.   Two-Period Analysis 

We next analyze a static two period setting. The problem is static, because we compute 

the optimal solution for period one and two at the beginning of period one. This is of course 

not the optimal policy for a dynamic two period problem. However, the solution for the first 

period is the same as the solution of the dynamic program and hence optimal. In the subsequent 

heuristic we use the two-period model on a rolling horizon basis and apply only the optimal 

solution for the first period. The main benefit is that this solution considers expectations about 

the future and hence avoids myopic behavior.   

In the two-period setting we have eight decision variables. The decision variables are 

𝑋 = (
𝑋11 𝑋12
𝑋21 𝑋22

) and 𝑌 = (
𝑌11 𝑌12
𝑌21 𝑌22

) , where 𝑋 is the decision matrix for period 1 and 𝑌 the 

decision matrix for period 2. To model the profit function 𝜋2(𝑋, 𝑌) we have to distinguish 16 

cases that follow the same logic as for the one-period model. The formulation of  𝜋2(𝑋, 𝑌) is 

provided in Appendix 5.B.  

From Equations (54)-(65) in Appendix 5.B we get the expected profit function  

�̂�2(𝑋, 𝑌) = 

−𝑟1(𝑋11 + 𝑋21 + 𝑌11 + 𝑌21) − 𝑟2(𝑋12 + 𝑋22 + 𝑌12 + 𝑌22) 

+ℎ𝑆1(2𝑋11 + 2𝑋12 + 𝑌11 + 𝑌12) + ℎ𝑆2(2𝑋21 + 2𝑋22 + 𝑌21 + 𝑌22) 

+∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽22)

1

𝛽22,2=0
∫ 𝑘(𝛽21)
1

𝛽21,2=0

1

𝛽21,1=0

1

𝛽22,1=0
  

(38) 
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�̃�2(𝑋, 𝑌, 𝐷1, 𝐷2, 𝛽21,1, 𝛽22,1, 𝛽21,2, 𝛽22,2)𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2  

 

s. t. 𝑣1(𝑋11 + 𝑋21) + 𝑣2(𝑋12 + 𝑋22) ≤ 𝑉   (39) 

 𝑣1(𝑌11 + 𝑌21) + 𝑣2(𝑌12 + 𝑌22) ≤ 𝑉   (40) 

 𝑋11 + 𝑋12 + 𝑌11 + 𝑌12 ≤ 𝑆1   (41) 

 𝑋21 + 𝑋22 + 𝑌21 + 𝑌22 ≤ 𝑆2   (42) 

 non-negativity constraints   

 

Let 𝑃𝑖𝑡 be the test yield of quality level 𝑖 in period 𝑡 (see Appendix 5.B) and 𝑊1 =

𝑑1−𝑋21𝛽21,1𝛽22,1

𝑋11𝛽12,1
  , 𝑊2 =

𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

𝑋11(1−𝛽11,1)+𝑋12,1
, 𝑊3 =

𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑃11

𝑌11𝛽12,2
  and 

𝑊4 =
𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑃21

𝑌11(1−𝛽11,2)+𝑌12
. After some algebraic transformations we get 

�̃�2(𝑋, 𝑌, 𝐷1, 𝐷2, 𝛽21,1, 𝛽22,1, 𝛽21,2, 𝛽22,2) =   

∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[(ℎ1 + 𝑏1)(𝑃11 − 𝑑1)]
𝑊1

𝛽11,1=0

1

𝛽12,1=0

𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,1=0

∫ 𝑓(𝛽12)
𝑊2

𝛽12,1=0

[(ℎ2 + 𝑏2)(𝑃21 − 𝑑2)]𝑑𝛽12𝑑𝛽11 

+∫ 𝑔(𝛽11)
1

𝛽11,1=0

∫ 𝑓(𝛽12)[ℎ1(𝑑1 − 𝑃11) + ℎ2(𝑑2 − 𝑃21)]
1

𝛽12,1=0

 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

[(𝑝1 + ℎ1 + 𝑏1)(𝑃12 + 𝑃11 − 𝐷1 − 𝑑1)]𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[(𝑝2 + ℎ2 + 𝑏2)(𝑃22 + 𝑃21 − 𝐷2 − 𝑑2)]𝑑𝛽12𝑑𝛽11 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)[ℎ1(𝐷1 + 𝑑1 − 𝑃12 − 𝑃11)  
1

𝛽11,2=0

+ ℎ2(𝐷2 + 𝑑2 − 𝑃22 − 𝑃21)] 𝑑𝛽11𝑑𝛽12𝑑𝛽12𝑑𝛽11 

+𝑝1(𝐷1 + 𝑑1) + 𝑝2(𝐷2 + 𝑑2)  

(43) 

 

The solution is the optimal static test decision for the first and the second period.  
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Theorem 5-2. �̂�2(𝑋, 𝑌) is jointly concave in 𝑋 ≥ 0 and 𝑌 ≥ 0.  

 

The proof of Theorem 5-2 is provided in Appendix 5.D. For the one and two-period 

model we can conclude that, the optimal test quantities can be obtained by standard solution 

approaches for concave optimization problems. Those approaches require the first order 

derivatives that are provided in Appendix 5.A and 5.C.  

5.6.   Solution Approaches 

Solving the dynamic program is computational intractable even for small problem sizes. 

In Section 5.6.1, we use a linear programming approach that determines approximate solutions 

that are arbitrary close to the optimal solution. This solution approach can be applied to small 

and medium size problems. In Section 5.6.2, we use the structural results to propose a heuristic 

that reduces computation time and can be used to solve larger problems. 

5.6.1.   𝜀-optimal Solution Approach 

We formulate a stochastic LP for each stage, where the yield and demand distributions 

are represented by a collection of random scenarios. The objective is to maximize the expected 

profit over these scenarios. This approach of solving a stochastic LP is equivalent to Monte 

Carlo sampling. By the law of large numbers, the LP solution converges to the optimal solution 

as the number of scenarios goes to infinity. We use statistical techniques to determine the gap 

between the LP solution and the optimal solution (Bayraksan and Morton 2006).  By adjusting 

the number of scenarios this approach can compute an 𝜀-optimal solution for arbitrary 𝜀.  
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Figure 5-2 Illustration of 𝜺 -optimal solution approach for the second stage problem 

 

Figure 5-2 illustrates the solution approach using the second stage problem. To compute 

the decision matrix 𝑋1 in period 1, 𝑀 scenarios are created. The future decisions for periods 2 

to T are optimized for each scenario. The decision for period 1 is optimized over all scenarios 

and hence the same for all scenarios. The test decisions matrix for the current period 𝑋1 is the 

only applicable output of this solution approach. To compute 𝑋2 in period 2 a similar LP is 

solved with one period less for each scenario. In period T no future decisions have to be made 

and 𝑋𝑇 is optimized over scenarios that resemble the yield realizations 𝑈1,𝑇 and 𝑈2,𝑇 in period 

T.  
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Next, we provide the LP for the first stage. Each scenario has the probability weight 𝑎 =

1/𝑀, where 𝑀 is the number of scenarios.   

 

max
𝑄

 −𝑐𝑄 + ∑ 𝑎 [∑[∑𝑝𝑖min(𝑑𝑖,𝑡
𝑚 + [−𝐼𝑖,𝑡

𝑚]
+
, [𝐼𝑖,𝑡−1

𝑚 ]
+
+∑∑𝑢𝑗𝑖𝑟,𝑡

𝑚 𝑋𝑗𝑟,𝑡
𝑚

𝑖

𝑟=1

2

𝑗=1

)

2

𝑖=1

𝑇

𝑡=1

𝑀

𝑚=1

−∑𝑟𝑗𝑋𝑖𝑗,𝑡
𝑚

2

𝑗=1

− ℎ𝑆𝑖𝑆𝑖,𝑡
𝑚 − ℎ𝐼𝑖[𝐼𝑖,𝑡

𝑚]
+
− 𝑏𝑖[−𝐼𝑖,𝑡

𝑚]
+
]] 

(44) 

s.t. 𝑆𝑖,1
𝑚 = 𝑆𝑖,0 + 𝑦𝑖

𝑚𝑄 −∑ 𝑋𝑖𝑗,1
𝑚2

𝑗=1                  ∀ 𝑚 = 1,𝑀 and ∀ 𝑖 = 1, 2 (45) 

 𝑆𝑖,𝑡
𝑚 = 𝑆𝑖,𝑡−1

𝑚 − ∑ 𝑋𝑖𝑗,𝑡
𝑚𝑛

𝑗=1                   ∀ 𝑚 = 1,𝑀 and ∀ 𝑖 = 1, 2 and ∀ 𝑡 = 2, 𝑇 (46) 

 𝐼𝑖,1
𝑚 = 𝐼𝑖,0 − 𝑑𝑖,1

𝑚 + ∑ ∑ 𝑢𝑗𝑖𝑟,1
𝑚 𝑋𝑗𝑟,1

𝑚𝑖
𝑟=1

2
𝑗=1    ∀ 𝑚 = 1,𝑀 and ∀ 𝑖 = 1, 2 (47) 

 𝐼𝑖,𝑡
𝑚 = 𝐼𝑖,𝑡−1

𝑚 − 𝑑𝑖,𝑡
𝑚 + ∑ ∑ 𝑢𝑗𝑖𝑟,𝑡

𝑚 𝑋𝑗𝑟,𝑡
𝑚𝑖

𝑟=1
2
𝑗=1  ∀ 𝑚 = 1,𝑀, ∀ 𝑖 = 1, 2, ∀ 𝑡 = 2, 𝑇 (48) 

 ∑ ∑ 𝑣𝑗𝑋𝑖𝑗,𝑡
𝑚𝑛

𝑗=1
2
𝑖=1 ≤ 𝑉                                 ∀ 𝑚 = 1,𝑀 and ∀ 𝑡 = 1, 𝑇 (49) 

 Non-negativity constraints.  

Constraints (45) increase the initial soft bin inventory by the realized production yields. 

Constraints (46) are the inventory balancing constraints for soft bin inventory. Constraints (47) 

and (48) are the inventory balancing constraints for finished products. The first period requires 

a special constraint, because the initial inventory 𝐼𝑖,0 is the same for all scenarios. Constraints 

(49) capture the test capacities.  
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The second stage LP has the same reasoning and is given as 

 

max
𝑋

 ∑ 𝑎

𝑀

𝑚=1

[∑𝑝𝑖min(𝑑𝑖,𝑖 + [−𝐼𝑖,0]
+
, [−𝐼𝑖,0]

+
+∑∑𝑢𝑗𝑖𝑟,𝑡

𝑚 𝑋𝑗𝑟,1

𝑖

𝑟=1

2

𝑗=1

)

2

𝑖=1

]

−∑∑𝑟𝑗𝑋𝑖𝑗,1

2

𝑖=1

2

𝑗=1

                    

+ ∑ 𝑎 [∑ [∑𝑝𝑖min(𝑑𝑖,𝑡
𝑚 + [−𝐼𝑖,𝑡

𝑚]
+
, [𝐼𝑖,𝑡−1

𝑚 ]
+

2

𝑖=1

𝑇

𝑡=2

𝑀

𝑚=1

+∑∑𝑢𝑗𝑖𝑟,𝑡
𝑚 𝑋𝑗𝑟,𝑡

𝑚

𝑖

𝑟=1

2

𝑗=1

) −∑∑𝑟𝑗𝑋𝑖𝑗,𝑡
𝑚

2

𝑖=1

2

𝑗=1

]

−∑[∑ℎ𝑆𝑖𝑆𝑖,𝑡
𝑚 + ℎ𝐼𝑖[𝐼𝑖,𝑡

𝑚]
+
+ 𝑏𝑖[−𝐼𝑖,𝑡

𝑚]
+

2

𝑖=1

]

𝑇

𝑡=1

] 

(50) 

s.t. 𝑆𝑖,1
𝑚 = 𝑆𝑖,0 − ∑ 𝑋𝑖𝑗,1

2
𝑗=1                                      ∀ 𝑚 = 1,𝑀 and ∀ 𝑖 = 1, 2 (51) 

 𝐼𝑖,1
𝑚 = 𝐼𝑖,0 − 𝑑𝑖,1 + ∑ ∑ 𝑢𝑗𝑖𝑟,𝑡

𝑚 𝑋𝑖𝑗,1
𝑖
𝑟=1

2
𝑗=1       ∀ 𝑚 = 1,𝑀 and ∀ 𝑖 = 1, 2  

 ∑ ∑ 𝑣𝑗𝑋𝑖𝑗,1
2
𝑗=1

2
𝑖=1 ≤ 𝑉       (52) 

 ∑ ∑ 𝑣𝑗𝑋𝑖𝑗,𝑡
𝑚𝑛

𝑗=1
2
𝑖=1 ≤ 𝑉                                   ∀ 𝑚 = 1,𝑀 and ∀ 𝑡 = 2, 𝑇 (53) 

 Constraints (46), (48) and non-negativity constraints.  

5.6.2.   Heuristic Solution Approach 

 

Using the results from Section 5.5 the optimal test quantities for the one and two-period 

problem can be computed very efficiently. For problems with 𝑇 > 2 we introduce the two-opt-

heuristic. Problems with longer planning horizons are transformed into a two-period problem 

to apply the two-period solution from Section 5.5.2.  
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Assume a problem with 𝑇 > 2 periods. For the two-period representation of this problem 

periods 𝑡 + 1 to 𝑇 are aggregated into a single period. Period 𝑡, for which the test quantities 

must be calculated, remains unchanged. Figure 5-3 illustrates the concept.  

Figure 5-3 Two-period representation of multi period problem 

 

The capacity in the second period is adjusted to 𝑉(𝑇 − 𝑡) and the demand distribution 

for each product is the convolution of the demand distributions for periods 𝑡 + 1 to 𝑇. The two-

opt-heuristic is applied on a rolling horizon basis. The main advantages of the two-opt heuristic 

are the efficient computation and the ability to avoid myopic use of soft bin inventory as it 

would be the case for any one-period solution approach. The accuracy and the run time 

performance of the two-opt heuristic are evaluated in Section 5.7.2. 
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5.7.   Numerical Results 

 

In Subsection 5.7.1, we state our test cases and provide results for the 𝜀-optimal solution 

approach from Section 5.5.1. In Subsection 5.7.2, we use the same test cases to analyze the 

accuracy of the two-opt-heuristic and elaborate on run times. In Subsection 5.7.3, we provide 

numerical results and a discussion on the value of preliminary yield information. 

5.7.1.   𝜀-optimal Solution Approach 

 

For our numerical analysis we use three scenarios with low, medium, and high 

coefficients of variation for the second stage yield rates (𝜌). The yield rate distributions are 

derived as explained in Section 5.5.1. The random yield fractions 𝛽𝑖𝑗 follow a beta distribution. 

To vary the coefficients of variation we multiply the parameters 𝑝 and 𝑞 of the beta 

distributions by 10. This results in lower variability without affecting the mean. Table 5-1 

shows the parameters for the beta distributions and the corresponding mean values and 

coefficients of variation.  

Table 5-1 Yield distributions for second stage test processes 

   Parameter for beta dist.   

𝜌 level i j p q 𝐸[𝛽𝑖𝑗] 𝜌[𝛽𝑖𝑗] 

high 

1 1 8.42 1.58 0.842 0.131 

1 2 9.5 0.5 0.95 0.069 

2 1 1.58 8.42 0.176 0.625 

2 2 8.5 1.5 0.85 0.127 
       

medium 

1 1 84.2 15.8 0.842 0.043 

1 2 95 5 0.95 0.023 

2 1 15.8 84.2 0.176 0.206 

2 2 85 15 0.85 0.042 
       

low 

1 1 842 158 0.842 0.014 

1 2 950 50 0.95 0.007 

2 1 158 842 0.176 0.066 

2 2 850 150 0.85 0.013 
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We vary test capacity from low over medium to unlimited. Our base capacity level is 

calculated as the capacity needed if yield rates were deterministic and only same level testing 

was allowed. We define the low capacity as 110 % of the base capacity level and medium test 

capacity is 120 % of the base capacity level. 

We analyze planning horizons of  𝑇 = 1, 2, 5, and 10 periods. This results in 36 test 

cases. The remaining parameters are kept constant and set as follows: The demand for each 

grade follows a normal distribution with mean 20 and coefficient of variation = 0.2. Unit 

inventory holding cost, unit backorder cost, and unit test cost are ℎ𝑆𝑖={0.8; 0.8}, ℎ𝐼𝑖={1; 1}, 

ℎ𝑏𝑖={9; 9}, and 𝑟𝑖={1; 1}, respectively. Unit revenue is 𝑝𝑖={30; 25} and test capacity 

consumption is 𝑣𝑖={1.2; 1}. For the first stage production we set a per unit production cost 

of 𝑐 = 5. The yield rate coefficients for the first stage production process are derived from two 

beta distributed variables 𝛽1(50; 50) and 𝛽2(90; 10), which result in  𝐸[𝑦𝑖] ={0.45; 0.45}. 

The optimality gap of the ε-optimal solution approach depends on the number of 

considered scenarios M. M can be selected sufficiently large to achieve any desired accuracy. 

For details on how the optimality gap is obtained we refer to Bayraksan and Morton (2006).  

We choose the number of scenarios 𝑀 sufficiently large to achieve for all test cases an 

optimality gap of less than 0.01 % with 95 % probability.  

To evaluate the performance we simulate the entire planning cycle of 𝑇 periods 1,000 

times. For each simulation run we collect the cycle profit. We use all simulated cycle profits to 

estimate the average cycle profit for a test case. Over all test cases, the average half-width of 

the 95 % confidence interval for this estimate is 0.8 %. Table 5-2 reports the average profit per 

period (cycle profit divided by cycle length T) for the test cases. 
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Table 5-2 Average profit per period for 𝜺-optimal solution 

𝜌 level 𝑉 𝑇 = 1 2 5 10 

low low 721 721 679 597 

 medium 730 731 691 607 

 unlimited 731 734 694 610 

medium low 712 716 676 595 

 medium 722 727 688 604 

 unlimited 723 730 692 608 

high low 671 686 657 579 

 medium 683 699 669 586 

 unlimited 683 710 680 599 

 

As the yield rate variability increases from low over medium to high, profit decreases 

on average by 0.6 % and 4.1 % compared to low yield rate variability. The yield variability at 

the second stage is an indicator of how much information about the true quality of the products 

is revealed by preliminary yield information. Higher yield rate coefficients of variation at the 

second stage represent poorer preliminary yield information. The results show that profits 

increase in the quality of preliminary yield information.  

Profits increase in available capacity and decrease in cycle length T. An increasing cycle 

length increases the uncertainty for the first stage production decision. In addition inventory 

for later periods must be kept in stock from the beginning causing higher inventory holding 

costs. The effects of capacity and cycle length become more relevant in Section 5.7.2 and 

Section 5.7.3 when we discuss the accuracy of the two-opt-heuristic and the value of 

preliminary yield information. In the next section we also elaborate on the run times. 

5.7.2.   Comparison of Heuristic with 𝜀-optimal Solution 

We apply the heuristic to the same test cases that we solved with the 𝜀-optimal solution. 

We calculate the heuristic solutions by using the Lagrangian Penalty Method (Quarteroni, 

Sacco, and Saleri 2007, Chapter 7.2). The optimal solution for each iteration of the Lagrangian 

Penalty Method is calculated by the Gradient Search Method. Because there is no closed form 
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solution for the integrals they must be evaluated numerically. To enable this, we represent all 

probability distributions by the corresponding five-point distributions. We discuss the loss of 

accuracy caused due to this numeric evaluation of the integrals together with the results. 

Table 5-3 shows average run times for the 𝜀-optimal solution approach and the two-

opt-heuristic. Run times are averaged over the parameters test capacity and yield variability 

because these parameters have only marginal influence on run time. For the two-opt-heuristic 

the run time increase is linear because for 𝑇 > 1 each additional period increases run time by 

the time it takes to solve another two-period problem. Run times increase exponentially for the 

𝜀-optimal solution because each additional period increases the complexity of the LP 

significantly. 

Table 5-3 Average run time for one cycle in seconds 

 𝑇 = 1 2 5 10 

𝜀-optimal solution 1 15 152 968 

two-opt-heuristic 0.03 5 20 45 

 

 

All algorithms were implemented in C++ and all experiments were conducted on a PC 

with eight Intel 3.06 GHz processors and 8 GB of RAM. The LPs for the 𝜀-optimal solution 

are solved by CPLEX solver 12.1 with default settings.  

To calculate the average profit per period for the two-opt-heuristic we follow the same 

simulation approach as in Section 5.7.1 and use common random numbers to compare 

solutions. Table 5-4 reports the accuracy of the two-opt-heuristic as the percentage profit loss 

of the heuristic solution versus the 𝜀-optimal solution. Longer planning horizons T result in 

larger optimality gaps. This is due to the nature of the two-opt heuristic to transform any multi 

period problem into a two-period problem. The average optimality gaps are 0.1 %, 0.8 %, 

1.8 %, and 3.1 % for T = 1, 2, 5, and 10, respectively. The two-opt heuristic is the optimal 

solution for T = 1 and 𝑇 = 2 but loses some accuracy due to the numerical evaluation of the 
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integrals. The effect is larger for 𝑇 = 2 because the number of probability distributions that 

must be evaluated numerically increases from 4 to 10.  

The performance of the two-opt-heuristic is increasing in capacity level for low and 

medium yield variability. With higher capacity levels it is easier to reduce the effects of less 

precise planning from the beginning in later periods, e.g. by reducing possible backorders from 

earlier periods. 

The numerical evaluation of the integrals also explains the decrease of accuracy with 

increasing 𝜌 level. For high yield variability the gap is the greatest. The heuristic can be 

adjusted to higher variability by using more than five fulcrums for the probability distributions. 

However, this is a trade-off between accuracy and runtime. Even for the rather long planning 

horizon of 10 periods and high yield variability the gap is less than 5 %. Considering the large 

runtime improvement and the intuitive appeal of the heuristic the results are encouraging. 

Table 5-4 Profit of two-opt-heuristic below 𝜺-optimal solution (percent) 

𝜌 level 𝑉 𝑇 = 1 2 5 10 

low low 0.2 1.1 1.5 3.3 

 medium 0.1 0.4 1.1 2.1 

 unlimited 0.0 0.4 1.1 1.7 

medium low 0.2 1.1 1.6 3.6 

 medium 0.1 0.5 1.4 2.4 

 unlimited 0.0 0.6 1.4 2.4 

high low 0.3 0.7 2.0 4.7 

 medium 0.3 0.5 2.0 3.0 

 unlimited 0.1 1.6 3.4 5.0 
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5.7.3.   The Value of Preliminary Yield Information 

To compute the value of preliminary yield information, we compare the setting with 

preliminary yield information with a setting without this information. The setting without 

preliminary yield information can be modeled as a special case of our model by setting the 

number of soft bins to one and assuming deterministic replenishment in stage one. The yield 

rate distributions of the second stage have to be adapted so that they incorporate the unobserved 

risk of the first stage.  

We apply the setting without preliminary yield information to the same test cases used 

in Section 5.7.1. We use the 𝜀-optimal solution approach for T≤10 and the two-opt-heuristic 

to solve additional test cases with planning horizons of 15 and 20 periods. These larger 

problems cannot be solved by the 𝜀-optimal solution approach with reasonable effort. Table 

5-5 shows the relative profit difference of a system with preliminary yield information versus 

a system without preliminary yield information.  

Table 5-5 Profit of system with preliminary yield information above system without (in percent) 

𝜌 level 𝑉 𝑇=1 2 5 10 15 20 

low low 10 12 21 45 95 321 

 medium 5 5 7 12 21 49 

 unlimited 2 1 1 2 2 4 

medium low 10 12 21 45 94 328 

 medium 5 5 7 12 20 44 

 unlimited 1 1 1 2 1 3 

high low 9 12 21 45 95 365 

 medium 5 5 8 13 20 40 

 unlimited 1 1 1 2 1 2 

 

The parameter yield variability (𝜌 level) is not relevant in this context because changes 

in this parameter affect both settings in the same way. Focusing on the capacity parameter V, 

results show that substantial profit increases can be achieved for low and medium test capacity. 

These results indicate that preliminary yield information is an effective mean to make more 
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efficient use of scarce test capacities. The effect of preliminary yield information on test 

decisions under limited capacity becomes more visible when we analyze a single test case on 

a more detailed level. Figure 5-4 considers the test case with T = 1, low capacity and low yield 

variability. It shows the first stage production quantity, the average number of units tested with 

test processes 1 and 2 and the average number of units that complete this test successfully. The 

reported results are similar for all test cases with limited capacity. 

Figure 5-4 Effect of preliminary yield information on measures for test case 

 

The first observation is that without preliminary yield information the production 

quantity is smaller. To understand the reasoning we have to look at stage two first. Assuming 

unlimited soft bin inventory, testing 41 units with test process one and 5 units with test process 

two is the optimal solution which utilizes all of the available capacity. Because only 46 units 

can be tested only 46 units need to be produced. With preliminary yield information, pre-testing 

yields on average 90 % usable units. This results in 49 units of expected soft bin inventories. 

On average 43 units are used for testing which does not utilize all of the available capacity. 

There are on average 6 units and some unused capacity left which can be seen as safety stock 

to cover higher than expected demands. This reactive capacity is available due to preliminary 

yield information and results in a profit increase.  
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The tighter the capacity constraint the more important it becomes to test only those units 

for quality level 1 that have a high probability to pass this test. The same reasoning applies if 

test costs are increasing in test level. If 𝑟1 > 𝑟2, it increases profit to test only units with high 

success probability for quality level 1. Preliminary yield information can partially identify these 

units. Figure 5-4 shows that with preliminary yield information fewer units are tested with the 

more capacity consuming test process 1 yielding at the same time more units of quality 1 than 

without preliminary yield information. This demonstrates that preliminary yield information is 

an effective mean to make more efficient use of scarce test capacity.  

With unlimited test capacity and equal test costs (𝑟1 = 𝑟2) all units can be tested for 

quality level 1 without harming profits. Therefore preliminary yield information yields almost 

no profit increase for test cases with unlimited test capacity. The small profit increase for 

unlimited test capacity is due to the fact that test results are more predictable under preliminary 

yield information.  

Next, we discuss the effect of increasing the planning horizon T. With increasing 

planning horizon 𝑇 and limited capacity, preliminary yield information becomes more 

profitable. In the setting without preliminary yield information the limited capacity cannot be 

used as efficiently as with preliminary yield information resulting in more and longer 

backorders. Therefore the average number of backorders per period increases in T. Figure 5-5 

displays this fact for test cases with low capacity and low yield rate. With preliminary yield 

information the average number of backorders per period is increasing at a much lower rate. 

The results are similar to the other test cases with limited capacity. For test cases with unlimited 

test capacity this effect is not observable. The results from this section show that signification 

profit increases can be achieved by preliminary yield information when test capacity is limited. 
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Figure 5-5 Average number of backorders per period with and without preliminary yield information 

  

5.8.   Conclusion 

We analyzed a two-stage production process with co-production, random yields, and 

substitution as well as limited capacity at the second stage. We modeled the multi period 

problem as a nested dynamic program. To gain structural insights on the optimal policy a single 

period model and a static two-period model have been studied. We proved that the profit 

functions of both models are convex. Based on these properties we developed a heuristic that 

can be applied on a rolling horizon approach. Any direct solution approach of the dynamic 

program was considers as not tractable even for very small problem instances. We therefore 

applied a solution approach that relies on stochastic linear programming and can compute 

solution with arbitrary small optimality gap. This approach is used to evaluate the performance 

of the heuristic. We conduct numerical experiments that show that the heuristic performs well 

over a wide parameter setting and that preliminary yield information is of significant value 

when test capacity is limited.   

Our research provides the algorithms that are necessary to plan the proposed two stage 

semiconductor production system. Companies can use the results of our research to determine 

whether or not to implement a pre-test after initial wafer production. Companies who decide to 
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implement a pre-test after initial wafer production can use our solution approaches to compute 

close-to-optimal solutions with low computation times.  

An extension of the current work is to study problems with more than two usable quality 

levels. For these models different heuristic solutions approaches would be needed. For 

example, one could consider a model with only one level downward substitution at the second 

stage. Another approach to deal with more than two quality levels would be to aggregate 

multiple quality levels for planning. Analysis of such approximate structures and comparisons 

with optimal solutions merit a separate study.  

Another interesting extension is to include direct demand substitution with finished 

products. This would add a third stage to the dynamic program. Decision on whether or not to 

satisfy current demand for low quality products with products of higher quality could be 

modeled explicitly. The influences of this option on the production decisions in the previous 

two stages and the value of preliminary yield information in such a setting would be worthwhile 

to study.  
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Appendix 5.A. Proof of Theorem 5-1 

We show that the function �̃�1 (𝑋, 𝛽22, 𝛽21) is jointly concave in 𝑋11 ≥0, 𝑋12 ≥0, 𝑋21 ≥0 and 

𝑋22 ≥0. Because the expectation of a jointly concave function is jointly concave, �̂�1(𝑋, 𝑌) is a 

combination of jointly concave functions and the desired result follows. 

Substituting 𝑃1, 𝑃2,  𝑊1, and 𝑊2 back into �̃�1 and using some basic transformations we get 

 

�̃�1 (𝑋, 𝛽22, 𝛽21) = 

∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[(𝑝1 + ℎ1 + 𝑏1)(𝑋11𝛽11𝛽12 + 𝑋21𝛽21𝛽22 − 𝑑1)]
(𝑑1−𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄

0

1

0
𝑑𝛽11𝑑𝛽21  

+∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22) (𝑋11(1−𝛽11)+𝑋12)⁄

0

1

0
  

[(𝑝2 + ℎ2 + 𝑏2)(𝑋11𝛽12(1 − 𝛽11) + 𝑋12𝛽12 + 𝑋21𝛽22(1 − 𝛽21) + 𝑋22𝛽22 − 𝑑2)] 𝑑𝛽21𝑑𝛽11 

+ℎ1(𝑑1 − 𝑋11𝐸[𝛽11]𝐸[𝛽12] − 𝑋21𝐸[𝛽21]𝐸[𝛽22]) + ℎ2(𝑑2 − 𝑋11𝐸[𝛽12](1 − 𝐸[𝛽11]) −

𝑋12𝐸[𝛽12] − 𝑋21𝐸[𝛽22](1 − 𝐸[𝛽21]) − 𝑋22𝐸[𝛽22]) + 𝑝1𝑑1 + 𝑝2𝑑2  

The first order derivatives are   

𝒅�̃�𝟏

𝒅𝑿𝟏𝟏
= ∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[𝛽11𝛽12(𝑝1 + ℎ1 + 𝑏1)]

(𝑑1−𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄

0

1

0
𝑑𝛽11𝑑𝛽21  

+∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22) (𝑋11(1−𝛽11)+𝑋12)⁄

0

1

0
  

[𝛽12(1 − 𝛽11)(𝑝2 + ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

−ℎ1𝐸[𝛽11]𝐸[𝛽12] − ℎ2𝐸[𝛽12](1 − 𝐸[𝛽11])  

𝒅�̃�𝟏

𝒅𝑿𝟏𝟐
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22) (𝑋11(1−𝛽11)+𝑋12)⁄

0

1

0
  

[𝛽12(𝑝2 + ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

−ℎ2𝐸[𝛽12]   
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𝒅�̃�𝟏

𝒅𝑿𝟐𝟏
= ∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[𝛽21𝛽22(𝑝1 + ℎ1 + 𝑏1)]

(𝑑1−𝑋21𝛽21𝛽22) 𝑋11𝛽12⁄

0

1

0
𝑑𝛽11𝑑𝛽21  

+∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22) (𝑋11(1−𝛽11)+𝑋12)⁄

0

1

0
  

[𝛽22(1 − 𝛽21)(𝑝2 + ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

−ℎ1𝛽21𝛽22 − ℎ2𝛽22(1 − 𝛽21) 

𝒅�̃�𝟏

𝒅𝑿𝟐𝟐
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22) (𝑋11(1−𝛽11)+𝑋12)⁄

0

1

0
  

[𝛽22(𝑝2 + ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

−ℎ2𝛽22    

The second order derivatives are 

𝑎 =
𝑑2�̃�1

𝑑𝑋11
2 = −(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)𝑔 (

(𝑑1−𝑋21𝛽21𝛽22)

𝑋11𝛽12
) [

(𝑑1−𝑋21𝛽21𝛽22)
2

𝑋11
3 𝛽12

]
1

0
𝑑𝛽21  

−(𝑝2 + ℎ2 + 𝑏2) ∫ (1 − 𝛽11)
21

0
  

𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)
2

(𝑋11(1−𝛽11)+𝑋12)3
] 𝑑𝛽11  

𝑏 =
𝑑2�̃�1

𝑑𝑋11𝑋12
=

𝑑2�̃�1

𝑑𝑋12𝑋11
= −(𝑝2 + ℎ2 + 𝑏2) ∫ (1 − 𝛽11)

1

0
  

𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)
2

(𝑋11(1−𝛽11)+𝑋12)3
] 𝑑𝛽11  

𝑐 =
𝑑2�̃�1

𝑑𝑋12
2 = −(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)𝑓 (

(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
)

1

0
  

[
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

2

(𝑋11(1−𝛽11)+𝑋12)3
] 𝑑𝛽11  

𝑑 =
𝑑2�̃�1

𝑑𝑋11𝑋21
=

𝑑2�̃�1

𝑑𝑋21𝑋11
= −𝛽21𝛽22(𝑝1 + ℎ1 + 𝑏1)  
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∫ 𝑓(𝛽12)𝑔 (
(𝑑1−𝑋21𝛽21𝛽22)

𝑋11𝛽12
) [

𝑑1−𝑋21𝛽21𝛽22

𝑋11
2 𝛽12

]
1

0
𝑑𝛽21  

−𝛽22(1 − 𝛽21)(𝑝2 + ℎ2 + 𝑏2) ∫ (1 − 𝛽11)
1

0
  

𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

(𝑋11(1−𝛽11)+𝑋12)2
] 𝑑𝛽11  

𝑒 =
𝑑2�̃�1

𝑑𝑋11𝑋22
=

𝑑2�̃�1

𝑑𝑋22𝑋11
= −𝛽22(𝑝2 + ℎ2 + 𝑏2) ∫ (1 − 𝛽11)

1

0
  

𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

(𝑋11(1−𝛽11)+𝑋12)2
] 𝑑𝛽11  

𝑓 =
𝑑2�̃�1

𝑑𝑋12𝑋21
=

𝑑2�̃�1

𝑑𝑋21𝑋12
 =−𝛽22(1 − 𝛽21)(𝑝2 + ℎ2 + 𝑏2)  

∫ 𝑔(𝛽11)𝑓 (
𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

𝑋11(1−𝛽11)+𝑋12
) [

𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

(𝑋11(1−𝛽11)+𝑋12)2
] 𝑑𝛽11

1

0
  

𝑔 =
𝑑2�̃�1

𝑑𝑋12𝑋22
=

𝑑2�̃�1

𝑑𝑋22𝑋12
= −𝛽22(𝑝2 + ℎ2 + 𝑏2)  

∫ 𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

(𝑋11(1−𝛽11)+𝑋12)2
] 𝑑𝛽11

1

0
  

ℎ =
𝑑2�̃�1

𝑑𝑋21𝑋22
=

𝑑2�̃�1

𝑑𝑋22𝑋21
= −𝛽22

2 (1 − 𝛽21)(𝑝2 + ℎ2 + 𝑏2)  

∫ 𝑔(𝛽11)𝑓 (
(𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22)

(𝑋11(1−𝛽11)+𝑋12)
) [

1

(𝑋11(1−𝛽11)+𝑋12)
] 𝑑𝛽11

1

0
  

𝑘 =
𝑑2�̃�1

𝑑𝑋21
2 = −𝛽21

2 𝛽22
2 (𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)𝑔 (

(𝑑1−𝑋21𝛽21𝛽22)

𝑋11𝛽12
) [

1

𝑋11𝛽12
]

1

0
𝑑𝛽21  

−𝛽22
2 (1 − 𝛽21)

2(𝑝2 + ℎ2 + 𝑏2)  

∫ 𝑔(𝛽11)𝑓 (
𝑑2 − 𝑋21𝛽22(1 − 𝛽21) − 𝑋22𝛽22

𝑋11(1 − 𝛽11) + 𝑋12
) [

1

(𝑋11(1 − 𝛽11) + 𝑋12)
] 𝑑𝛽11

1

0

 

𝑙 =
𝑑2�̃�1

𝑑𝑋22
2 = 
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−𝛽22
2 (𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)𝑓 (

𝑑2−𝑋21𝛽22(1−𝛽21)−𝑋22𝛽22

𝑋11(1−𝛽11)+𝑋12
) [

1

𝑋11(1−𝛽11)+𝑋12
] 𝑑𝛽11

1

0
  

The Hessian matrix has the following structure.  

𝐻 = (

𝑎 𝑏 𝑑 𝑒
𝑏 𝑐 𝑓 𝑔
𝑑 𝑓 𝑘 ℎ
𝑒 𝑔 ℎ 𝑙

) 

We show that the Hessian matrix is negative semidefinite by showing that 𝑥𝑇𝐻𝑥 ≤ 0 for all 

𝑥 ∈  ℝ4. [Comment: 𝑥𝑇 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)] 

We get the following result 𝑥𝑇𝐻𝑥 = 𝑎𝑥1
2 + 𝑐𝑥2

2 + 𝑘𝑥3
2 + 𝑙𝑥4

2 + 2𝑏𝑥1𝑥2 + 2𝑑𝑥1𝑥3 +

2𝑒𝑥1𝑥4 + 2𝑓𝑥2𝑥3 + 2𝑔𝑥2𝑥4 + 2ℎ𝑥3𝑥4. Because all second order derivatives are negative 

(≤ 0), there exists always an 𝜀1 that is ≥ 𝑎, 𝑏, and 𝑐, an  𝜀2 ≥ 𝑘, 𝑙, and ℎ and an 𝜀3 ≥ 𝑑, 𝑒, 𝑓 

and 𝑔 but 𝜀1, 𝜀2, 𝜀3 ≤ 0. We can establish that 𝑥𝑇𝐻𝑥 ≤ 𝜀1(𝑥1 + 𝑥2)
2 + 𝜀2(𝑥3 + 𝑥4)

2 +

2𝜀3((𝑥1 + 𝑥2)(𝑥3 + 𝑥4)). Following the same reasoning there will always be an 𝜀4 with 0 ≥

𝜀4 ≥ 𝜀1, 𝜀2, 𝜀3 so that 𝑥𝑇𝐻𝑥 ≤ 𝜀4(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)
2 ≤ 0, which is true for all 𝑥 ∈  ℝ4. ∎ 

 

Appendix 5.B. Profit function for two-period model 

Let 𝑃𝑖𝑡 be the test yield of quality level 𝑖 in period 𝑡 given as 𝑃11 = 𝑋11𝛽11,1𝛽12,1 +

𝑋21𝛽21,1𝛽22,1, 𝑃21 = 𝑋11𝛽12,1(1 − 𝛽11,1) + 𝑋12𝛽12,1 + 𝑋21𝛽22,1(1 − 𝛽21,1) + 𝑋22𝛽22,1 

𝑃12 = 𝑌11𝛽11,2𝛽12,2 + 𝑌21𝛽21,2𝛽22,2, and 𝑃22 = 𝑌11𝛽12,2(1 − 𝛽11,2) + 𝑌12𝛽12,2 + 𝑌21𝛽22,2(1 −

𝛽21,2) + 𝑌22𝛽22,2. 

To model the profit function 𝜋2(𝑋, 𝑌) we have to distinguish 16 cases. They are given 

as: 

For 𝑃11 ≥ 𝑑1 and 𝑃21 ≥ 𝑑2 

𝜋2(𝑋, 𝑌) = −𝑟1(𝑋11 + 𝑋21 + 𝑌11 + 𝑌21) − 𝑟2(𝑋12 + 𝑋22 + 𝑌12 + 𝑌22)  

+ℎ𝑆1(2𝑋11 + 2𝑋12 + 𝑌11 + 𝑌12) + ℎ𝑆2(2𝑋21 + 2𝑋22 + 𝑌21 + 𝑌22) + 𝑝1𝑑1 + 𝑝2𝑑2 − ℎ1(𝑃11 − 𝑑1)

− ℎ2(𝑃21 − 𝑑2)

+

{
 
 

 
 

𝑝1𝐷1 + 𝑝2𝐷2 − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)

𝑝1𝐷1 + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))

𝑝1(𝑃12 + 𝑃21 − 𝑑2) + 𝑝2𝐷2 − 𝑏1(𝐷1 − (𝑃12 + 𝑃21 − 𝑑2)) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)

𝑝1(𝑃12 + 𝑃21 − 𝑑2) + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − 𝑏1(𝐷1 − (𝑃12 + 𝑃21 − 𝑑2)) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))

 

(54) 

(55) 
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if
(𝑑1 + 𝐷1 − 𝑌21𝛽21,2𝛽22,2 − 𝑃11) 𝑌11𝛽12,2⁄ ≤ 𝛽11,2 and  

(𝑑2 + 𝐷2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2 − 𝑃21) (𝑌11(1 − 𝛽11,2) + 𝑌12) ≤ 𝛽12,2⁄
 

if
(𝑑1 + 𝐷1 − 𝑌21𝛽21,2𝛽22,2 − 𝑃11) 𝑌11𝛽12,2⁄ ≤ 𝛽11,2 and   

(𝑑2 + 𝐷2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2 − 𝑃21) (𝑌11(1 − 𝛽11,2) + 𝑌12) > 𝛽12,2⁄
 

if
(𝑑1 + 𝐷1 − 𝑌21𝛽21,2𝛽22,2 − 𝑃11) 𝑌11𝛽12,2⁄ > 𝛽11,2 and  

(𝑑2 + 𝐷2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2 − 𝑃21) (𝑌11(1 − 𝛽11,2) + 𝑌12) ≤ 𝛽12,2⁄
 

if
(𝑑1 + 𝐷1 − 𝑌21𝛽21,2𝛽22,2 − 𝑃11) 𝑌11𝛽12,2⁄ > 𝛽11,2 and  

(𝑑2 + 𝐷2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2 − 𝑃21) (𝑌11(1 − 𝛽11,2) + 𝑌12) > 𝛽12,2⁄
 

(56) 

(57) 

(58) 

For 𝑃11 ≥ 𝑑1 and 𝑃21 < 𝑑2 

𝜋2(𝑋, 𝑌) = −𝑟1(𝑋11 + 𝑋21 + 𝑌11 + 𝑌21) − 𝑟2(𝑋12 + 𝑋22 + 𝑌12 + 𝑌22) + ℎ𝑆1(2𝑋11 + 2𝑋12 + 𝑌11 + 𝑌12) 

+ℎ𝑆2(2𝑋21 + 2𝑋22 + 𝑌21 + 𝑌22) + 𝑝1𝑑1 + 𝑝2𝑃21 − ℎ1(𝑃11 − 𝑑1) − 𝑏2(𝑑2 − 𝑃21)

+

{
 
 

 
 

𝑝1𝐷1 + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21)) if (𝟓𝟓)

𝑝1𝐷1 + 𝑝2𝑃22 − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22) if (𝟓𝟔)

𝑝1(𝑃12 + 𝑃11 − 𝑑1) + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − 𝑏1(𝐷1 − (𝑃12 + 𝑃11 − 𝑑1)) − ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21)) if (𝟓𝟕)

𝑝1(𝑃12 + 𝑃11 − 𝑑1) + 𝑝2𝑃22 − 𝑏1(𝐷1 − (𝑃12 + 𝑃11 − 𝑑1)) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22) if (𝟓𝟖)

 

(59) 

For 𝑃11 < 𝑑1 and 𝑃21 ≥ 𝑑2 

𝜋2(𝑋, 𝑌) = −𝑟1(𝑋11 + 𝑋21 + 𝑌11 + 𝑌21) − 𝑟2(𝑋12 + 𝑋22 + 𝑌12 + 𝑌22) + ℎ𝑆1(2𝑋11 + 2𝑋12 + 𝑌11 + 𝑌12)  

+ℎ𝑆2(2𝑋21 + 2𝑋22 + 𝑌21 + 𝑌22) + 𝑝1𝑃11 + 𝑝2𝑑2 − 𝑏1(𝑑1 − 𝑃11) − ℎ2(𝑃21 − 𝑑2)

+

{
 
 

 
 𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2𝐷2 − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2) if (𝟓𝟓)

𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2)) if (𝟓𝟔)

𝑝1𝑃12 + 𝑝2𝐷2 − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2) if (𝟓𝟕)

𝑝1𝑃12 + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2)) if (𝟓𝟖)

 

(60) 

For 𝑃11 < 𝑑1 and 𝑃21 < 𝑑2 

𝜋2(𝑋, 𝑌) = −𝑟1(𝑋11 + 𝑋21 + 𝑌11 + 𝑌21) − 𝑟2(𝑋12 + 𝑋22 + 𝑌12 + 𝑌22) + ℎ𝑆1(2𝑋11 + 2𝑋12 + 𝑌11 + 𝑌12)  

+ℎ𝑆2(2𝑋21 + 2𝑋22 + 𝑌21 + 𝑌22) + 𝑝1𝑃11 + 𝑝2𝑃21 − 𝑏1(𝑑1 − 𝑃11) − 𝑏2(𝑑2 − 𝑃21)

+

{
 
 

 
 𝑝1

(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21)) if (𝟓𝟓)

𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2𝑃22 − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22) if (𝟓𝟔)

𝑝1𝑃12 + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21)) if (𝟓𝟕)

𝑝1𝑃12 + 𝑝2𝑃22 − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22) if (𝟓𝟖)

 

(61) 

s. t.: 𝑣1(𝑋11 + 𝑋21)+ 𝑣2(𝑋12 + 𝑋22) ≤ 𝑉   (62) 

 𝑣1(𝑌11 + 𝑌21)+ 𝑣2(𝑌12 + 𝑌22) ≤ 𝑉   (63) 

 𝑋11 + 𝑋12 + 𝑌11 + 𝑌12 ≤ 𝑆1   (64) 
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 𝑋21 + 𝑋22 + 𝑌21 + 𝑌22 ≤ 𝑆2   (65) 

 Non-negativity constraints   

 

Appendix 5.C. First order derivatives for two-period model 

 

We provide expressions for the first order derivatives of �̂�2(𝑋, 𝑌) as they are used to 

compute the optimal solution for the two period model. The calculations can be found in the 

online appendix. 

We set 𝑊1 =
𝑑1−𝑋21𝛽21,1𝛽22,1

𝑋11𝛽12,1
  , 𝑊2 =

𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

𝑋11(1−𝛽11,1)+𝑋12,1
, 𝑊3 =

𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑋11𝛽11,1𝛽12,1−𝑋21𝛽21,1𝛽22,1

𝑌11𝛽12,2
  and 

𝑊4 =
𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

𝑌11(1−𝛽11,2)+𝑌12
 . 

 

𝒅�̂�𝟐
𝒅𝑿𝟏𝟏

= −𝑟1 + 2ℎ𝑆1 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[𝛽11,1𝛽12,1(ℎ1 + 𝑏1)]
𝑊1
𝛽11,1=0

1

𝛽12,1=0
𝑑𝛽11𝑑𝛽21 + ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

𝑊2
𝛽12,1=0

1

𝛽11,1=0
[𝛽12,1(1 −

𝛽11,1)(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11 + ∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12) [𝛽11,1𝛽12,1(𝑝1 + ℎ1 +
1

𝛽12,1=0

𝑏1) ∫ 𝑓(𝛽12)𝐺𝛽11.2(𝑊3)
1

𝛽12,2=0
𝑑𝛽12 + 𝛽12,1(1 − 𝛽11,1)(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − 2𝐸[𝛽12,1] (ℎ1𝐸[𝛽11,1] + ℎ2(1 −

𝐸[𝛽11,1]))  

𝒅�̂�𝟐
𝒅𝑿𝟏𝟐

= −𝑟2 + 2ℎ𝑆1 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)
(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0

1

𝛽11,1=0
[𝛽12,1(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11 +

∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12) [𝛽12,1(𝑝2 + ℎ2 +
1

𝛽12,1=0

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − 2ℎ2𝐸[𝛽12,1]  

𝒅�̂�𝟐
𝒅𝑿𝟐𝟏

= −𝑟1 + 2ℎ𝑆2 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[𝛽21,1𝛽22,1(ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,1=0
𝐺𝛽11.1(𝑊1)𝑑𝛽21 + 𝛽22,1(1 −

𝛽21,1)(ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)𝐹𝛽12.1(𝑊2)
1

𝛽11,1=0
𝑑𝛽11 + ∫ 𝑔(𝛽11)

1

𝛽11,1=0
∫ 𝑓(𝛽12) [𝛽21,1𝛽22,1(𝑝1 + ℎ1 +
1

𝛽12,1=0

𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,2=0
𝐺𝛽11.2(𝑊3)𝑑𝛽12 + 𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 +
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𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − 2𝐸[𝛽22,1] (ℎ1𝐸[𝛽21,1] + ℎ2(1 −

𝐸[𝛽21,1]))  

𝒅�̂�𝟐
𝒅𝑿𝟐𝟐

= −𝑟2 + 2ℎ𝑆2 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[𝛽22,1(ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)𝐹𝛽12.1(𝑊2)
1

𝛽11,1=0
𝑑𝛽11 + ∫ 𝑔(𝛽11)

1

𝛽11,1=0
∫ 𝑓(𝛽12) [𝛽22,1(𝑝2 + ℎ2 +
1

𝛽12,1=0

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − 2ℎ2𝐸[𝛽22,1]  

𝑑�̂�2
𝑑𝑌11

= −𝑟1 + ℎ𝑆1 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12) [∫ 𝑓(𝛽12)

1

𝛽12,2=0
∫ 𝑔(𝛽11)
𝑊3
𝛽11,2=0

[𝛽11,2𝛽12,2(𝑝1 + ℎ1 + 𝑏1)]𝑑𝛽11𝑑𝛽12 +
1

𝛽12,1=0

∫ 𝑔(𝛽11)
1

𝛽11,2=0
∫ 𝑓(𝛽12)
𝑊4
𝛽12,2=0

[𝛽12,2(1 − 𝛽11,2)(𝑝2 + ℎ2 +

𝑏2)]𝑑𝛽12𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − 𝐸[𝛽12,2] (ℎ1𝐸[𝛽11,2] + ℎ2(1 − 𝐸[𝛽11,2]))  

𝒅�̂�𝟐
𝒅𝒀𝟏𝟐

= −𝑟2 + ℎ𝑆1 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12) [∫ 𝑔(𝛽11)

1

𝛽11,2=0
∫ 𝑓(𝛽12)
𝑊4
𝛽12,2=0

[𝛽12,2(𝑝2 + ℎ2 +
1

𝛽12,1=0

𝑏2)]𝑑𝛽12𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − ℎ2𝐸[𝛽12,2]  

𝒅�̂�𝟐
𝒅𝒀𝟐𝟏

= −𝑟1 + ℎ𝑆2 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12) [𝛽21,2𝛽22,2(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝐺𝛽11.2(𝑊3)𝑑𝛽12 + 𝛽22,1(1 −

1

𝛽12,1=0

𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 −

𝐸[𝛽22,2] (ℎ1𝐸[𝛽21,2] + ℎ2(1 − 𝐸[𝛽21,2]))  

𝒅�̂�𝟐
𝒅𝒀𝟐𝟐

= −𝑟2 + ℎ𝑆2 + ∫ 𝑚(𝐷1)
∞

𝐷1=0
∫ 𝑛(𝐷2)
∞

𝐷2=0
∫ ℎ(𝛽22) ∫ 𝑘(𝛽21) ∫ ℎ(𝛽21)

1

𝛽21,2=0
∫ 𝑘(𝛽22)
1

𝛽22,2=0
     

1

𝛽22,1=0
 

1

𝛽21,2=0
 

[∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12)𝛽22,2(𝑝2 + ℎ2 +
1

𝛽12,1=0

𝑏2) [∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝐹𝛽12.2(𝑊4)𝑑𝛽12𝑑𝛽11] 𝑑𝛽12𝑑𝛽11] 𝑑𝛽22𝑑𝛽21𝑑𝛽22𝑑𝛽21𝑑𝐷1𝑑𝐷2 − ℎ2𝐸[𝛽22,2]   
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Appendix 5.D. Proof of Theorem  5-2 

We show that the function �̃�2(𝑋, 𝑌, 𝐷1, 𝐷2, 𝛽21,1, 𝛽22,1, 𝛽21,2, 𝛽22,2) is jointly concave in 𝑋 ≥ 0 

and 𝑌 ≥ 0. Because the expectation of a jointly concave function is jointly concave, �̂�2(𝑋, 𝑌) 

is a combination of jointly concave functions and the desired result follows. 

We set  

𝑊1 = (𝑑1 − 𝑋21𝛽21,1𝛽22,1) 𝑋11𝛽12,1⁄ , 𝑊2 = (𝑑2 − 𝑋21𝛽22,1(1 − 𝛽21,1) − 𝑋22𝛽22,1) (𝑋11(1 − 𝛽11,1) + 𝑋12)⁄  

𝑊3 = (𝑑1 + 𝐷1 − 𝑌21𝛽21,2𝛽22,2 − 𝑃11) 𝑌11𝛽12,2⁄ ,  

𝑊4 = (𝑑2 + 𝐷2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2 − 𝑃21) (𝑌11(1 − 𝛽11,2) + 𝑌12)⁄ , 

𝑃11 = 𝑋11𝛽11,1𝛽12,1 + 𝑋21𝛽21,1𝛽22,1, 𝑃21 = 𝑋11𝛽12,1(1 − 𝛽11,1) + 𝑋12𝛽12,1 + 𝑋21𝛽22,1(1 − 𝛽21,1) + 𝑋22𝛽22,1 

𝑃12 = 𝑌11𝛽11,2𝛽12,2 + 𝑌21𝛽21,2𝛽22,2, and 𝑃22 = 𝑌11𝛽12,2(1 − 𝛽11,2) + 𝑌12𝛽12,2 + 𝑌21𝛽22,2(1 − 𝛽21,2) + 𝑌22𝛽22,2. 

We get 

�̃�2(𝑋, 𝑌, 𝐷1, 𝐷2, 𝛽21,1, 𝛽22,1, 𝛽21,2, 𝛽22,2) =   

∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃11 + 𝑝2𝑃21 − 𝑏1(𝑑1 − 𝑃11) − 𝑏2(𝑑2 − 𝑃21)]
𝑊1

𝛽11,1=0

𝑊2

𝛽12,1=0

 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃12 + 𝑝2𝑃22 − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22)]
𝑊3

𝛽11,2=0

𝑊4

𝛽12,2=0

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2𝑃22 − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22)]
𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1𝑃12 + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12)

−ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21))
]

𝑊3

𝛽11,2=0

𝛽12,2=1

𝑊4

𝑑𝛽11 

+∫ 𝑔(𝛽11) [
𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2(𝐷2 + 𝑑2 − 𝑃21)

−ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21))
]

𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑑1 + 𝑝2𝑃21 − ℎ1(𝑃11 − 𝑑1) − 𝑏2(𝑑2 − 𝑃21)]
𝛽11,1=1

𝑊1

𝑊2

𝛽12,1=0

 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1(𝑃12 + 𝑃11 − 𝑑1) + 𝑝2𝑃22 − 𝑏1(𝐷1 − (𝑃12 + 𝑃11 − 𝑑1))

−𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22)
]

𝑊3

𝛽11,2=0

𝑊4

𝛽12,2=0

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1𝐷1 + 𝑝2𝑃22 − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − 𝑏2(𝐷2 + 𝑑2 − 𝑃21 − 𝑃22)]
𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1(𝑃12 + 𝑃11 − 𝑑1) + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − 𝑏1(𝐷1 − (𝑃12 + 𝑃11 − 𝑑1))

−ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21))
]

𝑊3

𝛽11,2=0

𝛽12,2=1

𝑊4

𝑑𝛽11 

+∫ 𝑔(𝛽11) [
𝑝1𝐷1 + 𝑝2(𝐷2 + 𝑑2 − 𝑃21) − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1)

−ℎ2(𝑃22 − (𝐷2 + 𝑑2 − 𝑃21))
]

𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃11 + 𝑝2𝑑2 − 𝑏1(𝑑1 − 𝑃11) − ℎ2(𝑃21 − 𝑑2)]
𝑊1

𝛽11,1=1

𝛽12,1=1

𝑊2

 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1𝑃12 + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12)

−𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))
]

𝑊3

𝛽11,2=0

𝑊4

𝛽12,2=0

𝑑𝛽11 
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+∫ 𝑔(𝛽11) [
𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2(𝑃22 + 𝑃21 − 𝑑2)

−ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11)) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))
]

𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑃12 + 𝑝2𝐷2 − 𝑏1(𝐷1 + 𝑑1 − 𝑃11 − 𝑃12) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)]
𝑊3

𝛽11,2=0

𝛽12,2=1

𝑊4

𝑑𝛽11 

+∫ 𝑔(𝛽11) [
𝑝1(𝐷1 + 𝑑1 − 𝑃11) + 𝑝2𝐷2 − ℎ1(𝑃12 − (𝐷1 + 𝑑1 − 𝑃11))

−ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)
]

𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[𝑝1𝑑1 + 𝑝2𝑑2 − ℎ1(𝑃11 − 𝑑1) − ℎ2(𝑃21 − 𝑑2)]
𝛽11,1=1

𝑊1

𝛽12,1=1

𝑊2

 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1(𝑃12 + 𝑃21 − 𝑑2) + 𝑝2(𝑃22 + 𝑃21 − 𝑑2)

−𝑏1(𝐷1 − (𝑃12 + 𝑃21 − 𝑑2)) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))
]

𝑊3

𝛽11,2=0

𝑊4

𝛽12,2=0

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1𝐷1 + 𝑝2(𝑃22 + 𝑃21 − 𝑑2) − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − 𝑏2(𝐷2 − (𝑃22 + 𝑃21 − 𝑑2))]
𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12 

+∫ 𝑓(𝛽12)∫ 𝑔(𝛽11) [
𝑝1(𝑃12 + 𝑃21 − 𝑑2) + 𝑝2𝐷2 − 𝑏1(𝐷1 − (𝑃12 + 𝑃21 − 𝑑2))

−ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)
]

𝑊3

𝛽11,2=0

𝛽12,2=1

𝑊4

𝑑𝛽11 

+∫ 𝑔(𝛽11)[𝑝1𝐷1 + 𝑝2𝐷2 − ℎ1(𝑃12 + 𝑃11 − 𝑑1 − 𝐷1) − ℎ2(𝑃22 + 𝑃21 − 𝑑2 − 𝐷2)]
𝛽11,2=1

𝑊3

𝑑𝛽11𝑑𝛽12𝑑𝛽11𝑑𝛽12 

After some algebraic transformations we get 

�̃�2(𝑋, 𝑌, 𝐷1, 𝐷2, 𝛽21,1, 𝛽22,1, 𝛽21,2, 𝛽22,2) =   

∫ 𝑓(𝛽12)∫ 𝑔(𝛽11)[(ℎ1 + 𝑏1)(𝑃11 − 𝑑1)]
𝑊1

𝛽11,1=0

1

𝛽12,1=0

𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,1=0

∫ 𝑓(𝛽12)
𝑊2

𝛽12,1=0

[(ℎ2 + 𝑏2)(𝑃21 − 𝑑2)]𝑑𝛽12𝑑𝛽11 

+∫ 𝑔(𝛽11)
1

𝛽11,1=0

∫ 𝑓(𝛽12)[ℎ1(𝑑1 − 𝑃11) + ℎ2(𝑑2 − 𝑃21)]
1

𝛽12,1=0

 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

[(𝑝1 + ℎ1 + 𝑏1)(𝑃12 + 𝑃11 − 𝐷1 − 𝑑1)]𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[(𝑝2 + ℎ2 + 𝑏2)(𝑃22 + 𝑃21 − 𝐷2 − 𝑑2)]𝑑𝛽12𝑑𝛽11 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)[ℎ1(𝐷1 + 𝑑1 − 𝑃12 − 𝑃11) + ℎ2(𝐷2 + 𝑑2 − 𝑃22 − 𝑃21)]
1

𝛽11,2=0

𝑑𝛽11𝑑𝛽12𝑑𝛽12𝑑𝛽11 

+𝑝1(𝐷1 + 𝑑1) + 𝑝2(𝐷2 + 𝑑2) 

 

�̃�2 is a sum of three functions 𝜓1, 𝜓2 and 𝜓3. 𝜓1 and 𝜓2 depend only on 𝑋. Their structure is 

very similar to the first and second function of �̃�1 (see Appendix 5.A) for which we proved 

concavity. The proof of concavity for 𝜓1 and 𝜓2 is therefore omitted. Before we prove the 

concavity of 𝜓3, we provide the first order derivatives for 𝜓1 and 𝜓2, because they are needed 

for computing the optimal solution.   
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Substituting 𝑊1 and 𝑃11back we get 

𝜓1 =

∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[(ℎ1 + 𝑏1)(𝑋11𝛽11,1𝛽12,1 + 𝑋21𝛽21,1𝛽22,1 − 𝑑1)]
(𝑑1−𝑋21𝛽21,1𝛽22,1) 𝑋11𝛽12,1⁄

𝛽11,1=0

1

𝛽12,1=0
𝑑𝛽11𝑑𝛽12  

with the first order derivatives 

𝑑𝜓1

𝑑𝑋11
= ∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[𝛽11,1𝛽12,1(ℎ1 + 𝑏1)]

(𝑑1−𝑋21𝛽21,1𝛽22,1) 𝑋11𝛽12,1⁄

𝛽11,1=0

1

𝛽12,1=0
𝑑𝛽11𝑑𝛽21  

𝑑𝜓1

𝑑𝑋21
= ∫ 𝑓(𝛽12) ∫ 𝑔(𝛽11)[𝛽21,1𝛽22,1(ℎ1 + 𝑏1)]

(𝑑1−𝑋21𝛽21,1𝛽22,1) 𝑋11𝛽12,1⁄

𝛽11,1=0

1

𝛽12,1=0
𝑑𝛽11𝑑𝛽21  

𝑑𝜓1

𝑑𝑋12
=

𝑑𝜓1

𝑑𝑋22
=

𝑑𝜓1

𝑑𝑌11
=

𝑑𝜓1

𝑑𝑌12
=

𝑑𝜓1

𝑑𝑌21
=

𝑑𝜓1

𝑑𝑌22
= 0  

Substituting 𝑊2 and 𝑃21 back we get 

𝜓2 = ∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12)
(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0
  

[(ℎ2 + 𝑏2)(𝑋11𝛽12,1(1 − 𝛽11,1) + 𝑋12𝛽12,1 + 𝑋21𝛽22,1(1 − 𝛽21,1) + 𝑋22𝛽22,1 − 𝑑2)]𝑑𝛽12𝑑𝛽11  

with the first order derivatives 

𝑑𝜓2

𝑑𝑋11
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0

1

𝛽11,1=0
[𝛽12,1(1 −

𝛽11,1)(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

𝑑𝜓2

𝑑𝑋12
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0

1

𝛽11,1=0
[𝛽12,1(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

𝑑�̃�2

𝑑𝑋21
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0

1

𝛽11,1=0
[𝛽22,1(1 −

𝛽21,1)(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

𝑑𝜓2

𝑑𝑋22
= ∫ 𝑔(𝛽11) ∫ 𝑓(𝛽12)

(𝑑2−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1) (𝑋11(1−𝛽11,1)+𝑋12,1)⁄

𝛽12,1=0

1

𝛽11,1=0
[𝛽22,1(ℎ2 + 𝑏2)] 𝑑𝛽21𝑑𝛽11  

𝑑𝜓2

𝑑𝑌11
=

𝑑𝜓2

𝑑𝑌12
=

𝑑𝜓2

𝑑𝑌21
=

𝑑𝜓2

𝑑𝑌22
= 0  

 

Next we prove the concavity of 𝜓3. We show that the function �̂�
3
 is jointly concave in 𝑋 ≥ 0 

and 𝑌 ≥ 0. Because the expectation of a jointly concave function is jointly concave, the desired 

result follows. Substituting 𝑃11, 𝑃21, 𝑃12 and 𝑃22 back we get 

𝜓3 = ∫ 𝑔(𝛽11)
1

𝛽11,1=0
∫ 𝑓(𝛽12)[�̂�3]𝑑𝛽12𝑑𝛽11
1

𝛽12,1=0
 with 

�̂�3 = ℎ1(𝑑1 − 𝑋11𝛽11,1𝛽12,1 − 𝑋21𝛽21,1𝛽22,1)

+ ℎ2(𝑑2 − 𝑋11𝛽12,1(1 − 𝛽11,1) − 𝑋12𝛽12,1 − 𝑋21𝛽22,1(1 − 𝛽21,1) − 𝑋22𝛽22,1) 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

[(𝑝1 + ℎ1 + 𝑏1)(𝑌11𝛽11,2𝛽12,2 + 𝑌21𝛽21,2𝛽22,2 + 𝑋11𝛽11,1𝛽12,1 + 𝑋21𝛽21,1𝛽22,1

− 𝐷1 − 𝑑1)]𝑑𝛽11𝑑𝛽12 
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+∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[(𝑝2 + ℎ2 + 𝑏2)(𝑌11𝛽12,2(1 − 𝛽11,2) + 𝑌12𝛽12,2 + 𝑌21𝛽22,2(1 − 𝛽21,2)

+ 𝑌22𝛽22,2 + 𝑋11𝛽12,1(1 − 𝛽11,1) + 𝑋12𝛽12,1 + 𝑋21𝛽22,1(1 − 𝛽21,1) + 𝑋22𝛽22,1 − 𝐷2

− 𝑑2)]𝑑𝛽12𝑑𝛽11 

+∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)[ℎ1(𝐷1 + 𝑑1 − 𝑌11𝛽11,2𝛽12,2 − 𝑌21𝛽21,2𝛽22,2 − 𝑋11𝛽11,1𝛽12,1 − 𝑋21𝛽21,1𝛽22,1)
1

𝛽11,2=0

+ ℎ2(𝐷2 + 𝑑2 − 𝑌11𝛽12,2(1 − 𝛽11,2) − 𝑌12𝛽12,2 − 𝑌21𝛽22,2(1 − 𝛽21,2) − 𝑌22𝛽22,2

− 𝑋11𝛽12,1(1 − 𝛽11,1) − 𝑋12𝛽12,1 − 𝑋21𝛽22,1(1 − 𝛽21,1) − 𝑋22𝛽22,1)] 𝑑𝛽11𝑑𝛽12𝑑𝛽12𝑑𝛽11 

and the first order derivatives 

𝑑�̂�3
𝑑𝑋11

= −2ℎ1𝛽11,1𝛽12,1 − 2ℎ2𝛽12,1(1 − 𝛽11,1) 

+𝛽11,1𝛽12,1(𝑝1 + ℎ1 + 𝑏1)∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

𝑑𝛽11𝑑𝛽12 

+𝛽12,1(1 − 𝛽11,1)(𝑝2 + ℎ2 + 𝑏2)∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

𝑑𝛽12𝑑𝛽11 

𝑑�̂�3
𝑑𝑋12

= −2ℎ2𝛽12,1 

+𝛽12,1(𝑝2 + ℎ2 + 𝑏2)∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

𝑑𝛽12𝑑𝛽11 

𝑑�̂�3
𝑑𝑋21

= −2ℎ1𝛽21,1𝛽22,1 − 2ℎ2𝛽22,1(1 − 𝛽21,1) 

+𝛽21,1𝛽22,1(𝑝1 + ℎ1 + 𝑏1)∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

𝑑𝛽11𝑑𝛽12 

+𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2)∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

𝑑𝛽12𝑑𝛽11 

𝑑�̂�3
𝑑𝑋22

= −2ℎ2𝛽22,1 

+𝛽22,1(𝑝2 + ℎ2 + 𝑏2)∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

𝑑𝛽12𝑑𝛽11 

 

𝑑�̂�3
𝑑𝑌11

= ∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

[𝛽11,2𝛽12,2(𝑝1 + ℎ1 + 𝑏1)]𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[𝛽12,2(1 − 𝛽11,2)(𝑝2 + ℎ2 + 𝑏2)]𝑑𝛽12𝑑𝛽11 

−ℎ1𝐸[𝛽11,2]𝐸[𝛽12,2] − ℎ2𝐸[𝛽12,2](1 − 𝐸[𝛽11,2]) 

 

𝑑�̂�3
𝑑𝑌12

= ∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[𝛽12,2(𝑝2 + ℎ2 + 𝑏2)]𝑑𝛽12𝑑𝛽11 

−ℎ2𝐸[𝛽12,2] 
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𝑑�̂�3
𝑑𝑌21

= ∫ 𝑓(𝛽12)
1

𝛽12,2=0

∫ 𝑔(𝛽11)
𝑊3

𝛽11,2=0

[𝛽21,2𝛽22,2(𝑝1 + ℎ1 + 𝑏1)]𝑑𝛽11𝑑𝛽12 

+∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2)]𝑑𝛽12𝑑𝛽11 

−ℎ1𝛽21,2𝛽22,2 − ℎ2𝛽22,2(1 − 𝛽21,2) 

𝑑�̂�3
𝑑𝑌22

= ∫ 𝑔(𝛽11)
1

𝛽11,2=0

∫ 𝑓(𝛽12)
𝑊4

𝛽12,2=0

[𝛽22,2(𝑝2 + ℎ2 + 𝑏2)]𝑑𝛽12𝑑𝛽11 

−ℎ2𝛽22,2 

and second order derivatives 

𝑎𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋11
2   

−𝛽11,1
2 𝛽12,1

2 (𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11
2 𝛽12,2

2 ] 𝑑𝛽12  

−𝛽12,1
2 (1 − 𝛽11,1)

2
(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑏𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋11𝑋12
=

𝑑2�̂�3

𝑑𝑋12𝑋11
= −𝛽12,1

2 (1 − 𝛽11,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑐𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋11𝑋21
=

𝑑2�̂�3

𝑑𝑋21𝑋11
= −𝛽11,1𝛽12,1𝛽21,1𝛽22,1(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11
2 𝛽12,2

2 ] 𝑑𝛽12  

−𝛽12,1(1 − 𝛽11,1)𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑑𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋11𝑋22
=

𝑑2�̂�3

𝑑𝑋22𝑋11
− 𝛽12,1(1 − 𝛽11,1)𝛽22,1(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑒𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋12
2 = −𝛽12,1

2 (𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑓𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋12𝑋21
=

𝑑2�̂�3

𝑑𝑋21𝑋12
= −𝛽12,1𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑔𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋12𝑋22
=

𝑑2�̂�3

𝑑𝑋22𝑋12
= −𝛽12,1𝛽22,1(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

ℎ𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋21
2 = −𝛽21,1

2 𝛽22,1
2 (𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11
2 𝛽12,2

2 ] 𝑑𝛽12  

−𝛽22,1
2 (1 − 𝛽21,1)

2
(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑖𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋21𝑋22
=

𝑑2�̂�3

𝑑𝑋22𝑋21
= −𝛽22,1

2 (1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11  

𝑗𝑥𝑥 =
𝑑2�̂�3

𝑑𝑋22
2 = −𝛽22,1

2 (𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
2] 𝑑𝛽11   

𝑎𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋11𝑌11
=

𝑑2�̂�3

𝑑𝑌11𝑋11
= −𝛽11,1𝛽12,1(𝑝1 + ℎ1 +

𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,2=0
𝑔(𝑊3) [

𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑋11𝛽11,1𝛽12,1−𝑋21𝛽21,1𝛽22,1

𝑌11
2 𝛽12,2

] 𝑑𝛽12  

−𝛽12,1(1 − 𝛽11,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  
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𝑏𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋11𝑌12
=

𝑑2�̂�3

𝑑𝑌12𝑋11
= −𝛽12,1(1 − 𝛽11,1)(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑐𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋11𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑋11
= −𝛽11,1𝛽12,1𝛽21,2𝛽22,2(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11𝛽12,2
] 𝑑𝛽12  

−𝛽12,1(1 − 𝛽11,1)𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑑𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋11𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑋11
= −𝛽12,1(1 − 𝛽11,1)𝛽22,2(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑒𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋12𝑌11
=

𝑑2�̂�3

𝑑𝑌11𝑋12
= −𝛽12,1(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑓𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋12𝑌12
=

𝑑2�̂�3

𝑑𝑌12𝑋12
= −𝛽12,1(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑔𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋12𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑋12
= −𝛽12,1𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

ℎ𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋12𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑋12
= −𝛽12,1𝛽22,2(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑖𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋21𝑌11
=

𝑑2�̂�3

𝑑𝑌11𝑋21
= −𝛽21,1𝛽22,1(𝑝1 + ℎ1 +

𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,2=0
𝑔(𝑊3) [

𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑋11𝛽11,1𝛽12,1−𝑋21𝛽21,1𝛽22,1

𝑌11
2 𝛽12,2

] 𝑑𝛽12  

−𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑗𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋21𝑌12
=

𝑑2�̂�3

𝑑𝑌12𝑋21
= −𝛽22,1(1 − 𝛽21,1)(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑘𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋21𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑋21
= −𝛽21,1𝛽22,1𝛽21,2𝛽22,2(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11𝛽12,2
] 𝑑𝛽12  

−𝛽22,1(1 − 𝛽21,1)𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑙𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋21𝑌22
=

𝑑2�̂�3

𝑑𝑌12𝑋22
= −𝛽22,1(1 − 𝛽21,1)𝛽22,2(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑚𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋22𝑌11
=

𝑑2�̂�3

𝑑𝑌11𝑋22
= −𝛽22,1(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑛𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋22𝑌12
=

𝑑2�̂�3

𝑑𝑌12𝑋22
= −𝛽22,1(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑜𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋22𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑋22
= −𝛽22,1𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  
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𝑝𝑥𝑦 =
𝑑2�̂�3

𝑑𝑋22𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑋22
= −𝛽22,1𝛽22,2(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑎𝑦𝑦 =
𝑑2�̃�1

𝑑𝑌11
2 = −(𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

(𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑋11𝛽11,1𝛽12,1−𝑋21𝛽21,1𝛽22,1)
2

𝑌11
3 𝛽12,2

] 𝑑𝛽12  

−(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
2 (𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

2

(𝑌11(1−𝛽11,2)+𝑌12)
3 ] 𝑑𝛽11  

𝑏𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌11𝑌12
=

𝑑2�̂�3

𝑑𝑌12𝑌11
= −(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)

2

(𝑌11(1−𝛽11,2)+𝑌12)
3 ] 𝑑𝛽11  

𝑐𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌11𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑌11
= −𝛽21,1𝛽22,1(𝑝1 + ℎ1 +

𝑏1) ∫ 𝑓(𝛽12)
1

𝛽12,2=0
𝑔(𝑊3) [

𝑑1+𝐷1−𝑌21𝛽21,2𝛽22,2−𝑋11𝛽11,1𝛽12,1−𝑋21𝛽21,1𝛽22,1

𝑌11
2 𝛽12,2

] 𝑑𝛽12  

−𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑑𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌11𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑌11
= −𝛽22,2(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [(1 −

𝛽11,2)
𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑒𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌12
2 = −(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

(𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1)
2

(𝑌11(1−𝛽11,2)+𝑌12)
3 ] 𝑑𝛽11  

𝑓𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌12𝑌21
=

𝑑2�̂�3

𝑑𝑌21𝑌12
= −𝛽22,2(1 − 𝛽21,2)(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

𝑔𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌12𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑌12
= −𝛽22,2(𝑝2 + ℎ2 +

𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

𝑑2+𝐷2−𝑌21𝛽22,2(1−𝛽21,2)−𝑌22𝛽22,2−𝑋11𝛽12,1(1−𝛽11,1)−𝑋12𝛽12,1−𝑋21𝛽22,1(1−𝛽21,1)−𝑋22𝛽22,1

(𝑌11(1−𝛽11,2)+𝑌12)
2 ] 𝑑𝛽11  

ℎ𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌21
2 = −𝛽21,2

2 𝛽22,2
2 (𝑝1 + ℎ1 + 𝑏1) ∫ 𝑓(𝛽12)

1

𝛽12,2=0
𝑔(𝑊3) [

1

𝑌11𝛽12,2
] 𝑑𝛽12  

−𝛽22,1
2 (1 − 𝛽21,1)

2
(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)

1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑖𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌21𝑌22
=

𝑑2�̂�3

𝑑𝑌22𝑌21
= −𝛽22,1

2 (1 − 𝛽21,1)(𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  

𝑗𝑦𝑦 =
𝑑2�̂�3

𝑑𝑌22
2 = −𝛽22,1

2 (𝑝2 + ℎ2 + 𝑏2) ∫ 𝑔(𝛽11)
1

𝛽11,2=0
𝑓(𝑊4) [

1

(𝑌11(1−𝛽11,2)+𝑌12)
] 𝑑𝛽11  
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The Hessian matrix has the following structure.  

𝐻 =

(

 
 
 
 
 
 

𝑎𝑥𝑥 𝑏𝑥𝑥 𝑐𝑥𝑥 𝑑𝑥𝑥 𝑎𝑥𝑦 𝑏𝑥𝑦 𝑐𝑥𝑦 𝑑𝑥𝑦
𝑏𝑥𝑥 𝑒𝑥𝑥 𝑓𝑥𝑥 𝑔𝑥𝑥 𝑒𝑥𝑦 𝑓𝑥𝑦 𝑔𝑥𝑦 ℎ𝑥𝑦
𝑐𝑥𝑥 𝑓𝑥𝑥 ℎ𝑥𝑥 𝑖𝑥𝑥 𝑖𝑥𝑦 𝑗𝑥𝑦 𝑘𝑥𝑦 𝑙𝑥𝑦
𝑑𝑥𝑥 𝑔𝑥𝑥 𝑖𝑥𝑥 𝑗𝑥𝑥 𝑚𝑥𝑦 𝑛𝑥𝑦 𝑜𝑥𝑦 𝑝𝑥𝑦
𝑎𝑥𝑦 𝑒𝑥𝑦 𝑖𝑥𝑦 𝑚𝑥𝑦 𝑎𝑦𝑦 𝑏𝑦𝑦 𝑐𝑦𝑦 𝑑𝑦𝑦
𝑏𝑥𝑦 𝑓𝑥𝑦 𝑗𝑥𝑦 𝑛𝑥𝑦 𝑏𝑦𝑦 𝑒𝑦𝑦 𝑓𝑦𝑦 𝑔𝑦𝑦
𝑐𝑥𝑦 𝑔𝑥𝑦 𝑘𝑥𝑦 𝑜𝑥𝑦 𝑐𝑦𝑦 𝑓𝑦𝑦 ℎ𝑦𝑦 𝑖𝑦𝑦
𝑑𝑥𝑦 ℎ𝑥𝑦 𝑙𝑥𝑦 𝑝𝑥𝑦 𝑑𝑦𝑦 𝑔𝑦𝑦 𝑖𝑦𝑦 𝑗𝑦𝑦)

 
 
 
 
 
 

 

We show that the Hessian matrix is negative semi definite by showing that 𝑥𝑇𝐻𝑥 ≤ 0 for all 

𝑥 ∈  ℝ8. [Comment: 𝑥𝑇 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8)]. 

Because all second order derivatives are negative (≤ 0), there exists always an 𝜀 ≤ 0 that is 

larger than or equal to the each second order derivative. Following the same reasoning as for 

the proof of Theorem 5-1 we can establish that 𝑥𝑇𝐻𝑥 ≤ 𝜀(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 +

𝑥7 + 𝑥8)
2 ≤ 0, which is true for all 𝑥 ∈  ℝ8. ∎ 
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6.   Conclusion 

 

 

Chapter 6  

 

Conclusion 

 

This thesis extends the literature on inventory management under random yield by 

analyzing the value of supply chain visibility that is gained by real time yield information. 

Perfect, imperfect, as well as costly real time yield information are considered. Optimal and 

heuristic solution approaches are provided. The optimal solution approaches enable the exact 

quantification of benefits gained from increased supply chain visibility and enhance the 

understanding of the optimal policy. The heuristics are capable of solving large problems 

efficiently and facilitate the transfer of our research into real world applications. 

In Section 6.1, we summarize the key results of this thesis. In Section 6.2, we critically 

review our modeling and solution approaches. In Section 6.3, we discuss promising areas for 

future research. 

6.1.   Summary of Key Results 

In Chapter 3 we consider a periodic review inventory system with random yield, 

random demand and positive lead time. The decision maker has access to real time yield 

information. This information is perfect and free of charge. To contribute to a better 

understanding of the value of this information, we develop a mathematical model of the 
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inventory system and derive structural properties. We build on these properties to develop an 

optimal solution approach that can be used to solve small to medium sized problems. To solve 

large problems, we develop two heuristics. We conduct numerical experiments to test the 

performances of our approaches and to identify conditions under which real time yield 

information is particularly beneficial. Chapter 3 provides the approaches that are necessary to 

implement inventory control policies that utilize real time yield information. The results can 

also be used to quantify the cost savings that can be achieved by using real time yield 

information. These cost savings can then be compared against the required investments to 

decide if such an investment is profitable. The analysis is extended to consider a setting with 

fixed order cost. 

In Chapter 4 we consider basically the same inventory system as in Chapter 3. Order 

batches can be tracked to get access to real time information about the actual yield realizations. 

In difference to the setting in Chapter 3 tracking induces fixed costs per order and the decision 

maker can decide for each order whether or not to obtain yield information. We develop a 

mathematical model of the inventory system. We prove that the cost function is convex for a 

given tracking decision and that a solution for the infinite horizon problem exists. Based on 

these properties we apply an optimal solution approach for discrete state spaces. We conduct 

numerical experiments to quantify the benefits of a flexible tracking system versus systems 

that track all orders or do not track any order. We identify conditions under which real time 

yield information with flexible tracking is particularly beneficial and identify the key drivers 

for the tracking decision. Our research provides the approaches that are necessary to implement 

inventory control policies that utilize costly real time yield information on an order-by-order 

basis. 

In Chapter 5 we consider a two-stage production system which produces a hierarchy 

of multiple grades of outputs. In the first stage, a single type of input (wafer) is used to produce 
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products (chips) of different quality levels with random yield rates. After first stage production 

is finished chips are pre-tested for their quality level. This fast and inexpensive pre-test can 

determine the final quality level of a chip with a certain probability. In the second stage, chips 

are tested for their final quality level. Test capacity at the second stage is limited and test 

processes reveal if the quality of a chip is of the tested quality or any lower quality level. 

Therefore all first and second stage processes have the characteristic features of co-production 

and random yields. Customer demands for chips of different quality levels are random. We 

develop a mathematical model to plan the input quantity for the first stage and the respective 

quantities at the second stage so as to maximize profit over a finite horizon. We use the optimal 

approach to solve small problems and develop a heuristic that can solve larger problems. We 

conduct numerical experiments to test the accuracy of the heuristic and to quantify the value 

of preliminary yield information gathered by the pre-test after first stage production is 

completed. 

6.2.   Critical Review of Modeling Approach 

We had to make certain assumptions to keep our models tractable. In this section, we 

review the most critical assumptions. Our assumptions are in line with existing literature on 

inventory management under random yield but may not always correspond to settings faced in 

practice. We assume complete backordering for all our models. This might not always be 

possible in practice, where some or all unsatisfied demand might be lost or substituted. We also 

assume that demand and yield rates are independent and identically distributed random 

variables over time. In real world applications one might think of situations where both 

variables might be correlated between periods and may change over time. The primary goal of 

all our models is to provide guidance for the use and the quantification of the value of real time 

yield information. The models need to be rather generic to enable derivation of analytical 
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results and to keep them applicability to a broad spectrum of scenarios. The proposed models 

should be useful in any further attempt to relax or change the underlying assumptions. 

All our inventory models incorporate the proportional yield model. This model is 

commonly used in research on inventory management under random yield but is limited to 

some extent. The main assumption of the proportional yield model is that the yield of units in 

the same batch is perfectly correlated. This might not always be true in practice as there can be 

a significant individual yield risk for each unit. The other extreme is the binomial yield model 

where the yield of units is uncorrelated. Yield processes in practice might be a mix of these 

two models. However, research on new yield models would be a topic on its own and distract 

the focus from our work on real time yield information as well as hinder the comparability of 

our results with previous research.    

6.3.   Directions for Further Research 

In the conclusion sections of the main chapters of this thesis, we point out possible 

further extensions of our models. Two main directions for future research can be applied to all 

our models.   

A research stream that naturally evolves after a certain problem has been modeled and 

its structural properties have been derived is the development of efficient optimal and heuristic 

solution approaches. Especially the inventory problems, analyzed in Chapter 4 and Chapter 5, 

create a field where advanced heuristics are of great value. Also, more efficient algorithms to 

compute the optimal solution could be developed. Especially the field of approximate dynamic 

programming might be promising in this context. More efficient algorithms might support the 

implementation of technologies that enable the use of real time yield information in practice as 

well as the analysis of more complex problems. 
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From a theoretical point of view an opportunity for future research is to change some 

of our main assumptions. The impact of real time yield information on continuous review 

inventory systems with the same or other yield models could be analyzed. First results of our 

work in this direction indicate that results will be similar by trend. However the modeling and 

the development of efficient solutions approaches for other types of inventory systems might 

be worthwhile. This would facilitate the understanding of how real time yield information can 

be optimally used in different settings. 
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