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Abstract 

7-ketocholesterol modulates dauer formation and longevity via DAF-12  

Ageing is the inevitable fate of most living organisms, and is the greatest risk factor 

for many diseases such as diabetes, cancer, cardiovascular disorders and neurodegeneration. 

Deceleration of ageing delays the onset of such diseases and improves health into old age. On 

the cellular level, several signaling pathways that integrate the nutrient sensors insulin/IGF-1-

like signaling (IIS) and target of rapamycin (TOR) play an important role in the modulation of 

lifespan. Downstream effectors of these pathways include broad cellular functions such as 

protein translation, mitochondrial activity, autophagy and protein homeostasis, affecting 

youthfulness of cells and the whole organism. Some of these lifespan modulators were found 

to be direct targets of small molecules such as glucose and rapamycin. In this study, we asked 

how might endogenous small molecule metabolites including components of the diet such as 

sugars, amino acids and fatty acids modulate lifespan? What signaling pathways are 

involved? How can they be used to alter the onset of age-related diseases and potentially help 

to develop drugs or even prevent them? 

Interestingly, many pathways and signals regulating lifespan in C. elegans were 

originally discovered for their role in regulating the dauer decision. C. elegans arrest at the 

stress-resistant long-lived dauer stage in response to harsh environmental conditions such as 

high temperature, food scarcity, or high population density. In brief, inhibition the IIS 

pathway, and resulting transcriptional activity of phosphorylated DAF-16/FOXO activates a 

hormone biosynthetic pathway that converts cholesterol into bile acid like steroids called the 

dafachronic acids (DA). DAs are endogenous ligands of the steroid receptor DAF-12, a 

homolog of mammalian LXR/FXR/VDR, and key determinant of dauer formation. Liganded 

DAF-12 promotes reproductive development and normal life. Conversely, when these 

pathways are down-regulated, the unliganded DAF-12 represses these programs and promotes 

dauer formation and long life.  

To identify novel signaling molecules regulating life span, we performed a screen for 

small molecule metabolites that modulate dauer formation in the insulin receptor mutant daf-

2(e1368) background. daf-2(e1368) displays a temperature sensitive constitutive dauer 

formation (Daf-c) phenotype that can be enhanced or suppressed. Our premise was that 

molecules identified as dauer modulators may also be good candidates for modulating 

lifespan. We supplemented small molecules involved in energy homeostasis and metabolism 
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such as sugars, amino acids, fatty acids and steroids, and measured dauer formation at a semi-

permissive temperature as first readout.  

From such screens we identified sugars (glucose, galactose, trehalose), amino acids 

(tryptophan, glycine) and a fatty acid (arachidonic acid) that reduce dauer formation, 

suggesting they could activate reproductive programs. Interestingly, we also identified 7-

ketocholesterol (7-KC) as potent synergistic enhancer of daf-2 dauer formation and focused 

on this molecule as a potential modulator of longevity. Although 7-KC had little effect on 

wild type dauer formation, it enhanced dauer formation of various Daf-c mutants of the dauer 

signaling pathways including daf-2/InsR, daf-7/TGFβ, the Niemann Pick Type C1 homologs, 

as well as several mutants involved in DA production such as daf-36/Rieske oxygenase. 

Using a biochemical GC-MS approach, we found that 7-KC altered sterol profiles and 

exhibited an increase in whole body cholesterol but a decrease in 7-dehydrocholesterol, 

suggesting possible effects on the first step in Δ7-DA synthesis. Moreover, 7-KC induced 

hypodermal daf-9/CYP27A1 expression, a marker of mild DA depletion in wild type animals. 

Importantly, 7-KC was found to extend median lifespan of wild type animals by 20%, in a 

manner independent of DAF-16/FOXO but dependent on DAF-12/FXR, as well as on the 

hormone biosynthetic enzyme DAF-9/CYP27A1. 

In vivo mRNA analyses revealed that 7-KC modestly interferes with expression of 

DAF-12 target genes (mir-84, mir-48 and mir-241). Accordingly, competition assays suggest 

that 7-KC thwarts DAF-12 transcriptional activity in cell culture. Whole transcriptome 

analyses (RNAseq) in C. elegans revealed that 7-KC induces changes in gene expression 

consistent with regulatory effects on DAF-12 as well as the DAF-12 related receptor, NHR-8. 

The inferred changes in gene expression suggests that 7-KC opposes known DAF-12 target 

gene expression and in addition potentially drives a different subset of genes. Taken together, 

we hypothesize that 7-KC might be converted to an alternative DA-like molecule, 7-keto-DA 

by DAF-9.  In this view, 7-keto-DA might be an alternate DAF-12 ligand, mediating the 

observed phenotypes. 

7-KC is found in all living organisms including humans, where it may be involved in 

the regulation of bile acid and de novo cholesterol synthesis.  Moreover 7-KC was shown to 

be involved in the formation of age related atherosclerotic cardiovascular disease. Our 

findings might lead to identification of novel direct mammalian 7-KC target genes and might 

provide a first step to clarify if 7-KC plays a causative role in atherosclerosis. 
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II Zusammenfassung 

7-Ketocholesterol moduliert die Dauer Ausprägung und Langlebigkeit via DAF-12 

Altern ist das unausweichliche Schicksal der meisten lebenden Organismen und es ist der 

größte Risikofaktor für zahlreiche Krankheiten wie Diabetes, Krebs, Herzgefäß- und 

Neurodegenerative-Erkrankungen. Verlangsamung des Alterungsprozesses zögert den 

Ausbruch solcher Krankheiten hinaus und stärkt die gesundheitliche Verfassung bis ins hohe 

Alter. Auf zellulärer Ebene  spielen viele kanonische Signalwege wie die Nährstoff-sensitiven 

Stoffwechselwege IIS und TOR eine entscheidende Rolle bei der Modulierung der 

Lebensspanne. Über diese Signalwege werden zelluläre Funktionen wie Translation, 

Mitochondrien-Aktivität, Autophagie und Proteinhomöostasis angesteuert, die ihrerseits die 

Jugendlichkeit der Zelle und des gesamten Organismus fördern. Einige dieser Signalwege 

sind direkte Ziele von kleinen Molekülen wie Glukose oder Rapamycin. Grundlage dieser 

Studie sind die folgenden Fragen: Wie können kleine endogene Metabolite einschließlich 

solcher, die  Bestandteil der Nahrung sind, wie Zucker, Aminosäuren, Fettsäuren und Steroide 

die Lebensspanne beeinflussen? Welche Signalwege werden durch sie reguliert? Wie können 

sie genutzt werden um den Ausbruch altersbedingter Krankheiten hinaus zu zögern und bei 

der Entwicklung von Medikamenten zu helfen? Interessanterweise wurden viele 

Stoffwechsel- und Signalwege, welche die Lebensspanne in C. elegans regulieren, 

ursprünglich als Regulatoren der Dauer Entscheidung identifiziert.  Unter schlechten 

Umweltbedingungen, wie hoher Temperatur, Nahrungsmangel oder hoher Populationsdichte, 

unterbricht C. elegans die reproduktive Entwicklung und tritt in einen stressresistenten und 

langlebigen Hibernationszustand ein (Dauer). Kurzgefasst, führt die Aktivierung des 

Insulin/IGF-1like signaling pathway (IIS) und die daraus resultierende Phosphorylierung von 

DAF-16/FOXO zu der Aktivierung eines Hormon Biosyntheseweges, der Cholesterin in 

Gallensäure ähnliche Steroide namens dafachronic acids (DA) umsetzt. DAs wiederum sind 

endogene Liganden des Steroid Rezeptors DAF-12 - Homolog von LXR/FXR/VDR und das 

Schlüsselprotein der Dauer Ausprägung. Ligandengebundener  DAF-12 fördert genetische 

Programme, welche die reproduktive Entwicklung und eine reguläre Lebensspanne 

ermöglichen. Sind im Gegenzug diese Signalwege herunterreguliert unterdrückt 

ungebundener DAF-12 jene Programme und fördert die Dauer Ausprägung und 

Langlebigkeit. 
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Um neue Moleküle zu identifizieren, welche die Lebensspanne regulieren haben wir mehrere 

Metaboliten zunächst hinsichtlich ihrer Fähigkeit gescreent den Dauer Eintritt der Insulin-

Rezeptor Mutante daf-2(e1368) zu beeinflussen. daf-2(e1368) ist eine temperaturabhängige, 

konstitutive Dauer Mutante (Daf-c). Dieser Daf-c Phänotyp kann unterdrückt oder verstärkt 

werden. Unsere Prämisse für diesen Screen: Moleküle die Dauer Ausprägung modulieren sind 

ebenfalls gute Kandidaten um die Lebensspanne zu beeinflussen. Wir haben kleine Moleküle 

des Energiehaushaltes und des Metabolismus, z.B. Zucker, Aminosäuren, Fettsäuren und 

Steroide an C. elegans gefüttert. Mit diesem Ansatz identifizierten wir einige Zucker 

(Glukose, Galaktose, Trehalose), Aminosäuren (Tryptophan, Glycin) und Fettsäuren 

(Arachidonsäure), welche vermutlich reproduktive Programme aktivieren und den Eintritt in 

Dauer verringern. Interessanterweise haben wir darüberhinaus 7-Ketocholesterin (7-KC) als 

einen wirksamen synergistischen Dauer-Verstärker identifiziert. Obwohl 7-KC nur 

geringfügigen Einfluss auf Dauer im Wild Typ hatte so konnte es doch die Dauer Ausprägung 

zahlreicher Daf-c Mutanten des Dauer Signalweges verstärken - einschließlich daf-2/InsR, 

daf-7/TFG-β, den Niemann Pick Typ C1 Homolog sowie zahlreichen Mutanten involviert in 

DA- Synthese, unter anderem den von daf-36/Rieske Oxygenase. 7-KC veränderte das 

Sterolprofil und führte zu mehr Cholesterin und weniger 7-Dehydrocholesterin, dies legt eine 

Inhibierung des ersten Schrittes in der DA –Synthese nahe. Darüberhinaus Induzierte 7-KC 

hypodermale daf-9/CYP27A1 Expression ein Marker schwachen DA-Schwundes in Wild 

Typ. Vor allem aber verlängerte 7-KC die Lebensspanne von Wild Typ signifikant (20%) und 

unabhängig von daf-16/FOXO aber abhängig von DAF-12/FXR und dem biosynthetisch 

aktiven Enzym daf-9/CYP27A1.In vivo mRNA-Analysen bestätigten, dass 7-KC die 

Expression der DAF-12 Zielgene (mir-84, mir-48 und mir-241) herunter reguliert. 

Kompetitive Untersuchungen deuten darauf hin, dass 7-KC die Aktivität von DAF-12 in 

Zellkultur unterdrückt. Transkriptom-Analysen (RNAseq) konnten zeigen, dass 7-KC 

induzierte Veränderungen mit denen von DAF-12 überlagern und zudem mit denen des DAF-

12 verwanden Rezeptor, NHR-8. Grundsätzlich scheinen diese Veränderungen genau 

entgegengesetzt zu den Regulationen von DAF-12 zu sein und ein zusätzlich Set an Genen zu 

regulieren. Wir vermuten, dass 7-Ketocholesterol von DAF-9 in ein alternatives DA-Molekül, 

7-keto-DA umgesetzt wird. 7-keto-DA könnte ein neuer Ligand für DAF-12 sein und so die 

Phänotypen induzieren.7-KC kommt in allen lebenden Organsimen. In Menschen könnte es in 

der Regulation der Gallsäuren-und Cholesterin de novo - Synthese beteiligt sein. 7-KC wurde 

in Zusammenhang mit einer altersbedingten arteriosklerotischen Herzgefäßerkrankung 
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gebracht. Unsere Resultate könnten zur Entdeckung neuer direkter Targets von 7-KC in 

Säugetieren führen und einen ersten Schritt zur Klärung der Frage darstellen ob 7-KC 

tatsächlich eine kausale Rolle in Arteriosklerose spielt.   
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Introduction  

1 Ageing and ageing research 

1.1  What is the aim of ageing research? 

Ageing is, with few exceptions, the inevitable fate of all living organisms. Since 

antiquity, humankind has expressed a strong desire to vanquish or postpone the inescapability 

of death. But discovering the fountain of youth is not the motivation driving the ageing 

research field. Considerably more compelling is the realization of a link between the age of an 

organism and the onset of many diseases such as diabetes, cancer, cardiovascular disorders 

and neurodegenerative diseases (Kenyon, 2010; López-Otín et al., 2013). By understanding 

fundamental mechanisms underlying ageing, we hope to develop novel approaches toward 

understanding and treating many age-related diseases. For a long time comparatively little 

was understood of the mechanisms underlying ageing at the genetic, metabolic and 

transcriptional level. But during the last decades significant insights have been made to 

understand the molecular basis of ageing and to unravel how ageing makes organisms 

susceptible to age-related diseases.  

The first multicellular organism used to genetically dissect the molecular basis of 

ageing was C. elegans. The free living nematode was developed by Sydney Brenner for 

laboratory use in the 1970s (Brenner, 1974). Later, single gene mutations in age-1 and daf-2 

were among the first mutations discovered that extended lifespan in C. elegans.(Friedman and 

Johnson, 1988b; 1988a; Kenyon et al., 1993; Klass and Hirsh, 1976) Since then, many 

laboratories have sought to understand ageing and age related diseases in different model 

organisms. Many interventions and regimes were found conserved in other model organisms 

including Drosophila melanogaster and Mus Musculus. In brief, the aim of ageing research is 

to unravel conserved underlying mechanisms of ageing and get a better understanding of 

human age related diseases. 
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1.2 Why do organisms age ? 

1.2.1 What is the molecular basis of ageing? 

To characterize ageing as a phenotype, recently nine hallmarks of ageing have been 

suggested (López-Otín et al., 2013). All of them reflect increase of entropy and resulting 

decline of performance: Genomic instability, telomere attrition, epigenetic alterations, loss of 

protein homeostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular 

senescence, stem cell exhaustion, and altered intercellular communication. This decline in 

performance is a function of time and it used to be a longtime dogma that it is completely 

independent of genetic regulation. However investigations in model organisms revealed a role 

of genetic pathways. The current understanding of ageing is the failure of genetic programs 

promoting cellular functionality and therefore organismal health and youthfulness (Gems and 

Partridge, 2013; Kenyon, 2010). Up to date, many pathways have been identified in this 

context, including highly conserved pathways such as the nutrient sensing insulin signaling 

and target of rapamycin (TOR) pathways, revealing first insights into a complex network. But 

not only these canonical pathways but also mitochondrial activity (Bratic and Larsson, 2013), 

and quality of cell clearance (Dillin and Cohen, 2011) were identified as important lifespan 

modulators. Age-associated dysfunction in these highly orchestrated networks leads to failure 

of molecular maintenance mechanisms, cellular dysfunction, deteriorated tissue performance 

and death of the organism. Most notably, it is exactly this decline in orchestrated functionality 

that makes organisms more susceptible for age related diseases (López-Otín et al., 2013). 

Although the described genetics play a prominent role in ageing, there are other factors 

decelerating or accelerating organismal age by impinging on these longevity pathways. 

1.2.2 Which other factors can influence ageing? 

One of these factors is the ambient condition, including variables like temperature, 

population density, oxygen availability and quantity as well as quality of diet. In particular, 

dietary composition of small molecules was shown to influence ageing. Note that for this 

thesis the term “small molecules” is defined as all endogenous non-protein and non nucleic 

acid molecules, as well as pharmaceuticals and defined molecules in the diet that have the 

potential to modulate metabolic processes. The scope of this thesis excludes complex plant 

extracts that were found to modulate lifespan, like blueberry (Wilson et al., 2006)and ginkgo 

extracts (Kampkötter et al., 2007). In the diet, especially small molecules like sugars, amino 

acids, and fatty acids can not only function as energy sources and molecular building blocks 
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but also as signaling molecules. As such, they reflect environmental conditions to modulate 

and feedback regulate complex genetic networks.  

The most noted lifespan determining intervention linked to diet is caloric restriction 

(CR). CR is defined as the restriction in caloric intake without malnutrition. Closely related is 

dietary restriction, which is defined as reduced intake of total food without malnutrition. CR 

is one of the most intensively studied longevity regimes. It was shown to extend lifespan in 

yeast (Guarente, 2005), C. elegans (Houthoofd and Vanfleteren, 2006; Klass, 1977), 

Drosophila melanogaster (Partridge et al., 2005), Mus Musculus and other rodents 

(McDonald and Ramsey, 2010; Ramsey et al., 2000) and in one study even in non-human 

primates (Colman et al., 2009), whereas another study showed no effect (Redman and 

Ravussin, 2011). Nevertheless it was shown in both studies that it delayed onset of metabolic 

disorders such as diabetes and cancer. Still it remains to be determined if CR really extends 

health- and lifespan in primates. Human studies measuring lifespan are not very feasible, 

however beneficial metabolic effect of caloric restriction have been also observed in humans 

(Cava and Fontana, 2013). In line with CR improving health it is known that high fat and high 

glycemic diets influence insulin signaling, one of the major longevity pathway, thereby 

promote obesity, diabetes and even cardiovascular diseases (Aston, 2006; Venn and Green, 

2007). Understanding the complex role of nutrition and small molecules might be of 

particular relevance to understand human ageing. In particular since small molecules provide 

high potential to develop drugs against age-related diseases. Up to date, genetic manipulations 

in humans are not feasible; therefore pharmaceutical interventions using small molecules are 

the only way to treat age related diseases. Accordingly there is an emerging interest in the 

identification of novel small molecule modulators of longevity.  

1.3 How to Study ageing  

1.3.1 How is ageing approached statistically? 

To understand how ageing can be studied, first an appropriate definition of age is 

required. Chronological and biological age must be distinguished.  

Chronological age can be measured in time units (e.g. hours, days and years). For a 

population, chronological age is described by statistical values such as median and maximum 

lifespan. Whereas the median lifespan describes the time-point at which 50% of a population 

is dead and the maximum lifespan describes the time-point when the last animal of a 
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population has died. Median and maximum lifespan of manipulated and wild type population 

are compared to state longevity or shortevity. 

Biological age reflects a certain state of physiological health independent of 

chronological age. It cannot be primary described with statistical values but is only 

comparative. To state biological age of a given organism, certain values of physiological 

conditions are compared between manipulated and wild type organisms at a given 

chronological time-point. Among such markers are proteasomal, autophagic and 

mitochondrial activity (ROS production, energy and O2 consumption). Moreover, in C. 

elegans it is known that life-extending treatments often lead to increased stress resistance, 

altered pharyngeal pumping rate, and shift or extension of the reproductive phase. Therefore 

these markers are common read-outs to define biological age (Collins et al., 2008). Biological 

age indicates the health-span, the time span of healthy ageing of an organism. Delayed onset 

of age-related diseases is defined as extended health-span and is the primary aim of ageing 

research.  

1.3.2 What makes C. elegans an outstanding organism for ageing studies?  

C. elegans has multiple advantages as a model organism for ageing research. Certain 

C. elegans longevity pathways, like insulin signaling and the TOR pathway as well as cellular 

downstream functions involved in ageing are conserved to higher organisms. Compared to 

other multicellular organisms, C. elegans has a short lifespan and a short generation time, it 

can be cultured on agar plates and fed with E. coli (Brenner, 1974). Usually, C. elegans 

populations consist of hermaphrodite animals each giving rise to about 250-300 genetically 

identical progeny through self-fertilization. This makes this organism useful for genetic 

manipulation. Males (XO) can be induced with heat stress to induce nondisjunction events 

and then crossed to hermaphrodites to investigate epistatic relations. Moreover, genetic 

manipulation can be achieved by feeding RNAi expressing bacteria or treatment with 

chemical mutagens like ethylmethansulfonat (EMS). Pharmaceutical approaches can be 

carried out by simple feeding assay.  

Hermaphrodite C. elegans rapidly develop from egg to reproductive adult animals via 

four larval stages (L1, L2, L3 and L4) to adult animals. Larval stages are separated by molts. 

Sexually mature animals give rise to progeny for approximately a week and live up to another 

2-3 weeks post-reproductively. Notably, this life history schedule is only seen under favorable 

environmental conditions. As with other organisms, C. elegans has the ability to sense its 
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environment and adopt developmental and maturational timing according to circumstances. 

Major factors that can influence these timing events are temperature, population density and 

food availability (Golden and Riddle, 1984). It is known that for example a modest increase in 

temperature will accelerate these processes. At 15°C development from egg to sexual 

maturation takes six days whereas at 25 °C it takes only three days. Notably lifespan is 

inversely related to temperatures, with animals living longer median in terms of median (m) 

lifespan at 15 °C (m=32d), than at 20 °C (m=22d) or 25 °C (m =16d). 

1.3.3 What can we learn from C. elegans about human ageing? 

Work with model organisms is important to understand general principles of ageing. 

For practical, ethical and legal reasons, it is not possible to conduct human ageing studies by 

introducing certain mutations or by pharmaceutical interventions. The intention to manipulate 

human lifespan has no medical indication, since ageing is not defined as a disease. Even if it 

was possible the time of human lifespan makes such studies impracticable. Thus we rely on 

the research in model organisms. Leaving the questions open: How well are findings in model 

organisms conserved, and might they actually help to improve healthy ageing in human?  

Certainly transferability of basic ageing research to humans has its limitations and not all 

mechanisms might be conserved. But bioinformatics systems approaches provide strong 

power to validate data in humans by conducting studies of cohorts with people living 

significant longer than average. In a cohort of Jewish centenarians a significant enrichment in 

a certain allele of FOXO transcription factor the downstream transcription factor of insulin 

signaling was shown (Suh et al., 2008). The longevity of a Japanese cohort was linked to 

certain variants in the insulin receptor (Kojima et al., 2004). These are two examples of many 

findings indicating that human lifespan determination is regulated by similar genetic 

mechanisms as in lower organisms. Moreover with insulin signaling and TOR two nutrient 

sensing pathways are established as potent lifespan modulators in lower and higher 

organisms. Thus, they might provide targets to modulate healthy ageing in humans with the 

aim to cure or even prevent age-related diseases. Up to date small molecules provide the only 

feasible possibility to conduct such interventions. Thus it is of particular interest to understand 

their role in model organisms and how the interact with longevity pathways.   
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2 Small molecules interact with the genetics of ageing 

With the understanding, that ageing is modulated by genetic networks emerging interest 

in finding small molecules that modulate such networks to manipulate mammalian lifespan 

arose. In 2008 the National Institute on Aging (NIA) established the so-called “NIA 

Interventions Testing Program” to test compounds for their lifespan extending effects in mice. 

Their concept is to feed compounds to otherwise regular fed wild type mice in parallel to 

three different cohorts at three different locations. With that they gain unbiased and statistical 

evaluable data. So far, rapamycin, aspirin, and nordihydroguaiaretic acid (males only) were 

identified to extend lifespan in genetically heterogeneous mice (Miller et al., 2013; Strong et 

al., 2008), and other compounds like resveratrol and simavastin were shown to have no effect 

under these conditions (Miller et al., 2011). Multiple molecules that are tested by this program 

are suggested based on their lifespan modulating capacity in other organisms. In particular 

over the past ten years, many of such molecules have been identified, especially in C. elegans 

and Drosophila melanogaster (Lucanic et al., 2013). Some of them could clearly be linked to 

one of the known longevity pathways, whereas the role of others remains elusive. Many of 

these compounds have been identified in screens, where small molecules were simply fed to 

model organisms. This feeding approach is prone to certain problems, though. First, it needs 

to be considered that the uptake of molecules varies according to their chemical properties. 

Second, bacteria and yeast, which are used as food sources for C. elegans and Drosophila, 

respectively are living organisms. They might metabolize fed compounds and change amount 

or even quality of the tested small molecule.  

The following paragraphs summarize a) the genetic underlying ageing pathways, b) how 

small molecules can influence such pathways and c) how ageing pathways are connected to 

build a complex network. It is graphically summarized in Figure 3 at the end of this section. 

2.1 Insulin/IGF-1 Signaling (IIS) and the role of DAF-16/FOXO in ageing 

2.1.1 IIS and DAF-16/FOXO nuclear localization 

One of the most intensively studied pathways linked to ageing is the Insulin/IGF-1 

signaling (IIS) pathway. Originally it was described in mammalian growth and sugar 

metabolism and is linked to diabetes and neurodegenerative diseases (Gems and Partridge, 

2013). It first appeared as a potential longevity pathway in C. elegans in 1988 when it was 



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Introduction 
 

 7 

shown that mutants of age-1, the nematode´s phosphoinositide 3-kinase (PI3K) homologue, 

are long-lived (Friedman and Johnson, 1988a; 1988b). Five years later, the temperature 

sensitive mutant allele of daf-2(ts), which encodes the only C. elegans insulin receptor (insR) 

also led to a more than two fold lifespan extension at non-permissive temperature (Kenyon et 

al., 1993; Kimura, 1997). Therefore IIS not only gave the first hint that longevity can be 

influenced genetically but furthermore that conserved pathways, and growth hormone 

signaling are involved in lifespan determination. Studies in mice (Brown-Borg et al., 1996) 

and flies (Tatar et al., 2001) (Clancy et al., 2001) could show a conserved role of IIS in ageing 

in higher organisms. In C. elegans, ligands for DAF-2/insR are insulin like peptides/insulin 

(ILP/ins). These hormone peptides are components of the endocrine system. In C. elegans 40 

ILPs are described, among them two, namely INS-1 and INS-18 that are proposed antagonists 

of DAF-2/insR (Pierce et al., 2001). Accordingly, transgenic lines expressing ins-1 as well as 

ins-18 overexpressor line phenocopy daf-2(ts) phenotypes, underlining their inhibitory effect 

on DAF-2. Notably ins-1 is the closest homolog to human insulin and expression of insulin 

also leads to DAF-2 inhibition. Interestingly, in humans insulin has an agonistic function, 

though.   

In general, it is difficult to assign certain function to specific ILPs, since they have 

potentially redundant functions (Pierce et al., 2001). Accordingly complexity and redundancy 

of insulin like peptides for several functions was also shown in Drospohila (Grönke et al., 

2010). DAF-2/insR itself is a transmembrane receptor tyrosine kinase. When DAF-2/insR is 

bound by agonistic ILP/insulin the adaptor protein IST-1/IRS is recruited (Wolkow et al., 

2002), leading to activation of the AGE-1/PI3K and resulting phosphatidylinositol-3,4,5,-

triphosphate (PIP3) (Morris et al., 1996). In the presence of PIP3 and pyruvate dehydrogenase 

lipoamide kinase isozyme (PDK)-1 (Paradis et al., 1999) AGE-1/PI3K phosphorylates AKT-

1/2  (Paradis and Ruvkun, 1998) that in turn together with the serine/threonine-protein kinase 

(SGK)-1  (Hertweck et al., 2004) phosphorylates the transcription factor DAF-16/FOXO. 

Phosphorylated DAF-16/FOXO is excluded from the nucleus and sequestrates in the 

cytoplasm (Henderson and Johnson, 2001; Lee et al., 2001; Lin et al., 2001), mediated by 

FTT-2/14-3-3 (Wang et al., 2006). Thus, mutations of age-1 or daf-2 counteract 

phosphorylation of DAF-16/FOXO and promote subsequent nuclear localization. In the 

nucleus, DAF-16/FOXO promotes expression profiles to enable longevity and stress 

resistance (Murphy et al., 2003).  
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2.1.2 Co-regulators of IIS and DAF-16/FOXO 

Notably, there are many other factors that regulate DAF-16/FOXO. PIP3 for examples 

is influenced by DAF-18/PTEN, a phosphatase that converts PIP3 to phopsphatidylinositol-

4,5-bisphosphate (PIP2). DAF-18/PTEN therefore indirectly dephosphorylates AGE-1/PI3K 

and abrogates DAF-16/FOXO nuclear translocation (Mihaylova et al., 1999; Ogg and 

Ruvkun, 1998). DAF-16/FOXO can also alternately be phosphorylated by c-Jun N-terminal 

Kinase JNK-1. The E3 ubiquitin ligase RLE-1 provides an additional level of DAF-16/FOXO 

regulation. It ubiquitinates DAF-16/FOXO for proteasomal degradation (Li et al., 2007). 

Additionally, it was shown that constitutive localization of DAF-16 to the nucleus is not 

sufficient to recapitulate longevity and stress resistance of IIS mutants(Lin et al., 2001). This 

suggests more coactivators that modulate DAF-16/FOXO-dependent expression profiles 

according to the cell´s demand, such as response to starvation, oxidative, or UV stress. One of 

these nuclear factors is SMK-1/SMEK. It is required for longevity and thermal resistance but 

not for UV and oxidative stress response (Wolff et al., 2006). Many factors are involved in 

the regulation of DAF-16/FOXO nuclear localization and the plasticity of its transcriptional 

outcome, emphasizing multidimensional regulation of this important transcription factor. 

(Figure 1) 

In C. elegans, these endogenous modulators are influenced by environmental 

conditions.  Under suitable temperature, low population density and proper food availability, 

the intracellular phosphorylation cascade is activated and DAF-16 is sequestered in the 

cytoplasm. Under unfavorable conditions DAF-2 is not activated and DAF-16 enters the 

nucleus to drive stress resistance and longevity expression profiles (Fielenbach and Antebi, 

2008). DAF-16 nuclear localization is a response to environmental challenges, therefore 

among DAF-16 target genes there are many genes involved in cellular stress response like 

heat shock proteins (hsp-16), superoxide dismutases (sod-3), glutathione-S-transferases and 

cytochrome P450s (Murphy, 2006). Consequently, manipulations leading to DAF-16 nuclear 

localization are also associated with stress resistance (Murphy, 2006; Murphy et al., 2003) 

and DAF-16 null mutants like daf-16(mgdf50) and daf-16(mu86) are short lived, less stress 

resistant and suppress phenotypes of upstream IIS mutants like daf-2(e1368) and age-1 

(Kenyon et al., 1993; Larsen et al., 1995; Ogg et al., 1997). In addition, in C. elegans SKN-

1/Nrf was identified as second target for IIS phosphorylation. SKN-1/Nrf promotes longevity 

DAF-16 independently (Tullet et al., 2008) and is an upstream component of the cellular 

xenobiotic stress response.  
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Another downstream component of DAF-16/FOXO is lipl-4 a triglyceride lipase, 

essential for IIS longevity. Its knockout abrogates daf-2(ts) longevity and overexpression is 

sufficient to extend lifespan (Wang et al., 2008). Most notably, a second lipase lips-7  was 

shown to be essential for DAF-16 dependent longevity induced by the conserved NAD(H)-

dependent corepressor CTBP-1 (Chen et al., 2009). These findings connect nutrition sensing 

and IIS function to induced longevity and alterations in fat metabolism. Taken together, many 

genetic, pharmaceutical, and environmental manipulations lead to ageing phenotypes 

depending on IIS and in particular on specific nuclear DAF-16/FOXO activity.  

2.1.3 Small molecule modulators of IIS  

One of these daf-16-dependent ageing modulators is glucose, a component of every 

diet. Glucose feeding shortens lifespan in C. elegans, thus exhibiting the opposite phenotype 

of a DAF-2 mutant (Lee et al., 2009; Schlotterer et al., 2009). Glucose inhibitory effect on IIS 

is possibly mediated by the ILPs ins-7 because ins-7 mRNA levels are lower under glucose 

feeding. Neither the exact mechanism of how glucose lowers INS-7 nor whether this is the 

cause for shortevity was unambiguously shown. Nevertheless, it is clear that the nutritional 

molecule glucose interacts with the genetics of ageing. Further support for this comes from 

experiments with 2-deoxy-D-glucose, a synthetic sugar, that restricts glucose availability for 

worms, and leads to daf-16 dependent lifespan extension (Schulz et al., 2007). 

The same effect on IIS and lifespan was proposed for another sugar - the non-reducing 

disaccharide trehalose. It consists of two α-α-1-1 glucoside bound D-glucose 

monosaccharides. It was shown that feeding trehalose (5 mM) to C. elegans extends lifespan 

up to 30%. Moreover it delays the end of reproductive phase and delays onset of age related 

phenotypes like lower pumping-rate and polyglutamine accumulation, reflecting improved 

protein homeostasis. These positive effects on health and lifespan of trehalose were linked to 

IIS, because the longevity phenotype is daf-2 and daf-16 dependent. Moreover, trehalose-

induced daf-2 longevity partially depends on the DAF-16/FOXO target genes trehalose-6-

phosphate synthase 1 and 2 (tbs-1 and tbs-2) (McElwee et al., 2003; Murphy et al., 2003). 

Accordingly, tbs-1 and tbs-2 mRNA, as well as trehalose levels are increased in daf-2(ts) 

background. Unfortunately, it is not known if adding trehalose to tbs-1 and tbs-2 RNAi-

treated daf-2 animals restores longevity. Moreover, it was not tested, if transgenic 

overexpression of tbs-1 or tbs-2 abrogates daf-16 dependence of trehalose-induced longevity. 

Nevertheless, trehalose is a natural endogenous compound acting downstream of DAF-
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16/FOXO to regulate lifespan. Thus, both sugars glucose and trehalose are linked to the IIS 

function in lifespan. Whereas glucose probably acts indirectly on cellular functions by 

decreasing DAF-16 induced stress response, trehalose itself has a proteoprotective function as 

a chemical chaperone to stabilize protein integrity a cellular mechanism linked to 

youthfulness. Interestingly, it is known that trehalose can be converted to D-Glucose in 

mammals and nematodes by trehalase (Behm, 1997; Oesterreicher et al., 2001). This 

metabolic relation adds another level of crosstalk to the complexity of ageing networks. Ratio 

of glucose and trehalose might play a role for ageing and is in turn influenced by availability 

food and other sugars.  Thus, it suggests that there are more sugars involved in the regulation 

of IIS longevity. Other endogenous compounds that were shown to affect C. elegans lifespan 

are oxaloacetate and malate. Providing these intermediates of tricarboxylic acid (TCA) cycle 

increased lifespan DAF-16/FOXO dependently (Edwards et al., 2013; Williams et al., 2009). 

Glucose is the precursor of glycolysis. The TCA cycle and glycolysis are tightly coupled via 

the intermediate pyruvate to regulate energy demands of the cell. Thus, these results 

demonstrate a link between the nutritional sensor IIS, energy homeostasis and longevity. 

Moreover it suggests involvement of additional intermediates of energy metabolism in the 

biology of ageing. 

2.1.4 Connectivity of IIS within the ageing network 

IIS regulates many metabolic processes, among others, by the uptake of glucose. If 

food availability is reduced, IIS is down-regulated, which in turn enhances cellular recycling 

of macromolecules by autophagy a component of cell clearance and marker of youthfulness. 

IIS longevity depends on autophagy. Note that autophagy (Hars et al., 2007; Meléndez, 2009; 

Meléndez et al., 2003)is distinguished at least into micro-, macro-, mito-, and lysophagy, but 

it is referred to in this thesis as a single event of cell clearance. As mentioned above, IIS is 

also linked to fat metabolism, as lipl-4 is essential for daf-2(ts) longevity. Nevertheless the 

exact role of fat metabolism in longevity remains elusive, it is evident that there is no 

correlation of body fat and lifespan in C. elegans. Long-lived daf-2(e1368) have increased 

adiposity (Kenyon et al., 1993) but on the other hand long-lived mutants like eat-2, that are in 

a genetic induced CR status have decreased fat deposit (Lakowski and Hekimi, 1998) 

suggesting rather a role for the quality of free fatty acid than for quantity (Ackerman and 

Gems, 2012). In line with low nutritional intake, IIS inhibition leads to high AMP to ATP 

ratio (Apfeld, 2004), reflecting a status of low energy availability that activates AMP 

activated kinase (AMPK). AMPK is a central molecule in the regulation of energy 
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homeostasis and longevity in response to starvation and other stresses like heat. It was also 

linked to other lifespan modulators like TOR, CR, sirtuins and CRCT-1 (see following 

paragraphs). A widely unappreciated role of IIS in worms is that it positively regulates the 

protein g kinase (PGK)/EGL-4, that in turn regulates feeding behavior in response to satiety 

(You et al., 2008). Thus, to some extent IIS feedback regulates intake of its own small 

molecule modulators. Taken together, although IIS is studied intensively there are still open 

questions. Among others, which particular dietary molecules other than glucose regulate IIS? 

What is the role of fatty acids and lipase activity in IIS induced lifespan modulation? 

 

Figure 1 IIS pathway in C . elegans 

Left panel: activated IIS. Under favourable environmental conditions, binding of agonistic ILPs to DAF-2 activates a 
phosphorylation cascade (black arrows), that via AGE-1, AKT-1/2, SGK finally leads in the presence of PDK-1 and 
PIP-3 to phosphorylation of DAF-16. Phosphorylated DAF-16 remains cytosolic and promotes reproductive 
development and regular life-span. Right panel inactive IIS: Under unfavorable environmental conditions, unbound 
(or mutated) DAF-2 receptor inhibits phosphorylation of DAF-16, that in turn enters the nucleus to promote stress 
resistance and longevity. DAF-16 can also be phosphorylated by JNK-1 and needs nuclear co-factors like SMK-1. 
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2.2 TOR signaling and the role of caloric restriction in ageing 

2.2.1 TOR signaling, caloric restriction and AMPK  

For TOR signaling indeed the small molecule regulating it was identified first and the 

pathway is named after it – Target Of Rapamycin. Just like IIS, TOR strongly responds to 

quality and quantity of nutritional intake. TOR senses amino acid and is activated by high 

ATP to AMP ratio. It is also target of growth hormones. In mammalian systems the core 

protein of TOR signaling is mTOR. It is a Serine/Tyrosine kinase of the PI3K family forming 

two complexes: mTOR complex I and mTOR complex II (mTORC1 and mTORC2). 

mTORC1 regulates several cellular function linked to ageing: it represses autophagy, 

promotes lipid synthesis and regulates mitochondrial function via HIF-1α. Active mTORC1, 

therefore reflects a cellular status of growth and in line with this promotes higher translational 

activity and protein syntheses. In yeast, worms, flies and mice these outcomes were linked to 

the translation factor S6 kinase (S6K) (Hansen et al., 2007; Pan et al., 2007; Steffen et al., 

2008). Accordingly, in C. elegans knockout or knockdown (RNAi) of mTOR/let-363 or the 

mTORC1 component daf-15/raptor lead to longevity (Jia, 2004; Vellai et al., 2003). mTOR 

knockdown mediated longevity is conserved in Drosophila melanogaster (Kapahi et al., 

2004)and Mus Musculus (Harrison et al., 2009). 

Notably, other than mTORC1 inhibition, the only intervention extending lifespan 

throughout all model organisms from yeast to rodents is CR (Braeckman et al., 2001; 

Chapman and Partridge, 1996; Jiang et al., 2000; Lakowski and Hekimi, 1998; Weindruch et 

al., 1986; Yu et al., 1985). CR-longevity in C. elegans was shown to be induced via several 

different regimes: reduced pumping rate, bacterial dilution, in solid or liquid medium, feeding 

or no feeding (Greer et al., 2007; Honjoh et al., 2009; Kaeberlein et al., 2006; Klass, 1977; 

Lakowski and Hekimi, 1998). CR depends on pha-4. PHA-4 is a FOXA forkhead 

transcription factor homolog and mTORC1 has been placed downstream of it in many 

epistatic experiments in yeast, C. elegans and flies (Hansen et al., 2007; Kaeberlein et al., 

2005; Zid et al., 2009)Based on these findings CR is thought to mediate longevity via mTOR 

inhibition. Nevertheless, the actual relation of TOR and CR seems to be more complex. In C. 

elegans it was shown that the different CR regimes lead to activation of multiple different 

downstream targets of TOR and interestingly, only bacterial dilution on solid medium was 

DAF-16 dependent (Greer and Brunet, 2009). Moreover C. elegans knockdown of S6K had 

an additive effect on CR induced longevity contradicting the suggested epistatic relation 
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(Hansen et al., 2007).  

Another link between mTOR and CR longevity is the AMP-activated protein kinase 

(AMPK). AMPK senses the ratio of AMP to ATP and is activated under low energy 

availability such as under starvation and CR conditions. Accordingly AMPK overexpression 

is sufficient to extend lifespan in C.elegans (Apfeld, 2004). AMPK phosphorylates tuberous 

sclerosis protein 2 (TSC2). TSC2 in turn inhibits mTORC1(Inoki et al., 2003). Therefore 

AMPK couples low ATP availability e.g. during CR to TOR signaling. Nevertheless, 

regarding longevity phenotypes this hypothesis is discussed controversially. In C. elegans, 

which lacks TSC2, it was shown that AMPK - dependent on daf-16 - mediates longevity via 

the worm homologue of CREB regulated transcriptional coactivator (CRTC-1) by rendering it 

cytoplasmic (Mair et al., 2011). Cytoplasmic sequestration of CRTC-1 was also shown under 

starvation activated AMPK (Inoki et al., 2003). Taken together, there is a broad consensus 

that CR is mediated partially via TOR signaling, but the exact mechanism and the role of 

AMPK remains largely elusive. This example outlines how nutritional availability and most 

certainly specific small dietary molecules can modulate energy availability and the activity of 

genetic pathways. 

2.2.2 Small molecules modulators of TOR signaling- and AMPK  

Consistent with its regulation by nutritional availability mTORC1 is also activated by 

amino acids (REF). Apart from these and other postulated nutritional small molecules the 

most prominent small molecule modulator of TOR is rapamycin. Rapamycin was extracted 

from the Streptomyces hygroscopius named after its place of discovery, RapaNui  (Easter 

Island). It binds FK506-binding protein FKBP12, a unit of mTORC1, and thus inhibits 

mTORC1 activity. It is used to treat chronic inflammation, to prevent organismal rejection of 

organ transplants and as cancer therapy. Only mTORC1 but not mTORC2 was identified as a 

direct target of rapamycin, first in yeast (Cafferkey et al., 1993; Kunz et al., 1993) and later in 

human cells (Brown et al., 1994; Sabatini et al., 1994; Sabers et al., 1995; Stan et al., 1994). 

Although rapamycin targets solely mTORC1, mTORC2 plays an important role when 

rapamycin is used as a drug. It can be influenced by prolonged rapamycin treatment, since 

mTOR might be sequestered from mTORC2. Interestingly, mTORC2 accounts for many side 

effects of chronic rapamycin treatment, like glucose intolerance and altered lipoprofiles 

(Lamming et al., 2012) mTORC2 is not required for rapamycin-induced longevity (Lamming 
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et al., 2012). Rapamycin is one of the compounds confirmed as a lifespan extending drug in 

mammals by the NIA Interventions Testing Program (Harrison et al., 2009).  

Grandison et al. showed that in flies amino acid quality plays an important role in CR 

regulation. CR in flies reduces fecundity and extends lifespan. Availability of methionine 

alone was sufficient to rescue CR-induced reduction of fecundity but not longevity. Adding 

back all other essential amino acids without methionine to CR restricted flies does not rescue 

longevity, whereas provision of all essential amino acids including methionine abrogates 

longevity. Additionally, methionine starvation is sufficient to extend lifespan in flies and 

mice. Taken together these findings suggest that rather the balance of certain amino acids play 

a key role in CR longevity (Grandison et al., 2009). A concept that might be true for other 

lifespan extending compounds as well e.g. glucose vs. trehalose. However it emphasizes the 

possibility of single small molecules treatments to understand ageing networks, and highlights 

that especially metabolites can lead to imbalance modulating longevity and potentially 

healthspan.  

Metformin represents a different category of small molecules - it is a synthetic small 

molecule that was described to extends lifespan in C. elegans, mice and flies. It is used as 

anticancer drug and has approval of national drug administration (NDA) since 1994 as an 

antidiabetic drug against type II diabetes in humans. In mice, metformin activates AMPK to 

represses TOR via TSC2 and extends lifespan of otherwise short-lived cancer prone mice 

(female only) (Anisimov, 2010; Anisimov et al., 2010). Metformin was also reported to 

extend lifespan in wild type C. elegans. It is described to mimic CR status and in agreement 

does not further extend CR longevity in C. elegans (Onken and Driscoll, 2010). Notably 

concentrations used in the study by Onken and Driscoll, are rather high. Only 50 mM but not 

10 mM metformin could induce longevity conditions that might suggest a partial involvement 

of a stress response to osmolarity. Increased osmolarity was linked before to transcriptional 

targets of DAF-16, a major regulator of lifespan (Lamitina, 2005). Interestingly, it was 

described recently, that metformin alters the folate-metabolism of E. Coli, the food of C. 

elegans food, and that this accounts for longevity (Cabreiro et al., 2013). This study 

uncouples metformin-induced longevity from AMPK signaling. In line with this, metformin 

was shown to inhibit TOR independent of AMPK in Drosophila cell culture (Kalender et al., 

2010). Taken together, the metformin mechanism to extend lifespan is not completely 

understood and might differ in different model organisms.  
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Another synthetic molecule that was shown to activate AMPK is 50-aminoimidazole-

4-car-boxamide-1-b-D-ribofuranosid (AICAR). It was shown to activate AMPK in muscles of 

young rats (Reznick et al., 2007). It was not tested if AICAR extends lifespan so far but might 

help to understand the role of AMPK within the ageing network. In sum, the connection of 

AMPK activity and TOR to regulate lifespan in C. elegans is not unambiguously understood 

and also the role of pharmaceutical AMPK activators is not clear up to date.  

A third group of molecules linked to CR longevity is N-acylethanolamines (NAEs). 

NAEs are lipid signaling molecules and part of the endocannabinoid signaling pathways. 

Provided in a feeding assay they suppress CR- and TOR-induced longevity (Lucanic et al., 

2011). Notably NAE are synthesized from fatty acids - connecting fat metabolism to TOR and 

CR. The small molecule group of lipid-derived signaling molecules has great potential to 

connect metabolic status to genetic modulations of ageing (see also section 4). 

2.2.3 Connectivity of TOR signaling, caloric restriction and AMPK in the ageing 
network 

Interactions between TOR and IIS were shown in many instances. First, both 

pathways are regulated by quality and quantity of food availability – they are nutrient sensors. 

But they also interact on genetic level. mTORC1 was shown to be activated by insulin, PI3K 

and AKT kinase signaling (Potter et al., 2002). Second, mammalian mTORC1 regulates 

availability of IRS via S6K (Takano et al., 2001). In mammalian cells, tumor suppressor 

genes tuberous sclerosis protein I (TSC1) was shown to be a target of FOXO3 a downstream 

transcription factor of IIS. TSC I in turn represses mTOR (Inoki et al., 2002). Despite these 

established genetic crosstalk - a clear epistatic relation of both pathways to regulate lifespan 

remains largely elusive. It is known that in C. elegans daf-16(null) suppresses daf-15/raptor 

longevity (Jia, 2004) placing TOR upstream of IIS or at least upstream of DAF-16/FOXO. In 

contradiction to this, mTOR mutant longevity and longevity induced with rapamycin are 

DAF-16/FOXO independent (Robida-Stubbs et al., 2012; Vellai et al., 2003). The same was 

shown for mutations of mTOR downstream targets S6K  and eIF4E, placing mTOR and its 

targets either downstream or in parallel to IIS (Hansen et al., 2007; Pan et al., 2007). Common 

consensus is that IIS and mTOR have no clear epistatic relation but regulate overlapping 

targets, like lipl-4 (Kapahi et al., 2010; Wang et al., 2008). In C. elegans gonadal longevity 

(see below), TOR regulates lipl-4 expression. This example again underlines the potential role 

of fatty acid as modulators of ageing networks.   
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2.3  The role of sirtuins in ageing 

2.3.1 Sirtuins   

Sirtuins are highly conserved NAD+ - dependent deacetylase family, class II histone 

deacetylases that have been originally described as silent information regulators (Rine and 

Herskowitz, 1987) targeting histone and non-histone proteins (Haigis and Guarente, 2006). 

Later, in yeast Sir2 was shown to be a genetic modulator of lifespan. Sir2 overexpression led 

to an extension of replicative lifespan and deletion led to shortened replicative lifespan 

(Kaeberlein et al., 2006).   

2.3.2 Small molecule modulators of sirtuins 

Resveratrol is probably the most controversially discussed molecule that might play a 

role in lifespan regulation. It is a polyphenolic compound first isolated from plant roots and 

received wide attention when a cardio protective role was first described in 1992 (Renaud and 

de Lorgeril, 1992). At the same time it was found in red wine - potentially solving the so 

called French Paradox, describing a low rate of cardiovascular disease in French population 

but a comparatively high fat diet (Liu et al., 2007). Subsequent studies revealed a perspective 

role for resveratrol in the protection against age related diseases. It was shown to extend 

lifespan in yeast (Howitz et al., 2003), worms (Wood et al., 2004), flies (Bass et al., 2007) and 

in mice that receive high fat diet (Baur et al., 2006). Due to these results resveratrol raised 

public attention. However, subsequent studies revealed a more complex role. First, resveratrol 

did not extend lifespan of mice on regular food (Pearson et al., 2008). Second, not all 

experiments in yeast, flies and worms, could reproduce lifespan extension of earlier studies 

(Timmers et al., 2012). Another question that remains elusive is if resveratrol really directly 

binds to sirtuins. Different model organisms have been used to address this question and at 

least two reports raise doubts about a direct resveratrol-sirtuin interaction. First, resveratrol 

fails to induce SIRT1 deacetylation of its endogenous targets (Beher et al., 2009). Second, in 

C. elegans, other than sir-2.1 (oe) induced longevity, resveratrol longevity is DAF-16/FOXO 

independent (Viswanathan et al., 2005). Thus, if they have common targets at all they must be 

downstream of DAF-16. This strongly suggests that resveratrol does not regulate sir-2.1. 

Furthermore many of these studies found resveratrol-induced phenotypes of dietary restriction 

but only some were SIRT1 dependent (Kaeberlein and Powers, 2007). 
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2.4 Connectivity of sirtuins within the aging network 

Another effect of resveratrol is increased energy expenditure and therefore in mice it 

protects against obesity and obesity related diseases under high fat diet (Baur et al., 2006). 

This high energy expenditure is probably based on a higher number of mitochondria, that is 

induced by Sirtuin activation of PCG-1α, the key- regulator of mitochondrial biogenesis 

(Lagouge et al., 2006). In other studies AMPK is identified as a target of resveratrol, which 

could as well explain the increased mitochondrial activity (Hwang et al., 2007). This is further 

supported by the finding that resveratrol activates AMPK in mouse embryonic fibroblast cell 

cultures of SIRT1 knockout mice uncoupling it from Sirtuin. Another report showed 

activation of SIRT1 by NAD+ induced AMPK activity, placing it rather downstream of 

AMPK (Cantó et al., 2009). Sirtuins are therefore closely connected to TOR, CR and 

mitochondrial biogenesis via AMPK. As mentioned, C. elegans sir-2.1 overexpression 

extends lifespan daf-16 dependent. It was suggested that sir-2.1 activates DAF-16/FOXO by 

deacetylation since mammalian SIRT1 was described to act on mammalian FOXO proteins in 

response to oxidative stress. Consistently, oxidative stress can likewise induce longevity (see 

below) in C. elegans and this is sir-2.1 and daf-16 dependent (Heidler et al., 2009). Taken 

together, sirtuin-activity seems to promote longevity, but the mechanism is far from being 

understood. Part of the problem might be that sirtuins can have many targets.  
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3 The role of cellular functions in ageing 

Taken together we only just begun to understand how genetic networks and small 

molecules interact to sustain cellular functionality and youthfulness. But one important aspect 

was not discussed so far: What exactly do these pathways regulate? How do cells, tissues and 

organisms become long-lived? What are the physiological functions that need to be 

improved?  

3.1 The role of Translational activity in ageing 

One cellular function that was linked to ageing is protein translation. Down regulation 

of translation was shown to be sufficient to increase lifespan in yeast, worms, flies and mice 

(Kaeberlein et al., 2006). It is one of the effects of reduced mTOR signaling mediated via 

S6K. Accordingly, in C. elegans (Hansen et al., 2007; Pan et al., 2007) knockdown of certain 

ribosomal proteins and translation initiation factors also leads to longevity and in flies, 

overexpression of 4E-BP results in longevity (Zid et al., 2009). Moreover at least in yeast and 

worms, knockout mutants of S6K have less global mRNA translation and less protein 

synthesis (Pan et al., 2007). But what are the lifespan extending effects of reduced 

translation? Translation is an energy consuming process and its down-regulation might allow 

a shift of energy to cell maintenance processes implicated by less cell proteotoxicity. It was 

hypothesized that attenuated translation and reduced protein abundance lead to more efficient 

cleaning of damaged and misfolded proteins and thus preventing structural and functional 

decline of the cell. Although this might be part of the beneficial effect it might also be that 

longevity appears due to a certain subset of mRNAs that is differentially translated under 

mTORC1 inhibition. Evidence for this hypothesis comes from yeast, worms and flies, where 

special 5´ structures were suggested to mark a subset of mRNAs for TOR regulation. The 

mammalian situation might be even more complicated since S6K mutation in mice leads to 

longevity but no translational inhibition was observed (Selman et al., 2009). Thus, 

translational activity has clearly been linked to longevity, but again the exact mechanism and 

role of TOR signaling in it remains elusive. 

  



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Introduction 
 

 19 

 

3.2 The role of mitochondrial activity and ROS in ageing 

3.2.1 Mitochondrial Longevity and ROS 

Apart from being the powerhouse of the cell, mitochondria have multiple functions in 

regulation of cellular physiology. They are involved in multiple metabolic pathways, calcium 

signaling, apoptosis and ROS signaling. Mitochondria are the place of oxidative 

phosphorylation in enzymatic transport of electrons across the inner mitochondrial membrane 

by the electron transport chain (ETC). This results in the release of protons into the 

mitochondrial intermembrane space to create a potential over the inner mitochondrial 

membrane. This potential provides the energy to drive ATP synthesis. Downregulation of 

mitochondrial function by inhibiting components of ETC was found as a conserved longevity 

mechanism in worms, flies and mice (Copeland et al., 2009; Ewbank et al., 1997; Feng et al., 

2001). 

The question how inhibited ETC extends lifespan is not completely understood. 

Interestingly, in C. elegans there are also mutations of ETC inducing the opposite phenotype- 

shortevity (e.g. mev-1) (Ishii et al., 1998) and longevity (isp-1) (Yang and Hekimi, 2010). One 

explanation for longevity of these mitochondrial mutants is an alteration in reactive oxygen 

species (ROS). During respiration ROS are generated. ROS can start chain reactions with free 

radicals that oxidize and damage molecules like fatty acids, DNA and proteins. DNA and 

protein integrity are important markers of youthfulness (López-Otín et al., 2013). ROS 

damage was therefore one of the first hypotheses to explain ageing (HARMAN, 1956). The 

cell’s way to counter oxidative stress is to initiate the oxidative stress response. This response 

includes expression of glutathione-S-transferases and superoxide dismutases to prevent 

oxidation of molecules and to clean out damaged molecules. Support for the idea that 

oxidative stress plays a role in lifespan arose from the finding that long-lived age-1 worms 

(Friedman and Johnson, 1988a; 1988b) were significantly more resistant to oxidative stress 

and to the superoxide anion inducing paraquat (Vanfleteren, 1993). In general, the activation 

of DAF-16/FOXO stress target genes in many long-lived mutants seems to support this 

hypothesis. But there are other papers supporting an idea that increased ROS stress rather 

extends than shortens lifespan (Schulz et al., 2007). Notably also in mice a genetic up-

regulation of cellular antioxidant functions could not extend lifespan (Bokov et al., 2004; 
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Pérez et al., 2009b). To date it is not clear if ROS modulates ageing by causing molecular 

damage - and the oxidative stress hypothesis of aging is questioned and under intensive 

investigation (Gems and Partridge, 2013; Pérez et al., 2009a). Part of the issue of addressing 

the role of ROS in ageing is the effect of mitohormesis. Hormesis describes the phenomenon 

that a small dose of toxicity in early life can have beneficial effects later in life. Mitohormesis 

states that minor increases in ROS themselves might contribute to longevity by inducing 

cellular stress defense mechanisms (Schulz et al., 2007) including particular mitochondrial 

unfolded protein stress response (mitoUPR). The cell’s stress response is far-reaching and 

helps clearing out damages on every level, which in turn might lead to a more healthy state of 

the organism than before the stress cue. 

3.2.2 Small molecule modulators of mitochondrial activity and ROS  

Nevertheless, based on the idea that lowering ROS levels might extend lifespan, 

antioxidants were tested for life-extending effects. Antioxidants are mostly reducing 

compounds that inhibit the oxidation of macromolecules by free radicals. Interestingly, 

experiments with antioxidant compounds revealed promising but still contradictory results. So 

far no compound was found that could reproducibly prolong lifespan in C. elegans, 

Drosophila and mice. Nevertheless, some antioxidants did affect lifespan at least in one or 

two model organisms. In drosophila, N-acetylcystein (NAC) was found to extend maximum 

and median lifespan by 27% (Brack et al., 1997). NAC is a precursor of the antioxidant 

glutathione, helping to refold proteins. Also in worms the synthetic antioxidants (EUK-

134&EUK-8) extended lifespan (Melov et al., 2000). Notably another group could not repeat 

the results with EUK-8 (Keaney et al., 2004). Gamma-tocopherol (vitamin E) slightly 

increased lifespan in C. elegans but not in drosophila whereas α tocopherol (Vitamin E) had 

no effect on both model organisms (ZOU et al., 2007). α-lipoic acid extends lifespan in 

worms (Benedetti et al., 2008; BROWN et al., 2006) and female flies (Bauer et al., 2004) but 

not in mice (Lee et al., 2004). On the other hand tocotrienol, an even stronger antioxidant, 

prevents protein carbonylation and extends lifespan of C. elegans. Coenzyme Q10 

(ubiquinone) was shown to extend lifespan in C. elegans (Ishii et al., 2004), but a Q10 free 

diet also had a lifespan extending effect (Larsen and Clarke, 2002). A high variance in results 

between model organisms makes an underlying biological principle questionable. 

Antioxidants are small molecules and as such they might have additional effects on other 

metabolic processes. Furthermore, considering hormetic effects, feeding antioxidants must be 
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timed precisely because they might have a narrow time and dose window to act. Experiments 

in different organisms are therefore hardly comparable. 

3.2.3 Connectivity of mitochondrial activity and ROS within the aging network 

There are direct links between mitochondrial activity and the longevity pathways IIS 

and TOR. The highly conserved transcription factor HIF1-α is a downstream factor of TOR 

signaling and its translation and stability is promoted by active mTORC1(Johnson et al., 

2013). Under normoxic conditions it is targeted by the cullin ubiquitin E3 ligase VHL-1 for 

proteasomal degradation (Mehta et al., 2009; Müller et al., 2009). But under low oxygen 

conditions (hypoxia) it is activated and promotes a metabolic shift from oxidative 

phosphorylation towards glycolysis to produce ATP.  ATP in turn is reflecting energy 

availability and might influence AMPK activity. In contrast, long-term hypoxia can lead to 

mTORC1 downregluation (Zhang et al., 2009). In C. elegans, lifespan extending effects of 

hif-1 null mutants were shown at 20°, 25° but not at 15°C, adding a temperature dependence 

to the system. Moreover, stabilization of HIF-1 VHL-1 knockout also leads to longevity IIS 

and CR independent (Mehta et al., 2009). Wheras another group found the mechanism to be 

daf-16/FOXO dependent (Zhang et al., 2009). In flies mRNAs coding for components of the 

respiratory chain are widely immune to TOR induced down-regulation of translation. 

3.3 The role of cell clearance in ageing  

3.3.1 Proteostasis and autophagy 

As mentioned above, one mechanism to improve cellular functions broadly is to 

assure protein integrity (proteostasis). Many longevity mutations have been shown to actually 

improve protein homeostasis (He et al., 2013). Proteins fulfill tasks in every essential cellular 

function: in transcription, in translation, in enzymatic processes and as structural components. 

Moreover they fulfill communicational task either by forming direct cell-cell contacts such as 

integrins or connexins or in the endocrine system as peptide-hormones, such as insulin or 

growth hormone. It is understood that proteostasis is declining with age (Douglas and Dillin, 

2010). Thus, many neurodegenerative diseases caused by proteotoxicity are age-related. 

Corea Huntington, Alzheimer and Parkinson disease are caused by misregulation of certain 

proteins namely huntingtin, α-synuclein and β-amyloid, respectively. These proteins all form 

amyloid-like inclusions (Carrell and Lomas, 1997). Amyloids are fibrillar aggregates, 
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harboring β-sheets that form hydrogen bonds with other β-sheet-rich proteins leading to 

amyloid depositions in neuronal cells (Selkoe, 2003). Recently a paradigm shift is supported 

by the finding that accumulation of amyloids can have beneficial function in yeast (Shorter 

and Lindquist, 2005; True et al., 2004)and humans (Fowler et al., 2006). Currently it is 

believed that a soluble toxic intermediate during amyloid formation might rather be the cause 

for deteriorating effects, and the formation of insoluble amyloid structure is part of the cell’s 

response to defend against proteotoxicity. In line with this idea are recent findings in 

Alzheimer mouse models (Chui et al., 1999; Hsia et al., 1999; Kumar-Singh et al., 2000; 

Tomiyama et al., 2010). In C. elegans, tissue culture, and mice it was shown that promoting 

the formation of insoluble aggregates from the presumably more toxic soluble oligomer A-β 

structures ameliorates deteriorating effects (Cheng et al., 2007; Cohen et al., 2006). 

The integrity of protein homeostasis under the influence of intrinsic and external 

stressors is a major challenge for all cells. In principle there are two major sites for cells to 

assure proper homeostasis under stress conditions. One approach is to prevent proteotoxicity 

by increasing mechanisms involved in proper protein glycosylation and folding. Chaperones 

help in this context to protect spontaneously folding of nascent polypeptide chains that are 

release from the ribosome. The other approach is to defend proteotoxicity by increasing 

clearance mechanisms. Such mechanisms are mitochondrial unfolded protein responses 

(mt)UPR, endoplasmic reticulum (ER)UPR and heat shock response- all of the above also 

include increased chaperone activity. Moreover two highly conserved mechanisms autophagy 

and proteasomal degradation are involved in clearance of misfolded and dysfunctional 

proteins. Proteasomes degrade ubiquituinated proteins. It is a highly specific process and 

involves different E3 ligases that attach the right upbiquitine chain structure (Komander and 

Rape, 2012). Autophagy is a process in which cell-organelles and macromolecules are 

delivered to the lysozyme for degradation (Cuervo, 2008). Especially under starvation, 

autophagy is used to recycle amino acids and other molecular building blocks such as fatty 

acids (Mizushima et al., 2008). Evidence suggested that its performance declines with age 

and, moreover, gonadal longevity (see below) and IIS longevity are autophagy-dependent. 

Interestingly it was shown that in some cases ubiquitin can also function to mark proteins for 

autophagic vesicles. Autophagy therefore is a good candidate as an ageing modulator. Indeed 

in a recent paper it was even shown that up-regulation of autophagy alone is sufficient to 

extend lifespan of mice (Pyo et al., 2013). 
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3.3.2 Small molecule modulators of cell clearance mechanisms 

In particular, its established role in neurodegenerative diseases makes proteotoxicity a 

promising target for drug development against age-related diseases. In C. elegans 

aggregation-models, many pro-longevity compounds ameliorate formation of aggregates 

(Dillin and Cohen, 2011). Interestingly most of them act on one of the upstream pathways. 

Recently a compound that seems to directly affect proteostasis has been identified. N-

acetylglucosamine is an upstream compound of N-linked glycan oligosaccharides that are 

synthesized in the hexosamine pathway and attached to proteins in the ER for proper function. 

Feeding of N-acetylglucosamine as well as genetic activation of the hexosamine pathway 

could extend C. elegans lifespan. This longevity is depending on ER-associated protein 

degradation, proteasomal activity, and autophagy, three mechanisms that are linked to 

proteostasis (Denzel et al., 2014). Nevertheless, it remains elusive if the improved N-

glycosylation of only one protein or of a certain set of proteins mediates longevity or if the 

overall improved N-glycosylation leads to lifespan extension. Furthermore, as mentioned 

above trehalose was suggested to extend lifespan as a chemical chaperone involved in protein 

protection (Honda et al., 2010).  

A third group of small molecules that extend lifespan by improving cell clearance 

mechanism, namely autophagy, are ω-6 polyunsaturated fatty acids (PUFAs). It was shown 

that ω-6 PUFAs are increased upon lipl-4 activation and that they in turn increase autophagy 

(O'Rourke et al., 2013). Furthermore autophagy performance is improved by another small 

molecule the endogenous polyamine spermidine. It was found to extend lifespan in yeast, 

worms and flies. Lifespan extension depends on up-regulated autophagy (Eisenberg et al., 

2009).   

Regarding the complexity of protein homeostasis it is likely that there are more small 

molecules that might directly affect protein integrity. Among those might be sugars involved 

in glycosylation, amino acids as protein building bocks, chemical chaperones and signaling 

molecules reflecting starvation and activate cell clearance mechanism like autophagy.  

3.3.3 Connectivity of cell clearance within the aging network 

IIS-, TOR- and sirtuin- longevity was shown to be modulators of proteostasis and depend 

on autophagy. CR can delay onset of conformational pathogenic proteins in an amyloid model 

of C. elegans (Steinkraus et al., 2008). This beneficial effect of CR might be conserved, since 
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in mice (Duan and Mattson, 1999; Wang et al., 2005) and human (Hendrie et al., 2001; 

Luchsinger et al., 2002)  deleterious effects of neurodegenerative related symptoms have been 

found to be ameliorated by direct or indirect effects of CR. It can be assumed that proteostasis 

is one of the most important cellular functions to assure organisms health and youthfulness 

and that it is a downstream target of most if not all longevity pathways. Identification of small 

molecule modulators to improve the clearance of toxic proteins might therefore be the most 

promising target to develop drugs against age-related diseases. 

  



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Introduction 
 

 25 

4 Endocrine signaling and the role of the reproductive 

system in ageing 

4.1 Gonadal longevity in C. elegans 

So far, I have discussed how genetic pathways regulate cellular function to influence 

ageing. The next paragraph is focused on how tissues communicate to coordinate and 

orchestrate lifespan in the whole organism. Usually tissues communicate by endocrine 

signaling. Hormones are secreted from one tissue to bind to a receptor on cells of another 

tissue to induce transcriptional changes. This hormonal control traditionally was investigated 

in growth, development and physiology. But an open question that remains is: which 

hormones might be involved in the regulation of longevity? 

 Interesting first insights to this came from the reproductive system of C. elegans. Here 

it was shown that microsurgery to ablate reproductive germline precursor cells Z2, Z3 of L1 

larvae abolishes germline stem cells, while maintaining the somatic germline, and extends 

lifespan by 60% (Hsin and Kenyon, 1999). Genetic removal of the germline by glp-1/notch 

receptor knockout also extends C. elegans lifespan (Arantes-Oliveira et al., 2002). This so-

called gonadal longevity was found in flies (Flatt et al., 2008) and mice (N. Kagawa et al., 

2010). Interestingly, it is not due to a simple trade-off of energy from germline to somatic 

tissue as additional removing of the somatic gonad abrogates longevity (Hsin and Kenyon, 

1999). This suggests that there are opposing endocrine signals produced by germline and 

somatic gonad to influence whole organism ageing. Removal of life shortening signals of the 

germline induces longevity but additional removal of life lengthening signals from somatic 

gonad that abrogates longevity. The identity of both these signals are not unambiguously 

understood yet, but a steroid hormone and micro RNAs play an important role and will be 

subject for further investigations.  

4.2  Connectivity of gonadal longevity within the ageing networks 

Endocrine signaling adds a third dimension to the ageing network; it demonstrates that 

ageing is not only about the epistatic and temporal order but also about spatial organization of 

cellular processes. Gonadal longevity is strictly dependent on a number of IIS associated 

factors, DAF-16/FOXO (Hsin and Kenyon, 1999), DAF-18/PTEN (Berman and Kenyon, 
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2006), HSF-1 (Hansen et al., 2005) and SMK-1/SMEK-1 (Wolff et al., 2006). But whereas in 

reproductive animals IIS inhibition induces DAF-16/FOXO translocation to the nucleus in 

intestinal cells and neuronal cells, germline ablation only induces DAF-16/FOXO nuclear 

localization in the intestine, pointing to the importance of the intestine to mediate gonadal 

longevity (Yamawaki et al., 2010). It seems evident that an endocrine signal from somatic 

gonad induces longevity, and that this signal needs to target IIS signaling in a specific tissue, 

namely the intestine to modulate lifespan. Notably, mediation of gonadal longevity is more 

complex than just via IIS, since there are more essential factors specific for gonadal longevity 

like the anykrin-repeating transcription factor kri-1/KRIT-1, which is essential for DAF-

16/FOXO nuclear localization specifically in gonadal but not in IIS longevity (Berman and 

Kenyon, 2006).  

Another factor is the transcription elongation/splicing homologue TCER-1 (Ghazi et al., 

2009),  outlining that it is not only daf-2/InR that is directly targeted by the somatic germline 

longevity signal. Another target of the gonadal longevity pathway is fat metabolism. First, as 

mentioned above, gonadal longevity depends on the activity of the lipase lipl-4. Second, it is 

dependent on PHA-4/FOXA to induce autophagy (Lapierre et al., 2011). Thus, it seems 

essential to gonadal longevity that autophagy and lipases together modulate fat metabolism. 

Third, it was shown that stearoyl-Co-A-Δ9-desaturase FAT-6 is essential for gonadal 

longevity. It desaturates stearic acid to oleic acid. Fat-6 expression as well as oleic acid levels 

are up-regulated in germline-less animals. Knockdown of fat-6 abrogates gonadal longevity 

and it can be restored by nutritional oleic acid. Interestingly, fat-6 is regulated by NHR-

80/HNF4α-like (Goudeau et al., 2011). NHR-80 is an orphan nuclear hormone receptor 

suggesting the unknown gonadal longevity signal and its mediation involves steroid signaling.  

Strongest evidence that the signal from somatic gonad actually is a steroid hormone, 

comes from a recent papers. It was shown that gonadal longevity depends on the dafachronic 

acid (DA) pathway (Gerisch et al., 2007; Shen et al., 2012; Yamawaki et al., 2010). The DA 

pathway is a lipophilic hormone synthesis pathway first discovered as a key regulator of the 

dauer pathway. To discuss the role of DA pathway in lifespan determination of germline 

ablated and also reproductive C. elegans it is advisable to first understand metabolic and 

endocrine properties of the dafachronic pathway.  
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4.3 The role of steroid endocrine signaling for dauer formation and lifespan in 
C. elegans 

Steroid hormones are another group of regulatory hormones. They are small lipophilic 

molecules that bind to nuclear hormone receptors (NHRs) to regulate transcription of many 

target genes. NHRs are usually comprised of a ligand binding domain and a DNA binding 

domain. The number of NHRs strongly varies among species. In drosophila, there are 18 

NHRs, in human 48, and in C. elegans 284, most of which are orphan receptors, meaning that 

the ligand is not known. The best-studied NHR in C. elegans is DAF-12. It has homology to 

human vitamin D receptor, farnesoid-X and liver X receptor (VDR, FXR,LXR) and it was 

found to act in dauer formation, developmental timing and longevity. Moreover it is the major 

target of the dafachronic acid pathway (Antebi, 2013).   

Dafachronic acid is a cholesterol-derived steroid. Steroids are C17 molecules creating 

three cyclohexane rings (called A, B, C) and one pentane ring (D). Cholestens are special 

form of steroids they consist of 10 C atoms. Cholestens carrying an OH moiety group in 

position 3 are called sterols (3- hydroxyl-cholestens). Cholesterol is the simplest sterol and 

regulates membrane liquidity. But most notably, in mammals it is the precursor for steroid 

hormones, bile acids and oxysterols. Steroid hormones are important signal molecules in 

developmental decisions like puberty and metabolic processes like fat metabolism (Wollam 

and Antebi, 2011). Two, primary bile acids are produced in the liver and released to small 

intestine where host bacteria produce two other, so called secondary bile acids. Bile acids 

render micelle formation possible in small intestine. Moreover they are formed to drain spare 

cholesterol to prevent toxicity (Chiang, 2013). A large group of steroids in mammals are the 

oxysterols. They are oxidized forms that posses either one or more hydroxyl or keto-groups. 

They function as signaling molecules and bind to oxysterol binding proteins to regulate 

cellular processes like lipid metabolism, bile acid production, cholesterol and their own 

synthesis. In C. elegans the DA pathway is the only in detail described steroid pathway with 

cholesterol as an upstream substrate and is involved in dauer formation and longevity. 

4.3.1 Dauer formation and its connection with ageing  

As discussed before, environmental conditions and certain small molecules can have a 

significant impact on genetic networks modulating lifespan of C. elegans. During 

development, C. elegans uses similar signals to make another decision - reproductive growth 

or larval arrest? 
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Under harsh environmental conditions such as high temperature, crowding or food scarcity, 

C. elegans can arrest development at several stages to enter so called diapauses. Best studied 

is the L3 larvae alternate dauer arrest that is entered after L2 molting to endure until more 

favorable conditions occur. Executing the appropriate developmental program must have been 

evolutionary optimized to integrate a large number of environmental and genetic signals into 

a binary decision: Dauer Formation - Yes or No?  

Accordingly, up to date several pathways have been identified that contribute to this 

important decision. Originally, many genes were identified in dauer screens (Albert and 

Riddle, 1988; Morris et al., 1996; Pierce et al., 2001; Riddle et al., 1981; Wolkow et al., 2002) 

and named according to their phenotype either dauer formation constitutive (Daf-c) or dauer 

formation defective (Daf-d). Many of these genes have been placed in pathways and epistatic 

interactions are described. Notably among them are also ageing pathways like transforming 

growth factor β (TGF-β), IIS and TOR. All of them impinge on the lipophilic dafachronic 

acid pathway ultimately regulating the dauer decision (Hu, 2007). Although not all pathways 

and interconnections are understood completely within the network regulating dauer 

formation and ageing, the idea immediately suggests that the big overlap results from 

functional orthology: a vast variety of endogenous and environmental signals needs to be 

processed and translated into an orchestrated and organism-wide response (Schaedel et al., 

2012). For both decisions signals like food availability, temperature and population density 

are taken into account. From the evolutionary point of view it is likely that a network 

established to process these signals is used for distinct decisions regarding biological timing, 

such as dauer entry or survival at different time points during an animal’s life history. The 

concept of using the same molecular switches to guide different decisions in life history was 

recently illustrated by Horn et al. (Dev. Cell in press). The interaction of the F-BOX protein 

DRE-1 with its target BLMP-1 regulates dauer formation, epidermal maturation and lifespan 

(Horn et al., 2014).  

4.3.2 Features of dauer larvae 

Dauer larvae themselves are long-lived. Compared to reproductively growing worms, 

dauer larvae feature increased resistance to many different kinds of stresses, such as heat 

stress, hypoxia, anoxia, UV radiation and food scarcity. They are longer and thinner than L3 

larvae due to a radial constriction (Cassada and Russell, 1975). They appear darker under 

dissecting microscope due to higher fat content. Moreover they form a specific cuticle that is 
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robust and is even resistance to 1% SDS, dauer larvae can be identified under a microscope 

by a surface structure, the dauer alae. Further, dauer larvae do not feed, their oral orifices are 

closed by an internal plug and therefore they have no pharyngeal pumping (Cassada and 

Russell, 1975; Riddle et al., 1981). They utilize the glyoxylate cycle instead of aerobic 

respiration and TCA to generate carbohydrates (Wadsworth and Riddle, 1989). This allows 

them to survive for several months. Upon improved conditions, dauer larvae resume 

reproductive growth and develop to fully mature fertile adult hermaphrodites. 

4.3.3 The genetics of dauer decision 

C. elegans mainly sense nutrition with processes of sensory head neurons directly 

exposed to the outside. Information is then processed first in neurons, involving cGMP and 

serotonergic signaling (Birnby et al., 2000; Thomas et al., 1993). Under favorable conditions 

IIS and TGF-β signaling are activated (Murakami et al., 2001). Released hormones of these 

two pathways in turn lead to the activation of the dafachronic acid pathway that stepwise 

converts cholesterol to bile acid-like steroids called dafachronic acids (DA) (Figure 2). How 

these hormones actually activate DA synthesis remains mainly unknown. However, DA then 

binds to the nuclear hormone receptor DAF-12. DA-bound DAF-12 promotes reproductive 

programs in L2 larvae (Antebi et al., 2000; Motola et al., 2006). In addition to this function 

prior to sexual maturation, later in life the DAF-12 DA interaction ascertains a normal 

lifespan. On the other hand unbound DAF-12 recruits the co-repressor DIN-1 to repress 

reproductive development, promote dauer formation and extended lifespan (Ludewig et al., 

2004). Accordingly, the daf-12 null mutant rh61rh411 is dauer defective and short-lived 

(Antebi et al., 2000). In this context, DA acts on DAF-12 to determine its function as an 

activator or as a repressor. Thus, DA binding and the regulated activity on the NHR DAF-12 

connects C. elegans developmental decision and lifespan determination. Consequently, 

upstream pathways of DA synthesis like IIS and TOR have dauer and ageing phenotypes. 

Nevertheless, not all of these lifespan phenotypes are strictly DAF-12 dependent indicating a 

more complex network underlying determination of lifespan.  

4.3.4 Biochemistry of the dafachronic acid pathway 

C. elegans is cholesterol auxotroph and relies on diet as the only source. Thus, 

cholesterol can become a limiting factor for DA synthesis. Accordingly, knockouts of the two 

known genes involved in sterol transport, the Nieman-Pick Type C-1 (NPC) homologues ncr-
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2 and ncr-2 are Daf-c (Li, 2004). The DA pathway is separated in at least two distinct 

branches that both convert cholesterol to dafachronic acid (DA), 3-keto-4-cholestenoic-acid 

(Δ4-DA) and 3-keto-7-cholestenoic-acid (Δ7-DA), respectively. In the first step of the Δ7-DA 

branch the DAF-36/Rieske Oxygenase reduces cholesterol to 7-dehydrocholesterol (Wollam 

et al., 2011; Yoshiyama-Yanagawa et al., 2011), introducing a 2nd double bound in position 

seven of steroid backbone (B ring). In a second step, a so far elusive enzyme reduces the 

steroid B ring of 7-dehydrocholesterol in position four to synthesize lathosterol (Motola et al., 

2006). Lathosterol in turn is oxidized to lathosterone by 3-hydrosteroid dehydrogenase DHS-

16 by introducing a keto-group to C3 of steroid A ring (Wollam et al., 2012). The last step is 

carried out by DAF-9/CYP27A1 acting on the side chain of lathosterone to convert it to a 

carboxylic acid similar to human bile acids (Gerisch et al., 2001; Jia et al., 2002; Motola et 

al., 2006). DAF-9/CYP27A1 also has a postulated role in the second branch of DA synthesis 

it supposedly oxidizes the side chain of 4-cholesten-3-β-one to generate Δ4-DA. Biochemical 

evidence supporting this role of HSD-1 in vivo remains elusive, up to date (Dumas et al., 

2010; Patel et al., 2008; Wollam et al., 2012).  

In a recent study using comparative metabolomics more endogenous ligands of DAF-

12 were identified 3-oxo-1,7-cholestadie-noic acid (Δ1,7-DA), 3α-hydroxy-7-cholestenoic-

acid (3a-OH- Δ7-DA). Δ1,7-DA was also shown to have a physiological function, restore 

gonadal longevity in glp-1;daf-36. Interestingly, with 3a-OH- Δ7-DA a DA that carries up an 

OH- moiety in in position 3 was identified, supporting earlier findings (Held et al., 2006), that 

the keto-group of other DAs in this position is not essential to bind to DAF-12 (Mahanti et al., 

2014). Although Δ4-DA itself was not detected in worms, a physiological function to activate 

DAF-9 and a subsequent rescue of DA depletion-induced phenotypes was shown repeatedly 

(Gerisch et al., 2007; Shen et al., 2012; Yamawaki et al., 2010). 
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Figure 2 IIS and TGF-β induce dafachronic acid pathway  

Delta 7 dafachronic acid synthesis: Under favourable conditions IIS and TGF-β signals activate DA 
pathway. In the DA pathway cholesterol is first converted to 7-dehydrocholesterol by DAF-36, that in turn 
is oxidzed to lathosterol by an so far elusive enzyme, next DHS-16 converts lathosterol to lathosterone and 
finally lathosterone is oxidized to Δ7-DA -dafachronic acid by DAF-9. Dafachronic acid binds to DAF-12 to 
promote reproductive growth and regular lifespan. Under unfavourable condition the pathway 
synthesizes less DA and unbound DAF-12 recruits DIN-1 promotes dauer and longevity 

4.4 Endocrine character of the dafachronic pathway 

Interestingly, expression profiles of the involved enzymes are distributed in different 

tissues. DAF-12 is expressed in all tissues but the final step of DA synthesis is restricted to a 

few neuronal cells, because daf-9/Cyp27A1 is expressed in a distinct set of neuroendocrine 

cells the XXX cell, the hypodermis and spermatheca (Gerisch et al., 2001; Jia et al., 2002). 

Notably, DAF-36 is expressed mainly in gut and DHS-16 is found in neurons, pharynx, and 

hypodermis (Rottiers et al., 2006; Wollam et al., 2012).  The only enzyme of the postulated 

second branch, HSD-1, is expressed in XXX- cells (Patel et al., 2008). Thus, the intermediates 

of the DA pathway must be transported cell non-autonomously between tissues. It remains 

elusive how and at which developmental time-point DA is transported to a tissue where it 

binds to DAF-12. One reasonable speculation is that the spatial distribution separates the 

DIN-1

HO

DAF-36

???

DHS-16

DAF-9

O

HO

HO

O

HO

O

cholesterol

7-dehydrocholesterol

lathosterol

lathosterone

67-dafachronic acid

DAF-12

DAF-12
reproductive life
regular lifespan

dauer formation
long lifespan

DIN-1
TGF-β

IIS

O

HO

O



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Introduction 
 

 32 

multiple functions of DA/DAF-12 interaction (Wollam and Antebi, 2011). This distribution of 

the DA pathway further supports its endocrine character. 

4.4.1  The role of DA pathway in longevity 

In regular reproductively growing animals, DA signaling seems to have rather mild 

effects on lifespan. Nevertheless, strong DAF-9 mutations that result in low DA levels are 

long-lived at 15 °C and 20 °C, and this longevity is daf-12 and din-1 dependent(Gerisch et al., 

2001; Ludewig et al., 2004). Moreover it was found, that a synthetic inhibitor of DAF-9 

(dafadine) also induces dauer formation and extends lifespan (Luciani et al., 2011), 

underlining the essential role of DAF-9 to ascertain a regular lifespan. The putative DAF-12 

null allele (rh61rh411) that carries nonsense mutations in the DBD (rh411) and in the LBD 

(rh61) is slightly short lived, suggesting a lifespan-extending role for unliganded DAF-12. 

Another LBD mutant(rh273) was reported to be long-lived (Antebi et al., 2000; Fisher and 

Lithgow, 2006). It seems likely that DAF-12 can work in both directions to either extend or 

shorten lifespan (Rottiers et al., 2006). This ambivalent role is reflected in its relation to IIS 

longevity. Longevity of strong daf-2 alleles is further extended whereas longevity of weak 

alleles is abrogated (Gems et al., 1998; Larsen et al., 1995).  

Recently it was found that the DAF-12/DA interaction is also essential to gonadal 

longevity. It depends on three components of the dafachronic acid pathway: DAF-36/Rieske 

like oxygenase, DHS-16, DAF-9 and DAF-12. Knockouts of DAF-36 and DAF-9 have 

lowered levels of Δ7-DA (Wollam et al., 2012). Supplementation of DA to germlineless 

animals in daf-9 and daf-36 background restores gonadal longevity (Gerisch et al., 2007). 

This suggests that the longevity signal from the somatic gonad is dafachronic acid. It is 

supported by the finding that gonadal longevity of animals without reproductive system is 

restored by feeding Δ4-DA (Gerisch et al., 2007; Yamawaki et al., 2010). Accordingly, in 

germline-less animals DAF-36 expression is increased and Δ7-DA levels are higher. DA 

activates DAF-12 target genes mir-84 and mir-241 (Bethke et al., 2009). These genes are also 

up-regulated in germline-less animals and in line, gonadal longevity is abrogated in mir-84; 

mir-241 mutants (Shen et al., 2012). Therefore, dafachronic acid and the let-7 micro RNAs 

mir-84 and mir-241 play an essential role in gonadal longevity and are involved in the 

mediation of longevity signals coming from somatic gonad. Steroid signaling therefore is a 

promising target to look for other components that can extend C. elegans lifespan.  
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Figure 3 The role of small molecules in modulating longevity pathways  

Direction of arrows in this figure are based on proposed genetic epistasis and do not indicate a direct 
biochemical interaction. Dotted lines represent interactions of which direction is not unambiguously 
understood. Environmental conditions are signaling via small molecules (red) to inhibit or activate genetic 
networks - IIS and TOR pathway. Pharmaceutical manipulation is possible by feeding TOR inhibitors like 
rapamycin or changing availability of sugars and amino acids. This genetic level of life span determination 
(beige background) includes strong involvement of the energy sensor AMPK, that was also identified as a 
small molecule target for ageing-manipulation (metformin). IIS, TOR and AMPK together regulate 
cellular functions like mitochodrial and translational activity (not shown). A common downstream target 
of this network seems to be autophagy, an important mechanism to uphold proteohomeostasis. These two 
cellular functions (yellow background) emerged as major regulators of lifespan determination. 
Accordingly many small molecules (antioxidants, GlcNAC and trehalose) found to improve 
proteohomeostasis and also extend lifespan. In C. elegnas, gonadal ablation leads to longevity that is 
depending, among others, on the IIS transcripton factor DAF-16, components of the DA pathway and 
activity of FAT-6 that converts stearic to oleic acid. During development IIS together with TGF-β impinge 
on DA pathway to regulate dauer decision and lonegvity in reproductive animals. But also TOR was 
shown to be involved in regulation of dauer entrance. 
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Aim of the study 

5 Aim of the study  

As discussed, many longevity pathways such as TOR and IIS are targets of metabolic small 

molecules such as amino acids and glucose. But also cellular functions that are regulated in 

lifespan determination such as autophagy and protein homeostasis are targets of such 

endogenous molecules like trehalose or spermidine. Moreover synthetic small molecule 

modulators of these longevity pathways such as metformin have been identified. In brief, 

endogenous and synthetic small molecule modulators of longevity pathways emerged as an 

important part helping to solve the puzzle of ageing. Regarding the fact that some of these 

molecules are components of our daily diet little is understood about how they signal to 

modulate the complex network that regulates lifespan. 

What is role of endogenous small molecule metabolites in ageing? How can such 

molecules of our daily diet like sugars, amino acids, fatty acids and sterols modulate lifespan? 

What are the signaling pathways that they might work through? How does the quality of diet 

influence ageing? How can small molecules be used to alter the onset of age-related diseases 

and potentially help to develop drugs to treat them?  

Notably, most of the longevity pathways and their regulation by small molecules are 

conserved in C. elegans. Interestingly, similar pathways regulate dauer formation of C. 

elegans. Thus, I use dauer formation as a primary readout to screen sugars, amino acids, fatty 

acids and sterols regarding their potential to alter dauer formation. Candidate molecules might 

also influence lifespan. By unraveling the effects of such small molecule modulators on 

lifespan in C. elegans, we hope to learn about conserved mechanisms that help to understand 

human- ageing and age-related diseases.  
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Results 

6 Screening small molecules 

6.1 Establishment of screening conditions 

We intended to create a highly sensitive assay to identify new compounds that play a 

role in dauer formation and lifespan determination. Therefore we decided on screening in 

animals carrying a mutation in DAF-2. DAF-2 is the only known homologue of human 

insulin receptors (InR). In general, alterations of the insulin signaling were described as a 

conserved mechanism to modulate lifespan from nematodes to human and in particular it was 

shown as one of the major players in dauer decision in C. elegans (Hu, 2007). DAF-2 

promotes reproductive growth and regular lifespan. Therefore daf-2 thermo sensitive 

mutations loss of function alleles such as daf-2(e1368) and daf-2(e1370) promote dauer 

formation and longevity (Gems et al., 1998; Hsin and Kenyon, 1999). By using such a 

sensitive background we hoped to also identify compounds with rather moderate effects on 

dauer formation. Moreover we designed the assay to be capable to monitor increase as well as 

a decrease in dauer formation. We tried several genes of the two described daf-2 allele classes 

to establish an assay that under control conditions will lead to around 50% dauer formation at 

moderate increase in temperature. We finally decided to perform the screen in class two allele 

daf-2(e1368) background at 22.5 °C and to use 10 mM D-glucose as control for rescue. 

6.2 Screening for dauer modulators in daf-2(e1368) 

As key components of the diet and messengers of metabolic balance, we focused our 

small-scale-screen on basic building blocks of metabolism, including sugars, amino acids, 

fatty acids, and sterols. To assess secondary effects of bacterial metabolism, we performed 

dauer assays on living and on UV-killed bacteria. Moreover we initially tested two different 

concentrations (10 mM and 100 mM). 

6.2.1 Sugars  

Sugars are an important carbon and energy source of the diet and it was shown that 

they play a role in lifespan determination and dauer formation. Glucose was shown to 

decrease lifespan and decrease dauer formation via IIS (Lee et al., 2009; Schulz et al., 2007). 
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We decided to test other sugars for a potential modulation of dauer formation. Glucose was 

established as a control to rescue dauer formation. The assay was adopted from the Kenyon 

Lab (Lee et al., 2009). Interestingly, 10 mM and 100 mM D-glucose, D-galactose and the 

sugar alcohol glycerol partially rescued dauer formation of daf-2(1368) on living (black) and 

UV inactivated (light grey) bacteria. D-galactose had the strongest effect and reduced dauer 

down to 5 % on living bacteria and down to 10 % on UV treated bacteria. Interestingly, there 

was no difference between 10 mM and 100 mM treatment.  

100 mM trehalose, but not 10 mM trehalose significantly rescued dauer formation on 

living and UV-inactivated bacteria. And D-fructose slightly reduced dauer formation under all 

conditions but only rescue with 100 mM on living bacteria was significant (Figure 4). The 

only provided sugar that had no effect on dauer formation was sucrose. These data suggest 

that various carbohydrates influence dauer formation assumable via IIS. 

  

Figure 4 Multiple sugars decreased dauer formation 

Daf-2(e1368) was grown from egg on at 22.5 °C on NGM plates containing one of multiple sugars either at 
10 mM or 100 mM. NGM plates were either seeded with living OP50 (black bars) or UV-inactivated OP50 
(light grey). Populations were scored after 60 hours for the fraction that formed dauer larvae. Water and 
glucose were provided as controls. The only sugar showing no effect on dauer formation as compared to 
ddH20 control was sucrose. All other tested sugars decreased dauer formation at both 
concentrations.*p<0.05, **p<0.005, ***p<0.001 (ANOVA). Mean+SEM (n≥3, >50 worms each) 

6.2.2 Amino acids 

Amino acids are important building blocks for growth and reproduction. In flies it was 

shown that their limitation influences dietary restriction mediated longevity and reproductive 

output (Grandison et al., 2009). One way they may impact metabolism is through the nutrient 

sensor TOR, a major pathway modulating ageing and CR. We therefore decided to test all 

proteinogenic amino acids regarding their potential to modulate dauer formation and used D-
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glucose and ddH2O as controls. Again we used two concentrations (10 mM and 100 mM) and 

tested dauer formation, first on living (Figure 5 A) and then on UV inactivated bacteria 

(Figure 5 B). 

On living bacteria in the group of small, nucleophilic and amide amino acids no effect 

on dauer formation was observed for L-serine, L-threonine, L-cysteine, L-alanine, L-

asparagine and L-glutamine neither at 10 mM nor at 100 mM. The only effect was with 100 

mM glycine. A tendency of decreased dauer formation that did not reach significance was 

observed with 100 mM serine, asparagine and glutamine. In the groups of aromatic, basic, 

hydrophobic and acidic amino acid tryptophan (10 mM) and valine at 100 mM significantly 

decreased dauer down to 9 % and 20 %, respectively. At 100 mM tyrosine, tryptophan, 

histidine, methionine and aspartic acid were toxic and inhibited either growth of bacteria or 

hatching of larvae. Arginine at 100 mM had a high variability in the single experiments. To 

exclude a potential effect of basic conditions we provided arginine-HCl and observed no 

effect on dauer formation. Moreover with 100 mM we observed decreased dauer fraction that 

did not reach significance for leucine and proline (Figure 5 A).  

With UV treated bacteria we observed no effect of serine, threonine alanine, 

asparagine glutamine phenylalanine lysine, isoleucine, proline aspartic acid and glutamine. 

Glycine at 10 mM decreased dauer formation and 100 mM abolished it. On UV inactivated 

bacteria more amino acids had toxic effects. Cysteine, tyrosine, tryptophan inhibited growth 

at both concentrations, leucine and methionine at 100 mM and valine at 10 mM. We assume 

that living bacteria have an ameliorating effect on amino acid toxicity (Figure 5 B). 

In addition, we observed a shift towards reproductive growth, when amino acids were 

provided on living bacteria at 100 mM. This apparent rescue may potentially be a 

consequence of increased osmolarity, since increased osmolarity was linked before to 

transcriptional targets of DAF-16. DAF-16 is the key-regulator of IIS and upstream of dauer 

pathway. Alterations in its transcriptional output, thus might lead to dauer rescue. This 

tendency towards reproductive growth seems to be ameliorated in UV treated bacteria, 

suggesting that there is an osmolaric effect on living bacteria that leads to differential dauer 

formation of C. elegans. Additionally we did not see an osmolaric effect when sugars were 

provided. Anyhow since effects of osmolarity on lifespan is not scope of this study we 

decided to prevent them and only use compounds at 10 mM or lower for further screening. 

The only amino acid that significantly decreased dauer formation under all conditions was 

glycine. It might be an interesting candidate to follow up in the future. 
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Figure 5 Only few amino acid decreased dauer formation of daf-2(e1368)  

Daf-2(e1368) was grown from egg on at 22.5 °C on NGM plates containing one of the 20 proteinogenic 
amino acids either at 10 mM or 100 mM. NGM plates were either seeded with (A) living OP50 or (B) UV-
inactivated. Populations were scored after 60 hours for the fraction that formed dauer larvae. Water and 
glucose were provided as controls. Some amino acids inhibited bacterial growth or prevented worms from 
hatching (no growth). *p<0.05 **p<0.005, ***p<0.001 (ANOVA). Mean+SEM (n≥3, >50 worms each) 
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6.2.3 Fatty acids 

Fatty acids are a rich source of energy, provide building blocks for membranes and 

organelles and serve as signaling molecules in many pathways. Several lipids such as N-

ethanolamides, oleic acid, and DGLA have been implicated in C. elegans ageing (Goudeau et 

al., 2011; O'Rourke et al., 2013; Watts and Browse, 2006). Moreover, IIS and TOR are 

nutrient sensing pathways partly regulated by fatty acids. Under starvation conditions, stored 

fatty acids are released through lipolysis, in some cases closely coupled to autophagy. 

Because fatty acid are important signals in nutrient sensing we decided to test major classes of 

fatty acids found in C. elegans including representative saturated, monounsaturated and 

polyunsaturated fatty acids. Fatty acids were provided in the presence of NP40 to facilitate 

their solubilization and uptake into C. elegans (Nomura et al., 2009). Under these conditions, 

only arachidonic acid partially rescued dauer formation of daf-2(e1368) (Figure 6). 

 

Figure 6 Arachidonic acid decreased dauer formation of daf-2(e1368)  

Daf-2(e1368) was grown from egg on at 22.5 °C on NGM plates with NP-40 containing one of 12 fatty 
acids previously described as part of C. elegans fat metabolism. Corresponding volume of vehicle (EtOH) 
was used as control. Populations were scored after 60 hours for the fraction that formed dauer larvae. 
Arachidonic acid was the only fatty acid that showed a significant affect (decrease) of dauer formation. 
**p<0.005 (ANOVA). Mean+SEM (n≥3, >50 worms each) 
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6.2.4 Steroids 

C. elegans cannot synthesize cholesterol and must obtain it from the diet (Hieb and 

Rothstein, 1968). The bile acid-like steroids, the dafachronic acids, are derived from dietary 

cholesterol, and are thus far the only identified steroid pathway in the worm. They play an 

important role in preventing dauer formation and regulating longevity.  

Given the role of sterols and steroids in physiological regulation, we thus asked if 

various steroids affect daf-2 dauer formation. In particular we examined precursors of 

mammalian steroid hormone synthesis, mammalian bile acids, intermediates of the DA 

pathway, several other plant mammalian and insect steroids, two retinoic acids, C. elegans 

molting hormone lophenol and a group of oxysterols known to target liver x receptor (LXR) 

in humans (Wollam and Antebi, 2011)(Figure 7). Most of the steroids were as well tested 

under low cholesterol conditions to down-regulated synthesis of cholesterol-derived sterols.  

We observed no significant effect on dauer formation of steroids in the group related 

to human steroid synthesis and in the group of human bile acids (Figure 7, upper panel). In 

the group of mixed steroids, lophenol increased dauer formation significantly under regular 

and low cholesterol conditions (Figure 7, medium panel). All steroids in the group of DA 

synthesis intermediates reduced dauer formation in daf-2(e1368) but under regular and low 

cholesterol conditions, whereas 7-deyhdrocholesterol, lathosterol and 4-cholesten-3-one had a 

rather mild effect. Lathosterone reduced dauer formation down to 10 % and only Δ7- DA 

completely abrogated dauer formation. In the group of oxysterols, we found that 22(S)- 

hydroxycholesterol, 22(R)- hydroxycholesterol and 5-cholesten-3β-ol-7-one increased dauer 

formation. All other compounds had no significant effect (Figure 7, lower panel). 
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Figure 7 DA intermediates and oxysterols altered dauer formation in daf-2(e1368)  

Daf-2(e1368) was grown from egg on at 22.5 °C on regular NGM (black bars) or NGM plates without 
additional cholesterol (grey bars). Steroids, provided at 40 μM belonging to either (A) the group of human 
steroid hormone synthesis or human bile acids (B) steroids of the DA pathway, (C) oxysterols or (D) to no 
of the above. Corresponding volume of vehicle (EtOH) was used as control. Populations were scored after 
60 hours for the fraction that formed dauer larvae. Some steroids of the DA pathway rescued dauer 
formation and some oxysterol increased dauer formation independent of nutritional cholesterol. **p<0.01, 
***p<0.001 (ANOVA). Mean+SEM (n≥3, >50 worms each) 

 

7 7-Ketocholesterol induced phenotypes 

7.1 7-ketocholesterol enhanced dauer formation in daf-2(e1368) at low 
concentrations 

Because 22(R)-hydroxycholesterol, 20-α-hydroxycholesterol and 25-

hydroxycholesterol were identified as among the few molecules to enhance dauer formation 

of daf-2(e1368), we followed up on their effects by examining their dose response to 40 µM, 

4 µM and 0.4 µM. We only observed reproducibility of significant increased dauer formation 

for lophenol and 22-(R)-hydroxycholesterol with 40 µM (Figure 8 A). We further tested, 5-

cholesten-3β-ol-7-one that had the strongest effect on dauer formation in the screen (97%). 

We found that it induced dauer phenotypes even at lower concentrations. Indeed 5-cholesten-

3β-ol-7-one reliably increased dauer formation of daf-2(e1368) with 40 µM, 4 µM and 0.4 

µM, but did not increase dauer formation at 40 nM (Figure 8 B). 400 nM lies within a 

reasonable range for a specific ligand-receptor interaction. Thus, we decided to focus further 

analyses on 5-cholesten-3β-ol-7-one. 5-cholesten-3β-ol-7-one is a sterol that differs from 

cholesterol only in position 7 at the B ring, where it contains a keto-group and is therefore 

colloquially called 7-ketocholesterol (7-KC) (Figure 8 C).  
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Figure	  8	  400	  nM	  7-‐ketocholesterol	  increased	  dauer	  formation	  in	  daf-‐2(e1368)	  

(A-B) Daf-2(e1368) was grown from egg on at 22.5 °C on NGM plates containing 7-ketochoesterol 40 μM, 
4 μM, 400 nM or 40 nM, respectively. Δ7-dafachronic acid and corresponding volume of vehicle (EtOH) 
were used as controls. Populations were scored after 60 hours for the fraction that formed dauer larvae. 
(B) All 7-KC concentrations ≥ 400 nM significantly increased dauer formation. (C) Structure of 
cholesterol and its oxidized form 7-ketocholesterol, carrying a keto-group at C7. ***p<0.001 (ANOVA). 
Mean+SEM (n≥3, >50 worms each). 
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7.2 7-KC did not affect dauer formation of N2 

As a first step in characterizing 7-KC, we asked if it also affects dauer formation in wild 

type N2 or if it is restricted to daf-2(e1368). We fed 40 µM 7-KC or the vehicle EtOH to N2 

worms throughout development. N2 animals on regular NGM plates with vehicle control at 

20 °C, 22.5 °C and 25 °C form no dauer larvae. At 27 °C they formed dauer larvae at a 

fraction of around 10 %. Surprisingly, animals grown on 7-KC supplemented plates also 

formed no dauer at 20 °C, 22.5 °C and 25 °C and the fraction dauer larvae formed at 27 °C 

was not increased by 7-KC compared to EtOH (Figure 9 A). Thus, we conclude that the 

effect of 7-KC on N2 is not strong enough to induce dauer formation in otherwise 

reproductively growing animals.  

We decided for a non-genetic way to create a more dauer-prone environment, namely 

cholesterol deprivation. C. elegans is auxotroph for cholesterol (Hieb and Rothstein, 1968), 

and cholesterol is the precursor of DA. Accordingly, the F1 generation on low cholesterol is 

more prone to enter dauer (Gerisch et al., 2001). Thus, we decided to measure dauer 

formation on NGM plates without additional cholesterol supplementation (NGM low) and 

monitor dauer formation of F1 generation. Under this conditions no dauer larvae were formed 

at 20°C, 22.5°C and surprisingly neither at 25 °C with EtOH, which would be expected 

according to literature. However, as expected in populations grown at 27 °C, significantly 

more animals entered dauer compared to regular NGM plates. Provision of 7-KC did not 

further enhance the amount of dauer larvae. (Figure 9 B).  

DA deficiency cannot only lead to dauer, but also to gonadal cell migration defects 

(Mig) in which migratory distal tip cells fail to reflex. This phenotype is seen for example 

with mutations in hormone biosynthetic genes daf-36/Rieske null mutants (Rottiers et al., 

2006), and daf-9/CYP27A1 hypomorphs(Gerisch et al., 2001)). However, 7-KC did not 

induce gonadal Mig phenotypes in the wild type background. Therefore we conclude that 

either effect of 7-KC is specific with daf-2(e1368) or is too mild to induce dauer in N2. 
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Figure 9 7-ketocholesterol does not increases dauer formation of N2  

N2 was grown from egg on at 20 °C, 22.5 °C, 25 °C and 27 °C on NGM plates containing 7-ketochoesterol 
(40 μM) containing (A) regular cholesterol (5mg/ml) or (B) no additional cholesterol. Populations were 
scored after 48 h (20 °C, 25 °C, 27 °C) or 60 h (22.5 °C) for the fraction that formed dauer larvae. 7-
ketocholesterol did not increase dauer formation of N2 (ANOVA). Mean+SEM (n≥3, >50 worms each) 

7.3 7-KC induced hypodermal daf-9 expression in N2 

To elucidate which of the above is the case, we decided to examine a third phenotype 

induced by mild DA depletion- namely hypodermal DAF-9 expression (daf-9 hyp). Under 

favorable conditions DAF-9 as the key-enzyme in DA synthesis is expressed from embryo 

until adulthood in the XXX neuroendocrine cells, leading to a sufficient level of DA to 

activate DAF-12 driven reproductive growth programs. Phenotypes, Mig and daf-9(hyp) are 

associated with rather mild DA depletion. Under such mild depleting conditions low DA 

feedback regulates DAF-9 expression in hypodermal cells from late L2 stage on through 

adulthood. Switching DAF-9 expression profile from the XXX cells to all hypodermal cells is 

thought to result in more DA synthesis and the induction of reproductive growth (Gerisch et 

al., 2001; Wollam et al., 2011). 

We compared fluorescence of the hypodermis of L3 larvae carrying a daf-9::gfp   

reporter in N2 (Gerisch et al., 2001)fed with 10 µM 7-KC or vehicle EtOH. If DA pathway is 

down-regulated by 7-KC supplementation, but not far enough to induce dauer programs in 

N2, we expect to find hypodermal expression of DAF-9. As a positive control we used the 

same GFP marker in daf-36(k114) background (Wollam et al., 2011).  

We first checked with microscopy for induction of hypodermal GFP expression in the 

positive control background daf-36(k114) and fluorescence was increased significantly. We 

temperature

20
 °C

22
.5 

°C
25

 °C
27

 °C
0.0

0.2

0.4

0.6

0.8

1.0

da
ue

r f
ra

ct
io

n 

0 +g/ml cholesterol

EtOH

7-ketocholesterol (10 +M)

BEtOH

7-ketocholesterol (10 +M)

A

20
 °C

22
.5 

°C
25

 °C
27

 °C
0.0

0.2

0.4

0.6

0.8

1.0

da
ue

r f
ra

ct
io

n 

5 +g/ml cholesterol

temperature



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Results 

 

 47 

next checked GFP of 7-KC fed N2 and found a similar induction of hypodermal DAF-9 

expression (Figure 10 A). With this approach a basal level of fluorescence in all samples was 

detected due to daf-9::gfp expression in the XXX cells. Moreover, 7-KC significantly up-

regulated hypodermal GFP of L3 larvae compared to EtOH fed animals (Figure 10 B). We 

thus conclude that 7-KC inhibits the DA pathway as well in wild type. This hypothesis is 

further in support with the finding that Δ7-DA suppressed 7-KC induced daf-9(hyp). 

 

Figure 10 7-ketocholesterol induce daf-9::gfp hypodermal expression 

daf-9::gfp and daf-36(k114);daf-9::gfp was grown from egg on at 20 °C on NGM plates provided with 7-
ketochoesterol (10 μM) or corresponding volume of vehicle control (EtOH). Hypodermal GFP intensity of 
L3 larave was analyzed after 40 h by (A) microscopy or GFP intensity was analyzed with (B) Copas 
Biosorter. 7-ketocholesterol and daf-36(k114) induce hypodermal daf-9..GFP expression and the latter is 
rescued by additional Δ 7 - dafachronic acid (100 nm). Right Panel: Representative picture of L3 larvae fed 
with either vehicle control or 7-ketocholesterol (10 μM) xxx=XXX cells (arrows), hyp= hypodermis (arrow 
heads).  ***p<0.001 (ANOVA, for (A) Mean+SEM  n≥3, >12 worms each., for (B) Mean+SEM  n≥3, >2000 
worms each. 

7.4 7-KC extended lifespan on living and dead bacteria 

The initial screen was based on the hypothesis that dauer modulators are also potential 

lifespan modulators in C. elegans. 7-KC increased dauer formation - thus we tested it for its 

effect on lifespan. Different concentrations of 7-KC were fed to N2 animals from L4 stage on 

(40 µM, 10 µM, 1 µM, 0.1 µM and 0.01 µM). Compared to EtOH fed animals 0.01 µM and 

0.1 µM had no significant effect on lifespan. 1 µM and 10 µM significantly extended median 

lifespan by 5 % and 20%, respectively, but over all experiments not maximum lifespan 
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(Figure 11 A, Table S1, Appendix table 1). No extension was observed at and at 40 µM. 

Notably for observed median lifespan extension, it made no difference whether 10 µM 7-KC, 

was provided from egg on or from L4 stage on, uncoupling effects on lifespan from 

development. Notably feeding of 40 µM, led to no longevity when fed from egg on but to 

slightly increased lifespan when fed from L4 (Figure 11 B&C, Table S1 Appendix table 1). 

We conclude that 7-KC acts in a rather narrow range to extend C. elegans median but not 

maximum lifespan. Moreover we suggest that accumulation of 7-KC over time causes 

toxicity, counteracting and ultimately abrogating longevity. We decided on a concentration of 

10 µM for further experiments.  

Feeding assays on living bacteria always entail the risk of secondary effects of altered 

bacterial metabolism. Thus, we decided to perform control lifespan assay on UV inactivated 

bacteria. Feeding 7-KC (10 µM) induced the same lifespan extension (around 20 %) as on 

living bacteria. (Figure 11 D, Appendix table 1), suggesting that 7-KC directly affects worms 

metabolism to extend lifespan (hereafter called 7-KC longevity). 
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Figure 11 7-KC extends lifespan of N2 on living and dead bacteria 

N2 was grown at 20 °C on NGM plates and fed with 7-ketocholesterol either (A, B and D) from L4 on or  
(C) from egg on at indicated concentrations or with corresponding volume of vehicle control (EtOH). N2 
was either grown on living OP50 (A,B,C) or on UV-inactivated OP50 (D). 10 μM 7-ketocholesterol extends 
lifespan on living and UV treated OP50 (20 %) provided from egg or L4. 

7.5 7-KC effects on egg lay and pumping rate 

To further characterize the effects of 7-KC on N2 developmental and physiology, 

fecundity and pumping rate were monitored. A potential mechanism for lifespan extension is 

the energy tradeoff from reproduction to somatic maintenance. Therefore, egg-laying 

behavior of 7-KC fed animals was analyzed and compared to EtOH fed animals. We found 

that 7-KC fed animals laid slightly but significantly less eggs (Figure 12 A, upper panel). 

However, over the course of the reproductive period there was no delay in egg laying (Figure 

12A, lower panel). Thus, we conclude that this minor change in total fecundity does not 

account for 7-KC longevity.  
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Another mechanism to delay ageing is CR. Therefore we asked if investigated if 7-KC 

(10 µM) fed animals take up less food. Pumping rate of the posterior pharyngeal bulb was 

used as a proxy measure for food uptake. 7-KC slightly decreased pumping rate in fed 

animals on day one but not later in life (day six and day ten) (Figure 12 B). We presume that 

this effect is negligible and not sufficient to induce CR longevity. 

 

Figure 12 7-KC effects on egg lay and pumping rate 

N2 grown from egg on at 20 °C on NGM plates containing 10 μM 7-ketocholesterol or corresponding 
volume of vehicle control (EtOH). Fecundity that hatched was scored over 10 days of adulthood starting 
from L4+1 day (72 h). (A, upper panel) Bars represent total number of progeny. t-test *p<0.05 Mean+SD 
(n ≥36).(B, lower panel) Time course of total number of living progeny of N2 treated and untreated. Mean 
(n ≥18) (C) N2 was grown from egg on at 20 °C on NGM plates containing 10 μM 7-ketocholesterol or 
corresponding volume of vehicle control (EtOH). Pumpingrate of pharyngeal bulb was scored at L4 + 1 
day, +6 days and +10 days respectively. Mean+SD (n ≥20). 
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8 Mechanism of 7-ketocholesterol induced dauer formation 

8.1 DA pathway intermediates suppressed 7-KC induced dauer formation and 
daf-9(hyp) 

Next, we asked what mechanism underlies 7-KC induced dauer formation and daf-

9(hyp). The presented data provide several lines of evidence 7-KC acts in proximity to DA 

pathway. First, dauer formation and daf-9(hyp) are phenotypes linked to interference of DA 

synthesis. Second, 7-KC induced daf-9(hyp) is suppressed by DA. Third, the DA pathway 

shows characteristics of longevity pathways and could also account for 7-KC longevity. Thus, 

we decided to more intensively study the effects of 7-KC on the DA pathway. 

7-KC structure is related to all steroids of the DA pathway. We therefore hypothesize, 

that it might thwart one or more compounds from being processed by according enzymes. 

Thus, the epistatic relation of 7-KC and DA pathway was investigated by feeding each of the 

intermediates in addition to 7-KC. We expected to see rescue of 7-KC induced dauer 

formation and daf-9(hyp) with those compounds that are downstream of the inhibited DA 

synthesis step. Same assays as above were used but this time in addition to 7-KC all known 

intermediates of DA pathway were provided.  

7-KC induced dauer formation in daf-2(e1368) was rescued with 7-dehydrocholesterol 

and lathosterol back to levels similar daf-2(e1368) to EtOH. We observed high variability 

between biological replicates but never saw complete rescue of daf-2(e1368) induced dauer 

formation. With lathosterone dauer formation was rescued almost completely (and with Δ7-

DA no dauer larvae were formed (Figure 13 A). We observed before, that daf-2(e1368) dauer 

formation was not suppressed by 7-dehydrocholesterol and lathosterol (Figure 7). We 

conclude that all provided intermediates rescue at least the 7-KC induced portion of dauer 

formation.  

7-KC induced daf-9(hyp) was rescued back to wild type level with 7-

dehydrocholesterol, lathosterol, lathosterone and  Δ7-DA. Additionally upstream substrate 

cholesterol rescued daf-9(hyp) (Figure 13 B). These data suggest that intermediates upstream 

of 7-KC actually might enhance DA pathway activity and superimpose mild effect of 7-KC. 

However we decided to first follow the initial hypothesis that only downstream components 

rescue 7-KC induced phenotypes and conclude that 7-KC acts upstream or at the level of 

cholesterol. 
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Figure 13 7-KC dauer formation and hypodermal daf-9 expression is linked to DA pathway 

(A) Daf-2(e1368) was grown from egg on at 22.5 °C on NGM plates containing provided with 7-ketochoesterol (10 
μM) alone, 7-ketocholesterol (10 μM)  and DA intermediate, namely 7-dehydrocholesterol (10 μM), lathosterol (10 
μM), lathosterone (10 μM), D7-dafachronic acid (100 nM). Corresponding volume of vehicle (EtOH was) used as 
control. Dauer fraction was scored after 60 h. ***p<0.001 (ANOVA). Mean+SEM (n≥3, >50 worms each) (B) daf-
9::gfp  was grown from egg on at 20 °C on NGM plates provided with 7-ketochoesterol (10 μM) alone, 7-
ketocholesterol (10 μM) plus  7-dehydrocholesterol (10 μM), lathosterol (10 μM), lathosterone (10 μM), Δ 7 - 
dafachronic acid (100 nM). Corresponding volume of vehicle (EtOH) was used as control. GFP intensity of L3 
larave was analyzed after 40 h with Copas Biosorter. ***p<0.001 (ANOVA). Mean+SEM (n≥3, >2000 worms each) 

 

8.2 7-KC induced dauer formation is ncr-1;ncr-2 independent 

C. elegans is cholesterol auxotroph and thus the sole source of cholesterol uptake in the 

diet. Thus, if 7-KC inhibits cholesterol availability, it must interfere cholesterol-uptake or 

distribution. In C. elegans not much is known about steroid transport in general and about 

cholesterol transport in particular. Nevertheless it is understood that homologues of human 

Niemann-Pick Type C-1 (NPC) ncr-1 and ncr-2 are essential for proper steroid transport and 

functional DA syntheses (Li, 2004). Consequently the double mutant ncr-1(tm2022); ncr-

2(tm2023) is Daf-c. If 7-KC competes with cholesterol for uptake by NCR1 and/or NCR-2, in 

a double null mutant we expect no phenotype. Thus, we assayed dauer formation of ncr-

1(tm2022); ncr-2(tm2023) at 20 °C. As shown before at 20 °C, N2 formed no dauer neither 

on EtOH nor on 7-KC (10 µM).  Whereas 18 % of ncr-1(tm2022); ncr-2(tm2023) entered 
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dauer on EtOH. Interestingly, this fraction was increased significantly up to 80 % with 7-KC 

(10 μM) (Figure 14). Thus, we conclude that ncr-1 and ncr-2 are dispensable for 7-KC 

induced dauer formation and that 7-KC does not inhibit cholesterol uptake via ncr-1 and ncr-

2. However, we cannot exclude that there is another unknown steroid transport system that is 

inhibited by 7-KC and decided to investigate the actual levels of cholesterol after 7-KC 

feeding. 

 

 

Figure 14 7-ketocholesterol enhanced dauer formation ncr-1;ncr-2 independent 

N2 and ncr-(nr2022); ncr-2(2023) were grown from egg on at 22.5 °C on NGM plates containing 7-
ketochoesterol (10 μM). Corresponding volume of vehicle (EtOH was) used as control populations dauer 
larvae were scored after 60 hours. DA rescued and 7-ketocholesterol increased dauer formation of ncr-
1;ncr-2. *p<0.05, ***p<0.001 (ANOVA). Mean+SEM (n≥3, >50 worms each)  

8.3 7-KC increased cholesterol and decreased 7-dehydrocholesterol levels 

If cholesterol uptake is blocked by 7-KC then after 7-KC feeding whole body 

cholesterol levels should be decreased. We therefore measured levels of cholesterol in whole 

worm lipid extracts with GC/MS/MS analyses. Analyses were performed on N2 L3 larvae, a 

stage right after dauer decision and therefore the established stage to reflect metabolic state of 

enacted dauer decision. 7-KC (10 µM) significantly increased cholesterol levels (three fold) 

compared to L3 larvae grown on EtOH (Figure 15 A). Thus, we assumed that whole body 

limited cholesterol availability is not the reason for 7-KC induced dauer formation. However, 

we cannot exclude that cholesterol distribution in the worm is altered. Regarding the 
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endocrine character of the DA pathway proper distribution might actually play an important 

role (4.4). Unfortunately this problem cannot be addressed with GC/MS/MS technology.  

Most notably we also found that 7-KC (10 µM) significantly decreased whole body 7-

dehydrocholesterol levels (three fold) (Figure 15 A). 7-dehydrocholesterol is synthesized 

from cholesterol by DAF-36. (Wollam et al., 2012; Yamawaki et al., 2010). Taken together 

these results suggest that 7-KC inhibits DAF-36 activity. These findings lead to two 

conclusions: First we cannot argue convincingly that higher cholesterol levels are resulting 

from uptake, because they might occur due to decreased processing rate and accumulation 

over time. Second, 7-dehydrocholesterol depletion might be the actual cause of 7-KC induced 

dauer formation.  

To clarify if this is the case, the levels of downstream intermediates, lathosterone and 

lathosterol in 7-KC fed animals were monitored. If DA synthesis is impaired at the level of 

DAF-36 and this inhibition is responsible for dauer formation we expect lower levels of all 

downstream components. Thus, we determined levels of lathosterol, lathosterone and Δ7-DA. 

Interestingly, 7-KC (10 µM) did not significant change their levels (Figure 15 B&C). We 

conclude that enough 7-deyhydrocholesterol is processed to assure wild type levels of 

lathosterone and lathosterol and to promote reproductive growth in 7-KC fed worms. These 

findings suggest that 7-dehydrocholesterol-depletion is uncoupled from the dauer formation 

phenotype.  

Consistent with the idea that DA synthesis in N2 is not inhibited by 7-KC strongly 

enough to induce dauer formation, 7-KC (10 µM) slightly increased Δ7-DA levels (Figure 15 

C). It seems counterintuitive at first glance that increased Δ7-DA in N2 L3 larvae match the 

DA depletion phenotype of dauer formation. This supports the idea of moderate DA pathway 

inhibition. As mentioned above slight inhibition leads to expression of DAF-9 in the 

hypodermis and enhanced DA synthesis and we showed daf-9(hyp) phenotype in 7-KC fed 

N2 larvae (Figure 10). Taken together we conclude that neither inhibition of cholesterol 

uptake nor 7-dehydrocholsterol depletion is the cause of 7-KC induced dauer formation. 
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Figure 15 GC/MS/MS 7-ketocholesterol effects steroid profile of N2 

N2 was grown from egg on at 20 °C on NGM plates provided with 7-ketochoesterol (10 μM) or 
corresponding volume of vehicle control (EtOH). L3 larvae were harvested and lipids were extracted with 
chloroform-methanol. Whole lipid extracts were derivatized and analyzed with GC/MS/MS relative to an 
added internal standard (5-β-cholanic acid for Δ7-dafachronic acid and cholesterol-d7 for all other 
steroids). Cholesterol was increased and 7-dehydrocholesterol was decreased upon 7-ketocholesterol 
treatment. **p<0.001 (ANOVA). Mean+SEM (n≥3). 

8.4 7-KC induced dauer formation is daf-36 independent  

To further test the hypothesis that DAF-36 inhibition and resulting 7-

dehydrocholesterol depletion does not induce the dauer phenotypes we used a daf-36 null 

mutant - daf-36(k114). If our hypothesis is right, daf-36(k114) would not abrogate 7-KC 

induced dauer formation. Thus, we assayed daf-36(k114) animals at 25 °C fed with 7-KC (10 

µM). On EtOH control plates no dauer larvae were formed but 85 % dauer larvae were 

formed on 7-KC conditions. Thus, DAF-36 can be excluded as the sole target of 7-KC and as 

the mediator of 7-KC induced dauer formation (Figure 16). This leaves the question open, 

what the actual target of 7-KC is. 

8.5 7-KC modulated dauer formation downstream of IIS and TGF-β 

To identify the target that mediates 7-KC induced dauer formation we utilized not only 

null mutants of the DA pathway but also null mutants of its upstream regulators IIS and TGF-

β. TGF-β and IIS pathways converge on downstream transcription factors. If the hypothesis 

that 7 –KC acts on the DA pathway is right, it is expected that dauer induction is independent 

on these upstream pathways.  
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The role of TGF-β and IIS in 7-KC induced dauer formation was investigated. The 

smad homologs DAF-3 and DAF-5 are the downstream targets of TGF-β signaling and DAF-

16/FOXO is the homolog of mammalian FOXO transcription factor and the downstream 

target of IIS and there activation supports reproductive growth. The single mutants daf-

3(mgDf90), daf-5(e1386) and daf-16(mgDf50) are thus Daf-d at 25 °C (Hu, 2007). 

Considering that 7-KC induced dauer only in dauer prone backgrounds like daf-2(e1368) and 

daf-36(k114) but not in wild type animals, dauer induction is neither expected for these single 

Daf-d mutants. Therefore in addition null mutants in daf-36(k114) background were analyzed. 

Moreover the Daf-c mutants daf-7(e1372) and daf-2(e1368) encoding the upstream receptors 

of TGF-β signaling and IIS, respectively, were analyzed. If 7-KC is acting downstream of IIS 

and TGF-β we expect 7-ketocholeterol induced dauer formation at least in daf-36(k114) 

background. 

N2 formed no dauers at 25 °C, neither with EtOH control nor with 7-KC (10 µM). As 

expected daf-7(e1372) formed 89 % dauers and the fraction was increased upon 7-KC 

provision (100 %). Neither the single mutant daf-5(e1386) nor the double mutant daf-

5(e1386); daf-36(k114) formed dauer larvae on EtOH control. 7-KC (10 µM) did not induce 

dauer larvae formation in the single mutant daf-5(e1386) but around 33 % in the double 

mutant daf-5(e1386); daf-36(k114). The single mutant daf-3(mgDf90) formed no dauers on 

EtOH but 35% with 7-KC (10 µM) treatment. 5 % of the double mutant daf-3(mgDf90); daf-

36(k114) entered dauer on EtOH and that fraction was increased to 70% with 7-KC (10 µM) 

(Figure 16).  

The unexpected dauer larvae formed in single daf-3(mgDf90) with 7-KC and double 

daf-3(mgDf90); daf-36(k114) with EtOH might be explained with a more complex role of 

DAF-3. It was reported before that Daf-d phenotype of DAF-3 is temperature dependent and 

is switched to Daf-c at higher temperatures (27°C) (Ailion and Thomas, 2000; Thomas et al., 

1993). It is therefore possible that it also loses Daf-d abilities in more dauer prone conditions 

induced by 7-KC feeding or daf-36 background. We concluded that there might be a partial 

dependence on TGF-β since dauer formation is only partial restored. On the other hand this 

could be explained by the strong dependence of 7-KC dauer induction on Daf-c backgrounds. 

Interactions and relations of IIS, TGF-β and DA pathway are not completely understood and 

null mutants might induce feedback loops to regulate other parts of the network- resulting in 

less dauer prone background. However, based on these data we presume that 7-KC acts 

downstream of TGF-β.  
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Next, we investigated 7-KC dauer dependence on IIS. At 25 °C daf-2(e1368) formed 

100 % dauer so 7-KC cannot further increase this fraction. Daf-16(mgDf50) did not form 

dauers with 7-KC but neither abrogated 7-KC induced dauer formation of daf-36(k114) 

(Figure 16). Thus, we conclude that 7-KC acts downstream of IIS and daf-16. Taken together 

this supports the hypothesis that 7-KC acts on DA pathway. 

 

Figure 16 7-KC increased dauer independent of IIS and TGF-β  signaling 

Epistasis of 7-ketocholesterol to TGF-β  and IIS: Indicated genotypes were grown from egg on at 25 °C on 
NGM plates containing 7-ketochoesterol (10 μM) or corresponding volume of vehicle (EtOH) as control. 
Dauer fraction was scored after 48 h. **p<0.05, ****p<0.0001 (ANOVA). Mean+SEM (n≥3, >50 worms 
each).  

8.6 7-KC modulated dauer formation downstream of DA synthesis 

So far it was shown that 7-KC acts downstream of IIS and TGF-β and independent of 

daf-36 to induce dauer. Thus, we decided to investigate if 7-KC dauer induction is depending 

on other enzymes of the DA synthesis pathway. We used the Daf-c null mutations dhs-

16(tm1890) and daf-40(hd100). In addition we used the Daf-c daf-9(k182), since the null 

mutation daf-9(dh6) forms constitutively dauer at all temperatures. 

dhs-16(tm1890) and daf-9(k182) did not form dauers on EtOH and with 7-KC (10 µM) 

dauer in both few dauer larvae were observed but with high variability between biological 

replicates and significance. daf-40(hd100) formed no dauer larvae on EtOH but 7-KC 
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significantly induced dauer larvae formation (90 %)  (Figure 17 A). To further clarify if there 

is an effect of 7-KC in dhs-16 we scored Mig at 26 °C. Notably, 7-KC increased fraction of 

Mig but again significance was not reached. For daf-9(k182), we combined scored for DA 

related phenotypes at 26 °C (Mig and dauer) and found a significant increase with 7-KC 

(Figure 17 B).  

Taken together 7-KC is placed downstream of TGF-β, IIS and DA synthesis, so we next 

investigated whether downstream targets of DA are essential for 7-KC induced dauer 

formation. As expected the Daf-d null mutant daf-12(rh6hrh411) does not form dauer larvae 

upon 7-KC feeding. As for the DA synthesis pathway mutants we thus crossed it into a Daf-c 

background. It was suggested that DAF-12 activity might have direct feedback loops on daf-

36. Therefore we decided to use an upstream regulator of the DA pathway namely the IIS 

mutant daf-2(e1368) because. Other than TGF-β and IIS mutants in Daf-c background, 7-KC 

induced dauer formation is abolished in daf-12(rh61rh411);daf-2(e1368). We observed the 

same dependence on din-1. Dauer formation thus is daf-12 and din-1 dependent (Figure 17 

C).  
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 Figure 17 7-KC suppressed DA- effector- activity but not DA- synthesis 

Indicated genotypes were grown from egg on at 22.5 °C on NGM plates containing provided with 7-
ketochoesterol (10 μM) or corresponding volume of vehicle (EtOH) as control. Dauer fraction was scored 
after 60 h. (A) Epistasis of 7-ketocholesterol to DA- pathway (B) mig fraction of dhs-16(tm1890) was 
scored and dauer fraction an mig fraction of hypomorph daf-9(k182) was scored, both after 60 h. (C) 
Epistasis of 7-ketocholesterol to DA- Effector-activity *p<0.05, ***p<0.001 (ANOVA). Mean+SEM (n≥3, 
>50 worms each).  
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9  Mechanism of 7-ketocholesterol induced longevity  

9.1 7-KC longevity was daf-12 dependent 

It is known that mutations in the DA pathway such as daf-12(rh411rh611) show 

lifespan phenotypes. Additionally DA is the longevity signal of germline longevity (Gerisch 

et al., 2007; Yamawaki et al., 2010).  The DA pathway can thus be considered as an ageing 

pathway in C. elegans. To investigate if we can place the 7-KC induced longevity with in the 

DA pathway we performed lifespan assays using mutants in DA and upstream IIS pathway. 

First, lifespan of the IIS mutants daf-2(e1368) and daf-16(mgDf50) was monitored on 7-

KC supplemented plates (10 μM). We hypothesize that 7-KC effects the same epistatic 

position for longevity as for dauer induction. If this is the case longevity is expected to be 

independent of daf-2 and daf-16. In at least three biological independent repeats 7-KC 

extended median lifespan of IIS mutants daf-2(e1368) and daf-16(mgDf50) (Figure 18 A, 

Appendix table 1). Next, DA pathway mutants daf-36(k114) and daf-12(rh61rh411) were 

tested. We found that 7-KC induced longevity in daf-36(k114) but not in daf-12(rh61rh411) 

(Figure 18 B, Appendix table 1). We therefore conclude, that DAF-12 is essential to 7-KC 

longevity. Taken together our data suggest that 7-KC acts on DAF-12 to promote dauer 

formation and longevity.  

9.2 7-KC longevity depended on daf-12(LBD) 

Our hypothesis suggests that 7-KC suppresses DA binding to DAF-12. We therefore 

asked if it might bind to the same postulated ligand-binding domain (LBD) as Δ7-DA. We 

used a daf-12(rh273) a DAF-12 mutant carrying a mutation in the postulated DA/ligand 

binding domain (LBD) and we observed that this mutation is sufficient to abolish 7-KC 

induced longevity (Figure 18 C, Appendix table 1). A functional LBD is therefore essential 

for the interaction of 7-KC on DAF-12.  
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Figure 18 7-ketocholesterol extends N2 lifespan on living and dead OP50 

Indicated genotypes were grown from egg on at 20 °C on NGM plates containing 10 μM or corresponding volume of 
vehicle control (EtOH). (A) Genes of the IIS pathway daf-2(e1368 )and daf-16(mgDf50) (B) Genes of the DA pathway 
daf-36(k114) and daf-12(rh61rh411). (C) daf-12(rh273) is a mutation that abolishes functionality of  DAF-12 LBD. 7-
KC longevity is IIS, independent and it is also daf-36 independent. But it is dependent on daf-12, more precisely on 
daf-12(LBD). 
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10 7-Ketocholesterol acts on DAF-12 

10.1 7-KC down-regulated DAF-12 target genes 

Our data suggest that 7-KC inhibits DAF-12 activator activity by outcompeting DA 

binding. To test our hypothesis we first examined levels of let-7 family members mir-84, mir-

48 and mir-273. These microRNAs are known targets of DA bound DAF-12 (Bethke et al., 

2009; Shen et al., 2012). If 7-KC inhibits that binding we also expected down-regulation of 

the driven target genes. To address this question we performed qPCR on N2 L3 larvae fed 

with either vehicle EtOH or 7-KC. Moreover we analyzed levels in daf-12(rh61rh411), if 

down regulation of 7-KC is mediated via DAF-12 we expected to see no further down regula 

tion of the let-7s in this background. 

In 7-KC fed N2 L3 larvae the tested microRNAs, mir-48, mir-84 and mir-241 are all 

mildly but significantly down regulated (0.77, 0.70 and 0.65) compared to vehicle fed larvae. 

In daf-12(rh61rh411) vehicle fed animals all three micro RNAs are down-regulated 

significantly compared to wild type, as reported before. Notably there is no further down-

regulation when 7-KC is fed (Figure 19). These data show that 7-KC down-regulates tested 

DAF-12 target genes and, moreover, support the idea that this effect is mediated via DAF-12 

inhibition.  

 

(For figure legend see next page) 
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Figure 19 7-ketocholesterol down-regulates mir-48, mir-84 and mir 241 

N2 and daf-12(rh61rh411) was grown from egg on at 20 °C on NGM plates and provided from L4 on with 7-
ketochoesterol (10 μM) or vehicle control. 24 h after 7-ketocholesterol provision, RNA was isolated from 200 adult 
animals and levels of the micro RNAs mir-48, mir-84 and mir-241 were analyzed using qPCR. Shown are the relatives 
values to EtOH control, each sample was normalized to internal control (U-18).  *** p<0.001 (ANOVA). Mean+SEM 
(n≥3). 

10.2 7-KC inhibited DA binding to DAF-12 in cell culture 

So far our hypothesis that 7-KC can outcompete DA is based on genetic evidence. To 

further test it biochemically, we performed a cell culture based competition assay. We choose 

an endogenous approach using a plasmid harboring DAF-12 and another plasmid carrying 

mir-84 promoter driven luciferase (pmir84::luciferase) to co-transfect HEK293T cells(Bethke 

et al., 2009). We only expect activated DAF-12 to bind to pmir84::luciferase. We thus 

provided DA to activate DAF-12 and induce resulting luciferase activity (Figure 20 A). To 

control that luciferase activity is due to DA activated DAF-12 and not a general effect of DA 

in our system, we provided DA to cells co-transfected with the pmir-84::luciferase vector and 

the backbone of the DAF-12 plasmid expressing FLAGG. If we in addition add 7-KC and it 

really represses DAF-12 activity by outcompeting DA, we expect to see a down-regulation of 

luciferase activity (Figure 20 A).  

In cell transfected with FLAG and pmir84 baseline luciferase activity  was not 

increased with DA neither with additional vehicle (Figure 20 B, black curve with dots) nor 

with 7-KC (green curve with dots). If DAF-12 was co-transfected with pmir84::luciferase, 

luciferase activity increased in a DA dose responsive manner from 3 nM up to 100 nM (black 

curve with boxes). No further increase was observed with 300 nM, indicating saturation of the 

reaction. If 30 µM 7-KC was added, in addition to each DA concentration the curve shifted to 

the right (green curve with boxes) suggesting that DA is less efficient in activating DAF-12. 

We therefore conclude that 7-KC thwarts DA from DAF-12 binding.  

We have shown before that DAF-12 LBD is essential to 7-KC longevity. Next, we tried 

to answer the question if the DNA- binding domain (DBD) might play a role for 7-KC 

binding as well. To address this question we used a slightly different approach. We co-

transfected with a plasmid carrying a DAF-12(LBD)::GAL4(DBD) fusion and a plasmid 

carrying luciferase driven by 4xGAL promoter. Again FLAG control showed no altered 

luciferase activity, with and without 7-KC (Figure 20 C, black curve and green curve with 

dots). Cells with the DAF-12 construct in contrast responded to DA in a similar manner as in 

the first assay (black curve with boxes). Interestingly, in this system 7-KC showed no 
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inhibitory effect (green curve with boxes), indicating a potential role for the DBD in 

mediating 7-KC inhibition of DAF-12 activity, at least in cell culture (Figure 20 B). 

Next, we addressed the question if the observed 7-KC inhibition of DAF-12 occurs 

within a physiologically relevant range using the endogenous assay. We therefore fixed DA 

concentration to 100 nM and titrated in 7-KC in a range from 0.1 to 30 µM. We found 300 

nM 7-KC to be the lowest tested concentration that decreased DA induced luciferase activity 

(15%) (Figure 20 C). We suspect that 300 nM is a reasonable concentration for a 

physiological interaction.  

To furthermore exclude the possibility that 7-KC induces a general stress response to 

steroid toxicity in turn that leads to reduced DAF-12 activity we tried to induce the postulated 

steroid toxicity with another steroid. We decided to use 7-β-hydroxycholesterol (7-β-OH) 

although it harbors another stereo center and the hydroxy moiety turns it into a less planar 

molecule compared to 7-KC, we still think due to its bipolarity and overall structure it is 

reasonable close to 7-KC. Moreover, both steroids 7-KC and 7-β-OH were shown before to 

play a role in apoptosis induction in cell culture and were shown to bind to the human 

CYP7A1. If 7-KC affect happens due to a general steroid toxicity we would expect a similar 

down-regulation in particular with 7-β-OH (30 µM). Notably 7-β-OH (30 µM) did not reduce 

DA induced DAF-12 activity by adding 7- (Figure 20 D). Thus, we think that the observed 

phenotype is not a cell response to steroid toxicity. Taken together our cell culture data 

suggest that 7-KC thwarts the interaction of DA and DAF-12 and thereby inhibits DAF-12 

activity.  
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Figure 20 7-ketocholesterol outcompetes DA binding to DAF-12 in cell culture 

HEK293T cells were co-transfected with DAF-12 and luciferase driven by the DAF-12 target mir-84 
promoter. (A) Model of our hypothesis. (Left panel) DAF-12 in Hek293T without additional DA does not 
activate mir-84 promoter driven luciferase, (middle panel) after DA binding luciferase is activated.(right 
panel) 7-ketocholesterol blocks DA binding to DAF-12 and inhibits luciferase activity. (B) DA activates 
luciferase activity in dose dependent manner and 7-ketocholesterol (30 μM) attenuates it (representative 
graph of 3 repeats). (C) DAF-12::LBD fused to Gal::DBD activates 4xGal promoter driven luciferase after 
DA binding in a dose dependent manner, additional 7-ketocholesterol (30 μM)  does not inhibits luciferase 
activity. (D) Another sterol 7-β-hydroxycholesterol (30 μM) did not inhibit DA-DAF-12 interaction. (E) 
Same assay as (B) DA is fixed to 100 nM and 7-KC is titrated. 7-KC ≥  300 nM inhibit DA-DAF-12 
interaction. 
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10.3 7-KC longevity was daf-9 and din-1 dependent 

So far it still remains elusive if 7-KC itself or a downstream product binds to DAF-12. 

It is known that at least two DAF-12 ligands, namely Δ7-DA and Δ4-DA can be synthesized 

by DAF-9, in worms from 4-cholesten-3-one and lathosterone, respectively. We therefore 

postulated that DAF-9 might act on 7-KC to synthesize 7-KC –DA (Figure 21 A). To follow 

up this idea we used the postulated null allele daf-9(dh6) to examine the role of DAF-9 and 

DA in 7-KC induced longevity. We used double mutants with din-1(dh127) null mutations to 

rescue developmental growth in daf-9(dh6) without adding DA. Assuming that 7-KC is 

converted to an active form by DAF-9 we expected the longevity phenotype to be rescued in a 

DAF-9 null background. We observed 7-KC longevity in din-1(dh127) single mutants but not 

in the din-1(dh127);daf-9(dh6) double (Figure 21 B). Interestingly, daf-12(rh61rh411);daf-

9(dh6) decreases lifespan with 7-KC (Table 1). These data point at a potential function of 

DAF-9 in 7-KC longevity and 7-KC-DA as the active form promoting dauer formation and 

longevity. 

 
Figure 21 7-ketocholesterol longevity is daf-9 dependent 

(A) daf-9(dh6);din-1(dh127) was used to investigate DA free background. It was grown from egg on at 20 
°C on NGM and transferred from L4 on to plates containing 7-ketcochlesterol (10 μM) or corresponding 
volume of vehicle control (EtOH). In two repeats 7-KC longevity depended on daf-9, leading to the 
following hypothesis: (B) DAF-9 acts on C26 of 7-ketocholesterol in a similar manner as on lathosterone to 
oxidize it to a dafachronic acid – 7-keto-DA. 
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11 7-Ketocholesterol induces transcriptional changes  

Taken together, we could show that 7-KC dauer formation and longevity is mediated via 

DAF-12. 7-KC might outcompete Δ7-DA from binding to DAF-12 (Figure 20). But, the 

identification of DAF-12 as mediator of 7-KC induced phenotypes is only a first step to 

understand global role of 7-KC in C. elegans. To get a better understanding of potential other 

targets of 7-KC and to further unravel downstream targets of DAF-12- 7-KC interaction we 

decided to perform an unbiased approach using RNA sequencing (RNAseq). We performed 

RNAseq of N2 and daf-12(rh61rh411) young adults either provided with EtOH vehicle 

control or with 7-KC (10µM) from L4 on. Using this experimental setting we can approach a 

broad spectrum of questions. (All RNAseq results can be found in Appendix table 3 to 6) 

11.1 42 genes were regulated by 7-KC and 8 of them are daf-12 dependent 

First we checked for genes that were significantly changed (p adjusted ≤0.05) in 7-KC 

fed animals compared to EtOH fed animals, hereafter called 7-KC regulated genes. We 

identified 42 7-KC regulated genes in N2 (Figure 22 A, dark gray circle). In daf-

12(rh61rh411) background we identified 62 7-KC regulated genes (Figure 22 A, light gray 

circle). 7-KC regulated genes in N2 and in daf-12(rh61rh411) were largely overlapping (34 

genes Figure 22 A, overlap). Interestingly, moreover we identified eight 7-KC regulated 

genes, which were exclusively regulated in N2.  This suggests that their regulation is daf-12 

dependent. They are of particular interest, because they might mediate the 7-KC induced, daf-

12 dependent phenotypes dauer formation and longevity. Notably, we cannot exclude that the 

set of overlapping genes plays a role in longevity as well, and only their effect on lifespan is 

abolished by one of the 28 7-KC regulated genes exclusively in daf-12(rh61rh411) (Figure 

22 A light bubble). 

Before we further investigated the role of the 8 candidates we used them to validate 

quality of the RNAseq results with qPCR (Figure 22 B). We confirmed regulation of 

T16G12.1, clec-67, prk-2, vha-6, Y32F6B.1 and gly-8 in the same direction as measured with 

RNAseq. gba-1 and lys-8 were not regulated according to qPCR analyses. Next qPCR was 

performed on daf-12(rh61rh411) samples. It was confirmed that 7-KC did not regulate tested 

genes in daf-12(rh61rh411) (Figure 22C black bars vs. gray bars). T16G12.A, clec-67 and 

vha-6 in daf-12(rh61rh411) with EtOH were upregulated and gly-8 was down-regulated 

compared to N2 on EtOH (black bars vs. grey line). According to RNAseq results only vha-6 



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Results 

 

 68 

is up-regualted and lys-8 is down-regulated (Figure 24 B). Thus we could only partially 

confirm RNAseq data with qPCR. More biological repeats will help to determine the actual 

regulation.  
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Figure 22 Analyzes of RNA seq results  

RNAseq analyzes were performed on N2 and daf-12(rh61rh411) animals. They were grown from egg on at 
20 °C on NGM and transferred from L4 on to plates containing 7-ketcochlesterol (10 μM) or 
corresponding volume of vehicle control (EtOH). mRNA was isolated 24 h after shifting to experimental 
conditions. (A) 42 genes were regulated by 7-ketocholesterol in N2 (dark gray) 68 genes were regulated by 
7-ketocholesterol in daf-12(rh61rh411) (light gray background. (B) Verification of RNAseq results (gray 
bars) using qPCR analyzes in N2 (striped bars). (C) Verification of RNAseq results (gray bars) using 
qPCR analyzes in daf-12(rh61rh411). 

 

11.2 The gene ontology term “ageing” was DAF-12 dependent  

We decided to analyze gene ontology (GO) terms of the RNAseq data. We used the 

online tool DAVIS to assign GO terms and to determine significance of enrichment in each 

GO term based on p-values. With this information at hand a cluster was created using 

REVIGO online tool for visualization. We used DAVIS to find GO terms for all 42 and 62 

genes 7-KC regulated in N2 and daf-12(rh61rh411), respectively. Regardless the low number 

of 7-KC regulated genes in N2, they were significantly enriched in the GO terms - cell death, 

death, regulation of growth, proteolysis, ageing and multicellular ageing. Notably the only 

GO terms not identified in 7-KC regulated genes of daf-12(rh61rh411) were “ageing” and 

“multicellular organism ageing” (Figure 23).  A closer look revealed that 3 genes enriched in 

the ageing associated GO terms. These data strongly support our findings, that 7-KC 

longevity is daf-12 dependent.  

 

Figure 23 7-KC induced ageing is daf-12 dependent  

REVIGO visualization of GO terms significantly enriched (p<0.05) in sets of genes regulated by 7-KC in 
N2 (left panel) and daf-12(rh61rh411)(right panel), respectively. In N2 and daf-12(rh61rh411) 
backgrounds cell death, death, regulation of growth rate and proteolysis. Only the ageing related GO 
terms are not found in daf-12(rh61rh411). 
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11.3 7-KC regulated genes largely overlaped with DAF-12 regulated genes 

Next, we asked if the RNAseq data support our hypothesis that 7-KC mediates its 

phenotypes via DAF-12. To address this question we compared 7-KC regulated genes with 

daf-12 regulated genes. Daf-12 regulated genes are defined as all genes that were significantly 

changed in daf-12(rh61rh411) compared to N2. We found an overlap of 19 genes (Figure 

24A). In other words, 45 % of all 7-KC regulated genes are also daf-12 regulated. This high 

number of common targets supports the idea, that 7-KC mediates its effects via DAF-12.  

We then further characterized the daf-12 dependent 7-KC regulated genes. Our premise 

was that all daf-12 regulated genes reflect DAF-12 activator function show up in our data set 

when we compare N2 on EtOH with daf-12(rh41rh611) on EtOH. Genes that are down 

regulated in this set are up-regulated by DAF-12 activity. If we further assume that 7-KC 

regulate genes only via the inhibition of DAF-12 activator activity, we would expect that 

these genes are regulated in the same direction as in a daf-12 mutant. Interestingly, we found 

that only for 2 candidate genes (lys-8, clec-67), the other six genes (prk-2, Y32F6B.2, gly-8, 

vha-6, gba-1, T16G12.2) were not regulated by DAF-12 (Figure 24 B) according to RNAseq 

results. Thus, we conclude that these 6 genes might be a subset of genes that is exclusively 

regulated by 7-KC DAF-12 interaction. Taken together we narrowed down the number of 

candidate genes to 6. These 6 genes are daf-12 dependent and might exclusively be regulated 

by 7-KC DAF-12 interaction. It needs to be considered that results leading to this conclusion 

are not entirely confirmed by qPCR. 

  

Figure 24 A gene with potential to be exclusively regulated by 7-KC DAF-12 interaction 

Venn diagram, comparing 7-KC regulated genes in N2 with genes regulated in daf-12(rh61rh411), and 
genes regulated in nhr-8(hd117). 7-KC regulated genes are largely overlapping genes regulated by DAF-12 
and NHR-8. (B) Comparison of genes daf-12 dependent regulated by 7-KC with their regulation in daf-
12(rh61rh411) background.  
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11.4 7-KC regulated genes largely overlapped with NHR-8 regulated genes 

Subsequently we asked whether it is also possible to identify other 7-KC targets in our 

RNAseq data. To do so, we decided to search our data for other factors that have a large 

overlap in genes they regulate with 7-KC regulated genes. We thus choose one interesting 

candidate (nhr-8) from the pool of 7-KC regulated genes in daf-12(rh61rh411) and N2. Nhr-

8, seemed of particular interest, since it was characterized as regulator of cholesterol, DA 

synthesis and fat metabolism (Magner et al., 2013)and is regulated by DAF-12 and 7-KC 

itsself. Mutants displayed phenotypes that are partially overlapping with our findings with 7-

KC such as altered dauer formation and altered lifespan. We thus compared available 

microarray data of an nhr-8 null mutant with 7-KC regulated genes in N2. Interestingly, we 

found a striking overlap - 40 % of 7-KC regulated genes are also regulated by NHR-8. This 

suggests that 7-KC mediates phenotypes also via nhr-8. To test the idea that this overlap is 

specific and not due to a general inhibition of NHR activity by 7-KC we also compared 7-KC 

regulated genes in N2 to nhr-25 regulated genes identified in an available microarray assay. 

We found that only one gene was overlapping (4,2 %). This supports the hypothesis that 7-

KC mediates phenotypes specifically via DAF-12 and NHR-8.  

Thus lifespan of nhr-8(hd117) was measured with and without 7-KC (10 μM) (Figure 

25 A). We found that nhr-8(hd117) is short-lived as described previously (Magner et al., 

2013). This shortevity was rescued when 7-KC was added. Interestingly it was shown 

previously that cholesterol can also rescue nhr-8 shortevity. Thus we cannot exclude that the 

rescue is due to cholesterol contamination in provided 7-KC we used. This hypothesis is 

supported by the finding that also reduced fecundity in nhr-8(hd117) is partially rescued by 7-

KC. It was also shown that it is rescued by cholesterol.Thus it is difficult to address the 

question if 7-KC phenotypes are transmitted via NHR-8, since there is always additional 

cholesterol provision along with 7-KC.  
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Figure 25 NHR-8 phenotypes with 7-ketocholesterol  

(A) Lifespan assays: N2 and nhr-8(hd177) were grown from egg on at 20 °C on NGM and transferred 
from L4 on to plates containing 7-ketcochlesterol (10 μM) or corresponding volume of vehicle control 
(EtOH). In two repeats we found that 7-KC rescued nhr-8(hd117) shortevity (B) N2 and nhr-8(hd117) 
were grown from egg on at 20 °C on NGM plates containing 10 μM 7-ketocholesterol or corresponding 
volume of vehicle control (EtOH). Fecundity that hatched was scored over 10 days of adulthood starting 
from L4+1 day (72 h). Bars represent total number of progeny. t-test *p<0.05 Mean+SD (n ≥36 ) Nhr-
8(hd117 
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Discussion and Future Perspectives 

12 Discussion 

As discussed multiple small molecule modulators regulate longevity pathways. Many of 

these modulators reflect nutrient and endogenous status of an organism to modulate a 

developmental response. C. elegans has been successfully used to identify small molecule 

modulators of which many are conserved in mammalian systems and might help to develop 

drugs for age-related diseases. Nevertheless, the complete metabolomic state of longevity 

with all its signaling molecules and all connecting points is far from being understood. We 

therefore asked what other molecules can modulate lifespan in C. elegans. Given the close 

connectivity of pathways regulating longevity and dauer formation we screened for novel 

lifespan modulating small molecules by using altered dauer formation as a first read-out. We 

discovered sugars (glucose, galactose, trehalose), amino acids (tryptophan, glycine) and fatty 

acids (arachidonic acid) novel regulator of dauer formation. Moreover 7-KC was discovered 

as a modulator of dauer formation and lifespan in C. elegans and have thus validated our 

screening concept.  

Multiple lines of evidence suggest that 7-KC is a competitive inhibitor of DA induced 

DAF-12 activity. First, with epistatic experiments we placed 7-KC dauer induction 

downstream of IIS, TGF-β and DAF-36, which catalyzes the first step of DA synthesis. More 

precisely, we linked the dauer phenotype to DA-effector activity by showing daf-12 

dependence. Moreover 7-KC dauer formation was din-1 dependent. DIN-1 is the co-repressor 

that is essential for DA unbound DAF-12 promotion of dauer formation, suggesting that 7-KC 

also recruits the co-repressor to repress DAF-12 activity. In line with these findings, 7-KC 

longevity phenotype was also placed downstream of IIS and downstream of DAF-36 and also 

7-KC longevity is dependent on daf-12. We could show dependence on the LBD of DAF-12, 

suggesting that 7-KC might bind in the same binding pocket as DAs. Interestingly, other than 

dauer formation the longevity phenotype is din-1 independent.  

Second, in qPCR analyses we identified three targets of DA activated DAF-12 (mir-48, 

mir-84, mir-241) to be down-regulated by 7-KC and this down-regulation is DAF-12 

dependent, again supporting inhibition of DA induced DAF-12 activity by 7-KC. 

Furthermore, in cell culture, 7-KC inhibited Δ7-DA induced DAF-12 activation of a mir-84 

promoter driving luciferase, suggesting that 7-KC is capable to function as competitive 
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inhibitor of Δ7-DA - DAF-12 interaction. Finally, bioinformatic analyses of RNAseq data 

from 7-KC fed animals revealed that 7-KC regulated genes largely overlap (41 %) with those 

regulated by DAF-12 (and NHR-8). In line with the idea of an inhibitory function, the 

overlapping genes are mainly regulated in the same direction by 7-KC supplementation and in 

daf-12 null mutant. Consistent with the hypothesis of 7-KC being a competitive inhibitor of 

DAF-12, we found that 7-KC longevity might be daf-9 dependent. DAF-9 is the last step of 

Δ7-DA and Δ4-DA synthesis, suggesting that DAF-9 might act on 7-KC as well to synthesize 

7-keto-DA and that 7-keto-DA is the actual biological active molecule. Moreover we 

observed increased whole body cholesterol and decreased whole body 7-dehydrocholesterol 

in L3 larvae that was uncoupled from the other phenotypes.  

Taken together, we suggest the following model: Supplemented 7-KC is converted to 7-

keto-DA by DAF-9. 7-keto-DA then outcompetes DA from binding to DAF-12 and inhibits 

its activator functions. 7-keto-DA bound DAF-12 during development recruits DIN-1 and 

promotes DAF-12 repressor activity, which leads to increased dauer formation. In adult 

animals 7-keto-DA bound DAF-12 promotes longevity programs probably independent of 

din-1 suggesting that the DAF-12 co-repressor is not part of the lifespan-extending complex. 

In addition, we suggest that 7-KC might inhibit the activity of DAF-36. Nevertheless, this 

inhibition can somewhat be uncoupled from dauer induction and longevity, because both 

phenotypes are daf-36 independent. Moreover 7-KC inhibits NHR-8. The mechanism and 

epistatic of this inhibition is unknown. Also it remains elusive which of the NHR-8 regulated 

process in steroid metabolism of C. elegans (Magner et al., 2013) are overlapping with 7-KC 

phenotypes. 
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Figure 26 7-ketocholesterol activity in C. elegans  

7-KC is converted to 7-keto-DA (green molecule) by DAF-9. 7-keto-DA competitive inhibit DA binding 
(purple molecule) to DAF-12. In L2 larvae 7-keto-DA bound DAF-12 recruits DIN-1 to promote DAF-12 
repressor activity, leading to dauer formation in Daf-c or daf-9(hyp) in N2. In adult animals 7-keto-DA 
bound DAF-12 promotes longevity independent of din-1 suggesting. In addition 7-KC inhibits the activity 
of DAF-36. Moreover 7-KC inhibits NHR-8 via a so far unknown mechanism. Also it remains elusive to 
what extend 7-KC regulates NHR-8 targeted processes in steroid metabolism of C. elegans (Magner et al. 
2013). 
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12.1 7-Ketocholesterol feeding in C. elegans  

It is not unambiguously clear whether 7-KC or 7-keto-DA is the biological active 

molecule. For this part of the discussion we assume that it is 7-keto-DA. Our data suggest that 

DIN-1 is recruited by 7-keto-DA bound DAF-12 for dauer formation during development but not 

later in life for longevity. This suggests an involvement of other coactivators or corepressor 

promoting 7-keto-DA DAF-12 longevity. These co-factors must fulfill the requirement to repress 

DAF-12 activator activity for dauer formation but not its activity for longevity. A reasonable 

speculation is that potential interaction partners are expressed tissue specific or dependent on 

developmental stage.  

Up to date, the role of DAs on longevity in reproductively growing C. elegans is 

not understood unambiguously. Neither supplementation with DA intermediates nor 

additional surplus of cholesterol had a reliable effect on C. elegans lifespan. We propose 7-

keto-DA as a novel DA and as the first to extend lifespan. Interestingly a clear role for DAs as 

longevity promoting factors was described in germline-less animals. Shen et al. showed that 

both, the presence of DA-DAF-12 interaction and the subsequent transcription of the target 

micro RNAs mir-241 and mir-84 are essential to gonadal longevity. Following the idea that 7-

KC feeding opposes function of other DAs, and the observed down-regulation of the 

microRNAs, we might also expect that 7-KC feeding at least partially suppresses gonadal 

longevity. Nevertheless, regarding the highly orchestrated spatial and temporal organization 

of this pathway – down-regulation by 7-KC feeding might be as well uncoupled from gonadal 

longevity. Moreover we do not know whether microRNAs are down-regulated upon 7-KC 

feeding in longevity promoting tissues.  

7-KC feeding might also help to explain the role of DAs in longevity of reproductive 

animals. We propose, that DAs might promote longevity in animals with an intact 

reproductive system as well, but it was overlooked so far due to the global character of the 

used methods. Usually the role of DAs and its intermediates is investigated by feeding assays. 

Such assays are always global approaches and, moreover, compounds are provided during 

development or during whole adult lifespan or both. Whereas, regarding the hormonal 

character of DAs, indeed it might be rather a precisely timed pulse in a certain target tissue 

that is required for lifespan extension. The longevity promoting ability of DAs was shown in 

germline-less animals.  
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If DAs indeed can promote longevity in reproductive animals by the activation of DAF-

12 in a certain tissue, an alternative hypothesis is conceivable to explain 7-KC induced daf-

9(hyp) and longevity phenotypes. In brief, 7-keto-DA inhibits Δ7-DA binding to DAF-12 

leading to the activation of daf-9(hyp) accompanied by globally increased Δ7-DA levels in N2 

(suggested in our data). It might thus be that it is a certain concentration that promotes DA 

longevity (Figure 27).   

So far we assumed that 7-keto-DA is present in every tissue to inhibit Δ7-DA binding to 

DAF-12 and somehow leads to a balance of Δ7-DA-DAF-12 induction and 7-keto-DA-DAF-

12 inhibition. This balance is based on the assumption that 7-KC enters all DA targeted tissue. 

But 7-KC might be excluded from certain longevity promoting tissues accordingly net DA-

DAF-12 activity is higher in such tissues. Thus 7-KC would induce a DAF-12 activity pattern 

up-regulation in some and down-regulation in other tissues that might promote lifespan.  

If this is the case, 7-KC longevity might actually be a tissue specific DA-longevity. A 

regulation in a tissue hormesis manner– a small inhibitory effect in one tissue leads to 

beneficial effects in another tissue (Figure 27). Moreover this model would explain why 

DIN-1 is not required for 7-KC longevity. A potential target tissue for DA- longevity is the 

intestine, since it was shown to be the target tissue of gonadal longevity. Doubtlessly, this 

very speculative hypothesis needs appropriate experiments to be validated or falsified. 
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Figure 27 Tissue hormesis model of DA-longevity  

Upper panel: In N2 background without 7-KC provision, tissue A synthesizes enough DA (green molecule) and targets 
DAF-12 in a lifespan regulating tissue (target tissue). Levels of DA- DAF-12 interaction are sufficient to promote 
normal lifespan. Middle panel: With 7-KC provision 7-KC inhibits binding of DA to DAF-12 in tissue A that leads to 
more DA synthesis in the hypodermis. The increased DA levels in lifespan regulating target tissue then leads to more 
DA-DAF-12 interaction sufficient to outcompete 7-KC from binding and to promote longevity. Lower panel: This 
effect might be enhanced if 7-KC is excluded from the lifespan determining tissue. 
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overlapping and redundant functions in longevity promotion. Still it is possible that they have 

additional distinct sets of genes that are regulated via DAF-12 to promote longevity. 

Moreover, regarding the role of amino acid balance in CR longevity, it might also be a certain 

ratio of the different DAs that is needed to promote lifespan. Owed to the only recent 

discovery of most DAs, not much is known about spatial synthesis and regulation.  

A long these lines it is also possible that 7-KC inhibition of DAF-36 leads to 

upregulation of other DA syntheses pathways - HSD-1 might be such a target, which is 

proposed to convert 4-cholesten-3-one into Δ4-DA. Resulting Δ4-DA then might extend 

lifespan. Notably, it might was well be vice versa - feeding of 7-KC blocks HSD-1 and the 

resulting Δ4-DA depletion light lead to longevity.  

Taken together, we are only beginning to unravel the role of the different DAs in 

longevity and also dauer formation and 7-keto-DA might turn out to be of particular interest 

since it seems to be the only DA that inhibits DAF-12 activator activity.  

12.2 7-Ketocholesterol in mammals 

We found that 7-KC feeding induced dauer formation and longevity in C. elegans. But 

what are the roles of 7-KC in mammals? The steroid metabolism is intensively studied in 

mammals. Cholesterol is the precursor for bile acids, all steroid hormones and oxysterols like 

7-KC. It is known that it is rather the oxidized forms of cholesterol, than cholesterol itself that 

has signaling functions in many cellular processes like bile acid syntheses and cholesterol 

homeostasis (Björkhem et al., 1994; Otaegui-Arrazola et al., 2010). Although synthesis 

pathways have been described for 7-KC recently (Mitić et al., 2013)in mammals it is mostly 

produced by free radical attack (Hodis et al., 1991; Jessup and Brown, 2005). First cholesterol 

is oxidized to 7-hyperoxide (cholesten-5-ene-3-b-ol-7-hyperoxide) that in turn is converted to 

7-KC and 7-hydroxycholesterols (α and β), the most prominent oxysterols in all tissues 

(Vejux and Lizard, 2009). As cholesterol is unstable in presence of light and air 7-KC it is 

also spontaneously formed in vitro. Thus, apart from the endogenous sources, 7-KC is also 

taken up with diet- and is especially present in cholesterol rich food (Nielsen et al., 1995). 

After uptake it is transported via chylomicrons and oxidized low-density lipoprotein. Despite 

its global presence in food and almost all living organisms no actual physiological function 

was unambiguously assigned to it. In brief, 7KC is widely regarded as a mainly toxic 

oxidation product of cholesterol that needs to be eliminated by cells. Accordingly, enzymes 
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that potentially reduce 7-ketocholesterol to less toxic products (Schweizer, 2004) or to feed it 

into bile acid synthesis pathway have been suggested (Jessup and Brown, 2005). 

12.3 The role of 7-ketocholesterol in atherosclerosis 

It is known that increased cholesterol is a risk factor for atherosclerosis and that such an 

increase can be induced e.g. by high fat diet. Interestingly, in atherosclerotic plaques not only 

cholesterol but also oxysterols are predominantly found and 7-KC is the second most 

abundant (Björkhem et al., 1994). Notably, over the last decade evidence emerged that it is 

rather 7-KC along with other oxysterols like 25-hydroxycholesterol than cholesterol itself that 

might have a promoting effect on proceeding atherosclerosis. Thus, oxysterols in general and 

7-KC in particular became the most intensively studied molecules in pathophysiology of 

atherosclerosis (Lyons and Brown, 1999). And indeed multiple effects of 7-KC were 

described that potentially promote atherosclerosis. It was shown, that 7KC along with 7-β-

hydroxycholesterol induces apoptosis via caspases (Luthra et al., 2008), nuclear factor kappa 

B (Huang et al., 2010; Larrayoz et al., 2010), and via NOX4 (Pedruzzi et al., 2004). Moreover 

it was shown to promote inflammation via interleukin-6 (Amaral et al., 2013; Buttari et al., 

2013; Vejux and Lizard, 2009). In other cell culture experiments ROS was found to be 

increased after 7KC treatment. Lycopene and Vitamin-E were reported to partially abolish 

deleterious effects of 7-KC (Palozza et al., 2010; Wong and Wang, 2013). Notably, studies of 

7-KC are mostly done in cell lines of multiple origins and many of these studies use 

concentrations that are rather high compared to physiological levels, which make a 

physiological role questionable. Owed to the fact that at least apoptosis, inflammation and 

ROS imbalance were shown to promote atherosclerosis - 7KC is a promising candidate to 

play an important role in the development of cardiovascular diseases. And understanding this 

role might help to develop drugs against this age-related diseases. Still, up to date the exact 

role of 7-KC and whether it really has a causative or only supporting effect in formation of 

atherosclerotic plaques remains elusive. Interestingly, in the context of atherosclerosis not 

only the mechanisms remain elusive but in general also direct targets of 7-KC to promote 

described effects are missing. The only targets that were found are in the context of 

cholesterol metabolism.  
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12.4 Potential function of 7-ketocholesterol in mammals 

7-KC was shown to inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-

COA reductase) (Saucier et al., 1989). HMG-CoA reductase is one of the key enzymes in 

cholesterol de novo synthesis. It is the target of statins - drugs that are used to counteract 

hypercholesterolemia. Moreover 7-KC was shown to inhibit 7-α-hydroxylase (CYP7A1) 

(Tamasawa et al., 1997; 1994), the first enzyme of bile acid pathway converting cholesterol to 

7-α-hydroxycholesterol. Notably, feeding of 7-KC in rats was compensated by higher 

CYP7A1 activity, and intravenous injection was compensated by higher CYP7A1 expression 

(Tamasawa et al., 1994; 1997). Thus, in long term 7-KC does not affect bile acid synthesis. 

Thus, it is questionable if the inhibition of either of these targets is of actual physiological 

relevance.  

In brief, the current understanding is that 7-KC is a toxic inadvertent oxysterol that has to be 

disposed or converted by the cell in order to prevent deleterious effects. It accumulates 

together with other oxysterols in the early onset of atherosclerosis – still this effect lacks a 

direct target for 7-KC and an underlying mechanism. Despite the direct targets in cholesterol 

metabolism, in mammals no physiological function of 7-KC was shown. Moreover, if 7-KC 

induced apoptosis, ROS and inflammation play a physiological role in healthy cells was not 

addressed so far.  
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Figure 28 7-ketocholesterol in mammals  

7-KC is formed spontaneously by ROS attack of cholesterol via 7-α /β- hydroperoxy-cholesterol. In vitro it was shown 
to inhibit HMGCoA reductase activity involved in cholesterol de novo synthesis. In vivo it was shown to inhibit 
CYP7A1 first step of bile acid synthesis converting cholesterol to 7-α-hydroxycholesterol. Moreover it was shown to 
increase apoptosis, inflammation and oxidative stress atherosclerosis promoting functions.  

12.5 Potential of our study to understand function of 7-ketocholesterol in 
mammals 

To our knowledge, the presented study is the first study investigating functions of 7-KC 

in C. elegans. We think it is of particular interest since this is also the first study describing a 

nuclear hormone receptor (DAF-12) as a possible direct target of 7-KC, promoting global 

phenotypes - dauer formation and longevity.  

Available data are not sufficient to compare mammalian and nematode function of 7-

KC. In a next step it should be approached whether some of the known functions in mammals 

are also found in worms, e.g. by measuring ROS levels and apoptosis. Especially the role of 

ROS might be interesting, since it might provide a link between mammalian findings and 

findings in C. elegans. ROS were shown to play a role in lifespan determination. A 

conceivable model is that 7-KC might function as a signaling molecule to reflect ROS levels 

and at slightly increased concentrations in worms this has a lifespan extending effect. In 
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higher concentrations in cells it would induce apoptosis at a certain concentration. It might 

actually involve a hormetic effect, in which 7-KC activates cell clearance. These ideas are 

very speculative and need to be validated in C. elegans with according assays. 

The cholesterol auxotroph C. elegans provides a suitable system for further studies on 

7-KC, since it excludes its statin effects. Moreover it lacks direct homolog of some genes 

found essential in mammalian studies, like CYP7A1 and NOX-4. Excluding these mediators 

of known mammalian effects might help to identify novel targets of 7-KC. These novel 

targets in turn could potentially help to understand 7-KC function in mammalian systems – in 

healthy cells and in the onset of atherosclerosis.   

We think in cell culture and mammalian systems certain effects of 7-KC might have 

been overlooked due to the toxic effects of the high 7-KC levels that were used and the focus 

on atherosclerotic models mainly analyzing cells of the vascular system. Moreover, to our 

knowledge no systematic approach to investigate 7-KC as potential ligand for mammalian 

NHRs was performed. Regarding our findings this might be of particular interest since DAF-

12 has homology to VDR and LXR and VDR activation was shown to counteract 

atherosclerotic events (Pilz et al., 2013).  

12.6 Future experiments 

So far the question if 7-KC regulation of DAF-12 is of any physiological relevance in 

C. elegans was not addressed. We have only shown that it can be used as a drug to extend 

lifespan. The first approach to clarify if 7-KC is a physiological regulator of ageing would be 

to determine whether levels of 7-KC are regulated during the ageing process in N2. If it has 

physiological relevance in lifespan modulation we would expect lower levels of 7-KC with 

increasing age. This regulation could be impaired in long-lived mutants.  

Moreover, we could not unambiguously show that 7-keto-C/DA directly binds to DAF-

12, to address this question we are planning in collaboration with the Schroeder lab  (Cornell 

University, Ithaca, New York) to synthesize 7-keto-DA and test it in parallel to 7-KC 

regarding its capability to outcompete the binding of several DAs to DAF-12 in a cell free 

competition assay. With this assay, we hope to show, first, if there is a direct interaction, 

second, if 7-KC or 7-keto-DA is the biological active enzyme and third with this assay it is 

possible to quantify the dynamics of the competitive inhibition. Another issue that needs to be 

addressed is the question whether 7-keto-C/DA might act as a general quencher of NHR 
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activity. Thus, we are planning to investigate inhibitory potential of 7-KC on other NHRs, 

like VDR, in cell culture assays. 

To unravel a potential role of 7-KC in gonadal longevity, we are planning to feed it to 

germline ablated animals and glp-1(ts) mutants. This approach could be combined with 

determination of mir expression profiles in 7-KC fed worms since we only addressed the 

microRNA expression on a global mRNA level. To get a better understanding of where and 

when 7-KC acts precisely we are planning to look at mir-48::gfp reporter to analyze DAF-12 

regulation. Fluorescence markers might help to better understand the role of 7-KC. Moreover, 

tissue specific knockouts and timed knockdowns of daf-12 and DA biosynthetic enzymes 

could help to shed light on tissue specific DA pathway function. For visualization of 7-KC 

distribution, we are planning to use a commercial available 7-KC fluorescent molecule.  

We have shown that the effect of 7-KC on lifespan determination is mediated after 

development since we started feeding in late L4, it would be of further interest to narrow 

down the time window. According to their steroid hormonal character we would expect DAs 

to act in a highly coordinated and precisely timed time window. We therefore might expect 7-

KC to also be a required at a certain time point we thus planning to prepare a time course, 

providing 7-KC during post-reproductive life in pulses.  

Moreover we are planning to follow up, our candidates from the dauer screen (glycin, 

arachidonic acid). In a first step they will be tested for lifespan phenotype. But we are also 

planning to follow up the dauer phenotype and as a first step in this matter we will test for 

daf-16/FOXO dependence.  

Finally we have started to test if 7-KC-phenotypes, dauer formation and longevity are 

recapitulated by the 7-KC regulated genes found in RNAseq and could not identify candidates 

in a first repeat. 
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13 Future perspectives 

Our approach to use dauer as a primary readout to identify lifespan modulators has high 

potential to identify more small molecules that modulate the network of longevity pathways. 

With 7-KC we identified a steroid that either directly or after conversion to 7-keto-DA 

counteracts the known DAs to modulate dauer formation and lifespan in C. elegans. But it 

also will be interesting to follow up our other candidates that effected dauer in the screen - to 

further investigate their role in lifespan and identify targeted pathways. Interestingly, 7-KC 

induced lifespan extension is independent of IIS, underlining that although we used a mutant 

of this pathway, we not only identified modulators of IIS. This indicates a high potential to 

identify small molecules acting in other and maybe even novel longevity pathways. 

The identification of a new regulator of DAF-12 that might actually work as the first 

competitive inhibitor is of particular interest to the field of ageing research, since DAF-12 is 

not only the key-regulator of dauer formation and a modulator of lifespan but has several 

other functions like developmental timing. It is one of the major transcription factors that 

highlights a hormonal link between developmental and lifespan decision in C. elegans. So far, 

it was only investigated how it promotes developmental specific expression profiles in its 

activated - DA–bound status compared to the repressed, DA unbound status. 7-

ketocholesterol most certainly opposes effects of other DAs, and thus adds another level of 

regulation to DAF-12. 7-KC therefore provides a valid tool to study other DAF-12 regulated 

processes as well.  

Unraveling the interaction of all known DAs will certainly gain exciting new insights to 

answer the following questions: What is the temporal and spatial pattern of the different DAs? 

What is the role of DAs in longevity of reproductive and germline-less C. elegans? What is 

the role of the potential inhibitor 7-keto-DA in this context? Is a steroid hormonal regulation 

of lifespan conserved in higher organisms as well? Can these small molecules be used to 

develop drugs against age related diseases?  
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Materials and methods 

14  Materials 

14.1 Strains 

The following C. elegans strains from Antebi Lab collection were used in this thesis:  

N2 bristol, DR1572 daf-2 (e1368), AA431 daf-36(k114); daf-9::gfp, AA2646 dhIs64(Pdaf-

9::daf-9::GFP; lin-15[+]), JT10800 npc-2(nr2023)III;npc-1(nr2022)X, CB1372 daf-

7(e1372ts)III, CB1386 daf-5(e1386), AA580 daf-5(e1386)II;daf-36(k114)V, GR1311 daf-

3(mgDf90)X, AA373 daf-3(mgDf90)X; daf-36(k114)V, GR1307 daf-16(mgDf50)I, AA374 

daf-16(mgDf50)I;daf-36(k114)V, AA967 dhs-16(tm1890)V, AA009 daf-9(k182)X, AA1053 

daf-40(hd100)II, AA003 daf-12(rh61rh411), AA3433 daf-2(e1368);daf-12(rh61rh411), 

AA420 din-1(dh127)II; daf-9(dh6)X, AA408 din-1(dh127)II, AA161 daf-9(dh6);daf-

12(rh61rh411)X, AA968 nhr-8(hd117)IV. 

14.2 Chemicals, buffers and media 

Unless stated otherwise chemicals were purchased from Sigma. All chemicals used for 

the screen including distributor, CAS-number and MW are listed below.  

List of screened compounds 

Compound Distributor CAS-number 

 

sugars 

  D-glucose Sigma  50-99-7 

glycerol Sigma  56-81-5 

D-galactose Sigma  59-23-4 

D-fructose Sigma  57-48-7 

sucrose Sigma  57-50-1 

trehalose Sigma  6138-23-4  

   



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Materials 
 

 88 

Amino acids 

  L-serine Sigma  56-45-1 

L-threonine Sigma  72-19-5 

L-cysteine Sigma  52-90-4 

L-glycine Sigma  56-40-6 

L-alanine Sigma  56-41-7 

L-asparagine Sigma  70-47-3 

L-glutamine Sigma  56-85-9 

L-phenylalanine Sigma  63-91-2 

L-tyrosine Sigma  60-18-4 

L-tryptophane Sigma  73-22-3 

L-histidine Sigma  71-00-1 

L-lysine Sigma  56-87-1 

L-arginine Sigma  74-79-3 

L-arginine-HCL Sigma  n.a 

L-valine Sigma  72-18-4 

L-leucine Sigma  61-90-5 

L-isoleucine Sigma   73-32-5 

L-methionine Sigma  63-68-3 

L-proline Sigma  147-85-3 

L-aspartic acid Sigma  56-84-8 

L-glutamic acid Sigma  56-86-0 

   Fatty acids 

  linoleic acid Nu chek Prep, Inc 60-33-3 

oleic acid Nu chek Prep, Inc 112-80-1 

palmitic acid Nu chek Prep, Inc 57-10-3 

γ-linolenic acid Nu chek Prep, Inc 506-26-3 

homo-γ-linolenic acid Nu chek Prep, Inc 1783-84-2 

stearic acid Nu chek Prep, Inc 57-11-4 
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palmitoleic acid Nu chek Prep, Inc 373-49-9 

α-linoleic-acid Nu chek Prep, Inc 463-40-1 

myristic acid Nu chek Prep, Inc 544-63-8 

arachidonic acid Nu chek Prep, Inc 506-32-1 

eicosaptenoic acid Nu chek Prep, Inc 10417-94-4 

tridecanoic acid Nu chek Prep, Inc 638-53-9 

   Steroids and others 

  aldosterone Sigma 52-39-1 

11-deoxycortisol Nu cheak prep 152-58-9 

17-α-hydroxypregnenolone Nu cheak prep 387-79-1 

testosterone Sigma  58-22-0 

17-α−hydroxyprogesterone Nu cheak prep 68-96-2 

corticosterone Sigma  50-22-6 

β-estradiol Sigma  50-28-2 

progesterone Sigma  57-83-0 

dehydrocholic acid Sigma  475-31-0 

cholic acid Sigma 81-25-4 

ursodeoxycholic acid Nu cheak prep 128-13-2 

deoxycholic acid Sigma  83-44-3 

desmosterol Sigma 313-04-2 

5-pregnen-3β-ol-20-one Sigma 145-13-1 

α-ecdysone Sigma 3604-87-3 

stigmasterol Sigma  83-48-7 

eticholan-3 α-ol 17-one sigma 571-31-3 

ergosterol Sigma  57-87-4 

retinoic acid Sigma  302-79-4 

9-cis retinoic acid Sigma  5300_03-8 

7-dehydrocholesterol Sigma  434-16-2 

lathosterol Sigma  80-99-09 
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lathosterone Corey Lab 15459_85-5 

4-cholesten-3-one Sigma 601-57-0 

Δ dafachronic acid Corey Lab n.a. 

22(R)-hydroxycholesterol Avanti Polar Lipids 17954-9-28 

22(S-)hydroxycholesterol Avanti Polar Lipids 22348_64_7 

25 hydroxycholesterol Avanti Polar Lipids  2140_46_7 

7-ketocholesterol Sigma 566-28-9 

lophenol Research Plus, Inc  n.a. 

7-β-hydroxycholesterol Sigma 566-27-8 

 

 

14.3 Primers 

Primers for validation of RNA sequencing results by quantitative real time PCR were 

designed with the online tool of Integrated DNA Technologies. Primers for microRNA 

analyses were used as described previously in Shen et al. 2013: 

 

mRNA   

Target gene primer Sequence ( 5´-3´) 

lys-8 lys-8_for CGCTGTTGATTTGTCTGTTCC 

 lys8_rev AGTATTGCAGGAGTTGGTGTC 

gba-1 gba1_for TGTGAAACTTCTGATTCTGGACG 

 gba1_rev TCTTGATATGCGTGAACCCC 

clec-67 clec67_for GAACTCTCAACCCGTAACAATTG 

 clec67_rev CTGTCTCCGAATCCCAATGTAG 

prk-2 prk2_for TTCAGAATCGTGTACTTCATAGGG 

 prk2_rev CAATAGAGTCGGGTTCCTTGG 

T16G12.1 T16G12.1_for AAAATCCAGACGAAGGAGACG 
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 T16G12.1_rev AACATGGGAGAAGTGAACGG 

vha-6 vha6_for TGCTTCATACCTCCGTCTTTG 

 vha6_rev AGAACCATTGTCCAGAGAACG 

Y32B6.1 Y32B6.1_for TCAGGATCATGCTCTGTTTACG 

 Y32B6.1_ rev CTTTGTGAAAATCCTTGGTCCG 

ama-1 ama-1_for GGATGGAATGTGGGTTGAGA 

 ama-1_rev CGGATTCTTGAATTTCGCGC 

microRNA   

U18 U18-f  GGCAGTGATGATCACAAATC 

 U18-r  TGGCTCAGCCGGTTTTCTAT 

mir-1  mir-1-RT  GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT

ACGACTACATA 

 mir-1-f CGCCCTGGAATGTAAAGAAGT 

mir-241 mir-241-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT

ACGACTCATTT 

 mir-241 -f CGCTGAGGTAGGTGCGAG 

All microRNAs mir-r  GTGCAGGGTCCGAGGT 

 

14.4 Plasmids 

Some plasmids used in this thesis have been published previously (Bethke et al., 2009) 

and were available in Antebi Lab collection. Plasmids have been construct bei Dr. Axel 

Bethke as follows: DAF-12 cDNA was cloned into  pCMVTag2b (Stratagene #211172). Mir-

84 promotor was PCR amplified and inserted into ptk luc reporter vector (4) upstream of a 

thymidine kinase (tk) minima l promoter followed by firefly luciferase cDNA. Another 

plasmids available from Antebi collections are unpublished and were constructed by Dr. Dan 

Magner as follows: GAL-4(DBD) and DAF-12(LBD) cDNA were inserted to pCMX 

backbone.  
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14.5 Buffers and media 

M9 	   	   NG agar plates  

Material Amount per liter 

	  

Material 
Amount per 

liter 

Na2HPO4 6 g 

	  

NaCl 3 g 

KH2PO4 3 g 

	  

Agarose 25 g 

NaCl 5 g 

	  

Peptone 2.25 g 

autoclave   

	  

1M KPO4 25 ml 

1M MgSO4 1 ml 

	  

autoclave   

  	  

1M Cacl2 1 ml 

  	  

1M MgSO4  1 ml 

 	  

	  

cholesterol 5mg/ml 1 ml 

Cell culture 

 	   	   	  Gal-  buffer (1L)   

	  

2X HBS (500 ml)   

Material Final conc 

	  

Material Final conc 

Na2HPO4 60 mM 

	  

NaCl 280 mM 

NaH2PO4 40 mM 

	  

KCl 10 mM 

KCl 10 mM 

	  

Na2HPO4 1.5 mM 

1M MgCl2 1 mM 

	  

Glucose 12 mM 

Fill upto 1 l (ddH2O), filtrate sterile  

	  

HEPES 5g 

  	  

adjust ph 7.05 and fill to 500 ml (ddH2O) 

  	   	   	  10X CORE bffer (200 ml) 

	  

ONPG buffer (250 ml) 

Material Final concentration 

	  

Material 
Final 

concentration 

Tricine, PH 7.8 30 mM 

	  

Na2HPO4 60 mM 

Mg Acetate 80 mM 

	  

NaH2PO4  40 mM 

EDTA 800 ul 

	  

Fill upto 250 ml (ddH2O), filtrate sterile 

Fill upto 200 ml (ddH20), filtrate sterile  
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15 Methods 

15.1 C. elegans handling and physiological assays 

15.1.1 Worm handling 

To maintain worm populations either a part of a plate containing a growing or starved 

population was “chunked” with a sterilized spatula to a fresh NGM seeded with OP50. Or 

single worms of a growing population were transferred with a worm pick (platinum wire) to a 

fresh NGM seeded with OP50.  

15.1.2 Bacterial handling 

Bacteria (E. coli) from glycerol stock were streaked to petri dishes with soild LB 

medium containing corresponding antibiotics. Plates were incubated overnight at 37 °C and 

the next day a single colony was picked to incubate liquid LB containing corresponding 

antibiotics. Plates were kept at 4 °C and reused to pick single colonies for no longer than a 

month. Liquid culture was allowed to grow overnight but at least 16 h, to reach stationary 

growth phase. 400 µl, 200  µl or 100 µl of liquid overnight culture was then used to seed 10 

cm, 6 cm and 3 cm plates.  

15.1.3 Cleaning and synchronization Populations with bleaching solution 

To clean contaminated plates depending on the population´s stage worms were either 

washed directly of the plate with M9 or a small chunk was transferred to a new plate. They 

were incubated than at appropriate temperature until enough animals had reached adulthood 

and eggs were visible in the germline and then washed of the plate with M9. For 

synchronization an uncontaminated plate with Worms were allowed to either settle in the tube 

(1, 5 eppendorf or 15 ml falcon tube) or spinned down for 2 min at 2000 rpm. Supernatant 

was removed and M9 and bleaching solution (2:3) was added worms were vortexed at RT for 

around 8 min until only eggs visible under the dissecting microscope. Eggs were then washed 

3 times in M9 (2 min, 2000 rpm) and transferred to fresh plates.  

15.1.4 Synchronization by egg lay 
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To achieve a higher degree of synchronization day two adults of a synchronized 

population were placed on fresh plates an allowed to lay eggs for two hours at 20 °C.  

15.1.5 Dauer assay (hydrophobic compounds) 

3.5 cm Petri dishes containing 3 ml nematode growth medium (NGM) where incubated 

with 50 µl E.coli OP50 in LB (saturated) and incubated over night at RT. 12 µl of 10 mM 

hydrophobic compound solved in ethanol (EtOH) was added to the surface to a final 

concentration of 40 µM. EtOH was allowed to evaporate for 1 h before eggs were transferred 

or pipetted to plates. A synchronized adult daf-2(e1368) population was bleached to receive 

eggs and approximately 70 eggs were pipetted to prepared plates. After 60 h and 48 h 

incubation at 22.5°C and 25 °C, respectively the fraction of animals that formed dauer larvae 

was scored with a microscope.  

For dauer assays on RNAi parental generation was grown from egg on, on E. coli 

HT115 bacteria expressing according RNAi. All clones were picked from Ahringer library , 

only RNAi clones E02C12.6, C02A12.1, ZK455.4, Y39B6A.13 and Y39B6A.20 were picked 

from Vidal library (Kamath, 2003; Rual et al., 2004). 

15.1.6 Dauer assay (hydrophilic compounds) 

Powders of hydrophilic compound were weighed out and disolved in liquid NGM (60°C) 

to a final concentration of 10 mM or 100 mM. 3.5 cm NGM compound Petri dishes (3 ml) 

where incubated with 50 µl E. coli strain OP50 in LB (saturated) and incubated over night 

room temperature (RT). One batch was radiated with UV light (6,000 J/cm2) to prevent 

further division of the bacteria. A synchronized adult daf-2(e1368) population was treated by 

bleaching to synchronize eggs. Around 70 eggs were pipetted to prepared plates. After 60 h 

incubation at 22.5°C the fraction of animals that formed dauer larvae was scored.  

15.1.7 Gonadal migration defect 

3.5 cm Petri dishes containing 3 ml nematode growth medium (NGM) where incubated 

with 50 µl E.coli OP50 in LB (saturated) and incubated over night at RT. 12 µl of 10 mM 

hydrophobic compound solved in ethanol (EtOH) was added to the surface to a final 

concentration of 40 µM. EtOH was allowed to evaporate for 1 h before eggs were transferred 

or pipetted to plates. A synchronized adult daf-2(e1368) population was bleached to receive 
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eggs and approximately 70 eggs were pipetted to prepared plates. After 60 h incubation at 

26°C the fraction of animals that had gonadal migration defect was scored with a microscope. 

15.1.8 Statiscical Analyzes of dauer and mig phenotype  

At least three technical replicates per sample were scored to create one of at least three 

biological replicate. Fractions of three technical replicates were averaged and at least three 

biological replicates were used to test for significance with Prism GraphPad. 

15.1.9 DAF-9 hypodermal expression 

3.5 cm Petri dishes containing 3 ml nematode growth medium (NGM) where incubated 

with 50 µl E.coli OP50 in LB (saturated) and incubated over night at RT. 12 µl of 2.5 mM 

hydrophobic compound or compound mix solved in ethanol (EtOH) was added to the surface 

to a final concentration of 10 µM. For DA a final concentration of 100 nM was used. Worms 

were synchronized by bleaching and around 2000 eggs were placed on each plate and 

incubated at 20 °C. L3 animals were then staged and either analyzed via Microscopy () or 

with the COPA Biosorter. 

15.1.10 Lifespan analyzes 

In brief, synchronized populations of desired strains were grown reproductively at 20°C 

for at least two generations. Adults were either allowed to lay eggs on experimental 

conditions or eggs were kept on NGM till L4 larval stage and then transferred to experimental 

conditions. Worms were transferred every 24 h during the egg laying period and every other 

day thereafter. Worms that did not move after being tipped gently with a worm pick were 

considered as dead and removed from the plate. All lifespan assays were performed at 20°C. 

All animals that crawl off the plate, showed phenotype of internally hatched larvae (bagged) 

or rupture of vulva (exploded) were censored and excluded from experiment. 

For lifespan assay on UV killed bacteria plates were prepared as described above. In 

parallel regular 10 cm NGM plates were seeded with OP50 grown over night and 

subsequently UV treated (12,000 J/cm2). Dead bacteria were washed off of 10 cm plates with 

M9 and transferred to experimental plates. To exclude contamination with bacteria coming 

from worms gut. Worms were bleached and grown to L4 larvae on plates with UV killed 

bacteria before being transferred to experimental plates.  
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For lifespan assays on RNAi parental generation was grown from egg on, on E. coli 

HT115 bacteria expressing according RNAi. All clone were picked from Ahringer library 

(Kamath, 2003), only RNAi clones E02C12.6, C02A12.1, ZK455.4, Y39B6A.13 and 

Y39B6A.20 were picked from Vidal library (Rual et al., 2004). Statistical analyses were 

performed using the log-rank (Mantel-Cox) method with GraphPad Prism software. 

15.1.11 Brood size assay 

Populations were synchronized by bleaching and incubated at 20 °C till day two of 

adulthood to make sure parental generation of experimental generation arose from eggs laid 

by animals at the same age. Parental generation was allowed to lay eggs for 2 h on fresh 

NGM plates seeded with OP50. After 48 hours at 20 °C L4 animals were singled to at least 20 

x 6 cm NGM plates containing either 10 µM 7-KC or appropriate volume EtOH. After 24 h at 

20 °C each animals was transferred to a fresh plate and the old plate was incubated another 24 

hours before it was either scored with dissecting microscope or stored at 4 °C till scoring (but 

never longer than 3 days).  This procedure was repeated for ten days or till no living eggs 

were laid. Only eggs that developed at least to L1 larvae were scored as living progeny. 

15.1.12 Pharyngeal pumping rate 

A population reproductively growing for at least 3 generations was synchronized by 2 h 

egg lay. After 48 h at 20 °C around 100 L4 worms were transferred to experimental plates 

containing either 10 µM 7-KC or appropriate volume EtOH. After 24 h (day 1) the number of 

pumps of the posterior pharyngeal bulb per 20 s was scored under dissecting microscope and 

multiplied by 3 to determine pumps/min. Animals were transferred every 24 hours during egg 

lay period and every other day thereafter. Pharyngeal pumping was scored on day 1, day 6 

and day 10.    

15.2 Quantitative Real time PCR and RNA sequencing 

15.2.1 Sample collection for RT qPCR and RNA seq analyzes 

A population that was grown reproductively for at least three generations without 

bleaching was synchronized by egg lay. Precisely 48 h later around 300 L4 worms were 

transformed to plates containing either appropriate compound or vehicle control and were 

incubated at 20 °C for 24 h. Adults then picked into 200 µl QIAzol (QUIAGEN) and directly 
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frozen in liquid nitrogen, samples were then either processed to directly isolate RNA or stored 

at – 80°C.  

15.2.2 RNA isolation 

Prior to total RNA preparation, samples were thawed in 37 °C waterbath and frozen in 

liquid nitrogen for at least seven cycles and afterwards shook (50 hz) with around 100 µl of 

glass-beads using TissueLyser LT (QIAGEN) at 4 °C. Subsequently chloroform was added 

and samples were spinned down. Supernatant was used for mRNA or microRNAs preparation 

according to the manual of RNeasy Mini Kit (QIAGEN). For mRNA isolation 70 % EtOH 

was used and for microRNA isolation 100 % EtOH was used. The optional step of DNAase 

treatment was performed each time with RNase- Free DNase (QUIAGEN) for 15 min at RT. 

15.2.3 Quantity and quality measurement of RNA isolations 

All RNA isolations were measured with NanoDrop 2000c (peqLab) to validate pureness 

and determine quantity. Additionally RNAseq samples were prepared and loaded onto a 

agilent chip and quality was checked with Tape Station 2200 (Agilent Technologies). 

15.2.4 cDNA preparation with reverse transcriptase  

From microRNA isolations cDNA was generated with Superscript III First Strand 

Synthesis System with random hexamers (Invitrogen). 150 ng of mRNA isolations were 

reverse transcribed according to iSCRIPT protocol and subsequently diluted with ddH2O to 

1ng/ µl related to mRNA input. 

15.2.5 qPCR measurements  

For RNA measurement Power SYBR Green (Applied Biosystems) was used. 384 

microRNA plates were prepared manually and technical quadruplicates of all samples were 

analyzed with 7900HT FastReal-Time PCR System. For preparation of 384 well mRNA 

plates JANUS automated workstation (PerkinElmer) was used. cDNA Power SYBR Green 

mix and primers in 1,5 ml tubes were manually prepared for the robot. A standard program 

for comparative CT values including Melting curve was used on both qPCR machines. For 

primer validation standard curve program was used.  
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Quantitavie real time PCR program 

 2 min 50 °C 

 10 min 95 °C 

40 cycles 15 s 95 °C 

 1 min 60 °C 

Melt curve 15 s 95 °C 

 1 min 60°C 

 15 s 95 °C 

15.2.6 Statistic analyzes of qPCR data 

Data were normalized to an internal housekeeping standard gene - ama-1 for mRNA 

samples and the microRNA snoRNA U18 for microRNA samples. Each analyzed set 

contained a wild type control. Significance was tested with ANOVA using Prism GraphPad. 

 

15.2.7 RNAseq analyses  

As input we had three replicates per sample with a library size in the range of ~33-46 Mill 

reads. Before mapping to the genome, the reads were trimmed at both ends with the 

FASTA/Q Trimmer of the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit by 

Hannon Lab).  The preprocessed reads were mapped to the genome with tophat2 (v2.0.7) 

(Ref) allowing only unique mapping. On average 99.9% of the reads could be aligned.   

Subsequently, differential gene expression was performed with DESeq REF. Genes with a q-

value < 0.05 and fold change > |1.5| were classified as differentially expressed. (This part of 

the analysis was peformed by Dr. Corinna Klein of the MPI Bioinformatics Faicility). We 

then used DAVID online-tool (http://david.abcc.ncifcrf.gov/) (Huang et al., 2009) to 

determine GO term enrichments. For visualization REVIGO was used (revigo.irb.hr). 
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15.3 Steroid profile analyzes 

15.3.1 Sample collection 

A population that was grown reproductively for at least three generations without 

bleaching was synchronized by egg lay. Eggs were placed on experimental plates containing 

either 10 µM 7-KC or appropriate volume EtOH. L3 larvae were harvested quickly and 

washed in M9 twice and finally harvested in a volume of 200 µl M9. Especially for samples 

that are used for analyses of dafachronic acid it is important to not leave larvae to long in M9, 

since DA seems to diffuse to the medium (Dr. Magner personal communication). 

15.3.2 Lipid extraction 

L3 larvae in M9 buffer were frozen in liquid nitrogen and thawed in 37°C waterbath for 

at least seven cycles. Subsequently samples were sonicated on ice to lyse cuticle and tissues 

or they were vortexed (50 Hz) with glassbeads in TissueLyser LT (QIAGEN) at 4 °C. 100 ng 

internal standard (5β-cholanic acid and/or cholesterol-d7) was added and for Bradford protein 

analyses 20 µl. Bradford analyzes was performed in cornwell 96 well plates according to Bio-

Rad Protein Assay manual. Reads of reaction plates were performed at 595 nm with 

POLARstar Omega plate reader (BMG LABTECH). Subsequently lipids were extracted with 

chloroform: methanol (1:2, v/v) for 1 h at room temperature. Debris centrifuged down in 

GeneVac EZ2.3 Plus Evaporation System without vacuum. Supernatant containing extracts 

were divided into two approaches in GC glass vials- one for dafachronic acid (bile acid)  

analyzes and one for all other steroids.  

15.3.3 Lipid Derivatization 

Lipids were dried under N2 stream or centrifuged down in GeneVac EZ2.3 Plus 

Evaporation System to dryness. For derivatization of steroid compounds other than DA, lipids 

were treated 15 min at 60°C with 15 µl N-methyl-N-Trimethylsilyltrifluoracetamid 

(MSTFA): NH4I (1000:5, w/v) and subsequently 15 µl FLUKA III 

[TMSIM/BSTFA/TMCS(1-(trimethylsilyl)imidazole-N,Obis(trimethylsilyl) trifluoroacet-

amide /trimethylchlorosilane), 3/2/2,(v/v/v) was added and incubated for 15 min at 60°C with 

(Metod adopted from (Magner and Antebi, 2008; Meunier-Solère et al., 2005)).  

For derivatization of dafachronic acids, dried lipid extracts were treated with 50 µl 

toluene:methanol (1:1, v/v) and 200 µl (Trimethysilyl)diazomethane for 1 h at room 
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temperature. Afterwards lipids were dried under N2 stream to dryness and resuspended in n-

hexane (20 µl) prior to injection.  

15.3.4 Preparation of standard curve 

For later analyzes a standard curve for each compound was generated from powder 

stocks (Appendix Table). The highest concentration (100 ng) of the standard curve was 

prepared from a higher stock solution containing all compounds that should be analyzed (1 µg 

in MeOH) and repeatedly diluted 10 times in MeOH down to 0.01 ng. Internal standard was 

added to each dilution curve sample and from thereon samples were derivatized and analyzed 

in GC/MS/MS like steroid samples from worms.    

15.3.5 GC/MS/MS analyzes 

Methods for analyzing steroids and dafachronic acid with gaschromatography and 

masspectrometry were described before. The gaschromagraph was 7890A GC from Agilent. 4 

µl of sample was injected in pulsed- splitless mode to a HP5-ms UI column (15m x 0.25 mm 

I.D., 0.25 µm, Agilent) and helium was used as the carrier gas with a flow rate of 23.979 

ml/min and 1.2 min hold before purging to split vent. The initial oven temeperature started at 

180 °C for 1 min and was then ramped with 30 °C/min up to 300 °C and held for another 11 

min before it was increased to 325 °C for 8.17 min.  The MS/MS coupled to the GC was a 

triple quadrupole (7000A) from Agilent Technologies. It was equipped with an ESI source 

and samples were separated. For the analyses a multiple reaction monitoring (MRM) method 

was created that combined the detection of all analyzed steroids. For identification of the 

silyated steroids the following transitions were used: 

Compound Transition (m/z) 

  

Δ7- dafachronic acid 428.3  à  229.1 

5-β-cholanic acid 374.3  à  264.0 

cholesterol 458.3  à  353.3 

cholesterol-d7 465.3  à  359.3 

7-dehydrocholesterol 350.2  à  195.0 

lathosterol 458.4  à  229.1 
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lathosterone 456.4  à  314.3 

 

15.3.6 GC/MS/MS Data analyzes 

Data were analyzed in Quantitatvie Aanlyzes Software, which uses the standard curves 

of each analyzed compound to determine absolute steroid content of measured sample. These 

values were then normalized to the measured protein content using Microsoft Excel. Values 

of at least 5 biological repeats were than further analyzed in GraphPad Prism to create graphs 

and to test for statistical significance (ANalyses Of VAriances -ANOVA).   

15.4  Cell culture assays 

15.4.1 maintainance of HEK 293T Cells 

Cells used in this study are HEK 293T cells. They were maintained in Dulbecco´s 

modified Eagle Medium (DMEM , GIBCO) provided with 10 % Fetal Bovine Serum (FBS, 

GIBCO) at 37 °C and 5 % CO2. To prevent dying of the cells, at an estimated confluence of 

90 % they were detached from culture dish Cells by treatment with Trypsin 5 % for 1 min at 

37 °C (GIBCO) washed twice with DPBS (GIBCO) and a 10 time dilution in fresh DMEM 

+FBS was distributed to new plates. 

15.4.2 Plasmid preparation 

Bacteria were grown as described in (15.1.2.) Plasmids were isolated according to 

protocol of QIAGEN MiniPrep or MidiPrep for plasmid isolation Kit. Concentration was 

measured with NanoDrop and plasmids were diluted to a concentration of 100 ng/µl. Plasmids 

were stored at 4 °C for no more than 6 month.  

15.4.3 DAF-12 actvity assay 

Adapted from Dr. Dan Magner. Confluent cells (around 10.000 cells/cm2) on a plate 

were detached from 10 cm cell culture plate with Trypsin 5 %, washed twice with DPBS and 

diluted 1:10 in DMEM+FBS. Subsequently 100 µl were distributed to each well of a 96-well 

plate. Cells were grown overnight at 37 °C and 5 % CO2. After 16 h A CaCl2 master-mix for 

transfection was prepared containing β-gal plasmid and stuffer DNA. In addition either 
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pCMX-DAF-12 or PCMX-FLAGG was co-transfected with plasmid carrying 

pCMX::mir84p::luciferase (Bethke et al., 2009). One well was transfected with eGFP to 

control for efficiency. Cells were allowed to recover and grow for at least 7 h at 37 °C and 5 

% CO2. Compounds were concentrated 2000 times in EtOH and premixed with DMEM 

before they were provided to transfected cells. Cells were incubated after compound treatment 

for another 16 h at 37°C, 5 % CO2.  

15.4.4 Quantification of luciferase activty 

First the luciferase activity was assayed. To induce luciferase illuminiscence cells were 

incubated with Luciferase Buffer (containing Core buffer, TritonX-100, D-Luciferine, ATP, 

Coenzyme A and β-mercaptoethanol see also Appendix) for 1 min at RT. Next Luciferase 

activity was determined with POLARstar Omega plate reader (BMG LABTECH) using a 

program that detects illumination. Subsequently ß-gal activity was assayed. To induce β-gal 

activity cells were incubated with β-gal induction buffer (containing β-gal buffer, OPNG 

buffer, OPNG and β-mercaptoethanol see Appendix) for 10 min at RT. Afterwards β-gal 

activity was measured with POLARstar Omega plate reader (BMG LABTECH) using a 

program that measures absorbance of light with λ 405 nm. 
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Appendix 

Table 1 Lifespan statistics of at least 3 biological replicates  

	  	   median	   SEM	   t-‐test	   max	   SEM	   t-‐test	  
N2 EtOH 22,4 0,37   32,4 0,6   
N27-KC 26,1 0,82 0,0007 32,9 1,1 0,25 
daf-12(rh61rh411) EtOH 18,8 1,158   28,8 0,8   
daf-12(rh61rh411) 7KC 18,4 0,2449 0,74 28,4 1,2 0,78 
daf-16(mgDf50) EtOH 16,4 0,24   24,6 0,87   
daf-16(mgDf50) 7-KC 18,2 0,2 0,0005 24,6 0,87 1 

 

Table 2 Lifespan table  

If not noted differently treatmaent was start from late L4, p-value is based on log-rank (Mantel-Cox) 
method to compare curves.  (n>60) 

 
treatment median 

med lifespan 
difference(%) max p-value referenced to (EtOH) 

N2 EtOH 24   33     

  10 μM 31 29,17 42 0,0001 N2 

daf-2( e1368) EtOH 42   52     

  10 μM 44 4,76 53 n.s. daf-2(e1368)  

  N2 EtOH 21   29     

  5 μM 26 19,23 29 0,0001 N2 

 
10 μM  26 19,23 29 0,0001 N2 

  40 μM 24 12,50 29 n.s. N2 

 N2 EtOH 24   31     

  5 μM 26 7,69 30 0,0005 N 

  10 μM from egg 26 7,69 31 0,0005 N2 

  40 μM from egg 25 4,00 29 n.s N2  

 
N2 EtOH 23   32     

  0.01 μM 25 8,00 30 n.s. N2 

  0.1 μM 25 8,00 34 n.s. N2  

  1 μM 25 8,00 36 0,0005 N2  

  10 μM 28 17,86 34 0,0001 N2  

  40 μM 28 10,71 32 0,002 N2 

  
 N2 EtOH 23   31     

  0.01 μM 24 4,17 30 n.s N2  

  0.1 μM 25 8,00 33 n.s N2 
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  1 μM 26 11,54 35 0,005 N2  

  10 μM 28 17,86 34 0,0001 N2 

  40 μM 27 11,11 32 n.s N2  

  

N2 EtOH 21   32     

  10 μM L4 26 19,23 32 0,0019 N2  

daf-16(mgDf50) EtOH 17   23     

  10 μM L4 19 10,53 23 n.s. daf-16(mgDf50) 

daf-12(rh61rh411) EtOH 23   26     

  10 μM L4 19 -21,05 28 0,0002 daf-12(rh61rh411) 

 N2 EtOH 21   32     

  10 μM L4 21 0,00 32 0,42 N2  

daf-16(mgDf50) EtOH 16   16     

  10 μM L4 18 11,11 16 0,045 daf-16(mgDf50) 

daf-12(rh61rh411) EtOH 16   28     

  10 μM L4 18 11,11 24 n.s. daf-12(rh61rh411) 

daf-2(e1368) EtOH 32   na     

  10 μM L4 34 5,88 na 0,01 daf-2(e1368) 

N2 
 

22 
 

35 
    10 μM L4 25 13,64 36 0,009 N2 

daf-16(mgDf50) EtOH 16   26     

  10 μM L4 18 12,50 26 0,0001 daf-16(mgDf50) 

daf-12(rh61rh411) EtOH 18   30     

  10 μM L4 18 0,00 30 n.s. daf-12(rh61rh411) 

daf-2(e1368) EtOH 35   na     

  10 μM L4 39 11,43 na 0,0001 daf-2(e1368) 

  
     

       
N2 EtOH 22   35     

  10 μM L4 25 13,64 35 0,009 N2  

daf-16(mgDf50) EtOH 16   26     

  10 μM L4 18 12,50 26 0,0001 daf-16(mgDf50)  

daf-12(rh61rh411) EtOH 19   30     

  10 μM L4 19 0,00 30 n.s. daf-12(rh61rh411) 

daf-2(e1368) EtOH 35   47     

  10 μM L4 39 11,43 48 0,0001 daf-2(e1368) 

daf-36(k114) EtOH 22   35     

  10 μM L4 26 18,18 36 0,01 daf-36(k114) EtOH 
daf-12(rh61rh411); 
daf-9(dh6) EtOH 18   29     

  10 μM L4 17 -5,56 28 n.s. 
daf-12(rh61rh411); 
daf-9(dh6) 

din-1(dh127); 
daf-9(dh6) EtOH 23   33     

  10 μM L4 24 4,35 34 n.s. din-1(dh127);daf-9(dh6) 
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din-1(dh127) EtOH 22   32     

  10 μM L4 23 4,55 33 0,04 din-1(dh127) 

 N2 EtOH 23   34     

  10 μM L4 25 8,70 34 0,01 N2 EtOH 

daf-16(mgDf50) EtOH 17   26     

  10 μM L4 18 5,88 26 0,01 daf-16(mgDf50) EtOH 

daf-12(rh61rh411) EtOH 18   30     

  10 μM L4 18 0,00 30 n.s. daf-12(rh61rh411) EtOH 

daf-2(e1368) EtOH 35   na     

  10 μM L4 38 8,57 na 0,0001 daf-2(e1368) EtOH 

daf-36(k114) EtOH 22   35     

  10 μM L4 26 18,18 36 0,001 daf-36(k114) EtOH 
daf-12(rh61rh411); 
daf-9(dh6) EtOH 18   29     

  10 μM L4 16 -11,11 28 0,001 
daf-12(rh61rh411); 
daf-9(dh6) 

din-1(dh127);daf-
9(dh6) EtOH 23   33     

  10 μM L4 23 0,00 34 ns din-1(dh127);daf-9(dh6) 

din-1(dh127) EtOH 24   32     

  10 μM L4 25 4,17 33 0,01 din-1(dh127) 

 
N2 post dauer EtOH 23   32     

  10 μM L4 30 23,33 34 0,0001 N2 post dauer EtOH 
daf-12(rh273) ost 
dauer EtOH 20   32     

  10 μM L4 23 13,04 32 n.s. rh273 EtOH 

  
 

  

N2 post dauer EtOH 22   32     

  10 μM L4 27 18,52 33 0,0001 N2 post dauer EtOH 
daf-12(rh273)  
post dauer EtOH 20   32     

  10 μM L4 21 4,76 32 n.s rh273 EtOH 

 N2 dead OP50 EtOH 21   35     

  10 μM 26 19,23 37 0.0002 N2 on dead Op50 EtOH 
 

  

N2 dead OP50 EtOH 21   34     

  10 μM 25 16,00 35 0.0005 N2 on dead Op50 EtOH 

 

Table 3  7-KC regulated genes (p adj < 0.05) - independent of daf-12 

Gene-‐Id	  

Gene-‐

name	  	  

Fold	  

Change	   	  	   Description	  
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	  	   	  	   N2	   daf-‐12(rh61rh411)	   	  	  

Y49G5A.1	   	  	   0,18	   0,22	   	  	  

Y48G9A.10	   ctp-‐3	   0,37	   0,46	   Carnitine	  Palmitoyl	  Transferase	  

F33D4.1	   nhr-‐8	   0,66	   0,63	   	  	  

C10C5.4	   	  	   0,69	   0,64	   aminoacylase	  

D1009.1	   asc-‐2	   0,76	   0,75	   Fatty	  acid	  transport	  protein	  	  

T18H9.2	   asp-‐2	   1,32	   1,33	   aspartic	  protease	  

F54F11.2	   nep-‐17	   1,32	   1,38	   thermolysin-‐like	  zinc	  metallopeptidase	  

K10C2.1	   	  	   1,34	   1,41	   	  	  

Y39D8C.1	   abt-‐4	   1,34	   1,53	   predicted	  ATP-‐binding	  cassette	  transporter	  

H22K11.1	   asp-‐3	   1,43	   1,40	   aspartyl	  protease	  homolog	  	  

Y39B6A.20	   asp-‐1	   1,47	   1,43	   cathepsin	  D	  aspartic	  protease	  

F28B4.3	   	  	   1,52	   1,47	   	  	  

Y39B6A.1	   	  	   1,52	   1,44	   	  	  

W08D2.4	   fat-‐3	   1,55	   1,49	   	  	  

F38A5.3	   lec-‐11	   1,56	   1,67	  

predicted	  member	  of	  galectin	  fammily	  binds	  sugar	  

in	  vitro	  

T01D3.6	   	  	   1,60	   1,45	   	  	  

ZK112.1	   pcp-‐1	   1,64	   1,67	   polycarboxypeptidase	  (lysosmal;	  serine-‐type)	  

C35D10.14	   clec-‐5	   1,70	   1,50	   C-‐type	  lectin	  

F42A10.6	   	  	   1,72	   1,36	   	  	  

Y54G2A.9	   clec-‐81	   1,72	   1,75	   C-‐type	  lectin	  

F58B4.5	   	  	   1,75	   1,45	   	  	  

F08G5.6	   	  	   1,88	   1,78	   	  	  

C50B6.7	   	  	   2,25	   1,74	   	  	  

ZK455.4	   asm-‐2	   2,54	   2,42	   	  	  

C02A12.1	   gst-‐33	   2,68	   2,66	   glutathione	  S-‐tranferase	  

F14F7.3	   	  	   2,79	   3,24	   cytochrome	  p450	  

K11D2.2	   asah-‐1	   2,87	   1,93	   N-‐Acylsphingosine	  Amidohydrolase	  	  

F21F8.4	   	  	   3,42	   3,90	   aspartyl	  protease	  
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E02C12.6	   	  	   3,67	   2,73	   	  	  

T16G1.6	   	  	   4,24	   2,41	   	  	  

T16G1.4	   	  	   4,27	   2,27	   	  	  

C44H9.1	   ugt-‐15	   4,40	   4,64	   UDP-‐GlucuronosylTransferase	  

T16G1.7	   	  	   5,72	   3,00	   DLC	  tumor	  supressor	  gene	  	  

Y46C8AL.3	   clec-‐70	   7,84	   7,18	   c-‐type	  lectin	  

 

Table 4 7-KC regulated genes (p adj < 0.05) - dependent of daf-12 

Gene-‐id	   Gene-‐name	  	   Fold	  Change	   Description	  

	  	   	  	   N2	   	  	  

F45H7.4	   prk-‐2	   0,61	   Pim	  (mamalian	  oncogen)	  Related	  Kinase	  

Y32F6B.1	  

	  

0,68	   	  	  

Y66A7A.6	   gly-‐8	   0,71	  

predicted	  polypeptide	  N-‐acetylgalactosaminyl	  

transferase	  

C17G10.5	   lys-‐8	   1,29	   lysozyme	  required	  for	  regualr	  longevity	  	  

VW02B12L.1	   vha-‐6	   1,32	   vacuolar	  proton-‐translocating	  ATPase	  	  

C33C12.3	   gba-‐1	   1,39	   β-‐GlucocereBrosidAse	  

T16G12.1	  

	  

1,42	   	  	  

F56D6.2	   clec-‐67	   2,27	   C-‐type	  lectin	  

 

Table 5 Genes down-regulated in daf-12(rh61rh41) 

	  Gene-‐ID	   Fold	  Change	   padj	  

	  

	  Gene-‐ID	   Fold	  Change	   padj	  

M05B5.6	   0,02	   8,4E-‐11	  

	  

ZK563.7	   0,67	   4,8E-‐02	  

Y48E1B.8	   0,03	   7,0E-‐11	  

	  

H04D03.6	   0,67	   1,0E-‐02	  

C49G7.1	   0,03	   2,9E-‐03	  

	  

Y39B6A.27	   0,67	   4,2E-‐02	  
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T28F2.1	   0,03	   2,9E-‐15	  

	  

Y106G6D.5	   0,67	   7,5E-‐07	  

T04C12.23	   0,05	   4,2E-‐04	  

	  

C37A2.5	   0,67	   2,2E-‐07	  

Y41D4A.1	   0,05	   2,4E-‐02	  

	  

Y38C1AA.12	   0,68	   2,1E-‐05	  

C46A5.1	   0,07	   3,0E-‐23	  

	  

Y46H3B.1	   0,68	   4,5E-‐02	  

F11G11.10	   0,07	   4,7E-‐02	  

	  

T25B9.8	   0,68	   7,5E-‐05	  

Y69A2AR.14	   0,08	   4,1E-‐02	  

	  

C36F7.2	   0,68	   4,1E-‐07	  

B0511.4	   0,12	   6,1E-‐07	  

	  

T23D8.5	   0,69	   1,8E-‐02	  

C17D12.6	   0,12	   8,1E-‐05	  

	  

C53B7.1	   0,69	   2,0E-‐03	  

T08B6.4	   0,14	   1,3E-‐04	  

	  

T08B2.11	   0,69	   1,5E-‐03	  

C55C3.7	   0,14	   1,5E-‐12	  

	  

K10G9.3	   0,69	   5,6E-‐03	  

F14F9.6	   0,14	   2,1E-‐03	  

	  

C29E4.15	   0,69	   1,4E-‐02	  

C55C3.6	   0,15	   8,4E-‐24	  

	  

C05C8.7	   0,70	   2,7E-‐02	  

B0511.3	   0,15	   2,4E-‐04	  

	  

M02F4.7	   0,70	   4,3E-‐02	  

C03E10.5	   0,15	   1,0E-‐91	  

	  

R07B7.5	   0,70	   1,1E-‐02	  

C12D8.18	   0,16	   2,7E-‐07	  

	  

Y95B8A.6	   0,71	   1,8E-‐02	  

B0511.11	   0,16	   4,2E-‐35	  

	  

K06B9.4	   0,71	   3,5E-‐03	  

Y47D3A.30	   0,18	   1,5E-‐05	  

	  

W06A11.4	   0,72	   1,9E-‐02	  

M106.2	   0,19	   2,3E-‐115	  

	  

Y22D7AL.9	   0,72	   4,0E-‐03	  

F48C1.9	   0,19	   5,0E-‐05	  

	  

C04F6.5	   0,72	   1,4E-‐02	  

F42G4.2	   0,21	   2,6E-‐10	  

	  

F55D10.1	   0,73	   1,1E-‐02	  

T28F4.6	   0,22	   3,5E-‐21	  

	  

B0212.3	   0,74	   3,9E-‐03	  

T16H12.6	   0,25	   2,1E-‐02	  

	  

ZK792.8	   0,74	   4,3E-‐03	  

K10G9.2	   0,26	   1,1E-‐06	  

	  

F44E7.5	   0,74	   2,3E-‐02	  

C55C3.3	   0,26	   1,0E-‐25	  

	  

Y37E11AR.3	   0,74	   6,0E-‐03	  

F14E5.5	   0,27	   2,4E-‐24	  

	  

T10B10.3	   0,74	   3,6E-‐04	  

F19C7.7	   0,27	   4,8E-‐02	  

	  

F28F8.7	   0,75	   3,7E-‐02	  

F23H12.8	   0,27	   1,6E-‐05	  

	  

Y105C5B.5	   0,75	   6,1E-‐03	  

T08B2.15	   0,28	   4,0E-‐02	  

	  

F54F7.2	   0,76	   4,2E-‐02	  

F54C9.4	   0,28	   1,8E-‐14	  

	  

K10H10.2	   0,76	   1,2E-‐02	  

Y73B6BL.7	   0,28	   2,7E-‐06	  

	  

M110.3	   0,76	   2,6E-‐03	  
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Y73B6BL.12	   0,28	   2,2E-‐16	  

	  

T28F3.3	   0,77	   6,8E-‐03	  

C12D8.19	   0,29	   1,5E-‐02	  

	  

Y39B6A.38	   0,78	   2,0E-‐02	  

R03D7.5	   0,29	   2,8E-‐02	  

	  

ZK829.5	   0,78	   2,8E-‐02	  

Y43C5A.7	   0,29	   1,9E-‐03	  

	  

C18H2.2	   0,78	   9,7E-‐03	  

T28F4.3	   0,30	   8,6E-‐05	  

	  

M01D7.7	   0,78	   7,2E-‐03	  

B0238.15	   0,30	   4,4E-‐07	  

	  

T02G5.11	   0,79	   2,7E-‐02	  

T05D4.5	   0,31	   4,7E-‐03	  

	  

C37H5.8	   0,79	   1,1E-‐02	  

Y39G10AR.3	   0,31	   7,5E-‐09	  

	  

T01C3.9	   0,79	   1,2E-‐02	  

C17H1.7	   0,31	   4,7E-‐02	  

	  

K08E4.2	   0,79	   4,8E-‐02	  

T23F6.3	   0,32	   4,4E-‐04	  

	  

F58H1.3	   0,80	   3,2E-‐02	  

F42G8.4	   0,32	   4,6E-‐14	  

	  

M01E11.7	   0,80	   2,7E-‐02	  

F42G8.3	   0,33	   2,3E-‐08	  

	  

F54E2.1	   0,80	   4,7E-‐02	  

C04C3.5	   0,33	   1,1E-‐18	  

	  

F54C8.4	   0,81	   1,7E-‐02	  

W02A2.4	   0,33	   5,5E-‐03	  

	  

C25A8.4	   0,81	   1,4E-‐02	  

K08D8.12	   0,34	   1,8E-‐04	  

	  

T10C6.8	   0,81	   3,8E-‐02	  

F02E9.8	   0,35	   2,4E-‐02	  

	  

C25H3.6	   0,82	   3,2E-‐02	  

R90.4	   0,35	   1,4E-‐02	  

	  

B0414.3	   0,82	   4,1E-‐02	  

C09G5.7	   0,35	   1,5E-‐08	  

	  

Y39B6A.17	   0,54	   6,5E-‐10	  

F17E9.11	   0,35	   1,2E-‐02	  

	  

F33A8.6	   0,54	   5,0E-‐03	  

T04D3.4	   0,36	   1,5E-‐08	  

	  

Y54F10BM.3	   0,54	   4,7E-‐03	  

F45D11.16	   0,36	   1,1E-‐07	  

	  

H36L18.2	   0,54	   2,6E-‐06	  

T19C4.6	   0,37	   1,2E-‐05	  

	  

M04F3.3	   0,54	   1,4E-‐09	  

F46F2.3	   0,37	   8,7E-‐05	  

	  

R01H10.4	   0,55	   9,4E-‐05	  

F45D11.14	   0,37	   6,1E-‐04	  

	  

T05G5.1	   0,55	   1,8E-‐04	  

C42C1.9	   0,37	   2,4E-‐05	  

	  

Y24D9B.1	   0,55	   2,2E-‐04	  

Y71H2AM.10	   0,38	   1,1E-‐07	  

	  

Y53G8AL.1	   0,55	   2,2E-‐02	  

T21C12.8	   0,39	   1,8E-‐04	  

	  

F23F1.3	   0,56	   4,9E-‐03	  

F08B4.2	   0,39	   5,9E-‐05	  

	  

F35B12.7	   0,56	   1,8E-‐04	  

Y48G1BL.4	   0,40	   1,8E-‐04	  

	  

Y50D4A.6	   0,56	   1,7E-‐02	  

F45D11.15	   0,40	   1,5E-‐02	  

	  

Y75B8A.35	   0,56	   4,9E-‐10	  
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Y53G8B.3	   0,41	   1,9E-‐02	  

	  

F28F8.10	   0,56	   5,3E-‐03	  

T28F2.5	   0,41	   6,2E-‐22	  

	  

C17F4.6	   0,57	   1,7E-‐02	  

F42G8.5	   0,42	   5,8E-‐13	  

	  

C28A5.6	   0,57	   8,0E-‐03	  

R08E5.3	   0,43	   6,4E-‐27	  

	  

F30F8.2	   0,57	   3,0E-‐04	  

F23C8.8	   0,43	   9,4E-‐05	  

	  

F28F8.2	   0,58	   1,6E-‐03	  

F55H2.4	   0,43	   3,5E-‐06	  

	  

D2045.7	   0,58	   2,8E-‐05	  

F53B6.4	   0,44	   3,7E-‐03	  

	  

F22H10.2	   0,58	   3,7E-‐06	  

C26D10.3	   0,44	   1,8E-‐14	  

	  

F54D11.3	   0,58	   3,8E-‐09	  

T15B7.16	   0,45	   2,3E-‐03	  

	  

T12F5.4	   0,58	   1,1E-‐14	  

R10F2.6	   0,45	   1,5E-‐17	  

	  

F45B8.2	   0,59	   6,1E-‐04	  

M106.8	   0,45	   4,3E-‐17	  

	  

ZK520.3	   0,59	   3,8E-‐03	  

Y55F3AM.11	   0,45	   1,2E-‐12	  

	  

Y66D12A.20	   0,60	   5,2E-‐05	  

B0334.9	   0,46	   1,4E-‐03	  

	  

F47G6.4	   0,60	   1,2E-‐07	  

F54A3.4	   0,46	   1,7E-‐02	  

	  

ZK897.1	   0,61	   1,7E-‐03	  

F42G9.7	   0,47	   2,5E-‐24	  

	  

F58G6.9	   0,61	   1,0E-‐06	  

C24G6.4	   0,47	   6,9E-‐10	  

	  

C25D7.3	   0,61	   8,6E-‐07	  

Y94H6A.4	   0,48	   1,9E-‐03	  

	  

M88.1	   0,61	   2,0E-‐06	  

R01H10.5	   0,48	   3,8E-‐04	  

	  

ZC204.14	   0,62	   2,6E-‐04	  

ZK596.1	   0,48	   2,0E-‐14	  

	  

F35C5.9	   0,62	   7,3E-‐03	  

F23C8.7	   0,48	   1,4E-‐04	  

	  

F36F2.2	   0,62	   2,7E-‐04	  

T28F4.4	   0,48	   5,0E-‐09	  

	  

T10D4.6	   0,62	   2,3E-‐02	  

F22F4.5	   0,50	   1,6E-‐03	  

	  

T04D3.5	   0,62	   2,0E-‐05	  

T15B7.1	   0,50	   1,2E-‐22	  

	  

Y57G11C.8	   0,62	   1,3E-‐03	  

F11A6.2	   0,50	   5,9E-‐05	  

	  

F52E4.4	   0,62	   1,1E-‐02	  

B0222.4	   0,51	   4,5E-‐06	  

	  

F22D6.9	   0,63	   2,9E-‐02	  

F14H12.3	   0,51	   3,2E-‐03	  

	  

T02G5.4	   0,63	   8,4E-‐08	  

C39F7.5	   0,52	   1,9E-‐08	  

	  

C48B6.9	   0,64	   1,3E-‐04	  

B0218.3	   0,52	   2,4E-‐05	  

	  

C45G9.6	   0,64	   2,0E-‐02	  

C38D4.10	   0,52	   1,4E-‐04	  

	  

W09C3.1	   0,64	   4,3E-‐03	  

ZK507.4	   0,53	   2,5E-‐03	  

	  

C26H9A.2	   0,64	   2,3E-‐02	  
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C25G4.6	   0,53	   3,6E-‐02	  

	  

R01B10.6	   0,64	   3,8E-‐09	  

W05F2.8	   0,53	   1,7E-‐02	  

	  

C54D1.4	   0,65	   1,4E-‐06	  

F15B9.1	   0,53	   1,2E-‐02	  

	  

F45G2.2	   0,66	   1,1E-‐02	  

F13H8.8	   0,53	   2,2E-‐02	  

	  

B0336.4	   0,66	   2,4E-‐05	  

Y75B8A.28	   0,53	   1,6E-‐05	  

	  

Y38C1AA.4	   0,66	   1,7E-‐05	  

F55G1.15	   0,54	   3,0E-‐02	  

	  

C44E4.8	   0,66	   1,2E-‐02	  

Y39B6A.17	   0,54	   6,5E-‐10	  

	  

F55G1.2	   0,66	   1,0E-‐03	  

F33A8.6	   0,54	   5,0E-‐03	  

	  

ZK563.7	   0,67	   4,8E-‐02	  

Y54F10BM.3	   0,54	   4,7E-‐03	  

	  

H04D03.6	   0,67	   1,0E-‐02	  

H36L18.2	   0,54	   2,6E-‐06	  

	  

Y39B6A.27	   0,67	   4,2E-‐02	  

M04F3.3	   0,54	   1,4E-‐09	  

	  

Y106G6D.5	   0,67	   7,5E-‐07	  

R01H10.4	   0,55	   9,4E-‐05	  

	  

C37A2.5	   0,67	   2,2E-‐07	  

T05G5.1	   0,55	   1,8E-‐04	  

	  

Y38C1AA.12	   0,68	   2,1E-‐05	  

Y24D9B.1	   0,55	   2,2E-‐04	  

	  

Y46H3B.1	   0,68	   4,5E-‐02	  

Y53G8AL.1	   0,55	   2,2E-‐02	  

	  

T25B9.8	   0,68	   7,5E-‐05	  

F23F1.3	   0,56	   4,9E-‐03	  

	  

C36F7.2	   0,68	   4,1E-‐07	  

F35B12.7	   0,56	   1,8E-‐04	  

	  

T23D8.5	   0,69	   1,8E-‐02	  

Y50D4A.6	   0,56	   1,7E-‐02	  

	  

C53B7.1	   0,69	   2,0E-‐03	  

Y75B8A.35	   0,56	   4,9E-‐10	  

	  

T08B2.11	   0,69	   1,5E-‐03	  

F28F8.10	   0,56	   5,3E-‐03	  

	  

K10G9.3	   0,69	   5,6E-‐03	  

C17F4.6	   0,57	   1,7E-‐02	  

	  

C29E4.15	   0,69	   1,4E-‐02	  

C28A5.6	   0,57	   8,0E-‐03	  

	  

C05C8.7	   0,70	   2,7E-‐02	  

F30F8.2	   0,57	   3,0E-‐04	  

	  

M02F4.7	   0,70	   4,3E-‐02	  

F28F8.2	   0,58	   1,6E-‐03	  

	  

R07B7.5	   0,70	   1,1E-‐02	  

D2045.7	   0,58	   2,8E-‐05	  

	  

Y95B8A.6	   0,71	   1,8E-‐02	  

F22H10.2	   0,58	   3,7E-‐06	  

	  

K06B9.4	   0,71	   3,5E-‐03	  

F54D11.3	   0,58	   3,8E-‐09	  

	  

W06A11.4	   0,72	   1,9E-‐02	  

T12F5.4	   0,58	   1,1E-‐14	  

	  

Y22D7AL.9	   0,72	   4,0E-‐03	  

F45B8.2	   0,59	   6,1E-‐04	  

	  

C04F6.5	   0,72	   1,4E-‐02	  

ZK520.3	   0,59	   3,8E-‐03	  

	  

F55D10.1	   0,73	   1,1E-‐02	  
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Y66D12A.20	   0,60	   5,2E-‐05	  

	  

B0212.3	   0,74	   3,9E-‐03	  

F47G6.4	   0,60	   1,2E-‐07	  

	  

ZK792.8	   0,74	   4,3E-‐03	  

ZK897.1	   0,61	   1,7E-‐03	  

	  

F44E7.5	   0,74	   2,3E-‐02	  

F58G6.9	   0,61	   1,0E-‐06	  

	  

Y37E11AR.3	   0,74	   6,0E-‐03	  

C25D7.3	   0,61	   8,6E-‐07	  

	  

T10B10.3	   0,74	   3,6E-‐04	  

M88.1	   0,61	   2,0E-‐06	  

	  

F28F8.7	   0,75	   3,7E-‐02	  

ZC204.14	   0,62	   2,6E-‐04	  

	  

Y105C5B.5	   0,75	   6,1E-‐03	  

F35C5.9	   0,62	   7,3E-‐03	  

	  

F54F7.2	   0,76	   4,2E-‐02	  

F36F2.2	   0,62	   2,7E-‐04	  

	  

K10H10.2	   0,76	   1,2E-‐02	  

T10D4.6	   0,62	   2,3E-‐02	  

	  

M110.3	   0,76	   2,6E-‐03	  

T04D3.5	   0,62	   2,0E-‐05	  

	  

T28F3.3	   0,77	   6,8E-‐03	  

Y57G11C.8	   0,62	   1,3E-‐03	  

	  

Y39B6A.38	   0,78	   2,0E-‐02	  

F52E4.4	   0,62	   1,1E-‐02	  

	  

ZK829.5	   0,78	   2,8E-‐02	  

F22D6.9	   0,63	   2,9E-‐02	  

	  

C18H2.2	   0,78	   9,7E-‐03	  

T02G5.4	   0,63	   8,4E-‐08	  

	  

M01D7.7	   0,78	   7,2E-‐03	  

C48B6.9	   0,64	   1,3E-‐04	  

	  

T02G5.11	   0,79	   2,7E-‐02	  

C45G9.6	   0,64	   2,0E-‐02	  

	  

C37H5.8	   0,79	   1,1E-‐02	  

W09C3.1	   0,64	   4,3E-‐03	  

	  

T01C3.9	   0,79	   1,2E-‐02	  

C26H9A.2	   0,64	   2,3E-‐02	  

	  

K08E4.2	   0,79	   4,8E-‐02	  

R01B10.6	   0,64	   3,8E-‐09	  

	  

F58H1.3	   0,80	   3,2E-‐02	  

C54D1.4	   0,65	   1,4E-‐06	  

	  

M01E11.7	   0,80	   2,7E-‐02	  

F45G2.2	   0,66	   1,1E-‐02	  

	  

F54E2.1	   0,80	   4,7E-‐02	  

B0336.4	   0,66	   2,4E-‐05	  

	  

F54C8.4	   0,81	   1,7E-‐02	  

Y38C1AA.4	   0,66	   1,7E-‐05	  

	  

C25A8.4	   0,81	   1,4E-‐02	  

C44E4.8	   0,66	   1,2E-‐02	  

	  

T10C6.8	   0,81	   3,8E-‐02	  

F55G1.2	   0,66	   1,0E-‐03	  

	  

C25H3.6	   0,82	   3,2E-‐02	  

	   	   	   	  

B0414.3	   0,82	   4,1E-‐02	  

 

Table 6 Genes  up-regulated in daf-12(rh61rh411) 

	  Gene-‐ID	   Fold	  Change	   padj	  

	  

	  Gene-‐ID	   Fold	  Change	   padj	  
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D1005.1	   1,22	   4,2E-‐02	  

	  

Y53F4B.33	   1,64	   5,9E-‐05	  

T08H10.1	   1,22	   4,1E-‐02	  

	  

Y54G2A.29	   1,65	   4,0E-‐04	  

Y39G8B.1	   1,23	   4,8E-‐02	  

	  

Y34F4.2	   1,65	   5,2E-‐03	  

R57.1	   1,23	   4,9E-‐02	  

	  

F22E10.1	   1,65	   1,9E-‐05	  

Y76A2B.3	   1,24	   2,9E-‐02	  

	  

T05E7.1	   1,66	   9,5E-‐03	  

Y71H2AM.13	   1,24	   2,9E-‐02	  

	  

W07G9.2	   1,66	   5,9E-‐06	  

Y43F8C.13	   1,25	   4,6E-‐02	  

	  

F25H8.5	   1,66	   3,9E-‐03	  

T23F2.5	   1,25	   2,3E-‐02	  

	  

K04H4.6	   1,66	   7,9E-‐05	  

K07E3.3	   1,25	   3,4E-‐02	  

	  

C44F1.1	   1,66	   1,1E-‐03	  

D1009.1	   1,25	   1,8E-‐02	  

	  

T15B7.3	   1,66	   2,2E-‐06	  

W02A11.3	   1,25	   3,0E-‐02	  

	  

F57B1.4	   1,67	   1,2E-‐02	  

M6.1	   1,26	   4,2E-‐02	  

	  

R09B5.4	   1,67	   8,2E-‐03	  

K09F5.3	   1,26	   9,2E-‐03	  

	  

C06G4.5	   1,67	   3,8E-‐02	  

T08A9.9	   1,26	   7,7E-‐03	  

	  

Y45F10A.4	   1,67	   1,1E-‐07	  

F11A3.1	   1,26	   3,8E-‐02	  

	  

C08E8.10	   1,68	   3,1E-‐02	  

F52E4.1	   1,26	   8,0E-‐03	  

	  

F43C1.5	   1,68	   2,5E-‐02	  

K07E3.8	   1,26	   2,1E-‐02	  

	  

C25E10.10	   1,68	   4,5E-‐05	  

C26B9.5	   1,27	   2,4E-‐02	  

	  

F37H8.3	   1,69	   3,8E-‐03	  

F59A3.1	   1,27	   3,0E-‐02	  

	  

F31C3.4	   1,69	   1,9E-‐14	  

C15C7.5	   1,27	   3,4E-‐02	  

	  

M153.2	   1,70	   5,8E-‐03	  

F59F4.4	   1,27	   8,6E-‐03	  

	  

T02B5.3	   1,72	   6,7E-‐04	  

T07C12.7	   1,27	   9,0E-‐03	  

	  

ZC84.3	   1,72	   2,6E-‐06	  

Y55B1AR.1	   1,28	   2,8E-‐03	  

	  

R11G11.2	   1,72	   3,1E-‐02	  

T13H2.5	   1,28	   7,8E-‐03	  

	  

F48C1.1	   1,73	   4,5E-‐05	  

H06O01.3	   1,28	   1,6E-‐02	  

	  

C39E9.7	   1,73	   3,3E-‐03	  

B0286.3	   1,28	   1,3E-‐02	  

	  

Y55F3C.9	   1,74	   2,0E-‐02	  

F18E2.1	   1,28	   8,4E-‐03	  

	  

F38B7.3	   1,74	   5,3E-‐04	  

T03D8.6	   1,29	   4,9E-‐02	  

	  

C32D5.7	   1,74	   2,2E-‐03	  

Y37E3.16	   1,29	   4,3E-‐02	  

	  

Y19D10A.11	   1,74	   9,5E-‐03	  

K12B6.1	   1,29	   1,5E-‐02	  

	  

T28H10.2	   1,75	   8,0E-‐03	  



Small Molecule Modulators of Dauer Formation and Longevity in C. elegans Appendix 
 

 127 

K10C2.1	   1,29	   1,4E-‐02	  

	  

W01F3.2	   1,75	   1,6E-‐09	  

C17G10.5	   1,29	   3,8E-‐03	  

	  

F28D1.9	   1,75	   4,3E-‐02	  

T07C4.5	   1,29	   3,2E-‐02	  

	  

F26G1.2	   1,75	   4,5E-‐04	  

F49E12.2	   1,29	   7,4E-‐03	  

	  

F22E5.1	   1,75	   3,0E-‐05	  

C16B8.3	   1,29	   8,0E-‐03	  

	  

ZK652.8	   1,76	   1,9E-‐02	  

T01E8.3	   1,29	   4,7E-‐02	  

	  

Y56A3A.16	   1,76	   3,7E-‐16	  

Y6G8.3	   1,29	   2,6E-‐02	  

	  

R10H10.5	   1,76	   3,5E-‐03	  

F36F12.8	   1,29	   1,7E-‐02	  

	  

T16G1.7	   1,76	   5,1E-‐03	  

R12E2.5	   1,29	   2,0E-‐02	  

	  

C01B4.9	   1,76	   1,3E-‐08	  

C17G1.2	   1,30	   1,0E-‐02	  

	  

Y19D10A.12	   1,76	   1,2E-‐07	  

T04B2.5	   1,30	   2,3E-‐02	  

	  

K11G12.1	   1,77	   3,0E-‐12	  

W10G6.2	   1,30	   1,9E-‐02	  

	  

T25B9.7	   1,78	   2,6E-‐02	  

B0034.3	   1,30	   9,2E-‐03	  

	  

H17B01.3	   1,78	   1,5E-‐02	  

C49C3.4	   1,31	   6,9E-‐03	  

	  

Y69H2.14	   1,79	   4,5E-‐02	  

F42A10.6	   1,31	   1,9E-‐02	  

	  

F08G5.5	   1,79	   2,7E-‐02	  

R07E4.3	   1,31	   3,3E-‐02	  

	  

K02D7.3	   1,79	   6,6E-‐15	  

F22F4.4	   1,31	   1,1E-‐02	  

	  

R07E3.1	   1,80	   5,7E-‐15	  

F28D1.5	   1,31	   1,2E-‐02	  

	  

C23F12.1	   1,80	   3,9E-‐07	  

F31C3.3	   1,31	   9,3E-‐04	  

	  

T11F9.3	   1,81	   2,8E-‐11	  

T07C4.4	   1,31	   6,8E-‐03	  

	  

K07A1.6	   1,82	   3,1E-‐04	  

Y37E11AM.2	   1,32	   6,2E-‐03	  

	  

F41E6.2	   1,82	   1,5E-‐04	  

C49C3.1	   1,32	   3,3E-‐02	  

	  

F16B4.12	   1,82	   8,3E-‐03	  

K02F3.4	   1,32	   9,8E-‐04	  

	  

Y69A2AR.12	   1,84	   4,8E-‐02	  

K04C1.5	   1,32	   1,9E-‐03	  

	  

R06B9.6	   1,84	   3,8E-‐17	  

K06G5.1	   1,32	   1,1E-‐03	  

	  

F38A1.1	   1,85	   2,8E-‐02	  

H34I24.2	   1,32	   8,7E-‐04	  

	  

F39E9.2	   1,85	   4,8E-‐02	  

T08B1.6	   1,32	   4,2E-‐02	  

	  

F55G11.8	   1,86	   4,2E-‐02	  

F55A8.1	   1,32	   4,0E-‐02	  

	  

F47C10.6	   1,86	   6,1E-‐03	  

W01A11.4	   1,32	   3,9E-‐04	  

	  

Y19D10B.6	   1,87	   7,0E-‐03	  

F56F10.1	   1,32	   1,5E-‐03	  

	  

E02H4.7	   1,87	   1,1E-‐04	  
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F32A5.3	   1,33	   3,7E-‐03	  

	  

F56B3.1	   1,88	   3,4E-‐02	  

JC8.14	   1,33	   1,3E-‐03	  

	  

T06E6.10	   1,88	   7,3E-‐11	  

R10H10.3	   1,33	   1,7E-‐03	  

	  

C46F2.1	   1,88	   1,6E-‐05	  

Y54G2A.6	   1,33	   1,2E-‐02	  

	  

ZC455.6	   1,88	   2,6E-‐06	  

C13B7.6	   1,33	   2,0E-‐03	  

	  

F09B12.3	   1,89	   2,1E-‐11	  

C02D5.4	   1,33	   3,3E-‐03	  

	  

C30G7.4	   1,89	   3,6E-‐03	  

C35C5.10	   1,33	   1,1E-‐02	  

	  

Y110A2AL.9	   1,89	   3,5E-‐02	  

Y82E9BR.16	   1,33	   6,5E-‐04	  

	  

F56A4.12	   1,90	   5,0E-‐03	  

Y48C3A.4	   1,33	   4,1E-‐02	  

	  

C30G12.2	   1,90	   7,7E-‐03	  

F55A4.8	   1,33	   4,2E-‐02	  

	  

C56A3.2	   1,91	   2,0E-‐08	  

F37C4.6	   1,34	   3,4E-‐02	  

	  

F59A1.7	   1,92	   7,7E-‐07	  

T01D3.6	   1,34	   1,6E-‐03	  

	  

C29F3.7	   1,92	   5,0E-‐10	  

Y58A7A.3	   1,34	   4,9E-‐02	  

	  

C05E4.1	   1,93	   2,7E-‐05	  

T02C5.1	   1,34	   5,0E-‐04	  

	  

F33H2.6	   1,93	   2,2E-‐20	  

F17A9.4	   1,34	   1,4E-‐02	  

	  

W05E7.1	   1,94	   8,0E-‐05	  

ZK112.1	   1,34	   6,2E-‐03	  

	  

C52D10.1	   1,94	   1,0E-‐05	  

F20D6.11	   1,35	   1,5E-‐02	  

	  

ZC455.5	   1,95	   1,4E-‐07	  

F36G3.2	   1,35	   4,1E-‐02	  

	  

K10D3.6	   1,95	   4,1E-‐03	  

T07C4.12	   1,35	   1,2E-‐02	  

	  

F46G11.3	   1,95	   3,4E-‐12	  

T26C5.1	   1,35	   4,0E-‐03	  

	  

K07C6.5	   1,96	   1,2E-‐06	  

K08F8.1	   1,35	   1,0E-‐04	  

	  

F35E12.7	   1,97	   1,4E-‐04	  

F01D4.2	   1,35	   1,4E-‐03	  

	  

F56C3.9	   1,97	   8,0E-‐03	  

Y66H1A.5	   1,35	   2,8E-‐02	  

	  

Y56A3A.19	   1,97	   1,2E-‐24	  

Y69F12A.2	   1,35	   3,5E-‐04	  

	  

T12A7.4	   2,01	   1,4E-‐03	  

D1037.3	   1,36	   7,8E-‐05	  

	  

F14F7.1	   2,02	   3,0E-‐02	  

C01B10.6	   1,36	   2,0E-‐04	  

	  

ZK1290.14	   2,02	   6,7E-‐06	  

Y45G12C.16	   1,36	   9,2E-‐04	  

	  

B0454.5	   2,02	   1,7E-‐06	  

Y53F4B.45	   1,36	   2,5E-‐02	  

	  

K10C2.3	   2,03	   1,4E-‐15	  

T27A10.7	   1,36	   5,1E-‐03	  

	  

R06B10.2	   2,05	   1,7E-‐02	  

C06H5.6	   1,36	   1,9E-‐03	  

	  

ZK455.4	   2,05	   1,7E-‐03	  
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F26E4.12	   1,36	   1,4E-‐02	  

	  

ZK337.2	   2,06	   3,1E-‐06	  

T28D6.7	   1,36	   1,5E-‐02	  

	  

F45E1.4	   2,07	   1,3E-‐04	  

K11D12.3	   1,36	   5,1E-‐03	  

	  

Y43D4A.10	   2,07	   4,2E-‐02	  

C51E3.6	   1,37	   4,6E-‐02	  

	  

Y19D10A.4	   2,08	   1,1E-‐07	  

Y48B6A.6	   1,37	   1,5E-‐03	  

	  

ZK337.5	   2,08	   3,0E-‐04	  

D1037.2	   1,37	   6,9E-‐03	  

	  

T01G5.8	   2,09	   1,2E-‐05	  

K08C7.1	   1,37	   3,4E-‐02	  

	  

Y6G8.2	   2,09	   2,9E-‐03	  

R11D1.11	   1,38	   3,3E-‐03	  

	  

C31B8.8	   2,10	   1,6E-‐15	  

Y71H9A.3	   1,38	   1,6E-‐03	  

	  

F31C3.6	   2,11	   8,6E-‐07	  

T06A1.5	   1,38	   1,2E-‐02	  

	  

K09E3.6	   2,11	   2,8E-‐03	  

R09H10.5	   1,38	   3,4E-‐04	  

	  

M01A8.1	   2,12	   5,5E-‐04	  

F43H9.4	   1,38	   4,6E-‐02	  

	  

ZC513.8	   2,12	   1,7E-‐03	  

T20B3.1	   1,38	   3,6E-‐02	  

	  

C01B4.7	   2,13	   4,2E-‐08	  

C28D4.9	   1,38	   7,7E-‐03	  

	  

C50B6.7	   2,15	   3,4E-‐15	  

Y105C5B.28	   1,38	   8,1E-‐03	  

	  

C04H5.2	   2,15	   1,4E-‐08	  

K09E3.5	   1,39	   3,5E-‐02	  

	  

K03H1.5	   2,16	   1,8E-‐11	  

R102.4	   1,39	   3,1E-‐04	  

	  

F52F10.3	   2,17	   2,6E-‐02	  

R12B2.1	   1,39	   3,7E-‐03	  

	  

F31C3.1	   2,17	   1,0E-‐33	  

Y4C6B.6	   1,39	   4,3E-‐02	  

	  

T07A9.7	   2,17	   1,0E-‐02	  

C33A11.1	   1,39	   2,7E-‐02	  

	  

K08C7.2	   2,20	   4,0E-‐07	  

T09A5.2	   1,39	   8,6E-‐03	  

	  

F46H5.8	   2,20	   2,4E-‐09	  

F13H6.3	   1,40	   7,7E-‐04	  

	  

C18H9.5	   2,21	   1,9E-‐03	  

Y54E10A.17	   1,40	   2,4E-‐02	  

	  

F01D5.5	   2,22	   9,5E-‐03	  

E04F6.15	   1,40	   2,1E-‐02	  

	  

H23N18.3	   2,22	   8,9E-‐03	  

M28.10	   1,40	   8,8E-‐05	  

	  

Y52E8A.3	   2,22	   2,0E-‐02	  

ZK6.11	   1,40	   9,7E-‐05	  

	  

F08H9.5	   2,23	   3,3E-‐02	  

T27E4.4	   1,40	   1,3E-‐03	  

	  

T19D2.1	   2,26	   6,4E-‐03	  

Y5F2A.2	   1,40	   2,4E-‐04	  

	  

C40H1.8	   2,26	   1,3E-‐03	  

Y54F10AM.8	   1,41	   2,0E-‐05	  

	  

F01D5.1	   2,29	   1,8E-‐04	  

C28A5.3	   1,41	   1,5E-‐02	  

	  

C17H12.8	   2,31	   6,4E-‐28	  
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F54F11.2	   1,41	   3,6E-‐05	  

	  

D2096.3	   2,32	   2,8E-‐24	  

C07B5.5	   1,41	   6,1E-‐03	  

	  

F34D10.6	   2,33	   8,8E-‐04	  

F08A8.4	   1,41	   8,9E-‐05	  

	  

F25A2.1	   2,35	   2,0E-‐02	  

ZK105.1	   1,41	   3,3E-‐04	  

	  

T04C12.7	   2,37	   4,1E-‐02	  

F23B2.11	   1,42	   3,4E-‐04	  

	  

T21E8.3	   2,37	   1,2E-‐02	  

F55B11.2	   1,42	   5,6E-‐03	  

	  

D1044.7	   2,40	   3,5E-‐03	  

F31C3.5	   1,42	   5,6E-‐03	  

	  

K11D2.2	   2,42	   1,6E-‐09	  

W05H9.1	   1,42	   2,1E-‐02	  

	  

Y38E10A.14	   2,43	   4,1E-‐08	  

AH9.3	   1,42	   2,7E-‐03	  

	  

Y45G12C.2	   2,45	   6,1E-‐10	  

ZC376.2	   1,42	   3,5E-‐03	  

	  

Y69A2AR.5	   2,46	   1,9E-‐03	  

T01C8.5	   1,42	   4,7E-‐04	  

	  

B0331.1	   2,48	   2,1E-‐04	  

Y48A6B.7	   1,42	   6,8E-‐04	  

	  

F09D12.1	   2,54	   4,3E-‐02	  

F55D12.2	   1,43	   8,4E-‐03	  

	  

F15B9.6	   2,55	   3,6E-‐02	  

F13D11.1	   1,43	   3,0E-‐02	  

	  

Y39B6A.47	   2,57	   1,4E-‐11	  

C33E10.4	   1,44	   3,6E-‐02	  

	  

K04F1.9	   2,57	   9,0E-‐07	  

Y105C5A.15	   1,44	   3,3E-‐03	  

	  

R11G11.14	   2,59	   9,0E-‐03	  

R08E3.1	   1,44	   4,5E-‐05	  

	  

T22F7.4	   2,59	   1,1E-‐05	  

Y105C5A.24	   1,44	   1,7E-‐02	  

	  

ZK1251.2	   2,59	   1,0E-‐02	  

F32A5.5	   1,44	   3,2E-‐04	  

	  

C24B9.9	   2,60	   1,7E-‐05	  

ZK121.2	   1,44	   1,3E-‐03	  

	  

Y19D10A.16	   2,60	   1,5E-‐25	  

B0228.7	   1,44	   5,6E-‐05	  

	  

ZK909.6	   2,61	   1,4E-‐19	  

F52H3.1	   1,45	   1,4E-‐03	  

	  

Y41C4A.19	   2,65	   3,0E-‐05	  

VC5.3	   1,45	   3,5E-‐06	  

	  

F49F1.7	   2,67	   9,4E-‐04	  

H32C10.2	   1,45	   3,7E-‐02	  

	  

C06E4.3	   2,72	   2,0E-‐03	  

C12C8.2	   1,45	   1,6E-‐05	  

	  

Y53F4B.32	   2,74	   3,3E-‐02	  

Y34B4A.5	   1,45	   6,3E-‐03	  

	  

Y75B12B.6	   2,80	   1,5E-‐34	  

Y37A1B.17	   1,46	   4,3E-‐03	  

	  

Y17D7A.4	   2,80	   6,8E-‐03	  

C05G6.1	   1,46	   1,5E-‐02	  

	  

C01B4.6	   2,85	   4,2E-‐30	  

C44E12.1	   1,47	   4,2E-‐02	  

	  

T24B8.5	   2,87	   1,9E-‐02	  

C01B7.4	   1,47	   8,8E-‐03	  

	  

C32H11.4	   2,90	   4,3E-‐07	  
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T05C3.6	   1,47	   5,1E-‐03	  

	  

H25K10.1	   2,92	   2,4E-‐06	  

F07D10.1	   1,47	   9,7E-‐03	  

	  

C16D9.6	   2,93	   3,2E-‐17	  

T25B6.2	   1,47	   5,9E-‐06	  

	  

ZK455.5	   2,96	   9,1E-‐06	  

F21D5.3	   1,47	   1,4E-‐04	  

	  

F58F12.4	   2,98	   3,7E-‐06	  

F33H2.2	   1,48	   1,2E-‐07	  

	  

F56A4.2	   3,04	   1,6E-‐34	  

F28B4.3	   1,48	   4,0E-‐08	  

	  

F59A1.8	   3,05	   9,8E-‐16	  

ZK682.2	   1,48	   1,0E-‐04	  

	  

Y19D10A.9	   3,07	   2,8E-‐29	  

B0238.1	   1,48	   1,3E-‐02	  

	  

ZK337.1	   3,09	   3,2E-‐09	  

ZK813.2	   1,48	   9,2E-‐08	  

	  

C54F6.14	   3,13	   1,6E-‐03	  

F46G10.2	   1,49	   2,1E-‐03	  

	  

F56D6.2	   3,23	   5,1E-‐11	  

M60.5	   1,49	   1,3E-‐02	  

	  

T04H1.9	   3,37	   7,4E-‐13	  

F41F3.2	   1,49	   2,6E-‐03	  

	  

F08D12.2	   3,37	   1,3E-‐10	  

F59A1.10	   1,50	   8,1E-‐03	  

	  

F56A4.3	   3,59	   2,0E-‐10	  

ZC239.6	   1,50	   4,4E-‐02	  

	  

R52.9	   3,64	   1,1E-‐04	  

C18B2.5	   1,51	   4,3E-‐08	  

	  

T22B7.7	   3,66	   2,0E-‐13	  

T26C12.6	   1,52	   3,0E-‐04	  

	  

W01B11.5	   3,67	   8,3E-‐15	  

ZC455.4	   1,52	   4,9E-‐02	  

	  

F11A5.12	   3,76	   2,1E-‐03	  

T07D3.4	   1,52	   3,4E-‐02	  

	  

T07A5.1	   3,91	   2,9E-‐05	  

F55F3.2	   1,52	   9,8E-‐04	  

	  

T03D8.7	   4,04	   1,1E-‐07	  

B0213.4	   1,52	   5,1E-‐03	  

	  

Y46G5A.13	   4,09	   5,5E-‐81	  

C49F5.2	   1,53	   8,1E-‐04	  

	  

C05C10.4	   4,18	   5,2E-‐70	  

T12B5.15	   1,53	   1,8E-‐02	  

	  

Y38E10A.15	   4,25	   5,2E-‐05	  

Y44A6E.1	   1,53	   1,6E-‐02	  

	  

F55G11.5	   4,31	   1,9E-‐07	  

C35C5.9	   1,53	   3,9E-‐02	  

	  

C33B4.4	   4,37	   1,2E-‐34	  

M04G12.2	   1,54	   2,6E-‐08	  

	  

Y48G8AL.11	   4,38	   1,3E-‐79	  

F42A9.6	   1,54	   5,7E-‐03	  

	  

F35F10.13	   4,40	   3,8E-‐04	  

C41C4.10	   1,54	   1,7E-‐04	  

	  

C06E1.7	   4,41	   2,1E-‐03	  

F33H2.7	   1,54	   6,3E-‐06	  

	  

C24G7.2	   4,42	   8,7E-‐05	  

C29F9.3	   1,54	   2,2E-‐03	  

	  

W09G12.7	   4,51	   6,4E-‐28	  

F31D5.5	   1,54	   1,1E-‐02	  

	  

F37B1.3	   4,51	   1,4E-‐03	  
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B0365.6	   1,55	   8,1E-‐09	  

	  

Y41C4A.16	   4,54	   1,3E-‐25	  

F08A8.2	   1,55	   2,2E-‐03	  

	  

F55G11.4	   4,67	   1,0E-‐06	  

F49E2.2	   1,55	   1,5E-‐07	  

	  

T15B7.5	   4,75	   4,1E-‐07	  

C07H4.1	   1,55	   3,5E-‐02	  

	  

F08E10.7	   4,93	   1,6E-‐03	  

F52H3.5	   1,55	   7,5E-‐04	  

	  

W05E7.3	   5,08	   4,7E-‐10	  

F59E11.11	   1,56	   1,4E-‐02	  

	  

F43E2.6	   5,10	   2,6E-‐18	  

K09A11.2	   1,56	   1,8E-‐02	  

	  

K08H10.6	   5,15	   2,3E-‐04	  

Y37D8A.3	   1,56	   1,8E-‐05	  

	  

F37F2.3	   5,32	   1,2E-‐03	  

Y37D8A.4	   1,56	   2,9E-‐08	  

	  

F57G4.4	   5,52	   5,1E-‐12	  

T16G12.1	   1,57	   1,1E-‐08	  

	  

F56D3.1	   5,87	   4,1E-‐15	  

T28C6.1	   1,57	   3,8E-‐09	  

	  

F21C10.11	   6,05	   5,6E-‐20	  

T08B1.4	   1,57	   5,9E-‐03	  

	  

F08G5.6	   6,28	   1,5E-‐54	  

C35D10.14	   1,57	   9,8E-‐04	  

	  

C54D10.14	   7,14	   1,1E-‐02	  

F35B12.2	   1,57	   1,8E-‐03	  

	  

F28G4.5	   7,43	   5,0E-‐02	  

Y22F5A.1	   1,58	   3,2E-‐02	  

	  

T20D4.7	   9,09	   3,8E-‐04	  

F57B9.1	   1,59	   6,7E-‐07	  

	  

C45B2.3	   9,56	   2,3E-‐03	  

F49E11.10	   1,59	   5,7E-‐03	  

	  

ZC373.7	   10,32	   5,7E-‐11	  

F14B8.6	   1,59	   4,5E-‐05	  

	  

K09C8.4	   10,33	   2,0E-‐19	  

ZK6.10	   1,60	   5,3E-‐11	  

	  

F57G4.8	   10,79	   4,0E-‐56	  

M01F1.5	   1,60	   3,5E-‐07	  

	  

F56A4.9	   12,93	   9,8E-‐15	  

C05D12.3	   1,61	   2,3E-‐03	  

	  

M05B5.1	   13,08	   1,6E-‐15	  

R04E5.10	   1,61	   3,8E-‐04	  

	  

F59A1.9	   13,85	   8,7E-‐70	  

C09G5.5	   1,61	   1,3E-‐02	  

	  

F58D7.1	   14,78	   2,4E-‐04	  

ZK112.7	   1,61	   4,0E-‐05	  

	  

Y19D10A.7	   14,86	   5,0E-‐06	  

F33H2.3	   1,61	   5,1E-‐11	  

	  

F44C4.2	   16,17	   1,8E-‐05	  

T19H12.10	   1,61	   3,5E-‐03	  

	  

C33G8.2	   21,35	   3,0E-‐93	  

C29F7.2	   1,62	   3,4E-‐07	  

	  

Y5H2A.4	   22,81	   7,0E-‐08	  

C10C5.4	   1,62	   5,4E-‐08	  

	  

Y38C1AB.6	   35,43	   1,8E-‐56	  

T06C12.6	   1,62	   1,4E-‐02	  

	  

Y38C1AB.2	   41,27	   4,6E-‐57	  

F38B7.2	   1,62	   2,3E-‐02	  

	  

F15E11.10	   42,41	   9,1E-‐10	  
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T20D4.6	   1,63	   9,7E-‐03	  

	  

C54F6.4	   44,76	   1,3E-‐10	  

C53D5.1	   1,63	   1,5E-‐08	  

	  

Y5H2A.3	   67,67	   8,6E-‐09	  

F35E12.5	   1,63	   1,1E-‐03	  

	  

F57H12.6	   89,14	   2,5E-‐24	  

M02D8.5	   1,64	   1,8E-‐02	  

	  

C33G8.3	   97,09	   1,1E-‐126	  

 



   Statement 
 

 134 

Erklärung: 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die 

benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder 

dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; 

dass sie abgesehen von unten angegebenen Teilpublikationen–noch nicht veröffentlicht 

worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des 

Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung 

sind mir bekannt. 

Die von mir vorgelegte Dissertation ist von Prof. Dr. Adam Antebi betreut worden. 

 

 

 

Ben Becker 

Köln,  März 2014



   Curriculum vitae 

 

 135 

CURRICULUM VITAE 

Ben Becker  

            Adresse  Zülpicher Wall 14 

           Wohnort  Köln 

  Email  benbecker81@yahoo.de 

 

   Geburtsdatum  04.03.1981 

        Geburtsort   Bonn 

   Familienstand  ledig 

       Nationalität  deutsch 

 

AUSBILDUNG           

        April 2014  Promotion im Fach Genetik 

Titel der Promotionsarbeit 

„Small molecule modulators of dauer formation 

and longevity in Caenorhabiditis elegans“ 

 

Sep. 2009 – April 2014   Doktorand am Max Plack Institut für Altersforschung  

in Köln im Bereich molekulare Genetik  

in der Arbeitsgruppe von Prof. Adam Antebi 

   

Okt. 2001 – Jan. 2009   Studium der Biologie an der  

   Rheinischen Friedrich-Wilhelms-Universität  

in Bonn mit dem Abschluss:  

Diplom-Biologe 

 

 Jan. 2008 – Nov. 2008 Carnegie Institution of Washington  

Anfertigung der Diplomarbeit in der Abteilung  

von Prof. Wolf Frommer (Plant Biology)  

an der Stanford University 

 

    Juli 1991 – Juli 2000 Gymnasium Alleestraße in Siegburg  

mit dem Abschluss:  

Allgemeine Hochschulreife 


