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Summary  

Nuclear envelope (NE) proteins have fundamental roles in maintaining nuclear 

structure, cell signaling, chromatin organization and gene regulation, and mutations 

in genes encoding NE components were identified as primary cause of a number of 

age associated diseases and cancer. Nesprin-1 belongs to a family of multi-isomeric 

NE proteins that are characterized by spectrin repeats. Our results imply interactions 

between spectrin repeats and an interaction of Nesprin-1 with Nesprin-2. 

Furthermore, we analysed NE components in various tumor cell lines and found that 

Nesprin-1 levels were strongly reduced associated with alterations in further NE 

components. By reducing the amounts of Nesprin-1 by RNAi mediated knock down 

we could reproduce those alterations in mouse and human cell lines pointing towards 

a key role for Nesprin-1 in the maintenance of nucleus morphology, centrosome 

positioning, nuclear membrane structure, cytoskeleton organization, and cellular 

senescence. In a search for novel Nesprin-1 binding proteins we identified MSH2, 

MSH6, and DDB1 proteins of the DNA damage response pathway as interactors. We 

found alterations in the mismatch repair pathway in cells with lower Nesprin-1 levels. 

We also noticed an increased number of γH2AX foci in the absence of exogenous 

DNA damage as was seen in tumor cells. The levels of phosphorylated kinases Chk1 

and 2 were altered in a manner resembling tumor cells and the levels of Ku70 were 

low and the protein was not recruited to the DNA after HU treatment. Our findings 

indicate a role for Nesprin-1 in the DNA damage response pathway and propose 

Nesprin-1 as novel regulator of tumorigenesis and genome instability. Loss of 

Nesprin-1 might play a significant role in cancer progression. 
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Zusammenfassung 

Kernhüllenproteine haben eine wesentliche Rolle bei der Aufrechterhaltung der 

Kernstruktur, Chromatinorganisation, Genregulation und bei 

Signaltransduktionsprozessen, und Mutationen in Genen, die für 

Kernhüllenkomponenten kodieren, wurden als primäre Ursache für eine Reihe von 

Erkrankungen und Krebs identifiziert. Nesprin-1 gehört zu einer Familie von multi-

isomeren Proteinen der Kernhülle, die von Spectrin Wiederholungen gekennzeichnet 

sind. Unsere Ergebnisse zeigen, dass Nesprin-1 mit Nesprin-2 über 

Wechselwirkungen ihrer Spectrin Repeats miteinander interagieren. Weiterhin haben 

wir die Kernhüllenkomponenten in verschiedenen Tumor-Zelllinien analysiert und 

dabei festgestellt, dass die Nesprin-1-Spiegel stark reduziert und mit Veränderungen 

in weiteren Kernhüllenproteinen und anderen Kern-assoziierten Prozessen 

verbunden waren. Durch die Reduzierung der Mengen an Nesprin-1 durch einen 

RNAi-vermittelten Knockdown konnten wir diese Veränderungen in murinen und 

humanen Zelllinien reproduzieren. Diese Ergebnisse verweisen auf eine 

Schlüsselrolle für Nesprin-1 bei der Aufrechterhaltung der Kernmorphologie, 

Zentrosomenpositionierung, Struktur der Kernmembran, Organisation des 

Cytoskeletts und der zellulären Seneszenz. Bei der Suche nach neuen Nesprin-1-

bindenden Proteinen identifizierten wir MSH2, MSH6 und DDB1 als 

Interaktionspartner, die Proteine von DNA-Reparaturwegen sind. In 

Übereinstimmung damit haben wir Veränderungen im Mismatch-Reparaturweg in 

Zellen mit niedrigen Nesprin-1-Spiegeln beobachtet. Wir haben auch eine erhöhte 

Anzahl von γH2AX Foci in Abwesenheit von exogenen DNA-Schäden festgestellt, 

wie es in Tumorzellen gesehen wird. Die Mengen der phosphorylierten Kinasen Chk1 

und 2, die an Kontrollpunkten im Zellzyklus auftreten, waren in einer ähnlichen Weise 
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in Tumorzellen verändert und die Mengen an Ku70 waren niedrig und das Protein 

wurde nicht an die DNA nach HU Behandlung rekrutiert. Unsere Ergebnisse zeigen 

eine Rolle für Nesprin-1 im DNA-Reparaturweg und schlagen Nesprin-1 als 

neuartigen Regulator für Tumorentstehung und Genominstabilität vor. Der Verlust 

von Nesprin-1 könnte eine wichtige Rolle in der Tumorprogression spielen. 
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1. Introduction 

1.1 Nuclear envelope and LINC complex 

The genome is contained within the nucleus in eukaryotic cells and is separated from 

the cytoplasm by a selective barrier, the nuclear envelope (NE). The proteins of the 

NE regulate the nucleo-cytoplasmic traffic and connect the nucleoplasm to the 

cytoplasm (Maraldi et al., 2010; Shimi et al., 2012). The NE consists of an outer 

(ONM) and inner nuclear membrane (INM) which enclose the perinuclear space 

(PNS). The ONM is contiguous with the endoplasmic reticulum, the INM contacts the 

nuclear lamina and chromatin (Figure 1). 

 

 
Figure 1: The structure of the nuclear envelope (NE). The NE is a barrier 
separating the nucleus from the cytoplasm and consists of ONM and INM, nuclear 
pore complexes (NPC), proteins of the INM, ONM, lamins and other proteins. ABD: 
Actin-binding domain; PBD: Plectin-binding domain. This model was taken from the 
lab website of Dr. Didier Hodzic. The question mark points out unknown functions of 
these connections. 
 

Nuclear pore complexes (NPC) are inserted into the NE and connect the nucleus with 

the cytoplasm. The protein composition of the NE is complex as more than 100 
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proteins have been described and differs between the ONM and INM (Schirmer et al., 

2003). The NE proteins are involved in a variety of cellular processes including 

genome organization, gene expression and stability (Therizols et al., 2006; Chow et 

al., 2012). 

An important component of the NE is the LINC (linker of nucleoskeleton and 

cytoskeleton) complex which connects the nucleus with the cytoskeleton. The LINC 

complex is present in a wide variety of organisms including amoebae, yeast, worms, 

flies, vertebrates, and plants (Schneider et al., 2008; Schulz et al., 2009; Graumann 

and Evans, 2010; Starr and Fridolfsson, 2010). The central components of 

mammalian LINC complexes are SUN (Sad1p, UNC-84) domain proteins and KASH-

domain containing proteins, the Nesprins (Nuclear envelope spectrin repeats), which 

connect to Emerin, Lamins and chromatin at the nucleoplasmic side and to F-actin, 

microtubules, intermediate filaments and plectin at the cytoplasmic side (Figure 1) 

(Padmakumar et al., 2005; Crisp et al., 2006). 

 

1.1.1 INM components of LINC complexes, and their functions 

Among the first INM components recognized were members of the LEM domain 

family of proteins, which are named for the founding members, LAP2, Emerin and 

MAN1 (Figure 2) (Hetzer et al., 2005). The LEM domain is composed of a motif of 

approximately 40 amino acids that mediates binding to BAF (barrier-to-

autointegration factor) which is an abundant chromatin-associated protein (Lin et al., 

2000; Laguri et al., 2001; Shumaker et al., 2001). LAP2 (lamina associated 

polypeptides 2), one of the LEM domain proteins, has several isoforms in mammals 

(Berger et al., 1996). Specifically, LAP2β is the most ubiquitous LAP2 isoform and 

interacts with chromatin and Lamin B via a specific region at its C-terminus. 
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Emerin is a 254 amino acid protein and has an N-terminal LEM-domain. It was the 

first NE protein which was linked to a human disease, Emery-Dreifuss muscular 

dystrophy (Bione et al., 1994) and is involved in several protein–protein interactions 

(Cartegni et al., 1997; Squarzoni et al., 1998; Liu et al., 2003). Emerin plays key roles 

in signal transduction, chromatin organization and gene expression. Additionally, 

Emerin links centrosomes to the nuclear envelope via a microtubule association 

(Holaska et al., 2004; Markiewicz et al., 2006; Salpingidou et al., 2007). 

 

 

Figure 2: Illustration of LEM interactions. Emerin is anchored at the INM and 
interacts with lamin A, GCL (germ-cell-less), BAF, actin and a Nesprin-1α dimer. The 
seven SR domains in Nesprin-1α are numbered 1–7, beginning at the N-terminus. 
The image is not drawn to scale (Bengtsson and Wilson, 2004). 
 

LEM domain proteins have also been linked to nuclear shape (Lammerding et al., 

2005) and transcriptional regulation (Nili et al., 2001) as well as signaling cascades 

(Pan et al., 2005; Markiewicz et al., 2006). 
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The nuclear lamina underneath the INM is a network of type V intermediate filaments, 

and subdivided to A- and B-type lamins (Gerace et al., 1978; McKeon et al., 1986). 

All A-type Lamins, A, AΔ10, C, and C2 are encoded by the LMNA gene (Worman and 

Bonne, 2007). By contrast, B-type Lamins 1 and 2 are encoded by LMNB1 and 

LMNB2, respectively (Worman and Bonne, 2007). B-type LaminB3 is a splice variant 

of the LMNB2 gene (Furukawa and Hotta, 1993). Several studies suggested that 

Lamins participate in functions ranging from nuclear shape and stability to replication, 

transcription and splicing (Moir et al., 2000; Schirmer et al., 2001; Kumaran et al., 

2002; Lammerding et al., 2004). 

SUN proteins are prototypical type-II transmembrane proteins of the INM 

components of the LINC complex with their N-terminus facing the nucleoplasm, and a 

C-terminal conserved SUN domain localizing in the perinuclear space (PNS) between 

the INM and ONM. At the nuclear side they interact with Lamins (Padmakumar et al., 

2005; Crisp et al., 2006; Haque et al., 2006). To date, five SUN proteins have been 

identified; SUN1 (UNC-84A), SUN2 (UNC-84B), SUN3, SUN4 (SPAG4), and SUN5 

(SPAG4L). Remarkably, SUN proteins play important roles in genome stability and 

nucleus centrosome coupling (Zhang et al., 2009; Lei et al., 2012). 

 

1.1.2 Nesprins, ONM components of LINC complexes and their functions 

Nesprins are type II transmembrane proteins, which connect the nucleus with the 

cytoskeleton. Nesprins localize to both nuclear membranes and have evolutionarily 

conserved orthologs in lower organisms including Schizosaccharomyces pombe 

(Kms1), Dictyostelium discoideum (interaptin), Caenorhabditis elegans (ANC-1, ZYG-

12 and UNC-83), and Drosophila melanogaster (Msp-300). To date, four Nesprins 

have been described (Nesprin-1, Nesprin-2, Nesprin-3, Nesprin-4). They are 
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encoded by separate genes (SYNE1, SYNE2, SYNE3, SYNE4) that give rise to 

multiple isoforms (Figure 3.1). Nesprins have a varying number of SR domains, each 

of which consists of approximately 106 residues that form a triple-helical bundle. SR 

domains facilitate protein-protein interactions, crosslink actin and microtubules, and 

function as molecular scaffolds or stabilizers (Rajgor et al., 2012). 

The giant isoforms of Nesprin-1 (1 MDa) and Nesprin-2 (800 kDa) are greatly 

homologous to one another and share an N-terminal actin-binding domain (ABD) 

made from two calponin homology domains thereby linking the NE to the actin 

cytoskeleton (Zhen et al., 2002; Padmakumar et al., 2004). On the other hand, 

Nesprin-1 and Nesprin-2 can bind to microtubule motor proteins, kinesin and dynein, 

through specific spectrin repeats (Zhang et al., 2009; Schneider et al., 2011b; Yu et 

al., 2011). Nesprin-3 and Nesprin-4 are much smaller and lack N terminal ABDs. 

Nesprin-3 interacts with plectin which provides a link to the intermediate filament 

system, Nesprin-4 can associate with kinesin-1 which establishes a link to 

microtubules (Wilhelmsen et al., 2005; Roux et al., 2009). In the LINC complex, 

Nesprins bind through their C-terminal luminal amino acids to the C-terminal SUN 

domain of SUN proteins. The structure of this complex has been recently solved and 

the presence of a trimer revealed (Sosa et al., 2012; Wang et al., 2012; Rothballer et 

al., 2013).  
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Figure 3.1: Scheme of Nesprin isoforms. Nesprins share common structural 
features, a N-terminal calponin homology (CH) domain (yellow) and a C-terminal 
KASH domain (red) and a spectrin repeat containing rod (blue). Each Nesprin is 
encoded by a single gene that gives rise to many different isoforms. This Figure was 
taken from (Rajgor et al., 2012) and modified. 
 

On the other hand, Nesprins can form self-interactions via their SRs and the ABD of 

Nesprin-1 and Nesprin-2 was shown to interact with N-terminal spectrin repeats of 
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Nesprin-3 (Mislow et al., 2002a; Lu et al., 2012; Taranum et al., 2012a). Based on 

these binding abilities, Nesprins enable a more orchestrated protein network along 

the nuclear envelope (Figure 3.2). 

 

 

Figure 3.2: Schematic diagram of Nesprin interactions at the outer nuclear 
membrane surface. Nesprins form self-interactions via their SRs. The ABDs of 
Nesprin-1/-2 interact with F-actin, N-terminal Nesprin-1 spectrin repeats interact with 
Nesprin-3 (modified from (Taranum et al., 2012a)). 
 

Due to the establishment of nuclear-cytoskeletal connections, Nesprins play key roles 

in biologically important functions and this is supported by several studies (Table 1). 

Especially, Nesprin-1 and Nesprin-2 contribute to nuclear shape and position of the 

nucleus (Grady et al., 2005; Zhang et al., 2005; Kandert et al., 2007; Luke et al., 

2008; Puckelwartz et al., 2009). A recent report also indicated that Nesprin-3 

regulates cell morphology and cell migration (Morgan et al., 2011; Khatau et al., 

2012). On the other hand, in Nesprin-4 knock out (KO) mice, nuclear position was 

changed in outer hair cells, thereby leading to hear loss (Horn et al., 2013). More 

recently, the effects of Nesprin-1, Nesprin-2, and Nesprin-3 on centrosome 

positioning have been reported (Zhang et al., 2009; Morgan et al., 2011).  
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Table 1: Interactions of Nesprins with cellular components and functions of 
these connections. Nesprins have key roles in many aspects of cell functions due to 
their nuclear-cytoskeletal connections (modified from (Mellad et al., 2011)). 
 

Connection Nesprin Function 

Actin   F-actin Nesprin-1  Nuclear positioning, 

     Nesprin-2  Mechanotransduction 

   Meckelin Nesprin-2  Ciliogenesis 

IF   Lamin A Nesprin1/2  Chromatin organization, 

        NE architecture 

   Plectin Nesprin-3  NE-IF coupling 

Microtubules  Kinesin-1 Nesprin-2/4  Nuclear migration, polarity 

   Kinesin-2 Nesprin-1  Vesicular transport 

   Dynein Nesprin-1/2  Nuclear migration, polarity 

   Dynactin Nesprin-1/2  Nuclear migration, polarity 

 

1.1.3 Nesprin-1 

The human Nesprin-1 locus (SYNE1) at chromosome position 6q25 has 147 exons 

that encode up to 8,797 residues (Padmakumar et al., 2004). Nesprin-1 is a ~1 MDa 

protein with 74 predicted spectrin repeats (Figure 3.1). There are several isoforms for 

Nesprin-1 with many names including Syne-1 (Apel et al., 2000), Drop1 (Marme et 

al., 2008), GSRP56 (Kobayashi et al., 2006), MSP300 (Rosenberg-Hasson et al., 

1996), Myne-1 (Mislow et al., 2002b), Enaptin (Padmakumar et al., 2004), CPG2 

(Nedivi et al., 1996), ANC-1 (Starr and Han, 2002). One of the small isoforms, 

Nesprin-1α, localizes at the nuclear inner membrane and interacts with Emerin and 

Lamin A (Mislow et al., 2002a). The longest Nesprin-1 isoforms contain the ABD 

motif at their N-terminus, which colocalizes with F-actin in vivo (Starr and Han, 2002; 
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Padmakumar et al., 2004) and a highly conserved KASH domain at their C-terminus 

(Zhang et al., 2002). Nesprin-1-165 harbors the ABD and the first 11 spectrin 

repeats, CPG2 contains spectrin repeats 3 to 11.  

In several cell lines, Nesprin-1 isoforms are localized to the nucleolus, to 

microtubules, stress-fibres, focal adhesions, and RNA processing bodies. It is 

important to note that the localization of individual Nesprin-1 isoforms can vary 

depending on which cell types express them, suggesting that any single Nesprin-1 

isoform may have different functions in different cell lines. Beyond that, Nesprin-1 

isoforms anchor to the Golgi apparatus and to mitochondria and overexpression of 

the Golgi-binding domain of Nesprin-1 causes the Golgi to collapse into a condensed 

structure near the centrosome (Gough et al., 2003). Moreover, Nesprin-1 has been 

reported to localize to the Golgi apparatus and over-expression of dominant-negative 

Nesprin-1 fragments composed of SRs within the central rod domain disrupt Golgi 

organization and function (Gough et al., 2003; Gough and Beck, 2004; Kobayashi et 

al., 2006). The candidate plasticity gene 2 (cpg2), brain-specific Nesprin-1 isoform, 

encompasses solely SRs and localizes to the neuronal postsynaptic endocytic zone 

surrounding dendritic spines where it regulates clathrin-mediated uptake and 

recycling of chemokine receptors (Nedivi et al., 1996; Cottrell et al., 2004). 

Analysis of Nesprin-1 KO mice strongly indicate the importance of Nesprin-1 for 

nuclear morphology, NE organization, actin organization and cell motility (Grady et 

al., 2005; Zhang et al., 2007; Chancellor et al., 2010; Zhang et al., 2010), and in vitro 

studies demonstrated that knock down of Nesprin-1 led to nuclear defects and 

mislocalization of Emerin and SUN2 in U20S and fibroblast cells (Zhang et al., 2007). 
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1.2 The LINC complex in human diseases and its cancer 

connections 

Disruption of the nuclear-cytoskeletal connection has severe consequences: The 

stability, size and shape of the nucleus are altered, its position in the cell is disturbed, 

cell migration is affected, the mechanical properties of the cell and 

mechanotransduction from the extracellular space to the nucleus are impaired as well 

as signaling processes. The importance of the LINC complex is further underlined by 

the large group of diseases in which components of the LINC complex are mutated 

generating a variety of degenerative diseases affecting striated muscle and 

peripheral nerves, skeletal and fat development, and premature aging syndromes 

(Zaremba-Czogalla et al., 2011). 

Disruption of the LINC complex via mutations in the genes encoding Nesprin-1 and 

Nesprin-2 or their binding partners such as Emerin and Lamin A/C gives rise to 

Emery-Dreifuss Muscular Dystrophy (EDMD) (Table 2). Other mutations in LMNA 

cause Hutchinson Gilford progeria syndrome (HGPS) or Charcot-Marie-Tooth (CMT) 

disorder and many other syndromes (Zaremba-Czogalla et al., 2011). Mutations in 

SYNE1 in addition to being responsible for some forms of Emery-Dreifuss muscular 

dystrophy cause cerebellar ataxia and arthrogryposis (Gros-Louis et al., 2007; Zhang 

et al., 2007; Attali et al., 2009). To date, more than 300 mutations in ten genes 

encoding proteins of the NE have been linked with laminopathies (Mejat and Misteli, 

2010). 
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Table 2: Diseases caused by gene mutations in NE proteins. This table 
summarizes mutated genes and the resulting diseases. LMNA (A-type lamins), 
LMNB1 (lamin B1), LMNB2 (lamin B2), EDMD (emerin), SYNE1 (Nesprin-1), SYNE2 
(Nesprin-2), TMEM43 (transmembrane protein 43), TMPO (thymopoietin), 
ZMPSTE24 (zinc metallopeptidase STE24), BANF1 (barrier to autointegration factor 
1), LEMD3 (MAN1), LBR (lamin B receptor) (taken from (Schreiber and Kennedy, 
2013)). 
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During tumor formation several cellular activities are deregulated. This includes cell 

motility, adhesion, proliferation, metabolism and DNA damage response. Many of 

these features depend on the integrity and organization of NE and morphological 

changes of the NE and LINC complex are a hallmark of cancer. Although much of the 

emphasis has been on deciphering the aetiology of these specific and often 

devastating diseases, recent studies also shed new light on how cancer associated 

alterations of LINC complex protein expression levels may affect tumorigenesis and 

provide an informative parameter in tumor detection and characterization.  

Several components of the LINC complex, Lamins (Broers et al., 1993; Moss et al., 

1999), LAP2 (Somech et al., 2007), and Emerin (Capo-chichi et al., 2009) were 

discovered as biomarkers in a wide range of cancer types (Table 3). Interestingly, not 

only was mRNA encoding lamin B1 found in the blood circulation (Sun et al., 2010), 

and its detection in plasma indicate early stage hepatocellular carcinoma, but lamin 

B1 was also in a proteomic approach found to be upregulated in hepatocellular 

tumors (Lim et al., 2002). On the other hand, the nucleoporin NUP88 has been 

assessed as a cancer biomarker (Martinez et al., 1999) and was found in several 

studies to be overexpressed in malignant tissues (Gould et al., 2002; Agudo et al., 

2004; Knoess et al., 2006; Brustmann and Hager, 2009; Schneider et al., 2010). 

Down regulation of Drop1, an N-terminal isoform of Nesprin-1, has been observed in 

early tumor stages in a wide range of human carcinomas and may play a role in 

chromatin organization (Raffaele Di Barletta et al., 2000; Dou et al., 2005; Marme et 

al., 2008). Furthermore, mutations in SYNE1 were observed in ovarian and colorectal 

cancers (Sjoblom et al., 2006; Doherty et al., 2010). Additionally, the SYNE1 gene 

was frequently methylated in lung cancer cell lines, lung adenocarcinoma (Tessema 

et al., 2008) and colorectal cancer (Schuebel et al., 2007). By bioinformatic analysis 

of data from a collection of cancer genome samples Mascia and Karchin identified 
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SYNE1 as one of the genes that participated in glioblastoma progression (Masica 

and Karchin, 2011). They observed that mutations in SYNE1 were associated with a 

large number of differentially expressed genes. 

 

Table 3: Nuclear envelope components and tumorigenesis. The table 
summarizes cancer-associated alterations in the nuclear envelope components 
(modified from (Chow et al., 2012)). 
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1.3 DNA repair pathways and mechanisms 

Biologically, nuclear DNA is the most important component in the cell since it has all 

the genetic information required for proper cell functions. It is well known that 

mutagenic compounds, ionizing radiation, oxidative stress, and also normal DNA 

metabolic activities like replication and recombination can cause alterations in the 

DNA. It is therefore not surprising that any damage that leads to a break in the DNA 

double helix triggers a quick cellular reaction.  

To maintain genetic stability and relay genetic information from one cell to another, 

mechanisms are required to protect the DNA against the accumulation of DNA 

damage. These mechanisms have been defined as DNA repair pathways. The major 

DNA repair pathways are non-homologous end-joining (NHEJ), nucleotide excision 

repair (NER), mismatch repair (MMR), homologous recombination (HR), and base 

excision repair (BER) (Figure 4). 

 

 

Figure 4: DNA repair pathways. Non-homologous end-joining (NHEJ), nucleotide 
excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and 
base excision repair (BER) are the major DNA repair pathways (Melis et al., 2011). 
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More importantly, defects in DNA repair pathways lead to genome instability, 

tumorigenesis, and aging owing to accumulative DNA damage (de Boer and 

Hoeijmakers, 2000). 

 

1.3.1 Non-homologous end-joining (NHEJ) pathway 

One of the most dangerous forms of DNA damage is the DNA double-strand breaks 

(DSBs), which can result in genome instability if not repaired successfully (Hartlerode 

and Scully, 2009). DSBs initiate signalling cascades that trigger cell cycle 

checkpoints and change gene transcription to maintain genome stability (Valerie and 

Povirk, 2003; Cann and Hicks, 2007). 

There are two main signalling networks in eukaryotic cells to repair DSBs: 

homologous recombination (HR) and nonhomologous end-joining (NHEJ) (Figure 5). 

A recent report indicated that HR uses a homologous chromosome or sister 

chromatid as template to repair the broken DNA and NHEJ re-ligates the two broken 

DNA ends together (Cann and Hicks, 2007). Based on this the NHEJ is an error-

prone repair mechanism that might cause insertion and deletion of DNA sequences. 

The DDR pathway is initiated by a phosphorylation cascade that triggers chromatin 

modifications which improve accessibility of the broken DNA to repair complexes and 

promotes the subsequent accumulation of DDR complexes into lesions at the site of 

damage (Riches et al., 2008). Ataxia telangiectasia mutated (ATM)-mediated 

phosphorylation of the histone variant H2AX is the initial step to create a platform to 

which other DDR complexes are able to bind (Marti et al., 2006). ATM triggers 

signaling cascades that activate cell cycle checkpoints leading to cell cycle arrest 

through phosphorylation of several proteins including CHK1, CHK2, p53, MDC1, and 

BRCA1 (Lavin and Kozlov, 2007). 
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Figure 5: Overview of DNA DSBs repair pathways. DSBs in the DNA are induced 
by damaging agents. Phosphorylation of histone H2AX (γH2AX) is the initial step of 
these pathways. In the NHEJ pathway, the two broken ends are bound by the DNA-
end-binding protein Ku, which recruits the DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) to the free DNA ends. Homologous recombination requires 
BRCA1, RAD51 (which forms filaments along the unwound DNA strand to facilitate 
strand invasions) and RAD52 (a DNA-end-binding protein) (modified from 
(Chowdhury et al., 2013)). 
 

Ku is the DNA-binding component of the NHEJ repair machinery. Ku recruits DNA-

PKcs to form the active protein kinase complex DNA-PK upon recognition and 

binding to the broken DNA end (Mahaney et al., 2009). Following this process, Ku 

appears to protect broken DNA from nuclease binding or activity (Downs and 

Jackson, 2004). In addition, Ku has also been shown to bind to telomeres and to 
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function in telomere maintenance, remarkably by anchoring telomeres to the nuclear 

periphery, thus contributing to telomeric silencing and preventing telomere shortening 

(Riha et al., 2006).  

Sharpless et al. carried out a study which indicated that NHEJ-deficiency predisposes 

to cancer (Sharpless et al., 2001). Moreover, mice lacking p53, DNA-PKcs or Ku80 

succumb in early postnatal life to progenitor B cell lymphomas (Guidos et al., 1996; 

Nacht et al., 1996; Difilippantonio et al., 2000; Lim et al., 2000).  

 

1.3.2 Nucleotide excision repair 

The nucleotide excision repair (NER) pathway is characterized by the removal of 

bulky DNA helix-distorting injuries of both exogenous and endogenous origin. These 

helix-distorting DNA lesions recruit the proteins of this pathway to the damaged DNA 

sites (Figure 6). 

GG-NER (global genomic repair) and TC-NER (transcription-coupled repair) are two 

subpathways of NER (Bohr et al., 1985; Mellon et al., 1987). GG-NER is independent 

of transcription and is constantly screening the genome for the identification of 

distorting lesions in the DNA helix, whereas TC-NER is recruited to the transcribed 

DNA strand of active genes to repair transcription blocking lesions (Yasuda et al., 

2007). About 30 proteins participate in the NER pathway, most function in GG-NER 

as well as in TC-NER (Christmann et al., 2003). However, they have different types 

of damage recognition and therefore contain different proteins that recognize the 

damage.  
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Figure 6: NER repairs UV-induced pyrimidine dimers, protein-DNA and intra-
strand crosslinks, and a wide range of bulky chemical adducts. Global GG-NER 
and TC-NER differ in their damage recognition. In GG-NER, damage recognition is 
accomplished by the XPC-HR23B protein complex whereas CSA and CSB proteins 
are responsible for the initial detection of damaged DNA in TC-NER (Melis et al., 
2011). 
 

GG-NER uses the XPC-HR23B protein complex as the primary recognition factor 

(Volker et al., 2001; Hanawalt, 2002). Recently, it has been reported that, for certain 

types of lesions, different proteins are responsible for the initial recognition. 

Additionally, DDB2 (or XPE) bound to DDB1 can recognise CPD lesions. The XPE-

DDB1 complex recruits the XPC-HR23B complex to the lesion, where it gets 

exchanged by the XPC-HR23B complex and repair takes place (Kulaksiz et al., 

2005). In TC-NER, DNA damage is recognized by CSA and CSB proteins. After 

recognition, these proteins bind to the DNA lesion thereby distorting the DNA and 
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recruiting other factors of this repair system to reproduce the correct DNA sequence 

(Gillet and Scharer, 2006; Trego and Turchi, 2006).  

Although somatic alterations in some of the NER factors lead to skin cancer, defects 

in the NER pathway associate with genetic disorders such as the Xeroderma 

pigmentosum (XP) syndrome (Yasuda et al., 2007). 

 

1.3.3 Mismatch repair network 

The mismatch repair (MMR) is a conserved biological pathway from bacteria to man 

that plays a critical role in maintaining genome stability. Its function is in correcting 

DNA mismatches occurred during DNA replication to prevent mutations in dividing 

cells. MMR is also required for damage-induced cell cycle checkpoint response. 

Deficiency of MMR activity causes replication-associated errors leading to point and 

frameshift mutations and tumorigenesis (Jacob and Praz, 2002). 

The initial step in MMR is identification of the mispaired region (Figure 8). Two 

separate heterodimers known as MutSα (Msh2/Msh6 in eukaryotes) (Iaccarino et al., 

1996), and MutSβ (Msh2/Msh3) participate in this process (Habraken et al., 1996; 

Palombo et al., 1996). MutS is a DNA‐binding protein, contains an ATPase domain 

and a protein‐protein interaction domain that allows two MutS molecules to interact in 

order to form dimers (Lamers et al., 2000; Obmolova et al., 2000). While MutSα binds 

primarily to single-base pair mismatches and small insertion/deletion loops, MutSβ 

binds to larger insertion/deletion loops (Acharya et al., 1996; Marsischky et al., 1996). 

After mismatch recognition, MutL homologs are responsible to repair mismatches. At 

least 4 human MutL homologs, hMLH1, hMLH3, hPMS1, and hPMS2 have been 

identified (Bronner et al., 1994; Nicolaides et al., 1994; Papadopoulos et al., 1994; 

Lipkin et al., 2000). 
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Figure 7: Mismatch repair. MSH2–MSH6 and PMSH2-MLH1 heterodimers bind to 
single base pair mismatches in an ATP-dependent manner. The lesion is digested by 
EXO1, and then filled in by DNA polymerases. Question mark points out the unknown 
homologue of prokaryote MutH in eukaryotes (Martin and Scharff, 2002). 
 

hMLH1 heterodimerizes with hPMS2, hPMS1, or hMLH3 to form hMutLα, hMutLβ, or 

hMutLγ, respectively (Kunkel and Erie, 2005). MutLα heterodimer (Mlh1/Pms1) 

initiates subsequent repair events (Prolla et al., 1994; Pang et al., 1997). hMutLα is 

required for MMR and hMutLγ plays a role in meiosis, but no specific biological role 

has been identified for hMutLβ (Kunkel and Erie, 2005). hMutLα possesses an 

ATPase activity and defects in this activity inactivate MMR in human cells. Defects in 

the MMR pathway have been associated with a number of different malignancies 

(Gazzoli et al., 2002).  



Introduction 

 21 

1.4 Aim of the project 

Goal of this study is to provide a picture of the interactions and roles of Nesprin-1. 

This will allow defining its roles in health and disease more precisely and will provide 

mechanisms underlying these roles. We will specifically try  

1. to understand the role of Nesprin-1 in tumorigenesis and genome stability 

2. to identify possible interaction partners of Nesprin-1 

3. to detect consequences of Nesprin-1 loss 

4. to elucidate the role of Nesprin-1 in DDR and DNA repair pathways. 
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2. Results 

2.1 Nesprin-1 interactions 

2.1.1 Interactions of N-terminal Nesprin-1 spectrin repeats  

Earlier studies have demonstrated that the C-terminal isoform Nesprin-1α can self-

associate through its third and fifth spectrin repeat to form an antiparallel dimer 

(Mislow et al., 2002a; Zhong et al., 2010). Whether other spectrin repeats of Nesprin-

1, in particular the N-terminal spectrin repeats, possess similar oligomerization 

properties is not known. When we compared Nesprin-1’s N-terminal spectrin repeats 

to the spectrin repeats of mouse α-actinin 2, SR1, 2, and 4 showed homology with 

SR2 from α-actinin, and SR10 and 11 resembled SR1 and SR4, respectively. The 

remaining SRs exhibited less homology with the ones of α-actinin. From earlier 

reports it is known that spectrin repeats of the α-actinin type can dimerize as in α-

actinin or in spectrin determining the protein structure (Noegel et al., 1987; Djinovic-

Carugo et al., 2002). 

To understand whether N-terminal sequences of Nesprin-1 can interact with 

themselves, bacterially produced GST-fusion proteins encompassing several spectrin 

repeats of Nesprin-1-165 (aa 573-858, 859-1144 and 1145-1431; Figure 8A) was 

used to pull down the corresponding GFP-tagged proteins from COS7 cells.  

While all fusion proteins pulled down their GFP-tagged counterpart, GST alone did 

not interact with anyone of the GFP fusion proteins (Figure 8B). Furthermore, 

Nesprin-1-165-GFP was transfected in COS7 cells and the GST-fusion proteins used 

in pull down experiments. Interestingly, Nesprin-1-165-GFP was precipitated with 

GST-573-858 and GST-1145-1431, but not with GST-859-1144. The polypeptide 

encompassing aa 859-1144 encodes part of SR6, SR7, 8 and part of 9 which in the 

comparison showed a lower resemblance to the ones of α-actinin. GST alone also 
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did not bind to Nesprin-1-165-GFP (Figure 8C, D). Our results imply that Nesprin-1 

oligomerizes through N-terminal spectrin repeats. 

 

 

Figure 8: N-terminal spectrin repeats of Nesprin-1 can self-associate through 
its amino terminal sequences. (A) Overview of Nesprin-1-165 and constructs used 
as GST and GFP fusion proteins. Numbers indicate the location of amino acids. (B, 
C) GFP-tagged ABD (aa 1–286), and spectrin repeats of Nesprin-1-165 (aa 573–858, 
859–1144, and 1145–1431) and full-length Nesprin-1-165 (C) were expressed in 
COS-7 cells. (B) The cell lysates were incubated with either immobilized GST-fused 
aa 1–286, 573–858, 859–1144, and 1145–1431 or GST alone for control. The 
precipitated proteins resolved in 10% acrylamide gels by SDS-PAGE. The 
membranes were probed with GFP antibody mAb K3-184-2. (C) Interaction of N-
terminal spectrin repeats with GFP Nesprin-1-165. (D) The GST-fusion proteins used 
for the pull down are shown by Coomassie Blue staining (bottom panel). 
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2.1.2 The C-terminus of Nesprin-1 interacts with Nesprin-2 

By immunoprecipitation experiments we next asked whether the possibility of an 

association between Nesprin-1 and Nesprin-2 exists. Human fibroblasts (HF) were 

transfected with plasmids encoding GFP-tagged Nesprin-1 polypeptides that were 

differently composed and possessed or lacked the KASH domain (aa 8034-8749; 

7938-8644) (Figure 9A, B).  

 

 
Figure 9: Nesprin-1 interacts with Nesprin-2. (A) GFP-tagged Nesprin-1 (aa 8034-
8749; 7938-8644) were expressed in HF cells. Numbers indicate the location of 
amino acids and used for immunoprecipitation experiments. Immunoprecipitation was 
carried out with GFP-TRAP beads. Detection of precipitated proteins was with mAb 
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K3-184-2. The blot was further probed with pAbK1 and SpecII antibodies specific for 
Nesprin-2 and Nesprin-1, respectively. (B) Schematic of the Nesprin-1 constructs. (C) 
HF cells were transfected with plasmids allowing GFP-Nesprin-1-8034-8379, and 
GFP-Nesprin-1-7938-8644 expression (green) and stained with Lamin B1 (red), and 
DAPI (blue). Scale bar, 10 μm. 
 

GFP transfected cells served as negative control for Nesprin-1 and Nesprin-2 

interaction. The proteins were immunoprecipitated using GFP-TRAP beads and the 

resulting blot probed with pAbK1 specific for Nesprin-2 and SpecII specific for 

Nesprin-1. 

We found that Nesprin-2 proteins detected by pAbK1 which is directed against C-

terminal Nesprin-2 sequences precipitated with GFP-Nesprin-1-8034-8749, but not 

with GFP-Nesprin-1-7938-8644. The interacting domain is therefore located within 

the C-terminal sequences of Nesprin-1. GFP alone did not bind to Nesprin-2 (Figure 

9A). Furthermore, we studied the subcellular localization of GFP-Nesprin-1-8034-

8749 and GFP-Nesprin-1-7938-8644. GFP-Nesprin-1-8034-8749 localized mostly to 

the NE as revealed by Lamin B1 colocalization. GFP-Nesprin-1-7938-8644, which 

lacks the KASH domain containing the transmembrane region, was also present at 

the NE but was most prominent in the cytoplasm (Figure 9C).  

 

2.1.3 Nesprin-3 is able to recruit vimentin to the nucleus 

Our group had previously reported that N-terminal sequences of Nesprin-1 can 

associate with N-terminal spectrin repeats of Nesprin-3 (Taranum et al., 2012a). 

Nesprin-3 binds to plectin, a huge protein which associates with intermediate 

filaments. 

Earlier reports indicate that Nesprin-1 and -2 through their association with F-actin 

can assemble an F-actin cage around the nucleus (Khatau et al., 2009). In analogy 

we asked whether Nesprin-3 is able to recruit an intermediate filament network to the 
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nucleus. Since Nesprin-3 is not normally expressed in COS7 cells (Wilhelmsen et al., 

2005), HA-Nesprin-3 was expressed in these cells to study vimentin localization. In 

untransfected cells, vimentin staining was not particularly enriched around the 

nucleus. However, vimentin colocalized with Nesprin-3 in HA-Nesprin-3 expressing 

cells (Figure 10) extending recent report findings from zebrafish to mammalian cells 

(Postel et al., 2011).  By contrast, GFP-tagged Nesprin-1 ABD was recruited to the 

nuclear envelope but it did not affect vimentin localization (Figure 10).  

 

 
Figure 10: Nesprin-3 recruits intermediate filaments to the nuclear envelope in 
COS7 cells. COS7 cells stained for vimentin reveal the typical cytoskeletal staining. 
In HA-Nesprin-3 transfected COS7 cells vimentin was recruited to the NE and co-
localized with HA-Nesprin-3. GFP-fused ABD-Nesprin-1 was recruited to the nuclear 
envelope but it did not affect vimentin localization. Confocal images are shown in 
(Taranum et al., 2012a). Size bars, 10 μm. 
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2.2 Nesprin-1 role in tumorigenesis 

2.2.1 Nesprin-1 isoform expression in cancer cell lines 

As mutations in SYNE1 have been identified in different types of human cancers and 

Nesprin-1 transcripts were down regulated at early tumor stages in a wide range of 

human carcinomas ((Marme et al., 2008); www.oncomine.org), we probed several 

human and murine cancer cell lines with Nesprin-1 specific antibodies by 

immunoblotting and immunofluorescence analysis. Monoclonal antibody K43-322-2 

generated against spectrin repeats 9, 10 and 11 (Figure 11A) recognized proteins of 

~600, 400, 300, 250, 150, 55 and 50 kDa in CH310T1/2 cells. The proteins 

correspond in their molecular weights to Nesprin-1 isoforms described in a recent 

detailed analysis (Rajgor et al., 2012). 

The ~600 and 400 kDa proteins were absent from all cancer cell lines and only the 

~150 kDa protein was present with the exception of WIDR, where ~300, 250, 150 

and 60 kDa proteins were detected. In the CT26 and Huh7 cell lysates the signal was 

rather faint, even after prolonged exposure (Figure 11B). Furthermore, a protein of 

high molecular weight which presumably corresponds to Nesprin-1 Giant (Taranum 

et al., 2012a) was detected in C2F3, HaCaT, and HeLa and Hep3B cell lysates. 

Based on the low expression levels of the N terminal Nesprin-1 isoforms in Hep3B 

and Huh7 liver cancer cells compared to colon, cervic, and skin cancer cells, we 

focused our studies on these cell lines. Furthermore, recent data also suggested that 

Nesprin-1 expression levels are significantly reduced in liver cancer samples 

compared with matched normal tissue (www.oncomine.org). 

http://www.oncomine.org/
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Figure 11: Nesprin-1 isoforms in various cell lines. (A) Location of the binding 
sites of Nesprin-1 antibodies. The largest isoform Nesprin-1 giant is depicted. ABD, 
actin binding domain. (B) Lysates were separated on a 3-15% SDS-PA gradient gel 
and probed with mAb K43-322-2 to detect N terminal isoforms. Arrow heads point to 
proteins discussed in the main text. Tubulin amounts were checked on a separate 
gel. 
 

Nesprin-1 C-terminal isoforms were identified in Hep3B and Huh7 cell lysates with 

polyclonal SpecII antibodies directed against the C-terminus of Nesprin-1(Taranum et 

al., 2012b). In fibroblasts we detected a 400 kDa protein which was absent from 

Hep3B and Huh7. Instead, they harbored low levels of 100 kDa and in case of 

Hep3B of 250 kDa proteins (Figure 12A). When probing for Nesprin-2, we detected 

several isoforms of Nesprin-2 with polyclonal antibodies pAbK1 directed against the 

C-terminus of Nesprin-2. The amounts were significantly higher in Hep3B and Huh7 

cells as compared to fibroblasts (Figure 12B).  
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Figure 12: Cancer cells have alterations in nuclear envelope components. (A) 
Nesprin-1 expression in human fibroblasts (HF), Hep3B and Huh7 cells using SpecII 
antibodies. The blots were probed with Emerin, Lamin A/C, Lamin B1, LAP2, SUN1 
and SUN2 antibodies. Tubulin was used to assess equal loading. (B) Presence of 
Nesprin-2 as detected with pAbK1 directed against the C-terminus. NPC proteins 
were detected with mAb414. (C) Changes at the protein level in HF, Hep3B and 
Huh7 cell lines as determined by western blotting. Fold change of Emerin, Lamin 
A/C, Lamin B1, LAP2, SUN1, SUN2 in HF, Hep3B and Huh7 cells. Band intensities 
were normalized relative to the loading control (tubulin). Histogram representing fold 
changes in band intensity. The results are the average from 3 independent 
experiments (*p<0.05, **p<0.001). 
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In further studies we compared Nesprin-1 expression in lysates from normal 

mammary tissue (N1, N2, N3) and tumor tissue (T1, T2, T3) of different patients. The 

SpecII antibodies recognized primarily a ~55 kDa protein which was strongly reduced 

in the tumor tissue (Figure 13A, B). 

 

 

Figure 13: Nesprin-1 is reduced in human tumor tissues. (A) Nesprin-1 
expression in normal (N1, N2, N3) and tumor (T1, T2, T3) mammary tissues using 
SpecII for detection. Upper panel, PonceauS staining of the nitrocellulose membrane. 
(B) Histogram representing fold change in band intensity of Nesprin-1 for normal and 
tumor tissues (*p<0.05). 
 

2.2.2 Hep3B and Huh7 have nuclear shape defects and alterations in 

components of the nuclear envelope  

The nuclei of Hep3B and Huh7 cells were enlarged and often displayed a deformed 

morphology in contrast to the oval shape in HFs which we used for control. We 

further noted folds, lobulations, protrusions, blebs and micronuclei (Figure 14A, B).  

In Hep3B, 37% of the cells had misshapen nuclei, in Huh7 26% and in control 7%. 

Micronuclei were observed in 11% of the Hep3B cells, in 8% in case of Huh7 and 1% 

of HF cells (Figure 14B). SpecII antibodies labeled the NE in fibroblasts and gave 

some cytoplasmic staining in the vicinity of the nucleus whereas the Nesprin-1 

presence at the NE was strongly reduced in the cancer cells (Figure 14A). 
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Figure 14: Hep3B and Huh7 have nuclear shape defects and alterations in 
components of the LINC complex. (A) Staining was with SpecII (green) to detect 
Nesprin-1 and a mAb specific for Emerin (red). DAPI staining of DNA is in blue. 
Arrow heads indicate nuclei with regular shape and staining for SpecII and Emerin. 
Scale bar, 10 µm. (B) Huh7 cells have nuclear shape defects and alterations in 
components of the nuclear envelope. Staining was with polyclonal SpecII antibodies 
against Nesprin-1 (green), Lamin B1 (green), SUN1 (green) and mAb Emerin (red) 
antibodies. DAPI staining of DNA is in blue. Scale bar, 10 μm. Upper panel, statistical 
analysis of nuclear aberrations. 300 nuclei each for HF (passage 7), Hep3B and 
Huh7 were evaluated (**p<0.001). 
 

Remarkably, Emerin was nearly absent from the NE in the cancer cells (Figure 14A, 

B). The absence of Emerin was also confirmed in western blots (Figure 12A, C). 

Lamin A/C specific antibodies showed a rim like staining pattern in HFs. In Hep3B 

and Huh7 cells a discontinuous, patchy Lamin A/C distribution at the NE was 

observed. Lamin B1 staining of the NE was homogenous in HFs, in Hep3B and Huh7 

cells the distribution was patchy (Figure 15A).  

LAP2, a member of a group of NE proteins involved in tethering chromatin to the 

nuclear envelope and affecting gene expression, showed an unaltered localization at 

the NE in Hep3B and Huh7 cells. The expression level appeared to be significantly 

higher than in fibroblasts which expressed low amounts of LAP2 (Figure 15A).  

NPC proteins regulate nuclear transport, are connected to chromatin and participate 

in the regulation of transcription. Increased expression of individual NPC components 
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has been noticed in several tumor types. Hep3B and Huh7 cells exhibited NE 

staining with mAb 414, which recognizes several NPC proteins based on the 

presence of FXFG-repeats, however staining was reduced in nearly 45% of the cells 

(Figure 15B, C). 

 

 

Figure 15: Nuclear envelope components are altered in Hep3B and Huh7 cells. 
(A) Distribution of Lamin A/C, Lamin B1, and LAP2 in HF, Hep3B and Huh7 cells. 
Arrow heads indicate the observed defects. Scale bar, 10 μm. (B) HF, Hep3B and 
Huh7 cells were stained with anti-Nesprin-1 SpecII (green), mAb NPC (red), DAPI 
(blue). Arrow heads point to normal shaped nuclei stained with SpecII and NPC. 
Scale bar, 10 μm. (C) Statistical analysis of NPC staining. 200 cells per strain were 
analysed (*p<0.0001).  
 

Analysing individual proteins by western blotting, we found that NUP153 levels were 

higher in Hep3B and Huh7 cells compared to the HF control and NUP116 levels were 
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decreased (Figure 12B). In colon cancer cell lines, localization of Nesprin-1 and other 

nuclear envelope components was unperturbed (Figure 16). 

 

 

Figure 16: Nuclear envelope components in colon cancer cells. Distribution of 
Nesprin-1 detected by anti-ABD-Nesprin-1, Emerin, NPC, Lamin A/C, Lamin B1, 
Nesprin-2 as detected by pAbK1 in CT26, CMT93, WIDR, C2F3 cells. DAPI staining 
of DNA is in blue. Scale bar, 10 μm. 
 

Immunofluorescence analysis for SUN proteins revealed a rim like staining for SUN1 

in Hep3B and Huh7 cells. Some cells exhibited a brighter SUN1 staining which was 

associated with misshapen and enlarged nuclei (Figure 17, arrows). When we 
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examined the amounts of SUN1 and SUN2 in western blots, we found that 

particularly the SUN1 levels were higher in Hep3B and Huh7 as compared to HFs 

(Figure 12A, C). Quantification of the mRNA levels by qRT-PCR showed that SUN1 

and SUN2 mRNA were significantly increased in Hep3B and slightly increased in 

Huh7 cells (Figure 17B).  

 

 

Figure 17: Cells with misshapen and enlarged nuclei exhibited a brighter SUN1 
staining. (A) SUN1 (red) staining in Hep3B and Huh7 cells, DAPI, blue. Arrow heads 
point to cells with high SUN1 expression and misshapen and enlarged nuclei. Scale 
bar, 10 μm. (B) SUN1 and SUN2 transcript levels in control, Hep3B and Huh7 cells 
as determined by qRT-PCR. Significant up-regulation of SUN1 and SUN2 was 
detected in Hep3B, Huh7, and KD-HF cells compared to HF cells (*p<0.05, 
**p<0.001). The SUN1 and SUN2 mRNA level in HF at passage 7 was taken for 
reference. For normalization, GAPDH was used. 
 

2.2.3 The centrosome-nucleus distance is increased in Hep3B and Huh7 

cells 

Centrosomal aberrations are frequently observed in cancer cells. Normal cells in the 

G1 phase of the cell cycle have a single centrosome which is attached to the 

nucleus. In HFs, centrosomes were positioned near the nucleus at a mean distance 

of 0.33±0.25 μm. In Hep3B and Huh7 cells the distance between the centrosome and 

the nucleus was highly variable and cells with normal shaped as well as deformed 

nuclei displayed an increased centrosome-nucleus distance. In Hep3B and Huh7 
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cells we observed an increase to 6.29±4.24 μm and 3.56±3.0 μm, respectively 

(Figure 18A, B). The number of centrosomes also differed. 15% of Hep3B and 14.3% 

of Huh7 cells had more than two centrosomes (Figure 18C). The centrosome number 

was not necessarily associated with nuclear shape changes.  

 

 

Figure 18: Centrosome-nucleus-distance is altered in Hep3B and Huh7 cells. 
(A) Centrosome-nucleus-distance is altered in Hep3B and Huh7 cells. γ-Tubulin (red) 
specific antibodies were used to label the centrosome. DAPI (blue), nuclear staining. 
Scale bar, 10 μm. (B) Statistical evaluation of the centrosome-nucleus distance. (C) 
Statistical evaluation of cells with >2 centrosomes. Error bars indicate standard 
deviations (*p<0.001, **p<0.0001). 
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2.3 Loss of Nesprin-1 

2.3.1 Knock down of Nesprin-1 elicits changes that are observed in 

cancer cell lines  

To test whether a loss of Nesprin-1 can cause the changes observed in the cancer 

cells, we reduced the amounts of Nesprin-1 by shRNA mediated knock down in 

C3H10T1/2 (KD-CH310T1/2) and in human fibroblasts (KD-HF) using knock down 

vectors targeting N-terminal and C-terminal sequences of human or mouse Nesprin-1 

(see Materials and Methods) and analyzed the consequences.  

For control we used untransfected cells (HF, CH310T1/2) and cells transfected with 

the empty pSHAG-1 vector used for cloning (C-HF, C-CH310T1/2). Western blot 

analysis with mAb K43-322-2 and SpecII labeling confirmed the knock down (KD) 

(Figure 19A, B). Labeling with mAb K43-322-2 showed that in Nesprin-1 KD cells 

particularly the 250 kDa and larger proteins of 400 and 600 kDa were significantly 

reduced in amounts (Figure 19A, arrow heads). The 130 kDa protein and smaller 

proteins were also less prominent. The expression level of the smallest ones were 

not altered (Figure 19A).  

Reduction of Nesprin-1 was associated with a down regulation of Emerin, Lamin B1, 

NPC proteins and LAP2. By contrast, SUN1 and SUN2 protein amounts were 

increased (Figure 19A, C). This was also observed for SUN1 in CH310T1/2 in which 

the levels of endogenous SUN1 were quite low (Figure 19A). An increase was also 

seen at the transcript level as revealed by qRT PCR (Figure 17B). 
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Figure 19: Loss of Nesprin-1 elicits changes that are observed in cancer cell 
lines. (A) Immunoblot analysis of Nesprin-1 Giant knock down HF and CH310T1/2 
cells. Detection was with mAb K43-322-2 and pAb SpecII. Tubulin served as control. 
Emerin, Lamin A/C, Lamin B1, LAP2, SUN1 and SUN2 specific antibodies were used 
for analysis. Human and murine Emerin differ in their primary sequence explaining 
the observed difference in molecular weight. (B) The blot in (A) was reprobed with 
SpecII antibodies and mAb414 to detect NPC proteins. (C) Changes of NE 
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components at the protein level after knock down of Nesprin-1. Knock down was 
carried out using plasmids targeting the N and C terminal regions of Nesprin-1. 
Histogram representing fold changes in band intensities of Emerin, Lamin B1, LAP2, 
SUN1 for HF, C-HF, KD-HF, CH310T1/2, C-CH310T1/2, KD-CH310T1/2 cells 
(*p<0.05). 
 

For Nesprin-1, alterations in transcript levels were assessed by qRT-PCR. KD-HF 

and Huh7 cells showed significant reductions (Figure 20). 

 

 

Figure 20: The transcript levels of Nesprin-1 vary significantly in Hep3B, Huh7, 
HF, C-HF, and KD-HF cells as determined by qRT-PCR. Significant down-
regulation of Nesprin-1 was detected in Hep3B, Huh7, and KD-HF cells compared to 
HF cells (*p<0.05, **p<0.0001). The primers used for amplification were located in 
the N terminus of Nesprin-1. For normalization GAPDH was used. 
 

In immunofluorescence analysis the clear NE staining by SpecII and Emerin 

antibodies was lost and some residual punctate staining in the cytosol of KD-HF and 

KD-CH310T1/2 cells was seen (Figure 21A). The NPC antibodies labeled the nuclear 

envelope in control fibroblasts and in CH310T1/2, whereas in the knock down cells 

NPC staining is strongly reduced (Figure 21B).  

 



Results 

 39 

 

Figure 21: Effect of Nesprin-1 knock down on NE components. (A, B) Cells were 
stained for Nesprin-1 with pAb SpecII (green), Emerin (red), mAb NPC (red) and 
DAPI (blue). Knock down was carried out with vectors targeting N and C terminal 
sequences of Nesprin-1. Arrow heads indicate the NE phenotypes described. Scale 
bars, 10 μm. 
 

Nearly all cells that had an altered staining pattern exhibited nuclear shape defects. 

SUN1 antibodies strongly stained the NE in KD-HF. Cells with particularly strong 

SUN1 staining exhibited a variety of nuclear shape defects including folds, 

lobulations, blebs and micronuclei (Figure 22).  
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Figure 22: SUN1 staining revealed a variety of nuclear shape defects including 
folds, lobulations, blebs and micronuclei. SUN1 (red) staining in Hep3B, Huh7, C-
HF, KD-HF, C-CH310T1/2, KD-CH310T1/2 cells. Nesprin-1 was detected with mAb 
K58-398-2 (green). Nuclei are stained by DAPI (blue). Scale bars, 10 μm. 
 

Heat treatment is often used to probe the stability of the nuclear envelope (Vigouroux 

et al., 2001). To understand the link between Nesprin-1 loss and heat resistance, the 

cells were stained with LAP2 to evaluate nuclear shape changes after heat shock. 

When we incubated cells for 30 min at 45°C, Nesprin-1 knock down fibroblasts, 

Hep3B and Huh7 cells exhibited increased nuclear deformations with folds and 

pleats after heat treatment (Figure 23A, B). Many nuclei also displayed notches, tears 

and herniations (Figure 23A, arrow heads). Knock down with plasmids targeting N-

terminal or C-terminal sequences showed similar results as knock down experiments 
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where we used vectors targeting N-terminal and C-terminal sequences together (data 

not shown).  

 

 

Figure 23: Loss of Nesprin-1 leads to hypersensitivity towards heat shock. (A) 
Cells were immunostained with SpecII (green) and LAP2 (red) antibodies to detect 
the nuclei deformations after heat shock at 45°C for 30 min. Arrow heads point to 
nuclear deformations. Scale bar, 10 µm. (B) Histograms representing the percentage 
of deformed nuclei of cells before (white bars) or after heat shock (black bars). Data 
are the mean ±SD from three samples per group of three independent experiments. 
Statistically significant differences were determined between before and after heat 
shock groups (*p<0.05, **p<0.0001). 

 

When we quantified the defects for each cell type, we found that Hep3B and Huh7 

had more abnormal nuclei in general. This number increased only slightly upon heat 
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treatment. Compared with unheated Hep3B (42%) and Huh7 (34%) cells, deformed 

nuclei after heat shock was 46% for Hep3B and 41% for Huh7 cells. Stronger 

increases in the number of deformed nuclei were observed for the KD-HF cells 

(35%±4.09 before and 41%±3.22 after heat shock). Moreover, no significant changes 

were observed among C-CH310T1/2 cells before (7% misshapen nuclei) or after 

(10%) heat shock. The extent of nuclear deformations caused in KD-CH310T1/2 

(29.5%±4.37 before and 40.83%±2.86 after heat shock) was similar to heat shock 

experiments performed in KD-HF cells (Figure 23B). These results suggest that heat 

treatment leads to more deformed nuclei in Nesprin-1 KD, Hep3B and Huh7 cells. 

 

2.3.2 The centrosome-nucleus distance is increased in Nesprin-1 KD 

cells 

The LINC complex proteins play essential roles in centrosome biology (Salpingidou 

et al., 2007; Schneider et al., 2008; Zhang et al., 2009). Moreover, recent studies 

revealed that centrosome defects, including alterations in centrosome shape, size, 

number, position, composition lead to tumorigenesis (Lingle and Salisbury, 2001; 

Fukasawa, 2005; Salisbury, 2005; Nigg, 2006; Hassold et al., 2007). To further 

address whether the Nesprin-1 is associated with centrosome position and number, 

the cells were stained with Ɣ-tubulin. We investigated the centrosome-nucleus 

distance and centrosome number upon loss of Nesprin-1 and found that centrosomes 

were positioned 0.35±0.29 and 3.20±2.34 μm away from the NE in C-HF and 

Nesprin-1 KD-HF cells, respectively. Similarly, in Nesprin-1 KD-CH310T1/2 cells the 

mean centrosome-nucleus distance increased from 0.44±0.27 μm in C-CH310T1/2 

cells to 2.40±1.49 μm in Nesprin-1 KD-CH310T1/2 cells (Figure 24A, B).  
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Figure 24: The centrosome-nucleus distance and centrosome number are 
increased in Nesprin-1 KD cells. (A) Centrosome position in C-HF, KD-HF, C-

10T1/2, and KD-10T1/2 cells. Centrosomes were visualized with a -tubulin antibody 
(red), Nesprin-1 with SpecII (green). The nucleus was stained with DAPI (blue). Scale 
bars, 10 μm. (B) Statistical evaluation of the centrosome-nucleus distance. 100 cells 
for each cell line were evaluated (*p<0.0001). (C) Statistical analysis of the 
percentage of cells with >2 centrosomes was calculated from three independent 
experiments (100 cells were counted per experiment, *p<0.05, **p<0.0001). 

 

Nesprin-1 loss was also accompanied by alterations of the centrosome number. More 

than two centrosomes were seen in 3.3% C-HF, for Nesprin-1 KD-HF this number 

increased to 10% and for CH310T1/2 it increased from 6% in the C-CH310T1/2 to 

11% after knock down (Figure 24C). 
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2.3.3 Loss of Nesprin-1 leads to cytoskeletal alterations  

To gain insight into the role of Nesprin-1 in cytoskeleton organization, cells were 

stained with TRITC-phalloidin to visualize the actin cytoskeleton and mAb YL1/2 to 

stain the microtubule network. In C-HF and C-CH310T1/2 cells F-actin was abundant 

and distributed throughout the cells. Nesprin-1 KD fibroblast, Hep3B, and Huh7 cells 

had fewer stress fibers and displayed irregular F-actin staining in particular over and 

around the nucleus where filaments were nearly absent (Figure 25A). Hep3B and 

Huh7 cells had fewer microtubules and the network appeared disorganized. The 

microtubule organization was also altered in KD-HF and KD-CH310T1/2 cells and a 

circular arrangement of microtubules in the cell periphery was noted (Figure 25B).  

Cell migration requires precisely orchestrated changes in the actin and tubulin 

organization. In particular, migration of tumor cells has been extensively studied due 

to its importance in the process of cancer metastasis (Yamaguchi et al., 2006; Sahai 

et al., 2007). As loss of Nesprin-1 led to distinct changes in the F-actin and 

microtubule system, we analyzed the migration behavior of Nesprin-1 KD fibroblast, 

Hep3B and Huh7 cells after scratch wounding. C-KD exhibited a mean speed of 

migration of 11±1.2 (C-HF) and 13.1±1.8 (C-CH310T1/2) μm/hour whereas Nesprin-1 

KD cells migrated with a cell velocity of 15.6±1.09 (KD-HF) and 20.8±1.0 (KD-

CH310T1/2) μm/hour. In Hep3B and Huh7 cells, cell migration speed was markedly 

enhanced and the cell velocities were measured as 19.2±0.80 and 16.1±2.6 μm/hour, 

respectively (Figure 25C). 

These findings could indicate that Nesprin-1 has an inhibitory role for the 

reorganization of the actin and microtubule cytoskeleton and for cell migration and its 

loss leads to enhanced migration as it is required for tumor metastasis and invasion.  
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Figure 25: Alterations in the cytoskeletal networks upon loss of Nesprin-1. (A) 
Detection of the actin cytoskeleton in Hep3B, Huh7, Nesprin-1 KD-HF and KD- 
CH310T1/2 cells. Cells were fixed with PFA and stained for Nesprin-1 with pAb 
SpecII (green), F-actin with TRITC-Phalloidin (red), and DAPI (blue). Scale bar, 10 
μm. (B) Detection of the microtubule network in Hep3B, Huh7, Nesprin-1 KD-HF, KD- 
CH310T1/2 cells. Arrow heads indicate cells with a disorganized microtubule 
network. Cells were stained with YL1/2 for tubulin (red), pAb SpecII (green) and DAPI 
(blue). Scale bars, 10 μm. (C) Histogram representing the cell velocity (μm/h). The 



Results 

 46 

cell velocity was calculated using Image J. The values represent the mean ± SD of 
three separate experiments. Student’s t-test was used for the evaluation (*p<0.001, 
**p<0.0001).  
 

2.3.4 Senescence is increased in Nesprin-1 knock down fibroblasts 

Cellular aging or senescence is formally described by Hayflick as a limited 

proliferation of cells during in vitro propagation (Hayflick, 1965). In vivo senescent 

cells stimulate biological processes that are associated with aging and tumorigenesis 

(Rodier and Campisi, 2011). A recent study indicated that cancer cells can undergo 

senescence due to several mechanisms such as telomere shortening, DNA-damage 

and oxidative stress (Di Micco et al., 2006). Furthermore, cells harboring defects in 

components of the NE are reported to display an increased senescence (Le Dour et 

al., 2011; Taranum et al., 2012b). 

To investigate whether Nesprin-1 loss leads to cellular aging, cells were plated and 

used for an assay in which the number of β-galactosidase positive cells (senescence-

associated β-galactosidase, SA-β-gal) was determined. Notably, HF (6%) and 

CH310T1/2 (4.6%) cells displayed low percentage of blue staining. The extent of 

cellular senescence was similar between C-HF and C-CH310T1/2 cells (9%); in 

Hep3B and Huh7 cells, high levels of senescence were observed (51% and 92%, 

respectively). In KD-HF cells more than 80% were β-galactosidase positive. 9% of 

the C-CH310T1/2 cells were positive and after Nesprin-1 KD this number increased 

to 40% (Figure 26).  
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Figure 26: Loss of Nesprin-1 leads to cellular senescence and alterations in the 
cytoskeleton. (A) Staining for senescence associated β-galactosidase. Cells were 
imaged using bright field microscopy at 40x magnification. (B) Quantification of SA-β-
gal-positive cells. Standard deviations are from three independent experiments 
counting 100 to 500 cells in each experiment (*p<0.001, **p<0.0001).  
 

2.4 Nesprin-1 and DNA damage response (DDR) network  

2.4.1 ABD of Nesprin-1 interact with DNA mismatch repair proteins MSH2 

and MSH6 

In a search for Nesprin-1 interaction partners we performed pull-down experiments 

with GST-Nesprin-1-286 and C2F3 cell lysates. Among the identified proteins, the 



Results 

 48 

DNA mismatch repair protein (MSH2) and DNA damage binding protein-1 (DDB1) 

were chosen for further experiments (Table 4).  

 

Table 4. The possible interaction partners of Nesprin-1. Pull-down assay was 
performed using GST-Nesprin-1-286 and C2F3 cell lysates. 
 

Protein Sequence 
coverage 

(%) 

Score MW 
(kDa) 

No. of 
unique 

Peptides 

Plectin  32.6 6056.1 533.9 138,00 

Filamin-C  6.0 644.3 290.9 12,00 

60S ribosomal protein L7  11.5 176.8 31.4 3,00 

Filamin-A  2.3 158.7 281.0 4,00 

Cytoplasmic dynein 1 heavy chain 1  1.0 146.1 531.7 4,00 

Histone H1.4  5.5 50.4 22.0 1,00 

60S ribosomal protein L6  3.0 48.5 33.5 1,00 

Keratin, type II cytoskeletal 1  1.9 37.9 65.6 1,00 

Myosin-9  39.6 3835.4 226.2 82,00 

Myosin-Va  4.3 211.5 215.5 6,00 

Ribosome-binding protein 1  3.2 113.6 172.8 3,00 

Nischarin  0.8 54.8 174.9 1,00 

Cytoskeleton-associated protein 5  0.6 48.6 225.5 1,00 

Zinc transporter 1  2.8 37.8 54.7 1,00 

Importin-7  9.0 363.2 119.4 7,00 

Caprin-1  5.9 245.0 78.1 4,00 

DNA damage-binding protein 1  8.7 221.7 126.8 7,00 

Aspartyl/asparaginyl beta-hydroxylase  7.2 133.1 83.0 4 

Probable ATP-dependent RNA helicase  1.4 49.4 113.8 1 
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Importin-9  1.1 48.0 116.0 1 

Zinc transporter 1  2.8 44.8 54.7 1 

Dynein heavy chain 17, axonemal  0.2 41.4 511.3 1 

Nucleolin 39.9 1397.1 76.7 35,00 

AP-2 complex subunit alpha-2  14.3 408.2 104.0 11,00 

AP-2 complex subunit beta-1  11.2 363.3 104.5 10,00 

Coatomer subunit beta 8.2 238.4 107.0 6,00 

AP-2 complex subunit alpha-1  7.1 233.9 107.6 6,00 

Transcription intermediary factor 1-beta  11.9 199.8 199.8 5,00 

Endoplasmin  6.6 195.2 92.4 4,00 

DNA mismatch repair protein Msh2  4.4 136.5 104.1 3,00 

DNA replication licensing factor MCM3  3.4 90.4 91.5 2,00 

Rho guanine nucleotide exchange factor 

2  

1.9 63.6 111.9 1,00 

Kinesin-like protein KIF2A  1.6 57.5 79.7 1,00 

Alpha-actinin-1  1.3 48.1 103.0 1,00 

Apoptosis-inducing factor 1, 

mitochondrial  

5,20 127.7 66.7 3,00 

ATP-dependent RNA helicase DDX3X  5,60 113.0 73.1 3,00 

Eukaryotic translation initiation factor 3 

subunit D  

4,70 99.5 63.9 2,00 

ADP-ribosylation factor GTPase-

activating protein 3  

3,30 73.8 57.4 1,00 

RNA-binding protein 39  2,80 38.2 59.5 1,00 

DNA polymerase delta subunit 3  3.0 34.4 50.8 1,00 

Hypermethylated in cancer 2 protein  1,50 44.5 72.6 1,00 
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To verify the interaction we repeated the experiment with HeLa cell lysates and 

probed the precipitate directly for the presence of MSH2 with antibodies. In addition 

to MSH2 we also found MSH6 and DDB1 in the precipitate (Figure 27A). MSH2 

forms a complex with MSH6 which binds to DNA mismatches and functions in the 

repair of DNA double strand breaks (Warren et al., 2007). GST alone as control did 

not precipitate MSH2, MSH6, and DDB1. To pursue the interaction of Nesprin-1 with 

MSH2, MSH6 and DDB1 in vivo, we transiently expressed GFP-Nesprin-1-286 in 

COS7 cells. GFP-Nesprin-1-286 colocalized with MSH2 and MSH6 at the nuclear 

envelope and also inside the nucleus (Figure 27B). 

 

 

Figure 27: Nesprin-1 interacts with DNA repair proteins. (A) Interaction of 
Nesprin-1 with MSH2, MSH6, and DDB1. HeLa cells were incubated with GST-
Nesprin-1-286 and GST for control. Detection of the 105 kDa MSH2, 163 kDa MSH6 
and 127 kDa DDB1 in the pull down was with MSH2, MSH6, and DDB1 specific 
antibodies, respectively (lower panels). Upper panel, Coomassie Blue staining of the 
gel. (B) COS-7 cells were transfected with GFP-Nesprin-1-286 (green) and stained 
for MSH2 (red) and MSH6 (red), DAPI (blue). Scale bar, 10 μm. 
 

We then carried out immunoprecipitation experiments and included also UV-treated 

cells. GFP-Nesprin-1-286 was immunoprecipitated from nuclear extracts using GFP 

beads and the precipitates probed for the presence of MSH2, MSH6, and DDB1. We 
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found that MSH2, MSH6, and DDB1 coprecipitated with GFP-Nesprin-1-286 from 

untreated and UV-treated nuclear extracts showing the relevance of the interaction 

also in the situation of DNA damage (Figure 28).  

 

 

Figure 28: Nesprin-1 interacts with DNA repair proteins in vivo. HF cells were 
transfected with plasmids coding for GFP-ABD-Nesprin-1 and GFP and nuclei 
isolated and used for immunoprecipitations using GFP specific antibodies. MSH2, 
MSH6 and DDB1 coimmunoprecipitate with Nesprin-1 from nuclear extracts. MSH2; 
MSH6 and DDB1 also coimmunoprecipitated from nuclear extract upon UV-C 
treatment (20 J/m2). GFP-ABD-Nesprin-1 and GFP were detected with mAb K3-184-
2 (upper panel). Subcellular fractionation was confirmed by probing with Lamin B1 
antibodies.  
 

Next we tested whether MSH2 and MSH6 levels were affected by Nesprin-1 levels. In 

immunoblot analysis we found that Huh7 and KD-HF cells expressed lower levels of 

MHS2 and nearly no MSH6 was detected whereas their levels were considerably 

higher in Hep3B and C-HF cells (Figure 29A, B). The amounts of Nesprin-1 detected 

with anti-ABD-Nesprin-1 were reduced compared to C-HF cells as were the transcript 

levels (Figure 20). We also included the human colorectal cell line DLD-1 which is 

deficient in DNA mismatch repair (MMR) in order to test whether MMR deficiency is 

correlated with the Nesprin-1 levels. In western blots we found low levels of MSH2 

and nearly no MSH6 and with Nesprin-1-ABD antibodies we detected strongly 
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reduced amounts of the ~100 kDa and 250 kDa proteins that were also present in the 

cancer cell lines (Figure 29A, B). 

 

Figure 29: Loss of Nesprin-1 affects the MMR network. (A) Immunoblot analysis 
of DLD-1, Hep3B, Huh7, HF and KD-HF cells. Detection was with anti-ABD-Nesprin-
1 and MSH2 and MHS6 antibodies. Tubulin served as control. (B) Histograms 
representing fold changes of band intensities of MSH2 and MSH6. Band intensities 
were normalized relative to the loading control (tubulin). Data are the mean ±SD from 
three samples per group of three independent experiments (*p<0.001, **p<0.0001). 
 

Furthermore, we observed reduced expression of MSH2 and fewer MSH6 foci in KD-

HF cells compared to C-HF cells (Figure 30A, B). Quantification of the MSH2 and 

MSH6 mRNA levels by qRT-PCR showed that they were significantly reduced in 

Nesprin-1 KD-HF cells. Similar results were obtained with KD-HeLa cells (Figure 

30C). 
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Figure 30: Nesprin-1 loss and MMR proteins. (A) Effect of Nesprin-1 knock down 
on MSH2 (red) and MSH6 (red). Nesprin-1 was detected with K43-322-2 (green) or 
pAb SpecII (green). Nuclei were stained with DAPI (blue). Arrow head indicates the 
KD-HF cell. Scale bars, 10 μm. (B) Quantification of the percentage of cells 
presenting >20 MSH6 foci for C-HF (red bar) or KD-HF (pink bar). Error bars 
represent standard deviations (**p<0.0001). (C) MSH2, MSH6 and Nesprin-1 
transcript levels in C-HF, KD-HF, C-HeLa, and KD-HeLa as determined by qRT-PCR. 
Significant down-regulation of MSH2 and MSH6 was detected in KD-HF and KD-
HeLa cells compared to C-HF and C-HeLa cells (*p<0.05, **p<0.0001). For 
normalization, GAPDH was used. 
 

We also studied the NE characteristics of DLD-1 cells and found abnormal nuclear 

morphology, centrosomal aberrations, altered expression of NE components as were 

observed in Nesprin-1 KD cells (Figure 31). In this context it is interesting to note that 

SYNE1 is a candidate gene for colorectal cancer, but the molecular mechanism is not 

clear (Sjoblom et al., 2006). 
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Figure 31: DLD-1 cells resemble Nesprin-1 KD cells with respect to the NE. 
Distribution of Emerin (red), NPC (red), LAP2 (red), Actin (red), SUN1 (red), Lamin 
A/C (red), Lamin B1 (red), γ-Tubulin (red), Spec2 (green), K43-322-2 (green) in DLD-
1 cells. Arrow heads indicate the observed defects. Scale bar, 10 μm. 
 

In order to determine possible effects of Nesprin-1 on the MSH2-MSH6 heterodimer 

(MutSα) during DNA replication or the repair process, C-HF and KD-HF cells were 

synchronized at G1, S or G2/M phase and the chromatin association of the proteins 

tested. The cell cycle status was confirmed by flow cytometry (FACS). MSH2 was 

present in all phases and strongly accumulated in the nucleus during S and G2/M 

phase (Figure 32A). MSH6 was primarily observed in S phase where it was present 

in the nucleus and showed some colocalization with Nesprin-1 (Figure 32B).  
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Figure 32: MSH2 and MSH6 during mitosis in Nesprin-1 KD cells. (A) KD-HF 
cells were arrested at G1, S, G2/M as indicated. Immunofluorescence was performed 
to determine nuclear distribution of K43-322-2 (green) and its colocalization with 
MSH2 (red). (B) Immunofluorescence analysis showing colocalization of MSH6 with 
Nesprin-1 in C-HF cells. Nesprin-1 (Spec II) and MSH6 localization for C-HF cells in 
G1, S or G2/M phase. The colocalization is increased in S phase. Scale bar, 10 μm. 
 

Nesprin-1 deficient HF cells had strongly reduced levels of MSH2 and MSH6 was 

undetectable (Figure 32A; data not shown). In HeLa cells the expression levels of 

MSH2 and MSH6 appeared to be higher. The results in C-HeLa and KD-HeLa cells 

resembled those for HF cells (Figure 33A, B). We conclude that localization of MSH2-

MSH6 to the nucleus and to chromatin is facilitated by Nesprin-1 leading to 

successful DNA repair. 
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Figure 33: MMR in KD-HeLa cells. (A) KD-HeLa cells were arrested at G1, S, G2/M 
as indicated. Immunofluorescence was performed to determine the distribution of 
Nesprin-1 with K43-322-2 (green) and MSH2 (red). Arrow heads point to KD-HeLa 
cells. (B) Immunofluorescence analysis showing localization of MSH6 in C-HeLa cells 
in G1, S, and G2/M phase. Nesprin-1 (Spec II, green) and MSH6 (red). Scale bar, 10 
μm. 
 

Recent work by Li and coworkers showed that H3K36me3 has a role in MMR and is 

required to recruit hMSH2-hMSH6 to chromatin (Li et al., 2013). Their results 

indicated that a maximum abundance of H3K36me3 occurred in early S phase which 

could increase the efficiency of MMR in actively replicating chromatin.  

We therefore tested for H3K36me3 presence in early S phase and found that KD-HF 

cells behaved like Nesprin-1 positive cells and showed H3K36me3 positive spots 

(Figure 34). This shows that the MSH2-MSH6 recruitment to chromatin is affected in 
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Nesprin-1 KD whereas accumulation of H3K36me3 still takes place in Nesprin-1 KD 

cells. The results imply that MSH2-MSH6 recruitment to chromatin depends not only 

on H3K36me3 but also on Nesprin-1. 

 

  

Figure 34: H3K36me3 in C-HF and KD-HF cells. K43-322-2 (green) and 
H3K36me3 (red) staining for C-HF and KD-HF cells in early S phase. Scale bar, 10 
μm. 
 

Nesprin-1 may play an important role for the function of MSH2 and MSH6 in the DNA 

mismatch repair, and a defect in this connection may also lead to alterations in earlier 

DDR events. Therefore, it is possible that the Nesprin-1 interaction with the MutSα 

complex is a constitutive cellular event required for proper DNA repair, and the 

interaction is not required for just the NE localization of MutSα complex. 

 

2.4.2 Loss of Nesprin-1 affects the DDR network 

The DDR pathway is associated with cancer development. MMR and NHEJ are two 

interlinked processes, and loss of MSH2 and MSH6 has been correlated with altered 

response to double strand breaks (DSBs) as well (Villemure et al., 2003; Shahi et al., 

2011). To gain insight into specific steps during DDR, we monitored the cellular levels 

of key components, namely histone H2AX, checkpoint kinases Chk1 and Chk2, and 

Ku70/Ku80 heterodimer in Hep3B, Huh7, C-HF and Nesprin-1 KD-HF. 
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Phosphorylation of H2AX and Chk1 and Chk2 is among the initial events that occur in 

response to DNA damage (Kastan and Lim, 2000; Liu et al., 2000; Marti et al., 2006). 

Ku70/Ku80 binds to DNA double-strand breaks during NHEJ and recruits the DNA 

repair kinase DNA-dependent protein kinase catalytic subunit to the lesion. Following 

this process, the Ku70/Ku80 heterodimer is required to inhibit nuclease binding or 

activity at broken DNA ends thereby effectively functioning to maintain genome 

stability and successful repair (Liang and Jasin, 1996; Downs and Jackson, 2004; 

Sun et al., 2012). 

In C-HF nearly no γH2AX foci marking broken DNA were observed. Upon HU 

treatment γH2AX positive spots formed (Figure 35 A).  

 

 

Figure 35: Nesprin-1 and the DDR network. (A) Nesprin-1 (pAb SpecII, green) and 
γH2AX (red) staining of Hep3B, Huh7, HF, Nesprin-1 KD-HF cells before (left) and 
after treatment (right) with hydroxyurea (HU). Loss of Nesprin-1 leads to increased 
γH2AX staining. (B) SpecII (green) and γH2AX (red) staining of Nesprin-1 KD-HF 
cells after UV treatment (arrow indicates KD-HF cells). Scale bars, 10 μm. (C) 
Quantification of the percentage of cells presenting >5 γH2AX-labelled foci before 
(white bar) or after (black bar) HU treatment. Graphs show results from at least three 
independent experiments. Error bars represent standard deviations (*p<0.001, 
**p<0.0001). 
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After knock down of Nesprin-1 a strong increase in the number of γH2AX foci was 

observed that exceeded the one of C-HF cells after HU or UV treatment and was 

indicative of an elevated DNA damage upon loss of Nesprin-1 (Figure 35B). 

Untreated Hep3B and Huh7 cells had a similar high number of γH2AX foci. This 

number was further enhanced following HU treatment both in Nesprin-1 KD-HF and 

the tumor cells (Figure 35C).  

Ku70 was present in untreated C-HF cells whereas Nesprin-1 KD-HF cells had low 

levels of Ku70. After HU treatment Ku70 levels decreased in all cell lines with the 

exception of C-HF cells where an elevated expression was noted. After HU or UV 

treatment Ku70 levels decreased in KD-HF cells (Figure 36A, B). Similar reduction of 

Ku70 expression was also observed in Hep3B and Huh7 cells after HU treatment. 

The decrease was also detected at the protein level (Figure 37A). 
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Figure 36: Loss of Nesprin-1 leads to defective recruitment of DNA repair 

proteins to DSBs. (A) Immunofluorescence analysis of Ku70 in Hep3B, Huh7, C-HF 

and KD-HF cells before and after HU treatment. pAb SpecII (green), Ku70 (red), 

DAPI (blue). Arrow heads point to Nesprin-1 KD-HF cells. Scale bars, 10 μm. (B) 

SpecII (green), Ku70 (red) staining in Nesprin-1 KD cells after UV treatment. Scale 

bar, 10 μm. 

 

Nesprin-1 reduction also had an effect on the presence of phosphorylated H2AX, 

Chk1 and Chk2 (Figure 37A-C). In all untreated cell lines no phosphorylated Chk1 

and Chk2 was detected. Upon HU treatment their levels strongly increased as 
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detected with antibodies recognizing specific phosphorylated forms in all cell lines 

except for C-HF where the increase was hardly noticeable (Figure 37D-F).  

 

 
Figure 37: Nesprin-1 is involved in DNA damage response. (A) Western blot 

analysis for determination of levels of H2AX (Ser319), CHK1 (Ser345), and CHK1 

(Ser317), CHK2 (Thr68), and Ku70 before and after HU treatment. Tubulin was used 

for loading control. (B-F) Histograms representing fold changes of band intensities of 

H2AX (Ser319), CHK1 (Ser345), and CHK1 (Ser317), CHK2 (Thr68), and Ku70 

before (white bar) or after (black bar) HU treatment. Data are the mean ±SD from 

three samples per group of three independent experiments (*p<0.0001). 
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The elevated levels of these proteins indicate greater DNA damage in KD-HF 

compared to C-HF cells (Figure 37). Ku70 was present in untreated Hep3B, Huh7 

and C-HF cells, whereas Nesprin-1 KD-HF cells had very low levels. Upon HU-

treatment the levels decreased in Hep3B, Huh7 and Nesprin-1 KD-HF. By contrast, 

an increase was seen in Nesprin-1 C-HF (Figure 37A, C). These results indicate a 

defective response in the tumor cell lines and in Nesprin-1 deficient cells and a 

defective recruitment of Ku70 to sites of DNA damage resulting in a failure to protect 

the broken DNA ends from unwanted and excessive nuclease activity which leads to 

misrepair and loss of genetic information. 
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3. Discussion  

The LINC complex is conserved from yeast to mammals and formed by interactions 

between Nesprins and SUN proteins (Libotte et al., 2005; Crisp et al., 2006). 

Nesprins are giant proteins of the LINC complex with a length of 300 nm-500 nm and 

situated in the nuclear envelope. Due to alternative splicing generating proteins with 

differing spectrin repeat copy numbers, there is a great variation in the length of 

Nesprins. Nesprin-1 is one of four Nesprins displaying a pair of connections in a 

molecular chain bridging the nucleus and the cytoskeleton. More specifically, 

Nesprin-1 also contains specific domains to facilitate the integration of the ONM with 

several cytoskeletal structures (Starr and Fridolfsson, 2010; Schneider et al., 2011a). 

Earlier reports indicated that Nesprin-1 C-terminal spectrin repeats interact with 

Lamin and Emerin. On the other hand, these spectrin repeats self-associate to form 

an antiparallel dimer (Mislow et al., 2002a; Zhong et al., 2010). According to our 

findings, N terminal Nesprin-1 spectrin repeats can also self-associate. Moreover, our 

data demonstrate that, presumably with the exception of aa 859-1144, which encode 

spectrin repeats with lower resemblance to the ones of α-actinin, the N-terminal 

spectrin repeats interact with full length Nesprin-1-165. The KASH domain containing 

Nesprin-1 (aa 8034-8749) interact with Nesprin-2, but not with KASH domain lacking 

Nesprin-1 (aa 7938-8644). Notably, these interactions, self-association and 

interaction among the N-terminal spectrin repeats of Nesprin-1 make them ideal 

candidates for maintaining the nuclear architecture. Furthermore, our findings 

suggest that Nesprin-3 mediates recruitment of vimentin to the NE in transfected 

cells.  

Studies with KO mice highlight the biological and functional importance of Nesprin-1.  
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Importantly, mice with C-terminal deletion of SYNE1 including the KASH domain die 

after birth owing to respiratory failure (Puckelwartz et al., 2009). Overall, Nesprin-1 

mutant mice display reduced survival rates, kyphoscoliosis, growth retardation, 

neurogenesis defects, and skeletal and cardiac muscle pathologies (Puckelwartz et 

al., 2009; Zhang et al., 2009; Zhang et al., 2010). Although these findings indicate 

that Nesprin-1 controls several functions, how Nesprin-1 masters all these multiple 

functions is poorly understood. It will be of great interest to determine the specific 

roles of Nesprin-1 on nuclear structure, centrosome, cytoskeleton organization, 

cellular aging, tumorigenesis and genome stability.  

The mechanisms establishing nuclear architecture are not sufficiently known nor are 

the consequences of a deformed nuclear structure for normal cell function unraveled. 

Nuclei of most normal cells have a smooth and ovoid shape, whereas in many cancer 

cells severe nuclear distortions are observed. We studied liver cancer cells and found 

several alterations which we could reproduce by reducing levels of Nesprin-1 by 

knock down in several cells. Most remarkable were the loss of Emerin, an 

upregulation of SUN proteins and changes in the centrosome number and in the 

DDR. Similarly, Zhang et al. reported that Nesprin-1 siRNA knock down in fibroblasts 

affected Emerin localization which correlated with deformed nuclei (Zhang et al., 

2007). From our data we propose that loss of Nesprin-1 is a casual event in 

tumorigenesis in analogy to a recent report showing that Emerin reduction was the 

basis of nuclear morphological deformation and subsequently the cause of 

aneuploidy in ovarian cancer cells (Capo-chichi et al., 2009). 

Deformed nuclear shape and increased size are also SUN1 dependent. Although the 

function of SUN1 and SUN2 in cancer biology is undefined, the finding that SUN1 

accumulation leads to misshapen and enlarged nuclei of HPGS cells is of great 
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significance (Chen et al., 2012). We also noted that brighter SUN1 staining was 

associated with misshapen and enlarged nuclei in Nesprin-1 KD, Hep3B and Huh7 

cells. Furthermore, Zhang and coworkers found an upregulation of SUN1 and SUN2 

in neonatal Nesprin-1-/- cardiac and skeletal muscle, respectively (Zhang et al., 

2010). 

Earlier reports indicated that LINC complex components link the centrosome to the 

nucleus (Salpingidou et al., 2007; Schneider et al., 2011a). In order to elucidate the 

mechanisms behind the centrosome alterations in cancer cells, the effect of a loss of 

Nesprin-1 on centrosome-nucleus distance and centrosome number was determined. 

The centrosome was positioned next to the nucleus in C-HF and C- CH310T1/2 cells. 

In contrast, the centrosome dislodged from the NE in the Nesprin-1 KD-HF, KD- 

CH310T1/2, Hep3B and Huh7 cells, raising the possibility that the Nesprin-1 

deficiency might cause detachment of the centrosome from the NE. Therefore it 

appears that Nesprin-1 plays a significant role in centrosome positioning and number.  

Proteins of the Nesprin family connect the nucleus through their N-termini to the actin 

network (Nesprin-1 and Nesprin-2), the intermediate filament system (Nesprin-3) and 

the microtubule network (Nesprin-2 and Nesprin-4) (Zhen et al., 2002; Padmakumar 

et al., 2004; Wilhelmsen et al., 2005; Roux et al., 2009; Schneider et al., 2011a). 

Extensive F-actin filaments were observed around the nucleus in C-HF and C- 

CH310T1/2 cells whereas the filaments were reduced in KD-HF and KD- CH310T1/2. 

The actin staining was reduced in Hep3B and Huh7 cells possibly due to a decrease 

in Nesprin-1 linkage to F-actin. The microtubule system of Hep3B and Huh7 cells 

was also disorganized. We noted that KD-HF and KD- CH310T1/2 cells displayed 

similar microtubule disorganization. This may also support the previously proposed 

idea that force transmission to the nucleus regulates gene expression by causing 

conformational changes in the DNA structure and by regulating nuclear transport 
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(Wang et al., 2009). As stated earlier, Nesprin-1 mislocalization in HeLa and Swiss 

3T3 cells results in a softer cytoplasm and a damaged connection between the 

nucleus and the cytoskeleton. Therefore, F-actin may cause abnormal cellular 

functions, cytoskeleton network and cancer pathogenesis (Stewart-Hutchinson et al., 

2008).  

The cytoskeleton organization is important for cell migration. Contrary to earlier 

reports and our expectations, cell migration in the Nesprin-1 KD-HF and KD-

CH310T1/2 cells increased significantly compared to C-HF and C-CH310T1/2 cells. 

This is consistent with results obtained for cancer cells like Hep3B, and Huh7 cells, 

where cell velocity was as high as in Nesprin-1 KD-HF and KD- CH310T1/2 cells. 

Earlier studies have suggested that defective nucleo-cytoskeletal connections impair 

the activation of mechanosensitive gene Egr-1 (early growth response factor 1) and 

anti-apoptotic gene iex-1 which are transcription factors (Lammerding et al., 2004; 

Lammerding et al., 2005). Our data demonstrate that in addition to the impaired 

cytoskeleton network, loss of Nesprin-1 also leads to tumorigenesis, indicating that 

Nesprin-1 may suppress several steps in tumorigenesis.  

Cellular senescence has gained significant attention in cancer therapeutic strategies. 

Interestingly, La Porta et al. formulated cancer growth in mathematical terms and 

made predictions for the progress of cellular senescence (La Porta et al., 2012). In a 

related report Collado et al. speculated that senescence markers increase during 

tumor progression (Collado and Serrano, 2010). Cancer stem cells divide forever, by 

contrast, other tumor cells can go into senescence. Senescent cancer cells are not 

only growth arrested but can be also cleared by immune cells (Ventura et al., 2007). 

We have shown here that Nesprin-1 loss also leads to cellular senescence and 

points to the importance of Nesprin-1 in cellular aging. 
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Defects in the DDR network can predispose to cancer and foster cancer progression 

(Clifford et al., 2003; Sherr, 2004). So far, an effect of Nesprin-1 on DNA repair 

mechanisms has not been addressed. Lei et al. reported a reduction of γH2AX and 

phosphorylated Chk1 in SUN1-/-SUN2-/- mouse embryonic fibroblasts and proposed 

an impairment of specific repair pathways (Lei et al., 2012). Our results indicated 

elevated levels of γH2AX, phosphorylated Chk1 and Chk2 in Nesprin-1 KD-HF, 

Hep3B, and Huh7 cells pointing towards overactive pathways which can cause 

chromosomal instability. An integration of Nesprin-1 into the DDR, NER and MMR 

pathways is further supported by its interaction with components of these pathways 

as demonstrated in pull down assays. We identified proteins of the NER (DDB1) and 

MMR (MSH2, MSH6) in pull down experiments using the ABD of Nesprin-1 assigning 

a role to Nesprin-1 isoforms in the NER, and MMR pathway that harbor this domain. 

Furthermore, bioinformatic analysis by Mascia and Karchin led to the proposal of an 

interaction network around Nesprin-1 which contained MSH2 and MSH6 (Masica and 

Karchin, 2011).  

In this study, we focused on the role of Nesprin-1 on the MMR pathway. We found 

that Nesprin-1 interacts not only with MMR proteins MSH2 and MSH6, but also with 

DNA polymerase delta subunit 3 which belongs to the DNA polymerase type-B 

family. Notably, DNA polymerase is required for DNA synthesis and repair. The MMR 

network serves to maintain genome stability (Modrich and Lahue, 1996; Lingle and 

Salisbury, 2001). Its importance is highlighted by participating in a cell-cycle 

checkpoint control system which leads to correction of DNA damage and promotes 

cell-cycle arrest or triggers apoptosis pathways (Kolodner, 1996). Defects in MSH2 

resulted in a greatly increased likelihood of developing certain types of tumors 

(Schofield and Hsieh, 2003). Depending on the type of DNA damage, loss of MMR 

might therefore cause increased mutagenesis, loss of cell-cycle control and 
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resistance to apoptosis (Peters et al., 2003). Based on our results, we speculate that 

Nesprin-1 provides a platform for the association of DNA damage response proteins 

and contributes to the role of the nuclear envelope to generate specific 

subcompartments where damaged DNA is sequestered and comes in contact with 

DNA repair proteins and can be repaired as described for yeast (Figure 38, (Oza et 

al., 2009). 

 

 

Figure 38: Model illustrating Nesprin-1 and MMR interaction. The Nesprin-1 
interaction with the MutSα complex is a constitutive cellular event required for proper 
DNA repair. Therefore, a defect in this interaction chain leads to genome instability. 
 

Functional deficiency of the DDR and the MMR pathway leads to increased genomic 

instability. Based on an altered DDR network in Nesprin-1 deficient cancer cells, 

adequate DDR inhibitors might provide promising methods for selective killing of 
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cancerous cells and improve the efficiency of radiotherapy and chemotherapy. Thus, 

during therapy, cancer cells can be killed by DDR inhibitors whereas the surrounding 

healthy cells can be saved due to their diminished DDR levels. These results can 

open many doors for the development of DDR inhibitors in therapy. 

Since different DNA repair mechanisms exist for certain type of lesions in the 

genome sequence, special proteins are required to initiate repair signaling networks 

for maintaining genome stability. DDB1 functions in the NER machinery by 

participating in the initial steps of DNA repair (Chu et al., 1998; Abbas et al., 2008). 

Our findings suggest that Nesprin-1 interacts with DDB1 in vitro and in vivo. Future 

experiments are needed to elucidate the role of Nesprin-1 in NER signaling. We will 

try to answer these questions: How does Nesprin-1 fit into the picture of NER 

mechanisms and what might be the consequences of Nesprin-1 loss on the NER 

pathway? 

In conclusion, loss of Nesprin-1 triggers an altered cell fate which could lead to 

tumorigenesis. This could be achieved by altered gene expression, altered genome 

stability and an altered nuclear structure. Our data highlight changes in nuclear 

morphology, centrosome positioning, nuclear membrane structure, cytoskeleton 

organization, cellular aging and DNA damage responses upon loss of Nesprin-1. 

Careful evaluation of Nesprin-1 levels may therefore provide novel approaches for 

early disease diagnosis, intervention, and treatment. 



Material and Methods 

 70 

4. Materials and Methods 

4.1 Materials 

Kits 

M-MLV reverse transcriptase RNase H Minus-kit Promega 

NucleoSpin Extraction Kit     Macherey Nagel 

pGEM-T easy Cloning Kit     Promega 

Pure YieldTM Plasmid System    Promega 

Qiagen RNeasy Mini Kit     Qiagen 

Cell Line Nucleofector Kit V    Amaxa 

 

Enzymes 

Lysozyme       Sigma 

Restriction endonucleases     Life technologies, NEB 

RNAse       Boehringer 

T4 DNA ligase      Boehringer 

Taq polymerase      Boehringer 

Trypsin       Invitrogen 

 

Inhibitors 

Complete mini protease inhibitor cocktail  Sigma 

 

Antibiotics 

Ampicillin       Sigma 

Kanamycin       Sigma 
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Penicillin/Streptomycin     Biochrom 

 

Antibodies 

Primary Antibodies 

Mouse-anti-GFP (K3-184-2)    (Noegel et al., 2004) 

Rat-anti-α-tubulin (YL1/2)     (Kilmartin et al., 1982) 

Rabbit-anti-pAbK1      (Libotte et al., 2005) 

Mouse-anti-LAP2      BD Biosciences 

Rabbit-anti-LMNB1       Abcam 

Rabbit-anti- LMNA/C      Santa Cruz 

Rabbit-anti-Nesprin1 (SpecII)     S.Abraham, Thesis, 2004 

Rabbit-anti-pericentrin      Abcam 

Mouse-anti-emerin (4G5)      Abcam 

Mouse-anti-LAP-2       BD Transduction Laboratories  

Rabbit-anti-SUN1      Abcam  

Rabbit-anti-SUN2      Abcam  

Mouse-anti-NPC      Abcam  

Mouse-anti-phospho-Ser139 H2AX    Millipore  

Mouse-anti-phospho-Ser317 Chk1   Cell Signalling  

Mouse-anti-phospho-Ser345 Chk1   Cell Signalling  

Mouse-anti-phospho-Thr68 Chk2    Cell Signalling  

Mouse-anti-Ku70+Ku80     Abcam  

Rabbit-anti-MSH2       Abcam  

Rabbit-anti-MSH6      Abcam  

Rabbit-anti-DDB1      Abcam 

Mouse-anti-Nesprin-1 (K43-222-2)   (Taranum et al., 2012a) 
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Mouse-anti-γ-tubulin      Sigma 

 

Secondary Antibodies 

Anti-mouse IgG, Alexa488-conjugated   Sigma 

Anti-mouse IgG, Alexa568-conjugated   Sigma 

Anti-goat IgG, Alexa568-conjugated   Sigma 

Anti-mouse IgG Alexa Fluor 488    Invitrogen 

Anti-mouse IgG POD      Sigma 

Anti-rabbit IgG POD      Sigma 

Anti-rat IgG POD      Sigma 

 

Bacterial host strains 

E. coli XL1 blue      (Bullock et al., 1987) 

E. coli DH5α        (Hanahan, 1983) 

 

Oligonucleotides 

Nesprin-1-RT-F  CGAACTTTCACAAAATGGATCA 

Nesprin-1-RT-R  TGGTCCACATCAATCCAAGA 

MSH2-RT-F   GGAGAGATTGAATTTAGTGGAAGC 

MSH2-RT-R   TCATTTCCTGAAACTTGGAGAA 

MSH6-RT-F   CATGCGGCGACTGTTCTAT 

MSH6-RT-R   TCATTTCCTGAAACTTGGAGAA 

DDB1-RT-F   TCCAGATCACTTCAGCATCG 

DDB1-RT-R   AGGTGGTCATCAGGATGGAG 
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Media, Buffers and solutions 

10x NCP buffer, pH 8.0 

12.1 g TrisHCl, pH 8.0 (100 mM) 

87.0 g NaCl (1.5 M) 

5.0 ml Tween 20 

2.0 g sodium azide, add H2O to make 1 liter 

 

1x PBS, pH 7.4 

0.2 g KCl (10 mM) 

8.0 g NaCl (10 mM)  

1.15 g Na2HPO4 (16 mM)  

0.2 g KH2PO4 (32 mM) dissolved in 900 ml deionized H2O, adjust to pH 7.4, add H2O 

to make 1 liter, autoclaved. 

 

Gel drying buffer 

EtOH (50%) 

Glycerin (5%) 

Water (45%) 

 

Destaining solution 

EtOH (5%) 

Acetic acid (7%) 

Water (88%) 

 

10 x SDS-PAGE running buffer 

 0.25 M Tris 
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1.9 M Glycine 

1% SDS 

 

4.2 Molecular biological methods 

4.2.1 Primer design 

Fragments of mouse Nesprin-1-165 (Enaptin-165) were PCR amplified with the 

following primers: Nesprin-1-165-1-286 (5′-

GCGAATTCATGGCAACCTCCAGAGCATC-3′ and 5′-

GCGTCGACTTCTGTTGAAACTGGGCCAC-3′), Nesprin-1-165-573-858 (5′-

GCGAATTCAAATTCATGAGTAAGCACTG-3′ and 5′-

GCGTCGACTTAGAGTGTCAAGGATTTCTTAC-3′), Nesprin-1-165-859-1144 (5′-

GCGAATTCATAGAGAAGGGCAGCCAAAG-3′ and 5′-

GCGTCGACTAGCCATTCAATGGGCTC-3′), Nesprin-1-1145-1431 (5′-

GCGAATTCAACCACGACGAGTTAGATATG-3′, and 5′-

GCGTCGACTTAGAAGTGGTGAAGCACATAC-3′) and cloned into the EcoRI/SalI 

site of pGBKT7 (BD Biosciences Clontech, Palo Alto, CA), into pGEX-4T-2 

(Amersham, Piscataway, NJ) or into pEGFP-C vectors (BD Biosciences Clontech). 

Fragments of human Nesprin-1 were PCR amplified with the following primers: 

Nesprin-1-7938-8644 (5′-TCACGTTTTGAAGATTGGCTGAAGTCTTCA-3′ and 5′-

GGGTCTGTGAGTCCCACATCAGGAAGGAGCACC-3′), Nesprin-1-8034-8749 (5′-

CATTTTATTGGCCAGCGTGAGGAGTTTGAG-3′ and 5′-

AGATACACGAATGGCCCTCCTCCACTCTGA-3′ cloned into pEGFP-C vectors (BD 

Biosciences Clontech). 

Nesprin-1 knock down in HF and CH310T1/2 cells was performed by plasmid based 

shRNA (short hairpin RNA) technique. 
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Oligonucleotides were cloned into pSHAG-1 vector using BseRI and BamHI 

restriction sites (Paddison et al., 2002). To knock down Nesprin-1 in HF cells, two 

sets of primers were designed by taking 31 nucleotides from each of exon 6 (5’-

GGATGAAGCGAATCCATGCTGTGGCTAACAT-3’) and exon 143 (5’-

GAAGGAGGTCAGTCGTCATATCAAGGAACTG-3’) of human SYNE1. 

For Nesprin-1 knock down in CH310T1/2 cells, two sets of primers were designed by 

taking 31 nucleotides from each of exon 5 (5’-

GGCTAACATTGGCACCGCACTCAAATTCCTT-3’) and exon 32 (5’-

AGAAGTGGCAGCAGTTTAATTCTGACCTCAA-3’) of murine SYNE1. The 

procedure described in (http://hannonlab.cshl.edu/protocols/BseRI-

BamHI_Strategy.pdf) was used for primer design. 

 

4.2.2 Annealing of oligonucleotides 

To anneal phosphorylated forward and reverse single-stranded oligonucleotides, 9 µl 

forward oligonucleotide (100 mM) and 9 µl reverse oligonucleotide (100 mM) were 

mixed with 9 µl of 10X annealing buffer (100 mM Tris-HCl, pH 8.0, 500 mM NaCl, 70 

mM MgCl2). The mixture of oligos was kept in the boiling water for 5 minutes and 

incubated until the temperature of the water decreased to RT. Annealed oligos were 

diluted in HPLC water with the ratio of 1:60 and ligated into the pSHAG-1 vector 

(Paddison et al., 2002). 

 

4.2.3 Digestion of pSHAG-1 vector 

1 μg of pSHAG-1 vector were linearized using restriction enzymes (BseRI and 

BamHI) that generate overhanging ends compatible with the target sequences. The 

digested product was analyzed by agarose gel electrophoresis.  
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To prevent religation, the 5´-ends of the linearized plasmid were dephosphorylated 

by calf intestinal alkaline phosphatase (CIP). For this, 1-5 μg of the vector (89 µl) 

were incubated with 1 U/µl of CIP (1 µl) adding 10 µl 10XCIP buffer in a 100 μl 

reaction volume (37°C, 30 min). The dephosphorylated vector was purified by the 

High Pure PCR Product Purification Kit (Roche). 

 

4.2.4 Ligation and cloning procedure 

1 μg of linearized and purified pSHAG-1 vector were used for the ligation with 1 µl 

(1:60 diluted) double-stranded oligonucleotides. 4 µl of T4 Ligase buffer, 2 µl of T4 

DNA Ligase (1 U/ μl), and nuclease free water were added to a total volume of 20 µl. 

This reaction was incubated at 15°C overnight and 5 μl of the ligation were mixed 

with competent E. coli XL1 blue. Incubation was conducted for 15 min on ice. The 

cells were shocked by heat exposure at 42°C for 90 s and then incubated 2 min on 

ice. In the next step, 1 ml medium was added to the transformed bacteria followed by 

1 h incubation at 37°C. Finally, 50 μl were spread on LB agar plates containing 

kanamycin (50 mg/ml). The plates were incubated at 37°C overnight.  

Colonies (9-15) were picked and DNA-Mini preparation was performed according to 

Birnboim and Doly (Birnboim and Doly, 1979). Briefly, an overnight culture of single 

clones was centrifuged for 5 min at 5.500 rpm at room temperature (RT). 

Subsequently, the pellet was suspended in 300 µl buffer 1 (50 mM Tris-HCl, pH 8.0, 

10 mM EDTA, 100 µg/ml RNAse A). After addition of buffer 2 (200 mM NaOH, 1% 

SDS), the mixture was incubated for 5 min (RT). The reaction was stopped by adding 

300 µl buffer 3 (3 M KAc, pH 5.5, 1% SDS) and the sample was centrifuged at 

14.000 rpm for 10 min. The supernatant (650 µl) was mixed with 450 µl isopropanol 

and centrifuged again at 14.000 rpm for 20 min to precipitate the DNA. After drying 
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the DNA pellet, it was dissolved with 50 µl Tris-HCl, pH 8.0, and analysed by 

sequencing. 

 

4.2.5 DNA Midi/Maxi preparation 

Correct clones were cultured overnight in 250 ml LB medium containing kanamycin 

(50 mg/ml). Plasmid DNA was isolated using PureYield™ Plasmid Midiprep System 

(Promega). Briefly, 250 ml of an overnight E. coli culture were centrifuged (7000 rpm, 

10 min) and subsequently the pellet was suspended in 6 ml cell suspension solution. 

After the addition of 6 ml cell lysis solution, the mixture was carefully mixed and 

incubated 2 min (RT). For neutralization, 10 ml neutralization solution was incubated 

for 3 minutes (RT), and subsequently centrifuged (10,000 rpm, 15 min). DNA was 

bound to the resin of a binding-column, washed with 5 ml endotoxin removal wash 

followed by a washing step with 20 ml column wash solution and eluted with 300 μl 

nuclease free water. 

 

4.2.6 RNA isolation and cDNA generation for quantitative RT-PCR 

analysis 

For RT-PCR, total RNA was extracted for gene expression analysis using TRIzol 

(Invitrogen). Briefly, the cells were trypsinised and centrifuged in ice cold PBS (1200 

rpm, 5 min). The pellet was suspended in 1 ml TRIzol (50-100 mg cells) and 

incubated for 5 min (RT). Subsequently, the chloroform (for each ml of TRIzol 200 μl) 

was added, mixed and incubated at RT for 2-3 min followed by centrifugation (12,000 

g, 15 min). The aqueous phase was precipitated with isopropanol (for each ml of 

solution 500 μl isopropanol) and incubated for 10 min (RT) and centrifuged (12,000 g, 

10 min). The pellet was washed with 75% ethanol. After a centrifugation step, the 
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pellet was dried and dissolved in RNAse-free water. Finally, the concentration and 

quality of the RNA was determined with the Agilent Bioanalyser (Agilent 

Technologies) and stored at -80°C. 

cDNA was synthesized by reverse transcription of 5 μg RNA with oligo dT18 using 

Superscript II reverse transcriptase (Invitrogen) according to the manufacturer’s 

guide. In brief, 1µg of total RNA was mixed with 2 µl of random primers (pdN6 50 µM, 

Stratagene) and filled up to 15 µl with nuclease free water. After incubation for 5 min 

at 70°C and cooling for 2 min on ice, 5 µl 5x reaction buffer (Promega), 1.25 µl 

dNTP’s (10 mM, Stratagene), 1 µl RNase inhibitor (Rnasin 40 U/µl, Promega), 1.75 µl 

nuclease free water and 1 µl M-MLV-RT (200 U/µl) were added. The samples were 

incubated for 1 h at 37°C and stored at -20°C until use. 

Each sample for real-time RT-PCR analysis contained 200 ng of cDNA, SYBR Green 

Master Mix and 0.4 μM of each primer. The PCR amplification and real-time 

fluorescence detection were performed with the Opticon III instrument (MJ Research) 

using the QuantitectTM SYBR1 green PCR kit (Qiagen). As quantification standard 

defined concentrations of annexinA7 cDNA (Doring et al., 1991) were used for 

amplification. PCR amplification was carried out according to the manufacturer’s 

instruction and all PCR products were amplified in a linear cycle. GAPDH mRNA was 

employed as an internal standard, and each gene expression was determined by RT-

PCR and normalized against GAPDH mRNA levels. All PCR products were amplified 

in a linear cycle. Data are the mean +/-SD from three samples per group of three 

independent experiments. 
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4.3 Protein chemical and immunological methods 

4.3.1 Protein extraction from E.coli and mammalian cells 

E. coli cells were lysed with prokaryotic lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM 

NaCl, 1% Sarcosyl, 1 mM DTT, 1 mM benzamidine, 1 mM PMSF, Proteinase 

Inhibitor Cocktail (PIC, Sigma), and lysozyme). Following 1 h incubation in lysis 

buffer, the cells were sonicated and centrifuged (13.000 g, 4°C, 20 min). For 

incubation with GST-Sepharose 4B, 1% Triton X-100 was added to the lysis buffer. 

Mammalian cells were trypsinised and washed with ice cold 1x phosphate buffered 

saline (PBS) plus protease inhibitor (DTT, Benzamidine and PMSF at 1 mM each). 

After centrifugation at 15,000 rpm at 4°C the pellet was resuspended in lysis buffer 

(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% Na-desoxycholate, 

0.1 mM Na3VO4, 0.1% SDS, PIC and protease inhibitors (DTT, Benzamidine and 

PMSF). The sample was denatured in 5x SDS sample buffer at 95°C for 5 minutes. 

The samples were used for SDS-PAGE and western blot analyses. 

 

5 x SDS-Sample buffer 

5 × SDS loading buffer  

2.5 ml 1M Tris-HCl; pH 6.5  

4.0 ml 10% SDS  

2.0 ml Glycerol  

1.0 ml 14.3 M ß-Mercaptoethanol 

200 μl 10% Bromophenol blue 
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4.3.2 Western blotting 

For immunoblotting, equal amounts of total cell protein were separated by SDS-

PAGE (12%, 3%-12% gradient gel). After the SDS page, sheets of Whatman filter 

papers and membranes were pre-cut to the gel dimensions. The Whatman papers, 

sponges, membranes, and gels were also immersed in cold transfer buffer for 5 min. 

For protein transfer, semi-dry or wet blotting transfer was used. Subsequently, the 

membrane was blocked with 12.5 ml 1% blocking solution under constant shaking for 

1 h. After blocking, the membrane was incubated with primary antibody solution for 

either overnight (+4°C) or 1 h (RT). The membrane was washed three times with 

TBS for 15 min. The corresponding appropriate horseradish peroxidase coupled 

secondary antibodies (1:10.000) were incubated for 1 h, and the membrane was 

washed three times with TBS. Antigen-antibody complexes were detected by using 

the ECL western blotting detection solution. The protein bands were visualized using 

X-ray films. After imaging, the membrane was stripped with 0.2 M NaOH for 15 min. 

The stripped membrane was washed twice with TBS for 15 min. After washing the 

membrane, the membrane was blocked with blocking solution for 1 h at room 

temperature and used for antibody incubation. 

 

Transfer buffer SDS-gels    TBS-T 

48 mM Tris-HCl, pH 8.3    15 mM NaCl 

39 mM glycine     1 mM Tris-HCl, pH 8.0  

10% ethanol       0.04% Tween 20 (freshly added) 
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Ponceau staining solution  

2 g Ponceau S  

100 ml 3% Trichloroacetic acid  

0.04% Tween 20 

 

ECL solution 

2 ml 1 M Tris-HCl (pH 8.0) 

200 μl Luminol (0.25 M in DMSO) 3-aminonaphthylhydrazide 

89 μl (0.1 M in DMSO) p-coumaric acid 

18 ml dH2O 

6.3 μl 30% H2O2 

 

Blocking solution 

4% milk-powder in TBS-T 

 

4.3.3 Recombinant protein purification and pull downs 

To identify interaction partners of Nesprin-1, GST-Nesprin-1-286 was used for pull 

down experiments. It encodes the F-actin binding domain of Nesprin-1 (Taranum et 

al., 2012). For pull down assays C2F3 cells were lysed in lysis buffer (50 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 1% NP40, 0.5% sodium desoxycholate, 1 mM DTT, 1 

mM benzamidine, and 1 mM PMSF). For preclearing, lysates of cells were incubated 

with beads for one hour at 4°C followed by incubation with GST-Nesprin-1-286 and 

GST for control. Beads were washed three times with PBS (500 g, 4°C, 1 min) and 

boiled in SDS sample buffer (95°C, 5 min). Samples were separated using 12% SDS 

polyacrylamide gels and stained with Coomassie Brilliant Blue. Protein bands of 
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interest were cut out and subjected to LCMS analysis. To confirm the interactions, 

samples were run using 12% SDS polyacrylamide gels and immunoblotted with a 

rabbit polyclonal MSH2, MSH6, and DDB1 antibody (Abcam). 

 

Coomassie Blue R 250                                               

0,1% Coomassie brilliant blue R 250                             

50% Ethanol  

10% Acetic acid 

 

4.3.4 Co-immunoprecipitation (Co-IP) 

For immunoprecipitation, COS7 cells were transfected with GFP-Nesprin-1-286. The 

untreated and UV treated cells (20 J/m2) were immediately suspended in 1 ml 

hypotonic buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, and 10 mM KCl, PIC) 

followed by centrifugation (1000 rpm, 20 s, 4°C). Pellets were again resuspended in 

1 ml hypotonic buffer. Cell suspensions were lysed through a needle (0.4 mm) for 10 

times and incubated on ice for 10 min. Nuclear and cytoplasmic fractions were 

separated by centrifugation (1000 rpm, 10 min, 4°C). Pellets (nuclear fraction) were 

washed with 1 ml PBS (1000 rpm, 6x10 min, 4°C). Finally nuclear fractions were pre-

cleared with Protein-A-Sepharose CL-4B (Pharmacia Biotech) for 2 h at 4°C. The 

samples were incubated for 2 h at 4°C with GFP-TRAP beads (ChromoTek). 

Immunocomplexes were washed three times with PBS supplemented with protease 

inhibitors. The samples from pull down and immunoprecipitations were boiled in SDS 

sample buffer (95°C, 5 min) and analyzed by western blot. 
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4.3.5 Immunofluorescence  

Immunofluorescence was done as described (Taranum et al., 2012). The cells were 

grown on 12 mm coverslips and fixed with 3% paraformaldehyde (5 min, RT), 

followed by permeabilization with 0.5% Triton X-100 for 3 minutes (RT). In another 

method for fixation and permeabilization, the cells were incubated with cold methanol 

(-20°C) for 5 minutes. Subsequently, the fixed cells were washed three times with 1X 

PBS and  incubated for 15 minutes with blocking solution (1x PBG: PBS containing 

5% BSA and 0.045% fish gelatine in 1x PBS, pH 7.4). After blocking, primary 

antibodies were diluted in PBG and incubated 1 h (RT) or overnight (4°C). Antibodies 

used were specific for Emerin (4G5, Abcam), LAP-2 (BD Transduction Laboratories), 

Lamin B1 (Abcam), Lamin A/C (StCruz), SUN1 (Abcam), SUN2 (Abcam), mAb414 

recognizing NPC (Abcam), anti-phospho-Ser139 H2AX (Millipore), Ku70 (Abcam), 

MSH2 (Abcam), MSH6 (Abcam), rabbit polyclonal Nesprin-2 pAbK1 (Padmakumar et 

al., 2005), anti-tubulin YL1/2. Nesprin-1 polyclonal antibodies SpecII and mAb K58-

398-2 directed against the C-terminus of human Nesprin-1, affinity-purified rabbit 

anti-Nesprin-1 ABD and mAb K43-322-2 directed against the N-terminus were also 

used (Taranum et al., 2012a). The cells were washed three times for 5 minutes each, 

the samples were incubated for appropriate secondary antibodies conjugated to 

Alexa 488/568 (1:1.000 diluted in PBG) were added for one hour at room 

temperature. Nuclear DNA was stained with 4’,6-Diamidino-2’-phenylindole (DAPI, 

Sigma). Finally the coverslips were mounted on glass slides with gelvatol. Imaging 

was done by confocal laser scanning microscopy (Leica TCS-SP5). Images were 

processed using TCS-SP5 software.  
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4.4 Cell culture and transfections  

CMT93 (mouse rectum carcinoma), CT26 (murine colorectal carcinoma), WIDR 

(human colorectal carcinoma), CH310T1/2 cells (embryonic mouse mesenchymal 

stem cell line), C2F3 (mouse myoblast), HaCaT (human keratinocyte), HeLa (human 

epithelial carcinoma), Hep3B (human liver cancer) and Huh7 (human hepatocellular 

cancer), DLD-1 (human colorectal carcinoma (Plaschke et al., 2006)) cell lines were 

grown in high glucose Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma) 

supplemented with 10% FBS, 2 mM glutamine, and 1% penicillin/streptomycin. 

Primary human dermal fibroblasts (HF) were isolated from foreskin and cultured in 

high glucose DMEM. All cells were grown in a humidified atmosphere containing 5% 

CO2.  

To knock down Nesprin-1, CH310T1/2 cells were transfected twice at intervals of 4 d 

using the Amaxa Nucleofector kit V solution (Lonza). For HF cells, Lipofectamine 

2000 transfection reagent (Invitrogen) was utilized. 

 

Gelvatol PBG (pH 7.4) 

4.8 g Polyvinyl alcohol (87%-89%, Sigma P 8136) 

12 g Glycerol  

Add 12 ml de-ionized water, stir (RT, 10h) 

24 ml 0.2 M Tris-HCl; pH 8.5; stir (50°C, 20-40 min) 

cenrifugation (15 min, 5000 g) 

2.5% Diazabicyclooktan (DABCO)  

Aliquot-storage: – 20°C 
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4.5 Cell biological assays 

4.5.1 Heat stress experiments 

Cells were allowed to attach onto 12 mm glass coverslips for two days before the 

experiment. For heat stress, cells were transferred for heat treatment to a 45°C 

incubator for 30 min. After fixation with cold methanol at -20°C for 5 min cells were 

incubated with monoclonal antibody LAP2 (Abcam) to detect nuclear deformations. 

 

4.5.2 Senescence-associated β-galactosidase  

The cells were seeded in 24-well plates. After a 24 h incubation period, they were 

fixed with 2% formaldehyde, 0.2% glutaraldehye (5 min, RT). Cells were washed 

three times with PBS and incubated at 37°C with freshly prepared senescence-

associated β-Gal (SA-β-Gal) staining solution (1 mg/ml 5-bromo-4-chloro-3-indolyl β-

D-galactoside (X-Gal), 40 mM citric acid/sodium phosphate, pH 6.0, 5 mM potassium 

ferrocyanide K4Fe(CN)6, 5 mM potassium ferricyanide K3Fe(CN)6, 150 mM NaCl, 2 

mM MgCl2) for 8 h. The cells were imaged using bright field microscopy at 

40xmagnification. 

 

4.5.3 Cell migration assay 

Cell migration was analyzed according to the manufacturer's instructions using an 

Ibidi Culture Insert (Ibidi, Munich, Germany). 100 μl of a cell suspension (4x105 

cells/ml) was applied into each well. After 24 h incubation period at 37°C and 5% 

CO2, the culture insert was removed and the well was filled with serum-supplemented 

normal growth medium (300 μl of cell media). Cell migration into the wounded area 

was monitored using a Leica CTR7000 HS (10x0.3 objective). Images were captured 
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at various time points and the cell velocity was calculated by Image J. Experiments 

were repeated at least thrice for each cell type. 

 

4.5.4 DDR assays 

To assay for DNA damage response, the cells were grown for 24 h in 500 μM 

hydroxyurea (HU) or taken after 20 J/m2 UV (Hajdu et al., 2011). The HU treated 

cells were processed for immunofluorescence and western blot analysis, UV 

exposed cells were processed for immunofluorescence.  

Cell synchronization was performed according to a recent study (Li et al., 2013). In 

brief, cells were arrested at G1/S by culturing for 18 h in 2 mM thymidine-containing 

medium, and then for 10 h in thymidine-free medium. Subsequently, cells were 

incubated with complete medium containing thymidine for an additional 15 h before 

release into complete medium. Finally, cells were harvested at 0 h (G1 phase), 1 h 

(early S), 2.5 h (middle S), 4 h (late S), and 8 h (G2/M). The cell-cycle status was 

confirmed by flow cytometry. FACS cell sorting was carried out at the central facilities 

of the CMMC. 



References 

 87 

5. References 
 

Acharya, S., Wilson, T., Gradia, S., Kane, M. F., Guerrette, S., Marsischky, G. T., 
Kolodner, R., and Fishel, R. (1996). hMSH2 forms specific mispair-binding 
complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A 93, 13629-
13634. 

Agudo, D., Gomez-Esquer, F., Martinez-Arribas, F., Nunez-Villar, M. J., Pollan, M., 
and Schneider, J. (2004). Nup88 mRNA overexpression is associated with high 
aggressiveness of breast cancer. Int J Cancer 109, 717-720. 

Apel, E. D., Lewis, R. M., Grady, R. M., and Sanes, J. R. (2000). Syne-1, a 
dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the 
neuromuscular junction. J Biol Chem 275, 31986-31995. 

Attali, R., Warwar, N., Israel, A., Gurt, I., McNally, E., Puckelwartz, M., Glick, B., 
Nevo, Y., Ben-Neriah, Z., and Melki, J. (2009). Mutation of SYNE-1, encoding 
an essential component of the nuclear lamina, is responsible for autosomal 
recessive arthrogryposis. Hum Mol Genet 18, 3462-3469. 

Bengtsson, L., and Wilson, K. L. (2004). Multiple and surprising new functions for 
emerin, a nuclear membrane protein. Curr Opin Cell Biol 16, 73-79. 

Berger, R., Theodor, L., Shoham, J., Gokkel, E., Brok-Simoni, F., Avraham, K. B., 
Copeland, N. G., Jenkins, N. A., Rechavi, G., and Simon, A. J. (1996). The 
characterization and localization of the mouse thymopoietin/lamina-associated 
polypeptide 2 gene and its alternatively spliced products. Genome Res 6, 361-
370. 

Bione, S., Maestrini, E., Rivella, S., Mancini, M., Regis, S., Romeo, G., and Toniolo, 
D. (1994). Identification of a novel X-linked gene responsible for Emery-Dreifuss 
muscular dystrophy. Nat Genet 8, 323-327. 

Birnboim, H. C., and Doly, J. (1979). A rapid alkaline extraction procedure for 
screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513-1523. 

Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985). DNA repair in 
an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells 
is much more efficient than in the genome overall. Cell 40, 359-369. 

Broers, J. L., Raymond, Y., Rot, M. K., Kuijpers, H., Wagenaar, S. S., and 
Ramaekers, F. C. (1993). Nuclear A-type lamins are differentially expressed in 
human lung cancer subtypes. Am J Pathol 143, 211-220. 

Bronner, C. E., Baker, S. M., Morrison, P. T., Warren, G., Smith, L. G., Lescoe, M. K., 
Kane, M., Earabino, C., Lipford, J., Lindblom, A., and et al. (1994). Mutation in 
the DNA mismatch repair gene homologue hMLH1 is associated with hereditary 
non-polyposis colon cancer. Nature 368, 258-261. 



References 

 88 

Brustmann, H., and Hager, M. (2009). Nucleoporin 88 expression in normal and 
neoplastic squamous epithelia of the uterine cervix. Ann Diagn Pathol 13, 303-
307. 

Cann, K. L., and Hicks, G. G. (2007). Regulation of the cellular DNA double-strand 
break response. Biochem Cell Biol 85, 663-674. 

Capo-chichi, C. D., Cai, K. Q., Testa, J. R., Godwin, A. K., and Xu, X. X. (2009). Loss 
of GATA6 leads to nuclear deformation and aneuploidy in ovarian cancer. Mol 
Cell Biol 29, 4766-4777. 

Cartegni, L., di Barletta, M. R., Barresi, R., Squarzoni, S., Sabatelli, P., Maraldi, N., 
Mora, M., Di Blasi, C., Cornelio, F., Merlini, L., Villa, A., Cobianchi, F., and 
Toniolo, D. (1997). Heart-specific localization of emerin: new insights into 
Emery-Dreifuss muscular dystrophy. Hum Mol Genet 6, 2257-2264. 

Chancellor, T. J., Lee, J., Thodeti, C. K., and Lele, T. (2010). Actomyosin tension 
exerted on the nucleus through nesprin-1 connections influences endothelial 
cell adhesion, migration, and cyclic strain-induced reorientation. Biophys J 99, 
115-123. 

Chen, C. Y., Chi, Y. H., Mutalif, R. A., Starost, M. F., Myers, T. G., Anderson, S. A., 
Stewart, C. L., and Jeang, K. T. (2012). Accumulation of the inner nuclear 
envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. 
Cell 149, 565-577. 

Chow, K. H., Factor, R. E., and Ullman, K. S. (2012). The nuclear envelope 
environment and its cancer connections. Nat Rev Cancer 12, 196-209. 

Chowdhury, D., Choi, Y. E., and Brault, M. E. (2013). Charity begins at home: non-
coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 14, 181-189. 

Christmann, M., Tomicic, M. T., Roos, W. P., and Kaina, B. (2003). Mechanisms of 
human DNA repair: an update. Toxicology 193, 3-34. 

Clifford, B., Beljin, M., Stark, G. R., and Taylor, W. R. (2003). G2 arrest in response 
to topoisomerase II inhibitors: the role of p53. Cancer Res 63, 4074-4081. 

Collado, M., and Serrano, M. (2010). Senescence in tumours: evidence from mice 
and humans. Nat Rev Cancer 10, 51-57. 

Cottrell, J. R., Borok, E., Horvath, T. L., and Nedivi, E. (2004). CPG2: a brain- and 
synapse-specific protein that regulates the endocytosis of glutamate receptors. 
Neuron 44, 677-690. 

Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., Stahl, P. D., and 
Hodzic, D. (2006). Coupling of the nucleus and cytoplasm: role of the LINC 
complex. J Cell Biol 172, 41-53. 

de Boer, J., and Hoeijmakers, J. H. (2000). Nucleotide excision repair and human 
syndromes. Carcinogenesis 21, 453-460. 



References 

 89 

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., 
Schurra, C., Garre, M., Nuciforo, P. G., Bensimon, A., Maestro, R., Pelicci, P. 
G., and d'Adda di Fagagna, F. (2006). Oncogene-induced senescence is a DNA 
damage response triggered by DNA hyper-replication. Nature 444, 638-642. 

Difilippantonio, M. J., Zhu, J., Chen, H. T., Meffre, E., Nussenzweig, M. C., Max, E. 
E., Ried, T., and Nussenzweig, A. (2000). DNA repair protein Ku80 suppresses 
chromosomal aberrations and malignant transformation. Nature 404, 510-514. 

Djinovic-Carugo, K., Gautel, M., Ylanne, J., and Young, P. (2002). The spectrin 
repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett 513, 
119-123. 

Doherty, J. A., Rossing, M. A., Cushing-Haugen, K. L., Chen, C., Van Den Berg, D. 
J., Wu, A. H., Pike, M. C., Ness, R. B., Moysich, K., Chenevix-Trench, G., 
Beesley, J., Webb, P. M., Chang-Claude, J., Wang-Gohrke, S., Goodman, M. 
T., Lurie, G., Thompson, P. J., Carney, M. E., Hogdall, E., Kjaer, S. K., Hogdall, 
C., Goode, E. L., Cunningham, J. M., Fridley, B. L., Vierkant, R. A., Berchuck, 
A., Moorman, P. G., Schildkraut, J. M., Palmieri, R. T., Cramer, D. W., Terry, K. 
L., Yang, H. P., Garcia-Closas, M., Chanock, S., Lissowska, J., Song, H., 
Pharoah, P. D., Shah, M., Perkins, B., McGuire, V., Whittemore, A. S., Di 
Cioccio, R. A., Gentry-Maharaj, A., Menon, U., Gayther, S. A., Ramus, S. J., 
Ziogas, A., Brewster, W., Anton-Culver, H., Australian Ovarian Cancer Study 
Management, G., Australian Cancer, S., Pearce, C. L., and Ovarian Cancer 
Association, C. (2010). ESR1/SYNE1 polymorphism and invasive epithelial 
ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer 
Epidemiol Biomarkers Prev 19, 245-250. 

Doring, T., Greuer, B., and Brimacombe, R. (1991). The three-dimensional folding of 
ribosomal RNA; localization of a series of intra-RNA cross-links in 23S RNA 
induced by treatment of Escherichia coli 50S ribosomal subunits with bis-(2-
chloroethyl)-methylamine. Nucleic Acids Res 19, 3517-3524. 

Dou, Y., Milne, T. A., Tackett, A. J., Smith, E. R., Fukuda, A., Wysocka, J., Allis, C. 
D., Chait, B. T., Hess, J. L., and Roeder, R. G. (2005). Physical association and 
coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 
acetyltransferase MOF. Cell 121, 873-885. 

Downs, J. A., and Jackson, S. P. (2004). A means to a DNA end: the many roles of 
Ku. Nat Rev Mol Cell Biol 5, 367-378. 

Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer 
development. Cancer Lett 230, 6-19. 

Furukawa, K., and Hotta, Y. (1993). cDNA cloning of a germ cell specific lamin B3 
from mouse spermatocytes and analysis of its function by ectopic expression in 
somatic cells. EMBO J 12, 97-106. 

Gazzoli, I., Loda, M., Garber, J., Syngal, S., and Kolodner, R. D. (2002). A hereditary 
nonpolyposis colorectal carcinoma case associated with hypermethylation of 
the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated 



References 

 90 

allele in the resulting microsatellite instability-high tumor. Cancer Res 62, 3925-
3928. 

Gerace, L., Blum, A., and Blobel, G. (1978). Immunocytochemical localization of the 
major polypeptides of the nuclear pore complex-lamina fraction. Interphase and 
mitotic distribution. J Cell Biol 79, 546-566. 

Gillet, L. C., and Scharer, O. D. (2006). Molecular mechanisms of mammalian global 
genome nucleotide excision repair. Chem Rev 106, 253-276. 

Gough, L. L., and Beck, K. A. (2004). The spectrin family member Syne-1 functions 
in retrograde transport from Golgi to ER. Biochim Biophys Acta 1693, 29-36. 

Gough, L. L., Fan, J., Chu, S., Winnick, S., and Beck, K. A. (2003). Golgi localization 
of Syne-1. Mol Biol Cell 14, 2410-2424. 

Gould, V. E., Orucevic, A., Zentgraf, H., Gattuso, P., Martinez, N., and Alonso, A. 
(2002). Nup88 (karyoporin) in human malignant neoplasms and dysplasias: 
correlations of immunostaining of tissue sections, cytologic smears, and 
immunoblot analysis. Hum Pathol 33, 536-544. 

Grady, R. M., Starr, D. A., Ackerman, G. L., Sanes, J. R., and Han, M. (2005). Syne 
proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad 
Sci U S A 102, 4359-4364. 

Graumann, K., and Evans, D. E. (2010). Plant SUN domain proteins: components of 
putative plant LINC complexes? Plant Signal Behav 5, 154-156. 

Gros-Louis, F., Dupre, N., Dion, P., Fox, M. A., Laurent, S., Verreault, S., Sanes, J. 
R., Bouchard, J. P., and Rouleau, G. A. (2007). Mutations in SYNE1 lead to a 
newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39, 
80-85. 

Guidos, C. J., Williams, C. J., Grandal, I., Knowles, G., Huang, M. T., and Danska, J. 
S. (1996). V(D)J recombination activates a p53-dependent DNA damage 
checkpoint in scid lymphocyte precursors. Genes Dev 10, 2038-2054. 

Habraken, Y., Sung, P., Prakash, L., and Prakash, S. (1996). Binding of 
insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair 
proteins MSH2 and MSH3. Curr Biol 6, 1185-1187. 

Hajdu, I., Ciccia, A., Lewis, S. M., and Elledge, S. J. (2011). Wolf-Hirschhorn 
syndrome candidate 1 is involved in the cellular response to DNA damage. Proc 
Natl Acad Sci U S A 108, 13130-13134. 

Hanawalt, P. C. (2002). Subpathways of nucleotide excision repair and their 
regulation. Oncogene 21, 8949-8956. 

Haque, F., Lloyd, D. J., Smallwood, D. T., Dent, C. L., Shanahan, C. M., Fry, A. M., 
Trembath, R. C., and Shackleton, S. (2006). SUN1 interacts with nuclear lamin 
A and cytoplasmic nesprins to provide a physical connection between the 
nuclear lamina and the cytoskeleton. Mol Cell Biol 26, 3738-3751. 



References 

 91 

Hartlerode, A. J., and Scully, R. (2009). Mechanisms of double-strand break repair in 
somatic mammalian cells. Biochem J 423, 157-168. 

Hassold, T., Hall, H., and Hunt, P. (2007). The origin of human aneuploidy: where we 
have been, where we are going. Hum Mol Genet 16 Spec No. 2, R203-208. 

Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp 
Cell Res 37, 614-636. 

Hetzer, M. W., Walther, T. C., and Mattaj, I. W. (2005). Pushing the envelope: 
structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev 
Biol 21, 347-380. 

Holaska, J. M., Kowalski, A. K., and Wilson, K. L. (2004). Emerin caps the pointed 
end of actin filaments: evidence for an actin cortical network at the nuclear inner 
membrane. PLoS Biol 2, E231. 

Horn, H. F., Brownstein, Z., Lenz, D. R., Shivatzki, S., Dror, A. A., Dagan-Rosenfeld, 
O., Friedman, L. M., Roux, K. J., Kozlov, S., Jeang, K. T., Frydman, M., Burke, 
B., Stewart, C. L., and Avraham, K. B. (2013). The LINC complex is essential 
for hearing. J Clin Invest 123, 740-750. 

Iaccarino, I., Palombo, F., Drummond, J., Totty, N. F., Hsuan, J. J., Modrich, P., and 
Jiricny, J. (1996). MSH6, a Saccharomyces cerevisiae protein that binds to 
mismatches as a heterodimer with MSH2. Curr Biol 6, 484-486. 

Jacob, S., and Praz, F. (2002). DNA mismatch repair defects: role in colorectal 
carcinogenesis. Biochimie 84, 27-47. 

Kandert, S., Luke, Y., Kleinhenz, T., Neumann, S., Lu, W., Jaeger, V. M., Munck, M., 
Wehnert, M., Muller, C. R., Zhou, Z., Noegel, A. A., Dabauvalle, M. C., and 
Karakesisoglou, I. (2007). Nesprin-2 giant safeguards nuclear envelope 
architecture in LMNA S143F progeria cells. Hum Mol Genet 16, 2944-2959. 

Kastan, M. B., and Lim, D. S. (2000). The many substrates and functions of ATM. 
Nat Rev Mol Cell Biol 1, 179-186. 

Khatau, S. B., Bloom, R. J., Bajpai, S., Razafsky, D., Zang, S., Giri, A., Wu, P. H., 
Marchand, J., Celedon, A., Hale, C. M., Sun, S. X., Hodzic, D., and Wirtz, D. 
(2012). The distinct roles of the nucleus and nucleus-cytoskeleton connections 
in three-dimensional cell migration. Sci Rep 2, 488. 

Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., 
Searson, P. C., Hodzic, D., and Wirtz, D. (2009). A perinuclear actin cap 
regulates nuclear shape. Proc Natl Acad Sci U S A 106, 19017-19022. 

Kilmartin, J. V., Wright, B., and Milstein, C. (1982). Rat monoclonal antitubulin 
antibodies derived by using a new nonsecreting rat cell line. J Cell Biol 93, 576-
582. 

Knoess, M., Kurz, A. K., Goreva, O., Bektas, N., Breuhahn, K., Odenthal, M., 
Schirmacher, P., Dienes, H. P., Bock, C. T., Zentgraf, H., and zur Hausen, A. 



References 

 92 

(2006). Nucleoporin 88 expression in hepatitis B and C virus-related liver 
diseases. World J Gastroenterol 12, 5870-5874. 

Kobayashi, Y., Katanosaka, Y., Iwata, Y., Matsuoka, M., Shigekawa, M., and 
Wakabayashi, S. (2006). Identification and characterization of GSRP-56, a 
novel Golgi-localized spectrin repeat-containing protein. Exp Cell Res 312, 
3152-3164. 

Kolodner, R. (1996). Biochemistry and genetics of eukaryotic mismatch repair. 
Genes Dev 10, 1433-1442. 

Kulaksiz, G., Reardon, J. T., and Sancar, A. (2005). Xeroderma pigmentosum 
complementation group E protein (XPE/DDB2): purification of various 
complexes of XPE and analyses of their damaged DNA binding and putative 
DNA repair properties. Mol Cell Biol 25, 9784-9792. 

Kumaran, R. I., Muralikrishna, B., and Parnaik, V. K. (2002). Lamin A/C speckles 
mediate spatial organization of splicing factor compartments and RNA 
polymerase II transcription. J Cell Biol 159, 783-793. 

Kunkel, T. A., and Erie, D. A. (2005). DNA mismatch repair. Annu Rev Biochem 74, 
681-710. 

La Porta, C. A., Zapperi, S., and Sethna, J. P. (2012). Senescent cells in growing 
tumors: population dynamics and cancer stem cells. PLoS Comput Biol 8, 
e1002316. 

Laguri, C., Gilquin, B., Wolff, N., Romi-Lebrun, R., Courchay, K., Callebaut, I., 
Worman, H. J., and Zinn-Justin, S. (2001). Structural characterization of the 
LEM motif common to three human inner nuclear membrane proteins. Structure 
9, 503-511. 

Lamers, M. H., Perrakis, A., Enzlin, J. H., Winterwerp, H. H., de Wind, N., and Sixma, 
T. K. (2000). The crystal structure of DNA mismatch repair protein MutS binding 
to a G x T mismatch. Nature 407, 711-717. 

Lammerding, J., Hsiao, J., Schulze, P. C., Kozlov, S., Stewart, C. L., and Lee, R. T. 
(2005). Abnormal nuclear shape and impaired mechanotransduction in emerin-
deficient cells. J Cell Biol 170, 781-791. 

Lammerding, J., Schulze, P. C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R. D., 
Stewart, C. L., and Lee, R. T. (2004). Lamin A/C deficiency causes defective 
nuclear mechanics and mechanotransduction. J Clin Invest 113, 370-378. 

Lavin, M. F., and Kozlov, S. (2007). ATM activation and DNA damage response. Cell 
Cycle 6, 931-942. 

Le Dour, C., Schneebeli, S., Bakiri, F., Darcel, F., Jacquemont, M. L., Maubert, M. A., 
Auclair, M., Jeziorowska, D., Reznik, Y., Bereziat, V., Capeau, J., Lascols, O., 
and Vigouroux, C. (2011). A homozygous mutation of prelamin-A preventing its 
farnesylation and maturation leads to a severe lipodystrophic phenotype: new 
insights into the pathogenicity of nonfarnesylated prelamin-A. J Clin Endocrinol 
Metab 96, E856-862. 



References 

 93 

Lei, K., Zhu, X., Xu, R., Shao, C., Xu, T., Zhuang, Y., and Han, M. (2012). Inner 
nuclear envelope proteins SUN1 and SUN2 play a prominent role in the DNA 
damage response. Curr Biol 22, 1609-1615. 

Li, F., Mao, G., Tong, D., Huang, J., Gu, L., Yang, W., and Li, G. M. (2013). The 
histone mark H3K36me3 regulates human DNA mismatch repair through its 
interaction with MutSalpha. Cell 153, 590-600. 

Liang, F., and Jasin, M. (1996). Ku80-deficient cells exhibit excess degradation of 
extrachromosomal DNA. J Biol Chem 271, 14405-14411. 

Libotte, T., Zaim, H., Abraham, S., Padmakumar, V. C., Schneider, M., Lu, W., 
Munck, M., Hutchison, C., Wehnert, M., Fahrenkrog, B., Sauder, U., Aebi, U., 
Noegel, A. A., and Karakesisoglou, I. (2005). Lamin A/C-dependent localization 
of Nesprin-2, a giant scaffolder at the nuclear envelope. Mol Biol Cell 16, 3411-
3424. 

Lim, D. S., Vogel, H., Willerford, D. M., Sands, A. T., Platt, K. A., and Hasty, P. 
(2000). Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol 
Cell Biol 20, 3772-3780. 

Lim, S. O., Park, S. J., Kim, W., Park, S. G., Kim, H. J., Kim, Y. I., Sohn, T. S., Noh, 
J. H., and Jung, G. (2002). Proteome analysis of hepatocellular carcinoma. 
Biochem Biophys Res Commun 291, 1031-1037. 

Lin, F., Blake, D. L., Callebaut, I., Skerjanc, I. S., Holmer, L., McBurney, M. W., 
Paulin-Levasseur, M., and Worman, H. J. (2000). MAN1, an inner nuclear 
membrane protein that shares the LEM domain with lamina-associated 
polypeptide 2 and emerin. J Biol Chem 275, 4840-4847. 

Lingle, W. L., and Salisbury, J. L. (2001). Methods for the analysis of centrosome 
reproduction in cancer cells. Methods Cell Biol 67, 325-336. 

Lipkin, S. M., Wang, V., Jacoby, R., Banerjee-Basu, S., Baxevanis, A. D., Lynch, H. 
T., Elliott, R. M., and Collins, F. S. (2000). MLH3: a DNA mismatch repair gene 
associated with mammalian microsatellite instability. Nat Genet 24, 27-35. 

Liu, J., Lee, K. K., Segura-Totten, M., Neufeld, E., Wilson, K. L., and Gruenbaum, Y. 
(2003). MAN1 and emerin have overlapping function(s) essential for 
chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl 
Acad Sci U S A 100, 4598-4603. 

Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., 
Carattini-Rivera, S., DeMayo, F., Bradley, A., Donehower, L. A., and Elledge, S. 
J. (2000). Chk1 is an essential kinase that is regulated by Atr and required for 
the G(2)/M DNA damage checkpoint. Genes Dev 14, 1448-1459. 

Lu, W., Schneider, M., Neumann, S., Jaeger, V. M., Taranum, S., Munck, M., 
Cartwright, S., Richardson, C., Carthew, J., Noh, K., Goldberg, M., Noegel, A. 
A., and Karakesisoglou, I. (2012). Nesprin interchain associations control 
nuclear size. Cell Mol Life Sci 69, 3493-3509. 



References 

 94 

Luke, Y., Zaim, H., Karakesisoglou, I., Jaeger, V. M., Sellin, L., Lu, W., Schneider, 
M., Neumann, S., Beijer, A., Munck, M., Padmakumar, V. C., Gloy, J., Walz, G., 
and Noegel, A. A. (2008). Nesprin-2 Giant (NUANCE) maintains nuclear 
envelope architecture and composition in skin. J Cell Sci 121, 1887-1898. 

Mahaney, B. L., Meek, K., and Lees-Miller, S. P. (2009). Repair of ionizing radiation-
induced DNA double-strand breaks by non-homologous end-joining. Biochem J 
417, 639-650. 

Maraldi, N. M., Lattanzi, G., Cenni, V., Bavelloni, A., Marmiroli, S., and Manzoli, F. A. 
(2010). Laminopathies and A-type lamin-associated signalling pathways. Adv 
Enzyme Regul 50, 248-261. 

Markiewicz, E., Tilgner, K., Barker, N., van de Wetering, M., Clevers, H., Dorobek, 
M., Hausmanowa-Petrusewicz, I., Ramaekers, F. C., Broers, J. L., Blankesteijn, 
W. M., Salpingidou, G., Wilson, R. G., Ellis, J. A., and Hutchison, C. J. (2006). 
The inner nuclear membrane protein emerin regulates beta-catenin activity by 
restricting its accumulation in the nucleus. EMBO J 25, 3275-3285. 

Marme, A., Zimmermann, H. P., Moldenhauer, G., Schorpp-Kistner, M., Muller, C., 
Keberlein, O., Giersch, A., Kretschmer, J., Seib, B., Spiess, E., Hunziker, A., 
Merchan, F., Moller, P., Hahn, U., Kurek, R., Marme, F., Bastert, G., 
Wallwiener, D., and Ponstingl, H. (2008). Loss of Drop1 expression already at 
early tumor stages in a wide range of human carcinomas. Int J Cancer 123, 
2048-2056. 

Marsischky, G. T., Filosi, N., Kane, M. F., and Kolodner, R. (1996). Redundancy of 
Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch 
repair. Genes Dev 10, 407-420. 

Marti, T. M., Hefner, E., Feeney, L., Natale, V., and Cleaver, J. E. (2006). H2AX 
phosphorylation within the G1 phase after UV irradiation depends on nucleotide 
excision repair and not DNA double-strand breaks. Proc Natl Acad Sci U S A 
103, 9891-9896. 

Martin, A., and Scharff, M. D. (2002). AID and mismatch repair in antibody 
diversification. Nat Rev Immunol 2, 605-614. 

Martinez, N., Alonso, A., Moragues, M. D., Ponton, J., and Schneider, J. (1999). The 
nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer 
Res 59, 5408-5411. 

Masica, D. L., and Karchin, R. (2011). Correlation of somatic mutation and 
expression identifies genes important in human glioblastoma progression and 
survival. Cancer Res 71, 4550-4561. 

McKeon, F. D., Kirschner, M. W., and Caput, D. (1986). Homologies in both primary 
and secondary structure between nuclear envelope and intermediate filament 
proteins. Nature 319, 463-468. 

Mejat, A., and Misteli, T. (2010). LINC complexes in health and disease. Nucleus 1, 
40-52. 



References 

 95 

Melis, J. P., Luijten, M., Mullenders, L. H., and van Steeg, H. (2011). The role of 
XPC: implications in cancer and oxidative DNA damage. Mutat Res 728, 107-
117. 

Mellad, J. A., Warren, D. T., and Shanahan, C. M. (2011). Nesprins LINC the nucleus 
and cytoskeleton. Curr Opin Cell Biol 23, 47-54. 

Mellon, I., Spivak, G., and Hanawalt, P. C. (1987). Selective removal of transcription-
blocking DNA damage from the transcribed strand of the mammalian DHFR 
gene. Cell 51, 241-249. 

Mislow, J. M., Holaska, J. M., Kim, M. S., Lee, K. K., Segura-Totten, M., Wilson, K. 
L., and McNally, E. M. (2002a). Nesprin-1alpha self-associates and binds 
directly to emerin and lamin A in vitro. FEBS Lett 525, 135-140. 

Mislow, J. M., Kim, M. S., Davis, D. B., and McNally, E. M. (2002b). Myne-1, a 
spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, 
interacts with lamin A/C. J Cell Sci 115, 61-70. 

Modrich, P., and Lahue, R. (1996). Mismatch repair in replication fidelity, genetic 
recombination, and cancer biology. Annu Rev Biochem 65, 101-133. 

Moir, R. D., Spann, T. P., Herrmann, H., and Goldman, R. D. (2000). Disruption of 
nuclear lamin organization blocks the elongation phase of DNA replication. J 
Cell Biol 149, 1179-1192. 

Morgan, J. T., Pfeiffer, E. R., Thirkill, T. L., Kumar, P., Peng, G., Fridolfsson, H. N., 
Douglas, G. C., Starr, D. A., and Barakat, A. I. (2011). Nesprin-3 regulates 
endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-
induced polarization. Mol Biol Cell 22, 4324-4334. 

Moss, S. F., Krivosheyev, V., de Souza, A., Chin, K., Gaetz, H. P., Chaudhary, N., 
Worman, H. J., and Holt, P. R. (1999). Decreased and aberrant nuclear lamin 
expression in gastrointestinal tract neoplasms. Gut 45, 723-729. 

Nacht, M., Strasser, A., Chan, Y. R., Harris, A. W., Schlissel, M., Bronson, R. T., and 
Jacks, T. (1996). Mutations in the p53 and SCID genes cooperate in 
tumorigenesis. Genes Dev 10, 2055-2066. 

Nedivi, E., Fieldust, S., Theill, L. E., and Hevron, D. (1996). A set of genes expressed 
in response to light in the adult cerebral cortex and regulated during 
development. Proc Natl Acad Sci U S A 93, 2048-2053. 

Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y. F., Carter, K. C., Ruben, S. M., 
Rosen, C. A., Haseltine, W. A., Fleischmann, R. D., Fraser, C. M., and et al. 
(1994). Mutations of two PMS homologues in hereditary nonpolyposis colon 
cancer. Nature 371, 75-80. 

Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human 
cancers. Int J Cancer 119, 2717-2723. 

Nili, E., Cojocaru, G. S., Kalma, Y., Ginsberg, D., Copeland, N. G., Gilbert, D. J., 
Jenkins, N. A., Berger, R., Shaklai, S., Amariglio, N., Brok-Simoni, F., Simon, A. 



References 

 96 

J., and Rechavi, G. (2001). Nuclear membrane protein LAP2beta mediates 
transcriptional repression alone and together with its binding partner GCL 
(germ-cell-less). J Cell Sci 114, 3297-3307. 

Noegel, A., Witke, W., and Schleicher, M. (1987). Calcium-sensitive non-muscle 
alpha-actinin contains EF-hand structures and highly conserved regions. FEBS 
Lett 221, 391-396. 

Noegel, A. A., Blau-Wasser, R., Sultana, H., Muller, R., Israel, L., Schleicher, M., 
Patel, H., and Weijer, C. J. (2004). The cyclase-associated protein CAP as 
regulator of cell polarity and cAMP signaling in Dictyostelium. Mol Biol Cell 15, 
934-945. 

Obmolova, G., Ban, C., Hsieh, P., and Yang, W. (2000). Crystal structures of 
mismatch repair protein MutS and its complex with a substrate DNA. Nature 
407, 703-710. 

Oza, P., Jaspersen, S. L., Miele, A., Dekker, J., and Peterson, C. L. (2009). 
Mechanisms that regulate localization of a DNA double-strand break to the 
nuclear periphery. Genes Dev 23, 912-927. 

Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., and Conklin, D. S. 
(2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in 
mammalian cells. Genes Dev 16, 948-958. 

Padmakumar, V. C., Abraham, S., Braune, S., Noegel, A. A., Tunggal, B., 
Karakesisoglou, I., and Korenbaum, E. (2004). Enaptin, a giant actin-binding 
protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp 
Cell Res 295, 330-339. 

Padmakumar, V. C., Libotte, T., Lu, W., Zaim, H., Abraham, S., Noegel, A. A., 
Gotzmann, J., Foisner, R., and Karakesisoglou, I. (2005). The inner nuclear 
membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear 
envelope. J Cell Sci 118, 3419-3430. 

Palombo, F., Iaccarino, I., Nakajima, E., Ikejima, M., Shimada, T., and Jiricny, J. 
(1996). hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to 
insertion/deletion loops in DNA. Curr Biol 6, 1181-1184. 

Pan, D., Estevez-Salmeron, L. D., Stroschein, S. L., Zhu, X., He, J., Zhou, S., and 
Luo, K. (2005). The integral inner nuclear membrane protein MAN1 physically 
interacts with the R-Smad proteins to repress signaling by the transforming 
growth factor-{beta} superfamily of cytokines. J Biol Chem 280, 15992-16001. 

Pang, Q., Prolla, T. A., and Liskay, R. M. (1997). Functional domains of the 
Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins 
and their relevance to human hereditary nonpolyposis colorectal cancer-
associated mutations. Mol Cell Biol 17, 4465-4473. 

Papadopoulos, N., Nicolaides, N. C., Wei, Y. F., Ruben, S. M., Carter, K. C., Rosen, 
C. A., Haseltine, W. A., Fleischmann, R. D., Fraser, C. M., Adams, M. D., and et 
al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science 263, 
1625-1629. 



References 

 97 

Peters, A. C., Young, L. C., Maeda, T., Tron, V. A., and Andrew, S. E. (2003). 
Mammalian DNA mismatch repair protects cells from UVB-induced DNA 
damage by facilitating apoptosis and p53 activation. DNA Repair (Amst) 2, 427-
435. 

Plaschke, J., Linnebacher, M., Kloor, M., Gebert, J., Cremer, F. W., Tinschert, S., 
Aust, D. E., von Knebel Doeberitz, M., and Schackert, H. K. (2006). Compound 
heterozygosity for two MSH6 mutations in a patient with early onset of HNPCC-
associated cancers, but without hematological malignancy and brain tumor. Eur 
J Hum Genet 14, 561-566. 

Postel, R., Ketema, M., Kuikman, I., de Pereda, J. M., and Sonnenberg, A. (2011). 
Nesprin-3 augments peripheral nuclear localization of intermediate filaments in 
zebrafish. J Cell Sci 124, 755-764. 

Prolla, T. A., Pang, Q., Alani, E., Kolodner, R. D., and Liskay, R. M. (1994). MLH1, 
PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in 
yeast. Science 265, 1091-1093. 

Puckelwartz, M. J., Kessler, E., Zhang, Y., Hodzic, D., Randles, K. N., Morris, G., 
Earley, J. U., Hadhazy, M., Holaska, J. M., Mewborn, S. K., Pytel, P., and 
McNally, E. M. (2009). Disruption of nesprin-1 produces an Emery Dreifuss 
muscular dystrophy-like phenotype in mice. Hum Mol Genet 18, 607-620. 

Raffaele Di Barletta, M., Ricci, E., Galluzzi, G., Tonali, P., Mora, M., Morandi, L., 
Romorini, A., Voit, T., Orstavik, K. H., Merlini, L., Trevisan, C., Biancalana, V., 
Housmanowa-Petrusewicz, I., Bione, S., Ricotti, R., Schwartz, K., Bonne, G., 
and Toniolo, D. (2000). Different mutations in the LMNA gene cause autosomal 
dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J 
Hum Genet 66, 1407-1412. 

Rajgor, D., Mellad, J. A., Autore, F., Zhang, Q., and Shanahan, C. M. (2012). Multiple 
novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific 
intracellular scaffolds. PLoS One 7, e40098. 

Riches, L. C., Lynch, A. M., and Gooderham, N. J. (2008). Early events in the 
mammalian response to DNA double-strand breaks. Mutagenesis 23, 331-339. 

Riha, K., Heacock, M. L., and Shippen, D. E. (2006). The role of the nonhomologous 
end-joining DNA double-strand break repair pathway in telomere biology. Annu 
Rev Genet 40, 237-277. 

Rodier, F., and Campisi, J. (2011). Four faces of cellular senescence. J Cell Biol 192, 
547-556. 

Rosenberg-Hasson, Y., Renert-Pasca, M., and Volk, T. (1996). A Drosophila 
dystrophin-related protein, MSP-300, is required for embryonic muscle 
morphogenesis. Mech Dev 60, 83-94. 

Rothballer, A., Schwartz, T. U., and Kutay, U. (2013). LINCing complex functions at 
the nuclear envelope: what the molecular architecture of the LINC complex can 
reveal about its function. Nucleus 4, 29-36. 



References 

 98 

Roux, K. J., Crisp, M. L., Liu, Q., Kim, D., Kozlov, S., Stewart, C. L., and Burke, B. 
(2009). Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-
mediated cell polarization. Proc Natl Acad Sci U S A 106, 2194-2199. 

Sahai, E., Garcia-Medina, R., Pouyssegur, J., and Vial, E. (2007). Smurf1 regulates 
tumor cell plasticity and motility through degradation of RhoA leading to 
localized inhibition of contractility. J Cell Biol 176, 35-42. 

Salisbury, J. L. (2005). On the origin of centrosome amplification and chromosomal 
instability in cancer. Microsc Microanal 11 Suppl 2, 1002-1003. 

Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J., and 
Hutchison, C. J. (2007). A novel role for the nuclear membrane protein emerin 
in association of the centrosome to the outer nuclear membrane. J Cell Biol 
178, 897-904. 

Schirmer, E. C., Florens, L., Guan, T., Yates, J. R., 3rd, and Gerace, L. (2003). 
Nuclear membrane proteins with potential disease links found by subtractive 
proteomics. Science 301, 1380-1382. 

Schirmer, E. C., Guan, T., and Gerace, L. (2001). Involvement of the lamin rod 
domain in heterotypic lamin interactions important for nuclear organization. J 
Cell Biol 153, 479-489. 

Schneider, J., Martinez-Arribas, F., and Torrejon, R. (2010). Nup88 expression is 
associated with myometrial invasion in endometrial carcinoma. Int J Gynecol 
Cancer 20, 804-808. 

Schneider, M., Lu, W., Neumann, S., Brachner, A., Gotzmann, J., Noegel, A. A., and 
Karakesisoglou, I. (2011a). Molecular mechanisms of centrosome and 
cytoskeleton anchorage at the nuclear envelope. Cell Mol Life Sci 68, 1593-
1610. 

Schneider, M., Noegel, A. A., and Karakesisoglou, I. (2008). KASH-domain proteins 
and the cytoskeletal landscapes of the nuclear envelope. Biochem Soc Trans 
36, 1368-1372. 

Schneider, M. A., Spoden, G. A., Florin, L., and Lambert, C. (2011b). Identification of 
the dynein light chains required for human papillomavirus infection. Cell 
Microbiol 13, 32-46. 

Schofield, M. J., and Hsieh, P. (2003). DNA mismatch repair: molecular mechanisms 
and biological function. Annu Rev Microbiol 57, 579-608. 

Schreiber, K. H., and Kennedy, B. K. (2013). When lamins go bad: nuclear structure 
and disease. Cell 152, 1365-1375. 

Schuebel, K. E., Chen, W., Cope, L., Glockner, S. C., Suzuki, H., Yi, J. M., Chan, T. 
A., Van Neste, L., Van Criekinge, W., van den Bosch, S., van Engeland, M., 
Ting, A. H., Jair, K., Yu, W., Toyota, M., Imai, K., Ahuja, N., Herman, J. G., and 
Baylin, S. B. (2007). Comparing the DNA hypermethylome with gene mutations 
in human colorectal cancer. PLoS Genet 3, 1709-1723. 



References 

 99 

Schulz, I., Baumann, O., Samereier, M., Zoglmeier, C., and Graf, R. (2009). 
Dictyostelium Sun1 is a dynamic membrane protein of both nuclear membranes 
and required for centrosomal association with clustered centromeres. Eur J Cell 
Biol 88, 621-638. 

Shahi, A., Lee, J. H., Kang, Y., Lee, S. H., Hyun, J. W., Chang, I. Y., Jun, J. Y., and 
You, H. J. (2011). Mismatch-repair protein MSH6 is associated with Ku70 and 
regulates DNA double-strand break repair. Nucleic Acids Res 39, 2130-2143. 

Sharpless, N. E., Ferguson, D. O., O'Hagan, R. C., Castrillon, D. H., Lee, C., Farazi, 
P. A., Alson, S., Fleming, J., Morton, C. C., Frank, K., Chin, L., Alt, F. W., and 
DePinho, R. A. (2001). Impaired nonhomologous end-joining provokes soft 
tissue sarcomas harboring chromosomal translocations, amplifications, and 
deletions. Mol Cell 8, 1187-1196. 

Sherr, C. J. (2004). Principles of tumor suppression. Cell 116, 235-246. 

Shimi, T., Butin-Israeli, V., and Goldman, R. D. (2012). The functions of the nuclear 
envelope in mediating the molecular crosstalk between the nucleus and the 
cytoplasm. Curr Opin Cell Biol 24, 71-78. 

Shumaker, D. K., Lee, K. K., Tanhehco, Y. C., Craigie, R., and Wilson, K. L. (2001). 
LAP2 binds to BAF.DNA complexes: requirement for the LEM domain and 
modulation by variable regions. EMBO J 20, 1754-1764. 

Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., 
Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., 
Farrell, C., Meeh, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K., 
Gazdar, A. F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B. H., 
Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W., and 
Velculescu, V. E. (2006). The consensus coding sequences of human breast 
and colorectal cancers. Science 314, 268-274. 

Somech, R., Gal-Yam, E. N., Shaklai, S., Geller, O., Amariglio, N., Rechavi, G., and 
Simon, A. J. (2007). Enhanced expression of the nuclear envelope LAP2 
transcriptional repressors in normal and malignant activated lymphocytes. Ann 
Hematol 86, 393-401. 

Sosa, B. A., Rothballer, A., Kutay, U., and Schwartz, T. U. (2012). LINC complexes 
form by binding of three KASH peptides to domain interfaces of trimeric SUN 
proteins. Cell 149, 1035-1047. 

Squarzoni, S., Sabatelli, P., Ognibene, A., Toniolo, D., Cartegni, L., Cobianchi, F., 
Petrini, S., Merlini, L., and Maraldi, N. M. (1998). Immunocytochemical detection 
of emerin within the nuclear matrix. Neuromuscul Disord 8, 338-344. 

Starr, D. A., and Fridolfsson, H. N. (2010). Interactions between nuclei and the 
cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev 
Cell Dev Biol 26, 421-444. 

Starr, D. A., and Han, M. (2002). Role of ANC-1 in tethering nuclei to the actin 
cytoskeleton. Science 298, 406-409. 



References 

 100 

Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D., and Hodzic, D. (2008). Structural 
requirements for the assembly of LINC complexes and their function in cellular 
mechanical stiffness. Exp Cell Res 314, 1892-1905. 

Sun, J., Lee, K. J., Davis, A. J., and Chen, D. J. (2012). Human Ku70/80 protein 
blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 
or Mre11/Rad50 protein complex. J Biol Chem 287, 4936-4945. 

Sun, S., Xu, M. Z., Poon, R. T., Day, P. J., and Luk, J. M. (2010). Circulating Lamin 
B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J 
Proteome Res 9, 70-78. 

Taranum, S., Sur, I., Muller, R., Lu, W., Rashmi, R. N., Munck, M., Neumann, S., 
Karakesisoglou, I., and Noegel, A. A. (2012a). Cytoskeletal interactions at the 
nuclear envelope mediated by nesprins. Int J Cell Biol 2012, 736524. 

Taranum, S., Vaylann, E., Meinke, P., Abraham, S., Yang, L., Neumann, S., 
Karakesisoglou, I., Wehnert, M., and Noegel, A. A. (2012b). LINC complex 
alterations in DMD and EDMD/CMT fibroblasts. Eur J Cell Biol 91, 614-628. 

Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., Brock, M., Van 
Neste, L., Stidley, C. A., Baylin, S. B., and Belinsky, S. A. (2008). Promoter 
methylation of genes in and around the candidate lung cancer susceptibility 
locus 6q23-25. Cancer Res 68, 1707-1714. 

Therizols, P., Fairhead, C., Cabal, G. G., Genovesio, A., Olivo-Marin, J. C., Dujon, B., 
and Fabre, E. (2006). Telomere tethering at the nuclear periphery is essential 
for efficient DNA double strand break repair in subtelomeric region. J Cell Biol 
172, 189-199. 

Trego, K. S., and Turchi, J. J. (2006). Pre-steady-state binding of damaged DNA by 
XPC-hHR23B reveals a kinetic mechanism for damage discrimination. 
Biochemistry 45, 1961-1969. 

Valerie, K., and Povirk, L. F. (2003). Regulation and mechanisms of mammalian 
double-strand break repair. Oncogene 22, 5792-5812. 

Ventura, A., Kirsch, D. G., McLaughlin, M. E., Tuveson, D. A., Grimm, J., Lintault, L., 
Newman, J., Reczek, E. E., Weissleder, R., and Jacks, T. (2007). Restoration of 
p53 function leads to tumour regression in vivo. Nature 445, 661-665. 

Vigouroux, C., Auclair, M., Dubosclard, E., Pouchelet, M., Capeau, J., Courvalin, J. 
C., and Buendia, B. (2001). Nuclear envelope disorganization in fibroblasts from 
lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C 
gene. J Cell Sci 114, 4459-4468. 

Villemure, J. F., Abaji, C., Cousineau, I., and Belmaaza, A. (2003). MSH2-deficient 
human cells exhibit a defect in the accurate termination of homology-directed 
repair of DNA double-strand breaks. Cancer Res 63, 3334-3339. 

Volker, M., Mone, M. J., Karmakar, P., van Hoffen, A., Schul, W., Vermeulen, W., 
Hoeijmakers, J. H. J., van Driel, R., van Zeeland, A. A., and Mullenders, L. H. F. 



References 

 101 

(2001). Sequential assembly of the nucleotide excision repair factors in vivo. 
Molecular Cell 8, 213-224. 

Wang, N., Tytell, J. D., and Ingber, D. E. (2009). Mechanotransduction at a distance: 
mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol 
Cell Biol 10, 75-82. 

Wang, W., Shi, Z., Jiao, S., Chen, C., Wang, H., Liu, G., Wang, Q., Zhao, Y., Greene, 
M. I., and Zhou, Z. (2012). Structural insights into SUN-KASH complexes across 
the nuclear envelope. Cell Res 22, 1440-1452. 

Warren, J. J., Pohlhaus, T. J., Changela, A., Iyer, R. R., Modrich, P. L., and Beese, L. 
S. (2007). Structure of the human MutSalpha DNA lesion recognition complex. 
Mol Cell 26, 579-592. 

Wilhelmsen, K., Litjens, S. H., Kuikman, I., Tshimbalanga, N., Janssen, H., van den 
Bout, I., Raymond, K., and Sonnenberg, A. (2005). Nesprin-3, a novel outer 
nuclear membrane protein, associates with the cytoskeletal linker protein 
plectin. J Cell Biol 171, 799-810. 

Worman, H. J., and Bonne, G. (2007). "Laminopathies": a wide spectrum of human 
diseases. Exp Cell Res 313, 2121-2133. 

Yamaguchi, H., Pixley, F., and Condeelis, J. (2006). Invadopodia and podosomes in 
tumor invasion. Eur J Cell Biol 85, 213-218. 

Yasuda, G., Nishi, R., Watanabe, E., Mori, T., Iwai, S., Orioli, D., Stefanini, M., 
Hanaoka, F., and Sugasawa, K. (2007). In vivo destabilization and functional 
defects of the xeroderma pigmentosum C protein caused by a pathogenic 
missense mutation. Mol Cell Biol 27, 6606-6614. 

Yu, J., Lei, K., Zhou, M., Craft, C. M., Xu, G., Xu, T., Zhuang, Y., Xu, R., and Han, M. 
(2011). KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate 
nuclear migration during mammalian retinal development. Hum Mol Genet 20, 
1061-1073. 

Zaremba-Czogalla, M., Dubinska-Magiera, M., and Rzepecki, R. (2011). 
Laminopathies: the molecular background of the disease and the prospects for 
its treatment. Cell Mol Biol Lett 16, 114-148. 

Zhang, J., Felder, A., Liu, Y., Guo, L. T., Lange, S., Dalton, N. D., Gu, Y., Peterson, 
K. L., Mizisin, A. P., Shelton, G. D., Lieber, R. L., and Chen, J. (2010). Nesprin 
1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19, 329-341. 

Zhang, Q., Bethmann, C., Worth, N. F., Davies, J. D., Wasner, C., Feuer, A., 
Ragnauth, C. D., Yi, Q., Mellad, J. A., Warren, D. T., Wheeler, M. A., Ellis, J. A., 
Skepper, J. N., Vorgerd, M., Schlotter-Weigel, B., Weissberg, P. L., Roberts, R. 
G., Wehnert, M., and Shanahan, C. M. (2007). Nesprin-1 and -2 are involved in 
the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for 
nuclear envelope integrity. Hum Mol Genet 16, 2816-2833. 



References 

 102 

Zhang, Q., Ragnauth, C., Greener, M. J., Shanahan, C. M., and Roberts, R. G. 
(2002). The nesprins are giant actin-binding proteins, orthologous to Drosophila 
melanogaster muscle protein MSP-300. Genomics 80, 473-481. 

Zhang, Q., Ragnauth, C. D., Skepper, J. N., Worth, N. F., Warren, D. T., Roberts, R. 
G., Weissberg, P. L., Ellis, J. A., and Shanahan, C. M. (2005). Nesprin-2 is a 
multi-isomeric protein that binds lamin and emerin at the nuclear envelope and 
forms a subcellular network in skeletal muscle. J Cell Sci 118, 673-687. 

Zhang, X., Lei, K., Yuan, X., Wu, X., Zhuang, Y., Xu, T., Xu, R., and Han, M. (2009). 
SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus 
during neurogenesis and neuronal migration in mice. Neuron 64, 173-187. 

Zhen, Y. Y., Libotte, T., Munck, M., Noegel, A. A., and Korenbaum, E. (2002). 
NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell 
Sci 115, 3207-3222. 

Zhong, Z., Chang, S. A., Kalinowski, A., Wilson, K. L., and Dahl, K. N. (2010). 
Stabilization of the spectrin-like domains of nesprin-1alpha by the evolutionarily 
conserved "adaptive" domain. Cell Mol Bioeng 3, 139-150. 

 
 



Lebenslauf 

 103 

6. Erklärung 
 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, 

die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der 

Arbeit- einschließlich Tabellen und Abbildungen-, die anderen Werken im Wortlaut 

oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich 

gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität 

zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen 

Teilpublikationen noch nicht veröffentlicht ist, sowie, dass ich eine Veröffentlichung 

vor Abschluss des Promotionsverfahrens nicht vornehmen werde.  

Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir 

vorgelegte Dissertation ist von Prof. Dr. Angelika A. Noegel betreut worden. 

 

Köln, November 2013 

 

 

Ilknur Sur 

 

 

 

Teilpublicationen: 

 

Taranum S, Sur I, Müller R, Lu W, Rashmi RN, Munck M, Neumann S, 

Karakesisoglou I, Noegel A A. Cytoskeletal interactions at the nuclear envelope 

mediated by Nesprins. Int J Cell Biol. 2012; 2012:736524. 

 

Sur I, Neumann S, Noegel A A.  Nesprin-1 role in DNA damage response. Nucleus 

2014, 5 (2), doi:10.4161/nucl.29023.  

 

 

 

 

 



Lebenslauf 

 104 

 

Curriculum Vitae 

Name:   Ilknur Sur 

Date of Birth:  10.01.1984 

Place of Birth:  Turhal, Turkey 

Nationality:   Turkish 

E-mail:  ilknursur@gmail.com 

Doctoral studies 

2010-2013  Faculty of Mathematics and Natural Science, 

   Institute for Biochemistry I, Medical Faculty, 

University of Cologne, Cologne, Germany 

Supervisor: Prof. Dr. Angelika A. Noegel 

University Studies  

2008-2010  Master of Science (Biotechnology), Department of Genetics and 

   Bioengineering Yeditepe University, Istanbul, Turkey 

2008-2010  Teaching experience: Cell Biology Laboratory Assistant,  

   Department of Genetics and Bioengineering, Yeditepe University, 

   Istanbul, Turkey 

2003-2008  Bachelor of Education (Biology), Gazi University, Turkey 

2006-2007  Department of Biology, Hamburg University, Germany 

 

School studies 

1998-2002   Pendik Foreign Language Intensive High School, Istanbul,  

   Turkey 

 

 

mailto:ilknursur@gmail.com


Lebenslauf 

 105 

 

Lebenslauf 

Name:    Ilknur Sur 

Geburtsdatum:   10.01.1984 

Geburtsort:    Turhal, Türkei 

Staatsangehörigkeit:  Turkish 

E-mail:   ilknursur@gmail.com 

Promotions Studium 

2010-2013  Mathematisch-Naturwissenschaftliche Fakultat, 

Institut für Biochemie I, Medizinische Fakultät, 

Universität zu Köln, Köln, Deutschland, 

Betreuerin: Prof. Dr. Angelika A. Noegel 

Universität Studium  

2008-2010  Master of Science (Biotechnologie), Department of Genetics and 

   Bioengineering, Yeditepe University, Istanbul, Türkei 

20008-2010  Lehrerfahrung: Zellbiologie Laboratory Assistant, Department 

   of Genetics and Bioengineering, Yeditepe University, Istanbul, 

   Türkei 

2003-2008  Bachelor of Education (Biologie), Gazi Universität, Türkei 

2006-2007  Department of Biology, Universität Hamburg, Deutschland 

 

Schulausbildung 

1998-2002   Pendik Foreign Language Intensive High School, Istanbul,  

   Türkei 

 


