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Abstract

This report is written with two purposes in mind. First, it brings together some recent results in
the area of closed-loop model validation for dynamic feedback systems. The central idea of the
methods presented here is to map uncertainty given in a physically meaningful domain into an
uncertainty description which is useful from a robust control design and analysis point of view.
Secondly, this report also presents a brief but self-contained glimpse of control theoretic tools to
mathematicians unfamiliar with this field. It is hoped that the expositions such as this one will
open new collaborations between other branches of mathematics (in particular, operations research

which deals with large scale static uncertainty modelling) and control theory.
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Chapter 1

Preliminaries

Here, we introduce the subject to be addressed in this report. The discussion in this chapter is
somewhat heuristic and is aimed for non-specialist audience. The further chapters will require some
background in functional analysis and complex analysis or in control theory. However, an effort is
made throughout the report to keep the discussion as self-contained as possible.

Feedback based control is used in a large number of engineering and biomedical systems; only
a few examples are provided here. An aircraft altitude is measured (or ‘fed back’) by altitude
sensors and an algorithm (implemented through hardware and/or software) uses this information to
compute appropriate input to move control surfaces on wings (actuators) to correct any deviation
from the desired altitude. In a modern automobile engine, the measurements from exhaust gas
emission sensors is used to adjust the air-to-fuel ratio in the combustion chamber. Human body
contains several complex feedback loops; increase in blood sugar, for example, will trigger a sequence
of chemical actions which will conteract this increase. Recently, field trials are underway for use
of automatic feedback control for drug administration in anaesthetized surgical patients. In such
cases, the use of feedback (as measured by the patient’s response to the drug infusion) may help
the physicians to avoid underdosage or overdosage. Any application where the input of a dynamic
system is affected by its measured output may be analysed (and where possible, designed) using

the feedback framework.
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Figure 1.1: Closed Loop System



Feedback controllers are designed using a mathematical model of the system and are imple-
mented in software and/or hardware. Fig 1.1 shows a feedback loop schematically. In this figure,
C1 and C5 are feedforward and feedback components of controller C = Cy x Cy. Cy, Cy and P are
dynamic systems and r(t) , wi(t) and wo(t) are signals affecting them. wu(t) and y(t) represents
the input and the output of the system respectively. The systems may be multivariable, i.e. the
signals involved may be vector valued. The closed loop transfer functions (or Laplace transforms

of the underlying differential operators) are given by

Trsw =(I-CP)7'Cy, Ty, =PI-CP)'Cy
Tyysu =T —CP)"'CP, Ty,yy =(I—-CP)"'P
Twssu =T —=CP)7'C, Typsy =(I—-CP)7"

where Ty, ,, is a transfer function from signal :(¢) to signal z(¢) and I represents an identity operator
of appropriate dimensions.

Controller C' is often (though not always) designed from specifications about frequency response
of these transfer functions (e.g.) one may want T}, (jw) to be large at low frequencies 0 < w < wy
and Ty,.y to be small at high frequencies (so that the response of y(t) to high frequency sensor
noise is attenuated, but its tracking performance with respect to reference level changes at r(t) is

unaffected.) To see the role of feedback, note the following:

e The only way the transfer functions T,y and Ty,, (i-e. in most physical systems, the
effects of sensor and actuator noise on the output) can be manipulated (and hence the noise

may be attenuated) is via feedback.

e Even if P itself is unstable, all the above transfer functions mapping external signals r, wy, wo

to u and y can be made stable.

It is worth adding that the closed loop may have unstable operators (i.e. the output may grow
unbounded for a bounded input)!, irrespective of whether the open loop system P is stable. Tt is
the responsibility of control designer to ensure that the designed loop is stable and achieves the
desired performance. The issues in stability and robustness in control design are beyond the scope
of this report; the reader is referred to [ZDGY6].

For the purpose of this report, all the systems involved are assumed to be linear and time
invariant. This assumption is often valid in practice as the range of behaviour of the system under
study is often linear. Even when this is not the case, it is often useful to design a linear controller
first and then introduce nonlinear elements to analyse their impact.

To design a controller, a model of the system to be controlled is needed. A parameterized
model of the true system is identified either from physical knowledge about the system and/or

from measured input-output experimental data. Inevitably, there is a discrepancy between the true

!An example of an unstable operator is whose impulse response grows exponentially with time. Any forced

1
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differential equation (i.e. one with a forcing function) whose solution has exponentially increasing terms is unstable.



system and its model. This discrepancy introduces a corresponding discrepancy in the designed
closed loop (i.e. the one with the model and controller) and the achieved closed loop (i.e. one with
the true system and the implemented controller). There is a risk that the designed closed loop is
stable and yields the desired performance, but the achieved closed loop performs poorly and may
even be unstable. In an industrial control environment, this has an implication on the profitability
of business. As an example, Lack of good models and hence of good controllers for unstable gas fired
combustors forces power generation companies to operate power plants at a lower than maximum
efficiency [Dow01]. Hence is necessary to quantify the uncertainty in identification from a closed
loop point of view and validate whether the designed controller will perform adequately when in
closed loop with the true system.

The results presented in this technical report are centered around a relationship of the form

(closed-loop performance of [true system, controller]) > (closed-loop performance

of [model, controller]) - distance(true system, model).

The second term does not include the control algorithm i.e. the relationship is valid for any
controller (which stabilises both the true system and the model). The remainder of the report is
structured as follows. Chapter 2 outlines some mathematical preliminaries and basic results related
to closed loop behaviour of linear systems. It introduces the notion of distance between systems
and of the closed loop performance for which the relationship mentioned above holds true. Chapter
3 is based on the author’s work with Dr M. Cantoni and presents two different results on validation
of closed loop validation and demonstrates it with simulation example. Chapter 4 briefly outlines
some of the related work by Dr X. Bombois and his co-workers (including the author). Finally,
chapter 5 shows how to yield information about behaviour over a continuum of frequencies based

on data for a finite frequencies and knowledge of complexity of the involved systems.



Chapter 2

The vr—gap Metric

2.1 Notation

Let D:={z € C:|z| < 1} and 9D denote the boundary of D. The symbol L is used to denote
the space of all (possibly matrix valued) functions F(z) that are essentially bounded on 9D and
have finite norm || F||._ := ess sup,, &(F (e’*)), where &(-) represents the maximum singular value.
The symbol H, denotes the space of functions F'(z) that are analytic in D and have finite norm
|Fllso = sup,ep|f(2)] < oco. Systems whose z transfer functions are in Ho, are stable i.e. a
bounded input always produces a bounded output !. Given a system transfer function F(z), the
transfer function of the adjoint system is denoted by F*(z) := F(%)T, where the superscript “I7
denotes matrix transpose. Note that for a real rational transfer function F*(e/¥) = WT, where
the overline denotes complex conjugate.

Any linear, time invariant discrete-time system P that is stabilisable, can be expressed as
P=NM"' = M~'N with

N
1. Gp:= [M] inner (i.e. G5Gp = I) and left invertible in Ho; and

2. Gp:= [—M N} co-inner (i.e. GpG% = I) and right invertible in Ho,.

Gy (resp. Gp) is called the normalised right (resp. normalised left) graph symbol of plant P 2.
Note, any X = G»Q for Q, Q™! Hoo is also left invertible in H,, and is also a right coprime
factorisation for P. Similar statement holds for X = QGp, Q, Q" € Hoo.

2.2 Introduction

Feedback can reduce the sensitivity of a designed system to uncertainty arising, for example, from

the inevitable mismatch between open-loop models used in the design process and the physical sys-

!This is not the only definition of stability; but will suffice for the purpose of this report.
2As is the convention in control theory, the true system is often referred to as plant in this report.



tems that these models represent. Indeed, significant research has been dedicated to understanding,
both quantitatively and qualitatively, the uncertainty that the feedback mechanism can handle. For
general linear systems, gap-like metrics are known to capture the difference between open-loop sys-
tems from the perspective of their behaviour in closed-loop [Vid85, GS90, Vin01, CV02]. The focus
of section 2.4- and indeed, of the remainder of this report - is the robustness results related to
the v-gap metric. Before introducing v—gap metric, the topic of so called Hs control is briefly

introduced.

2.3 Interlude 1: H,, Control

H o control (so called as it usually involves minimisation of co-norm of a closed loop transfer matrix)
has now gained a wide acceptance in automobile and aeronautical industries as a control design
paradigm of choice. There is a huge body of literature on theory and application of robust control;
see [PG99], [XFS01], [FG] for examples of a few applications. Here, only a specific, simple example
of an objective function for H,, control design is considered and its implications are reviewed.
Consider the system in figure 1.1. Suppose, for a given single input, single output F;, a controller
C' is found such that

1. All the transfer functions in figure 1.1 are stable and

2. Ha(I - C’P)_IC’HOo < € for a given € > 0 and for a user chosen scalar transfer function
a € Heo.

Then the following facts hold:

1. (Robust Stability Interpretation.) The controller C' stabilizes all the plants from an uncertain
plant set defined by

M={P:P=P+alA € He, |Alloo < e '}

2. (Nominal Performance Interpretation.) Given any wy in figure 1.1 with spectrum |a(e’¥)|?,

the input u ot P; due to wy will have a spectrum bounded by €2 3.

Note that, unlike the notion of uncertainty in most other fields of mathematics, no statistical
assumptions are made about A and no assumptions are made about the distribution of ws (spec-
trum is only a second order property). These uncertainty descriptions are often referred to as
deterministic uncertainty descriptions.

Various descriptions of uncertainty (other than the additive uncertainty above) are possible
and most can be analysed using Linear Fractional Transformation (LFT) framework ([ZDGY6],

chapter ). Depending on the uncertainty description and performance requirements, various control

3~ control is often motivated by amplification of square summable signals which lead to nicer theoretical

interpretation. We will not discuss it here; the reader is referred to [ZDG96].



design problems may be posed as Ho, norm minimisation problems. There are efficient numerical
procedures available to solve problems such as the one above using solution of a pair of algebraic
Riccati equations. These procedures are already available in commercial software such as MATLAB.
Importantly, the above framework and interpretations and procedures are valid for multivariable
systems.

The criterion of performance and the uncertainty description used in this report is somewhat
more sophisticated than the additive uncertainty desciption above. It relies on the idea of measuring

distance between systems in terms of the size of perturbations in normalized coprime factors.

2.4 Review of yr—gap metric robustness results

The notion of measuring distance between linear systems in terms of distance between their graph
spaces was introduced by Vidyasagar in [Vid84]. In this paper, a metric called the graph metric
was introduced which is characterised by the smallest distance, in a certain sense, between the
coprime factors of two systems. This work was followed by a number of advances in characterisation
and computation of similar metrics under which feedback stability is a robust property. The
gap metric [ES85] and the chordal metric [Par92] induce the same topology as the graph metric.
In [Vin93a], a metric called the v—gap metric was defined. It is closely related to the gap metric
but has a nicer frequency response interpretation and leads to less conservative robustness results
in general.

The v—gap between two linear time-invariant plants P; and P, is defined as

info o-1ce [|Gp — GpQllso if I(PL,Py) =0
5,,(P1,P2):{ infg o-1c. | Gpy pQ o if I(P1,P) ’ 2.1)

1 otherwise

where I(P1, ) := wno det (G}, Gp,) and wno (g) denotes the winding number of g(z) evaluated
on the standard Nyquist contour indented around any poles and zeros on 0D [Vin93a]. For a
real rational transfer matrix X satisfying X, X ! € L, the winding number wno det (X) =
n(X~1) —n(X) where n(z) denotes the number of unstable poles of z. When the winding number
condition is satisfied, d, (P, P») equals the Lo -gap:

0ca(Pry P) i= |Gp, G lloo = sup r(Pr, P2)(€%), (2.2)
w

where (P;, Py)(e/*) is the pointwise chordal distance between the stereographic projections of the

frequency responses of P; and P, onto the Riemann sphere, as defined by
AP Po)(0) i= (1 + PoP5) "5 (P = Po)(I+ PYPy) 3 ) (), (2.3)

Note that, x(-,-) can be computed from purely frequency response data.
Given a controller C and a (possibly frequency weighted) plant P;, a useful measure of closed-

loop performance, which is central to the Ho, loop-shaping paradigm for design, is

|H(P;,C)||3} = inf, p(P;,C)(e’*) if C stabilises P

, (2.4)
0 otherwise

b(P;,C) = {



where

p(P;, C) () := a(H(P;, C))(e),

o(-) denotes the minimum singular value and the closed-loop transfer function H(P;,C) is defined
by

H(P,,C) = [?](I—CH)I | -c 1]

This is a transfer function from

" ] to [u] in figure 1.1, with Cy = I. It is known that any
—ws Y

controller that stabilises a plant P; and achieves b(P;,C) > (3, also stabilises all plants in the set

{Py:0,(Py1, P») < B} [Vin93a]. Further, this measure of performance may also be linked to more
conventional measures of control design performance. For a single input, single output system,
b(P,C) > 0.3 implies a gain margin of at least 1.85 and a phase margin of at least 34.9° [VinO1].
The difference between the level of closed-loop performance achieved by a feedback compensator
C with a nominal plant P; and with a perturbed plant P, can be quantified in terms of 6, (P, P»)

as follows:

b(P,C) > b(P1,C) — 6,(P1, P). (2.5)
A pointwise-in-frequency version of this performance bound also holds:
p(P2, C) () 2 p(P1,C) (') — w(Py, P2) (). (2.6)
Indeed (2.5) follows from this since
inf (p(P1,O)(e) = K(P1, P2)(¢7)) 2 inf p(PL, C) (/) = sup (P, P2) (&%),

These are the relationships alluded to earlier in chapter 1. Note, however, that the pointwise bound
in (2.6) is useful only if C' is known to stabilise both P; and P,. To this end the following result is
easily inferred from the development in [Vin93a] (see also [Vin93b]):

Lemma 1 Suppose, a true plant Py, a model P, and a nominal controller C,, satisfy the following

conditions:
1. H(P,,Cy) and H(Py,,Cy) are stable;
2. k(Py, Pp) (') < p(Pm, Cy) (7)Y w.

Then any other controller C' which stabilises P, and satisfies k(P;, Py)(e/*) < p(Pp, C)(e7*)V w

s guaranteed to stabilise P, with closed-loop performance

b(P,C) > inf (p(Po, C)(e™) = (P, P)(e7) ). (2.7)



Note that the lower bound in (2.7) is tighter than that in (2.5). However, no computationally
tractable characterisation for this is known. We will return to (2.7) in chapter 5.

As the true plant is unknown, it is not possible to know (P, P;)(e’*) exactly. Depending on
the a priori information available about the set to which the true plant belongs and possibly, the

a posteriori measurement data, two different approaches may be taken to estimate x(Py,, P;)(e/*):

e Find a system, say P which is consistent with the a priori information, a posterior: data and
which minimises k(Py,, P)(e?*) over all systems P which are consistent with the data and the
information. Then (P, P)(e/*) is the lower bound on k(Pp,, P;)(e?*) and p(Pp,, C)(e??) —
K( Py, P)(e7*) is the best case lower bound on p(P;, C') one may have on true pointwise closed
loop performance from the given information. If even this best bound is seen as unsatisfactory,
then the model-controller loop is said to be invalidated and either the controller needs to be
re-designed or a new model needs to be identified. This method was presented in [DCO03b]

and is discussed in the next chapter.

e Find the worst case pointwise chordal distance (P, P)(e’*) over all P consistent with the
given information. This, in turn, gives the worst lower bound one may have on true pointwise
closed loop performance from the given information. If even this worst case bound is deemed
acceptable, then the controller-model pair may be said to be validated. This approach was

presented in [BDO03] and is discussed in chapter 4.

Finally, chapter 5 discusses a way of obtaining a bound on b(P;, C) using pointwise frequency
response measurements and an appropriate notion of complexity. This work was first published
in [DCO03a].



Chapter 3

Pointwise Chordal distance from
Closed-Loop Frequency Response

Measurements

3.1 Introduction

Most of the results of this chapter were first published in [DCO03b].

For the sake of notational simplicity, the single input single output (SISO) case is discussed here.
The multiple input multiple output (MIMO) case follows similarly with appropriate notational
modifications.

For the problem introduced above the a priori information is a model P, of an unknown true
system P, and a controller C' which stabilises both P,, and P;. Since it is assumed that C stabilises

P,, frequency response samples of

I
X, = I-CP)t
[ u-em
can be measured at any frequencies of interest. Techniques for achieving this are discussed in
[vdHS95, FL98]. Note that, unless C is itself stable, X; is not necessarily a coprime factorisation
of P, over Ho. However, at any frequency w; that does not correspond to a pole of C' on the unit
circle, X; is left-invertible by [ —C(e?*i)] and hence, the range of X;(e/“) is the graph of P;(e/“?).
Correspondingly, at any such frequency wj, the chordal distance

K(Pa(e/), Pi(e9)) = il 0(Gr(e) = Xu(e™)Q), (3.1)

€

where G, (e/*!) denotes the value of any normalised right graph symbol for P, at the frequency

w;. Such a graph symbol can be constructed from any normalised right coprime factorisation
Py = N, D, as follows: G, = [g:: ]. See [Vin01] for further details.

9



Now, the a posteriori information is a vector of (not necessarily uniformly spaced) noisy fre-

quency response samples

— T
X = XlXQXn 3

where X; = X;(e/) +v;, w; € [0,7) and |Jv;|| < e fori =1, 2, ..., n and some specified e. Note
that the measured data is to be explained in terms of two components — noise v; and true system
behaviour X;. The value € bounds the level of data one is prepared to attribute to noise. Since
parameters p > 1 and v > 0 such that X; € BH ,(7) can be determined from additional measured
data,! it is also sensible to constrain the partitioning of data into noise and true system behaviour
in these terms.

In light of this, and bearing in mind the objective of estimating (P, (e/“?), P;(e/“)), consider
the following constrained optimisation problem:

min max <Qinf(C T (G (e79F) — Xt(ej“”)Qi)> = min max k(P (e/*7), Quot(X;(e7%))) (3.2)
X ? i € X i
subject to
Xi(e?) = X; —v;, X; € BHoo () and |jvs]] <o, (3.3)

where Quot( [§ﬁ }) =X DX]?,1 and v; are the decision variables in the optimisation. The purpose
and the result of this optimisation may be explained as follows. Let A be the minimum achieved
by solving the above problem (assuming it exists and is unique). Then there exists a system X, e
BHoo,p(7) and bounded noise terms v; defined pointwise in frequency with ||v;|] < €,i=1,2,...,n

such that the measured data can be interpolated as
Xi = Xy(e7) + v;

and
max k(P (e7“1), Quot(X,(e/“))) < A

holds. Put another way, there is no system consistent with the a priori assumptions (in terms of e,
7, p) and with the a posteriori data (in terms of X) whose worst case chordal distance over {w;} is
better than A.

3.2 Interlude 2: Linear Matrix Inequalities

Computational algorithms suggested in this report rely heavily on convex optimisation problems

subject to Linear Matrix Inequality (LMI) constraints. LMI constraints have the form

F(z)=Fy+ Xm:szz >0 (or >0) (3.4)
i=1

'Recall that the k-th term of the impulse response of a function in BHeo,,(7y) is bounded by vp~F.

10



where z € R™ is variable and the symmetric matrices F; are given. The inequality symbol
indicates positive definiteness (or semi-definiteness, in case of non-strict inequality). Two different
LMIs Fl(z) > 0, F?(z) > 0 may be combined as a single LMI

diag (F'(z), F*(z)) > 0

(3.4) is a convex constraint in z, i.e. the feasible set {z|F(x) > 0} is a convex set. A large
variety of linear and quadratic constraints arising in control and identification may be written as
LMI constraints. A useful tool for converting quadratic constraints into affine constraints is Schur
inequality [BGFB94]:

[Q(x) 5(z) >0 < R(z)>0, Q(z) — S(z)R(z)"'S(z)" >0 (35)

S(z)T  R(x)

where Q(z) = Q(z)T, R(z) = R(x)T and S(z) are affine functions of the variable z.

The LMI problem we encounter in this chapter is a generalised eigenvalue problem. The general
form of such problems is
minimise A subject to AB(z) — A(z) > 0, B(z)>0, C(zx) >0.
Here A(z), B(x), C(x) are symmetric matrices that depend affinely on z. Efficient numerical meth-
ods exist for solving gevp and related optimisation problems, and software packages implementing
such optimisation routines (such as LMI Control Toolbox from MATLAB) are commercially avail-
able.

3.3 An Algorithm to Compute Chordal Distance

An approach to solving the optimisation problem along these line is outlined below. Note that

since the problem is not simultaneously convex in the v;’s and Q);’s, an iterative approach is taken.
X1, V14
Partitioning each X; = b1 and v; = bt
T2,i V2,i
1. Set £k = 1 and Q:’kfl = (X,’fn(ej“’i)Xm(ej“’i))fé for each ¢ = 1, 2,..., n, where X,,,q :=
[p (I —CPy,)~" - this initial value for each QF, , is taken because in the case that P; were

actually P, it would make the argument of the infimum in (3.1) equal to zero.

2. Solve
min A (3.6)

V1,1,01,2,-.01,n €C
’02,1,112,2,...,112,”6@

subject to the affine matrix inequality constraints

F (Gm(ej‘”i) — (Xi - lvlb Qj’k_1> < A (3.7)
V2,

11



c lvl,z]
diag V2 >0, (3.8)

[vl,i] )

V2;
1 Ii,i*“ii

diag ([ - 1’ ]) >0, (3.9)
Y

E—l dlag (ﬁ,f”h)
s ! >0, (3.10)
diag <7“ “) E
v
. 1 x;,i_vg,i
diag Toi—vas “17 >0, (3.11)
v
E-1 diag (L’FU;J)
S ! >0, (3.12)
diag (72” 2”) E
v
where
1
E: . fOr i,j:1,2,...,n,
1— e wi—w;)
o2
and denote by )\Z,kfl the minimum cost and by vff and vgf for each 1 = 1, 2,..., n the

values for each v; at which this is achieved;

3. Given vf’f and vg’f , solve the linear least squares problem

*,k

. v,
; gl G Jwiy _ | x. — | bt .
iy (G- (x| ] ) o)

at each frequency w;, denoting by A;k the minimum cost and by Qf’k the value @; at which

this is achieved;

4. If |N5 ,, — N5 k]| is less than some tolerance then stop otherwise set & = k 4 1 and go back
to step 2.

By virtue of Pick’s interpolation theorem (see [DV98] for details on Pick interpolation theorem in
identification), the constraints (3.9-3.12) in Step 2 above ensure the existence of analytic inter-
polants fi, fo : D +— D such that

: k : *,k
Jwi T1i + ) Jwi T4 + Uy
fl(e ) — 52 l,Z a,nd fZ(e ) — 52 2,7, .
p Y p Y
*,k
v .
. N vHE)| = : L . -
Correspondingly, X; = P | € BHo,p(7) interpolates each X; — , as required. Similar
v f2(5) ok
2,i

’

Pick interpolation based techniques have been used for worst case identification problems in [DV98]

12



and [CNF95]. An attractive property of the above procedure is that its cost is always non-

increasing.
Lemma 2 For k > 1,

* * *
Nk S A1 S A1k

Proof : The proof follows from definition of A 1 and A ; in Steps 2 and 3 of the above procedure

and the fact that vif and v;f are feasible solutions for the (k£ + 1)-th iteration. m

3.4 Numerical Example

To illustrate the above procedure, consider a SISO plant

2.1s =2
52 —0.5s + 1.1

A suboptimal loopshaping controller C' designed for P, yields b(P;, C) = 0.1443. Frequency response

Py(s) =

samples w; at 25 frequencies, logarithmically spaced between 0.1 rad/s and 40 rad/s are used.
Gaussian distributed complex noise is added to the frequency response at each frequency, with
variance approximately 10% of the norm of the true frequency response at that point. These

frequencies are mapped onto unit circle through bilinear transformation with sampling period

_ 0971
— 40 -

The problem (3.2) is solved for two models

2(s—1)
Prr(s) = =02 11

2(s—1)
o) = 354512

The controller C' stabilises both these plants with b(P,,1,C) = 0.1053 and b(Py,2, C) = 0.1723. Thus
P2 has a better stability margin than P,,; to start with. The parameters chosen for the above
numerical algorithm are p = 1.01, v = 13 and € = 1.04. Recall that the first two parameters may
be chosen from the knowledge of impulse response; the last one may be chosen from the knowledge
of the physical experiment. There is no reason in general why e shouldn’t be different for all
frequencies; it is chosen the same here for convenience. The solid and the dashed line in fig 3.4
shows the worst case chordal distance for the models P,,;(s) and P,2(s) respectively. For each
model, the procedure above converges in 3 iterations. From the analysis above, it may be inferred
that any system consistent with the a priori assumptions which could have produced the a posterior:
data satisfies max; k(Py,1, P;)(e/¥) > 0.0378. Similarly, any system consistent with the a priori
assumptions which could have produced the a posteriori data satisfies max; (P2, P;)(e/¥i) >
0.1909.

From this analysis, we may draw the following conclusions about suitability of the two models
to represent the (unknown) true system. The chordal distance error between P2 and the nearest
consistent system is probably too large for P2 to be useful as a model for the true system, but

P,,1 at least merits further investigation to see if it’s an acceptable model for the true system.

13



0.2

0.18F N B

0.16 -

0.14 \ -

Magnitude
o
o [
[ N
T T
| |

o
o
®
T
|

0.06 \ B

0.04

0.02

10

Frequency

Figure 3.1: The smallest chordal distance to a system consistent with the data and a priori assumptions
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Chapter 4

Pointwise Worst Case Chordal
Distance from Uncertainty in

Parameter Space

4.1 Introduction

The results of this chapter were first published in [BD03].

This work is a part of the wide-spread effort to connect time-domain prediction error (PE)
identification (outlined in the next section) and robustness theory. In [BGS00, Bom00, BGSAO01]),
it was shown that PE identification with full-order model structures delivers both a model P, for
control design and an uncertainty region D containing the true system at a certain probability level.
This uncertainty region is a set of parametrized transfer functions whose (real) parameter vector is
constrained to lie in an ellipsoid. For a single input single output system, it was shown in [BGS00]
that it is possible to compute the worst case (i.e. the largest) v-gap between the model P, and
all plants in D exactly using a convex LMI based optimisation. If this worst case v-gap is small

relative to b(P,,,C) for a given C, then the model-controller pair may be deemed as acceptable.

The work presented here extends the results in [BGS00] to multiple input single output (MISO)
systems. An LMI based optimisation is suggested which computes the worst case v-gap for MISO

systems exactly.

The remaining chapter is organised as follows. A brief review of Prediction Error Identification is
given in the next section. In Section 3, The general expression of the uncertainty region D delivered
by PE identification in the case of a MISO true system is given. In Section 4, the concept of worst
case v-gap is defined and the new method to compute it is given. The procedure is illustrated by

a numerical example in section 5.
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4.2 Interlude 3: Prediction Error Identification

4.2.1 Basic Set-up

Identification is the determination on the basis of input and output, of a model within a specified
set of models, which best approximates the input-output behaviour of the system under test. A
technique called Prediction Error identification is briefly introduced here. Consider a closed loop

system as shown in fig.(1.1) again. The following assumptions are made about the system:

1. The reference signal r(t) is quasi-stationary [Lju99], i.e. it is either a stationary stochastic

process or a bounded deterministic sequence such that the limits

N

. 1 T
Br(r) = Jimy 7 > r(0r7 (0= )
exist for all 7.

2. w;i(t) = Li(q)e;i(t), i = 1,2 where L; are monic and inversely stable linear filters and e; are a

stationary zero mean white processes having bounded moments of order 4 4+ [, [ > 0.
Eejpejs =Mt —s)
where §(-) is Dirac delta function.
3. The plant P is strictly proper, P(0) = 0.
4. The controller C' is linear and the loop is asymptotically stable.
Note that open loop identification of a stable plant is simply a special case of the above set-up,
with C = 0.
4.2.2 The Method

An approach considered here disregards presence of feedback and identifies a model directly from
its input-output data.

Some formal definitions are first needed. Define a set of monic and inversely stable filters:
L={L|LeER,L '€ RHw, L(0) =TI}

Here, R is a set of finite dimensional systems and RHo, = R N Heo. Next, define a set of ordered

pairs (L, P) of transfer matrices :
LP={(L,P)|[LEL, PER,P(0)=0,L7'"P € RHu}.

Then a model structure is a differentiable mapping from a connected and open subset of n dimen-

sional parameter space R" to a subset LP, of LP,

p:R* D D, = LP, C LP, u(®) = (L(g,0), P(g,0))
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such that the gradient % [L(q, 0) P(q, 9)} is stable. This model structure is used to describe the

relationship between the measurable input u(¢) and measured output y(t) as

y(t) = P(q,0)u(t) + L(g,0)e(?) (4.1)

where e(t) is a zero mean white process. ¢ is a backward shift operator.
Define one-step ahead prediction error for a model structure p at a parameter vector (6*) and

at sample time ¢ by
e(t, u(07)) = y(t) — §(t|n(67)) (4.2)

where ¢(t|(6%)) is a one-step ahead prediction of the output based on the data up to sample time

t — 1. To find an optimal one-step ahead prediction, (4.1) is rewritten as
y(t) = [ = L7 (q,0")]y(t) + L™"(q,0")P(q, 0" )u(t) + e(?). (4.3)

For a sufficiently large ¢ (i.e. barring the starting up of the IIR filters from zero initial conditions),
all the terms on the right hand side except the disturbance e(t) are determined from the past data
up to y(t — 1). It may be shown that the following choice of one-step ahead prediction minimises

the variance of the prediction error €(t, 4(6*)) [Lju99] :

G(tlu(0*)) = [I = L™(q,0")]y(t) + L™ (q,0")P(q, 0 )u(t). (4.4)

Restricting (L, P) to LP ensures that the above one-step ahead predictor is stable. Let

7% =[y(1) u(1) y(2) u(2) - y(N) u(N)]. (4.5)
For this data set and a model structure u(#), the parameter estimate Oy is defined by

Va(u(fx), 2) = min Vv (u(6), 2%) (46)

where
N
N 1 T
Vi (u(0), 27) = trace | <= > e(t, w(@)e" (¢ p(0)) | - (4.7)
t=1
The optimisation problem (4.6) is usually solved by some modified variant of Gauss-Newton
method [Fle87]. Under certain assumptions, this method also yields information regarding un-
certainty in the obtained model in terms of a covariance matrix of parameter estimates. The
purpose of the work that follows in this chapter is to map this uncertainty into chordal distance

uncertainty.

4.3 Uncertainty Region for MISO systems

In this section, an expression of the uncertainty regions D delivered by PE identification of MISO

true systems in a full order model structure [Lju99] is given. The ensuing discussion will focus on
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MISO systems with two inputs for notational simplicity. However all the results are applicable for
any (finite) number of inputs. Assume thus that the true system is linear and time-invariant, with

a rational MISO transfer function P; such that

u
Py

——
——t
Ul
y= ( Poy Pop ) +v
U2

where v is additive noise. It is assumed that the identification is performed using a parametrization

of P; with an identical auto-regressive part for Py ; and Py i.e.

( 61+ZN150 62+ZN250 )
1+ Zpdy

where 6y € R¥*! is the unknown true parameter vector, Zy, (z), Zn,(z) and Zp(z) are row vectors

Pt = P(Z,(;()) =

(4.8)

of size k of known transfer functions. e;(z) and eg(z) are known transfer functions. This is the case
when P, (and the noise model) has an ARX structure or an ARMAX structure. This is also the
case when Py (resp. Py 2) is parametrized by the sum of a given model e;(z) (resp. ez(z)) and an
expansion of linear basis functions (such as Laguerre filters). In this last case, Zp = 0.

When Py = no,1/do,1 and Py = ngp2/do 2 I have different auto-regressive parts, a structure
such as in (4.8) can be obtained by considering a parametrization P(z,dp) such that Zy,dy =

no,1 d072, ZNQ(S() = Nnp,2 dgyl and 1 + ZD50 = dO,l do,g. Here €1 (Z) and 62(2) are equal to 0.

Proposition 1 Consider P, = P(z,0¢), the true MISO system with two inputs parametrized as
in (4.8). A PE identification experiment (with o full order model structure) performed on P,
delivers an identified model P, = P(z,S) and an uncertainty region D containing the true system
P, at a prescribed probability level a. This uncertainty region is centered at P(z, 5) and can be

described by the following generic form:

( e1+ Zn,6 €2+ Zn,0 )

and 6 € U (4.9)

where U = {8 | (0 —8)"R(6 — &) < x?}, 6 € R¥*! is a real parameter vector, § is the estimated
parameter vector defining the identified model, R is a symmetric positive definite matriz € R¥*F
that is equal to the inverse of the covariance matriz of 5, x? is determined by the desired probability
level o, Zn,(2), Zn,(2) and Zp(z) are row vectors of size k of known transfer functions. e1(z) and

e2(z) are known transfer functions.

Proof Trivial extension of the results in [Bom00]. =
Note that different identification experiments (i.e. open-loop or closed-loop identification, differ-
ent measured data, ...) lead to different identified parameter vectors, different covariance matrices,

and therefore also different uncertainty sets D.

"Here, no,i(z) and do,;(z) are the numerator and denominator of Py ;, respectively.
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Due to the multivariable structure in (4.9), the numerical method that was developed [BGS00]
for a SISO uncertainty region in order to compute the worst case v—gap for D is no more valid.
In the ensuing sections, a new numerical methodology adapted to the multivariable structure of D

will be presented in order to compute this measure.

4.4 An Algorithm to Compute the Worst Case Chordal Distance
for D

As said in the introduction, the robust stability measure for the uncertainty region D is based on
the concept of worst-case v-gap between the identified model P, = P(z,g) and the uncertainty
set D that has been introduced in [BGS00]. The worst-case v-gap is an extension of the v-gap,
introduced by Vinnicombe [Vin93a], which is a measure of distance between two transfer functions.

Consider the uncertainty region D given in Proposition 1 and centered at the identified model
P,, = P(z,4). The worst case v-gap dyc (P, D) is given by:

5WC(PmaD) = sup 51/(Pmapm) (4'10)
PineD

where 0, (P, Pin) is the v-gap between the plants P, and P;, (see [Vin93al).

The definition of another important quantity is also recalled: the worst case chordal distance
kwc (P (e/), D). This quantity, whose computation is the result of a convex optimisation problem
involving LMI constraints in the MISO case as will be shown in Section 4.4, will allow us to give
an alternative expression for oy ¢ (P, D).

At a particular frequency w, define Ky (P, (e/¥), D) as the maximum chordal distance between

Py, (e7*) and the frequency responses of all plants in D at this frequency:

tiwc(Pn(e/), D) = supp, cp (Pm(e’), Pin (/) (4.11)

where the chordal distance x is defined as in (2.3).

This last quantity can now be used to give an alternative expression of the worst case v—gap.
This is done in the following lemma, which is an extension of a property presented in [Vin93b, page
66].

Lemma 3 The worst case Vinnicombe distance dyc(Pp,, D) defined in (4.10) can also be expressed

in the following way using the worst case chordal distance:

dwc(Pm, D) = sup k(P (e’), D) (4.12)
w
where kywc (P (e/?), D) is defined in (4.11).

Proof: See [BGS00]. =
Recall the definition of the worst case v-gap between the model P, and all plants in an uncer-

tainty region D. In this subsection, a procedure to compute this worst case v-gap dywc (P, D) in
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the considered case of an uncertainty region delivered by the PE identification of a MISO true sys-
tem P, is given. This LMI-procedure is the extension to the MISO case of the procedure developed
in [BGSO00] for the SISO systems.

Theorem 1 Consider the uncertainty region D given in Proposition 1 and centered at the identified
model P,, = P(z, 5) Then kwc(Pm(e7*), D) = \/Aopt, where Yopt is the optimal value of v in the
following standard convex optimisation problem involving LMI constraints [BGFB94] evaluated at

w:
minimise y
over Y, T
subject to T >0 and
Re(ai1) Re(ai2) \ . RA e iRé , | <0 (4.13)
Re(at,) Re(azz) (—R6)" 0 RS —x
where

o an = ( (117 + W23 7 + 570 + ks Z) 7 ) = v ( 28, Zn, + 23, Zn0 + 7570 )

arr = ( [k 25+ kaZ§) + o325 + ks Z5) ) =7 ( eaZiy, + 2, + 23 )

age = ( filkofy + ko f3) + fo(k3f7 + ks f3) ) —7( 1+ erel + eel >’

o fi=x1—e; and fo =79 — €3

Zl = :1:1Zd - ZN1 and Z2 = xZZd - ZN2

bk -
LRz ) pps wz’thB:(Iz—i—X*X)
K ks

[ ]
M

X = ( Tl T2 ) = P, (/).

The worst case v-gap is then obtained as

0w (P, D) = sup kiwc(P(e’), D)
w

Proof We prove that the square root of the solution of the LMI optimisation problem gives the
worst case chordal distance k¢ (P, (e/?), D) at some frequency w. The derivation of the worst
case v-gap is a direct consequence of Lemma 3.

If the frequency response of the model Py, (e/*) is denoted by X, and that of any plant P(e/*, §) €
D by Y(§). Then a convenient way to state the problem of computing the worst case chordal

distance at some frequency w is as follows:
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manimise v such that

K(X,Y(0))2 <y forall § €U

Let us rewrite (X, Y (6))? in an appropriate way for the LMI formulation. Using the fact that
X and Y () are in C'*2, the fact that 3%(A4) = A(A*A) (A(A*A) is the largest eigenvalue of A*A)
and the definition (2.3) of x(X,Y (9)):

B
——~

K(X,Y(0) =7 | A+ Y(O)Y(6)*)2(X —Y () (L + X*X)"2 |,

M=

we obtain successively that

(X, Y(6)? <y =
1+YEY @) X BX -YE) (X -Y(@)B ) <7+

(X — Y (8))BB*(X — Y(5))* < (1 +Y ()Y (5)) (4.14)

where the last equivalence is a consequence of the fact that, when ¢ is a row vector, A\(¢*$) = p¢p*.
By pre-multiplying (4.14) by dy = (1+ Zpo) and post-multiplying the same expression by d3-, we

obtain:

(dy X — Ny)BB*(d5,X* — Ny-) < y(dyds- + Ny Ny-) (4.15)

where Ny = ( er1+ Zn,0 ez + Zn,0 ) Using the notations used in the statement of Theorem 1,

Expression (4.15) is equivalent with:

k1 ko

( P+ 208 fot Zod ) ( o n ) ( P+ 208 fot Zod )
< (dyds- + Ny Ny)

Some trivial manipulations show then that this last expression is equivalent with the following

() (2 o) (5) <o o
1 a){2 a9 1

with aq1, a12 and a9y as defined in the statement of Theorem 1. Since J is real, it can be shown
that (4.16) is equivalent with

constraint on & with variable ~y:
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0(0)

- - ~
) R R J
elan)  Re(ar) <0 (4.17)
1 Re(a}s) Re(azz) 1
This last expression is equivalent to stating that (P, (e/*), P(e/¥,))? < v for a particular § € U.
However, this must be true for all § € U. Therefore, (4.17) must be true for all § such that:

p(9)

A
- Y

T ~
0 R —Ro §
( 1 ) ( (—ROT TR — x? ) ( | ) <0 (4.18)

which is equivalent to the statement “6 € U”. Let us now recapitulate. Computing sy ¢ (P, ('), D)?
is equivalent to finding the smallest v such that ¢(0) < 0 for all ¢ for which p(§) < 0. By the S
procedure [BGFB94], this problem is equivalent to finding the smallest v and a positive scalar 7
such that 1(5) — 7p(8) < 0, for all § € R¥*! which is precisely (4.13). To complete this proof, note
that the worst case chordal distance at w is thus equal to /Yyt where 7o is the optimal value of
v. ®

Some comments on this result are in order.

e The LMI-procedure given in Theorem 1 for a MISO system with two inputs can be easily
extended to all MISO systems. Theorem 1 can also be easily adapted to SIMO systems
i.e. single-input multiple-outputs systems. For two SIMO systems P; and P, P! (¢/%) and
Pl (/%) are indeed row vectors and k(P (e/?), Py(e/*)) = wk(P{(e/*), P} (e/*)). Finally,
Theorem 1 allows us also to compute frequency weighted worst case v-gap : 0%y, (Pm, D) =
supp, ep 0y (P, aPiy,) where « is a (scalar) transfer function. This especially makes sense in
the M loopshaping design paradigm, where a(z) would be a weighting function (see [GM89]
for details). The weighting « in this case would only modify ey, es, Zy,, Zn, and as such

would not have an effect on the suggested algorithm.

e In the H,, loopshaping design paradigm, the performance of a closed-loop system [C' P]
is measured by its generalized stability margin b(P,C) (defined in (2.4)). In that sense,
the worst case v-gap dwc (P, D) can be seen as a measure of the worst case performance
degradation in the set D. Indeed, given any controller C' which stabilises all plants in D, we
have the following result: infpcp b(P,C) > b(Pp,C) — dwc(Pp, D). This result is a direct
consequence of the properties of the v-gap metric [Vin93b] and of the fact that D is embedded
in the v-gap uncertainty region {P|d, (P, P) < dwc(Pmn,D)}. Note that, in practice, in Ho
loopshaping design, a shaped nominal plant should be considered and thus this result has to

be rewritten with this shaped plant and with a frequency weighted worst case v-gap .
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4.5 Numerical Example

Let us now illustrate our results by an example. Consider thus the following MISO true system in
the ARX structure:

e(t)
do(z)
where e(t) is a white noise of variance 0.1, ng; = 0.1047z=! + 0.0872272, ng o = 0.2271 + 0.05272
and dg = 1 — 1.55782~ 1 + 0.57692z72. A PE identification experiment is performed on this true

u(t) +

system using an input signal whose two components are a white noise of variance 1. 5000 data are

collected and the following model is identified:

( 0.0992 1 4+ 0.0862 2 0.2013271 +0.04822 )
1—1.55542z=1 + 0.57822

P, = P(z,0) =

Along with this model, the uncertainty region D centered at P,, and containing the true system
P, at a probability 0.95 is built. This uncertainty region has the general structure (4.9) with el
and ez =0, x2 =126, Zp = (271 2720000), Zy, = (00 271 27200), Zny, = (0000 27! 272)
and § = (—1.554,0.578,0.099, 0.086,0.2013, 0.048)"".

The worst case chordal distance sy c(Pp(e?*),D) is at each frequency using the LMI tools
developed in Section 4.4. The worst case chordal distances are represented in Figure 4.5 where
they are compared with the actual chordal distances (P, (e’“), P;(e/“)) between the identified
model P, and the true system P, (which is spuposed to be unknown).

According to Lemma 3, the worst case v-gap dw ¢ (P, D) can be derived from the worst chordal
distances: Sy ¢ (P, D) = sup,, swc(Pn(e?%), D) ~ 0.0716.
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Figure 4.1: kwc(Pn(e??),D) (solid) and &(Pp,(e’*), Pi(e’*)) (dashdot) at each frequency
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Chapter 5

A Lower Bound on The Achieved
Closed Loop Performance from A
Finite Data

The results of this chapter were first published in [DCO03a).
Recall the lower bound in (2.7)

b(P, C) > inf (p(Po, C) () = (P, P) ().

Suppose, the true plant frequency response P;(e’“i) is known to lie within a known chordal
distance from the frequency response of the model P, (e/“i) at a finite number of frequencies
{wo,w1,ws,...,wn}. This information may e.g. be result of an optimisation procedure described
in the earlier chapter. Then provided the frequency responses of P, P; and C), are ‘sufficiently
smooth’ and the frequency grid is ‘sufficiently dense’, the infimum over the continuum of frequencies
in the lower bound of (2.7) may be approximated by an infimum over the finite set {w;}:

igf (P(vac)(ejw) - Ii(Pt,Pm)(ejw)) R miin (p(Pm’C)(ejwi) _ I‘E(Pt,Pm)(ej“’i))

Here, a lower bound on the right-hand side of (2.7) is derived by using an appropriate notion
of smoothness and a finite set of frequency response data. The quantity used to capture the

smoothness of frequency responses, in terms of the variation in chordal distance, is defined by

Ve = |GrGh o0, (5.1)

where G', = d‘?zp . As shown in [Vin96], given two frequencies w; and wy,

/{(P(ej“’l),P(ejw?)) < Vplwi — ws.

Given P, it is not difficult to compute Vp. First, Gp, Gp can be computed using by well-known
techniques which are available in standard software such as MATLAB. Then given Gp = H(zI —
A)"'F + D (where {A, F,H,D} is any state space realisation of Gp), it follows that G, = 5155
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where S; = —H(zI — A)~'T and Sy = I(2I — A)~'F. That is, Vp is simply the infinity norm of
a product of three transfer functions all of which may be easily derived from P. Below, a lower
bound on p(P;, C) at any intermediate frequency wy € [w;,w;+1] is obtained using the definition of
Vp.

Proposition 2 Let C be a controller that stabilises both the true plant P, and the model P,,. Then
for any w, € [wi,wit1] the following inequality holds:

p(Po () > (max {b(P, ©), (/127 } — ) (5.2)

where
zi 1= min {K(P, ~C*)(*), AP, —CT) ) } + Vo, +V gl —wil,  (5.3)
yi i= min {k(P, P)(€), 5(Pon, P)(€5) } 4 (Vi + Vi, i1 — wi (5.4)
and Vp is as defined in (5.1).
Proof : Given P, it can be shown that
p(P,0)(e) = /1 — K2(P,~C*)(ei) (5.5)

at all frequencies [Vin93a]. Hence, it follows from (2.6) that

p(P C)(&) > \/1 = K2(P, ~C*)(ed*) — (P}, Prn) (")

The lower bound claimed follows by bounding, from above, each of the two chordal distances terms
shown. Since k(-,+) is a metric [Vin01], it follows by the triangle inequality,
K(Pny P (") < R(Pn(€7), Pra(¢74)) + K(Pn (€77), P(7)) + w(Py(e77), Py(e?"))
< K(Pp(e7%), Pi(e?“)) + (Vp,, + Vp,) |wi — wil. (5.6)

Similarly,
K(Pmy ) (€7%) < (P (e750), P(e741)) + (Vi,, + VP,) lwi — wiga|- (5.7)

Note that the upper bound y; on (P, P;)(e/**) in (5.3) is simply a consequence of equations
(5.6-5.7). The upper bound z; on k(Py,, —C*)(e’“*) in (5.4) follows in a similar manner. The result
now follows by using equation (5.5) and the fact that both b(P,,,C) and /1 — z? are lower bounds
on p(Py,, C) (/). [

When the right hand side in (5.2) is positive for all 7, Lemma 1 further suggests that

b(P,,C) = infp(P;, C)(e™)
w
= min inf p(Pt,C)(ejw)

i wews,wit1]
> mz_in (max {b(Pm,C),\/I—x%}—yi). (5.8)
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Note that the right-hand side of (5.8) is a lower bound for the right-hand side of (2.7), as discussed
at the end of the previous section. Furthermore, observe that all terms in this lower bound (except
Vp,) are either known or can be computed from the measured data. Although the complexity of P; is
unlikely to be known exactly, one may incorporate an ‘educated guess’ into the a priori information;
e.g. P, may be allowed to be at most twice as complezx as its model P, (i.e. Vp, < 2Vp ).
In addition to being computationally tractable, the effect of complexity on achieved worst case

performance is clearly visible in this new bound. In particular,

e The frequency separation |w; ;1 —w;| should be small wherever (P, P;)(e/“) is large and/or

p(Py,, C) is small. This will reduce the effect of complexity terms on the bound.

e An increase in the complexity of plant or model or controller worsens the lower bound on
achieved performance. If this lower bound is poor, one may consider re-designing a controller
with lower complexity (e.g. using the technique suggested in [Vin96]) or obtaining a plant

model P, with lower complexity.

To conclude, it is interesting to consider more closely the term V_g- in (5.3), which was simply
considered to be a measure of controller complexity, without explanation. Note that it is not clear
that V_¢~ = V¢ in general. However, by considering the behaviour of frequency-domain symbols
on the unit circle only, and since in this case C;“é and G can be considered to be normalised graph

symbols (now left and right invertible in L) of —C*, it follows that
Voge = 1G-c(G-c+) lloo = IGE(GE) oo = GcGollos =: Ve,

where the norms here all correspond to the one on L., and the third equality holds because given
an X € RLoo, —22(X*) = (X')* and | X = |X|sc = [[X*||co. Hence, mimicking the proof of
Lemma 5.4 in [Vin01], it also follows that

R(C(71),C(72)) < Velwi — wal.

That is, V& can be thought of as measuring the complexity of C in the same way as V. In fact,
for a single-input single-output C, or a diagonal multiple-input multiple-output C, it may be easily
shown that f/c =Ve.
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