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Abstract. We consider the following shadow system of the Gierer-
Meinhardt system with saturation:⎧⎪⎨

⎪⎩
At = ε2∆A − A + A2

ξ(1+kA2) in Ω × (0,∞),

τξt = −ξ + 1
|Ω|

∫
Ω

A2 dx in (0,+∞),
∂A
∂ν = 0 on ∂Ω × (0,∞),

where ε > 0 is a small parameter, τ ≥ 0, k > 0 and Ω ⊂ Rn is smooth
bounded domain. The case k = 0 has been studied by many authors in
recent years. Here we give some sufficient conditions on k for the existence
and stability of stable spiky solutions. In the one-dimensional case we
have a complete answer of the stability behavior. Central to our study
are a parameterized ground-state equation and the associated nonlocal
eigenvalue problem (NLEP) which is solved by functional analysis and
the continuation method.

1. Introduction

Turing in his pioneering work in 1952 [36] proposed that a patterned dis-

tribution of two chemical substances, called the morphogens, could trigger

the emergence of a complex cell structure leading to the development of a

complete organism. He shows by linear stability analysis that the homoge-

neous state may be unstable which explains why a stable spatially complex

pattern of the morphogens arises.

Since the work of Turing, a lot of models have been proposed and analyzed

to explore this phenomenon, which is now called Turing instability. One of

the most studied models is the Gierer-Meinhardt system which after suitable
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rescaling can be stated as follows: ([16], [25])

(GM)

⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + A2

H(1+kA2)
, A > 0 in Ω × (0,∞),

τHt = D∆H − H + A2, H > 0 in Ω × (0,∞),
∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω × (0,∞).

The unknowns A = A(x, t) and H = H(x, t) represent the concentrations

of the activator and inhibitor at a point x ∈ Ω ⊂ R2 and at a time t > 0;

∆ :=
∑2

j=1
∂2

∂x2
j

is the Laplace operator in R2; Ω is a bounded and smooth

domain in R2; ν = ν(x) is the outer normal at x ∈ ∂Ω. The term A2

1+kA2

is the so-called Michaelis-Menton saturation term, where k > 0. This term

describes saturation since for A → ∞ the term A2/(1+kA2) converges to 1
k
.

The Gierer-Meinhardt system without saturation (i.e. k = 0) has been the

object of extensive studies in recent years which we now briefly summarize.

We start with the shadow system [32] (which arises for D = +∞):⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + A2

ξ
, A > 0 in Ω × (0,∞),

τξt = −ξ + 1
|Ω|

∫
Ω A2 dx, in (0,∞),

∂A
∂ν

= ∂H
∂ν

= 0 on ∂Ω × (0,∞).

(1.1)

Since we a have purely power-like nonlinearity, the steady state of (1.1)

can be conveniently rescaled to the following simple singularly perturbed

equation: ⎧⎨
⎩ ε2∆u − u + u2 = 0, u > 0 in Ω,

∂u
∂ν

= 0 on ∂Ω.
(1.2)

Problem (1.2) has been studied by a lot of authors. It has been proved that

problem (1.2) admits a rich set of multiple boundary and multiple interior

spike solutions. See [1], [2], [3], [4], [7], [8], [11], [12], [13], [14], [18], [19],

[20], [21], [24], [27], [28], [29], [40], [39], [41], [45], [46], and the references

therein. (Recent surveys can be found in [26], [44].) At each spike, the

solution resembles the following ground-state solution:⎧⎨
⎩

∆w − w + w2 = 0, w > 0 in Rn,

w(0) = maxy∈Rn w(y), w(y) → 0 as |y| → ∞
(1.3)

whose existence as well as uniqueness has been shown in [17] and [23], re-

spectively.
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The stability of multiple spike solutions with respect to the shadow system

has been studied in [15], [30], [31], [42], [37], [38]. Central to understanding

the stability is the following nonlocal eigenvalue problem (NLEP):⎧⎪⎨
⎪⎩

∆φ − φ + 2wφ − 2

∫
Rn wφ∫
Rn w2 w2 = λφ in Rn,

φ ∈ H1(Rn), λ ∈ C,
(1.4)

where C is the set of complex numbers. It was proved in [42] that problem

(1.4) is stable if n ≤ 3. Note that (1.4) is not self-adjoint and hence complex

eigenvalues do occur (see [37]).

When D < +∞, (GM) is quite difficult to solve in general. In recent years,

for the case k = 0, the existence and stability of multiple spike solutions have

been studied in one or two dimensions. See [22], [35], [47], [48], [49], and the

references therein.

In this paper, we concentrate on the saturation case, i.e, k > 0. As far as

the authors know, the only papers dealing with the saturation case to the

Gierer-Meinhardt system are due to M. del Pino [9] and [10], where solutions

with multiple layers are constructed. His assumption is that ε << 1, but

that k is fixed. Here we will allow k to depend on ε and we would like to

understand the role of k on the existence and stability of spiky solutions.

For simplicity, we consider the shadow system only. (The full system with

D > 0, k > 0 is more difficult to analyze.) Namely, we study the following

problem: ⎧⎪⎪⎨
⎪⎪⎩

At = ε2∆A − A + A2

ξ(1+kA2)
, A > 0 in Ω × (0,∞),

τξt = −ξ + 1
|Ω|

∫
Ω A2(x) dx, ξ > 0 in (0,∞),

∂A
∂ν

= 0 on ∂Ω × (0,∞). (1.5)

Our first problem is the existence of steady states which, contrary to the

case k = 0, can no longer be rescaled to (1.2). In fact, one has to consider a

system of two equations – one of these is a PDE and the other is an algebraic

equation: ⎧⎪⎪⎨
⎪⎪⎩

ε2∆A − A + A2

ξ(1+kA2)
= 0, A > 0 in Ω,

ξ = 1
|Ω|

∫
Ω A2(x) dx, ξ > 0,

∂A
∂ν

= 0 on ∂Ω. (1.6)
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To obtain a steady-state solution for (1.6), we first have to solve the fol-

lowing parameterized ground-state equation:⎧⎪⎨
⎪⎩

∆wδ − wδ +
w2

δ

1+δw2
δ

= 0, wδ > 0 in Rn,

wδ(0) = maxy∈Rn wδ(y), wδ(y) → 0 as |y| → ∞
(1.7)

and then solve the algebraic equation

δ
(∫

Rn
w2

δ(y) dy
)2

= k0, (1.8)

where

k0 = lim
ε→0

4kε−2n|Ω|2. (1.9)

We note that there is an immediate change of type of nonlinearities: a

convex nonlinearity in (1.3) becomes a bistable nonlinearity in (1.7).

To study the stability, we have to study the following new NLEP:⎧⎪⎨
⎪⎩

∆φ − φ +
(

2wδ

1+δw2
δ
− 2δw3

δ

(1+δw2
δ
)2

)
φ − 2

∫
Rn wδφ∫
Rn w2

w2
δ

1+δw2
δ

= λφ in Rn,

φ ∈ H2(Rn), λ ∈ C. (1.10)

Both problems (1.7)-(1.8) and (1.10) are not easy to solve because of non-

power like nonlinearity. In this paper, we give a complete answer in one-

dimensional case. In higher dimensions, we give sufficient conditions on k

to ensure the existence and stability of solutions.

We state our result in one-dimensional case first. Without loss of general-

ity, we may assume that Ω = [0, 1]. We then have

Theorem 1.1. Assume that

lim
ε→0

4kε−2n|Ω|2 = k0 ∈ [0, +∞). (1.11)

Then for each k0, and for ε sufficiently small, problem (1.6) admits a

steady-state solution (uε, ξε) such that

(a) Aε(x) = (1 + o(1))ξεwδε(
x
ε
), where δε → δ, δ is the unique solution to

(1.8) and wδε is the unique solution of (1.7), and

(b) ξε = (2 + o(1))(ε
∫
R1 w2

δε
)−1.

Moreover, (Aε, ξε) is linearly stable for (1.5), provided τ is small.
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In higher dimensions, the statement is more complicated. Let Q ∈ ∂Ω.

We use H(Q) to denote the mean curvature function at Q. We say that Q

is a nondegenerate critical point of H(Q), if the following holds:

∂iH(Q) = 0, i = 1, ..., n − 1, det(∂i∂jH(Q)) �= 0,

where ∂i denotes the i−th tangential derivative. We then have

Theorem 1.2. Assume that

lim
ε→0

4kε−2n|Ω|2 = k0 ∈ [0, +∞) (1.12)

and Q0 ∈ ∂Ω is a nondegenerate critical point of H(Q).

Then for each k0, and for ε sufficiently small, problem (1.6) admits a

steady-state solution (Aε, ξε) such that

(a) Aε(x) = (1+ o(1))ξεwδε(
x−Qε

ε
), where δε → δ with δ being a solution to

(1.8), and wδε is the unique solution of (1.7), and

(b) Qε → Q0,

(c) ξε = (2 + o(1))(εn
∫
Rn w2

δε
)−1.

If Q0 is a nondegenerate local maximum point of H(Q), then there exists

a k̂0 such that for all k0 ∈ (0, k̂0) the steady state (Aε, ξε) is linearly stable

for (1.5), provided τ is small and n ≤ 3.

The organization of the paper is as follows: In Section 2, we study the

parameterized ground-state problem (1.7) and the algebraic equation (1.8)

and prove some preliminary results. In Section 3, we study the NLEP (1.10)

for dimensions n ≤ 3. In Section 4, we prove Theorems 1.1 and 1.2.

Finally, the proofs of some technical lemmas are given in Appendices A

and B.

Some important questions are left open.

First, we have assumed that k ≤ Cε2n for some constant C. What happens

if limε→0 kε−2n → +∞? We believe that spikes do not exist. Does this mean

that del Pino’s result [10] holds in that case?

Secondly, our stability result in higher dimensions (Theorem 1.2) is in-

complete. We conjecture that k̂0 should be infinity. It is also of interest

to understand the stability behavior for dimensions n ≥ 4 which leads to
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NLEPs for a new parameter range. Another topic concerns the Hopf bifur-

cations occurring for τ large. For recent progress in this direction for the

Gierer-Meinhardt system without saturation please see [37], [38].

Finally, the issue of existence and stability results for the case of finite D

in one or two dimensions for the Gierer-Meinhardt system with saturation

remains completely open.

Acknowledgments. The research of JW is supported by an Earmarked

Grant from RGC of Hong Kong. MW thanks the Department of Mathemat-

ics at CUHK for their kind hospitality.

2. The Parameterized Ground-state

In this section, we consider (1.7) and (1.8). We first study (1.7). Note

that when δ = 0, (1.7) becomes (1.3).

By the scaling

wδ(y) =
1√
δ
v

(
y

δ
1
4

)
(2.1)

we see that (1.7) is equivalent to the following rescaled form:⎧⎨
⎩

∆v + g(v) = 0, v > 0 in Rn,

v(0) = maxy∈Rn v(y), v(y) → 0 as |y| → ∞.
(2.2)

where

g(v) = −
√

δv +
v2

1 + v2
. (2.3)

It is easy to see that, for each δ ∈ (0, 1
4
), the equation g(v) = 0 has exactly

two roots

t1(δ) =
1 −√

1 − 4δ

2
√

δ
, t2(δ) =

1 +
√

1 − 4δ

2
√

δ
. (2.4)

Now we consider

c(δ) =
∫ t2(δ)

0
g(s) ds. (2.5)

To study c(δ), we introduce the function

ρ(t) =
t − arctan (t)

t2
.
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Note that ρ(t) is well-defined for t ∈ [0, +∞). The critical point of ρ(t) is

unique and is given by the solution of the equation

arctant =
2t + t3

2(1 + t2)
, t > 0. (2.6)

We denote the unique critical point of ρ(t) by t∗. One computes numerically

t∗ = 1.514... < π
2
. Let

δ∗ = (2ρ(t∗))2. (2.7)

Then it is easy to see that

c(δ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0 for δ < δ∗,

= 0 for δ = δ∗,

< 0 for δ > δ∗.

(2.8)

Some important properties of the the function g(v) are stated in the fol-

lowing lemma.

Lemma 2.1. For each δ ∈ (0, δ∗), the function g(v) satisfies the follow

conditions:

(g1) g ∈ C3(R,R), g(0) = 0, g
′
(0) = 0.

(g2) There exist b, c > 0 such that b < c, g(b) = g(c) = 0, g(v) > 0 in

(−∞, 0) ∪ (b, c), and g(v) < 0 in (0, b) ∪ (c, +∞).

(g3)
∫ c
0 g(v)dv > 0.

(g4) Let θ > b be the smallest positive number such that G(u) = 0, where

G(u) =
∫ u

0
g(s)ds,

and let ρ > b be the smallest number such that g(u)
u−ρ

is nonincreasing for

u ∈ (ρ, c). Then either

(i) θ ≥ ρ, or

(ii) θ < ρ with Kg(u) nonincreasing in (θ, ρ), Kg(u) ≥ Kg(θ) for u ∈
(b, θ) and Kg(u) ≤ Kg(ρ) for u ∈ (0, b) ∪ (ρ, c), where

Kg(u) =
ug

′
(u)

g(u)
.

The proof of Lemma 2.1 is elemantry and thus left to Appendix A.

In the following lemma we state some important properties of wδ.
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Lemma 2.2. For each δ ∈ (0, δ∗), problem (1.7) admits a unique solution,

denoted by wδ, which satisfies

(i) wδ ∈ C∞(Rn).

(ii) wδ > 0 is radially symmetric and w
′
δ(r) < 0 for r �= 0.

(iii) wδ and its derivatives decay exponentially at infinity, i.e., there exist

c1, c2 > 0 such that ∣∣∣∣∣∂wδ

∂yi

∣∣∣∣∣ ≤ c1e
−c2|y|, i = 1, . . . , N,

∣∣∣∣∣ ∂
2wδ

∂yiyj

∣∣∣∣∣ ≤ c1e
−c2|y|, i, j, = 1, . . . , n.

(iv) The first eigenvalue of the following operator

Lδ = ∆ − 1 +
2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2
: H2(Rn) → L2(Rn),

(2.9)

denoted by λ1 = λ1(Lδ), is positive and simple; the corresponding eigenfunc-

tion φ can be made positive and radially symmetric.

(v) The second eigenvalue of Lδ is 0 and the dimension of its kernel is n.

Namely, λ2(Lδ) = 0 and

Kernel

(
∆ − 1 +

2wδ

1 + δw2
δ

− 2δw3
δ

(1 + δw2
δ)

2

)
= span

{
∂wδ

∂y1

, ...,
∂wδ

∂yn

}
.
(2.10)

Proof: By Lemma 2.1, g(v) = −δv + v2

1+v2 satisfies conditions (g1)-(g4). By

Proposition 1.3 of [2], Lemma 2.2 holds for equation (2.2). (See also [33],

[34], [5]). Hence Lemma 2.2 also holds for (1.7).

�
The following lemma gives information about the dependence of wδ on δ

and provides some identities.

Lemma 2.3. (1) wδ is C1 in δ,

(2) As δ → δ∗, wδ(y) → t2(δ∗)/
√

δ∗ in C2
loc(R

n).

(3) The following identities hold:

Lδwδ =
w2

δ

1 + δw2
δ

− 2δw4
δ

(1 + δw2
δ)

2
, (2.11)
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Lδ
dwδ

dδ
=

w4
δ

(1 + δw2
δ)

2
, (2.12)

Lδ(y · ∇wδ) = 2

(
wδ − w2

δ

1 + δw2
δ

)
, (2.13)

Lδ(wδ + 2δ
dwδ

dδ
+

1

2
y · wδ) = wδ, (2.14)

Lδ(wδ + 2δ
dwδ

dδ
) =

w2
δ

1 + δw2
δ

. (2.15)

Proof: (1) follows from the uniqueness of wδ given in Lemma 2.2.

To prove (2), we note that wδ ≤ t2(δ)/
√

δ and hence, as δ → δ∗, wδ

approaches in C2
loc(R

n) a solution of the equation

∆u − u +
u2

1 + δ∗u2
= 0, y ∈ Rn, u = u(|y|)

which admits only constant solutions. That constant must be t2(δ∗)/
√

δ∗
since wδ(0) → t2(δ∗)/

√
δ∗. This proves (2).

The first two identities (2.11) and (2.12) follow from direct computations

and the third one (2.13) follows from Pohozaev’s identity. (2.14) – (2.15)

follow from (2.11) – (2.14).

�
Now we can consider the following algebraic equation:

k0 = δ
(∫

Rn
w2

δ(y) dy
)2

. (2.16)

Lemma 2.4. For each fixed k0 > 0, there exists a δ ∈ (0, δ∗) such that (2.16)

holds.

Proof: Let β(δ) = δ (
∫
Rn w2

δ(y) dy)
2
.

Certainly, β(δ) is a continuous function of δ and β(0) = 0. Now we

consider the asymptotic behavior of wδ as δ → δ∗. By Lemma 2.3 (2), as

δ → δ∗, wδ(|y|) → t2(δ∗)/
√

δ∗ in C2
loc(R

n). Thus we have

β(0) = 0, β(δ) → ∞ as δ → δ∗. (2.17)

By the mean-value theorem, for each k0 ∈ (0, +∞), there exists a δ ∈ (0, δ∗)

such that β(δ) = k0.
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�
Remark 2.1: The uniqueness of δ is unclear. To show uniqueness, we have

to compute

dβ

dδ
=

[∫
Rn

w2
δ(y) dy + 4δ

∫
Rn

wδ
dwδ

dδ
dy

] ∫
Rn

w2
δ(y) dy.

(2.18)

We claim that

Lemma 2.5. ∫
Rn

wδ
dwδ

dδ
dy

∣∣∣∣∣∣
δ=0

> 0. (2.19)

Proof: By (2.12) and (2.14), we have

∫
Rn

wδ
dwδ

dδ
dy

∣∣∣∣∣∣
δ=0

=
∫

Rn
w0L

−1
0 (w4

0) dy

=
∫

Rn
w4

0(L
−1
0 w0) dy =

(
1 − n

10

) ∫
Rn

w5
0 dy > 0.

�
So, at least for k small, the solution to (2.16) is unique. We conjecture that

Lemma 2.5 holds for any δ ∈ (0, δ∗). This is true for the one-dimensional

case:

Lemma 2.6. Suppose that n = 1. For any δ ∈ (0, δ∗), we have

d

dδ

(∫
R1

w2
δ dy

)
> 0. (2.20)

The proof of Lemma 2.6 is technical and is left to Appendix B.

3. Stability

Let (Aε, ξε) be the solution given in Theorems 1.1 and 1.2. We now consider

the (linear) stability of (Aε, ξε). We then have

ε2∆φ − φ +
2Aεφ

ξε(1 + kA2
ε)

− 2kA3
εφ

ξε(1 + kA2
ε)

2
− A2

ε

ξ2
ε (1 + kA2

ε)
· η = λφ,

(3.1)

− η +
2

|Ω|
∫
Ω

Aεφ dx = τλη, (3.2)

where (φ, η) ∈ H2(Ω) × R.
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Assume first that τ = 0. Then

η =
2

|Ω|
∫
Ω

Aεφ dx. (3.3)

Substituting (3.3) into (3.1), we obtain the following nonlocal eigenvalue

problem after the same re-scaling as above and after taking the limit for

ε → 0:

∆φ − φ +
2wδφ

1 + δw2
δ

− 2δw3
δφ

(1 + δw2
δ)

2
− 2

∫
RN wδφ dy∫
R2 w2

δ dy
· w2

δ

1 + δw2
δ

= λφ.
(3.4)

The purpose of this section is to give a thorough study of (3.4). The

following is the main theorem:

Theorem 3.1. Assume that δ ∈ [0, δ∗∗), where δ∗∗ > 0 is such that

δ∗∗ = sup

{
δ ∈ (0, δ∗) |

∫
Rn

ws
dws

ds
> 0, for s ∈ (0, δ)

}
. (3.5)

Assume also that n ≤ 3. Then for all nonzero eigenvalues λ of (3.4), we

must have Re(λ) < −c0 < 0 for some c0 > 0.

Remark 3.1: By Lemma 2.5, δ∗∗ > 0. By Lemma 2.6, δ∗∗ = δ∗ when n = 1.

So we arrive at the following corollary.

Corollary 3.2. Let n = 1. Then for all nonzero eigenvalues λ of (3.4), we

must have Re(λ) < −c0 < 0 for some c0 > 0.

We now prove Theorem 3.1. This will be proved by a continuation method.

We begin with δ = 0. When δ = 0, Theorem 3.1 has been proved in [42] and

it follows from the following key inequality:

Lemma 3.3. (Lemma 5.1 of [42]). Assume that n ≤ 3. Then we have∫
Rn

(|∇φ|2 + |φ|2 − 2w2
0|φ|2) dy +

2
∫
Rn w0φ0 dy

∫
Rn w2

0φ dy∫
Rn w2

0 dy

− (
∫
Rn w0φ dy)2

(
∫
Rn w2

0 dy)
2

∫
Rn

w3
0 dy ≥ c1dL2(φ,X1), (3.6)

where

X1 =

{
w0,

∂w0

∂yj

, j = 1, ..., n

}

and dL2 is the L2-distance.
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Proof of Theorem 3.1:

Suppose that δ ∈ [0, δ∗∗).

We use the continuation method to prove Theorem 3.1. We will find a

suitable quadratic functional and show its positivity by varying δ.

We first note that we may restrict φ to a space of radially symmetric

functions. (This follows by the same argument as in [6] and [51].) So we

may assume that

φ ∈ H2
r (Rn) = H2(Rn) ∩ {φ(y) = φ(|y|)}.

To begin with, we multiply (3.4) by φ – the conjugate function of φ and

obtain

Qδ[φR, φR] + Qδ[φI , φI ] = −λ
∫

Rn
|φ|2 dy, (3.7)

where

Qδ[u, u] =
∫

Rn

(
|∇u|2 + u2 − 2w2

δu
2

1 + δw2
δ

+
2δw3

δu
2

(1 + δw2
δ)

2

)
dy (3.8)

+2

∫
Rn wδu dy∫

Rn w2
δ(y) dy

·
∫

Rn

w2
δu

1 + δw2
δ

dy

and φR = Re(φ), φI = Im(φ) are the real and the imaginary parts of φ,

respectively.

Therefore, to prove Theorem 3.1, it is enough to show that Qδ is positive

definite. We re-write Qδ as follows:

Qδ[u, u] = −(Lδu, u),

where

Lδu = ∆u − u +
2wδ

1 + δw2
δ

u − 2δw3
δ

(1 + δw2
δ)

2
u −

∫
Rn wδu dy∫

Rn w2
δ(y) dy

· w2
δ

1 + δw2
δ

dy

− wδ∫
Rn w2

δ(y) dy
·
∫

Rn

w2
δu

1 + δw2
δ

dy. (3.9)

Clearly,

Qδ is positive definite ⇐⇒ Lδ has negative spectrum only.
(3.10)

(3.6) implies that the principal eigenvalue of Lδ is negative for δ = 0. We

now continue in δ. Assume that at some point δ ∈ (0, δ∗), the principal
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eigenvalue of Lδ becomes zero. That is, there exists a function φ ∈ H2
r (Rn)

such that

Lδφ = 0. (3.11)

We re-write (3.11) as

Lδφ =

∫
Rn wδφ dy∫
Rn w2

δ dy
· w2

δ

1 + δw2
δ

+
∫

Rn

w2
δφ

1 + δw2
δ

dy
wδ∫

Rn w2
δ dy

,

and, applying L−1
δ (which exists by Lemma 2.2) on both sides of the equation,

φ =

∫
Rn wδφ dy∫
Rn w2

δ dy
·
(
L−1

δ

w2
δ

1 + δw2
δ

)
+

∫
Rn

w2
δφ

1 + δw2
δ

dy
L−1

δ wδ∫
Rn w2

δ dy
.

(3.12)

Let A =
∫
Rn wδφ dy and Then (3.12) implies⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A =

∫
Rn wδL

−1
δ

w2
δ

1+δw2
δ
dy∫

Rn w2
δ dy

A +

∫
Rn wδL

−1
δ wδ dy∫

Rn w2
δ dy

B

B =

∫
Rn

w2
δ

1+δw2
δ
L−1

δ
w2

δ

1+δw2
δ
dy∫

Rn w2
δ dy

A +

∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy∫
Rn w2

δ dy
B.

(3.13)

Observe that A2 +B2 �= 0 as otherwise Lδφ = 0 and φ ∈ Kernel(Lδ) which

is impossible by Lemma 2.2 since φ ∈ H2
r (Rn).

From (3.13), we have∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −
∫
Rn wδL

−1
δ

w2
δ

1+δw2
δ
dy∫

Rn w2
δ dy

−
∫

Rn wδL−1
δ

wδ dy∫
Rn

w2
δ dy

−
∫
Rn

w2
δ

1+δw2
δ
L−1

δ
w2

δ

1+δw2
δ
dy∫

Rn w2
δ dy

1 −
∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy∫
Rn w2

δ dy

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(3.14)

which is equivalent to

⎛
⎜⎝1 −

∫
Rn

w2
δ

1+δw2
δ
L−1

δ wδ dy∫
Rn w2

δ dy

⎞
⎟⎠

2

− 1

(
∫
Rn w2

δ dy)
2

(∫
Rn

wδL
−1
δ wδ dy

) (∫
Rn

w2
δ

1 + δw2
δ

L−1
δ

w2
δ

1 + δw2
δ

dy

)
= 0.

(3.15)
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Now we simplify (3.15). We make use of the identities (2.11)–(2.15) in

Lemma 2.3 and obtain∫
Rn

w2
δ

1 + δw2
δ

L−1
δ wδdy =

∫
Rn

wδL
−1
δ

w2
δ

1 + δw2
δ

dy =
∫

Rn
wδ(wδ + 2δ

dwδ

dδ
) dy

=
∫

Rn
w2

δ dy + 2δ
∫

Rn
wδ

dwδ

dδ
dy, (3.16)

∫
Rn

wδL
−1
δ wδ dy =

∫
Rn

wδ

(
wδ + 2δ

dwδ

dδ
+

1

2
y · ∇wδ

)
dy

=
(
1 − n

4

) ∫
Rn

w2
δ dy + 2δ

∫
Rn

wδ
dwδ

dδ
dy, (3.17)

∫
Rn

w2
δ

1 + δw2
δ

L−1
0

w2
δ

1 + δw2
δ

dy =
∫

Rn

w2
δ

1 + δw2
δ

(
wδ + 2δ

dwδ

dδ

)
dy

=
∫

Rn

w3
δ

1 + δw2
δ

dy + 2δ
∫

Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy. (3.18)

Multiplying (2.13) by dwδ

dδ
, using (2.12), and integrating, we obtain∫

Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy −

∫
Rn

wδ
dwδ

dδ
dy =

∫
Rn

w4
δ

(1 + δw2
δ)

2

(
−1

2
y · ∇wδ

)
dy

or ∫
Rn

w2
δ

1 + δw2
δ

dwδ

dδ
dy =

∫
Rn

wδ
dwδ

dδ
dy +

n

2

∫
Rn

γδ(wδ) dy,
(3.19)

where

γδ(wδ) =
∫ wδ

0

s5

(1 + δs2)2
ds.

Let

h(δ) :=

(
2δ

∫
Rn

wδ
dwδ

dδ
dy

)2

−
((

1 − n

4

) ∫
Rn

w2
δ dy + 2δ

∫
Rn

wδ
dwδ

dδ
dy

)

×
(∫

Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy + 2δ

∫
Rn

wδ
dwδ

dδ
dy

)

= −2δ
∫

Rn
wδ

dwδ

dδ
dy

((
1 − n

4

) ∫
Rn

w2
δ dy +

∫
Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy

)

−
(
1 − n

4

) ∫
Rn

w2
δ dy

(∫
Rn

w3
δ

1 + δw2
δ

dy + nδ
∫

Rn
γδ(wδ) dy

)
.

(3.20)
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Hence (3.15) becomes

h(δ) = 0. (3.21)

But observe that for 0 ≤ δ ≤ δ∗∗ we have h(δ) < 0. Hence, δ > δ∗∗, which

is a contradiction to our assumption that δ ∈ [0, δ∗∗).

This finishes the proof of Theorem 3.1.

�
Remark 3.2:

1). From the proof of Theorem 3.1, we see that the number δ∗∗ can be

replaced by

δ∗∗∗ = sup{δ ∈ (0, δ0) : h(s) < 0, s ∈ (0, δ)}. (3.22)

2). Let us give another sufficient condition for stability. Note that

∫
Rn

w3
δ

1 + δw2
δ

dy =
∫

Rn
w2

δ dy +
∫

Rn
|∇wδ|2 dy >

∫
Rn

w2
δ dy.

(3.23)

So (
1 − n

4

) ∫
Rn w2

δ dy
(∫

Rn
w3

δ

1+δw2
δ
dy +

∫
RN nδγδ(wδ) dy

)
(
1 − n

4

) ∫
Rn w2

δ dy +
∫
Rn

w3
δ

1+δw2
δ
dy +

∫
RN nδγδ(wδ) dy

>

(
1 − n

4

) ∫
Rn w2

δ dy(
2 − n

4

) =
4 − n

8 − n

∫
Rn

w2
δ dy.

Therefore, in order that h(δ) < 0, it suffices to have

4 − n

8 − n

∫
Rn

w2
δ dy + 2δ

∫
Rn

wδ
dwδ

dδ
dy > 0. (3.24)

Thus, if we define

δ∗∗∗∗ = sup

{
δ ∈ (0, δ∗) :

4 − n

8 − n

∫
Rn

w2
s dy + 2s

∫
Rn

ws
dws

ds
dy > 0, s ∈ (0, δ)

}
(3.25)

then Theorem 3.1 holds true for δ ∈ (0, δ∗∗∗∗).

4. Proof of Theorem 1.1 and Theorem 1.2

In this section, we prove both Theorems 1.1 and 1.2.
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We first consider existence of solutions to (1.6). By the scaling

A = ξu, ξ−1 =
1

|Ω|
∫
Ω

u2 dx, (4.1)

it is easy to see that (1.6) is equivalent to the following two equations:⎧⎨
⎩ ε2∆u − u + u2

1+δu2 = 0, u > 0, in Ω,
∂u
∂ν

= 0 on ∂Ω,
(4.2)

and

δ(2ε−n
∫
Ω

u2)2 = kε := 4kε−2n|Ω|−2. (4.3)

By assumption (1.11), limε→0 kε = k0 ∈ [0, +∞). By Lemma 2.4, there

exists a δ1 ∈ (0, δ∗) such that

δ1

(∫
Rn

w2
δ1

dy
)2

= k0. (4.4)

Observe that wδ is uniformly bounded in H1(Rn) for δ ∈ (0, δ1) (the bound

may depend on δ1).

Fox each fixed δ ∈ (0, δ1), by Lemma 2.2, wδ is nondegenerate. Then

Theorem 1.1 of [45] and Theorem 1.1 of [43] (see also Theorem 4.5 of [4])

imply that for ε sufficiently small, problem (4.2) admits a single boundary

spike solution, uε,δ which is unique and nondegenerate and possesses a unique

local maximum point Qε,δ which converges to Q0 as ε → 0. (In the one-

dimensional case, this follows from the implicit function theorem. In higher

dimension, we have to use Liapunov-Schmidt reduction.)

It remains to solve the following algebraic equation:

βε(δ) := δ
(
2ε−n

∫
Ω

u2
ε,δ dx

)2

= kε. (4.5)

Since, βε(0) = 0 and, limε→0 βε(δ) → β(δ) = δ(
∫
Rn w2

δ dy)2. (The conver-

gence is uniform in δ ∈ (0, δ1).) So limε→0 βε(δ1) → δ1(
∫
Rn w2

δ1
)2 = k0. Since

uε,δ is unique, βε is a continuous function of δ. By the mean-value theorem,

for kε ∈ (0, k0), there exists a δε ∈ (0, δ1) such that βε(δε) = kε. (δε may not

be unique.) Since k0 ∈ [0,∞) may be chosen arbitrarily we get a solution

for any kε ∈ [0,∞).

Then the solution Aε = ξεuε,δε , ξε =
(

1
|Ω|

∫
Ω u2

ε,δε
dx

)−1
satisfies the proper-

ties in Theorems 1.1 and 1.2.
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This finishes the existence part.

Concerning stability of (Aε, ξε), we have to study the following eigenvalue

problem:⎧⎨
⎩ ε2∆φε − φε +

(
2Aε

ξε(1+kA2
ε )
− 2kA3

ε

ξε(1+kA2
ε )

)
φε − A2

ε

ξ2
ε (1+kA2

ε )
ηε = λεφε in Ω,

−ηε + 1
|Ω|

∫
Ω(2Aεφε) dx = τλεηε. (4.6)

We follow the method in [42] and consider two cases. In Case 1, we assume

that λε → λ0 ∈ C and λ0 �= 0. (These are the so-called large eigenvalues.)

Then similar to [42], λ0 satisfies

∆φ0 − φ0 +

(
2wδ

1 + δw2
δ

− δw3
δ

(1 + δw2
δ)

2

)
φ0 − 2

1 + τλ0

w2
δ

1 + δw2
δ

∫
Rn wδφ0∫

Rn w2
δ

= λ0φ0.
(4.7)

By Theorem 3.1, for n ≤ 3 and δ ∈ (0, δ∗∗), problem (4.7) is stable for τ small,

i.e., for all eigenvalues of (4.7) with λ0 �= 0 we must have Re(λ0) < −c0 < 0

for some c0 > 0. In the one-dimensional case, by Corollary 3.2, we can take

δ∗∗ = δ∗. This shows that the large eigenvalues are all stable.

It remains to consider Case 2, λε → 0. We call these eigenvalues small

eigenvalues. Note that in the one-dimensional case, λε is bounded away

from zero. So we just need to consider the higher dimensional case. In this

situation, the proof is exactly the same as in the proof of Theorem 1.3 of

[42]. We omit the details.

This finishes the stability part.

�

Appendix A: Proof of Lemma 2.1

Proof: The conditions (g1)- (g3) are easy to verify. (Here b = t1(δ), c =

t2(δ).) We only consider (g4).

We first compute ρ. By definition, there exists an u0 > b such that

g(u0) = g
′
(u0)(u0 − ρ) (4.8)

and

(g(u) − g
′
(u)(u − ρ))

′|u=u0 = 0. (4.9)
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(4.9) implies that g
′′
(u0) = 0 and therefore u0 = 1√

3
. By (4.8), we calculate

ρ =
1

3
√

3 − 8
√

δ

If θ ≥ ρ, we are done. (This is the case when δ is close to δ∗.)

Suppose that θ < ρ. We need to calculate

Kg(u) =
u(−√

δ + 2u
(1+u2)2

)

−√
δu + u2

1+u2

.

It is instructive to introduce t = arctanu. Then it follows by straightforward

computations that

Kg(u) = 1 +
sin(4t)

2(−2
√

δ + sin(2t))
:= K̂g(t).

We then compute

d

dt
(K̂g(t)) =

−8
√

δ − 4 sin3(2t) + 16
√

δ sin2(2t)

2(−2
√

δ + sin(2t))2
.

Since δ < δ∗, it is easy to see that d
dt

(K̂g(t)) < 0 and hence d
du

(Kg(u)) < 0.

This implies that Kg(u) is nonincreasing in (b, c). Moreover

Kg(u) ≤ Kg(0) = 1, for u ∈ (0, b)

but

Kg(ρ) = 1 +
u(1 − u2)

u(1 + u2) −√
δ(1 + u2)2

> 1.

Hence Kg(u) ≤ Kg(ρ) for u ∈ (0, b) ∪ (ρ, c).

This shows that (g4) holds.

�

Appendix B: Proof of Lemma 2.6

Proof:

We assume that n = 1. Then (1.7) becomes an ODE and it is easy to see

that

w
′
δ = −

√
w2

δ − 2F (δ, wδ),

where

F (δ, t) =
∫ t

0

s2

1 + δs2
ds =

1

δ
(t − 1√

δ
arctan(

√
δt)).
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Let tδ > 0 be the unique solution of

t2δ − 2F (δ, tδ) = 0, tδ > 0.

Thus ∫
R1

w2
δ dy = 2

∫ +∞

0
w2

δ dy = 2
∫ tδ

0

t2dt√
t2 − 2F (δ, t)

=
1

2
η− 3

2

∫ γ

0

sds√
η − ρ(s)

, (4.10)

where

ρ(t) =
t − arctan(t)

t2
, η =

√
δ/2, and γ = γ(η)

is the unique solution of

ρ(γ) = η, γ < t∗

(given after (2.6)).

It is easy to compute that

ρ
′
(t) =

1

1 + t2
− 2ρ

t

ρ
′′
(t) = − 2t

(1 + t2)2
− 2

t(1 + t2)
+

6ρ

t2
. (4.11)

We first claim that

ρ
′′
(t) < 0 for 0 < t < t∗. (4.12)

In fact, from (4.11), we see that (4.12) is equivalent to

β(t) :=
t5

(1 + t2)2
+

t3

1 + t2
− 3(t − arctan(t)) > 0. (4.13)

It is easy to see that β(0) = 0 and

β
′
(t) =

t4(3 − t2)

(1 + t2)3
> 0

for t < t∗ <
√

3. Hence β(t) > 0 for t < t∗. (4.13) is thus proved.

From (4.12), it is easy to prove that

ρ
′
(t) > 0, and tρ

′
(t) < ρ(t) for 0 < t < t∗. (4.14)
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We now re-write the integral in (4.10):∫ γ

0

sds√
η − ρ(s)

= γ2
∫ π

2

0

cos(θ) sin(θ)dθ√
ρ(γ) − ρ(γ cos(θ))

. (4.15)

Since dγ
dη

= 1
ρ
′
(γ)

, by differentiating (4.15) and after some simple computa-

tions, we obtain that

d

dδ

(∫
R1

w2
δ

)
= 2−1/2δ−7/4γ

∫ π
2

0

⎡
⎣ cos(θ) sin(θ)

(ρ(γ) − ρ(γ cos(θ)))
3
2

I(γ cos(θ))dθ

⎤
⎦,
(4.16)

where I(t) is given by

I(t) =

[
2ρ(γ)

ρ′(γ)
− 3γ

2

]
(ρ(γ) − ρ(t)) − ρ(γ)

2ρ′(γ)
(γρ

′
(γ) − ρ

′
(t)t).

(4.17)

Certainly, I(γ) = 0. We now compute

I
′
(t) =

ρ(γ)

ρ′(γ)

⎡
⎣3

2
(
γρ

′
(γ) − ρ(γ)

ρ(γ)
)ρ

′
(t) +

t

2
ρ

′′
(t)

⎤
⎦.

By (4.12) and (4.14), we deduce that

I
′
(t) < 0, for 0 < t < γ.

Thus I(t) > I(γ) = 0 for t ∈ (0, γ), which implies that by (4.16),

d

dδ

(∫
R1

w2
δ dy

)
> 0.

�
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