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Abstract. We consider the following shadow system of the Gierer-
Meinhardt model:⎧⎨

⎩
At = ε2Axx − A + Ap

ξq , 0 < x < 1, t > 0,

τξt = −ξ + ξ−s
∫ 1

0
A2 dx,

A > 0, Ax(0, t) = Ax(1, t) = 0,

where 1 < p < +∞, 2q
p−1 > s + 1, s ≥ 0, and τ > 0. It is known that a

nontrivial monotone steady-state solution exists if and only if

ε <

√
p − 1
π

.

In this paper, we show that for any ε <
√

p−1
π , and p = 2 or p = 3,

there exists a unique τc > 0 such that for τ < τc this steady state is
linearly stable while for τ > τc it is linearly unstable. (This result is
optimal.) The transversality of this Hopf bifurcation is proven. Other
cases for the exponents as well as extensions to higher dimensions are also
considered. Our proof makes use of functional analysis and the properties
of Weierstrass functions and elliptic integrals.

1. Introduction

The Gierer-Meinhardt system has been very popular for the theoretical

investigation of pattern formation in living organisms. Following the anal-

ysis of Turing [17] a lot of work has been established in studying the linear

stability of trivial (constant) steady states. Recently there have been many

studies on patterns for singularly perturbed systems for which one of the

diffusivities is very small and the solutions concentrate at finitely many

points of the domain, either for the shadow system or for the full system. In
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this paper we do not make this smallness assumption. Rather we give a com-

plete picture of the stability behavior of the shadow system in terms of the

parameters τ and ε but under more restrictive conditions on the exponents

in the system.

We study monotone solutions for the following shadow system of the

generalized Gierer-Meinhardt system ([6], [11]):

⎧⎪⎨
⎪⎩

At = ε2∆A − A + Ap

ξq , x ∈ Ω, t > 0,

τξt = −ξ + ξ−s 1
|Ω|

∫
Ω Ar dx,

A > 0, ∂A
∂ν

= 0 on ∂Ω,

(1.1)

where ε > 0, τ > 0 are positive constants, ∆ :=
∑N

i=1
∂2

∂x2 is the usual Laplace

operator, Ω ⊂ RN is a bounded and smooth domain, and the exponents

(p, q, r, s) satisfy the following condition:

(H0) p > 1, q > 0, r > 0, s ≥ 0, γ :=
qr

(p − 1)(s + 1)
> 1.

In the original Gierer-Meinhardt system [6], we have (p, q, r, s) = (2, 1, 2, 0)

and (H0) holds.

Problem (1.1) can be derived by formally taking D → +∞ in the following

generalized Gierer-Meinhardt system:

(GM)

⎧⎪⎨
⎪⎩

At = ε2∆A − A + Ap

Hq , in Ω,
τHt = D∆H − H + Ar

Hs , in Ω,
A,H > 0, ∂A

∂ν
= ∂H

∂ν
= 0 on ∂Ω.

The unknowns A = A(x, t) and H = H(x, t) represent the concentrations

of the activator and inhibitor, respectively. For the derivation of (1.1) from

(GM), we refer the interested reader to [12], [14], [15], [18] for more details.

In this paper, we consider the case N = 1. (In the last section, some

extensions to higher dimensions are discussed.) Without loss of generality,

we may assume that Ω = (0, 1). That is, we consider

⎧⎪⎨
⎪⎩

At = ε2Axx − A + Ap

ξq , 0 < x < 1, t > 0,

τξt = −ξ + ξ−s
∫ 1
0 Ar dx,

A > 0, Ax(0, t) = Ax(1, t) = 0.

(1.2)
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The steady-state problem of (1.2) is equivalent to the following problem

for the transformed function uε given by uε(x) = ξ−
q

p−1 A(x):

ξ1+s− qr
p−1 =

∫ 1

0
ur(x)dx

and

ε2uxx − u + up = 0, ux(x) < 0, 0 < x < 1, ux(0) = ux(1) = 0.
(1.3)

Letting

L :=
1

ε
(1.4)

and rescaling u(x) = wL(y), where y = Lx, we see that wL satisfies the

following ODE:

w
′′
L − wL + wp

L = 0, w
′
L(y) < 0, 0 < y < L, w

′
L(0) = w

′
L(L) = 0.

(1.5)

Since (1.5) is an autonomous ODE, it is easy to see that a nontrivial

solution exists if and only if

ε <

√
p − 1

π
(or L >

π√
p − 1

). (1.6)

If ε ≥
√

p−1
π

(or L ≤ π√
p−1

), then wL = 1.

The stability of steady-state solutions to (1.2) has been a subject of study

in the last few years. A recent result of [13] (see Theorem 1.1 of [13]) says that

a stable solution to (1.2) must be asymptotically monotone. More precisely,

if (A(x, t), ξ(t)), t ≥ 0 is a solution to (1.2) that is linearly neutrally stable,

then there is a t0 > 0 such that

Ax(x, t0) �= 0 for all (x, t) ∈ (0, 1) × [t0, +∞). (1.7)

Thus all non-monotone steady-state solutions are linearly unstable. There-

fore we focus our attention on monotone solutions. There are two monotone

solutions – the monotone increasing one and the monotone decreasing one.

Since these two solutions differ by reflection, we consider the monotone de-

creasing function only. This solution is then called uε and it has the least
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energy among all positive solutions of (1.3), see [15]. If L ≤ π√
p−1

, then

wL = 1. We also denote the corresponding solutions to (1.2) by

AL(x) = ξ
q

p−1

L wL(Lx), ξ
1+s− qr

p−1

L =
∫ 1

0
wr

L(Lx)dx. (1.8)

In [14] and [15], it is proved that under the assumption that ε is suffi-

ciently small (or, equivalently, that L is sufficiently large) that | qr
p−1

−s−1|
is small, and that either r = 2, 1 < p < 5 or r = p + 1, then (AL, ξL) is

linearly stable for τ small. The authors use the SLEP (singular limit eigen-

value problem) approach. In [18], it is proved that for ε sufficiently small,

and

either r = 2, 1 < p ≤ 5, or r = p + 1, 1 < p < +∞ (1.9)

then uε is linearly stable for τ small. The NLEP (nonlocal eigenvalue prob-

lem) approach is used.

An interesting and important question is the following: Are such stability

results valid for finite ε or finite L, respectively without the above smallness

or largeness assumption? This is of practical importance since in real-world

experiments one has fixed physical constants and one can not make such

a smallness assumption. Thus this present theory is helpful in predicting

experimental results. The main purpose of this paper is to investigate this

question. It turns out in some cases we are able to study stability for all

finite ε (or L) and give a complete picture of the stability behavior.

Before stating our results, we first introduce some notation. Let I = (0, L)

and φ ∈ H2(I). We define the following operator:

L[φ] = φ
′′ − φ + pwp−1

L φ. (1.10)

In Section 2, we shall prove that L has the spectrum

λ1 > 0, λj < 0, j = 2, 3, ... . (1.11)

Hence for the map L from H2(I) to L2(I) we know that

(H1) L−1 exists,

where L−1 is the inverse of L. This implies that L−1wL is well-defined.

Our first result is the following theorem.
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Theorem 1.1. Let (H0) be true. Assume that L > π√
p−1

and either

r = 2 (1.12)

and

(H2)
∫ L

0
wLL−1wL dy > 0

or

r = p + 1. (1.13)

Then (AL, ξL) (given by (1.8) is a linearly stable steady state to (1.2) for

τ small.

This theorem reduces the issue of stability to the computation of the in-

tegral
∫ L
0 wLL−1wL dy. This integral is quite difficult to compute for general

L. In the two limiting cases: L → +∞ or L ∼ π√
p−1

, one can use asymptotic

analysis to compute this integral (see Lemma 2.2 below). If L is sufficiently

large (which is equivalent to ε being sufficiently small), one can show that

(H2) holds, i.e.
∫ L
0 wLL−1wL dy > 0, for 1 < p < 5 and

∫ L
0 wLL−1wL dy < 0

for p > 5. Thus Theorem 1.1 recovers results of [14] and [18]. In the second

case, it is easy to show that when L is near π√
p−1

, then wL ∼ 1, L−1wL ∼ 1
p−1

,

and hence
∫ L
0 wLL−1wL dy > 0. This implies that for r = 2, and for any

p > 1, there exists some Lp > π√
p−1

, such that (AL, ξL) is stable for L < Lp.

This is a new result.

For τ finite, we have the following theorem.

Theorem 1.2. Let (H0) and (H2) be true. Let r = 2 and L > π√
p−1

. Then

there exists a unique τc > 0 such that for τ < τc, (AL, ξL) is stable and for

τ > τc, (AL, ξL) is unstable. At τ = τc, there exists a unique Hopf bifurcation.

Furthermore, the Hopf bifurcation is transversal, namely, we have

dλR

dτ
|τ=τc > 0, (1.14)

where λR is the real part of the eigenvalue.

The following theorem follows from Theorem 1.2 by the results in Section

2 where one uses Weierstrass p(z) functions and Jacobi elliptic integrals to

show that
∫ L
0 wLL−1wL dy > 0 for all L > π in the cases r = 2, p = 2, 3.
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The original Gierer-Meinhardt system ((p, q, r, s) = (2, 1, 2, 0))) falls into

this class. Thus for the shadow system of the original Gierer-Meinhardt

system, we have a complete picture of the stability of (AL, ξL) for any τ > 0

and any L > 0. The result is included in the following theorem.

Theorem 1.3. Let (H0) be true. Assume that L > π√
p−1

and r = 2, p = 2

or 3. Then there exists a unique τc > 0 such that for τ < τc, (AL, ξL) is

stable and for τ > τc, (AL, ξL) is unstable. At τ = τc, there exists a Hopf

bifurcation. Furthermore, the Hopf bifurcation is transversal.

Theorem 1.3 gives a complete picture of the stability of nontrivial mono-

tone solutions in terms of L since for L ≤ π√
p−1

we necessarily have wL ≡ 1.

Combining this with the results of [13], we have completely classified stabil-

ity and instability of all steady-state solutions for all ε > 0 for the shadow

system of the classical Gierer-Meinhardt system.

We remark that standard singular perturbation techniques which work for

small ε can not be used here since ε is finite and not necessarily small. The

hypergeometric function approach of [5] does not work here, either. Our

rigorous approach is based on functional analysis and PDE estimates. We

follow the approaches used in [18], [22], [23]. (Technically speaking, we have

to analyze wL instead of w∞ which is more difficult).

For the existence and stability of multiple spikes for finite inhibitor diffu-

sivity D and small ε, we refer to [7], [16], [20], [21], [22] and the references

therein. We recall that in the current work we study the complementary

case of finite ε and infinite D.

In the last section, we shall discuss some extensions to higher dimensions,

in particular about the relevance and validity of the conditions (H0), (H1),

and (H2).

The organization of this paper is as follows:

In Section 2, we discuss some properties of wL. In particular, we calculate

the integral
∫ L
0 wLL−1wL dy for p = 2 and p = 3.

In Section 3, we derive a nonlocal eigenvalue problem and prove Theorem

1.1 in the case r = p + 1.

In Section 4, we prove Theorem 1.1 in the case r = 2.
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Theorem 1.2 is proved in Sections 5 and 6: The Hopf bifurcation for finite

τ is discussed in Section 5. The transversality of the Hopf bifurcation is

proved in Section 6.

Section 7 contains some extensions to higher dimensions.
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Hong Kong. MW thanks the Department of Mathematics at CUHK for

their kind hospitality. We would like to thank Prof. M. J. Ward for useful

discussions.

2. Some properties of wL

In this section, we use Weierstrass functions and elliptic integrals to study

the properties of wL – the unique solution of the following ODE:

w
′′
L − wL + wp

L = 0, w
′
L(0) = w

′
L(L) = 0, w

′
L(y) < 0 for 0 < y < L.

(2.1)

Recall that

L[φ] = φ
′′ − φ + pwp−1

L φ.

We first have

Lemma 2.1. Consider the following eigenvalue problem:{ Lφ = λφ, 0 < y < L,
φ

′
(0) = φ

′
(L) = 0.

(2.2)

Then the eigenvalues can be arranged in such a way that

λ1 > 0, λj < 0, j = 2, 3, ... . (2.3)

Moreover, the eigenfunction corresponding to λ1 (denoted by Φ1) can be

made positive.

Proof: Let the eigenvalues of L be arranged by λ1 ≥ λ2 ≥ ... . It is well-

known that λ1 > λ2 and that the eigenfunction Φ1 corresponding to λ1 is

positive. Moreover,

− λ1 = min∫ L

0
φ2 dy=1

(∫ L

0
(|φ′|2 + φ2 − pwp−1

L φ2) dy

)
(2.4)
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≤
(∫ L

0
w2

L dy

)−1 (∫ L

0
(|w′

L|2 + w2
L − pwp−1

L w2
L) dy

)
< 0.

Next we claim that λ2 ≤ 0. This follows from a classical argument (see

Theorem 2.11 of [10]). For the sake of completeness, we include a proof here.

By the variational characterization of λ2, we have

− λ2 = sup
v∈H1(I)

inf
φ∈H1(I),φ�≡0

⎡
⎣∫ L

0 (|φ′|2 + φ2 − pwp−1
L φ2) dy∫ L

0 φ2 dy
: v �≡ 0,

∫ L

0
φv dy = 0

⎤
⎦.

(2.5)

On the other hand, wL has least energy, that is

E[wL] = inf
u �≡0,u∈H1(I)

E[u],

where

E[u] =

∫ L
0 (|u′ |2 + u2) dy

(
∫ L
0 up+1 dy)

2
p+1

.

Let

h(t) = E[wL + tφ], φ ∈ H1(I).

Then h(t) attains its minimum at t = 1 and hence

h
′′
(0) = 2

⎡
⎣ ∫ L

0
(|φ′|2 + φ2) dy − p

∫ L

0
wp−1

L φ2 dy + 2
(
∫ L
0 wp

Lφ dy)2∫ L
0 wp+1

L dy

⎤
⎦

× 1(∫ L
0 wp+1

L dy
)2/(p+1)

≥ 0.

By (2.5), we see that

−λ2 ≥ inf∫ L

0
φwp

L dy=0

⎡
⎣ ∫ L

0
(|φ′|2 + φ2) dy − p

∫ L

0
wp−1

L φ2 dy + 2
(
∫ L
0 wp

Lφ dy)2∫ L
0 wp+1

L dy

⎤
⎦

× 1(∫ L
0 wp+1

L dy
)2/(p+1)

≥ 0.

Finally, we claim that λ2 < 0. But this follows from the proof of uniqueness

of wL, see [9].

�
By Lemma 2.1, L−1 exists and hence L−1wL is well-defined. Our next goal

in this section is to compute the integral
∫ L
0 wLL−1wL dy. We begin with the

following simple lemma, whose proof follows from a perturbation argument.



SHADOW GIERER-MEINHARDT SYSTEM 9

Lemma 2.2. We have

lim
L→ π√

p−1

∫ L

0
wLL−1wL dy =

π

(p − 1)
3
2

, (2.6)

lim
L→+∞

∫ L

0
wLL−1wL dy =

(
1

p − 1
− 1

4

) ∫ ∞

0
w2

∞ dy, (2.7)

where w∞(y) is the unique solution of

w
′′ − w + wp = 0, w

′
(0) = 0, w

′
(y) < 0, w(y) > 0, 0 < y < +∞.

(2.8)

For general p, it is quite difficult to compute
∫ L
0 wLL−1wL dy. However, if

p = 2 or p = 3, this is possible by using elliptic integrals.

We first state the following theorem.

Lemma 2.3. Let p = 2. Then we have∫ L

0
wLL−1wL dy > 0

for all L > π.

Before we prove Lemma 2.3, let us first write wL in terms of Weierstrass

functions. For the definitions and properties of Weierstrass functions, we

refer the reader to [1].

Now we assume that p = 2. Let wL(0) = M, wL(L) = m.

¿From (2.1), we have

(w
′
L)2 = w2

L − 2

3
w3

L − M2 +
2

3
M3 (2.9)

and

− m2 +
2

3
m3 = −M2 +

2

3
M3. (2.10)

¿From (2.10), we deduce that

Mm

M + m
= M + m − 3

2
. (2.11)

Now let

ŵ = −1

6
wL +

1

12
. (2.12)
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Then, by simple computations, ŵ satisfies the following equation:

(ŵ
′
)2 = 4ŵ3 − g2ŵ − g3 = 4(ŵ − e1)(ŵ − e2)(ŵ − e3),

(2.13)

where

g2 =
1

12
, g3 = − 1

216
− 1

36

(
−M2 +

2

3
M3

)
, (2.14)

e1 =
1

6
(M + m) − 1

6
, e2 = −1

6
m +

1

12
, e3 = −1

6
M +

1

12
.

(2.15)

Recalling the definition of the Weierstrass function p(z) (see [1]), we get

ŵ(x) = p(x + α; g2, g3) (2.16)

for some constant α. We omit the dependence of p on g2 and g3.

Then we have

p(fi) = ei, p
′
(fi) = 0, i = 1, 2, 3, f1 + f2 + f3 = 0. (2.17)

Thus we obtain that

ŵ(x) = p(f3 + x), L = f1. (2.18)

Let us also recall the Weierstrass function ζ(z):

ζ(z) =
1

z
−

∫ z

0

(
p(u) − 1

u2

)
du,

which satisfies

ζ
′
(u) = −p(u), ζ(fi) = ηi, i = 1, 2, 3, η1 + η2 + η3 = 0.

(2.19)

Now we compute∫ L

0
ŵ(x)dx =

∫ f1

0
p(f3 + x)dx = −ζ(u)|−f2

f3
= ζ(f3) + ζ(f2)

(2.20)

= −ζ(f1) = −ζ(L).

This implies that∫ L

0
w2

L dy =
∫ L

0
wL dy =

∫ L

0

(
−6ŵ +

1

2

)
dy = 6ζ(L) +

L

2
.

(2.21)
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Using the formulas on page 649 of [1], we have

ζ(L) =
K(k)

3L
[3E(k) + (k − 2)K(k)], (2.22)

e1 =
(2 − k)K2(k)

3L2
,

e2 =
(2k − 1)K2(k)

3L2
,

e3 =
−(k + 1)K2(k)

3L2
,

where e1, e2 and e3 are defined by (2.15) and satisfy

e1e2 + e2e3 + e1e3 = −1

4
g2 = − 1

48
,

and E(k) and K(k) are Jacobi elliptic integrals:

E(k) =
∫ π

2

0

√
1 − k2 sin2 ϕdϕ, K(k) =

∫ π
2

0

1√
1 − k2 sin2 ϕ

dϕ.

Thus we obtain the following relation between k and L:

L = 2(k2 − k + 1)
1
4 K(k). (2.23)

¿From (2.23), we compute that (dropping the argument k of K):

dL

dk
=

4K2((2k − 1)K2 + 4KK
′
(k2 − k + 1))

L3
. (2.24)

Equation (2.23) determines k as a function of L uniquely if we choose L > π.

Moreover, dk
dL

> 0 and

(2k − 1)K + 4K
′
(k2 − k + 1) > 0. (2.25)

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3:

Let us denote φL = L−1wL. That is, φL satisfies

φ
′′
L − φL + 2wLφL = wL, φ

′
L(0) = φ

′
L(L) = 0.

Set

φL = wL +
1

2
yw

′
L(y) + Ψ. (2.26)

Then Ψ(y) satisfies

Ψ
′′ − Ψ + 2wLΨ = 0,
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Ψ
′
(0) = 0, Ψ

′
(L) = −1

2
Lw

′′
L(L). (2.27)

On the other hand, let Ψ0 = ∂wL

∂M
. Then Ψ0 satisfies

Ψ
′′
0 − Ψ0 + 2wLΨ0 = 0, (2.28)

Ψ0(0) = 1, Ψ
′
0(0) = 0.

Integrating (2.28), we have

Ψ
′
0(L) =

∫ L

0

∂wL

∂M
dy − 2

∫ L

0
wL

∂wL

∂M
dy

=
d

dM

(∫ L

0
(wL − w2

L) dy

)
−

(
wL(L) − w2

L(L)
) dL

dM
.

Using the equation for wL, we have
∫ L
0 (wL − w2

L) dy = 0. Thus we obtain

Ψ
′
0(L) = −(wL(L) − w2

L(L))
dL

dM
. (2.29)

Comparing (2.27) and (2.29), we derive the following important relation:

Ψ(x) =
1

2

L
dL
dM

Ψ0(x). (2.30)

Hence, we have ∫ L

0
wLφL dy =

∫ L

0

(
wL +

1

2
yw

′
L + Ψ

)
wL dy

=
3

4

∫ L

0
w2

L dy +
1

4
Lw2

L(L) +
L

2

(
dL

dM

)−1 ∫ L

0
wLΨ0 dy.

(2.31)

On the other hand, ∫ L

0
wLΨ0 dy =

∫ L

0
wL

∂wL

∂M
dy

=
1

2

d

dM

∫ L

0
w2

L dy − 1

2
w2

L(L)
dL

dM

=
1

2

⎡
⎣ d

dL

∫ L

0
w2

L dy − w2
L(L)

⎤
⎦ dL

dM
. (2.32)

Substituting (2.32) into (2.31), we obtain that∫ L

0
wLφL dy =

3

4

∫ L

0
w2

L dy +
1

4
L

d

dL

∫ L

0
w2

L dy (2.33)

=
L−2

4

d

dL

(
L3

∫ L

0
w2

L dy

)
.
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We now compute, using the formulas (2.21) and (2.23),

L3
∫ L

0
w2

L dy = L3
∫ L

0
wL dy = 2L2K[3E + (k − 2)K] +

L4

2

= 8
√

k2 − k + 1K3[3E + (k − 2 +
√

k2 − k + 1)K]. (2.34)

If 2k − 1 ≥ 0, it is easy to see that

1

8

d

dk

(
L3

∫ L

0
w2

L

)
> 0.

If 2k−1 < 0, we have to use the inequality (2.25) and the following formulas:

dK

dk
=

E − (k
′
)2K

k(k′)2
,

dE

dk
=

E − K

k
,

where k
′
=

√
1 − k2, and obtain:

1

8

d

dk

(
L3

∫ L

0
w2

L

)
=

d

dk
[
√

k2 − k + 1K3[3E + ρkK]]

=
√

k2 − k + 1K2

⎡
⎣9

dK

dk
E+3K

dE

dk
+

dρk

dk
K2+4ρkK

dK

dk
+

2k − 1

2(k2 − k + 1)
K[3E+ρkK]

⎤
⎦

=
√

k2 − k + 1K2

⎡
⎣3

d(EK)

dk
+2E

(
dK

dk
+

2k − 1

4(k2 − k + 1)
K

)
+4

dK

dk
(E+ρkK)

⎤
⎦

+
√

k2 − k + 1K2

⎡
⎣K

(
dρk

dk
K +

2k − 1

2(k2 − k + 1)
(2E + ρkK)

) ⎤
⎦,

where ρk = k−2+
√

k2 − k + 1. Each term in the above equality is positive.

The proof consists of elementary calculus and thus omitted.

This finishes the proof of the lemma.

�
Our next case is p = 3. We have

Lemma 2.4. Assume that p = 3. Then∫ L

0
wLL−1wL dy > 0.

Proof: By using a similar approach as in Lemma 2.3, we have in the case

p = 3, ∫ L

0
wLL−1wL dy =

1

4

∫ L

0
w2

L dy +
1

4
L

d

dL

(∫ L

0
w2

L dy

)
(2.35)
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=
1

4

d

dL

(
L

∫ L

0
w2

L dy

)
.

In terms of elliptic integrals, we have

L =

√
1 − k2

2
K(k), (2.36)

L
∫ L

0
w2

L dy = E(k)K(k). (2.37)

Then we can compute that

dk

dL
=

√
1 − k2

2

⎛
⎝(1 − k2

2
)E2

k(k′)2
− K

k

⎞
⎠

−1

> 0

and
d(EK)

dk
=

E2

k(k′)2
− K

k
> 0.

This shows that

d

dL

(
L

∫ L

0
w2

L dy

)
=

d(EK)

dk

dk

dL
> 0.

�
Remark: In general, let wL be the unique solution of

w
′′
L − wL + wp

L = 0, w
′
L(0) = w

′
L(L) = 0, w

′
L(y) < 0 for 0 < y < L,

(2.38)

then similar computations as in Lemma 2.3 give the following formulas:∫ L

0
wLL−1wL dy =

(
1

p − 1
− 1

4

) ∫ L

0
w2

L dy +
1

4
L

d

dL

(∫ L

0
w2

L dy

)
(2.39)

and

d

dL

(∫ L

0
wLL−1wL dy

)
=

1

p − 1

d

dL

∫ L

0
w2

L dy +
1

4
L

d2

dL2

(∫ L

0
w2

L dy

)
.

(2.40)

The main problem now is that we do not have an explicit formula for
∫ L
0 w2

L dy

for general p. Numerical computation is indispensable.

We put forward the following conjecture which is supported by numerical

computations.

Conjecture: The function
∫ L
0 wLL−1wL dy is monotone decreasing in L.
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If the conjecture holds, as a consequence there exists a unique Lp (which

may be ∞) such that∫ L

0
wLL−1wL dy > 0 for L < Lp and

∫ L

0
wLL−1wL dy < 0 for L > Lp.

3. Nonlocal Eigenvalue Problems

We linearize (1.2) around the solution (AL, ξL), where

AL = ξ
q

p−1 wL(Lx), ξ
1+s− qr

p−1

L =
∫ 1

0
wr

L(Lx)dx. (3.1)

It is easy to see that we arrive at the following eigenvalue problem:

ε2φxx − φ + pwp−1
L φ − qηξ

pq
p−1

−q−1wp
L = λφ, (3.2)

−η − sηξ
−s−1+ qr

p−1

L

∫ 1

0
wr

Ldx + rξ
−s+

q(r−1)
p−1

L

∫ 1

0
wr−1

L φ dx = τλη.

We also rescale:

y = Lx. (3.3)

Solving the second equation for η and substituting into the equation for φ,

we arrive at the following nonlocal eigenvalue problem (NLEP):

φ
′′ − φ + pwp−1

L φ − qr

s + 1 + τλ

∫ L
0 wr−1

L φ dy∫ L
0 wr

L dy
wp

L = λφ, y ∈ (0, L),
(3.4)

φ
′
(0) = φ

′
(L) = 0

and

λ = λR +
√−1λI ∈ C (3.5)

In the present section, we let τ = 0. Thus (3.4) becomes

Lγ[φ] := L[φ] − γ(p − 1)

∫ L
0 wr−1

L φ dy∫ L
0 wr

L dy
wp

L = λφ, φ
′
(0) = φ

′
(L) = 0.

(3.6)

Let us first show that λ = 0 is not an eigenvalue of (3.4) if γ �= 1.

Lemma 3.1. Suppose that γ �= 1. Then λ = 0 is not an eigenvalue of (3.4).



16 JUNCHENG WEI AND MATTHIAS WINTER

Proof: Suppose λ = 0. Then we have

0 = L[φ] − γ(p − 1)

∫ L
0 wr−1

L φ dy∫ L
0 wr

L dy
wp

L

= L
(
φ − γ

∫ L
0 wr−1

L φ dy∫ L
0 wr

L dy
wL

)
.

By Lemma 2.1,

φ − γ

∫ L
0 wr−1

L φ dy∫ L
0 wr

L dy
wL = 0.

Multiplying this equation by wr−1
L and integrating, we get

(1 − γ)
∫ L

0
wr−1

L φ dy = 0.

Hence, since γ �= 1, ∫ L

0
wr−1

L φ dy = 0,

therefore

L[φ] = 0

and by Lemma 2.1

φ = 0.

�
We next show that the unstable eigenvalues are bounded uniformly in τ .

Lemma 3.2. Let λ be an eigenvalue of (3.4) with Re(λ) ≥ 0. Then there

exists a constant C which is independent of τ > 0 such that

|λ| ≤ C. (3.7)

Proof: Multiplying (3.4) by φ̄ – the conjugate of φ – and integrating, we

obtain that

λ
∫ L

0
|φ|2 dy = −

∫ L

0
(|φ′|2 + |φ|2 − pwp−1

L |φ|2) dy

− qr

1 + s + τλ

(
∫ L
0 wr−1

L φ dy)(
∫ L
0 wp

Lφ̄ dy)∫ L
0 wr

L dy
. (3.8)

Here we have used notation: |φ|2 = φφ̄. Since∣∣∣∣ qr

1 + s + τλ

∣∣∣∣ ≤ qr

1 + s
for Re(λ) ≥ 0, (3.9)
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we see that∣∣∣∣∣ qr

1 + s + τλ

(
∫ L
0 wr−1

L φ dy)(
∫ L
0 wp

Lφ̄ dy)∫ L
0 wr

L dy

∣∣∣∣∣ ≤ C
∫ L

0
|φ|2 dy,

(3.10)

where C is independent of τ .

(3.7) follows from (3.8) and (3.10).

�
We first study (3.6) the case r = p + 1 which is easy since the operator is

self-adjoint.

The case r = 2 will be studied in the next section. It is more difficult since

the operator is not self-adjoint and thus has complex eigenvalues.

Lemma 3.3. Assume that r = p + 1 and L > π√
p−1

. Then all eigenvalues of

(3.6) are real and

(a) if γ > 1, then λ < 0;

(b) if γ = 1, then λ ≤ 0 and zero is an eigenvalue with eigenfunction wL:

(c) if γ < 1, then there exists an eigenvalue λ0 > 0 to (3.6).

¿From Lemma 3.3, we see that when r = p + 1, γ = 1 is the borderline

case between stability and instability.

Proof: Since r = p + 1, we see that the operator Lγ is selfadjoint and hence

the eigenvalues are real. Let λ0 ≥ 0 be an eigenvalue of (3.6). We first claim

that λ0 �= λ1, where λ1 is the first eigenvalue of L given by Lemma 2.1. In

fact, if λ0 = λ1, then we have

γ

∫ L
0 wp

Lφ dy∫ L
0 wp+1

L dy

∫ L

0
wp

LΦ1 dy = 0

and hence, since Φ1 > 0,∫ L

0
wp

Lφ dy = 0, L[φ] = λ1φ.

Therefore, φ = Φ1. This is impossible since Φ1 > 0. So λ0 �= λ1.

By Lemma 2.1, (L − λ0)
−1 exists and hence λ0 > 0 is an eigenvalue of

(3.6) if and only if it satisfies the following algebraic equation:∫ L

0
wp+1

L dy = γ(p − 1)
∫ L

0
[((L − λ0)

−1wp
L)wp

L] dy. (3.11)
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Let

ρ(t) =
∫ L

0
wp+1

L dy − γ(p − 1)
∫ L

0
[((L − t)−1wp

L)wp
L] dy, t ≥ 0, t �= λ1.

Then ρ(0) = (1 − γ)
∫ L
0 wp+1

L dy and

ρ
′
(t) = −γ(p − 1)

∫ L

0
[((L − t)−2wp

L)wp
L] dy < 0.

On the other hand,

ρ(t) → −∞ as t → λ1, t < λ1,

ρ(t) → +∞ as t → λ1, t > λ1,

ρ(t) →
∫ L

0
wp+1

L dy as t → +∞.

Thus ρ(t) > 0 for t > λ1 and ρ(t) has a (unique zero) in (0, λ1) if and only

if ρ(0) > 0.

This shows that for γ > 1, ρ(t) �= 0 for t ≥ 0 and for γ < 1, ρ(t) has a

unique root t = λ0 ∈ (0, λ1).

For γ = 1, ρ(0) = 0 and hence zero is an eigenvalue. Note that LwL =

(p − 1)wp
L. So wL is the eigenfunction corresponding to the zero eigenvalue.

This proves the lemma.

�
Remark: Combining Lemma 3.2 and Lemma 3.3, we see that for γ > 1, r =

p + 1 and τ small, the conclusion (a) of Lemma 3.3 still holds.

Thus Theorem 1.1 has been proved in the case r = p + 1.

4. Nonlocal Eigenvalue Problem: The case r = 2

We consider the eigenvalue problem (3.4) and prove Theorem 1.1 in the

case r = 2. Note that the operator Lγ is not self-adjoint anymore and there

are complex eigenvalues.

We first assume that τ = 0. We then have

Lemma 4.1. Assume that r = 2, τ = 0 and (H2) holds, i.e.∫ L

0
wLL−1wL dy > 0. (4.1)

Then for any eigenvalue λ of (3.6), we have

Re(λ) < 0.
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To prove Lemma 4.1, we need the following key inequality:

Lemma 4.2. If (H2) holds, i.e.
∫ L
0 wLL−1wL dy > 0, then there exists a

positive constant a1 > 0 such that

Q[φ, φ] :=
∫ L

0
(|φ′|2 + φ2 − pwp−1

L φ2) dy +
2(p − 1)

∫ L
0 wp

Lφ dy
∫ L
0 wLφ dy∫ L

0 w2
L dy (4.2)

−(p − 1)

∫ L
0 wp+1

L dy(∫ L
0 w2

L dy
)2

(∫ L

0
wLφ dy

)2

≥ a1d
2
L2(φ,X1), ∀φ ∈ H1(0, L),

where X1 = span {w} and dL2 means the distance in the L2-norm.

Let us assume that Lemma 4.2 is true. Then we proceed to prove following

lemma.

Lemma 4.3. Let (λ, φ) satisfy (3.4) with Re(λ) ≥ 0. Assume that r = 2

and (H2) holds, i.e.
∫ L
0 wLL−1wL dy > 0. Then we have

Re[λ̄χ(τλ) − λ] + (p − 1)|χ(τλ) − 1|2
(∫ L

0 wp+1
L dy∫ L

0 w2
L dy

)
≤ 0, (4.3)

where

χ(τλ) =
γ

1 + τλ
s+1

, γ =
qr

s + 1
. (4.4)

and λ̄ is the conjugate of λ.

Proof of Lemma 4.3: Let (λ, φ) be a solution of (3.4). Set λ = λR+
√−1λI

and φ = φR +
√−1φI . Let χ(τλ) be given in (4.4). Then, by taking (3.4)

and its conjugate, we obtain the following two equations:

Lφ − (p − 1)χ(τλ)

∫ L
0 wLφ dy∫ L
0 w2

L dy
wp

L = λφ, (4.5)

Lφ̄ − (p − 1)χ̄(τλ)

∫ L
0 wLφ̄ dy∫ L
0 w2

L dy
wp

L = λ̄φ̄. (4.6)

Multiplying (4.5) by φ̄ and integrating by parts, we obtain

− λ
∫ L

0
|φ|2 − (p − 1)χ(τλ)

(
∫ L
0 wLφ dy)(

∫ L
0 wp

Lφ̄ dy)∫ L
0 w2

L dy
(4.7)

=
∫ L

0
(|φ′ |2 + |φ|2) dy − p

∫ L

0
wp−1

L |φ|2 dy.
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Multiplying (4.6) by wL, we obtain

(p − 1)
∫ L

0
wp

Lφ̄ dy − (p − 1)χ̄(τλ)

∫ L
0 wLφ̄ dy∫ L
0 w2

L dy

∫ L

0
wp+1

L dy = λ̄
∫ L

0
wLφ̄ dy.

(4.8)

Multiplying (4.8) by
∫ L
0 wLφ dy and substituting the resulting expression

into (4.7), we arrive at∫ L

0
(|φ′ |2 + |φ|2 − pwp−1

L |φ|2) dy + λ
∫ L

0
|φ|2 dy (4.9)

= −χ(τλ)

⎡
⎣λ̄ + χ(τλ)(p − 1)

(∫ L
0 wp+1

L dy∫ L
0 w2

L dy

) ⎤
⎦ | ∫ L

0 wLφ dy|2∫ L
0 w2

L dy
.

We write (4.9) in terms of the quadratic functional Q defined in Lemma 4.2

and deduce, using (4.8) again, that⎡
⎣Re[λ̄χ(τλ) − λ] + (p − 1)|χ(τλ) − 1|2

(∫ L
0 wp+1

L dy∫ L
0 w2

L dy

) ⎤
⎦ | ∫ L

0 wLφ dy|2∫ L
0 w2

L dy (4.10)

= −Q[φR, φR] − Q[φI , φI ] − Re(λ)

[∫ L

0
|φ|2 dy − | ∫ L

0 wLφ dy|2∫ L
0 w2

L dy

]
≤ 0,

which proves the lemma.

�
Lemma 4.1 follows from Lemma 4.3:

Proof of Lemma 4.1:

In fact, let τ = 0. Then from (4.3), we have

Re[λ̄χ(τλ) − λ] + (p − 1)|χ(τλ) − 1|2
(∫ L

0 wp+1
L dy∫ L

0 w2
L dy

)

= (γ − 1)Re(λ) + (p − 1)|γ − 1|2
(∫ L

0 wp+1
L dy∫ L

0 w2
L dy

)
≤ 0

and hence

Re(λ) ≤ −(p − 1)(γ − 1)

(∫ L
0 wp+1

L dy∫ L
0 w2

L dy

)
< 0

since γ > 1.

�
Remark: Combining Lemma 3.2 and Lemma 4.1, we see that for γ > 1, r =

2,
∫ L
0 wLL−1wL dy > 0 and τ small, the conclusion of Lemma 4.1 still holds.

We are now ready to prove Lemma 4.2.
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Proof of Lemma 4.2:

We consider the following self-adjoint operator:

L1φ := Lφ − (p − 1)

∫ L
0 wLφ dy∫ L
0 w2

L dy
wp

L

− (p − 1)

∫ L
0 wp

Lφ dy∫ L
0 w2

L dy
wL + (p − 1)

∫ L
0 wp+1

L dy
∫ L
0 wLφ dy

(
∫ L
0 w2

L dy)2
wL.

(4.11)

Clearly, L1 is self-adjoint and

Q[φ, φ] ≥ 0 ⇐⇒ L1 has no positive eigenvalues.

By simple computations, we get

L1wL = 0.

On the other hand, if L1φ = 0, then

Lφ = c1(φ)wL + c2(φ)wp
L,

where

c1(φ) = (p − 1)

∫ L
0 wp

Lφ dy∫ L
0 w2

L dy
− (p − 1)

∫ L
0 wp+1

L dy
∫ L
0 wLφ dy

(
∫ L
0 w2

L dy)2
,

(4.12)

c2(φ) = (p − 1)

∫ L
0 wLφ dy∫ L
0 w2

L dy
. (4.13)

Hence

φ − c1(φ)(L−1wL) − c2(φ)
1

p − 1
wL = 0. (4.14)

Substituting (4.14) into (4.12), we have

c1(φ) = (p − 1)c1(φ)

∫ L
0 wp

LL−1wL dy∫ L
0 w2

L dy

−(p − 1)c1(φ)

∫ L
0 wp+1

L dy
∫ L
0 wLL−1wL dy

(
∫ L
0 w2

L dy)2

= c1(φ) − (p − 1)c1(φ)

∫ L
0 wp+1

L dy
∫ L
0 wLL−1wL dy

(
∫ L
0 w2

L dy)2

after integration by parts. By (H2), we have c1(φ) = 0. Hence φ =

c2(φ) 1
p−1

wL. This shows that wL is the only eigenfunction of L1 correspond-

ing to the eigenvalue zero.
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Now suppose L1 has a positive eigenvalue λ0 > 0 with φ0 as eigenfunction.

Since L1 is self-adjoint and wL is an eigenfunction, we may assume that∫ L

0
wLφ0 dy = 0. (4.15)

Using (4.15), we see that φ0 satisfies

(L − λ0)φ0 = (p − 1)

∫ L
0 wp

Lφ0∫ L
0 w2

L

wL. (4.16)

Note that
∫ L
0 wp

Lφ0 dy �= 0. In fact, if
∫ L
0 wp

Lφ0 dy = 0, then λ0 > 0 is an

eigenvalue of L. By Lemma 2.1, λ0 = λ1 and φ0 has constant sign. This

contradicts with the fact that φ0 ⊥ wL. Therefore λ0 �= λ1. Hence L− λ0 is

invertible. So (4.16) implies

φ0 = (p − 1)

∫ L
0 wp

Lφ0 dy∫ L
0 w2

L dy
(L − λ0)

−1wL.

Thus ∫ L

0
wp

Lφ0 dy = (p − 1)

∫ L
0 wp

Lφ0 dy∫ L
0 w2

L dy

∫ L

0
((L − λ0)

−1wL)wp
L dy.

Since
∫ L
0 wp

Lφ0 dy �= 0, we have∫ L

0
w2

L dy = (p − 1)
∫ L

0
((L − λ0)

−1wL)wp
L dy

and therefore∫ L

0
w2

L dy =
∫ L

0
((L − λ0)

−1wL)((L − λ0)wL + λ0wL) dy.

Since λ0 > 0 this gives

0 =
∫ L

0
((L − λ0)

−1wL)wL dy. (4.17)

Let β(t) =
∫ L
0 ((L − t)−1wL)wL dy for t > 0, t �= λ1, then

β(0) =
∫ L

0
(L−1wL)wL dy > 0

by assumption (H2) and

β
′
(t) =

∫ L

0
((L − t)−2wL)wL dy > 0.

This implies β(t) > 0 for all t ∈ (0, λ1).

On the other hand,

β(t) → 0 as t → +∞
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and hence β(t) < 0 for t > λ1.

In conclusion, β(t) �= 0 for t > 0, t �= λ1. This shows that (4.17) is

impossible. So L1 has no positive eigenvalue.

Since

Q[φ, φ] = −
∫ L

0
(L1φ)φ dy,

we see that Q[φ, φ] ≥ 0 for all φ and equality holds if and only if φ = cwL

for some constant c.

The proof is completed.

�

5. Uniqueness of the Hopf Bifurcation when r = 2

In the previous two sections, we have assumed that τ = 0. In this section,

we study the case τ > 0. In general, it is quite difficult to analyze the

corresponding Hopf bifurcation. However, when r = 2, we have a good

picture.

We begin with a perturbation result whose proof is the same as in [2],

where the Hopf bifurcation for L >> 1 is studied.

Lemma 5.1. For τ large, there exists a real and positive eigenvalue λ0 to

(3.4). Moreover, as τ → +∞,

λ0 = λ1 + O
(

1

τ

)
, (5.1)

where λ1 is given in Lemma 2.1.

For r = 2, the following lemma shows the existence and uniqueness of the

Hopf bifurcation.

Lemma 5.2. Let r = 2 and assume that (H2) holds, i.e.
∫ L
0 wLL−1wL dy >

0. Then there exists a unique τ = τc(L, p) such that problem (3.4) has two

conjugate imaginary eigenvalues

λ = ±√−1λI , λI > 0.

Proof:

Let λ0 =
√−1λI be an eigenvalue of (3.4). We shall derive the equation

for λI and τ .
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Without loss of generality, we may assume that λI > 0. (Note that

−√−1λI is also an eigenvalue of (3.4).) Then φ0 = (L − √−1λI)
−1w2

L

up to a real constant factor. Then (3.4) becomes∫
R2 wLφ0 dy∫

R2 w2
L dy

=
s + 1 +

√−1τλI

qr
. (5.2)

Let φ0 = φR
0 +

√−1φI
0. Then from (5.2), by taking the real and imaginary

parts, respectively, we obtain the following two equations:∫ L
0 wLφR

0 dy∫ L
0 w2

L dy
=

s + 1

qr
, (5.3)

∫ L
0 wLφI

0 dy∫ L
0 w2

L dy
=

τλI

qr
. (5.4)

Note that (5.3) is independent of τ .

Let us now compute
∫ L
0 wLφR

0 dy. Observe that (φR
0 , φI

0) satisfies

LφR
0 = wp

L − λIφ
I
0, LφI

0 = λIφ
R
0 .

So φR
0 = λ−1

I LφI
0 and

φI
0 = λI(L2 + λ2

I)
−1wp

L, φR
0 = L(L2 + λ2

I)
−1wp

L. (5.5)

Substituting (5.5) into (5.3) and (5.4), we obtain∫ L
0 [wLL(L2 + λ2

I)
−1wp

L] dy∫ L
0 w2

L dy
=

s + 1

qr
, (5.6)

∫ L
0 [wL(L2 + λ2

I)
−1wp

L] dy∫ L
0 w2

L dy
=

τ

qr
. (5.7)

Let α(λI) =

∫ L

0
wLL(L2+λ2

I)−1wp
L dy∫ L

0
w2

L dy
. Then integration by parts gives α(λI) =

(p − 1)

∫ L

0
wp

L(L2+λ2
I)−1wp

L dy∫ L

0
w2

L dy
. Note that

α
′
(λI) = −2λI

∫ L
0 wp

L(L2 + λ2
I)

−2wp
L dy∫ L

0 w2
L dy

< 0,

α(0) =

∫ L
0 wL(L−1wp

L) dy∫ L
0 w2

L dy
=

1

p − 1
>

s + 1

qr
,

and

α(λI) → 0 as λI → ∞.
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So there exists a unique λI > 0 such that (5.6) holds. Substituting this

unique λI into (5.7), we obtain a unique τ = τc.

Finally, we show that τc > 0. To this end, we make use of the inequality

(4.3). Substituting χ(τ) = γ

1+
τ
√−1λI
s+1

, λ =
√−1λI into (4.3), we see that

Re(λ̄χ(τλ)) + |χ(τλ) − 1|2
(∫ L

0 wp+1
L dy∫ L

0 w2
L dy

)
≤ 0. (5.8)

Since

Re(λ̄χ(τλ)) = − τλ2
Iγ

s + 1 + (τλI)2

s+1

< 0,

we see immediately that τ = τc > 0. (In fact, (5.8) also gives an explicit

bound for τc.)

Lemma 5.2 is thus proved.

�

6. Transversality of the Hopf Bifurcation for r = 2

In Section 5, we have shown that for r = 2, there exists a unique τ = τc > 0

such that the eigenvalue problem (3.4) has a Hopf bifurcation. In this section,

we show the transversality of this Hopf bifurcation and thus finish the proof

of Theorem 1.2. Namely, we prove the following lemma.

Lemma 6.1. Suppose r = 2 and (H2) holds, i.e.
∫ L
0 wLL−1wL dy > 0. Let

τc be the unique point, where a Hopf bifurcation for (3.4) occurs. Then we

have
dλR

dτ
|τ=τc > 0. (6.1)

Thus the eigenvalues cross through the imaginary axis from the left to the

right as τ crosses τc.

Proof: Let λ = λR +
√−1λI be an eigenvalue of (3.4) with eigenfunction

Ψ. Then similar to the proof of Lemma 5.2, (3.4) is equivalent to

s + 1 + τλR +
√−1τλI

qr
=

∫ L
0 wLΨ dy∫ L
0 w2

L dy
, (6.2)

where Ψ satisfies

LΨ = λΨ + wp
L, Ψ

′
(0) = Ψ

′
(L) = 0. (6.3)
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Let us assume that

Ψ = ΨR +
√−1ΨI , λ = λR +

√−1λI .

Then (6.3) is equivalent to

(L − λR)ΨR = −λIΨI + wp
L, (6.4)

(L − λR)ΨI = λIΨR. (6.5)

¿From (6.5) we can express ΨR in terms of ΨI and substitute it into (6.4).

Thus we obtain

ΨI = λI [(L − λR)2 + λ2
I ]

−1wp
L, (6.6)

ΨR = (L − λR)[(L − λR)2 + λ2
I ]

−1wp
L. (6.7)

Substituting (6.6) and (6.7) into (6.2), we obtain the two equations

s + 1 + τλR

qr

∫ L

0
w2

L dy =
∫ L

0

(
wL(L − λR)[(L − λR)2 + αI ]

−1wp
L

)
dy

(6.8)

and

τ

qr

∫ L

0
w2

L dy =
∫ L

0

(
wL[(L − λR)2 + αI ]

−1wp
L

)
dy, (6.9)

where

αI = λ2
I > 0.

Substituting (6.9) into (6.8), we deduce that

s + 1 + 2τλR

qr

∫ L

0
w2

L dy =
∫ L

0

(
wLL[(L − λR)2 + αI ]

−1wp
L

)
dy.

(6.10)

Now, differentiating (6.10) and (6.9) with respect to τ = τc and recalling

that

λR(τc) = 0,

we have
1

qr

∫ L

0
w2

L dy =

= 2
∫ L

0
(LwL[L2 + αI ]

−2wp
L) dy

dλR

dτ
|τ=τc −

∫ L

0
(wL[L2 + αI ]

−2wp
L) dy

dαI

dτ
|τ=τc

(6.11)
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and
2τc

qr

∫ L

0
w2

L dy
dλR

dτ
|τ=τc =

= 2
∫ L

0
(LwL[L2 + αI ]

−2Lwp
L) dy

dλR

dτ
|τ=τc −

∫ L

0
(LwL[L2 + αI ]

−2wp
L) dy.

(6.12)

Multiplying (6.11) by
∫ L
0 (LwL[L2 + αI ]

−2wp
L) dy and (6.12) by

∫ L
0 (wL[L2 +

αI ]
−2wp

L) dy and subtracting the resulting equations, we arrive at⎡
⎣[

2τc

qr

∫ L

0
w2

L dy − 2
∫ L

0
(L2wL[L2 + αI ]

−2wp
L) dy]

∫ L

0
(wL[L2 + αI ]

−2wp
L) dy

+ 2

(∫ L

0
LwL[L2 + αI ]

−2wp
L dy

)2
⎤
⎦dλR

dτ
|τ=τc (6.13)

=
1

qr

∫ L

0
w2

L dy
∫ L

0
(LwL[L2 + αI ]

−2wp
L) dy

=
p − 1

qr

∫ L

0
w2

L dy
∫ L

0
(wp

L[L2 + αI ]
−2wp

L) dy > 0.

On the other hand, by (6.9) we have at τ = τc,

τc

qr
=

∫ L
0 (wL[L2 + αI ]

−1wp
L) dy∫ L

0 w2
L dy

.

Thus we see that

[
2τc

qr

∫ L

0
w2

L dy − 2
∫ L

0
(L2wL[L2 + αI ]

−2wp
L) dy]

∫ L

0
(wL[L2 + αI ]

−2wp
L) dy

= 2αI

⎛
⎝ ∫ L

0
(wL[L2 + αI ]

−2wp
L) dy

⎞
⎠

2

> 0. (6.14)

Substituting (6.14) into (6.13), we conclude that

dλR

dτ
|τ=τc > 0.

�
Now Theorem 1.2 follows from Lemma 4.1, Lemma 5.1, Lemma 5.2 and

Lemma 6.1.

�
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7. Extensions to Higher Dimensions

In the previous sections, we have studied the one-dimensional case. We

observe that two key ingredients are needed in our proofs: first (H1) that the

operator L is invertible and second (H2) that the integral
∫ L
0 wLL−1wL dy is

positive.

Now let us extend this idea to general domains in RN , N ≥ 2. Namely, we

consider ⎧⎪⎨
⎪⎩

At = ∆A − A + Ap

ξq , x ∈ ΩL, t > 0,

τξt = −ξ + ξ−s 1
|ΩL|

∫
ΩL

Ar dx,

A > 0, ∂A
∂ν

= 0 on ∂ΩL,

(7.1)

where we have rescaled the domain by ΩL = 1
ε
Ω (L = 1

ε
) and therefore the

factor ε2 in the equation vanishes. In this case, let us assume that ΩL ⊂ RN

is a smooth and bounded domain, and the exponents (p, q, r, s) satisfy the

following condition:

(H0) p > 1, q > 0, r > 0, s ≥ 0, γ :=
qr

(p − 1)(s + 1)
> 1,

where p is subcritical:

1 < p <
N + 2

N − 2
if N ≥ 3; 1 < p < +∞ if N = 2.

The steady state solution of (7.1) is given by

A = ξ
q

p−1 u, ξ1+s− qr
p−1 =

1

|ΩL|
∫
ΩL

ur dx, (7.2)

where u is a solution of the following problem:{
∆u − u + up = 0, u > 0 in ΩL,
∂u
∂ν

= 0 on ∂ΩL.
(7.3)

We again consider the minimizing solution wL(x) which satisfies (7.3) and

E[wL] = inf
u∈H1(ΩL),u �≡0

E[u], (7.4)

where

E[u] =

∫
ΩL

(|∇u|2 + u2) dy

(
∫
ΩL

up+1 dy)
2

p+1

.
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The corresponding steady-state solution to the shadow system (7.1) is

denoted by

AL = ξ
q

p−1

L wL, ξ
1+s− qr

p−1

L =
1

|ΩL|
∫
ΩL

wr
L dx. (7.5)

Let

L[φ] = ∆φ − φ + pwp−1
L φ.

Then we have the following lemma, whose proof is similar to Lemma 2.1.

Lemma 7.1. Consider the following eigenvalue problem:{ Lφ = λφ, in ΩL,
∂φ
∂ν

= 0 on ∂ΩL.
(7.6)

Then λ1 > 0 and λ2 ≤ 0.

We now make two important assumptions:

We first assume that

(H1) L−1 exists.

Under (H1), we sometimes assume that

(H2)
∫
ΩL

wL(L−1wL) dy > 0.

We can now state the following theorem.

Theorem 7.2. Assume that either

r = p + 1, and (H1) holds,

or

r = 2, and (H1) and (H2) hold.

Then (AL, ξL) is linearly stable for τ small.

In the case r = 2, there exists a unique τ = τc such that (AL, ξL) is stable

for τ < τc, unstable for τ > τc, and there is a Hopf bifurcation at τ = τc.

Furthermore, the Hopf bifurcation is transversal.

The proof of Theorem 7.2 is similar to the one-dimensional case. We omit

the details here.
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It remains an interesting and difficult question as to verify (H1) and (H2)

analytically. If L is large, it is shown in [3] and[19] that assumption (H1) is

true and assumption (H2) holds if

1 < p < 1 +
4

N
. (7.7)

This recovers the results of [18].

It is difficult to verify (H1) and (H2) for general ε. One may ask: Does

(H1) hold true for generic domains? In summary, the stability issue for

higher-dimensional systems still holds many challenging open problems.
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