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§L The utility of quaternions in matliematical physics

in non-Eiiclidean space is much the same as in Euclidean,

that is to say they are suitable for establishing funda-

mental relations. Details must be worked out by some
system of scalar coordinates. It is hoped that the

applications, to Physics, for which the methods of this

paper have been prepared, will appear in subsequent
papers ; but, quite naturally, it has been found that the

methods alone demand for exposition more space than
can be placed at the writer's disposal for the first paper
of the series. As probably considerable intervals of

time will elapse between the publication of successive

papers, it is well to state at the outset that the founda-
tions of the following have already been treated :

—

particle dynamics, rigid dynamics, hydrodynamics, elastic

solids and electrodynamics in free ether ; and also four

types of wave-motion, (1) in elastic fluids, (2) and (3)
the two types in elastic isotropic solids, (4) in free ether.

As examples of the kind of results that emerge we may
mention (1 ) that in fluids the famous vortex-motion
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theorems are true without any real modification (so that

for instance a vortex theory of matter is just as applic-

able in non-Euclidean as in Euclidean space) ; (2) that

except when wav^e-lengths are infinitesimal compared
with the space constant, only one of the four types of

wave-motion mentioned possesses velocity independent
of wave-length (and therefore possesses equal velocities

of propagation for waves and for groups of waves).
The one of the four is wave-motion in ether.

When below we come to byperbolic space we shall

use complex quaternions [p + p' s/(— 1) where p and/;'

are real quaternions]. If ^ is a complex quaternion,

then, as Hamilton prescribed, the tensor Tq and the

unitat U<7 will mean T^- = sj {qYiq) and XJq = qTq,
with the proviso that the scalar Tq is that particular one
of the two square roots whose real part is positive ;

or if the real part is zero, Tq is I multiplied by a posi-

tive scalar, I standing for >/(—!). The arc Aq of q
will mean a complex scalar o + la = cos~i SU^ where
a and a are real, a ranging between and tt, and a

between -f- go and — oo ; and when a is zero a is positive.

a will be called the angle of q and a the advance. When
the advance is zero the unitat is a versor ; when the

angle is zero the unitat is a translator ; when neither

angle nor advance is zero the unitat is the product
of a versor and a co-axial translator.

Elliptic Space Preliminaries,

§2. The quaternions to be applied in elliptic space are

never complex ; real quaternions furnish a complete

geometric method, and Clifl^ord'sbi-quaternions naturally

come forward with a second allied method. For the

present the quaternions are to be real ordinary quater-

nions.

Let, in the first instance, the axes of a complete

system of quaternions be lines through a fixed point O
in an elliptic space, and let any quaternion q of the

system (in addition to its usual signification of a quotient

of two vectors through O) signify a length measured
along the axis of Nq equal to A^'. If C)P is in this

direction and of this length, q may be called the position

quaternion of P (origin O) and U^ may be called the

position unitat of P. Next assign yet another meaning
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to a quaternion according to the following description ;

if u is the position unitat of P and v is the position

nnitat of Q, vii~'^ is a nnitat signifying a length PQ in

the sense PQ measured along the straight line PQ ; and
similarly if x is any scalar, xvu~^ is a quaternion signify-

ing the same line-segment.

The following five fundamental statements are almost
obvious :

—

(1) A (i'M~i) = length PQ, or what is the same
thing S( vir'^) = cos PQ. For in elliptic space

cosPQ = cosOP.cosOQ + sin OP. sinOQ.cosPOQ
iind we have S(z'K«) = Sm. Sw — S. YuYv.

[Important note on the establishment of our methods.

Virtually all our proofs are based on the two cosine

formulae for the two spaces. Certainly many tacit

geometric assumptions are made below, (such as those

referi'ing to common perpendiculars between lines and
planes), but these, did space permit, could easily be

stated explicitly and proved by present methods.]

(2) If P is taken as origin in place of O, the new
position unitat of Q is understood to be vu~^ If lo is

the position unitat (origin O) of a third point E. ; then

whether we take O for origin or P the line-segment QR
is signified by the same unitat. For wn~'^ (y?<"^)~i

= wv~^.

(3) Two interpretations of qrq-^. If q and r are

taken to represent quaternions (or line-segments) with

axes through O there is first

the usual interpretation of

qrq~'^ as a third quaternion

with axis through O. It is

what r becomes by conical

rotation round the axis of q
through an angle 2Kq. But p.

the diagram (in Avhich the

lines mean straight lines and OAC and DAB are both

bisected at A so that the lines are all in one plane)

shows that qrq~'^ may also be interpreted as the line-

segment (DC in the diagram) obtained by translating

the line-segment r through O (OB in the diagram) along

the axis of q (in the diagram OA is the line-segment

q through O) through a distance equal to '2Aq. The
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line-segments, one through O, the other through C, each
of which is represented by qrq~'^, are left parallels in

Clifford's sense. This shows the connection between the

(doubly infinite) several line-segment meanings we have
assigned to a quaternion p. They have equal tensors

and arcs and their axes are any left parallels. rq~'^

represents AB in the diagram ; therefore it represents

the left parallel of AB through O ; therefore the

right parallel of AB through O (obtained from the

left parallel by conical rotation round OA) must be
^~i irq~'^)q =^ q~^r. Thus the two parallels through O.

left and right, of the line-segment from the point q
(origin O) to the point r, are rq~^ and q~^r respectively.

(4) If Q (position unitat, r), a given point, and P
(position unitat, ?<) a variable point, are such that

S{vu-^) ^ 0, P is quadrantally distant from Q, that is

to say the locus of P is the polar plane of Q. Hence
S.pKq = (/> given, q current) is the equation of the

plane polar toyj.

(5) If u, r, w are the position unitats of three

points P, Q, R ; if x, //, z are scalars ; and if

xu + 7/v -t zw = ;

then P, Q, K are collinear, and their mutual distances

satisfy the sine formula

a-i sin Qll = ,?/-' sin RP = z-^ sin PQ.

For a: + yvii~^ + ztvu~^ =0, so that t/Vwm"! + zYivw^
= 0.

Clearly (4) and (5) show that one application of

the present method is very similar to Joly's use of q as

a point or plane symbol in Euclidean space (Joly's

Manual of Quaternions^ chap. xvii). As will be briefly

explained below, Joly's method is much better adapted

to interpretations in hyperbolic space than in Euclidean

or elliptic. His (real) unit sphere has to be interpreted

as the (real) absolute of hyperbolic space.

Hy])erbolic Space Preliininaries.

§3. In hyperbolic space, our initial principles, as

appearing in §2, of mathematical necessity, carry us on

to a line calculus, a calculus precisely of the type of

Clifford's bi-quaternion calculus for elliptic space.
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Indeed these two line theories in hyperbolic and
elliptic spaces are in a sense identical. Our formulae
for hyperbolic space become formulae for elliptic space

by a simple device. Let P = — 1 as in § 1 above ; let

E be a unit for \vhicli E^ = 1 and such that E is

commutative with quaternions. E is in fact Clifford's

(1). Let J be put for either I or E ; it being understood
that when J = I our formulae have real interpretations

in hyperbolic space, and when J = E in elliptic space.

The reader is advised to ignore the second possibility

(J = E) for the present, confining himself to J = I

and hyperbolic space. After viewing the hyperbolic

development let him return and observe how we might
have put J -= E from the beginning. The reason that

the notation sinh c, cosh c, etc., is avoided below, and
the equivalent notation J~i sin tic, cos tic, etc., is used

instead, is that thereby the formulae are left ready for

interpretation with the meaning of J , J = E.

[Note to assist the reader in making the interpretation

J = E. li q z= p + Ep' where p and p' are real

quaternions so that 5' is a Clifford bi-qualernion, we must
first, in fairly oljvious ways, define, V^, Sq, Ky, Tq, Uq,
Aq '= cos~i SVq . Putting Aq = a + Ea' where a
and a' are ordinary real scalars, called angle and
advance ; there is more difficulty than with complex
quaternions in a precise and unambiguous use of these

terms. SU^' being = b + E6' we have cos a cos a = b,

sin a sin a = —b'; and both b and b' may be positive

or negative. Remembering that in elliptic space a twist

with a and a for advance and angle, about a given axis,

is the same as a twist with a and a for advance and
angle, about the polar axis ; we see that any rule for

determining angle a and advance a from b and b' ought
to be ambiguous to the extent that the two are inter-

changeable. In view of all this I prefer the following

rule :—Let one of the two a and a be between and tt,

and the other between ^tt and — ^tt ; in the case of a

pure translator or versor let the range of values be,

0, tt].

§4. We shall pass lightly over such parts of the

treatment of hyperbolic space as are suggested by §2
above.
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Let a translator

u = cos Jc + £ sin Jc = exp (eJc)

where c is a real scalar and e a real unit vector, represent
a line-segment through a given point O of hyperbolic
space ; and if OP is in the direction e and of length c

let u be taken as the position unitat of P (origin O).
If with origin O, n, v are the position unitats of points
P, Q vu-^ signifies the line-segment PQ. Expandji?M-i
in full thus ; if

u = cos Jc + £ sin Jc, and v = cos Jc' + e sin Jc'

then

rw~i = vKu

= (cos Jc cos Jc' - sin Jc sin Jc' Ste')

+ (— £ sin Jc cos Jc' + £' sin Jc' cos Jc

+ \te sin Jc sin Jc'j

= cos Jc" -f- a" sin Jc"

where c" is a real scalar and c" is a unit vector (the state-

ment meaning that f"^ = —
1 ), which in general is

complex. It is important to note that the necessary and
sufficient condition for e" to be real is

Yee. sin Jc. sin Jc' =
or P, Q and the origin are collinear. Since t" is in

general complex vit'^ does not belong to the triply

infinite system of u, v. On the other hand vii'^ is not a

general unitat since S.vu~^ is real. It is in fact the
general form of a translator ; satisfying the single

scalar relation that its angle is zero.

§5. This jtroperty that ivr"i belonors to a quintuple
infinite system and not to the triply infinite system
of u, V is of course an important distinction from the

case for elliptic space of §2 above. Nevertheless we
have five fundamental statements similar to those
numbered above for elliptic space.

(1) J-iA(r?/-i) equals distance PQ ; or, what is

the same, Sivw''-) = cos (J.PQ).
(2) If IV is the position unitat, of a third point R j

wv~'^ signifies the same line-segment QR, whether O or
any other point P be taken as origin.

(3) nvu-^ is the line-segment v translated along the
axis of u to a distance 2J~iA?/.
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(4) In hyperbolic space, contrary to the case in

elliptic space, we cannot have S{um~1) = for two real

points. To obtain the equation of a plane in the form
SjoK^' = we are led to define the position nnitat of the

plane throuofh P (position imitat u) perpendicular to

OP, as uUYu. P being given ; and Q, with position

unitat y, being variable ; Q, is on the plane provided

SyK(MUVM) = 0.

This is easily proved from (6) below by taking the

origin at P, so that the position unitats of Q and O
become vu~'^ and w"i. Expressing that cos QPO =
we get the the equation just written. The characteristic

of such a position unitat of a plane is that the angle has

the definite value ^tt ; for a point the definite value was
zero. Taking v. = exp (eJcj we have in full

ulJYu = 6 exp (eJc) = - sin Jc + a cos Jc

= exp (£[^7r rf Jc])

from which we see that the scalar is a negative pure
imaginary and the vector is real. The plane passes

through the origin when c is zero. In this case its

position unitat is the real vector e.

(5) If u, V, w are the position unitats of three

points P, Q, R ; if x, y, z are scalars ; and if

xu + yv + zw = Q

then P, Q, R are collinear and their mutual distances

satisfy the sine formula

a-i sin (J. QR) = 3/-1 sin (J. RP ) = z-^ sin (J. PQ).

§6. We have now to make some similar fundamental
statements which are confined in application to the

present method, being inapplicable or unnecessary with
the method of §2.

(6) There is no special mathematical property dis-

tinguishing the origin O from any other origin P.
At first sight this statement seems inconsistent with
the prescription that vector parts of line-segments

through O are pure imaginaries, whereas with other

origins this is not so. But this is a mere question

of terms, not one of contained mathematical meaning.
If we translate i, /, k, three real rectangular unit vectors
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througli O, to the point whose position quaternion is cf'

they become

i' = qiq-\ f = qjq-\ // = qkq-\

If i, /, k are called real we must call i\ j', k' complex
because q is complex. But the calling one set real and
the other complex is a mere naming of the two sets and
does not imply any difference of contained meanings.
All properties of the set i, j, k in the first place and of

i\ j\ li in the second are based on

P =/ = ^2 ^ ^-y^ ^ _i
and P — p = k'- ^i'j'k' = — 1

and no alteration would occur in any application if

we called i\ j, k' real and therefore ?, j, k complex.

(7) When the origin is shifted to the point Kq, we
have seen that the position unitat y of a ])oint changes to

vVq~'^. The same rule holds for the position unitat v of

a plane ; it likewise changes to v'iio~^ ; for the equation
of the plane, v given, is ^ia/~^ = 0, or

Although a change occurs in the position unitats

themselves, no change occurs in the ratio of any two
of them. Hence in interpreting the meaning of any
such ratio we may take the origin wherever we
please. Thus if vu~^ ^ vu~^ where m, v, u, v' are the

position unitats of four points, how are the points

related ? Take the point u for origin so that u becomes
unity and v is of the form cos Jc" + t" sin Jc" where t"

passes through the origin and may be considered real.

Thus
v'u'~^ := COS Jc" + t" sin Jc".

Now when using t" above we saw that this implied that

the points ?/, w' and the origin were collinear. Thus the

original three v\ ?/, 7/ are collinear, and similarly v. u'

and V are collinear. Hence regarding u and /" as given,

when vu'-'^ = vu~'^ the points u, v' are both on the given
straight line joining the points ?<, v. And their distance

apart is the given distance of u, v apart ; because
S?/«'~^ = Sy?/~^ This discussion shows that our
present method is primarily a calculus of lines and not

one of points and planes. To adapt it to points and
planes an origin has to be selected.
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(8) If u and v are intersecting planes take the

origin on their line of intersection. If they are non-

intersecting planes take the the origin at the point where
their common perpendicular meets one of them. [If

they are parallel planes Y .vu—'^ as a matter of fact is a

nullitat and S.y?^"^ = 1
;

proof of which is left to

reader.] If either u or v is a point take that point for

origin. Then the following interpretations are rendered

evident. (i) When u and v ai'e intersecting planes vu~'^

is an ordinary versor whose axis is definitely fixed

in space (the axis is the line of intersection) and whose
arc is the angle between the planes. (ii) When u and v

are non-intersecting planes or when v and v are two
points vu~^ is a translator whose axis is the common
perpendicular of the planes or the line joining the points,

and whose advance is the distance between the planes or

the points. (iii) When u and v are, the one a point and
the other a plane, vu~^ is a nnitat whose angle is \it,

whose advance is the distance between the point and
plane, and whose axis is the perpendicular from point to

plane. It Avill be seen that a unit vector, with definite

axis fixed in space, occurs twice among these interpreta-

tions. Under (i) it occurs as the ratio of two intersecting

perpendicular planes ; under (iii) it occurs as the ratio of

a plane and an incident point. With our present

geometric interpretations this geometric concept of a

directed unit line with axis fixed in space ought not to

be called a vector ; for the future we shall call it a unit

rotor.

(9) Turn the unit rotor i througli an angle a

towards the rotor J; then translate the turned rotor

along the rotor A to a distance a. The first change of

position is effected by the o))erator e*"'"^ ( )
g-^"''^ and the

second by the operator e*"^"'''' ( ) e"^"^"'''^ ; that is to say i

is first changed to e'^^H and then to e(" + "^"'''''i. Since i

and the final ^f^ + JfO^i-i are any two unit rotors, we have
here proved that the ratio e'e"^ of any unit rotor z to any
othpr £ is the unitat whose axis is the common perpen-

dicular between e and e', and whose angle and advance
are the angle and distance of the twist about this

eommon perpendicidar, which converts the one into the

other. We have geometrically interpreted the general

complex unitat and incidentally justified our terms

angle, advance, versor, translator.
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ISX and y being real scalars, xi is a rotor ; Jj/i

rotor-couple ; (x + Jy) i is a motor, [See §7 below.]
Clearly multiplication by x + Ji/ completes our inter-

pretations. Without entering into details, it will be
evident to the reader, that we have a unique geometric
interpretation in hyperbolic space of the general com-
plex quaternion as the ratio of two motors.

(10) q{ )
q~^ where g- is a complex quaternion

shifts any motor (or complex quaternion) by a finite

twist whose axis is that of q and whose angle and
advance are twice those of q. [For proof take the
motor as w + Jo- Avbere w and a are rotors through the
point of intersection of the rotors i, j, k ; and take q as

[X -r Jy)e(« + J«''^'.]

(11 \ The rate of increase of a motor a, fixed in a
rigid body can be expressed as Yya where -y is a motor
expressing the rate of displacement of the rigid body,

[7 = 2Yqq-^ where q is as in (10)].

(12) If a, /3, 7 are three motors such that a + j3

+ 7 = one straight line intersects all three axes
perpendicularly (for VjSa"^ + ¥70"^ = 0). If A is a

unit rotor along this line, and i any unit rotor inter-

secting k perpendicularly, then

Ua = e^'H, U/3 = e^"-i, U7 = e''-i

where a, Z>, c are complex scalars satisfying the sine

formula,

Ta'sin {c — b) = T/3 sin (a. — c) ^ T7/siu {b — a).

[Interpret the condition Saj37 = 0,]

If a and j3 are two motors ; then if Saj3 = they
inteisect perpendicularly, and conversely : and if Va(5
= they are co-axial, and conversely,

(13) If (u, (T are rotors through the origin, required

the axis, pitch, etc., of the motor w + Jo-, First obtain

the co-axial unit rotor by dividing by T((u + 'Tcr), that

is, by s/(— w^ — J^a^ — 2JSw(t). Let this unit rotor

be (jJq + Jffo where (Uq, <ro ^^'^ rotors through the origin j

(for which

Wo" + 'I'tTo^ = — 1, Sa»o(To = 0).

Then put Wo + •^0-0 = ^-O' + J'')'.-/ and deduce

.I(7o wo~' = ^ tan t)b.
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Straight Lines Symmetric About a Point; Components
and Monients ; Rotors and Rotor-couples*

§7. In elliptic space there is a special method of

resolution (by left and ri^ht parallels) of forces and the

like which is inapplicatjle to hyperbolic space ; but
resolutions in the latter easily translate to corresponding
resolutions in the former. Let us, then, pay special

attention to hyperbolic resolutions. The terms " equal

and opposite " and " equal and similarly directed," as

applied to rotors, may be based on the conception of the

straight line symmetric,
about a given point, to a

given straight line. Let
AB be a given straight line

and C a given point. Join
the points A, B, .... to C
and produce to A', B', . . . .

,

making AC equal to CA'
etc. The locus of A', B', .... is the straight line

symmetric to AB, about C. C is the centre of symmetry,
and the straight line through C perpendicular to the

plane CAB is the axis of symmetry ; AB and B'A' are

similarly directed ; AB and A'B' are opposite. [In

hyperbolic space, AB and B'A' are any two non-inter-

secting coplanar straight lines ; in elliptic space they are

any two coplanar straight lines whatever. In hyperbolia

space there is only one centre and one axis of symmetry.
In elliptic space there are two axes, and for polar space

two centres, for antipodal space two pairs of antipodal

centres. Tlie terms "similarly directed" and 'oppo-
site " give different meanings for the two axes ; and

except when the centre or axis of symmetry is given the

terms ought not to be used in elliptic space ; unless we
elect to imply that the " near " centre and axis is to be
understood, to the exclusion of the " far " centre and

axis.] The centre of symmetry is the mid-point of the

common perpendicular MM' of the two straight lines.

Below the length CM is taken to be z ; the unit rotor

along CM is taken to be ^ ; and the unit rotor through

C, perpendicular to A, in the plane CAB, is taken to be
;'. For application in §8 below, it is important to

* Probably the contents of §7 are well known. If that is so, no liarrn cart

come from again enunciating what happens to be important for our purposes-
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remark, that the one straight line B'A' may be obtained
from the other AB by a translation 2AC through any
point A of the second mentioned.

Equal and similarly directed unit rotors along AB
and B'A' are

g-JzAy ^^ j ^>Qg J 2- ^ I gjj^ ^2.

Equal and opposite unit rotors are obtained by reversing

the first of these. Thus two equal and similarly directed

unit rotors combine to a similarly directed rotor through
the point of symmetry, whose magnitude is 2 cos Jz ;

and two equal and opposite unit rotors combine to a
rotoi'-couple (2z sin Jz) along the axis of symmetry
whose magnitude is 2j~i sin Jr and whose sense is that

which we should expect from Euclidean analogies.

Call this sense the usual sense, and call the opposite

sense ths unusual sense. If we combine tw^o equal and
opposite rotor-couples by changing the above / to JJ we
get 2Je sin Jr. In hyperl)olic space this gives us an
unexpected result ; namely, that a couple of rotor-

<?ouples has the unusual sense. The anomaly does not
occur in elliptic space.

The anomaly is sufficiently important to deserve a

kinematical comment. If we combine a right-handed
velocity of rotation a about AB, in the diagram, with
an equal one about A'B' we get as we should expect a

velocity of translation along the axis of symmetry, in

the usual sense, equal to 2a sinh z. On the other hand,
if we combine a velocity of translation a along AB with
an equal one along A'B' we get in hyperbolic space, as

we should scarcely expect, a velocity of rotation

{2«' sinh z) in the direction of the curved arrow in the

diagram. [This is neither oversight nor nonsense. In
Euclidean space, in a similar case the result would be
zero. Let tlie reader ask himself Avhat he means by the

combination of two velocities of translation of a rigid

body.]

A rotor or rotor-couple is given at a given point A,
the magnitude being a. It is required to replace it by an
equivalent rotor and rotor-couple at a second given point

C. Join AC and produce AC to A' making AC = CA';
and at A' introduce two equal and opposite rotors or
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rotor-couples, each of magnitude ^a. Then combine
one of these with ^a at A and the other Avith the

remaining ^a at A. The effect is easily deduced from
the above and may be stated as follows. The rotor at

A is equivalent to a component rotor at C, the magnitude
of the component being a multiplied by cos [J. distance

CA] ; together with a moment, that is a rotor-couple

through C, the magnitude of the moment being a multi-

plied by J~^ sin [J. distance CA].
§8. Let w -h J(T = (t>' -I- Jcr' where w, <y are rotors

through O, and w', ct' rotors through P, and let the

position unitat of P (origin O) be u. By §7 the com-
ponent and moment of a>, at P, are ^(w + i/ijju-^) and
^{w — uii)U~^) respectively ; and the component and
moment of Jo-, at P are |J(o- + uau~^) and hH<T — uaii-^)

respectively. Hence

Jo
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present themselves, as in most physical applications, then
equations after the model of (1), which treat the motors
as wholes, are to be preferred to the others. But in

pure geometry, where three scalar coordinates, in place

of six, are more natural, the method of §2, and the

corresponding method for hyperbolic space, namely
Joly's, seem to the writer superior.

If is a quaternion linity, the conjugate ^' of (p is

defined by S^^r = Sr^'^y for any two quaternions q, r.

The K-conjugate ^' of is defined by S.qK(pr
= S.rK(p^q ; that is, the bilinear scalar S.pK.q is used
in the definition of ^' in the same manner as the bilinear

scalar ii.pq is used in the definition of ({/. It follows

from the definitions that 0' = K(^'K ; K itself b«ng a

quaternion linity which is both self-conjugate and self-

K-conjugate. In elliptic space 0^ is of importance, and
not (j)'. Tins is due to the fact that the equation of the

absolute is S.qKq = 0, not S.y^ = 0. The equation of

any quadric is S.qKipq = where (p is self- K-conjugate.

The quadric being real, and therefore <p real, it can, by
proper choice of origin invariably be expressed in the

(wholly real) form

0^ = ^ Sy — a/'S/'q — ^ijSjq — c/iSkq

i, /, k intersectmg in the origin. [For an application

below it should be added tliat when we do not permit

choice of origin the real form is

1>^J^^(f/^-'J]^~^ ~ ftfS.iqp'^ — f'jSjqj>~^ — ck^.kqj)'^). ]>,

Putting p = ?'p' the last changes to

(Pq
= {aS.qp-^ — r/fS./qp-^ — ('j^'jqP~^ — bh^.kqp-^).p\

there being no real distinction between the four mutually

quadrantally distant points whose position unitats are

1, i.j, h].

The general real K-skew linity (^' = —(f) has the

very simple form (pq = aq + 7/8 where a, j3 are real

given vectors. The general (p for Avhich ^'^ = 1 = ^(^^

has the equally simple form

^q = pqp'''^, with T/^ = Ty/.

In elliptic space the point (or plane) transformation

r ^= fpq, (p''(p = I, means kinematically the general finite

twist; and the transformatijan r= (pq, ^^ = — ^, con-

Tcrts a position quaternion q into the rate of change of
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position quaternion due to a clianwing' twist. Similarly

below, for hyperbolic space, we have the interpretations

of ^'0 = 1 and (p' = —(j>.

The real linear transformation in hyperbolic space

requires that we translate to Joly's notation and then

if we please back to our own. Let C be the complex
self-conjugate quaternion linity C = S + IV. [Ele-

mentary properties of C. C is a square root of K, that

is C* = K ; C^ = K2 = I ; C3 = C-i = KG ; C'= C
^ C^ ; C~^ = S — IV. Since C — 1 annuls scalars,

and C — I annuls vectors, C satisfies the quadratic

(C — l)(C— I) = 0. If

rj = Cp, (/ = Cp

then ^.qKr/ = S.j'p, rjKq = S./r.

Thus K-conjugacy in the system rj, q (our system)

corresponds to conjugacy in the system p, y (Joly's

system)]. If j) is one of Joly's point or plane symbols
(according to Joly, interpreted in Euclidean space) then

(/ = C/* is our corresponding hyperbolic position quater-

nion. Joly's plane S.y^^o = ^ becomes our plane

S.(/K^o = ; Joly's becomes our C(^C~^ ^ i/; ; so that

Joly's ^' becomes our ;//\ For real linear transforma-

tions, it is Joly's ^, not our ^, which is a real linity.

From the above standard forms when «/)'= ih<^ we
may derive standard forms for <^' = ±0 by noting the

following statements ; if </>' = ±0, then (K^)' = ±K0
and conversely ; and also, if ^^ = ±0, then ((/)K)'

= ±^K and conversely. I do not see how, similarly,

to obtain a standard form for when ^'^ = I ; but such

a form may be obtained by translating from our notation

for a finite twist t^jq = pq2^'~^t into Joly's notation.

First effect a conical rotation about a line through the

origin ; then effect a translation along a line through the

origin. The first converts, in Joly's notation, q to rqi—'^
;

the second converts q to — K^ + '2pS.pl\.qlS.p^ so that

when (p'cj) = 1 we have

<j>q = — r.l'iq.7'~^ + 2p'S.prlvq7-~^IS.p^.

This is very different from Joly's standard indeterminate

iorm for this case.
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Non-Euclidean Space Integrals, Curl, Sfc.

§10. If '/ and r + dr are the position quaternions of

two neighbouring points then (r + dr)r~^ has been
interpreted in §2 as a quaternion whose angle and axis

indicate the elementary line-sesment joining the points ;

in §§3-8 as a bi-quaternion (in Clifford's sense for

elliptic space, in Hamilton's sense for hyperbolic space)

indicating the same thing. Tracing the interpretation a

step further we may say that in all three cases the rotor

element joining the points is

J-'Vdrr-' = dX= J~^duu-\

if u, u + du are the position unitats ; provided J means
unity in the real quaternion method, V(— 1) in the

complex quaternion method, and E in the Clifford-

bi-quaternion method. This extension of the meaning
of J will be henceforth understood. A general function

of r is a function of position and of an independent

scalar T?-. [To fix the ideas take Tr as any given

function of the time (such as e'), the same for every

point of space.]

Define the scalars ?r, .r, ?/, z and the operators ^, 6, by

/• = ,r + .!(/./• + Ji/ + kz), ^

^ = D„. — .I-'(^'Dr +.yD^ + ADj, ( ... (1)

e = — ,)V;-^ )

Space differentiations are effected by 0. ^ has been

introduced merely to suggest to the reader the definition

of 9 and also the proofs of the fundamental properties

(2), (3), (4) below of 0.

For space differentiation we have

d. = — ^d\Q (2)

3f is a symbolic quaternion passing through the origin,

whose coordinates D,,., etc. may be treated as constants.

is a symbolic rotor passing through the point r, whose
coordinates may not be treated as constants, because of

the r included in the definition of 0.
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II, as above, standing for Ur, and [/>, ;/] for any
function linear in each of two quaternions we have

[e„«j = .i[^, ^«] (3)

the suffixes and the (^, Z,) having the usual quaternion

significations. The following are examples of the use

of (3) :—
eS7^ = J^S?« = — JVz^

e . u-^ = — e^ . u-hi^u-^ = J(3S« + Vw).

Let 5- be a function of position only, not of Tr ;

let the tri-linear expression [6^, 0j, q^ imply that

the differentiations of each 9 alFect q, but that they
do not affect the variable factors r of either ; and let

[9p 0j', ^J imply that, in addition, the variable factor of

second 9, namely 9/, is affected by the differentiations

of the other 9, namel} 9j. Then we have

[9,, 9/, ryj = [9,, 9^, q,] + J[^, V^9„ .yj ... (4)

Q'^q of course means 9(9(/), that is 9j 9/ 7^ ; whereas

9^^ q^ of course means 9^ 9^ qy Thus 9^^ (but not 9^) is,

like the V^ of quaternions in Euclidean space, a scalar

operator. An important special case of (4) is Q'^q

= e^^q^ — 2.19(7, or

and

Hence 9(9
also is (9 + J;"

<p being any quaternion Unity which is a function
of position, the line-surface integral is

LdX = {L,Vdv(e^ + 2J> (6)

which is proved by first proving that \rJX = 2.1 r/vl)y

§7 above, and then proceeding as in the Euclidean case.

[^Utility of quaternions in Physics, §6.] Here dv is a

rotor element of any surface and d\ a rotor element

9(9 + 2.1 )y = e^-vji
9(9 + 2J). = 8.9^. i
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of the complete boundary, the relative senses of the two
being as usual. The surface-volume integral is

f^dv = {{L^Q^db (7)

where db is . an element of any given volume and dv
a rotor element of the complete boundary, pointing away

from the bounded volume. [That r/v ;= for a closed

surface follows from U/X = 2J c?v for an open surface.]

o- being any vector function of position (rotor, rotor-

couple or motor ; but generally to be thought of as a

rotor), and ^ == S( )(t, (6) and (7) become

|S,TC?X= f[S.r/v j9 + 2J)(r (8)

S(Tdv= {{[SQadh (9)
\l

(8), (9) and (2) give us the proper forms for curl

convergence and gradient (denoted below by crl, cnv,
and grd). In Euclidean space, if </ is a quaternion
function of position we conveniently define thus

crl(/ = V'^Vq, cnxq = Sv^', gi'dy = V%
so that V7 = (crl + cnv + grd)^'.

Similarly in non-Euclidean space a symbolic quaternion
linit^ A takes the place of the symbolic linity v( )• Let

Ay= (e + 2,lV)g (10)

Then crlry = VAVy = V. + 2J)Vr/'j

cnv^.= SA7= S0r/ ( .

whence Aq = (crl + cnv + grd)//
*

It is easy to prove that

(crl + grd + cnv)2 = A^
= crP -H cnv . grd + grd . cnv ... (12)

the last equation implying the six zero relations

= crl . grd ^ crl . cnv ^ grd . crl

= grd . grd = cnv . crl = cnv . cnv ... (13)

When q, the quaternion function of a point, consists

of a rotor through the point and a real scalar we will

call it local. From (2), (8) and (9) it is obvious that
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A^' and each of its three named parts crl^', cnv^, grd^'

are local when q is local. The operators A, etc., will

therefore be called localizing^ operators.

The reader is recommended to prove the following.

In (1) §8 above, w, o- are constant rotors through the
origin and w + Jo- =-. w + Jtr' is the velocity motor of

a rigid body ; u/ and a being local rotors expressing the.

angular velocity and the linear velocity at the point u.

With these meanings

a>' = ^ crl (T, (t' = i J2 crl a>',

u)' = \ J2 crl^ ,o\ <t' = \ J2 crP o'.

Since cnv . crl = we have cnvo-' == cnvw' = as

might have been expected in the case of a.

Some additional formulae referring to differentiation

are collected here for reference, proofs being left to the
reader. In addition to the forms of (5) we have

e(e + 2J) = A^ - 2Jcrl )

= crhcrl — 2J) + grd . cnv + cnv . grd ,S

in which last again we may write crl — 2J V in place of

crl — 2J ; and also we may write

crP — 2J crl = Gcrl = crl9
= (A - 2J)crl = crl(A - 2J) ... (15)

The next formula is especially useful for wave pro-

pagation of curl ] p being a quaternion function of the

point whose position unitat is u

(9 + J) iiJii). H-' = (A ~ 2JS)p
= (9 - 2JK)p (16)

Though 9(9 + 2J ) is a scalar operator, it appears

from the Jcrl in the middle expression of (14) that it is

not a localizing operator It should perhaps be noted

that though we pay careful attention to localization and
often assume q to be local, all our general formulae are

true independently of any such supposition.


