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Abstract. We study the Cahn-Hilliard equation in a bounded smooth
domain without any symmetry assumptions. We prove that for any fixed
positive integer K there exist interior K–spike solutions whose peaks have
maximal possible distance from the boundary and from one another. This
implies that for any bounded and smooth domain there exist interior K–
peak solutions.

The central ingredient of our analysis is the novel derivation and ex-
ploitation of a reduction of the energy to finite dimensions (Lemma 5.5)
with variables which are closely related to the location of the peaks. We
do not assume nondegeneracy of the points of maximal distance to the
boundary but can do with a global condition instead which in many cases
is weaker.
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1. Introduction

The Cahn-Hilliard equation [7] was originally derived from the Helmholtz

free energy of an isotropic two-component solid and can be written as follows:

E(u) =
∫
Ω
[F (u(x)) +

1

2
ε2|∇u(x)|2]dx.

Here Ω is the region occupied by the body, u(x) is a conserved order pa-

rameter typically representing the concentration of one of the components;

F (u) is the free energy density of a corresponding homogeneous solid which

has a double well structure at low temperatures (the most common example

is F (u) = (1 − u2)2). The constant ε is proportional to the range of inter-

molecular forces and the gradient term is a contribution to the free energy

describing spatial fluctuations.

We assume conservation of mass, i.e. there exists m with 0 < m < 1

such that m = 1
|Ω|

∫
Ω u dx. Therefore, a stationary solution of E(u) under

m = 1
|Ω|

∫
Ω u dx satisfies

⎧⎪⎨
⎪⎩

ε2∆u − f(u) = λε in Ω,
∂u
∂ν

= 0 on ∂Ω,∫
Ω u = m|Ω|

(1.1)

where f(u) = F ′(u) and λε is a constant.

In this paper we are concerned with solutions of (1.1) with spike layers.

The one dimensional case was studied by Novick-Cohen and Segal [31], Bates

and Fife [5], Grinfeld and Novick-Cohen [14],[15].

In [38] we constructed a boundary–spike–layer solution to (1.1) for ε <<

1 in the higher dimensional case when m is in the metastable region, i.e.

f ′(m) > 0. The spike is located near a nondegenerate critical point of the

mean curvature of the boundary.

In [39] we constructed a multi–spike–layer solution to (1.1) where the

spikes are each located near (different) nondegenerate critical points of the

mean curvature of the boundary.

In [40] we constructed an interior–spike–layer solution to (1.1). The spike

concentrates, as ε → 0 at a “nondegenerate peak point” (see [40] for the

definition).



CAHN-HILLIARD EQUATION 3

In this paper we continue our work along this line by constructing multi–

interior–spike–layer solutions.

The existence of spike layer solutions as well as the location and the profile

of the peaks for other problems arising in various models such as chemotaxis,

pattern formation, chemical reactor theory, etc. have been studied by Lin,

Ni, Pan, and Takagi [20, 26, 27, 28] for the Neumann problem and by Ni and

Wei [30] for the Dirichlet problem. However, they do not have the volume

constraint and the nonlinearity is simpler than here.

Naturally these stationary solutions are essential for the understanding of

the global dynamics of the corresponding evolution process. While Bates and

Fife [5] prove some results in this direction for the one dimensional case these

questions are open for higher dimensions. After this work was completed we

became aware of the preprint [6] which contains results similar to ours but

using a dynamical systems approach.

Other important features of the Cahn-Hilliard equation with physical rel-

evance are spinodal decomposition and pattern formation. In this respect

see the recent work of Kielhöfer [18] and Maier-Paape and Wanner [23], [24].

From now on, we always assume that m is in the metastable region, i.e.

f ′(m) > 0.

Before stating our main result we first make the following transformations.

For σ small enough let τσ be the unique solution of

f(m − τσ) − f(m) − σ = 0 (1.2)

which lies near zero. Obviously

τσ = − σ

f ′(m)
+ O(σ2) as σ → 0.

With this notation we further define

gσ(v) = f(m − τσ − v) − f(m) − σ

= −pσv + hσ(v)

where

v = m − τσ − u,

pσ = f ′(m − τσ),

hσ(v) = f(m − τσ − v) − f(m) − σ + f ′(m − τσ)v.
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By the choice of hσ

hσ(v) = O(v2)

as v → 0. Note that in particular

g0(v) = f(m − v) − f(m)

= −p0v + h0(v)

where

v = m − u,

p0 = f ′(m),

h0(v) = f(m − v) − f(m) + f ′(m)v.

Then equation (1.1) becomes⎧⎨
⎩ε2�v − p0v + h0(v) − 1

|Ω|
∫
Ω h0(v) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω.
(1.3)

To accommodate more general nonlinearities we assume that for all σ > 0

which are sufficiently small

(g1) h0 ∈ C2(R+) and h0 satisfies

h0(v) = O(|v|p1), h
′
0(v) = O(|v|p2−1) as |v| → ∞

for some 1 < p1, p2 <
(

N+4
N−4

)
+

where
(

N+4
N−4

)
+

:= ∞ if N ≤ 4 and(
N+4
N−4

)
+

:= N+4
N−4

if N > 4. Furthermore, there exists 1 < p3 <(
N+4
N−4

)
+

such that

|h′
0(v + φ) − h′

0(v)| ≤
{

C|φ|p3−1 if p3 > 2
C(|φ| + |φ|p3−1) if p3 ≤ 2.

(g2) For σ small enough the equation⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�Vσ + gσ(Vσ) = 0 in RN ,

Vσ > 0, Vσ(0) = max
z∈Rn

Vσ(z),

Vσ → 0 at ∞
(1.4)

has a unique solution Vσ(y) (by the results of [12], Vσ is radially

symmetric, i.e., Vσ = Vσ(r) and V
′
σ < 0 for r = |y| �= 0). Further, Vσ

is nondegenerate, namely the operator

L := � + g
′
σ(Vσ) (1.5)
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is invertible in the space H2
r (RN) :=

{
u = u(|y|) ∈ H2(RN)

}
.

The assumptions (g1) and (g2) allow h0 to be an unbounded real function.

Since the solutions vε which are given by Theorem 1.1 are bounded uniformly

with respect to ε, satisfying D1 ≤ vε ≤ v2 with D1 < 0 < D2 and D1, D2

independent of ε, we can assume without loss of generality that in addition

h0 and its first two derivatives are bounded. (By changing h0 on R\ [D1, D2]

this can be achieved and the bounded solution of the new equation (1.3) still

exists.) For the rest of the paper we assume that h0 is bounded.

In what follows, we state precisely our assumptions on the domain.

For any P = (P1, ..., PK) ∈ ΩK = Ω×Ω×...×Ω, we introduce the following

function

ϕ(P1, P2, ..., PK) = min
i,k,l=1,...,K;k �=l

(d(Pi, ∂Ω),
1

2
|Pk − Pl|).

We assume that there is an open subset Λ of ΩK which satisfies

max
(P1,...,PK)∈Λ

ϕ(P1, ..., PK) > max
(P1,...,PK)∈∂Λ

ϕ(P1, ..., PK). (1.6)

We emphasize that such a set Λ always exists . For example, we can take

Λ = ΩK . We also observe that any such Λ can be modified so that for all

P = (P1, ..., PK) ∈ Λ we have

min
i=1,...,K

d(Pi, ∂Ω) > δ > 0, min
k,l=1,...,K;k �=l

|Pk − Pl| > 2δ > 0
(1.7)

for some sufficiently small δ > 0.

Next we discuss some other examples of Λ for some special domains.

If d(P, ∂Ω) has K strict local maximum points P1, ..., PK in Ω such that

mini�=j |Pi − Pj| > 2 maxi=1,...,K d(Pi, ∂Ω), we can choose Λ such that (1.6)

holds with max(P1,...,PK)∈Λ ϕ(P1, ..., PK) achieved at P = (P1, ..., PK). When

Ω = BR(0) and K = 2, one can take P1 = (R/2, 0, ..., 0), P2 = (−R/2, ..., 0)

and Λ = {(X1, X2) : R/2− δ < |Xi| < R/2 + δ, i = 1, 2, |X1 −X2| > δ} with

δ small. Then (1.6) holds and max(P1,P2)∈Λ ϕ(P1, P2) = R/2 is achieved at

P = (P1, P2).

Our main result can be stated as follows.
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Theorem 1.1. Assume that condition (1.6) holds. Let g satisfy assump-

tions (g1)-(g2). Then for ε sufficiently small problem (1.3) has a so-

lution vε which possesses exactly K local maximum points Qε
1, ..., Q

ε
K and

Qε = (Qε
1, ..., Q

ε
K) ∈ Λ. Moreover, ϕ(Qε) → maxP∈Λ ϕ(P) as ε → 0.

More details about the asymptotic behavior of vε can be found in the proof

of Theorem 1.1.

By taking Λ = ΩK , we have the following interesting corollary.

Corollary 1.2. For any smooth and bounded domain and any fixed positive

integer K ∈ Z, there always exists an interior K-peaked solution of (1.3) if

ε is small enough.

Remark 1.3. It can be shown that the maximum of ϕ(P1, ..., PK) in ΩK is

attained at some point (Q1, ..., QK) with d(Qi, ∂Ω) = max ϕ(P1, ..., PK) for

some i. In other words, the distance between each pair of different Q′
is is

always larger than or equal to twice the smallest d(Qi, ∂Ω). (Otherwise the

points Qi can be moved in such a way that ϕ is increased.)

If we connect the maximum point of ϕ(P1, ..., PK) with the ball packing

problem and call the set of the centers of K balls packed in Ω with the largest

minimal radius a K packing center, then the K interior peaks of the above

solution converge to a K packing center.

Remark 1.4. The question of existence of spike layer solutions such that the

peaks converge to a given K packing center is open if the K packing center is

(locally) non-unique. For example if Ω is constructed by connecting B1(0, 0)

by a thin tube to B1+2/
√

3−δ(4, 0) \ Bδ(3 − 2/
√

3 + δ, 0) and smoothening

the corners. Then, with K = 3, ϕ is maximized by having P1 = (0, 0)

and P2, P3 suitably in the second disk and the choice of P2 and P3 is non-

unique. We conjecture that the only set of points which can be the limit

of interior 3 peaks solutions are P1 = (0, 0), P2 = (4, 1/2 + 1/
√

3 − δ/2),

P3 = (4,−1/2 − 1/
√

3 + δ/2). We believe that our method can be refined to

cover also such highly degenerate situations. The conditions in [6] also do

not include this case.
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To introduce the most important ideas of the proof of Theorem 1.1, we

need to give some necessary notations and definitions first.

For our approach it is essential to note that v is a solution of (1.3) if and

only if v is a critical point of the constrained functional

Jε(v) =
ε2

2

∫
Ω
|∇v|2 +

p0

2

∫
Ω

v2 −
∫
Ω

H(v)

where

H(v) =
∫ v

0
h0(s)ds, v ∈ X = {v ∈ H1(Ω)|

∫
Ω

v = 0}.
It is important to note that in the defintion of X we require that∫

Ω
v = 0

Recall on the other hand that for solutions of (1.3) this constraint does not

have to be assumed a priori but follows automatically if the solutions are in

{v ∈ H2(Ω) : ∂v
∂ν

= 0 at ∂Ω}.
The key to our construction is finding good approximating functions for

the solutions. Our approach is by using a projection technique to obtain

appropriate functions in the space X.

We have to study solutions in all of RN first. Suppose that the function

gσ which was defined after (1.2) satisfies the conditions in (g2). As in (g2)

let Vσ be the unique solution of the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�Vσ + gσ(Vσ) = 0 in RN ,

Vσ > 0, Vσ(0) = max
z∈Rn

Vσ(z),

Vσ → 0 at ∞
(1.8)

where gσ is defined after (1.2). It is known (see [12]) that Vσ is radially

symmetric, decreasing and

lim
|y|→∞

Vσ(y)e
√

pσ |y||y|N−1
2 = cσ > 0.

Furthermore, we know from [40] that for σ sufficiently small
∂Vσ

∂σ
exists and

is continuous with respect to σ. It satisfies

�(
∂Vσ

∂σ
) + f ′(m − τσ − Vσ)

(
−∂Vσ

∂σ
− 1

f ′(m)

)
− 1 = 0. (1.9)
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For P ∈ Ω let Ωε,P := {y|εy + P ∈ Ω} and Ωε := {y|εy ∈ Ω}. Let U be

any bounded smooth domain. We define a function u = PUVσ as the unique

solution of ⎧⎨
⎩∆u − pσu + hσ(Vσ) = 0 in U,

∂u
∂ν

= 0 on ∂U.
(1.10)

Fix K ∈ N and choose P = (P1, . . . , PK) ∈ Λ. We take σ0 such that

∫
Ω

(
τσ0 +

K∑
i=1

PΩε,Pi
Vσ0

(
x − Pi

ε

))
dx = 0.

We will shall show in Section 2 that σ0 exists and is unique provided ε is

small enough. We shall see that this choice of σ0 is essential in dealing with

the nonlocal integral term in (1.3).

We set

Vσ,i(y) = Vσ(y − Pi

ε
), PVσ,i(y) = PΩε,Pi

Vσ(y − Pi

ε
), y ∈ Ωε,

P εVσ,i(x) = PΩε,Pi
Vσ

(
x − Pi

ε

)
, x ∈ Ω,

wε,P = τσ0 +
K∑

i=1

PVσ0,i.

We shall use wε,P as our approximate solution. Further, denote

Kε,P = span

{
∂(τσ0 +

∑K
i=1 PVσ0,i)

∂Pi,j

, i = 1, ..., K, j = 1, ..., N

}
.

(Note: Our definition of PΩε,Pi
is equivalent to the following: Let v be the

unique solution of the boundary value problem{
ε2∆v − pσv + hσ(Vσ(x−Pi

ε
)) = 0 in Ω,

∂v
∂ν

= 0 on ∂Ω
(1.11)

(this is a problem on the domain Ω which is independent of of Pi). Then it

is easy to see that

PΩε,Pi
Vσ(y) = v(εy + Pi) for y ∈ Ωε,Pi

.

Hence
∂(τσ0+

∑K

i=1
PVσ0,i)

∂Pi,j
is well-defined.)

We will show that Kε,P is an appropriate approximation to the kernel and

cokernel, respectively, of the operator obtained from linearizing (1.3) at wε,P.

Precise statements will be given in Propositions 5.1 and 5.2.
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Then we solve for Φε,P such that∫
Ωε

(wε,P + Φε,P)Ψ = 0 for all Ψ ∈ Kε,P,

∆(wε,P + Φε,P) − p0(wε,P + Φε,P) + h0(wε,P + Φε,P)

− 1

|Ωε|
∫
Ωε

h0(wε,P + Φε,P) dy ∈ Kε,P,

∂

∂ν
(wε,P + Φε,P) = 0 on ∂Ωε

using the Liapunov-Schmidt reduction method. Note that we obtain a family

of “solutions” Φε,P depending on P ∈ Λ. We will also write

vε = wε,P + Φε,P.

The method evolves from that of [11], [32] and [33] on the semi-classical (i.e.

for small parameter h) solution of the nonlinear Schrödinger equation

h
2

2
∆U − (V − E)U + Up = 0 (1.12)

in RN where V is a potential function and E is a real constant. The method

of Liapunov-Schmidt reduction was used in [11], [32] and [33] to construct

solutions of (1.12) close to nondegenerate critical points of V for h sufficiently

small. Note that in the present paper we do not assume nondegeneracy of

the points of maximal distance to the boundary but can do with the global

condition (1.6) instead which in many cases is weaker. For example if we take

Ω = B1(0, 0)∪BK+2(0, 0)∪[0, K+2]×[−1, 1] then our method gives existence

of K spike solutions whose peaks all approach the line [0, K +2]×{0}. This

case is not covered by the conditions in [6].

Then we show that Φε,P is C1 in the variable P. After that, we define a

novel functional

Mε(P) = Jε(wε,P + Φε,P). (1.13)

This says that we have also reduced the “energy” to finite dimensions. A

large part of the paper is devoted to deriving an explicit expansion including

error estimates for Mε(P). This is a new result and it should be fundamental

to a better understanding of qualitative and quantitative properties of the

Cahn-Hilliard equation. It is a conceptual progress if not also a technial sim-

plification compared with [6] where similar results are obtained by dynamical
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system/invariant manifold methods. We believe that it is more appropriate

to derive static solutions by energy methods which are more static in nature

than by dynamical system methods. We would like to mention that for all

locations of K spike points considered in [6] our method also works by solving

the finite-dimensional optimization problem on the union of suitable small

balls around each of these spike points. On the other hand, the method in

[6] can give more precise information about the location of the spikes.

We are convinced that our approach will help to shed more light on the

problem of location the peaks of K spike solutions in particular in situations

where the non-degeneracy is very weak. There are interesting open problems

in this direction. See Remark 1.4.

We maximize Mε(P) over Λ. Condition (1.6) ensures that Mε(P) attains

its maximum in Λ. We show that the resulting solution has the properties

of Theorem 1.1.

Throughout this paper, unless otherwise stated, the letter C will always

denote various generic constants which are independent of ε, for ε sufficiently

small; δ > 0 is a very small number; o(1) means |o(1)| → 0 as ε → 0.

For the construction of boundary spike solutions, we just need an algebraic

order estimate. Here for the interior peak case, the nonlocal term
∫
Ω h(vε)

is of algebraic order εN , but the term that really determines the location

of interior spikes is exponentially small. We use the method of viscosity

solutions as introduced in [22] to estimate exponentially small terms.

The paper is organized as follows. In Section 2 we show how to choose

σ0. In Section 3 we show some properties of the function PΩε,P
Vσ. In Section

4 we derive some key energy estimates which will be important to derive

an explicit expansion including error estimates for Mε(P). In Section 5 we

first determine the function vε by the Liapunov-Schmidt reduction method.

Then we Then we derive an expansion for Mε(P), i.e., we reduce the energy

to finite dimensions. After that show that Φε,P is C1 in P. Finally, in Section

6, we prove that the maximizing problem has a solution Pε ∈ Λ and that

wε,Pε + Φε,Pε is indeed a solution of (1.3) which satisfies all the properties of

Theorem 1.1.
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2. Choosing σ

In this section we choose σ appropriately. Let P εVσ,i be defined as after

(1.10). We now choose σ0(ε,P) such that

∫
Ω
(τσ0 +

K∑
i=1

P εVσ0,i) dx = 0. (2.1)

We will see in Section 4 that this choice of σ0 is essential to get good estimates

for the nonlocal terms in (1.3). We calculate (for σ = σ0(ε,P))

K∑
i=1

∫
Ωε,Pi

PΩε,Pi
Vσ dy =

K∑
i=1

1

pσ

∫
Ωε,Pi

hσ(Vσ)

=
1

pσ

[
K
∫

RN
hσ(Vσ) −

K∑
i=1

∫
ΩC

ε,Pi

hσ(Vσ)

]
.

This implies

τσ = −
K∑

i=1

1

|Ωε,Pi
|
∫
Ωε,Pi

PΩε,Pi
Vσ

= − εN

pσ|Ω|
[
K
∫

RN
hσ(Vσ) −

K∑
i=1

∫
ΩC

ε,Pi

hσ(Vσ)

]
. (2.2)

Setting

g1(σ) = −pστσ,

g2(σ) = K
∫

RN
[hσ(Vσ) − h0(V0)],

and

g3(σ,P) =
εN

|Ω|
K∑

i=1

∫
ΩC

ε,Pi

hσ(Vσ)
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we can rewrite (2.2) as

g1(σ) =
εN

|Ω|
(
K
∫

RN
h0(V0) + g2(σ)

)
− g3(σ,P). (2.3)

From now on we will frequently write g instead of g0, h instead of h0 and

V instead V0 thus dropping the index 0 if this can be done without causing

confusion.

It is easy to show that

g1(σ) = σ + O(σ2), g′
1(σ) = 1 + O(σ) as σ → 0,

g1 ∈ C1([0, σ̃]) for some σ̃ > 0 small,

g2(σ) = O(σ), g′
2(σ) = O(1) as σ → 0,

g2 ∈ C1([0, σ̃]) for some σ̃ > 0 small,

|g3(σ,P)| =

∣∣∣∣∣ ε
N

|Ω|
K∑

i=1

∫
ΩC

ε,Pi

hσ(Vσ)

∣∣∣∣∣
≤ CK

εN

|Ω|
∫
|y|≥Dε/ε

(
|y|−(N−1)/2 exp (−√

pσ|y|)
)2

= CK
εN

|Ω|
∫ ∞

r=Dε/ε
r−N+1 exp(−2

√
pσr)r

N−1 dr

= CK
εN

|Ω|
1√
pσ

exp

(
−2

√
pσDε

ε

)

≤ CK
εN

|Ω| exp

(
−2

√
pσDε

ε

)
(2.4)

where Dε = mini=1,... ,K d(Pi, ∂Ω) since

|Vσ,i(x)| ≤ C

∣∣∣∣x − Pi

ε

∣∣∣∣
−(N−1)/2

exp

(
−
√

pσ|x − Pi|
ε

)
.

For ε small let σ1(ε) be a solution of

g1(σ) =
εN

|Ω|
(
K
∫

RN
h0(V0) + g2(σ)

)
.

Note that this equation is the same as (2.3) with the term g3(σ,P) dropped.

Then by the Implicit Function Theorem

σ1(ε) =
εN

|Ω|K
∫

RN
h0(V0) + O(ε2N) as ε → 0
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and σ1(ε) is unique if ε is small enough and it is independent of P. For the

solution σ0(ε,P) of (2.3) we make the ansatz σ0(ε,P) = σ1(ε)+η(ε,P). Then

because of (2.4) the Implicit Function Theorem implies

η(ε,P) = O(g3(σ,P)) = O

(
εN exp

(
−2

√
pσDε

ε

))
.

Since |pσ − p0| = O(σ) we have proved

σ0(ε,P) = σ1(ε) + O

(
εN exp

(
−2

√
p0Dε

ε

))

and σ0(ε,P) is unique if ε is small enough for all P ∈ Λ.

3. Projection of Vσ

In this section, we study properties of the function Vσ introduced in Section

2. In particular, we consider the “projection” PΩε,P
of Vσ in H1

N(Ω) onto

the linear subspace of H1(Ω) of functions satisfying the Neumann boundary

condition and prove some estimates.

Recall that for P ∈ Ω we defined PΩε,P
Vσ as the unique solution of

⎧⎨
⎩�v − pσv + hσ(Vσ) = 0 in Ωε,P ,

∂v
∂ν

= 0 on ∂Ωε,P

(3.1)

where pσ, hσ are as defined in the introduction. Recall that

Ωε,P : = {y|εy + P ∈ Ω},
Ωε : = {y|εy ∈ Ω},

ϕε,P (x) = Vσ(
|x − P |

ε
) − PΩε,P

Vσ(y), εy + P = x.

Then ϕε,P (x) satisfies

⎧⎨
⎩ε2�v − pσv = 0 in Ω,

∂v
∂ν

= ∂
∂ν

Vσ( |x−P |
ε

) on ∂Ω.
(3.2)
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It is immediately seen that on ∂Ω

∂

∂ν
Vσ(

|x − P |
ε

) =
1

ε
V ′

σ(
|x − P |

ε
)
< x − P, ν >

|x − P |
= −1

ε

(
|x − P |−(N−1)/2 · ε+ N−1

2 e−
√

pσ |x−P |
ε

√
pσ

(
cσ + O(ε)

))< x − P, ν >

|x − P |
= −ε

N−3
2 e−

√
pσ |x−P |

ε
√

pσ

(
cσ + O(ε)

)< x − P, ν >

|x − P |N+1
2

for some cσ > 0.

To analyze PΩε,P
Vσ, we introduce another linear problem. Let PD

Ωε,P
Vσ be

the unique solution of⎧⎨
⎩ε2�v − pσv + hσ(Vσ) = 0 in Ω,

v = 0 on ∂Ω.

Set

ϕD
ε,P = Vσ − PD

Ωε,P
Vσ, ψ

D
ε,P (x) = −ε log ϕD

ε,P (x).

Note that ϕε,P , ϕD
ε,P and ψD

ε,P depend on σ. Then v = ψD
ε,P satisfies⎧⎨

⎩ε�v − |∇v|2 + pσ = 0 in Ω,

v = −ε log(Vσ( |x−P |
ε

)) on ∂Ω.

Note that for x ∈ ∂Ω

ψD
ε,P (x) = −ε log

(
(
|x − P |

ε
)−

N−1
2 e−

√
pσ |x−P |

ε (cσ + O(ε))

)

=
√

pσ|x − P | + N − 1

2
ε log(

|x − P |
ε

) + O(ε)

=
√

p0|x − P | + N − 1

2
ε log(

|x − P |
ε

) + O(σ) + O(ε)

since pσ = p0 + O(σ). The proof of Lemma 3.1 is based on this estimate.

For the rest of this section we assume that σ = σ0.

Lemma 3.1. (1)
∂ψD

ε,P

∂ν
= (

√
p0 + o(1))

< x − P, ν >

|x − P | for all P ∈ Ω

uniformly on ∂Ω,

(2) ψD
ε,P (x) −→ ψD

0 (x) = inf
z∈∂Ω

√
p0(|z − x| + |z − P |) as ε → 0

for all P ∈ Ω uniformly in Ω̄. In particular, ψD
0 (P ) = 2

√
p

0
d(P, ∂Ω).

Note that ψD
0 is a viscosity solution of the Hamilton-Jacobi equation

|∇u| =
√

p0 in Ω (see [22]).
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Proof. (1) Corollary 3.4 and Section 5 in [10] prove that

∂ψD
ε,P

∂ν
= (1 + O(ε))

∂ψD
0,P

∂ν
uniformly on ∂Ω.

For x ∈ ∂Ω and ν(x) its exterior unit normal vector consider the points

x + λν(x) with λ small. The condition for z ∈ ∂Ω to be a critical point of

(|x − λν(x) − z| + |z − P |)
is

< x ± λν(x) − P, τj(z) >

|x + λν(x) − P | =
< z − P, τj(z) >

|z − P |
where τ1(x), . . . , τN−1(x), ν(x) is an orthonormal system of N − 1 tangent

vectors and the exterior normal vector at x ∈ ∂Ω. The sign in the last

equation depends on the location of P . It is easy to see that for λ small

enough z in the unique point on ∂Ω for which ψD
0,P (x+λν) = infz∈∂Ω

√
p0(|z−

(x + λν)| + |z − P |) is attained. This implies that for a critical point z

(|x − λν(x) − z| + |z − P |) = (|x + λν(x) − z| + |z − P |)
= |x ± λν(x) − P |

=

⎛
⎝N−1∑

j=1

< x ± λν(x) − P, τj(z) >2 + < x + λν(x) − P, ν(z) >2

⎞
⎠

1/2

=

⎛
⎝N−1∑

j=1

< x − P, τj(z) >2 + < x − P, ν(x) >2 +2λ < x − P, ν(x) > +O(λ2)

⎞
⎠

1/2

= |x − P | + λ
< x − P, ν(x) >

|x − P | + O(λ2) as λ → 0.

(Note that

|x ± λν(x) − z| = O(λ),

< τj(x), τj(z) > = 1 + O(λ), j = 1, . . . , N − 1,

< ν(x), ν(z) > = 1 + O(λ),

< τi(x), τj(z) > = O(λ), i, j = 1, . . . , N − 1, i �= j,

< τj(x), ν(z) > = O(λ), j = 1, . . . , N − 1 .)

This implies

ψD
0 (x + λν(x)) =

√
p0(|x − P | + < x − P, ν(x) >

|x − P | λ) + O(λ2)
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and
∂ψD

0,P

∂ν
(x) =

√
p0

< x − P, ν >

|x − P | .

(2) see Lemma 4.4 in [30]. �

Let us now compare ϕε,P (x) and ϕD
ε,P (x). To this end, we introduce another

function. Let Uε be the solution of the problem⎧⎨
⎩ε2∆Uε − pσUε = 0 in Ω,

Uε = 1 on ∂Ω.

Set

Ψε = −ε log(Uε).

Then by Lemma 4.1 of [10], we have

Ψε(x) =
√

pσd(x, ∂Ω) + O(ε) in Ω,

∂Ψε

∂ν
(x) = −√

pσ + O(ε) on ∂Ω.

This implies

|Uε(x)| ≤ Ce−
√

pσ
d(x,∂Ω)

ε in Ω (3.3)

and

∂Uε

∂ν
(x) =

√
pσ

ε
+ O(1) as ε → 0 at ∂Ω. (3.4)

Moreover, for any δ0 > 0 we have

Uε(εy + P )

Uε(P )
≤ Ce

√
pσ(1+δ0)|y| (3.5)

for ε sufficiently small.

This leads to the following

Lemma 3.2. There exist η0, δ0 > 0, ε0 > 0 such that for ε < ε0, we have

−(1 + η0ε)ϕ
D
ε,P − Ce−

√
pσ
ε

(1+δ0)d(P,∂Ω)Uε < ϕε,P

< −(1 − η0ε)ϕ
D
ε,P + Ce−

√
pσ
ε

(1+δ0)d(P,∂Ω)Uε.

Proof. We first assume that Ω is strictly starlike with respect to P . Namely,

there is a constant c0 > 0 such that

〈x − P, ν(x)〉 ≥ c0 > 0
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for all x ∈ ∂Ω. Then on ∂Ω, we have

∂ϕD
ε,P

∂ν
= e−

ψD
ε,P

(x)

ε (−1

ε
)
∂ψD

ε,P (x)

∂ν

= −1

ε
Vσ

∂ψD
ε,P (x)

∂ν

=
1

ε
Vσ

√
pσ(1 + O(ε))

< x − P, ν >

|x − P |
= −(1 + O(ε))

∂ϕε,P

∂ν
.

Since Ω is strictly starlike with respect to P , we have
∂ϕD

ε,P

∂ν
< 0. The following

are standard facts from elliptic partial differential equations: Assume that

for any v ∈ H2(Ω) ∩ H1(∂Ω) and

∆v − pσv = 0,

∂v

∂ν
< 0.

Then v ≥ 0 in Ω (“positivity”). Furthermore, the solution depends linearly

on its Neumann boundary condition (“linearity”). An analogous result holds

for the corresponding Dirichlet problem. Using positivity and linearity we

get

−(1 + η0ε)ϕ
D
ε,P ≤ ϕε,P ≤ −(1 − η0ε)ϕ

D
ε,P .

Now we consider any bounded smooth domain Ω thus dropping the strictly

starlike condition.

We can choose a constant R = (1+2δ0)d(P, ∂Ω) for some δ0 > 0 such that

Ω1 := BR(P ) ∩ Ω is strictly starlike with respect to P , i.e.

〈x − P, ν(x)〉 ≥ c0 > 0, x ∈ ∂Ω1.

Then on ∂Ω1 ∩ ∂Ω = Γ1, we have

∂ϕε,P

∂ν
= −(1 + O(ε))

∂ϕD
ε,P

∂ν

as above.

Now we construct functions ϕ̃ε,P and ϕ̃D
ε,P which are close to ϕε,P and ϕD

ε,P ,

respectively. We define Ṽσ

(
x−P

ε

)
= Vσ

(
x−P

ε

)
χδ0(x) where χδ0 is a smooth
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(cutoff) function such that χδ0(x) = 1 for x ∈ Bd(P,∂Ω)+δ0(P ) and χδ0(x) = 0

for x ∈ RN \ Bd(P,∂Ω)+2δ0(P ). As above we define

ϕ̃ε,P (x) = Ṽσ

(
x − P

ε

)
− PΩε,P

Ṽσ

(
x − P

ε

)
,

ϕ̃D
ε,P (x) = Ṽσ

(
x − P

ε

)
− PD

Ωε,P
Ṽσ

(
x − P

ε

)
.

It is immediately seen that

‖Vσ − Ṽσ‖L∞(∂Ω) ≤ C exp (−√
pσ/ε(1 + δ0)d(P, ∂Ω)) ,

‖∂Vσ

∂ν
− ∂Ṽσ

∂ν
‖L∞(∂Ω) ≤ C

1

ε
exp (−√

pσ/ε(1 + δ0)d(P, ∂Ω)) .

Using positivity and linearity for the Dirichlet and Neumann problems, re-

spectively, and (3.4) we get

|ϕ̃D
ε,P − ϕD

ε,P | ≤ C exp (−√
pσ/ε(1 + δ0)d(P, ∂Ω)) Uε,

|ϕ̃ε,P − ϕε,P | ≤ C exp (−√
pσ/ε(1 + δ0)d(P, ∂Ω)) Uε

a.e. in Ω.

Combining this with the result for Ω stricty starlike with respect to P we

conclude the proof of Lemma 3.2.

�
By Lemma 3.2 we have that

Ψε(P ) := −ε log (−ϕε,P (P )) → 2
√

p0d(P, ∂Ω) as ε → 0

since

ϕε,P (P ) = (−1 + O(ε))ϕD
ε,P (P ) + O(e−

√
pσ/ε(1+δ0)d(P,∂Ω)).

Let

V̄ε,P (y) =
1

ϕε,P (P )
· ϕε,P (x)

where x = εy + P .

Then V̄ε,P (0) = 1 (hence V̄ε,P (y) > 0). Furthermore, we have

Lemma 3.3. For every sequence εk → 0, there is a subsequence εk� → 0

such that under the assumption σ = σ0(ε), V̄εk�,P → V̄ uniformly on every

compact set of RN where V̄ is a positive solution of{ �u − p0u = 0 in RN ,
u > 0 in RN and u(0) = 1.

(3.6)
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Moreover for any c1 > 0, sup
z∈Ωεk�,P

e−(
√

p0+c1)|z|
∣∣∣V̄εk�,P (z) − V̄

∣∣∣ → 0 as εk� → 0.

Proof. Assume that σ = σ0(ε). By Lemma 3.2, we have

|V̄ε,P (y)| = |(Vσ − PΩε,P
Vσ)

1

ϕε,P (P )
|

≤ C
ϕD

ε,P (P )

ϕε,P (P )
+ C

1

ϕε,P (P )
e−

√
pσ
ε

(1+δ0)d(P,∂Ω)Uε

≤ Ce
√

pσ(1+δ0)|y| + Ce−
√

pσ
ε

(1+δ0)d(P,∂Ω)Uε ( by Lemma 4.6 in [30] )

≤ Ce
√

pσ(1+δ0)|y| + CUε(x)/Uε(P ) (since Uε(P ) ≤ Ce−
√

pσ
ε

d(P,∂Ω))

≤ Ce
√

pσ(1+δ0)|y|.

By a local compactness argument, we have that limε→0 Vεk�,P = V̄ and V̄

satisfies (3.6). Furthermore, the exponential decay estimate at the end of

Lemma 3.3 follows immediately from this argument.

�

4. Key Energy Estimates

In this section, we derive some key energy estimates. We first state some

useful lemmas about the interactions of two V ’s.

Lemma 4.1. Let f ∈ C(RN) ∩ L∞(RN), g ∈ C(RN) be radially symmetric

and satisfy for some α ≥ 0, β ≥ 0, γ0 ∈ R

f(x) exp(α|x|)|x|β → γ0 as |x| → ∞∫
RN

|g(x)| exp(α|x|)(1 + |x|β) dx < ∞.

Then

exp(α|y|)|y|β
∫

RN
g(x + y)f(x) dx → γ0

∫
RN

g(x) exp(−αx1) dx as |y| → ∞.

For the proof, see [4].

We then have the following estimates. Recall that Vσ,i was defined in the

introduction.

Lemma 4.2. 1

V0(
|P1−P2|

ε
)

∫
RN h(V0,1)V0,2 → γ > 0 as ε → 0 where

γ =
∫

RN
h(V0(y))e−

√
p0y1dy. (4.1)
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The next lemma is the key result in this section.

Lemma 4.3. For any P = (P1, . . . , PK) ∈ Λ and ε sufficiently small

Jε(τσ +
K∑

i=1

PVσ,i) = εN [KI(V0) − 1

2
(γ + o(1))

K∑
i=1

(e−
1
ε
Ψε(Pi))

−(γ + o(1))
K∑

i,l=1,i�=l

V0(
|Pi − Pl|

ε
) + O(σ)] (4.2)

where σ = σ0(ε), γ is defined by (4.1),

I(V0) =
∫

RN
|∇V0|2 +

p0

2

∫
RN

|V0|2 −
∫

RN
H(V0),

with H(t) =
∫ t
0 h0(s) ds and O(σ) is to be understood as a term which is

independent of P ∈ Λ.

Proof.

We shall prove the cases when K = 1 and K = 2. The other cases are

similar. Throughout the proof we assume that σ = σ0(ε).

We begin with the case K = 1. Recall that PΩε,P
Vσ satisfies

∆PΩε,P
Vσ − pσPΩε,P

Vσ + hσ(Vσ) = 0 in Ωε,P .

Hence

ε2
∫
Ω
|∇PΩε,P

Vσ|2 + p0

∫
Ω
|τσ + PΩε,P

Vσ|2

= ε2
∫
Ω
|∇PΩε,P

Vσ|2 + p0

∫
Ω
|PΩε,P

Vσ|2 − p0τ
2
σ |Ω|

(by the definition of σ)

= εN
∫
Ωε,P

hσ(Vσ)PΩε,P
Vσ + εN(p0 − pσ)

∫
Ωε,P

|PΩε,P
Vσ|2 − p0τ

2
σ |Ω|.

On the other hand, we note that

H(τσ + u) =
∫ τσ+u

0
h0(t) dt = H(τσ) +

∫ u

0
h0(t + τσ) dt

= H(τσ) +
∫ u

0
[p0(t + τσ) + σ + hσ(t) − pσt]

= H(τσ) + Hσ(u) + (p0 − pσ)
1

2
u2

+(p0τσ + σ)u

where Hσ(u) =
∫ u
0 hσ(t)dt.
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Hence we have ∫
Ω

H(τσ + PΩε,P
Vσ)

= H(τσ)|Ω| + εN
∫
Ωε,P

Hσ(PΩε,P
Vσ) +

1

2
(p0 − pσ)εN

∫
Ωε,P

[PΩε,P
Vσ]2

+(p0τσ + σ)
∫
Ωε,P

PΩε,P
Vσ

= H(τσ)|Ω| + εN
∫
Ωε,P

Hσ(PΩε,P
Vσ) +

1

2
(p0 − pσ)εN

∫
Ωε,P

[PΩε,P
Vσ]2

−(p0τσ + σ)τσ|Ω|.
Now we combine and calculate

Jε(τσ + PΩε,P
Vσ)

= εN
∫
Ωε,P

1

2
hσ(Vσ)PΩε,P

Vσ − H(τσ)|Ω| − εN
∫
Ωε,P

Hσ(PΩε,P
Vσ)

+στσ|Ω| + 1

2
p0τ

2
σ |Ω|

= εN
∫
Ωε,P

[
1

2
hσ(Vσ)PΩε,P

Vσ − Hσ(PΩε,P
Vσ)]

+(στσ − H(τσ))|Ω| + 1

2
p0τ

2
σ |Ω|

= εN
∫
Ωε,P

[
1

2
hσ(Vσ)PΩε,P

Vσ − Hσ(PΩε,P
Vσ)] + O(σ2)

where the “O(σ)”–terms do not depend on P explicitly. Note that by Lemma

3.1 and similar arguments as in the proof of Lemma 5.1 of [30] we have

εN
∫
Ωε,P

hσ(Vσ)PΩε,P
Vσ

= εN
∫
Ωε,P

hσ(Vσ)Vσ + εN
∫
Ωε,P

hσ(Vσ)[PΩε,P
Vσ − Vσ]

= εN
[∫

RN
h0(V0)V0 + O(σ) + o(ϕε,P (P ))

]
−εNϕε,P (P )

[∫
Ωε,P

h0(V0)V ε,P + O(σ)

]

= εN
[∫

RN
h0(V0)V0 − ϕε,P (P )γ + O(σ) + o(ϕε,P (P )

]
(4.3)

where O(σ) is independent of P ∈ Λ and

γ =
∫

RN
h0(V0)V =

∫
RN

h0(V0)e
−√

p0y1
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for any solution V of (3.6) (see Lemma 4.7 in [30]) where it is also shown

that γ is independent of the choice of the solution V of (3.6). Recall that

V̄ε,P (y) =
1

ϕε,P (P )
· ϕε,P (x)

where x = εy + P as defined before Lemma 3.3.

For the last estimate note that because of the exponential decay of Vσ (see

the equation before (1.9) ) we have

∂

∂σ

∫
RN

hσ(Vσ)Vσ

=
∫

RN
[h′

σ(Vσ)Vσ + hσ(Vσ)]
∂Vσ

∂σ

+
∫

RN
{[f ′(m − τσ − Vσ)

(
− 1

pσ

)
− 1

+f ′′(m − τσ)
1

pσ

]Vσ}
Because of ∣∣∣∣∣∂Vσ

∂σ

∣∣∣∣∣ ≤ C

this implies ∣∣∣∣∣ ∂

∂σ

∫
RN

hσ(Vσ)Vσ

∣∣∣∣∣
σ=0

≤ C
∫

RN
{h′

0(V0)V0 + h0(V0)

+[f ′(m − V0)

(
− 1

p0

)
− 1 + f ′′(m)

1

p0

]V0} ≤ C.

Similarly, we have∫
Ωε,P

Hσ(PΩε,P
Vσ) =

∫
RN

H(V0) + (γ + o(1))ϕε,P (P ) + O(σ)

where O(σ) is independent of P ∈ Ω.

Combining all together we obtain

Jε(τσ + PΩε,P
Vσ) = εN(

1

2

∫
Ωε,P

|∇PΩε,P
Vσ|2 +

p0

2

∫
Ωε,P

|τσ + PΩε,P
Vσ|2

−
∫
Ωε,P

H(τσ + PΩε,P
Vσ))

= εNI(V ) +
1

2
εNϕε,P (P ) [γ + o(1)] + εN(O(σ) + o(ϕε,P (P ))).

This proves Lemma 4.3 for K = 1. Now we consider K = 2.
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Similarly, as before we have

ε−NJε(τσ + PVσ,1 + PVσ,2)

=
∫
Ωε,P

1

2
[|∇(PVσ,1 +PVσ,2)|2 +p0(PVσ,1 +PVσ,2)

2]−
∫
Ωε,P

Hσ(PVσ,1 +PVσ,2)

+O(σ) + o(ϕε,P1(P1) + ϕε,P2(P2) + V0(
|P1 − P2|

ε
)).

By Lemmas 4.1 and 4.2 we have∫
Ω

hσ(Vσ,1)PVσ,2 = εN(γ + o(1))V0(
|P1 − P2|

ε
)

+εNo(ϕε,P2(P2)) + O(σ).

∫
Ω

hσ(PVσ,1)PVσ,2 = εN(γ + o(1))V0(
|P1 − P2|

ε
)

+εNo(
2∑

i=1

ϕε,Pi
(Pi)) + O(σ)

where O(σ) is independent of P1, P2 ∈ Ω. Let δ > 0 be a sufficiently small

number. We then have∫
Ω

Hσ(PVσ,1 + PVσ,2) =
∫
Ω1

Hσ(PVσ,1 + PVσ,2)

+
∫
Ω2

Hσ(PVσ,1 + PVσ,2) +
∫
Ω3

Hσ(PVσ,1 + PVσ,2)

= I1 + I2 + I3

where Ii, i = 1, 2, 3 are defined by the last equation and

Ω1 = {|x − P1| ≤ 1 − δ

2
|P1 − P2|}, Ω2 = {|x − P2| ≤ 1 − δ

2
|P1 − P2|},

Ω3 = Ω\(Ω1 ∪ Ω2).

We also set

(Ωi)ε = ε−1Ωi, i = 1, 2, 3.

For I3, we have

|I3| ≤
∫
Ω3

(V0,1 + V0,2)
2 = O(e−

√
p02 1

ε
|P1−P2|).
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For I1, we have (reasoning as for K = 1 above)

I1 =
∫
Ω1

Hσ(PVσ,1 + PVσ,2)

=εN [
∫

RN
H(V0) + γϕε,P1(P1) +

∫
(Ω1)ε

h0(V0,1)V0,2

+ O(e−
√

p02 1
ε
|P1−P2|) + o(

2∑
i=1

ϕε,Pi
(Pi)) + O(σ)].

Similarly,

I2 =εN [
∫

RN
H(V0) + γϕε,P2(P2) +

∫
(Ω2)ε

h0(V0,2)V0,1

+O(e−
√

p02 1
ε
|P1−P2|) + o(

2∑
i=1

ϕε,Pi
(Pi)) + O(σ)].

Hence

ε−NJε(τσ +
2∑

i=1

PVσ,i) = 2I(V0) +
1

2
(γ + o(1))

2∑
i=1

ϕε,Pi
(Pi) +

∫
Ωε

h0(V0,1)PV0,2

−
∫
(Ω1)ε

h0(V0,1)V0,2 −
∫
(Ω3)ε

h0(V0,2)V0,1

+ εNγV0

( |P1 − P2|
ε

)
+ o(

2∑
i=1

ϕε,Pi
(Pi)) + o(V0(

|P1 − P2|
ε

))

= 2I(V0) +
1

2
(γ + o(1))

2∑
i=1

ϕε,Pi
(Pi)

− (γ + o(1))V0(
|P1 − P2|

ε
) + O(σ).

Here we have used

∫
Ωε

h0(V0,1)V0,2 = (γ + o(1))V0(
|P1 − P2|

ε
),

∫
(Ω1)ε

h0(V0,1)V0,2 = (γ + o(1))V0(
|P1 − P2|

ε
),

and ∫
(Ω3)ε

h0(V0,2)V0,1 = (γ + o(1))V0(
|P1 − P2|

ε
).

�
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5. Liapunov-Schmidt Reduction

In this section, we reduce problem (1.3) to finite dimensions by the Liapunov-

Schmidt method. We first introduce some notation.

X = {v ∈ H2(Ωε)|
∫
Ωε

v = 0,
∂v

∂ν
= 0 on ∂Ωε},

Y = {v ∈ L2(Ωε)|
∫
Ωε

v = 0}.
For v ∈ X define

Sε(v) = ∆v − p0v + h0(v) − 1

|Ωε|
∫
Ωε

h0(v)

where

Sε : X → Y.

Then solving equation (1.3) is equivalent to

Sε(v) = 0, v ∈ X.

Fix P = (P1, ..., PK) ∈ Λ.

Recall that wε,P = τσ +
∑K

i=1 PVσ,i where τσ is defined after (1.2) and

σ = σ0 (see Section 2). Hence τσ = O(εN).

Consider the linearized operator

S ′
ε(wε,P) = Lε : u �→ ∆u − pσu + h′

σ(
K∑

i=1

PVσ,i)u

− 1

|Ωε|
∫
Ωε

h′
σ(

K∑
i=1

PVσ,i)u

where

Lε : X → Y.

We denote P = (P1, . . . , PK) = ((P1,1, . . . , P1,N ), . . . , (PK,1, . . . , PK,N)) and

choose the approximate kernel as

Kε,P = span

{
∂(τσ +

∑K
i=1 PVσ,i)

∂Pi,j

∣∣∣∣∣ i = 1, . . . , K, j = 1, . . . , N

}

Let πε,P denote the orthogonal projection in Y onto K⊥
ε,P with respect to the

norm of L2(Ωε). Our goal in this section is to show that the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0
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has a unique solution Φε,P such that Φε,P ∈ K⊥
ε,P ∩ X (here we mean the

orthogonal complement in X to the finite–dimensional linear subspace Kε,P

with respect to the norm of L2(Ωε)) if ε is small enough and P = (P1, ..., PK) ∈
Λ.

As a preparation the following two propositions give the invertibility of

the corresponding linearized operator.

Proposition 5.1. Let Lε,P = πε,P ◦ Lε. There exist positive constants ε, C

such that for all ε ∈ (0, ε) and P = (P1, . . . , PK) ∈ Λ

‖Lε,PΦ‖L2(Ωε) ≥ C‖Φ‖H2(Ωε) (5.1)

for all Φ ∈ K⊥
ε,P ∩ X.

Proposition 5.2. For any ε ∈ (0, ε̃) and P = (P1, . . . , PK) ∈ Λ the map

Lε,P = πε,P ◦ Lε : K⊥
ε,P ∩ X → K⊥

ε,P ∩ Y

is surjective.

Proof of Proposition 5.1. We will follow the method used in [11], [32],

[33], and [38]. Suppose that (5.1) is false. Then there exist sequences

{εk}, {Pk} = {(P k
1 , . . . , P k

K)} = {(P k
1,1, . . . , P k

1,N), . . . , (P k
K,1, . . . , P k

K,N )),

and {Φk} (k = 1, 2, . . . ) with εk > 0, Pk ∈ Λ, Φk ∈ K⊥
εk,Pk ∩ X such

that

εk → 0, (5.2)

Pk → P ∈ Λ, (5.3)

‖Lεk,PkΦk‖L2(Ωεk
) → 0, (5.4)

‖Φk‖H2(Ωεk
) = 1, k = 1, 2, . . . . (5.5)

For i = 1, 2, . . . , K, j = 1, 2, . . . , N and k = 1, 2, . . . denote

eij,k =
∂(τσ +

∑K
i=1 PVσ,i,k)

∂P k
i,j

/

∥∥∥∥∥∂(τσ +
∑K

i=1 PVσ,i,k)

∂P k
i,j

∥∥∥∥∥
L2(Ωεk

)

where

PVσ,i,k(y) = PΩ
εk,Pk

i

Vσk

(
y − P k

i

εk

)
, y ∈ Ωεk

.
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Note that

< ei1j1,k, ei2j2,k >= δi1i2δj1j2 + O(εk) as k → ∞
by the symmetry of the function V and the fact that P ∈ Λ (recall that

V ( |Pk−Pl|
ε

) ≤ ηε). Here δi1i2 is the Kronecker symbol. Furthermore, because

of (5.4),

‖Lεk
Φk‖2

L2(Ωεk
) −

K∑
i=1

N∑
j=1

(∫
Ωεk

(Lεk
Φk)eij,k

)2

→ 0 (5.6)

as k → ∞. For i = 1, 2, . . . , N we introduce new sequences {ϕi,k} by

ϕi,k (y) = χ(εky)Φk

(
y +

P k
i

εk

)
, y ∈ Ωεk,P k

i
(5.7)

where χ(z) is a smooth cut-off function such that χ(z) = 1 for |z| ≤ δ and

χ(z) = 0 for |z| > 2δ for some small δ (actually we choose δ as in (1.7)).

Extend ϕi,k to a function on RN by setting ϕi,k(y) = 0 for y ∈ RN \B2δ(0).

It follows from (5.5) and the smoothness of χ that∥∥∥∥∥ϕi,k

(
· − P k

i

εk

)∥∥∥∥∥
H2(RN )

≤ C

for all k sufficiently large. (Note that the functions χ(· + P k
i i/εk), i =

1, . . . , K and 1 − ∑K
i=1 χ(· + P k

i /εk) consitute a partition of unity in Ωε.)

The constants in the extension theorem (see [13] Lemma 6.37 and Theorem

7.25) can be chosen independent of ε whenever ε < 1. Therefore, there exists

a subsequence, again denoted by {ϕi,k} which converges weakly in H2(RN)

to a limit ϕi,∞ as k → ∞. We are now going to show that ϕi,∞ ≡ 0. As a

first step we deduce∫
RN

ϕi,∞
∂V0

∂yj

= 0, j = 1, . . . , N. (5.8)

This statement is shown as follows∫
RN

ϕi,∞(y − P k
i /εk)

∂V0

∂yj

(y) dy

= lim
k→∞

∫
RN

ϕi,k(y − P k
i )

∂V0

∂yj

(y) dy

= lim
k→∞

∫
Ωεk

,P k
i

χ(εky)Φk

(
y +

P k
i

εk

)(
K∑

i=1

∂PVσ,i,k

∂P k
i,j

(
y +

P k
i

εk

)
+

∂τσ

∂P k
i,j

)
dy
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= lim
k→∞

∫
Ωεk

(χ(εky − P k
i ) − 1)Φk(y)

(∑K
i=1 ∂PVσ,i,k

∂P k
i,j

+
∂τσ

∂P k
i,j

)
dy

= o(1).

Here we have used the facts that V0(
|x−P k

i |
ε

) and ∂PVσ,i,k/∂P k
i,j have expo-

nential decay outside Bδ(P
k
i ), ∂τσ/∂P k

i,j → 0 as k → ∞, Φk ∈ K⊥
εk,Pk , and∑K

i=1
∂PVσ,i,k

∂P k
i,j

+ ∂τσ

∂P k
i,j

∈ Kεk,Pk . This implies (5.8).

Let K0 be the kernel and cokernel of the linear operator S ′
0(V ) which is

the Fréchet derivative at V of

S0(v) = ∆v − p0v + h(v),

S0 : H2(RN) → L2(RN).

Note that

S ′
0(V )v = ∆v − p0v + h′(V )v

and

K0 = span

{
∂V

∂yj

|j = 1, . . . , N

}
.

Equation (5.8) implies that ϕi,∞ ∈ K⊥
0 . By the exponential decay of V and

by (5.4) we have after possibly taking a further subsequence that

∆ϕi,∞ − p0ϕi,∞ + h′(V )ϕi,∞ = 0,

i.e. ϕi,∞ ∈ K0. Therefore ϕi,∞ = 0.

Hence

ϕi,k ⇀ 0 weakly in H2(RN) as k → ∞ (5.9)

for i = 1, 2, . . . , K.

Furthermore, consider

ϕ0,k(y) = Φk(y) −
K∑

i=1

ϕi,k(y), , y ∈ Ωε.

Now extend Φk from Ωε to RN such that

‖Φk‖H2(RN ) ≤ C

for all k sufficiently large and define the extension of ϕ0,k by

ϕ0,k(y) = Φk(y) −
K∑

i=1

ϕi,k(y), y ∈ RN
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where ϕi,k are the extensions before (5.8).

Then obviously

‖ϕ0,k‖H2(RN ) ≤ C

and we have for a subsequence

ϕ0,k ⇀ ϕ0,∞ weakly in H2(RN) as k → ∞
where ϕ0,∞ satisfies

∆ϕ0,∞ − p0ϕ0,∞ = 0,

ϕ0,∞ ∈ H2(RN).

Therefore ϕ0,k ⇀ 0 weakly in H2(RN) as k → ∞.

Since

ϕi,k ⇀ 0 weakly in H2(RN) as k → ∞ for i = 0, 1, . . . , K

we conclude that

Φk ⇀ 0 weakly in H2(RN) as k → ∞
for the extended function Φk which was defined after (5.9). By Sobolev

embedding,

‖Φk‖L2(Ωεk
) → 0 as k → ∞.

By Cauchy Schwarz inequality,

‖h′
σ(wε,P − τσ)Φk‖L2(Ωεk

) → 0.

By (5.4) and (5.6),

‖(∆ − pσ)Φk‖L2(Ωεk
) → 0 as k → ∞.

Since ∫
Ωεk

|∇Φk|2 + pσΦ2
k =

∫
Ωεk

[(pσ − ∆)Φk]Φk

≤ C‖(∆ − pσ)Φk‖L2(Ωεk
)

we have that

‖Φk‖H1(Ωεk
) → 0 as k → ∞.

In summary:

‖∆Φk‖L2(Ωεk
) → 0 and ‖Φk‖H1(Ωεk

) → 0. (5.10)
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From (5.10) and the following elliptic regularity estimate (for a proof see

Appendix B in [38])

‖Φk‖H2(Ωεk
) ≤ C(‖∆Φk‖L2(Ωεk

) + ‖Φk‖H1(Ωεk
)) (5.11)

for Φk ∈ H2
N(Ωεk

) we deduce that

‖Φk‖H2(Ωεk
) → 0 as k → ∞.

This contradicts the assumption

‖Φk‖H2(Ωεk
) = 1

and the proof of Proposition 5.1 is completed. �

Proof of Proposition 5.2.

We define a linear operator T from L2(Ωε) to itself by

T = πε,P ◦ Lε ◦ πε,P

Its domain of definition is H2
N(Ωε)∩X. By the theory of elliptic equations and

by integration by parts it is easy to see that T is an (unbounded) self-adjoint

and hence also a closed operator. The L2 estimates of elliptic equations imply

that the range of T is closed in L2(Ωε). Then by the Closed Range Theorem

([41], page 205) we know that the range of T is the orthogonal complement

of its kernel with respect to the L2 norm. This implies Proposition 5.2.

�

We are now in a position to solve the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0. (5.12)

We first rewrite the equation

Sε(wε,P + Φε,P) = 0

and calculate

Sε(wε,P + Φε,P) =

∆(wε,P + Φε,P)− p0(wε,P + Φε,P) + h0(wε,P + Φε,P)− 1

|Ωε|
∫
Ωε

h0(wε,P + Φε,P)

= ∆Φε,P − pσΦε,P + h
′
σ(wε,P − τσ)Φε,P − 1

|Ωε|
∫
Ωε

h
′
σ(wε,P − τσ)Φε,P

+[hσ(wε,P + Φε,P − τσ) − hσ(wε,P − τσ) − h
′
σ(wε,P − τσ)Φε,P]
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− 1

|Ωε|
∫
Ωε

[hσ(wε,P + Φε,P − τσ) − hσ(wε,P − τσ) − h
′
σ(wε,P − τσ)Φε,P]

− 1

|Ωε|
∫
Ωε

hσ(
K∑

i=1

PVσ,i)

+
K∑

i=1

[∆PVσ,i − pσ(PVσ,i)] + hσ(
K∑

i=1

PVσ,i) − pστσ

= ∆Φε,P − pσΦε,P + h
′
σ(wε,P − τσ)Φε,P − 1

|Ωε|
∫
Ωε

h
′
σ(wε,P − τσ)Φε,P

+[hσ(wε,P + Φε,P − τσ) − hσ(wε,P − τσ) − h
′
σ(wε,P − τσ)Φε,P]

− 1

|Ωε|
∫
Ωε

[hσ(wε,P + Φε,P − τσ) − hσ(wε,P − τσ) − h
′
σ(wε,P − τσ)Φε,P]

+hσ(
K∑

i=1

PVσ,i) −
K∑

i=1

hσ(Vσ,i)

− 1

|Ωε|
∫
Ωε

[hσ(
K∑

i=1

PVσ,i) −
K∑

i=1

hσ(Vσ,i) − pστσ]

= LεΦε,P + N1
ε (Φε,P) + N2

ε (Φε,P) + Eε

where

LεΦε,P = ∆Φε,P − pσΦε,P + h
′
σ(wε,P − τσ)Φε,P

− 1

|Ωε|
∫
Ωε

h
′
σ(wε,P − τσ)Φε,P,

N1
ε (Φε,P) = [hσ(wε,P + Φε,P − τσ) − hσ(wε,P − τσ) − h

′
σ(wε,P − τσ)Φε,P]

N2
ε (Φε,P) = − 1

|Ωε|
∫
Ωε

[hσ(wε,P+Φε,P−τσ)−hσ(wε,P−τσ)−h
′
σ(wε,P−τσ)Φε,P],

Eε = hσ(
K∑

i=1

PVσ,i) −
K∑

i=1

hσ(Vσ,i)

− 1

|Ωε|
∫
Ωε

[hσ(
K∑

i=1

PVσ,i) −
K∑

i=1

hσ(Vσ,i)] − pστσ.

Since Lε,P : X ∩K⊥
ε,P → Y ∩K⊥

ε,P is invertible (call the inverse L−1
ε,P) we can

rewrite (5.12) as

Φ = −L−1
ε,P ◦ πε,P ◦ N1

ε (Φ)

−L−1
ε,P ◦ πε,P ◦ N2

ε (Φ) − L−1
ε,P ◦ πε,P ◦ Eε(Φ)

≡ Gε,P(Φ) (5.13)
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where the operator Gε,P is defined by the last equation for Φ ∈ X. We are

going to show that the operator Gε,P is a contraction on

Bε,δ ≡ {Φ ∈ X ∩ K⊥
ε,P|‖Φ‖H2(Ωε) < δ}

if δ is small enough.

The following error estimates are essential for the rest of the proof.

Lemma 5.3. For ε small enough, we have

‖N1
ε (Φ)‖L2(Ωε) ≤ Cδ‖Φ‖L2(Ωε) for all Φ ∈ Bε,δ, (5.14)

|N2
ε (Φ)| ≤ Cδε

N/2‖Φ‖L2(Ωε) for all Φ ∈ Bε,δ, (5.15)

‖Eε‖L2(Ωε) ≤ Ce−
√

pσ
1
ε
ϕ(P1,... ,PK) (5.16)

Proof. By the remark on page 5 we may assume that h0 together with its

first two derivatives is bounded. This implies

‖N1
ε (Φ)‖L2(Ω) ≤ Cδ‖Φ‖L2(Ω)

for Φ ∈ Bε,δ. (5.14) is proved. Furthermore, by Cauchy Schwarz inequality,

|N ε
2(Φ)| ≤ CεN

∫
Ωε

|Φ| ≤ CεN
(∫

Ωε

Φ2
)1/2 (∫

Ωε

1
)1/2

≤ CεN/2‖Φ‖L2(Ωε)

for Φ ∈ Bε,δ. (5.15) is proved.

To prove (5.16), we divide the domain into (K +1) parts: let Ω = ∪K+1
i=1 Ωi

where

Ωi = {|x − Pi| ≤ 1 − δ

2
min
k �=l

|Pk − Pl|}, i = 1, ..., K, ΩK+1 = Ω\ ∪K
i=1 Ωi.

We now estimate Eε in each domain.

In ΩK+1, we have

|Eε| ≤ C(V0,1 + ... + V0,K)2 ≤ O(e−
√

pσ
1
ε

mink,l |Pk−Pl|).

Hence

‖Eε‖L2(ΩK+1)ε) ≤ O(e−
√

pσ
1
ε
ϕ(P)).

In Ωi, i = 1, ..., K, we have

|Eε| ≤
∑
j �=i

(|h′
σ(Vσ,i)Vσ,j| + |h′

σ(Vσ,i)(PVσ,j − Vσ,j)|)
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+O(
∑
j �=i

(|PVσ,j|2 + |Vσ,j|2)) + O(|PVσ,i − Vσ,i|2).

Using Lemma 3.2 and the facts that PVσ,j and Vσ,j decay exponentially, we

obtain

‖Eε‖L2((Ωi)ε) ≤ Ce−
√

pσ
1
ε
ϕ(P1,... ,PK).

�
Thus

‖Gε,P(Φ)‖H2(Ωε) ≤ C
−1

(‖πε,P ◦ N1
ε (Φ)‖L2(Ωε)

+‖πε,P ◦ N2
ε (Φ)‖L2(Ωε) + ‖πε,P ◦ Eε‖L2(Ωε)

≤ C
−1

C(c(δ)δ + δε)

where C > 0 is independent of δ > 0, δε = e−
√

pσ
1
ε
ϕ(P) and c(δ) → 0 as

δ → 0. Similarly we show

‖Gε,P(Φ) − Gε,P(Φ′)‖H2(Ωε) ≤ C
−1

Cc(δ)‖Φ − Φ′‖H2(Ωε)

where c(δ) → 0 as δ → 0. Therefore Mε,P is a contraction on Bδ. The

existence of a fixed point Φε,P now follows from the Contraction Mapping

Principle and Φε,P is a solution of (5.13).

Because of Lemma 5.3,

‖Φε,P‖H2(Ωε) ≤ (‖πε,P ◦ N1
ε (ΦεP)‖L2(Ωε)

+‖πε,P ◦ N2
ε (Φε,P)‖L2(Ωε) + ‖πε,P ◦ Eε‖L2(Ωε)

≤ C
−1

(Cδε + c(δ)‖Φε,P‖H2(Ωε))

we have

‖Φε,P‖H2(Ωε) ≤ C(δε).

We have proved

Lemma 5.4. There exists ε > 0 such that for every (N+1)-tuple ε, P1, . . . , PK

with 0 < ε < ε and P = (P1, ..., PK) ∈ Λ there is a unique Φε,P ∈ X ∩ K⊥
ε,P

satisfying Sε(wε,P + Φε,P) ∈ Y ∩ Kε,P and

‖Φε,P‖H2(Ωε) ≤ C(e−
√

pσ
1
ε
ϕ(P)). (5.17)

The next lemma is our main estimate.
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Lemma 5.5. Let Φε,P be defined by Lemma 5.4. Then we have

Jε(wε,P + Φε,P) (5.18)

= εN

⎡
⎣KI(V ) − 1

2
(γ + o(1))

K∑
i=1

e−
1
ε
Ψε(Pi)

− ∑
k,l=1,...,K,k �=l

(γ + o(1))V (
|Pk − Pl|

ε
) + O(σ)

⎤
⎦

where γ is defined by (4.1) and the terms of order O(σ) do not explicitly

depend on P ∈ Λ.

Proof.

In fact for any P ∈ Λ, we have

ε−NJε(wε,P + Φε,P) = ε−NJε(wε,P) + gε,P(Φε,P) + O(‖Φε,P‖2
H2(Ωε))

where

gε,P(Φε,P)

=
∫
Ωε

(
K∑

i=1

∇PVσ,i∇Φε,P + p0(τσ +
K∑

i=1

PVσ,i)Φε,P (5.19)

−
∫
Ωε

h0(τσ +
K∑

i=1

PVσ,i)Φε,P

=
∫
Ωε

[
K∑

i=1

hσ(Vσ,i) + p0(τσ +
K∑

i=1

PVσ,i) − pσ

K∑
i=1

PVσ,i − h0(τσ +
K∑

i=1

PVσ,i)]Φε,P

=
∫
Ωε

[
K∑

i=1

hσ(Vσ,i) − hσ(
K∑

i=1

PVσ,i) − σ]Φε,P + O(σ)

≤ ‖
K∑

i=1

hσ(Vσ,i) − hσ(
K∑

i=1

PVσ,i)‖L2‖Φε,P‖L2(Ωε) + O(σ)

= O(e−2
√

pσ
1
ε
ϕ(P)) + O(σ)

as in the proof of Lemma 5.3.

Estimate (5.18) now follows from Lemmas 4.3 and 5.4.

�
Finally, we show that Φε,P is actually smooth in P.

Lemma 5.6. Let Φε,P be defined by Lemma 5.4. Then Φε,P ∈ C1 in P.
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Proof. Recall that Φε,P is a solution of the equation

πε,P ◦ Sε(wε,P + Φε,P) = 0 (5.20)

such that

Φε,P ∈ K⊥
ε,P. (5.21)

By definition we easily conclude that the functions PVσ,i, τσ, ∂2PVσ,i

∂Pi,j∂Pi,k
and

∂τσ/∂Pi,j are C1 in P. This implies that the projection πε,P is C1 in P.

Applying ∂/∂Pi,j to (5.20) gives

πε,P ◦ DSε(wε,P + Φε,P)

(
K∑

i=1

∂PVσ,i

∂Pi,j

+
∂τσ

∂Pi,j

+
∂Φε,P

∂Pi,j

)

+
∂πε,P

∂Pi,j

◦ Sε(wε,P + Φε,P) = 0. (5.22)

where

DSε(wε,P + Φε,P) = ∆ − p0 + h
′
0(wε,P + Φε,P)

− 1

|Ωε|
∫
Ωε

h
′
0(wε,P + Φε,P)..

We decompose
∂Φε,P

∂Pi,j
into two parts:

∂Φε,P

∂Pi,j

=

(
∂Φε,P

∂Pi,j

)
1

+

(
∂Φε,P

∂Pi,j

)
2

where
(

∂Φε,P

∂Pi,j

)
1
∈ Kε,P and

(
∂Φε,P

∂Pi,j

)
2
∈ K⊥

ε,P. We can easily show that
(

∂Φε,P

∂Pi,j

)
1

is continuous in P since∫
Ωε

Φε,P

(
∂PVσ,k

∂Pk,l

+
∂τσ

∂Pk,l

)
= 0, k = 1, ..., K, l = 1, ..., N

and∫
Ωε

∂Φε,P

∂Pi,j

(
∂PVk

∂Pk,l

+
∂τσ

∂Pk,l

)
+
∫
Ωε

Φε,P

(
∂2PVk

∂Pi,j∂Pk,l

+
∂2τσ

∂Pi,j∂Pk,l

)
= 0,

k, i = 1, ..., K, l, j = 1, ..., N.

We can write equation (5.22) as

πε,P ◦ DSε(wε,P + Φε,P)

(
(
∂Φε,P

∂Pi,j

)2

)

+πε,P ◦ DSε(wε,P + Φε,P)

(
K∑

i=1

∂PVσ,i

∂Pi,j

+ (
∂Φε,P

∂Pi,j

)1 +
∂τσ

∂Pi,j

)
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+
∂πε,P

∂Pi,j

◦ Sε(wε,P + Φε,P) = 0. (5.23)

As in the proof of Propositions 5.1 and 5.2, we can show that the operator

πε,P ◦ DSε(wε,P + Φε,P) : X ∩ K⊥
ε,P → Y ∩ K⊥

ε,P

is invertible. Then we can take the inverse of πε,P ◦ DSε(wε,P + Φε,P) in the

above equation and the inverse is continuous in P.

Since ∂PVi

∂Pi,j
, ∂τσ,i

∂Pi,j
, (

∂Φε,P

∂Pi,j
)1 ∈ Kε,P are continuous in P and so is

∂πε,P

∂Pi,j
, we

conclude that (∂Φε,P/(∂Pi,j))2 is also continuous in P. This is the same as

the C1 dependence of Φε,P in P. The proof is finished. �

6. The reduced problem: A Maximizing Procedure

In this section, we study a maximizing problem.

Fix P ∈ Λ. Let Φε,P be the solution given by Lemma 5.4. We define a

new functional

Mε(P) = Jε(wε,P + Φε,P) : Λ → R. (6.1)

We shall prove

Proposition 6.1. For ε small, the following maximizing problem

max{Mε(P) : P ∈ Λ} (6.2)

has a solution Pε ∈ Λ.

Proof. Since Jε(wε,P +Φε,P) is continuous in P, the maximizing problem has

a solution. Let Mε(P
ε) be the maximum where Pε ∈ Λ.

We claim that Pε ∈ Λ.

In fact for any P ∈ Λ, by Lemma 5.5 we have

Mε(P) = εN [KI(V0)−1

2
(γ+o(1))(

K∑
i=1

e−
1
ε
Ψε(Pi))−(γ+o(1))

∑
k �=l

V0(
|Pk − Pl|

ε
)+O(σ)]

where O(σ) is a term which does not depend on P.

Since Mε(P
ε) is the maximum, we have

1

2

K∑
i=1

e−
1
ε
ψε(P ε

i ) +
∑
k �=l

V0(
|P ε

k − P ε
l |

ε
) ≤ 1

2

K∑
i=1

e−
1
ε
ψε(Pi) +

∑
k �=l

V0(
|Pk − Pl|

ε
) + o(1)
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for any P = (P1, ..., PK) ∈ Λ. This implies that

ϕ(P ε
1 , ..., P

ε
K) ≥ max

P∈Λ
ϕ(P1, ..., PK) − δ

for any δ > 0.

So ϕ(P ε
1 , ..., P

ε
K) → maxP∈Λ ϕ(P1, ..., PK) as ε → 0. By condition (1.6), we

conclude Pε ∈ Λ. This completes the proof of Proposition 6.1.

7. Proofs of Theorem 1.1 and Corollary 1.2

In this section section, we apply results of Section 3 and Section 4 to prove

Theorem 1.1 and Corollary 1.2.

Proofs of Theorem 1.1 and Corollary 1.2. By Lemma 5.4 and Lemma 5.6,

there exists ε0 such that for ε < ε0 we have a C1 map which, to any P ∈ Λ,

associates Φε,P ∈ K⊥
ε,P such that

Sε(wε,P + Φε,P) =
∑

k=1,...,K;l=1,...,N

αkl

(
∂PVσ,k

∂Pk,l

+
∂τσ

∂Pk,l

)
(7.1)

for some constants αkl ∈ RK(N−1).

By Proposition 6.1, we have Pε ∈ Λ, achieving the maximum of the maxi-

mization problem in Proposition 6.1. Let Φε = Φε,Pε and uε = wε,Pε + Φε,Pε .

Then we have

∂

∂Pi,j

|P=PεMε(P
ε) = 0, i = 1, ..., K, j = 1, ..., N.

Hence we have∫
Ωε

[∇uε∇∂(wε,P + Φε,P)

∂Pi,j

|P=Pε + p0uε
∂(wε,P + Φε,P)

∂Pi,j

|P=Pε

−h(uε)
∂(wε,P + Φε,P)

∂Pi,j

|P=Pε ] = 0.

Since
∂PVσ,i1

∂Pi2,j

= 0 for i1 �= i2

we get ∫
Ωε

∇uε∇∂(PVσ,i + τσ + Φε,P)

∂Pi,j

|P=Pε

+p0uε
∂(PVσ,i + τσ + Φε,P)

∂Pi,j

|P=Pε − h(uε)
∂(PVσ,i + τσ + Φε,P)

∂Pi,j

|P=Pε = 0
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for i = 1, ..., K and j = 1, ..., N . Because of

wε,P + Φε,P ∈ X

we have ∫
Ωε

[wε,P + Φε,P] = 0.

Differentiating both sides, we get∫
Ωε

∂(wε,P + Φε,P)

∂Pi,j

= 0.

This implies that ∫
Ωε

Sε(uε)
∂(wε,P + Φε,P)

∂Pi,j

= 0.

Therefore we have∑
k=1,...,K;l=1,...,N

αkl

∫
Ωε

(
∂PVσ,k

∂Pk,l

+
∂τσ

∂Pk,l

)
∂(PVσ,i + τσ + Φε,P)

∂Pi,j

= 0.
(7.2)

Since Φε,P ∈ K⊥
ε,P, we have that∣∣∣∣∣

∫
Ωε

(
∂PVσ,k

∂Pk,l

+
∂τσ

∂Pk,l

)
∂Φε,P

∂Pi,j

∣∣∣∣∣ =

∣∣∣∣∣−
∫
Ωε

(
∂2PVσ,i

∂Pk,l∂Pi,j

+
∂2τσ

∂Pk,l∂Pi,j

)
Φε,P

∣∣∣∣∣
≤ ‖

(
∂2PVσ,i

∂Pk,l∂Pi,j

+
∂2τσ

∂Pk,l∂Pi,j

)
‖L2‖Φε,P‖L2

= O(σ + e−
√

p0
1
ε
φ(P)).

Note that∫
Ωε

(
∂PVσ,k

∂Pk,l

+
∂τσ

∂Pk,l

)(
∂PVσ,i

∂Pi,j

+
∂τσ

∂Pi,j

)
=

1

ε2
δikδlj(A + o(1))

where

A =
∫

RN
(
∂V

∂y1

)2 > 0.

Thus (7.2) becomes a system of homogeneous equations for αkl and the

matrix of the system is nonsingular since it is diagonally dominant. So

αkl ≡ 0, k = 1, ..., K, l = 1, ...N .

Hence uε = wε,P + Φε,P is a solution of (1.2).

By our construction, it is easy to see that ε−NJε(uε) → KI(V ) and uε has

only K local maximum points Qε
1, ..., Q

ε
K and Qε

i ∈ Λ. By the structure of

uε we see that (up to a permutation) Qε
i − P ε

i = o(1). This proves Theorem

1.1.
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Inst. H. Poincaré Anal. Non Linéaire 15, 459-492 (1998)

[39] Wei, J. and Winter, M.: Multi-Peak solutions for a wide class of singular perturba-
tion problems. J. London Math. Soc. to appear.

[40] Wei, J. and Winter, M.: On the stationary Cahn-Hilliard equation: Interior spike
solutions. J. Diff. Eqns. 148, 231-267 (1998)

[41] Yosida, K.: Functional Analysis. (Grundlehren Math. Wiss., Bd. 123) Berlin Hei-
delberg New York: Springer 1978 (fifth ed.)



CAHN-HILLIARD EQUATION 41

[42] Zeidler, E.: Nonlinear Functional Analysis and its Applications I, Fixed-Point The-
orems. Berlin Heidelberg New York: Springer 1986

Department of Mathematics, The Chinese University of Hong Kong, Shatin,

Hong Kong

Mathematisches Institut A, Universität Stuttgart, Pfaffenwaldring 57,

D-70569 Stuttgart, Germany


