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MULTI-INTERIOR-SPIKE SOLUTIONS FOR THE
CAHN-HILLIARD EQUATION WITH ARBITRARILY
MANY PEAKS

JUNCHENG WEI AND MATTHIAS WINTER

ABSTRACT. We study the Cahn-Hilliard equation in a bounded smooth
domain without any symmetry assumptions. We prove that for any fixed
positive integer K there exist interior K—spike solutions whose peaks have
maximal possible distance from the boundary and from one another. This
implies that for any bounded and smooth domain there exist interior K—
peak solutions.

The central ingredient of our analysis is the novel derivation and ex-
ploitation of a reduction of the energy to finite dimensions (Lemma 5.5)
with variables which are closely related to the location of the peaks. We
do not assume nondegeneracy of the points of maximal distance to the
boundary but can do with a global condition instead which in many cases
is weaker.
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1. INTRODUCTION

The Cahn-Hilliard equation [7] was originally derived from the Helmholtz

free energy of an isotropic two-component solid and can be written as follows:
1
B(u) = [ [F(u(x)) + 3¢ Vu(a)dz.

Here Q) is the region occupied by the body, u(z) is a conserved order pa-
rameter typically representing the concentration of one of the components;
F(u) is the free energy density of a corresponding homogeneous solid which
has a double well structure at low temperatures (the most common example
is F(u) = (1 —u?)?). The constant € is proportional to the range of inter-
molecular forces and the gradient term is a contribution to the free energy
describing spatial fluctuations.

We assume conservation of mass, i.e. there exists m with 0 < m < 1
such that m = ﬁ Joudz. Therefore, a stationary solution of E(u) under

_ 1 :
m= i Jo udx satisfies

eAu — f(u) = A in Q,
Gu— on 012, (1.1)
Jou=m|Q|

where f(u) = F'(u) and A is a constant.

In this paper we are concerned with solutions of (1.1) with spike layers.
The one dimensional case was studied by Novick-Cohen and Segal [31], Bates
and Fife [5], Grinfeld and Novick-Cohen [14],[15].

In [38] we constructed a boundary-spike-layer solution to (1.1) for € <<
1 in the higher dimensional case when m is in the metastable region, i.e.
f'(m) > 0. The spike is located near a nondegenerate critical point of the
mean curvature of the boundary.

In [39] we constructed a multi-spike-layer solution to (1.1) where the
spikes are each located near (different) nondegenerate critical points of the
mean curvature of the boundary.

In [40] we constructed an interior—spike—layer solution to (1.1). The spike
concentrates, as € — 0 at a “nondegenerate peak point” (see [40] for the
definition).
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In this paper we continue our work along this line by constructing multi—
interior—spike—layer solutions.

The existence of spike layer solutions as well as the location and the profile
of the peaks for other problems arising in various models such as chemotaxis,
pattern formation, chemical reactor theory, etc. have been studied by Lin,
Ni, Pan, and Takagi [20, 26, 27, 28] for the Neumann problem and by Ni and
Wei [30] for the Dirichlet problem. However, they do not have the volume
constraint and the nonlinearity is simpler than here.

Naturally these stationary solutions are essential for the understanding of
the global dynamics of the corresponding evolution process. While Bates and
Fife [5] prove some results in this direction for the one dimensional case these
questions are open for higher dimensions. After this work was completed we
became aware of the preprint [6] which contains results similar to ours but
using a dynamical systems approach.

Other important features of the Cahn-Hilliard equation with physical rel-
evance are spinodal decomposition and pattern formation. In this respect
see the recent work of Kielhéfer [18] and Maier-Paape and Wanner [23], [24].

From now on, we always assume that m is in the metastable region, i.e.
f'(m) > 0.

Before stating our main result we first make the following transformations.

For o small enough let 7, be the unique solution of

fm—=1,)—f(m)—0=0 (1.2)

which lies near zero. Obviously
o

- f'(m)
With this notation we further define

9o(v) = f(m =71, —v) — f(m) — 0o
= —Po¥ + hy(v)

T, = + O(c?) as 0 — 0.

where

vV=m— T, — U,

Po = f/<m - TU)7
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By the choice of h,

as v — 0. Note that in particular

go(v) = f(m —v) = f(m)

= —pov + ho(v)
where
v=m —u,
Po = f,(m)7

ho(v) = f(m —v) = f(m) + f(m)v.
Then equation (1.1) becomes

{EQAU — pov + ho(v) — ﬁ Joho(v) =0 in £,

%:0 on 0f).

(1.3)

To accommodate more general nonlinearities we assume that for all o > 0

which are sufficiently small
(gl) ho € C*(R™) and hy satisfies
ho(v) = O(Jv]™), h(v) = O(Ju[= ) as [v] — oc

for some 1 < py,py < (M)+ where (M)Jr =00 if N < 4 and

N—4 N—4
(%)Jr = % if N > 4. Furthermore, there exists 1 < p3 <
N-+4
(m)+ such that

, , CloPat if py > 2
(v + ¢) = ho(v)] < { C(lg| + |o[r*~") if ps < 2.

(g2) For o small enough the equation

AV, +gs(V,) =0 in RN,
Vcr > 07 VO’(O) - ?é%}é VO'(Z>7 (14)
Vo, —0 at oo

has a unique solution V,(y) (by the results of [12], V, is radially
symmetric, i.e., V, = V,(r) and V, < 0 for r = |y| # 0). Further, V,

is nondegenerate, namely the operator

L:=A+g,(V,) (1.5)
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is invertible in the space H2(RY) := {u =u(|y|) € HQ(RN)}.

The assumptions (gl) and (g2) allow g to be an unbounded real function.
Since the solutions v, which are given by Theorem 1.1 are bounded uniformly
with respect to €, satisfying Dy < v, < vy with D; < 0 < Dy and Dy, Do
independent of €, we can assume without loss of generality that in addition
ho and its first two derivatives are bounded. (By changing hg on R\ [D;, D5
this can be achieved and the bounded solution of the new equation (1.3) still
exists.) For the rest of the paper we assume that hg is bounded.

In what follows, we state precisely our assumptions on the domain.

For any P = (P, ..., Px) € QF = OxQx...xQ, we introduce the following
function

. 1
(P, Py, ..., Pk) = i,k,l:Ilr}.lflK;kgél(d(Pi’ 00), §|P;c — B)).

We assume that there is an open subset A of Q% which satisfies

max Py, ..., Pg)> max Py, ..., Pg). 1.6
(Proes PK)EK%D( : ) (Pr,es PK)eaA(p( ! ) (1.6)

We emphasize that such a set A always exists . For example, we can take
A = QF. We also observe that any such A can be modified so that for all
P = (P,..., Px) € A we have

~min_d(P;,00) >0 >0, min  |P,—P|>25>0
i=1,...K kl=1,.... Kkl
(1.7)
for some sufficiently small § > 0.
Next we discuss some other examples of A for some special domains.
If d(P,092) has K strict local maximum points P, ..., P in § such that
K d(P;,00), we can choose A such that (1.6)

.....

.....

2 = Bg(0) and K = 2, one can take P, = (R/2,0,...,0), P, = (—R/2,...,0)
and A = {(X,,X2) : R/2—0 < |Xi| < R/2+6,i =1,2,|X; — Xa| > 6} with
¢ small. Then (1.6) holds and max p p,cz @(Pr, P2) = R/2 is achieved at
P = (P, P).

Our main result can be stated as follows.
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Theorem 1.1. Assume that condition (1.6) holds. Let g satisfy assump-
tions (g1)-(92).  Then for € sufficiently small problem (1.3) has a so-

lution v. which possesses exactly K local mazimum points QY,...,Q% and
Q= (Qf, ..., Q%) € A. Moreover, p(Q°) — maxp_z ¢(P) as e — 0.

More details about the asymptotic behavior of v, can be found in the proof
of Theorem 1.1.

By taking A = Q¥ we have the following interesting corollary.

Corollary 1.2. For any smooth and bounded domain and any fixed positive
integer K € Z, there always exists an interior K-peaked solution of (1.3) if

€ 1s small enough.

Remark 1.3. It can be shown that the mazimum of (P, ..., Pg) in QX is
attained at some point (Q1, ..., Q) with d(Q;, 0) = max (P, ..., Px) for
some i. In other words, the distance between each pair of different Qs is
always larger than or equal to twice the smallest d(Q;,02). (Otherwise the
points Q; can be moved in such a way that ¢ is increased.)

If we connect the mazimum point of (P, ..., Px) with the ball packing
problem and call the set of the centers of K balls packed in 2 with the largest
manimal radius a K packing center, then the K interior peaks of the above

solution converge to a K packing center.

Remark 1.4. The question of existence of spike layer solutions such that the
peaks converge to a given K packing center is open if the K packing center is
(locally) non-unique. For example if Q is constructed by connecting By(0,0)
by a thin tube to B,/ 5 5(4,0) \ Bs(3 — 2/v/3 + 6,0) and smoothening
the corners. Then, with K = 3, ¢ is mazimized by having P, = (0,0)
and Py, P3 suitably in the second disk and the choice of Py and Pz is non-
unique. We conjecture that the only set of points which can be the limit
of interior 3 peaks solutions are P, = (0,0), Py = (4,1/2 + 1/v/3 —6/2),
Py = (4,-1/2 —1/v/3 +6/2). We believe that our method can be refined to
cover also such highly degenerate situations. The conditions in [6] also do

not include this case.



CAHN-HILLIARD EQUATION 7

To introduce the most important ideas of the proof of Theorem 1.1, we
need to give some necessary notations and definitions first.
For our approach it is essential to note that v is a solution of (1.3) if and

only if v is a critical point of the constrained functional

L@—iéWW+?L*—AM@

H@pifm@M&veX:gwuﬂmnAv:m.

It is important to note that in the defintion of X we require that

/v:0
Q

Recall on the other hand that for solutions of (1.3) this constraint does not

where

have to be assumed a priori but follows automatically if the solutions are in
{ve H*Q): 2 =0 at 9Q}.

The key to our construction is finding good approximating functions for
the solutions. Our approach is by using a projection technique to obtain
appropriate functions in the space X.

We have to study solutions in all of R first. Suppose that the function
g, which was defined after (1.2) satisfies the conditions in (g2). As in (g2)
let V,, be the unique solution of the problem

AV, +g9,(V,) =0 in RN,
VO’ > 07 VO’(O) = gé%}g VO’(Z>7 (18)
Vo, —0 atoo

where g, is defined after (1.2). It is known (see [12]) that V, is radially

symmetric, decreasing and

lim Vo(y)e\/lmy”y]% =c, > 0.
ly[—o0
: oV .
Furthermore, we know from [40] that for o sufficiently small B exists and
o
is continuous with respect to o. It satisfies

oV,
Jo

A )#ﬂm—n—%% oo 1)-1:0 (19)

0o f'(m)
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For P € Qlet Q. p := {yley + P € Q} and Q. := {y|ey € Q}. Let U be
any bounded smooth domain. We define a function u = Py V, as the unique

solution of

{Au — pott + hy(V,) =0in U, (1.10)

%:OonaU.

Fix K € N and choose P = (Py,... , Px) € A. We take oy such that

K — B
/ (Tgo + Z Po, p Vo (x)) dr = 0.
@ i=1 ' €

We will shall show in Section 2 that o exists and is unique provided e is
small enough. We shall see that this choice of oy is essential in dealing with
the nonlocal integral term in (1.3).

We set

P;
)7 PVUJ(Z/) = PQE,PZ-VUQ/ - 7>7 y e Qea

P
PEVU’7;<1’) = PQe,P,L-VU (:E ) , RS Q,

€

K
Wep = To, + Z PV, ..
i=1
We shall use w, p as our approximate solution. Further, denote
8(7'00 + Zzlil PVUo,i)
OP; ;

(Note: Our definition of Py, ,, is equivalent to the following: Let v be the

Kep = span { . i=1,..,K, j=1, N}

unique solution of the boundary value problem

{ 2 Av — pov + hy (V,(22)) = 0 in €,

% =0 on 0N (1.11)

(this is a problem on the domain € which is independent of of P;). Then it

is easy to see that
Pa, Vo(y) =v(ey + P,) for y € Qc p,.

Ao +5° K PV, ) .
Hence 270 %ﬁ? o) i well-defined.)
2V}

We will show that K, p is an appropriate approximation to the kernel and

cokernel, respectively, of the operator obtained from linearizing (1.3) at w,p.

Precise statements will be given in Propositions 5.1 and 5.2.
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Then we solve for ®.p such that

/ (Wep +Pep)¥ =0 forall ¥ek.p,

€

A<we,P + (I)E,P) - pO(we,P + (I)E,P> + h'(] (we,P + q)e,P)
1
—— ho(w, d . p)dy € Kep,
|Qe‘ A}E O(w 7P+ 7P) Yy P

0
%(w@p +®.p)=0 on 00,

using the Liapunov-Schmidt reduction method. Note that we obtain a family

of “solutions” ®.p depending on P € A. We will also write
Ve = We, P + (DE,P-

The method evolves from that of [11], [32] and [33] on the semi-classical (i.e.
for small parameter h) solution of the nonlinear Schrédinger equation

2

];AU—(V—E)U+UP—O (1.12)
in RN where V is a potential function and E is a real constant. The method
of Liapunov-Schmidt reduction was used in [11], [32] and [33] to construct
solutions of (1.12) close to nondegenerate critical points of V for h sufficiently
small. Note that in the present paper we do not assume nondegeneracy of
the points of maximal distance to the boundary but can do with the global
condition (1.6) instead which in many cases is weaker. For example if we take
Q = By1(0,0)UBg2(0,0)U[0, K+2] x [—1, 1] then our method gives existence
of K spike solutions whose peaks all approach the line [0, K +2] x {0}. This
case is not covered by the conditions in [6].

Then we show that ®.p is C' in the variable P. After that, we define a

novel functional
M.(P) = J(wep + Pep). (1.13)

This says that we have also reduced the “energy” to finite dimensions. A
large part of the paper is devoted to deriving an explicit expansion including
error estimates for M (P). This is a new result and it should be fundamental
to a better understanding of qualitative and quantitative properties of the
Cahn-Hilliard equation. It is a conceptual progress if not also a technial sim-

plification compared with [6] where similar results are obtained by dynamical
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system /invariant manifold methods. We believe that it is more appropriate
to derive static solutions by energy methods which are more static in nature
than by dynamical system methods. We would like to mention that for all
locations of K spike points considered in [6] our method also works by solving
the finite-dimensional optimization problem on the union of suitable small
balls around each of these spike points. On the other hand, the method in
[6] can give more precise information about the location of the spikes.

We are convinced that our approach will help to shed more light on the
problem of location the peaks of K spike solutions in particular in situations
where the non-degeneracy is very weak. There are interesting open problems
in this direction. See Remark 1.4.

We maximize M,(P) over A. Condition (1.6) ensures that M,(P) attains
its maximum in A. We show that the resulting solution has the properties
of Theorem 1.1.

Throughout this paper, unless otherwise stated, the letter C' will always
denote various generic constants which are independent of ¢, for € sufficiently

small; 6 > 0 is a very small number; o(1) means |o(1)] — 0 as € — 0.

For the construction of boundary spike solutions, we just need an algebraic
order estimate. Here for the interior peak case, the nonlocal term [, h(ve)
is of algebraic order €V, but the term that really determines the location
of interior spikes is exponentially small. We use the method of viscosity
solutions as introduced in [22] to estimate exponentially small terms.

The paper is organized as follows. In Section 2 we show how to choose
9. In Section 3 we show some properties of the function Pqo_,V,. In Section
4 we derive some key energy estimates which will be important to derive
an explicit expansion including error estimates for M (P). In Section 5 we
first determine the function v, by the Liapunov-Schmidt reduction method.
Then we Then we derive an expansion for M,(P), i.e., we reduce the energy
to finite dimensions. After that show that ®.p is C'! in P. Finally, in Section
6, we prove that the maximizing problem has a solution P¢ € A and that
we pe + P pe is indeed a solution of (1.3) which satisfies all the properties of
Theorem 1.1.



CAHN-HILLIARD EQUATION 11

Acknowledgement. This research is supported by Stiftung Volkswa-
genwerk (RiP program at Mathematisches Forschungsinstitut Oberwolfach).
We would like to thank everyone at the institute for offering their kind hospi-
tality and providing an excellent research environment during our stay. The
research of the first author is supported by an Earmarked Grant from RGC
of Hong Kong. We thank the referee for carefully reading the manuscript,
providing us with many helpful comments and suggesting an example similar

to the one in Remark 1.4.

2. CHOOSING o

In this section we choose o appropriately. Let PV, ; be defined as after
(1.10). We now choose o¢(¢, P) such that

K
/Q(TUO +Y PV,,;)dz = 0. (2.1)
=1

We will see in Section 4 that this choice of oy is essential to get good estimates
for the nonlocal terms in (1.3). We calculate (for o = gy(¢, P))
K
1

K
Po, .V, dy = / ho(V,
;~/QF,PZ- e Y ;pa Qe p; ( )

_ L [K/I%Nh,,(vo)—fj/gciha(%)] :

Po
This implies

Setting
g1 (U) —PoTo,
92(0) =K [hU(VU) - hO(VO)]a
RN
and
N K
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we can rewrite (2.2) as

EN

910 = g7 (K [ 1o0V0) + 02(0)) — gs(o: P). (2.3

From now on we will frequently write ¢ instead of gg, h instead of hy and
V instead Vj thus dropping the index 0 if this can be done without causing
confusion.

It is easy to show that
gi(0) =0 +0(0%),  gi(0)=1+0(0)  asag—0,
g1 € CY([0,5]) for some ¢ > 0 small,

92(0) = O(0), g5(0) = O(1) ~ aso —0,

g2 € C'([0,5]) for some ¢ > 0 small,
|g3(0 P |Q| Z/QC 0' O’
< xS (Jy= 2 exp (— /oo lyl))
£ < .
Q0 wizpese

N reo
= C’K|€Q|/ Nt exp(—2y/por)rN Tt dr
=D/e

N1 <_2\/p_UD€>
1 Vb :
eN 2./PoD:
<C’K—exp _ 2P (2.4)
jo €
Kk d(P;,00) since

— By ( m|x—P|>

where D, = min;_;

geee

Voi(2)] <

For e small let oy(€) be a solution of

6N

9:0) = g (K [ ho(V0) + 02(0)).

Note that this equation is the same as (2.3) with the term gs(o, P) dropped.

exp
€

Then by the Implicit Function Theorem

N
o1(e) = |EQ|K/RN ho(Vo) + O(e2Y)  as e —0
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and oy (¢€) is unique if € is small enough and it is independent of P. For the
solution oy (€, P) of (2.3) we make the ansatz oy(e, P) = o1(€) +n(e, P). Then

because of (2.4) the Implicit Function Theorem implies

2(eP) = Olgs(o,P)) = O (eN exp (—W_”Dﬁ)) |

€

Since |py, — po| = O(0) we have proved

o0(e.P) = o1(e) + O (EN exp (Jﬂ%De))

€

and og(e, P) is unique if € is small enough for all P € A.

3. PROJECTION OF V,

In this section, we study properties of the function V,, introduced in Section
2. In particular, we consider the “projection” Py_, of V, in Hy(f2) onto
the linear subspace of H'() of functions satisfying the Neumann boundary
condition and prove some estimates.

Recall that for P € € we defined Pq_,V, as the unique solution of

Av — pev + he(V,) =0 in Q. p, (3.1)
g—z =0on J p '
where p,, h, are as defined in the introduction. Recall that
Qep:={yley+ P € Q},
Qe = {yley € Q},
|z — P
(IDE,P<:C> :Va( . ) _PQE’PVO'(y)7 ey+P:x.
Then ¢, p(z) satisfies
eEAv—p,v=0 inQ
’ 3.2
{gg = 2V, (=2l on 0Q. (32)



14 JUNCHENG WEI AND MATTHIAS WINTER

It is immediately seen that on 0f2
J_, |v— P 1_,|le—Pl. <x—Pv>
i — 7‘/1 9
v ( € ) € o € ) |z — P|
N-1 _ /Polz—P| <zx—Pv>

1 _(N— No1

N-3 _\Pole=P| <r—Pv>
= —€ 2 e € ,/pU(CU‘FO(G))‘x_PVV;l

for some ¢, > 0.
To analyze Po,_,V,, we introduce another linear problem. Let ngi PVU be

the unique solution of

{€2AU — poV + ho(Vy) =0 in Q,

v=20 on 0S.
Set
vip = Vo — Py Vo, 0lp(x) = —clog p7p(x).
Note that ¢, p, gpgp and @ZJ?P depend on o. Then v = gp satisfies

eAv— Vo2 +p, =0 inQ,
v = —elog(Vg(lx_EPI)) on OS).

Note that for € 992

w&uaz—d%(<

|z — P|,_~x-1 _ Vpslo—PI

ke e<%+0@ﬂ

€
|z — P|

:\/p_o|ac—P’+N2_1€10g( ) +0(e)
= \/bolz — P| + Nz_lelog('x_P'HO(aHO(e)

since p, = po + O(o). The proof of Lemma 3.1 is based on this estimate.

For the rest of this section we assume that o = oy.

D

0
Lemma 3.1. (1) aZP = (v, + 0(1))

uniformly on 0%,
(2) Pp(e) — 0P(x) = inf Vh(lz — ol + |z~ Pl ase 0
for all P € Q uniformly in Q. In particular, YP(P) = 2y/D,d(P,09).

<zr—Pv>
|z — P

for all P € Q

Note that 1§ is a viscosity solution of the Hamilton-Jacobi equation
|Vu| = /po in Q (see [22]).
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Proof. (1) Corollary 3.4 and Section 5 in [10] prove that

vy OUgp
g~ 10O,

For € 02 and v(x) its exterior unit normal vector consider the points
x 4+ Av(x) with A small. The condition for z € 92 to be a critical point of

(lr = Av(z) = 2| + |z = PJ)

uniformly on 0.

1s
<xx(x)—-Pr1i(z) > <z—Pri2)>

|z + Av(z) — P |z — P|

where 71(x),... ,7y_1(z),v(z) is an orthonormal system of N — 1 tangent

vectors and the exterior normal vector at x € 0€). The sign in the last
equation depends on the location of P. It is easy to see that for A small
enough z in the unique point on 92 for which ¢£p($+)\v) = inf.caq v/Po(|z—
(x + A\v)| + |z — PJ) is attained. This implies that for a critical point z

(lv = Av(x) — 2|+ |2 = P|) = (Jx + \v(z) — 2| + |2 — P|)
= |z £ \v(z) — P|

Jj=1

N 1/2
— (Z <zt (z)— P1i(2) >* + <2+ \v(z) — Pv(2) >2)

N_1 1/2
= (Z <z—Pri(z) >+ <x—Puv(r)>*+2A <z — Pv(r) > +O(>\2))
j=1

x— Pv(r) >

<
= |z —P|+ A

+ O\ as A —0.

(Note that
|z £ Av(x) — z| = O(N),
<7i(z),75(2) >=14+0(N), j=1,...,N—1,
<v(z),v(z) >=1+0(N),
<7i(x),7(2) >=0\), ,j=1,...,N—=1,1#7,
<7j(x),v(z) >=0(\), j=1,...,N—1))

This implies
v (4 (@) = Vpo(lz — Pl +

<x—Puv(x)>

Py A) + O(N%)
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and 5
8¢0 P < T — P, v >
gy @)= VR
(2) see Lemma 4.4 in [30]. O

Let us now compare @, p(z) and p”p(z). To this end, we introduce another
function. Let U, be the solution of the problem
{EQAUE — p,U. = 0in Q,
U, =1 on 01.
Set
U, = —clog(U,).
Then by Lemma 4.1 of [10], we have

U (x) = \/pod(z,00) + O(e) in €,

a;lj () = —\/po + O(€) on 0N

This implies

d(ac a9)

|Uc(z)| < Ce VP in Q (3.3)
and
%x:@—kOl as e — 0 at 0. 3.4
v
€
Moreover, for any 6y > 0 we have
Ue(ey + P) < Qv+l (3.5)

Uc(P)
for € sufficiently small.
This leads to the following

Lemma 3.2. There exist ng, 6y > 0,9 > 0 such that for € < €y, we have
(1 + moe)plp — Ce™ FEMMAPIY o

VPo
—(1 — noe)plp + Cle™ " HHendPan

Proof. We first assume that € is strictly starlike with respect to P. Namely,

there is a constant ¢y > 0 such that

(x — Pv(x)) >co >0



CAHN-HILLIARD EQUATION 17

for all z € 02. Then on 0f), we have

OSOEP o _vep® 1)87/’513(37)
o ¢ € ov
1 oyYP
_ _7‘/0 we,P<x>
€ ov
1 <r—Pv>
= Vo /P (1 +0(€) ——————=—
VeV 0)
a@e P
=—(1+0 —.
(1+0(e) 2=
D
Since €2 is strictly starlike with respect to P, we have 8?—;” < 0. The following

are standard facts from elliptic partial differential equations: Assume that
for any v € H?(2) N H'(99) and

Av —p,v =0,

v
ov
Then v > 0 in Q (“positivity”). Furthermore, the solution depends linearly

< 0.

on its Neumann boundary condition (“linearity”). An analogous result holds
for the corresponding Dirichlet problem. Using positivity and linearity we
get

—(1+m0€)lp < ep < —(1 = m0e)¢Lp.

Now we consider any bounded smooth domain €2 thus dropping the strictly
starlike condition.

We can choose a constant R = (14 2d¢)d(P, 0f2) for some dy > 0 such that
Q0 := Bgr(P) N Q is strictly starlike with respect to P, i.e.

(rt — Pv(x)) > o >0, x€d.
Then on 0€2; N 02 =T'1, we have

030£p
ov

a<;De,P
ov

= —(1+0(0))

as above.

Now we construct functions @, p and ”, which are close to . p and p”p,

z—P
€

respectively. We define V, ( ) =V, (#) Xs,(z) where yg, is a smooth
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(cutoff) function such that xs,(z) = 1 for & € Bypaa)+s,(P) and x5,(z) =0
for x € RN \ Bypaq)+26,(P). As above we define

N ~ (x—P ~ (x—P

¢67P<x> = Va’ ( ) - PQC’pVO' < ) )

€ €

. ~ (x—P ~ (x—P
Pople) = Vo () = PRLVs (T)).

€ €

It is immediately seen that

Vo = Vo ll(on) < C exp (=/po/e(1 + d0)d(P,0%)),
ov, avV,

1
| o oy || Lo (902) < CE exp (—/Do /(1 + 80)d(P,09)) .

Using positivity and linearity for the Dirichlet and Neumann problems, re-

spectively, and (3.4) we get
(Gep — el < Cexp (= /po/e(1+ do)d(P, 00)) U,
|¢76,P - Qoe,P| < Cexp (_\/E/6<1 + 50)d(P7 89)) Ue

a.e. in 2.
Combining this with the result for €2 stricty starlike with respect to P we
conclude the proof of Lemma 3.2.
O
By Lemma 3.2 we have that

U (P) := —€log (—¢ep(P)) — 2\/pod(P,00Q) as € — 0

since
SOE,P(P) — (_1 +O(€>)¢£P(P> +O(€*\/E/E(1+50)d(P,8Q)>.
Let .
Vor(y) = — - el
PW) = oy werl®)

where x = ey + P.
Then V, p(0) = 1 (hence V. p(y) > 0). Furthermore, we have

Lemma 3.3. For every sequence ¢, — 0, there is a subsequence €y — 0

such that under the assumption o = oo(€), Ve,.p — V uniformly on every

compact set of RN where V is a positive solution of
{ Au—pou=0 in RV,

u>0 in RN and u(0) = 1. (3.6)
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Moreover for any ¢; > 0, sup e~ (VPorenll
2€Q00¢;,,P

Veop(2) — V‘ — 0 as e — 0.

Proof. Assume that o = oy(€). By Lemma 3.2, we have

_ 1
V; Yy)l = Ve — PQ€ Vo) ——+
Vo] = (Ve = Po, Vo)
D
< C%,P(P) L 1 6_@(1%0)(1(13,89)&
= pep(P) @e,p(P)

LEE(H00)APIV T ( by Lemnma 4.6 in [30] )

< CevPr Ul 4 QU (2)/U(P)  (since U (P) < Ce™ e 4(P09)
< CevPo (o)l

< C’e\/ﬁ(l—l—&)ﬂy\ +Ce”

By a local compactness argument, we have that lim. .o V,,,p = V and V
satisfies (3.6). Furthermore, the exponential decay estimate at the end of
Lemma 3.3 follows immediately from this argument.

g

4. KEY ENERGY ESTIMATES

In this section, we derive some key energy estimates. We first state some

useful lemmas about the interactions of two V’s.

Lemma 4.1. Let f € C(RY) N L>®(RY),g € C(RY) be radially symmetric
and satisfy for some o > 0,8 > 0,7 € R

(@) exp(afa])]z|” — 70 as 2] — oo

/. lg@) explalz])(1 + [z}") da < oo,
Then

explalyDlyl” [ oo +y)f()dz =0 [ g(w) exp(—az1) du as ly| - oc.

For the proof, see [4].
We then have the following estimates. Recall that V,; was defined in the

introduction.

Lemma 4.2. m Jry R(Vo1)Vo2 — v > 0 as € — 0 where
o(——=

7= [ hValy)e P dy. (4.1
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The next lemma is the key result in this section.

Lemma 4.3. For any P = (Py,... ,Px) € A and € sufficiently small

Tio + 30 PVis) = IKI() — (3 + (1) 3 ()

i=1 i=1

|Fi — P

—(v+ o Z Vo(———) + O(0)] (4.2)
7,l 1,5l
where 0 = og(€), 7y is defined by (4.1)
1) = [Vl + 2 [ il = [ H),

with H(t) = [5 ho(s)ds and O(J) is to be understood as a term which is
independent of P € A.

Proof.

We shall prove the cases when K = 1 and K = 2. The other cases are
similar. Throughout the proof we assume that o = og(e).

We begin with the case K = 1. Recall that Po_,V, satisfies

APy, Vo = poPo, Vs + ho(Vy) =0 in Qp.
Hence
62/9|VPQE,PVU\2+p0/Q|TO+PQ€7PVO|2
=& [IVPa Vol + 0 [ [PVl = por?l€]
(by the definition of o)
_ N /Q holVo)Po Vi € (po - pg)/ﬂ P, 2 Val? = por2|€1).

e, P

On the other hand, we note that

Hr+u) = | T ho(t) dt = H(r,) + [ hott + 7. at
= H(7,) —i—/ou[po(t—l—ﬂ,) + 0+ hy(t) — pot]

1
= H(7,) + H,(u) + (po —po)§u2
+(poT, + 0)u
where H,(u) = [ ho(t)dt
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Hence we have

| 7o+ Po Vi)

1
= Hm)IQl+ e [ HoPo V) + 50— p)e [ [Po Vil
e, P

e, P

+(p07_0+0-)/ Pﬁepvcr
Qe,P '

1
— H(7,)|) + eN/ H,(Po, Vo) + = (po — pg)GN/ Po, Vi ?
Qe,p 2 QE,P

_(pUTo + O-)TO"Q"

Now we combine and calculate

JG(TJ + PQ&PVJ)

1
_ eN/Q She (Vo) Pa, Vo = H(7,)|0 - eN/ H,(Po, V)
e, P

e, P

1
+07|Q + Spo7s |2
1
= EN/ [*hU(VU)PQSPVJ - H0<PQE pVU)]
QE,P 2 ' ’
1
+(075 — H(To))|Q| + §p07§|9|

1
= [ [5helVo)Pa oV = Ho(Po, Vo) + O(c?)
e, P

where the “O(c)”~terms do not depend on P explicitly. Note that by Lemma

3.1 and similar arguments as in the proof of Lemma 5.1 of [30] we have

N / ho(V,)Po, Vs
QE,P '

= [ b (Voo t & [ (Voo Ve = Vi
Qe,P Q ‘

e, P

=N [ /. (V)Y + O(0) + o(%pua))] ~N g p(P) [ [ ho(V)Ver + 0(@]

e, P

=N [/RN ho(Vo)Vo — @e.p(P)y + O(o) + o(goﬁp(P)} (4.3)
where O(o) is independent of P € A and

= [ eV = [ ho(Vo)en
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for any solution V of (3.6) (see Lemma 4.7 in [30]) where it is also shown
that v is independent of the choice of the solution V of (3.6). Recall that
1
T
SDE,P(P)
where x = ey + P as defined before Lemma 3.3.

‘Z,P(?J)

For the last estimate note that because of the exponential decay of V,, (see
the equation before (1.9) ) we have

0
%/RN hO'(VO')VO'
oV,

= [ Va)Va 4 o (V) 5

b L= - (<) <1

P m = 1) Vo)

(e

Because of

<C

oV,
oo

this implies

0
%/RN hU(VO'>VO' 0:

U (m - V) (—1> 1 m by <o

Po

<C [ {H(Vo)Vo+ho(Vo)

Similarly, we have
| Ho(Po, Vo) = [ HV) + (v + 0(1)en(P) + O(0)

where O(o) is independent of P € .

Combining all together we obtain

1
Je(To+PQePVU) :€N(7/ |TU+PQEPVU|2
’ 2 Jo P '

€

Po
VP, V242 /
P | Qe,P | + 2 Q

€,

—/ H(ry + Py V)
Qe,P '

=" I(V) + ;GN%,P(P) [y + o(1)] + ¥ (O(0) + 0@, p(P))).

This proves Lemma 4.3 for K = 1. Now we consider K = 2.
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Similarly, as before we have

e NI (Ty + PVy1 + PV,5)

1
= [ SV PVort PVt PV PVl = [ Ho(PVr 4 PVy0)
e, P

QG,P

|Py — Py

+0(0) + 0(pe.p, (P1) + @e.p, (FP2) + Voo ))-

By Lemmas 4.1 and 4.2 we have
|P1 — Py

€

[ o (Vat) PV = €3+ 0(1)) Vo )

+0(per () + O(0).

[P — P,

AhAP%ﬂP%g=]W7+dUWM )

—i—eNO(Z @ep(F;) +0(0)

=1
where O(o) is independent of Py, P, € Q. Let § > 0 be a sufficiently small

number. We then have

/ HJ(PVJJ —|—PVU72) :/Q HU(PVa,l ‘l’PVU,Q)
Q 1

—+ o HU(PVg,l +PVO—,2) + o HU(PVUJ +PVU72)
2 3

=L+5L+1;

where I;,7 = 1,2, 3 are defined by the last equation and
1-96 1—-96
i ={lz - Pl s ——|h - R} ={lz - Rl < ——|P - B},

Qs = Q\(Q U Q).

We also set

For I3, we have

I S/ (%714_%’2)2:O(e—\/;TO2§|P1—P2\)'
Q3
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For I;, we have (reasoning as for K =1 above)

I = / H,(PV,, + PV,»)

Q1
ZEN[/RN H (Vo) + 70 n (P +/ 0o(Vo)Vor
OV 4 oS (P)) + (o)
=1
Similarly,
I, ZEN[/R H(V) 4+ 70, (P2) +/ 0o(Vo,2)Voa
FO( IR 4 oS (P)) + O(0)]
=1
Hence

2
e N1, + Y. PV,;) =21(Vp) +

1
5(r+o(1) Zgoep P)+ | ho(Voa)PVos
i=1 3

= [ ho(Voa)Vas - / ho(Vo2)Vou

(21)e (Qs).
+€N7V0<‘P1 >+OZ¢EP LE
= 21(Vy) + 55+ o(1)) > (P
— (v +o(1)V, (|1;P2|) L 0().
Here we have used
/Qe ho(Vo,1)Vo = (v + 0(1)){/0(‘]312%‘)7
/(91)5 ho(Voa)Vor = (v + 0(1))%(‘1312132‘),
and
/(93)5 ho(Vo2)Vor = (7 +o(1))Va (‘Ple‘)_

P =P
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5. LIAPUNOV-SCHMIDT REDUCTION

In this section, we reduce problem (1.3) to finite dimensions by the Liapunov-

Schmidt method. We first introduce some notation.

X = {veHQ(QE)|/Q v=0,2" Z0on o0},

ov

Y={ve LQ(QE)|/ v =0},
Qe
For v € X define
1
Si(v) = Ao = oo+ hole) = 1o /Q ho(v)
where
S.: X =Y.
Then solving equation (1.3) is equivalent to
Se(v) =0,v € X.

Fix P = (P, .., Pg) € A
Recall that w.p = 7, + Zfil PV, ; where 7, is defined after (1.2) and
o = g (see Section 2). Hence 7, = O(e").

Consider the linearized operator

K
Sl(wep) = Le : u— Au — pyu+ h;(z PV, )u

i=1

h,O'(E : J,i)
’ 6‘ Qe =1

where

L.: X—=Y.
We denote P = (Pl,... ,PK) = ((P1,17~- ,PLN),... ,(PKJ,... 7PK,N)) and
choose the approximate kernel as

8(7’0 + E{il PVN)
oP,,

Kep = span {

izl,...,K,jzl,...,N}

Let 7. p denote the orthogonal projection in Y onto ICEL’P with respect to the

norm of L*(.). Our goal in this section is to show that the equation

Te,P © Se(we,P + q)e,P) =0
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has a unique solution ®.p such that ®.p € /Cép N X (here we mean the
orthogonal complement in X to the finite-dimensional linear subspace K, p
with respect to the norm of L?(€))) if € is small enough and P = (P, ..., Px) €
A.

As a preparation the following two propositions give the invertibility of

the corresponding linearized operator.
Proposition 5.1. Let L.p = mep o L.. There exist positive constants e C
such that for all ¢ € (0,€) and P = (Py,... ,Pg) € A

ILep®|[r2() = Cll®l|n2(0,) (5.1)
forall® e Krp N X.

Proposition 5.2. For any ¢ € (0,¢) and P = (Py,... ,Px) € A the map
Lep=mpoL: KpNX K pnY

18 surjective.

Proof of Proposition 5.1. We will follow the method used in [11], [32],
[33], and [38]. Suppose that (5.1) is false. Then there exist sequences

{Ek}’ {Pk} - {<P1k7 ’Plk()} = {(Plk,lw‘->P1]€,N)v"'>(PI]2',17""PI’2,N))7
and {®;} (kK = 1,2,...) with ¢, > 0, PX € A, &, € K;,Pk N X such
that

e — 0, (
P - P c A, (
[ Le, pe @il 220, ) — 0, (
HCIDkHHz(Q%) =1, k=1,2,.... (
Fori=1,2,... , K,7=1,2,... ,Nand k= 1,2,... denote

_ 1o + Zfil PVyik) ||0(15 + Zzlil PVoik)
Cijk = ) /
/L’]

L2(Qe,,)

where
lDik
Pvﬂzi,k(y) = Pﬂekﬁp‘kvﬂk (y - ) NS Qek'
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Note that
< €iyji ks Cinjo k > 61122531]2 + O(Ek) as k — 00

by the symmetry of the function V' and the fact that P € A (recall that
V('P’“ Aly < ne). Here 8;,;, is the Kronecker symbol. Furthermore, because
of (5.4),

2
”Lﬁlc(b]f”L2 Z Z (/ q)k e’Lj k> — 0 (56)
i=1j=1 €k
as k — oo. For i =1,2,... N we introduce new sequences {y; ;} by
PF
o) =xan®e (14 ) e a,p 67)

where x(z) is a smooth cut-off function such that x(z) =1 for |z| < ¢ and
x(z) = 0 for |z| > 26 for some small § (actually we choose ¢ as in (1.7)).
Extend ¢; 1. to a function on RY by setting ¢; x(y) = 0 for y € RY\ Bas(0).
It follows from (5.5) and the smoothness of x that
<C

Pk
| wi7k <. B l>
€k H2(RN)

for all k sufficiently large. (Note that the functions x(- + PFi/e), i =
1,...,K and 1 — K, x(- + P}/e;) consitute a partition of unity in €2.)

The constants in the extension theorem (see [13] Lemma 6.37 and Theorem
7.25) can be chosen independent of € whenever € < 1. Therefore, there exists
a subsequence, again denoted by {(;;} which converges weakly in H?(R")
to a limit ¢; « as k — co. We are now going to show that ¢; ., = 0. As a
first step we deduce

oV
dy;
This statement is shown as follows

| i =0, j=1,...,N. (5.8)

V.
. _ pk Z0
/RN @z,oo(y Pz /Ek) ayj (y) dy

A%
T k 0
= lim [ eirly—F )5%

Pt OPVyin L WA
~ i o — 2 d
kl_{go Qe Pk X(Eky) ¥ (y - €k ) (Z: 8Pi],€j (y " ) i apk ) !

(y) dy

=1
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. fi 8PVM 87—0
— lim (x(exy — PF) — 1)@ (y) ( 718P'“ 2t ap!@) dy
17]

k—o0 Qﬁk 3]

=o(1).
Here we have used the facts that V@(Lﬁ“l) and 0PV, / anj have expo-
nential decay outside Bs(PF), 01,/0PF; — 0 as k — oo, @, € IC;P,C, and
X oPV,, - C
Zl:}?Pi’fj ik BBP;’?]- € K., pr. This implies (5.8).
Let Ky be the kernel and cokernel of the linear operator S|(V') which is

the Fréchet derivative at V' of
So(v) = Av — pov + h(v),
S : HX(RY) — L*(R").

Note that
So(V)v = Av —pov + h'(V)v

and

Kozspan{av\jzl,...,]\f}.
0y

j
Equation (5.8) implies that ¢, ., € Ki. By the exponential decay of V' and

by (5.4) we have after possibly taking a further subsequence that
ASpi,oo — Po¥Pi, + h’(v)%,oo = 07

ie. @i € Ky. Therefore ¢; o = 0.

Hence
ik — 0 weakly in H*(RY) as k — oo (5.9)
fori=1,2,... K.

Furthermore, consider

K
or(y) = Prly) — Z 0ir(y), vy € Qe
i=1
Now extend ®; from €, to RN such that
[Prell 2 vy < C

for all k sufficiently large and define the extension of ¢g by

K
Cor(y) = Pu(y) = > winly), yeRY
=1



CAHN-HILLIARD EQUATION
where ¢, ;, are the extensions before (5.8).
Then obviously

okl r2ryy < C

and we have for a subsequence
Yok — Yoo Weakly in HQ(RN) as k — oo
where ¢ o, satisfies
Apo,00 = Popo,00 = 0,

D000 € H*(RY).

Therefore @ — 0 weakly in H?(RY) as k — oo.

Since

wir — 0 weakly in H*(RY) ask — oo fori=0,1,...

we conclude that

dp, =0 weakly in H*(RY) ask — oo

for the extended function @, which was defined after (5.9).

embedding,
H<I>k||L2(QEk) — 0 as k — o0.

By Cauchy Schwarz inequality,
Hh;(we,P - To)(DkHLQ(QEk) — 0.
By (5.4) and (5.6),
(A = po)Pxl 120, ) — 0 as k — oo.

Since

|1Vl +p@E = [ [(pr = A)0i],

k €k
< C(A = po) Pl L2, )
we have that

|®x ]| 10.,) — O as k — oo.

In summary:

HA(I)’CHLQ(Q%) — O and ”(I)kHHl(st) — O

29

By Sobolev

(5.10)
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From (5.10) and the following elliptic regularity estimate (for a proof see
Appendix B in [38])

1Pkl 20,y < CUARK] L2000y + [Pkl () (5.11)
for &, € H% (€, ) we deduce that

HCI)]CHHQ(Q%) — 0 as k — OQ.
This contradicts the assumption
[Pkl 2 (0,,) =1

and the proof of Proposition 5.1 is completed. O
Proof of Proposition 5.2.
We define a linear operator T from L?(£2,) to itself by

T = Tre,p © Lco Te,P

Its domain of definition is H%(€.)NX. By the theory of elliptic equations and
by integration by parts it is easy to see that 7" is an (unbounded) self-adjoint
and hence also a closed operator. The L? estimates of elliptic equations imply
that the range of T is closed in L?*(€).). Then by the Closed Range Theorem
([41], page 205) we know that the range of T" is the orthogonal complement
of its kernel with respect to the L? norm. This implies Proposition 5.2.

O

We are now in a position to solve the equation
Tep © Se(wep + Pcp) = 0. (5.12)
We first rewrite the equation
Se(wep +Pep) =0

and calculate

Se(we,P + (I)E,P) =

1
A(UJE,P + qDe,P) - pO(we,P + (I)E,P) + hO(we,P + (I)G,P) - m /Q hO(we,P + (I)G,P)

!

/ 1
= Aq)e,P - pUCI)e,P + hg<we,P - Ta)q)e,P - |Q | ,/Q hg(we,P - TU>CI)6,P
) _

+[ho (we,P + q)e,P — TO') - ho (we,P — T hlg-(we,P - To‘)q)e,P]
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/

1
/ [ha(we,P + (I)E,P - 7—0) - ha(we,P - 7_0) - h(;(we,P -

1
K
he(D_ PV,;)
i=1

TJ)CI)67P]

e

K K
+ 2 [APV; = po(PVoi)l + ho (Y- PVos) = poTs

i=1 i=1

/ 1 !
= A(I)G,P - pcr(I)e,P + hg(we,P - To)q)e,P - m o hg(wG,P - TU)(I)G,P

+ weP + q) P TO’) - ho(we,P - Ta) - h;—(we,P - To)q)e,P]

weP + (I)e P — To’) - ha’(we,P - 7-0') - h;—(we,P - To)(I)e,P]

!Q | Jo
K
Z PVO’ z Z hG(V
IQ| ZPVm Zh ~ Do)
= Lecbe,p + N (®p) + N2(P.p) + E.
where

LG(I)G,P = Aq)e P — pa@e p+ h;—<we,P - To’)(I)e,P

weP a)q)e,P7

\Q!

N€1((I)€P) [h w6P+(I)eP )—
_ |Q|/ o (Wep+Pep—To) = ho(Wep — 7o) = hy (Wep —75) P p),

ho<we,P - To) - h:y(we,P - 7_0'><I)6,P]
N?(®,

K
E. = hy(>_ PV, Zh
i=1

|Q | Jo
Since Lep : X NKlp
rewrite (5.12) as

ZPVM Zh — PoTo-
~p) We can

—-YnN ICG%P is 1nvert1ble (call the inverse L _p

P = —L;%, OTep O N€1(®)
—L;%, OTep O Nf(@) — L;Il, o Tep o E (D)

= G.p(P) (5.13)
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where the operator G.p is defined by the last equation for ® € X. We are

going to show that the operator G.p is a contraction on
Bes ={® € X N K p|||®| r20.) < 6}

if 0 is small enough.

The following error estimates are essential for the rest of the proof.

Lemma 5.3. For € small enough, we have

HNel((I))HLQ(Qe) S C(;H(I)H[g(gé) fOT all (I) I~ 8575, (514)
IN2(®)| < C5¢™?||®]| 12,y for all ® € By, (5.15)
1B r2(, < CemVPrePre Px) (5.16)

Proof. By the remark on page 5 we may assume that hg together with its

first two derivatives is bounded. This implies
IN (@)l 2(0) < Cs| @l 220

for ® € B. 5. (5.14) is proved. Furthermore, by Cauchy Schwarz inequality,

1/2 1/2
\N;(CI))]SCEN/Q \@\gceN(/Q @2) (/Q 1)

< CeV?(|®|| 12

for ® € B.s. (5.15) is proved.
To prove (5.16), we divide the domain into (K + 1) parts: let Q = UXT'Q;

where
1—90 . . K

Qi ={lz—- P < TI&? |Pe— B} i=1,. K, Qg = Q\ UL Qi

We now estimate FE, in each domain.

In Qk.1, we have

|E| < C(Vor+ ..+ Vox)? < O (e~ VP Mk |Pe=Fily
Hence
el
I Eel| 2@ 41)0) < O(e VP e# ),

In Q;,i=1,..., K, we have

|E€| < Z <|hir(va,i)va,j| + |h;(V0,i)(PVU,j - VUJ)D
J#i
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FOQ_(IPVoyl* + Vo)) + O(IPVoy = Vo).
J#
Using Lemma 3.2 and the facts that PV, ; and V, ; decay exponentially, we
obtain

— 1
HEGHLQ((QZ-)E) < (Ce VDo cp(Prye ,Prc)

Thus
1Gep(®)[l200 < T ([ 7ep © NA(®) 120
+[mep o N2 (®)| 20 + 17ep © Eell 20
< T 'C(c(8)6 +6.)
where C > 0 is independent of § > 0, 0, = e VP <?®) and ¢(§) — 0 as
0 — 0. Similarly we show
|Gep(®) = Gep (@120 < T Ce(d) @ = || 20

where ¢(§) — 0 as § — 0. Therefore M. p is a contraction on Bs;. The
existence of a fixed point ®.p now follows from the Contraction Mapping
Principle and @, p is a solution of (5.13).

Because of Lemma 5.3,
1Pepllm) < (I7ep o N (Pep) | 2200
H|mep o N2(®@cp)lliz(.) + [7ep 0 Bell 20,
——1
<C (Cé+ C<5)||CI)6,P||H2(QE))
we have
[Pcp 2@ < C(0c)-

We have proved

Lemma 5.4. There ezists € > 0 such that for every (N+1)-tuple €, Py, . .. , Pk
with 0 < € <€ and P = (Py, ..., Px) € A there is a unique ®.p € X N /Cefp
satisfying Se(wep + Pep) € Y NKep and

1®cp 20, < CeVPree®)), (5.17)

The next lemma is our main estimate.
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Lemma 5.5. Let ®.p be defined by Lemma 5.4. Then we have

Je<we,P + (I)e,P) (518)
1 Ko
= MKIV) = S+ of1) Y et ¥l
i=1

P.— P,
— Y romvd® o)
kyi=1,... K k#l €
where v is defined by (4.1) and the terms of order O(c) do not explicitly

depend on P € A.

Proof.
In fact for any P € A, we have
E_NJE(we,P +®.p) = 6_N‘]e(we,P> + gep(Pep) + O(HCDE,PH%?(QJ)

where
ge,P (q)e,P)

K K
- (Z VPV, iVO.p + po(Ts + Z PV, ;)P p (5.19)

Qe i=1 =1

K
— ,/Q hO(Tg + Z PVUJ)(I)E’P
€ i=1

K K K K
= /Q [Z ho(va,i) +p0(7—a + Z PVO’,i) — Do Z PVU,Z' - hO(Ta + Z PVU,i)]CI)e,P
€ =1 =1 =1 =1
K

= [ B halVa) = (X PV ~ o8+ Olc)

€ =1 i=1
K K

<2 Po(Voi) = ho (D PVoi) 2| ®epl 2@y + O(0)
i=1 i=1

= O(B—QVE%s@(P)) + O(0)

as in the proof of Lemma 5.3.

Estimate (5.18) now follows from Lemmas 4.3 and 5.4.

Finally, we show that ®.p is actually smooth in P.

Lemma 5.6. Let ®.p be defined by Lemma 5.4. Then ®.p € C' in P.
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Proof. Recall that ®.p is a solution of the equation
Tep 0 Se(wep +Pcp) =0 (5.20)
such that
P.p € Klp. (5.21)

and

By definition we easily conclude that the functions PV, 7., at?jl_jg;’fk
¥ Z,
O7,/0P;; are C* in P. This implies that the projection 7 p is C* in P.

Applying 0/0P, ; to (5.20) gives

K
OPV,; 01, 0.
Tep O DSE(U)E,P + CI)E,P) (Z OP. .7 T 0P + 8P7P>
1,7 ,J b

=1

877'6713

P,

o Se(wep +Pcp) =0. (5.22)
where
DS& (we,P + cI)e,P) = A — Po + hé] (we,P + CI)e,P)
1 /
- ho (W, d.p)..
|Qe’ /Qe 0(w P + 71:’)

into two parts:
8@6713 . GCI)E’P + ac]?e,P
OP; N OPF; 1 P 2
where <8¢’€’P)1 € Kep and (%6"))2 € ICEL,P. We can easily show that (%q;’f)l

oP;; op;
is continuous in P since

oPV,, 0Ot
/ <I>e,p< kg >:0, k=1,..K, Il=1..N
Qe

0®. p

We decompose

0Py, 0Py,
and
O®.p (OPV, 01, / PV, 1,
: q)e = 07
Qe 8Pz-,j <8PM + 8Pk7l> * Qe o 8B7j8Pk,l + 8P¢7j8Pk,l

ki=1,.,K, 1,j=1,..,N.

We can write equation (5.22) as

aq)e P
Te,P o DSe(we,P + (DE,P) (( : )2)
0P, ;

K oPV,. 0P .p or,
4 mep 0 DS, (wep + Bop) (Z vi (O, 0T )
or;  0F; 0B,

i=1
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677'6’[)
op,,

As in the proof of Propositions 5.1 and 5.2, we can show that the operator

0 Se(wep + Bep) = 0. (5.23)

Tep © DS (wep + Pep) : XN ICEL’P —YnN /Cép

is invertible. Then we can take the inverse of 7. p 0 DS, (w.p + ®.p) in the

above equation and the inverse is continuous in P.

3 8PVZL 87’0‘,71 a(be,P . . . 87"5,1:’
Since 9P, OP,; ( o, )1 € Kep are continuous in P and so is ap, 0 We
conclude that (0®.p/(0P;;))2 is also continuous in P. This is the same as
the C! dependence of @ p in P. The proof is finished. O

6. THE REDUCED PROBLEM: A MAXIMIZING PROCEDURE

In this section, we study a maximizing problem.
Fix P € A. Let ®.p be the solution given by Lemma 5.4. We define a

new functional
M.(P) = J(wep + Pcp) : A — R. (6.1)

We shall prove

Proposition 6.1. For € small, the following mazimizing problem
max{M.(P) : P € A} (6.2)

has a solution P € A.

Proof. Since J.(wep + P p) is continuous in P, the maximizing problem has
a solution. Let M (P¢) be the maximum where P¢ € A.

We claim that P€ € A.

In fact for any P € A, by Lemma 5.5 we have

by, —

M. (P) = [KI(VO)—1 (y+o(1 Ze e VelP)Y— (y+0(1 ) > Vol ‘ ‘ )+O(0)]

P
where O(o) is a term which does not depend on P.

Since M, (P€) is the maximum, we have

,Ze A PE)_I_ZV |Pk < Ze ewe(P)_l_ZV |

kAl € k£l

P, — |
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for any P = (P, ..., Px) € A. This implies that
QO(PIG’ ttt) P;() 2 ma‘} ¢<P17 M PK) - 5
PeA
for any 0 > 0.
So p(Pf, ..., Pi) — maxp.z ¢(Py, ..., Px) as € — 0. By condition (1.6), we
conclude P¢ € A. This completes the proof of Proposition 6.1.

7. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2

In this section section, we apply results of Section 3 and Section 4 to prove
Theorem 1.1 and Corollary 1.2.
Proofs of Theorem 1.1 and Corollary 1.2. By Lemma 5.4 and Lemma 5.6,
there exists €y such that for € < €y we have a C! map which, to any P € A,
associates ®.p € Klp such that

aPVak 87'0
S.(wop + B.p) = a — + 7.1
(wee ») k=1,..., I%l::l ..... N . < 0Py, aPkJ) "

for some constants ag € REN=1),
By Proposition 6.1, we have P¢ € A, achieving the maximum of the maxi-
mization problem in Proposition 6.1. Let ®. = ®. pc and u. = w, pc + P, pe.

Then we have

Hence we have

a(qu4‘®gP)

a(ukf’+’®sP)
Vu.V —Ppc ¢ : :
/Q[ " OP; [pp: + pou

0P, ;

|P:P6

O(wep + Pe
~hue) s ’gp.. ’P)|P=Pe] = 0.
2y

Since
8;;27;1 =0 for 3 #1is
e et OPV,;+ 71, +D.p)
/Qe Vu.V : P, = | p_pe
+p0u€0(PVgﬂ- + 75 + Dcp) ~ h(u) O(PVy;+ 7, + Pep)

—_Pe —EZO
a}%J |P—P a}%d |P—P
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fort=1,..,K and j =1, ..., N. Because of
We, P + (be,p e X

we have

/ [we,p + CDE,P] =0.

€

Differentiating both sides, we get

/ a(’we,P + q)e,P)
Qe OP; ;

=0.

This implies that

8(U)e,P + CI)e,P) -
/Qe Se(ue) 9P, =0.

Therefore we have

Z akl/ <3PVU,;€ (97'0- ) 8(PVU,Z- + 75 + (I)e,P)
Qe

—0.
0P, | 0Py op,

J (7.2)
Since . p € /CE%P, we have that

/ (313‘/07;c n 0Ty > 0. p _ ‘_/ ( 0*PV,, n 0%, ><I> .
Q. aPk;,l (‘QPM 3Pi7j Q. aPk,laPm 3P/§713Pi,j ©
< u( FPVei O )umn@epnm
— \9P 0P ;  OP0F;; ’

= O(o + 6_‘/%%¢(P)).

Note that
aPVa,k 87_0 aPVUﬂ- 87'0 B 1
/Qe ( 8Pk,l * 3Pk,l> ( 8Pi7j T a-Pi,j> - 625%5”(14_'—0(1))
where .
A= —)2>0.
RN(8y1>

Thus (7.2) becomes a system of homogeneous equations for ay and the
matrix of the system is nonsingular since it is diagonally dominant. So
ag=0,k=1,...K,l=1,..N.

Hence ue = wep + ®.p is a solution of (1.2).

By our construction, it is easy to see that e J (u.) — KI(V) and u, has
only K local maximum points @5, ..., Q% and @5 € A. By the structure of
u. we see that (up to a permutation) Q¢ — Pf = o(1). This proves Theorem
1.1.
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