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We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Prero-
droma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen)
Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 130°W. Petrels were located almost
exclusively over offshore waters >1000 m depth. The extent of their distributions was similar across years, but petrels ranged farther south
and west in 2006. Individuals displayed a high degree of spatial overlap (48—62% among individuals) and area use revealed three general
“hotspots” within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham
Rise. In July—August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated
with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive
Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July—August 2006. Accordingly,
multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition
with Grey-faced Petrels.
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INTRODUCTION

Seabirds of the order Procellariiformes have evolved life history
traits, behaviours and physiologies well-suited for coping with
food resources that are patchily distributed over enormous
(millions of squarekilometres) pelagichabitats. Theirability to
fast for extended periods and their extremely low cost-of-flight
enables individuals to traverse large oceanic expanses while
searchingfor patchily distributed food (Warham 1990, 1996).
Our currentknowledge about thedistribution of gadfly petrels
(Pterodromaspp.) atseaislimited to results from observations
of birds from ships (Sladden & Falla 1928, Hyrenbach et al.
2006) and indirect measures of chick dietcomposition (Imber
1973). The relative importance of different oceanographic
features and environmental conditions (e.g., bathymetry,
ocean productivity, and wind speed) for determining gadfly
petrel distributions at sea is not well known (but see Haney
1986, 1987, Stahl & Bartle 1991, Spear et al. 2001).
Detailed information about Prterodroma spp. ranges,
migration routes, and habitat associations is required to
understand environmental factors influencing species
abundanceand conservation issues. Increasing miniaturisation
of tracking devices now enables continuous monitoring of
small-bodied (<1000 g) procellariiform seabirds moving in
remote and inaccessible areas of the ocean (e.g., Shaffer
et al. 2006, Adams & Takekawa 2008). Tracking seabird
movements can provide insights into patterns in range
utilisation associated with elevated biological productivity
(“hotspots”), significant biogeographical features such as
oceanic current fronts, sea mounts, and sea-ice extent
(Spear et al. 2001, Clarke ez /. 2003, Morato et al. 2008),
and intensively fished areas (Phillips ez 4/ 20006). This

information can be valuable for managers making decisions

about species conservation or modifications to certain
natural resource uses and developments within significant
habitats (e.g., implementation of fisheries quotas and bycatch
restrictions; Lewison ez a/. 2004). Awareness of hotspots will
help managers prioritise their environmental management
to times and places that are most important for species
persistence (i.e., critical foraging areas).

Our study focuses on the at-sea distribution of the Grey-
faced Petrel, Prerodroma macroptera gouldi (Hutton, 1869),
a culturally significant species to the northern 7wi (Maori
tribes), e.g., Hauraki, Ngati Awa, Ngati Wai) of New Zealand
(B. Hughes pers. comm. 2006, T. Renata pers. comm.
2007, Lyver et al. 2008, T. Shortland pers. comm. 2008).
The Grey-faced Petrel mainly breeds on islands off the east
coast of northern New Zealand, with the largest colonies
on the Ruamaahua (Aldermen), Moutohora (Whale) and
Whakaari (White) islands (Wodzicki & Robertson 1959,
Imber 1976, Heather & Robertson 2000). Populations of
conspecific Great-winged Petrel, Prerodroma macroptera
macroprera (A. Smith, 1840), nest on islands adjacent to
the south coast of Western Australia, in the South Atlantic
(e.g., Tristan de Cunha Group, Gough, Kerguelen and
Crozet islands) and in the South Indian Ocean (e.g.,
Kermedec Islands; Warham 1956, Richardson 1984,
Cuthbert & Sommer 2003). Prerodroma m. gouldi (and P
m. macroptera) are unique among the gadfly petrels as they
are winter-time (Austral) breeders that lay eggs during June
and July. Imber (1973) suggested that this phenology may
be an adaptation to maximise nocturnal feeding time and
more effectively exploit diel vertically migrating prey (e.g.,
various cephalopods and myctophid fishes). Observations of
P macroptera subspecies at sea indicate they rarely congregate
in groups, except when resting on the sea surface during
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the day (Imber 1973, Hyrenbach e 2/ 2006). Historic
accounts report that Grey-faced Petrels ranged mainly to
the east of New Zealand berween 31° and 42°S and about
150 km off the coast to 3200 km east (145°W) during the
breeding season (Fleming 1950).

Here, we present the at-sea distribution pateerns (i.e.,
movements) among individual Grey-faced Petrels captured
during the breeding season at two breeding colonies on the
Ruamaahua Islands during 2006 and 2007 and outfitted
with satellite transmitters. The aims of our scudy were to
determine: (a) the extent of the at-sea distribution of Grey-
faced Petrels; (b) temporal variation in the degree of spatial
overlap among individuals and the locations of high-use areas
(hotspots); and (c) the extent and variability in the use of

the New Zealand and Australian Exclusive Economic Zones
(EEZs) versus the High Seas.

METHODS
Satellite telemetry

We attached satellite transmirtters (Sirtrack Kiwisat 202
Platform Transmitter Terminals [PTTs], Havelock North,
NZ) to 32 adults during two breeding seasons (2006 and 2007;
table 1). Each year, we captured eight petrels at the colony
during two periods: incubation (16-17 July 2006 and 19-20
July 2007) and early chick-rearing (12—13 September 2006

and 16-17 September 2007). In 2006, petrels were captured
on the surface at two different locations (Locations 1, 2)
on Ruamaahuanui in July and a single location (Location 3)
on a neighbouring island, Hongiora, in September (fig.1,
table 1). The reproductive status of the petrels in 2006 was,
therefore, unknown because individuals captured were not
associated with a burrow; petrels ultimately were classified as
non-/failed breeders. In 2007 during the pre-laying period
(April), we fitced 20 artificial nesting chambers (hereafter
chambers) to existing burrows at a single location (Location
4) on Ruamaahuanui (fig. 1) to enable us to identify adult
petrels of known breeding status. In July 2007, we captured
eight incubating petrels from chambers and outfitted them
with PTTs. In September 2007, only two chambers housed
incubating pertrels, so the remaining six adults were captured
on the surface of the colony at night (similar to 2006) at
Location 4 on Ruamaahuanui (fig. 1, table 1). Elsewhere,
records indicate that most viable eggs hatch before 10
September (Bethells Beach breeding colonies; G. Taylor, pers.
comm.). Thus, in 2007, we had cight confirmed breeders
in July and two confirmed failed breeders and six petrels
of unknown breeding status in September. We determined
sex for 24 of the 32 individuals outfitted with PTTs using
a DNA extraction technique adapted for feathers (Lambert
et al. 2000).

We weighed petrels (5 g) using a Pesola® spring scale
(Pesola Ag, Baar, Switzerland) and fitted each with a
uniquely numbered metal band. PTTs were affixed to
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FIG. I — Key locations in the oceanic vegion surrounding New Zealand, including the location of the breeding colonies on the
Ruamaabua Islands. A more detailed map of the Ruamaahua Islands is presented in the inset which shows the four locations where
the birds were captured and released for satellite tracking. Solid black line indicates the New Zealand Exclusive Economic Zone
and the dashed black line indicates the Australian Exclusive Economic Zone in the main figure and the three shaded boxes indicate
the maximal extent of hotspots identified in the UD analysis (1 = Ruamaahua, 2 = Tasman, 3 = Chathams hotspots).



TABLE 1
Summary of the capture and satellite tracking data for 32 Grey-faced Petrels tagged at breeding colonies on the Ruamaahua Islands, New Zealand

Bird Body  Sex Capture information Days  Locations Distance Laticudinal range Longitudinal range Home range area (km?)

identity mass (g) Island! Location Position Date tracked  rerained  travelled (km)  Norch South East West  25% contour 50% contour 95% contour
588 540 U RN 2 Surface 16 Jul 2006 64 605 21,736 23.4°S 39.2°S 176.5°W 151.4°E 97,281 308,448 1,381,941
599 540 U RN 1 Surface 16 Jul 2006 77 729 26,964 28.7°S 45.6°S 176.6°E  153.3°E 52,812 182,817 1,078,353
601 515 U RN 1 Surface 16 Jul 2006 84 779 28,363 27.9°8 44.8°S 176.1°E  150.8°E 110,079 312,174 1,222,938
589 605 U RN 2 Surface 17 Jul 2006 65 601 19,960 22.8°S 39.5°S 177.8°E  151.9°E 62,856 222,021 1,138,293
590 500 U RN 2 Surface 17 Jul 2006 71 697 25,544 26.4°S 45.2°S 168.0°W 148.8°E 80,109 275,643 1,498,905
592 530 U RN 2 Surface 17 Jul 2006 41 385 14,224 23.0°S 41.4°S 177.0°W 155.0°E 50,382 193,914 1,031,049
596 530 U RN 2 Surface 17 Jul 2006 72 675 31,804 24.3°S 40.7°S 154.0°W 150.7°E 184,680 587,088 2,416,473
597 570 U RN 2 Surface 17 Jul 2006 27 264 10,274 25.9°S 38.1°S 178.9°E  157.4°E 66,015 189,054 766,179
595 560 F HA 3 Surface 12 Sep 2006 70 660 19,395 28.1°S 39.3°S 1797°E  151.0°E 39,690 117,936 656,181
598 520 F HA 3 Surface 12 Sep 2006 39 407 13,669 29.8°S 43.2°S 158.1°W 156.9°E 70,632 212,058 955,962
600 630 F HA 3 Surface 12 Sep 2006 40 413 19,934 26.2°S 48.7°S 166.4°W  160.3°E 116,559 368,388 1,571,967
602 575 M HA 3 Surface 12 Sep 2006 17 170 7,117 26.7°S 38.4°S 177.4°E  151.7°E 36,450 125,388 533,061
591 530 F  HA 3 Surface 13 Sep 2006 40 393 20,475 19.6°S 41.8°S 130.6°W 162.7°E 98,820 314,604 1,508,949
593 550 M HA 3 Surface 13 Sep 2006 26 285 12,704 24.9°S 40.4°S 168.6°W 153.5°E 89,748 263,331 1,036,233
594 550 M HA 3 Surface 13 Sep 2006 22 180 7,420 31.2°S 43.1°S 166.4°W 176.0°E 45,927 135,027 554,202
603 590 M HA 3 Surface 13 Sep 2006 82 794 26,211 30.9°S 47.8°S 176.9°E  144.1°E 42,525 115,830 601,830
605 570 M RN 4 Burrow 19 Jul 2007 41 409 14,719 24.0°S 45.4°S 166.7°W 155.5°E 54,270 193,104 1,074,465
606 580 M RN 4 Burrow? 19 Jul 2007 89 871 31,935 22.4°S 41.8°S 149.6°W 157.1°E 101,007 323,676 1,570,347
611 700 M RN 4 Burrow 19 Jul 2007 49 480 19,119 26.2°S 46.4°S 158.2°W 158.1°E 78,975 269,811 1,347,111
614 585 M RN 4 Burrow 19 Jul 2007 79 900 28,506 25.5°§ 45.1°S 153.7°W 154.0°E 77,274 256,041 1,525,068
604 600 M RN 4 Burrow 20 Jul 2007 88 989 35,869 31.4°S 48.9°S 168.6°W 160.9°E 121,257 379,728 1,734,615
607 545 M RN 4 Burrow 20 Jul 2007 14 73 3,354 32.1°S 42.6°S 174.0°W 174.0°E 29,565 90,477 328,131
612 550 M RN 4 Burrow 20 Jul 2007 96 997 38,163 30.7°S 47.9°S 139.3°W 141.5°E 117,045 366,363 1,885,923
613 550 M RN 4 Burrow 20 Jul 2007 73 678 27,076 23.6°S 41.5°S 157.6°W 152.8°E 96,795 379,890 1,879,605
608 530 F RN 4 Burrow 16 Sep 2007 20 237 10,110 25.1°S 41.4°S 152.0°W 176.1°E 78,489 244,458 925,344
609 535 M RN 4 Surface 16 Sep 2007 34 381 13,050 31.5°S 37.2°S 172.0°W  156.6°E 49,086 146,610 657,234
610 500 F RN 4 Surface 16 Sep 2007 20 238 7,496 28.4°S 37.0°S 177.1°E  160.5°E 26,406 89,181 431,487
615 525 F RN 4 Burrow? 16 Sep 2007 8 91 2,088 29.3°S 37.0°S 178.4°E  167.6°E 11,988 37,827 196,668
616 540 F RN 4 Surface 16 Sep 2007 36 424 11,330 30.7°S 38.6°S 177.5°E  158.8°E 28,836 79,866 442,422
617 535 F RN 4 Surface 17 Sep 2007 17 188 5,827 28.1°S 36.9°S 176.8°E  160.5°E 27,540 81,243 407,997
618 545 F RN 4 Surface 17 Sep 2007 46 542 18,586 22.6°S 40.8°S 130.3°W 174.5°E 78,813 247,374 1,232,982
619 525 F RN 4 Surface 17 Sep 2007 76 861 18,986 27.3°S 37.0°S 177.0°E  150.7°E 45,036 128,952 586,278

579119([ P?J?/—/(QJD P92/JZ711—91!]]9127§ fO uO}j?’lq_ZJ;’S}}? vas-11/

URN = Ruamaahuanui, HA = Hongiora, see fig. 1 for capture locations. 2 Indicates birds that were tagged from the same burrow.
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petrels between the scapulac over the central synsacral area
to be close to the petrel’s centre of mass (Healy ez /. 2004)
using a suture-glue-tape method modified after Newman ez
al. (1999). Specifically, each PTT was attached using four
sterilised, monofilament, polypropylene surgical sutures
(CP Medical, PolyproTM 2-0), a single strip of tape (Tesa®
AG 4657, Hamburg, Germany) underlying approximately
four feathers, and a few drops of glue (TDS Loctite® 422,
Henkel Technologies, Diisseldorf, Germany) between the
base of the PTT and approximately four surface feathers.
We opted for this attachment to maximise tag retention
throughout the battery life of the transmitter (approximately
60 days). More importantly, the method provided a more
stable attachment than tape alone and reduced the risk of
the tag lifting and straining the feathers (and thereby altering
the petrel’s centre of mass) during normal flight, when the
petrel rolled from side to side or pursued prey on the wing.
An identical attachment has been successfully used with
Sooty Shearwaters, Puffinus griseus (J.F. Gmelin, 1789),
Greater Shearwaters, Puffinus gravis (O’Reilly, 1818), and
Hawaiian Petrels, Prerodroma sandwichensis (Ridgway, 1884)
(J. Adams unpubl. data). PTTs weighed 29-34 g (-5% of
the mean mass among all petrels outfitted with PTTs; mean
+ SE; 554.7 + 7.1 g) and were 62 mm long x 26 mm wide
x 17 mm high. PTTs were programmed to transmit signals
with a 60-s repetition rate with 2-h “on:off” duty cycles to
maximise transmission duration and the number of “high-
quality” locations obtained during “on” periods.

Geographical locations of individual petrels were
determined by ARGOS (CLS America 2007) and archived
using the online Satellite Tracking and Analysis Tool (STAT;
Coyne & Godley 2005). Prior to analysis we used the
following procedure to filter potentially spurious locations
provided by ARGOS. We retained all location classes (LC
3, 2, 1, 0, A, B) before filtering. For each satellite pass,
ARGOS calculates two candidate PTT locations (i.e.,
“mirror locations” result from the intersection of two cones
of satellite reception and the platform altitude ellipsoid) and
specifies which location is the accurate one (CLS America
2007). Occasionally ARGOS will select the incorrect “mirror
location” (i.e., <1% of total locations per individual; CLS
America 2007). So we used STAT to identify potentially
incorrect “mirror locations” in the raw data and manually
swapped any incorrect mirror locations. Second, we applied a
0.001-h time filter with STAT to identify duplicate location
records (i.e., two locations recorded at the same time). The
less accurate (determined by the location classes provided by
ARGOS) of the two duplicate records were then removed.
Pre-filtered data were exported from STAT and read into
Program R (version 2.6.1; R Development Core Team
2007). In R, we used the speed-distance-angle ARGOS filter
(SDAfilterin the argosfilter package version 0.5; Freitas ez 4.
2008) with maximum ground speed threshold set to 60 km
h-!and default distance and angle threshold values. Filtered
data then were read into MATLAB (MathWorks 2006)
where we used purpose-built functions to create hourly,
linear interpolated locations along each individual petrel’s
track-line (Tremblay er a/. 2006). We did not interpolate
track-line segments between endpoints separated by 28 h
to avoid gross misrepresentation of an individual’s actual
position. Interpolation provided a temporally uniform
distribution of locations for analyses that, unlike the
raw ARGOS locations, are not biased by satellite orbital
parameters and the petrel’s latitudinal position (Georges ez
al. 1997, BirdLife International 2004).

Estimating utilisation distributions

To define the spatial probability distribution for each petrel, we
calculated the fixed-kernel utilisation distribution (UD, Van
Winkle 1975) for each individual’sinterpolated trackline using
araster composed of 9 x 9 km grid cells (81 km?). This grid cell
size was selected because 9 km is a conservative distance that
encompasses the average accuracy of the combined ARGOS
location classes. Nicholls ezal. (2007) reporta mean accuracy
of <1 km for LC 3, 2, and 1 and <5 km for LC 0, A, and B.
To calculate kernel values, we fitted a bivariate-normal model
(using the kernelUD function, adehabitat v.1.7.1 package in
R; Calenge 2006) and specified a conservative neighbourhood
smoothing parameter of 27 km to best represent the actual
tracks of individual petrels given the accuracy of the ARGOS
locations (see Hyrenbach er 4/ 2002). All other parameters
were set using the kernelUD default values. In this analysis,
the home range of each individual was defined as the area
within the 95% probability density contour (White & Garrott
1990; hereafter 95UD area). For clarity, “UD” alone refers
to the fixed-kernel utilisation distribution (i.e., continuous
probability surface composed of 9 x 9 km grid cells).

Estimating spatial overlap among individuals

To quantify spatial overlap among individuals within a
given time period (i.e., two bimonthly periods [July—August
and September—October] in each year), we calculated the
percentage UD overlap of each petrel with all other individuals
tracked during the same time period. Here we used the
“PHR” method (Fieberg & Kochanny 2005) in the kernel.
overlap function (Calenge 2006) to compute the probability
of finding petrel j in the home range of animal 7, 7, etc.,
where the home range of each animal 7, was defined by its
UD within its 95UD area. For each individual, we estimated
the mean percentage UD overlap with all other individuals
tracked during the same period. We considered this metric
to be an informative, quantitative measure of the degree to
which individuals within a population (i.e., the set of tracked
petrels) share space in conjunction with the graphical analyses
used to quantify hotspots (described below).

Comparative analysis of tracking and
distribution parameters

We compared bimonthly (July-August and September—
October) estimates of the number of days petrels were tracked,
latitudinal and longitudinal range estimates and UD overlap
among individuals in each year. For each of these variables, we
fitted a linear mixed effects model (/me in R using the nime
package v. 3.1-86; Pinheiro & Bates 2000) with the following
explanatory variables: “bimonthly period”, “year”, and the
“bimonthly period x year” interaction. Where appropriate,
we controlled for variation in sampling effort, by including
the number of days that petrels were tracked in the model asa
covariate. Because the same individuals were tracked in more
than one bimonthly period, we included the petrels” unique
PTT identities as a random effect in the model to control
for repeated measures. We identified the minimum adequate
model (i.e., determined whether or not to retain explanatory
variables in the model) using a backward stepwise process. All
percentage estimates of UD overlap were arcsin-transformed
prior toanalysis (Zar 1996). Wealso compared three parameter
estimates (the number of days tracked, distance travelled and
95UD area) for males and females using unequal variance



t-tests. All analyses were carried out using the statistical

package, R (R Development Core Team 2007).
Quantifying hotspots of distribution at sea

For the purposes of our study, we define hotspots as thosc areas
where the probability of locating an individual petrel (i.e., its
UD) was high and where several individuals also visited the
same location. To identify hotspots within a given bimonthly
period in each year, we first summed the UD surfaces of
the relevant individuals’ 95UD areas (2, 95UD). We then
weighted the summed UD values for each 9 x 9 km grid cell
according to the number of unique petrels that occupied it,
using the formula: £ 95UD/n, !, where n, was the number
of unique individual 95UD areas which overlapped the grid
cell. Thus, £ 95UD/n ! estimates for grid cells occupied
by only a few petrels were down-weighted relative to those
occupied by a greater number of petrels. To distinguish
between areas with different probabilities of detecting
occupancy by Grey-faced Petrels, we divided the weighted
2. 95UD esrimates into quartiles; the uppermost quartile
indicated a very high probability of detecting occurrence and,
therefore, the hotspots. For each bimonthly-year period, we
also quantified the proportion of individuals that occupied
the three main hotspots (fig. 1) and the proportion of the
total area of individual 95UD areas that overlapped with
each hotspot.

Quantifying use of Exclusive Economic Zones
and High Seas

The EEZs for Australia and New Zealand include the oceanic
waters extending to 200 nautical miles from each nation’s mean
low water mark. High Seas refer to those ocean areas outside
a specific nation’s EEZ. These waters and their resources are
open to use by any nation, and do not belong to any nation.
Rights and responsibilities for international use of the High
Seas are defined under the United Nations Convention on
the Law of the Sea (UNCLOS) to which both New Zealand
and Australia are signatories (United Nations 2007).

We estimated the proportions of the individual 95UD
areas within Australia and New Zealand’s EEZ and High
Seas. We then used compositional analysis (CA, Aebischer
et al. 1993) to determine whether or not the 95UD areas
were randomly located with respect to these zones. To do
this, we identified the area of each zone potentially available
(i.e., “available area”) for each petrel. We assumed that the
available area for each petrel was all oceanic habitat within
an area defined by a radius equivalent to the maximum
straight-line distance between each petrels initial location
record and all other location records obtained for that petrel
within the relevant bimonthly-year time period. The initial
location may have been either on the Ruamaahua Islands
or at sea, depending on the time period considered. We
then calculated the proportion of each petrel’s available
area that intersected with each zone. To determine whether
petrels were disproportionately located within one zone
versus another, we compared the relative proportion of the
available area within each zone to the relative proportions of
the 95UD areas (i.e., “used areas”) within each zone. Our
CA used the randomisation test in the compana function
(Calenge 2006). All other parameters (the number of
replicates, zero replacement values, and alpha thresholds)
were set using the default values.
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RESULTS
Satellite tracking

Individual Grey-faced Petrels were tracked for (mean + SE) 51
+ 5 days (range: 8-96) and PT'Ts generated 10 + 0.2 usable
(i.e., post-filtered) locations per day (table 1). On average,
individuals travelled 18 500 + 1697 km (range: 2088-38 160)
and had home ranges (95UD areas) which covered 1 068 000
+ 94 833 km2. Core use areas (as indicated by the 25% and
50% UD area contours) covered 70 840 + 6476 and 226 200
+ 20 942 km? respectively (table 1).

All petrels tagged early in the breeding season (July) were
males (feather samples were only available for 2007). The sex
composition of petrels tagged in September varied between
years (in 2006: four males, four females; 2007: one male,
seven females; table 1). Males were tracked for a slightly
longer duration (males vs females; 55 + 9 vs 38 + 6 days),
tended to travel farther (20 403 + 3217 vs 13 445 + 1959
km) and have larger home ranges (1 132 910 + 154 860
vs 810 567 + 140 535 km2), but none of these trends was
statistically significant (Unequal variance t-tests; Days: t =
-1.61, d.f. = 21.3; P = 0.122; Distance: t = -1.85, d.f. =
19.4; P = 0.08; Area: t = -1.54, d.f. = 22.0, P = 0.140).

Colony attendance and breeding status

Five of 32 (16%) Grey-faced Petrels returned to the colony at
least once (table 2). The flight path of one additional petrel
(bird identity: 594) indicated that it likely also returned to
the colony (absence of location data during the following
24-hour period upon near arrival prevented confirmation,
but this pattern is consistent with the inability of satellites
to receive signals when petrels are underground (J. Adams
unpubl. data)). The number of individuals that returned to the
colony varied between observation periods. Two of the eight
petrels tagged in each July returned to the colony, but during
September, only one returned in 2006 and none in 2007
(table 2). Patterns of colony attendance also varied among
the five petrels that returned to the colony. All, except one
(bird identity: 596), returned to the colony only once. Petrel
596 completed four trips overa five-day period with each trip
lasting 1-3 days and covering 69-1244 km (table 2). The
average duration of the trips undertaken by the remaining
four petrels was 33 + 6 days, during which they travelled an
average total distance of 14 430 + 2743 km and maximum
straight-line distance from the colony 0of 996 + 343 km (range:
41-2587). For petrels that returned to the colony, the mean
number of outward- and inward-bound flights observed per
individualwas 3 + 1 and 2 + 1 respectively. Of the 1 1 artificial
nesting chambers that had eggs during July 2007, none had
chicks in September, indicating that all breeding attempts
initiated in these chambers were unsuccessful, irrespective of
whether the breeding petrels were tagged or not.

At-sea distribution

Grey-faced Petrels tracked during the breeding season
(July-December) covered a wide geographical range
(table 1; latitudinal range: 19.6-48.9°S; longitudinal range:
141.5°E~130.3°W). In both years, a few individuals travelled
north towards New Caledonia or east to the Kermadec Trench
or beyond. During September—October each year, one or
two petrels travelled as far south as Tasmania, travelling
along the east coast of the island to its southern-most
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TABLE 2
Summary of foraging trip information for satellite-tracked Grey-faced Petrels
that returned to the colony at least once

Bird Trip Date start Trip duration Return to Distance travelled ~ Maximum distance from
identity identity (days) colony (km) colony (km)
588 1 16 Jul2006 23 Y 9,339 1,681

2 8 Aug 2006 41 N 13,347 2,257
596 1 17 Jul 2006 3 Y 1,244 494

2 20 Jul 2006 1 Y 69 41

3 21 Jul 2006 1 Y 86 41

4 22 Jul 2006 ! Y 83 42

5 23 Jul 2006 66 N 31,189 2,991
600 1 12 Sep 2006 23 Y 11,003 1,556

2 5 Oct2006 17 N 9,796 1,681
604 1 24 Jul 2007 48 Y 21,547 1,524

2 10 Sep 2007 36 N 16,358 1,415
611 1 31 Jul 2007 37 Y 15,830 2,587

2 6 Sep 2007 12 N 4,111 1,589

All Grey-faced Petrels were originally captured on the Ruamaahua Islands’ breeding colonies (see table 1 for details).

point, before heading north again. However, most petrels
congregated within the Tasman Sea between 30 and 40°S
(i.e., within the High Seas between Australia and New
Zealand; fig. 2).

Although the extent of the Grey-faced Petrel geographical
range was similar between years, there was notable temporal
variation. Individual tracking durations varied between
bimonthly and yearly periods (table 3). After controlling
for the variation in tracking duration (i.e., number of
days) between periods, the southern latitudinal extent was
consistent across years for the July-August period, but
varied between years in the September—October period,
with petrels travelling farther south in 2006 than in 2007
(table 3). Grey-faced Petrels also ranged farther west in
2006 than in 2007, when individuals travelled parallel to
the edge of the southeast Australian continental shelf, and
later in the season in both years. There was no evidence of a
significant shift in the northern extent of their distribution,
but there was a trend for petrels to travel farther east in
2007, when a greater proportion congregated around the

Chatham Rise (fig. 2).

Spatial overlap and hotspots of distribution
at sea

Grey-faced Petrels occurred primarily over waters >1000 m
deep (mean + SE; 93 + 2% of the 95UD areas; n = 32)
rather than over continental-slope (200-1000 m: 6 + 2%)
or continental-shelf waters (<200 m: <2%). Estimates of
spatial overlap among petrels within bimonthly periods
varied between years (July—August: 62 + 4% in 2006, 49
+ 9% in 2007; September—October: 55 + 7% in 2006, 48
+ 7% in 2007), but were not statistically significant (2 >
0.10).

Greatest weighted 2, 95UD values were located primarily
between 30-45°S, where we identified three main hotspots
of Grey-faced Petrel distribution at sea (fhg. 2): (1) the
“Ruamaahua hotspot” included the region centred on
the breeding colonies on the Ruamaahua Islands; (2) the

predominant “Tasman hotspot” was located in the Tasman
Sea; and (3) the “Chatham hotspot” was centred on the
Chatham Rise. Other smaller hotspots also were detected in
the vicinity of the Kermadec—Tonga trenches and Norfolk
Island (fig. 2).

The extent and location of the Ruamaahua hotspot
displayed spatio-temporal variability. In the July—August
period, it extended from the Ruamaahua Islands approx-
imately parallel to the northern coastline of New Zealand’s
North Island, in a northwesterly direction in 2006 and
in an easterly direction in 2007 (fig. 2). The fact thar all
individuals were observed in the Ruamaahua hotspot during
the July—August period in each year reflects departure and
arrivals after being captured at the colony (table 4). A lower
proportion of individuals (64-93%) was recorded within
this hotspot during the September—October periods (fig. 1)
because most of the individuals captured in July did not
return to the colony during this period (tables 2, 4). The
mean percentage area of individual home ranges overlapping
the Ruamaahua hotspot ranged between 10 and 18% (fig.
1, table 4).

The location and extent of the Tasman hotspot also
displayed spatio-temporal variability. In 2006, the Tasman
hotspot extended from approximately 170-155°E and from
30-40°S during the July—August period (fig. 2), but then
shifted approximately 5° west during the September—August
period. During the latter period, the hotspot paralleled
the east coast of Australia from 28-42°S (fig. 2). In 2007,
this hotspot was absent in the July—August period (fig. 2),
but was present in the September—October period (fig. 2),
when it was smaller and centred towards the middle of the
Tasman Sea between 155-170°E and 30-38°S. A greater
proportion of individuals (86-100%) visited the Tasman
hotspot (fig. 1) among all periods, except in July—August
2007 when only 38% of individuals were recorded there
(table 4, fig. 2). On average, >50% of each Grey-faced
Petrel’s total home range area overlapped with the Tasman
hotspot, except in July—August 2007 when this was reduced
to 13% (table 4).



TABLE 3
Summary of the extent of at-sea distribution data for satellite-tracked Grey-faced Petrels in each bimonthly period in each year.

Variable July—August September--October Year effect Bimonthly effect Bimonthly x year effect
2006 (n=8) 2007 (n=8) 2006 (n=14) 2007 (=14 F 4t 7 F df.rF df P

Days 429 +24 36.3£3.5 309+ 3.0 32.6+3.7 0.43 1,30 0.51 13.97 1,10 0.004 9.99 1,10 0.01

tracked

North 25.6+1.0°S 28.1 + 1.6°S 27.6 +0.9°S 28.6 +0.7°S

South 41.3 £ 1.1°S 442 £0.9°S 41.5 £ 1.0°S 39.9 + 1.0°S 0.003 1,30 0.96 1.65 1,9 023 692 1,9 0.03

East 154.9+1.2°W  167.7 £3.2°W 1547 +2.1°W 1593 +£2.4°W  3.67 1,30 0.06
West 175.8 + 3.6°E 166.1 + 3.7°E 177.8 +5.2°F 170.6 + 4.8°E 8.01 1,30 0.008 12.77 1,10 0.005

All Grey-faced Petrels were originally captured on the Ruamaahua Islands’ breeding colonies (see table 1 for details). Linear mixed effects models were used to test for temporal
variation, the Minimum Adequate Models are presented for those where P < 0.1.

TABLE 4
Percentage of individuals and the average percentage of individual total 95UD areas which overlapped

with three different hotspots (Ruamaahua, Tasman and Chathams) versus other oceanic areas for each Tﬁ}
bimonthly-year period 8
>

g
Variable Oceanic area July—August September—October =
N

2006 (n=8) 2007 (n=28) 2006 (n=14) 2007 (n = 14) §
Percentage of tagged ~ Ruamaahua hotspot 100 100 64 93 <
birds visited area Tasman hotspot 100 38 93 86 §
=

Chathams hotspor 0 88 21 14 §

Other areas 100 100 79 79 §

X~

Percentage of home  Ruamaahua hotspot 143 15+ 4 10+£2 18 +4 N
. D
range area Tasman hotspot 55+7 13+£8 61+9 55+8 3
Chathams hotspot 0+0 28+ 9 3+2 2+1 E”

[

Other areas 31+7 45+9 26+7 25+8 i;

)

All Grey-faced Petrels were originally captured on the Ruamaahua Islands’ breeding colonies (see table 1 for details).
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The Chathams hotspot only was detected in July—August
2007, when 88% of Grey-faced Petrel individuals travelled
to this region. In both years, a small proportion of
individuals (14-21%) visited the Chathams hotspot in
the September—October period (table 4, figs 1, 2). On
average, approximately 28% of each Grey-faced Petrel’s total
home range area overlapped with the Chathams hotspot in
July—August 2007, compared with <4% for all other periods
(table 4, figs 1, 2).

Only a small proportion of individuals visited both Tasman
and Chatham hotspots (July—Augusr 2006, 0%; July-August
2007, 25%; September—October 2006 & 2007, 14%).

A comparison of the distribution of males and females
during the September-October periods (fig. 3) shows both
males and females congregated over the Tasman hotspot in
both years, with males tending to travel farther west and
south than females. In contrast, females tended to travel
farther to the east and north of the Ruamaahua Islands
in both years, but particularly in 2006, when hotspots of
distribution were observed between the Kermedec Trench
and the Chatham Rise.

Use of Exclusive Economic Zones and High
Seas by Grey-faced Petrels

Within each bimonthly-year period, the home rangesamong
all eracked petrels overlapped the High Seasand New Zealand
EEZ, except in September—October 2006 when only 71%
of home ranges overlapped with New Zealand’s EEZ (table
5). The proportions of home ranges that overlapped the
Australian EEZ were more variable, ranging from 38% in
July—August 2007 to 100% in July—August 2006 (table 5).
The average proportion of an individual’s 95UD area which
overlapped with each zone also varied (High Seas: 38—52%;
New Zealand EEZ: 20-49%; Australia EEZ: 5-46%) during
the same four bimonthly-year periods (table 5).

After taking into account the relative area available to
individuals within each zone, CA revealed no evidence
indicating differential use of particular zones during the
bimonthly-year periods considered, except in July-August
2006 (table 5). Grey-faced Petrel 95UD areas tended to
overlap disproportionately more than expected with the
Australian EEZ and less than expected with High Seas
during July—August 2006 only. Because zero replacement
data can increase the likelihood of a Type-I error in CA
(Bingham & Brennan 2004), we evaluated P values and
the number of zero replacements for each bimonthly-year
comparison. The average percentage of individuals with
zero utilization values per zone in any given bimonthly-year
period was <30% (table 5), and for the only comparison
with a significant P-value (July—August 2006), there were
no zero replacements.

DISCUSSION
Satellite tracking

Most satellite telemetry studies investigating the movements
of far-ranging pelagic seabirds have involved large-bodied
seabirds (>1000 g), with the vast majority of studies
targeting adult breeding birds (BirdLife International
2004). As PTTs become smaller and new attachment
methods are developed, we anticipate an increase in the use
of this technology applied to the much smaller (<1000 g)
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seabirds including other gadfly petrels (Burger & Shaffer
2008). Although Phillips ez 2/ (2003) recognise that PTT
deployments on petrels and albatrosses can increase nest
desertion and increase foraging trip durations, they suggest
thattracking data derived from birds carrying PTTs remains
representative of species’ foraging areas (see also Ackerman
et al. 2004, and Wilson ez al. 2002). We acknowledge that
PTTs used in this study (~5% adult body mass) are above
the recommended ~3% value suggested by Phillips ez a/.
(2003). We do not have the required data to determine if
nest desertion among incubating petrels (n = 8 captured in
July 2007) observed in this study resulted from handling
during theincubation period, detrimental effects of PTTs, or
acombination of both factors. Although at least 16% of the
32 tagged petrels returned to the colony at least once, most
of which were captured in July during incubation, normal
colony attendance patterns for individual breeders on the
Ruamaahua Islands during the breeding season remains
poorly understood (but see Imber (1976) for information
gathered from burrow surveys on Moutohora Island). Due
to breeding failures and the tagging of non-/failed breeding
individuals, the 2006 and 2007 tracks primarily quantify
the movements of individuals free to roam with fewer
constraints imposed by the need to return to their colony
(as might be expected among adults provisioning chicks at
regular intervals). Yet, the degree to which movements of
the tagged petrels were affected by the attached tags remains
unknown. Provided there are no techno-environmental
constraints (i.e., functionality of lightweight solar-powered
PTTs deployed in regions with greater cloud cover),
future satellite telemetry studies investigating gadfly petrel
movements should aim for deployments involving smaller
transmitters whenever possible.

At-sea distribution

Our results indicate that Grey-faced Petrels from the
Ruamaahua Islandsare confined to the southwestern portion
of South Pacific subtropical gyre and the Tasman Sea. This
is the first study to describe the at-sea distribution of non-
breeding (including failed incubating) Grey-faced Petrels
during the breeding season (July—December). Although
the movements of the petrels may have been affected by
using PTTs, our results are consistent with previous at-sea
observations from ships that indicate that the Grey-faced
Petrel and its conspecific, P m. macroptera, are restricted to the
southern subtropical gyres of the Pacific, Indian and Atlantic
oceans (Sladden & Falla 1928, Fleming 1950, Imber 1973).
Historical accounts report Grey-faced Petrels were common
about 200 miles from the coast of New Zealand to the north
and east (Sladden & Falla 1928) and were regularly seen
northwards to the Kermadec Islands (30°S; Imber 1973).
Obur satellite tracking data show that individuals travelled
predominantly towards the west of New Zealand into the
Tasman Sea. The opposite was reported by Fleming (1950)
who suggested that during the breeding season, Grey-faced
Petrels range mainly to the east of New Zealand between
31° and 42°S and about 150 km off the coast to 3200 km
east (145°W). Based on observations at Moutohora (Whale
Island), including stomach contents of chicks, Imber (1973)
deduced that breeding Grey-faced Petrels probably forage
primarily beyond the continental shelfand, similar to Fleming
(1950), he suggested that individuals foraged at least 500 km
southeastwards towards the Subtropical Convergence. Imber
(1973) also suggested that non-breeders are not likely to be
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TABLE 5
Bimonthly-year estimates of the percentage of individuals with available area and home ranges (95% UD areas)
that overlapped each zone and the mean (+ SE) percentage of areas available and 95UD areas within New Zealand
and Australian Exclusive Economic Zones (EEZ) and High Seas for Grey-faced Petrels from the Ruamaahua Islands’
breeding colonies

Variable Zone July—August September—October
2006 (n = 8) 2007 (n = 8) 2006 (n=14) 2007 (n=14)
Percentage of individuals with High Seas 100 100 100 100
available areas in region
New Zealand EEZ 100 100 86 100
Australia EEZ 100 100 100 100
Percentage of home ranges over- High Seas 100 100 100 100
lapping each region
New Zealand EEZ 100 100 71 100
Australia EEZ 100 38 93 86
Percentage of total available areas High Seas 69 +1 67+3 64 +4 70+ 3
(Mean + SE) New Zealand EEZ 242 264 15+3 21+3
Australia EEZ 8+1 7+1 21x6 9+3
Percentage of total home range area  High Seas 52+5 46+ 9 38+5 486
(Mean + SE) New Zealand EEZ 20+£3 49 £ 10 175 275
Australia EEZ 285 5+2 46+ 8 25+5
Rank! High Seas 3 2 2 3
New Zealand EEZ 2 1 3 2
Australia EEZ 1 3 1 1
Compositional analysis A 0.253 0.371 0.801 0.846
P 0.046 0.094 0.362 0.408

Compositional analysis was used to test for whether, relative to an individual’s available area in each zone, the home ranges overlapped

disproportionately with specific zones.

I Relative use of zones was ranked where 1 = high use relative to available areas and 3 = low use relative to available areas, based on com-

positional analysis.

as constrained as breeders by the need to return regularly to
their colony, so they can range farther from colonies (but see,
Stahl & Sagar (20006) regarding non-breeder movementsinan
albatross). Currently, itis not known whether petrels afhiliated
with Moutohora have adifferentdistribution atsea. Consistent
with suggestions by Imber (1973), Grey-faced Petrels tracked
from the Ruamaahua Islands occurred predominantly (>90%
of time at sea) over deep (>1000 m) offshore waters. This
affiliation for pelagic watersalso is consistent with observations
fromsummer (January) surveys in the southern Indian Ocean,
where P m. macroptera dominated the deep-water offshore
avifauna north of the Subtropical Convergence between ~30
and 38°S, albeit at low densities (<1 bird km=2; Hyrenbach
et al. 2007). Together these results indicate that Grey-faced
DPetrel conspecifics are probably affiliated with subtropical
pelagic areas throughout the year.

Oceanographic setting structuring Grey-faced
Petrel distributions

Atthe mega-scale (i.e., theentire breeding season rangeamong
non-/failed breeders), sea surface temperatures range from

4-28°Cin theregion occupied by Grey-faced Petrels (Ridgway

et al. 2002, MacLeod et al. unpubl. data). Winter (July
through September) productivity (mean surface chlorophyll
concentrations), especially northeast of New Zealand and in
the north-central Tasman Sea, is greater than in surrounding
waters (Gregg & Conkright 2001, MacLeod ez a/. unpubl.
data). Elsewhere, oceanic boundaries and fronts also have
been shown to influence the distribution and abundance
of seabirds. For example, Spear ez a/. (2001) described the
importance of temperature gradientsand vertical hydrography
in structuring pelagic seabird communities in the tropical
Pacific. They show that piscivorous seabird densities (e.g.,
Juan Fernandez Petrel Pterodroma externa (Salvin, 1875)) were
more strongly influenced by the depth and intensity of the
thermocline than the location of the Equatorial Front. They
suggest that avian piscivore densities were greatest where the
thermocline was deepest and most stratified, because this is
where their prey were presumably most concentrated.
Individual petrels tracked from the Ruamaahua Islands
aggregated within areas defined by well-described, semi-
permanent oceanographic circulation features, including
(1) the Subtropical Front (STF) centred over the Chatham
Rise, (2) the East Auckland Current, (3) the Tasman Front,
and (4) the East Australian Current (EAC; Chiswell &



Rickard 2006, Roemmich & Sutton 1998, Ridgway et al.
2002). The locations of these features are constrained by the
underlying basin, ridge and plateau bathymetry (Chiswell
& Rickard 2006). Furthermore, the EAC separation zone
(i.e., the region where the EAC splits into two parts: the
Tasman Outflow and the Tasman Front) is characterised
by large-scale turbulence, which spawns numerous cyclonic
and anti-cyclonic eddies, the largest and strongest of which
occur near the coast, south of 32° (Nilsson & Cresswell
1981, Mata er al. 20006). Although the importance of
these features to Grey-faced Petrels remains unknown, we
currently are examining how eddy fields are associated with
strong physical and chemical gradients known to enhance
biological production of potential micronekton (Lutjeharms
et al. 1985) and cephalopod (Lansdell & Young 2007) prey.
These features may indeed be important habitat for foraging
Grey-Faced Petrels.

Spatial overlap and hotspots of distribution
at sea

The degree to which the kernel-based UDswithin individual’s
home ranges (i.e., 95UD areas) overlap provides unique
information about space-use-sharing throughout the sample
population’s large range at sea. We found a seemingly high
degree of overlap (mean range: 48-62%) among Grey-faced
Petrels’ home ranges. Somewhat contrary to our finding,
observations of Grey-faced Petrels at sea indicate they
rarely congregate in groups, except when resting on the sea
surface during the day (Imber 1973, Hyrenbach ez al. 2000).
Variation in spatial overlap, however, is currently not well
understood but could reflect individual variability in searching
strategies and foraging destinations (i.e., including breeders
vs. non-breeders), inter-annual differences in weather or
oceanographic conditions, or changes in the distribution or
availability of key prey resources. These data indicate that
among Grey-faced Petrels attending the breeding colonies
on the Ruamaahua Islands, individuals appear to occupy
similar areas within their vast range at sea during the Austral
winterand spring. Furthermore, the tendency for individuals
to overlap within certain areas at sea, allowed us to better
identify several key hotspot areas.

Our study identified three hotspots for Grey-faced Petrel
distribution at sea: the Ruamaahua, Tasman and Chatham
hotspots. The Ruamaahua hotspot was centred, as expected,
on the Ruamaahua Islands, the location of the breeding
colonies and the deployment site for the tracked petrels.
'This hotspot appears to encompass the predominant flight
paths used by the petrels heading away from the colonies
along the coast of the North Island of New Zealand. The
slight shift in proximity of this hotspot between years
may reflect differences in the wind and oceanic conditions
in each season. The extent and location of the Tasman
hotspot also varied between years and bimonthly periods,
which may be related to temporal shifts in the location
and intensity of the EAC and the associated Tasman Front.
Expected inter-annual variability in the oceanography and
local variations in marine productivity may help explain the
shift in the extent and location of the Tasman hotspot, and
perhaps the emergence of the Chatham hotspot in 2007.
There also exists the possibility that the Chatham hotspot
identified in July—August 2007, resulted from differences in
the movements and subsequent distribution among breeding
petrels captured within nesting chambers. This indicates that
breeders and non-breeders may occupy different regions at
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sea, potentially to avoid interference competition. A similar
pattern has recently been observed among non-/failed
breeding vs chick-provisioning Hawaiian Petrels outfitted
with PTTs (J. Adams & D. G. Ainley unpubl. data). A
more detailed investigation that incorporates oceanography
and satellite-derived locations among Grey-faced Petrels
will provide a better understanding of the importance of
oceanographic features that influence the location of the
hotspots areas.

The location of these hotspots also may be influenced
by key geographic features in the cooler, more productive
waters of the Tasman Sea, where predatory fish species
such as tunas (e.g., Thunnus maccoyii Castelnau, 1872) and
swordfishes (e.g., Xiphias gladius Linnaeus, 1758) are known
to feed (Young er al. 1996, 2006). Grey-faced Petrels are
thought to rely, in part, on these subsurface predators to
locate and flush prey to the ocean surface. Swordfish, for
example, feed over the Tasman Seamounr and Lord Howe
Rise, which are flushed by the colder, more productive
subanrarctic waters and support increased prey biomass
(Campbell 2002, Young 2004).

Documentation of at-sea hotspots for Grey-faced Petrel
distribution in the Tasman Sea and near the Chatham
Islands has important implications in the wake of potential
climate change impacts to this region. Climate modelling
indicates that changes in the Southern Annular Mode
(SAM), the dominant mode of variability in the southern
hemisphere atmospheric circulation, could cause dramatic
climate-induced change especially to the EAC, but also in
the southwestern Pacific (Cai ez a/. 2005). Predicted changes
in the near future (50-100 yrs) include an increase in wind-
stress-curl east of the Chatham Islands, and warming and
strengthening of the EAC (Cai ez a/. 2005). Predicting the
effects of these changes on Grey-faced Petrel distribution and
foraging ranges requires a more detailed understanding of
the importance of these different oceanographic and climatic
conditions in determining their movement patterns.

Implications for multinational ocean
management

Determining the spatial and temporal patterns in the at-
sea distribution of Grey-faced Petrels is important from
a management perspective. Effective conservation and
management for extremely mobile and far-ranging marine
vertebrates depends increasingly on multinational efforts
(Lewison er al. 2004), especially when target organisms
transverse geopolitical boundaries (e.g., BirdLife International
2004). In a firsc effort to identify nations that oversee marine
resources which provide important habitat for Grey-faced
Petrels breeding on the Ruamaahua Islands, New Zealand, we
measured habitat use among individuals that occupied three
geopolitical marine zones: New Zealand’s EEZ, Australid’s
EEZ, and the area within the petrel’s range intersecting the
High Seas. At least a third of the area within each Grey-
faced Petrel’s home range overlapped with the High Seas
jurisdictional zone, with the remaining area split, to varying
degrees, between the New Zealand and Australian EEZs.
Whereas New Zealand entities (iwi, the Ministry for Fisheries
and the Department of Conservation) oversee protection,
conservation and management for Grey-faced Petrels and
other seabirds in their jurisdictional region, jurisdiction over
the High Seas in the Tasman Sea and southwestern Pacific
Ocean is shared by the Western and Central Pacific Fisheries
Convention (WCPFC) nations (BirdLife International 2004).
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Because gadfly petrels often feed in association with subsurface
predators, some species are at risk from certain industrialised
fishing practices (such as longlining) that target these fishes.
Furthermore, many gadfly petrels scavenge food from the
surface, including baited hooks, and other procellariid
seabirds potentially are attracted to or disoriented by artificial
light sources at sea (Reed ez a/. 1985). Multinational fishing
operations targeting pelagic fishes suchas tunas and billfishes
operate to varying degrees in waters used by Grey-faced Petrels.
Although many of these fisheries are increasingly adopting
measures to reduce seabird bycatch, observer coverage among
many fisheries is insufficient to assess accurately the impact
of fisheries activity on procellariiform seabird populations
(Lewison et al. 2004).

We have made preliminary progress by identifying key
use areas for Grey-Faced Petrels. Future studies should
aim to investigate the extent of overlap between the at-
sea distribution of Grey-faced Petrels (of known breeding
status if possible) and commercial fisheries activity to
determine the risk that this industry poses for this species.
Research should also determine the environmental factors
influencing the act-sea distribution of Grey-faced Petrels
to provide a better understanding of the potential impact
of climate change. Without this information, resource
managers would be unable to assess (1) direct and indirect
effects of commercial fisheries, or (2) the effect of oceanic
and atmospheric climate on Grey-faced Petrel population
dynamics (i.e., survival, abundance).
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