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Wedge-tailed Shearwaters, Pujfinus pacificus, engineer the ecosystem by digging burrows in which they nest. This has been previously 
shown to affect the soil and vegetation properties of their colonies. Here we report on field surveys employed ro investigate how associated 
vertebrate fauna respond to physical habitat modification by shearwaters. The study area was species poor, with only one mammal, and 
three reptile species detected in 1440 Elliott trap and 720 pitfall trap nights across a 13-month period. Nineteen bird species were recorded 
from 98 survey days. Relative to an area of uncolonised heath, we observed an increase in the abundance of King's Skinks, Egernia kingii, 
and a decrease in the abundance of House Mice, Mus musculus, and West Coast Ctenotus, Ctenotus jallens, in the shearwater colony. The 
survival rates of King's Skinks and House Mice were not affected by Wedge-tailed Shearwater presence. Bird species richness was less in the 
colony (9.2 ±0.5 species month-1) than the heath (11.5 ±0.2 species month-1 ), and the composition of the two communities was different.
We suggest that ecosystem engineering by Wedge-tailed Shearwaters is a major determinant of fauna associates of their colonies and offer 
direct and indirect mechanisms to explain the patterns of species occurrence observed. 
Key Words: Wedge-tailed Shearwater, Puffinus pacificus, ecosystem engineering, burrow, Rottnest Island, avifauna, Egernia kingii, 
Mus musculus, Ctenotus /aliens. 

INTRODUCTION 

Wedge-tailed Shearwaters, Puffinus pacificus (J.F. Gmelin, 
1789), are pelagic seabirds that nest in burrows on islands 
in the Indian and Pacific oceans. They have been described 
as ecosystem engineers because they disrupt resource flows 
within their colonies as a consequence of their physical 
modification of habitat (Jones et al. 1994, Bancroft et al. 
20046). On Rortnest Island, Western Ausrralia, burrowing 
by an expanding colony of Wedge-tailed Shearwaters has 
created 5.1 km of tunnels ha-1, displaced 210 t soil ha-1 and
significantly modified physical and chemical soil properties 
(Bancroft et al. 2004a, b, Bancroft et al. 2005a, b). These 
soil perturbations correlate with changes in plant diversity, 
structure and productivity (Bancroft et al. 2005c). The impact 
that burrowing by the birds has on the island fauna has yet 
to be investigated. 

Burrowing may affect fauna by two main mechanisms: 
directly, by providing a habitat resource, the burrow; and 
indirectly, by altering the edaphic or botanical characteristics 
of a site via biopedturbation (Jones et al. l 994, 1997, 
Kinlaw 1999, Whitford & Kay 1999). These mechanisms 
have been best studied in mammals and the direct use of 
mammalian burrows by non-burrowing taxa has been well 
documented (e.g., mole, Sea/opus spp.; prairie dog, Cynomys 
spp.; rat, Eliurus spp.; and kangaroo rat, Dipodomys spp. 
systems; Scheffer 1945, Campbell & Clark 1981, Hawkins 
& Nicoletta 1992, Goodman 1994). Burrows can benefit 
associated animals by providing shelter from predators or 
climate, a site for socialisation or communication, or by 
conveying physiological advantages (Kinlaw 1999). Avian 
burrows are also directly utilised by co-occurring fauna: 

Tiger Snakes, Notechis scutatus (Peters, 1861), cohabit 
Short-tailed Shearwater, Pujfinus tenuirostris (Temminck, 
1835), burrows (Serventy et al. 1971); Tuatara, Sphenodon 
punctatus (Gray, 1842), utilise Fairy Prion, Pachyptila 
turtur (Kuhl, 1820), burrows (Newman 1987); and King's 
Skinks, Egernia kingii (J.E. Gray, 1838), and Dibbler, 
Parantechinus apicalis (J.E. Gray, 1842), use Wedge-tailed 
Shearwater burrows (K. Wolfe, pers. comm., Chapple 2003). 
The indirect impacts of burrowing mammals on fauna! 
communities are predominantly through the disruption of 
food webs, and have been associated with changes in species 
diversity (Whicker & Detling 1988, Ceballos et al. 1999, 
Kinlaw 1999) and abundance (Whicker & Detling 1988, 
Hawkins & Nicoletta 1992). Nutrient and trophic cascades 
have been implicated in the increased abundance of fauna 
in burrowing seabird colonies (Markwell & Daugherty 
2002) and post-breeding survival of male Dibbler (Wolfe 
et al. 2004) but otherwise the impact of avian ecosystem 
engineers is poorly known. 

Here we follow our previous studies of the ecosystem 
engineering impact of Wedge-tailed Shearwaters on soil and 
vegetation by determining the vertebrate fauna associates of 
their colonies on Rottnest Island. We used Elliott and pitfall 
trapping to survey for amphibians, reptiles and mammals, 
and area searches for avifauna. Capture-mark-recapture 
techniques were used to estimate population size and survival 
rates for the two dominant, non-avian vertebrates: House 
Mice, Mus musculus Linnaeus, 1758, and King's Skinks. 
Areas with and without shearwater burrows were compared 
to investigate the impacts that ecosystem engineering by 
shearwaters has on the abundance and species composition 
of the associated fauna community. 



TABLE 1
The percentage of surveys in which bird species were recorded present on, in or above the colony and heath
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MATERIALS AND METHODS

The study was conducted on Rottnest Island (32°00'S,
115°31'E), southwest Western Australia (fig. 1), between
March 2002 and April 2003, and focused on the largest two
Wedge-tailed Shearwater colonies on the island, Radar Ree£
and Cape Vlamingh (Bancroft et ala 2004a). Colonies were
vegetated by low, ruderal and, predominantly, non-native
species (Bancroft et al. 2005c). Plant species diversity on the
colonies was low, with much ofthe colony surface dominated
by a monoculture mat of Iceplant, Mesembryanthemum
crystallinum L. (Bancroft et ala 2005c). Surrounding
uncolonised areas comprised low (c. 1 m), moderately diverse,
native heath vegetation (Bancroft et ala 2005c). Detailed
descriptions of the vegetation of the colony and non-colony
(heath) areas are provided by Bancroft et ala 2005c.

A single trapping location was selected (using randomly
generated mapping co-ordinates) in each colony, and in
the heath within c. 50 m of each colony's boundary. Birds
were surveyed by area searches and non-avian, terrestrial
vertebrates were surveyed by both pitfall and Elliott trapping.
The pitfall trapping was limited to the Radar Reef colony
because there was a risk of public interference with the
pitfall traps at Cape Vlamingh. Both trapping methods
exclude the capture of larger animals (see trap dimensions
below). The only such species that was known to occur
within the study area was the Quokka, Setonix brachyurus
(Quoy & Gaimard, 1830). A pilot study of Quokkas
suggested that their abundance was too low to warrant
further investigation.

Bird surveys

Bird species were recorded as present/absent in the colony
and heath while conducting Elliott and pitfall trapping, and
other work. The area of heath surveyed was equivalent to
the respective colony area (approximately 4 ha). Birds were
surveyed on 98 days over a period of 13 months: March (11
days), April (8 days), May (10 days), June (8 days), July (9
days), September (8 days), October (9 days), and December
2002 (10 days), and February (9 days), March (6 days)
and April 2003 (10 days). Recordings were made each day
between 0700 and 0900, and 1400 and 1600. Species were
classified as: (i) terrestrial, if observed predominantly on the
heath or colony locations, (ii) aerial - foraging, if observed
on the wing above the locations and were using them as a
foraging resource, or (iii) aerial- in transit, ifpredominantly
observed above the locations in transit. The three aerial- in
transit species (see table 1) were excluded from subsequent
analyses.

Occurrence data were used to calculate Shannon-Weiner
diversity index (H), and the equitability (E) for the colony
and heath communities (see Krebs 1999). Similarly,
two community comparison indices were calculated; the
coefficient of Jaccard (Sj) and percentage similarity (P,
see Krebs 1989). Data from each month were treated
separately.

Elliott trapping

At each trapping location, 12 Elliott traps (325 x 85 x 95
mm treadle, box-traps; Elliott Scientific, Upwey Victoria)
were arranged in a line at 5 m intervals. Traps were baited
with a mix of rolled oats, sardines and peanut butter. Traps
were opened for five nights on six survey occasions: March,
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FIG. 1 - Location ofRottnest Island.

May, July, October, December 2002 and February 2003.
Traps were checked in the early morning. Captured animals
were individually marked by toe- (reptiles) or ear-clipping
(mammals), and immediately released.

Data from both trapping locations within the colony or
heath were pooled for analysis. Chi-squared (X2) tests were
used to analyse frequency data. Repeated-measures (RM)
ANOVA was used to analyse capture rates. MANOVA was
used to concurrently analyse the new capture and recapture
rates of multiple species (variables). The Jolly-Seber model
equations presented by Krebs (1999) and Program MARK
(Gary White, Colorado State University) were used to derive
population estimates, and survival and recapture probabilities
from the capture-mark-recapture data. Assumptions of this
model are provided by Krebs (1999). Student t-tests were
used to compare population estimates (paired in time) and
movements of colony and heath animals.

Pitfall trapping

At each location, 12 unfenced, unbaited, PVC pitfall traps
(150 mm diameter x 400 mm depth) were spaced in a line at
5 m intervals. As the traps were initially dug in, wire mesh was
placed beneath the trap to prevent animals from burrowing
out of the traps, while allowing free drainage ofwater. Traps
were opened for four consecutive nights in each of June,
July, October, December 2002 and February 2003. Traps
were checked in the early morning. When not in use, traps
were sealed with metal lids and covered with soil. Captured
animals were released, unmarked.

Reptile data (all species) were pooled for analyses. Total
reptile and mouse abundances for each location were
compared using a X2 test. RM-ANOVA was used to analyse
capture rates.

Burrow use by King's Skinks

Internally-winding cotton spools were attached to the base of
the tail of 14 King's Skinks (six at Cape Vlamingh, eight at
Radar Reef) trapped by Elliott trapping in December 2002
(during the period of highest reptile activity). The free end
of the cotton was tied to vegetation adjacent to the point
of capture and the animal released. We returned 24 hours
later, recaptured the animal, and used the cotton tracer to
determine the number of burrows it had entered.
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RESULTS

Bird surveys

Twenty-two species were recorded on, in or over the colony or
heath. Ofthese, 19 were observed using the colony or heath as
a resource (terrestrial and aerial-foraging species; table 1). Ten
species were recorded on both the colony and heath, with four
exclusively in the colony: Wedge-tailed Shearwater; Mountain
Duck, Tadorna tadornoides (Jardine & Selby, 1828); Ruddy
Turnstone, Arenaria interpres (Linnaeus, 1758); and Pied
Oystercatcher, Haematopus longirostris Vieillot, 1817. Five
species were recorded exclusively in the heath: Ring-necked
Pheasant, Phasianus colchicus Linnaeus, 1758; Painted Button­
quail, Turnix varia (Latham, 1802); Laughing Turtle-dove,
Streptopelia senegalensis (Linnaeus, 1766); Australasian Pipit,
Anthus novaeseelandiaeVieillot, 1818; and Black-shouldered
Kite, Elanus axillaris (Latham, 1802). By definition of our
locations, Wedge-tailed Shearwaters were only observed in
the colony and our records reflect birds present in burrows
during the survey period. Mountain Ducks were mainly
observed in winter months, when up to six birds foraged
through the low colony vegetation. Ruddy Turnstones were
present on the colony in both the autumn of 2002 and
2003, but at all other times of the year were absent from the
location. Flocks ofup to 40 turnstones foraged over the colony
surface, frequently probing beneath senescent vegetation for
invertebrates. Similarly, Pied Oystercatchers foraged, usually
in pairs or threes, in the colony during autumn, but also
extended their use of the location through winter.

Based on species richness, the two communities were
moderately similar (co-efficient of Jaccard; Sj = 0.53).
Accounting for the frequency of species presence, the
communities were still similar (percentage similarity, P =

50.8%). Both locations were similar in diversity (Shannon­
Weiner diversity index, H); for the colony H = 0.91 and
for the heath H = 0.96. Species were evenly encountered
(equitability index, E) at each location; for the colony E
= 0.79 and for the heath, E = 0.81. The mean monthly
species richness was significantly less in the colony (9.2
±0.5, range 6-11) than the heath (11.5 ±0.2, range 10-13;
paired t-test, tlo = 4.1, P = 0.002).

Elliott trapping

Three measures were used to assess the relative use ofcolony
and heath locations by animals captured by Elliott trapping:
total individuals captured, capture rate and estimated
population size. Three species were captured in the 1440
Elliott trap nights: King's Skink (91 individuals, 501 captures),
House Mouse (287 individuals, 469 captures) andWest Coast
Ctenotus, Cten0tus fa lIens Storr, 1974, (five individuals, five
captures). West Coast Ctenotus was excluded from analyses
due to the low number of captures.

Totalled across all surveys, there were significantly more
King's Skinks (52) and fewer House Mice (115) individuals
in the colony than in the heath (39 and 172 respectively; X2

= 8.2, d.f = 1, P = 0.004). The mean number of animals
(new and recaptured) captured trap-I night-I showed the
same, significant trends for both King's Skink (RM-ANOVA,
F1,94 = 8.3, P <0.001) and House Mouse (RM-ANOVA,
F1,238 = 11.8, P = 0.001; fig. 2). Subsequent analysis
treated new and recaptured animals as separate variables
and showed that this trend was attributable to differences
in rates of capture of both groups (MANOVA, F4,I425 =

10.72, P <0.001). There was also a significant effect of
trapping month on capture rate (MANOVA, FIO,2854 =

8.96, P <0.001; fig. 2). Capture rate differed significantly
between all months, with the exception of October and
December 2002 for King's Skink (SNK, P = 0.767), and
March 2002 and February 2003 (SNK, P 0.817) for
House Mouse. There was a peak in the capture rate ofHouse
Mice in the winter (July) survey, and the maximum number
of King's Skinks was caught in spring and early summer
(October and December). Colony and heath capture rates
behaved consistently over time (no significant interaction
between location and month; MANOVA, F IO,2854 = 0.84,
P = 0.587). While overall there was a significantly higher
capture rate of House Mice in the heath, during July the
capture rate in the colony rose to equal that of the heath
(SNK, P 0.294; fig. 2).

Analysis of capture-mark-recapture data produced four
separate estimates ofpopulation size for both species at each
location (fig. 3). The colony supported a larger population
of King's Skinks (paired t-test, t3 = 11.0, P = 0.002), and
a smaller population of House Mice ( t3 = 3.4, P 0.044)
than the heath. Comparison ofthe means and standard errors
presented in table 2 suggests that, within species, there was
no difference in the survival and recapture probabilities of
colony and heath animals.

Seventy King's Skinks and 118 House Mice were
recaptured on at least one occasion. Frequency distributions
of the maximum distance moved by recaptured animals are
shown in figure 4. For individuals that moved only within
a trapping location (see fig. 4), the mean distance moved
did not differ for colony and heath animals (King's Skink,
t59 = 0.4, P = 0.680; House Mouse, tIo5 = 0.4, P = 0.700).
For these animals, the average maximum distance moved
(direct distance between traps) was 11.6 ±1.1SE m for King's
Skink (range 0-32.4, n = 61) and 15.0 ±1.3SE m for House
Mouse (range 0-55.4, n = 107). Nine King's Skinks (9.90/0
of all individuals captured) and 11 House Mice (3.8%)
moved between trapping locations. Two movements ofKing's
Skinks were of particular note. One animal moved at least
770.7 m (between July and October 2002), and the other
730.5 m (between December 2002 and February 2003). The
remaining King's Skink moved between 56.3 and 76.9 m
(fig. 4). Between-location movements by House Mice ranged
from 55.3 to 81. 1 m. Animals originally marked in the
colony and heath did not differ in their between-location
movements (t-test, King's Skink, t7 = 0.1, P = 0.922; House
Mouse, t9 = 1.8, P = 0.110).

Pitfall trapping

One species ofmammal (House Mouse) and three species of
reptile (West Coast Ctenotus; King's Skink; andWestern Pale­
flecked Morethia, Morethia lineoocellata (Dumeril & Bibron,
1839)) were captured in the 720 trap nights (numbers of
captures are presented in table 3). Species richness was higher
in the heath (3) than the colony (2). The total number of
captured House Mice and reptiles (pooled captures) differed
significantly between the three locations surveyed by pitfall
trapping (X2 = 23.9, d.f. = 1, P < 0.001). There were more
mice in the colony (45 captures) than the heath (22), and
more reptiles in the heath (19) than the colony (1).

The rate of capture (animals trap-I night-I) differed
significantly between locations for House Mice (RM­
ANOVA, F1,94 = 5.1, P= 0.027), and reptiles (RM-ANOVA,
F1,94 = 14.1, P < 0.001; fig. 5). For both groups there was a
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FIG. 2 - The rate ofcapture ofKing's Skinks and House Mice
in the colony (solid line) and heath (dashed line) for the six
Elliott trapping surveys. Error bars represent standard errors.

FIG. 3 - Estimated total population sizes of King's Skinks
(circles) and House Mice (diamonds) in the colony (solidpoints
and lines) and heath (open points and dashed lines) areas
surveyed. Error bars represent standard errors.

DecJunApr
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FIG. 4- Frequency histogram ofthe maximum distance moved
within (black bars) and between (grey bars) trapping locations
by King's Skinks (N =70) and House Mice (N =118).

FIG. 5 - The rate ofcapture ofHouse Mice and all reptiles
in the colony (solid line)) and heath (short-dashed line) for
the jive pitfall trapping surveys. Error bars represent standard
errors.
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TABLE 2
Annual probability of survival and recapture for King's

Skink and House Mouse in the colony and heath

TABLE 3
The total number of captures of species caught by

pitfall trapping at each of the two locations

Species Location Probability of Probability of Species Locations

survival recapture Colony Heath

King's Skink, Colony 0.906 ±0.032 0.744 ±0.045
kingii (0.823-0.952) (0.645-0.822) House Mouse, Mus musculus 45 22

Heath 0.930 ±0.037 0.676 ±0.059 West Coast Ctenotus,
(0.814-0.978) (0.551-0.780) Ctenotusfa lIens

17

House Mouse, Colony 0.676 ±0.082 0.234 ±0.061
Mus musculus (0.501-0.813) (0.135-0.374) King's Skink, Egernia kingii 2

Heath 0.676 ±0.055 0.324 ±0.054 Western Pale-flecked Morethia,
(0.560-0.774) (0.228-0.438) Morethia lineoocellata

Values given ±SE. 950/0 confidence limits in parentheses

significant effect of trapping occasion (RM-ANOVA, F4,94

> 7.1, P < 0.001 for both cases).

Burrow use by King's Skinks

On average King's Skinks utilised 6.07 ±0.27SE burrows
lizard-I daTI (range 4-8).

DISCUSSION

Wedge-tailed Shearwaters on Rottnest Island have engineered
the vegetation from a reasonably diverse, waist-height heath
to a low mat of vegetation that is dominated by Iceplant
(Bancroft et ale 2005c). It is highly likely that these changes
in vegetation structure and composition are responsible for
the differences in avifauna species richness and composition
that we observed. Two shorebird species that are usually
associated with the beaches and salt lakes were attracted to the
colonies. Senescent colony vegetation produced conditions
that were similar to the rotting seaweed banks that are often
frequented by these species (Saunders & de Rebeira 1993).
While the low, open areas of shearwater colony attracted a
different guild of foraging birds from the adjacent heath,
it also excluded other modes of foraging. Ground feeding
granivores such as Ring-necked Pheasant, Laughing Turtle­
dove and Painted Button-quail were not present in the
colony. Iceplant produces very small, wind-blown seeds that
are unlikely to support these birds, whereas heath provides
a greater diversity of larger seed-bearing species (Bancroft et
al. 2005c). The granivores, especially Ring-necked Pheasant
and Painted Button-quail, prefer cryptic, enclosed habitat
(Marchant & Higgins 1993, Saunders & de Rebeira 1993)
so would be expected to avoid the open, exposed colony.

King's Skinks and House Mice dominated the trapping
studies. The two species appear to respond to the presence
and physical impact ofWedge-tailed Shearwaters (Bancroft et
al. 2004b, Bancroft et al. 2005a) in opposing manners. The
shearwater colonies supported a greater number of King's
Skinks (as measured by number ofnew animals, individuals,
capture rate and estimated population size) than the adjacent
heath, but there were fewer House Mice in the colony than
the heath. Given the massive modification of habitat, and
the disruption of edaphic and vegetation characteristics of

the colonies via biopedturbation and burrowing (Bancroft et
al. 2004a, b, 2005a, b, c), it is highly likely that ecosystem
engineering by the shearwaters is responsible (at least in part)
for these patterns. Several possible mechanisms, direct and
indirect, may explain the patterns observed.

The two maj or, direct functions of burrows are to
provide shelter from the environment or predators, and to
convey physiological benefits (Reichman & Smith 1990,
Kinlaw 1999). King's Skink is an ectothermic reptile; it
behaviourally thermoregulates and is therefore dependent
on the surrounding environment for sources of heat or
shade (Withers 1992). The shearwater colonies would be
particularly favourable locations for this species because
the burrows provide a relatively constant temperature
environment and an excellent source of shade in hot
conditions (Whittow et al. 1987). Throughout the year
Rottnest Island burrow temperatures range from 13.2° to
22.7°C (W Bancroft, unpub!. data), but the ground surface
temperatures range from 10.8° to 47.3°C (Bancroft et al.
2004b, 2005a). It is known that other reptiles, such as
snakes, use burrows for thermoregulation (Serventy et al.
1971, Whitaker & Shine 2002) and we frequently observed
King's Skinks shuttling in and out of burrows. The House
Mouse is an endothermic mammal and is less dependent
on the surrounding environment to thermoregulate. While
burrows can certainly assist the thermal physiology of
endothermic animals they are by no means essential for
House Mice (Withers 1992, Moro & Morris 2000). Both
species may also use burrows to avoid predation (Strahan
1995, Cogger 2000). On Rottnest Island, the major predators
of both species are likely to be birds of prey (Saunders &
de Rebeira 1993) and burrows are particularly effective for
avoiding aerial predators (Kinlaw 1999). While House Mice
readily construct their own burrow systems (Avenant &
Smith 2003) and numerous mouse burrows were observed
throughout the study, King's Skinks prefer the burrows of
other animals (Triggs 1996, Chapple 2003). Again, House
Mice are somewhat independent ofthe surrounding physical
habitat resources.

Biopedturbation by shearwaters may indirectly affect the
cohabiting fauna via changes to the soil and flora, and flow­
on effects through food webs. King's Skink is omnivorous
and feeds on a wide variety of foods including vegetation,
invertebrates, carrion and seabird eggs (Bush et al. 1995,
Chapple 2003). The House Mouse is also omnivorous but
on islands its diet is more limited than King's Skink and
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comprises mostly invertebrates, with some supplementary
plant material (Le Roux et al. 2002, Moro & Bradshaw
2002, Smith et al. 2003). Shearwaters reduce plant
species diversity, and the structural complexity of colony
vegetation (Bancroft et al. 2005c) and this may reduce
arthropod diversity (Abbott 1976). Such a mechanism
may indirectly limit the House Mouse population and
the broader dietary range of King's Skinks may buffer this
species against perturbations in food supply caused by
shearwater biopedturbation. Wolfe (2004), however, noted
an increased abundance of invertebrates in the shearwater
colonies on Whitlock and Boullanger islands (c. 200 km
to the north of Rottnest Island). Markwell & Daugherty
(2002) also found an increase in invertebrate abundance
on New Zealand islands inhabited by burrowing seabirds.
If this is true for Rottnest Island, then other processes must
be acting to limit mouse numbers. Regrettably we have no
data on invertebrate abundance or diversity in the Rottnest
Island shearwater colonies to test this, but the seasonal
pattern in House Mouse abundance supports its exclusion
by shearwaters. The House Mouse population in the colony
was suppressed (relative to the heath) for the majority of
the year, except for the winter survey, where the population
rose to equal that of the heath (see figs 2, 3). This is also
the period when the shearwaters were completely absent
from the island. Absence of the shearwaters apparently
permits the colony House Mouse population to reach the
level recorded in the heath.

Indeed, the direct and indirect effects of the burrows or
biopedturbation may be overlain with direct interactions
between the burrower and the cohabiting fauna. King's
Skinks are diurnal and House Mice are predominantly
nocturnal (Strahan 1995, Chapple 2003). The majority of
shearwaters forage at sea during the day and return to their
colony after dark (Marchant & Higgins 1990) so there would
be relatively little interaction with active King's Skinks but
considerable overlap with active House Mice. Predation of
mice or skinks by Wedge-tailed Shearwaters has not been
reported, but House Mice fall within the size range of
fish taken by the birds, so may be a potential food source
(Barker & Vestjens 1989, Strahan 1995, Schultz & Klomp
2000). The Sheathbill, Chionis minor Hartlaub, 1841, is of
a similar body size to the Wedge-tailed Shearwater and is
known to predate on mice (VR. Smith, pers. comm.). At
c. 220 g, adult King's Skinks are unlikely to be consumed
by shearwaters (c. 380 g, Dunning 1993, Storr et al. 1999,
Schultz & Klomp 2000). Both skinks and mice feed on
seabird eggs or attack chicks (Bush et al. 1995, Cuthbert
& Hilton 2004) so may be a potential threat to nesting
shearwaters. Short-tailed Shearwaters appear to tolerate
predators (Tiger Snakes, Serventy et al. 1971) although
there are several reports of other burrowers defending their
burrows and evicting snakes (Halpin 1983, Newman 1987,
Randall et al. 2000). Wedge-tailed Shearwaters apparently
tolerated King's Skinks, as many of the burrows utilised by
the skinks were also actively used by the birds, including
incubating adults.

Our data, therefore, show that Wedge-tailed Shearwaters
had a significant effect on the King's Skink and House Mouse
populations on the western end of Rottnest Island but that
the main causes of these impacts were most likely different
mechanisms. We suggest that the increased King's Skink
abundance in the shearwater colonies was most likely a result
of physical changes in the environment caused by Wedge­
tailed Shearwater biopedturbation (ecosystem engineering;

Jones et ale 1994, 1997). In contrast, the House Mouse
populations within the colonies appeared to be suppressed
by the presence of the shearwaters themselves. Some effects
ofecosystem engineering by Wedge-tailed Shearwaters on the
House Mice populations cannot be completely discounted
without further investigation.

There was seasonality to the capture rate of both species.
The capture rate of King's Skinks peaked in spring, was
consistent across both locations, and presumably reflected
the period when the animals were most active (see also
How & Shine 1999). The capture rate of House Mice was
highest in winter, and was probably driven by an increase
in population size as a result of increased food availability.
Many plants at the study locations fruit or shed their seed at
this time ofyear (e.g., Acanthocarpuspreissii Lehm., Olearia
axillaris (DC.) Benth., Rhagodia baccata (Labill.) Moq.;
Rippey & Rowland 1995) and there is a rapid increase in
the germination and growth of new plants (W Bancroft,
unpubl. data). Invertebrate abundance also increases during
the wetter months in this region (Recher et al. 1996, Majer
et ale 2003).

The movements of mice and skinks were not influenced
by whether they lived within the colony, or in the heath.
We found no difference in the survival rates between mice
or skinks that lived in the colony, and lived in the heath. So,
while the abundance of King's Skinks and House Mice was
affected by Wedge-tailed Shearwaters, the survival rates of
these species were not. To our knowledge these are the first
empirical data to test the effect that an ecosystem engineer
has on a life history trait of another species.
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