APPENDIX.

Researches in Relativity

11.--The Basis of the Physical World as indicated by carrying as far as possible the Tenets of Relativity.

BY

ALEX. McAJJLAY, M.A.. Professor of Mathematics, University of Tasmania.

(Read 15th April, 1925)

NOTE.-Paging and numbering of Articles continued from "Researches in Relativity, I.," P. and P., 1924, Appendix.

RESEARCHES IF RELATIYITY.II.

$$
\text { (Art.? - } 12 \text {) }
$$

THE BASIS OF THE PHYSICAI, WORID AS INDICATSD by carrying as far as poseible the tenets of RELARTIVITY

By Alex. H.cAuley, H.A.
Professor of Mathematics University of Tesmania
(Read 15th. April, 1925)

Additional Errata

In the firgt paper an unfortunate error of sign occurred eariy and has necesgitated the corrections Below. ${ }^{c} \lambda$ and ${ }^{c} \omega$ were correctly defined, the first in the last line of page 1 and the second in equation (2) on page 2 , but the rinus siga is incorrectly put before ${ }^{c} \omega$ on line 24 of page 3 ; and the following corrigenda are the result:-

> Page 3, line 24 For $-{ }^{c} \omega$, read ${ }^{c} \omega$
> Page 4, equation (7) For $V_{2} \Delta^{c} \lambda_{\text {, }}$ read $-V_{2} \Delta^{c} \lambda$
> Page 4, equation (10) For l_{K}, read $+l_{K}$
> Page 5, equation (14) Delete firstminus sign. Page 6, line 17 For
> ${ }^{c} \lambda V_{0} \Delta^{l} \lambda+V_{1}{ }^{l} \lambda c \omega=c \lambda V_{0} \Delta^{l} \lambda+V_{1}^{l} \lambda V_{2} \Delta^{c} \lambda$, read
> $-c \lambda V_{0} \Delta^{l} \lambda+V_{1}^{l} \lambda c \omega=-c \lambda V_{0} \Delta^{l} \lambda-V_{1}^{l} \lambda V_{2} \Delta^{c} \lambda$
> page 6, equation (15) For $F_{1}^{l} \lambda c^{c}$) read $-V_{1}^{T} l \lambda^{c} \omega$

I hope this completes the list of necessary corrections.

Art.7. On the kind of invariantive relations to be expected in the physical manifold.
A summary of the present paper will be found in the opening paragraphs of art. 12 below.

In the last paragraph but one of Art. 6 it was stated that researches already in existence were to occupy our attention. But the writer has found much of interest to add to the foundations. The present paper will be occupied with these additions.
To begin with, it may have seemed to the realer that Finstein's original bseis and the writer's addition thereto given in the first paper - the basing of all Physics on the fundamental affine linity E_{α} - is somewhat artificial. I propose on the contrary to show that it is scarcely possible to conceive any simpler prinoiple that can be reconciled with the teliefs of all relativists when ond tries to put those bellefs down in a definite mathematical form. We all belispe that the foundation is some reality (called action) eltuated at each element

$$
d b=d x_{1} d x_{2} d x_{3} d x_{4}
$$

of a four-dimensional continuum, and the relstive values of the portions of aotion in naighbouring elamente. In a word we believe that there is no "action at a distance", but that everything is to be deduced in invariantive form from ${ }^{2} \mathrm{~W}$ and its derivatives of all orders, where ${ }^{l} \mathrm{~W}$ (henceforth to be used in place of ${ }^{l} \mathrm{H}$ of the first paper) is the action density. The existence of such invariantive form is not obvious: much less is it obvious that re oan obtain relations which are so far invariantive that they do

Art. 7.
not even depend on the particular value given to $l W$ but are true simply and solely because ${ }^{l} \mathrm{~W}$ and its derivatives are of their respective olasses. But thic is precisely what the prinoiple of our first paper eneuree, though the reader may not be prepared for this. statement, and our first task must be to establish it.

It is frequently more convenient to work with the ${ }^{2}$ gagathe of auch a density as $l \mathbf{W}$ rather than with ${ }^{2} W$ itself. Let x be any log-soslar-density, that is x is of the same nature as $\log ^{l} W$. We havs first to consider how to arrive at invariantive relations anong
$x, \Delta x, V_{0} \alpha \Delta \cdot \Delta x, V_{0} \alpha \Delta . V_{0} \beta \Delta . \Delta x$, etc., where, as usual, α, β, etc., are any number of contravariant vector dummies.
Wow; from the history of dealing with such continunms ae we have under consideration, from Riemann to the present day, it may be taken for granted that the problem as so stated necesitates that our continuus must possess structure. (It is open to argument that without suoh structure we have provided no physioel Coundation at all.) Riemann provided this structure by the quadratic differential Porm. Civita-Levi, Wey1, Fddington and Einstein have developed what must be regarded as a generalisation more natural to our present point of view.

The baels of their structure was an intrinsio inorement (due to parallel displadement) of vectors covariant or contravariant. But from our point of viow an intrinsic increment of density (a soalar) ia more fundamental. Lat us put, in definite forms in parallel, the meanings of these two intrinsic increments. The use of the word intrinsic in these two senses implies the following two equations

$$
\begin{align*}
x_{\alpha}=\left(D_{\alpha}-S_{\alpha}\right) x & =V_{0 \alpha}(\Delta-\nu) x \tag{1}\\
{ }^{c} \tau_{\alpha} & =\left(D_{\alpha}-E_{\alpha}\right)^{c} \tau \tag{2}
\end{align*}
$$

ATt. 7 .
where the expressions on the left, $x_{\alpha},{ }^{c} \tau_{\alpha}$, are absolute increments of the scalar x described above, and of a covariant vector ${ }^{c} \tau$. These absolute increments $x_{\alpha},{ }^{c} \tau_{\alpha}$, are furaished by comparison with the intrinsic increments $S_{\alpha} x, \mathrm{E}_{\alpha}{ }^{c} \tau$ which are dependent on what may be termed the parallel dispiacement α (an infinitesimal contravariant vector) and quite indepentent of choice of coordinates. D_{a} merely stands for the ordinary differential operator $\mathrm{V}_{0} \alpha \Delta$. . $\mathrm{E}_{\boldsymbol{\alpha}}$ is a linity of ${ }^{c} \boldsymbol{\tau}$, the linity itself being linear in α; similarly S_{α} is a linity of the scalar x, the linity itaolf being linear in a; that is to say S_{α} is or the form $V_{0 \alpha \nu}$, ewhere ν is a vector. It follows that $\mathrm{E}_{\alpha}, \mathrm{S}_{\alpha}, \nu$, are non-invariantive. Although non-invariantive the relations of these symbols to change of ooordinates sre quite simple, and it is rather eurprising that, so far is I know, they have not hitherto been given in the case of E_{α}.

From the meaning just given to "intrinsic" it follows that x_{α} is a sealar deneity and ${ }^{e} \tau_{\alpha}$ is a covariant vector. From this alone follow readily the relations just aentioned of E_{α} and ν. whether the change of coordinates be finite or infinitesimal. In the present paper infinitesimal change only will be treated of.
The reader will find no diffioulty in proving that

$$
\begin{align*}
& \delta^{\prime} x=-\mathrm{V}_{0} \Delta \sigma, \delta^{\prime} \mathrm{V}_{0} \alpha \nu=-\mathrm{V}_{0} \alpha \Delta \cdot \mathrm{~V}_{0} \Delta \sigma \tag{3}\\
& \delta^{\prime} \mathrm{V}_{0} \gamma \mathrm{E}_{\alpha} \epsilon \beta=-\mathrm{V}_{0} \gamma \Delta \cdot \mathrm{~V}_{0} \alpha \Delta \cdot \mathrm{~V}_{0} \epsilon \beta \sigma \tag{4}
\end{align*}
$$

where δ^{\prime} and σ are the δ and ϵ used in equations (2), (3), of Art. 15 of M.D.I. (2), in which place infinicesimal change of coordinates was first considered in our notation. (ror σ. see Art. 4 on p. 14 ab ove.)

Note that nothing whatever has been added here to
the meaning (as originally introduced by Weyl and Eddington) of the affine linity E_{a}. I have in M.D.I. (3) already ehown that abeolute differentiation is a consequence of the meaning.

Note also eome important pure mathematioal truisms. Let $x,{ }^{0} x$ be two scalars of type $x ; \nu,{ }_{\nu} x$ vectors of type ν; and $\mathrm{E}_{\alpha \alpha},{ }^{0} \mathrm{E}_{\alpha}$ two affine indities.

Then:-
(1) $x-{ }^{0}{ }_{x}$ is an invariant. $\nu-{ }^{0} \nu$ is a co-variant vector. $\mathrm{E}_{a}-{ }^{0} \mathrm{E}_{\alpha}$ is invariantive, i.e. it is a coexco vector linity whose form is linear in the contravariant vector \propto.
(2) Therefore the general values of $\boldsymbol{x}, \nu, \mathrm{E}_{\alpha}$, are given by

$$
\left.\begin{array}{c}
x={ }^{0} x+y, \nu={ }^{0} \nu+{ }^{c} \nu, \tag{5}\\
\mathrm{E}_{\alpha}={ }^{0} \mathrm{E}_{\alpha}+\mathrm{Y}_{\alpha}
\end{array}\right\}
$$

where y is an invariant, ${ }^{c} \nu$ a oovariant vector, Y_{α} a ooexco vector inity whioh is innear in α. ${ }^{0} x$, ${ }^{0} \nu,{ }^{0} \mathrm{E}_{\alpha}$ are in equation (5) any convenient partio. ular funotione of their respective types.
(3) Both Δx and $\mathrm{E}_{\boldsymbol{r}} \in$ are of type ν. In partioular we may take ${ }^{2} \nu$ to be either $\Delta^{0} x$ or ${ }^{0} \mathrm{E}_{\epsilon} \varepsilon$.
Thus any fundamental ocalar density furnitehos standard forms for the particular functions ${ }^{0} x, 0_{\nu}$. The ${ }_{00}^{\text {oarly study of Riemannian goomotry provides a form for }}$ ${ }^{0} \mathrm{E}_{\alpha}$. Let ϕ be any cooxcontra eolf-oonjugate voctor 11nity. Then defining ϕ_{a}) by

$$
2 \phi_{\alpha} \beta \beta=V_{0 \alpha} \Delta \cdot \phi \beta
$$

$$
\begin{equation*}
-V_{0} \beta \Delta \cdot \phi_{\alpha}^{\alpha}+\Delta V_{0} \beta \phi_{\alpha} \tag{6}
\end{equation*}
$$

wo may put ${ }^{\circ} \mathrm{E}_{\alpha}=\dot{\phi}_{\alpha} \phi^{-1}{ }^{-1} \quad$ More partiouiarly we may define ϕ by saying that $\phi=1$ in some elelected systom of coordinates, not merely at a single point but at all points.
Axt, 8. Insufficienay of struoture simpler than the arfine.
A world with structure ν but without structure $\mathrm{E}_{\boldsymbol{\alpha}}$
seems possible at first sight. $V_{2} \Delta \nu \quad$ is oovariant. Thic may be verifited at once from equation (5) by put${ }_{\mathrm{t} \text { ing }}{ }^{0}{ }_{y}=\Delta^{9} x$ for $V_{2} \Delta^{\circ} \nu$ is known to be covariant. It may hoverer be proved by a more familiar process, by sumaing the absolute increment of any x round a closed path and obberving that as the sum oquals the difference of two such values of x at a singis point it must be invariant. Thus $V_{2} \Delta y$ is seen to be analogous to the general ourvature derivable from the other kind of structure E_{α}.
our present quest is for invariant relations as a basis, in our manifold, for a physical world. can we find an invariant scalar density function ${ }^{l} \mathrm{~W}$, of the too invariantive quantitios
${ }^{\bullet} \lambda=\Delta x-\nu, c_{\omega}=-\mathrm{V}_{2} \Delta^{c \lambda}=\mathrm{V}_{2} \Delta \nu$
that must exist when struature involving an intringic i and an intrinsic ν exists? The necespary and sufficient condition that such a soalar funotion ${ }^{-} \mathrm{W}$ exists was found in our firet paper (art. 3, 4,) to be that

$$
\begin{equation*}
{ }^{\imath} W^{c}{ }^{c} \alpha=c \lambda V_{0}{ }^{\imath} \lambda^{c} \alpha+V_{1}{ }^{c} \omega V_{1}{ }^{2} \omega^{c} \alpha \tag{8}
\end{equation*}
$$

As usual ${ }^{c} a$ is quite arbitrary. In a general n fold equation (8) imposes n^{2} soalar conditions on the $\frac{1}{2} n(n+1)$ scalar partial first derivatives of
${ }^{2} W$ with respect to the same number of independent scalar variables. The number of conditions exoceds the number of soalars at our disposal to satisfy (8). Feverthelese in a four-fold the 16 oonditions of (8) are satisfied in one case. For aught we know there may exist a class of suoh cases, and a four-fold world dependent on the setisfaction of (8) may be possible. The case referred to is when $l \mathrm{~W}=\dot{U} \mathrm{~V}_{4}{ }^{e} \omega^{2}$ where \dot{v} as usual stande for $l_{1} l_{2} l_{3} l_{1}$, the produat of all the primitive units.

However this be, such a world would not be that of natural physics. In it there would be no orthogonality or orthodromy or gravitation. There would only be bulk, inertia, and electric pield.

Art. Qs Sufficiency of the affine structure.
ν denoting, as above, intrinsic structure, and z any log-scalar-density, the covariant vector $\Delta z-y$ is the absolute gradient of z. To be able to compare two such gradients at neighbouring pointe demands the affine structure. It is desirable henceforth to limit the meaning of the affine function E_{α} as previous writers have done by assuming $\mathrm{E}_{\alpha}{ }^{\prime} \boldsymbol{\beta}^{\alpha}$ to be symmetrical in α and β, that is assuming E_{α} to be self-conjugate in α. The general F_{α} resolves into the two parts, self-conjugate and skew with respect to α, and the second part (which is invariantive) has no share in catiafying equation (4), the only condition demanded of the structure.

We may now take ν to be $E_{\epsilon} \epsilon$, and the structure thus involves an intrinsio x and E_{a}. The very simpleat non-bingular scalar density function ${ }^{2} W$ (based on the otructure) appears to be a function of ${ }^{c} \lambda=\Delta x-E_{f} \epsilon \quad$ and of the contracted curvature (a ooexcontra vector linity) denoted in our first paper by $\psi-\frac{1}{2} V_{1}{ }^{c} \omega() \quad{ }^{l} W$ is now a function of ${ }^{c} \lambda,{ }^{c} \omega=-V_{2} \Delta c \lambda, \psi$, where ψ is self-conjugats. The neceasary and sufficient oondition for the existence of ${ }^{l} W$ now becomes
${ }^{l} W^{c} \alpha={ }^{c} \lambda V_{0}{ }^{l} \lambda{ }^{c} \alpha+V_{1}{ }^{e} \omega V_{1}{ }^{l} \omega^{c} \alpha+2 \psi \epsilon V_{0}{ }^{d} \psi^{c}{ }^{c} \alpha$
where
$d \psi=\% \psi . l W$ from ${ }^{2} W$, but neither the seoond nor the third, if we are to have the full complement of \dot{n}^{2} soalar first partiel derivatives of ${ }^{l} \mathrm{~W}$ to saticfy (10). Physioally this would seem to mean that all inertia is of electric origin and that there is but one conservation

Law, the conservation of charge $V_{0} \Delta^{l_{K}}=0$ It is thus of considerable interest that fron our a priori mode of approsohing the physical problem neither electric field, ${ }^{c} \omega$, nar gravitation \mathcal{F}, can be supposed absent. Also we may note that ignoration of a mass energylgiven by ${ }^{c} \lambda$) independent of charge seems arbitrary and artificial, for from our standpoint ${ }^{c} \lambda$ seeras more fundamental than either $\mathrm{V}_{2} \Delta \lambda^{c}$ or \mathcal{F}.
We shall return to (10) and its connection with the energy tensor later. Meanwhile we resume our a priori approach.

Art. 10. Relativity tenats carried as Par as possible.
It is open to argument that the principle "physical laws are independent of choice of coordinates" applies only to the original coordinates $x_{1}, x_{2}, x_{3}, x_{4}$; but it appears more natural to regard the sealars requirad to specify the structure as coordinates so which the prinoiple also applies. Can this be done?

I: the physical world is firite in each of its diransions as held by De sitter the answer is affirmative. To apply the principle in this its second aepect we have merely to vary theso new coordinates, and ensure that the only physioal reality namely $\int n \int l W d b$ taken over the whole manifold remains unchanged. This 18 preoisely what we did in the first paper (under the name of Stationary Aotion). If the manifold extends indeinitely in one or more of its dimensions we are not able fully to render $\int_{0}^{\pi} \int W d b \quad$ independent of choice of the new species of coordinates. The breakdown however can be pushed away to as remote a boundary as we please, and the argiment for the naturalness of the process of the first paper retains much of its force.

Here ende our a priori enquiry. Some general aspects of the results of our method will now be, considered.
Art. 11. The fundamental identity of relatipity.
From the physical side (10) has to be Flewed as the atress form (or ensrgy tensor: no longer a "pseudo"
teneor) of the"laws of motion". When in (10) we replave ca by Δ the laws take on their vector force form Note that the electric field and gravitation as well as inertia are included in our meaning of the laws. Indeed a great unification of our ideas of the physical world arises from the straightforward interpretation of (10).
This interpretation wae not possible earlier. It required a rearrangement of the foundation stonss of goneral relativity, which was gradually offected by the labours of Weyl, Eddington, and Einctein (see the second sentence of the first paper). Dow for the
first time we have a complete parallelian of (${ }^{c} \lambda,{ }^{c} \omega, \psi$) with the velocities, and of ($\left.l \lambda,{ }^{l} \omega,{ }^{d} \psi\right)$ -ith the momenta, of nineteenth century holonomio dynamics. Hitherto this hes not been possible in the case of ψ and ${ }^{d} \psi$. A formidable obstiscle to advance wes left in the oomplexities resulting from the seoond differential coofficients and the non-linear form of the contracted ourvature f.

Dencte the identically zero form obtained by removing the loft-hand member of (10) to the right-hand side by ${ }^{l} \mathrm{U}^{\circ} \alpha$; and, putting de for an arbitrary infinitesimal invariant, let the differentials $d l \mathrm{U}$, $d^{\circ} \lambda$, etc., be replaced by oorresponding fluxes αU ${ }^{\bullet} \lambda \lambda$, where $d^{l} \mathrm{~J}={ }^{\bullet} \mathrm{U} \mathrm{U} d e, \quad d^{c} \lambda={ }^{\bullet} \lambda d c$.
lU doee not naturally eeparate into three stresees, but the flux ${ }^{\circ} \mathrm{l} \mathrm{U}$ is the sum of three pluxes, kinetic
${ }^{\bullet l} \mathbf{T}$, eleotric ${ }^{\bullet l} \mathrm{~T}^{\prime}$, and gravitational ${ }^{\prime} \mathrm{T}^{\prime \prime}$
Thus

$$
\begin{align*}
& \cdot{ }^{\bullet} \mathrm{U}={ }^{\bullet} \mathrm{T}+{ }^{\bullet l} \mathrm{~T}^{\prime}+{ }^{\bullet} \mathrm{T}^{\prime \prime}=0 \\
& \left.{ }^{\bullet} T^{c}{ }^{c} \alpha={ }^{c} \lambda V_{0}{ }^{e} \alpha^{\bullet l} \lambda-V_{1}\left(V_{2}{ }^{c} \alpha^{\bullet c} \lambda\right)\right)^{l} \lambda \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& \cdot 1 T^{\iota_{c}} \alpha=2 \psi \epsilon V_{0}{ }^{c} \alpha^{\bullet d} \psi^{c}-2 V_{1}\left(V_{2}{ }^{\circ} \alpha^{\bullet} \psi^{c}\right)^{d} \psi^{\varepsilon}
\end{aligned}
$$

$l \mathrm{U}_{g} \Delta_{g}$ is the sum of three corresponding forces ${ }^{d} \nu$, $\cdot d_{\nu} \nu^{\prime}, d_{\nu}^{\prime \prime}$. Thus

$$
\left.\begin{array}{rl}
-d_{\nu} & =d_{\nu^{\prime}}+{ }^{d} \nu^{\prime \prime} \\
d_{\nu} & =\varepsilon \lambda V_{0} \Delta^{l} \lambda-V_{1}\left(\mathrm{~V}_{2} \Delta^{〔} \lambda\right)^{l} \lambda \tag{13}\\
d_{\nu}^{\prime} & =V_{1}\left(V_{1} \Delta^{l} \omega\right)^{c} \omega-V_{1}\left(V_{3} \Delta^{c} \omega\right)^{l} \omega \\
d_{\nu^{\prime \prime}} & =2 \psi_{\epsilon} V_{0} \Delta^{d} \psi \epsilon-2 V_{1}\left(\mathrm{~V}_{2} \Delta \psi \epsilon\right)^{d} \psi \epsilon
\end{array}\right\}
$$

The reeder should abserve that (12) and (13) follow from the mere assumption that ${ }^{l} \lambda,{ }^{l} \omega, d \psi$ are the first partial derivatives of some scalar density function ${ }^{l} \mathrm{~W}$ with respect to the independents ${ }^{c} \lambda,{ }^{c} \omega$, ψ. A second form of the assumption is that ${ }^{\circ} \lambda$, ${ }^{\circ} \omega$ ψ are the derivatives of $l \mathrm{~W}^{*}$ with respect to the independents ${ }^{l} \lambda,{ }^{l} \omega,{ }^{d} \psi$, where

$$
\begin{equation*}
l \mathrm{~W}^{*}+l \mathrm{~W}=\mathrm{V}_{0} \lambda^{l} \lambda+\mathrm{V}_{0}^{c} \omega^{l} \omega+\mathrm{V}_{0} \psi \mathrm{f}^{d} \psi \epsilon \tag{14}
\end{equation*}
$$

On these results we now superpose those following out of the method we have based on Einstein's remarkable metheraticsl discovery. We find that $d_{\nu}^{\prime \prime}$ gives exectly the expression relativists demend for gravitational force; that ${ }^{d} \nu^{\prime}$ gives exactly the general electric field of M. D. I. (3), (the allied equation
$V_{3} \Delta^{c} \omega=0$ also following (rom our method); and that the conservation of energy must exist. To attain the accepted form for the matter term d_{ν} (as well es to interpret easily in any wanted sense the oquation
$\mathrm{V}_{0} \Delta^{t} \lambda \doteq 0$ as affirming the conservation of onergy), we have to make the usual essumption that $l \lambda$ contributes to ${ }^{l} W^{*}$ the one term $\sqrt{\left(V_{0}^{l} \lambda \theta^{l} \lambda\right)}$ where

$$
\begin{equation*}
\theta=\left.{ }^{d} \psi^{-1} \cdot\right|^{d} \psi^{1 /(n-2)} \mid \tag{15}
\end{equation*}
$$

The sast paragraph asserts the truth of a serses of statements which in therr entirety may seem a little estonishing or even arroneous. It has been asserted that (13) agrees symbol by symbol with the usually
accepted equation of motion though based on different primary assumptions, and that the associated strese form or energy tensor is in no sense "pseudo". Why then, it will be asked, is the tensor of the usual theory "pseudo"?. The explanation is that our present method reveuls two new identities which offect the simplification. From the single identity $d_{\nu}+d_{\nu}^{\prime}+d_{\nu}^{\prime \prime}=0$, from which ${ }^{\prime} \mathrm{W}$ has vanishod and which involves onjy $i \lambda, l_{\omega}, d \psi$ and their Δ derivatives up to the second order, there arise three independent identities.

The facts about these three vere corrsotly stated in the rirst paper, but it was not rendered ciear why $s i x$ instead of three do not arise. $d \psi$ and $l_{\omega} \boldsymbol{d e y}$ be given independent arbitrary values at every point, while ${ }^{2} \lambda$ is taken to be zero. on now introducing ${ }^{2} \lambda$ the forty-ifist equation $V_{0} \Delta^{2} \lambda=0$, (required to make the integral of ' W stationary) eeems at first oight inconsistent with the previous forty
 ω and. E_{a}. Thus by a complex indirect way in ie ${ }_{l}$ dependent on the previously assigned values of ${ }^{d} \psi$, ${ }^{l} \omega$, and tho aingle identity is by no means an identity involving three independent symbols $l \lambda, d \psi, l_{\omega}$.

Let us now make a somewhat important departure from a usual procedure by eupposing $l \lambda$ to be involved in any way in $/ W^{*}$ instead of in the very restricted and
 the reader $\mathrm{w}^{111} I$ believe agree that the conservation equation $V_{0} \Delta^{l} \lambda=0$, and the "hydrodynemic term" α_{ν} in the equation of motion claim our first attention. We use Galilean co-ordinstes; and find that, in the conservation equation, $\sqrt{ }\left(\mathrm{V}_{0}^{2} \lambda \theta^{l} \lambda\right)\left[=l_{m}\right]$ hppoars as thres-dimensional density of mass-enerzy; and that, in the hydrodymanic equation, fon the ass,umption that so lar as ${ }^{l} \mathrm{~W}^{*}$ depends on ${ }^{l} \lambda$ it ie

Art. 11. Alex. McAulay, Relativity II.
Gome function of ${ }^{7} m$) the density of matter-inertia appears as ${ }^{l} m\left(\partial / \partial^{2} m\right)^{\prime} W^{*}$ If these two three-dimensional densities are identified with each other in the strict mathematical sense, the usual assumption must be made that ${ }^{l} W^{*}$ is linear in ${ }^{\prime} m$. In the irsaedtate neighbourhood of protons and electrons, that is where both deneitiee ara to bo rockoned in many thousands of tons per c.e. the two must be identified to a very high order of numerical accuracy. Apparentiy at distances grester than $10^{-8} \mathrm{~cm}$. the densities sink to values comparable with $10^{-7} \mathrm{gm}$. por 0.0 . We may well suppose that $l W^{*}$ is of the form
$l_{m} f\left(d^{\psi},{ }^{l} \omega, l_{m}\right)$, where f is a linite invariant function of its constituents, for all values of ${ }^{l} m$, in. clusive of when ${ }^{l} m$ is indefinitely increased.

It would seem then the: we ought to call $l \boldsymbol{\lambda}$ the energy flux and reserve the name momentum pector for $-1 \lambda V_{0}^{l} \lambda c \lambda / V\left(V_{0}^{l} \lambda \theta^{l} \lambda\right)$.
Art. 12. The problem of metter: protods, electrons, and the Bohr orbits.

Starting fron Einstein's illuminating article in
"Nature" we have now atrived at a beautifully rounded off relativity scheme of physics. In difedt contrast however to Eingtein's conoluding words, we appear to have obtained a very promising insight into the true nature of the problem presented by matter, and in what direction to attack the position.
submitting ourselves with severe interpretation to the ordinance "do naught but carry relativity tenets as far as possible", we have found many detailed results harmonizing with natural (as opposed to e priori) fhysics, and not a little which was lacking from former presentations of relativity. Examples are the conservation of encrgy, the existence of a true caercy tensor, and the formulation as an identity of the laws of motion, lundorstood here to anclude eleotric field and gravitation. We shall now show that great atomic concentrations of matter and of elootric
charge each necessarily presuppose the other. Later, general reasons will be given for expeoting such concentrations, and something very like the Bohr orbits accompanying them,
The more I reflect on the dual (matter-electric) aspect of the pair of allied vectors ${ }^{l} \lambda,{ }^{c} \lambda$, the more I realise that a long-felt vant has here been supplied, a basic natural and simple unification of the three great physical entities matter, electricity, and energy.
Though we may affirm that the dual aspect is prima faolo evidence that a rotating mass should be a magnet, the remarks at the end of Art.11. render it improbable that any numerical deduction is possible from present-day knowledge.

Wo aro on safer, and very interesting, ground when we observe that very high electrostatic potential (irrespective of sign) and very high material density nooessarily go together. This, of course, admirably accords with our knowledge of protons and electrons.

Consider the case of a hydrogen atom, where we have very high positive and negative potentials at the proton and eleotron and an intervening locus at which the potential sinks to zero. This suggests that in our theory we may have to recognise the existence of negative mass. On this point one is inclined at firgt to argue somewhat as follows. (1) There is no a priori diffculty in supposing mass, either as energy or inertia, to be negative. (2) The total apparent mass of a proton, or of an electron, inoludes a term duo to its charge because of the conservation of energy though in the absence of such conservation the argument for this electric inertia seers to fail). (3) Observation chows that this total mass is, in each case, positive (for otherwise the two particles would separate), but in the case of the eloctron the result may be due to the positive eleotric term masking a negativi

There seems, however, a very real reaeon preventing us from recognising negative mass. We seem instead to be impelled to assume that when we reach a point at which ${ }^{l} m=0$ we ipso facto reach a boundary of the physical world. In the arguments (1), (2), (3) ebove, we tacitly assumed that the single scalar condition expressed by saying that the electrostatic potential is zero gives rise to the four scalat conditlons expressed by saying that $l \lambda=0$. For we ascumed that, on each side of the locus $\quad{ }^{2} \dot{m}=0$, the scalar ${ }^{l} m$ is real. How, wherever $l_{m}=0$ ' and $l \boldsymbol{\lambda}$ is finite our interpretation of the conditions is that the velooity of light has been attained. The simple view is that this condition holds at the internal boundary of every electron and that in every proton ${ }^{\prime} m$ attains a very large, or perhaps indefinitely large, value.

The work of earlier writers suggests a first form for $l W^{*}$ namely $l_{m}-\frac{1}{2} l V_{0}^{l} \omega^{d} \mathcal{F}^{-1 l_{\omega}}$ where the "extensive" meaning understood for $d \psi$ is that which makes $d \psi^{-1} V_{2} \alpha \beta=V_{2}{ }^{d} \psi^{-1} \alpha^{d} \psi-1 \beta^{8}$. The coninderations advanoed in the last paragraph suggest a first modifioation of thie form by the addition therato of $-l$. The general nature of the Bohr theories suggeste a further change by whioh the invariant ooeffioient of l is replaced by a oorresponding exponential thus

$$
\left.\begin{array}{rl}
l \mathbf{W}^{*} & =l_{m}-l \cosh \vee\left(\mathrm{~V}_{0} l_{\omega^{d}} \psi^{-1} l_{\omega}\right) \tag{16}\\
& =l_{m}-l \cos \sqrt{ }\left(-\mathrm{V}_{0} l^{d} \psi^{-1 l_{\omega}}\right)
\end{array}\right\}
$$

Let us enquire wether (16) should lead us to expect the automatic-formation of those intense ooncentrations and the Bohr orblts whose existence has hitherto proved so baffling. Such an onquiry may perhaps sugsest further modifications of (16) before we seriously face the labour of exact mathematical analysis. The argument will be easier to follov if we write (16) in the following invarient form

Art. 12. Alex McAulay, Relativity II.

$$
\begin{align*}
\mathbf{W}^{*} & =m-\cosh \sqrt{ }\left(\mathbf{D}^{2}-\mathbf{H}^{2}\right) \\
& =m-\cos \sqrt{ }\left(\mathrm{H}^{2}-\mathrm{D}^{2}\right) \tag{17}
\end{align*}
$$

W^{*} stands for $l^{-1 l} W^{*}$ and m for $l^{-1 l} m$. D (displacement) and H (magnetic force) are the invariant magnitudes of the two vector densities ${ }^{7} \delta, d \zeta$, given by

$$
\left.\begin{array}{rl}
i \delta & =V_{1} d \psi^{-1 l} \lambda l_{\omega} \tag{18}\\
d \zeta & =-v V_{3}^{l} \lambda^{l} \omega
\end{array}\right\}
$$

(17) suggests that perhaps the proper form for the exponential $1 \mathrm{~s} \cosh \mathrm{D}+\cos \mathrm{H}-1$ in place of cosh $V\left(\mathrm{D}^{2}-\mathrm{H}^{2}\right)$. cur quarternion notation suggests several alternative forms.
"hink now of (17) in connection with the problem of the atomic concentrations, and first consider the great (mainly stagrant) interstellar spaces. We way suppose the normal condition here to be that $\mathbf{D}, \boldsymbol{H}$ and $\theta-1$ are all very emall or zero according as radiation is present or absent. Purther we may plausibly endow these great physically empty spaces with. the negative property of contributing zero to the action integral. Thus the charaoteristic of empty space is that $m=1$. (Perhaps a more plausible criterion for the value of m in empty space should bo sought in equipartition of energy between the whole of ether and the whole of gross matter; but I believe the searoh will always fall from the want of a natural boundary between the two.)
When just now we sald $\theta-1$ is nearly $z e r o$ in the other we tacitly assumed that in a practioal but no absolute sense it is possible to choose a system of coordinates which is natural and simple. From this point of our argument let us use such a system and permit ourselves freely to contemplate an evolution of the physical world as time progresses.
At some remote epoch in the past all the energy of the universe existed as a chaos or welter of radiation.

Art. 12. Alex. McAulay, Relativity II.
Gravitation at once began to make such fortuitous congestions of energy as existed still more congested and to make the emptier places still more empty. Fach congestion had a high eleotric potential and the descending potentials in the emptier surroundings had but one limit namely zero, corresponding to a zero value of energy density. Incipient atoms had evolved from primeval chaos. Fach atom consisted of a pair of singular points, at one of which was a concentration of energy and at the other a sink of potential and a boundary of the physical world. Equipartition of energy necessarily ensued, and the incipient atoms had become the hydrogen atoms with which we are familiar to-day. - Heedless to say the details of this brief sketch of the growth of physical law are not to be insisted upon. Rather are they given to indicate in what direction exact analysis is called for.
similarly (17) while possessing several instructive features bearing on the possible mode of origin of atoms is not very likely to prove the exact form required. If (18) is to be of use in this problem we should expect a general explanation to run somewhat as follows. (1) For a proton $\mathrm{D}^{2}-\mathrm{H}^{2}$ is positive, and D and m assume large values. (2) For an electron $\mathrm{D}^{2}-\mathrm{H}^{2}$ is negative and m is between unity and zero. (3) The apparent mass of an electron is practicly entirely of electric origin. (4) The energy levels of Bohr's Theory no doubt depend on the periodic cosine term in W^{*}, but the working out of the mathematical details will probably prove difficult.

Near an isolated proton when the electron has been removed it is not improbatle that, between limits of distance from the centre of the proton about $10^{-5} \mathrm{~cm}$. to 10^{-10} om.,m varies approximately inversely as the distance, rising from value unity. When the electron is present it probably pushes a sort of pit or crater of unit density into these denser previously spherical layers, the crater forming a kind of cometary tail,
the electron itself being the head or nucleus. On the other hand it is possible that the critical Rydberg length, about $10^{-5} \mathrm{~cm}$. , is olosely connected with the linear dimension of an isolated electron rather than an isolated proton, and in that cese we should expect to attain the value 2 near an isolated proton, at some distance between 10^{-10} and $10^{-13} \mathrm{~cm}$.

Why, it may be asked, do not the pairs of concentrations we have pictured run to the extreme of forming one great single pair instead of a vast number of atoms? Four alternative general answers seem reascnable. First, analysis may show that the pairs when once formed will be highly stable. Secondly, the large number of atoms may depend on a constant of intergration, perhaps in association with the invariant y of our first paper. Thirdly, a very large mathematical number (such as $e^{16 \pi^{2}}$) may be involved in the ratio of the linear dimensions of the universe to those of an atom. Fourthly, the bounding vacuities inside electrons may be original unchangeable features of the universe, and form necessary nuclei for the atums to gather round.

