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1 Introduction

The idea to use random matrix models as a simple model to study the non-perturbative phenomenon
of chiral symmetry breaking in QCD [1] has been very successful. Apart from direct studies through
lattice QCD or other effective models, it has become one of the available tools in this area, and we refer
to [2] for a review on the matrix model approach. In the broken phase at zero temperature and chemical
potential the applicability of a matrix model has been completely understood by rederiving part of its
results from the underlying effective chiral Lagrangian picture, that describes the pseudo-Goldstone
fields. This has been achieved for the partition function [3], the spectral correlation functions of Dirac
operator eigenvalues [4, 5, 6], as well as for individual eigenvalue correlations [7].

A random matrix model that includes the effect of a baryonic chemical potential was introduced
in [8], studying the nature of the quenched approximation and the chiral phase transition. The same
model was enlarged to include the effect of temperature, and the phase diagram of QCD with two
light flavors was predicted [9], including the existence of a tricritical point. The analysis was repeated
very recently in [10], distinguishing between baryon and isospin chemical potential. Only the matrix
model with isospin chemical potential can be related to an effective chiral Lagrangian of quenched
QCD [11] so far.

The unquenched matrix model partition function with chemical potential for a single flavor has
been analyzed in great detail, including its analytic solution and the behavior of its zeros [12, 13].
It has been used as a test case in [13, 14] for lattice algorithms for chemical potential. A complete
and detailed solution of the unquenched matrix model partition function with several, non degenerate
flavors has been lacking so far, apart from a first attempt in [15]. It is one of the purposes of this article
to provide such a solution, both for finite-N as well as in the large-N limit. The characteristic feature
of the model is the nonhermiticity induced via the chemical potential, which renders the eigenvalues
of the Dirac operator complex. Under these conditions one has to distinguish in the large-N limit
between the regimes of weak and strong nonhermiticity [16] (see [17] for a review).

In [18] a random matrix model with complex eigenvalues was proposed for the phase with broken
chiral symmetry . The resulting spectral correlation functions were computed, and the analytic pre-
dictions were confirmed by comparing them with the results from quenched lattice simulations [19],
both in the limit of weak and strong nonhermiticity. However, the equivalence in the phase with
broken symmetry between the model proposed in [18] and the original model with chemical potential
proposed in [8] was only conjectured [18, 15].

In a recent paper [6] the authors managed to derive the spectral density of complex eigenvalues
in the regime of weak nonhermiticity directly from the effective chiral Lagrangian for quenched QCD
combined with the model [8]. Exploiting a variant of recently suggested exact replica method [20]
they arrived to a density profile slightly different from earlier results of [18]. Both results agree
asymptotically, and the difference was too small to be distinguished from the lattice data [19] for the
values of chemical potential used. Under these circumstances it is conceptually important to be able
to prove the universality of results within the random matrix model approach, apart from matching
them with first principle lattice data. Without such a universality random matrix models loose much
of their predictive power, being deduced from global symmetry arguments alone. When the chemical
potential is absent, universality was proved in [21, 22]. For correlation functions involving complex
eigenvalues only partial results exist for non-chiral random matrix models [23] at weak nonhermiticity.

One of goals of the present paper is to clarify the issue of equivalence and thus possible universality
of the two different random matrix models [8] and [18] for QCD with chemical potential, at the level
of the corresponding partition functions. We are going to demonstrate that both models agree at the
regime of weak nonhermiticity for any number of quarks and conjugate anti-quarks, and in that sense
they are universal. At the regime of strong nonhermiticity the agreement, however, persists only for
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an equal number of such flavors. For a general flavor content, including only quarks, the two partition
functions [8, 18] agree only to the leading order term in an expansion in small chemical potential. We
will also relate our findings to the so far open question of universal spectral eigenvalue correlations,
by mapping it to the problem of universality of the so-called bosonic partition functions.

The object of our investigation can be phrased also in more mathematical terms. In the presence
of quark flavors the problem of calculation of the random matrix model partition function amounts
to computing the expectation value of a product of characteristic polynomials (also known as spectral
determinants) in the model with zero flavors. Characteristic polynomials in Hermitian random matrix
models have received a lot of attention recently, partly due to their relevance to the behaviour of
Riemann zeta-function suggested in [24]. On the other hand, such polynomials find important appli-
cations in theory of disordered and chaotic systems, see [25] and discussion and further references in
[26]. Different formulas for arbitrary products [27, 28, 29] and ratios [26, 30, 31, 32, 33, 34, 35] of
characteristic polynomials have been derived and the universality of these expressions has been shown
[33, 36, 37].

Again much less is known for complex matrix models [38, 39, 40]. Here one has to distinguish
between characteristic polynomials and their complex conjugates. A closed determinant formula for
arbitrary products of characteristic polynomials and their conjugates (of not necessary the same num-
ber) for quite a general class of models has been given in [39], see also related objects emerging in the
theory of quantum chaotic scattering [41, 17]. Our aim here is thus to compute and compare such
products within the two models [8, 18]. These results may also be useful when several sets of replicas
are needed in the computation of two- or higher k-point eigenvalue correlation functions, generalizing
[6].

We derive a compact, new expression for the partition function of the matrix model [8] at finite-
N with arbitrary many quark flavours . It allows us to analyze the chiral phase transition in more
detail, in particular concerning the influence on nondegenerate quark masses1. We find that the first
order phase transition found in [8, 9] persists, and that it is always driven by the flavor with the
smallest (or zero) mass. For different mass scales present there is a discontinuity of first order for each
different mass. This is due to the fact that roughly speaking the partition function can be written as
a determinant over single flavor partition functions. A similar phenomenon of having two first order
lines for two flavors was observed in [10], where two different chemical potentials for each flavor were
introduced.

The outline of the article is as follows. In the section 2 we define the two matrix model partition
functions for QCD with chemical potential and compute them for finite-N . We distinguish between
the presence of only quarks in section 2.1 and quarks with additional complex conjugate anti-quarks
in section 2.2. Several technical details of the derivation are summarized in the appendices A and B.
In section 3 we turn to the large-N limit, where we distinguish between the limit of weak and strong
nonhermiticity in sections 3.1 and 3.2. The resulting consequences for the universality of matrix model
partition functions are discussed in section 3.3. In section 4 we exploit the results for finite-N from
section 2 to investigate the chiral phase transition at a critical chemical potential, for an arbitrary
number of quarks. In section 5 we summarize our findings.

1We recall that the model [18] is always in the broken phase by definition, it cannot reach the phase transition.
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2 Matrix model partition functions for finite-N

2.1 Partition functions with Nf quark flavors

We start with defining the first matrix model for QCD with chemical potential, initially introduced
by Stephanov [8]. In the sector of topological charge2 ν it is given by

Z(Nf ,ν)
I (µ; {mf}) ≡

∫

dΦdΦ†

Nf
∏

f=1

det





mf1N iΦ + µ1̃N

iΦ† + µ1̃
†
N mf1N+ν



 exp
[

−N〈q̄q〉2TrΦΦ†
]

. (2.1)

Here Φ is a complex matrix of size N × (N + ν). Apart from the unity matrix 1n of size n × n we
have also introduced the rectangular unity matrix of size N × (N + ν)

(1̃N )ij ≡
{

δij i, j = 1, . . . , N
0 j = N + 1, . . . , N + ν

. (2.2)

Eq. (2.1) contains Nf quark flavors with real masses mf . The chemical potential µ is added to the
Dirac matrix of the usual matrix model [1] in a standard way by shifting /D → /D+γ0µ. The model has
the same global symmetries as QCD with gauge group SU(Nc ≥ 3) in the fundamental representation.
The Gaussian weight replacing the gauge field average was chosen for simplicity in [8]. It will allow
us to exactly solve the partition functions for finite-N . The variance of the random matrix entries is
such that the Banks-Casher relation for µ = 0 is satisfied. We will not address the issue of universality
by allowing for a more general weight function, ΦΦ† → V (ΦΦ†), with V being a polynomial, as in
[21, 22]. Instead, we compare to a different model given in terms of complex eigenvalues [18] defined
below, which reduces to the same model [1] at µ = 0.

In the presence of µ 6= 0 a diagonalization necessary to obtain complex eigenvalues of the Dirac
operator does not any longer amounts to a simple procedure. More precisely, the angular variables
used in the singular value decomposition of the matrix Φ in the form Φ = U1ΛU2,with U1,2 being
unitary, no longer decouple in the matrix integral. Although a Schur decomposition to an upper
triangular form φ = U(Z + R)U † remains possible, it does not reveal a natural relevant degrees of
freedom in the matrix integral. In particular, proceeding in this way one retains the eigenvalues in Z
complex even after setting µ = 0, which is not a natural choice of integration variables.

The standard fermionic approach to compute the partition function remains a viable alternative. It
consists in replacing the determinants by equivalent Grassmann integrals, and further integrating out
the matrix Φ explicitly, and finally performing a Hubbard-Stratonovich transformation. The details
are given in the appendix A, and include a more general case of additional conjugate anti-quarks, to
be addressed below. For real quark masses the result simplifies considerably after choosing a polar
decomposition, with the Jacobian computed in appendix B. After these manipulations we arrive at
the following result

Z(Nf ,ν)
I (µ; {mf}) ∼ e−N〈q̄q〉2TrM2

∫ ∞

0

Nf
∏

f=1

drk rν+1
k (r2

k − µ2)Ne−N〈q̄q〉2r2
k ∆Nf

(r2)2

×
∫

dV

∫

dU det[U †]ν exp
[

N〈q̄q〉2Tr
(

MUV r̂V † + V r̂V †U †M
)]

. (2.3)

Here, dU and dV denote the Haar measure over the unitary group of size Nf × Nf . The matrix
M = diag(m1, . . . ,mNf

) contains the quark masses and r̂ = diag(r1, . . . , rNf
) is the diagonal matrix

2Without loss of generality we restrict ourselves to ν ≥ 0 throughout the following.

4



of radial coordinates. ∆Nf
(r2) =

∏Nf

k>l(r
2
k − r2

l ) denotes the Vandermonde determinant. Due to the

unitary invariance we can shift U → UV † and then rename U → U †. The resulting unitary integrals
can be performed exactly using [42], together with the fact that M = M †. Our first main result valid
for finite-N is thus reading

Z(Nf ,ν)
I (µ; {mf}) ∼ e−N〈q̄q〉2

∑Nf
f=1 m2

f

∫ ∞

0

Nf
∏

f=1

drk rν+1
k (r2

k − µ2)Ne−N〈q̄q〉2r2
k ∆Nf

(r2)

× 1

∆Nf
(m2)

det
i,j=1,...,Nf

[

Iν(2N〈q̄q〉2mi rj)
]

. (2.4)

Such a compact expression reducing eq. (2.1) to Nf real integrations that factorize has previously
been known only for Nf = 1 [12]. The integral representation for Nf = 2 in [15] using a Schur
decomposition of the matrix Q = UV r̂V † is more involved. Eq. (2.4) is now amenable to a saddle
point computation, both at weak and strong nonhermiticity. Furthermore, it will be useful when
investigating the phase transition in section 4.

We now turn to an alternative random matrix model for QCD with chemical potential, introduced
in [18] in terms of N complex eigenvalues. This type of model can also be solved exactly at any
finite N . Here we do not have to distinguish between real and complex masses. Moreover, due to
the powerful technique of orthogonal polynomials the corresponding correlation functions of complex
eigenvalues also can be found [18]. The model is defined as

Z(Nf ,ν)
II (τ ; {mf}) ≡

∫ N
∏

j=1



d2zj w(zj , z
∗
j )

Nf
∏

f=1

mν
f (z2

j + m2
f )





∣

∣∆N (z2)
∣

∣

2
(2.5)

w(z, z∗) ≡ |z|2ν+1exp

[

− N

1− τ2

(

|z|2 − τ

2
(z2 + z2 ∗)

)

]

. (2.6)

The parameter τ ∈ [0, 1] appearing in the Gaussian weight function w(z, z∗) controls the effective
degree of nonhermiticity. It allows to interpolate between models with real and maximally complex
eigenvalues for τ = 1 and τ = 0, respectively. The two partition functions eq. (2.1) and eq. (2.5) are of
course different in general at finite N . Only in the Hermitian limit τ → 1, µ→ 0 they are exactly the
same under the identification of the masses: mf,II = mf,I〈q̄q〉

√
2. In fact, in this paper we will show

a much more interesting relation: two models are also generally equivalent at an appropriate large N
limit, under an appropriate correspondence among the relevant parameters (the mapping between the
two models actually depends on the way the large N limit is performed).

The massive partition function eq. (2.5) can be evaluated due to the following observation. We
can write

Z(Nf ,ν)
II (τ ; {mf}) ∼

〈

N
∏

j=1

Nf
∏

f=1

mν
f (z2

j + m2
f )

〉

, (2.7)

where the expectation value is taken with respect to the zero flavor partition function, Z(Nf =0,ν)
II (τ).

The relation to a product of characteristic polynomials is evident.
The relevant set of orthogonal polynomials with respect to the weight eq. (2.6) are given by the

complex generalization of standard Laguerre polynomials, see [18] :

P̃
(ν)
k (z2) ≡ (−1)kk!

(

2τ

N

)k

L
(ν)
k

(

Nz2

2τ

)

, (2.8)
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which are given here in the monic normalization. Using the theorem proven in [39] the expectation
value eq. (2.7) can be conveniently expressed as a determinant of size Nf × Nf , with entries being

these orthogonal polynomials. Taking into account the extra factors
∏Nf

f=1 mν
f we arrive at [39]

Z(Nf ,ν)
II (τ ; {mf}) ∼

detk,l=1,...,Nf

[

mν
l P̃

(ν)
N+k−1(−m2

l )
]

∆Nf
(m2)

. (2.9)

We would like to note that the partition function is real for real quark masses as it should be. This is
not obvious at all when looking at the definition eq. (2.5). The obtained result is exact for finite-N .
It can also be continued to complex quark masses without modification.

2.2 Partition functions with quarks and complex conjugate anti- quarks

In this subsection we enlarge the flavor space by adding pairs of complex conjugate quarks to the
partition functions eqs. (2.1) and (2.5). Such partition functions were already considered for one such
pair in [8] when analyzing the quenched approximation and for n such pairs of degenerate mass in
[6] in the replica approach. The special feature of quarks and conjugate anti-quarks occurring in the
partition function at the same time is that they may form a non vanishing meson density. This is,
in turn, reflected in the existence of an effective chiral Lagrangian with isospin chemical potential as
pointed out in [11], linking it to QCD.

Here, we will derive such an effective model in terms of a unitary group integral over the Goldstone
manifold directly from the underlying random matrix model. We will allow for any, not necessarily
equal number of quarks and conjugate anti-quarks with non degenerate mass. In the first model eq.
(2.1) the presence of additional conjugate anti-quarks implies considerably more effort in computing
the partition functions. In the procedure we will make use of the results from [6]. In contrast to that
in the second model eq. (2.5) the resulting partition functions immediately follow from the theorem
proved in [39].

The matrix model partition functions eq. (2.1) with m quarks of mass mf and n conjugate anti-
quarks of mass n∗

f in the sector of topological charge ν is defined as

Z(Nf =m+n,ν)
I (µ; {mf}m, {n∗

g}n) ≡ (2.10)

≡
∫

dΦdΦ†
m
∏

f=1

det





mf1N iΦ + µ1̃N

iΦ† + µ1̃
†
N mf1N+ν





n
∏

g=1

det







n∗
g1N − iΦ + µ1̃N

−iΦ† + µ1̃
†
N n∗

g1N+ν






e−N〈q̄q〉2TrΦΦ†

.

Note that in contrast to the previous section we now allow for complex masses, as they may serve
as source terms for the complex Dirac operator eigenvalues (see e.g. in [6]). Using the standard
fermionization technique we arrive at the following matrix model representation in terms of the complex
matrix Q of size Nf ×Nf

Z(Nf ,ν)
I (µ;M) ∼

∫

dQdQ† det[M + Q†]ν (2.11)

× det
[

(M + Q†)(M + Q)− µ2(M + Q†)Σ3(M + Q†)−1Σ3

]N
e−N〈q̄q〉2TrQ†Q,

with the mass matrix M = diag(m1, . . . ,mm,−n∗
1, . . . ,−n∗

n) and Σ3 =diag(1m,−1n) being a general-
ized Pauli matrix. The details of the derivation are given in appendix A. It is interesting here to work
out the limit of real masses, M = M † explicitly. To this end, we introduce a polar decomposition of
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the matrix Q = U R with R = V r̂V † being hermitian with positive eigenvalues rk, and U, V being
unitary. Using eq. (A.9) and the Jacobian calculated in the appendix B we obtain

Z(Nf ,ν)
I (µ;M) ∼ e−N〈q̄q〉2TrM2

∫ ∞

0

Nf
∏

f=1

drk rν+1
k e−N〈q̄q〉2r2

k ∆Nf
(r2)2

∫

dV

∫

dU det[U †]ν

× eN〈q̄q〉2TrM(UV r̂V †+V r̂V †U†) det
[

V r̂2V † − µ2V r̂V †U †Σ3UV r̂−1V †Σ3

]N
.

(2.12)

This expression will be used in the next section.

Let us now consider the second matrix model [18] with pairs of complex conjugate quarks inserted.
The corresponding partition function is defined as

Z(Nf ,ν)
II (τ ; {mf}m, {n∗

g}n) ≡
∫ N
∏

j=1

d2zj w(zj , z
∗
j )

m
∏

f=1

mν
f (z2

j + m2
f )

n
∏

g=1

n∗ ν
g (z∗ 2

j + n∗ 2
g )
∣

∣∆N (z2)
∣

∣

2

∼
〈

N
∏

j=1





Nf
∏

f=1

mν
f (z2

j + m2
f )

n
∏

g=1

n∗ ν
g (z∗ 2

j + n∗ 2
g )





〉

, (2.13)

where we again presented this object in a form of an expectation value. In contrast to eq. (2.13) we
do not need to distinguish between signs of masses and chemical potential for the quarks and their
conjugates. The reason is that the large-N result for eq. (2.13) turns out to be a quadratic function
in all masses. Apart from that, in the identification between the nonhermiticity parameters τ and µ
appears quadratically. The same weight function eq. (2.6) for all eigenvalues is therefore equally valid
for both signs of the chemical potential3.

The evaluation of eq. (2.13) is again straightforward, due to the general theorem proved in [39]. To
write the result in a compact form we need to introduce more notation. In addition to the orthogonal
polynomials eq. (2.8) the so-called bare kernel made of these polynomials appears in the corresponding
expressions:

κN (z2, u∗ 2) ≡
N−1
∑

k=0

P
(ν)
k (z2)P

(ν)
k (u∗ 2)

=
1

f (ν)(τ)

N−1
∑

k=0

Γ(ν + 1) k!

Γ(ν + k + 1)
τ2kL

(ν)
k

(

Nz2

2τ

)

L
(ν)
k

(

Nu∗ 2

2τ

)

. (2.14)

The kernel contains a sum over the orthonormalized polynomials P
(ν)
k (z2),

P
(ν)
k (z2) ≡ h

− 1
2

k P̃
(ν)
k (z2) , (2.15)

with norms given by

hk ≡
∫

d2z w(z, z∗)P̃
(ν)
k (z2)P̃

(ν)
k (z∗ 2) = f (ν)(τ)

(

2

N

)2k Γ(ν + 1 + k) k!

Γ(ν + 1)
. (2.16)

3In this sense the model does not distinguish between isospin and baryon chemical potential.
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Here we have introduced the functions

f (ν)(τ) ≡
∫

d2z w(z, z∗) = πΓ

(

ν +
3

2

)

(1− τ2)
ν
2
+ 3

4 Pν+ 1
2

(

1√
1− τ2

)

, (2.17)

where Pγ(x) stands for the Legendre function. The full kernel KN (z, u∗) as it appears in the expression
for the eigenvalue correlation functions is then obtained by multiplying the bare kernel with the weight
functions, Kn(z, u∗) ≡ [w(z, z∗)w(u, u∗)]

1
2 κN (z2, u∗ 2). Following [39] we immediately obtain

Z(Nf ,ν)
II (τ ; {mf}m, {n∗

g}n) ∼
∏m

f=1 mν
f

∏n
g=1 n∗ ν

g

∆m(m2)∆n(n∗ 2)

(

N+m−1
∏

k=N

hk

)

det
i,j=1,...,n

[B(mi, n
∗
j)] , (2.18)

B(mi, n
∗
j) ≡

{

κN+m(−m2
i ,−n∗ 2

j ) i = 1, . . . ,m

P̃
(ν)
N+i−1(−n∗ 2

j ) i = m + 1, . . . , n
. (2.19)

where we may assume that n ≥ m, without loss of generality (the case n < m follows from complex
conjugation). This result is exact for finite-N . We note that the model eq. (2.13) (and eq. (2.5)) is
always in the phase with broken chiral symmetry [18].

3 The large-N limit

3.1 The weak nonhermiticity limit

The limit of weak nonhermiticity [16] is defined by taking simultaneously the large-N limit N → ∞
and the hermitian limit τ → 1 or µ→ 0 in such a way that the following product is kept constant:

lim
N→∞, τ→1

N(1− τ2) ≡ α2 (3.1)

or, equivalently

lim
N→∞, µ→0

2N〈q̄q〉2µ2 = α̃2 . (3.2)

In this limit the macroscopic spectral density has support only on the real line and is given by a
semicircle for both models eqs. (2.1) and (2.5), in the limit τ → 1 and µ → 0 respectively [18]. In
contrast to that the microscopic correlation functions differ from those on the real line. They still
extend into the complex plane and depend explicitly on the parameter α or α̃. To identify them for
the two models a relation between τ and µ, or α and α̃, has to be imposed, which we will find by
comparing the two partition functions.

We will see that also the partition functions at weak nonhermiticity contain important information,
and this has already been exploited for example in [6] when computing the microscopic density. It
turns out that the partition functions with quarks alone differ from the partition functions at µ = 0
only by an overall prefactor exp[−Nfα/2]. When adding conjugate anti-quarks the situations however
changes and the partition functions differ from their µ = 0 values nontrivially4.

The microscopic rescaling of the quark masses (and complex eigenvalues) at weak nonhermiticity
is defined as

ζf ≡ 2N〈q̄q〉mf , f = 1, . . . ,m

ξ∗g ≡ 2N〈q̄q〉n∗
g , g = 1, . . . , n (3.3)

4Obviously, for only conjugate anti-quarks alone we are back to the situation of only quarks.
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where 2N〈q̄q〉 ∼ ρ(0) is the macroscopic density at the origin of the model eq. (2.1), after taking the
limit µ→ 0.

We begin with the partition functions containing only quarks from subsection 2.1. First of all due
to the rescaling of the masses eq. (3.3) the constant prefactor e−N〈q̄q〉2TrM2

reduces to unity. Taking
the weak limit eq. (3.2) we can replace the factor

(r2
k − µ2)N → r2N

k exp
[

−Nµ2r−2
k

]

(3.4)

inside the integral eq. (2.4) over the radial coordinates. After rescaling the arguments of the Bessel
functions through eq. (3.3) a saddle point evaluation in the variables rk leads to the value

r̂|sp = 1Nf
〈q̄q〉−1 . (3.5)

Since the determinant in eq. (2.4) is degenerate at the saddle point we have to take into account the
Gaussian fluctuations. Performing the calculation, we get

Z(Nf ,ν)
I (µ; {ζf})|weak ∼ exp

[

−Nf 〈q̄q〉2Nµ2
]

detk,l=1,...,Nf

[

ζk−1
l I

(k−1)
ν (ζl)

]

∆Nf
(ζ2)

. (3.6)

With I
(j)
ν (x) we denote the j−th derivative of the modified Bessel functions. This final expression for

the partition function generalizes previous results which were known only in the sector of topological
charge ν = 0 with Nf = 1 [12] and Nf = 2, 3 flavors [15]. Eq. (3.6) is exactly the same as for
µ = 0 [3, 43], apart from the exponential prefactor exp[−Nf α̃2/2]. This implies in particular that
the partition functions obey the same consistency conditions [44] as those for µ = 0. More generally
speaking, they belong to the same Toda lattice hierarchy as it was already exploited in [6].

We turn to the second partition function eq. (2.9). In order to read off the proper rescaling defined
in eq. (3.3) we first take the Hermitian limit τ → 1 of the weight eq. (2.6) in order to determine
the corresponding variance. This procedure is based on the macroscopic spectral density at weak
nonhermiticity being given by taking the Hermitian limit5:

lim
τ→1

w(z, z∗) = lim
τ→1

(x2 + y2)ν+ 1
2 exp

[

− N

1 + τ
x2 − N

1− τ
y2

]

= x2ν+1

√

πα2

2N2
δ (y) exp

[

−1

2
Nx2

]

, (3.7)

where we have inserted z = x + iy. Therefore we have to use the value 〈q̄q〉 = 1/
√

2 in eq. (3.3),
leading to the correspondence ζf =

√
2Nmf and similar for the conjugate. Such a rescaling which is

different for the two models is precisely the mapping between the two sets of different mass parameters
mentioned after eq. (2.6).

We could have also introduced a variable 〈q̄q〉 in the model eq. (2.9) by rescaling the eigenvalues.
However, since the parameter drops out after microscopic rescaling we kept 〈q̄q〉2 = 1/2 for simplicity
here. In order to perform the weak nonhermiticity limit in eq. (2.9) we first extract the powers
of τ used in the definition of the polynomials (2.8) from the corresponding determinant. Using the
definition τ2 = 1− α2/N we obtain the prefactor

lim
N→∞ τ→1

τNf N+Nf (Nf−1)/2 = exp

[

−1

2
Nfα2

]

. (3.8)

5The corresponding weak nonhermiticity limit for the weight function is given in section 3.3 eq. (3.59), but we do
not need it here.
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The remaining determinant of Laguerre polynomials can be evaluated in the same way as for µ = 0
using eq. (3.3)

lim
N→∞, τ→1

mνL
(ν)
N

(−Nm2

2τ

)

∼ Iν(ζ) , (3.9)

and differentiating due to degeneracy. Ignoring constant factors and powers of N we thus obtain

Z(Nf ,ν)
II (α; {ζf})|weak ∼ exp

[

−1

2
Nfα2

] detk,l=1,...,Nf

[

ζk−1
l I

(k−1)
ν (ζl)

]

∆Nf
(ζ2)

. (3.10)

We immediately see that the two partition functions (3.6) and (3.10) agree upon identifying

(1− τ2) = 2〈q̄q〉2µ2 (3.11)

or, equivalently α = α̃. Such an identification can be conveniently interpreted in terms of equating
the two macroscopic densities in the complex plane for small µ [18]. In principle, partition functions
can always be multiplied by an overall constant, making them agree. The nontrivial statement is that
in both cases the rescaled nonhermiticity parameter factors out.

We thus proved the equivalence of the two partition functions is the limit of weak nonhermiticity,
for an arbitrary number of flavors Nf of nondegenerate masses mf for any given topological sector ν.
This equivalence was claimed in [15] and verified there for degenerate masses and sector ν = 0, up to
and including Nf = 3 flavors.

Next we investigate the weak nonhermiticity limit of the partition function with quarks and con-
jugate anti-quarks, eq. (2.11). In this case, all powers higher than linear in M and µ2 in eq. (2.11)
are dropped. After expanding also the determinant to the power N in powers of M , we have

Z(Nf ,ν)
I (µ;M) ∼

∫

dQdQ† det[Q†]νe−N〈q̄q〉2TrQ†Q (3.12)

× exp
[

NTr ln(Q†Q) + NTr
(

M(Q−1 + Q†−1)− µ2Q−1Σ3Q
†−1Σ3

)

+O(1/N)
]

.

By using again the polar decomposition Q = U R and the respective Jacobian, we obtain

Z(Nf ,ν)
I (µ;M) ∼

∫ ∞

0

Nf
∏

f=1

drk rν+1
k e−N〈q̄q〉2r2

k+N ln r2
k ∆Nf

(r2)2
∫

dV

∫

dU det[U †]ν (3.13)

× exp
[

NTr
(

M(V r̂−1V †U † + UV r̂−1V †)
)

− µ2NTr
(

V r̂−1V †U †Σ3UV r̂−1V †Σ3

)]

.

In this form the integral is amenable to a saddle point approximation at large-N in the variables rk,
which will lead to the chiral Lagrangian picture [11]. In the previous case, with only quarks included
the µ-dependence factorizes out as we discussed above. Now the dependence will be less trivial, making
it a real check for the equivalence of the two models. Due to the rescaling eqs. (3.3) and (3.2) the
exponents inside the unitary integral are of the order of unity and the the saddle point value is taken
at

r̂|sp = 1Nf
〈q̄q〉−1 , (3.14)

as previously in eq. (3.5). Since the unitary integral is non vanishing at r̂|sp ∼ 1Nf
, we have

Z(Nf ,ν)
I (µ;M)|sp ∼

∫

dU det[U †]ν exp
[

N〈q̄q〉Tr(M(U † + U))− µ2N〈q̄q〉2Tr(U †Σ3UΣ3)
]

.

(3.15)
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This is precisely (a zero-dimensional version of) the chiral effective theory for isospin chemical potential
as derived in [11], with replacements 2N ←→ V and µ2〈q̄q〉2 ←→ µ2F 2

π . The manifestation of the
zero-dimensional nature is that the parameter Fπ, the pion decay constant entering in the chiral
Lagrangian [11], is not contained in the present matrix model partition function, as it comes from
the non-zero momentum modes of the Goldstone bosons. If we wish to write the µ−dependent term
as 1

2Tr[U †,Σ3][U,Σ3] as it appears when deriving it from a gauge principle, we have to multiply a
factor exp

[

N〈q̄q〉2µ2Nf

]

to the partition function. By doing so also in the previous section it would
remove the trivial µ−dependence, that leads to an unphysical negative quark number density in the
broken phase (see e.g. in [12] for Nf = 1). Finally we wish to mention that the usual mass term in the
unquenched, effective QCD Lagrangian is Tr(M †U †+MU) instead. There complex masses are needed
to locate the dependence of the θ−angle in the action for example, leaving the partition function real.

We are now ready to evaluate the unitary integral in eq. (3.15) exactly, following closely [6]. There,
the following parameterization of the unitary matrix U ∈ U(Nf = m + n) has been suggested6

U =

(

v1 0
0 v2

)(

u1 0
0 u2

)

Λ

(

v†1 0

0 v†2

)

, (3.16)

Λ ≡







λ̂
√

1m − λ̂2 0
√

1m − λ̂2 −λ̂ 0
0 0 −1n−m






. (3.17)

Here, we denote λ̂ ≡ diag(λ1, . . . , λm) with λk ∈ [0, 1] for k = 1, . . . ,m. The unitary submatrices are
u1, v1 ∈ U(m), u2 ∈ U(n) and v2 ∈ Ũ(n) ≡ U(n)/(U(1)m ×U(n−m)), where n ≥ m has been chosen
without loss of generality. The Jacobian for this transformation was computed in [6],

J({λk}) ≡
m
∏

k>l

(λ2
k − λ2

l )
2

m
∏

j=1

2λk(1− λ2
k)

n−m . (3.18)

For the trace containing Σ3 it follows

Tr(U †Σ3UΣ3) = n− 3m + 4
m
∑

k=1

λ2
k . (3.19)

With these steps taken we can insert the above parameterization in eq. (3.15), arriving at the following
factorized group integrals

Z(Nf ,ν)
I (µ; {mf}m, {n∗

g}n) |weak ∼ exp
[

−(n− 3m)N〈q̄q〉2µ2
]

∫ 1

0

m
∏

k=1

dλkJ({λk})e−4〈q̄q〉2Nµ2λ2
k

×
∫

U(m)
du1

∫

U(m)
dv1 det[u1]

ν exp
[

N〈q̄q〉Tr(u†
1v

†
1m̂ v1λ̂ + v†1m̂ v1u1λ̂)

]

×
∫

U(n)
du2

∫

Ũ(n)
dv2 det[u2]

ν exp
[

N〈q̄q〉Tr(u†
2v

†
2n̂

∗v2λ̂− + v†2n̂
∗v2u2λ̂−)

]

.

(3.20)

By splitting into blocks we introduced the following obvious notation, denoting m̂ ≡ diag(m1 . . . ,mm),
n̂∗ ≡ diag(−n∗

1 . . . ,−n∗
n), and by λ̂− ≡ diag(−λ1, . . . ,−λm,−1, . . . ,−1) a matrix of size n × n. Per-

forming the additional transformations ui → v†i ui and renaming ui → u†
i for i = 1, 2, we can bring

6In addition to [6] we have performed an extra rotation ui → viuiv
†
i for i = 1, 2, interchanging the first 2 matrices.
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both double unitary integrals to the form

∫

U
du

∫

U
dv det[u v]ν exp

[

1

2
Tr(u†â v†b̂ + vâ ub̂)

]

=
1

∆(a2)∆(b2)
det
i,j

[Iν(aibj)] , (3.21)

with U = U(l) for l = m or n, respectively7. Here we have used the result [45] which gives this integral
also in the case when the matrices â and b̂ are not hermitian. In our special case the a2

i and b2
i are

the complex eigenvalues of the diagonal matrices â2 and b̂2 respectively. In the second double unitary
group integral we still have to take limits due to the (n−m)-fold degeneracy in the matrix λ̂−. Both
integrals together then cancel the Jacobian J({λk}) up to the factor

∏m
k=0 2λk, leading to

Z(Nf ,ν)
I (µ; {ζf}m, {ξ∗g}n)|weak ∼

exp[−(n− 3m)〈q̄q〉2Nµ2]

∆m(ζ2)∆n(ξ∗ 2)

∫ 1

0

m
∏

k=1

dλkλke
−4〈q̄q〉2Nµ2λ2

k

× det
k,l=1,...,m

[Iν(λkζl)] det







Iν(ξ
∗
1λ1) · · · Iν(ξ∗1λm) Iν(ξ

∗
1) · · · ξ∗n−m−1

1 I
(n−m−1)
ν (ξ∗1)

...
...

...
...

Iν(ξ
∗
nλ1) · · · Iν(ξ

∗
nλm) Iν(ξ

∗
n) · · · ξ∗n−m−1

n I
(n−m−1)
ν (ξ∗n)






.

(3.22)

The above equation can be further simplified. First we multiply the two determinants of Bessel
functions, det(B) det(A) = det(AB). Because of the different size of the two matrices we have to add
a block of unity 1n−m to the first matrix Iν(λkζl) of size m×m. Each entry in the first m columns
of the resulting product matrix AB contains a sum of m terms,

∑m
j=1 Iν(ξ

∗
kλj)Iν(λjζl). Due to the

symmetry of the integrand under permutations of the variables λk and due to the invariance properties
of determinants the sums can be reduced to single terms, Iν(ξ

∗
kλk)Iν(λkζl), and we only sketch the

procedure briefly. We begin with the first column. As determinants differing only by one column can
be added, we expand the determinant as a sum of m terms, which only differ from each other by the
labeling of λk in the first column. Due to the invariance with respect to permuting λk all terms can be
written as m times the same determinant, with label λ1 in the first column. Next we can eliminate all
the terms with label λ1 in the remaining columns, by successively subtracting the first column times
an appropriate factor. Next we process the second column in the same way, keeping only the label λ2

there, and so forth.
We finally arrive at the following expression

Z(Nf =m+n,ν)
I (µ; {ζf}m, {ξ∗g}n)|weak ∼

exp
[

−(n− 3m)〈q̄q〉2Nµ2
]

∆m(ζ2)∆n(ξ∗ 2)
×

det























∫ 1
0 dλ1λ1e

−4N〈q̄q〉2µ2λ2
1Iν(ξ

∗
1λ1)Iν(λ1ζ1) · · ·

∫ 1
0 dλ1λ1e

−4N〈q̄q〉2µ2λ2
1Iν(ξ

∗
nλ1)Iν(λ1ζ1)

...
...

∫ 1
0 dλmλme−4N〈q̄q〉2µ2λ2

mIν(ξ
∗
1λm)Iν(λmζm) · · ·

∫ 1
0 dλmλme−4N〈q̄q〉2µ2λ2

mIν(ξ
∗
nλm)Iν(λmζm)

Iν(ξ
∗
1) · · · Iν(ξ

∗
n)

...
...

ξ∗n−m−1
1 I

(n−m−1)
ν (ξ∗1) · · · ξ∗n−m−1

n I
(n−m−1)
ν (ξ∗n)























(3.23)

7In order to apply the result [45] we have to promote v2 to the full unitary group U(n). We first multiply by the
additional integrations (

∫

U(1)
dwi det(wi)

ν)m
∫

U(n−m)
dw0 det(w0)

ν and shift u2 →diag(w1, . . . , wm, w0)u2. Due to the

cyclicity of the trace and the (n − m)−fold degeneracy of λ̂− which makes it commute with diag(w1, . . . , wm, w0) we
obtain a matrix v2diag(w1, . . . , wm, w0) that parameterizes the full group U(n).
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suppressing the symmetry factor m! as well as taking the transpose of the matrix. At the last step
the m integrations over the λk have been taken inside the rows of the determinant. Eq. (3.23)
generalizes the results obtained in [6] for an equal number m = n of quarks and conjugate anti-quarks
of degenerate, complex conjugate mass m̂ = z1n and n̂∗ = z∗1n each. In [6] the partition function is
given as well for n ≥ m, for real degenerate masses m̂ = x1m and n̂∗ = y1n.

We can now compare to the second model by taking the weak nonhermiticity limit of eq. (2.18).
To achieve this we first multiply all powers mν

f into the first m rows and all powers n∗ ν
g into all n

columns of the determinant B(mi, n
∗
j ). The large-N limit of the norms hk eq. (2.16) and the bare

kernel eq. (2.14) have already been taken in [18]. Ignoring all factors of N the product of norms will
lead to

lim
N→∞ τ→1

N+m−1
∏

k=N

hk ∼ αm . (3.24)

The weak nonhermiticity limit of the bare kernel is given by [18]

lim
N→∞ τ→1

mν
fn∗ ν

g κN+m(−m2
f ,−n∗ 2

g ) ∼ 1

α

∫ 1

0
dλλe−α2λ2

Iν(λζf )Iν(λξ∗g) , (3.25)

where we have continued to negative arguments of the kernel. We have used again the value 〈q̄q〉 =
1/
√

2 in eq. (3.3) corresponding to our model. Since all matrix elements of kernels have different
arguments there is no degeneracy in this part of the determinant. Multiplying with eq. (3.24) cancels
all inverse powers of α from the kernel inside the determinant. The part of the determinant containing

only polynomials P̃
(ν)
k (−n∗ 2) can be dealt with as previously, using eqs. (3.8) and (3.9). First we take

out all powers of τ , leading to

lim
N→∞ τ→1

τ (n−m)(2N+n+m−1) 1
2 ∼ exp

[

−1

2
(n−m)α2

]

. (3.26)

The rows of polynomials become degenerate after taking the limit eq. (3.9), leading again to differen-
tiations as in eq. (3.10). Performing the manipulations, we arrive at the following result

Z(Nf =m+n,ν)
II (α; {ζf}m, {ξ∗g}n)|weak ∼

exp
[

−1
2(n−m)α2

]

∆m(ζ2)∆n(ξ∗ 2)

× det























∫ 1
0 dλλ e−α2λ2

Iν(λζ1)Iν(λξ∗1) · · ·
∫ 1
0 dλλ e−α2λ2

Iν(λζ1)Iν(λξ∗n)
...

...
∫ 1
0 dλλ e−α2λ2

Iν(λζm)Iν(λξ∗1) · · ·
∫ 1
0 dλλ e−α2λ2

Iν(λζm)Iν(λξ∗n)
Iν(ξ∗1) · · · Iν(ξ

∗
n)

...
...

ξ∗n−m−1
1 I

(n−m−1)
ν (ξ∗1) · · · ξ∗n−m−1

n I
(n−m−1)
ν (ξ∗n)























.

(3.27)

The equivalence of the two partition functions can be established as follows. If we multiply eq. (3.27)
by the overall constant exp[+1

4Nfα2], with Nf = n + m, and then identify

(1− τ2) = 4〈q̄q〉2µ2 (3.28)

or equivalently α = 2α̃ the two partition functions (3.23) and (3.27) agree. We conclude that both
models can be mapped onto each other as a function of rescaled masses and rescaled nonhermiticity
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parameter, for an arbitrary number of quarks and conjugate anti-quarks of different, nondegenerate
masses. In the present case the dependence on α is much less trivial as it enters all the integrals
inside the determinant. We are not able to provide a simple explanation for the fact that the two
identifications eqs. (3.11) and (3.28) differ only by a factor of two. However, our main point here is
that there exists a mapping of parameters making the two partition functions the same. We will find
yet another mapping of parameters in the limit of strong nonhermiticity below.

3.2 The strong nonhermiticity limit

The limit of strong nonhermiticity is defined by keeping µ2 or τ ∈ [0, 1] fixed, independent of N when
performing the large-N limit. Furthermore, the quark masses (and the complex Dirac eigenvalues)
have to be rescaled with a different power in N [18, 15]8

ζf ≡
√

2N〈q̄q〉mf , f = 1, . . . ,m

ξ∗g ≡
√

2N〈q̄q〉n∗
g , g = 1, . . . , n . (3.29)

In this limit complex eigenvalues of the Dirac operator fill in a truly two dimensional domain in the
complex plane and the corresponding spectral density is nonvanishing there. With these definitions
at hand we can again make a saddle point approximation for the partition functions in question.

We start with the first model eq. (2.4) which contains only quarks. Due to the rescaling of the
masses the arguments of the Bessel functions now become large. But even when replacing them
with their asymptotic value, Iν(x) ∼ exp[x]/

√
x, they will not contribute to the saddle point, as the

argument is of order O(
√

N) and is small compared to terms O(N) in the exponent for radial variables.
The saddle point is thus given by conditions

2rk

r2
k − µ2

− 2rk〈q̄q〉2 = 0, k = 1, . . . , Nf . (3.30)

and we choose the positive value

r̂|sp = 1Nf

√

〈q̄q〉−2 + µ2 . (3.31)

as the relevant solution. For a more detailed analysis, in particular, on the connection of the saddle
point solution at zero to the phase transition we refer to section 4 below. Taking the usual limit of a
degenerate matrix at r̂|sp ∼ 1Nf

we arrive at

Z(Nf ,ν)
I (µ; {ζf})|strong ∼ exp[−NNf (1 + 〈q̄q〉2µ2)] exp



−1

2

Nf
∑

k=1

ζ2
k





×
detk,l=1,...,Nf

[

ζk−1
l I

(k−1)
ν

(√
2Nζl

√

1 + 〈q̄q〉2µ2
)]

∆Nf
(ζ2)

. (3.32)

Now we treat the second model by looking at eq. (2.9) at finite-N . The strong nonhermiticity limit
is most easily taken here by using an integral representation of the Laguerre polynomials, following
[15] for Nf = 1,

xνL
(ν)
N (x2) ∼ ex2

∫ ∞

0
ds e−NssN+ ν

2 Jν(2
√

sNx)

∼ ex2
e−NJν(2

√
Nx) . (3.33)

8For the constant proportionality factor we have kept 〈q̄q〉 as in the weak limit, although the macroscopic spectral
density will in general no longer be constant but rather depend on µ. For a µ−dependent rescaling we refer to the
discussion after eq. (3.36) and after eq. (3.47).
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At the second step we have made a saddle point approximation, taking into account that x2 =
−Nm2/(2τ) is fixed and finite. Using the rescaling of the masses eq. (3.29) with the chosen value
〈q̄q〉 = 1/

√
2, corresponding to

√
Nm = ζ, and taking care of the degeneracy of the determinant we

obtain

Z(Nf ,ν)
II (τ ; {ζf})|strong ∼ exp[−NNf ] τNf (N+ 1

4
(Nf−1)+ 1

2
ν) exp



− 1

2τ

Nf
∑

k=1

ζ2
k





×
detk,l=1,...,Nf

[

ζk−1
l I

(k−1)
ν

(√
2Nζlτ

− 1
2

)]

∆Nf
(ζ2)

. (3.34)

Using now the relation eq. (3.11),
τ =

√

1− 2〈q̄q〉2µ2 (3.35)

we see that the µ−dependence does not match the previous case in general, unless we expand for small
µ2. To the leading order we obtain

Z(Nf ,ν)
II (µ; {ζf})|strong ∼ exp[−NNf (1 + 〈q̄q〉2µ2) +O(µ4)] exp



−1

2
(1 + 〈q̄q〉2µ2 +O(µ4))

Nf
∑

k=1

ζ2
k





×
detk,l=1,...,Nf

[

ζk−1
l I

(k−1)
ν

(√
2Nζl(1 + 1

2〈q̄q〉2µ2 +O(µ4))
)]

∆Nf
(ζ2)

. (3.36)

The two expressions eqs. (3.32) and (3.36) match to the leading order terms in the determinant and
in the first factor. However, the coupling between masses ζk and µ introduced in the second model
in the second exponential prefactor does not have an analogue in the first model. Here the matching
only holds to terms of zeroth order.

It is worth mentioning that even apart from the µ−dependent exponential suppression factor
exp[−NNf 〈q̄q〉2µ2] a proper large-N limit of the partition functions in terms of rescaled masses ζk

does not exist. The Bessel functions still depend on
√

N in the argument. In the asymptotic limit
however, the exponential suppression wins. Our microscopic rescaling of the masses eq. (3.29) cannot
be modified to achieve an N -independent result. Such a rescaling is, in fact, dictated by corresponding
rescaling of the complex eigenvalues [18] necessary to obtain a smooth limiting eigenvalue correlation
functions. This type of rescaling in N at the regime of strong nonhermiticity was also found earlier
in models without chiral symmetry [38].

One also may wonder if it is possible to match the two partition functions eqs. (3.32) and (3.34)
beyond an expansion in µ, by introducing a different, µ- and τ -dependent rescaling of the masses
in eq. (3.29) respectively. However, a little thought shows that due to essentially different τ - and
µ-dependence of the masses of the two models such a procedure is impossible.

In order to take the large-N limit at strong nonhermiticity of the first model with quarks and
conjugate anti-quarks we go back to the expressions for finite-N of the partition function, eqs. (2.11)
and (2.12). At the regime of weak nonhermiticity it was crucial to expand the determinant det[· · ·]N
to be able to perform exactly the unitary group integrals arising from the parameterization of Q.
However, at the regime of strong nonhermiticity such an expansion is no longer possible with respect
to the parameter µ since the latter no longer scales with N . For the sake of simplicity we will restrict
ourselves to real quark and conjugate anti-quarks masses, M = M †, eq. (2.12). In general the radial
and unitary degrees of freedom no longer decouple. However, if we assume that the permutation
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symmetry makes all radial coordinates rk to take the same saddle point value as it was the case
previously, see eq. (3.5), that means

r̂|sp = rsp1Nf
, (3.37)

with the value rsp to be determined, the integral eq. (2.12) simplifies considerably. The unitary
matrix V drops out from the integrand and we obtain

Z(Nf ,ν)
I (µ;M) ∼ e−N〈q̄q〉2TrM2

e
−N〈q̄q〉2Nf r2

sp
∫

dU det[U †]ν

× exp
[

N〈q̄q〉2rspTrM(U + U †)
]

det
[

r2
sp1Nf

− µ2U †Σ3UΣ3

]N
. (3.38)

This expression can be regarded as the effective partition function at the regime of strong nonher-
miticity, and serves as generalization of the effective Lagrangian from chiral perturbation theory [11],
eq. (3.15) which was valid at weak nonhermiticity. The two expressions only agree after expanding
to the first order in µ2 (for real masses). Note that while in the chiral Lagrangian picture higher
powers terms (µ2U †Σ3UΣ3)

k can be excluded from power counting in U , they cannot be excluded in
the matrix model. We will see that in order to describe a phase transition to the symmetric phase it
will be important to keep all powers in µ, see section 4 below, also cf.[12].

In the following we also restrict ourselves to an equal number of quarks and their conjugate
partners, n = m. The reason is that in the general case n > m one naturally expects a result to
be of the mixed form (compare eq. (2.18) or eq. (3.23), containing both limiting ”kernels” and
”polynomials”9. However, we have just seen that the quantities corresponding to the polynomials do
not have a proper large-N limit. Since we are looking for partition functions that do possess such a
limit at strong nonhermiticity (as we will find for the second model below) we choose n = m to ensure
that the result contains only kernel terms.

In eq. (3.38) we can again employ the parameterization eqs. (3.16) and (3.17), where it is instruc-
tive to first look at the determinant alone. We obtain

det
[

r2
sp1Nf

− µ2U †Σ3UΣ3

]N
= det

(

r2
sp1n − µ2v1(2λ̂

2 − 1n)v†1 2µ2v1λ̂
√

1n − λ̂2)v†2
−2µ2v2λ̂

√

1n − λ̂2)v†1 r2
sp1n − µ2v2(2λ̂

2 − 1n)v†2

)N

= det
[

r4
sp1n − 2r2

spµ2(2λ̂2 − 1n) + µ4
1n

]N

= (r2
sp + µ2)2nN

n
∏

i=1

(

1−
4r2

spµ2

(r2
sp + µ2)2

λ2
i

)N

, (3.39)

where all angular-variable dependence has dropped out. The integrals over the unitary subgroups u1,2

and v1,2 of the mass dependent exponential exp[N〈q̄q〉2rspTrM(U + U †)] can be performed as in the
weak nonhermiticity limit eq. (3.20), using the integral eq. (3.21). In fact we can literally repeat all
the following simplifying steps there after eq. (3.22), leading to

Z(Nf ,ν)
I (µ; {ζf}n, {ξg}n) ∼ 1

∆n(ζ2)∆n(ξ2)
e−

1
2

∑n
k=1(ζ

2
k+ξ2

k) r
Nf (ν+1)
sp e

−N〈q̄q〉2Nf r2
sp (r2

sp + µ2)2nN

× det
i,j=1,...,n





∫ 1

0
dλλ

(

1−
4r2

spµ2

(r2
sp + µ2)2

λ2

)N

Iν

(√
2N〈q̄q〉rspλζi

)

Iν

(√
2N〈q̄q〉rspλξj

)



 . (3.40)

Here we have also inserted the microscopic scaling of the masses eq. (3.29). We still have to determine
the saddle point value rsp and take the large-N limit. In the latter the integral can be computed by

9For the interpretation of the partition function in terms of kernels and polynomials we refer to section 3.3.

16



making the change of variables s = 4r2
spµ2 Nλ2/(r2

sp + µ2)2 and using that limN→∞(1 − s/N)N =
exp[−s]. We also employ the following integral,

∫ ∞

0
dse−sJν

(√
2sζ
)

Jν

(√
2sξ
)

= exp

[

−1

2
(ζ2 + ξ2)

]

Iν(ζξ) , (3.41)

after analytically continuing in the masses10. Taking out common factors of the determinant we arrive
at

Z(Nf ,ν)
I (µ; {ζf}n, {ξg}n) ∼ 1

∆n(ζ2)∆n(ξ2)
e−

1
2

∑n
k=1(ζ

2
k+ξ2

k)e
−N〈q̄q〉2Nf r2

sp (r2
sp + µ2)2nN

×
(

(r2
sp + µ2)2

4Nr2
spµ2

)n

e
1
2
〈q̄q〉2(r2

sp+µ2)2
∑n

k=1

(ζ2
k
+ξ2

k
)

4µ2 det
i,j=1,...,n

[

Iν

(

〈q̄q〉2(r2
sp + µ2)2ζiξj

4µ2

)]

. (3.42)

The value for rsp can finally be read off as

(r2
sp + µ2) = 〈q̄q〉−2 , (3.43)

which allows to simplify the final result down to

Z(Nf ,ν)
I (µ; {ζf}n, {ξg}n) ∼ 1

∆n(ζ2)∆n(ξ2)

1

(4〈q̄q〉2µ2)n
e−2nN(〈q̄q〉2µ2−1) (3.44)

× exp

[

1

2
(1− 4〈q̄q〉2µ2)

n
∑

k=1

(ζ2
k + ξ2

k)

4〈q̄q〉2µ2

]

det
i,j=1,...,n

[

Iν

(

ζiξj

4〈q̄q〉2µ2

)]

.

Our conclusion is therefore that the large-N limit of the partition function (as a functions of the
masses) with an equal number of quarks and conjugate anti-quarks is well-defined, in contrast to that
for quarks alone, eq. (3.32). The µ-dependence can be almost entirely absorbed by redefining the
rescaling of the masses eq. (3.29) to ζf → ζf/(2〈q̄q〉µ) and ξg → ξg/(2〈q̄q〉µ), giving:

Z(Nf ,ν)
I (µ; {ζf}n, {ξg}n) ∼ e−2nN(〈q̄q〉2µ2−1)

∆n(ζ2)∆n(ξ2)

1

(4〈q̄q〉2µ2)n
e

1
2
(1−4〈q̄q〉2µ2)

∑n
k=1(ζ

2
k+ξ2

k) det
i,j=1,...,n

[Iν (ζiξj)] .

The strong nonhermiticity limit of the second model with quarks and conjugate quarks is again
performed easily, without being restricted to real masses. Looking at the expression eq. (2.18) we
need the limiting normalization factors, kernel and polynomials. The latter have been analyzed by us
already, and we start with the normalization factors. Omitting all constant factors we obtain

N+m−1
∏

k=N

hk ∼ (f (ν)(τ))m , (3.45)

which contains all τ−dependence. Before taking the strong nonhermiticity limit for the kernel (and
polynomials) we multiply all the prefactors mν

f and n∗ ν
g into the determinant det[B(mi, n

∗
j )] in eq.

(2.18), as in the weak limit before. The asymptotic kernel has been already evaluated in [18], reading

mνn∗ νκN (−m2,−n∗ 2) ∼ 1

(1− τ2)

1

f (ν)(τ)
exp

[

τ

2(1− τ2)
(ζ2 + ξ∗ 2)

]

Iν

(

ζξ∗

1− τ2

)

. (3.46)

10The integral in eq. (3.40) is also convergent after change of variables and taking the large-N limit as it stands,
without continuing to imaginary masses.
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Multiplying all factors of f (ν)(τ) from eq. (3.45) into the first m rows of the determinant cancels the
f (ν)(τ)-dependence of the kernel. Using eq. (3.33) for the asymptotic polynomials results in the full
expression for the partition function reading

Z(Nf =m+n,ν)
II (τ ; {ζf}m, {ξ∗g}n)|strong ∼

e−N(n−m)

∆m(ζ2)∆n(ξ∗ 2)

1

(1− τ2)m
τ (n−m)(N+ 1

4
(n+3m−1+2ν))

× det



























e
τ

2(1−τ2)
(ξ∗ 2

1 +ζ2
1 )

Iν(
ξ∗1ζ1
1−τ2 ) · · · e

τ

2(1−τ2)
(ξ∗ 2

n +ζ2
1 )

Iν(
ξ∗nζ1
1−τ2 )

...
...

e
τ

2(1−τ2)
(ξ∗ 2

1 +ζ2
m)

Iν(
ξ∗1ζm

1−τ2 ) · · · e
τ

2(1−τ2)
(ξ∗ 2

n +ζ2
m)

Iν(
ξ∗nζm

1−τ2 )

e
−ξ∗ 2

1
2τ Iν(

√
2Nξ∗1τ− 1

2 ) · · · e
−ξ∗ 2

n
2τ Iν(

√
2Nξ∗nτ− 1

2 )
...

...

e
−ξ∗ 2

1
2τ ξ∗n−m−1

1 I
(n−m−1)
ν (

√
2Nξ∗1τ

− 1
2 ) · · · e

−ξ∗ 2
n

2τ ξ∗n−m−1
n I

(n−m−1)
ν (

√
2Nξ∗nτ− 1

2 )



























.

(3.47)

In order to compare with eq. (3.45) we look at the particular case of equal number of quarks and
conjugate anti-quarks, n = m,

Z(Nf =2n,ν)
II (τ ; {ζf}n, {ξ∗g}n)|strong ∼ 1

∆n(ζ2)∆n(ξ∗ 2)

1

(1− τ2)n
exp

[

τ

2

n
∑

k=1

ξ∗ 2
k + ζ2

k

1− τ2

]

× det
i,j=1,...,n

[

Iν

(

ξ∗i ζj

1− τ2

)]

. (3.48)

This expression has a finite limit at large N as a function of τ and the masses. We note that
here the masses always appear in the same τ−dependent combination 1/

√
1− τ2. If we define a

τ−dependent microscopic rescaling m
√

2N/(1 − τ2) = ζ instead of eq. (3.29) that square-root factor
can be absorbed:

Z(Nf =2n,ν)
II (τ ; {ζf}n, {ξ∗g}n)|strong ∼ 1

∆n(ζ2)∆n(ξ∗ 2)

1

(1− τ2)n
e

τ
2

∑n
k=1(ξ

∗ 2
k +ζ2

k) det
i,j=1,...,n

[Iν (ξ∗i ζj)] .

(3.49)

We note that ρ(0) = 1
2π(1−τ2)

is the constant macroscopic density corresponding to uniform filling of

an ellipse. The scaling defined above is very reminiscent to the scaling on the real line used to get read
of the mean level spacing. The two partition functions eq. (3.45) and (3.49) can now be identified
upon the mapping

τ = 1− 4〈q̄q〉2µ2 . (3.50)

It is yet different from the two previous mappings, the main point of our analysis being the very
existence of a correspondence between the two functions in terms of their arguments.

3.3 Universality

After having demonstrated several cases of agreement between the two partition function with a given
flavors content let us use those results for discussing the issue of universality of the random matrix
theory in the complex plane. For matrix models with eigenvalues on the real line universality is a
well established principle, both on the base of heuristic, physical arguments [21, 22, 36] as well on
firm mathematical grounds (see [46, 33] and references therein; we mainly discuss works relevant for
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QCD applications). On the other hand, for complex eigenvalues the subject has so far attracted only
little attention, apart from the discussion in [23]. As we already have mentioned several times, it
is important to distinguish between the limits of weak and strong nonhermiticity [16]. As is well
known, the eigenvalue correlations in the weak nonhermiticity limit interpolate between those typical
for real eigenvalues and those known for complex eigenvalues. More precisely, sending the rescaled
nonhermiticity parameter α from eq. (3.2) to 0 or ∞ allows to recover correlation functions typical
for eigenvalues of Hermitian or, respectively, complex strongly nonhermitian (Ginibre-like) matrices.
This was explicitly checked in several cases, as for example in [16] for the unitary (UE) and in [18] for
the chiral unitary ensemble (chUE).

In that sense the weak nonhermiticity limit is closely related to real, universal correlations, and it
is natural to expect it should maintain at least some universality features. In [23] a certain class of
deformations of measures of the complex UE were studied with the conclusion, that the asymptotic
polynomials, kernels and correlation functions remain universal.

It therefore came as a surprise that for the complex extension of the chUE two slightly different
results were obtained for the microscopic spectral density. Indeed, the second model eq. (2.5) with
complex eigenvalues was solved in the paper [18] by analytical continuation of the Laguerre polynomi-
als, and a comparison to quenched QCD lattice data with chemical potential confirmed the obtained
results [19]. On the other hand, the original model eq. (2.1) based on a random matrix representation
as a starting point was solved recently for the microscopic spectral density in the weak limit, using an
exact replica approach, see [6]. The obtained density, although having a very similar structure, was
slightly different, and the difference was confirmed by simulating numerically the underlying random
matrix model, eq. (2.1). We remark however, that for the range of parameters µ used in the analysis
of the lattice data [19] the difference was too small to be detected. In view of the agreement between
partition functions of the two models found in the preceding sections and in [15] we will try to shed
some more light on the origin of the discrepancy, and thus on the issue of universality.

In the random matrix theory several different objects can be tested for the property of universality.
Let us start with recalling some basic facts for models that can be solved with the technique of
orthogonal polynomials, such as eq. (2.5) or the chUE. The solution for the eigenvalue correlation
functions can be written as

ρk(z1, . . . , zk) = det
i,j=1,...,k

[KN (zi, z
∗
j )] =

k
∏

l=1

w(zl, z
∗
l ) det

i,j=1,...,k
[κN (zi, z

∗
j )]

=
k
∏

l=1

w(zl, z
∗
l ) det

i,j=1,...,k

[

N−1
∑

k=0

h−1
k P̃

(ν)
k (zi)P̃

(ν)
k (z∗j )

]

, (3.51)

where we use the notation introduced in eqs. (2.14) and (2.15).
It is evident, that three different objects can be analyzed from the point of view of asymptotic

universality in the large-N limit: the polynomials P̃
(ν)
N (z), the bare kernel κN (zi, z

∗
j ) and the weight

function w(z, z∗) itself. All these objects have a direct relation to partition functions as we will see
below. For the universality of the spectral correlations eq. (3.51) we need that both the weight and

the bare kernel are universal, as the full kernel is given by KN (zi, z
∗
j ) = [w(zi, z

∗
i )w(zj , z

∗
j )]

1
2 κN (zi, z

∗
j ).

We also note that for real eigenvalues the universality of the bare kernel follows directly from that of
the polynomials11 due to the Christoffel-Darboux formula

κN (x, y) = h−1
N−1

P̃N (x)P̃N−1(y)− P̃N (y)P̃N−1(x)

x− y
. (3.52)

11We note however, that the universality of the norms hk is a separate issue, see e.g. in [21].
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For orthogonal polynomials in the complex plane this relation does not hold and thus the universality
of polynomials does not necessarily imply the universality of the bare kernel, and vise versa.

There exists an alternative method for computing spectral correlation functions from working with
characteristic polynomials. An advantage of the method is that it retains its validity also in a general
case when orthogonal polynomials are unavailable, for example, when the partition function cannot
be represented in terms of eigenvalues. In the simplest case the resolvent G(z) can be generated from
differentiating a single ratio of characteristic polynomials,

G(z) ≡
〈

Tr
1

z −H

〉

N

= ∂z

〈

det(z −H)

det(u−H)

〉

N

∣

∣

∣

∣

u=z

. (3.53)

Here H = H† denotes a hermitian random matrix of size N × N averaged over a Gaussian or more
general weight function. Knowing the resolvent, the spectral density follows by taking the discontinuity
along the support or the antiholomorphic derivative, for real or complex eigenvalues, respectively. For
getting access to higher order correlation functions more ratios of characteristic polynomials can be
used as source terms.

Apart from being a generator for spectral correlation functions characteristic polynomials can be
regarded as interesting objects in their own right, and it is therefore natural to ask about their uni-
versality. In fact, it is possible to relate characteristic polynomials to orthogonal polynomials in such
models where the latter are known. First of all, the expectation value of a single characteristic poly-
nomial directly gives the orthogonal polynomial for the corresponding model in monic normalization:

〈det(z −H)〉N = P̃N (z) . (3.54)

Second, the expectation value of the product of two characteristic polynomials yields directly the bare
kernel (see e.g. in [47])

〈det(z −H) det(u−H)〉N = hN κN+1(z, u) . (3.55)

Third, for real eigenvalues the expressions involving the inverse of a characteristic polynomial are
given in terms of the Cauchy transform of the orthogonal polynomials, as was recently discovered in
[34], and further developed in [33, 35, 32, 36]. For example:

〈

1

det(z −H)

〉

N

=
1

2πi

∫

dx
w(x)

z − x
P̃N (x) ≡ ϑ(z) , (3.56)

where to ensure that the object is well-defined, the poles have to be suitably avoided by giving an
imaginary part to z, ℑm(z) 6= 0. Various formulas expressing arbitrary products [27, 29, 28, 38, 39]
and arbitrary ratios [34, 33, 35] of characteristic polynomials in terms of orthogonal polynomials, their
Cauchy transforms and bare kernels containing one or both of these have been proved recently.

A natural question which immediately arises is whether the universality also holds for arbitrary
ratios of characteristic polynomials, especially in view of their relation to orthogonal polynomials
and bare kernels just mentioned. We would like to point out that because of the presence of the
Cauchy transform the universality of such objects is in general not a simple consequence of the known
universality of the kernels and polynomials. For the unitary ensembles with real eigenvalues this
question has been completely answered. For the standard UE the universality was rigorously proved
in [33]. Arbitrary ratios of characteristic polynomials for the chUE have been computed in [30, 32, 31]
and proved to be universal in various regimes in [36, 37]. Let us mention that all what we have
said immediately applies to the matrix model partition functions of QCD, as the insertion of massive
flavors is nothing else than the insertion of Nf characteristic polynomials. In fact, from the point of
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view of massive partition functions the universality of arbitrary products has been proved previously
in [22] for the UE and chUE.

For characteristic polynomials of matrices with complex eigenvalues much less is known. First
of all we have to distinguish between the characteristic polynomial and its complex conjugate, just
as we have distinguished between quarks and conjugate anti-quarks in our previous considerations.
For arbitrary products of characteristic polynomials and a different number of complex conjugate
characteristic polynomials an expression in terms of polynomials and bare kernels has been derived
in [39] (see eq. (2.18) which we have already used). From what has been said in this section it is
clear, that using products alone we will not be able to deduce the universality complex eigenvalue
correlations.

We can thus conclude the following. We have studied two different models, eqs. (2.1) and (2.5),
which are apriori not the same, in particular as the former does not admit a simple eigenvalue repre-
sentation. We have found that in the large-N limit at weak nonhermiticity the two partition functions
agree for an arbitrary and different number of quarks and conjugate anti-quarks, showing that they
both belong to the same universality class. This gives a strong argument in favor of universality
for arbitrary products of characteristic polynomials in the regime of weak nonhermiticity . For com-
plex models without chiral symmetry this follows from [23] by proving universality of the kernel and
polynomials there.

At strong nonhermiticity we found that the partition functions of the two models can be mapped
onto each other, provided we consider an equal number of quarks and conjugate anti-quarks. This
correspondence indicates possible universality of some strongly nonhermitian partition functions. An-
other argument could be that for the second model its weakly nonhermitian (universal) partition
function can be matched to the strongly nonhermitian one by taking the limit α →∞. However, we
found that two partition functions with a general flavor content, for example containing only quarks,
disagree in general. Despite the fact that they have a very similar structure, only the leading order
term in expansion with respect to µ can be put in correspondence. This indicated that universality at
strong nonhermiticity regime may be more subtle. When discussing such a disagreement some caution
has to be added. As we have already remarked, a large-N limit of the partition functions with general
flavor content as functions of the masses does not exist, properly speaking.

Let us come back to the question of universality of correlation functions at weak nonhermiticity.
In [6] the corresponding microscopic spectral density was computed for the first model eq. (2.1) at
ν = 0. There, an exact replica method was used, that expresses the density in terms of a product and
a ratio of characteristic polynomials,

ρI |weak(ζ) =
1

2
|ζ|2Z(Nf =−1−1,0)

I (µ; ζ, ζ∗) Z(Nf =1+1,0)
I (µ; ζ, ζ∗) , (3.57)

written in terms of the rescaled variable ζ = 2N〈q̄q〉z. Here by a negative number Nf = −2 of flavors
we indicate the corresponding number of inverse powers of determinants m = n = 1 in eq. (2.10). The
latter objects in the present context are also frequently called the bosonic partition functions. Let us
compare this expression to the result of [18]

ρII |weak(ζ) = lim
N→∞τ→1

w(z, z∗) κN (z, z∗)

= lim
N→∞ τ→1

w(z, z∗) h−1
N−1Z

(Nf =1+1,ν)
II (τ ; z, z∗) , (3.58)

where in the second step we have used eq. (2.18) for n = m = 1, corresponding to eq. (3.55) in the
complex plane. As we know, the two fermionic partition functions, that is corresponding to positive

value Nf = 2, Z(Nf ,ν)
I,II agree for any value of ν. We therefore can compare the weight function of
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the second model in the weak nonhermiticity limit with 1
2 |ζ|2Z

(Nf =−1−1,0)
II that plays the same role.

While for the weight factor we have

lim
N→∞ τ→1

w(z, z∗) h−1
N =

1

α
|ζ|2ν+1 exp

[

− 1

α2
(ℑmζ)2

]

(3.59)

in terms of the rescaled variable, for the bosonic partition functions taken from [6] it follows12

|ζ|2Z(Nf =−1−1,0)
I (α; ζ, ζ∗) ∼ |ζ|2

α2
exp

[

1

4α2
(ζ2 + ζ∗ 2)

]

K0

( |ζ|2
2α2

)

. (3.60)

In the limit of small α or large |ζ|2 we can expand the K-Bessel function K0(x) ∼ e−x/
√

x and both
expressions eqs. (3.59) and (3.60) will coincide for ν = 0. However in general they disagree, leaving
different possibilities for the universality of spectral correlation functions at weak nonhermiticity. We
are left with two possibilities, one being that the models are in different universality classes for the
spectral correlations, despite agreeing for all correlations of products of characteristic polynomials.
Or, alternatively, there is no spectral universality at weak nonhermiticity at all, in the sense that such
a universality only holds for characteristic polynomials and not for the weight function itself.

To further illustrate these possibilities let us point out a major difference from the Hermitian large-
N limit. At zero chemical potential the weight function corresponding exp[−NV (x)], with V (x) an
even polynomial, is reduced to a trivial unity factor in the microscopic scaling limit Nx = const . For
that reason the distinction between bare and full kernel becomes immaterial in that limit. Therefore
the agreement between the two models for the product of two characteristic polynomials leading to
the kernel, eq. (3.55) implies the same agreement for the spectral correlations. However, at weak
nonhermiticity this is not the case any longer. As we see in eq. (3.59) the weight function remains
different from unity in that limit. In fact it has to be a function of the imaginary part ℑm(ζ) and the
rescaled chemical potential α, such that it reduces to a δ−function in ℑm(ζ) in the limit α → 013.
Otherwise the model would not reduce to the chUE as a model of QCD [1].

Finally we would like to mention that there exists a matrix model [48] different from the two
models studies in this paper. It is given in terms of two independent complex matrices and can be
diagonalized to give a complex eigenvalue representation. The weight function of the eigenvalues of this
model is precisely given by eq. (3.60). The solution of the model [48] by the method of orthogonal
polynomials provides an very interesting third alternative model for QCD with chemical potential,
having simultaneously a matrix and complex eigenvalue representation. While the microscopic density
at weak nonhermiticity agrees with that found in [6] the strong limit has not been studied so far.

Another approach to the open problem of universality would be to compute the bosonic partition

function in the second model Z(Nf =−2,0)
II . Thus it remains to be seen if the universality found for

products breaks down for inverse powers of characteristic polynomials.

4 Phase transitions

The aim of this section is to study the chiral phase transition at a critical value µc. Since the second
model eq. (2.5) is always in the broken phase [18], with a constant macroscopic density on an ellipse
for all allowed values of τ ∈ [0, 1], we will only study the first model eq. (2.1). Furthermore, we will
restrict ourselves to the presence of quarks alone. This is mainly because only in this case a very
compact expression eq. (2.4) is available (compared to eqs. (2.11) or (2.12)).

12Note that in [6] the matrices are chosen to be antihermitian.
13We would like to mention that in the analysis [23] only such deformations of the weight functions were studied which

keep a Gaussian representation of the δ−function. Such deformations still do enter in the macroscopic density ρ(0).
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The same model has already been studied for one flavor Nf = 1 in great detail [12]. The virtue of
the expression eq. (2.4) is that most of this analysis carries over to several flavors. An extended version
of the model eq. (2.1) including temperature has been studied to predict the phase diagram of QCD
for two light flavors [9]. However, in order to be able to solve the model rather strong assumption had
to be made on the nature of the saddle point. One of the main goals of our present analysis is to see
if such a consideration for zero temperature can be checked and further extended, with an additional
number of not necessarily degenerate flavors included into the model. More recently the model with
temperature and chemical potential [9] has been extended to study the different effect of baryon and
isospin chemical potential for two flavors [10]. The latter corresponds to having a pair of a quark and
its conjugate, and the authors find a doubling of the critical line as compared with [9].

Here there is an important difference from the previous section in the large-N limit. We are
interested in finding discontinuities of the partition function eq. (2.4) as a function of masses and
chemical potential µ when N becomes large. In contrast to the weak and strong nonhermiticity limit
considered before, we therefore will not assume any scaling of the masses mf with N . This will modify
the respective saddle point eqs. (3.5) and (3.31) as the Bessel function will now make a nontrivial
contribution to it. It introduces a mass dependence into the saddle point that makes an analysis of
the effect of light versus heavy flavors possible.

Before taking the saddle point limit we further compactify the expression eq. (2.4), by multi-

plying the Vandermonde determinant of the radial coordinates, ∆Nf
(r2) = deti,j[r

2(j−1)
i ], with the

determinant of Bessel functions. The resulting matrix elements (i, j) of the single determinant read
∑Nf

k=1 r
2(j−1)
k Iν(mirk). Due to the symmetry of the partition function under permutations of the rk

we can follow the same steps as described after eq. (3.22). This reduces the determinant to Nf ! times

a simpler determinant with elements r
2(j−1)
j Iν(mirj). We can now take the integration over each drj

into the j−th column, and obtain up to the symmetry factor Nf !

Z(Nf ,ν)
I (µ; {mf}) = e−N〈q̄q〉2

∑Nf
f=1 m2

f
1

∆Nf
(m2)

(4.1)

× det
i,j=1,...,Nf

[∫ ∞

0
dr rν+1+2(j−1)(r2 − µ2)Ne−N〈q̄q〉2r2

Iν(2N〈q̄q〉2mi r)

]

.

In this form valid at finite-N the partition function looks exactly as a determinant over finite-N
partition functions of a single flavor, apart for the difference between the index of the Bessel function
ν and the different power in r to (ν + 1 + 2(j − 1)). At the saddle point this difference will be of
course subleading and allows for the analysis of discontinuities of the Nf flavors in terms of a one-
flavor partition function elaborated in [12]. We can now evaluate the saddle points of the integrals
individually. Taking the asymptotic limit for the Bessel function Iν(x) ∼ ex/

√
x we obtain for each

row
r

r2 − µ2
− r〈q̄q〉2 + 〈q̄q〉2mi = 0 , i = 1, . . . , Nf . (4.2)

In order to lift the resulting degeneracy of the determinant we have to differentiate the Bessel functions
as usual. Furthermore, we note that since it is only their asymptotic exponential behavior that enters
the saddle point equation we interchange the differentiation and the saddle point procedures. The
result is

Z(Nf ,ν)
I (µ; {mf}) =

e−N〈q̄q〉2
∑Nf

f=1 m2
f

∆Nf
(m2)

det
i,j=1,...,Nf

[

mj−1
i ∂j−1

mi
z
(Nf =1,ν)
I (µ;mi)|sp

]

, (4.3)

where we have defined the partition function with its trivial exponential mass dependence removed,

zI(µ;m) ≡ e+N〈q̄q〉2m2 Z(Nf =1,ν)
I (µ;m) . (4.4)

23



The large-N partition function is thus given by a determinant of (differentiated) single flavor partition
functions at their saddle point value. This enables us to draw some general conclusions.

A first order phase transition occurs if the first logarithmic derivative of the partition function is
discontinuous at some value. We look for a discontinuity with respect to µ so we define the quark
number density

nq ≡
1

Nf
∂µ lnZ(Nf ,ν)

I (µ; {mf}) . (4.5)

Applying this to our result eq. (4.3),

nq = Tr ln

[

∂µA

A

]

, (A)ij ≡ mj−1
i ∂j−1

mi
zI(µ;mi)|sp , (4.6)

we observe that a discontinuity occurs whenever an individual differentiated matrix element becomes

singular. Thus, the phase transition arises when the one-flavor partition function Z(1,ν)
I (µ;mi) with

the smallest value µc becomes discontinuous. Since µc is a functions of the mass mi, we have to
compare the mi-dependence of the saddle point equation (4.2) with its corresponding value µc(mi).
We will find that it is always the smallest mass (which may be zero) that has the smallest value of µc

and thus drives the transition.
The analysis of the saddle point solution and the corresponding partition function for Nf = 1 has

been made already in great detail in [12], and we follow it closely. The saddle point equation (4.2) is
of third order and thus may have up to three real solution. We begin with the simplest, massless case:

r

r2 − µ2
− r〈q̄q〉2 = 0 ⇒ r|sp =







0 = rr(m = 0) restored

+
√

〈q̄q〉−2 + µ2 = rb(m = 0) broken

−
√

〈q̄q〉−2 + µ2 /∈ [0,∞)

. (4.7)

It is easy to see that the solution with r|sp > 0 belongs to the broken phase (b) with an exponentially
suppressed partition functions, while the solution with r|sp = 0 corresponds to the restored phase (r)
[12]. The negative solution is rejected being outside the integration domain. If we switch on a mass
m the signature of the saddle point will remain the same14, with solutions being 0 < rr(m) < rb(m)
as we will see below.

The equation that determines the critical value µc is given by the requirement of partition functions
at two competing saddle points being equal,

(r2
b − µ2)e〈q̄q〉2(2mrb−r2

b ) = (µ2 − r2
r)e

〈q̄q〉2(2mrr−r2
r) . (4.8)

In the massless case m = 0 this leads, after inserting the solutions (4.7), to the following equation for
the critical line:

1 + 〈q̄q〉2µ2
c + ln[〈q̄q〉2µ2

c ] = 0 , ⇒ 〈q̄q〉µc ≈ 0, 527 . . . , (4.9)

where we have given the approximate numerical value for its real solution (see also fig 1 below).
Let us now determine how this value shifts if we include a small mass. We first present a pertur-

bative analysis to the leading order in the mass15 and then come back to the full solution below. First
we determine the shift of the saddle point solution due to the mas term,

rr(m)− rr(0) ≡ δr(m) =
m〈q̄q〉2µ2

1 + 〈q̄q〉2µ2

rb(m)− rb(0) ≡ δb(m) =
m

2(1 + 〈q̄q〉2µ2)
, (4.10)
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Figure 1: The critical potential as a function of mass, both given in units of 〈q̄q〉. The critical value
at m̄ = 0 is µ̄c(0) = 0.527 . . . .

where we retained only the leading order linear behavior in m.
Next we compute the resulting shift in the critical line, determining µc(m):

1 + 〈q̄q〉2µ2
c + ln[〈q̄q〉2µ2

c ] − 2m〈q̄q〉2
√

〈q̄q〉−2 + µ2
c +O(m2) = 0 . (4.11)

To the leading linear order in m both δr,b dropped out. We thus obtain for the shift in µ2
c defined

as
µ2

c(m) − µ2
c(0) ≡ γ(m) , (4.12)

the positive quantity

γ(m) =
2〈q̄q〉m〈q̄q〉2µc(0)
√

1 + 〈q̄q〉2µc(0)
+ O(m2) , (4.13)

after inserting it into eq. (4.11). It is again given to leading order only. From this result we can
deduce the following. If we have massless and massive flavors present in the partition function eq.
(4.3) the critical value for the massless single flavor partition functions will be reached before that of
the massive flavors, as µc(0) < µc(m 6= 0). Second, if only massive flavors are present it is the critical
µc(m) of the lightest flavor which is reached first, as for m1 < m2 holds µ2

c(m1) < µ2
c(m2). In both

cases it is the lightest or zero mass that triggers the phase transition. Since it is of first order for a
single flavor [12] it is thus first order for any combination of massive and massless flavors, as follows
from eq. (4.6). Moreover, for each different mass there is separate transition, leading in principle to
a sequence of transitions16. A similar feature of two distinct first order lines was found in [10] for two
flavors.

We have also convinced ourselves that the monotonic behavior of the critical chemical potential
µc(m) persists beyond the linear approximation, eqs. (4.13) and (4.12). This can be done by inserting
the two positive real solutions for the third order saddle point equation into the condition eq. (4.8)
and solving it numerically. If we measure all quantities in units of 〈q̄q〉, r̄ = 〈q̄q〉r, µ̄ = 〈q̄q〉µ and
m̄ = 〈q̄q〉m (or set 〈q̄q〉 = 1) we have

r̄r =
2

3

√

3(1 + µ̄2) + m̄2 cos[ϕ/3 + 4π/3] +
m̄

3
14This can be seen from the discriminant for all real values of the masses.
15A similar analysis was made in [10] for Nf = 2 with a different chemical potential for each flavor.
16We wish to emphasize that in general the flavor dependence of matrix models is too weak. In QCD the sign of the

β−function changes for sufficiently many flavors, and the finite temperature transition changes from second to first order
when changing from 2 to 3 flavors, which is not reproduced from the matrix model [9]. For that reason our conclusion
should be taken seriously for small Nf only.
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Figure 2: The logarithm of the partition function for N=10 (top), N=20 (middle), and N=30 (lower
line). The vertical lines indicate the positions of the of the corresponding critical values µc(m1,2).

r̄b =
2

3

√

3(1 + µ̄2) + m̄2 cos[ϕ/3] +
m̄

3

cos[ϕ] =
m̄(m̄2 − 9µ̄2 + 9

2)

[3(1 + µ̄2) + m̄2]
3
2

, (4.14)

as the two positive solutions of the saddle point equation. At m = 0 (ϕ = π/2) the first solution r̄r

vanishes as it should. We have plotted above the numerical solution of eq. (4.8), after inserting into
it the full solution eq. (4.14). It can be seen that µ̄c(m̄) is a monotonous function beyond the regime
of small masses m̄.

In order to check our findings we have examined numerically the partition function for two flavors
Nf = 2 with two nondegenerate masses, in the representation of eq. (4.1). We have chosen the
parameters m1 = 1 and m2 = 2 in units of 〈q̄q〉 and ν = 0. The resulting logarithm of the partition
function is plotted above for three different values of N as a function of µ (figure 2). Even for the
smallest value of N the points where the derivative of the partition function and thus the free energy
becomes discontinuous are very well visible. The positions coincide with the critical values of µ for
each mass scale, µ̄c(m̄1) = 1.2119 . . . and µ̄c(m̄2) = 2.119 . . .. (from fig. 1).

After having made a general statement we give an explicit example for the partition function eq.
(4.3) below and above the transition. Here we can again make use of analysis [12] where we briefly
repeat some of the results. The single flavor partition function (modulo its mass prefactor eq. (4.4))
can be conveniently written as

zI(µ;m) =

∫ µ2

0
dr r(r2 − µ2)Ne−Nr2

I0(2Nm r) +

∫ ∞

µ2

dr r(r2 − µ2)Ne−Nr2
I0(2Nm r)

≡ zr(µ;m) + zb(µ;m) . (4.15)

We used [12] that the restored symmetry solution satisfies rr ∈ [0, µ2] and the broken symmetry
solution is rb ∈ [µ2,∞) (see also eq. (4.14)). Here and in the following we set 〈q̄q〉 = 1 and ν = 0 as
it is done in [12]. The two different solutions can be written as a double sum at finite-N ,

zr(µ;m) = µ2(N+1)e−nµ2
∞
∑

l=0

∞
∑

s=0

(N + s)!

l!s!(N + l + s + 1)!
(Nm2)l(Nµ2)l+s ,

zb(µ;m) =
1

NN+1
e−nµ2

∞
∑

l=0

l
∑

s=0

(N + s)!

l!s!(l − s)!
(Nm2)l(Nµ2)l−s . (4.16)
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These formulas easily generate the massless partition function and its derivatives, z
(l)
r,b(µ;m = 0), as

we need them in eq. (4.3). We note that only even derivatives contribute and give the examples
necessary for Nf = 2 massless flavors. They read in the restored phase

zr(µ;m = 0) ∼ µ2(N+1)

z′′r (µ;m)|m=0 ∼ µ2(N+1)2Nµ2 , (4.17)

and in the broken phase

zb(µ;m = 0) ∼ e−Nµ2

z′′b (µ;m)|m=0 ∼ e−Nµ2
2N2(1 + µ2 + 1/N) . (4.18)

Taking the limit of two degenerate, massless flavors in eq. (4.3) we obtain for large N

Z(Nf =2,ν=0)
I (µ;m = 0) = det

(

zI(µ; 0) 0
0 z′′I (µ; 0)

)

∼
{

µ4N restored

e−2Nµ2
(1 + µ2) broken

. (4.19)

This compares to the single flavor result [12]

Z(Nf =1,ν=0)
I (µ;m = 0) ∼

{

µ2N restored

e−Nµ2
broken

. (4.20)

We see that the behavior is very similar, with the quark number density in the two flavor case being
twice as high.

As we have mentioned already there is more than one transition in the presence of several mass
scales. In particular this opens the possibility to have for example two transitions for two massless
flavors and one massive flavor, as it is often used in a simple model for QCD. For µc(0) < µ < µc(m),
the massless building blocks are already in the restored phase while the massive ones are still in the
broken phase. This is an intermediate regime before full symmetry restoration. It would be very
interesting to use the exact solution of our model as a further testing ground for lattice algorithms
as for example in [14]. For the discussion of phenomenological consequences we refer to [10] where a
similar phenomenon is observed.

5 Summary

We have computed and compared two different matrix model partition functions for QCD with chemi-
cal potential. While the first model has only a matrix representation and no eigenvalue representation
the situation is the reverse for the second model. We give very compact, new expressions for finite-N
for the first model in terms of integrals over the radial coordinates of the underlying sigma-model-like
representation. They hold for an arbitrary number of quarks or both quarks and conjugate anti-quarks.
By taking the large-N limit these expressions are then compared to the corresponding results from
the second model expressed in terms of orthogonal polynomials in the complex plane and their kernel.

In the limit of weak nonhermiticity we find a complete agreement, with a different identification
of the nonhermiticity parameters µ and τ and mass parameters in the cases of only quarks present, or
both quarks and conjugate anti-quarks.

The matching between the two models in the limit of strong nonhermiticity holds only for an equal
number of quarks and conjugate anti-quarks. For such a matching the masses have to be rescaled
with respect to the µ- or τ -dependent macroscopic density proportional to the level spacing. For a
generic number of quarks and conjugate anti-quarks, including the case of only quarks, a mapping
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can be achieved when perturbatively expanding in small chemical potential µ, despite the very similar
structure of the two partition functions. However, in this case a proper large-N limit of the two
partition functions does not exist.

From these finding we concluded that at weak nonhermiticity and also in a special case at strong
nonhermiticity the expressions for the fermionic partition functions are universal. The issue of uni-
versality of eigenvalue correlation functions is left open, as it involves also the computation of bosonic
partition functions.

In the last part we have investigated the phase structure of the first matrix model, which is known
to possess a first order phase transition for a single or several degenerate flavours (the second model is
always in the symmetry broken phase by construction). We have analyzed the model for an arbitrary
number of nondegenerate quark flavours, exploiting the compact expressions derived for finite-N .
In the large-N limit they give the multi-flavour partition function as a determinant of single flavor
partition functions of different masses, and their derivatives. Consequently for each nondegenerate
flavor a separate first order transition occurs, where the critical µ increases monotonically in mass.
We have checked our findings numerically for two flavors with nonvanishing, nondegenerate masses.

It would be very interesting to compute also the corresponding bosonic partition functions and
compare them, in particular in the light of their relation to complex eigenvalue correlations and the
related question of universality.
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A The sigma-model representation of the partition function

Here we derive the sigma-model representation for both the partition functions eqs. (2.5) and (2.1).
The latter can be obtained by omitting all conjugate flavors. To this aim we first unify notation, by
writing eq. (2.10) as

Z(Nf ,ν)
I (µ; {ωf}) = (−1)n(2N+ν)

∫

dΦdΦ†

Nf
∏

f=1

det





ωf1N iΦ + µf 1̃N

iΦ† + µf 1̃
†
N ωf1N+ν



 exp[−N〈q̄q〉2TrΦΦ†],

(A.1)
denoting the complex masses with

ωf ≡
{

+mf f = 1, . . . ,m
−n∗

f f = m + 1, . . . , Nf = m + n
, (A.2)

as well as choosing signs for the chemical potentials µf = +µ for f = 1, . . . ,m, and µf = −µ for
f = m + 1, . . . , Nf = m + n. After introducing two sets of complex Grassmann vectors χA and χB of
size N and N + ν respectively, we can express the determinant in eq. (2.1) as

Z(Nf ,ν)
I (µ; {ωf}) ∼

∫

d2χAd2χB e
−
∑Nf

f=1

(

ωf (χ†
A f

χA f +χ†
B f

χB f ) + µf (χ†
A f

1̃N χB f +χ†
B f

1̃
†

NχA f )

)

×
〈

e−i
∑Nf

f=1(χ
†
A f ΦχB f+χ†

B f Φ†χA f )

〉

Φ

. (A.3)
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We define the expectation value over the ensemble amounting to the integration over matrices Φ as
〈

e−i
∑Nf

f=1(χ
†
A f

ΦχB f +χ†
B f

Φ†χA f )

〉

Φ

≡
∫

dΦdΦ†e−i
∑Nf

f=1(χ
†
A f

ΦχB f +χ†
B f

Φ†χA f ) e−N〈q̄q〉2TrΦ†Φ.(A.4)

It can be further rewritten as
〈

e−i
∑Nf

f=1(χ
†
A f

ΦχB f +χ†
B f

Φ†χA f )

〉

Φ

=

〈

e+iTr(Φ
∑Nf

f=1 χB f⊗χ†
A f

+ Φ†
∑Nf

f=1 χA f⊗χ†
B f

)

〉

Φ

= exp



− 1

N〈q̄q〉2
Nf
∑

f,g=1

Tr(χA f ⊗ χ†
B f )(χB g ⊗ χ†

A g)





= exp



− 1

N〈q̄q〉2
Nf
∑

f,g=1

(χ†
A gχA f )(χ†

B fχB g)





=

∫

dQdQ†e
∑Nf

f,g=1

(

(χ†
A f

χA g)Qgf+(χ†
B f

χB g)(Q†)gf
)

e−N〈q̄q〉2TrQ†Q

(A.5)

where we have integrated out the matrices Φ, performed the trace and made a Hubbard-Stratonovich
transformation. The auxiliary matrices Q are now quadratic of size Nf×Nf . The integrations over the
Grassmann vectors χA and χB in eqs. (A.3) and (A.5) are now all Gaussian, leading to the following
determinant

Z(Nf ,ν)
I (µ;M) ∼

∫

dQdQ† det

(

(M + Q)T ⊗ 1N µΣ3 ⊗ 1̃N

µΣ3 ⊗ 1̃
†
N (M + Q†)T ⊗ 1N+ν

)

e−N〈q̄q〉2TrQ†Q

=

∫

dQdQ† det[M + Q†]ν (A.6)

× det
[

(M + Q†)(M + Q)− µ2(M + Q†)Σ3(M + Q†)−1Σ3

]N
e−N〈q̄q〉2TrQ†Q.

Here we have introduced the mass matrix M = diag(ω1, . . . , ωNf
) and the generalized Pauli matrix of

size Nf ×Nf

Σ3 ≡
(

1m 0
0 −1n

)

. (A.7)

Furthermore we made use of the following property of determinants for invertible matrices D

det

(

A B
C D

)

= det[D] det[A − B D−1C] . (A.8)

For real valued masses, M = M †, we can further simplify eq. (A.6) by shifting Q + M → Q,

Z(Nf ,ν)
I (µ;M) = e−N〈q̄q〉2TrM2

∫

dQdQ† det[Q†]ν det
[

Q†Q− µ2Q†Σ3Q
†−1Σ3

]N

×e−N〈q̄q〉2Tr(Q†Q − M(Q+Q†)). (A.9)

In the absence of conjugate anti-quarks, Σ3 = 1Nf
, the second determinant further simplifies, leaving

µ2
1Nf

only. In order to arrive at a unitary group integral we introduce the “polar decomposition”

Q = U R, where U † = U−1 is an Nf × Nf unitary matrix and R† = R is hermitian and positive.
The Jacobian for the transformation is derived in the following appendix. An alternative is the Schur
decomposition of the matrix Q used in [15] which quickly becomes cumbersome for more than Nf = 3
flavors. The advantage of our present method is that we can conveniently exploit the saddle point
approximation for the integrals over positive eigenvalues ri of the matrix R.
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B Jacobian for the polar decomposition

A classical result of linear algebra states that any Nf × Nf complex matrix Q can be written as
Q = U R where U † = U−1 is an Nf ×Nf unitary matrix and R† = R is Nf ×Nf hermitian positive
matrix. That is the matrix-generalization of the “polar decomposition” of a complex number q = reiθ

Clearly enough the number of real degrees of freedom of the matrix Q (i.e. 2N2
f ) matches with the

total number of real degrees of freedom of U (i.e. N2
f ) and R (i.e. N2

f ). Under this matrix change of
variables, the integration measure produces a Jacobian:

dQdQ† = J(R) dµ(U) dR , (B.1)

where dµ(U) is the Haar measure on the unitary group, dR is the measure on the space of Hermitian
positive matrices and J(R) is the Jacobian that we are going to calculate in this appendix. For
calculating the Jacobian17, we differentiate:

dQ = dU R + UdR . (B.2)

As R is an Hermitian matrix, it can be diagonalized by an unitary matrix V : R = V r̂V −1 with r̂ =
diag(r1, . . . , rn) having positive entries. If we left-multiply eq. (B.2) by V −1U−1 and right-multiply
by V , we get

V −1U−1 dQV = V −1U−1 dU V r + V −1 dR V . (B.3)

This equation can be written as dQ̃ = dŨ r + dR̃ with dQ̃ ≡ V −1U−1 dQV , dŨ ≡ V −1U−1 dU V and
dR̃ ≡ V −1 dR V . The matrix dŨ is anti-hermitian, since (dŨ )† = V †(dU)†UV = −V −1U−1 dU V =
−dŨ (we used dU †U = −U−1 dU). Moreover, the matrix dR̃ is hermitian, since dR̃† = (V −1 dR V )† =
R̃. Therefore, the relation between the differentials of the independent complex variables is:







(dQ̃)ii = dŨii ri + dR̃ii i = 1, . . . , Nf

(dQ̃)ij = dŨij rj + dR̃ij

(dQ̃)ji = dŨ∗
ij ri + dR̃∗

ij i < j

. (B.4)

Let us introduce a real parameterization as follows:

(dQ̃)ij = dxij + idyij , (dR̃)ij =

{

(dR̃)ij = dpij + idqij i < j ,

(dR̃)ii = dpii i = 1, . . . , Nf

(dŨ )ij =

{

(dŨ )ij = dvij + idwij i < j ,

(dŨ )ii = idwii i = 1, . . . , Nf
.

By matching the real and imaginary parts we have:

1) dxii = dpii and dyii = ridwii, for i = 1, . . . , Nf . The corresponding Jacobian is J1 =
∏Nf

i=1 ri.

2) dxij = dvijrj + dpij and dxji = −dvijri + dpij for any pair i < j. The corresponding Jacobian

is (J2)ij = det
∂(xij ,xji)
∂(vij ,pij)

= det

∣

∣

∣

∣

rj 1
−ri 1

∣

∣

∣

∣

= (ri + rj), and therefore J2 =
∏Nf

i<j(ri + rj).

3) dyij = dwijrj + dqij and dyji = dwijri − dqij for any pair i < j. The corresponding Jacobian is

J3 =
∏Nf

i<j det

∣

∣

∣

∣

rj 1
ri −1

∣

∣

∣

∣

=
∏Nf

i<j(ri + rj).

17For general methods of evaluating Jacobians, see [49] [50].
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Therefore the full Jacobian is J =
∏Nf

i=1 ri
∏Nf

i<j(ri + rj)
2. Going back to the original variables

dŨ → dU , dR̃ → dR and dQ̃ → dQ does not produce any additional factor in the final Jacobian (up
to an overall sign) as they differ only by unitary transformations. We thus obtain the final result

dQdQ† =

Nf
∏

i=1

ri

Nf
∏

i<j

(ri + rj)
2 dµ(U) dR

∝
Nf
∏

i=1

ri

Nf
∏

i<j

(ri + rj)
2

Nf
∏

i<j

(ri − rj)
2 dµ(U)dµ(V )

Nf
∏

i

dri

=

Nf
∏

i=1

ri dri

Nf
∏

i<j

= (r2
i − r2

j )
2dµ(U)dµ(V ) , (B.5)

where we used the standard fact that R = V r̂V −1 implies dR ∝
∏Nf

i<j(ri − rj)
2
∏Nf

i dri dµ(V ). We
have thus shown eq. (B.5) to be the expression for the Jacobian for the polar decomposition Q = U R.
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